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Resumo

Os recentes progressos das tecnologias e infra-estruturas de monitorização e com-

preensão do comportamento humano sugerem novas e interessantes aplicações. A pre-

sente tese de doutoramento tem por objectivo a analise do comportamento humano

em diferentes contextos, utilizando os movimentos do corpo humano. As primitivas as-

sociadas aos movimentos do corpo humano são menos restritivas que outras posśıveis

(ex. expressões faciais ou voz), no entanto a sua analise é mais complexa. O desafio

prende-se com a grande dimensionalidade dos movimentos dos elementos do corpo,

complexidade dinâmica, interdependência, e elevados requisitos computacionais para

analise e estimação do comportamento humano.

Inicialmente, propõe-se uma metodologia hierárquica para reduzir a complexidade

do processo em diferentes camadas. Em seguida, propõe-se a utilização do recon-

hecido descritor de movimentos humanos, o Laban Movement Analysis (LMA), para

extrair e decompor as primitivas em cinco componentes. As componentes LMA garan-

tem um numero mı́nimo de primitivas para analise de qualquer movimento humano,

colmatando a lacuna entre as Low Levels Features (LLFs) e o movimento. Final-

mente, a metodologia é modelizada recorrendo a redes bayesianas (Bayesian Network

(BN), Dynamic BN (DBN) e Hidden Markov Model (HMM)) permitindo lidar com

a incerteza dos dados, utilizar processos de aprendizagem em pequena escala, fundir

diferentes tipos de primitivas (no domı́nio da frequência e espaço) e obter um mod-

elo de dependências suficientemente flex́ıvel entre as varias primitivas e camadas. A

metodologia proposta nesta tese explora diferentes actividades e comportamentos hu-

manos, nomeadamente: movimento de elementos do corpo humano, analise humana

individual, interacção homem/objecto, interacção humano/humano, comportamento

interpessoal e o papel social das pessoas.

A metodologia proposta foi modelizada e constrúıda seguindo uma abordagem de

baixo para cima (bottom-up). A camada de analise de baixo ńıvel foi decomposta em

dois domı́nios: frequência e espaço. Esta camada permite estimar componentes LMA,
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ii Resumo

obter um conhecimento de baixo ńıvel dos movimentos e fornece dados para hierarquias

superiores de analise de actividades humanas. Por exemplo, a componente de esforço

(Effort), responsável pela dinâmica dos movimentos do corpo humano foi modelizada

no domı́nio da frequência, a componente forma (Shape), responsável pela deformação

3D dos elementos do corpo durante os movimentos foi modelizada através de primitivas

espaciais.

A etapa de analise humano/objecto e interacção humano/humano (baseada no con-

texto) requer o conhecimento individual de cada acção humana e respectivas inter-

relações. A modelização das inter-relações, foi inspirada na “Relation Ship component”

, uma das componentes LMA pouco explorada, e permite obter uma metodologia e um

modelo de interacção humano/objecto e humano/humano capaz de explorar as activi-

dades humanas num dado contexto (scene understanding). As actividades humanas

num contexto social foram igualmente analisadas utilizando informações do ńıvel LMA.

O sistema é suficientemente flex́ıvel para comportar as complexas inter-relações entre

as várias primitivas utilizadas na estimação dos movimentos resultantes dos compor-

tamentos interpessoais e respectivo papel social (inspirado no trabalho de investigação

“Honest Signals” de Alex Pentaland).

Uma abordagem e uma metodologia hierárquica apresentam várias vantagens, tais

como modelos flex́ıveis, generalização a aplicações relacionadas, expansibilidade da

tecnologia sensorial, capacidade de lidar com a incerteza e produção de informação

semântica em todas as camadas de analise.

A abordagem e o sistema proposto garantem uma monitorização automática do

comportamento humano e tem uma ńıvel de aplicabilidade muito alto em muitos

cenários com pessoas, ex. estudos clinico, sistemas de segurança, cuidados a idosos,

vigilância, treino desportivo, realidade virtual, coreografia, etc.

O sistema proposto, foi experimentalmente testado com dados reais obtidos através

de um fato com sensores de movimento capazes de gerar informação da posição 3D das

várias partes do corpo humano a uma frequência de 120Hz. O dataset produzido é o

resultado da utilização desse fato por varias pessoas enquanto executavam actividades

bem definidas e foi calibrado individualmente. Isto significa que os dados gerados para

cada pessoa nos diferentes trials podem ser diferentes consoante a calibração.

Os resultados obtidos em cada etapa, demonstram as capacidades da abordagem e

metodologias propostas nos vários ńıveis de analise da actividade humana. Em śıntese,
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a tese propõe uma abordagem global e descritiva, suficientemente flex́ıvel, capaz de

explorar e estimar os vários ńıveis dos movimentos do corpo baseados na actividade.





Abstract

The recent progress in technologies and infrastructures of monitoring and understand-

ing human behaviour suggest new and interesting applications. This PhD research

aims at analysing human behaviour in different contexts, through the motions of the

human body. The features of human movements are less restricted than the other

possible features (e.g. facial expressions and voice) in many real world applications,

however they are more complicated to be analysed. Due to the large dimensions of

body parts movements and the complex dynamics and dependencies between them,

high computational processing resources are needed to analyse and estimate human

behaviours.

Firstly, a hierarchical framework is proposed to reduce the complexity of the pro-

cess in different layers. Secondly, a well-known human movement descriptor, Laban

Movement Analysis (LMA), which provides different types of needed features in five

components, is proposed. The LMA components prepare minimum needed features

that can assist us to analyse any kind of human activities, and fill the gap between the

Low Level Features (LLFs) and human movements analysis. Finally, for modeling the

framework, Bayesian-based approaches (Bayesian Network (BN), Dynamic BN (DBN),

and Hidden Markov Model (HMM)), are defined to deal with the uncertain data, to

apply learning processes using small data, to fuse different types of features (in fre-

quency and spatial domains) and to have enough flexibility for modeling the different

dependencies between different features and layers. In this study we explored sev-

eral different human activities and behaviours through the framework, namely; body

parts movements, human individual analysis, human-object interaction, human-human

interaction, interpersonal behaviour, and social role of people.

The mentioned framework is modeled and constructed in a bottom-up strategy.

During the process, different approaches are proposed to solve the problems. From the

lowest level of analysis, the study is divided into two different domains; frequency and

v
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spatial. This study is performed to estimate LMA components, which provide enough

knowledge in body motion level, to be able to explore more high level of human activ-

ities analysis. For instance; Effort component, which explains human body movement

dynamics, is modeled in frequency domain, and Shape component, which explains hu-

man body shape deformation in 3D space during any movement, is modeled by spatial

based features. Based on the mentioned components, individual human action level is

modeled.

In the next step we need to analyse human-object and human-human interaction

(context-based), each individual human action and the relations between them. Those

relations are modeled by inspiration of the Relationship Component which is one of the

less explored LMA component. We were thus able to model human-object and human-

human interactions by modeling Relationship components through the framework to

explore human activities concerning the context (i.e., scene understanding).

With respect to the proposed framework, human activities in social context are

explored by information of the LMA level. The system was flexible enough to provide

the complex existing dependencies between different features to estimate body-motion

based interpersonal behaviours and a social role, inspired by Alex Pentland’s investi-

gation in ”Honest signals” book.

The hierarchical framework presents many capabilities such as; flexibility of mod-

eling, generalizing to different related applications, extendability by progressing the

sensory technology, dealing with uncertainly in all levels of analysis, and providing

semantic-based information for all layers of analysis. The proposed framework provides

an automatic human behaviour monitoring system which is a very highly required ap-

plication in fields like clinical study, security systems, elder-care, surveillance systems,

sport training, virtual reality, choreography, etc.

In the experimental process, a motion tracker suit which provides 3D position of

human body parts in maximum 120 Hz resolution, is used. To prepare a dataset,

several people dressed the suit and performed the defined activities. The attached

sensors of the suit for each record trial, need to be calibrated. It means the data for

each person in different trials can be different with respect to the calibration process.

The obtained results in each step, present the capability of the mentioned framework

in different levels of human movement activity analysis. Furthermore, a descriptive

global framework to explore and estimate various levels of human body-motion based
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activities, is proposed.
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dre Malhão, Micael Couceiro, André Araújo, Bruno Patrão, Tiago Doćılio, Paulo Drews
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Chapter 1

Introduction

Automatic monitoring of human activities in different applications such as; surveillance,

elder-care , social behaviour analysis, etc., is probably one of the most important needs

in near future. There are several works which have been done for each aspect of hu-

man motion-based activity analysis, for a specific application, but not for more general

applications which can be estimated from human movements. For instance, in rehabil-

itation application we need low-level information of body movements, in a surveillance

system we need a sequence of human movements, while in human action and interac-

tion analysis we need a sequence of human movements related to the environmental

parameters. The problem is that almost no system is capable of having all that different

information in one level, moreover, there are several dependencies between those levels

of information which can connect them in a bottom-up framework. Each level of infor-

mation can be used as an input for higher ones, however, each level of the framework

has its own informative features for a specific application. For instance; body mo-

tion level for rehabilitation and choreography applications, human movement level for

human-robot interaction, gesture recognition, and sign language analysis applications,

human action and interaction level for human-robot interaction, scene understanding,

surveillance, and elder-care applications, social context-based behaviour level for social

robot and security applications, are useful.

In this study, we propose a framework and an approach that estimates the various

levels of information through human movements features. There are several problems

in having model with all of those expected advantages. For instance; feature selection,

feature categorization, analysing the existing dependencies between features to extract

higher information, dealing with uncertainty, exploring through the connection be-

1
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tween different complexity levels of human movement activities, exploring through the

relationship between context-based knowledge and human movement, and complexity

of modeling. Thus, to solve those problems, we propose a hierarchical framework, to

illustrate the connection between various levels of analysis and simplify the complexity

of modeling and learning process. The hierarchical framework is provided by using

Bayesian Network (BN) based approaches, to deal with uncertainty and study on the

existent features dependencies statistically. In order to have a proper feature selection

and categorization system for the mentioned purpose, a standard human movement

descriptor, Laban Movement Analysis (LMA), is used.

Fig.1.1 presents the diagram of different levels of human behaviour analysis process.

The first level defines the used sensory data related to human body motion. The

second level, LLFs are extracted in a couple of domain categories; frequency and spatial

domains. In Chapter 2, the second level is discussed in detail. The third level is the

LMA level (description level) information, which is estimated from LLFs (Chapter

2). In Chapter 3, the fourth level, which analyses human movement, and the human

action and interaction’s section of the fifth level, are discussed. Chapter 5 consists of

the interpersonal behaviour section of the fifth level and the sixth level, which is about

social behaviour analysis. The seventh level, which concerns about interest scenarios,

is involved in Chapter 3, Chapter 5 and Chapter 4. In this study, Chapter 4 is a

preprocessing research, which improves other chapters results. Its improvement on the

results which are obtained on the Chapter 3, are presented in Chapter 4.
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Figure 1.1: Human behaviour analysis in different levels with respect to the following
chapters
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1.1 Motivation

Different applications are highly interested in human behaviour analysis. Table 1.1

presents some of the existing related applications. In related research of analyzing

human behaviour, using facial expression, voice and body motions are popular. How-

ever in reality, in most of the mentioned applications, it is not possible to use fa-

cial expression and voice-based features to understand human behaviours. Thus body

motion-based features are going to be more utilized in the related area. Generally body

motion-based analysis can be categorized in 2D and 3D domains. Most of the works

were done in 2D based features which are faster, but not reliable in several cases. On

the other hand, 3D-based approaches are more reliable but more time consuming. Re-

cently, by progressing computer vision through 3D-based analysis, we can have proper

3D-base features real-time (such as the Kinect). We are thus able to investigate human

complex behaviours by using advantageous 3D-based approaches.
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1.2 Applications of Human behavior analysis

There are many reasons why it is useful to understand human behaviour. Virtual

reality is a popular application for human behaviour analysis. In order to present

the human behavior more naturally through virtual space, human behaviour analysis

techniques are very important [Dev06].

