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Abstract 

Aging is determined by complexes and multifactorial processes, whose molecular basis 

remains poorly understood. The brain is the most affected organ by the aging process, and 

neurodegenerative diseases are directly related with the increased age. Since average human 

life expectancy has increased, and consequently, the prevalence of cognitive decline and 

dementia, aging research is now focused in finding strategies that increase both lifespan and 

healthspan. 

Caloric restriction (CR) is one of the few non-pharmacological manipulations that has 

been reported to consistently extend lifespan of different organisms. Increasing evidence 

shows that autophagy, a highly regulated intracellular process involved in the turnover of most 

cellular constituents and in the maintenance of cellular homeostasis, is involved in anti-aging 

mechanisms of CR. Furthermore, the anti-aging effects induced by CR were related to changes 

in the neuroendocrine system, namely the increase of neuropeptide Y (NPY), a potent 

neuroprotective agent in several brain areas, in the hypothalamic arcuate nucleus (ARC). 

Evidence suggests that NPY might play an important role in CR anti-aging effects, and in our 

group was found that NPY not only induces autophagy in hypothalamic neurons, but also 

mediates nutrient deprivation-induced autophagy in these cells, suggesting that NPY might 

mediate CR’s effects on autophagy. However, the effect of NPY in autophagy in the whole 

brain, namely in the cortical neurons, as its potential role in lifespan extension, is currently not 

known. CR is also known to increase the levels of ghrelin, an orexigenic peptide secreted by 

the stomach. Ghrelin, similarly to NPY, shares some physiological effects induced by CR, 

possibly acting as an important metabolic mediator in its anti-aging effects. However, the 

effect of ghrelin in nutrient deprivation induced autophagy has not been studied yet.  

The first goal of this study was to evaluate the effect of CR on autophagy in rat cortical 

neurons, scrutinizing the involvement of NPY and its receptors in this process, as the signaling 

pathways involved. With this study it was also intended to evaluate the effect of NPY on the 

regulation of autophagy in cortical neurons, investigating which NPY receptors subtypes and 

signaling pathways are involved in NPY-induced autophagy. It was also investigated the 

potential involvement of ghrelin and its receptor on CR-induced autophagy, as well as ghrelin’s 

effect in the modulation of autophagy in cortical neurons.  

This study showed that nutrient deprivation induces autophagy in rat cortical neurons. 

Upon nutrient deprivation it was observed an autophagy induction in a time dependent 

manner, as proved by the enhancement of the autophagic flux, using chloroquine, a lysosomal 

degradation inhibitor. The autophagy induction was mediated by NPY Y1, Y2 and Y5 receptors, 

and involves different signaling pathways. Concomitant with autophagy activation, NPY levels 
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content increased when cortical neurons undergo nutrient deprivation, supporting the 

involvement of NPY in nutrient deprivation-induced autophagy. 

We next evaluated the effect of NPY per se on autophagy regulation in cortical neurons. 

NPY, similarly to nutrient deprivation, increased autophagic flux in a time dependent manner, 

and this effect was mediated by NPY Y1, Y2 and Y5 activation.  

Besides NPY, CR also increases the levels of ghrelin, an orexigenic peptide secreted by the 

stomach, which has been suggested to act as a metabolic regulator signal during CR. Therefore 

we investigated whether ghrelin, similarly to NPY, could be involved in nutrient deprivation-

induced autophagy in cortical neurons. Ghrelin not only induces autophagy in cortical neurons 

but also contributes to the increase in the autophagic flux induced by nutrient deprivation. 

This study showed, for the first time, that NPY and ghrelin, both considered caloric 

restriction mimetics, enhance autophagy in cortical neurons. Furthermore, in response to low 

nutrient availability, these neurons express NPY and ghrelin. Given that autophagy impairment 

underlies aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect 

on the regulation of autophagy can be considered a stepping stone for the development of 

new strategies to delay the aging process and promote healthy lifespan. 

 

Keywords: Aging, Caloric restriction, Autophagy, Neuropeptide Y, Ghrelin, Cortex 

  



 

11 
 

Resumo 

O envelhecimento é um processo complexo e multifatorial, cujos mecanismos 

moleculares permanecem ainda desconhecidos. O cérebro é o órgão mais afetado pelo 

processo de envelhecimento, estando as doenças neurodegenerativas diretamente 

relacionadas com o aumento da idade. O aumento da esperança média de vida, e o 

consequente aumento da prevalência de declíneo cognitivo, impulsionou a investigação na 

área do envelhecimento, a fim de desenvolver estratégias que contribuam para o aumento da 

esperança de vida com qualidade. 

A restrição calórica é uma das estratégias não farmacológicas que promove o aumento da 

esperança de vida em diferentes organismos. A autofagia, um processo intracelular altamente 

regulado, envolvido na reciclagem de constituintes celulares e na manutenção da homeostase 

celular, está envolvida nos mecanismos anti-envelhecimento da restrição calórica. Além disso, 

os efeitos anti-envelhecimento induzidos pela restrição calórica foram relacionados com 

alterações no sistema neuroendócrino, nomeadamente o aumento do neuropeptídeo Y (NPY) 

no núcleo arqueado do hipotálamo. O NPY é um dos peptídeos mais abundantes no sistema 

nervoso central, tendo um efeito neuroprotector em diversas áreas cerebrais. Estudos 

sugerem que o NPY pode ser um mediador dos efeitos anti-envelhecimento promovidos pela 

restrição calórica; no nosso grupo demonstrámos que o NPY não só induz autofagia em 

neurónios hipotalâmicos, como também medeia a autofagia induzida pela privação de 

nutrientes, sugerindo que este neuropeptídeo possa estar envolvido nos efeitos benéficos 

induzidos pela restrição calórica. No entanto, o efeito do NPY na autofagia em outras regiões 

cerebrais, nomeadamente no córtex, bem como o seu potencial papel no aumento da 

esperança de vida, é desconhecido. Um outro efeito neuroendócrino promovido pela restrição 

calórica é o aumento dos níveis de grelina, um peptídeo orexigénico secretado pelo estômago. 

A grelina, de forma similar ao NPY, mimetiza muitos dos efeitos induzidos pela restrição 

calórica, atuando possivelmente como um importante mediador metabólico nos seus efeitos 

anti-envelhecimento. Contudo, o efeito da grelina na autofagia induzida pela restrição calórica 

ainda não foi investigado. 

Neste estudo avaliou-se o efeito da privação de nutrientes na autofagia em neurónios 

corticais de rato bem como o possível envolvimento do NPY e seus recetores neste processo. 

Neste trabalho também se estudou o efeito do NPY per se na regulação da autofagia e as vias 

de sinalização envolvidas. O potencial envolvimento da grelina e do seu recetor na autofagia 

induzida por restrição calórica, tal como, o efeito da grelina na modulação da autofagia em 

neurónios corticais também foi avaliado. 
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Este estudo mostrou que a privação de nutrientes induz autofagia em neurónios corticais, 

de uma forma dependente do tempo de exposição. A indução da autofagia foi mediada pelos 

recetores Y1, Y2 e Y5 do NPY, envolvendo diferentes vias de sinalização. Paralelamente à 

promoção da autofagia, a privação de nutrientes induziu um aumento dos níveis de NPY em 

neurónios corticais, reforçando o envolvimento do NPY na autofagia mediada por privação de 

nutrientes. 

Posteriormente, avaliou-se o efeito do NPY per se na regulação da autofagia em neurónios 

corticais. À semelhança da privação de nutrientes, o NPY também aumentou o fluxo 

autofágico, de uma forma dependente do tempo de exposição, sendo este efeito mediado 

pela activação dos recetores Y1, Y2 e Y5 do NPY.  

Para além do NPY, a restrição calórica também aumenta os níveis de grelina. Deste modo, 

estudou-se o envolvimento deste peptídeo na indução da autofagia mediada por privação de 

nutrientes. A grelina não só induziu a autofagia em neurónios corticais, como também 

contribuiu para o aumento do fluxo autofágico induzido pela privação de nutrientes. 

Este estudo mostrou, pela primeira vez, que o NPY e a grelina, considerados miméticos da 

restrição calórica, promovem a autofagia em neurónios corticais. Adicionalmente, em resposta 

a uma baixa disponibilidade de nutrientes, estes neurónios expressam NPY e grelina. Tendo 

em conta que os processos autofágicos estão comprometidos no envelhecimento e nas 

doenças neurodegenerativas associadas à idade, o efeito sinergístico do NPY e da grelina na 

regulação da autofagia pode ser considerado um ponto de partida para o desenvolvimento de 

novas estratégias para retardar o envelhecimento e aumentar a longevidade aliada a uma 

melhor qualidade de vida. 

 

Palavras-chave: Envelhecimento, Restrição Calórica, Autofagia, Neuropeptideo Y, Grelina, Cortex 
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1.1. Aging 

Population aging is a process that has been observed in most developed countries over 

the last century (Kirkwood 2008). In 2050, it is predicted that more than two billion people will 

be over the age of 60 (United Nations) (Figure 1.1). 

 

 

The increase in life expectancy can be seen as a result of the success of public health 

policy and socioeconomic development; however, it also challenges the society to adapt and 

promote better health and functional capacity of the elderly people, and to understand the 

biological bases (i.e., processes and their mechanisms) of aging, as well as, morphological and 

molecular aspects underlying various age-related diseases (Rezzani et al., 2012). Aging is 

characterized by the progressive and irreversible loss of physiological integrity and is an 

extremely complex process whose molecular basis remains incompletely understood 

(Kirkwood 2005, Tripathi 2012). In addition, aging is the major risk factor for all of the 

predominant killer diseases, including cardiovascular disease, cancer and neurodegenerative 

diseases, and the main burden of ill health is now falling on the older section of the population 

Figure 1.1 - Percentage of the total population aged 60 years or over, from 2012 to 2050.  
Data from (United Nations, 2012). 
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(Partridge et al., 2011). In this context, the study of aging has become one of the most 

important challenges to modern science. Some theories have been proposed to explain aging 

in order to identify the major causes of aging and physiological changes that are associated 

with increasing age (Holliday 2006). However, the contribution of each theory to identify a 

primary cause of aging has been difficult to establish. Aging, is, therefore, conventionally 

regarded as a process of progressive decline of cellular homeostasis, cognitive impairment or 

dementia, regulated by intrinsic and extrinsic variables in relation to the individual (Bishop et 

al., 2010, Tripathi 2012).  

 

1.1.1. The aging brain 

The effects of aging on the brain and cognition are widespread and have multiple 

etiologies, exerting on the molecules, cells, vasculature, gross morphology, and cognition. As 

we age our brains shrink in volume, particularly in the prefrontal cortex (PFC) (Drachman 

2006). Brody, in 1955, was the first to suggest that age-related reductions in brain weight were 

due, in part, to a decline in neuron number in all cortical layers (Brody 1955). Afterward, his 

work was corroborated by Coleman’s studies, that described a 10–60 % decline in cortical 

neuron density between late childhood and old age (Coleman et al., 1987). In addition to these 

facts, profound cell loss was found in the hippocampus of aging humans (Ball 1977) and in the 

hippocampus and PFC of non-human primates (Brizee et al., 1980). However, various technical 

and methodological issues, such as tissue processing and sampling design, confounded the 

data obtained from these early reports and their accuracy was called into question later 

(Morrison et al., 1997). In the 1980s, it became possible to identify and eliminate many of the 

confounding factors of the previous studies that had indicated a profound decline in neuron 

number occurring in advanced age, due to developing new stereological principles (West 

1993). Studies in humans (West et al., 1994, Pakkenberg et al., 1997), non-human primates 

(Peters et al., 1994, Gazzaley et al., 1997, Merrill et al., 2000) and rodents (Rapp et al., 1996, 

Rasmussen et al., 1996, Merrill et al., 2001) have shown that significant cell death in the 

hippocampus and neocortex is not characteristic of normal aging. Nevertheless, a notable 

exception to this idea has recently been demonstrated. In aged non-human primates, there is 

a ~30 % reduction in neuron number in all layers in area 8A of the dorsolateral PFC, which it is 

significantly correlated with impaired performance on a working memory task, whereas 46 % 

of the PFC shows conservation of neuron number (Smith et al., 2004). In addition to early 

reports of a decline in neuronal density with aging, early studies on neuronal dendritic 

branching suggested massive deterioration in the human entorhinal cortex and hippocampus 

(Scheibel et al., 1976, Scheibel et al., 1979). The morphology of PFC neurons seems to be more 
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vulnerable to the effects of aging than hippocampal neurons. In rats, dendritic branching of 

pyramidal neurons decreases with age for both apical and basal dendrites in superficial cortical 

layers (Grill et al., 2002). A reduction in dendritic branching with age has also been observed in 

anterior cingulate layer V of the rat (Markham et al., 2002) and in the human medial PFC (de 

Brandander et al., 1998, Uylings et al., 2002). 

Many of the electrophysiological properties of neurons in the PFC remain unaltered 

during normal aging, including resting membrane potential; membrane time constant; 

threshold to elicit an action potential; and rise time and duration of an action potential (Chang 

et al., 2005). There is some evidence of a small increase in the input resistance in PFC neurons 

of aged monkeys as well as a decrease in the amplitude and fall time of action potentials 

(Chang et al., 2005). However, cognitive performance is not related to action potential 

amplitude, action potential fall time or input resistance (Chang et al., 2005). Neurons in the 

PFC of aged monkeys also have a significantly larger after hyperpolarizing potential (AHP) 

compared with young neurons, which suggests that Ca2+ homeostasis might also be disrupted 

in PFC neurons in advanced age (Chang et al., 2005). 

 

1.1.2. Molecular mechanisms underlying the brain aging 

As mentioned above, the brain is the most affected organ by the aging process. Aging is 

determined by a multifactorial and complex processes whose molecular basis remains poorly 

understood (Kirkwood 2005); however several mechanisms have been proposed to explain the 

aging process such as increased amount of mitochondrial dysfunction (Ames 2004), oxidative 

stress (Serrano et al., 2004, Zecca et al., 2004), and accumulation of damaged proteins (Gray 

2003, Trojanonski 2003). 

The decreased of mitochondrial function has often been associated with aging in general, 

and aging of the central nervous system (CNS), in particular (Melov 2004). Many studies of 

genes expression profiling have clearly shown a progressive degeneration in mitochondrial 

function, which could contribute to the accelerated aging, particularly in brain and muscle, 

since both are more susceptible to mitochondrial dysfunction. Mitochondrial oxidative 

phosphorylation is the key source of energy intensive ion fluxes and axonal transport in the 

projection neurons of cerebral cortex, which degenerate in most neurodegenerative diseases 

(Yankner et al., 2008). These neurons, therefore, are highly vulnerable to mitochondrial 

dysfunction (Yankner et al., 2008).  

Due to irregularities in the electron transport chain in mitochondria during progressive 

aging, many super oxides are generated as a byproduct, which may cause damage to 

respiratory chain proteins (Wallace 2005). In normal course, mitochondria possesses sufficient 
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machinery to counter these reactive oxygen species (ROS) in form of antioxidant enzymes, 

including Cu-Zn super oxide dismutase (SOD), cytochrome oxidase, and redox reactions 

mediated by cytochrome C (Yankner et al., 2008). In aging, the action of these antioxidants is 

diminished, resulting in local oxidative damage to mitochondrial proteins and deoxyribonucleic 

acid (DNA). SOD reacts with superoxide radicals and converts them in to hydrogen peroxide 

(H2O2), which is a stable molecule and may diffuse into cytoplasm where it is enzymatically 

neutralized by cytoplasmatic glutathione peroxidase and peroxisomal catalase. In addition to 

the generation of superoxide and hydrogen peroxide, the availability of redox-active iron is a 

major determinant of ROS-mediated cellular damage (Yankner et al., 2008).  

The accumulation of damaged molecules within the cells is one of the most widely 

documented and obvious alterations that occur in neurons during aging (Mattson et al., 2006). 

It is known that the lifespan is determined by the balance between metabolism, which leads to 

the accumulation of damage, thus causing aging, and compensatory responses (Rattan 2006). 

The changes are due to the accumulation of oxidized, misfolded, cross-linked or aggregated 

macromolecules that are morphologically not normal and so, they cannot properly function 

(Rezzani et al., 2012). These aggregated macromolecules or simply damaged proteins are 

removed mainly by autophagy (Bergamini et al., 2003). However, with increasing age this 

process fails and consequently occurs neuronal dysfunction and cell death (Bi et al., 2000, 

Keller et al., 2002, Nixon et al., 2003). Moreover, it is possible that these macromolecules 

interfere with other molecules and organelles, or their aggregates, compromising cellular 

functions sending also erroneous signals. Thus, the cells need to eliminate them for survival. It 

is also known that cellular damage is associated to aging-related pathologies, including cancer, 

neurodegeneration, infection and muscle atrophy (Guarente 2008, Kirkwood 2008). 

Understanding the biological bases of aging and the molecular mechanisms that underlie 

various age-related pathologies is utmost important to future genetic and pharmacological 

interventions to increase lifespan with life quality (Rajawat et al., 2009, Troen 2003). 

 

1.1.3. Delay brain aging 

Life expectancy is increasing as a result of advances in medical science and the availability 

of better healthcare services; however, the proportion of elderly persons in the general 

population is therefore rising. A major goal of aging research is to extend healthspan by 

identifying approaches for delaying or preventing age-related diseases. Many are the 

preventive measures of cognitive impairments and neurodegenerative processes that are 

associated with aging (Tripathi 2012). Brain healthy diets, including omega 3 fatty acids, 

vitamin C, vitamin E, vitamin B12, vitamin B6, folic acid iron, calcium, zinc, docosahexanoic acid 
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and breast milk proteins, have been primarily reported to delay the effects of normal brain 

aging and cognitive decline (Tripathi 2012). Recent investigation on the impact of caloric 

restriction (CR) on brain aging and neurodegenerative disorders, has shown many striking 

features (Tripathi 2012). Recently, a large group of monkeys, ranging in age from middle-aged 

adults to the quite elderly, were fed only 70 % of their free-feeding diet for about 15 years 

(Bendlin et al., 2012).  As a result of eating just 30 % fewer calories, the brains of the monkeys 

on the CR diet aged significantly more slowly. Although several brains regions showed benefits, 

those brains regions that evolved most recently, such as the frontal lobes, and therefore tend 

to be more vulnerable to the consequences of aging, showed the greatest beneficial response 

to CR (Bendlin et al., 2012). 

In addition, regular physical exercise has been shown to increase neurogenesis (McCarter 

1995, van Praag et al., 1999). Hence, management of these conditions through medical and life 

style interventions is likely to benefit in order to cope with these age related impairments. 

Associated to increasing neurogenesis, exercise improves spatial memory in rodents (Fordyce 

et al., 1993, van Praag et al., 1999, Anderson et al., 2000) and it has been suggested that 

exercise-induced hippocampal neurogenesis contributes to the learning enhancement (van 

Praag et al., 1999). 

 

1.2. Caloric Restriction 

Caloric restriction (CR) consists of a reduced food intake without malnutrition, retaining 

the essential nutrients, extending and ensuring cellular function (Koubova et al., 2003, Dirks et 

al., 2006), by reduction of food intake to 30–60 % below ad libitum intake levels in relation to 

typical feeding (Masoro 2006). It is the form of nutritional intervention, non-pharmacological, 

more widely discussed, in order to increase the average life expectancy of a wide variety of 

species, from yeast to mammals including humans (Masoro et al., 2006, Roberts et al., 2007). 

In fact, some studies show that CR is the most robust anti-aging intervention (Bergamini et al., 

2007, Fontana et al., 2010). 

Since the pioneer work of McCay in 1935, which showed that the reduction of energy 

intake without lack of essential nutrients is capable of increasing the longevity in rats (McCay 

et al., 1935), several studies suggest that CR could extend the longevity and have beneficial 

effects on health of various organism models. This discovery opened a new door to several 

scientific studies designed to learn more about the biology of aging. Subsequent studies have 

concluded that long-term CR slows the process of aging and extends the maximum life 

expectancy in different animals including nematelmintes, fruit flies and rodents (Braeckman et 
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al., 2006, Roberts et al., 2007, Burger et al., 2010). In addition of living longer, these animals 

kept under CR, remained healthy and active longer, even after the death of the control group 

(Braeckman et al., 2006, Roberts et al., 2007, Burger et al., 2010), demonstrating that CR 

reduces the morbidity of a host of diseases, including (but not limiting) autoimmune diseases, 

atherosclerosis, cardiomyopathies, cancer, diabetes, renal diseases, neurodegenerative 

diseases, and respiratory diseases (Imai 2009, Vaquero et al., 2009). Then becomes necessary 

to discern the mechanisms underlying CR’s beneficial effects. 

 

1.2.1. Physiological effects of caloric restriction 

CR has been recognized as the best characterized and most reproducible strategy for 

extending maximum survival, retarding physiological aging, and delaying the onset of age-

related pathological situations (Speakman et al., 2011, Vendelbo et al., 2011). There are 

several common changes in CR rodent models, such as decreased body temperature, 

decreased insulin secretion, lower blood glucose levels, decreased growth hormone and IGF-1 

(insulin-like growth factor 1) secretion (Koubova et al., 2003). Concomitantly, CR is known to 

decrease growth, when applied to young animals (Masoro 2005), as well as fertility and 

reproduction-related hormones (Nalam et al., 2008, Barzilai et al., 2009). Overall, CR has been 

shown to improve longevity and resistance to stress in animal models, but, though some 

epidemiological data exists, its long term potential benefits in human, except for weight loss 

purposes, are yet unproven and contested (Smith et al., 2010). Increasing evidences supports, 

the notion that CR reduces diseases-related mortality by staving off cardiovascular disease, 

malignancy, diabetes and neurodegeneration (Calabrese et al., 2009).  

Currently, there are also two active randomized non-human primate studies, to assess the 

benefits of CR on longevity in rhesus monkeys (Macaca mulatta) (Smith et al., 2010). In these 

studies, CR effectively lowered incidence of neoplasia, cardiovascular disease and type 2 

diabetes and lowered body weight in both studies (Mattison et al., 2012). In humans is difficult 

to definitively answer whether or not CR prolongs life, because of the ethical and logistical 

limitations of research design. The majority of work has been conducted on healthy, middle 

age, non-obese (normal or overweight) men and women, with a significant amount of 

investigations utilizing data obtained from Comprehensive Assessment of Long Term Effects of 

Reducing Caloric Intake (CALERIE) program (Trepanowski et al., 2011); this program 

investigates the adaptive responses of CR on free-living humans (Holloszy et al., 2007). In 

addition to the CALERIE program, another investigation of importance, Biosphere 2, contains 

subjects aged from 27-67 years (Walford et al., 2002). These subjects lived in enclosed about 3 

years “ecological miniworld” for 2 years (Hollosky et al., 2007). Food intake was subnormal due 
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to the inability to grow enough food for ad libitum consumption; hence, subjects followed a CR 

plan by default. Being these long-term beneficial effects eventually proven, the successful 

application of CR to humans for long periods of time would be unlikely to the majority of the 

population, due to the severity of the restriction required. This fact led to the interest in 

developing CR mimetics, which could provide the pro-longevity benefits without the actual 

restriction (Ingram et al., 2006).   

