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ABSTRACT 

There are still many unanswered questions in the field of brain bioenergetics and 

the question of which substrates normally fuel brain metabolism remains unresolved. In 

particular, it is not clear whether substrate preference is different between neurons and 

astrocytes, if this preference changes during increased neuronal activity or if the primary 

pathway to metabolize said substrate is aerobic glycolysis or the tricarbocylic acid 

(TCA) cycle. 

Here we attempt to offer some insight on this problematic by performing high-

resolution respirometry on acute hippocampal slices to evaluate tissue bioenergetics 

under different metabolic states. By using intact hippocampal slices, the intricate cellular 

interactions between neurons and astrocytes are maintained, as well as the neuronal 

circuitry, aspects that certainly have a critical role in the regulation of such metabolic 

pathways and crosstalks. 

We show that activation of hippocampal slices by exogenous glutamate leads to 

an increase in oxidative metabolism, suggesting higher TCA cycle activity and little to no 

contribution of aerobic glycolysis. We also show that both basal and activity-induced 

increase of respiration in hippocampal slices can be fuelled by lactate. These results 

suggest that hippocampal cells readily use lactate as a substrate of oxidative 

metabolism and that even in the situation of increased neuronal activity, lactate is a 

good alternative to glucose. 

As predicted, •NO titration decreased oxygen consumption rate (OCR) in acute 

rat hippocampal slices. This effect of nitric oxide on mitochondrial respiration has been 

showed in isolated mitochondria, synaptosomes and intact cells, but not in rat 

hippocampal slices, a model that maintains the neural cytoarchitecture and the 

functional cellular relationship between neurons and astrocytes. 

Keywords: high resolution respirometry; slices; hippocampus; nitric oxide; 

neurometabolism. 



viii 

 

SUMÁRIO 

Ainda existem muitas questões por responder no campo da bioenergética cerebral 

e a questão de quais são os substratos que normalmente abastecem o metabolismo 

cerebral ainda não foi resolvida. Em particular, não é claro se a preferência por 

substratos é diferente entre neurónios e astrócitos, se essa preferência muda durante 

períodos de aumento da atividade neuronal ou se a via metabólica primária para 

metabolizar esse substrato é a glicólise aeróbia ou o ciclo dos ácidos tricarboxílicos 

(TCA). 

Tentamos aqui contribuir para a compreensão desta problemática realizando 

respirometria de alta definição em fatias de hipocampo para avaliar a bioenergética do 

tecido em vários estados metabólicos. Usando fatias de hipocampo intactas, as 

intrincadas interações celulares entre neurónios e astrócitos são mantidas, assim como 

os circuitos neuronais, aspetos que certamente têm um papel crítico na regulação de 

vias metabólicas e interações. 

Nós demonstramos que a ativação de fatias de hipocampo por glutamato exógeno 

leva ao aumento do metabolismo oxidativo, sugerindo maior atividade do ciclo TCA e 

pouca ou nenhuma contribuição da glicólise aeróbia. Demonstramos, também, que 

tanto a respiração basal como o aumento da respiração induzida pelo glutamato podem 

ser abastecidas pelo lactato. Estes resultados sugerem que as células do hipocampo 

possuem a podem usar lactato como substrato do metabolismo oxidativo e que mesmo 

numa situação de atividade neuronal aumentada, o lactato é uma alternativa à glucose.  

Tal como previsto, a titulação de óxido nítrico (•NO) diminuiu a taxa de consumo de 

oxigénio (OCR) em fatias de hipocampo. Este efeito do •NO já tinha sido descrito em 

mitocôndrias isoladas, sinaptossomas e células intactas, mas nunca em fatias de 

hipocampo de rato, um modelo que mantêm a citoarquitectura neuronal e a relação 

celular funcional entre neurónios e astrócitos. 

Palavras-chave: respirometria de alta defenição; fatias; hipocampo; óxido nítrico; 

neurometabolismo. 
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1 INTRODUCTION 

1.1 BIOENERGETICS OF THE BRAIN 

Albeit comprising about 2% of the whole body mass, the human brain consumes 

around 20% of O2 and 25% of the glucose1 consumed in the body. Most of these 

resources are used for the phosphorylation of adenosine diphosphate (ADP) to 

adenosine triphosphate (ATP). A major contributor to this high energetic demand is the 

regulation of the membrane potential after neural depolarization, a process mediated by 

the Na+/K+-ATPase. Besides maintenance of regular cell function, neurotransmitter 

recycling and dendritic transport2 are also major contributors to energy expenditure in 

the neuronal tissue. 

The blood brain barrier (BBB) limits the access of many molecules, including 

metabolic substrates, to the brain tissue on the basis of polarity and size. The BBB is 

composed of endothelial cells connected by tight-junctions. This structure limits the 

diffusible molecules through the BBB to hydrophobic molecules like O2, CO2 and 

corticosteroids3. Non-hydrophobic molecules, cross the BBB through specific channels 

and transporters expressed by the endothelial cells. Regarding metabolic substrates, 

endothelial cells have transporters for glucose, amino acids, lactate, pyruvate and 

ketone bodies4. 

Astrocytes can store a limited amount of glycogen, however, this reserve can only 

sustain the brain metabolic requirements for a few minutes5. This means that the brain 

tissue has to rely on the bloodstream to supply metabolic substrates to fuel its metabolic 

activity. 

1.1.1  Metabolic Substrates of the Brain 

Since the inception of the field of brain energetics, glucose has been considered 

the primary substrate for both neurons and glia6. The conventional theory of brain 

metabolism (figure 1) states that upon increased metabolic demand in the brain tissue 

both astrocytes and neurons oxidize glucose to meet their energetic demands. 
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Production of lactate in this situation is atributed to the production of glycolitic products 

that exceeds the capacity of oxidative phosphorilation, and both astrocytes and neurons 

secrete such products to the bloodstream in the form of lactate7. Under this scope, 

lactate is considered a metabolic dead point. 

 

Figure 1. Schematic 
representation of glucose 
metabolism in neurons 
and astrocytes during 
increased neural activity, 
according to the 
conventional hypothesis. 
Adapted from Chih and 
Roberts Jr, 2003. 

 

 

 

 

 

 

A few years ago a new theory that contradicts this early assumption was 

proposed by Pellerin and Magistretti: the astrocyte-neuron lactate shuttle hypothesis 

(ANLSH). The ANLSH proposed that, at least under certain circumstances, the 

astrocytes metabolize glucose to lactate, in a process called aerobic glycolysis. This 

lactate is then shuttled to neurons to fuel oxidative phosphorylation8. 

