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ABSTRACT 

Alzheimer’s disease (AD) is the most common neurodegenerative disorder in elderly. Typical 

hallmarks of this pathology are the extracellular deposits of amyloid-beta peptide (Aβ) peptide 

forming plaques and neurofibrillary tangles in the hippocampus and cortex, the main brain areas 

affected in AD. Many studies consider the accumulation of Aβ as “primum movens” for a cascade of 

events that ultimately produce massive neuronal death in selective neurons. cAMP response 

element-binding protein (CREB) is one of the main transcriptional factors involved in gene expression 

related to cell survival, memory formation and synaptic plasticity. In AD brain, CREB levels and 

activity were shown to be altered. In additon, extracellular-signal-regulated kinase (ERK) is involved 

in a cascade of events that can also modulate the activity of CREB through phosphorylation of 

specific kinases. Both CREB and ERK-associated signaling pathways are sensitive to intracellular Ca2+ 

changes (Ca2+
i), being Ca2+

i dyshomeostasis largely described to occur in AD. N-methyl-D-aspartate 

receptors (NMDARs) have a high Ca2+ conductance and are essential for synaptic plasticity, since they 

are connected to the excitability of post-synaptic membranes; however, overactivation of NMDARs 

causes excitotoxicity.  

In this work we evaluated the changes in CREB and ERK activities in mature cortical neurons exposed 

to Aβ1-42 oligomers and the involvement of NMDARs activation-mediated Ca2+
I rise in these cells. We 

further analysed the levels of a CREB target, PGC-1α, involved in mitochondrial biogenesis and in 

antioxidant response. Our findings show that incubation with Aβ1-42 oligomers produces early 

changes in the levels of phosphorylated CREB, reflecting CREB activity, in a process mediated by 

influx of Ca2+ occurring through the activation of NMDARs. A similar pattern of activation was 

observed for ERK, suggesting that both pathways can be connected in the response to Aβ exposure. 

Interestingly, ERK and CREB activation after Aβ1-42 exposure were largely modulated by GluN2A-

composed NMDARs, which are mostly present in synaptic sites. Moreover, protein levels of PGC-1α 

increased for the same time of exposure and this effect was also mediated by NMDARs activations, 

suggesting that Aβ-induced early control of PGC-1α levels may help to counteract late neurotoxic 

effects induced by exposure to Aβ oligomers. Moreover, prolonged Aβ exposure induced a decrease 

in nuclear CREB, supporting a late decline in pro-survival functions of this transcription factor. Overall, 

data suggest that early exposure to oligomeric Aβ1-42 exerts beneficial effects in mature cortical 

neurons through the activation of ERK-CREB signaling pathways, possibly linked to the activation of 

synaptic NMDARs. 

 

 

Key words: Aβ, CREB, ERK, PGC-1α, NMDARs 
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RESUMO 

A doença de Alzheimer (DA) é a doença neurodegenerativa mais comum no idoso. De entre os 

marcadores típicos da doença encontram-se as placas senis, constituídas por depósitos 

extracelulares do peptídeo beta-amilóide (Aβ) e as tranças neurofibrilares, cuja acumulação ocorre 

no hipocampo e no córtex, as duas áreas cerebrais mais afetadas na DA. Muitos estudos consideram 

a acumulação de Aβ como “primo movens” para a cascata de eventos causadores da morte neuronal 

maciça que ocorre na DA. O CREB é um dos fatores de transcrição mais importantes envolvidos na 

expressão de genes que conduzem à sobrevivência celular, nos processos de formação da memória, 

assim como na plasticidade sinática. Na DA, os níveis proteicos e a atividade do CREB têm mostrado 

estarem alterados. Para além disso, a ERK parece estar envolvida numa cascata de eventos que 

modulam, por sua vez, a atividade do CREB através da fosforilação de cinases específicas. As vias de 

sinalização associadas ao CREB e à ERK são sensíveis a alterações dos níveis do cálcio intracelular 

(Ca2+i) cuja homeostasia está desregulada na DA. Os recetores do NMDA (NMDARs) apresentam 

uma condutância elevada ao Ca2+, sendo a sua atividade essencial para a plasticidade sinática, uma 

vez que estes recetores se apresentam acoplados à excitabilidade da membrana pós-sinática; 

contudo, uma hiperestimulação dos NMDARs causa excitotoxicidade. 

Neste trabalho foram avaliadas as alterações na atividade do CREB e da ERK em neurónios corticais 

expostos a oligómeros de Aβ1-42, bem como o envolvimento dos NMDARs e da dependência do 

Ca2+ extracelular nestas células. Para além disso, analisaram-se os níveis de PGC-1α, um alvo do 

CREB envolvido na biogénese mitocondrial e na resposta antioxidante. Os resultados mostram que a 

incubação com oligómeros de Aβ1-42 produz alterações precoces nos níveis de fosforilação do CREB, 

refletindo a atividade do CREB, por um processo dependente do influxo de Ca2+ através dos 

NMDARs. Um padrão de ativação análogo foi observado para a ERK, sugerindo que as duas vias 

poderão estar interligadas em resposta à exposição a Aβ. Surpreendentemente, a ativação da ERK e 

do CREB nestas condições parece ser modulada por NMDARs contendo a subunidade GluN2A, 

presente maioritariamente na sinapse. Para além disso, os níveis proteicos de PGC-1α aumentaram 

para o mesmo tempo de exposição ao Aβ, sendo este efeito modulado também pelos NMDARs, o 

que sugere que o Aβ controla precocemente os níveis de PGC-1α no sentido de impedir efeitos 

neurotóxicos induzidos pela exposição aos oligómeros de Aβ. Também foi observado que a exposição 

prolongada a Aβ induziu um decréscimo dos níveis nucleares do CREB, o que está de acordo com o 

decréscimo tardio nas funções de sobrevivência características deste fator de transcrição. No 

conjunto, os dados apresentados neste trabalho sugerem que uma exposição  imediata aos 

oligómeros de Aβ exerce efeitos benéficos nos neurónios maduros do córtex, através da ativação das 

vias de sinalização ERK-CREB, possivelmente associadas à ativação dos NMDARs sináticos. 

Palavras-chave: Aβ, CREB, ERK, PGC-1α, NMDARs 
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CHAPTER 1 

 

Introduction 

1.1 Alzheimer’s Disease 

Alzheimer’s disease (AD) is the most common neurodegenerative form of dementia that impairs the 

quality of life of millions of adult individuals worldwide. The most important clinical hallmarks of this 

illness, detected in post-mortem brain, is the presence of extracellular plaques of amyloid beta 

peptide (Aβ) (Fig. 1.1) and intracellular neurofibrillary tangles (NFTs) due to hyperphosphorylation of 

microtubule-associated protein (MAP) Tau that is conjugated with ubiquitin at its microtubule-

binding domain (Cripps et al., 2005). Neurofibrillary tangles are made of helical highly soluble Tau 

that normally provides the stabilization of axonal microtubules (Zhang et al., 2005). Also evident in 

AD patients is the progressive atrophy in cortical and hippocampal areas involved in processes such 

as learning and memory. In early stages of illness, patients do not present neuronal loss or any 

particular neurologic disorder; however with the course of the disease they lose the independence 

and the relationship with the family, friends and the rest of the world, along with an evident 

impaired visual and spatial skills, judgment, learning and memory (LaFerla and Oddo 2005). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Diffuse plaques in the cerebral cortex labeled for Aβ (4G8) by immunohistochemistry (partially 

modified from Castellani et al., 2010). 

 

The extracellular Aβ plaques, also named neuritic plaques, are small self-aggregating peptides in 

clumps of spherical shape physiologically produced by brain metabolism. In normal conditions, the 

extracellular plaques are removed; however, in pathological conditions as in AD, their accumulation 

occur (Klein et al., 2001). These extracellular deposits are often surrounded by activated microglia 

and reactive astrocytes, suggesting an involvement of neuroinflammatory components in the 

pathogenesis of AD (Guo et al., 2002).  
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The presence of plaques and tangles contribute to the loss of both neurons and synapses, namely in 

the hippocampus and cortex (Hutton et al., 2001; Lambert and Amouyel, 2011), which has been 

associated with the manifestation of cognitive symptoms and pathological brain alterations (Carter 

and Lippa, 2001). Also, both presynaptic vesicle proteins and postsynaptic proteins such as 

synaptopodin associated to actin microfilaments and post-synaptic density protein 95 (PSD-95) levels 

are decreased in AD brains (Reddy et al., 2010). 

Alterations in number and strength of synapses, measured by following the changes in long term 

potentiation (LTP) in the brain, have been associated with a decrease in the content of 

neurotransmitters, such as acetylcholine (ACh) in the basal forebrain, which is related to early 

cognitive symptoms of AD (Auld et al., 2002). In this respect, acetylcholinesterase inhibitors (AChEI) 

have been administered in order toprevent the degradation of ACh; however, they are is not 

effective in all AD patients (Rissner et al., 2004). 

In addition to the reduction of cholinergic synapses, increased glutamatergic transmission probably 

due to deficient glutamate reuptake by astroglial cells near synapses was shown to cause the 

overactivation of N-methyl-D-aspartate receptors (NMDARs). In fact, cholinesterase inhibitors and 

the NMDAR antagonist memantine help to correct symptomatic neurologic abnormalities associated 

with AD (Francis 2005). 

AD can be classified in early-onset (familial AD) and late-onset (sporadic AD). The early-onset AD are 

rare hereditary forms (about 5-10% of total cases) of AD that affect people between 30-60 years of 

age. These familial cases are caused by autosomal dominant mutations in genes encoding for 

amyloid precursor protein (APP), Presenilin 1 and 2 (PSN1, PSN2) (Bertram and Tanzi, 2012). Patients 

affected by sporadic forms of AD have more than 65 years old. Apolipoprotein E ε4 (Apo E ε4) 

polimorphisms seem to be the major risk factors for sporadic AD (Verghese et al., 2011), due to its 

importance in regulating extracellular and intracellular clearance of Aβ (Castellano  et al., 2011). 

 

1.1.1 Clinical stages of Alzheimer’s disease 

As described before, AD is characterized by cognitive decline. AD patients exhibit deficits in memory 

and spatial orientation, incapacity to plan skills, poor judgment, changes in mood and personality. 

They also manifest an altered perception of the world all around, pauperization of speech and 

difficulty in maintaining a proper gait. The motor functions are progressively impaired and simple 

actions like the swallowing become very difficult to execute. Patients very often suffer of a lack of 

independence in their daily life, needing continuous assistance. 

The course of all these symptoms can be very variable in different individuals. According to the 

symptoms showed, AD can be divided in four main stages: mild cognitive impairment (MCI), mild, 

moderate and severe AD (Braak and Braak, 1997). 
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MCI is a transitional phase between normal aging and dementia. It refers to a slight mental and 

mood alterations occurring in daily life; this stage can represent an increased risk to develop an 

advanced form of AD during the following 10 years (Petersen et al., 2001). Functional impairment is 

greater than that observed in healthy subjects of the same age (Giovannetti et al., 2008; Masur et al., 

1994). Tipical symptoms of MCI are frequent forgetfullness like difficulty in recalling recent events, 

while childhood/remote memory is inaltered; MCI is also associated to other altered cognitive 

functions, such as impaired speech, agnosia, lowering of visual-spatial skills, less organizational ability, 

confusion, changes in mood and increased anxiety. 

Moderate AD signs include a worsening of remote memory often linked to increased difficulties to 

recognize people, even familiars, inarticulate speech progressing to aphasia, agitation and repetitive 

statements.  

In the severe phase of AD the symptoms get worse as the brain undergoes atrophy. The patient lose 

the ability to recognize family members, to express themselves, to eat, move alone, requiring to be 

assisted and supervised at all times of the day. Difficulties in swallowing and feeding in this stage are 

the cause of complications like malnutrition, dehydration or weight loss. Death occurs due to 

aspiration of food or liquid inside lungs or infectious diseases, especially pneumonia (Selkoe 2001; 

Kalia, 2003). 

 

1.1.2 Risk Factors 

Risk factors for AD are described in two main categories: modifiable and non-modifiable risk factors. 

Modifiable risk factors refers to the lifestyle, including smoking, alcohol consumption, physical 

activity, education, social engagement, cognitive stimulation, depression, traumatic brain injury, 

heavy metals, vascular disease, diabetes mellitus and high fat diet. Non-modifiable risk factors 

include hereditary gene mutations, age, sex and Down syndrome (Reitz et al., 2011). 

Genetic (non-modifiable) risk factors include mutations in APP, presenilin 1 (PSN1), PSN2 and 

mutations in exon 9 of PSEN1 produces the accumulation of senile plaques morphologically different 

from those typical in the brain of AD patients (Crook et al., 1998) with no deposited core amyloid 

fibrils and no inflammatory reactions surrounding the plaque. 

ApoE is the principal protein component of very low-density lipoproteins (VLDL) that bind to low 

density lipoprotein receptors and is involved in carrying cholesterol and other lipids in the 

bloodstream. The three most common human isoforms of ApoE are ApoE2, ApoE3, and ApoE4, 

encoded by ApoE alleles ε2, ε3, ε4 (Egert et al., 2012) Northern European population presents a 

frequency of 62.7% for APOE ε4, 42.1% in the middle regions, and 31.5% in the Mediterranean area 

(Norberg et al., 2011). The presence of APOE ε4 allele is considered a risk factor for sporadic AD 

(Corder et al., 1993) and the presence of two alleles ε4 predispose the patient to an earlier onset of 
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AD than those who have only one copy of this allele or a different isoform (Roses, 1996; Cosentino et 

al., 2008). 

In the last years, new genes associated to increased risk to manifest AD were discovered, which 

function is often connected to the cholesterol metabolism, intracellular transport of Aβ, and 

autophagy of damaged organelles, such as clusterin (CLU) (Calero et al., 2005; Bell et al., 2007), 

phosphatidylinositol-binding clathrin assembly protein (PICALM) (Baig et al., 2010), the exocyst 

complex component 3-like 2 (EXOC3L2) (Munson  and Novick 2006), the bridging integrator 1 (BIN1) 

(Seshadri et al., 2010) and genes related to complement cascade or cytokine production as the 

complement component receptor 1 (CR1), suggesting a role of inflammatory response in AD 

pathogenesis (Olgiati et al., 2011). 

 

1.1.3 Diagnosis 

The Mini-Mental State Examination (MMSE) is widely used in clinical practice for the evaluation of 

cognitive functioning in elderly patients, determining the degree of cognitive impairment and in 

monitoring the progression of dementia with 30 items that evaluate verbal and performance skills, 

exploring space-time orientation, short-term memory, attention, mental arithmetic, language as 

comprehension, repetition, naming, reading and writing, and constructional praxis. Also useful are 

the imaging diagnosis tests such as computerized tomography (CT), able to detect the thickness of 

the brain, the single-photon emission computed tomography (SPECT)s that measures the blood flow 

in the brain, which was shown to be reduced in AD patients, or the magnetic resonance imaging 

(MRI). 