 

1.2.2. Mechanisms underlying caloric restriction’s beneficial effects 

Although the metabolic and physiological changes induced by CR have been investigated 

for over 70 years, the precise mechanism by which it is able to slow the progression of age-

related degeneration remains a subject of much debate. Here in we will summarize our current 

understanding, including recent findings that implicate specific enzymes and signaling 

pathways in the process.  

 

1.2.2.1. Mitochondrial biogenesis 

Recently, the effect of CR on mitochondrial biogenesis has been questioned, since the 

relationship between the decreases in metabolic rate in order to reduce oxidative stress is not 

well understood. Apparently, this mechanism may be contradictory, and several studies show 

that CR promotes the increase of the mitochondria number and activity (Speakman et al., 

2011). The peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α) 

regulates genes involved in energy metabolism. This protein interacts with the peroxisome 

proliferator-activated receptor-gamma (PPAR-γ) allowing interaction of this protein with 

multiple transcription factors. The complex PGC-1α/PPAR-γ was widely described as a 

mediator of mitochondrial biogenesis (Song et al., 2009, Manzanero et al., 2011). Studies have 

concluded that CR does not reduce the metabolic rate, as previously thought, but actually 

increases it, and this increase is responsible for its buffering effect on oxidative stress. 

 

1.2.2.2. Oxidative stress 

ROS are formed under physiological conditions and in proportions controlled by cellular 

defense mechanisms. These chemical structures have an unpaired electron, making them 

unstable and with an enormous capacity to react to nonspecifically combine with numerous 

molecules, that comprise the cell structures and derivatives of each, leading to oxidation of 

proteins, lipids and DNA (Speakman et al., 2011). These oxidative damages are strongly related 

to aging and the pathogenesis of several neurodegenerative diseases such as those mentioned 

above. And thus, reducing the metabolic rate following a CR system could decrease the 
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consumption of O2, resulting in decreased formation of ROS and probably increased longevity 

(Heilbronn et al., 2003). The mechanism by which CR decreases the formation of ROS is still 

unclear, but many are the inferences that one can already point out. In accordance with this, it 

is thought that CR reduces the energy flow and consequently lower levels of ROS, as well as, 

the rate of oxidative damage to vital tissues, thus promoting a reduction in energy metabolism 

in basal metabolic rate and body temperature central (Redman et al., 2008). The brain is 

particularly susceptible to oxidative stress due to increased mitochondrial activity (Manzanero 

et al., 2011). Furthermore, abundance of lipids in the CNS makes it a major target of this 

oxidative damage and plays an important role in numerous neurodegenerative diseases, as the 

damaged molecules tend to accumulate in long-lived, post-mitotic neurons, providing a 

connection between age and oxidative stress in the brain (Manzanero et al., 2011, Speakman 

et al., 2011). 

 

1.2.2.3. Sirtuins 

Sirtuins (SIRT), SIRT1 to SIRT7, are NAD+ dependent deacetylase that appear to regulate 

activity of many proteins that are related to energy metabolism, cell survival and longevity 

(Michan et al., 2007). Studies have shown that there is a correlation between the increased 

content of these enzymes in different tissues and nutritional status, since most of the cellular 

functions are depend on NAD+ (Maalouf et al., 2009, Thu et al., 2010). One potential 

mechanism that might mediate the beneficial effects of CR on brain health is the activation of 

the nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase SIRT1 (Bishop et 

al., 2007, Lavu et al., 2008).  

 

1.2.2.4. Neurotrophic factors and neurogenesis 

Recently, studies have shown that the levels of certain neurotrophic factors, especially 

brain-derived neurotrophic factor (BDNF), increases in areas of the hippocampus and cortex of 

rats kept under CR (Lee et al., 2000). BDNF and other neurotrophic factors are known to 

protect neurons against excitotoxic, oxidative and metabolic insults in various experimental 

models of neurodegenerative diseases (Mattson et al., 1997). During the last decade, several 

researchers have described the brains of adult mammals, proving the existence of populations 

of neural progenitor cells (NPC). This premise has come to reinforce the idea that neurogenesis 

does not occur only in brain development and that there is a continuous process throughout 

life (Kuhn et al., 1996). In fact, new-born neurons are functionally integrated in the brain 

throughout the adult life, constituting an adaptive process to challenges imposed by 

physiological and/or environmental alterations, and not merely with restorative functions 
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(Lledo et al., 2006). In the CNS, aging results in a precipitous decline in adult neural 

stem/progenitor cells and neurogenesis, with concomitant impairments in cognitive functions 

(van Praag et al., 1999). However, it was shown that CR increases the number of neural cells 

newly formed in the dentate gyrus of the hippocampus of mice (Gomez-Pinilla 2008). In this 

study, additional data also indicated a higher production of BDNF, other beneficial effect of CR 

on the NPC. In addition, oxidative stress decreases BDNF levels and there by adversely affects 

synaptic plasticity (Gomez-Pinilla 2008). On the other hand, CR decreases oxidative stress, 

leading to increased regulation of BDNF levels in the hippocampus, which is a key element of 

neurogenesis in the hippocampus, resulting in increased synaptic plasticity, making the process 

of learning and memory (Park et al., 2011). However, the functional consequences of CR on 

neurogenesis are yet to be discern. 

 

1.2.2.5. Metabolic reprogramming 

The inverse linear relationship between calorie intake and lifespan suggests that 

regulators of energy metabolism are important in the actions of CR. Studies in several tissue-

specific show changes in energy metabolism with CR, suggested that the metabolic 

reprogramming plays a critical role in the mechanism of aging retardation and promotes 

health and longevity (Anderson et al., 2010). Other studies found that CR involves a 

coordinated increase in the expression of genes that are involved in energy metabolism. These 

changes have been reported in several tissues such as skeletal muscle, white adipose tissue 

and heart.  Furthermore these changes suggest an increase in mithochondrial biogenesis and 

that resting energy metabolism at the organ level may be increased under CR (Anderson et al., 

2010). Moreover, these alterations are directly correlated with the manner in which energy is 

generated and how it is spent. A key metabolic change during CR is a shift from carbohydrate 

metabolism to fat metabolism (Cao et al., 2001, Chen et al., 2008). How this shift occurs is 

interesting because overall substrate oxidation must balance intake plus synthesis. Animals on 

CR have lower intake of all calories, including those from fat, this implies that to elevate their 

overall fatty acid oxidation, they must use some of the ingested energy to synthesize fat, which 

can then be mobilized (Duffy et al., 1989, Masoro et al., 1992). 

 

1.2.2.6. Inflammation 

Aging and several neurodegenerative diseases that are related to it are characterized by 

high levels of various inflammatory mediators (Qiu et al., 2010). The activation of nuclear 

factor kappa B (NF-κB) is the central component of the inflammatory process (Maalouf et al., 

2009). The NF-κB is composed of several regulatory subunits (Perkins 2007), which mediate 
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neuroprotection and the process of apoptosis, depending on the function of the subunit 

(Kaltschmidt et al., 2005). Thus, activation of this component, triggered by ROS for example, 

promotes increased transcription interleukin-1 beta (IL-1β), interleukin-2 (IL-2), interleukin-4 

(IL-4), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), tumor necrosis factor-beta 

(TNF-β), pro-inflammatory enzymes such as cyclooxygenase-2 (COX-2), and inducible nitric 

oxide synthase (iNOS) in several tissues, including brain (Valerio et al., 2006). Studies indicate 

that CR suppresses the expression and activation of NF-κB, a SIRT1-dependent process 

blocking the synthesis of interleukins and TNF-α and TNF-β and suppressing the activity of 

COX-2 and iNOS both in animal models and humans, diminishing the state of systemic 

inflammation and chronic systemic diseases associated to non-infectious inflammation 

(Maalouf et al., 2009, Manzanero et al., 2011). 

  

1.2.2.7. Autophagy 

Further evidence demonstrates that CR as a dietary anti-aging intervention stimulates 

autophagy, a highly regulated intracellular process involved in the turnover of most cellular 

constituents and in the maintenance of cellular homeostasis in several species (Bergamini et 

al., 2007, Hansen et al., 2008, Blagosklonny 2010). Increasing evidence show that autophagy is 

involved in anti-aging mechanisms of CR (Donati 2006). It is well established that the basal 

autophagic activity of living cells decreases with age, thus contributing to the accumulation of 

altered macromolecules during aging (Marino et al., 2008). Autophagy deficiency contributes 

to different aspects of the aging phenotype and to the aggravation of detrimental age-related 

diseases (Cuervo 2008), such as Alzheimer's disease (AD), Parkinson's disease (PD) and 

Huntington's disease (HD) (Contestabile et al., 2004). Thus, CR prevents the age-depend 

decline of autophagic proteolysis (Bergamini et al., 2007). 

 

1.2.2.8. Neuroendocrine alterations 

The major neuroendocrine effect of CR is the increase of neuropeptide Y (NPY), in the 

arcuate nucleus of the hypothalamus (ARC) (Minor et al., 2009). The hypothalamus has a key 

role in the control of body homeostasis, neuroendocrine outputs and food intake, being NPY 

the most potent hypothalamic orexigenic peptide (Wieland et al., 2000). Aging is associated 

with reduced levels of NPY in the brain in general and in response to fasting (Gruenewald et 

al., 1996). In addition, reduced NPY is associated with neurodegenerative diseases (Rose et al., 

2009, Decressac et al., 2010, Decressac et al., 2012) and the development of “anorexia of 

aging”, characterized by reduced food intake and body weight, responsible for age-associated 

under nutrition and physical deterioration (Matsumoto et al., 2000, Morley et al., 2001). On 
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the other hand, the increase in NPY can lead to several physiological modifications similar to 

those induced by CR. Central administration of NPY has been shown to induce hyperphagia 

(Stanley et al., 1986, Beck et al., 1992). These evidences suggest that NPY may play an 

important role in CR-induced lifespan, and could be a CR mimetic. On other hand, CR also 

increases the circulating levels of ghrelin, other orexigenic peptide that is produced by the 

stomach in response to fasting (Lutter et al., 2008). During CR, ghrelin levels rise and recent 

studies show that the actions of ghrelin are elevated during negative energy balance, as 

ghrelin primarily functions to shift an organism from negative to neutral energy balance (Briggs 

et al., 2011). In addition to promoting food intake after fasting (Salome et al., 2009), ghrelin 

helps to maintain blood glucose levels during CR (Zhao et al., 2010). On the other hand, diet-

induced obesity suppresses many of the metabolic actions of ghrelin, including food intake and 

growth hormone secretion (Perreault et al., 2004, Briggs et al., 2010). These studies imply that 

metabolic status plays a fundamental role in the effectiveness and actions of ghrelin in the 

body, whereby negative energy balance enhances ghrelin action and diet-induced obesity 

attenuates ghrelin action. These evidences suggest that ghrelin may also play as a great 

potential CR mimetic. Leptin, a peptide hormone secreted mainly from adipocytes, was first 

identified as a molecule that regulates appetite and energy expenditure via the CNS. 

Dysfunctions on its signaling result in hyperphagia and obesity (Zhang et al., 1994, Schwartz et 

al., 2000). Although the primary role of leptin is as a long-term regulator of body fat via 

hypothalamic control of feeding, leptin also suppresses the gonadal, somatotropic, and the 

thyroid axes, thus reduced leptin may be a critical modulator of CR and longevity (Shimokawa 

et al., 1999, Shimokawa et al., 2001). Many studies have reported that CR reduces circulating 

levels of IGF-1 and insulin (and glucose) (Argentino et al., 2005a, Argentino et al., 2005b). The 

reductions in IGF-1 and insulin signaling that occur under CR have been suggested to be 

causally linked to the lifespan enhancing effects of CR. This was initially based on observations 

in C. elegans and D. melanogaster that mutants with defects in the intracellular IGF-1/insulin 

signaling pathway had increased lifespan (Berryman et al., 2008, Kenyon 2011). 

 

1.3. Autophagy 

Cell growth and homeostasis are governed by tightly regulated biosynthetic and catabolic 

processes (He et al., 2009, Yang et al., 2013). Consequently, depending on the availability of 

nutrients and environmental conditions, cells have specific mechanisms to regulate either 

growth and biosynthesis, or constituents’ turnover and nutrient recycling. There are two main 

pathways for cellular constituents’ clearance in eukaryotic cells (Klionsky et al., 2000, 
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Mizushima 2004): the ubiquitin-proteasome system (UPS), which is mostly responsible for the 

turnover of short-lived proteins (Hershko et al., 1998) and the lysosomal system, the only 

known mechanism that cells possess to dispose long-lived proteins, protein aggregates and 

intracellular organelles. At least four different delivery pathways of substrate proteins and 

cytosolic constituents are known (Mizushima 2004). The first one is endocytosis/phagocytosis, 

responsible for the degradation of extracellular materials and cell membrane proteins. The 

other three, which are characterized by the sequestration of cytosolic components and 

subsequent delivery to the lysosome, are intended for the turnover of intracellular 

constituents and are considered different types of autophagy. The term autophagy, coined 

from the Greek words of αυτς ('autos', self) and φαγειν ('phagein'), meaning 'eating', was first 

used in 1963 by Christian de Duve to establish a nomenclature for different cellular pathways 

and compartments in the endosomal-lysosomal pathway (Jaeger et al., 2009, Klionsky 2008). 

Recently, increasing attention has been focused on the role of autophagy on metabolism of 

misfolded proteins and neuronal cell death, in neurodegeneration. 

Autophagy is involved in the intracellular turnover of proteins and cell organelles and has 

an important role in regulating cell fate in response to stress (Shintani et al., 2004, Levine 

2005). Autophagy is a primordial and highly conserved intracellular process that occurs in all 

species and cell types studied thus far. Three main types of mammalian autophagy have been 

identified and implicated in CNS injury and disease: chaperone mediated-autophagy (CMA), 

microautophagy and macroautophagy (Mizushima 2004, Yang et al., 2005). In CMA, target 

proteins, containing a specific consensus peptide sequence (KFERQ) are recognized by a 

chaperone complex, which delivers them to the lysosome, across the membrane, through a 

specific receptor – lysosomal-associated membrane protein 2 (LAMP-2A) (Li et al., 2011). In 

microautophagy, the lysosomal membrane directly invaginates or exvaginates, in order to 

sequester the cytosolic component and buds into the lysosomal lumen for degradation (Kunz 

et al., 2004). Finally, macroautophagy, the most well studied type of autophagy (Yu et al., 

2008), is characterized by the formation of a double membrane vesicle named 

autophagosome, which engulfs long-lived proteins and/or organelles, and, after fusion with a 

lysosome, degrades them. 

Other specialized forms of autophagy exist, such as mitophagy, direct targeting of 

mitochondria to lysosomes (Kanki et al., 2008); pexophagy, selective degradation of 

peroxisomes (Iwata et al., 2006, Sakai et al., 2006); xenophagy, degradation of intracellular 

bacteria and viruses (Levine 2005, Huang et al., 2007); crinophagy, lysosomal fusion with re-

directed exosomes (Sandberg et al., 2007); microautophagy direct engulfment of cytosol by 

lysosomes (Marzella et al., 1981, Ahlberg et al., 1985); and piecemeal microautophagy of the 
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nucleus, partial sequestration and degradation of the nucleus (Kvam et al., 2007), but most of 

them have only been observed in yeast or under special conditions. Briefly, the different types 

of autophagy mentioned differ in mechanism whereby substrates are delivered to lysosomes, 

their regulation and their selectivity. 

 

1.3.1. Macroautophagy machinery 

The macroautophagy process (hereafter referred to as autophagy) was firstly observed in 

mammalian cells, in the late 1950’s, through electron microscopy (Clark 1957, Novikoff 1959). 

Although autophagy was first identified approximately 50 years ago, the molecular 

understanding of it only started in the past decade (Klionsky 2007), based on the discovery of 

autophagy-related genes (ATG), genes initially discovered in yeast followed by the 

identification of homologs in higher eukaryotes (Yang et al., 2009). Among Atg proteins, one 

subset, including Atg1 to Atg10, Atg12 to Atg14 and Atg16 to Atg18, is essential for 

autophagosome formation in mammalians cells, as shown in Figure 1.2, and is referred to as 

the core molecular machinery (Xie et al., 2007). Autophagy is a complex pathway conserved 

through evolution, where the coordinated actions of autophagic and non-autophagic proteins 

lead to the induction of autophagosome formation (I), nucleation of the membrane (II), 

autophagosomal elongation (III), cargo selection (IV) and closure of autophagosomal vesicles 

and fusion to lysosomes (V). In this dissertation the main focus will be on mammalian 

autophagy. 

Induction of autophagosome formation step can occur through mTOR (mammalian 

target of rapamycin)-dependent and independent pathways. The mTOR is an evolutionarily 

conserved serine/ threonine protein kinase complex that comprises the mTOR complex 

(mTORC) 1 (mTORC1) and mTORC2. The mTORC1 negatively regulates autophagy (Laplante et 

al., 2009). This complex integrates upstream nutrient and growth factor-derived signals, to 

control cell growth, from several pathways, such as insulin, class I phosphatidylinositol-3-

kinase (PI3K) and protein kinase B (PKB) (also known as Akt) (Laplante et al., 2009, Sengupta et 

al., 2010). Upon nutrient rich conditions, this kinase is active and therefore autophagy is 

downregulated. An alternative pathway for direct induction of autophagy, in an mTOR 

independent way, can occur by different stimuli of the class III PI3K or the Atg6-Beclin-1, crucial 

for the nucleation step. 

The nucleation step overall, begins with the formation of the phagophore, a small portion 

of membrane, near the endoplasmic reticulum (ER), which then elongates to engulf the cargo 

and culminates with the formation of a whole vesicle, the autophagosome (Beau  et al., 2011). 
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This process starts with the interaction between the unc-51 like kinase (ULK) complex (ULKs-

Atg13-FIP200) and the class III PI3K complex located at the isolation membrane (IM). The 

complex contains the class III PI3K subunits, mVps34 and p150; along with the protein Beclin-1 

working as an interacting partner (Volinia et al., 1995, Kihara et al., 2001). This kinase plays a 

crucial role in the phosphoinositide phosphatidylinositol-3-phosphate (PI(3)P) phosphorylation, 

a phospholipid required for autophagosome formation (Zeng et al., 2006).  

 

 

Autophagosomal elongation step is contingent on the coordinated actions of several core 

autophagy machinery proteins involved in two ubiquitin-like conjugation systems: the Atg12-

Atg5 and the light chain-3B (LC-3B)-phosphatidylethanolamine(PE) system (Xie et al., 2008, Yin 

et al., 2008). In the Atg5-Atg12 system, Atg12 is activated by Atg7, an ubiquitin-activating 

enzyme (E1)-like protein, and conjugated to Atg5 via Atg10, an ubiquitin carrier protein (E2)-

like protein (Mizushima et al., 1998). Lastly, Atg12-Atg5 forms a multimer complex with Atg16L 

(forming Atg12-Atg5-Atg16L) (Kuma et al., 2002, Yin et al., 2008), which is localized to the 

outer portion of the autophagossomal membrane (Hanada et al., 2007). Though crucial for 

pre-autophagosomal elongation, once a fully functional autophagosome forms, the Atg12-

Atg5-Atg16L complex dissociates (Ravikumar et al., 2010). In the LC-3B-PE system, LC-3B is 

Figure 1.2 - The core molecular machinery of autophagy in mammalian cells.  
Adapted from (Ciu et al., 2013). 
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initially synthesized as a precursor (Pro LC-3B), as it possesses an additional arginine residue at 

the C terminus that is immediately cleaved by Atg4B, a cysteine protease, to become LC-3BI 

(Tanida et al., 2004). LC-3BI is conjugated with Atg7 by a thioester bond, and finally with Atg3, 

another E2 ubiquitin conjugating enzyme, to form an amide bond with PE (Kirisako et al., 2000, 

Tanida et al., 2004), an important phospholipid found in biological membranes. Whereas the 

unconjugated form of LC-3B, known as LC-3BI resides in the cytosol, the conjugated form, LC-

3BII, is localized to the autophagosomal membrane, thus making it a very effective as an 

important marker for autophagy (Shibata et al., 2010). 

The cargo selection step involves cargos recognized through interactions with specific 

receptor proteins. Further evidences suggest that the autophagy selectivity related to 

ubiquitinated substrates may be mediated by p62/sequestosome 1 (p62/SQSTM1) (Bjorkoy et 

al., 2005, Pankiv, et al., 2007), previously reported to interact with ubiquitinated proteins for 

UPS degradation (Seibenhener et al., 2004, Babu et al., 2005) and found to co-localize to 

ubiquitinated protein aggregates, LC-3B and lysosomes. Also, the formation of 

autophagosomes proved to be dependent of p62 even upon starvation (Bjorkoy et al., 2005). 

The p62 is a signaling-adaptor protein which has a multidomain structure that allows it to 

interact with a myriad of other proteins, namely microtubule-associated LC-3B, which is 

recruited to the autophagosome membrane, and ubiquitin, among others, as well as itself, 

leading to oligomerization. The p62 binds to LC-3B, which in turn, integrates the 

autophagosome membrane and is ultimately degraded upon the autophagy late stages, 

leading to the concomitant degradation of p62 and proteins connected to it (Weidberg et al., 

2011). Also, apparently, p62 acts as a “garbage disposer” in the cytoplasm, building up 

aggregates of poly-ubiquitinated proteins, to enhance their degradation by autophagy. But at 

the same time, excess p62 delays the proteasomal degradation of poly-ubiquitinated 

aggregates (Korolchuk et al., 2009, Moscat et al., 2009). This mechanism implies that 

autophagy may not only be a complementary process to UPS, but also a major alternative 

process, by enhancing the clearance of ubiquitinated substrates. A failure on the cargo 

recognition step can be responsible for the ineffectiveness of this pathway (Martinez-Vicente 

et al., 2010). 