In accordance with the ANLSH, following glutamatergic activity, glutamate uptake 

by astrocytes activates glycolytic enzymes. The astrocytes increase their glucose 

uptake and metabolize it to lactate through aerobic glycolysis. In the light of this theory, 

neurons are incapable of increasing glycolytic activity to support increased energy 

demand. They use the lactate released by the astrocytes and oxidize it in the 

mithochondria9,10 (figure 2). 
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Figure 2. Schematic 
illustration of glucose 
metabolism during neural 
activity in neurons and 
astrocytes, according to 
the ANLSH. Adapted from 
Chih and Roberts, 2003 

 

 

 

 

 

 

 

More recently, based on kinetic properties of the transporters of glucose and 

lactate and the concentrations of these metabolites in the various tissue compartments, 

Simpson et al. proposed that the neurons metabolize glucose to lactate and astrocytes 

use this lactate to fuel oxidative phosphorylation6,11. This hypothesis is called the 

neuron-to-astrocyte lactate shuttle hypothesis (NALSH). 

The conventional theory of brain metabolism (figure 1) defends that in the case of 

increased metabolic demand after a neuron depolarization, both astrocytes and neurons 

oxidize glucose to meet their energetic demands, the production of lactate in this 

situation is atributed to the production of glycolitic products that exceeds the capacity of 

oxidative phosphorilation, and both astrocytes and neurons secrete those products to 

the bloodstream in the form of lactate7. 

As for the primary substrate of the brain as a whole, glucose is generally 

accepted as the metabolic substrate of the brain overall. The suitability of a substrate to 

act as the physiological fuel for the brain tissue may be evaluated by determining by 
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how efficiently the endothelial cells of BBB mediate its transport to the brain interstitial 

space. The endothelial cells of BBB transport glucose through glucose transporters 

(GLUT) at a maximum rate of 259.5 nmol/106 cell.min-1. The GLUT have an Michaelis 

constant (Km) of 8 mmol/L. Lactate is transported by the monocarboxylate transporters 

(MCT) of the endothelial cells at a rate of 10 nmol/106 cell.min-1 and a Km for lactate6 of 

4 mmol/L. The low gradient of lactate across the blood brain barrier, coupled to the low 

lactate transport capacity of the endothelial cells, make lactate an ill-suited blood-borne 

metabolic substrate to the brain tissue as whole when compared to glucose12. 

The fact that glucose makes the better metabolic substrate in terms of availability 

and transport does not prove or disprove any of the aforementioned theories.  NALSH 

and ANLSH each propose that a specific cell type is capable and responsible for the 

conversion of glucose to lactate, which serves as substrate to the other cell type. 

 Although the answer to the question of what is the primary substrate of the brain 

would be glucose, there is still no definite answer to what is the main metabolic 

substrate of neurons, what is the main substrate of astrocytes and if they change during 

periods of neural activity. At this point, the issue remains controversial, with frequent 

publications with contradictory and matching results to the ANLSH6,11,13–15. We aim to 

help shed some light in the issue with the respirometry approach. 

1.1.2 Oxidative Phosphorylation 

Oxidative phosphorylation is the process in which ATP is formed as a result of 

the transfer of electrons from the reduced form of nicotinamide adenine dinucleotide 

(NADH) and the reduced form of flavin adenine dinucleotide (FADH2) to O2 through a 

series of electron carriers that together make the electron transfer system (ETS) (figure 

3). The oxidative phosphorylation pathway is the major source of ATP in aerobic 

organisms, as it yields an additional 26 molecules of ATP per glucose molecule as 

compared to the anaerobic fermentation of glucose, which yields 4 molecules of ATP 

per glucose molecule16.  
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Figure 3. Oxidative Phosphorilation. Schematic representation of the ETC with complexes I, II, III and IV, 
ubiquitinol molecule (Q), cytochrome C (cyt C) and ATP synthase. Adapted from Nelson, Lehninger, and Cox, 2008. 

The flow of electrons from NADH and FADH2 to O2 through a chain of protein 

complexes in the inner membrane of the mitochondria results in the pumping of protons 

to the intermembrane space of the mitochondria, forming a pH and electric gradient that 

favours the transport of protons to the mitochondrial matrix. The energy potential stored 

in the form of the proton electrochemical gradient is used by ATP synthase to catalyse 

the phosphorylation of ADP to ATP, at the cost of the transport of one proton to the 

mitochondrial lumen17. 

The electrons from NADH enter the chain in the NADH-Q reductase, also called 

complex I. Complex I consists of 34 polypeptide chains that together act as an electron 

carrier and proton pump. NADH is oxidized to its oxidized form (NAD+) transferring two 

electrons to the complex, resulting in the pumping of four protons to the intermembrane 

space. The electrons are carried through a series of iron clusters in the complex I until 

they reach and reduce a molecule of ubiquitinone allocated in the inner membrane of 

the mitochondria. Complex I is inhibited by rotenone, amytal18, myxothiazol and 

piericidin, property that are used in experiments of cell respirometry19,20. 
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Another entryway for electrons in the ETS is succinate dehydrogenase or 

complex II. This complex catalyzes the oxidation of succinate to fumarate and transfers 

the electrons to reduce a molecule of ubiquitonone to ubiquitinol. It is the only enzyme 

of the ETS that also is also an enzyme of the tricarboxylic acid cycle (TCA). Unlike 

complexes I, III and IV, complex II is unable to pump protons to the intermembrane 

space. Inhibitors acting in this complex include malonate and thenoyltrifluoroacetone 

(TTFA)16,21,22. 

As both complexes reduce ubiquitinone to ubiquitinol, the electrons are then 

transferred from ubiquitinol to cytochrochrome c (cyt c) by an enzyme named 

cytochrome c reductase, also known as complex III. While the two electrons from 

ubiquitinol reduce cyt c, the complex pumps four protons to the intermembrane space. 

Antimycin A inhibits the oxidation of ubiquitin, preventing electron carrying and proton 

pumping by the complex III17. 

The last enzyme of the ETS is cytochrome c oxidase, or complex IV, which 

transfers the electrons from the cyt c to molecular O2, reducing it to two water 

molecules. Complex IV also functions as a proton pump, pumping two protons per pair 

of electrons carried. The reduction of O2 by complex IV is inhibited by cyanide, carbon 

monoxide, nitric oxide and hydrogen sulfide, all of which inhibit complex IV by binding to 

cytochrome a3 of the enzyme17,23. 

All the energy stored as a proton gradient formed by the oxidative 

phosphorylation enzymes is then used by ATP synthase to drive the phosphorylation of 

ADP to ATP. The ATP synthase can be inhibited by olygomycin and venturicidin16. 

Using polarographic O2 sensors and the knowledge of substrates and inhibitors 

of the enzymes that are part of the ETS, it is possible to design respirometry 

experiments that give insight about the properties of populations of mitochondria.  