However, the definitive AD diagnosis is only obtained after the post mortem brain autopsy exhibiting 

senile plaques and exclusion of other cases of death with laboratory tests (Johnson et al., 2012). 

 

1.1.4 Biomarkers 

Currently, there is the no possibility to predict whether a given individual will develop AD or not. The 

presence of the ApoE4 allelic gene form in the karyotype gives information only about the statistic 

risk to manifest AD.  

Many studies support the diagnostic relevance of the three proteins measured in cerebrospinal fluid 

(CSF), Aβ1-42, Tau, and phospho-Tau as biomarkers for AD  (Sunderland et al., 2003; Blennow et al., 

2012). There is evidence that in AD the levels of Tau and Phospho-Tau increase, while Aβ1-42 levels 

tend to decrease, since Aβ accumulates in the senile plaques in the brain (Andreasen et al., 2001; 

Blennow, 2004; Fagan et al., 2009). 

Tau levels in CSF reflect the extent of neuronal and axonal damage: high levels of Tau have been 

shown in patients with cerebral stroke, Creutzfeld-Jakob disease and in patients with AD. The 



 

 

14 

 

hyperphosphorylated Tau protein is not only a marker of neuronal damage, but because it reflects 

the state of phosphorylation of Tau in patients with AD provides informations on the progression of 

neurofibrillary degeneration. 

 

1.2 Aβ and APP processing 

Aβ, the major constituent of amyloid plaques, is a polypeptide of 40-42 aminoacids, which was 

purified and sequenced in 1984 by George Glenner (Glenner and Wong, 1984).  Within plaques, Aβ is 

organized into fibrils of 7-10 nm, mixed with non-fibrillar forms often associated to fragments of 

degenerated axons and dendrites surrounded by reactive astrocytes and microglial cells, indicating 

an inflammatory component in the neurodegenerative process (Lemere et al., 1996; Dodart et al., 

2002) that complement the well known amyloidogenic hypothesis. According to the 

neuroinflammatory component of the amyloid cascade hypothesis (Hardy and Selkoe, 2002), Aβ is 

indirectly responsible for the phosphorylation of Tau and the consequent neurofibrillary 

degeneration, through the activation of microglia, which may produce and release neurotoxic 

substances, such as free radicals, proinflammatory cytokines, inflammatory mediators and protein 

complement, and is ultimately responsible for neuronal death and dementia. Recent findings showed 

that Aβ1-42 causes degeneration of microtubules through N-methyl-D-aspartate (NMDA) receptor 

(NMDAR) activation in hippocampal matured neurons (Mota et al., 2012). 

Aβ results by the proteolysis of a membrane precursor protein named amyloid precursor protein APP 

(Kang et al., 1987). APP is a type I transmembrane protein synthesized in the endoplasmic reticulum 

(ER), which is then transported through the Golgi apparatus to the trans-Golgi network (TGN), and 

then inserted in plasma membrane (Tan and Evin  2012),. 

APP full length of 770 aminoacids (APP770) contains the Kunitz-type protease inhibitor (KPI) domain 

(Tanzi et al., 1988; Kitaguchi et al., 1988) and the OX-2 antigen domain (OX-2) (Weidemann et al., 

1989) that is lost in isoforms like APP695 (both domain) and APP751 (without OX-2 domain). APP has 

the C-terminal end facing the intracellular side and the N-terminal end facing the extracellular side. 

The Aβ domain is partly included in the plasma membrane with 28 residues protruding outside and 

other about 12-14 residues inside the plasma membrane. APP protein has three potential cleavage 

sites called α, β, and γ, according to the sites of cleavage of each one of the secretases (α-, β-, γ-

secretase), see Figure 1.2. In the non-amyloidogenic pathway, α-secretase, a disintegrin and 

metalloproteinase enzyme from ADAM family, such as ADAM9, ADAM10 and ADAM17 (Buxbaum et 

al., 1998; Lammich et al.,1999), cleaves APP within the Aβ domain to the N-terminal side releasing 

the large soluble APP fragment (α-sAPP), precluding in this way the formation of Aβ. Then, the C-

terminal fragment (CTF), named also α-CTF or C83 because it acts on 83-amino-acid C-terminal 

fragment, is further cleaved by the γ-secretase complex which components are presenilins 1 and 2 
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(PSN1, PSN2), nicastrin (NCT), APH-1 (anterior pharynx-defective 1), and PEN-2 (presenilin enhancer 

2)(Edbauer et al., 2003), releasing a brief soluble p3 peptide. The C-terminal part of APP containing 

the intracellular domain (AICD) is released in the cytosol. 

In the amiloidogenic pathway, β-secretase (or β-site APP-cleaving enzyme 1, BACE1), a type I integral 

membrane protein belonging to the pepsin family of aspartyl proteases, cleaves APP protein at the 

N-terminal side before Aβ domain, releasing soluble β-sAPP. The C-terminal fragment (CTF, β-CTF, or 

C99) is cleaved by the γ-secretase complex releasing the Aβ peptide as free peptide, which length is 

variable.  The peptide with 40 aminoacids is the most common form, whereas that containing 42 

aminoacids is the most toxic. Also in this case, AICD is released in the cytosol, where it can be 

degradated or take part in a signal transduction within Fe65/Tip60 complex (Marks and  Berg, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Proteolytic processing of amyloid precursor protein (APP) via non-amyloidogenic (left) and 

amyloidogenic (right) cleavage. Non-amyloidogenic cleavage occurs when α-secretase generate sAPPα and C83, 

secondary cleaved by γ-secretase form the p3 peptide. Amyloidogenic cleavage by β-secretase generate sAPPβ 

and the residual peptide is further cleaved producing Aβ. Aβ can be degraded by enzymes including neprilysin, 

insulin degrading enzyme (IDE) and endothelin cleaving enzyme (not shown in this Figure) (Pearson  and Peers, 

2006). 

 

 

The great part of Aβ peptides have a length of 40 residues (Aβ40) and only about 10% is Aβ42. Aβ40 

and Aβ42 have a different C-terminal ending (Val40 and Ala42); the presence of the two more 

hydrophobic amino acids at the C-terminal side of Aβ42 makes this form more hydrophobic and 

susceptible to form fibrils than Aβ40 (Jarrett et al., 1993).  Free Aβ1-40 in preparation rapidally auto-

assembles in monomers, dimers, trimers and tetramers, whereas Aβ1-42 peptide preferentially 

forms pentamers and hexamers that further form oligomers of higher molecular weight, Aβ-derived 
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diffusible ligands (ADDLs), protofibrils and finally the fibrils and spheroids (Klein et al., 2004; Bitan et 

al., 2003). 

 

 

1.3 Amyloid cascade hypothesis  

According to the well accepted hypothesis of the amyloid cascade proposed by Hardy in 1992, the 

tangles formation is a consequence of neurotoxic effect of Aβ. The disrupted balance between the 

production and degradation of Aβ is the cardinal point that justifies the accumulation of Aβ in the 

brain and the following toxic effects with synaptic dysfunctions and neuronal death, leading to 

cognitive and behavioral abnormalities typical of AD (Hardy  and Higgins, 1992).  

According to the amyloid cascade, in early stages of AD, the imbalance between production and 

clearance of Aβ cause Aβ to deposit in plaques and synaptic dysfunction, as well as the decrease the 

LTP in hippocampus of old rats (Gengler et al., 2010). Afterwards, activation of microglia and 

astrocytes increases the levels of complement factors, cytokines, nitric oxide (NO) and other 

mediators of inflammation and oxidative stress that lead to ulterior synaptic damage with deficits in 

neurotransmitters properly firing and onset of first cognitive symptoms. As the impair of synapses 

progresses, an altered neuronal ionic homeostasis and oxidative injury is shown. At this time, altered 

activity of kinases and phosphatases lead to tau pathology as tangles appear (Hardy  and Higgins, 

1992). According with the amyloid hypothesis, Tau pathology, with disassembly of microtubules, loss 

of transport mechanisms and formation of neurofibrillary tangles in neurons occurs later than the 

deposit of Aβ. A diffuse synaptic dysfunction and neuronal death, with deficts in neurotransmitters, 

make the patient seriously affected by dementia (Hardy and Higgins, 1992). 

 

1.3.1 Altered Aβ production and clearance 

Evidences of imbalance of Aβ production versus clearance come from familial cases of AD (FAD) 

where mutations in cleavage sites of APP and presenilins are correlated with increased levels of Aβ 

(Wang et al., 2006;Bates et al., 2009). Patients with Down’s syndrome manifest AD earlier in their 4th 

decade due to a triple chromosome 21, in which the APP gene is located (Rovelet-Lecrux et al., 2006). 

On the other hand, patients with sporadic or late-onset AD do not present a relevant increase in Aβ 

production or APP overexpression in the brain, and thus impaired balance mayd probably be due to 

decreased clearance of Aβ (Wang et al., 2006) and/or to an increase in β- and γ- secretases activities 

(Yang et al., 2003; Placanica et al., 2009). 

The imbalanced clearance can be also due to an altered transport of Aβ from the brain to blood and 

vice-versa. A dysfunction in transcytosis via lipoprotein receptor-related protein (LRP) does not allow 

Aβ to pass the endothelial layer of the blood-brain barrier (BBB), leading to Aβ deposition in the 
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brain (Kang et al., 2000); on the other hand, the receptor for advanced glycation end products (RAGE) 

cause increased influx of Aβ in the brain from the bloodstream (Deane et al., 2003). 

Aβ increase even further if there is a lack in degradation enzymes such as neprilysin (NEP) and 

insulin-degrading enzyme (IDE) in the extra- and intracellular space (Iwata et al., 2001; Miller et al., 

20031, Farris et al., 2003; Farris et al., 2004), metalloendopeptidases such as endothelin-converting 

enzyme (ECE) (Eckman et al., 2001; Eckman et al., 2003) and angiotensin-converting enzyme (ACE) 

(Elkins et al., 2004; Hemming and Selkoe, 2005). 

A strategy to improve Aβ clearance is the use of antibodies and substances that bind Aβ and can 

enter the brain at very low concentrations, preventing Aβ fibril formation (Du et al., 2003). 

 

 

1.3.2 Oligomeric versus fibrillary forms of Aβ 

Recent findings suggest that oligomers, but not fibrils of Aβ, are the most responsible of neurotoxic 

effect of Aβ in AD brain since many evidences like the presence of soluble forms of Aβ in AD brain, in 

addition to fibrilllary forms, or the loss in synapses is correlated with an increase in soluble oligomers 

in transgenic animals. Soluble oligomers were shown to modify function and synaptic plasticity, such 

as as LTP and long-term depression (LTD), and antibodies against oligomers rescue the memory 

deficit in animal models, without affecting plaque formation. Therefore, the oligomers can be 

responsible for the impairment of synaptic function that occurs before cellular death, after senile 

plaque deposits (Gong et al., 2003; Walsh et al., 2002; Wang et al., 2002). 

 

 

1.3.3 Use of oligomeric form of Aβ in research 

In post-mortem brain analysis of AD patients, the presence of senile plaques is remarkably evident 

(LaFerla 2005); however, normal individual brains can also contain senile plaques similar in shape and 

composition to AD patient’s brains, suggesting that eventually other factors are responsible for 

neurodegeneration in AD (Fukumoto et al.,1996). Moreover, AD-like memory loss and neuronal 

death appears both in experimental models and in humans, before plaque formation (Price 1999; 

Aizenstein et al., 2008). The real concentration for neurotoxic effects of Aβ is still unknown and the 

time of exposure is potentially important. While the disease require years to progress, acute 

exposures of 16 h in isolated neurons give us phenotypical informations related to its pathological 

mechanisms, similar to what is observed in transgenic mice overexpressing APP over months 

(reviewed by Malinow, 2011). Also, attempts to break the plaques lead to neuronal death (Schenk et 

al., 2012).  
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Fibrils and soluble oligomeric of Aβ exhibit neurotoxic effects in several mouse cell lines and 

organotypic slices. Aβ fibrils are mainly toxic in NIH-3T3, SH-SY5Y, HTB186 and M059K cells, while 

oligomers are toxic in NT-2 cells. Hippocampal formation CA1 is selective vulnerable to soluble 

oligomeric Aβ, whereas the cerebellum is strongly resistant to soluble oligomers even at highest Aβ 

concentrations (Kim et al., 2003). Oligomers are shown to be more toxic than fibrils in cortical 

neurons, since oligomers of Aβ1-42, but not fibrils, promote the release of intracellular Ca2+ from the 

endoplasmic reticulum (ER), contribuiting for intracellular Ca2+ dyshomeastasis (Resende et al., 2008). 

Oligomers can deposit at the level of dendritic spines, triggering the function of membrane receptors 

such as the NMDAR that leads to alterate communication between neurons. In effect, application of 

synthetic Aβ decreases cell surface expression of NMDARs, inhibits LTP induction and alters dendritic 

spine density (Lambert et al., 1998;  Snyder et al., 2005; Shrestha et al.,2006). 

In hippocampal synapses treated with picomolar concentrations of Aβ oligomers, spine loss is 

prevented by antibodies binding Aβ or modulators of Aβ aggregation (Shankar et al. 2007), 

suggesting that low concentrations of Aβ are enough to produce a response in neurons. 

Since the preparation of synthetic Aβ could contain an unstable mixture of monomers, dimers, 

trimers, and higher-order oligomers, it is recommanded a check of the purity of Aβ by Western 

Blotting, nanoparticle-based detection, conformation-specific antibodies and monoclonal antibody 

immunoassays. These methods present sometimes differences in sensitivity, specificity, and 

quantitative reproducibility (Thomas et al., 2013). 

 

 

1.4 Aβ neurotoxicity 

In elderly studies reported that Aβ peptides were neurotoxic in vitro as fibrils, but not as monomers 

(Lorenzo  and Yankner, 1994). According to these previous findings, the accumulation of fibrillar Aβ in 

plaques produce a neuronal damage evoked by two different mechanisms: a direct mechanism and 

an indirect mechanism. In the direct mechanism, Aβ interacts directly with membrane components, 

damaging neurons and/or making them more susceptibile to damage such as excitotoxicity, 

hypoglycemia or oxidative stress (Koh et al., 1990). In the indirect mechanism of Aβ toxicity, there is 

activation of microglia and astrocytes producing toxic and inflammatory mediators, such as nitric 

oxid (NO), cytokines and reactive oxygen species (ROS) (Meda et al., 1995; Della Bianca et al., 1999), 

which cause the death of neurons via apoptosis or necrosis. 
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1.4.1 Extracellular Aβ 

Recent studies on solid surface interactions showed that the hydrophobicity, the electrical charge 

and the surface roughness can influence the fibrillar assembly of amyloid-forming peptides due to a 

local concentration of Aβ (Linse et al., 2007). Several mechanisms of interactions with membrane 

were proposed. Aβ can interact electrostatically with phospholipids of the bilayer, exposing the head 

group charged negatively (Williams et al., 2010). Moreover, the content of cholesterol that regulate 

the membrane fluidity, permeability and dielectric properties is different in regions of AD and non-

demented brains (Mason et al., 1992), suggesting a different Aβ-induced permeation according to 

the different cholesterol/phospholipid ratio, which cause a change in the distance of the two layers 

and more accessible  sites for enzyme cleavage (Beel et al., 2008; Mason et al., 1993). Futhermore, 

statins lower the amount of cholesterol and decrease the β and γ-secretase activity, since these two 

enzymes have cholesterol rich domains (Wolozin, 2004). Using monolayer surface pressure 

measurements, it was shown that Aβ40 spontaneously inserts into monolayers containing a 30 mol% 

cholesterol to phospholipid ratio, adopting an α-helical structure (Ji et al., 2002). 