The closure and maturation step involves the sealing of the membrane in order to form 

complete autophagosomes, which then fuse to endosomes and/or to lysosomes. This last step 

of autophagy involves the fusion between autophagosomes and lysosomes, to form 

autolysosomes, where the cargo is degraded (Tong et al., 2010). This process is dynamic and 

mediated by the cytoskeleton, namely, the microtubules network, to which the 
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autophagosomes are associated. There, the fusion event requires the LAMP-2 and the small 

guanosine triphosphatase (GTPase) Rab7 (Jager et al., 2004). Rab7 associates with 

autophagosomes and mediates the fusion event through LAMP-2, in a way resembling 

endosome maturation (Gutierrez et al., 2004, Jager et al., 2004). Posteriorly to the 

autolysosome formation, with the fusion between the lysosome and the outer membrane of 

the autophagosome, the inner membrane and the cargo, including bound LC-3BII, are 

degraded by several proteases, namely cathepsins B, D and L (Tanida et al., 2005). The 

products of degradation are then released to the cytosol, potentially leading to the activation 

of mTOR and the disassembly of the autolysosome (Tong et al., 2010).  

Importantly, an increased number of autophagosomes may not necessarily correspond to 

an increased autophagic activity, but instead a blockage in the autophagy pathway 

downstream of autophagosome formation, such as in the maturation step (Cuervo 2004, 

Boland et al., 2008, Mizushima et al., 2010). 

 

1.3.2. Signaling pathways regulating autophagy 

Autophagy is known to be induced by a wide variety of stimuli, such as nutrient and 

growth factor depletion, hypoxia, drug and radiation treatment. For the same reason, tight 

regulation mechanisms exist to control its induction (Weidber et al., 2011). The principal 

pathway, called of canonical one, culminates in the inhibition of mTOR, but other pathways 

exist, that induce autophagy downstream of mTOR, at known, or yet unknown points. Overall, 

there is still much to uncover regarding the pathways and factors regulating the induction of 

autophagy in mammalian cells, as well as some discrepancies, which may be related to cell 

type specificity.  

 

1.3.2.1. The class I PI3K/Akt/mTORC1 pathway 

As previously stated, mTOR acts as a core regulator of the balance between cell growth 

and autophagy (Jung et al., 2010), thus, it is understandable that many cell signaling pathways 

interact with mTOR, in response to different intra and extracellular conditions. The canonical 

pathway leading to mTOR activation, and negatively controlling autophagy, is the 

PI3K−Akt−mTORC1. Upon insulin or IGF-1 binding to the insulin receptor, insulin receptor 

substrates (IRS) 1/2 (IRS1/2) are phosphorylated and recruited to the membrane, forming a 

docking scaffold for class I PI3K (He et al., 2009). This class of enzymes preferentially reacts 

with phosphatidylinositides(4,5)bisphosphate (PI(4,5)P2), phosphorylating them and leading to 

the production of phosphatidylinositides(3,4,5)trisphosphate (PI(3,4,5)P3) (Kong et al., 2010). 
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This step is regulated by phosphatase and tensin homologue (PTEN), which revert the action of 

PI3K (Arico et al., 2001). Generation of PI(3,4,5)P3 increases membrane recruitment of Akt and 

its activator, phosphoinositide-dependent protein kinase 1 (PDK1), which phosphorylates the 

prior. The mTORC2 also plays a role at this point, contributing to the activation of Akt, though 

its upstream regulating mechanisms remain unknown (Dunlop et al., 2009). After activation, 

Akt phosphorylates protein 2 from the tuberous sclerosis complex (TSC) TSC2, preventing it 

from complexing with TSC1. When these two proteins are complexed, forming the TSC1/2 

complex, they function as a GTPase activating protein (GAP) for Ras homologue enriched in 

brain (Rheb), leading to the conversion of bound guanosine trisphosphate (GTP) into 

guanosine diphosphate (GDP) and, therefore, preventing it from activating mTORC1 (Garami et 

al., 2003). Hence, with an active Akt, TSC1/2 is inhibited, which allows GTP-bound Rheb to 

activate mTOR and prevents autophagy (He et al., 2009). 

 

1.3.2.1. The AMPK pathway 

The canonical pathway has several branching points that connect it to other response 

mechanisms. One of these mechanisms may be generically called the energy-sensing 

mechanism and acts primarily through adenosine monophosphate (AMP)-dependent protein 

kinase (AMPK) (Yang et al., 2010b). During intracellular low-glucose periods, mitochondria 

produce less adenosine triphosphate (ATP), leading to an increase of the AMP/ATP ratio 

(Hardie et al., 2003). Upon this increase, liver kinase B-1 (LKB-1, also known as 

serine/threonine kinase 11) potentiates AMPK, which induces the formation of TSC1/2 

complex and the consequent inhibition of mTORC1 through Rheb (Corradetti et al., 2004). Plus, 

the LKB-1-AMPK pathway stabilizes the cell-cycle inhibitor p27kip1, which also induces 

autophagy (Liang et al., 2007). It was shown that AMPK also inhibits mTORC1 in a TSC1/2-

independent manner, through phosphorylation of raptor, one of the constituents of mTORC1. 

This phosphorylation allows the binding of 14-3-3 proteins to raptor, thus inhibiting its 

assembly with mTOR and recruitment of the other mTORC1 components (Gwinn et al., 2008). 

Furthermore, a recent study has shown that AMPK directly phosphorylates and activates ULK1, 

inducing autophagy, upon glucose starvation (Kim et al., 2011). AMPK has also been implicated 

in pathways responsive to the increase of the intracellular Ca2+ and hypoxia. The calcium 

response is dependent on the activation of calcium-activated calmodulin-dependent kinase 

kinase-β (CaMKKβ), which directly activates AMPK (Hoyer-Hansen et al., 2007), while hypoxia 

response relates mainly to the decrease in AMP/ATP ratio in hypoxic cells (Liu et al., 2006). 

Hypoxia, as well as other cellular stresses, also induces autophagy in an AMPK-independent 

manner, through hypoxia-inducible factor (HIF) activation of regulated in development and 
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DNA damage (REDD) 1 and 2 (REDD1 and REDD2), which induce the TSC1/2 complex (Dunlop 

et al., 2009).  

 

1.3.2.3. Amino acid-sensing mechanisms 

Being autophagy a process intended to respond to low-nutrient conditions, it would be 

expected that the levels of amino acids would have a close interaction with the autophagy-

regulating mechanisms. Indeed, several factors have been shown to respond to amino acid 

levels, either inducing or inhibiting autophagy. Vps34, a Class III PI3K with an important role in 

mediating the autophagic machinery induction downstream of ULK−Atg13−FIP200 complex, 

was the first protein to be linked to nutrient-sensing within the mTORC1 pathway (Dunlop et 

al., 2009). But curiously, contrary to what would be expected, it was shown to respond to 

amino acid signaling, inducing mTOR kinase activity and inhibiting autophagy (Byfield et al., 

2005, Nobukuni et al., 2007). This contradiction may be related to the existence of different 

PI3K protein sub-populations or complexes in the cell, carrying out different functions, under 

different signals (He et al., 2009). Otherwise, Vps34 activation by ULK and consequent 

production of PI3P may also function as a negative feedback control, reactivating mTOR and 

restricting autophagy induction. The way through which Vps34 activates mTOR is not fully 

established yet, but it may presumably be dependent on the recruitment of FYVE and PX 

domain-containing proteins, by PI3P (Nobukuni et al., 2007). Though, the link between amino 

acids signaling and Vps34 has been attributed to calcium increase, which binds calmodulin and, 

in turn, activates Vps34 (Gulati et al., 2008). Another contradiction rises this time regarding 

calcium effects on autophagy induction: while calcium increase induces AMPK to activate 

ULK1, the TSC1/2 complex and inhibit mTORC1, leading to autophagy, it also induces Vps34 to 

activate mTORC1, inhibiting autophagy. Byfield and his collaborators have previously shown 

that the Vps34 activating effect on mTORC1 is abolished under glucose starvation conditions 

and, consistently, by AMPK activation (Byfield et al., 2005). Thus, it is assumable that the 

increased Ca2+-dependent inhibitory effect on autophagy, being either AMPK- dependent 

(Hoyer-Hansen, et al., 2007) and/or –independent (Grotemeier et al., 2010), may overcome 

the Vps34 activating effect on mTORC1, upon starvation. Another factor linking amino acid 

availability to mTORC1 is the mitogen-activated protein kinase kinase kinase kinase-2 

(MAP4K2), a mitogen-activated protein kinase (MAPK) family protein. MAP4K2 overexpression 

was found to increase the phosphorylation of S6K1, a substrate of mTORC1, while its 

knockdown decreased S6K1 phosphorylation, after amino acid stimulation (Findlay et al., 

2007). Though, no direct link has yet been established between MAP4K2 and autophagy 

induction. Ras-related small GTPases Rag has been found to play an important role in amino 
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acid signaling, also positively regulating mTORC1 activation (Kim, et al., 2009). But rather than 

modulating its kinase activity, when induced by amino acids, they appear to simply translocate 

mTOR to a perinuclear region (Sancak et al., 2008). Yet, it is not known how this translocation 

increases mTORC1 activity (Kim et al., 2009) and also, no direct connection has been made 

with autophagy induction.  

 

1.3.2.4. The MAPK/ERK pathway 

Other studies demonstrate that the Ras/MAPK pathway also contributes to the canonical 

pathway regulating autophagy, since, upon insulin receptor stimulation, the small GTPase Ras 

is activated, leading to both the induction of class I PI3K activity and    Raf-1/MAPK cascade 

activation (Furuta et al., 2004). Although class I PI3K signals through Akt, as previously 

described, Raf-1 (MAP3K) phosphorylates MEK 1/2 (MAP2K), which in turn phosphorylates 

extracellular signal-regulated kinases 1 and 2 (ERK 1/2). ERK 1/2 then phosphorylates TSC2, 

inhibiting its assembly with TSC1, thus allowing Rheb to activate mTORC1 (Furuta et al., 2004, 

Ma et al., 2005). A substrate of ERK, ribosomal s6 protein kinase α 1 (RSK1, or p90) has also 

been found to phosphorylate TSC2, contributing to the activation of mTORC1 (Roux et al., 

2004, Kwiatkowski et al., 2005). Plus, both ERK 1/2 and RSK1 phosphorylate S6K1 (Steelman et 

al., 2011), further indicating their pro-proliferative role in this pathway. Conversely, Ogier-

Denis and collaborators have found that ERK 1/2 stimulates autophagy in the human colon 

cancer cell line HT-29 (Ogier-Denis et al., 2000). They have shown that ERK 1/2 phosphorylates 

G-protein subunit α (Gα)-interacting protein (GAIP), thus leading to accelerated GTPase activity 

of inhibitory Gα-3 (Gαi3). When in heterotrimeric GDP-bound form, rather than GTP-bound, 

Gαi3 induces the formation of autophagosomes, so, as GAIP induces the accumulation of the 

GDP-bound form, it induces autophagy (Ogier-Denis et al., 2000). It was also shown that this 

ERK1/2 effect was dependent on amino acid starvation, since amino acids lead to the inhibition 

of Raf-1 (Pattingre et al., 2003). This discrepancy may be due to cell type specificity. 

 

1.3.2.5. The cAMP-Epac-PLC-ε-IP3 and Ca2+-calpain-Gαs pathways 

Williams and his collaborators suggested a role for inositol triphosphates (IP3) in the 

regulation of autophagy, independently of mTORC1 (Williams et al., 2008). These authors first 

observed that lithium-induced autophagy was dependent on inositol monophosphatase 

(IMPase) inhibition and thus, on low IP3 levels, which had no effect on mTOR or S6K1 activation 

(Sarkar et al., 2005). Consequently, they proposed a cyclical mTOR-independent pathway 

negatively regulating mammalian autophagy, comprising cyclic adenosine monophosphate 

(cAMP)−exchange protein activated by cAMP (Epac) −phospholipase C-ε (PLC-ε) −IP3 and 
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Ca2+−calpains−stimulatory protein G subunit α (Gαs) (Williams et al., 2008, Sarkar et al., 2009). 

Basically, an increase in cAMP caused by Gαs-induced adenylate cyclase (AC) will activate Epac, 

which in turn activates a small GTPase Ras-related protein Rap2B, which will further induce 

PLCε and increase the production of IP3. As IP3 induces Ca2+ release from the ER, the 

intracytosolic concentration of Ca2+ increases, leading to the activation of a family of Ca2+-

dependent cystein proteases called calpains. Active calpains cleave and activate Gαs, which 

creates a positive feedback loop effect. Thus, inhibiting this pathway, would lead to autophagy 

induction downstream mTORC1 (Sarkar et al., 2009). The fact that this model implies 

intracytosolic Ca2+ decrease in autophagy induction conflicts with what has been described 

regarding Ca2+ increase inducing autophagy in AMPK-dependent and -independent manner 

(Grotemeier et al., 2010).  

 

1.3.2.6. Ras/cAMP-dependent PKA pathway 

Besides mTORC1, the Ras/protein kinase A (PKA) also regulates autophagy (Kopperud et 

al., 2003, Budovskaya et al., 2004). This pathway plays a key role in cell proliferation, stress 

response, and longevity (Thevelein et al., 2000). In yeast, PKA contains a heterotetramer that is 

composed by a regulatory subunit Bcy1 and three apparently redundant catalytic subunits, 

Tpk1, Tpk2, and Tpk3. Thus, in response to nutrient rich conditions, two redundant Ras 

GTPases, Ras1 and Ras2, are activated and subsequently stimulate adenylate cyclase to 

produce cAMP. Then cAMP is able to bind to the regulatory PKA subunit, Bcy1, allowing its 

dissociation from the PKA catalytic subunits (Portela et al., 2006), and consequently the 

activation of PKA. When this activation occurs, the autophagy induced by mTOR inhibition is 

suppressed, indicating that PKA is a potent negative regulator of autophagy (Budovskaya et al., 

2005, Yorimitsu et al., 2007). In addition, it was demonstrated that Atg family proteins are PKA 

substrates. Apparently, in the presence of nutrients, PKA phosphorylation promotes the 

presence of Atg1 and dissociated from the phagophore assembly site (PAS), whereas in 

contrast, during nutrients depletion, Atg1 is dephosphorylated and it is localized to the PAS. 

However, it is still unknown if the phosphorylation of these proteins by the PKA is linked to 

autophagy, regulation (Budovskaya et al., 2005). Mammalian PKA negatively regulates 

autophagy either by directly phosphorylating LC-3B (Cherra et al., 2010) or by activating 

TORC1, which inhibits autophagy (Mavrakis et al., 2006). In yeast, the abrogation of the 

conserved mTOR, Ras/cAMP-dependent PKA, that integrate the network of nutrient sensing 

pathways, is known to promote longevity (Gomes et al., 2007, Fontana et al., 2010, Chen et al., 

2011). These signaling pathways are negative regulators of autophagy, reinforcing that 
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autophagy and aging are coordinately regulated by a complex network of different signaling 

pathways, with partial overlapping branches and yet undisclosed hierarchic connections. 

 

1.3.3. Autophagy in the brain 

It has been well established that autophagy regulates important biological functions, such 

as cell survival, cell death, cell metabolism, development, aging, infection and immunity. As 

mentioned above, autophagy is a basic cellular mechanism for recycling of nutrients and is for 

this very reason involved in many physiological processes in higher eukaryotes (Rami 2009). 

Since it has been shown to be a highly conserved cellular process in evolution, it is thus 

possible to assign an important role in the organism's survival and adaptation to 

environmental changes (Yang et al., 2010a). There are numerous evidences showing that 

autophagy is constitutively present in all eukaryotic cells, but their activity may vary between 

different tissues or cell types and it is especially important in terminally differentiated cells 

such as neurons (Rami 2009).  

The role of autophagy in neurons was until recently unknown, despite its known presence 

in neurons (Boellaard et al., 1989, Tasso et al., 1978). Recent findings boosted research on the 

role of autophagy in the CNS, specifically in neurodegenerative diseases. Accumulation of 

autophagic vacuoles (AV) was found in brains of animal models and patients with AD (Cataldo 

et al., 1994, Cataldo et al., 1996, Stadelmann et al., 1999, Yang et al., 2008), PD (Anglade et al., 

1997, Spencer et al., 2009) and HD (Sapp et al., 1997, Kegel et al., 2000). This accumulation of 

AV in late stages of disease was initially incorrectly associated with autophagic cell death 

(Bursch 2000, Bursch et al., 2001), believing now that autophagy has a protective role in 

neurodegenerative diseases and that the term “autophagic cell death” was misnamed, 

occurring in some cases cell death with autophagy but not cell death executed by autophagy 

(Kroemer et al., 2008, Kroemer et al., 2009, Levine et al., 2009). In fact, it is currently accepted 

that an accumulation of AV is not correlated with an excessive autophagy but an impaired 

autophagic process, such as deficient fusion with lysosomes and corresponding degradation 

(Cuervo 2004, Nixon et al., 2005, Boland et al., 2008, Mizushima et al., 2010, Wong et al., 

2010a, Wong et al., 2010b). 

 

1.4. Neuropeptide Y 

In 1982, Tatemoto isolated and sequenced neuropeptide Y (NPY) from extracts of porcine 

brain using a chemical assay for the C-terminal amide fragments (Tatemoto 1982, Tatemoto et 
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al., 1982) (Figure 1.3). NPY is one of the most abundant peptides found in the brain, although it 

is also present in the peripheral nervous system and in other peripheral tissues (Everitt et al., 

1984, Allen et al., 1987, Zukowska et al., 2003). 

NPY is a 36 amino acid peptide exhibiting a carboxyl-terminal amidation. The presence of 

this α-amidated carboxyl terminus was the determinant key for the purification of the NPY-

related peptides (Tatemoto et al., 1978). In addition, the carboxyl-terminal of the peptide is 

responsible for its biological activity while the amino-terminal is involved in receptor affinity. 

The most important characteristic of NPY is the presence of certain amino acid residues, in 

specific tyrosine residues, to adopt a specific three-dimensionnal structure, named the 

pancreatic polypeptide fold (PP-fold) (Blundell et al., 1981). NPY belongs to gastric peptide 

family that includes peptide YY (PYY) and pancreatic polypeptide (PP) (Tatemoto 1982, 

Schwartz et al., 1990). NPY, PYY and PP share 70-50 % homology (Pedrazzini et al., 2003). NPY 

is one of the most evolutionarily conserved neuropeptide while the PP varies considerably 

between species (Larhammar et al., 1992). 

 

 

 

 

 

 

 

 

 
 

1.4.1. Synthesis of neuropeptide Y, metabolization and localization 

Like all polypeptides and proteins, NPY is produced by cleavage of a peptide precursor, 

which is, in turn, synthesized in ribosomes and transported into the lumen of the ER and thus, 

to the Golgi complex (Beck-Sickinger et al., 1995). The NPY gene is located on the human 

chromosome 7 at the locus 7p15.1, and is divided into 4 exons that are separated by 3 introns 

(Minth et al., 1984). In mouse, the NPY gene is located in chromosome 6, locus 6 B3; 6 26.0 cM 

while in rat is localized in chromosome 4, locus 4q24 (Pruitt et al., 2012). The translation of the 

messenger ribonucleic acid (mRNA) results in the synthesis of a pre-pro-neuropeptide Y (Pre-

Pro-NPY), a 97 amino acid precursor (Minth et al., 1984), and this process occurs in the 

secretory granules. Pre-Pro-NPY is further processed to pro-neuropeptide Y (Pro-NPY). The 28 

amino acids signal peptide is cleaved by a signal peptidase enzyme that produces 69 residues 

Figure 1.3 - Structure of human NPY. Human NPY has 36-amino acid peptides, with a carboxyl-terminal 
amidation. This α-amidated carboxyl terminus is essential during the purification of the NPY-related 

peptides. Adapted from (Schwartz et al., 1990). 
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Pro-NPY. The Pro-NPY usually travels to the Golgi complex and further to the trans-Golgi. The 

Pro-NPY undergoes cleavage by proconverting enzymes, prohormone convertase (PC) 1 or 3 

(PC1 or PC3) and/or PC2, releasing the C-Terminal Flanking Peptide of NPY (CPON), NPY 

peptide flanker (Mains et al., 2006). NPY1-39 is further processed to NPY1-37 by carboxypeptidase 

E (CPE) enzyme and amidated by peptidylglycine α-amidating monoxygenase (PAM) to NPY1-36 

or simply NPY that is the biologically active form (Figure 1.4) (Medeiros et al., 1996, Silva et al., 

2002, Mains et al., 2006).  Although this peptide is already in its biologically active form, it can 

be further cleaved by certain peptidases, such as dipeptidyl-peptidase IV (DPP-IV, EC 3.4.14.5) 

or aminopeptidase P (AP-P, EC 3.4.11.9) (Pedrazzini et al., 2003). 

 

 

 
NPY metabolization by DPP-IV productive rise to C-terminal fragments (e.g. NPY2-36), which 

have different receptor-activation/affinity profiles and, thus, different biological activities 

(Medeiros et al., 1996). This exopeptidase belongs to the family of propyl-oligopeptidases and 

is a protease bounded to a plasma membrane that cleaves a peptide bond in the target 

peptide that have a proline amino acid in the penultimate position. Thus, DPP-IV acting on the 

NPY, cleaves the bond Ser-Pro of the terminal amine giving rise to NPY3-36. This peptide loses 

affinity for Y1 receptor and becomes agonist to Y2 and Y5 receptors (Mentlein et al., 1993, 

Medeiros et al., 1994, Medeiros et al., 1996). The AP-P is another peptidase which hydrolyzes 

NPY. The AP-P has two isoforms: while AP-P1 is soluble in the cytosol, the AP-P2 is anchored to 

the plasma membrane. Both hydrolyze the peptide bond between the first and second amino 

acid in the amino terminus of the peptide. The second amino acid is the proline resulting in 

NPY2-36 (Vanhoof et al., 1997, Venema et al., 1997). Peptides NPY3-36 and NPY2-36 can also be 

Figure 1.4 - Schematic biosynthesis of NPY. Adapted from (Silva et al., 2002). 
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degraded by neutral endopeptidase-24-11 being the major cleavage sites and the Tir20 Tir21-

Leu30-lle31 giving rise to biologically inactive peptides and NPY1-20 and NPY31-36 (Yaron et al., 

1968, Medeiros et al., 1994, Medeiros et al., 1996). NPY is one of the most abundant peptides 

expressed in several brain regions (for example hypothalamus, amygdala, hippocampus and 

cerebral cortex), as well as in the periphery (for example liver, heart, spleen, endothelial cells 

of blood vessels), showing both pre- and post-synaptic actions. However, the adrenal medulla 

is the primary source of circulating NPY. 