Surveillance is another popular application of human behaviour analysis. Many

places (e.g., parking lots, supermarkets, airports, secure zones) in the world, monitor

the areas with security guards using many cameras and screens. Alternatively, we

can use human behaviour analysis with smart machines to recognize human actions

automatically and detect potential hazards.

Recently in sports, teams, players, coaches, etc, are using different technologies

more and more to improve their quality. Human behaviour analysis can help them to

analyze their games. Also there are several applications in the medical field such as

rehabilitation, which are very valuable. Table. 1.1 presents some of the existing related

applications.
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General domain Specific area
Virtual reality -interactive virtual worlds

-virtual studios
-games

-teleconferencing
-character animation

“Smart” surveillance systems -access control
-building lobby, bank lobbies

-parking lots
-train station ticket offices

-public building entry areas
-library space
-student lab

-airport
-supermarkets, department stores

-vending machines, ATMs
-coffee room, lounge/play room

-traffic
-suspicious behaviour identification

Motion analysis -Content-based indexing of sports video footage
-clinical studies of orthopedic patients

-choreography of dance
-personalized training in golf, tennis, etc.

Table 1.1: Human behaviour analysis applications
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Authors/Ref/year Description

Aggarwal/[ACLS94]/1994 Articulated and elastic non-rigid motion.
Cedars et al./[CS95]/1995 Body parts config. and motion estimation.

Gavrila/[Gav99]/1999 Human motion analysis in 2D and 3D .
Pentland/[Pen00]/2000 Human motion analysis and its applications.

Wang et al./[WHT03]/2003 Human detection, tracking and activity.
Moeslund et al./[MbK06]/2006 Initialization, tracking, pose estimation.

Poppe/[Pop10]/2010 Human motion and human action analysis.
Aggarwal et al./[AR11]/2011 Human high level activity analysis.
Hotle et al./[HMNP11]/2011 Human 3D pose and activity estimation.

Table 1.2: A number of surveys around body motions-based investigations

1.3 Related works

Body parts motions convey different levels of information during human daily activi-

ties. Scientists explore that information depending on their application. For example;

Foroud and Whishaw [FW06] analysed body parts motions through kinematic struc-

ture and non-kinematic features of movements during skilled reaching after stroke. In

a more high-level process, Ryoo and Aggarwal [RA09] have a sequence of works which

analyse different levels of human activities in 2D from human movement to group activ-

ity understanding. In the last couple of decades, different body motion-based features

were extracted and used to understand various kinds of human activities. Based on the

used techniques and approaches, their applications and solving the existing constraints,

several surveys were published in different taxonomies (see Table.1.2).

1.3.1 Hierarchy-based approach

The hierarchy-based approach is an approach which solves a complex problem through

a number of simple ones in a sequence of levels (multi-level). This approach is very

useful, and well-known to model complex problems, however, defining the multi-level

of the process and the proper dependencies between the levels, are the issues which

need to be addressed precisely. There are several works which attempted to solve the

mentioned problems directly from Low Level features (LLFs) to human movements or

even higher level of analysis (Table. 1.2). The scientists had several problems which

a hierarchical approach can solve. In hierarchy-based approaches the biggest problem

divides into some smaller ones. This property has several advantages in the related

applications, and the main one is the flexibility of the model. For estimating a higher
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level of human behaviour information, we don’t need any changes in previous levels

(no remodeling, relearning and reclassification process for previous steps) we only need

the output of the previous model and add needed knowledge to define a new level of

analysis on the top of the model.

The structure of each level and how to define the dependencies between those

levels in a hierarchical framework is very important. The recent related survey from

Aggarwal and Ryoo [AR11], mentioned a number of works which use the advantages

of hierarchical concept, through their focus was more on the last level’s information ,

and usually their mid-level analysis was not informative. However, there is plenty of

research around the subject, but there is no general framework that is able to present

all that different information in one general model.

Imagine a person is walking while keeping one hand in his pocket and shakes hands

with another person. The information which can be important to different applications

can be listed as:

1: Body part motions level; analysis of normality of hands and feet movements by

observing the probabilities of each body parts motions states (rehabilitation).

2: Movement level; if hands and feet are moving periodically as a normal walking,

or the walking is like a drunk person, or the walking is in one hand in pocket state,

etc. (gait and gesture recognition).

3. Action or interaction level; the person is walking to reach to the other person

and do handshaking (human action and interaction analysis).

Based on the various level of interpretations, the person before the handshaking is

in a ”reaching” state (action and interaction level), in a ”walking” state (movement

level), and the left hand and feet are in normal motion but the right hand is in ”static”

state (body part motions level).

To have one framework with all that information, we propose LMA parameters in

body part motion level, and a hierarchy model which can use lower level information

for higher ones. Through this transformation the process of learning and classification

will reduce several times.
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1.3.2 Scene context-based Human behaviour analysis

Behaviour ascribes to an object actions with respect to its environment. Human be-

haviour takes from different behaviour sources imposed by attitudes, emotions, culture,

etc. As a matter of fact, human behaviour can range from being considered normal or

admissible to abnormal or inadmissible in a specific situation.

Human behaviour analysis has a very wide meaning, making it a rather complex

problem. Take for example, the recognition of specific movements due to variations of

one action or gesture performed by one individual, and even the considerable differences

in the dynamic of the same gesture performed by different people. Examples of different

approaches to this subject would be: gait recognition, action analysis [RYS02], gesture

recognition [MA07], facial expression recognition [MGIJ03], explicit body movement

based communication, namely sign language recognition [KBOZ04], etc, illustrating

the numerous facets of human movement analysis. Hence, there are several notational

systems to obtain the expressive content of human movements theoretically which can

help us find useful features to analyze human movements and behaviours.

Arsic et al. in [AWSR05] discussed a real-time behaviour detection method which

is video based. Their application is for passenger behaviour detection in public trans-

ports such as airplanes. They defined some special human behaviour such as aggressive,

nervous, tired, kid and talk. Thus they defined some low level features (LLF) such as

global motion (e.g. head movements, sit down,rise, etc.), face position, eye movement

(e.g. blinking), lip movement, gaze which gained by using near infrared (NIR) illu-

mination and red eye effect. For the detection of each feature, they used an existing

real-time method. They also noted their LLF detection outputs may have high error

rates, so they used a trained Bayesian network.

Hongeng et al. in [HNB04] illustrated an approach for complex multi-agent human

activity (e.g. stealing). They supposed each human activity includes a few action

threads done by an actor. Thus, they defined a Bayesian network which uses Low

level features (trajectory and shape of moving blob) to recognize the action threads.

To achieve the goal, they defined a number of temporal constraints and event threads

likelihoods to understand a few multi-person activities (e.g. stealing and moving an

object).

Jahnson and Hogg in [JH02] showed a probabilistic method for stochastic behaviour

modeling (e.g. pedestrian trajectory modeling scenario). They used a set of estimated
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parameters which are given from a training set of joint density distribution. They

defined a Gaussian mixture by state history to model non-linear behaviours and used

an auto-regressive process which comprises model conditioning, state change selection,

and state updated to solve the problem.

Cohen and Li works in [CL03] described a method to identify a shape posture by

2D and 3D shape of human body classification. They used four cameras and for each

one, a silhouette of a human body, and then by the set of silhouettes, a 3D shape of

a human body can be achieved. In order to distinguish between the different body

postures, they described a 2D/3D shape description system by changeability of human

body proportions, and defined a learning step based on Support Vector Machine (SVM)

to solve the problem of identifying similar postures, which are different, by different

people.

Leo et al. in [LDG+04, LDS04] proposed an approach for complex human activ-

ities detection from image sequences in outdoor environment such as archaeological

sites (e.g. walking, probing the subsoil by a stick, damping the ground with a tank and

picking-up objects from the ground). They estimated human body postures frame by

frame, and then modeled the temporal sequences of the detected postures statistically

by Discrete Hidden Markov Models. They used a Basic Competitive Learning Scheme

(BCLS) which is an unsupervised clustering algorithm fed by features which are hori-

zontal and vertical histograms of the binary shapes. Finally they used the Manhattan

distance for both clusters building and run-time classification.

Khalid and Naftel in [KN05] presented an approach for clustering and classifying

spatio-temporal object trajectories by a neural network learning algorithm. They used

a Discrete Fourier Transform (DFT) method to achieve Fourier coefficients for mod-

eling motion trajectories. Then they used the Fourier coefficient feature to recognize

similar motion patterns. They defined a Self-Organizing Map (SOM) by a Neural Net-

work which has one layer of input nodes connected directly to a single 1-dimensional

output layer. Each input node which was fed by the coefficient of the basis functions is

connected to every output node with the weighted connection. The SOM is an unsu-

pervised system which is able to learn similarities between object trajectories. Finally

they used a Mahalanobis classifier for recognizing abnormal trajectories [Mcl04].

In [dLS02], Leon and Sucar presented a method using Fourier transform and Bayesian

network for human activity recognition concerning the variety velocity of similar ac-

tivities by different people and missing some parts of trajectories because of occlusion.



1.3. Related works 11

They supposed that one does not need to know the beginning and the end of activities.

Mecocci et al. in [MPF03] proposed a system which is able to automatically adapt

to different scenarios without any human intervention, thus they used self learning

techniques to automatically learn the “typical” behaviour of the targets in each specific

operative environment. With these learned data, the system can detect abnormal

behaviors of object.They used an Altruistic Vector Quantization algorithm (AVQ) to

achieve self-learning capabilities which they believed can describe the trajectories of

objects in complex, not structured and outdoor scenarios automatically.

Nascimento et al. in [NFM05] described a method for recognizing some human

activities in a shopping space (e.g. entering, exiting, passing and browsing). They used

human motion patterns which are achieved from a sequence of displacements of each

human’s blob center. They modeled trajectories of the human’s blob by using a method

which they called a multiple dynamical model with a switching mechanism. Finally

they estimated the identification of the models which connected with a trajectory.

Medioni et al. in [MCB+01] discussed analysis of moving objects behaviours

through movies which are obtained from an airborne moving platform on a scene.

They defined two steps for that; the first step used an approach for detecting and

tracking motion regions in the movie, which infer their trajectories. The second step

used the trajectories and information which was provided by a user in the form of

geospatial and goal context to instantiate likely scenarios.

Remagnino and Jones in [RJ01] presented a high-level description of events which

happen in a typical surveillance scenario, and they grouped each event into type and

behaviour. They determined “type” from event characteristics (e.g. height, width and

velocity) by a Bayesian system. In addition, they used a Hidden Markov Model system

to estimate some typical event behaviours such as vehicle-entering, person-entering,

vehicle-exiting and person-exiting in a parking lot.

Yue et al. in [YZC03] proposed an image-based method which used human body

part segmentation approach to cover the visual hull method weak [Lau94] for concave

regions reconstruction. The first result was a virtual silhouette image fit to the given

viewing direction which was used in human body part localization method. They

produced the body parts separately in a virtual view from the corresponding input

views and then assembled them together. For removing the separate and squeezed

regions in the final view, they used the last silhouette image.
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Yacoob and Black in [Yac99] discussed a method which used a number of atomic

activities such as a set of measurements for modeling a few human activities such as

walking, running, etc. They parametrized body parts (arm, foot, torso, thigh and

calf) motions in human activities, and then they modeled similar human activities by

achieving the body parts motions parameters.

Naylor et al. have some reports from ADVISOR project which was related to intel-

ligent surveillance from video outputs [Nay06], detecting abnormal human behaviours

to improve security systems by vision-based methods. They work in several subjects

which are image capture, behaviour recognition, motion detection, crowd monitoring,

people tracking, archiving, search and retrieval, human computer interface, communi-

cations over an IP infrastructure. In this project they used the mentioned techniques

in a subway environment, however they believed the system can be fit also to other

places such as airport and railway station.

There has been several attempts which used movement descriptors and probabilistic

frameworks. For instance; Bregler [Bre97] introduced mid-level descriptors through a

probabilistic framework for human movements classification. Low-level motion clusters

were defined to analyse high-level gait categories. Those low-level motion clusters

are limited to show the relations through the data of physiological studies of human

movements, properly. To overcome this weakness, Rett et al. have tied their descriptors

to a well established notational framework: Laban Movement Analysis (LMA) [RD07].

