
 
 

 

             DEPARTAMENTO DE CIÊNCIAS DA VIDA 
 

                                FACULDADE DE CIÊNCIAS E TECNOLOGIA 
                                UNIVERSIDADE DE COIMBRA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A2A receptor blockade in the control of microglia 

impact upon neurons during early development 
 

 
 
 
 
 
 
 
 
 

Dissertação apresentada à Universidade de Coimbra 

para cumprimento dos requisitos necessários à 

obtenção do grau de Mestre em Bioquímica, 

realizada sob a orientação científica da Doutora 

Catarina Alexandra dos Reis Vale Gomes (Centro 

de Neurociências e Biologia Celular) e a orientação 

institucional do Professor Doutor Ângelo José 

Ribeiro Tomé (Universidade de Coimbra). 
 

 
 
 
 

Gonçalo Filipe Pires Cristóvão 
 

 

2013 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental work described in this thesis was performed at the Center for Neuroscience 

and Cell Biology (CNC), University of Coimbra, under the supervision of Doctor Catarina 

Alexandra dos Reis Vale Gomes. 

 

O trabalho experimental descrito nesta tese foi realizado no Centro de Neurociências e 

Biologia Celular, Universidade de Coimbra, sob a orientação da Doutora Catarina Alexandra dos 

Reis Vale Gomes. 



 

III 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Entrega sempre a tua beleza 

sem cálculo, sem palavras. 

Calas-te. E ela diz por ti: eu sou. 

E com mil sentidos chega, 

chega finalmente a cada um. 

 

Rainer Maria Rilke, 

in “O Livro das Imagens”



 

 



 

V 
 

AGRADECIMENTOS 

Embora a capa desta tese só vá levar o meu nome, há um grupo de pessoas sem as quais este 

trabalho não teria sido possível. Em primeiro lugar, quero agradecer à minha orientadora, 

Catarina Gomes, pela sua inexorável criatividade, abertura, apoio, dedicação e orientação. 

Ensinou-me a paciência e o cuidado. O esforço e o empenho. A audácia de enfrentar a vida que 

nos é dada com os recursos que temos. A Catarina é realmente um exemplo a seguir e tive 

muito gosto e orgulho em tê-la como orientadora.  

Agradeço ao Professor Rodrigo Cunha pela oportunidade concedida de realizar esta tese no 

grupo de investigação Purines at CNC, por toda a partilha científica e confiança. Agradeço, 

também ao Professor Ângelo Tomé e Professor Ramiro de Almeida por todo o conhecimento 

transmitido, apoio e disponibilidade. 

À Maria Joana por toda a ajuda dispensada durante o meu trabalho, pela paciência e pelo 

apoio, pela energia e sorriso contagiante e contagioso! Era impossível estar perto dela e não ter 

vontade de compartilhar aquela energia. 

Agradeço também a todos aqueles que comigo partilharam o laboratório LEF do Centro de 

Neurociências e Biologia Celular de Coimbra, passado e presente, pela companhia, alegria e 

companheirismo. De forma especial aos ‘mestrandos cá do sítio’: Anna Pliássova, Tiago Silva e 

Rui Beleza! Agradeço também a todos os elementos do Medical Mycology – Yeast Research 

Group (MMYRG), nomeadamente à Professora Teresa Gonçalves pela amabilidade na cedência 

de espaço! 

Gostaria de agradecer a todos os meus familiares e amigos, que durante o mestrado me foram 

‘apaparicando’ das mais variadas formas. Deste modo, por forma a agradecer a fidelidade e o 

apreço demonstrado por todos aqueles, que de uma forma ou de outra, foram escrevendo a 

PAIXÃO pela vida ao meu lado, o meu sincero BEM-HAJA! 



 

VI 

 

Por último, mas não menos importante, agradeço aos meus pais, aos meus avós, à minha 

madrinha Ana e ao meu tio Luís por estarem sempre lá para mim. Um grande beijo à Mariana e 

sonhos arco-íris, afilhada! 

Bem-hajam, 

   Gonçalo Pires Cristóvão 

 



 

VII 
 

 

 

 

In addition to the work directly related with this thesis, I also participated in other 

projects. The work developed resulted in a manuscript in preparation for submission 

and was presented in different national and international scientific meetings (listed 

below). This parallel work allowed me to acquire experience in different 

methodological/technical approaches: 

- phagocytic assays (confocal microscopy of internalized apoptotic cells); 

- quantification of proteins (Western blot and enzyme-linked immunosorbent assay, ELISA); 

- metabolism (nuclear magnetic resonance, NMR); 

- enzymatic activity; 

- primary cultures of microglia; cell lines. 

 

George J, Cristóvão G, Queiroz F, Rodrigues L, Gonçalves T, Meyer-Fernandes R, Cunha RA, 

Gomes CA. ATP-derived adenosine boosts microglial proliferation in inflammatory-like 

conditions (manuscript in preparation). 

George J, Cristóvão G, Queiroz F, Gomes CV, Cunha RA. Lipopolysaccharide and glutamate 

determine different levels of extracellular ATP and dictate opposite microglial proliferation 

levels. XLIII Annual Meeting of the Portuguese Society for Pharmacology, Porto, Portugal, Feb 

06-08, 2013 (oral communication). 

Cristóvão G, Pinto MJ, Ryu H, Jeon NL, Gomes CV, Almeida RD, Cunha RA. Neuron-microglia 

interactions in the developing CNS: focus on the role of microglia before synapse formation. 

XIII Meeting of the Portuguese Society for Neuroscience, Luso, Portugal, May 30-Jun 01, 2013 

(oral communication and poster). 

Cristóvão G, Viegas M, Vieira O, Cunha RA, Gomes CV. Microglia phagocytic ability is preserved 

irregardless changes in ATP levels and depends upon adenosine A2AR tonic activation. XIII 

Meeting of the Portuguese Society for Neuroscience, Luso, Portugal, May 30-Jun 01, 2013 (oral 

communication and poster). 

Lemos C, Cristóvão G, Jarak I, Cunha RA, Gomes CV, Carvalho RA. Adenosine A2A receptors 

control the metabolic changes associated with microglia activation as revealed by NMR 

isotopomeric analysis. 43rd Annual Meeting of the Society for Neuroscience, San Diego, 

California, Nov 9-13, 2013 (poster accepted). 

 



 

 

 



 

IX 

 

ABSTRACT 

Yolk-sac derived primitive macrophages, precursors of microglial cells, begin migrating into and 

colonizing the brain between embryonic days 8 and 9.5 (E8 and E9.5), well before 

synaptogenesis. Due to their unique phagocytic function in the brain, microglia has been 

proposed as the sculptor scavenger of the developing brain: communication between neurons 

and microglial cells at the synaptic level results in the elimination of unwanted synapses – a 

process termed synaptic pruning. During brain development but before synaptogenesis, neurons 

establishing neural circuits require trophic support to synapse onto the respective target cell. 

Recently, it was reported that microglial elimination or inactivation compromises neuronal 

survival in developing brain, raising a new hypothesis for microglial role during early 

development, besides the well-known phagocytic ability: a supportive role. 

Other studies have shown that microglial cells are required for the development of mature 

synapses during phases of development subsequent to synapse formation (e.g. regulation of the 

number of functional synapses) or to regulate adult neurogenesis. Several factors synthesized by 

target neurons or surrounding glia may exert a supportive role for the growing axon; however, 

to date, it was not clearly identified the mechanism by which microglia could interfere with pre-

synaptic differentiation, neither the exogenous or endogenous substances able to control these 

microglial responses. 

In the present work we investigated the potential contribution of microglial cells to: (i) the 

accumulation of synaptic vesicles with presynaptic material along the axon – synapsin puncta –; 

(ii) the length of the axonal network; and (iii) the growth cone morphology, in the absence and 

in the presence of microglial modulators: lipopolysaccharide (LPS) and adenosine A2A receptor 

(A2AR) ligands. 

Adenosine is a neuromodulator which activates different receptor subtypes; A2AR activation 

controls important microglial functions, namely if the cells are conditioned by the presence of 

the classical activator, LPS, a bacterial antigen. Importantly, the experiments were conducted in 
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co-cultures of developing neurons and microglia established in appropriate devices to allow 

selective pharmacological blockade of microglial A2AR previous to the activation of neuronal 

A2AR. 

The present results: (i) show that microglial activation by the bacterial antigen LPS increases 

the density of synapsin puncta in developing neurons and that A2AR blockade does not affect 

synapsin density in both activated and non-activated microglia; (ii) suggest that neuronal and 

microglial A2AR may exert differential roles in the regulation of the length of the axonal network; 

(iii) show that microglia tends to increase the growth cone area. 

Altogether, these data suggest that, besides their role in synaptic pruning, microglia may be 

involved in events leading to axonal maturation, likely providing spatial information for synapse 

positioning and controlling axonal network. These novel observations reinforce the concept that 

any change of microglial cells during the early phases of brain development may result in 

synaptic abnormalities associated with neurodevelopmental disorders. 

 

Keywords: adenosine A2A receptor, brain development, microglia-neuron interaction. 
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RESUMO 

Os precursores da microglia (macrófagos primitivos) migram para e colonizam o cérebro entre 

os dias embrionários 8 e 9.5 (E8 e E9.5), antes da formação de sinapses. Atendendo à sua 

capacidade fagocítica, tem sido descrito como preponderante o papel da microglia na definição 

de contactos sinápticos: a comunicação entre os neurónios e a microglia ao nível sináptico 

resulta na eliminação de sinapses – um processo denominado de synaptic prunning. No 

desenvolvimento do sistema nervoso, mas antes da sinaptogénese, o estabelecimento de 

circuitos neuronais requer suporte trófico ao axónio em desenvolvimento até à respectiva 

célula-alvo. Recentemente foi descrito que a eliminação da microglia ou a sua inactivação 

comprometem a sobrevivência neuronal, gerando uma nova hipótese para o papel da microglia 

durante o neurodesenvolvimento, para além da já conhecida capacidade fagocítica: um papel de 

suporte. 