Many studies suggest the possibility that Aβ interacts with membrane receptors like glycolipids or 

glutamate receptors, both ionotropic such as NMDARs or metabotropic receptors, implicated in 

processes like synaptic plasticity. In fact, Aβ oligomers bind metabotropic mGluR5, triggering an 

alteration in Ca2+ mobilization. In cortical neurons Aβ1-42 alters NMDARs trafficking due to an 

increase in endocytosis, mediated by the nicotinic α7 acetylcholine receptors (α7nAChRs) (Snyder et 

al., 2005). Importantly, increased NMDAR endocytosis can be prevented by treatment with γ-

secretase inhibitors (Snyder et al., 2005, for review). 

Recent findings suggest that the ‘solvent’ properties of Aβ at the N-terminal region may mediate 

toxicity by three differents strategies: 1) Aβ could create an asymmetric carpet on the layer of the 

plasma membrane, removing small molecules; 2) Aβ could induce the formation of pores formed by 

β-barrels structures, triggering a disruption of Ca2+ homeostasis; and 3) at high concentrations, Aβ 

could produce micelle-like structures that remove lipids from the membrane  (Williams and Serpbell 

2011). In conclusion, the amphipathic nature of amyloid oligomers has been suggested to contribute 

to their capacity to penetrate and insert into membranes, coat or lie on the surface of the 

membranes, or potentially act as cell-penetrating peptides. 

An ulterior processing of the N-terminal side of Aβ peptides mediated by amino-peptidases, 

glutaminyl-cyclases and other modifications may attribute for a neurotoxic property of the 

amyloidogenic peptides  (Iwatsubo et al.,1996; De Strooper 2010) . 
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1.4.2 Intracellular role of Aβ 

Aβ can also enter in the neurons and impair their normal function. The highly Ca2+-permeable 

α7nAChRs often co-localize with Aβ1-42 within neurons of AD brains. The rate of Aβ internalization is 

dependent on α7nAChRs content and effectively blocked by α-bungarotoxin, an α7nAChR receptor 

antagonist, and by phenylarsine oxide, an inhibitor of endocytosis, suggesting that intraneuronal 

accumulation of Aβ1-42 occurs predominantly in neurons expressing α7nAChRs and is mediated by 

endocytosis (Nagele et al., 2002). 

In previous studies, Aβ oligomers were often found in neurons associated with NFT, suggesting a link 

between the two pathologies; interestingly, the most frequent form of Aβ found in these conditions 

was Aβ1-42 (LaFerla et al., 2007). 

Despite the finding that Aβ may accumulate intracellularly, La Ferla et al. (2007) also suggested  that 

since APP localizes not only at the plasma membranes, but also to the trans-Golgi network, ER, 

endosomal, lysosomal and mitochondrial membranes, and that β- and γ-secretases are present in 

several cellular compartments, intracellular Aβ could be generated intracellulary and not secreted; in 

alternative, secreted Aβ could be taken back up by the cell to form Aβ intracellular pools. The first 

evidence that Aβ could be generated intracellularly as well as at the plasma membrane was provided 

in 1993 when human NT2N cell line differentiated into neurons with retinoic acid was able to 

produce intracellular Aβ in a constitutive manner (Wertkin et al., 1993.) 

Interestingly, a new genetic variant of the sortilin-related receptor 1 (SORL1) gene that is linked to 

late-onset AD appears to regulate the trafficking of APP from the plasma membrane into retromer (a 

complex of proteins important in recycling transmembrane receptors from endosomes to the trans-

Golgi network) recycling endosomes, allowing the recovering of APP holoprotein. APP holoprotein 

that is not cleaved at the plasma membrane is transferred to early/late endosomes, which are also 

sites for Aβ generation due to their acidic nature, since BACE1 shows an optimal activity. Mutations 

in SORL1 increase APP in these endosomes and this corresponds to increased risk for late-onset AD. 

Blocking the endocytosis of APP by removing its cytoplasmic domains significantly reduced Aβ levels 

(LaFerla et al., 2007). 

Moreover, internalization of extracellular Aβ seems to be mediated by membrane receptors. Recent 

studies demonstrated that apolipoproteinE (APOE) receptor members of the low-density lipoprotein 

receptor (LDLR) family can modulate the production and cellular uptake of Aβ, as Aβ internalization 

was decreased in ApoE KO PDAPP transgenice mice (Zerbinatti et al., 2006).  

In addition to nicotinic receptors and LRP, Aβ internalization has been reported to occur through the 

RAGE, since both co-localize in lysosomes of AD patient’s brains (Sasaki et al., 2001). The binding of 

Aβ to RAGE also produces a cascade of events that result in oxidative stress and nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-kB) activation (Deane et al., 2003). 
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Aβ neuronal uptake has been also shown to be mediated through NMDARs and this effect was 

prevented by memantine (Snyder et al.,2005). 

Several evidences suggest that intracellular Aβ may contribute to AD pathology by facilitating tau 

hyperphosphorylation, disrupting proteasome and mitochondrial function, and triggering Ca2+ and 

synaptic dysfunction, and generation of reactive oxygen species (ROS) (LaFerla et al., 2007). 

In conclusion, these findings show the importance of Aβ intracellular pool for cognitive impairment in 

AD. 

 

1.4.3 Synaptic dysfunction 

The amyloid hypothesis suggests that Aβ oligomers are the main responsible for synaptic failure both 

in human and AD animal models. In literature, it is widely demonstrated that Aβ are neurotoxic both 

in mice overexpressing human mutant APP and in slices from wild-type mice exposed to Aβ. 

Neurotoxic effects can appear before plaque deposition in specific subdomains of neurons like 

cholinergic and glutamatergic neurons in cortex and hippocampus. Plaques are probably “reservoirs” 

of Aβ since the great part of dysmorfic neuronal features like spine loss or synapse loss are 

concentrated nearby the senile plaques (Sheng et al., 2012). Synapse impairment is characterized by 

decreased levels of synaptic proteins like presynaptic vesicle proteins and postsynaptic density, 

previously described in the section 1.1 of the Introduction (Reddy et al., 2010). The disruption of 

cholinergic synapses may be due to an impairment in the activity of the ACh synthesizing  enzyme, 

choline acetyltransferase (ChAT), and ACh degradating enzyme, acetylcholinesterase (AChE). The 

vesiclular transport of ACh or cholinergic receptors is also impaired in AD. ACh muscarinic are 

essentially downregulated by Aβ (Pavía et al., 2000), whereas the different subtypes of nicotinic 

receptors show a different pattern of upregulation/downregulation when exposed to Aβ (Yakel, 

2013). Within nicotinic receptors, the Ca2+-permeable α7nAChR, previously described in this Chapter, 

seems to have a major importance in the context of AD (Snyder et al., 2005; Nagele et al., 2002). 

Aβ oligomers impair the activity and the surface expression of both muscarinic and nicotinic 

receptors, leading to a failure in synaptic plasticity. Extracellular Aβ cause an increase in glutamate 

and the NMDAR co-agonist D-serine, leading to the overactivation of glutamate receptors, which is 

accompanied by a massive influx of Ca2+ that has excitotoxic effects in neurons (Paula-Lima et al., 

2013). This activates many cytosolic Ca2+-dependent enzymes, leading to an impairment in energy 

metabolism, ROS production and neuronal death (Paula-Lima et al., 2013). Vesicular glutamate 

transporters (VGLUTs) and excitatory amino acid transporters (EAATs) are altered in AD patient’s 

prefrontal cortex (Chen et al., 2011), accounting for desregulated extracellular glutamate levels. In 

cortex and hippocampi, astrocytes mechanisms of reuptake (through the EAATs) (Jacob et al., 2007) 

and convertion of glutamate into glutamine by glutamine synthase are also compromised, leading to 
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an accumulation of glutamate at synapses (Robinson 2001). In transgenic mice with human mutant 

APP and PS1, the overload of Ca2+ is higher in the proximity of Aβ plaques, suggesting a role of Ca2+ 

dyshomeostasis in early stages of AD (Kuchibhotla et al., 2008). 

A possible neural hyperpolarization through GABA has been proposed as a therapy in AD. GABA is 

physiologically released as consequence of glutamate excitotoxicity, acting as a compensatory 

mechanism to glutamatergic overactivation.  

 
Recent studies focused on excitatory post-synaptic receptors as possible receptors for Aβ on central 

synapses, due to the decrease in PSD-95, present in glutamatergic synapses, associated to (NMDARs 

and neuroligin (NL) (Dinamarca et al., 2012). Since the NMDARs play a central role in cellular models 

of learning, as well as neurotoxicity, abnormal function of this receptor caused by Aβ could be a 

potential mechanism in the pathophysiology of AD. 

 

 

1.4.4 NMDARs: composition, localization and function 

NMDARs are ionotropic glutamate receptors (Fig. 1.3) permeable to cations, specially high permeable 

to Ca2+, which are mostly present at post-synaptic density of dendritic spines and are involved in 

physiological and pathological mechanisms such as glutamatergic transmission and synaptic plasticity 

regulating processes like learning and memory or involved in neuronal death after excitotoxic injury. 

These different effects were reported to be evoked by a different localization of the receptor, 

synaptic or extrasynaptic (Hardingam and Bading, 2010). 

Structurally, these receptors are heterotetramers, composed by GluN subunits, which expression is 

different in the developmental stages, and composition may change among synapses. NMDARs 

assembly require two GluN1 and two GluN2 (GluN2A-D) or GluN3 (GluN3A-B) subunits; a tri-

heteromer may be also present, formed by GluN1/GluN2B/GluN3A or GluN1/GluN2B/GluN2D 

complexes, in  early stages of development, and GluN1/GluN2A/GluN2B or GluN1/GluN2A/GluN2C in 

adulthood (Sanz-Clemente et al., 2013). GluN1 is encoded as splicing variants of one gene, whereas 

GluN2 and GluN3 are encoded by six genes. A specific cassette to the C-terminal side of GluN1 

modulate NMDAR trafficking (Horak et al., 2009). 

NMDARs are widely expressed in the brain with a specific distribution and composition in subunits. 

GluN2A and GluN2B subunits are mostly expressed in cortex and hippocampus, with a preference in 

expression in mature neurons of GluN2A at synapses and GluN2B at extrasynaptic sites (Sanz-

Clemente et al., 2013). The shift between GluN2B-containing NMDARs to GluN2A at synapses in 

neurons is made possible by experience and activity (Sanz-Clemente et al., 2013). 
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Figure 1.3. NMDA receptor. Coagonists for NMDARs binds exposed sites of the receptor while Mg
2+

 takes place 

in the inner channel that allows flu of Na
+
 and Ca

2+
 when the block of the Mg

2+
 is removed by depolarization 

(Sanz-Clemente et al., 2013). 

 

 

The rapid and massive influx of Ca2+ through NMDARs is responsible of a phenomenon called 

synaptic plasticity, confirmed by strengthening of synapses with LTP at hippocampus. In LTP is 

associated with an increase in post-synaptic AMPA (α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid) receptors and in the number of dendritic spines. On the other hand, a low 

Ca2+ influx produces LTD linked to a decrease in the number of AMPA receptors and decreased 

number of dendritic spines (Holtmaat and Svoboda, 2009). 

NMDARs activation is more complicated than a simple ligand-binding receptor, because at resting 

membrane potential Mg2+ blocks NMDARs channel pore and only a post-synaptic depolarization as a 

consequence of activation of AMPA receptors, which have a higher affinity for glutamate compared 

to NMDARs, can induce the release of Mg2+. Glutamate binds to GluN2 subunit, whereas the co-

agonists (either glycine or D-serine) bind to the GluN1 subunit. D-serine was recently shown to bind 

to synaptic NMDARs, whereas glycine preferentially binds to extrasynaptic localization NMDARs 

(Papouin et al., 2012). 

Several kinases and phosphatases can modulate the gating and the activation of NMDARs, acting on 

serine/threonine or tyrosine residues. NMDARs are connected to anchoring proteins that approach 

these enzymes to NMDAR subunits, enhancing their efficiency and specificity of the signaling 

pathways. Intracellular serine/threonine residues of NMDARs are regulated by protein kinase A (PKA), 

protein kinase C (PKC), casein kinase II (CK2), cyclin-dependent kinase 5 (CdK-5) and Ca2+/CaM 

dependent protein kinase II (CaMKII). NMDARs subunits are dephosphorylated and inactivated by 

other serine/threonine protein phosphatase 1 (PP1), 2A (PP2A), and 2B (PP2B or calcineurin). GluN2B 

is phosphorylated at Ser1303 by PKC and is dephosphorylated by protein PP1, but not PP2A in 

isolated postsynaptic density. Other enzymers such as members of the Src family of protein tyrosine 

kinases upregulate NMDAR function in equilibrium with the activity of members of phosphotyrosine 

phosphatase like the striatal-enriched tyrosine phosphatases (STEP)s. In AD impaired NMDAR 

phosphorylation was shown to result from the activation of  α7nAChRs by Aβ, leading toCa2+ influx 

and activation of calcineurin (or PP2B), which dephosphorylates and activates STEP, and in return 



 

 

24 

 

dephosphorylates GluN2B subunit at Tyr1472, promoting the internalization of NMDAR. Synaptic and 

extrasynaptic NMDARs (GluN2 but not GluN1) are also regulated by cleavage mediated by calpains at 

the C-terminal side of the receptor (Gladding and Raymond, 2011). In this respect, NMDAR 

overactivation produces a modulation of the receptor by negative feedback, since calpains are 

activated through a rise in intracellular Ca2+. 

A physiological activation of NMDAR may promote neuronal survival through the activation of 

PI3K/Akt signaling pathway (Hetman and Kharebava, 2006) that phosphorylates and inactivates both 

glycogen synthase kinase-3β (GSK-3β) and the pro-apoptotic bcl-2 family member BAD  (Brunet et al., 

2001).  