Within the CNS, NPY is expressed both during development and adulthood. 

Concentrations of NPY have been determined in different brain regions of the rat brain during 

development using radioimmunoassay and chromatography. NPY is detected as early as 

embryonic day 14 in the diencephalon and the brainstem. The concentrations of NPY show a 

rapid post-natal rise in all regions examined (Allen et al., 1984, Woodhams et al., 1985), 

resulting in a widespread expression throughout the brain in adulthood. The distribution of  

NPY in the human (Adrian et al., 1983) and rodent (Allen et al., 1983) CNS is well 

described. NPY is widely expressed within the brain but immunoreactive cell bodies and fibers 

are most prevalent in the cortical and hypothalamic regions (e.g. arcuate nucleus, dorsomedial 

nucleus, paraventricular nucleus), but with a particularly higher expression in the 

hypothalamus (Adrian et al., 1983, Chan-Palay et al., 1985). Within the hypothalamus, NPY is a 

potent orexigenic peptide playing a pivotal role in the physiological control of food intake and 

body weight (Chee et al., 2008).  

 

1.4.2. Regulation of neuropeptide Y expression 

The NPY expression in the hypothalamus is regulated by multiple neural and peripheral 

signals including the food deprivation and hormones. An important factor that influences 

hypothalamic NPY expression is fasting. During food deprivation and food restriction in 

rodents, the expression of orexigenic NPY increases in the ARC (Beck et al., 1990, Brady et al., 

1990, Bi et al., 2003) with the consequent increase of NPY content in the paraventricular 

nucleus (PVN) (Sahu et al., 1988, Beck et al., 1990, Kalra et al., 1993). Moreover, the NPY levels 

return to initial values within 6 to 24 hours after re-feeding (Beck et al., 1990, Kalra et al., 

1993, Sanchez et al., 2008). Additionally, NPY expression in the ARC is regulated by peripheral 

hormones such as insulin, leptin and ghrelin. Insulin and leptin are anorexigenic signals 

produced by the pancreas and white adipose tissue, respectively. Fasting suppresses the 

release of insulin and leptin into circulation (Malabu et al., 1992, Schawartz et al., 1992, 

Frederich et al., 1995, Saladin et al., 1995). Insulin receptors (IRS) and leptin receptors (LepR) 

are expressed in NPY neurons located in the ARC (Hakansson et al., 1996, Mercer et al., 1996, 
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Schawartz et al., 1996a, Baskin et al., 1999, Obici et al., 2002) where these hormones act to 

suppress NPY expression and decrease food intake (Schawartz et al., 1992, Sipols et al., 1995, 

Schawartz et al., 1996b). Ghrelin is an orexigenic peptide mainly synthesized by the stomach 

(Kojima et al., 1999, Ariyasu et al., 2001) and regulated by ingestion of nutrients such that, 

peripheral ghrelin levels rise before a meal and rapidly decrease after food intake (Ariyasu et 

al., 2001, Cummings et al., 2001, Tschop et al., 2001b). Ghrelin receptors are present on NPY 

neurons in the ARC (Willesen et al., 1999, Mondal et al., 2005) where ghrelin acts to stimulate 

NPY production and increase food intake (Kamegai et al., 2001, Guan et al., 2010). 

Additionally, NPY neurons located in the ARC are activated by low glucose concentrations, in 

vivo and in vitro (Akabayashi et al., 1993, Fioramonti et al., 2007, Muroya et al., 1999, 

Sergeyev et al., 2000). 

 

1.4.3. Neuropeptide Y receptors subtypes and signaling pathways 

The existence of multiple NPY receptor subtypes was first proposed by Wahlestedt 

(Wahlestedt et al., 1986). The NPY system has emerged as one of the most complex networks 

of related peptides and receptors, not only because it has a large number of physiological 

effects, but also because it includes an unusually broad repertoire of receptor subtypes called 

Y receptors. The family of NPY receptors is the same for all members of the NPY family (NPY, 

PP and PYY), and can be organized into three subfamilies: the Y1 subfamily containing of 

subtypes Y1, Y4, y6 and Y8; the Y2 subfamily including the subtypes Y2 and Y7; and the Y5 subtype, 

alone in it subfamily (Larhammar et al., 2004). 

 

1.4.3.1. Neuropeptide Y Y1 receptor  

The NPY Y1 receptor was the first NPY receptor to be cloned (Eva et al., 1990) and its gene 

is localized in the chromosome 4q(31,3-32) (Pedrazzini et al., 2003). NPY binding activity to this 

receptor is largely impaired when enzymes, like DPP-IV, cleave the NPY N-terminal peptides 

(Silva et al., 2002). However, when the C-terminal peptides are modified, NPY retains its full 

binding capacity to Y1 receptor, suggesting that this neurotransmitter binds this receptor 

through its N-terminal region (Silva et al., 2002). The Y1 receptor has high affinity to NPY1-36 and 

PYY, but the affinity weakens as the N-terminal part of the peptide is cleaved by peptidases. 

The changes of NPY in the terminal carboxylic acid also result in similar assets (Silva et al., 

2002). The NPY Y1 receptor is richly expressed in the CNS and in blood vessels. It induces 

vasoconstriction and proliferation in several types of cells. Smooth muscle cells (Zukowska-

Grojec et al., 1998), olfactory epithelium (Hansel et al., 2001), progenitor cell of the 

hippocampus (Howell et al., 2003, Howell et al., 2005, Howell et al., 2007), pancreatic cells 
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(Cho et al., 2004), Müller cells (Milenkovic et al., 2004) and cancer cells (Korner et al., 2004) 

are some examples. The Y1 receptor activation decreases anxiety and depression (Sajdyk et al., 

1999, Redrobe et al., 2002), increases appetite (Corp et al., 2001, Lecklin et al., 2003) and 

alcoholic consumption (Kelley et al., 2001, Thiele et al., 2002). It also modulates pulpal 

inflammation (Rethnam et al., 2010) and the antagonism of this receptor increases bone mass 

(Baldock et al., 2007, Sousa et al., 2012). 

 

1.4.3.2. Neuropeptide Y Y2 receptor  

The Y2 receptor was first cloned in 1995 (Rose et al., 1995) and it is located in the 

chromosome 4q31, close to the Y1 and Y5 receptor locus (Pedrazzini et al., 2003). The Y2 

receptor is characterized pharmacologically by its high affinity for NPY and PYY, but in contrast 

to the Y1 receptor, the affinity to the Y2 receptor does not suffer from further cleaving of the N-

terminal ligand, NPY2-36, NPY3-36, NPY13-36 and PYY3-36 bind to the receptor (Michel et al., 1998). 

The activation of Y2 inhibits the neurotransmitter release, regulates appetite (Naveilhan et al., 

1999, Batterham et al., 2002, Sainsbury et al., 2002), is involved in neuronal excitability in 

epilepsy (El Bahh et al., 2002, Herzog 2002, Vezzani et al., 2004), in angiogenesis (Zukowska-

Grojec et al., 1998, Ekstrand 2003, Lee et al., 2003) and presents a putative neuroprotective 

effect in Parkinson disease (Decressac et al., 2012). 

 

1.4.3.3. Neuropeptide Y Y4 receptor  

The cloning of the Y4 receptor was first described in 1995 (Bard et al., 1995) and it is 

located in the chromosome 10q 11-12 (Pedrazzini et al., 2003). It exhibits a very high affinity 

for PP with relatively lower affinity for NPY, and it was reported to be internalized after agonist 

stimulation (Parker et al., 2001), while another group reported that no internalization occurs 

for Y4 receptor (Voisin et al., 2000). Interestingly, it was described that this receptor forms a 

constitutive homodimers when expressed in mammalian cells (Berglund et al., 2003) and that 

these dimers dissociates upon agonist stimulation. Human Y4 receptor mRNA was found in 

prostate, colon, pancreas, small intestine, smooth muscle cells and brain, particularly in 

hypothalamus (Barrios et al., 1999, Misra et al., 2004). PP through this receptor is able to 

inhibit exocrine release from pancreas, induce the relaxation of biliary vesicle and stimulate 

the release of luteinizing hormone (Horvath et al., 2001a, Andersen 2007). 

 

1.4.3.4. Neuropeptide Y Y5 receptor  

The Y5 receptor was cloned in 1996 and it is located in chromosome 4q32, in the same 

locus as Y1 receptor, although their transcription is in opposite directions (Pedrazzini et al., 
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2003). The Y5 receptor is activated by NPY, PYY analogs, and fragments of peptides, such as 

NPY3-36 and PYY3-36 (Gerald et al., 1996, Michel et al., 1998). This receptor is localized centrally, 

in the hypothalamus, playing an essential role in appetite stimulation (Hwa et al., 1999, 

Cabrele et al., 2000, Lecklin et al., 2003, Beck 2006) and peripherally, in human and murine 

adrenal glands (Cavadas et al., 2001, Cavadas et al., 2006). 

 

1.4.3.5. Neuropeptide Y y6 receptor  

The y6 receptor was initially cloned from mouse DNA and subsequently in other species 

including rabbit, monkey and human (Gregor et al., 1996, Matsumoto et al., 1996, Weinberg et 

al., 1996). However, the importance of this receptor is not yet clear. This receptor is localized 

in the chromosome 5q31 (Pedrazzini et al., 2003) and binding properties resemble that of Y4, 

and PP shows higher affinity to y6 than PYY and NPY (Jin et al., 2000, Popovic et al., 2001). 

Some reports show the presence of this receptor in some mammals, like mouse, rabbit dog, 

cow and primates, including humans, but absent in rats (Burkhoff et al., 1998). The y6 mRNA is 

located in hypothalamus, hippocampus, small intestine and adrenal glands of rabbits. It can 

also be found in heart, skeletal muscle and hypothalamus of humans (Gregor et al., 1996, 

Matsumoto et al., 1996, Weinberg et al., 1996). However the pharmacological properties of y6 

are divergent; some authors defend that it is functional in mouse and rabbit and nonfunctional 

in human and other primates, as well as in guinea-pig and pig; as a result of frame shift 

mutations (Gregor et al., 1996, Matsumoto et al., 1996; Weinberg et al., 1996, Mullins et al., 

2000, Starback et al., 2000) it becomes a pseudogene in some mammals (Bromee et al., 2006). 

The NPY y6 receptor is also present in chicken, amphibians and bony fishes and the y6 gene 

appears to be functional in the shark, Squalus acanthias (Salaneck et al., 2003). 

 

1.4.3.6. Neuropeptide Y Y7 receptor  

The NPY Y7 receptor was more recently discovered in non-mammalian jawed vertebrates 

and examples of some species that not have lost this receptor during evolution are chicken, 

fishes, like zebrafish Danio rerio, rainbow trout Oncorhynchus mykiss, as well as amphibians, 

like two species of frogs (Xenopus tropicalis and the marsh frog Rana ridibunda) (Fredriksson et 

al., 2004, Bromee et al., 2006, Larsson et al., 2006, Larsson et al., 2009). In opposition 

mammalian do not present this receptor (Larhammar et al., 2004).  

 

1.4.3.7. Neuropeptide Y Y8 receptor 

The NPY Y8 receptor is present in fishes and frogs, like elephant shark, Callorhinchus milii 

and Xenopus tropicalis, respectively (Larsson et al., 2009). The Y8 gene has been lost in the 
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lineage leading to mammals. The Y8 receptor is also missing in all amniote genomes; however 

is in duplicate (Y8a and Y8b) in the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. 

In T. rubripes, Y8 receptor is expressed in brain and in peripheral organs (Larsson et al., 2008). 

 

1.4.3.8. Molecular signaling pathways associated with neuropeptide Y receptors 

Generally, NPY receptors use similar signal transduction pathways, acting via pertussis 

toxin-sensitive G-proteins, i.e., and members of the Gi and Go family. Thus, inhibition of 

adenylyl cyclase upon NPY receptor activation is found in almost every tissue and cell type 

investigated (Michel 1991). However, the inhibition of adenylyl cyclase cannot probably 

explain all functional responses observed upon stimulation of NPY receptors (Michel et al., 

1998). Additional signaling responses that are restricted to certain cell types include 

modulation of the Ca2+ or K+ channels conductance (Michel et al., 1995, Xiong et al., 1995). 

Moreover, there are also evidences suggesting that NPY may be associated to the activation of 

phospholipase A2 (Martin et al., 1989), MAPK (Keffel et al., 1999, Alvaro et al., 2008a, 

Rosmaninho-Salgado et al., 2009, Thiriet et al., 2011), PKC (Rosmaninho-Salgado et al., 2007, 

Chen et al., 2008, Pons et al., 2008, Rosmaninho-Salgado et al., 2009), PI3K (Zhou et al., 2008), 

guanylyl cyclase (Rosmaninho-Salgado et al., 2007), nitric oxide (NO) synthesis (Rosmaninho-

Salgado et al., 2009, Ferreira et al., 2010), or even with the inhibition of PKA (Pons et al., 2008, 

Rosmaninho-Salgado et al., 2009). 

 

1.4.4. Physiological functions of neuropeptide Y 

NPY is the most potent endogenous orexigenic factor known to date (Minor et al., 2009) 

and it is usually induced by hunger-signaling hormones, such as ghrelin and glucagon, and 

inhibited by satiety signals, such as insulin and leptin (Naslund et al., 2007). Furthermore, ARC 

NPY neurons innervate a widespread area of the hypothalamus, regulating the feeding 

behavior, as well as growth and development. NPY has also been implicated in several other 

physiological functions, such as memory and learning, anxiety, circadian rhythm, locomotion 

and cardiovascular function (Thorsell et al., 2002, Minor et al., 2009). It has also been shown to 

modulate proliferation in several cell types (Álvaro et al., 2008a, Jia et al., 2010) and to 

promote neuroprotection against excitotoxicity-related apoptosis (Silva et al., 2005, Álvaro et 

al., 2008b). While it is predominant in the CNS, it is also expressed in the sympathetic 

peripheral nervous system (Pernow et al., 1987) and in other tissues, such as the gut (Cox 

2007), the spleen (Ericsson et al., 1987), the adipose tissue (Yang et al., 2008) and the adrenal 

medulla (Bernet et al., 1998), which releases it into circulation. Overall physiological actions 



Chapter I: Introduction 

 

42 
 

include stimulation of fat storage and weight gain, along with hunger and decreasing body 

temperature, sex drive and locomotion (Minor et al., 2009). 

 

1.4.5. Neuropeptide Y in cerebral cortex  

NPY is present in most cerebral cortical areas during fetal and postnatal development 

(Leroux 2002). Comparatively with other regions of brain, the highest concentrations of NPY 

are measured in the hypothalamus and limbic structures and to a lesser extent in the cerebral 

cortex, where it is synthesized by neurons in all lamina (Hendry et al., 1984, Chrownwall et al., 

1985). A particular enrichment of NPY-immunoreactivity (NPY-ir) in cerebral cortex is present 

at the highest concentration in the cingulated and temporal cortices and at the lowest in the 

occipital lobe (Adrian et al., 1983). NPY-labeled cells are also found in subcortical white matter, 

whereas this expression is negative in white matter areas away from the cortex (Adrian et al., 

1983). 

Recent studies investigated the distribution of NPY receptors throughout different regions 

of the cerebral cortex (Parker et al., 1999). These studies seem of particular relevance as 

multiple functions of NPY are almost certainly mediated by different receptor subtypes, as 

previously mentioned (Vezzani et al., 1999, Furtinger et al., 2001). In addition, these studies 

revealed that the rat frontal cortex is rich in Y1 receptor subtype (Dumont et al., 1993, 

Larhammar 1996) and both Y1 receptors (Caberlotto et al., 1997) and Y2 receptors (Jacques et 

al., 1997, Statnick et al., 1997) are present in the human frontal cortex. Interestingly, Y2 rather 

than Y1 receptors appear to predominate in the frontoparietal cortex of a developing rat 

(Leroux 2002), possibly suggesting a varying importance of the two-receptor subtypes in the 

immature and mature rat cortices. 

The expression of NPY mRNA and its distribution of NPY-ir in axons and cortical neurons is 

affected in a variety of neuropathological processes, including depression, bipolar disorder, 

schizophrenia, schizoaffective disorder, and neurodegenerative disorders, such as AD, PD and 

HD (Beal et al., 1986, Kowall et al., 1988, Caberlotto et al., 1999, Kuromitsu et al., 2001, Moris 

et al., 2009, Morales-Medina et al., 2010). Within the cerebral cortex, NPY is involved in 

synaptic transmission (Bacci et al., 2002), regulation of cerebral blood flow (Estrada et al., 

1998, Cauli et al., 2004) and inhibition of neuronal excitability (Colmers et al., 1994). Recently, 

NPY has been implicated in learning and memory, and the density of NPY-expressing cortical 

neurons and axons is reduced in depression, bipolar disorder, schizophrenia, and 

neurodegenerative diseases (Raghanti et al., 2013). 
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1.5. Ghrelin 

In 1999, Kojima identified ghrelin in the rat stomach (Kojima et al., 1999). The name 

ghrelin originates from the word ghre, a word root in Proto-Indo-European languages for 

“growth”, in reference to its ability to stimulate growth hormone (GH) release (Kojima 2008) 

(Figure 1.5). Ghrelin is an orexigenic peptide (Kojima et al., 1999, Ariyasu et al., 2001) and it is 

regulated by nutrients levels, since peripheral ghrelin levels rise before a meal and rapidly 

decrease after food intake (Ariyasu et al., 2001, Cummings et al., 2001, Tschop et al., 2001b). 

Ghrelin is a 28-amino acid peptide (Kojima et al., 1999) in which the third N-terminus amino 

acid, a serine residue (Ser3), is post-translational modified with a 8-carbon acyl group 

(octanoylation). This post-translation modification that is essential for binding to respective 

receptor and so far unique to this peptide, as no other naturally occurring peptides have been 

shown to have this acyl group as a post-translation modification. This particular modification is 

capable of increasing the lipophilicity of the molecule (Rindi et al., 2004).  

  

1.5.1. Ghrelin synthesis, metabolization and localization 

The ghrelin gene is located on chromosome 3p at the locus 3p25-26 and contains four 

prepro-ghrelin coding exons 1–4 exons (Wajnrajch et al., 2000) and one non-coding first exon, 

20 bp exon 0, (Kanamoto et al., 2004, Nakai et al., 2004). The described human 

complementary deoxyribonucleic acid (cDNA) codes for a 117 amino acid long prepro-ghrelin 

(Kojima et al., 1999), which contains a 23 amino acid signal peptide and 94 amino acid pro-

ghrelin (with 28 amino acid corresponding to the mature ghrelin and a 66 amino acid tail – C-

terminal polypeptide or C-ghrelin). Upon pre-pro-ghrelin processing, the 23 amino acid 

secretion-signal peptide is cleaved from the 117 amino acid precursor, resulting in the 94 

amino acid pro-ghrelin peptide, amino acids 24–117. This pro-ghrelin peptide is then cleaved 

via the prohormone convertase 1/3 (PC1/3) and gives rise to the 28 amino acid ghrelin 

peptide, amino acids 24–51, and the 66 amino acid polypeptide C-ghrelin (Zhu et al., 2006) 

(Figure 1.6).  

Figure 1.5 - Structure of human ghrelin. Human ghrelin has 28-amino acid peptides, in which Ser3 is modified by a 
fatty acid, n-octanoic acid. This modification is essential for ghrelin’s activity. Adapted from (Kojima et al., 2005). 
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Ghrelin is predominantly produced in the stomach (Baskin et al., 1999, Date et al., 2000, 

Ariyasu et al., 2001, Xu et al., 2004) although small amounts also originates in the intestine 

(Ariyasu et al., 2001), pancreas, pituitary gland, kidney, placent (Hosoda et al., 2002), 

hypothalamus (Horvath et al., 2001b), immune cells, lungs (Ariyasu et al., 2001), testis, ovary 

(Korbonits et al., 2004), heart, thyroid and neoplastic tissues (De Ambrogi et al., 2003).  

In the CNS, the main site of ghrelin expression, although at much lower levels than the 

stomach, is the hypothalamus (Ferrini et al., 2009). This region is known to control appetite, 

suggesting therefore that the production of ghrelin in this area may be involved in the 

regulation of food intake. Moreover, it is also found in the hippocampus, suggesting thereby a 

possible role in regulating and development of memory (Kojima et al., 2002, De Ambrogi et al., 

2003). Of note, ghrelin neurons are located not only in hypothalamus, but also in the cortex 

(sensorimotor area, cingular gyrus), and the fibers of ghrelin neurons in hypothalamus project 

directly to the dorsal vagal complex (Hou et al., 2006). 

 

1.5.2. Regulation of ghrelin release  

The most important factor for the regulation of ghrelin secretion is feeding. Levels of 

endogenous ghrelin change according to acute, as well as chronic nutritional status. Fasting 

causes elevation of ghrelin levels. Plasma ghrelin levels increase nearly two-fold immediately 

before each meal, and fall to levels within 60–120 minutes after food intake (Tschop et al., 

2000, Tschop et al., 2001a, Ariyasu et al., 2001, Cummings et al., 2001, Cummings et al., 2002). 

It is still not clear what factors are involved in the regulation of ghrelin secretion upon fasting 

Figure 1.6 – Schematic biosynthesis of ghrelin. Adapted from (Garg 2007). 
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and after food intake (postprandial) (Patterson et al., 2011). The postprandial ghrelin 

suppression is proportional to the ingested calorie load (Callahan et al., 2004). The increased 

ghrelin during fasting is a result of increased pulse frequency as well as pulse amplitude, which 

together with the synchronized lower leptin (orexigenic compound) pulses result in a powerful 

orexigenic effect (Bagnasco et al., 2002). Fasting increases stomach ghrelin expression, but not 

pituitary or hypothalamic ghrelin expression (Torsello et al., 2003). Additionally, prolonged 

fasting for 3 days did not change ghrelin levels significantly compared to the baseline state 

suggesting that the meal-related changes are rather decreased after food intake than 

increased due to fasting (Chan et al., 2004). However, in disagreement with Chan and co-

workers, it was found that caloric restriction in mice with a diet containing 60 % of normal 

calories for ten days resulted in a four-fold increase in circulating levels of ghrelin (Lutter et al., 

2008). 