Outros estudos têm demostrado que a microglia é necessária para o desenvolvimento de 

sinapses maduras em fases precoces do desenvolvimento (por exemplo, na regulação do 

número de sinapses funcionais) ou na regulação da neurogénese adulta. Vários factores 

libertados pelos neurónios-alvo ou pelas células gliais podem exercer um papel de suporte para 

o crescimento axonal; contudo, não foram identificados os mecanismos pelos quais a microglia 

poderá interferir com a diferenciação pré-sináptica, em particular quando sujeita a substâncias 

exógenas ou endógenas capazes de controlar as suas repostas. 

No presente trabalho investigámos a contribuição da microglia: (i) na acumulação de vesículas 

com material pré-sináptico ao longo do axónio – synapsin puncta; (ii) no comprimento da rede 

axonal; e (iii) no cone de crescimento, na ausência e na presença de moduladores microgliais, o 

lipopolissacárido (LPS) e um antagonista selectivo dos receptores A2A de adenosina (A2AR). 

A adenosina é um neuromodulador que activa diferentes subtipos de receptores; a activação 

dos A2AR controla importantes funções microgliais, nomeadamente quando condicionadas pela 

presença do LPS. As experiências foram realizadas numa co-cultura de neurónios imaturos em 
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desenvolvimento e de células da microglia em dispositivos que permitem a modulação 

farmacológica selectiva dos A2AR da microglia, antes da activação dos A2AR neuronais. 

Os resultados do presente trabalho: (i) indicam que na presença do LPS, a microglia induz um 

aumento do número de synapsin puncta em neurónios. Este número não é afectado pela 

presença de um antagonista selectivo dos A2AR, na ausência e/ou na presença de LPS; (ii) 

sugerem que os receptores A2AR neuronais e microgliais podem exercer diferentes funções na 

regulação do comprimento da rede axonal; e (iii) revelam que a microglia tende a aumentar a 

área do cone de crescimento. 

Os presentes resultados sugerem que, para além do seu papel de synaptic prunning, a 

microglia pode estar envolvida nos processos de maturação axonal, e condicionar o 

posicionamento espacial da sinapse, uma hipótese que requer investigação futura. O presente 

trabalho corrobora a tese de que qualquer alteração ao nível da microglia pode resultar em 

perturbações do neurodesenvolvimento decorrentes de alterações sinápticas. 

 

Palavras-chave: receptor A2A de adenosina, neurodesenvolvimento, interacção microglia-

neurónio. 
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1. INTRODUCTION 

1.1. OVERVIEW OF BRAIN DEVELOPMENT 

Neurons, as well as other cells of the nervous system are derived from the dorsal ectoderm of 

the embryo. During development, the embryonic ectoderm appears and forms the neural plate 

along the dorsal side of the embryo. The most anterior part of the neural tube expands rapidly 

due to cell proliferation, and gives rise to the brain (Kiernan and Rajakumar, 1998). 

Neural development includes the migration of immature neurons from different parts of the 

developing brain, the outgrowth of axons and dendrites from neurons, the guidance of the 

motile growth cone towards postsynaptic partners and the generation of synapses between 

these axons and their postsynaptic partners (Kiernan and Rajakumar, 1998). 

 

1.1.1. NEURONAL MATURATION 

During development of the central nervous system (CNS), neurons evolve through several 

stages, characterized by evident morphological and functional changes (Figure 1.1.) (Dotti et al., 

1988; Craig and Banker, 1994). The ability of neuronal cells to polarize is essential for the 

organization of the nervous system, but the ultimate objective is the formation of a synaptic 

contact. For this, developing axons undergo elongation and possess at their tips an actin-rich 

growth cone, which is a highly motile structure (Craig and Banker, 1994; Yoshimura et al., 2006). 

 

 

Figure 1.1. – Processes of neuronal polarization in cultured hippocampal neurons. Stage 1, immature neurons 

display intense lamellipodial and filopodial protrusion activity (0 days in vitro, DIV0); stage 2, multiple immature 

neurite extension (DIV1-2); stage 3, neuronal symmetry breaks and a single neurite growth rapidly to become the 
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axon (red) (DIV2-4); stage 4, rapid axon and dendrite outgrowth, branching (DIV4-15); stage 5, cultured neurons form 

synaptic contacts and establish a neuronal network (DIV15-25) (adapted from Yoshimura et al., 2006; Polleux and 

Snider, 2010). 

 

In a first stage, hippocampal neurons extend lamellipodia, which contain cross-linked networks 

of actin filaments, and filopodia, tensile structures composed of bundled filamentous-actin (F-

actin). In stage 1, neurites appear to arise preferentially at lamellipodial patches (Figure 1.1., 

stage 1) (Yoshimura et al., 2006; Arimura and Kaibuchi, 2007; Polleux and Snider, 2010). 

After several hours, neurons extend and form a number of immature neurites (outgrowth of 

the minor processes) (Figure 1.1., stage 2) (Yoshimura et al., 2006; Arimura and Kaibuchi, 2007; 

Polleux and Snider, 2010). The neurites are morphologically similar, and undergo repeated, 

random growth and retraction. However, several hours after the appearance of minor 

processes, one of these processes begins to extend at a higher rate, becoming longer than the 

other neurites. This process is the axon, and the cell has become polarized (Figure 1.1., stage 3) 

(Yoshimura et al., 2006; Arimura and Kaibuchi, 2007; Polleux and Snider, 2010). 

The other minor processes continue to undergo brief spurts of growth and retraction, 

maintaining their net length, for up to a week, when they become mature dendrites. Dendritic 

growth begins only after DIV 4, 2-3 days after axonal outgrowth. So, the dendritic growth is 

slower than axonal growth and several dendrites grow at the same time (Figure 1.1., stage 4) 

(Yoshimura et al., 2006; Arimura and Kaibuchi, 2007; Polleux and Snider, 2010). 

During the stage 4, dendrites become thicker and begin to establish dendritic components and 

to construct premature dendritic spines. When the axon and dendrites are mature, neurons 

form synaptic contacts that enable the trans-cellular transmission of information (Yoshimura et 

al., 2006; Arimura and Kaibuchi, 2007; Polleux and Snider, 2010). This is the moment where the 

growth cone undergoes a profound transition from a highly motile structure to a functional 

presynaptic terminal (Figure 1.1., stage 5). Importantly, synaptic activity determines whether 

synapses will be stabilized or eliminated (Waites et al., 2005). 
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1.1.2. GROWTH CONES GUIDANCE OF THE MATURATION AND ELONGATION OF DEVELOPING AXONS 

Growth cones were discovered by Santiago Ramon y Cajal in 1890, but the first living growth 

cones extended by neurons in tissue culture were observed in 1907. 

How does the axon detect and respond to axon guidance cues? In the developing nervous 

system, growth cone is a dilated terminal of axonal and dendritic processes equipped with 

surface receptors for extracellular signals, allowing axons to respond to diverse cues. As the 

growth cone moves outward, the axon elongates due, in part, to the polymerization of tubulin 

into microtubules, which give the axon its rigidity. In this structure three different compartments 

can be seen (Figure 1.2.): (1) the peripheral domain (P-domain), which is the most distal part of 

the growth cone. The P-domain is highlighted by lamellipodia and filopodia, that probe the 

extracellular environment; (2) the transition zone (T-zone), situated in the interface between the 

actin-rich P-domain and the central domain (C-domain); and (3) the C-domain, which is enriched 

in cellular organelles and has a dense microtubule array that extends from the axonal shaft to 

support the growth cone movement (Huber et al., 2003; Vitriol and Zheng, 2012). 

 

 

Figure 1.2. – Schematic representation of a growth cone. The three domains of the growth cone: growth cone’s P-

domain contains actin-rich lamellipodia (light red shaded) and filopodia (dark red lines); newly formed lamellipodia on 

the side undergoing a positive turning response is shown in blue; microtubules in the growth cone are largely 

restricted to the C-domain (dark blue lines) (adapted from Vitriol and Zheng, 2012). 

 

During neuronal development, neurons project axons over long distances in order to reach 

their final targets; the neuronal growth cones, which are highly motile structures at the tip of a 

growing axon, follow specific pathways: they sense and respond to spatially and temporally 
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distributed guidance cues (environmental cues), that guide them to their appropriate direction 

(Yu and Bargmann, 2001; Dickson, 2002; O’Donnell et al., 2009). There are various types of 

evolutionary conserved guidance molecules and receptors, both attractants and repellents 

(Tessier-Lavigne and Goodman, 1996; Huber et al., 2003; Garbe and Bashaw, 2004; O’Donnell et 

al., 2009; Kolodkin and Tessier-Lavigne, 2011). The activation of guidance receptors elicits 

intracellular signalling events, which control cytoskeleton activity to steer the growth cone (e.g. 

reorganization of actin filaments or stabilization of microtubules) (Huber et al., 2003; Garbe and 

Bashaw, 2004; O’Donnell et al., 2009).  

Many molecules had been identified as modulators of growth cone dynamics. Important in the 

context of the present work, the main intracellular pathway operated by A2AR, cyclic adenosine 

5’-monophosphate (cAMP)-dependent protein kinase (PKA), is one of these players (Han et al., 

2007). 

 

1.1.3. DIFFERENTIATION OF PRESYNAPTIC TERMINALS 

Electrical and chemical signals are transmitted between neurons at specialized sites of contact 

– synapses, whose formation in the brain is important for learning, memory, perception, and 

cognition.  

Presynaptic terminal differentiation is the period between axon formation and the 

establishment of the synapse. This period involves the coordinated action of several inter-

dependent events: clustering and maturation of synaptic vesicles (SVs); presynaptic growth; 

precise alignment between postsynaptic density and the presynaptic active zone; cytoskeletal 

restructuring and assembly of vesicle recycling machinery; establishment of the active zone. 

Two types of presynaptic terminals can be distinguished: at the ends of the axon (‘boutons 

terminaux’) or along the axon shaft (‘boutons en passant’) (Jin and Garner, 2008). 