1.1.3 Nitric Oxide 

Nitric Oxide (•NO) is a non-polar gas and a free radical. As a free-radical it reacts 

rapidly with other molecules, especially with other free-radicals and transition metals like 
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those found in heme groups24. Being a non-polar species it can freely diffuse through 

membranes, in fact the diffusion of •NO through lipid membranes is 1.4 times greater 

than O2. This means that nitric oxide can diffuse intercellular distances until it reacts 

with its targets in the surroundings cells24. 

The enzymes capable of generating •NO are called the nitric oxide synthases 

(NOS). They catalyse the oxidation of L-arginine and O2 to •NO molecule and L-

citrulline, oxidizing a molecule of NADPH in the process (figure 4). 

 

Figure 4. Reaction catalyzed by NOS. In the presence 
of O2 and NADPH, NOS converts L-arginine to L-
citrulline and •NO. 

 

 

Three isoforms of NOS can be found in mammal cells, namely the neuronal nitric 

oxide synthase (nNOS or NOSI), the inducible nitric oxide synthase (iNOS or NOSII) 

and the endothelial nitric oxide synthase (eNOS or NOSIII). Isoforms nNOS and eNOS, 

also called constitutive nitric oxide synthases (cNOS), depend on calcium for activation. 

In contrast, iNOS activation is independent of calcium and it is only expressed during an 

immune response25. 

All three isoforms of NOS can be found in the mammal brain. nNOS is highly 

expressed in neurons and is calcium dependent, since activation requires the binding of 

calcium-bound calmodulin. The nNOS contains a PDZ domain at the N-terminus that 

anchors the protein to the postsynaptic density protein-95 (PSD-95), which indicates 

that nNOS is located at the postsynaptic density. This subcellular location implies that 

nNOS is at the site of calcium entry into the neuron upon synaptic stimulus, allowing a 

thight coipling between synaptic transmission and neuronal •NO production26. 

Glutamatergic transmission stimulates the production of •NO through the activation 

of NMDA receptors, one of the two ionotropic glutamate receptors. NMDA receptors are 

permeable to calcium ions and, like nNOS, they are associated to PSD95, resulting in 
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the co-location of both NMDA and nNOS. So, NMDA receptors lead to the entry of 

calcium to the cell, which binds to calmodulin to activate nNOS26. 

The iNOS can be expressed in glial cells in response to an inflammation stimulus, 

which results in the production of pro-inflammatory transcription factors like interferon 

regulatory factor-1 (IRF-1) and the nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB). The iNOS isoform is independent of calcium, as it is 

permanently bound to calmodulin27. 

The eNOS is expressed in endothelial cells, they are present in the blood vessels 

of the brain. The myristoylation and palmytoylation of eNOS allows binding to calveolin-

1 which prevents eNOS activation. The unbinding from caveolin-1 requires the presence 

of calcium, and once unattached, the activation of eNOS requires both the 

phosphorylation by phosphatidylinositol 3-kinase (PI3K) and the binding of calmadulin27. 

One of the main cellular targets of •NO is the soluble guanylyl cyclase (sGC), 

which is activated when bound to •NO, producing cyclic guanosine monophosphate 

(cGMP). cGMP leads to activation of protein kinases such as protein kinase G (PKG). 

•NO is also capable inhibiting O2 consumption by binding reversibly to the complex IV28.  

•NO can also modulate O2 consumption by binding and reversibly inhibiting 

complex IV. It binds to complex IV in the O2 binding site, in competing with O2. 

1.2 RESPIROMETRY TECHNIQUES 

The term respirometry describes two distinct techniques, whole-animal 

respirometry and mitochondrial (or cell) respirometry, both of which aim at gaining 

insights on energetic metabolism through the measurement of O2 consumption. 

In the whole-animal respirometry, the animal is kept alive and breathing to a 

respirometer (figure 6) that measures the volume of O2 inhaled and the carbon dioxide 

exhaled. The ratio between carbon dioxide exhaled per O2 inhaled gives the respiratory 

coefficient, which is 1.0 for carbohydrates but less for lipids and proteins as energy 

source. 
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Figure 5. Schematic representation of a whole-animal respirometry system. The arrows show the direction of 
air-flow through the system. Adapted from Sparling and Fedak, 2004 

The first measurements of cell respiration were made by the Nobel-prize laureate 

Otto Heinrich Warburg using the so-called “Warburg apparatus” (figure 7). Warburg 

used a manometric approach to quantify O2 consumption in tissue slices. The carbon 

dioxide was absorbed by a solution of potassium hydroxide in a well in the middle of the 

chamber, making the consumption of O2 the sole contributor for barometric decrease of 

the chamber’s pressure. The decrease of the chambers pressure is then measured 

using a manometer30,31. 

 

Figure 6. Schematic representation of the Warburg 
manometric respirometer. A manometer (M) measures the 
drop in pressure caused by O2 consumption in the flask (F). 
The valves (V) are closed during readings. Graduated Scale 
(GS). Fluted filter paper soaked in KOH solution is placed in a 
center well in the flask and acts as a CO2 absorbent. Adapted 
from Lighton, 2008 
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Nowadays most cell (and mitochondrial) respirometry studies use polarographic 

O2 electrodes, also called Clark-type electrodes, invented by Leland Clark. The 

polarographic O2 electrode consists of an Ag/AgCl anode and a platinum or gold 

cathode. These two components are connected by an electrolyte solution (usually KCl) 

and separated from the sample by an O2 permeable membrane. In the case of an 

Ag/AgCl reference electrode, the applied potential required for O2 reduction varies from 

-0.8 to -0.6 V30,32,33. The reactions taking place are: 

  (Eq. 1) 

and, 

  (Eq. 2) 

1.2.1 High-Resolution Respirometry 

The term high-resolution respirometry was coined by Erich Gnaiger to describe 

the O2 measurements obtained by using the OROBOROS Oxygraph O2k in conjunction 

with the use of the DatLAB software, both products of the company Oroboros 

Instruments. The OROBOROS Oxygraph O2k uses a Clark-type polarographic O2 

sensor consisting of a gold cathode and an Ag/AgCl anode connect by a KCl electrolyte 

solution and separated from the sample by an O2 permeable flurinated ethylene 

propylene (FEP) membrane. The electrode is polarized to -0.8 V, allowing the 

electrochemical reduction of the O2 that diffuses across the FEP membrane. High-

resolution respirometry owes its name to being capable of detecting a respiratory flux of 

1 pmol.s-1.cm-3 and having a limit of detection for O2 of 0.005 µM. 