Norman Badler attepted to re-formulate the LMA descriptions using computational

models [BPW93]. In addition, the work of Zhao & Badler [ZB05] used the computa-

tional models to learn motion qualities from human gestures.

Rett & Dias in [RDA08] presented a system that analyzes human movements real-

time, based on the concept of Laban Movement Analysis. The implementation used a

Bayesian model for learning and classification. They presented the Laban Movement

Analysis as a concept to identify useful features of human movements to classify human

actions. As mentioned before, the movements were extracted using both vision and

a magnetic tracker. The descriptor opened possibilities to study expressiveness and

emotional content. They used a Bayesian framework as it offers an intuitive approach

to learning and classification. It also provides the possibility to anticipate the performed

action given the observed features.

Addressing group-based behaviour analysis, Allbeck et al. in [AKA+02] presented
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Table 1.3: Feature table for aggregate movements [AKA+02]

a system for analysing people aggregate movements in a virtual environment using a

high-level interface. The major components contain: textquotedblleftan interactive in-

terface for aggregate control based on a collection of parameters extending an existing

movement quality model, a feature analysis of aggregate motion verbs, recognizers to

detect occurrences of features in a collection of simulated entities, and a clustering al-

gorithm that determines subgroups”. They used LMA components (Effort and Shape)

to describe aggregate movements as shown in the Tab. 1.3.

1.3.3 Enhanced human activity segmentation approach

A recent survey by Weinland et al. [WRB11], has identified three major action segmen-

tation categories: Sliding Window, Boundary detection and Grammar Concatenation.

The already reviewed Sliding windows are used to divide a motion sequence into mul-

tiple overlapping segments, which are bounded by the window limits. The information

within the window, may or may not be processed for alternative representations. Each

candidate segment (or equivalent representation) is then used for sequential classifica-

tion. The success of this approach strongly depends on the discriminant abilities of

the generated representations. As mentioned this technique is easily integrated with

the majority of static and dynamic classifiers. The major drawbacks of this technique

are computational burden, and the need of multiple window sizes to overcome the

variability problem.

Boundary detection methods generally identify discontinuities or local extrema in

observed motion signals. The boundaries usually define an implicit basic action tax-
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onomy, without depending on specific class definitions. A branch of works identify

boundary at the cost of the dynamics of the observed signal, such as [VKD08, LLF00].

Others depend on geometric property changes observed through techniques like Prin-

cipal Component Analysis [BSP+04] or piecewise arc fitting models [AM09, BN10].

A related research addresses the segmentation problem from the subspace separation

perspective, exploring the so called Agglomerative Lossy Compression [RTVM10]. In

[RA00], the authors apply a Singular Value Decomposition (SVD) decomposition to

a long sequence of optical flow images in order to detect trajectories discontinuities

within SVD component trajectories. Ogale et al. [OKGfA04] also explore optical flow

of body silhouettes, performing segmentation by detecting minimum and maximum

values of the absolute value sequence.

A method using features from visual hulls is developed in [WRB06]. This category

of approaches is very sensitive to noise and other related errors (e.g. camera perspec-

tives). Additionally, it allows generic segmentation, but is not particularly suitable for

labelling purposes. The focus is on boundary identification rather than interpretation

of intermediate data.

Weinland et al. [WRB11] identify Grammars as another category. The common

approach is to model state transitions between actions, where HMMs are a popular

approach.

Multiple methods can be used to generate features. Some examples are curva-

ture scale space and centroid distance function [Bea06], joint angles alone [LN06,

PVW07], or together with velocity profiles [KI95], dynamic system representations

[PR00, THB00, Kah03] and geometrical property encoding [OSK02]. These are ap-

plied to segment and label action sequences, at the expense of computing a minimum-

cost path through the model using techniques like Viterbi path, Conditional Random

Fields or Markov Models. However, these methods rely on the comprehensiveness of

state grammars, which may jeopardize the model effectiveness and the generalization

purpose, if large amount of training data is not available.
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1.4 Contributions

The primary contributions of this research are as follows:

� Human movement was analysed in LMA framework by conjugating frequency and

spatial-based domains features, and Effort component of LMA was formulated

and modeled by exploring through frequency-domain features.

� A global framework to analyse human action and interaction in a scene was pro-

posed inspired by the Relationship component of the LMA. Relationship com-

ponent was studied to provide a framework which performs the existing depen-

dencies between human movements and others (himself, stationary object in the

scene and other person), probabilistically.

� An adaptive segmentation approach was proposed to change the sliding window

approach by having feedback from previous outputs of the model. This approach

tries to deal with temporal variation of human activities.

� Exploring through human body motions and modeling the dependencies between

people movements to understand some standard defined interpersonal behaviours.

� Exploring through frequency-domain features in LMA component levels to anal-

yse the performed interpersonal behaviours and a social role “Leading role”.

� We proposed a probabilistic hierarchical framework that connects all this thesis

study in one global model. This global model shows that, this study is general-

izable thanks to the LMA components and Bayesian network approach.
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1.5 Publications

Most of the thesis is based on the following publications and achievements:

1.5.1 Peer-reviewed journal articles

� Kamrad Khoshhal and Jorge Dias - ”Probabilistic Human Interaction Under-

standing - Exploring Relationship Between Human Body Motion and the Envi-

ronmental Context”. Pattern Recognition Letters. Special Issue on Scene Un-

derstandings and Behaviours Analysis. Elsevier, 2013.

� Luis Santos, Kamrad Khoshhal, Jorge Dias - ”Trajectory-based Human Action

Segmentation”. Pattern Recognition. Elsevier, [submitted].

� Kamrad Khoshhal, Jorge Dias - ”Body Motion-based Social Behaviour Under-

standing by a Probabilistic Framework”. IEEE Transac. Affective computing,

[submitted].

1.5.2 Peer-reviewed international conference papers

� K. Khoshhal, J. Dias - ”Improved Semantic-based Human Interaction Under-

standing Using Context-based knowledge”. 2013 IEEE International Conference

on Systems, Man, and Cybernetics (IEEE SMC 2013), Manchester, United King-

dom, October, 2013.

� K. Khoshhal, P. Menezes, J. Dias - ”Descriptive Human Action and Interac-

tion Analysis in a Hierarchical Framework”. In 2012 International Workshop on

Human-Agent Interaction (iHAI 2012), in IROS2012, Vilamoura, Portugal, 2012.

� K. Khoshhal, J. Dias - ”Interrelation Analysis for Interpersonal Behaviour Un-

derstanding in Social Context”. In 10th IFAC Symposium on Robot Control

(SYROCO 2012), Dubrovnik, Croatia, September, 2012.

� K. Khoshhal, L. Santos, H. Aliakbarpour, J. Dias - ”Parameterizing Interper-

sonal Behaviour with Laban Movement Analysis - A Bayesian Approach”. in

3rd International Workshop on Socially Intelligent Surveillance and Monitoring

(SISM2012) in CVPR2012, in Providence, Rhode Island, USA, June, 2012.
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� K. Khoshhal, Jorge Dias - ”Probabilistic Human Activity Understanding Explor-

ing Relationship Between Human Body Motion and the Environmental Context”

- in Workshop on Recognition and Action for Scene Understanding (REACTS)

as a satellite event of the 14th International Conference of Computer Analysis of

Images and Patterns (CAIP) Spain, 1-2 September 2011.

� K. Khoshhal, H. Aliakbarpour, J. Quintas, M. Hofmann and J. Dias - ”Proba-

bilistic LMA-based Human Motion Analysis by Conjugating Frequency and Spa-

tial based Features” - in Wiamis 2011, 12th international Workshop on Image

Analysis for Multimedia Interactive Services (WIAMIS), 13-15 April 2011.

� K. Khoshhal, H. Aliakbarpour, J. Quintas, K. Mekhnacha, J. Ros and J. Dias

- ”LMA-based Human Behaviour Analysis Using HMM” - In DoCEIS11 , 2nd

Doctoral Conference on Computing, Electrical and Industrial Systems, 21-23

February 2011, Costa da Caparica, Lisbon, Portugal.

� K. Khoshhal, H. Aliakbarpour, J. Quintas, P. Drews, J. Dias - Probabilistic LMA-

based Classification of Human Behaviour Understanding Using Power Spectrum

Technique - Fusion 2010 - 13th International Conference on Information Fusion

- EICC Edinburgh, UK, July 26-29 2010.

� J. Quintas, K. Khoshhal, H. Aliakbarpour, M. Hofmann, J. Dias - ”Using Con-

current Hidden Markov Models to Analyze Human Behaviours in a Smart Home

Environment” - in Wiamis 2011, 12th international Workshop on Image Analysis

for Multimedia Interactive Services (WIAMIS), 13-15 April 2011.

� H. Aliakbarpour, K. Khoshhal, J. Quintas, K. Mekhnacha, J. Ros, M. Andersson

and J. Dias - ”HMM-based Abnormal Behaviour Detection Using Heterogeneous

Sensor Network” - In DoCEIS11 , 2nd Doctoral Conference on Computing, Elec-

trical and Industrial Systems, 21-23 February 2011, Costa da Caparica, Lisbon,

Portugal.

� H. Aliakbarpour, J. F. Ferreira, K. Khoshhal, J. Dias - A Novel Framework

for Data Registration and Data Fusion in Presence of Multi-modal Sensors - in

Proceedings of the DoCEIS 2010 - Doctoral Conference on Computing, Electrical

and Industrial Systems - Lisbon, Portugal, Feb. 22-24, 2010. Springer - ISBN

978-3-642-11627-8
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� H. Aliakbarpour, P. Núñez, J. Prado, K. Khoshhal and J. Dias - An Efficient Al-

gorithm for Extrinsic Calibration between a 3D Laser Range Finder and a Stereo

Camera for Surveillance - Proceedings of the ICAR 2009 - 14th International

Conference on Advanced Robotics - Munich, Germany, June 22-26, 2009.
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1.6 Dissertation outline

Chapter 2 provides the fundamental information about the used body motion-based

feature extraction approaches in frequency and spatial domains, which is inspired by a

human movement descriptor framework.

Chapter 3 explains the proposed models in a couple of sections; individual-based

and scene context-based human behaviour analysis. Using a probabilistic hierarchical

framework as a bottom-up strategy to analyse different level of human behaviours,

is discussed. Bayseian-based approaches (Bayesian naive, Dynamic Bayesian network

and Human Markov Model (HMM)) are used to model the different level of human

behaviour analysis.

Chapter 4 proposes an approach to solve sliding window-based segmentation prob-

lem which can improve the human movement-based analysis results. This approach

tries to adapt slide window in matter of window size and time shift, based on the

previous outputs of the classifier.

In chapter 5 we explored through human body motions to analyse social-context

based behaviours which we call interpersonal behaviours and social role using Pent-

land’s definitions [Pen08].

The overall conclusion, discussions and future work are presented in chapter 6.





Chapter 2

Human motion-based feature extraction

2.1 Introduction

Humans can usually realize each other’s actions by observing their body parts mo-

tion dynamics as a kind of body language. Thus, if a system could observe enough

information, such as human body parts motion dynamics, and symbolize the differ-

ent types of human movements, the different actions would be more clearly and easily

understandable in the decision making process, instead of using the LLFs directly.

Understanding human action and behaviour by using a standard human motion

description framework can be very useful for the related scientific applications, for

instance; surveillance system, eldercare, HRI, Social behaviour analysis, etc. Nowa-

days if a scientist wants to recognize human actions and behaviours computationally,

(s)he needs to have a lot of prerequisite knowledge such as data registration, feature

extraction, etc. Thus, in this work we intend to use and formulate a human move-

ment descriptor. Although there are several attempts to define a descriptor for human

motions , but still there is a lack of a comprehensive framework for the community.

As mentioned before, one of the basic problems is to define some useful Low Level

Features (LLF) and observable information that are dependent on the environment

and type of the sensory data. The interest features depend on the type of data that

we intend to obtain from humans. Most of the attempts rely on the human motions

[PPNH07]. Feature extraction approaches can be categorized into 2D and 3D based

analysis. Recently, researchers are interested in using 3D data as input to reconstruct

human body in order to avoid limitations of 2D image based approaches. However, it

21
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is usually a high time-consuming process.

By progressing the computer vision techniques such as [AFKD10], and devices such

as Kinect, we believe that the 3D position of human body can be obtained sufficiently.