We could distinguish three different stages in presynaptic specialization: (1) biogenesis and 

transport, (2) trapping and stabilization, and (3) maturation and growth of synaptic components 



INTRODUCTION 

- 7 - 

 

(McAllister, 2007; Jin and Garner, 2008). Normally, synaptic components are constitutively 

generated in the cell soma and transported along the length of the axons by vesicular 

intermediates derived from the trans-Golgi network (Ahmari et al., 2000), but the generation of 

mature SVs occurs after transport. Synapsins, SV-specific proteins, are associated with the 

cytoplasmic surface of small SVs (De Camilli et al., 1983; Huttner et al., 1983; Ziv and Garner, 

2004). 

Synaptogenesis is a process involving the formation of a neurotransmitter release site in the 

presynaptic neuron with a receptive field at the postsynaptic neuron. Synaptic proteins are 

crucial in the process: shortly after neurons differentiate and extend axonal and dendritic 

processes, many of the genes encoding synaptic proteins are turned on, resulting in the 

formation, accumulation and directional trafficking of vesicles (Garner et al., 2002; Waites et al., 

2005). There are several secreted factors, receptors, and signalling molecules that make neurons 

receptive to form synapses. “Priming molecules” are target-derived factors that accelerate 

neuronal maturation or directly induce synapse formation. These factors that seems to make 

neurons competent to undergo synaptogenesis (Waites et al., 2005), are synthesized by 

surrounding glia and/or target neurons, and have many activities (e.g. guide axonal projections 

to their correct targets, stimulate local arborization, promote neuronal differentiation and 

maturation and facilitate the initiation of synapse formation) (Gallo, 2011). Synaptic activity 

determines whether these synapses will be stabilized or eliminated, both during development 

and in the mature brain.  
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1.2. OVERVIEW OF MICROGLIA 

Glial cells are an integral part of CNS networks and consist of two main populations: macroglia 

(astrocytes and oligodendrocytes) and microglia. 

Microglial cells are distributed throughout the CNS, brain and spinal cord, and these cells are 

present in large numbers in all major divisions of the brain, although not uniformly distributed 

(Lawson et al., 1990; Lyck et al., 2009). Microglial cells are key players in the innate defensive 

system of the CNS, and their involvement in pathological conditions have been extensively 

investigated (Hanisch and Kettenmann, 2007; Kettenmann et al., 2011; 2013).  

Microglial cells are able to release factors that have been implicated in neuronal functions and 

behaviour (Hanisch, 2002). In non-pathologic conditions, microglial cells exhibit extensively 

ramified processes that perform a continuous surveillance of the surrounding CNS. Neurons 

have been suggested to maintain this phenotype, suppressing the activation of microglial cells 

through cell-cell contacts (Ransohoff and Cardona, 2010) and by the diffusion of neuronal 

mediators, namely CX3C-chemokine ligand 1 (CX3CL1) which binds and activates the cell-surface 

fractalkine receptor (CX3CR1) on microglia, controlling cell activity (Rivest, 2003; Cardona et al., 

2006; Saijo and Glass, 2011). 

 

Figure 1.3. – Microglial phenotype in non-pathological conditions microglial phenotype.  Phenotype of the microglial 

cells is maintained in part through neuron-derived signals, by the establishment of cell-cell contacts (e.g. cluster of 

differentiation 47, CD47, CD200 and CD22) and/or by the diffusion of neuronal mediators, namely CX3CL1 (adapted 

from Saijo and Glass, 2011). 

 

Microglial cells express pattern recognition receptors (PRRs), e. g. toll-like receptors (TLRs) that 

sense pathogen-associated molecular patterns (PAMPs) found on bacteria, viruses and fungi. 
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Besides PAMPs, other receptors are expressed by microglia, including P2 purinoreceptors and 

receptors for neurotransmitters (e.g. glutamate) that are important to detect changes in 

neuronal physiology (Inoue, 2008; Kettenmann et al., 2011). Disturbances in homeostasis (for 

example an infectious or a traumatic stimuli) are detected by microglia, that exhibit a shift in 

morphology and increase the production of inflammatory mediators, such as cytokines, 

chemokines, reactive oxygen species (ROS), nitric oxide (NO) and neurotrophic factors (Bessis et 

al., 2007). Such circunstances also trigger phagocytic activity of microglia, which is relevant to 

cope with damage (by elimination of infectious agents, dead and/or apoptotic neurons, debris 

…) (Schlegelmilch et al., 2011). 

 

Figure 1.4. – Classically activated microglia participate in both innate and adaptive immune responses. PRRs are 

expressed by microglial cells that recognize various PAMPs found on bacteria, virus and fungi. Normally, PRR-

mediated signalling induces the production of antimicrobial peptides (such as cathelicidin-related antimicrobial 

peptide (CRAMP)), cytokines (such as tumour necrosis factor (TNF), and interleukin-1 beta (IL-1β)), chemokines (such 

as CC-chemokine ligand 2 (CCL2), ROS and NO (adapted from Saijo and Glass, 2011). 

 

The role of microglia in physiologic conditions started to be explored only in 2005 with two 

references reporting the ability of microglia to be active also in the healthy brain (Nimmerjahn et 

al., 2005; Cardona et al., 2006). In these conditions, microglial cells monitor neuronal activity 

and rectify changes, namely phagocytising (Davalos et al., 2005; Nimmerjahn et al., 2005; Wake 

et al., 2009; Tremblay et al., 2010; Paolicelli et al., 2011; Schafer et al., 2012). However, their 

role in synapses formation during the CNS development is not completely established (Tremblay 

et al., 2011). The fact that, during development, there is a massive invasion of microglia and an 
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increment of their density in the brain (Dalmau et al., 1997, 1998), suggests a critical role of 

microglia in synaptogenesis and in the establishment of the neuronal network. 

 

1.2.1. ORIGIN OF MICROGLIA 

In 1913, Ramon y Cajal identified the so-called “third element” (non-astrocyte glial cells) of the 

CNS to distinguish from the “first element” (neuron) and “second element” (astrocyte). In 1919, 

Pio del Rio-Hortega, a student of Cajal, distinguished microglia and oligodendrocytes as separate 

components of the “third element” (del Rio-Hortega, 1919, 1921), after the invasion of the 

developing brain by mesodermal pial elements. 

Del Rio-Hortega also suggested that microglia arise during embryonic development, indicating 

that they might represent a distinct developmental lineage of macrophages, even though they 

express a diversity of macrophage-associated markers, namely: CD11b, colony-stimulating factor 

1 receptor (CSF1R), CX3CR1, CD68 and ionized calcium-binding adapter molecule 1 (Iba-1) 

(Ginhoux et al., 2010; Saijo and Glass, 2011; Greter and Merad, 2013). The lineage relationship 

between microglia and macrophages is clear; microglia are most closely related to bone marrow 

(BM)-derived and more distantly related to other haematopoietic and non-haematopoietic cell 

types (Figure 1.5.) (Saijo and Glass, 2011). 

 

Figure 1.5. – Molecular relationships between different primary mouse haematopoietic lineage cells, brain cells, 

liver cells and microglia isolated from C57BL/6 wild-type mice. Microglia are most related to BM macrophages. Gene 

expression as determined by genoma-wide microarray analysis (adapted from Saijo and Glass, 2011). 
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After the first reports by del Rio-Hortega, microglial research has been dominated by intense 

discussion about their origin. A few years ago there were two hypothesis about the origin of 

microglia: (1) microglia differentiated within the CNS from yolk sac primitive macrophages 

formed during primitive haematopoiesis, an event that occurs in early embryonic ages and 

constitutes the source of microglia that colonizes the adult healthy brain; and (2) microglia from 

myeloid precursors that leave the blood stream and colonize the nervous parenchyma in 

inflammatory conditions. BM-derived monocytes do not contribute to the mature microglial 

pool in the absence of inflammation (Figure 1.6.) (Aguzzi et al., 2013). 

 

 

Figure 1.6. – Developmental relationship between microglia and macrophages. Microglial cells are derived from 

primitive macrophages in the fetal yolk sac formed during haematopoiesis independently of Myb, a requisite 

transcription factor for stem cell development in the BM. Microglial cells proliferation and differentiation is 

dependent on a set of transcription factors (for example, transcription factor Spi-1 (PU.1)) and growth factor 

receptors (for example, CSF1R and CD34) that overlaps with the set required for the development of tissue 

macrophages that arise from definitive haematopoiesis in the BM and the fetal liver. Macrophages are derived from 

haematopoietic stem cells in the BM. CNS macrophages found in the meninges choroid plexus, and perivascular 

space. During inflammation, microglia derive from precursor blood monocytes, but in the BM is dependent on a 

transcription factor Myb (adapted from Davalos et al., 2005; Saijo and Glass, 2011; Schulz et al., 2012; Aguzzi et al., 

2013; Greter and Merad, 2013). 
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1.2.2. BRAIN COLONIZATION BY MICROGLIA 

1.2.2.1. PRENATAL PERIOD – E8-E21 – 

Microglial cells penetrate into the mouse brain before day 8 (Ginhoux et al., 2010). There are 

three routes by which microglial cells can invade the immature CNS: (1) the parenchymal 

vascular network, (2) the surrounding meninges, and (3) the cerebral ventricles (Cuadros and 

Navascués, 1998; Monier et al., 2006). 

During neural development microglial cells increase in density and undergo progressive 

ramification (increase in the number and complexity of branches) (Dalmau et al., 1997, 1998, 

2003). During the prenatal period it is possible to categorize cells according to their morphology: 

amoeboid cells (AM), the first to be observed during embryonic development and considered to 

be the precursors of the mature ramified microglial cells (RM), ‘surveying’ microglia in 

adulthood. AM can be distinguished in three different subtypes: (1) type 1, present at E14 and at 

considerably larger numbers at E17. AM type 1 were observed with a preferential location next 

to the pial surface; (2) type 2, present at days E19 and E21. AM type 2 mainly occurred with a 

primary relation to blood vessels; and (3) type 3 with fine filopodia and/or pseudopodia (Table 

I.i). 

 

Table I.i – Classification of the morphologic types of microglial cell precursors in the prenatal rat hippocampus. 

(adapted from Dalmau et al., 1997). 