On the other hand, excessive activation of NMDARs leads to intracellular Ca2+ dyshomeostasis, 

causing acute excitotoxic effects in ischemic stroke through calpain-mediated cleavage of plasma 

membrane Na+/Ca2+ exchanger (NCX), mitochondrial Ca2+ uptake through the mitochondrial Ca2+ 

uniporter and overactivation of neuronal NOS (nNOS), leading to mitochondrial dysfunction and 

TRPM (transient receptor potential ion channels), also permeable to Mg2+ and Ca2+. This two-faced 

neuroprotective and neurotoxic role of NMDARs can be regulated by different amounts of Ca2+ influx 

or by the different localization of the receptor, which seems to activate distinct intracellular signaling 

pathways (Hardingham, 2006). 

Stimulation of extrasynaptic NMDARs containing GluN2B subunits seems to have neurotoxic effects, 

whereas synaptic NMDARs preferentially composed by GluN2A subunits are neuroprotective through 

activation of cAMP/PKA/CREB pathway (Vitolo et al., 2002), namely by the phosphorylation of CREB 

at Ser133 by PKA (Snyder et al., 2005). In effect, in hippocampus, decreased activity of PKA induced 

by Aβ1-42 was reverted by rolipram and forskolin, which increase the intracellular levels of cAMP,  

resulting in recovery of its activity (Vitolo et al., 2002). 

Moreover, stimulation of NMDAR containing GluN2B subunits was involved in reducing dendritic 

spines after intracellular Ca2+ rise (Shankar et al., 2007) andimpairing ERK pathway activation, leading 

to the downregulation of CREB and synaptic dysfunction, which was reverted by NMDAR antagonists 

(Li et al., 2001). Conversely, synaptic activation of NMDARs promote the activation of Ras-ERK1/2, 

having pro-survival effects such as the activation of CREB, BAD inactivation and antagonizing 

apoptosis induced by GSK-3β. (Hardingham, 2006). 

NMDARs are also neuroprotective in the hippocampus by recruiting α-secretase (ADAM10), involved 

in the non-amyloidogenic pathway, in association with synapse associated protein 97 (SAP97)  

(Marcello et al. 2007), thus reducing Aβ production and its release in cortical neurons (Hoey et al., 

2009). 
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1.4.5 Link between NMDARs and Aβ 

As reviewed by Malinow (2011), NMDARs can be potential receptors for Aβ since they can directly or 

indirectly mediate the effects of Aβ on neurons. As shown in Figure 1.4 NMDARs may: 1) directly bind 

Aβ or through an X molecule; 2) mediate the actions of Aβ on signaling pathways linked to synaptic 

transmission and plasticity; 3) influence Aβ formation; and 4) have their activity controlled by Aβ.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Several potential roles for NMDARs in the effects of Aβ (Malinow 2011). 

 

 

1.5 Ca
2+

 dyshomeostasis in AD 

Many studies focused on the role of altered Ca2+ homeostasis in AD, since Ca2+ is a central regulator 

of many signaling pathways, contributing to cellular functions such as membrane excitability, 

neurotransmitter release, synaptic plasticity, gene expression, free radical species formation and 

neuronal death. Ca2+ levels increase both in human and experimental models during the early phases 

of the illness, before appearance of symptoms. AD transgenic mice show alterations in Ca2+ 

homeostasis before extracellular Aβ deposition (LaFerla, 2002).  

Cytosolic Ca2+ levels are normally about 100 nM; however after electrical, synaptic or receptor 

mediated mechanisms intracellular Ca2+ levels can increase to concentrations that lead to toxic 

effects related with the activation of calcium-dependent enzymes and alteration of intracellular 

pattern of kinase/phosphatases, among other pathological events. Indeed, under physiological 

conditions, Ca2+ is tighty regulated by many mechanisms, as shown in Figure 1.5. These include Ca2+ 

binding by intracellular calcium buffering proteins like calbindin, the extrusion of cytosolic calcium 

across the plasma membrane through Ca2+-ATPase and NCX or by sequestration into intracellular 
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stores such as the ER, through the sarco-/endoplasmic reticulum calcium ATPase (SERCA) pump, or 

the mitochondria, through the mitochondrial Ca2+ uniporter.  

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1.5. Ca
2+

 signaling pathway in a neuronal model (Green and LaFerla 2008). 

 

In pathological conditions, like AD, several pathways can be perturbed by dyshomeostasis of Ca2+. Aβ 

can trigger an intracellular Ca2+ overload. Aβ oligomers can form pores in plasma membrane allowing  

a passive flux of Ca2+, making the neurons more vulnerable to excitotoxic damage, includingapoptosis 

(Bezprozvanny and Mattson, 2008). In combination with Fe2+ or Cu+, Aβ oligomers produce ROS 

(through the Fenton reaction), leading to lipid peroxidation; the formation of resulting aldehydes 

may impair the function of of plasma-membrane Ca2+-ATPase (PMCA). The consequent plasma 

membrane depolarization opens channels such as NMDARs and VGCCs, producing an entry of Ca2+ in 

the cytosol (Berridge, 2010). Aβ also acts on mitochondria causing increased ROS production, 

decreased ATP production and depolarization of the mitochondrial membrane (e.g. Eckert et al., 

2011). Moreover, in AD the mitochondrial NCX (NCXmito) is impaired(Castaldo et al., 2009). In addition, 

mutated presenilins are reported to cause an early accumulation of Ca2+ through SERCA in ER, 

followed by extrusion through RyR and InsP3R channels (Bezprozvanny  and Mattson 2008). 
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1.6 Transcription factors 

Since several stimuli such as ligands for GPCRs, neuronal growth factors, stress and excitatory 

neurotransmitters or eventually Aβ, through stimulation of NMDARs (Ferreira et al., 2012), produce 

influx of Ca2+ (Fig. 1.6), in this work the investigation focused on CREB and ERK pathway. CREB is 

activated at Ser133 by phosphorylation from different kinases such as PKA, CaMKIV, MAPKAP K2, ERK, 

RSK and MSK leading to an activation/inactivation of this transcription factor, which is known to 

regulate the downstream transcription of targets gene, such as PGC1α, involved in mitochondrial 

biogenesis.  

 

 

 

 

 

 

 

 

Figure 1.6. Signaling pathways that converge on CREB in a complex Ca
2+

-mediated cross-talk (Lonze and Ginty 

2002). 
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1.6.1 P(Ser133)CREB - CREB 

The cAMP response element-binding protein (CREB) is a 43 kDa nuclear widespread transcription 

factor discovered in 1987 as regulator of somatostatin gene expression (Montminy and Bilezikjian, 

1987).  

CREB seems to be one of the main transcription factors that specifically modulates the downstream 

expression of genes related to memory formation and synaptic plasticity (Alberini, 2009), involved in 

the conversion of short-term to long-term memory in Drosophila, Aplysia and mice (Yin and Tully, 

1996) or the regulation of  GluN1 and GluN2B subunits of NMDARs (Lee and Silva, 2009). Increased 

CREB activity increases both NMDAR-mediated synaptic currents and surface level of NMDARs, while 

inhibition of NMDARs abolishes the effect of CREB on upstate duration (Huang et al., 2008). 

CREB belongs to the dimerizing bZIP transcription factor superfamily with a C-terminal side binding 

the DNA on 5’-TGACGTCA-3’ consensus sequences upstream CRE (cAMP responsive element). The N-

terminal side contains two glutamine rich regions (Q1 and Q2), a region with serine residues named 

KID (kinase inducible domain) susceptible to be phosphorylated and leucine-zipper domain for homo- 

or heterodimerization with other members of ATF family, such as ATF1 and CREM. 

Heterodimerization decreases its stability and CRE binding affinity (Shaywitz and Greenberg, 1999). 

CREB is located in cytosol as an inactive form. Stimuli that increase the levels of second messengers 

such as Ca2+ and cAMP, which mediate the specific pathway activation of kinases such as CaMKII/IV 

and PKA, respectively, or the MAPK/ERK pathway and the MAPK-activated kinase RSK. 

Phosphorylation of CREB on Ser133 allows the recruitment of co-activators like the p300/CBP (CREB-

binding protein or CREBBP) via its KIX domain. CBP and p300 are highly conserved co-activators 

homologues of CREB that further recruit transcriptional factors such as p53, ATFs, c-jun, c-myc. HAT 

(histone acetyl transferase) activity of CBP further modifies chromatin through histone acetylation, 

making the site accessible to RNA polymerase II transcription  (Goodman and Smolik, 2000).  

Efficiency of gene expression is dependent on the time of activation of CREB. Inactivation of 

phosphatases such as calcineurin or the nuclear phosphatase PP1 increases the levels of 

phosphorylated CREB  (Bito et al.,1996). 

Phosphorylated CREB can increase after influx of Ca2+, which stimulates CaM translocation to the 

nucleus and the sequential activation of CaMKII and CaMKIV that act on CREB (Saura and Valero 

2011). In AD patients a dyshomeostasis of Ca2+ can interfer with the balance between kinases and 

phosphatases that control the activation of CREB (LaFerla, 2002). Aβ may thus interfer with CREB-

regulated pathways, including NMDARs, L-type VGCCs, PKA and calcineurin (Saura and Valero, 2011). 

CREB is well expressed in cortex and hippocampus, two regions associated with learning and memory 

(Lonze and Ginty, 2002). In AD patients a decrease in CREB phosphorylation and gene transcription 
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(e.g. BDNF) was previously demonstrated (Yamamoto-Sasaki et al., 1999; Pugazhenthi et al., 2011; 

España et al., 2010; Tapia-Arancibia et al., 2008).  

 

1.6.2 P(Thr202/Tyr204)ERK - ERK 

ERK1 and 2, of 44 and 42 kDa, respectively, also known as MAPKs (Mitogen-Activated Protein 

Kinases) are serine/threonine-specific protein kinases involved in physiological processes such as 

proliferation, differentiation, survival, apoptosis and stress response ERK was initially considered 

important in synaptic plasticity and memory (e.g. Sweatt, 2004), but in last years it has emerged as 

having a role in pro-death processes in neurons (Subramaniam et al., 2010). ERK1 ⁄ 2 may be 

transiently induced by growth factors, resulting in promotion of neuronal survival  whereas oxidative 

stress may result in a sustained induction of ERK1/2, which may promote neuronal death 

(Subramaniam et al., 2010). Oxidants can activate ERK1/2 either through acting on receptors, Ca2+ 

channels, or directly on Src-tyrosine kinase. When ERK is activated can interact with cytoplasmatic 

target or if the stimulus is sustained, ERK migrated to the nucleus activating pro-death transcription 

of genes that evoke neuronal death, independently by caspase activity (Subramaniam et al., 2010).  

ERK dysregulation is associated with many neurodegenerative disorders, such as AD and Parkinson’s 

disease (Colucci-D'Amato et al., 2003). 

The MAPK/ERK signaling cascade is activated by a wide range of receptors involved in growth and 

differentiation, including GPCRs (G-Protein Coupled Receptors), RTKs (Receptor Tyrosine Kinases), 

integrins, ionic channels, CaMII, Src, or EGF-R (epidermal growth factor receptor). Several 

components make part of this cascade, including adaptors like Grb2, SHC, Crk and exchange factors 

like SOS that induce the activation of Ras protein. Ras-GTP activated transduces the signal to little 

kinases named Rafs (Raf-1, A-Raf, B-Raf) (MAPKKK). Rafs activate the dual specific kinase MEK1/2 

(MAPKK), which  in return activates ERK1/2 by phosphorylation on Thr202 and Tyr204 residues in 

humans. 

Activated ERK dimerizes and may regulate hundreds of targets in the cytosol or translocate to the 

nucleus where it phosphorylates a huge variety of transcription factors, thus regulating gene 

expression. 

 

1.6.3 PGC-1α 

PGC-1α is a 90 kDA protein belonging to the PGC-1 family in conjunction with PGC-1β and PGC-

related coactivator (PRC) which are strong promoters of mitochondrial biogenesis and antioxidant 

regulation (Andersson and Scarpulla, 2001; Lin et al., 2002). With the exception of PRC that is 

ubiquitously expressed, PGC-1α and PGC-1β are well expressed in oxidative tissues such as the brain, 
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heart, kidney, muscle, liver, brown adipose tissue (BAT) and pancreas with specific functions (Uldry et 

al.2006). 

PCG-1α has a length of 798 aminoacids and from the N-terminal contains three LxxLL nuclear 

receptor binding motifs, three p38 MAPK phosphorylation sites, an host cell factor binding site (HCB) 

where binds MEF2C, a DEAD box, two RS protein interaction domains, a high conserved nuclear 

localisation signal (NLS) and a RNA recognition motif (RRM). The N-terminal contains residues for the 

binding of TRAP220 and splicing factor U1-70K (Soyal 2006). 

PGC-1α activity is regulated by phosphorylation by AMPK in Thr178 and Ser539, promoting PGC-1α 

co-transcriptional activity (Jager et al., 2007), whereas Akt phosphorylation at Ser571 downregulate 

this activity (Li et al., 2007). This latter effect is achieved by an initial Ser571 phosphorylation, 

followed by acetylation by general control non-repressed protein 5 (GCN5, an ubiquitous histone 

acetyltransferase) that promotes PGC-1α dissociation from target gene promoters. PGC-1α can be 

deacetylated by SIRT1 in low nutrients/high NAD+ conditions, leading to the activation of PGC-1α.  

Activated PGC-1α migrates to the nucleus and binds co-activators or co-repressors to the N-terminal 

side undergoing conformational changes that allow the interaction with transcription factors such as 

CBP/p300 and steroid receptor coactivator (SRC-1) having HAT activity  (Puigserver et al. 1999). 

PGC-1α levels are also controlled by CREB, in conjunction with Ca2+ and cAMP-sensitive co-activators 

(TORC), since cytosolic TORC1 and TORC2 move to the nucleus as a consequence of an increase in 

Ca2+ and cAMP levels (Herzig et al., 2001; Wu et al., 2006), and by the forkhead in 

rhabdomyosarcoma (FKHR or FoxO1) 

Impaired in PGC-1α transcription occurs when the CREB binding sites are mutated, suggesting a 

central role of CREB in regulating PGC-1α promoter activity (St Pierre et al., 2006). 

PGC-1α increases the expression and acts as a co-activator for nuclear respiratory factors NRFs (1 

and 2) which activation coordinates the expression of genes encoding mitochondrial proteins 

(Scarpulla et al., 2002) or  transcription factor A mitochondrial (TFAM), involved in transcription and 

replication of mtDNA (Wu et al., 1999), among  other relevant mitochondrial proteins and 

antioxidants. PGC-1α increase the expression of ROS-detoxifying enzymes such as GPx1 and SOD2. 