Thus the biggest limitation of 3D based analysis will be solved in various applications

and 3D based human behaviour analysis will be more interesting in the different com-

munities. In this study, we used wearable sensors to obtain human body parts 3D

position to have the input data, for other steps, such as feature extraction, human

movement analysis, human behaviour analysis, etc., which are our research concerns.

After the detection of human body parts, we need to detect features. Features

are clear properties which assist us in modeling of relevant problems. In this study,

features are categorized in frequency and spatial domains. To explore through the

features of human body motion scientifically, a human movement analysis system which

is named Laban movement Analysis (LMA), is used. LMA was built for describing

human motions (specially choreography of dance). In the last decade some researchers

attempted to formulate its parameters to be computational [Zha01, Ret08]. We intend

to define a LMA-based descriptor for analyzing human motions from different aspects

by some qualities like if a body part motion is happening suddenly or sustained, strongly

or lightly, etc. Fig.2.1 presents the related levels of proposed human behaviour analysis

framework in this chapter.
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Figure 2.1: Human behaviour analysis in different levels with respect to this chapter
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2.2 Related works

Movement understanding is the key to action recognition. Bobick in [Bob97] distin-

guishes between a motion (movement) and an action as follows: “a movement is the

most atomic primitive, requiring no contextual or sequential knowledge to be recog-

nized; an action is a larger scale event which typically includes interaction with the

environment and causal relationships. Also, understanding an action implies produc-

ing a semantically rich description of the various action primitives and the relations

between them”.

There are several different categories of human movements that were attempted

to understand. Each category of human movement can be identified by detecting the

changes of the position in one or more involved parts of the human body. In this

case, the concept of human movements is not important. Thus, researchers try to

track one or more parts of the body in a sequence of captured data such as a sequence

of images. Accurate human movement tracking is essential for the time behaviour

analysis procedure. Legs, hands, head and face are the most important body parts

to be tracked. For example, for gait recognition, leg motion is the relevant cue; for

facial expression recognition, it’s needed to focus just on the face; while in gesture

recognition, several body parts need to be tracked, in particular hands and head.

There are several surveys about human motion analysis. The earliest related re-

view was probably proposed by Aggarwal et al. [ACLS94], which covered different

approaches, used in “articulated and elastic non-rigid motion”. The approaches re-

lated to articulated motion, were analysed in using or not using a prior shape models.

Cedars and Shah [CS95] provided a motion extraction method overview, in which hu-

man motion analysis was illustrated as “ action recognition, recognition of body parts

and body configuration estimation ”.

Gavrila in [Gav99] presented different methodologies that categorized 2D and 3D

approaches using or not using an explicit model of shape. It concluded the discussion

with a couple of directions of related research through tracking in 3D space and action

recognition. A relevant research by Pentland [Pen00] focused on; “person identifica-

tion, surveillance/monitoring, 3D methods, and smart rooms/perceptual user inter-

faces”, was provided to review the state of the art of “looking at people”. The paper is

not a survey about human motion analysis, but addressed various interesting issues in

human motion analysis and its relevant applications. Moeslund and Granum presented
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a survey of computer-vision-based human motion capture [MG01]. Its focus was on a

general overview based on the taxonomy of system functionalities, separated into four

processes: “initialization, tracking, pose estimation and recognition”. In addition, a

number of common suppositions in the relevant research field, were recognized, and pro-

posed different research directions for the problems. Wang et al. in [WHT03] provided

a comprehensive survey of research on computer-vision-based human motion analysis.

The article’s emphasis was on three major issues related to a general human motion

analysis system, namely “human detection, tracking and activity understanding”.

Moeslund et al. published another survey that reviewed the trends in video-based

human capture and analysis, as well as discussed open problems for future research

to achieve automatic visual analysis of human movement [MbK06]. Poppe in [Pop07]

described the characteristics of human motion analysis. He divided the analysis into a

modelling and an estimation phase. He also discussed model-free approaches separately.

2.2.1 Specific subject related to human motion

Human motion is a very broad subject, and each researcher is studying a specific part,

in order to solve sub problems in the area. We hereafter briefly describe some specific

and popular works in this area.

2.2.1.1 Gait

The gait of a person is the manner of moving the body whilst walking [Hun03]. Thus,

gait is not restricted to walking movement, it can also be usable to any means of

movement on foot, such as running. The benefits of gait recognition technique over

other biometric identification techniques forms, detailed by the following reasons in

[Daw02]:

� Unobtrusive: “The gait of a person walking can be extracted without his/her

knowledge and interfered without any cooperation in the information gathering

stage, unlike fingerprinting or retina scans.”

� Distance recognition: “The gait of an individual can be captured at a distance

unlike other biometrics such as fingerprint recognition.”
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Figure 2.2: Different modeling techniques [Daw02].

� Reduced detail: “Gait recognition does not require images to be very high quality

unlike other biometrics such as face recognition, which can be easily affected by

low resolution images.”

� Difficult to conceal: “The gait of an individual is difficult to disguise; in fact, by

trying to do so the individual will probably appear more suspicious. With other

biometric techniques such as face recognition, the individual’s face can easily be

altered or hidden.”

Gait recognition techniques can be categorized into a couple of approaches: model-

free and model-based. In the model-free approach, methods aren’t linked to one object;

as a holistic approach and, therefore, they can be used for animal gait too.

Model-based approaches use prior knowledge of the object for extracting features,

which can be obtained from any captured data such as image. In Figure 2.2 presents

the various representations, which were used by the relevant models. Model-based

approaches can deal with occlusion and noise better than another. However, the dis-

advantage of implementing a model-based approach is its computational costs, due to

the complex matching and searching that has to be performed.

2.2.1.2 Gesture

“People frequently use gestures to communicate; gestures are used about various is-

sues, from pointing at a person to get their attention to conveying information about

space and temporal characteristics” [Ken90], in which fingers, hands, arms, head, face,
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or body can be involved. S. Mitra and T. Acharya performed a survey on gesture

recognition [MA07] and described a number of gesture recognition applications:

“

� Developing aids for the hearing impaired;

� Enabling very young children to interact with computers;

� Designing techniques for forensic identification;

� Recognizing sign language;

� Medically monitoring patients’ emotional states or stress levels;

� Lie detection;

� Navigating and/or manipulating in virtual environments;

� Communicating in video conferencing;

� Distance learning/teleteaching assistance;

� Monitoring automobile drivers’ alertness/drowsiness levels, etc.

”

2.2.1.3 Action analysis

Some research works are not only limited to a specific kind of human action such

as gait or gesture recognition, they also address more general human activities, for

example: opening or closing a door, picking up, putting down, running, walking, etc.

[RYS02, YS05, YS07]. Rao et al. in [RYS02] proposed an approach to recognize human

actions. They used some specific characteristics from trajectory of a part of actor body,

which is involved in the actions. They illustrated that each of the actions trajectories

have a number of useful characteristics which are proper features to recognize the

actions (see Figure 2.3).

Leo et al. in [LDG+04, LDS04] presented an approach for detecting some special

activities which usually happen in archaeological sites (e.g. walking, probing the subsoil

by a stick, damping the ground with a tank and picking-up some objects from the
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Figure 2.3: (a) The “picking up and putting down object” actions, the hand trajectory
shown in white is super imposed on the last image; (b) action trajectory in terms of
instants and intervals; and (c) corresponding “ spatio-temporal curvature values and
detected maximums (dynamic instants)” [46]

ground) as can be seen in Figure 2.4. A Discrete Hidden Markov Model (DHMM) was

used for the purpose.

In [NFM05] a method is presented for recognizing some human activities in a shop-

ping space (e.g. “entering”, “exiting”, “passing” and “browsing”) as shown in Figure

2.5. They modelled trajectories of the human’s blob by using “multiple dynamical mod-

els with a switching mechanism” method. Then, the activities were classified based on

the trajectories of the human’s blob.

Wu et al. in [WOQX05] presented two approaches to understand some abnormal

activities such as; ‘running people, bending down movement while most are walking

or standing, a person carrying a long bar and a person waving hand in the crowd’.

The first proposed method was using Principal Component Analysis (PCA) for feature

selection and Support Vector Machine (SVM) for classification process. The second

approach estimated optical flow to calculate each pixel’s velocity to determine whether

a human behaviour or activity is normal or abnormal.
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a) b)

Figure 2.4: a) “ Three fundamental postures classified in the archaeological site ”, and
b) some frames extracted from 4 of the 12 sequences (4 activities x 3 sequences) used
to train the DHMM [LDG+04].

Figure 2.5: Examples of three different activities in a shopping centre (entering, exiting,
passing) [NFM05].

Ragheb et al. in [RVRE08] described a mean power spectra-based method for

classifying some human actions [‘bend’, ‘jack’ (jumping jack), ‘jump’, ‘pjump’ (jump

on the same spot on two legs), ‘run’, ‘side’ (galloping sideways), ‘skip’, ‘walk’, ‘wave1’

(wave one hand), and ‘wave2’ (wave two hands)] from bounding boxes which contain

the silhouettes of a human for a number of video frames representing a basic action.

Recently, researchers have been attempting to use advantages of human movement

descriptors which provide useful knowledge about efficient parameters involving human

motions. The human movement descriptors were invented mostly by choreographers,

to interpret and annotate human movements (dance) by a number of symbols. Those

symbols can be the targets to identify the proper human motion-based features.
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2.3 Human movement descriptor

Several human descriptor systems were defined for annotating of human movement

specially for choreography application. Beauchamp-Feuillet Notation was proposed by

Pierre Beauchamp to record dances, in the 17th century. The basic elements of the

Beauchamp-Feuillet Notation are the tract, symbols for the foot position, symbols for

the step, signs for actions, turns and rhythm. Fig. 2.6 shows the bar of a French

courante [Ret08].

Figure 2.6: Notation for bar of a French courante

The Benesh Movement Notation is another system of dance notation performed by

Joan and Rudolf Benesh in the late 1940s. The system uses abstract symbols based on

figurative representations of the human body. It uses a five line stave, which coincides

with the head, shoulders, waist, knees and floor (from top to bottom). Same as a music

score, it reads from left to right with bar lines to mark the passage of time. A number

of signs are defined to notate the dimension and quality of the movement. Fig. 2.7

shows a sample of Benesh Movement Notation.

Dance Writing was first developed in 1966 by Valerie Sutton and extended to a

greater body of work called Movement Writing. In this system stick figures are placed

on a five-line staff where the movement proceeds from left to right. The lines of the

staff represent levels of height (feet, knee, hip, shoulder).Fig. 2.8 shows the notation

of a skateboard motion.

The Eshkol-Wachman Movement Notation (EWMN), is a system to annotate hu-

man or animal bodies positions and movement, invented by Noa Eshkol (1924-2007)

and her student. EWMN was defined for movement notation, not a dance notation.
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Figure 2.7: (Benesh Movement Notation) All information about body and limb posi-
tions is shown within the five-line stave

Figure 2.8: Movement writing : skateboard under-flip 180

Any form of human or animal movement without limitation of oneself to any partic-

ular style, can be described [Ret08]. The system uses a stick figure representation to

describe the orientation of the different body limbs (Fig. 2.9 b)). The positions are

expressed in a spherical coordinate system using a horizontal and a vertical component.

It is often discretized in units of 45o segments that are numbered from 0 to 7 (Figure

2.9 c)). The horizontal and vertical coordinates given by the sphere are written one

above the other. Units of time are represented in grids from left to right, and limbs

are written on a different line from top to bottom. The EWMN represents a good

descriptor for spatial positions and the kinematic chains are not limited to the human

body alone. The expressive content of movements are not addressed. A horizontally

ruled notation page such as a sequence of spreadsheets which represents the body, is

used to annotate movements.The page divided into columns by vertical lines to define

units of time, and the symbols should be written from left to right, orderly. (see Figure

2.9 a))

Laban Movement Analysis (LMA) is a human movement descriptor, which consists



32 Chapter 2. Human motion-based feature extraction

a) b)

c)

Figure 2.9: Eshkol-Wachman movement notation: a) Manuscript of movement b) Stick
figure c) System of reference
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five components (Body, Effort, Shape, Space, Relationship). Each component consists

of several parameters that have some qualities to describe human movements. The

LMA categorization and discretization inspired the computer scientists to model human

movements computationally. In the following, we are going to introduce the LMA and

the related state-of-the-art.