Type of cell Shape Cell processes Measuring 
Time course of 

appearance 
Cell morphology 

AM type 1 
Roundish and 

sometimes lobular 
None 15-40µm From day E14 

 

AM type 2 Round 
None, occasional 

filopodia 
15-20µm From day E19 

 

AM type 3 Pleomorphic 
Filipodia and/or 

pseudopodia 
20-50µm From day E14 

 

PRM Elongated 

Scantly developed 

processes showing a 

beaded shape 

50-110µm From day E19 
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1.2.2.2. POSTNATAL PERIOD – P0-P18 –  

In the postnatal period microglial cells mature into highly ramified cells (Dalmau et al., 1998). 

Primitive ramified microglial cells (PRM), first recognized at E19 (Dalmau et al., 1997, 1998; 

Paolicelli et al., 2011), and RM were distinguished in this period. PRM are found on E18 as stated 

above and are the most abundant cell type up to postnatal day 9 (P9). RM are rarely found 

before P9, but are the only type found in the brain from P18 (Table I.ii). 

 

Table I.ii – Classification of the morphologic types of microglial cell precursors in the postnatal rat hippocampus. 

(adapted from Dalmau et al., 1998). 

Type of cell Shape Cell processes Measuring 
Time course of 

appearance 
Cell morphology 

AM type 2 Round 
None, occasional 

filopodia 
15-20µm 

P0-P9, scarcely at 

P12  

 AM type 3 Pleomorphic 
Filopodia and/or 

pseudopodia 
20-50µm P0-P9, some at P15 

 

PRM 

Oval to 

slightly 

elongated 

Scantly developed 

processes 

showing a beaded 

shape 

50-75/85µm 
P0-P12, some at P15 

and rarely at P18 

 

Resting / ‘surveying’ 

microglia 

Oval to 

roundish 

Fully developed 

processes 
85-100µm 

Some at P12, P15-

P18 

 

Reactive-like / 

‘effector’ microglia 

Large, plump, 

round to oval 

Retracted, coarse 

processes 
40/50-80µm 

Mainly from P9 to 

P18 

 

 

Microglial cells are present from E8 to P18 and are distributed through different brain areas 

(for example, cerebral cortex, subcortical white matter, and hippocampus), possibly with 

different morphologic features, different time of appearance and specific patterns of 

distribution. 

The organization of microglial cells in the white and gray matter suggests that these cells may 

play active roles in developmental processes such as axon guidance, neurite growth, 

synaptogenesis, synaptic pruning and neurodevelopmental apoptosis (Kingham et al., 1999; 

Marín-Teva et al., 2004; Ullian et al., 2004; Tremblay et al., 2011). 
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The population of microglial cells increases from the prenatal to the postnatal period in the 

white and gray matter. However, a significant difference in the number of microglia cells occurs 

between these areas (Figure 1.7.): in gray matter, the density of microglial cell increases from P9 

to P18 (except the dentate gyrus (DG), which shows a significant reduction); in white matter, 

there is a series of cyclic changes: increases from E21 to P0 and from P6 to P9, and decreases 

from E18 to E21, P0 to P6 and finally decreases from P9 to P18 (Lawson et al., 1990; Dalmau et 

al., 2003). 

 

Figure 1.7. – Quantification of microglial cells in the developing rat brain. Histograms show the number of microglial 

cells in the ages selected (inferior black part: fraction of microglia that were actively proliferating.) Line graphs show 

the time course of microglial density (Dalmau et al., 2003). 

 

Figure 1.8. – Schematic representative of microglial population growth in the developing brain. AM, amoeboid 

microglia; PRM, primitive ramified microglia; RM, mature ramified microglia; M, monocyte; FM, fetal macrophage; bv, 

blood vessels (Dalmau et al., 2003). 
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1.3. MICROGLIAL FUNCTIONS IN NEURAL DEVELOPMENT 

The role of microglia in embryonic brain development is still largely uncharacterized, although 

increasingly investigated. Many studies indicate that microglial cells have a critical role in brain 

development/maturation, for example in the formation and maintenance of blood vessels 

(angiogenesis) (Beers et al., 2006; Kubota et al., 2009; Ginhoux et al., 2010; Rymo et al., 2011; 

Eyo and Dailey, 2013), in the induction of neuronal apoptosis (developmental apoptosis) (Marín-

Teva et al., 2004; Wakselman et al., 2008; Rigato et al., 2011; Swinnen et al., 2013), in the 

phagocytic clearance of dead cells and neurites (phagocytic clearance) (Takahashi et al., 2005; 

Fraser and Tenner, 2008; Ziegenfuss et al., 2008; Sierra et al., 2010, 2013; Linnartz et al., 2012; 

Svahn et al., 2013), and in brain masculinization and behaviour (Lenz et al., 2012, 2013; Schwarz 

et al., 2012). More recently, microglia role in synapse remodelling and plasticity began to be 

explored (Paolicelli et al., 2011). 

 

1.3.1. ROLE OF MICROGLIAL CELLS IN SYNAPSES 

– DYNAMIC INTERACTIONS BETWEEN MICROGLIA AND SYNAPTIC ELEMENTS IN THE HEALTHY BRAIN – 

Microglial cells have been closely associated with developing axon bundles (Cuadros et al., 

1993; Dalmau et al., 1998; Herbomel et al., 2001). Microglia monitor the functional state of 

synapses and respond to changes in synaptic activity during development. For this 

concept/hypothesis contributed recent studies showing interactions between microglia and 

synapses in the visual cortex of 3-5 week old mice and changes in microglial behavior were 

detected subsequently to changes in neuronal workload (Figure 1.9.) (Tremblay et al., 2010). 
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Figure 1.9. – Interactions between microglia and the synapses during normal sensory experience. (A–C) EM images 

showing Iba1-immunostained microglial (m+) cell bodies (A), as well as large (B) and small (C) processes, surrounded 

by extended extracellular space (asterisks) and contacting axon terminals (blue), dendritic spines (pink), perisynaptic 

astrocytes (green), and synaptic clefts (arrowheads). d, dendrite; N, nucleus; p, perikaryon. Scale bars, 250 nm 

(adapted from Tremblay et al., 2010). 

 

Another study where microglia mediated neuron and synapse elimination during development 

(2-3 postnatal week mice) was reported by Paolicelli et al. (2011). In basal conditions microglial 

cells are in a ‘surveying state’ in which their highly motile processes extend and retract to sense 

the neuronal environment. The dendritic spine density was increased in hippocampal neurons in 

mice lacking the CX3CR1. 

Post-mortem histological studies in humans describe a prominent accumulation of microglia at 

10-12 weeks of gestation at the cortical plate-subplate junction, a position where the first 

synapses are detected, and later, at 19-30 weeks of gestation, at axonal crossroads in white 

matter (Verney et al., 2010). This localized accumulation of microglia at points of axonal and 

synaptic development suggests that microglia may be actively involved in the refinement of 

neuronal connections, including axonal guidance and synaptogenesis (Paolicelli and Cross, 2011). 
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1.4. THE ADENOSINERGIC SYSTEM 

Adenosine, a purine nucleoside, has important effects on biological processes (Dunwiddie and 

Masino, 2001; Ribeiro et al., 2003). It is a fundamental neuromodulator and homeostatic 

regulator in the brain (Fredholm et al., 2001). 

Adenosine exerts its actions through the activation of four G-protein coupled receptors 

(GPCRs) A1, A2A, A2B, and A3 (Fredholm et al., 2001; Latini and Pedata, 2001), that regulate 

different functions in the peripheral (Ohta and Sitkovski, 2001; Ohta et al., 2007) and in the CNS, 

namely neurotransmission (Burnstock, 2013) and the effects of neurotrophic factors, which 

action is mediated by A2ARs (Diógenes et al., 2004, 2007; Pousinha et al., 2006; Gomes et al., 

2006, 2009, 2013; Fontinha et al., 2008). In sum, adenosine is known as key molecule acting 

through combined presynaptic, postsynaptic and non-synaptic actions (Sebastião and Ribeiro, 

2000). 

Adenosine is released from most cells, including neurons but also glial cells. A2ARs are 

important regulators of different microglial functions, such as release of inflammatory mediators 

(Dai et al., 2010; Saura et al., 2005), proliferation (Gebicke-Haerter et al., 1996; Gomes et al., 

2013), reactivity to LPS ex vivo (Rebola et al., 2011), retraction and extension of processes (Orr et 

al., 2009), secretion of brain-derived neurotrophic factor (BDNF) and BDNF-induced proliferation 

in inflammatory conditions (Gomes et al., 2013).  

To date, the role of adenosine in developing neurons, in particular during pre-synaptic 

differentiation, is limited to the involvement of A2BR activation to mediate axon attraction 

(Corset et al., 2000). However, the role of A2BR has been controversial, and some evidences 

indicate that this receptor plays no role in signaling mechanism (Stein et al., 2001; Bouchard et 

al., 2004). Adenosine is also reported to induce neurite elongation in human neuroblastoma 

cells (Abbracchio et al., 1989). Important in the context of the present thesis, it is also known 

that one important signalling pathway related with development is PKA, one of the main 

pathways activated by A2ARs (Figure 1.10.). For example, PKA activation is important in the 
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control of guidance receptors trafficking to the plasma membrane and/or regulated endocytosis 

of guidance receptors (O’Donnell et al., 2009). These receptors are located in the axons or 

dendritic growth cones, and their activation could change the growth cone actin/microtubule 

cytoskeleton (O´Donnell et al., 2009).  

In light of all these observations, A2AR activation by adenosine emerges as a good candidate to 

control microglia impact upon neuron development. 

 

 

Figure 1.10. – The main signal transduction pathway used by A2AR – cAMP-PKA cascade. A2ARs couple preferably to 

members of Gs or Golf family of G protein, and their activation stimulates adenylate cyclase (AC), and increase the 

levels of cAMP and PKA activation. For example, PKA activation positively regulate the mobilization of an intracellular, 

vesicular pool of receptors (adapted from Sebastião and Ribeiro, 2000; O’Donnell et al., 2009). 
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2. AIMS 

Many studies approach the crosstalk between microglial cells and neurons in the adulthood, 

especially in pathological conditions; however, it is unclear if microglial cells have a role in 

developing brain besides the well-established phagocytic elimination of synapses or if 

developing neurons interfere with microglia reactivity. 