1.2.2 Respirometry of Intact Cells 

As its name indicates, respirometry of intact cells is an experimental procedure 

using non-permeabilized cells from cell cultures, biopsies or, in the case of this thesis, 

rat hippocampal slices. Respirometry of intact cells differs from respirometry of isolated 

mitochondria due to many factors, the main one is the presence of the cellular 

membrane, which blocks or delays the diffusion of many mitochondrial inhibitors and 
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most substrates used with isolated mitochondria. The second is the presence of the 

cellular machinery, organelles, enzymes and nucleus, which are not accounted for in 

isolated mitochondria and which may confer specific properties to the biological 

preparation. For example, one may observe an increase in O2 consumption upon 

glutamate titration in both hippocampal slices and breast cancer cells, however the 

increase in hippocampal slices is due to an excitatory effect by glutamate that increases 

the metabolic rate while in breast cancer cells, glutamate acts as an anaplerotic 

substrate to the TCA cycle, serving as a fuel to oxidative phosphorylation34. 

The experiments of cell (and mitochondrial) respirometry consist in the 

measurement and manipulation of the respiratory O2 flux, also called oxygen 

consumption rate (OCR). The OCR can be modulated by a myriad of substrates or 

inhibitors for the complexes. 

 Flux control ratios (FCR) express respiratory control independent of 

mitochondrial content and cell size. FCR’s are OCR’s in the presence of different 

inhibitors and substrates normalized for maximum and minimum flux corresponding 

respectively to the values of 1.0 and 0.0. The OCRs in intact cell respirometry are 

normalized to FCRs using the OCR of the uncoupled mitochondria as the maximum flux 

attainable by the ETS (with a value of 1) and the OCR after the complete inhibition of 

ETS as the minimum flux (with a value of 0)32. 

The uncoupled state is induced by adding a mitochondrial uncoupler like varbonyl 

cyanide m-chloro phenyl hydrazone (CCCP), 2,4-dinitrophenol (DNP), carbonyl cyanide 

4-(trifluoromethoxy)phenylhydrazone (FCCP) or 4,5,6,7-tetrachloro-2-trifluoromethyl-

benzimidazole (TTFB). These drugs are ionophores that dissipate the proton gradient 

between the intermembrane space of the mitochondria and the mitochondrial matrix16. 

Loss of this gradient leads proton pumps (complex I, III and IV) to catalyse the reactions 

at maximum capacity, effectively resulting in maximum O2 reduction as long as 

substrates are available.  

Complete inhibition of ETC (the minimum flux) can be attained in intact cells by 

using rotenone, antimycin A or cyanide. After the titration of these drugs it’s possible to 



12 

 

still measure an, albeit lower, OCR, attributed to lipid peroxidation or residual 

atmospheric diffusion32. 

One FCR obtained from intact cell respirometry is the ROUTINE respiration, 

which is the basal respiration supported by exogenous substrates supplemented in the 

medium. This FCR can be influenced by the coupled state of the mitochondria, the 

energy demand of the cells or the capacity of the cells to metabolize the supplemented 

substrates35,36. 

Another FCR determined for intact cells is the LEAK state, which reflects the rate 

of O2 consumption non-coupled to ADP phosphorylation. The O2 consumed in this state 

is used to compensate the dissipation of the proton gradient and can be induced by 

inhibitors for the ATP synthase or the ATP-ADP translocase37. A high LEAK state may 

mean that the mitochondria are not in perfect conditions, as it may indicate a 

compromised mitochondrial membrane that is allowing the dissipation of the proton 

gradient32.  

The Respiratory Viability Index (RVI) is an FCR that allows the viability in a 

specific biological preparation to be assessed. Complex II is inactivated in intact cells 

after inhibition of complex I, as succinate production is halted because NADH cannot be 

recycled. Plasma membrane is impermeable to succinate, so the addition of exogenous 

succinate to intact cells has no effect on their O2 consumption. Yet succinate added to 

cells with a compromised membrane will be able to reach mitochondrial complex II and 

donate electrons. In an experiment of intact cell respirometry, the OCR obtained from 

succinate titration is only due to compromised cells respiration. 

 The RVI was already attested by comparison with the results obtained from a 

CASY 1 Cell Counter and Analyser System (Schärfe System)  which also evaluates cell 

viability, the results of cell viability obtained from the CASY equipment matches the 

results for the RVI19. 

The ratio between the uncoupled state and the inhibited state of the ETS is called 

the RESIDUAL ratio, and its value is a function of O2 consumption not attributed to 

mitochondrial respiration32. 
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1.3 THE HIPPOCAMPUS 

The hippocampus is a structure of the temporal medial lobe. It is divided in six 

major regions, which are connected by a unidirectional neuronal pathway along the 

called proximo-distal axis. These six regions are organized along the axis in the 

following order: dentate gyrus, cornu ammonis (CA) fields, subiculum, presubiculum, 

parasubiculum and entorhinal cortex38. There is additional connectivity between the six 

regions that doesn’t follow the proximal-distal axis, but the majority of neuronal 

connections inside the hippocampus, including those along the axis, still follow a 

transverse orientation (figure 8). 

 

 

 

Figure 7. Hippocampus organization. (A) Major regions and subregions of the hippocampus are the dentate gyrus 
(DG), CA3, CA1, CA3, subiculum (Sub), presubiculum (Pre), parasubiculum (Para) and entorhino cortex (EC). (B) 
Disposition of the hippocampus regions along the proximal-distal axis with the corresponding projections connecting 
the regions. (C) Three-dimensional representation of the hippocampus illustrating the orientation of the transverse 
and longitudinal axis as well as the septal and temporal poles. Adapted from Gloveli et al., 2005 and Andersen et al., 
2006. 

The CA field is divided in three subregions they are, along the proximal-distal axis, 

CA3, CA2 and CA1. These three subregions are structured with defined layers with 

different cell composition, namely the alveus, stratum oriens, stratum pyramidal and the 

stratum stratum lacunosum-moleculare (figure 9). The cell bodies of the pyramidal 

neurons can be found in the stratum pyramidal, alongside many cell bodies of 

interneurons. Astrocytes are rare in stratum pyramidal but are common in the other 

layers of the CA fields 40. 
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Figure 8. Hippocampus layered structure. Schematic representation of the layer structure of the CA fields, 
including the alveus, stratum oriens, stratum radiatum and stratum lacunosum-moleculare. Adapted from Nagy, 2012. 
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2 OBJECTIVES 

The major goal of this study was do investigate the ability of lactate to act as an 

alternative fuel to sustain cellular respiration, in both basal conditions and under 

increased neuronal activity in hippocampal slice, as well as appraise a putative shift 

towards aerobic glycolysis evoked by increased neuronal activity. To achieve this goal 

we employed high-resolution respirometry to evaluate whole cell respiration in slices 

under distinct metabolic states. 