PGC-1α protein levels are negatively associated with both AD-type neuritic plaques and Aβ content in 

human AD brains and in the Tg2576 model mouse (Qin et al., 2009; Sheng et al., 2012). In human 

hippocampi and in M17 cells overexpressing FAD-causing APP mutant (APPswe) a lower number of 

mitochondria were associated to reduced expression of PGC-1α, NRF 1, NRF 2, and TFAM. APPswe 

M17 cells showed a reduction in mitochondrial/nuclear DNA ratio, correlated with reduced ATP 

content and decreased cytochrome C oxidase activity. In PGC-1α KO animals the mitochondrial 

biogenenesis was strongly impaired, whereas this effect was rescued after an overexpression of this 

transcription factor (Sheng et al., 2012). 
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PGC-1α transcription levels increase two weeks postnatally in regions like cortex, hippocampus and 

cerebellum in GABAergic areas undergoing high remodelling and mitochondrial changes (Cowell et al., 

2007). Interestingly, PGC-1α responds to changes in neuronal activity, since KCl depolarizing stimulus 

increased PGC-1α levels in the nucleus and cytoplasm at 0.5h of treatment and this level was 

sustained up to 3h (Meng et al., 2007). 

 

In addition, PGC-1α is a regulator of adaptive thermogenesis in brown adipose tissue (BAT), 

mediating the expression of mitochondrial uncoupling protein 1 (UCP1) (Puigserver et al., 1998) and 

increasing the expression of transcription factors, such as NRF-1, NRF-2, PPARα and PPARγ that result 

in the increase in expression of genes involved in fatty acid oxidation and in mitochondrial 

respiratory chain (Vega et al., 2000; Wu et al., 1999). 
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OBJECTIVES 

Previous studies have shown that extracellular Aβ oligomers might be responsible for synaptotoxic 

effects on synapses (Klein, 2013). Moreover, our group showed that NMDARs can be directly 

activated by Aβ1-42 oligomers, allowing intracellular Ca2+ influx through the receptor (Ferreira et al., 

2012; Costa et al., 2012). Additionally, some transcription factors, namely CREB and PGC-1α, were 

shown to be altered in AD (Saura and Valero, 2011; Qin et al., 2009; Sheng et al., 2012). Thus, in the 

present study we focused on intracellular pathways functionally linked to processes like learning and 

memory, such as CREB and ERK, and the role played by NMDARs in mature cortical neurons 

(maintained in vitro for 15 days) following exposure to Aβ1-42 oligomers (0.5 μM). Furthermore, we 

verified another transcription factor that is linked to CREB, PGC-1α, which is known to regulate 

mitochondrial biogenesis and antioxidant response. 

 

Our main investigation was directed to:  

1) Determine if CREB and ERK activities were influenced by extracellular Aβ oligomeric stimulus;  

2) Check if these changes were regulated by the presence of extracellular Ca2+;  

3) Verify the role played by NMDARs composed by GluN2A or GluN2B subunits, by using selective 

antagonists, on Aβ-induced changes in CREB and ERK pathways; 

4) Evaluate the changes in the transcription factors, CREB and PGC-1α, following exposure to Aβ 

oligomers. 
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CHAPTER 2 

MATERIAL AND METHODS                           
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2.1 Materials 

Neurobasal medium and B27 supplement were purchased from GIBCO (Paisley, UK); BSA, trypsin,  

trypsin inhibitor, ifenprodil, FCCP, oligomycin, ionomycin is from Sigma Chemical Co. (St. Louis, MO, 

USA). (+)-5-Methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801) was 

obtained from Calbiochem (Darmstadt, Germany); memantine was a kindly gift from Lundbeck 

Portugal;  [(R)-[(S)-1-(4-bromophenyl)-ethylamino]-(2,3-dioxo-1,2,3,4 tetrahydroquinoxalin-5-yl)-me 

thyl]-phosphonic acid (NVP-AAM077) was a generous gift from Novartis Pharma AG, (Basel, 

Switzerland). Synthetic amyloid-beta 1-42 peptide was purchased from American Peptide (Sunnyvale, 

California, USA). PVDF membrane was from BioRad Laboratories, Inc.. Fura-2AM  was purchased 

from Molecular Probes and antibodies origin are described in table 2.1 and 2.2.. All other reagents 

were from analytical grade. 

 

 

2.2 Primary  neuronal cultures 

Primary cultured cells were obtained from Wistar fetal rats at embryonic 16 day as described 

previously (Agostinho and Oliveira, 2003) with minor modifications by Ferreira et al., 2012. The 

pregnant female was anesthetized with 2-bromo-2-chloro-1,1,1-trifluoroethane and then sacrificed 

by cervical dislocation. Embryos were separated from placenta and washed in Ca2+ and Mg2+-free 

Krebs medium (120 mM NaCl, 4.83 mM KCl, 1.22 mM KH2PO4, 25.5 mM NaHCO3, 13 mM glucose, 

pH 7.2). Frontal cortices, free from meninges, were stored in 0.3% (w/v) BSA-containing-Krebs 

medium and then treated with 0.035% trypsin in BSA-containing Krebs medium to perform the 

enzymatic digestion for 5 min at 37 °C followed by addition of 0.075% trypsin inhibitor to block the 

enzymatic reaction. Cells were then mechanically digested in Krebs medium and centrifuged at 180 x 

g for 5 min. The final pellet was resuspended in Neurobasal Medium supplemented with 2% B27 

supplement, 0.5 mM glutamine and 50 µg/ml gentamicin. Cell counts and viability were performed 

by trypan blue dye exclusion test by using a hemocytometer (see appendix for the details). Cortical 

cells were then plated at a density of 0.16 × 106 cells/cm2 in both poly-D-lysine coated multiwells 

(MW6) plates for Western Blotting analysis or MW96 for fluorimetric analysis. 

Primary cortical cells were cultured for 15 days in a humidified incubator chamber with 95% air and 

5% CO2 at 37 °C. Half medium was changed with fresh medium at day 8 and 12 in culture.  

All experiments using animals were carried out following the Guide for laboratory animal practice of 

the Center for Neuroscience and Cell Biology, University of Coimbra, and experiments planned in 

order to minimize the number of animals used and their suffering. 
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2.3 Cell viability 

The dye exclusion test is used to determine the number of viable cells present in a cell suspension. It 

is based on the principle that live cells have intact cell membranes that exclude certain dyes, such as 

trypan blue (Strober, 2001). An aliquot of cell suspension was diluted 1:2 in 0.1 % Trypan blue and 

then counted in an  hemocytometer (see appendix for details about hemocytometer use). 

 

 

2.4. Preparation of amyloid-peptide  

The preparation of Aβ1–42 peptides required the resuspention of Aβ1–42 peptides powder in 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to a final concentration of 1 mM. HFIP was removed by 

liophilization in a Speed Vac (Ilshin Lab. Co. Ltd., Ede, The Netherlands) and dried HFIP film was 

stored at −20 °C. The peptide film was resuspended in anhydrous dimethyl sulfoxide (DMSO) to make 

a final solution of 5 mM. Peptides were supplemented with a phenol red-free Ham’s F-12 medium 

without glutamine to a final concentration of 100 µM and incubated overnight at 4 °C. The solution 

was centrifuged at 15.000 x g for 10 min at 4 ◦C to separate the pellet with insoluble aggregates from 

the supernatant containing soluble oligomers and monomers. Supernatant was transferred to clean 

Costar tubes and stored at 4 °C. Protein concentrations of Aβ1–42 peptides were determined using 

the BioRad protein dye assay reagent. Samples containing 10 μg of protein were diluted 1:2 with 

sample buffer containing 40% glycerol, 2% SDS, 0.2 M Tris-HCl, pH 6.8 and 0.005% Comassie G-250). 

The presence of different assembly peptide forms (monomers, oligomers and/or fibrils) in the 

preparation was evaluated by 4-16% Tris-Tricine SDS-PAGE gel electrophoresis and further stained 

with Coomassie blue.  

 

 

 

 

 

 

 

 

 

                                                                                                                                          

 

 

 

Figure 2.1. Representative gel of two independent Aβ samples prepared from synthetic Aβ 1–42 as described in 

Materials and methods (MS, molecular weight standard). 

MS 

24 kDa - 

17 kDa -  

3.5 kDa - 

Aβ1-42 
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2.5. Incubation of cortical cells with Aβ 

Cortical neurons cultured for 15 days were treated with Aβ (0.5 μM) at 37°C for 5 min, 30 min, 2h or 

24h) in the contioned culture medium (medium in which cells were grown). Alternatively, cells were 

incubated with Aβ in a Na+ medium (containing: 140mM NaCl, 5 mM KCl, 1mM CaCl2, 1 mM MgCl2, 

10 mM Glucose, 10 mM HEPES, pH 7.4 for 5 min. When the effect of the NMDARs antagonists (MK-

801, Ifenprodil, mamantine, and NVP-AAM077) was tested, a preincubation of 5 min was performed. 

 

 

 

 

 

 

 

 

 

Figure 2.2.  Schematic representation of the treatment protocol of cells with Aβ with or without NMDARs 

antagonists. 

 

 

2.6 Preparation of total extracts 

Cells subjected to the desired stimulation, as shown in the figure legends, were washed twice in ice 

cold PBS (containing: 137 mM NaCl, 2.7 mM KCl, 1.8 mM KH2PO4, 10 mM Na2HPO4.2H2O, pH 7.4) and 

then scrapped with Ripa buffer (containing: 150 mM NaCl, 50 mM Tris, 5 mM EGTA, 1% Triton X-100, 

0.5% DOC, 0.1% SDS) freshly supplemented with 1 mM DTT, 1 mM PMSF, 100 nM okacaid acid, 25 

mM NaF, 1mM Na3VO4  and 1 µg/mL protease inhibitors (chymostatin, pepstatin A, leupeptin and 

antipain). Then the cell extracts were further collected in chilled clean tubes and centrifuged at 

20,800 x g for 10 minutes at 4°C. 

The supernatant (total extract) of proteins were then submitted to protein quantification by BioRad 

method and stored at -80°C until use. 

 

  

Protein quantification 

and sample preparation 
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2.7 Preparation of nuclear extracts 

Nuclear extracts were performed by using BioVision Nuclear/Cytosolic Fractionation Kit (BioVision, 

CA, USA), following the manufacturer instructions with minor modifications, freshly supplemented 

with protease inhibitors and DTT provided by the kit. After two washes in ice-cold PBS, cells were 

extracted with 100 µl of Cytosol Extraction Buffer A Mix (CEB-A Mix), vortexed at highest settings for 

15 seconds and further incubated on ice for 10 minutes. Briefly, 5,5 µl of Cytosol Extraction Buffer B 

(CEB-B) was added to each sample, vortexed 5 seconds at highest settings and incubated on ice for 1 

minute. Following steps included 5 seconds vortexing followed by 5 minutes centrifugation at 

maximal speed 20,800 x g at 4°C in order to separate the pellet (nuclear extract) form the 

supernatant (cytosolic extract). Each tube was resuspended in 35 µl of Nuclear Extraction Buffer Mix 

(NEB-Mix), vortexed at highest settings 15 seconds and stored on ice for 10 minutes. This step was 

replicated 5 times followed by centrifugation ad 20,800 x g for 10 minutes 4°C. The supernatant was 

stored in clean pre-chilled tubes, immediately submitted for protein quantification by BioRad method 

and stored at -80°C until use. 

 

 

2.8 Western Blot analysis 

Total and nuclear extracts obtained as described above were used for Western Blot analysis.  After 

protein concentration quantification by BioRad method (see appendix for details), samples were 

denaturated with sample buffer containing: Tris-HCl 300mM pH 6,8; SDS 12%, glycerol 30%, 

bromofenol blue 0,06%, DTT 600mM  at 95 ◦C, for 5 min. 

Equal amounts of the desired protein (20-30 µg for CREB, P(SER133)-CREB, ERK, P(Thr202/Tyr204)-

ERK and PGC-1α or 100 µg for GluN2A, GluN2B, P(Ser1232)-GluN2A and P(Tyr1472)-GluN2B) were 

applied in a 10% or 8%, respectively, SDS-PAGE gel electrophoresis and further transferred to 

polyvinylidene difluoride (PVDF) membranes.  The membranes were then blocked with 5% fat-free 

milk or 5% BSA when phosphorylated proteins were evaluated in order to prevent following 

unspecific binding of antibody. Then, membranes were incubated with the respective primary 

antibody (Table 2.1) with gentle agitation, overnight at 4°C. After a washing step (three times for 10 

minutes) in 0,1% TBS-T (containing: 25 mM Tris, 150 mM NaCl and 0,1% Tween-20), to remove 

antibody solution, membranes were incubated with an alkaline phosphatase-conjugated secondary 

antibody (anti-rabbit, anti-mouse or anti-goat, Table 2.2) with gentle agitation for 2 hours, at room 

temperature and then washed three times for 10 minutes in 0,1% TBS-T. To control for loading of the 

gels, anti-tubulin, laminB1 and anti-actin antibodies were used. Immunoreactive bands were 

detected after incubation of membranes with ECF reagent and visualized in a BioRad Versa Doc 3000 

Imaging System. Densitometric analysis was performed by using Quantity One software (BioRad)  
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Table 2.1. Primary antibodies used for Western Blotting. 

Primary Antibody Diluition Host Manufacturer 

CREB (#9192) 1:1000 Rabbit Cell Signaling 

P(SER133)-CREB (#9196) 1:500 Mouse Cell signaling  

p44/42 MAPK (#9102) 1:1000 Rabbit Cell Signaling  

P-p44/42 MAPK (#4377) 1:1000 or 1:500 Rabbit Cell Signaling 

PGC-1alpha K-15 (sc5816) 1:500 Goat Santa Cruz 

GluN2A (#07-632) 1:1000 rabbit Millipore  

GluN2B (MAB 5778) 1:500 mouse Millipore  

P-GluN2A (2056) 1:500 rabbit Tocris 

P-GluN2B (XPS-1019) 1:1000 rabbit ProSci incorporated 

Actin (5316) 1:20000 Mouse Sigma Aldrich 

LaminB1 (ab16048) 1:1000 rabbit Abcam  

α-Tubulin (T-6199) 1:20000 Mouse Sigma  

 

 

Table 2.2. Secondary antibodies used for Western Blotting. 

Secondary antibody Diluition Manufacturer  

Anti-Rabbit (Alkaline Phosphatase) 1:20000 GE Healtcare, UK 

Anti-Mouse (Alkaline Phosphatase) 1:20000 GE Healtcare, UK  

Anti-Goat  IgG-AP (sc2022) 1:3000 Santa Cruz Biotecnology 

 

 

2.9 Intracellular free Ca
2+

 determination 

Cells were washed in Na+ medium containing 140mM NaCl, 5 mM KCl, 1mM CaCl2, 1 mM MgCl2, 10 

mM Glucose, 10 mM HEPES, pH 7.4 and then incubated with 10 μM FURA-2AM in Na+ medium for 30 

minutes at 37°C. After a washing step in Mg2+-free Na+ medium, intracellular Ca2+ determinations 

were performed in cells exposed to Aβ in the absence or in the presence of NMDARs antagonists in 

glycine (20 µM)-containing Mg2+-free Na+ medium in order to maximize the effect at the NMDAR. 