The main goals of the present thesis are: (i) to clarify if the presence of developing 

axons/immature neurons affects microglia reactivity (as assessed by immunoreactivity for 

CD11b); (ii) to explore if microglial cells impact on developing neurons, namely on the density of 

synaptic proteins (as assessed by immunoreactivity for synapsin, synapsin puncta), axonal 

length, and growth cone area; and (iii) to clarify if challenging microglia with a classical activator, 

LPS, determines changes in axons under the control of microglial A2AR. 

In order to accomplish our goal, in particular to address microglia interactions with synapses, 

‘far’ from the influence of neuronal cell body and the selective pharmacological modulation of 

microglia previous to the modulation of neurons, we used microfluidic chambers and took 

advantage of their fluidic properties (developing hippocampal neurons were cultured in one 

side, allowing axonal growth onto the other side, where a microglia cell line is previously 

cultured and pharmacologically treated). 
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3. MATERIALS AND METHODS 

3.1. REAGENTS 

Table III.i – Reagents. 

REAGENT SUPPLIER 

Bovine Serum Albumin (BSA) Sigma-Aldrich (Portugal) 

di-Sodium Hydrogen Phosphate 7-hydrate PA-ACS (Na2HPO4
.
7H2O) Panreac (Spain) 

Ethylenediamine tetraacetic acid (EDTA) Sigma-Aldrich (Portugal) 

Fetal Bovine Serum (FBS) Invitrogen (Spain) 

Glucose (C6H12O6) Sigma-Aldrich (Portugal) 

Paraformaldehyde (PAF) Sigma-Aldrich (Portugal) 

penicillin-streptomycin Sigma-Aldrich (Portugal) 

Poly-dimethylsiloxane (PDMS) Sigma-Aldrich (Portugal) 

poly-D-lysine (PDL) Sigma-Aldrich (Portugal) 

Potassium chloride (KCl) Sigma-Aldrich (Portugal) 

Potassium phosphate monobasic (KH2PO4) Sigma-Aldrich (Portugal) 

ProLong Gold antifade reagent with 4',6-diamidino-2-phenylindole (DAPI) Invitrogen (Spain) 

Roswell Park Memorial Institute (RPMI)-1640 medium (R1383) Sigma-Aldrich (Portugal) 

Sodium bicarbonate (NaHCO3) Sigma-Aldrich (Portugal) 

Sodium chloride (NaCl) Sigma-Aldrich (Portugal) 

Sodium hydroxide (NaOH) Merck (Germany) 

Sucrose (C12H22O11) Sigma-Aldrich (Portugal) 

Triton  X-100 Sigma-Aldrich (Portugal) 

Trizma base [NH2C(CH2OH)3] Sigma-Aldrich (Portugal) 

Trypan blue Sigma-Aldrich (Portugal) 

Trypsin, from porcine pancreas Sigma-Aldrich (Portugal) 

Tween 20 (C58H114O26) Sigma-Aldrich (Portugal) 

 

 

3.2. DRUGS 

Table III.ii – Drugs. 

DRUG CONCENTRATION FUNCTION SUPPLIER 

Lipopolysaccharide (LPS)  

from Escherichia coli, serotype 055:B5 
100 ng/mL 

Classical activator of 

microglial cells 

Sigma-Aldrich 

(Portugal) 

7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo- 

-[4,3-e]-1,2,4 triazolol[1,5c]pyrimidine  

(SCH58261) (C18H15N7O) 

50 nM 
Adenosine A2A 

receptor antagonist 

Tocris (United 

Kingdom) 
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3.3. ANTIBODIES 

Table III.iii – Primary and secondary antibodies and conditions used in immunocytochemistry. All antibodies were 

diluted in BSA 3% in PBS. 

ANTIBODY SUPPLIER HOST TYPE DILUTION FUNCTION 

Anti-CD11b 
Serotec 

(MCA711) 
rat monoclonal 1:100 

microglia 

marker 

Anti-Tau 
Abcam 

(ab75714) 
chicken polyclonal 1:1000 axonal marker 

Anti-βIII Tubulin [2G10] 
Abcam 

(ab78078) 
mouse monoclonal 1:1000 axonal marker 

Anti-synapsin I 
Milipore 

(Cat. #AB1543) 
rabbit polyclonal 1:2000 

synaptic vesicles 

marker 

Anti-rat 

AlexaFluor 488 

Invitrogen 

(A21208) 
donkey IgG (H+L) 1:1000 --- 

Anti-chicken 

AlexaFluor 568 

Invitrogen 

(A21103) 
goat IgG (H+L) 1:1000 --- 

Anti-mouse 

AlexaFluor 594 

Invitrogen 

(A21203) 
donkey IgG (H+L) 1:1000 --- 

Anti-rabbit 

AlexaFluor 647 

Invitrogen 

(A21245) 
goat IgG (H+L) 1:1000 --- 

Alexa Fluor 633-

conjugated phalloidin 

Invitrogen 

(A22284) 
--- --- 5U/mL stain for F-actin 

 

 

3.4. MICROFLUIDIC CULTURE PLATFORM FOR CO-CULTURE OF MICROGLIAL CELLS AND RAT 

EMBRYONIC HIPPOCAMPAL NEURONS 

Microfluidic culture platforms (MCP) were used to co-culture microglial cells and neurons, 

allowing the selective physical contact between axons and microglial cells (cell bodies do not 

contact microglia), one of the main goals of this work. This contact is allowed after microglia 

selective treatment with drugs, ensuring that these drugs do not affect neurons before 

microglia, exerting a “priming” effect on microglia previous to the reaction to axonal arrival. The 

ideal tool to address this goal was microfluidic chambers, small multicompartment devices with 

physical and fluidic isolation between two compartments. 
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The chambers are composed of a molded PDMS, a commonly suitable material used in 

biomedical microsystems to grow cells. In this work, the multi-compartment microfluidic co-

culture platform is composed of one soma compartment for neurons and one axon/microglia 

compartment for axons and microglial cells. Each compartment measures 1.5 mm wide, 7 mm 

long and 100 µm height. The soma and axon/microglia compartments are connected by arrays 

of axon-guiding microchannels that function as physical barriers to confine neuron's somas in 

the soma compartment, while allowing axons to grow into axon/microglia compartment. 

Microglial cells loaded into axon/microglia compartment can interact only with axons but not 

with neuronal soma or dendrites, thus enabling localized axon-microglia interaction studies. The 

microchannels also enable fluidic isolation between soma and axon/microglia compartment, 

which measure 450 µm long, 10 µm wide and 3 µm height. 

These devices allow the control of the microenvironment of cells, and in the last years have 

been emerged as potent utensils in neuroscience (Park et al., 2006; Taylor and Jeon, 2010). MCP 

has been applied in several studies of neuronal processes (e.g. neurite formation, outgrowth and 

regeneration (Taylor et al., 2003; Taylor et al., 2005; Vahidi et al., 2008) and co-culture of 

neurons with other cells of the CNS, such as astrocytes and oligodendrocytes (Yang et al., 2009)). 

 

 

Figure 3.1. – Schematic representation of a microfluidic device. Microfluidic chambers have two compartments, the 

somal and the axonal/microglial, separated by a set of microgrooves. These devices were used to develop the co-

culture of microglial cells and neurons, in which only axons enter a separate compartment and establish contact with 

microglial cells. MCP, because of its small multicompartment devices having a physical and fluidic isolation between 



A2A RECEPTOR BLOCKADE IN THE CONTROL OF MICROGLIA IMPACT UPON NEURONS DURING EARLY DEVELOPMENT 

- 28 - 

 

the compartments, allows a selective exposure of plated microglia (in one compartment), without affecting neurons 

(in the other compartment before axonal growth) (adapted from Taylor et al., 2005). 

 

3.4.1. PREPARATION OF MICROFLUIDIC CHAMBERS 

The microfluidic device for neuron cell culture consists of a PDMS mold chamber placed against 

a glass coverslip. The PDMS mold was kindly fabricated and offered by Noo Li Jeon (School of 

Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea) and Hyun Ryu 

(Multiscale Mechanical Design, Seoul National University, Seoul, Korea). All procedures in the 

preparation of microfluidic chambers were performed by the group of Doctor Ramiro de 

Almeida (Pinto, 2010). 

 

 

3.5. CELL CULTURE 

3.5.1. CULTURE OF RAT EMBRYONIC HIPPOCAMPAL NEURONS 

Primary cultures of hippocampal neurons were obtained from the hippocampus of Wistar rat 

embryos (18 days), handled according to the Portuguese law on Animal Care and European 

Union guidelines. The preparation of rat embryonic hippocampal neurons was performed by the 

group of Doctor Ramiro de Almeida. 

 

3.5.2. CULTURE OF MICROGLIAL CELLS 

A murine microglial cell line, N9 (kind gift from Professor Claudia Verderio, National Research 

Council, Neuroscience Institute, Cellular and Molecular Pharmacology, Milan, Italy) was grown in 

RPMI medium supplemented with 30 mM glucose, 100 U/mL penicillin and 100 μg/mL 

streptomycin. Cells were kept at 37oC under a humidified atmosphere with 95% O2 and 5% CO2. 

In microfluidic devices, 10μl of a 2×104 cells/mL cell suspension were added (the number of 

viable cells was evaluated counting trypan blue-excluding cellular elements) in the 

axonal/microglial side three days after plating hippocampal neurons (timepoint at which there 
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are still no axons growing through the channels). The co-culture was maintained for four more 

days, when pharmacological manipulations and/or immunocytochemistry analysis were 

performed. 

 

 

3.6. MICROGLIAL CELLS PHARMACOLOGICAL TREATMENT 

At DIV4, microglial cells were treated with LPS (100 ng/mL), a concentration previously 

reported to induce changes in A2AR density in microglial cells (Gomes et al., 2013) and/or with 

the selective A2AR antagonist SCH58261 (50 nM) (it was previously reported that this 

concentration is selective for A2AR) (Zocchi et al., 1996) (Table III.ii). When LPS was tested in the 

presence of SCH58261, the antagonist was added twenty minutes before LPS. All treatments 

remained in the medium for six hours; and then washed out.  

At DIV7, neurons were considered suitable to analyse the established endpoints after 

contacting microglial cells in axonal/microglial compartment. 