To this purpose, the specific goals were: 

i) Establish and validate an appropriate protocol to evaluate acute rat hippocampal 

slices without compromising cytoarchitectural organization and neuronal circuitry 

using the OROBOROS Oxygraph-O2k to measure OCR’s; 

ii) Test if brain activation induced by glutamate increased O2 consumption due to its 

effect on energy demand of the hippocampal cells or decreased O2 consumption 

of the hippocampal cells due to the induction of aerobic glycolysis in the 

astrocytes of the tissue; 

iii) Compare lactate and glucose as oxidative substrates in both basal respiration 

and under glutamate-induced hippocampal activation; 

iv) Measure the effects of •NO on the acute rat hippocampal slice respiration due to 

a possible role on oxidative metabolism regulation. 
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3 MATERIALS AND METHODS 

3.1 CHEMICALS AND BIOCHEMICALS 

The media for all experiments using hippocampal slices was aCSF. The base 

composition was (in mM): 120 NaCl, 3 KCl, 26 NaHCO3, 1.5 NaH2PO4, 1.5 CaCl2 and 1 

MgCl2. Depending on the specifications of the experiments, other components were 

added.  

For preparation and recovery of the 200 µm thick slices the base solution was 

supplemented with 10 mM glucose, 0.2 mM ascorbate and 1 mM glutathione, 

continually bubbled with humidified carbox (95% O2/5% CO2) for oxygenation and pH 

buffering. 

The 100 µm thick slices were prepared and incubated in the base solution plus 0.2 

mM ascorbate, 1 mM glutathione, 20 mM HEPES and 10 mM or 20 mM glucose 

depending on the experiment, at atmospheric O2 concentration. 

The O2 recordings were performed in a solution composed of the base solution 

plus (in mM) 20 HEPES and 10 glucose, 20 glucose or 20 sodium lactate depending on 

the experiment. 

Fatty-acid free BSA and NaCl were from Merck Milipore. All other reagents were 

from Sigma-Aldrich. 

3.2 LAB-MADE EQUIPMENT 

To maintain the histological and network integrity of the hippocampal slices during 

respirometry experiments, it was necessary to develop a device, hereby referred to as 

floater, made out of materials available in the lab. To build a floater, we used two 5 ml 

pipette tips made of polypropylene plastic and cut a 25 mm diameter circle of nylon 

mesh (figure 10). One of the pipette tips was dovetailed in the other and a segment of 

50 mm was cut in the overlap between the two, making the inner ring and the outer ring. 

The nylon mesh circle was then pinched between the outer ring and the inner ring. This 

sole piece acted as a support for the slices in the chamber of the 
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OROBOROS.

 

Figure 9. Components and dimensions of the floater device. (A) Individual components and respective 
dimensions of the floater, the inner ring, the outer ring and the nylon mesh. (B) and (C) Different perspectives of the 
mounted floater. 

3.3 ANIMALS AND SLICE PREPARATION 

Male Wistar rats with ages from 7 to 14 weeks were anesthetized with halothane 

and then euthanized by cervical displacement. The brain was rapidly removed and 

placed in ice-cold modified aCSF. After dissection, the hippocampi were sliced in the 

transversal orientation with a thickness of 200 µm or 100 µm using a Vibroslice 

NVS2M1 (World Precision Instruments) while submerged in ice-cold modified aCSF 

bubbled with carbox. The slices were placed in a pre-incubation chamber and allowed 

to recover for at least 1.5 hours at room temperature. 

3.4 SLICE RESPIROMETRY 

Measurement of O2 consumption from hippocampal slices were made using an 

Oroboros Oxygraph-O2k (Oroboros Instruments). The Oxygraph-O2k (figure 11) was 

set to maintain a 32ºC temperature, at the maximum stirring speed of 900 rpm and the 

gain 1. 
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Figure 10. The Oroboros Oxygraph O2k. A two chamber system with two polarographic O2 sensors.  Adapted from 
Gnaiger 2001. 

A floater was made to keep the network integrity and tissue organization of the 

hippocampal slices. The function of these device was to float inside the chamber and 

support the slices using a nylon mesh, keeping them in the middle of the chamber away 

from the magnetic stirrer, thus avoiding mechanical damage to the tissue. 

 For each experiment we added 3 hippocampal brain slices to the OROBOROS 

chamber. For the respirometry of 200 µm slices, the medium in the chamber was 

previously bubbled with carbox. After the O2 concentrations stabilized, the slices were 

placed inside the chamber, atop the nylon mesh. The chamber was quickly closed to 

avoid O2 diffusion between the medium and the atmosphere. The 100 µm slices didn’t 

require prior oxygenation of the medium.  

 To facilitate drug delivery across the cell membrane, fatty-acid free bovine serum 

albumin (BSA), in a concentration of 5 mg/ml, was added to the chamber immediately 

after closing it. 
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3.5 MEASUREMENT OF FLUX CONTROL RATIOS (FCR) 

The values for the FCR’s were calculated from the OCR’s measured after the 

titration of a respiration modulator or a series of modulators (figure 12). To obtain the 

value of a FCR we needed to obtain the OCR in the uncoupled state (E’), to induce this 

slope, we titrated 30 µm FCCP and waited for the slope to stabilize, the value of the 

OCR at that point was E’. To further ensure that the ETS was working at maximum 

capacity during this state, five minutes before the titration of FCCP we titrated 5 mM 

pyruvate, this ensures that enough substrate reaches the mitochondria to fuel this state.  

 

Figure 11 Typical experiment of high-resolution respirometry of acute rat hippocampal slices. The R’ is the 
basal OCR fuelled by the metabolic substrates in the medium. The L’ represents the OCR obtained for respiration 
non-coupled to ATP phosphorylation. The E’ is the OCR obtained when the ETS is functioning at its maximum 
capacity or in an uncoupled state. The S’ represents the OCR obtained for complex II-mediated respiration of the 
mitochondria from non-viable tissue. And the ROX is the residual OCR. 

To calculate the FCR’s we also needed the value of the slope for when respiration 

is fully inhibited (ROX). As such, our last modulator used in the experiments was 5 mM 

KCN, and the OCR after the titration is the value for ROX. 

The ROUTINE state was calculated using equation 3. The value for R’ was 

obtained by waiting at least fifteen minutes for the slope to stabilize after the closing of 
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the chamber prior to the addition of other modulators. The value of the slope at this 

point was the R’ value. 

  (Eq. 3) 

The LEAK state was calculated by inhibiting the O2 consumption associated with 

the production of ATP using oligomycin to inhibit ATP synthase. The OCR after the 

injection of oligomycin would be the L’ value. 

  (Eq. 4) 

The values for RVI were obtained by the inhibition of complex I with rotenone 

after the induction of the uncoupled state, after which respiration was titrated with 

succinate. The slope at this point (S’) was used to calculate the RVI. 

   (Eq. 5) 

 The ratio between the inhibited state (ROX) and the uncoupled state determines 

the RESIDUAL O2 consumption. 