Intracellular levels of Ca2+ were measured in a microplate reader spectrofluorometer Gemini EM 

(Molecular Devices, USA) with excitation wavelengths of 340 and 380 nm and 510 nm emission.  The 

basal recording was obtained each 30 seconds for 1 min 30 seconds, followed by the addition of Aβ; 
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fluorescence levels were measured each 15 seconds for 3 minutes. Fluorescence values (ratio 

340/380) were normalized to the baseline. See appendix for details about this method. 

 

 

2.10 Data and statistical analysis 

Data were analyzed by using Excel (Microsoft, Seattle, WA, USA) and GraphPad Prism (GraphPad 

Software, San Diego, CA, USA) softwares. Data were expressed as the mean ± S.E.M. of the number 

of experiments indicated in legends. Comparisons among multiple groups were performed by one-

way ANOVA, followed by Dunnett’s Multiple Comparison post hoc test. Student’s t-test was also 

performed for comparison between two Gaussian populations. Significance was accepted at p < 0.05. 

Data from fluorimeter were normalized to the baseline and plotted in GraphPad Prism (GraphPad 

Software, San Diego, CA, USA).  
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CHAPTER 3 

RESULTS 
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3.1 Characterization of subcellular nuclear fractions 

Because part of the work performed in the present thesis used nuclear fractions obtained from 

primary cortical neurons, we initiated by evaluating the purity of nuclear extracts by western blotting, 

after labeling with antibodies against Lamin B1, a marker of nuclear protein extracts, Hsp60, a 

mitochondrial marker, and α-tubulin, a cytosolic marker, as shown in Figure 3.1. Our results 

demonstrate that the extracts are enriched in nuclear fraction, as depicted by increased labeling of 

Lamin B1. 

 

 

 

 

 

 

Figure 3.1. Characterization the nuclear fraction (N). The purity of the fractions was evaluated by Western 

Blotting. 

  

 

3.2 Effect of Aβ1-42 oligomers on the levels of phosphorylation of GluN2A and GluN2B subunits of 

the NMDA receptor 

Cortical neurons cultured for 15 days were exposed to 0.5 μM Aβ1-42 oligomers (prepared as 

described by Ferreira et al., 2012) for 2 and 5 min and total extracts were subjected to Western 

Blotting for analysis of P(Ser1232)-GluN2A and P(Tyr1472)-GluN2B, two NMDARs subunits highly 

expressed in the cortex (Cull-Candy et al., 2001). As presented in Figure 3.2 a tendency for an 

immediate increase in phosphorylation levels of both subunits, namely P(Ser1232)-GluN2A and 

P(Tyr1472)-GluN2B, occurs in response to Aβ exposure. 

 

 

 

 

 

 

Figure 3.2. Levels of phosphorylation of (A)GluN2A and (B)GluN2B subunits in cortical neurons (15DIV) exposed 

to Aβ1-42 oligomers for 2 and 5 min. Data are the mean±SEM of 3 independent experiments. 
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3.3 Changes in phosphorylation of CREB transcription factor following exposure to Aβ oligomers 

Changes in the activity of CREB, an important transcription factor known to regulate pro-survival 

signals in neurons (Bok et al., 2007) was investigated by western blotting with an antibody against 

P(Ser 133)CREB in total extracts of cultured cortical neurons with 15DIV exposed to Aβ1-42 oligomers 

for 5 min, 30 min, 2 h and 24 h in culture medium (Fig. 3.3A). Our results show that 5 min incubation 

with Aβ oligomers induced a significant increase in P(Ser133)-CREB levels; however, 30 min, 2 h and 

24 h treatments did not produced any increase in P(Ser133)-CREB levels when compared to control 

conditions (Fig. 3.3A). The same stimulation protocol did not significantly affect the levels of total 

CREB (Fig. 3.3B). 

The effect of antagonists of NMDARs, namely MK-801 (10 μM), ifenprodil (10 μM), memantine (10 

μM) and NVP-AAM077 (1 μM), were then evaluated during 5 min stimulation with Aβ. Results 

depicted in Fig 3.3C demonstrate that the immediate increase in P(Ser133)-CREB that occurred upon 

5 min incubation with Aβ was completly prevented by NMDARs antagonists MK-801 (non-

competitive antagonist), ifenprodil (non-competitive, selective for GluN2B subunit), memantine 

(uncompetitive, lower affinity antagonist) and NVP-AAM077 (selective for GluN2A). In fact, all the 

antagonists reduced P(Ser133)-CREB levels to those achieved in control conditions; moreover, both 

memantine and NVP-AAM077 showed a significant decrease in P(Ser133)-CREB when compared with 

5 min exposure to Aβ in the absence of the antagonists.  

These findings suggest that Aβ induced an immediate increase in P(Ser133)-CREB levels through 

NMDARs activation since this effect is prevented by NMDAR antagonists. 
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Figure 3.3. Effect of Aβ oligomers on P(Ser133)-CREB levels - the involvement of NMDARs. Total extracts were 

obtained from cultured rat cortical neurons with DIV 15 exposed to 0.5 μM Aβ1-42 for 5 min, 30 min, 2 or 24 

hours in the absence (Control) or in the presence of NMDARs antagonists. The levels of (A) P(Ser133)-

CREB/tubulin, (B) CREB/tubulin, and the effect of NMDARs antagonists (MK-801 10 μM, ifenprodil 10 μM, 

memantine 10 μM, NVP-AAM077 1 μM) on (C) P(Ser133)-CREB and (D) CREB levels, as determined by Western 

Blotting. α-Tubulin levels were used as loading control. Data are the mean±SEM of 15 independent 

experiments. Statistical analysis: Dunnett's multiple comparison test. *p < 0.05 when compaired to control; 
#
p < 

0.05, 
##

p < 0.01, when compaired to Aβ 5 min. 
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Previous results demonstrated that exposure of cortical neurons to Aβ1-42 oligomers evoked an 

immediate increase in Ca2+
i (Ferreira et al., 2012). In order to evaluate if the increase in P(Ser133)-

CREB depends on Ca2+ influx induced by Aβ1-42 oligomers, cells were incubated for 5 min with 0.5 

µM Aβ in Na+ medium in the presence (1 mM Ca2+) or in the absence of Ca2+ (0 mM Ca2+) (Fig. 3.4). 

Our results demonstrate that Aβ exposure promoted a significant increase in P(Ser133)-CREB levels 

when compared to control conditions; moreover, this effect was shown to be completely prevented 

by the NMDAR antagonist memantine (Fig. 3.4A). Conversely, the absence of external Ca2+ (0 mM 

Ca2+) completely abolished the increase in P(Ser133)-CREB in cortical cells in response to Aβ1-42 

oligomers (Fig. 3.4B). These results suggest that Ca2+ influx through NMDARs seems to mediate 

P(Ser133)-CREB increase in response to Aβ exposure. Our results also demonstrate that total CREB 

levels are not altered in the presence or absence of extracellular Ca2+, following incubation of cells 

with Aβ1-42 oligomers for 5 min (Fig. 3.4C and D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Dependence of extracellular Ca
2+ 

on P(Ser133)-CREB in cortical neurons exposed to Aβ1-42 

oligomers . Total extracts were obtained from cultured rat cortical neurons at DIV 15 exposed to 0.5 μM Aβ1-

42 oligomers for 5 minutes in Na
+
 medium in the presence (1 mM) or absence (0 mM) of Ca

2+
. Aβ1-42 was 

added to the culture medium 5 minutes after NMDARs antagonist memantine (10 μM) treatment, which 

remained during the 5 minutes of Aβ1-42 exposure. Levels of (A,B) P(Ser133)-CREB/tubulin and (C,D) 

CREB/tubulin were determined by Western Blotting. Data are the mean±SEM of 7 independent experiments. 

Statistical analysis: 
  t

p<0.05 vs control (Student’s t test). 
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We next followed the changes in P(Ser133)-CREB in nuclear extracts obtained from primary cortical 

cells. We found a significant decrease in CREB levels after 24 hours of incubation with Aβ1-42 

oligomers (Fig. 3.5A); this effect was slightly, but not significantly, prevented by memantine and, to a 

lesser extent, by ifenprodil (Fig. 3.5B). No significant changes were observed in nuclear P(Ser133)-

CREB levels (Fig. 3.5C,D) in response to Aβ treatment for 5 min, 2h or 24 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Time-dependent changes in nuclear transcription factor CREB. Primary cortical neurons at DIV 15 

were exposed to 0.5 μM Aβ1-42 oligomers in culture conditioned medium for 5 min, 2 or 24 h and expression 

levels of (A,B) CREB and (C,D) P(Ser133)-CREB were analysed by Western Blotting using LaminB1 as a loading 

control. In B, D we tested the effect of NMDAR antagonists, memantine (10 μM) and ifenprodil (10 μM),  by  

cells treated with antagonists exposed for 5 min prior to Aβ1-42 treatment. Data are the mean±SEM of 8-9 

independent experiments. Statistical analysis (Dunnett's multiple comparison test or Student’s t-test): **p < 

0.01 or 
tt
p < 0.01 when compared to the control. 
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3.4 Effect of Aβ1-42 oligomers on PGC-1α levels 

Since Aβ1-42 oligomers affect CREB activity and CREB has been involved in the regulation of 

transcription factors related to mitochondrial biogenesis, such as PGC-1α well known to have 

elements responsive to CREB (CRE) in its promoter (Fernandez-Marcos and  Auwerx, 2011), and 

signaling pathways through NMDARs (Sala et al., 2000), we tested in primary cultures of cortical cells 

the effect of Aβ1-42 oligomers exposure for 5 minutes, 2 or 24 hours on nuclear and total protein 

levels of PGC-1α. 

Nuclear PGC-1α levels did not change upon addition of Aβ to cortical neurons (Fig. 3.4A). However, 5 

minutes, but not 2 or 24 hours of incubation to Aβ1-42 oligomers produced a significant increase in 

total PGC-1α levels (Fig. 3.4B). Moreover, this increase was abolished in the presence of NMDARs 

antagonists MK-801 (10 μM), ifenprodil (10 μM), memantine (10 μM) and NVP-AAM077 (1 μM), 

suggesting an involvement of NMDARs on Aβ1-42-induced increase in total PGC-1α levels (Fig. 3.4C). 
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Figure 3.6. Time-dependent changes in transcription factor PGC-1α levels in nuclear and total fractions of rat 

primary cortical neurons exposed to Aβ1-42 oligomers. Cortical neurons at 15DIV were exposed to Aβ1-42 

oligomers for 5 min, 2 and 24 hours. Cells treated with antagonists (MK-801 10 μM, ifenprodil 10 μM, 

memantine 10 μM, NVP-AAM077 1 μM) were pre-exposed for 5 minutes before adding Aβ1-42 in culture 

medium for 5 minutes, 2 or 24 hours. The levels of PGC-1α in nuclear and total extracts were analyzed by 

Western Blotting. Data represents the mean ± SEM of 10-15 independent experiments. Statistical analysis: **p 

< 0.01 when compared to control; 
#
p < 0.05 when compared to Aβ 5 min (Dunnett's multiple comparison test); 

t
p<0.05 vs control (Student’s t test). 
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3.5 Effect of Aβ1-42 oligomers on phosphorylation levels of ERK  

Since ERK and CREB pathway can crosstalk, we also investigated the changes in P(Thr202/Tyr204)-

ERK in total extracts from cortical neurons exposed to 0.5 μM Aβ1-42 oligomers for 5 min, 30 min, 2 

h and 24 h in culture medium. Both subunits 42 and 44 kDa of ERK P(Thr202/Tyr204)-ERK (42) and 

P(Thr202/Tyr204)-ERK (44)) showed relevant significant increase in phosphorylation after 5 minutes 

of exposure to 0.5 µM Aβ1-42, which was coincident with the increase observed in P(Ser133)-CREB; 

however, no effect of Aβ1-42 was detectable for all incubation times, namely 30 minutes, 2 h and 24 

h (Fig. 3.7A and E). The increase in P(Thr202/Tyr204)-ERK (42) and P(Thr202/Tyr204)-ERK (44) at 5 

minutes was shown to be completely prevented by the NMDAR antagonists MK-801 (10 μM), 

memantine (10 μM), NVP-AAM077 (1 μM), but not by Ifenprodil (10 μM) (Fig. 3.7B and F), suggesting 

that NMDARs are involved in the mechanisms that allows the phosphorylation of ERK for short times 

of exposure to Aβ1-42, but not those composed by GluN2B subunits. Within the antagonists, 

memantine statistically prevented the increase in P(Thr202/Tyr204)-ERK (44) when compared with 

the condition of exposure to Aβ1-42 (Fig. 3.7F). 

Total ERK 42 levels did not change following incubation Aβ1-42 for the different times of exposure 

(Fig. 3.7C); however, 2h incubation to Aβ1-42 oligomers significantly increased the ERK 44 levels, 

suggesting a difference between ERK 44 and ERK 42 levels achieved after a prolonged exposure to Aβ. 

Nevertheless, the increase in total levels of ERK 44 were not inhibited by any of the NMDAR 

antagonists tested, suggesting that increased total ERK 44 levels occur independently of NMDARs 

activation. 
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Figure 3.7. Effect of Aβ oligomers on ERK phosphorylation and total ERK levels: effect of NMDAR antagonists. 