 

 

3.7. IMMUNOCYTOCHEMISTRY 

DIV7 co-cultures were pre-fixed in PAF 1% in phosphate buffered saline (PBS) (NaCl 137 mM, 

KCl 2.1 mM, KH2PO4 1.8 mM and Na2HPO4.2H2O 10 mM, at pH 7.4) for five minutes at room 

temperature (RT) in order to minimize the aggressive effect that PAF may have on fragile axons. 

After that, cells were fixed with PAF 4% (in PBS) for ten minutes at RT, and washed three times 

with tris-buffered saline (TBS). As fixation with PAF does not allow access of the antibody to the 

antigen, a permeabilization step was performed using a non-ionic detergent, Triton X-100 0.25% 

in TBS for five minutes at RT. After permeabilization, cells were washed once with TBS and non-

specific binding blocked with BSA 3% in PBS for thirty minutes at RT. BSA interacts with other 

proteins, as well as with the antibodies used, increasing the competition of antibodies in binding 
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to their targets, with a consequent result of increasing selectivity to the antigen, decreasing the 

nonspecific binding. After washing the blocking solution, cells were incubated overnight at 4oC 

with primary antibodies (Table III.iii) with BSA 3% in PBS, as already mentioned. 20 µL of primary 

antibodies were added to the somal side and 15 µL to the axonal/microglial side, in order to 

guarantee the fluidic isolation. After incubation with the primary antibodies, cells were washed 

three times with TBS to remove excess primary antibodies (at least five minutes each wash), and 

then incubated with the secondary antibody (Table III.iii) in BSA 3% in PBS for one hour at RT. 

Cells were washed twice with Triton X-100 0.1% in TBS (five minutes each wash), and finally five 

minutes wash in TBS). 

Antibodies mix (both primary and secondary) was centrifuged for twenty minutes at 16000 g at 

4oC before application. In order to exclude non-specific labelling of the secondary antibodies, 

labelling was tested in the absence of primary antibodies. All immunocytochemistry steps were 

performed with the microfluidic devices assembled; after removing the last washing medium, 

microfluidic chambers were disassembled by slowly removing the mold from the coverslip. The 

glass coverslip was rinsed with mili-Q water (mQH2O) and mounted in prolong mounting media 

with DAPI, a fluorescent stain that binds strongly to deoxyribonucleic acid (DNA) and is used in 

fluorescence microscopy to identify the nuclei. Preparations were dried overnight at 4oC and 

sealed with nailpolish before acquisition of images in the fluorescence microscope. 

 

 

3.8. IMAGE ACQUISITION 

For data acquisition and quantification, ten to twelve fluorescent images were blindly acquired  

using a Zeiss Axiovert 200 fluorescence microscope (Zeiss, Germany), and the images were 

acquired by AxioCam HRm camera and ZEN software (Carl Zeiss Imaging Systems), with an EC-

Plan-Neofluar 40x oil objective (numerical aperture 1.3). Exposure times, as well as acquisition 
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settings, were conserved in individual experiments. The pixel size in the object space was 0.16 

µm. In microfluidic chambers, images were randomly taken from the axonal/microglial side. 

 

 

3.9. IMAGE QUANTIFICATION 

All quantifications described below were performed using ImageJ software (National Institutes 

of Health, NIH). After acquisition, images were converted into 8-bit tiff images which were used 

(and manipulated as indicated when considered appropriate) for all the quantification 

procedures. 

 

3.9.1. MICROGLIA REACTIVITY 

CD11b immunoreactivity (IR) was analysed as an indicator of microglia reactivity. Identical 

background and threshold values were applied to all pictures to eliminate background. These 

images were used to quantify the total intensity of CD11b. The ratio between total CD11b 

intensity per CD11b area, as well as per cell number, was calculated to minimize eventual 

influence of changes in cell morphology or number upon total CD11b intensity. 

 

3.9.2. SYNAPSIN PUNCTA PER AXONAL LENGTH 

Axons were randomly chosen from exported 8-bit images and their lengths determined. Axons 

with similar appearance were selected; fragmented, bead-bearing axons or terminal regions 

were rejected. The selection was carried out in tau images, without observation of synapsin 

labelling. To quantify the number of synapsin puncta that correspond to each axonal length, 

synapsin channel images were thresholded (background and threshold values were applied to all 

pictures) and analysis of particles was performed. In each image the number of synapsin/µm 

was determined. In each experiment, ten to twelve images were analysed per condition. 
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3.9.3. LENGTH OF THE AXONAL NETWORK 

In order to analyze changes in the outgrowth of axons within the axon/microglia compartment 

in the presence or absence of microglia, we quantified the total length of the axonal network 

from the microgrooves’ end to the opposite side of the compartment. To combine in a single 

image the entire width of the axon/microglia compartment, 6 to 13 tile images (equally 

interspaced along the length of the compartment and without overlapping with each other) 

were acquired per chamber (Figure 3.2.). Each tile is composed of 10 individual images that were 

combined via stitching. These images were converted into 8-bit images and the threshold was 

applied to eliminate background. The total length of axons was measured by obtaining a 

representative skeleton of the axonal network using the ImageJ plugin Skeletonize, which was 

later analysed by the ImageJ plugin Analyze skeleton. This latter plugin will identify several 

axonal segments and their length will be measured. The total length of the axonal network 

corresponds to the sum of all individual segments’ length. 

 

 

Figure 3.2. – Acquisition of images for measurement of the length of the axonal network. To combine in a single 

image the entire width of the axon/microglia compartment, 6 to 13 tile images (equally interspaced along the length 

of the compartment and without overlapping with each other) were acquired per chamber. 

 

3.9.4. GROWTH CONE AREA 

Polymerized actin is stained with Alexa Fluor 633-conjugated phalloidin. Growth cones present 

in phalloidin images were selected as regions of interest (ROI) and the threshold adjusted to 

eliminate background. The area of phalloidin in each ROI was quantified. 
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Next, we measured the distance between each growth cone and the most proximal microglial 

cell. Growth cones were grouped in two distinct populations: the ones that are within a 50 µm 

range from microglia and the remaining ones. 

 

 

3.10. STATISTICAL ANALYSIS 

Values were presented as means ± standard error of mean (SEM) of independent cultures. 

Statistical analysis was determined with Graph Pad Prism 6.0 software (GraphPad Software, San 

Diego, California). Student’s t test, one-way or two-way analysis of variance (ANOVA) for 

independent means (followed by a Bonferroni post-hoc test for multiple comparisons), were 

used to define statistical differences, which were considered significant at p < 0.05. 
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4. RESULTS AND DISCUSSION 

4.1. IMPACT OF AXONS ON MICROGLIAL REACTIVITY 

4.1.1. THE PRESENCE OF AXONS DID NOT AFFECT MICROGLIA REACTIVITY 

CD11b, a constitutive marker of microglia (and macrophages) was used as a marker of 

microglial reactivity, and CD11b IR (immunoreactivity) was evaluated as an indicator of this 

reactivity. In the present study, we used two types of normalization for measured CD11b IR, area 

and cell number. 

Microglial cells cultured in microfluidic chambers exhibited different morphologies, even in the 

absence of neurons, as revealed by immunofluorescence staining with an antibody anti-CD11b. 

For this reason, it was decided to analyse IR and not morphology as an indicator of reactivity. As 

shown in Figure 4.1., the presence of axons did not affect CD11b IR in microglial cells per area 

(microglia: 61.24 ± 9.75; microglia plus axons: 72.70 ± 9.62, n=6, p > 0.05) (Figure 4.1.) or per cell 

number (microglia: 29292 ± 7857; microglia plus axons: 26261 ± 4877, n=6, p > 0.05) (Figure 

4.1.). 

 

 

Figure 4.1. – The presence of axons did not cause alterations in CD11b IR of microglial cells. (A-B) Representative 

images of microglial cells in the absence of axons (A) and in the presence of axons (B). Microglial cells in the 
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axonal/microglial compartment at DIV7 stained for CD11b (microglia marker, green), DAPI (nuclei, blue) and tau 

(axonal marker, red). (C) CD11b IR quantification normalized per area. (D) CD11b IR quantification normalized per cell 

number. Results are expressed as mean ± SEM of n (as indicated above) independent experiments (p > 0.05, 

compared with isolated microglia, using paired Student’s t test). 

 

* 

These data suggest that, in the experimental conditions used, the presence of axons did not 

change microglial reactivity. However, we do not exclude the possibility that changes in other 

markers may occur, for example Iba-1 (a marker for resting and activated microglia) or CD68 (a 

marker for activated microglia, mainly in the phagocytic state), because these three markers are 

differentially regulated (Louboutin et al., 2010). 

 

 

4.2. MICROGLIAL CELLS IMPACT UPON AXONS 

It is still unknown if microglial cells affect developing neurons, and whether this effect is 

mediated by a local interaction between microglial cells and the growing axons (without directly 

affecting the soma). Previous studies show that, upon axotomy, microglia secrete 

thrombospondin (TSP) (Chamak et al., 1995; Moller et al., 1996), which belongs to the family of 

extracellular matrix proteins able to induce synaptogenesis (Christopherson et al., 2005). 

However, there are no studies testing if microglial cells induce presynaptic differentiation of 

developing neurons. 

The process of presynaptic differentiation includes several events, among which the clustering 

of SVs (Jin and Garner, 2008). They are associated with specific proteins, linked to the 

cytoplasmatic surface, which are part of the synapsin family (a family consisting of at least 10 

isoforms encoded by three distinct genes) (De Camilli et al., 1983; Huttner et al., 1983; 

Fornasiero et al., 2010). Synapsins control important developmental processes that precede the 
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formation of mature nerve terminals, thus being involved in synapse formation (Fornasiero et 

al., 2010). 

In this work, the effect of microglial cells on embryonic hippocampal neurons was assessed by 

measuring synapsin puncta per axonal length as a marker of SVs, which clustering is a hallmark 

of presynaptic differentiation. 