   (Eq. 6) 

3.6 DATA ANALYSIS 

OCRs were acquired using the DatLAB version 4 (Oroboros Instruments). 

Numerical values are presented as means ± SD and graphs as means ± SEM. 

Statistical significance of the difference between two values was evaluated by unpaired 

Student t-test. 
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4 RESULTS AND DISCUSSION 

4.1 RESPIROMETRY RECORDING AT HIGH OXYGEN TENSION 

The most common thicknesses used for the preparation of acute brain slices are 

400 µm and 300 µm. These thicknesses allow optimal diffusion of O2 in the tissue, 

allowing a physiological concentration of O2 in the tissue core to be achieved when 

bathed in solutions oxygenated with carbox42, which maintains a constant concentration 

of approximately 1000 nmol/ml of O2 at 25º C. 

The medium we used for the experiments is bubbled with carbox prior to the 

measurements but between the removal of the carbox and the closing of the chamber, 

the O2 concentrations drops dramatically and as the experiment continues, the O2 

concentration inside the chamber gradually decreases, under these conditions the 

centre of the 400 µm and 300 µm thick slices tend to become hypoxic. For these 

reasons we opted to use 200 µm thick hippocampal slices, expecting the normoxic 

conditions at the core of the slice to maintain even at the end of the experiment.   

By using 200 µm thick slices, we were able to obtain FCR’s for the ROUTINE state 

and the RVI (figure 13), but had difficulty obtaining results for the LEAK state. 
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Figure 12. Respirometry recordings in high O2 concentrations of an 200 µm acute hippocampal slice in a 

medium containing glucose (20 mM). The thick line is O2 concentration (––) and the thin is line is the OCR (–––).  

Successive titrations of 5 mg/ml fatty-acid free BSA, 5 mM pyruvate (Pyr), 30 µm FCCP, 5 µm rotenone (Rot), 5 mM 
succinate (Succ) and 5 mM KCN. 

4.1.1 Measurement of the LEAK state 

In order to validate our experimental approach and compare results with those 

published previously for high-resolution respirometry in intact cells, values for 

ROUTINE, LEAK and RESIDUAL FCR were determined. With regard to the LEAK state 

(O2 consumption rate not associated to ADP phosphorylation), we are unable to 

observe and measure an effect of oligomycin on respiration in hippocampal slices 

(figure 14).  

The lack of observable or measurable effect of oligomycin on the O2 consumption 

may be due to the adsorption oligomycin to the polypropylene plastic of the floater. 

There is a correlation between high partition coefficient and polypropylene plastic 

adsorption43, the partition coefficient estimated for oligomycin is 6.52, which is the 

highest among the drugs used in these experiments (the partition coefficient for FCCP 

and rotenone are 3.68 and 4.65 respectively; the partition coefficient was predicated 

using the software ADC\Log P44). 
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Figure 13. Effect of high concentration oligomycin (100 µm/mL) on cell respiration. The thick line is O2 

concentration (––) and the thin is line is the OCR (–––).  The recording were made at high O2 concentration using 

200 µm acute hippocampal slices. The following modulators were add in in the following order: 5 mg/ml of fatty-acid 
free BSA, 100 µg/ml of oligomycin (Oligo), 5 mM pyruvate (Pyr), 30 µm FCCP, 5 µm rotenone (Rot), 5 mM succinate 
and (Succ) and 5 mM KCN. 

4.1.2  Effect of nitric oxide on the oxygen consumption rate 

Nitric oxide (•NO) is an endogenous regulator of mitochondrial respiration. It 

competes with O2 for binding to cytochrome c oxidase and can reversibly inhibit O2 

consumption45. This has been demonstrated to occur in simpler biological preparations, 

such as isolated mitochondria46, synaptosomes47 and intact cells48, but has not been 

demonstrated to occur in a complex biological media, where cytoarchitectural and 

neuronal circuitry remain intact and functional, as is the case with hippocampal slices.  

As shown in figure 15, under these particular experimental conditions, even very 

high concentrations of •NO added to the media had no observable inhibitory on the OCR 

of 200 um hippocampal slices. The main reason for this observation is the high O2 

concentration present in the recording chamber. 
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Figure 14. Effects of nitric oxide on respiratory rates under high O2 concentrations in 200 µm thick 

hippocampal slices. The thick line is O2 concentration (––) and the thin is line is the OCR (–––).  Successive 

titrations of 5 mg/ml fatty-acid free BSA, two additions of 9 µm •NO, 5 mM pyruvate (Pyr), 30 µm FCCP, 5 µm 
rotenone (Rot), 5 mM succinate (Succ) and 5 mM KCN. 

In an aerobic aqueous solution, •NO reacts with O2 to yield dioxide nitrogen, 

which is then rapidly hydrolyzed to nitrite 49,50. This reaction follows the overall equation:
  

  
(Eq. 7)

   

 We propose that due to the high concentrations of O2 in the chamber, which 

ranged from 500 nmol/ml to 1000 nmol/ml, the •NO added to the recording chamber  

reacts with the O2, yielding nitrite, before reaching the hippocampal slices, resulting in a 

de facto concentration of •NO in the chamber much lower than expected. 

4.2 RESPIROMETRY RECORDING AT LOW OXYGEN TENSION 

Due to the above mentioned difficulties associated with the evaluation of  •NO in 

hippocampal slice respirometry and taking in account the reactivity of •NO with the high 
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concentration of O2 in the media, the experimental approach was adapted to perform 

high-resolution respirometry of rat hippocampal slices at lower O2 concentrations. 

At low O2 concentration no changes in OCR were observed when using 200 µm 

slices upon the addition of FCCP, rotenone or KCN. This was not unexpected, since 

unadequate oxygenation of tissue is possible at lower O2 concentrations. 

To circumvent this problem, thinner slices were prepared. By preparing 100 µm 

thick slices we were able to measure and compare the values of FCR’s previously 

measured in the 200 µm thick slices under high O2 concentrations (figure 16). 

 

Figure 15. Comparison of the FCR 
values obtained for experiments with 
low O2 concentration and 100 µm 
hippocampal slices (n=6) and the 
experiments at high O2 concentrations 
and 200 µm slices (n=8). There was a 
statistically significant difference between 
the RESIDUAL and RVI ratios between 
the experiment settings but not for the 
ROUTINE state (p=0.939). * p<0.05. 

 

 

 

The RVI value indicates the proportion of mitochondria from cells with a 

compromised cellular membrane. The differences in RVI observed between the 2 types 

of slices can be attributed to an increase in the ratio of dead/healthy cells in 100 µm 

slices versus 200 µm slices. As stated above, during the process of cutting of the 

hippocampus with the Vibroslice it is estimated that the acute slices obtained have a 10 

µm layer of dead and/or damaged cells on each side of the slice51. In a slice with 100 

µm thickness this dead layer would compromise 20% of the slice, while in a 200 µm 

thick slice it corresponds to 10%.  