2.3.1 Laban movement analysis

Rudolph Laban (1879-1958) was a choreographer, and human movement theorist,

whose work laid the foundations for LMA. One of his great contributions to dance was

his 1928 publication of Kinetographie Laban, which is still used as one of the primary

movement notation systems in dance. LMA is a system and language for observing,

understanding, describing and notating various forms of human movement. LMA is

used in several application as a tool by athletes, dancers, physical and occupational

therapists [RDA08].

The general framework was described in 1980 by a student of Rudolf Laban, Ir-

mgard Bartenieff in [BL80]. It was studied on dance and application to physical and

mental therapy, widely [BL80], however it is not the same in the engineering domain.

The group of Norman Badler was the first group, who started in 1993 to propose var-

ious computational models to formulate LMA components [BPW93]. For instance;

a computational model of gesture acquisition and synthesis to learn motion qualities

has been proposed in [ZB05]. Also recently but independently, neuro-scientist started

to investigate the advantages of LMA to analyse certain effects on the movements of

animals and humans. Foroud and Whishaw adapted LMA to capture the kinematic

and non-kinematic aspects of movement in a reach-for-food task by human patients

whose movements had been affected by stroke [FW06]. It was stated that LMA places

emphasis on underlying motor patterns by notating how the body segments are mov-

ing, how they are supported or affected by other body parts, as well as whole body

movement [RDA08]. Here we describe the LMA definition for the five components.

2.3.1.1 Relationship

Relationship describes modes of interaction with oneself, others, and the environment

(e.g. facings, contact, and group forms). It is the only component which connects

human movements to the environmental parameters. As Relationship appears to be
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Figure 2.10: Five components of LMA; Body, Space, Shape, Effort and Relationship
[RDA08]

one of the lesser explored components, some literature [FW06] only considers the

remaining four major components [RDA08]. Several properties were defined to cover

all possibilities of human relationships with others [RD13a], details are explained in

the next chapter.

2.3.1.2 Body

Body indicates each body parts motion, related to the centre of body, the kinematics

involved and the emerging locomotion. Body has various subcategories [RDA08]:

� Initiation of movement starting from specific body parts;

� Connection of different body parts to each other;

� Sequencing of movement between parts of the body;

� Patterns of body organization and connectivity, called ” Patterns of Total Body

Connectivity”, ”Developmental Movement Patterns”, or ”Neuromuscular

Patterns”.

2.3.1.3 Space

Space deals with the spatial range of the actor’s Kinesphere (reach-space), and the

exhibited form of the body trajectory. There is a category that describes and notates

choices which refer specifically to space, paying attention to [RDA08]:
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� Kinesphere: the area that the body is moving within and how the actor is paying

attention to it.

� Spatial Intention: the directions or points in space that the actor is identifying

or using.

� Geometrical observations of where the movement is being done, in terms of em-

phasis of directions, places in space, planar movement, etc.

The Space category is explored on Euclidean and non-Euclidean geometry.

2.3.1.4 Effort

Effort, or dynamics as sometimes named by Laban, concerns more subtle characteristics

of the way a movement is performed with respect to inner intention. To be more visible,

consider that the difference between pointing at someone whit the hand and punching

someone in anger, in terms of body organization (both rely on extension of the arm),

is small. The attention to the strength, control and the timing of the movement are

the significant concerns of the Effort component. Effort contains four subcategories,

each of them has two opposite polarities states(see Fig. 2.11).

� Space: Direct / Indirect

� Weight: Strong / Light

� Time: Sudden / Sustained

� Flow: Bound / Free

2.3.1.5 Shape

Shape concerns about non-kinematic deformation human body (as a blob) in the 3D

space. The interpretation of Shape as a property of Body and Space probably is the

reason for Irmgard Bartenieff to eliminate it from the major components of LMA.

Foroud and Whishaw suggested [FW06] to group Body and Space as kinematic-based

features describing changes in the spatial-temporal body relations, while Shape and
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Figure 2.11: Laban effort graph

Shape example Plane

Enclosing /Spreading Opening arms to embrace Horizontal

Sinking / Rising Reaching for something in a high shelf Vertical

Retreating / Advancing Avoiding a punch Sagittal

Table 2.1: Shape qualities

Effort are part of the non-kinematic features contributing to the qualitative aspects of

the movement [RDA08] as shown in Fig. 2.10.

Shape contains several qualities: Shape-Flow concerns with the mover’s body shape

within itself, the increasing or decreasing the body volume and the movement toward

or away from the body centre. Rett and Dias [RD07] summarized the first three Shape

qualities and express it in terms of spatial directions. By using a major direction we are

able to express the Shape in the concept of Three Planes (vertical, horizontal, sagittal)

(Tab. 2.1).
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2.4 Feature extraction

We attempted to extract the proper features for human activity analysis with respect to

the LMA components characteristics. Various works were proposed related to different

human motion analysis, with respect to the body motion dynamics [CCZB00],human

body shape deformations [STMea09],and with combination of both characteristics to

analyse human gestures [Ret08], but they used only spatial-based features to obtain

all the parameters. We propose to use frequency-based features to analyse Effort

component which is related to the human body parts motion dynamics [KAQ+10,

KAQ+11].

2.4.1 Frequency domain

Fast Fourier Transform (FFT) and Power Spectrum (PS) techniques are the well-known

methods for feature extraction of a signal sequence data. FFT is an advantageous

method for processing of frequency domain and analyzing spectrum, and PS which de-

rives from FFT answers the question “how much of the signal is at a frequency”[Cro00].

In some research work these techniques were used in order to achieve proper features

for various purposes related to human motion detection.

In our experiments, we analysed different signals (trajectory, velocity, angular ve-

locity, acceleration and etc.) in frequency domain. Then a method is prepared to

extract some features from acceleration signals of six parts of body (head, right hand,

left hand, right foot, left foot and centre of the body) which are obtained by a motion

tracker suit, its output can be seen in Fig.2.12. Acceleration signals of these parts of

body are more representative of human motions. We used the advantages of the power

spectrum technique to extract needed features in the LMA framework.

By having a signal data, its Fourier series should be calculated to estimate the PS

of the signal [Cro00]. If f(t) is a finite-energy signal (such as acceleration signals), the

Power spectrum Φ(ω) of the signal can be achieved by:

Φ(ω) =

∣∣∣∣ 1√
2π

∫
∞

−∞
f (t)e−iωtdt

∣∣∣∣2 =
F (ω)F∗ (ω)

2π
(2.1)

where ω denotes the angular frequency and F(ω) is the continuous Fourier transform

of f (t), and F∗(ω) denotes its complex conjugate. If the signal is discrete with values
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Figure 2.12: Some sequences position of the 6 parts of body for running action in 3D
view.

fn, over an infinite number of elements, we still have an energy spectral density:

Φ(ω) =

∣∣∣∣∣ 1√
2π

∞

∑
−∞

fne−iωn
∣∣∣∣∣
2

=
F (ω)F∗ (ω)

2π
(2.2)

Using Eq.2.3, 3D acceleration signals are calculated from the recorded data achieved

by a motion tracker suit which provides a sequence acceleration for each part of the

body in x, y, and z coordinate ( fn(x), fn(y) and fn(z)), separately.

fn =

√
( fn(x))2 +( fn(y))2 +( fn(z))2 (2.3)

The PS signals of the 3D acceleration sequence data can be calculated by Eq.2.2,

a sample of PS signal of an action.

In order to obtain features from FFT or PS signals, some researchers collected

some coefficients (peak) of the extracted signals, like [SZJ+09] which collected first

ten coefficients of each FFT result, however they just used one motion tracker which

cannot present different human motions. In this study, however, we present a more

comprehensive approach by dividing the frequency domain of PS signal of six parts of

the body to several sub-domains (classes) to process more information and decrease the

effect of possible noise. As [RVRE08] mentioned, the power of the PS signals for human

motions are usually high in low frequency domains. Thus, the domain frequency is

segmented in eleven sub-domains frequencies empirically, and in low frequency domain,

the segmentation size is smaller than in the high frequency domain as can be seen in
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Figure 2.13: A sample of PS result of 3D acceleration signal of the 6 parts of body for
skipping action

Fig.2.14. Moreover, the maximum of the content (power) of each frequency sub-domain

is calculated. Thus, eleven features (peak) for six parts of body are defined to be used

for classification of various actions [KAQ+10]:

F = Max
{

Acc f pb
i

}
,

where the pb denotes set of body parts, Acc denotes the acceleration signal data and

Max
{

Acc f pb
i

}
denote the maximum content of each i subdomain frequency of accel-

eration signal for each pb. The set of pb and subdomain frequency are as follows:

pb={Head, Left hand, Right hand, Left foot, Right foot, Body center}

subdomain frequency ={(0 - 10), (11 - 20), (21 - 30), (31 - 40), (41 - 50), (51 -100),

(101 - 150), (151 - 200), (201 - 300), (301 - 400), (401 - 512)}

2.4.2 Spatial domain

The frequency-based data, which is obtained from the acceleration signal, is the proper

feature to distinguish between similar movements e.g. walking compared to running,

or sitting compared to falling down. However, in some cases, they are not the same

and have difference in terms of spatial property, e.g. sitting compared to rising, and

running compared to falling down. Thus, there should be other features to distinguish
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Figure 2.14: A histogram belongs to a body part, that is showing the definition of some
frequency sub-domains on the power spectrum signals and minimum and maximum
content of each frequency sub-domain for each action separately.

those movements, that is the spatial relation of two objects like head and feet during

the different movements. For instance; in sitting and falling down movements, distance

of those body parts (height of the human blob) is reducing and in a rising movement

there is an opposite situation. However in standing or walking, there is no considerable

change in this aspect. Therefore, the difference of distance between head and feet

during a movement can be obtained:

∆D =
n
∑
i=2

((
X i

ob j1 + X i
ob j2

)
−
(

X i−1
ob j1 + X i−1

ob j2

))
, (2.4)

where Xt
ob j1 and Xt

ob j2 denote 3D position of the two objects ob j1 and ob j2 at

frame i, respectively. n denotes the number of frames inside of the window signal, and

∆D denotes the difference distance between those objects during the window signal in

the meter unit.
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It should be mentioned that in what concerns human movements analysis in terms

of spatial domain, there are plenty of works which attempt to formulate it with re-

spect to Space and Shape components [ZB05, Ret08, SD10], but not to Relationship’s

component of LMA framework. Thus we explored the features in spatial domains with

respect to the Relationship’s component which will be described in the next chapter.
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2.5 Conclusion

In this chapter, we explained Laban movement analysis (LMA) system and the related

works which have been done by using descriptive methods such as LMA. Then, we

proposed a novel approach to extract human motions-based features through the LMA

framework by conjugating two different types of feature domains. Frequency-based

features which are extracted by using the FFT and PS techniques, with respect to

analysing the Effort component of LMA which relies on the quantification of energy

during human motion. Spacial-based features that rely on the distance between objects

were introduced in order to analyse the spatial components of LMA (Shape, Relation-

ship). This will be the subject of the next chapter. The following chapters will use the

mentioned features as inputs to analyse human behaviour in different contexts.



Chapter 3

Human behaviour analysis

3.1 Introduction

Human behaviour is highly connected to environmental constrains and context. For

instance; between surveillance and elder-care applications, or between individual and

group context, the relevant human behaviours are different. Thus, researchers used

to consider constraints for environment and scenario, to be able to obtain interesting

results. Depending on the problems and constraints, the proper models were proposed.

For instance; Pentland and Liu in [PL95] discussed human behaviour modelling in a car

driving scenario. They believed that it is useful to have a number of dynamic models

to classify the driver’s behaviour by comparing it with the models, for each kind of

driving such as relaxed driving, tight driving, etc.

Remagnino and Jones [RJ01] used a Hidden Markov Model (HMM) approach to

model parking lot environment behaviour. In [ORP00] Oliver et al. defined a number

of sequences of human movements to understand the relevant people behaviours. The

main constraints, in the mentioned works, are that there are limited to some specific

human actions or behaviours. Most of them are not extendable to other levels of human

activity analysis, or generalizable to other possible applications.