 

4.2.1. MICROGLIAL CELLS TEND TO INCREASE THE NUMBER OF SYNAPSIN PUNCTA 

The number of synapsin puncta/µm tends to increase when growing axons are co-cultured 

with microglia, as compared with isolated growing axons, although this does not reach statistical 

significance (axons: 0.055 ± 0.016; axons plus microglia: 0.085 ± 0.025, n=7, p > 0.05) (Figure 

4.2.). 
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Figure 4.2. – Microglial cells tend to increase the clustering of synaptic vesicles. (A-F) Representative images of 

axonal/microglial compartment at DIV7, in microfluidic chambers stained for CD11b (microglia marker, green), DAPI 

(nuclei, blue), tau (axonal marker, red) and synapsin I (marker of synaptic vesicles, white). (B, C) Magnification of an 

axonal segment of A (white rectangle). (E, F) Magnification of an axonal segment of D (white rectangle). White arrows 

indicate puncta of synapsin. Scale bars, 20μm. (G) Quantification of the number of synapsin puncta per axonal length. 

Results are expressed as mean ± SEM of n (as indicated above) independent experiments (p > 0.05, compared with 

isolated axons, using paired Student’s t test). 

 

 

4.2.2. LPS-ACTIVATED MICROGLIAL CELLS INCREASED SYNAPSIN PUNCTA 

The concentration of LPS, 100 ng/mL (at six hours), was previously reported to induce changes 

in A2AR density in microglial cells (Gomes et al., 2013). In the presence of LPS, the number of 

synapsin puncta per axonal length was increased when compared with control conditions (axons 

plus microglia: 0.060 ± 0.010; axon plus microglia in the presence of LPS: 0.125 ± 0.015, n=3) 

(Figure 4.3.); in isolated axons, no alterations were observed in the number of synapsin puncta 

per axonal length (axons: 0.044 ± 0.016; axons in the presence of LPS: 0.070 ± 0.028) (Figure 

4.3.). The present results show that microglial ‘activation’ using a bacterial antigen changes the 

number of synapsin clusters along the axon; thus, even without a contact with the cell body, is 

sufficient to induce these changes in synaptic protein. 
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Figure 4.3. – LPS-activated microglial cells increased synapsin puncta. (A-F) Representative images of 

axonal/microglial compartment at DIV7, in microfluidic chambers stained for CD11b (microglia marker, green), DAPI 

(nuclei, blue), tau (axonal marker, red) and synapsin I (marker of synaptic vesicles, white). (B, C) Magnification of an 

axonal segment of A (white rectangle). (E, F) Magnification of an axonal segment of D (white rectangle). White arrows 

indicate puncta of synapsin. Scale bars, 20μm. (G) Quantification of the number of synapsin puncta per axonal length. 

Results are expressed as mean ± SEM of n (as indicated above) independent experiments (*p < 0.05, two-way ANOVA 

followed by Bonferroni post-hoc test). 
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4.2.3. A2AR BLOCKADE DID NOT PREVENT LPS-INDUCED INCREASE IN SYNAPSIN PUNCTA 

Several studies suggest that A2AR antagonists can control neuroinflammation. For example, the 

tonic activation of A2AR is required for LPS-induced increase of BDNF secretion by microglia in 

inflammatory-like conditions (Gomes et al., 2013). In order to clarify if a selective A2AR 

antagonist, SCH58261, is able to regulate the microglia-induced increase of synapsin puncta 

reported above, we investigated the ability of SCH58261 (50 nM) to modulate LPS effect upon 

synapsin puncta. 

The selective A2AR antagonist SCH58261 did not prevent LPS induced increase of synapsin 

puncta (axons in the presence of LPS: 0.070 ± 0.028; axons in the presence of SCH 58261: 0.0715 

± 0.032; axons in the presence of LPS and SCH 58261: 0.076 ± 0.031; axons plus microglia in the 

presence of LPS: 0.125 ± 0.015; axons plus microglia in the presence of SCH 58261: 0.085 ± 

0.030; axons plus microglia in the presence of LPS and SCH 58261: 0.128 ± 0.032) (Figure 4.4.). 

 

 

Figure 4.4. – Microglia A2AR blockade did not prevent LPS-induced increase in the clustering of SVs. (A) 

Quantification of the number of synapsin puncta per axonal length. At DIV4, microglial cells were exposed to 

pharmacological treatments, lipopolysaccharide (LPS, 100 ng/mL), and/or the selective A2AR antagonist SCH58261 (50 

nM) for 6 hours before their wash out. Results are expressed as mean ± SEM of n (as indicated above) independent 

experiments (*p < 0.05, two-way ANOVA followed by Bonferroni post-hoc test). 
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* 

One of the main goals of the present work was to evaluate if microglia affect developing 

neurons, namely by regulating the density of synapsin I, a pre-synaptic molecule causally related 

with pre-synaptic maturation (Ziv and Garner, 2004). 

Several factors can be involved in the regulation of synapsin puncta along the axon, among 

which diffusible mediators released by microglial cells emerge as good molecular candidates. 

Additionally, axon-microglia direct physical contact may influence synapsin puncta. To dissect 

these possibilities, experiments with microglia-conditioned medium (instead of microglia 

themselves) need to be done.  

Further experiments are required in order to identify the mechanism by which microglial cells 

or microglial mediators control synapsin puncta. One possibility is the regulation of protein 

synthesis (by the activation of genes encoding synaptic proteins) or trafficking along the axon.  

It is also crucial to clarify the physiological role of the LPS-induced increase of synapsin puncta 

and to test whether these puncta become or not functional synapses. To address this question, 

the whole-cell patch clamp approach complemented by fluorescence imaging (e.g. by using the 

styryl dye FM1-43) could be used. The use of FM1-43 allows the investigation of synaptic vesicle 

exocytosis and endocytosis, a good tool to understand if microglial cells could promote the 

functional maturation of synapsin puncta, turning them into functional synapses. 

A very recent work from Ueno and colleagues (2013) proposes a novel role for microglia during 

development, besides the well-known phagocytic role: a supportive role for developing neurons. 

Using cortical neuronal cultures (E18), the authors observe that layer V neurons require 

microglial support to survive during postnatal development. The observed increase in synapsin 

puncta in the presence of activated microglia is in line with the study by Ueno and co-workers, 

further suggesting that microglia, besides phagocytosis, are involved in trophic actions. 

Guidepost cells have been proposed to provide information for synapse stabilization (Sanes and 

Yamagata, 1999; Shen and Bargmann, 2003); for example, studies in Caenorhabditis elegans 
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neurons have identified epidermal or neuronal guiding cells determining synapse positioning 

(Ding et al., 2007). Our results may suggest that microglial cells work as guide cells for synapse 

positioning in the early phases of embryonic development, by controlling synapsin clustering, 

accepted as a readout of pre-synaptic maturation (Ziv and Garner, 2004). 

The fact that only activated microglia induces an increase of synapsin puncta led us to 

hypothesize that microglial priming by exogenous factors (such as an infectious agent) during 

early development could result in alterations of brain wiring subsequent to aberrant changes in 

the number of synapses and associated with disease in the adulthood. 

 

 

4.3. LENGTH OF THE AXONAL NETWORK 

During brain development, neurons establish neural circuits that require trophic support 

(Waites et al., 2005; O’Donnell et al., 2009). Total axonal length is controlled by a variety of 

extracellular and intracellular signals that can be repulsive or permissive molecules (O’Donnell et 

al., 2009). Repulsive (ephrins, netrins and semaphorins, and repulsive guidance molecule a, 

RGMa) and permissive molecules (e.g. growth factors) (O’Donnell et al., 2009; Kitayama et al., 

2011; Kolodkin and Tessier-Lavigne, 2011) are produced and secreted by glial cells. For this 

reason, it was considered interesting to analyse if microglia could affect total axonal length, in 

particular if activated by LPS in the presence and the absence of A2AR antagonist. 

 

4.3.1. MICROGLIAL CELLS DID NOT AFFECT THE AXONAL LENGTH 

Kitayama and co-workers (2011) reported that it is necessary the activation of microglia (by 

LPS) to inhibit axonal and neurite outgrowth. It was our goal to analyze the impact of microglia 

upon axonal length by the direct contact of these cells with the growing axon, without affecting 

the neuronal soma. In our hands, and in these particular conditions, the presence of microglia 
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did not affect the axonal length (axons: 5445 ± 2121; axons plus microglia: 6122 ± 1769, n=6) 

(Figure 4.5.). 

 

 

Figure 4.5. – Microglial cells did not affect the axonal length. (A-E) Representative images of axon/microglia 

compartment at DIV7, in microfluidic chambers stained for tau (axonal marker, red) (A, C), CD11b (microglia marker, 

green) (D) and DAPI (stains nuclei, blue) (E). Scale bars, 100 μm. (F) Quantification of the total axonal length. Results 

are expressed as mean ± SEM of n (as indicated above) independent experiments (p > 0.05, compared with isolated 

axons, using paired Student’s t test). 

 

 

4.3.2. LPS-ACTIVATED MICROGLIAL CELLS DID NOT AFFECT THE AXONAL LENGTH 

Considering that microglial regulation of growing axons is highly dependent on their 

‘activation’ state (as seen for synapsin puncta, compare 4.2.1. with 4.2.2.), we next tested the 

ability of microglia to regulate axonal length in the presence of LPS (100 ng/mL). 

Conversely to what was expected from the previous results on synapsin puncta, LPS-activated 

microglia did not affect the total axonal length (axons: 8815 ± 4105; axons in the presence of 
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LPS: 9789 ± 4683; axons plus microglia: 5727 ± 2254; axons plus microglia in the presence of LPS, 

n=3) (Figure 4.6.). 

 

 
Figure 4.6. – LPS-activated microglia did not affect the total axonal length. (A-J) Representative images of 

axon/microglia compartment at DIV7, in microfluidic chambers stained for tau (axonal marker, red) (A, B, D, H), CD11b 

(microglia marker, green) (E, I) and DAPI (nuclei, blue) (F, J). Scale bars, 100 μm. (K) Quantification of the total axonal 

length. Results are expressed as mean ± SEM of n (as indicated above) independent experiments (p > 0.05, one-way 

ANOVA followed by Dunnett’s t test). 
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4.3.3. MICROGLIAL AND NEURONAL A2A RECEPTOR EXERT A DUAL ROLE IN THE CONTROL OF THE AXONAL 

LENGTH 

Given that adenosine, through the activation of A2AR, is able to control several microglial 

functions, in particular when these cells are in the presence of activators, such as LPS (e.g. Saura 

et al., 2005; Gomes et al., 2013), we tested the ability of the selective A2AR antagonist 

(SCH58261, 50 nM) to modulate the total axonal length in the presence and in the absence of 

LPS (100 ng/mL). 