 The decrease in the RESIDUAL FCR is justifiable by the lower instrumental 

background oxygen flux associated with O2 concentration inside the chamber, which is 

closer to the atmospheric concentration in these experiments. 
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 As for the ROUTINE state, there was not a significant difference between the low 

and high O2 concentration experiments, which indicates that, although the proportion of 

viable cells is lower in 100 µm slices, the viable cells in both slice thicknesses have 

similar basal O2 consumption rates when comparing to their maximum capacity. 

4.2.1 Effect of nitric oxide on oxygen consumption rate 

Under low O2 concentrations we expect nitric oxide to keep in solution much 

longer than under high O2. As shown in figure 17, addition of •NO to the recording 

chamber decreased OCR in hippocampal slices. Five minutes after the addition of the 

addition of 1.8 µM nitric oxide we observed a decrease of 15.6 ± 5 % compared to 

maximum flux and an additional 23.5 ± 0.4 % decrease after the addition of 18 µM of 

nitric  

The fact that inhibition of cell respiration by nitric oxide was not reversed by the 

time period of 20 minutes has two plausible explanations: irreversible inhibition of the 

mitochondrial complexes due to •NO derivatives52, or the lack of nitric oxide scavengers 

in preparation, such as haemoglobin, meaning that the de facto nitric oxide 

concentration in the solution was kept high24.  

It was reported that concentrations of 1 µM •NO in an isolated mitochondria 

preparation could yield a high enough concentration of peroxynitrite to partially inhibited 

complex I irreversibly 53. Also in isolated mitochondria, a concentration of 5 µM •NO was 

shown to be able to partially irreversibly inhibit complex II54. 

Comparing the results for •NO and the RESIDUAL respiration for 100 and 200 µm 

slices it seems that the 100 µm at low O2 concentration is the better experimental 

approach. The values for the ROUTINE state are maintained between the two 

approaches, but the lower O2 concentrations allows for a chemistry closer to the 

physiological setting, as we can see from the results from •NO titration, and a lower 

instrumental background O2 diffusion from the system. It seems the lower ratio of viable-

to-unviable cells of the 100 µm slices doesn’t affect the values of the respiratory states. 
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Figure 16. Effects of nitric oxide on the O2 consumption rate under low O2 concentrations in 100 µm thick 

slices. The thick line is O2 concentration (––) and the thin is line is the OCR (–––).  Successive titrations of 5 mg/ml 

fatty-acid free BSA, 1.8 µm •NO, 18 µm •NO, 5 mM pyruvate (Pyr), 30 µm FCCP, 5 µm rotenone (Rot), 5 mM 
pyruvate (Pyr) and 5 mM KCN. 

4.2.2 Effects of glutamate on respiration 

In accordance with the premise of the ANLSH, it has been suggested that 

glutamatergic neurotransmission is an inducer of aerobic glycolysis in certain brain 

areas55 since glutamate is capable of inducing aerobic glycolysis in astrocytes. Using 

the capabilities of our system, we tested whether glutamate was able to induce an 

increase in oxidative metabolism or aerobic glycolysis in the tissue due to the proposed 

effect on astrocyte metabolism. 

In a medium with 10 mM glucose, we titrated 50 mM glutamate (figure 18, A) and 

observed and increase in respiration of 14.2 ± 7,6% (n=2) in the FCR. These results 

show for the first time that glutamate induces an increase in OCR in acute hippocampal 

slices, using a system that maintains the cytoarchitecture and neuronal circuitry of the 

tissue. 
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With these results we can conclude that glutamate induces an increase in 

oxidative metabolism in the hippocampal tissue overall. This increase is probably due to 

increased energetic requirements of the cells in the tissue, as both neurons and 

astrocytes need large quantities of ATP for membrane potential regulation after a 

glutamate stimuli. 

The observed increase in oxidative metabolism does not invalidate the occurrence 

of aerobic glycolysis in the tissue, but do show that the increase of oxidative metabolism 

is the major contributor to the shift on the OCR. Different results might have been 

obtained if we used a different brain area due to differences in cell types, for example, 

72% of the cells of the cortex are nonneuronal cells while in the cerebellum, 80% of the 

cells are neurons55. We might expect to observe different results by performing this 

experiment in brain slices from these regions. 

4.2.3 Respiration fuelled by lactate 

The ANLSH proposes that after glutamatergic neurotransmission neurons change 

their primary substrate from glucose to lactate. To evaluate whether lactate can act as a 

primary substrate in hippocampal tissue in the basal state and after a glutamate 

stimulation, we recorded O2 consumption in a medium with 20 mM lactate and 

compared the results with the ones obtained in a medium with 10 mM glucose. 

We obtained the OCR for the basal respiration and then titrated 50 mM glutamate 

in both mediums to obtain the OCR for the glutamate-induced activation (figure 18). As 

can be observed in Figure 18, upon stimulation of neuronal activity by addition of 

glutamate to there is no significant difference (p=0.420) between OCR for slices 

supplemented with lactate or glucose. In the lactate medium, the OCR increase induced 

by glutamate was of 22.1 ± 10.0 % in FCR (n=3) and the increase induced in the 

medium of glucose was 14.2 ± 7.6 % in FCR (n=2). As for the ROUTINE state, there 

was not a significant difference (p=0.854) for the values obtained in the lactate medium 

and the glucose medium. 

The ability of lactate to sustain brain cells even during evoked of action potentials 

in rat hippocampal slices has already documented56, but we show here for the first time, 
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in a model which maintains the neuronal circuitry and cytoarchitectural organization of 

the tissue, that lactate is an oxidative substrate comparable to glucose in these 

conditions. Lactate was able to maintain the same rate of basal respiration, the 

ROUTINE state, as glucose and the increase in oxidative metabolism by glutamate was 

equally sustained by lactate and glucose. 