 

1.5.3. Ghrelin receptor 

The ghrelin receptor or growth hormone secretagogue receptor (GHS-R) gene, similarly to 

the ghrelin gene, is located on chromosome 3, at position 3q26.2, and encodes for two 

transcripts, the transcript 1a which encodes a full-length receptor (GHS-R1a) and the transcript 

1b which codifies for a shortened version (GHS-R1b) (McKee et al., 1997). The 1a type encodes 

a typical 7 seven transmembrane domains (TMs) G-coupled protein receptor (GPCR) with 

binding and functional properties consistent with its role as the ghrelin receptor (Davenport et 

al., 2005, Sempera et al., 2005). This receptor is mainly expressed in somatotropic cells the 

anterior pituitary and hypothalamus (Xu et al., 2004). It is also scattered in other parts of the 

brain, as well as the stomach, intestines, kidneys, pancreas, heart and aorta in humans and 

rodents. The wide distribution of GHS-R may explain the multifaceted functions of ghrelin and 

GHS-R1a (Ueno et al., 2005). In addition, GHS-R1a is also expressed in the cerebral cortex, and 

parts of the midbrain, pons, medulla oblongata and hippocampus (Howard et al., 1996, Guan 

et al., 1997, Zigman et al., 2006). Regarding isoform 1b GHS-R are not mentioned specific 

relations with the functions of ghrelin. 

 

1.5.3.1. Molecular signaling pathways associated with ghrelin receptor 

Ghrelin biding to GHS-R1a cause conformational changes of intracellular loops of the 

receptors, which expose binding sites to G proteins. The coupling of G proteins to GHS-R1a 

promotes guanosine diphosphate (GDP) release and guanosine triphosphate (GTP) binding to 

the G protein α subunit, thus activating G protein subunits to initiate intracellular signaling 

cascades by acting on various downstream effectors. The signaling transduction mechanisms 
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underlying ghrelin function involve the regulation of ionic currents and protein 

phosphorylation-based intracellular signaling (Gao et al., 2007, Muccioli et al., 2007). Once 

bound to ghrelin, activated GHS-R1a normally binds the Gαq/11 subunit of a G-protein, which 

leads to activation of phosphatidylinositol-specific phospholipase C (PI-PLC) to generate 

inositol 1,4,5-triphosphate (IP3) and diacylglicerol (DAG) from phosphatidylinositol 4,5-

diphosphate (PIP2) (Howard et al., 1996, Smith et al., 1997). The intracellular free Ca2+ 

concentration increases because of the rapid, though transient, release of Ca2+ from IP3-

responsive cytoplasmatic storage pools in the ER. Increased Ca2+ and DAG levels activate PKC, 

which, in turn, inhibits the K+ channels, causing depolarization (Camiña 2006). This 

depolarization causes the opening of voltage-dependent L-type Ca2+ channels, causing more 

sustained accumulation of intracellular Ca2+. Together with the blockade of K+ channels, the 

intracellular rise in free Ca2+ exacerbates the cellular depolarization. Ghrelin also activates 

MAPK and PI3K cascades in different cellular systems to promote proliferation (Kim et al., 

2004a, 2004b, Mazzocchi et al., 2004). Moreover, ghrelin induces an increase in intracellular 

Ca2+ concentration through N-type Ca2+ channels influx in isolated NPY producing hypothalamic 

neurons (Kohno et al., 2003). Because N-type Ca2+ channels are modulated by cyclic adenosine 

monophosphate (cAMP)-dependent PKA activation, this suggests that GHS-R1a is coupled to 

Gs in NPY-producing neurons in the hypothalamus (Kohno et al., 2003). Also in the 

hypothalamus, it was found that ghrelin enhances the activity of 5’-AMP-activated protein 

kinase (AMPK) (Andersson et al., 2004). AMPK activity is strongly implicated in energy 

homeostasis and is downregulated by leptin administration in the hypothalamus (Carling 

2005). However, the molecular mechanism by which ghrelin regulates AMPK is still unknown. 

Finally, ghrelin can also inhibit vascular inflammation through the activation of the calmodulin-

dependent kinase kinase (CaMKK), AMPK and endothelial nitric oxide synthase (eNOS). 

Altogether, these observations suggest that GHS-R1a activation is coupled to several signaling 

pathways, and subsequent signaling effectors, in particular PKA, PKC, PI3K, and MAPK. 

 

1.5.4. Physiological functions of ghrelin 

Ghrelin is currently the only described orexigenic hormone from the periphery, which acts 

centrally to modulate the energy homeostasis (Kojima et al., 2010, Sato et al., 2012). The 

important role of ghrelin in the regulation of appetite and satiety is well established, and the 

orexigenic effects of peripheral or central ghrelin administration are widely documented in 

rodents (Wren et al., 2001b, Finger et al., 2011), as well as in (lean and obese) humans (Wren 

et al., 2001a, Druce et al., 2005). In other hand, recent studies demonstrating that ghrelin is 

also involved in neuroprotection (Lago et al., 2005, Ferrini et al., 2009, Bayliss et al., 2013), 
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protection achieved by the activation of several mechanisms, such as inhibition of ROS 

generation, stabilization of mitochondrial transmembrane potential, increase of the Bcl-2/Bax 

ratio, prevention of cytochrome c release, and inhibition of caspase 3 activation (Chung et al., 

2007, Ferrini et al., 2009). Ghrelin may also acts in memory and learning processes (Nakazao et 

al., 2001, Miao et al., 2007, Ferrini et al., 2009, Moon et al., 2011). 

 

1.6. Main Objectives 

Since average human life expectancy has increased, but also the prevalence of cognitive 

decline and dementia, aging research is now focused in finding strategies that increase both 

lifespan and healthspan. CR delays the aging and improves resistance to disease in yeast to 

primates. These beneficial effects in mammals include the prevention of age-associated 

cognitive impairment and neurodegeneration. Autophagy is known to mediate lifespan 

extension induced by CR. Although CR induces hypothalamic NPY expression, a potent 

neuroprotective agent in several brain areas, it was not known whether NPY could play a role 

in autophagy regulation in the brain. Recently, our group found that NPY not only induces 

autophagy in hypothalamic neurons but also mediates nutrient deprivation induced autophagy 

in these cells, suggesting that NPY may mediate CR’s effects on autophagy. However, its 

potential role in lifespan extension is not known. Even though NPY produces vast physiological 

effects, mostly consistent with the ones observed after CR, the effect of NPY in autophagy in 

cortical neurons has not been studied yet. On the other hand, CR is known to increase the 

levels of ghrelin, an orexigenic peptide secreted by the stomach. Since ghrelin shares some of 

the physiological effects induced by CR it has been suggested as a metabolic regulator signal 

during CR. Therefore we hypothesize that ghrelin, similarly to NPY, could be involved in 

nutrient deprivation-induced autophagy in cortical neurons. 

The aims of this study are: 1) to evaluate the effect of CR on autophagy in rat cortical 

neurons; 2) to evaluate the potential involvement of NPY and NPY receptors on CR-induced 

autophagy and the signaling pathways underlying this process; 3) to evaluate the effect of NPY 

on the regulation of autophagy in cortical neurons and to investigate by which NPY receptors 

subtypes and signaling pathways are involved in NPY-induced autophagy; 4) to evaluate the 

potential involvement of ghrelin and ghrelin receptor on CR-induced autophagy; 5) to evaluate 

the effect of ghrelin on autophagy in cortical neurons. 

Elucidation of the molecular mechanisms whereby nutritional/metabolic cues impinge on 

neuronal survival and health may be an avenue to new pharmacological strategies, that exploit 

nutrient-sensitive protective circuitries to prevent the catastrophic impact of aging and 
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dysmetabolism on the brain. Understanding how CR, NPY and ghrelin may modulate 

autophagy-related proteins and autophagic flux in cortical neurons, should provide a basis for 

more comprehensive approaches, in the future, aiming at a better and deeper perception of 

the mechanisms regulating autophagy, in the brain. 
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2.1. Materials and reagents 

Neurobasal medium, fetal bovine serum (FBS), penicillin-streptomycin, B27 supplement, 

L-glutamine, trypsin, Hoechst 33342, Alexa-Fluor 488-conjugated goat anti-rabbit 

immunoglobulin G (IgG) and Alexa-Fluor 594-conjugated-goat anti-mouse IgG secondary 

antibodies from Molecular Probes were obtained from Life Technologies (from Invitrogen) 

(Carlsbad, CA, USA). Dulbecco’s Modified Eagle Medium (DMEM), DNAse I, poly-D-lysine, 

chloroquine, rapamycin, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 

phenylmethylsulfonyl fluoride (PMSF), mouse monoclonal anti-microtubule-associated protein 

2 (MAP2) and anti-β-tubulin I antibodies were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Neuropeptide Y (NPY) was obtained from Phoenix Europe GmbH (Karlsruhe, Germany). 

NPY receptors antagonists BIBP3226 (NPY receptor Y1 antagonist), BIIE0246 (NPY receptor Y2 

antagonist) and L-152,804 (NPY receptor Y5 antagonist) and ghrelin receptor antagonist [D-

Lys3]-GHRP-6 were purchased from Tocris Bioscience (Bristol, UK). Ghrelin and NPY receptors 

agonists Leu31Pro34 (Y1agonist), NPY13-36 (Y2 agonist), r-PP (Y4 agonist) and NPY19-23(Gly1, Ser3, 

Gln4, Thr6, Ala31, Aib32, Gln34)PP (Y5 agonist) were purchased from Bachem (Bubendorf, 

Switzerland). Ghrelin was obtained from Bachem (Bubendorf, Switzerland). The bicinchoninic 

acid (BCA) protein quantification assay kit was purchased from Pierce/Thermo Fisher Scientific 

(Rockford, IL, USA). The Complete Mini protease inhibitor cocktail tablets were purchased to 

Roche Diagnostics (Basel, Switzerland). Electrophoresis and Western Blotting systems as well 

as sodium dodecyl sulphate (SDS), 30 % acrylamide/Bis-acrylamide and precision plus protein 

dual color standards, used for molecular weight marking, were obtained from Bio-Rad 

(Hercules, CA, USA). Mouse monoclonal anti-glial fibrillary acidic protein (GFAP) and anti-NeuN 

antibodies as well as polyvinylidene fluoride (PVDF) membranes and rabbit polyclonal antibody 

against GHS-R1a were purchased from Millipore (Billerica, MA, USA). Rabbit polyclonal 

antibodies against LC-3B, p62/SQSTM1, mTOR and phosphorylated-mTOR (Ser2448) were 

obtained from Cell Signaling Technology (Beverly, MA, USA). Alkaline phosphatase-linked goat 

anti-rabbit and anti-mouse IgG and enhanced chemifluorescence (ECF) reagent was purchased 

from GE Healthcare (Buckinghamshire, UK). Fluorescence mounting medium was purchased 

from Dako (Glostrup, Denmark). All other reagents were purchased from Sigma-Aldrich (St. 

Louis, MO, USA) or Merck KGaA (Darmstadt, Germany). 

 

2.2. Animals 

Female Wistar rats were purchased from Charles River Laboratories (Wilmington, MA, 

USA). All experimental procedures were performed in accordance to the guidelines of the 
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European Community for the use of animals in laboratory (2010/63/EU) and the Portuguese 

law for the care and use of experimental animals (DL n.° 129/92 and norm 1005/92). In 

addition, animals were housed in our licensed animal facility (international Animal Welfare 

Assurance number 520.000.000.2006). The present study is included in a project approved and 

financed by the Portuguese Science Foundation that approved the animal experimentation 

described. Center for Neurosciences and Cellular Biology animal experimentation board 

approved the utilization of animals for this project (reference PTDC/SAU-FCF/099082/2008). 

 

2.3. Cellular models 

2.3.1. Primary rat cortical neurons culture 

The experiments were performed on primary cultures of rat cortical neurons, as 

previously described (Sciarretta et al., 2010), with minor modifications. Briefly, embryonic 

cortical tissue was isolated from rat embryos with 18-19 days (E18-19) of gestation. The 

pregnant females were sacrificed by cervical dislocation and subjected to cesarean section in 

order to remove the uterine horns containing the embryos. The brains were removed from the 

skull and transferred to a petri dish containing phosphate buffered saline (PBS) solution 

supplemented with 5.5 mM glucose, 100 U.mL-1 penicillin and 100 μg.mL-1 streptomycin 

(dissection buffer). Cortices were dissected and meninges thoroughly removed. Cortical tissue 

was placed in a conical tube with dissection solution and centrifuged at 59 g, for 4 minutes. 

The supernatant was discarded and cortices were ressuspended in a 0.25 % trypsin solution 

and then incubated in a water-bath (37 °C) for 15 min. After digestion, 50 µL.mL-1 DNAse I (5 

mg.mL-1) were added to the tube with tissue/trypsin. After centrifugation (59 g, for 1 min, 

room temperature), the supernatant was taken off immediately and the pellet was covered 

with 3 mL of FBS. The cortical tissue was gently triturated by using a glass Pasteur pipette and 

the dissociated cortical tissue was let stand undisturbed for 3 min to allow for the cell debris to 

settle down. The supernatant, containing the cell suspension, was then centrifuged at 59 g, for 

4 min. The supernatant was discarded and cells were ressuspended in 5 mL of neurobasal 

medium, supplemented with 500 μM L-glutamine, 2 % B27 suplement, 100 U.mL-1 penicillin 

and 100 µg.mL-1 streptomycin. Cell density was determined after tripan-blue staining in a 

hemocytometer. The cells were plated at a density of 132,000 cells.cm-2 on 24-well cell culture 

plates (cell viability assay), 12-well cell culture plates with 16 mm coverslips 

(immunocytochemistry) or 60 mm cell culture dishes (protein cell lysates), precoated with 

poly-D-lysine. The cells were maintained at 37 °C in a humidified incubator with 5 % CO2/air for 
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8 days. The cell culture medium was replaced every fourth day by aspirating half of the 

medium from each well and replacing it with fresh medium.  

 

2.4. Cell treatments 

2.4.1. Caloric restriction mimetic condition 

To investigate the effect of caloric restriction on autophagy in cortical neurons, primary 

rat cortical neuronal cultures were subjected to nutrient deprivation to mimic a caloric 

restriction condition. Cortical neurons were exposed to DMEM low glucose medium (1 g.L-1
 

glucose, 100 U.mL-1 penicillin and 100 μg.mL-1 streptomycin, without B27 supplementation), for 

0.5, 1, 3, 6 and 24 hours. After determining the best nutrient deprivation condition (higher cell 

viability and autophagy induction), a 6 h exposure to DMEM low glucose was chosen for 

further experiments. In order to confirm that an efficient autophagic flux occured under 

nutrient deprivation conditions, chloroquine, a lysossomal protein degradation inhibitor, was 

added to the cell culture medium 30 min prior to nutrient deprivation treatment, to a final 

concentration of 100 µM. To determine if NPY plays a role in nutrient deprivation-induced 

autophagy in cortical neurons, NPY receptors selective antagonists were used: Y1 antagonist 

(BIBP3226), Y2 antagonist (BIIE024) and Y5 antagonist (L-152,804). Each receptor antagonist 

was added to the cell culture medium to a final concentration of 1 μM, 30 min before nutrient 

deprivation treatment. To further determine the molecular pathways involved in nutrient 

deprivation-induced autophagy, cortical neurons were exposed to PI3K inhibitor (LY294002), 

ERK 1/2 inhibitor (U0126) or PKA inhibitor (H89). Each protein kinase inhibitor was added 

individually to the cell culture medium to a final concentration of 1 μM, 30 min before nutrient 

deprivation treatment. In order to determine if ghrelin plays a role in nutrient deprivation-

induced autophagy in cortical neurons, ghrelin receptor selective antagonist ([D-Lys3]-GHRP-6) 

was used. [D-Lys3]-GHRP-6 was added to the cell culture medium to a final concentration of 

100 μM, 30 min before ghrelin treatment. Rapamycin (100 nM, 1 h) was used as a positive 

control of autophagy induction. 

 

2.4.2. Neuropeptide Y 

To study the role of NPY in autophagy induction in cortical neurons, primary cell cultures 

of rat cortical neurons were exposed to 100 nM NPY, for 0.5, 1, 3, 6 and 24 h. In order to 

confirm that NPY treatment increases the autophagic flux in cortical neurons, cells were 

treated with chloroquine (100 μM), 30 min prior to NPY treatment. To assess which NPY 

receptor subtype modulates the NPY effect on autophagy induction, different NPY receptor 
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selective antagonists were used: Y1 antagonist (BIBP3226), Y2 antagonist (BIIE0246) and Y5 

antagonist (L-152,804). Each receptor antagonist was added individually to the cell culture 

medium to a final concentration of 1 μM, 30 min before NPY treatment. To confirm which NPY 

receptor subtypes were involved in NPY-induced autophagy in cortical neurons, different NPY 

receptor selective agonists were used: Y1 agonist (Leu31Pro34), Y2 agonist (NPY13-36), Y4 agonist (r-

PP) and Y5 agonist (NPY19-23(Gly1, Ser3, Gln4, Thr6, Ala31, Aib32, Gln34)PP). Each agonist was added 

individually to the cell culture medium to a final concentration of 100 nM for 6 h. To further 

determine the molecular pathways involved in NPY-induced autophagy, cortical neurons were 

incubated with PI3K inhibitor (LY294002), ERK 1/2 inhibitor (U0126) or PKA inhibitor (H89). 

Each inhibitor was added individually to the cell culture medium to a final concentration of 1 

μM, 30 min before NPY treatment. Rapamycin (100 nM, 1 h) was used as a positive control of 

autophagy induction. 

 

2.4.3. Ghrelin 

To investigate the effect of ghrelin on autophagy induction in cortical neurons, primary 

cell cultures of rat cortical neurons were exposed to 10 nM ghrelin for 6 and   24 h. In order to 

confirm that ghrelin increases the autophagic flux in cortical neurons, chloroquine (100 μM) 

was added to the cell culture medium 30 min prior to ghrelin treatment. To assess if ghrelin 

receptor GHS-R1a modulates the ghrelin effect on autophagy induction, the ghrelin receptor 

antagonist ([D-Lys3]-GHRP-6) was used. [D-Lys3]-GHRP-6 was added to the cell culture medium 

to a final concentration of 100 μM, 30 min before ghrelin treatment. Rapamycin (100 nM, 1h) 

was used as a positive control of autophagy induction. 

 

2.5. Cell viability assay 

Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) reduction assay. This colorimetric assay allows cell viability measurement, since 

the yellow MTT tetrazole crystals are reduced to purple formazan crystals by mitochondrial 

reductases of live cells. MTT was added to the cell culture medium to a final concentration of 

0.5 mg.mL-1 and cells were incubated during 1.5 h, at 37 °C in a humidified incubator with 5 % 

CO2/air. The medium was removed and the formazan crystals were dissolved in 0.04 M 

HCl/isopropanol. The volume used of 0.04 M HCl/isopropanol solution depended on the 

amount of precipitate (MTT reduction extension) and was the same for each well (300 to 600 

μL) in each independent experiment. Two hundred microliters from each well were transferred 
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to a 96-well plate for absorbance reading in a spectrophotometer (SLT spectra II), at 570 nm, 

using a reference filter at 620 nm. All experiments were carried out in triplicate. 

 

2.6. Gene expression analysis 

2.6.1. Purification and quantification of total RNA 

The total ribonucleic acid (RNA) was isolated using the RNeasy Mini Kit (Qiagen) according 

to the manufacturer's instructions. Briefly, cells were disrupted with buffer RLT and 

homogenized by pipetting up and down to disrupt cell clumps. The lysate was then placed in a 

QIAshredder homogenizer spin column and centrifuged for 2 min at 14,100 g. Afterwards, 70 % 

ethanol was added to the homogenized lysate which was then transferred to an RNeasy spin 

column and centrifuged for 15 seconds at 8,000 g. Total RNA was adsorbed to a silica matrix, 

washed with the recommended buffers and eluted with 30 μL of RNase-free water by 

centrifugation for 1 min at 8,000 g. The total RNA was quantified by optical density (OD) 

measurements using a ND-1000 Nanodrop Spectrophotometer (Thermo Scientific), and the 

purity was evaluated by measuring the ratio of OD at 260 and 280 nm. RNA samples were 

treated with RNase-free DNAse (Qiagen) to eliminate any contamination with genomic DNA. 

RNA samples were kept at −80 °C until use. 

 

2.6.2. Reverse transcription  

Reverse transcription into cDNA was carried out using the iScript Select cDNA Synthesis 

Kit (Bio-Rad) following the manufacturer's instructions. Briefly, 1 μg of total RNA from each 

sample was reverse transcribed into cDNA in a 20 μL reaction containing 1x reaction buffer, 1x 

random primers, and 50 units of reverse transcriptase. Reverse transcription reactions were 

performed in a thermocycler at 25 °C for 5 min, 42 °C for 30 min, 85 °C for 5 min, and 4 °C for 5 

min. cDNA samples were then stored at -20 °C until use.  

 

2.6.2. Polymerase chain-reaction 

PCR was performed using specific primer pairs for rat NPY and NPY receptors. The primers 

were (forward and reverse and product size: Y1, 5’-AACCTCTCCTTCTCAGACTTGC-3’,                  

5’-CACAGTGTTGAAGATGGTAAGG-3’ (616 bp); Y2, 5’-CTCCAAGCAAATCAGCTTCC-3’,                   

5’-GTTTTGTGCCTTCGCTGATGG-3’ (318 bp); Y4, 5’-AACCTACTCATTGCCAACCTG-3’,                     

5’-ATGTAGCAGACCAGGATGAAG-3’ (476 bp); Y5, 5’-GTGTTCCCGAGGTGCTTCTA-3’,                     

5’-ATTCCGAGCAGCAGCTGTAT-3’ (248 bp) (Eurofins MWG Synthesis GmbH, Ebersberg, 

Germany). The primers for the reference rat gene (rat HPRT, NM-012583) was pre-designed 
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and validated by QIAGEN (QuantiTect Primers, Qiagen). As positive controls, wild type rat 

hypothalamic cDNA and rat retina cDNA were used. Negative controls were performed 

without RNA sample, which was substituted by water. All PCR reactions were performed in a 

25 μL reaction containing 1x PCR Buffer, 2 mM MgCl2, 0.2 mM dNTPs, 2.5 U of DFS-(DNA Free 

Sensitive) Taq polymerase (Bioron), 250 nM of each gene specific primer and 1 µL of template 

cDNA. The reactions were performed in the following sequence of steps: 95 °C for 10 min, 

followed by 35 cycles at 95 °C for 1 min, 55 °C for 1 min and 72 °C for 1 min, and a final 

extension at 72 °C for 10 min. PCR products were separated by electrophoresis on 2 % agarose 

gels. 