In this study, a bottom-up strategy is proposed. In the first step, the LMA parame-

ters are classified and the second step, based on the obtained LMA parameters, human

movements are recognized. In the last step, semantic-based human-object and human-

human interaction are investigated (as a scene understanding application). Therefore,

this chapter is divided into three sections; individual-based human action analysis, con-

43
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text based human behaviour analysis, and semantic-based scene understanding. In the

first step, body motion-based features are explored to analyse human movements. In

the second part, we attempted to explore through existing relationship between body

movements of a person with him/herself, an object, and another person. Thus, the Re-

lationship component of LMA, which is the less explored LMA component, is analysed

and formulated. Semantic-based scene understanding section proposes an improved

approach to understand human activities by using context-base knowledge.

Fig.3.1 presents the related levels of proposed human behaviour analysis framework

in this chapter.
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Figure 3.1: Human behaviour analysis in different levels with respect to this chapter
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3.2 Individual-based human action analysis

Human action modeling is one of the popular challenges in artificial intelligence science.

There are several applications related to the subject, for instance; surveillance (e.g.

airport, bank, train station, etc.), virtual reality (e.g. interactive virtual worlds, virtual

studios teleconferencing, etc.), motion analysis (e.g. choreography of dance, clinical

studies of orthopedic patients, etc.) and Human-Robot Interaction (HRI).

To better understand the importance of the studies in the existing potential appli-

cations, we present an example for fall detection case. Falls are among the top causes

of unintentional injury and death in the elder population. Several studies point out for

the social impact of this problem, which reaches global scale [Rub06] [CRG+05]. Falls

in older people are estimated to affect approximately 30% of those over 65 in an an-

nual basis. Although most falls cause no injury, between 5-10% of the elderly who fall

each year sustain serious injury, such as fracture, head trauma, or serious laceration.

Approximately 15% of elderly people who fall and injure themselves require hospital-

ization. Hip fractures are the most serious fall-related injury (95% of hip fractures are

due to falls). Among the elderly who fall and sustain a hip fracture, 20-30% die within

one year of the fracture. As many as two thirds of the elderly with hip fracture never

regain their pre-fracture activity status and one-third require nursing home placement.

Consequently, the economical impact related with falls is expected to reach near $55

billion in the USA. World wide efforts are spent in order to work in the prevention of

these situations either by studying methodologies for prevention as [PRO] or designing

fall detection systems [WCL+08] which try to help in nursing tasks.

Given these facts, human behaviour analysis can contribute with a strong point

both on the prevention and detection of this type of hazardous situations. Systems

monitoring the elderly living space could analyse potential risks of falls occurring and

identify potential causes for falling, consequently leading to correct adaptations in the

living space. In terms of fall detection, it would be advantageous, for those situations

where full monitoring is not possible, to have systems with the ability to warn caregivers

about abnormal situations.

Human behaviour comes from the different human actions and reactions, which

is usually shown by a person’s body motion, voice and facial expression. Relevant

researchers investigate all the possibilities to recognize human behaviours depending

on their application limitations [PPNH06].
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Nowadays, most of the related applications such as surveillance and elder-care, rely

on human movements. Bobick [Bob97] presented a survey related to human movement,

activity and action. As Bobick said, the movements are the lowest level of human

motion which doesn’t need any previous knowledge and contextual information to

be identified, but to understand human action or behaviour we need to recognize a

sequence of human movements or states, related to the corresponding environment

and scenario.

A common approach to obtain human body parts poses to apply human behaviour

analysis techniques, uses wearable motion trackers. Those trackers are more reliable

than the vision-based trackers, however, they have their own drawbacks such as inap-

plicability in several real world applications, and have missed data in sudden human

motions. We use a special suit (MVN®) which has several IMU’s attached, to collect

the interesting data such as positions and accelerations of human body parts, in 120

Hz resolution.

One of the basic problems is to collect proper Low Level Features (LLFs) and

observable information which depend on the scenario and input data. To extract the

features, the existing approaches can be categorized in 2D (image) and 3D. Recently,

researchers are interested in using 3D data to reconstruct any object such as human

body to avoid image based approach limitations,although a corresponding process is

usually more time- consuming.

Leo et al. in [LDS04] introduced an approach for complex human activities detection

from image sequences in outdoor environment such as archaeological sites (e.g. walking,

probing the subsoil with a stick, damping the ground with a tank and picking-up some

objects from the ground).

Arsic et al. in [AWSR05] proposed a real-time behaviour detection method which is

video based. Their application is for passenger behaviour detection in public transports

such as airplanes. They defined some special human behaviour such as aggressive,

nervous, tired, kid and talk.

Nascimento et al. in [NFM05] described a method for recognizing human activities

in a shopping space. They used human motion patterns which are achieved from a

sequence of displacements of each human’s blob center. They modeled trajectories of

the human’s blob by using a method which they called a multiple dynamical models

with a switching mechanism. Finally, they estimated the identification of the models
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which connected with a trajectory.

Yue et al. in [YZC03] proposed an image-based method which used a human

body parts segmentation approach for covering the weakness of visual hull method for

concave regions reconstruction. The first result was a virtual silhouette image fit to

the given viewing direction, which used human body part localization method. Body

parts produced separately in virtual view from the corresponding input views and then

assembled together. The last silhouette image was used for removing the separate or

squeezed region in final view.

Researchers have been attempting to use the advantages of human movement de-

scriptors which include useful knowledge about efficient parameters involved in human

motions. LMA is a well-known relevant system, which in a number of literatures like

[Zha01, RDA08, NMS02, CCZB00, AKA+02] attempted to formulate its parameters

to interpret human movements with an intelligence system.

Rett & Dias in [RD07] presented a real-time system that analyzes human movements

as a contribution to the field of Human-Machine Interaction (HMI), based on the

concept of the LMA. A Bayesian model used for learning and classification. They

presented the LMA as a concept to identify useful features of human movements to

classify human gestures based on vision and motion tracker data.

In this step, we attempt to distinguish various human movements by estimating

human body parts motion dynamics. For that purpose, the relevant LMA component

is Effort, which deals with the dynamic qualities of the movement and the inner attitude

towards using energy [RD07]. However, Rett [Ret08] proposed a method to use LMA

components specially Effort to detect human gestures, but as it was mentioned in

previous chapter, we proposed different techniques (in frequency domain) to solve the

problem. By having the other relevant knowledge [Ret08], and examining different

existing data (trajectory, velocity, acceleration, etc.), the acceleration signal is selected

as proper data to extract the needed features.

There is a number of limited works which explore features through frequency do-

mains. Khalid and Naftel in [KN05] proposed an approach which is based on DFT

technique for clustering and classifying spatio-temporal object trajectories using an ar-

tificial neural network approach. They used the Fourier coefficient features to recognize

similar motion patterns.

Shi et al. [SZJ+09] introduced an approach to recognize five different human move-
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ments using body acceleration signals. They used inertial data (accelerometers, gy-

roscopes) signals obtained from an inertial sensor, which was attached to a person.

Fourier analysis was used to extract the needed feature from the human motion signal.

Cheng et al. in [CCK04] used PS technique as a feature extraction method to clas-

sify some periodic human motion from sports video signals. Ragheb et al. [RVRE08]

proposed a method for human movement recognition from video streams. They used

mean power spectra technique to extract interesting features from the bounding boxes,

which contain the silhouette of a human for a number of video frames, representing a

basic movement. The two last works used PS technique and 2D (image-based) analysis.

However, 3D data is used in this study.

3.2.1 LMA-based feature extraction

In Chapter. 2, it was explained how the features were extracted in two different do-

mains; frequency and spatial. It was mentioned that in this study, the Effort component

is explored in frequency, and Shape component in spatial domain.

3.2.1.1 Shape Component Characterization

The Shape component describes deformation in the human body shape (as a blob)

through his/her limbs movements in three planes; vertical, horizontal and sagittal.

There are three quantities for discretizing of the human shape deformation on each of

the three planes:

Vertical Plane ∈ {Sinknig, Still, Rising}

Horizontal Plane ∈ {Enclosing, Still, Spreading}

Sagittal Plane ∈ {Retreating, Still, Advancing}

In this study, the human shape’s deformation in vertical plane is modeled, which

can be extended to the other planes easily. Difference in height of human head and

feet related to the body centre is used as a feature to analyse the shape’s changes in

the vertical plane:

4H =
n
∑

t=2

((
zXt

head + zXt
f eet

)
−
(

zXt−1
head + zXt−1

f eet

))
,
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where zXt
head and zXt

f eet denote position of head and feet related to the body centre

in z axis at time t, respectively. n denotes the number of frames inside of the sliding

window signal, and 4H denotes the difference in height of human body between the

first and end of the sliding window signal in the centimeter unit. By having the result

of the equation, qualities are estimated by discretizing the data, empirically:

Shapever =



Rising 4H > 0.2

Still 0.2 =4H =−0.2

Sinking 4H <−0.2

(3.1)

3.2.1.2 Effort component characterization

One of the most important components of LMA is Effort, and we attempted to char-

acterize it in frequency domain. As it was mentioned before, Effort is a component

dealing with the dynamics of motion for understanding the more subtle characteristics

about the way a movement is performed. The difference between punching someone in

anger and reaching for a glass is slight in terms of the physical body organization as

they both rely on extension of the arm. However, the control and timing of the motion

in each of the cases are very different. Effort consists of four quantities, and each of

them has two bi-polar states. Dependencies between the LLFs and the Effort property

are discussed in the previous chapter and [KAQ+10].

In [KAQ+10], one of the Effort properties (Effort-Time), is characterized by frequency-

based features, which estimated from 3D acceleration signals of body parts with respect

to a global reference. The obtained results showed a number of false Effort-Time es-

timations which affected the final classification results. Thus, obtaining LMA-based

human motion parameters with respect to a local reference (human centre as an origin

of the coordinate system) provides more accurate data. It follows the LMA definitions,

and causes less data redundancy, and consequently, resulting in an improvement in hu-

man motion description analysis. For clarification purposes, we describe the analysis

of the walking movement: by analyzing the data relative to body centre, the computed

energy of body parts signals related to the body-centre is reduced. We describe a nor-

mal human walking movement as having motion on feet and hands, not on head. If we

consider human body parts poses with respect to a global reference, we will see some
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Figure 3.2: A couple of samples for corresponding PS result to the acceleration signals
of body parts for (left) walking and (right) running movements.

energy on head motion, because of the existing locomotion, which can be reduced by

using a local reference-based analysis. Consequently, local reference-based analysis will

not distinguish between walking on the spot and normal walking.

To explore through frequency domain features, the advantages of PS technique is

used. The PS (obtained by Fast Fourier Transform (FFT)) of the acceleration sequence

data is calculated by equation (3.2) (as can be seen in Fig. 3.2):

Φbp (ω) =

∣∣∣∣∣ 1√
2π

∞

∑
−∞

c
fbpe−iωn

∣∣∣∣∣
2

=
Fbp (ω)F∗bp (ω)

2π
(3.2)

where ω denotes the angular frequency and Fbp (ω) is the continuous Fourier trans-

form of c fbp which is body-centred frequency-based feature for bp’s body part, and

F∗bp (ω) denotes its complex conjugate.

The sufficient features in the mentioned purpose, are obtained by the extracting PS

signal of each selected body part acceleration signal for various movements, and then by

collecting the first four coefficients (peak) of the extracted PS signals [KAQ+10]. Thus,

the four coefficients for each of the five body parts, provide the input feature space

for classification of various movements in Effort aspect. We named the coefficients as

Max
{

c f i
bp

}
which is the maximum content of each i sub-domain frequency of the PS
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Definition: Description

Description: a declarative part
Specification: presents preliminary knowledge

Pertinent variables: relevant defined variables
Decomposition: probability distribution

Parametric forms: prior programming forms
Identification: experimental dataset information

Question: Computing a probability distribution

Program


Description


Speci f ication


Pertinent variables

Decomposition

Parametric f orms

Identi f icationbased onData
Question

Figure 3.3: Structure of a Bayesian program and its brief descriptions [DBM03].

signal for each bp. The set of bp and sub-domain frequency are defined as follows:

bp ∈ Head,Righthand,Le f thand,Right f oot,Le f t f oot,

Frequencydomainclass ∈ (0−10),(11−20),(21−30),(31−40).