Total extracts were obtained from cultured rat cortical neurons (DIV 15) exposed to 0.5 μM Aβ1-42 oligomers 

for 5 min, 30 min, 2 h or 24 h. Time-dependent changes in the levels of (A,E) P(Thr202/Tyr204)-ERK/Tubulin 

and (C,G) ERK/Tubulin determined for both 42 (A,C) and 44 (E,G) kDa subunits by Western Blotting, using 

tubulin as a control loading; the effect of NMDAR antagonists (MK-801 10 μM, ifenprodil 10 μM, memantine 10 

μM, NVP-AAM077 1 μM) is depicted in (B,F) P(Thr202/Tyr204)-ERK/Tubulin and (D,H) ERK/Tubulin levels for 

both 42 (B,D) and 44 (F,H) kDa subunits. Representative blots are shown in Figure 3.8. Data are the mean±SEM 

of 11 independent experiments. Statistical analysis (Dunnett's multiple comparison test): *p < 0.05 when 

compared to the control; 
#
p < 0.05 when compared to Aβ 5 min. 
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According to the findings obtained when ERK (42) was plotted independently of ERK (44), the same 

pattern was observed when the results were plotted considering P(Thr202/Tyr204)-ERK (42+44) and 

ERK (42+44) levels (Fig 3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Effect of Aβ oligomers on ERK (42+44) phosphorylation and total ERK (42+44) levels: effect of 

NMDAR antagonists. Total extracts were obtained from rat cortical neurons (15DIV) exposed to 0.5 μM Aβ1-42 

oligomers for 5 min, 30 min, 2 h or 24 h. Time-dependent changes in (A) P(Thr202/Tyr204)--

ERK(42+44)/Tubulin, (C) ERK(42+44)/tubulin, and the effect of NMDAR antagonists (MK-801 10 μM, 

ifenprodil 10 μM, memantine 10 μM, NVP-AAM077 1 μM) in (B) P(Thr202/Tyr204)-ERK  (42+44)/tubulin 

and (D) ERK(42,44)/tubulin levels were determined by Western Blotting. Data are the mean±SEM of 11 

independent experiments. Statistical analysis (Dunnett's multiple comparison test): *p < 0.05 when compared 

to the control; **p < 0.01 when compared to the control; 
#
p < 0.05 when compared to Aβ 5 min.  
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In order to elucidate if the increase in phosphorylation levels of ERK depends on extracellular Ca2+ 

present in culture medium (Fig. 3.7 and 3.8), we performed experiments by using cortical neurons 

exposed to Aβ1-42 oligomers for 5 minutes in Na+ medium in presence (1 mM) or absence of Ca2+ (0 

mM). As previously shown for CREB in Figure 3.4A, 15DIV cortical neurons showed a significant 

increase in both P(Thr202/Tyr204)-ERK  (42) and P(Thr202/Tyr204)-ERK (44) in response to Aβ 

stimulation in a Ca2+-dependent manner (Fig. 3.9A and C). In the absence of external Ca2+ (Fig. 3.9A 

and C) no effect on phosphorylation levels was observed for both subunits when the cells were 

exposed to Aβ. Moreover, no significant changes in total ERK were observed upon exposure to Aβ for 

5 minutes in the presence or absence of 1 mM Ca2+ (Fig. 3.9B and D). When the results were plotted 

considering the sum of both subunits (42+44) the same pattern was observed (Fig 3.9 E and F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Dependence of extracellular Ca
2+ 

on P(Thr202/Tyr204)-ERK in cortical neurons exposed to Aβ1-42 

oligomers. Total extracts were obtained from cultured rat cortical neurons (15 DIV) exposed to 0.5 μM 

Aβ1-42 oligomers for 5 minutes in Na
+
 medium in the presence (1 mM) or absence (0 mM) of Ca

2+
. Protein 

levels of (A,C,E) P(Thr202/Tyr204)-ERK  and (B,D,F) ERK were determined by Western Blotting. Data are the 

mean±SEM of 8 independent experiments. Statistical analysis: 
t
p<0.05 vs control (Student’s t test).  
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3.6 Intracellular Ca
2+ 

recording 

Since we observed a dependence on external Ca2+ in P(Ser133)-CREB and P(Thr202/Tyr204) (42+44) 

induced by Aβ, changes in intracellular free Ca2+ (Ca2+
i) were evaluated in cells immediately exposed 

to Aβ in the presence or absence of NMDAR antagonists, namely MK-801 (10 μM), ifenprofil (10 μM), 

memantine (10 μM) and NVP-AA0M77 (50 nM and 10 μM). Results presented in Figure 3.10 show 

that Aβ induced an immediate increase in Ca2+
i mostly mediated by NMDARs. Surprisingly, ifenprodil 

did not significantly inhibit the Ca2+ rise induced by Aβ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Changes in the intracellular Ca
2+ 

levels induced by Aβ: effects of NMDAR antagonists. Cortical 

cells were stimulated with 0.5 μM Aβ1-42 oligomers in the absence or presence of NMDARs antagonists (10 

μM MK-801, 10 μM ifenprofil, 10 μM memantine and 0.05 and 1  μM NVP-AA0M77). (A) Representative 

tracings showing the basal Fura-2 fluorescence recording (340/380 ratio) and the effect of Aβ. (B) Results were 

plotted as the difference between the maximun value achieved and the basal value before Aβ addition. Data 

are the mean±SEM of 7 independent experiments. Statistical analysis (Dunnett's multiple comparison test): *p 

< 0.05 and ***p < 0.001 when compared to the control. 
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CHAPTER 4 

DISCUSSION 
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DISCUSSION 

In this present work we evaluated changes in activity of CREB, ERK and PGC-1α in cultured cortical 

neurons exposed to Aβ1-42 oligomers in a AD cell model. Our data show that the presence of 

extracellular Aβ induces rapid changes in phosphorylation levels in ERK and CREB, which was 

prevented by NMDARs antagonists and that this effect depends on extracellular Ca2+. Previous 

reports have shown that NMDAR activation induces long-lasting changes through phosphorylation of 

CREB at Ser133 in immature neurons, but only transiently in mature neurons (Sala et al., 2000), like 

in our case (using neurons with 15DIV). 

Since CREB and PGC-1α are transcription factors and ERK can modulate CREB response, and the 

effects were prevented by NMDAR antagonists, data uggest a possible changes in transcriptional 

activity involving the NMDARs as neurodegenerative mechanisms in AD mature cortical neurons. 

 

Until now there is no definitive cure for AD. In fact, strategies to reduce the processing of Aβ (such as 

β- and γ-secretase inhibitors) or its aggregation (chelating agents for metals Cu2+ and Zn2+) are not 

sufficient to block the progession of the illness. Even a new immunotherapy strategy was succefull in 

mice, the same was not efficient in humans due to disruption of plaques and release of Aβ as 

oligomers still showing toxic effects, activation of microglia with inflammatory response and 

encephalitic response in part of patients (Schenk et al., 2012). The few treatments currently used in 

the clinic take into account NMDARs overactivation, by using memantine in moderate-severe AD 

stages, and modifications of acetylcholine levels by using AChEI, both as palliative drugs of symptoms. 

The latter is used considering that the main cognitive deficits of AD patients are caused by 

impairment of the Meynert Nucleus that spreads cholinergic projections to all the brain mainly to the 

hippocampus, amigdala and cortex. Therefore, there is a need to continue to search for new targets 

for therapeutic intervention based on the early pathological effects of Aβ and tau. 

Vitolo et al. (2002) has previously proposed that there might be a membrane receptor, not well 

identifed, that could mediate the effects of Aβ1-42 oligomers, given in a sublethal dosage, in 

hippocampal cultured neurons through rapid and protract decrease of PKA that causes a decrease in 

CREB phosphorylation. This effect was prevented by drugs such as rolipram and forskolin that 

increase the intracellular levels of cAMP, decreasing its degradation by the phosphodiesterase PDE4 

and increasing its synthesis by adenylate cyclase, respectively. Increased levels of cAMP make the 

catalytic subunit of PKA free to migrate to the nucleus and activate CREB, as detected by increased 

phosphorylation at Ser133. In this situation, reversal of PKA inhibition was sufficient to restore CREB 

phosphorylation and LTP, which is implicated in memory formation. 
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Taking in account the typical features of AD, namely a decrease in postsynaptic excitatory proteins, 

alterations in the number and morphology of the dendritic spines and a decrease in LTP in central 

synapses, recently Dinamarca et al. (2012) reviewed the post-synaptic receptors as target for Aβ 

oligomers. These receptors are supposed to be mediators of neuronal damage in AD. In this scenario, 

glutamate receptors (ionotropic NMDARs and metabotropic) and cholinergic receptor α7-nAChR 

were considered as mediators of Aβ toxicity. In Ferreira et al. (2012), the GluN2B subunit of NMDAR 

is namely responsible for intracellular rising in Ca2+, whereas GluN2A-NMDARs antagonism 

potentiates this increase at high concentrations of Aβ (1 μM), suggesting that GluN2A and GluN2B 

subunits play an opposite roles in regulating intracellular Ca2+ content. Aβ oligomers appear to affect 

the trafficking of NMDARs, inducing endocytosis in a α7-nAChR-dependent manner (Snyder et al., 

2005). From the literature, it is evident that NMDARs are important for LTP and synaptic transmission 

and that Aβ interferes in this mechanism at the plasma membrane (Snyder et al., 2005)(Shankar et al., 

2007). Interestingly, GluN1 and GluN2B subunits of NMDARs in hippocampus can be bound by Aβ 

oligomers (Lacor et al., 2007), although the exact binding domain is still unknown. GluN2B subunits 

were previously proposed as the main NMDAR subunit implicated in regulating the intracellular influx 

of Ca2+ in dendritic spines, causing a decrease in dendritic spines and synaptic density, and leading to 

synaptic dysfunction (Shankar et al., 2007). The binding of GluN2B subunits with Aβ oligomers leads 

to ER stress in a mechanism that induces NADPH oxidase (NOX)-mediated superoxide production and 

prevented by ifenprodil and slightly by NVP-AAM077 (Costa et al., 2012). Moreover, Li et al. (2011) 

suggested that the stimulation of this same subunit triggered the activation of MAPK with down-

regulation of CREB, and that low doses of NMDAR antagonists were sufficient to revert synaptic 

dysfunction. Importantly, Hardingham and Bading (2010) reviewed that different NMDAR signaling 

might after the activation of extrasynaptic or synaptic NMDAR receptors, mainly composed of 

GluN2B or GluN2A subunits, respectively (Hardingham and Bading, 2010), which could lead to the 

activation of pro-death  or pro-survival neuronal responses. Synaptic responses are pro-survival 

including induction of survival genes like CREB or suppression of death genes related to the intrinsic 

apoptotic cascade like Puma (upstream of cytochrom c release), Apaf-1 and pro-caspase 9 

(downstream), and also suppression of pro-death FOXO. Extrasynaptic responses are pro-death with 

shut-off of CREB pathway, inactivation of ERK 1/2 , activation of FOXO, activation of calpains with 

following cleavage of Ca2+excharger 3 (NCX3)(leading to delayed Ca2+ deregulation) and STEP. 

Increasing evidence suggests a connection between Aβ and alterations in transcription factors such 

as CREB (Saura et Valero, 2011), PGC-1α (Qin et al., 2009; Sheng et al., 2012)., NF-kB and STAT1 

(Kitamura et al., 1997). 
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In this work we found that exposure of cultured cortical neurons to Aβ1-42 (0.5 μM) oligomers for 5 

min was sufficient to produce changes in CREB phosphorylation levels and that this effect was 

prevented by all antagonists of NMDARs tested, namely by memantine (10 μM) and NVP-AAM077 (1 

μM). A similar patten was observed in Na+ medium containing Ca2+, but not in the absence of Ca2+, 

indicating that the increase in CREB phosphorylation largely depend on extracellular Ca2+. Indeed, 

mature cortical neurons exhibited increased intracellular Ca2+ levels following exposure to Aβ1-42 

oligomers, that was prevented by NMDAR antagonists, with the exception of ifenprodil. Since 

NMDARs antagonists prevent this increase in phosphorylation, we may affirm that CREB 

phosphorylation needs the entry of Ca2+ through NMDARs. These data corroborate the entry of Ca2+ 

occurring after activation of NMDARs evoked by Aβ1-42 oligomers, as demonstrated previously by 

our group to occur in cultured cortical (Ferreira et al., 2012) and hippocampal (Costa et al., 2012) 

neurons.  

When we checked for nuclear levels of P(Ser133)-CREB for the same time of exposure to Aβ1-42 

oligomers (5 min), we did not find any tendency for an increase, suggesting that short times of 

exposure are not sufficient to produce changes in CREB-mediated transcription. However, after 24 

hours of exposure to the amiloidogenic peptide, the levels of CREB decreased and this was prevented 

by ifenprodil and memantine, while P(Ser133)-CREB was not significantly changed up to 24h. In 

literature there are evidence for decreased levels of CREB phosphorylation and transcription in AD 

patients (Yamamoto-Sasaki et al., 1999; Pugazhenthi et al., 2011; España et al., 2010). Caldeira (2012) 

previously described that CREB levels decrease in 15 month-old (aged) 3xTg-AD mice; however, 

neither P(Ser133)-CREB nor CBP levels were altered in young or aged 3xTg-AD mice. CREB is a 

transcription factor acting in nucleus in many promoters for genes encoding for survival, synaptic 

plasticity and memory. For istance, the neurotrophin brain-derived neurotrophic factor BDNF, as 

target of CREB, is involved in the long term memory process.  For the formation of a lasting memory, 

it is essential that changes occur in the long term in neuronal networks, a process known as synaptic 

remodeling (Saura and Valero, 2011).  

The observation that CREB levels are affected only after a prolonged exposure to Aβ1-42 oligomers 

and in old 3xTg-AD mice suggest that, in initial stages of AD, Aβ1-42 does not affect transcription 

events mediated by CREB, and that deregulation of long last functions, such as memory and synaptic 

plasticity, might occur later, along the progression of AD. Nevertheless, no changes were observed in 

P(Ser133)-CREB, despite the fact that many stimuli may converge to the nucleus activating CREB 

through several kinases like PKA, CaMKII and CaMKIV, ERK and RSK, being some of them directly 

regulated by intracellular Ca2+ levels (e.g. CaMK). CaM binds Ca2+ and activates CaMKII that 

phosphorylates CREB in the nucleus. Calcineurin also affects CREB pathway by dephoshorylating the 

transcriptional coactivator TORC (Transducers of Regulated CREB activity) and allowing its migration 
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to the nucleus, where it binds CREB, increasing gene transcription (Saura and Valero, 2011, for 

review). Conversely, calpains are cytosolic cysteine proteinases that cleave protein targets essential 

for neuronal survival (Wu et al., 2007) and the use of calpains inhibitors was demonstrated to 

improve spatial-working memory and associative fear memory in APP/PS1 mice (Trinchese et al., 

2008). 

 

Since CREB phosphorylation is perturbated by changes in intracellular Ca2+, in our work we have also 

taken in account the changes in its direct target, PGC-1α, sice it contains CRE elements in its 

promoter and the activation of CREB can bring to an increase of transcription of PGC-1α. As 

described before in this thesis, PGC1-α is activated by phosphorylation (Puigserver et al., 2003) and 

controlled by CREB, in conjunction with TORCs in the nucleus (Herzig et al., 2001; Wu et al., 2006). 