 

2.6.3. Quantitative real-time polymerase chain reaction 

Quantitative real-time PCR was performed in an iQ5 thermocycler (Bio-Rad) using 96-well 

microtiter plates and the QuantiTect SYBR Green PCR Master Mix (Qiagen). The primers for the 

target rat gene (NPY, NM-012614), (Ghrelin, NM-021669) and the reference gene (rat HPRT, 

NM-012583) were pre-designed and validated by QIAGEN (QuantiTect Primers, Qiagen). A 

master mix was prepared for each primer set, containing the appropriate volume of 2× 

QuantiTect SYBR Green PCR Master Mix and 10× QuantiTect Primer (both from QIAGEN). For 

each reaction, 18 µL of master mix were added to 2 µL of template cDNA. All reactions were 

performed in duplicate (two cDNA reactions per RNA sample) at a final volume of 20 µL per 

well. Negative controls were performed without RNA sample, which was substituted by water. 

The reactions were performed according to the manufacturer's recommendations: 95 °C for 15 

min, followed by 40 cycles at 94 °C for 15 sec, 55 °C for 30 sec and 72 °C for 30 sec. The melting 

curve protocol started immediately after amplification. qRT-PCR products were run by 

electrophoresis on a 2% agarose gel containing GreenSafe, a DNA stain. The amplification 

efficiency for each gene and the threshold values for threshold cycle determination (Ct) were 

determined automatically by the iQ5 Optical System Software (Bio-Rad). Relative mRNA 

quantification was performed using the ΔCt method for genes with the same amplification 

efficiency. 

 

2.7. Protein expression analysis 

2.7.1. Cell lysates 

After cell treatments, the cell culture plates were immediately placed on ice, the culture 

media was discarded by aspiration and each well was washed twice with ice-cold PBS. The cells 

were lysed with radio-immunoprecipitation assay (RIPA) buffer [50 mM Tris-HCl, pH 7.4; 150 
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mM NaCl; 5 mM EDTA; 1 % (v/v) Triton X-100; 0.5 % (w/v) deoxycholate 0.1 % (w/v) sodium 

dodecyl sulphate (SDS); 200 μM phenylmethylsulfonylfluoride (PMSF); 1 mM dithiothreitol 

(DTT); 1 mM sodium orthovanadate (ORTO); 10 mM sodium fluoride (NaF)], supplemented 

with complete mini protease inhibitor cocktail tablet. Cells were then collected by scrapping, 

using a rubber cell-scrapper. The cell lysates were maintained on ice for 15 min, being mixed 

by vortexing every 5 min and, afterwards, frozen and stored at -20 °C, until use. 

Every sample was quantified for its protein content through the bicinchoninic acid (BCA) 

protein assay after being centrifuged at 16,100 g, for 10 min, at 4 °C and each supernatant 

collected to a new tube, to cellular debris removal. The bovine serum albumin (BSA) solution (2 

mg.mL-1) was used as standard. After following the manufacturer’s instructions for protein 

quantification, the samples were denatured with 6x concentrated electrophoresis sample 

buffer (0.5 M Tris-HCl, pH 6.8, 30 % (v/v) glycerol, 10.4 % SDS (w/v), 0.6 M DTT, 0.012 % 

bromophenol blue (w/v)), boiled for 5 min at 95 °C and stored at -20 °C until use. 

  

2.7.2. Western blotting 

Western Blotting technique was used in order to immunodetect the expression of 

autophagy-related proteins. Equal amounts of protein were loaded per lane and proteins were 

separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), using 8 

%-12 % gels. The electrophoresis was run on a Tris-Bicine buffer (25 mM Tris; 25 mM Bicine; 1 

% SDS (w/v); pH 8.3), first at 70 V, for 10 min, and then, at 120-140 V, for 55-70 min. The 

protein samples were then transferred electrophoretically from the gels to previously 

methanol-activated PVDF membranes, in CAPS transfer buffer (10 mM CAPS, pH 11.0; 10% 

(v/v) methanol), at a 750 mA constant current, for 2.5 h, at 4 °C. Afterwards, the membranes 

were blocked for 1 h at room temperature (RT), in 5 % (w/v) non-fat milk in a Tris-buffered 

saline (TBS) (20 mM Tris; 137 mM NaCl; pH 7.6) containing 0.1 % (v/v) Tween 20 (TBS-T), and 

incubated overnight with the primary antibodies, in TBS-T with 5 % (w/v) BSA, at 4 °C. The 

primary antibodies used (all at a dilution of 1:1,000) were: rabbit polyclonal anti-LC-3B, anti-

p62/SQSTM1, anti-phosphomTOR (Ser2448) and anti-mTOR. After the incubation, the 

membranes were washed with TBS-T and incubated with an alkaline phosphatase-linked 

secondary antibody, specific to rabbit IgG, in a 1:10,000 dilution in TBS-T with 5 % (w/v) BSA, 

for 1 h, at RT. The membranes were then washed in TBS-T and protein immunoreactive bands 

were visualized by chemifluorescence using the ECF substrate. Fluorescence was detected on 

Versa Doc Imaging System (Bio-Rad). The optical density of the bands was quantified with the 

Quantity One Software (Bio-Rad). For protein loading control, the membranes were reprobed 

overnight with a mouse monoclonal anti β-tubulin I immunoreactivity (Sigma, T7816), in a 
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1:1,000 dilution in TBS-T with 5 % (w/v) non-fat milk, at 4 °C. After being washed in TBS-T, the 

membranes were incubated with an alkaline phosphatase-linked secondary antibody, specific 

to mouse IgG, in a 1:10,000 dilution in TBS-T with 5 % (w/v) non-fat milk, for 1 h, RT. 

 

2.7.3. Immunocytochemistry 

After the treatments, cells were washed twice with pre-warmed PBS (pH 7.4) and then 

fixed with ice-cold 4 % paraformaldehyde/PBS for 15 min. Cells were permeabilized with 0.25 

% (v/v) TX-100/PBS for 10 min, washed in PBS, and blocked for 1 h in 10 % goat serum/PBS. 

The cells were incubated with primary antibodies overnight at 4 °C. After incubation, cells were 

washed in PBS and incubated for 1 h at room temperature with the respective secondary 

antibodies. The nuclei were stained with Hoechst 33342 (2 μg.mL-1) during secondary antibody 

incubation. The coverslips were washed in PBS and mounted on glass slides with Dako 

Fluorescence Mounting Medium. The primary antibodies used were: rabbit anti-LC-3B (1:400), 

mouse anti-MAP2 (1:500), mouse anti-NeuN (1:400), rabbit anti-TUJ1 (1:500) and mouse anti-

GFAP (1:500). The secondary antibodies used (at a dilution of 1:200) were: Alexa-Fluor 488-

conjugated goat anti-rabbit IgG and Alexa-Fluor 594-conjugated goat anti-mouse IgG. Cells 

were analyzed on a Zeiss Axiovert fluorescence microscope (Carl Zeiss, Oberkochen, Germany). 

The procedure was performed for three independent culture preparations. 

 

2.8. Statistical analysis 

Results are expressed as mean ± standard error of the mean (SEM). Data were analyzed 

using one-way analysis of variance (ANOVA) followed by Bonferroni’s post test, or Student’s 

unpaired t test with two-tailed p value, as indicated in figure legends. A value of p˂0.05 was 

considered significant. Prism 5.0 (GraphPad Software, San Diego, CA, USA) was used for all 

statistical analysis.  
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3.1. Characterization of primary rat cortical neurons cultures 

In order to characterize the primary rat cortical neuronal cultures, cells were maintained 

in culture for 8 days in neurobasal medium. The expression of neuron specific markers, such as 

III tubulin (TUJ1; axons plus dendrites), MAP2 (dendrites) or NeuN (neuronal nuclei) and the 

glial specific marker GFAP were evaluated. Overall, these cultures show >90% neuronal 

population stained with -III tubulin, MAP2 or NeuN, with an extensive neurite outgrowth as 

expected of healthy neurons (Figure 3.1A and B). Given that these rat cortical neuronal 

cultures are high density cell cultures with a high neurite extension complexicity, we decided 

to use the neuronal marker MAP2 in the further experiments described in this study. The 

culture also presents a minimum number of astrocytes labeled with GFAP in Figure 3.1C. 

 
 
Figure 3.1 – Characterization of primary rat cortical neurons cultures. Primary rat cortical neuronal cultures were 

maintained in culture for 8 days, and were immunolabeled for (A) TUJ1 (green, III tubulin) and MAP2 (red, 

neurons), (B) TUJ1 (green, III tubulin) and NeuN (red, neuronal nuclei) and (C) MAP2 (red, neurons) and GFAP 
(green, glial cells). Nuclei were stained with Hoechst 33342 (blue). Characterization of primary rat cortical neurons 
cultures was assessed by immunocytochemistry assay, as described in Materials and Methods (see Chapter II). 
Figures are representative of 3 independents experiments. Scale bar, 20 μM. 

 

3.2. Caloric restriction mimetic condition  

3.2.1. Nutrient deprivation induces autophagy in cortical neurons 

In order to assess the effect of nutrient deprivation on the viability of primary rat cortical 

neuronal cultures, cells were exposed to DMEM low glucose medium (1 g.L-1 glucose, 100 

U.mL-1 penicillin and 100 μg.mL-1 streptomycin, without B27 supplementation), to mimic a 
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caloric restriction condition for 6 and 24 h. Cell viability was assessed by the MTT reduction 

assay. As shown in Figure 3.2, nutrient deprivation did not significantly change cell viability 

after a 6 and 24 h treatments. 

 

Figure 3.2 - Effects of nutrient deprivation does not change rat cortical neurons viability. Primary rat cortical 
neuronal cultures were incubated with nutrient deprivation mimetic medium (DMEM low glucose medium) for 6 h 
or 24 h. Untreated cells were used as control (Ctrl). Cell viability was assessed by the MTT reduction assay, as 
described in Materials and Methods (see Chapter II). The results represent the mean ± SEM of 3 independents 
experiments and are expressed as percentage of control. Student’s t test. ns, not statistically different. 

 

To further evaluate the autophagy-induction potential of nutrient deprivation, primary rat 

cortical neuronal cultures were exposed to DMEM low glucose medium for 30 min, 1, 3 or 6 h. 

Rapamycin (100 nM, 1 h), a known inductor of autophagy, was used as positive control. As 

shown in Figure 3.3A, nutrient deprivation induced an increase of the autophagic flux in 

cortical neurons, since the ratio of LC-3BII/-tubulin increased in a time-dependent manner 

upon nutrient deprivation treatment (30 min: 112.4±7.5%, 1 h: 137.4±16.9%, 3 h: 

157.0±16.3%, 6 h: 176.5±11.8% of control). Rapamycin induced an increase in LC-3BII/-

tubulin ratio (131.6±2.8% of control; Figure 3.3A). The effect of nutrient deprivation on the 

protein levels of p62/SQSTM1, a protein involved in regulation of autophagosome formation 

was also evaluated. Concomitant with the increase in LC-3BII/-tubulin ratio, the protein 

content of p62/SQSTM1 significantly decreased after 6 h (83.6±5.8% of control) of nutrient 

deprivation exposure, as shown in Figure 3.3B. Rapamycin incubation also led to a decrease in 

p62/SQSTM1 protein (82.4±5.0% of control).  

In order to confirm that nutrient deprivation induced an efficient autophagic flux, the LC-

3BII/-tubulin ratio and p62/SQSTM1 protein content in the presence of chloroquine, which 

inhibits lysosomal acidification and blocks the activity of lysosomal hydrolases, i.e., inhibiting 

lysosomal degradation (Barth et al., 2010). Since LC-3BII and p62/SQSTM1 are degraded at the 

final stages of autophagy, chloroquine would impair this degradation, thus leading to an 

increased LC-3BII/-tubulin ratio and accumulation of p62/SQSTM1. Primary rat cortical 
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neurons were pre-treated with chloroquine (100 μM) 30 min prior to nutrient deprivation 

treatment for 6 h. As shown in Figure 3.3C, cells under nutrient deprivation had an increased 

LC-3BII/-tubulin ratio (159.9±9.1% of control) compared to untreated cells. Moreover, 

chloroquine induced a further increase (338.3±24.0% of control) when cells were incubated 

with nutrient deprivation medium. Chloroquine also increased p62/SQSTM1 levels in cells 

exposed to nutrient deprivation (132.9±10.9% of control) compared to cells under nutrient 

deprivation (79.0±4.1% of control), as shown in Figure 3.3D. These results indicate that 

autophagic flux is enhanced by nutrient deprivation in cortical neurons. 

 
Figure 3.3 – Nutrient deprivation induces autophagy in rat cortical neurons. (A and B) Primary rat cortical neuronal 
cultures were incubated with nutrient deprivation mimetic medium (DMEM low glucose medium) for 30 min, 1 h, 3 
h or 6 h. Untreated cells were used as control (Ctrl), and cells treated with rapamycin (Rapa, 100 nM) for 1 h were 
used as positive control of autophagy induction. (C and D) Primary rat cortical neuronal cultures were incubated 
with chloroquine (CQ, 100 μM), a lysosomal degradation inhibitor, 30 min before nutrient deprivation treatment for 
6 h. Untreated cells were used as control (Ctrl). Whole cell extracts were assayed for LC-3BII (A and C), p62/SQSTM1 
(B and D) and β-tubulin (loading control) immunoreactivity through Western blotting analysis, as described in 
Materials and Methods (see Chapter II). Representative Western blots for each protein are presented above each 
respective graph. The results represent the mean ± SEM of, at least, 3 independents experiments, and are 
expressed as percentage of control. *p<0.05, **p<0.01 and ***p<0.001, significantly different compared to control; 
###

p<0.001, significantly different from nutrient deprivation 6 h; 
$$$

p<0.001, significantly different from chloroquine-
treated cells, as determined by ANOVA, followed by Bonferroni’s post test. 
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As already referred, autophagy is characterized by the formation of intracellular vesicles 

named autophagosomes, which present LC-3B, until later stages. Therefore, formation of 

intracellular small LC-3B puncta or aggregates is indicative of autophagy induction. In order to 

analyze if nutrient deprivation induces LC-3B puncta formation in primary rat cortical neurons, 

cells were exposed to DMEM low glucose medium for 6 h. As shown in Figure 3.4, LC-3B 

localization within the cells is mainly perinuclear and with a punctuate distribution. While 

untreated cells revealed a more diffuse LC-3B distribution, with few puncta, in nutrient 

deprivation treated cells, a clear increase in LC-3B puncta number can be observed. 

 
Figure 3.4 – Nutrient deprivation induces LC-3B puncta formation in rat cortical neurons. Primary rat cortical 
neuronal cultures were exposed to nutrient deprivation mimic medium (DMEM low glucose medium) for 6 h. 
Untreated cells were used as control (Ctrl). Cells were immunolabeled for LC-3B (green) and MAP2 (red, neurons). 
Nuclei were stained with Hoechst 33342 (blue). LC-3B puncta formation was assessed by immunocytochemistry 
assay, as described in Materials and Methods (see Chapter II). Figures are representative of 3 independents 
experiments. Scale bar, 20 μM. 
 

3.2.2. Nutrient deprivation increases NPY levels in cortical neurons 

Caloric restriction anti-aging effects are intimately tied to increased autophagy and 

alterations in the neuroendocrine system, such as the increase of NPY in the hypothalamus 

(Minor et al., 2009). Preliminary data obtained by our group show that nutrient deprivation 

increases NPY expression in primary cultures of hypothalamic neurons. In addition, NPY not 

only induces autophagy, but also mediates nutrient deprivation-induced autophagy in 

hypothalamic neurons, supporting the hypothesis that NPY may mediate nutrient deprivation-

induced autophagy. In line with these data and given that NPY may be expressed by cortical 

neurons, we hypothesized that NPY may also mediate nutrient deprivation effects on cortical 

neurons.  
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Firstly, to evaluate the presence of NPY and NPY receptors in cortical neurons, RT-PCR 

analysis was performed. To assess whether nutrient deprivation induce an increase in the 

expression levels of NPY in cortical neurons, cells were exposed to nutrient deprivation 

medium (DMEM low glucose medium) for 6 h, and total RNA was isolated and the transcript 

levels of NPY were analyzed by qRT-PCR. As shown in Figure 3.5A, nutrient deprivation 

increased NPY mRNA levels in primary rat cortical neurons (1.31±0.1 fold increase over 

control). As showed in Figure 3.5B, NPY Y1, Y2, Y4 and Y5 receptors mRNA are expressed by 

cortical neurons in culture. 

Figure 3.5 – Nutrient deprivation increases NPY mRNA levels in rat cortical neurons. (A) Primary rat cortical 
neuronal cultures were exposed to nutrient deprivation mimic medium (DMEM low glucose medium) for 6 h. 
Untreated cells were used as control (Ctrl). Total RNA was isolated, the transcript levels of NPY were analyzed by 
qRT-PCR and the resulting products were visualized by agarose gel electrophoresis, as described in Materials and 
Methods (see Chapter II). RT-PCR products (base pair (bp): NPY, 150bp and Hprt, 110bp, used an endogenous 
control. A representative image of 3 independent cell cultures is presented above the graph. The results represent 
the mean ± SEM of at 5 independents experiments and are expressed as the relative amount compared to control. 
*p<0.05, significantly different compared to control, as determined by Student’s t test. (B) The presence of NPY 
receptors in rat cortical neurons was assessed by PCR, as described in Materials and Methods (see Chapter II). PCR 
products (base pair (bp): NPY Y1, 616bp, NPY Y2, 318bp, NPY Y4, 476bp and NPY Y5, 248bp. Legend: 1: primary 
cortical neuronal culture#1; 2: primary cortical neuronal culture#2; 3: rat cortex; 4: rat hypothalamus. 

 

3.2.3. NPY Y1, Y2 or Y5 receptors mediate autophagy induced by nutrient derivation  

In order to assess the role of NPY in nutrient deprivation-induced autophagy, primary rat 

cortical neurons were incubated with different NPY receptors selective antagonists, NPY Y1 

antagonist (BIBP3226, 1 μM), NPY Y2 antagonist (BIIE0246, 1 μM) and NPY Y5 antagonist (L-

152,804, 1 μM), 30 min prior the treatment with DMEM low glucose medium. After 6 h, LC-

3BII/-tubulin ratio and p62/SQSTM1 levels were evaluated by Western blotting. As shown in 

Figure 3.6A, the increase in LC-3BII/-tubulin ratio induced by nutrient deprivation 

(162.5±10.0% of control) was significantly decreased in the presence of NPY receptor selective 

antagonists (Y1: 109.0±7.3%, Y2: 124.2±8.0% and Y5: 121.7±11.6% of control). Associated to the 

increase of LC-3BII/tubulin ratio, nutrient deprivation induced a decrease in p62/SQSTM1 
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levels (79.1±3.7% of control), which was inhibited by NPY Y1, Y2 and Y5 receptor selective 

antagonists (Y1: 98.6±11.0%, Y2: 97.3±9.9% and Y5: 104.1±8.6% of control; Figure 3.6B). These 

results suggest that nutrient deprivation-induced autophagy in cortical neurons is mediated by 

NPY Y1, Y2 and Y5 receptors activation. 

 
Figure 3.6 – NPY Y1, Y2 and Y5 receptors mediate the effect of nutrient deprivation on autophagy induction. 
Primary rat cortical neuronal cultures were incubated with NPY Y1 receptor antagonist BIBP3226 (Y1ant, 1 μM), NPY 
Y2 receptor antagonist BIIE0246 (Y2ant, 1 μM) or NPY Y5 receptor antagonist L152,800 (Y5ant, 1 μM), 30 min before 
nutrient deprivation treatment for 6 h. Untreated cells were used as control (Ctrl). Whole cell extracts were assayed 
for LC-3BII (A), p62/SQSTM1 (B) and β-tubulin (loading control) immunoreactivity through Western blotting analysis, 
as described in Materials and Methods (see Chapter II). Representative Western blots for each protein are 
presented above each respective graph. The results represent the mean ± SEM of, at least, 3 independents 
experiments, and are expressed as percentage of control. *p<0.05, ***p<0.001, significantly different compared to 
control; 

#
p<0.05 and 

###
p<0.001, significantly different from nutrient deprivation 6 h, as determined by ANOVA, 

followed by Bonferroni’s post test. 

 

3.2.4. Molecular pathways involved in nutrient deprivation-induced autophagy  

One of the molecular switches for autophagy induction is the inhibition of mTORC1 

complex. The mTORC1 activity can be assessed by the analysis of mTOR phosphorylation at 

Ser2448, which is its active form. In order to evaluate if mTORC1 was being inhibited upon 

nutrient deprivation, primary rat cortical neurons were treated with DMEM low glucose 

medium for 30 min and 6 h and whole cell extracts were evaluated for phospho-mTOR 

(Ser2448) by Western blotting. As shown in Figure 3.7A, 30 min and 6 h of nutrient deprivation 

induced a phospho-mTOR decrease (78.7±3.5% and 60.2±6.3% of control, respectively). This 

result suggests that nutrient deprivation induces autophagy through the inhibition of mTORC1. 