3.2.2 Bayesian programming

Bayesian Programming (BP) is a method to describe relevant variables, parameters

and Bayesian rules to interpret the proposed model precisely. The BP was proposed

by Lebeltel et al. with the details about this methodology and for a robotic application

[LBDM04]. Diard et al. presented the capability of the BP methodology to interpret

different probabilistic models [DBM03].

Figure 3.3 presents the BP formalism structure, which consists of two main parts;

� Description: it is a declarative part to specify a method to produce a joint dis-

tribution on a set of variables given a set of experimental data and preliminary

knowledge. It divides into a couple of sections;

– Specification: presents preliminary knowledge which constructed from fol-

lowing subsections;
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* Pertinent variables: the relevant variables on which the joint distribu-

tion is defined.

* Decomposition: a probability distribution that gives the probability of

each defined state of variables.

* Forms: it assigns forms to each term of the selected product (which

can be parametric forms, or recursive questions to other Bayesian pro-

grams). If there are free parameters in the parametric forms, they have

to be assessed. They can be given by the programmer (a prior program-

ming) or computed on the basis of a learning mechanism defined by the

programmer and the experimental data [DBM03].

– Identification: it explains about the dataset information.

� Question: it is for computing a probability distribution of the form P(Searched |Known)

using the previously defined descriptions [DBM03].

3.2.3 Bayesian-based modeling

Bayesian Network (BN) presents many advantages on using prior knowledge and mod-

eling the dynamic dependencies between variables states. One of the key characteristics

of BN is its ability to fuse different types of data in one model. This work developed a

classification model based on BN, justified by this flexibility characteristic. Thus, ap-

plying Bayesian theory allows the preparation of a general LMA-based human motion

analysis framework to fuse multi-modal data, e.g. data emerging from frequency and

spatial domains.

Fig. 3.4 presents the BN with two levels in three abstraction layers. In the first

level of the BN set, we provided six independent parallel BNs for the five body parts

in Effort aspect and one quantity (vertical plane) in Shape aspect.

The set of LLFs emerge from
{

Max
{

c f i
bp

}}
which has four states {No, Low,

Medium and High}, are obtained using the same threshold definition as in [KAQ+10].

Effort-Time subcomponent { E f .T bp} for a body part has a couple of states: Sustained

and Sudden. The 4H is discretized in three states {Up, Still, Down} by Eq. 3.1,

corresponding to the Shape’s states which have been explained before.

A one-second slide window which moves on signals by a half of second step is defined.

It is a common rule to not lose information through the long signal data processing.
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Figure 3.4: Global Bayesian network

To obtain a more reliable result, the training dataset is provided by using the most

representative one second of each action sample.

After doing the learning process of the model, we are able to answer the Bayesian

questions for the probability of the LMA parameters given the observed features

{P(LMA|LLFs)}, and the probability of a movement given the LMA parameters {
P(M|LMA)}. In [KAQ+10] we can see more detail about the proposed BN.

Fig. 3.5 presents the BP’s corresponding of the proposed human movement model,

with the details.

3.2.4 Experimental results

The experiments are done for various kinds of human movements (at least 10 times for

each type of movement in different durations). A motion tracker suit is used to obtain

human body parts position and acceleration signals. A one-second window-frame which

shifts half a second, is defined on the signals, to collect the features from the sequence

of data (Chapter 2).

A free Bayesian toolbox provided by Kervin Murphy and Berkeley [MB05] is used.

The structure which is presented on Fig. 3.4 is implemented by using the toolbox.

Table 3.1 presents the results for walking, running and standing activities, with

considerably high positive matches based only on the Effort.Time component, but in
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Pertinent variables :

Pb ∈ {Head,Le f t hand,Right hand,Le f t f oot,Right f oot}

f p∈{pb}
i=1:4 ∈ {No, low,Medium,High}

4H ∈ {U p,Still,Down}

E f p∈{pb}
time ∈ {Sustained,Sudden}

Shv ∈ {Sinking,Still,Rising}

Movement ∈ {Walk,Run,Sit,Rise,Fall,Stand}

Decomposition :(
P

(
Movement ∏

p∈{pb}
E f p

time
i=1:4

∏

p∈{pb}
f p
i 4H Shv

)
=

i=1:4
∏

p∈{pb}

(
P
(

f p
i

))
∏

p∈{pb}

(
P

(
i=1:4

∏

(
f p
i

)∣∣∣E f p
time

))

P(4H) P(4H |Shv ) P

(
∏

p∈{pb}

(
E f p
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Figure 3.5: Bayesian Program for the human movement model.
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Walk Run Sit&Bend Rise Fall Stand %

Walk 102 4 0 0 0 3 93.57
Run 1 67 0 0 0 0 98.53

Sit&Bend 0 0 6 0 0 20 23.07
Rise 0 0 0 0 0 10 0
Fall 17 4 8 0 5 4 13.16

Stand 0 0 0 0 0 105 100

Table 3.1: Classification result using body-centered based features in frequency do-
main(Effort)

Walk Run Sit&Bend Rise Fall Stand %

Walk 56 0 0 0 0 0 100
Run 0 60 0 0 2 0 96.77

Sit&Bend 0 0 41 0 0 1 97.6
Rise 0 0 0 24 0 0 100
Fall 0 0 0 1 22 0 95.7

Stand 0 0 0 0 0 109 100

Table 3.2: Classification result using body-centered based features in both frequency
and spatial domains(Effort and Shape)

the other activities which are more relevant in the Shape aspect, it completely failed

[KAQ+10]. Table 3.2 presents the results of our idea by conjugating the Effort and

Shape components.

The results demonstrate that the couple of components are sufficient to distinguish

the performed human movements. Effort distinguishes between walking and running,

and sitting and falling movements properly. As well as, Shape is the right component

to distinguish between sitting and rising, and also between all activities which occur

in standing state, like walking and running and standing, and others.

3.2.5 Conclusion

In this study, we presented a novel approach to understand human movements, based

on the LMA concept by the conjugation of two different types of feature domains, and

using a 2-step probabilistic approach. Frequency-based features, which were extracted

by the PS of acceleration signals, are used to analyse the Effort-Time subcomponent

of LMA which relies on the quantification of energy during human motion. For the

Shape component which relies on the human shape changes on the vertical plane, the

variation of human height is applied.
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BNs are used in a couple of steps and in different domains (frequency and spatial)

to obtain the probabilities of the LMA parameters and human movements. It is shown

that, to analyse various human body movements, the dynamics of human body motions

and the human body shape changes in the space are needed. Thus, having a combi-

nation of frequency-based features to analyse dynamics of human body movements,

and special-based feature to analyse deformation of human body in the 3D space, is

sufficient to estimate the performed human movements, as can be seen in the presented

confusion tables.
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3.3 Context-based human behaviour analysis

This section presents a new approach to analyse human activities based on existent

relations between different human body motions properties and environmental param-

eters. Different kinds of human body motion-based features such as; position, velocity,

acceleration, trajectory, etc. have been used to analyse human movements and activi-

ties. Those features are important but the relation between the features also is a key

characteristic of analysing different types of human actions and interactions. These

relations can be defined in three levels. In the first level, the relations come from be-

tween different motion parameters inside of a body (between body parts). Then the

relations between a person and environmental objects are needed to analyse human

activity in a scene. Finally, human-human interaction can be estimated by defining

the relationship of human motion characteristics that belong to a couple of people.

For instance; in a normal walking action, between legs and hands there is a harmony

which is very important to complete the action. In another example,when clapping

one’s hands, the hands touching each other is the relation of these two body parts. It

appears also between a body and an external object; such as reaching to or grasping a

glass, and also between a person and another body, such as hand shaking, punching,

etc. In this study, an approach is presented to analyse the different types of human

activities based on the relationships.

The idea came from one of the LMA components, which provides a way to explain

the relationship between a human body part motion and other objects (other body

parts of her/himself, environment and other bodies). Those relationships can appear

widely, and having a global framework that could be able to explain them as much

as possible, is a big challenge that we attempted to prepare using the LMA system

framework.

Fig. 3.6 presents a sequence of human movements, which can be analysed as a

sequence of human interactions with a robot. That analysis is useful in different appli-

cations such as; smart-home, surveillance, human-robot and human-human interaction,

etc.

In the previous parts of the study, several features, based on the LMA concept,

are defined to analyse human movements. In [KAQ+10] an approach is presented to

use frequency-based features to estimate human movements based on some body parts

acceleration signals. Then in [KAQ+11], spatial-based feature also is used to improve
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Figure 3.6: A sequence of human movements with respect to a robot. The images in
the right side are showing a person which dressed a motion tracker suit (MVN), and
the left side are presenting the corresponding skeleton (obtained by the motion tracker
suit) of the person.
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the previous estimation results. In this work, we attempt to define the relationship

parameters using the previous obtained features, and also environmental parameters.

To implement the idea, BN and Hidden Markov Model (HMM) as a Dynamic Bayesian

Network (DBN), which are popular approaches in this area, are used. The capability

of the system generalization, because of using LMA framework and Bayesian approach,

is one of the main advantages of this study.

3.3.1 Previous related works

Analysing human motion is a prerequisite to understand human activities, such as

human behaviour, human-robot and human-human interaction, etc. In Bobick’s ter-

minology, the movements are the lowest level of human motions which do not need any

contextual and previous knowledge to be identified. To understand human action or

behaviour we need to have a sequence of human movements or states with respect to

the environment or scenario [Bob97].

There are many different kinds of human movements which are interesting for re-

searchers to recognize in various applications. Each of them can be identified with

position variations of one or more involved human body parts, without the necessity

to know the underlying movement concept. Thus, researchers attempt to track body

parts in a sequence of captured data such as image sequences, being able to estimate

human dynamic characteristics.

An accurate human movement tracking is essential for a precise human interaction

analysis. Feet, hands, head and face are the most important body parts to track in

different relevant applications. Some examples can be given such as; gait recognition,

where the dynamics of leg motions are important, facial expression recognition, the

focus lies solely on the face, while in gesture recognition, all parts of the body can be

involved, where hands and head stand out as the most important ones.

As Bobick [Bob97] says, to analyse human activities, we need to know the underly-

ing movement concept. It means to understand human activities; the relations between

human movements and environmental parameters need to be considered. There are

infinite relations that can appear through human activities in any scene. Thus, re-

searchers always define specific relationship properties to propose their methods. For

instance; Rao et al. in [RYS02] presents a computational representation of human ac-

tion to capture the changes using spatio-temporal curvature of 2-D trajectory of hands.
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Then, in the experiment part, a limited number of activities such as picking up an ob-

ject from the floor and putting it down on the desk were defined. Thus, we can infer

that we need a general framework that is able to analyse those kinds of relation pa-

rameters in mid-level. LMA is the system that can be used as the mid-level features of

human motions. To have this mid-level, several works have been done for various types

of features, based on the LMA systems [FW06, KAQ+11, KAQ+10, RDA08, ZB05].

All of the previous works were not aware of the Relationship component parameters of

LMA, but in Effort, Shape and Space.

As it was mentioned, a BN can model the dependencies between parameters. Those

dependencies between parameters somehow play some of the relationship roles, but they

are very dependent on the learning process. The point is, the relation parameters were

not defined explicitly on the model, thus, it is very reliant on the learning process.

Therefore, by considering those relationships properties, such as the input features

of the model, more reliable results can be obtained. Finally, by connecting human

body motions to the scene, which is one of the Relationship component purposes, the

probabilistic model for analyzing human interactions is explored.

3.3.2 Features extraction

Human motions consist of a number of features which are defined and extracted in

different domains. In the previous steps, frequency-based features [KAQ+10] and

spatial-based features [KAQ+11] were extracted to analyse human movements. The

results presented that by conjugating the different types of features, the classifier’s effi-

ciency significantly improves. Thus, we used those features to rely on existing relations

between human body parts motions and environmental parameters. Based on the re-

lationship definitions which are described in the next section, various relations can be

defined. Therefore to perform an experiment and depend on the activities, we need to

collect the proper features which can disclose differences in the activities perfectly.