We found that nuclear levels of PGC1-α had a slight tendency to increase at 2 hours, suggesting a 

possible increase in mitochondrial biogenesis, probably as a compensatory response to Aβ1-42 

exposure and resulting mitochondrial dysfunction. Indeed, Aβ was found to impair the activity of 

complex IV and V of electron transport chain (ATP synthase) leading to increase in ROS production 

and decrease in ATP levels (Parks et al., 2001; Eckert et al., 2011). PGC-1α promoter activity is 

increased following oxidative strees and regulate components of the ROS defense system (St-Pierre 

et al., 2006). In our group increased nuclear levels of PGC-1α were previously observed in both in 

young and aged 3xTg-AD mice (Caldeira et al., unpublished data).  Surprisingly, we found increased 

PGC-1α levels in total extracts from cultured neurons after 5 minutes of exposure to Aβ, which was 

prevented by NMDARs antagonists, suggesting that the protein levels of PGC-1α can be regulated by 

an increased protein synthesis by local translation of mRNA in response to NMDAR activation.   Since 

all NMDAR antagonists prevented the increase in PGC-1α levels, data suggest that both GluN2A and 

GluN2B-containing NMDARs are involved in this process. This part of the work suggests that NMDAR-

dependent increases intracellular Ca2+ for short time of exposure to Aβ1-42 (5 min) are sufficient to 

promote the protein levels of PGC-1α either by decreasing its degradation and/or stimulating protein 

synthesis by translation of local mRNA. Later (after 2 h of Aβ1-42 exposure), PGC-1α may in return 

migrate into the nucleus, where it may potentially activate genes for mitochondrial biogenesis and 

ROS defence such as mitochondrial transcription factor A (TFAM) and superoxide dismutase (SOD). In 

future studies, analysis of mRNA levels of PGC-1α could give us more about the role of PGC-1α 

following exposure to Aβ1-42 oligomers. Despite increased levels of PGC-1α in 3 and 15 month-old 

3xTg-AD mice, no changes in TFAM (a mitochondrial transcription factor, which levels are regulated 

by PGC-1α) have been found in this animal model (Caldeira et al., unpublished data). Published 

studies reported that PGC-1α protein levels are negatively associated with both AD-type neuritic 

plaques and Aβ content in human AD brains and in the Tg2576 model mouse (Qin et al., 2009; Sheng 
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et al., 2012), also showing reduced expression of NRF-1, NRF-2 and TFAM, a reduction in 

mitochondrial/nuclear DNA ratio, which correlated with reduced ATP content, and decreased 

cytochrome C oxidase activity.  

 

In addition to CREB pathway, our investigation focused on changes in ERK activation in mature 

cultured cortical neurons maintained in vitro for 15 days. Interestingly, similarly to CREB, ERK was 

activated following a short exposure to Aβ1-42 oligomers, in a NMDAR- and Ca2+-dependent process. 

Indeed, increased P(Thr202/Tyr204)-ERK was recapitulated in Na+ medium containing Ca2+, but in its 

absence. Moreover, with the exception of ifenprofil, all the other NMDAR antagonists tested (MK-

801, memantine and NVP-AAM077) prevented ERK phosphorylation. This apparently suggests that 

ERK is activated by NMDARs enriched in GluN2A subunits, which are mainly expressed at synapses, 

possibly having pro-survival effects in neurons, as previously suggested (Hardingam and Bading 2010). 

Nevertheless, a role for ERK as a death promoter in nervous system was also proposed 

(Subramaniam and Unsicker, 2010), for istance with a sustained activation of ERK after oxidative 

stress, through activation of receptors, Ca2+ channels or directly by Src-tyrosine kinase. We analysed 

both subunits of ERK as singular subunits and as sum. Memantine highly prevented the 

phosphorylation of ERK subunit with 44 kDa, when compared with Aβ exposure for 5 min. The same 

pattern was verified when we considered the sum of both proteins (42 and 44 kDa). Moreover, 

increased levels of ERK44 were observed after 2 h of exposure to Aβ1-42 oligomers, which may 

underlie decreased protein degradation induced by the oligomeric peptide. 

Our data show that the levels of P-ERK increased for short time of exposure to Aβ, suggesting that it 

is ready to interact with cytosolic targets, like p90RSK, which in turn activate CREB (Boglári G. and 

Szeberényi J. 2002). In order to verify if the changes on P(Ser133)-CREB mediated by Aβ1-42 

oligomers are dependent on ERK pathway activation, in near future experiments we will test an 

inhibitor of ERK (e.g. U0126) and test the levels of P(Ser133)-CREB. 

 

In summary, both CREB and ERK pathways seem to be affected by external stimulus of Aβ and this 

occurs through a mechanism linked to increased intracellular Ca2+ levels triggered by NMDARs 

activation. Since memantine was efficient in blocking the activation of these two pathways, data 

suggest that NMDARs channel pore is open upon incubation with Aβ1-42. Using mature cortical 

neurons, was further assessed NMDAR activation in the presence of Aβ1-42 oligomers, by following 

GluN2B and GluN2A phosphorylation. Indeed, data indicate a tendency for increased activity of both 

receptor subunits after a very short incubation with Aβ1-42 (2-5 min).  

Sustained influx of Ca2+ occurring through NMDARs in response to Aβ stimulus may produce long-

term excitotoxic effects on neurons, as previously demonstrated (Kho et al., 1990). However, short-



 

 

59 

 

term exposure to Aβ to mature cortical neurons may favor the activation of pro-survival signaling 

pathways. Indeed, Aβ seems to preferentially activate GluN2A-composed NMDAR subunits, which 

exist mostly in synaptic sites, previously linked to survival pathways (Hardingam and Bading, 2010). In 

fact, the selective antagonist of GluN2B-containing NMDARs, ifenprodil, did not prevent the effects 

of Aβ on ERK or CREB phosphorylation. Protective effects of Aβ have been previously reported 

(Castellani et al., 2009), but the intricate cascade of events may be rather complex. The localization 

(synaptic versus extrasynaptic) and/or the type of the NMDARs activated (containing GluN2A or 

GluN2B subunits) can present different outcomes upon stimulation with extracellular Aβ oligomers.  

In this perspective, it will be important to determine whether activation of extrasynaptic or synaptic 

NMDARs have differential effects on CREB and ERK pathways, by using Na+ medium containing 

glycine or D-serine as NMDAR co-agonists (Papouin et al., 2012). Moreover, extrasynaptic and 

synaptic NMDAR can be preferentially activated using bicuculline (competitive GABAA receptor 

antagonist) , 4-aminopyridine (4-AP, a blocker of voltage-activated K+ channels) and MK-801 to block 

synaptic receptors and activate preferentially the extrasynaptic, or using only bicuculline plus 4-AP to 

preferentialy activate the synaptic receptors (Hardingham et al., 2001). 
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CONCLUSION 

This work shows changes in transcription factors, CREB and PGC-1α, in mature (15DIV) cortical 

neurons exposed to Aβ1-42 oligomers as a model of initial stages of AD. Moreover, we observed 

Aβ1-42-evoked early concomitant ERK and CREB activation, along with increased levels of PGC-1α, 

which have been related to pro-survival processes as well as learning and memory formation (in the 

case of ERK and CREB) and mitochondrial biogenesis (in the case of PGC-1α), which have been 

described to be impaired in AD advanced stages. Indeed, the initial pathogenic mechanisms of this 

neurodegenerative disease still remain unclear. In this work we show NMDAR-dependent 

perturbations in intracellular Ca2+ that influence CREB and ERK activation. This might represent an 

initial mechanism that may modify relevant neurophysiological circuits, leading to changes in 

intracellular signaling pathways and expression of proteins that, if sustained, may favor the 

development of neuronal death. Thus, the understanding of these processes may be useful for the 

formulation of more selective pharmacotherapies, able to slowdown AD progression. 
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APPENDIX 

A.1 Hemocytometer 

The hemocytometer is a device used to count cells. The number of cells in the chamber of the 

hemocytometer is used to calculate the concentration or density of the cells in the mixture the 

sample comes from. The hemocytometer is a glass platform engraved with a laser-etched grid of 

perpendicular lines forming squares with a surface area of 1mm2 covered by a thin coverglass 

producing a depth between of 0.1mm (Fig. A.1). Each square of the hemocytometer represents a 

total volume of 0.1 mm3 or 10-4 cm3. Since 1 cm3 = 1 ml, the subsequent cell concentration per ml can 

be determined as media of number of cells contained in the two squares multiplied for the dilution 

factor and multiplied for 104. A count less than 50 or superior to 200 cells needs to adjust the initial 

dilution. The grid lines are well focused using the 10X objective of the microscope. 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Schematic representation of an hemocytometer (A) showing laser-etched grid of 

perpendicular lines forming squares in which the cells are counted (B). 

 

 

A.2 Protein quantification by the Bio-Rad method 

The Bio-Rad protein assay is a simple colorimetric assay for measuring total protein concentration 

and is based on the Bradford dye-binding method. It involves the addition of an acidic dye to protein 

solution, and subsequent measurement at 595 nm with a spectrophotometer or microplate reader. 

Comparison to a standard curve provides a relative measurement of protein concentration. The 

reagent Coomassie Brilliant Blue turns blue when it binds to arginine and aromatic amino acids 

present in proteins, thus increasing the absorbance of the sample. The absorbance is measured using 

a spectrophotometer, at the maximum absorbance frequency (Amax) of the blue dye (which is 595 

nm). In this case, greater is the absorbance, higher is the protein concentration.  

  

A 
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A.3 Standard Curve 

Standard curves are most commonly used to determine the concentration of a substance such as 

protein or DNA. For example, a standard curve for protein concentration is often created using 

known concentrations of bovine serum albumin. Protein solutions are normally assayed in duplicate 

and the absorbance read is the arithmetic media of the two values obtained. Known concentrations 

of BSA are used to make the standard curve (Table A.1), plotting concentration on the X axis, and the 

assay measurement on the Y axis. The same assay is then performed with samples of unknown 

concentration (Table A.1). To analyze the data, one locates the measurement on the Y-axis that 

corresponds to the assay measurement of the unknown substance and follows a line to intersect the 

standard curve. The corresponding value on the X-axis is the concentration of substance in the 

unknown sample. 

 

Table A.1. Scheme for standard curve and samples preparation used in protein quantification by the 

BioRad method 

Standard H20 (μl) Buffer (μl) BSA 0.1% (μl) BioRad reagent 

(μl) 

1 79 1 0 120 

2 78 1 1 120 

3 77 1 2 120 

4 76 1 3 120 

5 75 1 4 120 

6 74 1 5 120 

Samples 79 1 - 120 
Note: Incubation at room temperature for 5-10 minutes in dark 

 

 

A.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis and protein transfer 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), is the most widely used 

technique to separate proteins from a mixture. Being present electricity, proteins migrate inside the 

poly-acrylamide gel under denaturing conditions achieved by using denaturing conditions  (achieved 

by SDS present in the sample buffer described in Material and Methods section). SDS and a heating 

step determine that the electrophoretic mobility of a single kind of protein is only affected by its 

molecular weight in the running step. 

Inserted between two glasses spacers, the gel require the co-polymerization of acrylamide and N,N-

methylenebisacrylamide (Bis-acrylamyde) in a vinyl addiction reaction initiated by free radical-

generating system from ammonium persulfate (APS) and catalyzed by N,N,N',N'-

tetramethylethylenediamine (TEMED). The APS free radicals convert acrylamide monomers to free 

radicals which start a chain reaction with inactivated monomers (Fig. A.2). 
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The separation of molecules within this gel is determined by the relative size of the pores that 

depends on condition of polymerization and monomer concentration. The percentage of acrylamide 

in the gel is chosen according the molecular weight of the protein. In general, an higher percentage 

of acrylamide makes smaller pores that block the migration of high molecular weight proteins. 

Samples are then applied in the gel and exposed to an electric field in a chamber apparatus. Negative 

electrical charged proteins can pass through the gel subjected to an electrical field onto a support 

(nitrocellulose or PVDF) membrane. After blocking in BSA 5% or milk 5%, the membrane containing 

proteins is incubated with first and secondary antibodies before the revelation with ECF solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2. -  Polymerization reaction of acrylamide in SDS-PAGE gel (from Kandow et al., 2007). 

 

Contaminations by buffer reagents (Tris, borate, acetate, glycine etc.), gel additives, detergents (SDS) 

and the water of the laboratory can produce changes in the polymerization that usually give an 

higher porosity to the gel and the molecules rapidly migrates, impairing the quality of experiments. 

The external temperature can impair the polymerization of the gel. However, a rapid polymerization 

produces an exothermic reaction producing heat that make in turn the reaction of polymerization 

more rapid. 
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A.5 Chemifluorescent detection by ECF 

ECF™ Western is a highly sensitive system for chemifluorescent detection of Western Blots analyzed 

by VersaDoc System. ECF Western Blotting permits immunodetection of proteins electroblotted onto 

the membrane, by using a primary antibody directed towards the target protein, followed by 

incubation with alkaline phosphatase-linked antibody (secondary antibody) as shown in Figure A.3. 

The alkaline phosphatase of the secondary antibody catalyzes the conversion of ECF to a new 

product that fluoresces strongly at 550–570 nm when the blots are illuminated with UV light with a 

peak of excitation at 430 nm. ECF revelation shows a linear proportionality between the amount 

protein and the relative fluorescent output. This method makes a safe handling and reliable, highly 

sensitive detection of target proteins.  

 

Figure A.3. Schematic diagram of the ECF Western Blotting detection. Proteins are detected by 

chemifluorescence using alkaline phosphatase-labeled secondary antibody. Alkaline phosphatase cleaves a 

phosphate group from the ECF substrate to yield a highly fluorescent product. (from www.gelifesciences.com). 

 

 

A.6 Fura-2 Ratiometric Ca
2+

 Indicator 

Fura-2-acetoxymethyl ester (or Fura-2AM) is one of the most popular fluorescent probes used to 

register dynamic changes in cytosolic free Ca2+ in intact living cells. Fura-2AM  is lipophilic and, once 

inside the cell, is target of esterases that remove the acetoxymethyl groups, regenerating  Fura-2 

form, the pentacarboxylate Ca2+ indicator, no more membrane permeable. The cytosolic 

concentration of Ca2+ can be continuously monitored because the complex Ca2+-Fura 2 emits 

fluorescence directly proportional to Ca2+content. Measurement of Ca2+ are indicated as ratio of 

fluorescence registered at 340 nm and 380 nm (Fig. A.4). 

The FURA-2 manifests a shift of the absorption spectrum as result of Ca2+ binding. 

In the absence of Ca2+, the FURA-2 excitation spectrum has a fairly broad, with a peak at about 380 

nm. When binded to the Ca2 +, the excitation spectrum shifts even more in the UV side with a peak at 
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340 nm and, the intensity of the fluorescence emitted by the FURA-2 (measured at 510 nm) increases 

if one excites at 340 nm (F340) and decreases if it excites at 380 nm (F380). 

In conclusion, exciting at the two wavelengths of 340 nm and 380 nm allows to collect a pair of 

signals at the wavelength of emission of 510 nm for each experimental point. 

Making the ratio of this two values is possible, therefore, to obtain a measure that is independent of 

the concentration of the indicator in the sample. 

 

 

 

 

 

 

 

 

Figure  A.4.  Spectrum of Ca
2+

-sensitive dyes FURA-2 AM with emission at 510 nm for different excitation 

wavelengths 340 nm and 380 nm.  
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