However, several other pathways are known to regulate autophagy in mammalian cells. To 

further determine the molecular pathways involved in nutrient deprivation-induced 

autophagy, primary rat cortical neurons were incubated with PI3K inhibitor (LY294002, 1 μM), 

ERK 1/2 inhibitor (U0126, 1μM) or PKA inhibitor (H89, 1 μM), in the presence or absence of 
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DMEM low glucose medium. After 6 h, LC-3BII/β-tubulin ratio and p62/SQSTM1 levels were 

evaluated by Western blotting. The increase of LC-3BII/β-tubulin ratio and the decrease of 

p62/SQSTM1 protein content induced by nutrient deprivation treatment were inhibited by all 

protein kinase inhibitors tested. As shown in Figure 3.7B, C and D, LC-3BII/β-tubulin ratio was 

increased in cells under nutrient deprivation (PI3K: 169.4±9.6%, ERK: 183.2±9.4% and PKA: 

167.5±14.3% of control) and this increase was inhibited in the presence of respective protein 

kinase inhibitor (PI3Ki: 130.7±11.5%, ERKi: 127.3±9.0% and PKAi: 114.3±3.5% of control). As 

shown in Figure 3.7E, F and G, the decrease in p62/SQSTM1 levels induced by nutrient 

deprivation (PI3K: 80.0±6.4%, ERK: 79.4±9.0% and PKA: 82.6±7.1% of control) was inhibited in 

the presence of respective protein kinase inhibitor (PI3Ki: 96.8±3.9%, ERKi: 88.5±5.1% and PKAi: 

88.7±2.0% of control). These results suggest that nutrient deprivation induces autophagy in rat 

cortical neurons through PI3K, ERK 1/2 and PKA signaling pathways. 
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Figure 3.7 – Molecular pathways involved in nutrient deprivation induced autophagy in cortical neurons. (A) 
Nutrient deprivation induces autophagy via mTOR-dependent pathway. Primary rat cortical neuronal cultures were 
exposed to nutrient deprivation for 30 min or 6 h. Untreated cells were used as control (Ctrl). (B to G) The effect of 
nutrient deprivation on autophagy induction is mediated by PI3K, ERK 1/2 and PKA. Primary rat cortical neuronal 
cultures were treated with PI3K inhibitor (LY294002 (PI3Ki), 1 μM), ERK 1/2 inhibitor (U0126 (ERKi), 1 μM)) or PKA 
inhibitor (H89 (PKAi), 1 μM), 30 min before nutrient deprivation treatment. Untreated cells were used as control 
(Ctrl). Whole cell extracts were assayed for phospho-mTOR (Ser2448) (A), LC-3BII (B, C and D), p62/SQSTM1 (E, F 
and G) and β-tubulin (loading control) immunoreactivity by Western blotting analysis, as described in Materials and 
Methods (see Chapter II). Representative Western blots for each protein are presented above each respective 
graph. The results represent the mean ± SEM of, at least, 3 independents experiments, and are expressed as 
percentage of control. **p<0.01 and ***p<0.001, significantly different compared to control; 

#
p<0.05, 

##
p<0.01 and 

###
p<0.001, significantly different from nutrient deprivation 6 h, as determined by ANOVA, followed by Bonferroni’s 

post test. 
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3.3. Neuropeptide Y 

3.3.1. NPY induces autophagy in cortical neurons through NPY Y1, Y2 or Y5 receptors 

activation 

Since NPY mediates nutrient deprivation-induced autophagy, we hypothesize that NPY per 

se may induce autophagy in cortical neurons. To evaluate this hypothesis we first investigated 

the effect of NPY on viability of primary rat cortical neuronal cultures by the MTT reduction 

assay. Cells were exposed to NPY (100 nM), for 6 and 24 h. As shown in Figure 3.8, NPY had no 

effect on cortical neurons viability (6 h: 94.3±4.1% and 24 h: 107.2±1.5% of control). 

 
Figure 3.8 – NPY does not change rat cortical neurons viability. Primary rat cortical neuronal cultures were 
incubated with NPY (100 nM) for 6 or 24 h. Untreated cells were used as control (Ctrl). Cell viability was assessed by 
the MTT reduction assay, as described in Materials and Methods (see Chapter II). The results represent the mean ± 
SEM of 3 independents experiments, and are expressed as percentage of control. Student’s t test. ns, not 
statistically different. 

 

To evaluate the autophagy-induction potential of NPY, primary rat cortical neurons 

cultures were exposed to NPY (100 nM) for 30 min, 1 h, 3 h, 6 h or 24 h. Rapamycin (100 nM, 1 

h), a known inductor of autophagy, was used as positive control of autophagy induction. As 

shown in Figure 3.9A, NPY induced an increase of the autophagic flux in cortical neurons since 

the ratio of LC-3BII/-tubulin increased significantly upon 1 h (119.8±4.5% of control) and 3 h 

(114.9±2.7% of control) of treatment, but more markedly after 6h of NPY treatment 

(130.8±5.8% of control). However, the amount of LC-3BII/-tubulin ratio decreased to basal 

levels after longer periods of incubation (101.8±5.6% of control), suggesting that is being 

degraded by the lysosome. Rapamycin induced an increase in LC-3BII/-tubulin ratio 

(128.4±3.8% of control; Figure 3.9A). Concomitant with the increase of LC-3BII/-tubulin ratio, 

the protein content of p62/SQTM1 was significantly decreased after 6 h (79.6±3.6% of control) 

of NPY treatment, as shown in Figure 3.9B. Rapamycin incubation also led to a decrease in 

p62/SQSTM1 protein (78.6±11.7% of control). In order to confirm that an efficient autophagic 

flux was occurring in NPY-treated cells, primary rat cortical neurons were treated with 

chloroquine (100 μM) 30 min prior the addition of NPY (100 nM) for 6 h. As observed 
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previously, cells treated with NPY had an increased LC-3BII/-tubulin ratio (129.8±4.6% of 

control, Figure 3.9C) compared to untreated cells. However, in the presence of chloroquine, 

this increase was higher (277.7±28.2% of control) than in cells treated with NPY alone. 

Chloroquine treatment also increased p62/SQSTM1 levels in cells treated with NPY 

(111.9±1.6% of control) compared to untreated cells, as shown in Figure 3.9D. These results 

indicate that autophagic degradation is occurring and that NPY enhances autophagy in cortical 

neurons. 

 
Figure 3.9 – NPY induces autophagy in rat cortical neurons. (A and B) Primary rat cortical neuronal cultures were 
incubated with NPY (100 nM) for 30 min, 1 h, 3 h, 6 h or 24 h. Untreated cells were used as control (Ctrl), and cells 
treated with rapamycin (Rapa, 100 nM) for 1 h were used as positive control of autophagy. (C and D) Primary rat 
cortical neuronal cultures were incubated with chloroquine (CQ, 100 μM), a lysosomal degradation inhibitor, 30 min 
before NPY (100 nM) treatment for 6 h. Untreated cells were used as control (Ctrl). Whole cell extracts were 
assayed for LC-3BII (A and C), p62/SQSTM1 (B and D) and β-tubulin (loading control) immunoreactivity through 
Western blotting analysis, as described in Materials and Methods (see Chapter II). Representative Western blots for 
each protein are presented above each respective graph. The results represent the mean ± SEM of, at least, 3 
independents experiments, and are expressed as percentage of control. *p<0.05, **p<0.01 and ***p<0.001, 
significantly different compared to control; 

###
p<0.001, significantly different from NPY treatment for 6 h; 

$$$
p<0.001, significantly different from chloroquine-treated cells, as determined by ANOVA, followed by 

Bonferroni’s post test. 
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LC-3B immunoreactivity in primary rat cortical neurons was also evaluated by 

immunocytochemistry, when cells were exposed to 100 nM NPY for 6 h. As shown in Figure 

3.10, LC-3B localization within the cells is mainly perinuclear and with a punctuate distribution. 

While untreated cells revealed a more diffuse LC-3B distribution, with few puncta, in nutrient 

deprivation condition, an increase in LC-3B puncta number was observed.  

 
Figure 3.10 – NPY induces LC-3B puncta accumulation in rat cortical neurons. Primary rat cortical neuronal cultures 
were exposed to NPY (100 nM) for 6 h. Untreated cells were used as control (Ctrl). Cells were immunolabeled for 
LC-3B (green) and MAP2 (red, neurons). Nuclei were stained with Hoechst 33342 (blue). LC-3B puncta formation 
was assessed by immunocytochemistry assay, as described in Materials and Methods (see Chapter II). Figures are 
representative of 3 independents experiments. Scale bar, 20 μM. 

 

In order to evaluate which NPY receptor(s) subtype(s) are involved in NPY signaling, 

primary rat cortical neurons were incubated with different NPY receptors selective 

antagonists: NPY Y1 antagonist (BIBP3226, 1 μM), NPY Y2 antagonist (BIIE0246, 1 μM) or NPY Y5 

antagonist (L-152,804, 1 μM), 30 min prior to treatment with NPY (100 nM). After 6 h, LC-

3BII/-tubulin ratio and p62/SQSTM1 levels were evaluated by Western blotting. As shown in 

Figure 3.11A, the increase in LC-3BII/-tubulin ratio induced by NPY (151.9±5.7% of control) 

was significantly prevented in the presence of NPY receptor selective antagonists (Y1: 

104.9±7.9%, Y2: 112.4±12.9% and Y5: 112.2±12.3% of control). Along with the increase of LC-

3BII/tubulin ratio, NPY induced a decrease in p62/SQSTM1 levels (77.5±3.8% of control), 

which was inhibited by NPY Y1, Y2 and Y5 receptor selective antagonists (Y1: 110.8±7.4%, Y2: 

106.1±10.7% and Y5: 110.8±7.0% of control), as shown in Figure 3.11B. These results suggest 

that NPY-induced autophagy is mediated by NPY Y1, Y2 and Y5 receptors activation. 

In order to confirm which NPY receptor subtypes were involved in NPY-induced 

autophagy in cortical neurons, different NPY receptor selective agonists were used: Y1 agonist 
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Cells were exposed to each NPY receptor agonist for 6 h. As shown in Figure 3.11C, similar to 

the effect of NPY (137.5±4.2% of control), all NPY receptors agonists tested increased the LC-

3BII/-tubulin ratio (Y1: 168.8±27.5%, Y2: 136.2±0.4%, Y4: 141.3±7.9% and Y5:163.0±5.1% of 

control). Associated to the increase of LC-3BII/-tubulin ratio, NPY induced a decrease in p62 

levels (78.1±4.3% of control), and in presence of NPY Y1, Y2, Y4 and Y5 receptor selective 

agonists decrease in the protein content was also observed (Y1: 78.1±4.3%, Y2: 70.9±8.9%, Y4: 

91.7.3±11.8% and Y5: 69.2±5.3% of control), as shown Figure 3.11D. These results suggest that 

NPY-induced autophagy is mediated by NPY Y1, Y2 and Y5 receptors activation. 

 
Figure 3.11 – NPY stimulates autophagy through NPY Y1, Y2 and Y5 receptors activation. (A and B) Primary rat 
cortical neuronal cultures were incubated with Y1 receptor antagonist BIBP3226 (Y1ant, 1 μM), Y2 receptor 
antagonist BIIE0246 (Y2ant, 1 μM) or Y5 receptor antagonist L152,800 (Y5ant, 1 μM), 30 min before NPY (100 nM) 
treatment for 6 h. Untreated cells were used as control (Ctrl). (C and D) Primary rat cortical neuronal cultures were 
treated with Y1 receptor agonist receptor Leu

31
Pro

34
 (Y1ago, 100 nM), Y2 receptor agonist NPY13-36 (Y2ago, 100 nM), 

Y4 receptor agonist r-PP (Y4ago, 100 nM) or Y5 receptor agonist NPY19-23 (Gly
1
,Ser

3
,Gln

4
,Thr

6
, Ala

31
,Aib

32
,Gln

34
) (Y5ago, 

100 nM), for 6 h. Untreated cells were used as control (Ctrl). Whole cell extracts were assayed for LC-3BII (A and C), 
p62/SQSTM1 (B and D) and β-tubulin (loading control) immunoreactivity through Western blotting analysis, as 
described in Materials and Methods (see Chapter II). Representative Western blots for each protein are presented 
above each respective graph. The results represent the mean ± SEM of, at least, 3 independents experiments, and 
are expressed as percentage of control. *p<0.05, **p<0.01 and ***p<0.001, significantly different compared to 
control; 

#
p<0.05, 

##
p<0.01 significantly different from NPY treatment for 6 h, as determined by ANOVA, followed by 

Bonferroni’s post test. 
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3.3.2. Molecular pathways involved in NPY-induced autophagy  

The inhibition of mTOR is one of the major regulators of autophagy induction (He et al., 

2009, Jung et al., 2010). In order to evaluate if mTORC1 was being inhibited upon NPY 

treatment, cells were treated with NPY (100 nM) for 30 min and 6 h and whole cell extracts 

were assayed for phospho-mTOR (Ser2884) by Western blotting. As shown in Figure 3.12A, 

NPY treatment led to a significant decrease in phospho-mTOR (Ser2448) levels (89.4±3.5% and 

78.4±3.3% of control, respectively) in rat cortical neurons. This result suggests that NPY 

induces autophagy through through the inhibition of mTORC1. However, several other 

pathways are known to regulate autophagy in mammalian cells. To further determine the 

molecular pathways involved in NPY-induced autophagy, primary rat cortical neurons were 

incubated with PI3K inhibitor (LY294002 (PI3Ki), 1 μM), ERK 1/2 inhibitor (U0126 (ERKi), 1 μM) 

or PKA inhibitor (H89 (PKAi), 1 μM), in the presence or absence of 100 nM NPY. After 6 h, LC-

3BII/-tubulin ratio and p62/SQSTM1 levels were evaluated by Western blotting. The increase 

of LC-3BII/-tubulin ratio and the decrease of p62 protein content, induced by NPY treatment, 

were inhibited by all kinase inhibitors tested. As shown in Figure 3.12B, C and D, NPY increased 

LC-3BII/-tubulin ratio (PI3K: 134.4±6.2%, ERK: 138.4±6.1% and PKA: 137.1±5.7% of control) 

which was decreased in the presence of respective protein kinase inhibitor (PI3Ki: 105.5±8.4%, 

ERKi: 124.9±14.4% and PKAi: 118.7±13.7% of control). As shown in Figure 3.12E, F and G, cells 

treated with NPY showed a decreased in p62/SQSTM1 protein content (PI3K: 86.5±2.4%, ERK:   

85.2±3.3% and PKA: 83.9±3.6% of control) which was inhibited in the presence of respective 

protein kinase inhibitor (PI3Ki: 102.2±2.6%, ERKi: 103.9±6.8% and PKAi: 110.1±3.1% of control). 

These results suggest that NPY induces autophagy in cortical neurons through PI3K, ERK 1/2 

and PKA signaling pathways. 



Chapter III: Results 
 

 

72 
 

 
Figure 3.12 – Molecular pathways involved in NPY induced autophagy in cortical neurons. (A) NPY activates 
autophagy through a mTOR-dependent pathway. Primary rat cortical neuronal cultures were exposed to NPY (100 
nM) for 30 min or 6 h. Untreated cells were used as control (Ctrl). (B to G) The effect of NPY on autophagy induction 
is mediated by PI3K, ERK 1/2 and PKA. Primary rat cortical neuronal cultures were treated with PI3K inhibitor 
(LY294002 (PI3Ki), 1 μM), ERK 1/2 inhibitor (U0126 (ERKi), 1 μM)) or PKA inhibitor (H89 (PKAi), 1 μM) 30 min before 
NPY (100 nM) treatment. Untreated cells were used as control (Ctrl). Whole cell extracts were assayed for phospho-
mTOR (Ser2448) (A), LC-3BII (B, C and D), p62/SQSTM1 (E, F and G) and β-tubulin (loading control) immunoreactivity 
by Western blotting analysis, as described in Materials and Methods (see Chapter II). Representative Western blots 
for each protein are presented above each respective graph. The results represent the mean ± SEM of, at least, 3 
independents experiments, and are expressed as percentage of control. **p<0.01 and ***p<0.001, significantly 
different compared to control; 

#
p<0.05, 

##
p<0.01  and 

###
p<0.01 significantly different from NPY treatment for 6 h, 

as determined by ANOVA, followed by Bonferroni’s post test. 
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3.4. Ghrelin 

3.4.1. Nutrient deprivation-induced autophagy is mediated by ghrelin receptor 

activation  

CR is known to increase the levels of ghrelin, an orexigenic peptide secreted by the 

stomach known to be involved in food intake and body weight regulation (Kojima et al., 1999, 

Ariyasu et al., 2001). Since ghrelin shares some of the physiological effects induced by CR it has 

been suggested as a metabolic regulator signal during CR. Therefore we hypothesize that 

ghrelin, similarly to NPY, could be involved in nutrient deprivation-induced autophagy in rat 

cortical neurons. Ghrelin effects are mediated by the activation of the ghrelin receptor, GHS-

R1a (McKee et al., 1997). Although is known that ghrelin receptor is ubiquitously distributed in 

the brain, included in the cortex, to confirm the presence of GHSR-1a receptor in primary rat 

cortical neuronal cultures, GHS-R1a immunoreactivity was evaluated by Western blotting. In 

Figure 3.13A we show that rat cortical neurons in culture express GHS-R1a receptor, and 

therefore, are able to respond to ghrelin stimulation. 

To assess whether ghrelin plays a role in nutrient deprivation-induced autophagy in 

cortical neurons, cells were exposed to the ghrelin receptor antagonist ([D-Lys3]-GHRP-6, 100 

μM) 30 min prior to the incubation of nutrient deprivation medium. After 6 h, LC-3BII/-

tubulin ratio and p62/SQSTM1 levels were evaluated in whole cell lysates by Western blotting. 

As shown in Figure 3.13B, preliminary data (n=2-3) show that the increase in LC-3BII/ -tubulin 

ratio induced by nutrient deprivation (178.2±9.3% of control) was partially decreased in the 

presence of GHS-R1a antagonist (159.6±15.1% of control). In addition, GHS-R1a antagonist 

(86.7±5.6% of control; Figure 3.13C) partially inhibited the decreased in p62/SQSTM1 protein 

levels upon nutrient deprivation treatment (78.4±6.4% of control; Figure 3.13C). Of note, the 

receptor antagonist itself also seems to alter the LC-3BII/-tubulin ratio and p62/SQSTM1 

protein content in these cells. These effects may be related with the intrinsic constitutive 

activity of GHS-R1a receptor (Damian et al., 2012). These preliminary results suggest that GHS-

R1a may mediate nutrient deprivation-induced autophagy in cortical neurons.  
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Figure 3.13 – The effect of GHS-R1a receptor antagonist on nutrient deprivation-induced autophagy. (A) Total RNA 
was isolated from primary cortical neuronal cultures, the transcript levels of ghrelin were analyzed by qRT-PCR and 
the resulting producs were visualized by agarose gel electrophoresis as described in Materials and Methods (see 
Chapter II). RT-PCR products (base pair (bp): Ghrelin, 120bp and Hprt, 110bp, used an endogenous control. A 
representative image of 3 independent cell cultures is presented above the graph. (B) Lysates from primary rat 
cortical neurons and from adult rat cortex were assayed for GHS-R1a and β-tubulin (loading control) 
immunoreactivity by Western blotting analysis, as described in Materials and Methods (see Chapter II). (C and D) 
Primary rat cortical neuronal cultures were treated with GHS-R1a receptor antagonist [D-Lys

3
]-GHRP-6 (GHS-R1a 

ant, 100 μM) 30 min before nutrient deprivation treatment for 6 h. Untreated cells were used as control (Ctrl). 
Whole cell extracts were assayed for LC-3BII (C), p62/SQSTM1 (D) and β-tubulin (loading control) immunoreactivity 
through Western blotting analysis, as described in Materials and Methods (see Chapter II). The results represent the 
mean ± SEM of, at least, 3 independents experiments, and are expressed as percentage of control. **p<0.01 and 
***p<0.001, significantly different compared to control; 

#
p<0.001, significantly different from nutrient deprivation 6 

h, as determined by ANOVA, followed Bonferroni’s post test. Legend: 1: primary cortical neuronal culture#1; 2: 
primary cortical neuronal culture#2; 3: rat cortex; 4: rat hypothalamus. 

 

3.4.2. Ghrelin induces autophagy in cortical neurons  

Since GHS-R1a seems to play a role in nutrient deprivation-induced autophagy, we 

evaluated the effect of ghrelin on autophagy in cortical neurons. First, the effect of ghrelin on 

primary rat cortical neuronal viability was evaluated by the MTT reduction assay. Cells were 
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exposed to 10 nM ghrelin for 6 and 24 h. As shown in Figure 3.14, ghrelin did not affect the 

viability of cortical neurons (6 h: 96.3±4.1% and 24 h: 104.0±0.6% of control).  

 
Figure 3.14 – Ghrelin does not change rat cortical neurons viability. Primary rat cortical neuronal cultures were 
incubated with ghrelin (10 nM) for 6 h or 24 h. Untreated cells were used as control (Ctrl). Cell viability was assessed 
by the MTT reduction assay, as described in Materials and Methods (see Chapter II). The results represent the mean 
± SEM of 3 independents experiments, and are expressed as percentage of control. Student’s t test. ns, not 
statistically different. 

 

In order to evaluate the autophagy-induction potential of ghrelin, primary rat cortical 

neuronal cultures were exposed with 10 nM ghrelin for 6 and 24 h. Rapamycin (100 nM, 1 h), a 

known inductor of autophagy, was used as positive control. As shown in Figure 3.15A, ghrelin 

induced an increase of the autophagic flux in cortical neurons, since the ratio of LC-

3BII/tubulin is increased after 6h (125.5±4.5%of control) of treatment; however, the 

amount of LC-3BII/tubulin ratio decreased to basal levels after longer-time exposures 

(92.9±3.2% of control), suggesting that LC-3BII is being degraded by the lysosome. Rapamycin 

induced an increase in LC-3BII/-tubulin ratio (127.9±4.3% of control; Figure 3.15A). Parallel to 

the increase in LC-3BII/tubulin ratio, the protein content of p62/SQSTM1 was decreased 

after 6 h (76.4±4.4% of control) of ghrelin treatment. In order to confirm that ghrelin induces 

autophagic flux, cortical neurons were pre-treated for 6 h with chloroquine (100 uM), 30 min 

before ghrelin treatment. As shown in Figure 3.15C, cells incubated with ghrelin showed a 

higher LC-3BII/-tubulin ratio (125.2±4.5% of control) compared to untreated cells. However, 

in the presence of chloroquine, this increase was higher (147.4±4.6% of control) than in cells 

treated with ghrelin alone. Chloroquine treatment also increased p62/SQSTM1 protein levels 

137.1±10.1% of control) compared to untreated cells, as shown in Figure 3.15D. These results 

indicating that indeed ghrelin increases autophagic flux in cortical neurons. 
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Figure 3.15 – Ghrelin induces autophagy in cortical neurons. (A and B) Primary rat cortical neuronal cultures were 
incubated with ghrelin (10 nM) for 6 h or 24 h. Untreated cells were used as control (Ctrl), and cells incubated with 
rapamycin (Rapa, 100 nM) for 1 h were used as positive control of autophagy. (C and D) Primary rat cortical 
neuronal cultures were incubated with chloroquine (CQ, 100 μM), a lysosomal degradation inhibitor, 30 min before 
ghrelin (10 nM) treatment for 6 h. Untreated cells were used as control (Ctrl). Whole cell extracts were assayed for 
LC-3BII (A and C), p62/SQSTM1 (B and D), and β-tubulin (loading control) immunoreactivity through Western 
blotting analysis, as described in Materials and Methods (see Chapter II). Representative Western blots for each 
protein are presented above each respective graph. The results represent the mean ± SEM of, at least, 3 
independents experiments, and are expressed as percentage of control. *p<0.05, **p<0.01 and ***p<0.001, 
significantly different compared to control; 

#
p<0.05 and 

###
p<0.001, significantly different from ghrelin treatment 

for 6 h, as determined by ANOVA, followed by Bonferroni’s post test. 