Blocking microglial A2AR prior to neuronal A2AR did not affect the total axonal length, 

iregardless the ‘activation’ state of microglia (although we consider the present results as 

preliminary data, taking into consideration the high variability obtained in these experiments) 

(axons plus microglia: 5727 ± 2254; axons plus microglia in the presence of SCH 58261: 6241 ± 

2833). Intriguingly, SCH58261 seems to directly control total axonal length: in the absence of 

microglia, A2AR blockade tends to decrease total axonal length (axons: 8815 ± 4105; axons in the 

presence of SCH 58261: 3130 ± 1173, n=3) (Figure 4.7.), although not interfering with total 

axonal length in the presence of LPS (axons: 8815 ± 4105; axons in the presence of LPS: 9789 ± 

4683; axons in the presence of LPS and SCH 58261: 5310 ± 3442; axons plus microglia: 5727 ± 

2254; axons plus microglia in the presence of LPS: 5529 ± 3005; axons plus microglia in the 

presence of LPS and SCH 58261: 6173 ± 1929, n=3). 
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Figure 4.7. – Microglial and neuronal A2AR exert a dual role in the control of the axonal length. (A-T) Representative 

images of axon/microglia compartment at DIV7, in microfluidic chambers stained for tau (axonal marker, red) (A-D, F, 

J, N, R), CD11b (microglia marker, green) (G, K, O, S) and DAPI (stains nuclei, blue) (H, L, P, T). Scale bars, 100 μm. (U) 

Quantification of the total axonal length. Results are expressed as mean ± SEM of n (as indicated above) independent 

experiments (p > 0.05, compared with isolated axons, using one-way ANOVA followed by Dunnett’s t test). 

 

* 

Axonal growth is critical for establishing neuronal circuits during developmental period. 

Purines, such as adenosine 5’-triphosphate (ATP) and adenosine induce alterations in axonal 

growth (Diaz-Hernandez et al., 2008; Diez-Zaera et al., 2011). Extracellular ATP negatively 

controls axonal growth and branching in cultured hippocampal neurons (Diaz-Hernandez et al., 

2008) and the opposite was observed with extracellular adenosine in human neuroblastoma 

cells (Abbracchio et al., 1989). Another study (Diez-Zaera et al., 2011) reports an absence of 

effect of adenosine in the first steps of axonal growth, but the authors use adenosine deaminase 

(ADA), a drug that converts adenosine to its inactive metabolite, inosine (Diez-Zaera et al., 

2011). Furthermore, in this study, both the soma and the axon contacted microglial cells. Given 

that we are interested in adenosine effects mediated by A2AR, we studied the effect of a 

selective antagonist, SCH58261 (50 nM), upon the length of the axonal network in the presence 

and in the absence of LPS.  

Although it was not expected any result of the application of SCH58261 when hippocampal 

neurons are cultured in the absence of microglia (at this timepoint axons are not growing 
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through the channels), a decrease was observed. An acceptable justification for this may be 

related to the properties of the devices, namely with the main component of microfluidic 

chambers – PDMS. This polymer, with the chemical formula CH3[Si(CH3)2O]nSi(CH3)3 – n is the 

number of repeating monomer [SiO(CH3)2] –, have –CH3 groups that make the surface very 

hydrophobic (Sia and Whitesides, 2003). Consequently, the chambers surface becomes 

susceptible to nonspecific adsorption of hydrophobic contaminants (Sia and Whitesides, 2003), 

for example SCH58261. Thus, it may be available to interact with the axons even after drug 

washout. 

Our observations are controversial with a study, showing that adenosine is not involved in the 

control of axonal growth (Diez-Zaera et al., 2011). A possible explanation for this controversy is 

related with the experimental conditions used in our study, where microglia is plated in physical 

contact with the growing axon, in the absence of the influence of the neuronal soma (allowed by 

device compartmentalization). A2AR are key controllers of the synapse morphology and/or 

function (Costenla et al., 1999; Canas et al., 2009) and we anticipate that somal and axonal 

receptors may be involved in the differential regulation of specific cell functions. 

It is important to emphasize that the presence of LPS, used as a classical ‘activator´ of 

microglia, did not affect the axonal network, although it was able to regulate synapsin clustering 

(see 4.2.). Altogether, our data suggest that the ´activation’ state of microglia is selectively 

involved in the control of particular neuronal properties of the growing axon. 
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4.4. GROWTH CONE 

Neuronal connectivity in the early phases of development is established by the precise 

regulation of axon guidance, which is controlled by extracellular cues that attract or repel axons 

(O’Donnell et al., 2009). Growth cone morphology and motility are controlled by guidance 

receptors at the plasma membrane and downstream signalling pathways that regulate 

actin/microtubule cytoskeleton organization (Vitriol and Zheng, 2012). Actin is one of the major 

cytoskeletal components of growth cones (F-actin forms a meshwork throughout lamellipodia 

and is densely bundled in filopodia) (Vitriol and Zheng, 2012); thus, the regulation of actin 

dynamics is relevant for growth cone motility and guidance. Phalloidin, which binds to F-actin, is 

used to investigate whether microglial cells are implicated in the regulation of growth cone. 

The presence of microglial cells did not interfere with growth cone phalloidin area (axons: 

32.14 ± 8.27; axons plus microglia: 39.63 ± 7.88, n=4) (Figure 4.8.). 

 

 

Figure 4.8. – Microglial cells did not affect the growth cone phalloidin area. (A) Quantification of the growth cone 

phalloidin area. Results are expressed as mean ± SEM of n (as indicated above) independent experiments (p > 0.05, 

compared with isolated axons, using paired Student’s t test). 

 

However, visually, it appeared that when microglial cells were closer to the axons, the growth 

cone “looked” higher in its area. Thus, we next examined the influence of microglial cells on the 

phalloidin-stained area, according to the distance between axons and microglial cells: growth 

cones were divided into two populations, according to the distance to microglia (< or >50 µm). 

Performing this analysis, we were able to observe that when the growth cone was closer to 
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microglial cells, the phalloidin area tended to be higher, although without a statistically 

significant difference (axons: 29.78 ± 5.68; axons plus microglia <50 µm: 44.38 ± 3.21; axons plus 

microglia >50 µm: 35.24 ± 2.69, n=3) (Figure 4.9.). 

 

 

 

Figure 4.9. – Microglial cells effects upon growth cone phalloidin area. (A-I) Representative images of axon/microglia 

compartment at DIV7, in microfluidic chambers stained for tau (axonal marker, red) (A, D, G) and phalloidin (marker of 

F-actin, yellow). Image has been merged. Growth cone image without microglial cells (A-C) and with microglial cells (< 

50 µm) (D-F) and (> 50 µm) (G-I), respectively. Scale bars, 10µm. (J) Quantification of the growth cone phalloidin area 

in two distinct populations: the ones that are within a 50 µm range from microglia and the remaining ones. Results are 

expressed as mean ± SEM of n (as indicated above) independent experiments (p > 0.05, Student’s t test). 
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* 

The motility and guidance responses of the growth cone involve the actin cytoskeleton, which 

is controlled by many signaling pathways (in turn controlled by extracellular signals). 

Lamellipodia and filopodia, two distinct F-actin structures that are present at the growth cones 

have a function in growth cone movement and environmental sensing, respectively (Vitriol and 

Zheng, 2012). 

The present results suggest that growth cones may be affected by factors secreted by 

microglial cells and that the distance to these cells is important, likely by a dilution effect of 

mediators released far from the growth cone, an issue that deserves further clarification. 

Microglial cells may be a source of several regulatory molecules that control the actin network 

(and possibly their dynamics). 

Kitayama and collaborators (2011) showed that, when neurons are cultured with LPS-activated 

microglia, growth cones are collapsed; non-activated microglia do not induce growth cone 

collapse. Growth cone collapse has been used for the identification and purification of molecules 

that are repulsive to growth cones. Nevertheless, future studies are needed to investigate the 

impact of the selective pharmacological modulation of microglial cells (by LPS in the presence 

and absence of a selective A2AR antagonist) in the interaction with growth cones.  

 



 

 

 



 

- 55 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 

– CONCLUSION – 

OPEN QUESTIONS AND NEW DIRECTIONS 



 

 

 



CONCLUSION. OPEN QUESTIONS AND NEW DIRECTIONS 

- 57 - 
 

5. CONCLUSION – OPEN QUESTIONS AND NEW DIRECTIONS 

The main observations of the present work are (1) LPS-activated microglia increase synapsin 

puncta, a pre-synaptic molecule causally related to the onset of pre-synaptic maturation, an 

effect not prevented by A2AR blockade; (2) neuronal and microglial A2AR blockade differentially 

modulate total axonal length; (3) microglial cells tend to positively regulate growth cone area 

and this eventual influence is affected by the distance to microglial cells. 

 

Other issues arise as future hypothesis: during development, could microglial cells guide the 

axons to the appropriate target cell? Is it possible that microglial cells exert a guiding role in the 

formation of synapses? Could microglial cells provide spatial information for synapse 

positioning? Could microglia exert a dual role in the control of synapses: formation of 

presynaptic ‘boutons’ and elimination of synapses? Could an infection of the CNS in the early 

phases of development determine neuropathological alterations in the adulthood? 

 

Understanding the functions and the molecular pathways underlying microglia-synapse 

interactions in the developing brain and their exact role in the navigation of growing axons is 

mandatory to elucidate the pathophysiology of neurodevelopmental diseases. This work helped 

to better understand the physical relationship between microglia and growing axons, suggesting 

a novel role for microglia, besides the well-known phagocytic role. Importantly, this study 

highlights the impact of the selective modulation of A2AR in neurons and microglial cells upon 

developing neurons. 
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