These results suggest that lactate is a viable alternative to glucose as an oxidative 

substrate, this property of lactate may be important in cases of hypoglycemia where 

blood lactate may act has the fuel for brain activity, at least, for a short while. The lack 

of differences between the OCR’s in the lactate fuelled and the glucose fuelled 

hippocampal slices, in both basal and stimulated conditions may indicate that neurons, 

astrocytes and other cells of the hippocampus have the required enzymatic machinery 

to use lactate has oxidative substrate, which may be useful data for the ANLSH and 

NALSH. 
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Figure 18. Comparison between basal respiration and glutamate-induced O2 consumption in medium of 

lactate or glucose. The thick line represent O2 concentration (––) and the thin line represents the OCR (–––).The 

thicks line represent O2 concentration (––) and the thin line represents the O2 slope (–––) We waited 15 minutes to 

obtain the OCR for basal respiration and then titrated 50 mM of glutamate to obtain the OCR for the activated 
neuronal tissue. To obtain a comparable OCR for the uncoupled state between the two experiments, we added either 
glucose or lactate in order to obtain an equal metabolite composition between the two media. (A) Medium 
supplemented with 20 mM lactate, with with successive titrations of 5 mg/ml fatty-acid free BSA, 50 mM glutamate 
(Glut), 5 mM pyruvate (Pyr), 5 mM lactate (Lac), 50 µM NMDA, 10 mM glucose (Gluc), 30 µm FCCP, 5 µm rotenone 
(Rot), 5 mM succinate (Succ) and 5 mM KCN. (B) Medium supplemented with 10 mM glucose, with successive 
titrations of 5 mg/ml fatty-acid free BSA, 50 mM glutamate (Glut), 5 mM pyruvate (Pyr), 5 mM lactate (Lac), 50 µM 
NMDA, 15 mM lac 30 µm FCCP, 5 µm rotenone (Rot), 5 mM succinate (Succ) and 5 mM KCN. 
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4.3 COMPARISON WITH OTHER WORKS 

As the FCR’s express respiratory control independent of mitochondrial content and cell 

size32, we can compare the values obtained for the ROUTINE state, the RVI and 

RESIDUAL O2 consumption with the values obtained from respirometry of intact cells 

present in the literature (Table I). By comparing our results with those obtained by 

others one can see that our value for the ROUTINE state is higher and has a higher 

standard deviation than those published by other groups.  

Table I. Flux control ratios (FCRs) obtained for different intact cells from human, mouse and rat 

(mean ± SD) 

 

The high standard deviation may result from the heterogeneity of cell population 

present in acute brain slices.  

As seen in Table I, the mean value obtained for the ROUTINE state in 

hippocampal slices are higher than those obtained by others in the cell cultures. It’s 

Cell type ROUTINE RESIDUAL REFERENCES 

Transformed human 

embryonic kidney cells 

0.31 ± 0.03 0.01 ± 0.01 (48) 

Mouse parental 

hematopoietic cells 

0.39 ± 0.02 0.03 ± 0.01 (33) 

Human leukemia cells 0.40 ± 0.03 0.02 ± 0.03 (57) 

Human umbilical vein 

endothelial cells 

0.26 ± 0.02 0.05 ± 0.04 (35) 

Human peritoneal 

mesothelial cells 

0.40 ± 0.09 0.005 ± 0.01 (19) 

Human foreskin 

fibroblasts 

0.34 ± 0.03 0.07 ± 0.03 (36) 

Rat Hippocampal Slices 0.58 ± 0.19 0.12 ± 0.16  
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interesting to note that two relatively different approaches to hippocampal slice 

respirometry, the high O2 concentrations using 200 µm slices and the lower O2 

concentrations with 100 µm thick slices, have close matching results for the values of 

the ROUTINE state. If this difference in the ROUTINE state between our experiments 

and the other works is due to the respiratory characteristic of the hippocampus, 

differences in general between cell culture preparations and acute tissue slice 

preparations or a still not fully optimized technique by our side is something that can 

only be answered with further experiments of acute brain slice respirometry. 
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5 CONCLUSIONS AND FUTURE WORK 

In the work presented here we showed that glutamate-induced increase of neuronal 

activity increases O2 consumption in rat hippocampal slices, suggesting an higher 

preeminence of oxidative metabolism than aerobic glycolysis as the mean to meet the 

increased energy demand of the tissue. We also showed that lactate can sustain the 

same rate of basal respiration as glucose and that the percentage increase of 

respiratory rate induced by glutamate is the same between the two subtracts, showing 

that the cells of the hippocampus have the required machinery to efficiently use lactate 

as a fuel for oxidative metabolism.  

In terms of the unanswered questions of brain bioenergetics, the fact that 

apparently glutamatergic activation in the hippocampus induces mostly an increase in 

oxidative metabolism, rather than aerobic glycolysis is more easily justified in the light of 

the conventional theory of brain bioenergetics than either ANLSH or NALSH. However, 

a more detailed analysis of the relative increase of the glycolytic pathway would be 

required to fully answer this question. And the fact that lactate can be used as an 

efficient oxidative metabolism substrate, is not only favorable to the ANLSH and NALSH 

views, but may also be relevant in cases of hypoglycemia and impaired glucose 

metabolism. 

The results shown here represent an improvement to previous work done using 

hippocampal slices in high-resolution respirometry experiments: the addition of the 

floater to support the tissue in the recording chamber allowed the slices to remain 

undamaged by the stirring bars, which was a problem in other works58. This is a critical 

aspect in maintaining healthy tissue, guaranteeing the maintenance of cytoarchitectural 

and circuitry integrity. The importance of maintaining this intercellular integrity derives 

from the fact that both ANLSH and NALSH are based on the fact that neurons and 

astrocytes most probably exchange/shuttle metabolic intermediates during increased 

activity states and that such an exchange is critical for neurons to maintain adequate 

energy production. 
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Respirometry of acute hippocampal slices using a different equipment, the 

Seahorse Extracellular Flux Analyser (Seahorse Bioscience) has been previously 

published, but the authors suspect that the acute brain slices suffered transient 

hypoxias for each cycle of medium reoxygenation, the same authors also performed 

intact cell respirometry using organotypic hippocampal slice cultures59. 

Regarding the future plans, the next step in optimizing this experimental technique 

would be to manufacture a floater to support the hippocampal slices made of a different 

material than doesn’t adsorb oligomycin and other molecules with high partition 

coefficient. In comparison to polypropilene, polyvinylidene fluoride (PVDF) may be a 

good alternative as the material for the floater, as it appears to be less adsorbent than 

polypropylene, at least when comparing albumin adsorbance60. The nylon mesh has a 

low adsorbent tendency for albumin so it probably doesn’t need to be replaced. 

By solving the problem of oligomycin adsorbance to propylene we would be able 

measure the LEAK state. This would allow the comparison to be made between rat 

models of disease, testing for mitochondrial alterations in terms of O2 consumption for 

oxidative phosphorylation versus O2 consumed for proton pumping, giving information 

about the health of the mitochondria in the preparation. 

As for metabolic profiling of the hippocampal slice, it would be interesting to be able 

to selectively block respiration in each cell type (neurons versus astrocytes). This might 

allow a better understanding of the primary substrate preferred by these cell types 

under basal conditions or in an activated state, helping to solve the doubts surrounding 

the conventional theory of brain energetics, ANLSH and the NALSH. 

 By using this approach in acute brain slices from other brain areas with different 

ratio of neuron-to-nonneuron cells, like the cortex and the cerebellum, it would be 

possible to understand if those areas have a higher or lower aerobic glycolysis after 

glutamate stimulation than what we observed in the hippocampus. 
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