 

LC-3B immunoreactivity in primary rat cortical neurons was also evaluated by 

immunocytochemistry. Cells were exposed to 10 nM ghrelin for 6 h. As shown in Figure 3.16, 

LC-3B localization within the cells is mainly perinuclear and with a punctuate distribution. 

While untreated cells revealed a more diffuse LC-3B distribution, with few puncta, in nutrient 

deprivation treated cells, a clear increase in LC-3B puncta number was observed.  
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Figure 3.16 – Ghrelin induces LC-3B puncta accumulation in rat cortical neurons. Primary rat cortical neuronal 
cultures were exposed to ghrelin (10 nM) for 6 h. Untreated cells were used as control (Ctrl). Cells were 
immunolabeled for LC-3B (green) and MAP2 (red, neurons). Nuclei were stained with Hoechst 33342 (blue). LC-3B 
puncta formation was assessed by immunocytochemistry assay, as described in Materials and Methods (see 
Chapter II). Figures are representative of 3 independents experiments. Scale bar, 20 μM. 

 

3.4.3. Ghrelin-induced autophagy is mediated by GHS-R1a receptor activation 

Since GHS-R1a mediates ghrelin effects on cells, we next evaluated whether ghrelin 

receptor GHS-R1a modulates the ghrelin effect on autophagy induction. Cells were exposed to 

the ghrelin receptor antagonist (100 μM, [D-Lys3]-GHRP-6) 30 min prior to ghrelin (10 nM) 

treatment. After 6 h, LC-3BII/-tubulin ratio and p62/SQSTM1 levels were evaluated by 

Western blotting. As shown in Figure 3.17A, the increase in LC-3BII/-tubulin ratio upon 

ghrelin treatment (128.7±4.2% of control) decreased in the presence of GHS-R1a antagonist 

(108.0±7.2% of control). Concomitant with the increase of LC-3BII/tubulin ratio, ghrelin-

induced decrease in p62/SQSTM1 levels (76.4±4.4% of control), which was inhibited by GHSR-

1a antagonist (113.0±10.8% of control), as shown in Figure 3.17B. However, when the cells are 

only exposed to the antagonist, the profile is similar to that with ghrelin exposure only (LC-

3BII/-tubulin: 144.2±2.0% and p62/SQSTM1: 88.6±3.5% of control). Nevertheless, these 

preliminary results suggest that ghrelin increases autophagy in rat cortical neurons and this is 

mediated by GHS-R1a receptor activation. In order to evaluate if mTORC1 complex was 

involved upon ghrelin treatment, primary rat cortical neurons were treated with 10 nM ghrelin 

for 30 min and 6 h and whole cell extracts were evaluated for phospho-mTOR (Ser2448) by 

Western blotting. As shown in Figure 3.17C, ghrelin led to a decrease in phospho-mTOR after 

30 min and 6 h of incubation (96.9±7.5% and 80.8±3.3% of control, respectively). This result 

suggests that nutrient deprivation induces autophagy through the inhibition of mTORC1.  
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 Figure 3.17 – The effect of GHS-R1a receptor antagonist on ghrelin-induced autophagy. Primary rat cortical 
neuronal cultures were treated with GHS-R1a receptor antagonist [D-Lys

3
]-GHRP-6 (GHSR-1a ant, 100 μM), 30 min 

before ghrelin (10 nM) treatment for 6 h (A and B), or exposed to ghrelin alone for 6 or 24h (C). Untreated cells 
were used as control (Ctrl). Whole cell extracts were assayed for LC-3BII (A), p62/SQSTM1 (B), phosphor-mTOR (C) 
and β-tubulin (loading control) immunoreactivity through Western blotting analysis, as described in Materials and 
Methods (see Chapter II). Representative Western blots for each protein are presented above each respective 
graph. The results represent the mean ± SEM of 2 to 3 independents experiments, and are expressed as percentage 
of control. **p<0.01 and ***p<0.001, significantly different compared to control; 

#
p<0.05 and 

###
p<0.001, 

significantly different from ghrelin 6 h; 
$
p<0.05 and 

$$$
p<0.001 significantly different from GHS-R1a receptor 

antagonist treatment, as determined by ANOVA, followed Bonferroni’s post test. 
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Aging and longevity are determined by multifactorial and complex processes whose 

molecular basis remains incompletely understood (Kirkwood 2005). The brain is the most 

affected organ by the aging process, exerting effects on the molecules, cells, vasculature, gross 

morphology, and cognition. In addition, several studies suggest that age-related reductions in 

brain weight were due, in part, to a decline in neuron number in all cortical layers (Brody 1955, 

Duan et al., 2003). The aging process is also related with alterations in the neuroendocrine 

control of energy homeostasis that could lead to obesity or diabetes (Smith et al., 2005, 

Carrascosa et al., 2009), metabolic diseases that worsen quality of life and shorten lifespan. 

Aging is driven by the accumulation of damaged macromolecules and organelles which 

compromises cellular function (Kirkwood 2005). The lifelong accumulation of abnormal cellular 

constituents leads to a decreased ability of cells, and ultimately of the organism, to survive. 

The continuous removal of worn-out components and replacement with newly synthesized 

ones ensures cellular homeostasis and delays the aging process. In addition, there is evidence 

that neurons are especially susceptible to proteasomal and autophagic dysfunction, possibly 

because they are long-lived cells with considerable specialized membrane and protein 

turnover. Autophagy is the major degradative process of eukaryotic cells (Levine et al., 2008, 

Mizushima et al., 2008) and is well characterized as a response to cellular stress with the dual 

effect of debris removal and provision of energy through recycling of valuable cellular 

resources. This process is required for the bulk clearance of damaged macromolecules, the 

turnover of long-lived proteins, and for the removal of superfluous or dysfunctional organelles 

within cells. Growing evidence indicates that basal autophagic activity decreases with age, thus 

contributing to the aging phenotype and to the aggravation of age related diseases (Cuervo 

2008).  

Actually, there are several interventions that try to delay the aging process and increase 

longevity, however there are no interventions or gene manipulations that stop or reverse the 

aging process. When considering all the possible strategies to slow down aging and prolong 

maximal lifespan, caloric restriction (CR) is the most robust anti-aging intervention known to 

increase maximal lifespan and healthspan from yeast to mammals (Bergamini et al., 2007, 

Fontana et al., 2010). In fact, CR was shown to slow aging in Rhesus monkeys by delaying the 

onset of age-associated pathologies, including cancer and cardiovascular diseases (Colman et 

al., 2009). CR anti-aging effects are intimately tied to increased autophagy (Donati 2006) and 

alterations in the neuroendocrine system, particularly the increase of NPY in the hypothalamus 

(Minor et al., 2009) and the increase in the circulating levels of ghrelin (Lutter et al., 2008), a 

orexigenic peptide produced by the stomach in response to fasting conditions, which 
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stimulates hypothalamic neurons to increase food intake via NPY release (Nakazato et al., 

2001, Shintani et al., 2001). 

Aging is associated with reduced levels of NPY in several cerebral areas, such as 

hypothalamus, hippocampus and cortex (Higuchi et al., 1988, Gruenewald et al., 1994, Vela et 

al., 2003). Also a decline in NPY plasma levels in humans correlated with increasing age 

(Chiodera et al., 2000). In addition, reduced NPY is associated with neurodegenerative diseases 

(Decressac et al., 2012) and the development of “anorexia in aging”, characterized by reduced 

food intake and body weight, responsible for age-associated under nutrition and physical 

deterioration (Matsumoto et al., 2000, Morley et al., 2001). On the other hand, the increase in 

NPY can lead to several physiological modifications similar to those induced by CR. Central 

administration of NPY has been shown to induced hyperphagia (Stanley et al., 1986, Beck et 

al., 1992), lower blood glucose levels (Ahlborg et al., 1994, Marks et al., 1997, Bischoff et al., 

1998) and reduce core body temperature (Billington et al., 1991, Kotz et al., 2000). In humans, 

increased NPY levels may also be correlated with lifespan benefits, since long-lived female 

centenarians have higher NPY plasma levels compared to younger women (Baranowska et al., 

2006). Given the difficulty to implement and sustain a CR regimen in humans, there is an 

increasing interest on the identification of new agents that can mimic the beneficial effects of 

CR. It is not known whether NPY is a necessary precursor for the functional benefits associated 

with CR. Considering NPY’s unique long term response to CR compared to other neuropeptides 

and the plethora of similar physiological actions (Bi et al., 2003), NPY is a promising CR mimetic 

candidate.  

Similarly to NPY, the circulating levels of ghrelin also decrease with increasing age 

(Rigamonti et al., 2002), but exogenous restoration of ghrelin improves a variety of age-related 

immune, appetite, and insulin derangements. Additionally, ghrelin has been shown to be 

affected in the short-term by changes in feeding and in the long-term by changes in body 

weight (Tschop et al., 2000, Wren et al., 2000, Wren et al., 2001b, Finger et al., 2011a, Finger 

et al., 2011b, Rolland et al., 2011). These properties are important as CR modifies both. Like 

CR, ghrelin is known to increase food intake, inhibit insulin release and reduce blood glucose 

levels (Wierup et al., 2004), to reduce the reproductive organ function (Fernandez-Fernandez, 

et al., 2004), and maintenance of cognition (Carlini et al., 2008). The effectiveness of ghrelin in 

these roles may be impaired as ghrelin levels decrease with age, perhaps contributing to other 

age-related conditions like insulin resistance and diabetes (Wierup et al., 2004), reduced 

fertility (Fernandez-Fernandez et al., 2004), and decreased performance on cognitive and 

memory tasks with advancing age (Carlini et al., 2008). The significant overlap between CR- 
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and ghrelin-induced physiological processes suggest that ghrelin may play a role in the 

beneficial effects of CR on health and lifespan. However, its role in autophagy and 

consequently, lifespan extension, remains unkown. 

In this study, we show for the first time that nutrient deprivation induces autophagy in rat 

cortical neurons by increasing LC-3BII/β-tubulin ratio and decreasing p62/SQSTM1 protein 

levels. In addition, nutrient deprivation induced the formation of numerous LC-3B punctuate 

structures or aggregates, indicative of increased formation of autophagosomes in the 

cytoplasm. An increase in LC-3BII/β-tubulin ratio or LC-3B aggregates are not sufficient to 

guarantee an increase on the autophagic flux upon nutrient deprivation treatment. LC-3BII can 

be accumulated due to enhanced autophagosome formation or inhibition of autophagic 

degradation, perphaps due to delayed trafficking to the lysosomes, reduced fusion between 

compartments or impaired lysosomal proteolytic activity (Klionsky et al., 2012). To rule out the 

possibility that the increase of LC-3BII/β-tubulin ratio and LC-3B punctate is due to an inhibited 

autophagosome degradation rather than autophagosome formation, we measured 

endogenous autophagic flux by the difference in the LC-3BII/ β-tubulin ratio and p62/SQSTM1 

protein levels in the presence or absence of chloroquine, an inhibitor of autophagic 

degradation (Barth et al., 2010). Chloroquine increased LC-3BII/β-tubulin ratio and 

p62/SQSTM1 protein levels in both nutrient deprivation-treated and non-treated cells, but the 

increase in nutrient deprivation-treated cells was much larger than in untreated cells. These 

results suggest that nutrient deprivation induces autophagy and accelerates autophagic flux in 

cortical neurons. 

CR anti-aging effects are intimately linked to the increase of autophagy and alterations in 

the neuroendocrine system, such as the increase of NPY in the hypothalamus (Minor et al., 

2009). Preliminary data obtained by our group shows that nutrient deprivation increases NPY 

expression in primary cultures of hypothalamic neurons. In addition, NPY not only induces 

autophagy, but also mediates nutrient deprivation-induced autophagy in hypothalamic 

neurons, supporting the hypothesis that NPY may mediate nutrient deprivation-induced 

autophagy. In line with these preliminary data and knowing that NPY may be expressed by 

cortical neurons is reasonable to hypothesize that NPY may mediate nutrient deprivation 

effects on cortical neurons. In fact, this hypothesis was confirmed by evaluating the presence 

of NPY and its receptors in these primary cultures of rat cortical neurons. NPY exerts its 

biological functions through G-protein-coupled receptors (NPY Y1, Y2, Y4, Y5) (Gehlert 2004), all 

of which have been reported to be present in the cortex (Parker et al., 1999). However, the 

NPY Y1 and Y2 receptors are the most common (Leroux 2002). The presence of NPY and NPY 
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receptors in cortical neurons was demonstrated and confirmed by mRNA expression. The 

mRNA for NPY and NPY Y1, Y2, Y4 and Y5 were detected in cortical neurons in culture. In the 

present study, we observed that NPY Y1, Y2 and Y5 receptor antagonists decreased the effect of 

nutrient deprivation on autophagy induction, suggesting that nutrient deprivation-induced 

autophagy is dependent on NPY Y1, Y2 and Y5 receptor activation in cortical neurons. Though, 

no receptor seems to take a major role in mediating this effect, since all three antagonists 

equally reduced LC-3BII/β-tubulin ratio and increased p62/SQSTM1 protein levels. This leads to 

the hypothesis that all the three tested receptors may play redundant roles in signaling 

autophagy induction, supported by the fact that all three trigger basically the same molecular 

pathways, through Gαi/o protein activation. Furthermore, these three NPY receptor subtypes 

are considered to be the most active in the regulation of feeding circuitries and energy balance 

in mammals (Duhault et al., 2000, Lecklin et al., 2002, Henry et al., 2005).  

The canonical pathway for autophagy induction is usually dependent on mTORC1 

inhibition (Jung et al., 2010). Activation of mTOR kinase activity, in response to replete nutrient 

conditions and insulin/growth factor signaling suppresses autophagy, while inhibition of mTOR 

by starvation induces autophagy. In this study, we observed that nutrient deprivation 

decreases mTOR activity, the core kinase of mTORC1. On the other hand, several other 

pathways are known to regulate autophagy in mammalian cells. PI3K inhibitors, including 3-

methyladenine, wortmannin, and LY294002 have been well established as autophagy 

inhibitors (Petiot et al., 2000, Blommaart et al., 2009). These inhibitors inhibit class I as well as 

class III PI3K. While class III PI3K is essential for autophagosome formation and therefore, 

autophagy induction, class I PI3K suppresses autophagy via indirect activation of mTOR 

complex. The net effect of these inhibitors is typically to inhibit autophagy because the class III 

enzymes, that are required to activate autophagy act downstream of the negative regulatory 

class I enzymes. ERK, a mitogen-activated protein kinase has also been implicated in autophagy 

regulation (Wang et al., 2009, Cagnol et al., 2010). Several studies involving pharmacological 

inhibition of ERK demonstrated that it mediates starvation- and TNF-α-induced autophagy 

(Cheng et al., 2008, Ogier-Denis et al., 2000). Consistent with these reports, we showed that 

nutrient deprivation induced autophagy in cortical neurons via the ERK pathway, as showed by 

a decline in LC-3BII/β-tubulin ratio by ERK inhibitor. In addition to PI3K and ERK, we also 

revealed that nutrient deprivation enhances autophagic flux in cortical neurons via PKA 

pathway. However, it is described that PKA negatively regulates autophagy either by directly 

phosphorylating LC-3B (Cherra et al., 2010) or by activating TORC1, which inhibits autophagy 

(Mavrakis 2006). In this study, we also observed that PI3K, ERK 1/2 and PKA inhibitors 
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decreased autophagic flux induced by nutrient deprivation. These results suggest that nutrient 

deprivation induces autophagy in cortical neurons through mTOR, PI3K, ERK 1/2 and PKA 

signaling pathways. 

Since nutrient deprivation-induced autophagy is mediated by NPY receptors activation 

and an increase in NPY expression, we evaluated the hypothesis that NPY also induces 

autophagy in rat cortical neurons. In this study, we showed for the first time that NPY 

increases LC-3BII/β-tubulin ratio and decreases p62/SQSTM1 protein levels, enhancing this 

way the autophagic flux in cortical neurons. Furthermore, it was observed the formation of LC-

3B punctuate structures or dots in NPY-treated cells, which indicates an increased formation of 

autophagosomes in cortical neurons. To confirm if NPY-induced indeed autophagy and the 

lysosomal degradation in the late stages was taking place, the cortical neurons were treated 

with chloroquine prior to NPY incubation. The results obtained clearly show that NPY is indeed 

inducing autophagy, ultimately leading to LC-3BII degradation. This supports that NPY induces 

autophagy in a time-dependent manner and that the induced autophagy is dynamic and 

complete. NPY exerts its biological functions through G-protein-coupled receptors (NPY Y1, Y2, 

Y4, Y5) (Gehlert 2004), all of which were shown to be present in cortical neurons. In the present 

study we observed that NPY Y1, Y2 and Y5 receptor antagonists decreased the effect of NPY on 

autophagy induction, suggesting that NPY-induced autophagy is dependent on NPY Y1, Y2 and 

Y5 receptor activation in cortical neurons. Though, no receptor seems to take a major role in 

mediating this effect, since all three antagonists equally reduced LC-3BII/β-tubulin ratio and 

increased p62/SQSTM1 protein levels. To better understand the involvement of each NPY 

receptor in autophagy regulation, specific agonists of NPY Y1, Y2, Y4 and Y5 were used. Similar to 

NPY, all four agonists increased LC-3B/β-tubulin ratio and decreased p62/SQSTM1 protein 

content. The experiments demonstrate that NPY regulates cortical neuronal autophagy 

through the activation of these four receptors. Like nutrient deprivation, NPY decreased the 

activity of mTOR, which is a signal for autophagy induction. On the other hand, we also 

observed that PI3K, ERK and PKA inhibitors decreased the autophagic flux induced by NPY. 

These results suggest that NPY induces autophagy in cortical neurons through PI3K, ERK 1/2 

and PKA signaling pathways. Since NPY can increase cAMP levels and consequently activate 

PKA in hypothalamic neurons (Dhillon et al., 2009, Hong et al., 2012), this discrepancy may be 

due to cell type specificity. The similarity between the effects of nutrient deprivation and NPY 

on cortical neuronal autophagy supports the hypothesis that NPY may be considered as a CR 

mimetic. 
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Finally, we explore the potential of ghrelin, other putative CR mimetic, to regulate cortical 

neuronal autophagy. In the CNS, the main site of ghrelin expression, although at much lower 

levels than the stomach, is the hypothalamus. However, it has also been found in the 

hippocampus (Kojima et al., 2002, De Ambrogi et al., 2003) and cortex (Hou et al., 2006). On 

the other hand, ghrelin receptor is ubiquitously distributed in the brain, being found in the 

hypothalamus, hippocampus and cortex (Howard et al., 1996, Guan et al., 1997, Zigman et al., 

2006). To confirm that cortical neurons in culture express ghrelin and ghrelin receptor, we 

performed qPCR and Western blotting analysis to evaluate the expression of ghrelin and the 

immunoreactivity of GHS-R1a in these cells. We observed that cortical neurons in culture 

express ghrelin and GHS-R1a receptor, and therefore, are able to respond to ghrelin. Then, to 

investigate the involvement of ghrelin in nutrient deprivation-induced autophagy, via GHS-R1a 

activation, we used a specific antagonist for this receptor: [D-Lys3]-GHRP-6. We observed that 

in the presence of [D-Lys3]-GHRP-6, the effects of nutrient deprivation cortical neuronal 

autophagy are partially diminished, suggesting that this receptor may play a role in autophagy 

regulation.  We then evaluated whether ghrelin per se, like NPY, could regulate autophagy in 

cortical neurons. We observed that, ghrelin induces autophagy in cortical neurons, since LC-

3BII/β-tubulin ratio increase and p62/SQSTM1 decrease, beyond ghrelin decreased the activity 

of mTOR, which is a signal for autophagy induction, like NPY. In addition, chloroquine 

increased LC-3BII/β-tubulin ratio and p62/SQSTM1 protein levels in ghrelin-treated suggesting 

that ghrelin enhances the autophagic flux in cortical neurons. We also observed that this effect 

is mediated by the activation of GHS-R1a receptor. However, it is important to refer that these 

effects may be related with the intrinsic constitutive activity of GHS-R1a receptor (Damian et 

al., 2012). Altogether, these preliminary results suggest that ghrelin not only increases 

autophagy in rat cortical neurons but also mediates nutrient deprivation-induced autophagy. 

These evidences, even preliminary, in addition to the fact that ghrelin shares some of the 

beneficial effects of CR support the potential role of ghrelin as a CR mimetic.  

Since cortical autophagy decreases with age, modulation of NPY and ghrelin levels may 

acts as a protective mechanism against impaired cortical dysfunction associated with age. 

Furthermore, a better understanding of the role of NPY and ghrelin in the regulation of cortical 

autophagy and on other beneficial mechanisms, induced by CR, will provide new putative 

therapeutic strategies to extend longevity and ameliorate age-related deteriorations in 

combination with CR. In addition, since is difficult to implement CR and it is known that ghrelin 

regulates the expression of NPY, which has been shown to induce obesity, it would be 

important to understand how ghrelin can be modulated in order to regulate NPY expression, 
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introducing ghrelin as a new putative therapeutic strategies to delay the aging process and 

promote healthy lifespan. 
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The results presented in this thesis allowed the drawing of the following main 

conclusions:  

Although the knowledge surrounding autophagy and its effects has considerably grown in 

the last decade, there is still much to clarify and understand, as its relation with caloric 

restriction effects in the brain. This study provided new evidences regarding the autophagy 

regulation in caloric restriction, having NPY and ghrelin as key mediators.  

The results showed an autophagy induction in cortical neurons by CR and NPY, in a time-

dependent manner and that this induction appears to be equally mediated by NPY Y1, Y2 and Y5 

receptors. Likewise, and in both conditions, it was additionally demonstrated that CR and NPY 

induce autophagy through the canonical (mTORC1) and non-canonical signaling pathways. 

We observed for the first time that ghrelin, similarly to NPY, contributes to the autophagy 

induction mediated by nutrient deprivation.  

Other new main finding that NPY and ghrelin, both considered caloric restriction 

mimetics, enhance autophagy in cortical neurons per se.  

Further studies, should provide additional data, in order to better understand how NPY 

and ghrelin may be acting in the brain and, eventually, how they may contribute to the 

enhancement of cellular resistance to aging, through autophagy. 
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