3.3.2.1 Body motion based features

In this step, we estimate some general human activities, like walking, running, siting,

rising, falling down and standing, which can be extended to more types of movements,

without using environmental parameters. Thus, we attempt to define the Relationship

parameters between body parts of a person.
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Relationship characteristics are very wide, and play an important role in performing

any activities, for instance; in walking types movements, usually there are harmonic

motions in the hands and feet related to the body centre. Those harmonic motions can

be estimated by frequency-based properties [CCK04]. The frequency-based features can

be extracted by FFT and PS techniques which are the known approaches [RVRE08].

By exploring different collected signals (trajectory, velocity, acceleration) from body

motions, the acceleration signals of human body parts related to the body centre are

selected (based on the previous work [KAQ+10]), and then FFT and PS signals of the

acceleration signals are extracted [KAQ+10] (see Fig. 3.7-top-left and Fig. 3.7-top-

right).

As [RVRE08] mentioned, power of the PS signals for human motions is usually

high in low frequency domains. Thus, based on the previous work [KAQ+10], the

peaks of PS signals in the first four frequency sub-domains (1-10 HZ, 11-20 HZ, 21-30

HZ, 31-40 HZ) for different movements are collected as the LLFs. Other frequency

domains data can be achieved, but in this kind of applications the selected domains

are more representative and sufficient. Fig. 3.7-Left-down) presents a histogram of the

frequency content for a specific body part for different movements, therefore, a number

of histograms for different body parts is generated.

The frequency-based data, which is obtained from the acceleration signal, is the

proper feature to distinguish similar human movements like walking and running, or

sitting and falling down, but not for the others, which have difference in terms of

spatial property, like sitting and rising, running and falling down. Therefore, other

useful features to distinguish those movements are the relation of two objects such as

head and feet in terms of the relation between those body parts during the different

movements. For instance; in sitting and falling down movements, the distance of those

body parts reduce and in a rising movement there is an opposite situation. However, in

standing or walking, there is no considerable change in this aspect. Thus, the difference

of distance between head and feet during a movement can be obtained:

∆D =
n
∑
i=2

((
X i

ob j1 + X i
ob j2

)
−
(

X i−1
ob j1 + X i−1

ob j2

))
, (3.3)

where Xt
ob j1 and Xt

ob j2 denote 3D position of the two objects ob j1 and ob j2 at

frame i, respectively. n denotes the number of frames inside of a window signal, and

∆D denotes the difference distance between those objects during the window signal in
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Figure 3.7: (Left-top) and (Right-top) diagram present PS results of some body parts
acceleration signals for walking and running movements respectively. (Left-down)
presents an histogram to show the frequency-based features of one body part for differ-
ent movements in different frequency sub-domains. (Right-down) passing probabilities
diagram for all body parts during a sequence of frames.

the unit of meter. The point is, when one of the objects passes through another during

the window frame, the equation will calculate the difference distance if it is more in a

reaching or spreading state.

3.3.2.2 Environmental based features

To implement this part, a couple of scenarios are proposed to present the idea more

clearly;

� First scenario, which includes a static robot agent which people can interact with,

is defined. Some relevant activities are performed like, reaching, spreading, and

passing.

� Second scenario is about a couple of people interaction. In this scenario, there

are not only previous activities, but also more complex ones (such as following,

handshaking and pushing) which needs more input features to be estimated.
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The features in this level are differences of distance between two objects during human

activities. For the first scenario the difference of distance between a person and a robot

using the Eq.3.3 is necessary. In the second one, we also need the distance between the

hands of the people involved.

3.3.3 Relationship modeling

As it was mentioned before, the works of Norman Badlers group [BPW93, ZB05] men-

tion five major components; Body, Effort, Space, Shape and Relationship. Each of

those components describes human motion in different aspects. Several papers were

published around these components, but there is no attempt to analyse human activi-

ties in the relationship component, which explains human body parts motion relations

to other parts of the body, another body or environmental parameters [RDA08].

In the Relationship component of LMA there are several parameters that categorize

different types of possible relations. As Hutchinson [Hut74] those mentioned parame-

ters are called; Addressing, Nearness, Contact or Touch, Support or Carry, Enclosing

or Surrounding, Toward and Away, and Facing. Each of those parameters can be in

three situations; Passing, Retention and canceling of the relationship.

In the mentioned application, to analyse a person’s simple movements and activities

(interact with a static object (see Fig. 3.6), such as; reaching, passing and spreading,

and a couple of persons activities such as; handshaking, following and pushing), some of

those parameters, which are more representative, are used to present the approach. The

approach allows us to generalize the system, however, for different activities, some of the

Relationship’s parameters are more sufficient. The performed relationship parameters

are described as follows [Hut74]:

� Toward and Away: A performer may gesture toward or away from a part of his

body, another person, an object, or a part of the place. For instance; Left hand

of a person moves toward another’s left shoulder, head moves down in a sitting

movement, and approaches or moves away from your partner.

� Passing, transient relationship: Each of the relationships, addressing, nearness,

touching, etc., may occur in passing, this is, the relationship may be established,
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momentarily sustained, and then relinquished. For instance; right hand passes

near the left hand, one person passes near a robot.

� Retention of a relationship: when a relationship retains for more than one mo-

ment, it usually depends on what comes next, and when no obvious cancellation

occurs, it is expected to remain. For instance; keeping the hands near each other,

the box is to be kept in the hands, the object is kept near the person.

� Contact, Touch: When a body part is active in producing a touch or contact

with another part, an object, or another person. For Instance; Hands touching

opposite elbows, Hand-shaking between a couple of people.

3.3.3.1 Relationship component modelling

Several properties for any human activities can be defined in Relationship concept.

As it was mentioned before and to simplify the system, some of those properties are

modeled for the performed activities, as following subsections.

3.3.3.1.1 passing and retention relationship: These properties can be used between

every two objects. In this model, the objects are the body parts. During each human

activity, there are different motion signals between body parts. For instance, in a

walking type movement, there is the same motion signal between opposite sides of

hands and feet in the same moment. To analyse those signals, characteristics of passing

and retention relationship are used between each body parts related to a reference point

like body centre ( if a body part is in the passing or retention relationship with the

body centre). If the frequency-based quantities, which are extracted for each body

parts movements, are more than a specific threshold, it means that there is a passing

status related to the body centre, thus, it states a passing relationship, otherwise it

states a retention one. Based on the training dataset, some thresholds are defined to

discretize the frequency-based quantities [KAQ+10]:

f i
pb =



No Max
{

f i
pb

}
5 20

Low 20 < Max
{

f i
pb

}
5 150

Medium 150 < Max
{

f i
pb

}
5 1000

High Max
{

f i
pb

}
> 1000



66 Chapter 3. Human behaviour analysis

where Max
{

f i
pb

}
denotes a frequency-based coefficient for a body part (pb) (Head,

hands and feet), in ith frequency sub-domain where

i =


1 1 5 f 5 10HZ

2 10 < f 5 20HZ

3 20 < f 5 30HZ

4 30 < f 5 40HZ

.

Hence, for each body part, one variable with a couple of states is defined as following:

Passpb ∈ {passing,retention} (3.4)

Fig. 3.7-(right-down) presents an example of the output of the Passpb model for

all body parts during a sequence of movements. That diagram shows the passing state

probabilities of human body parts during a specific movement.

3.3.3.1.2 Toward and Away relationship: They can be defined in two different spaces;

between body parts, and between a person and a robot or another person. By having

the Eq.3.3 for the two objects , Toward qualities can be estimated by discretizing of the

∆D using a couple of thresholds, which are obtained by observing several experimental

data set:

Toward =


N ∆D > 0.3m

S 0.3 > ∆D >=−0.3m

P ∆D <−0.3m

, (3.5)

where P, S and N denote Positive, Still and Negative qualities of Toward’s property,

respectively. These properties are used between head and feet as two body parts of one

person (∆Db), and a person and a robot, or between a couple of people as two objects

in a scene (∆De). Thus, there are two types of Toward’s variables with the three states.

We applied different thresholds on the model (0.1 to 1.0 m), and the mentioned one

provided the best result based on our collected data.

3.3.3.1.3 Contact or Touch relationship: Several activities will appear by contacting

two objects, for instance; handshaking, grasping a glass, pushing, kicking a ball, etc.

For modeling these variables, handshaking and pushing actions were selected. Contact
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qualities are estimated by using the Eq.3.3 for the two interested objects (e.g. two

hands for handshaking), and discretizing of the equation output, using one threshold,

which is obtained by observing the several experimental data sets:

Contactpb1−pb2 =

{
Connected ∆Dc 5 0.1m

Disconnected ∆Dc > 0.1m
(3.6)

where pb1 and pb2 denote hands of the two persons, and ∆Dc denotes the difference

distance in contact space. There are two possible states; Connected and Disconnected,

that discretized by a threshold 0.1 meter difference distance between two objects.

3.3.3.2 Human movement and activity model

By combining the Toward variable, which is defined between two body parts, and the

pass variable, the human movements (see Set.3.7) are analysed.

Movement ∈ {walking,running,sitting,rising, f alling,standing} (3.7)

By using the other variables between person, robot or another person, and the

Movement variables, the performed human activities are estimated. The activity states

are:

Activity ∈ {reaching,spreading, passing,handshaking, f ollowing, pushing,other}
(3.8)

Toward’s property between human and robot or another person, is the proper fea-

ture to analyse reaching and spreading activities. The passing activity can happen

when the Toward variable states Still’s state while a person is walking, but when both

persons are walking, then the following activity is happening. For the handshaking

action both persons are in a standing state and the Contact variable is in connected

state, In pushing action, however, there is connected state also, but one of the persons

will have a fall down movement in the end. There are more possibilities to define more

activities by having those movements and the environmental parameter states. For

modeling the idea, it was not supposed to implement a complex model, but to present

an approach which can be easily generalized. Fig. 3.8-a) presents the idea in a scene.
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There are three objects (two people and one robot) in the scene. As can be seen in the

figure, depending on the situation of each of them and between each couple of objects,

one specific activity can be estimated.

3.3.4 Modeling based on Bayesian framework

Bayesian approach is a popular and well known method to classify human motions and

activities [RA08, RDA08]. A Bayesian Network (BN) is a suitable method to deal with

variable dependencies and uncertain data, learning with a small bunch of data, and

fusing different types of features. HMM (as a DBN) is another popular approach, which

was used also for this kind of applications. HMM works when the defined scenarios

are based on a sequence of states. In this study, both approaches are implemented for

analysing human activities.

3.3.4.1 Bayesian network

In the model (see Fig. 3.8-b)), as it was mentioned before, there are both frequency

and spatial based features in parallel for different properties. Frequency-based features

for each body part (pb) are used for the Passing/retention relationship of the same

body part:

P
(

Passpb |∏i=1:4 Max
{

f i
pb

})
=

P
(

Passpb
)

∏i=1:4 P
(

Max
{

f i
pb

}
|Passpb

)
∏i=1:4 P

(
Max

{
f i
pb

}) (3.9)

The probability of Toward/Away relationship between body parts can be obtained

by:

P(Towardb | ∆Db) =
P(Towardb)P(∆Db | Towardb)

P(∆Db)
(3.10)

and the probability of similar property but between a person and an external object

(such as a robot or another person) can be achieved by:

P(Towarde | ∆De) =
P(Towarde)P(∆De | Towarde)

P(∆De)
(3.11)
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a)

b)

Figure 3.8: a) A scenario of mentioned system. b) The global Bayesian model for all
the process of analysis in four layers, and two different spaces (related or not related
to the environmental parameters)
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and for the Contact property:

P(Contact | ∆Dc) =
P(Contact)P(∆Dc |Contact)

P(∆Dc)
(3.12)

There are two other levels of analysis; one of them is movement’s level which is

not related to the environment parameters. The other one is activity level which

can be analysed by finding the connection between human movement and the scene

information. The free-context based movement model is defined as:

P
(

M | Towardb ∏pb=1:n Passpb

)
=

P(M)P(Towardb|M) ∏pb=1:n P
(

Passpb|M
)

P(Towardb)∏pb=1:n P
(

Passpb
)

(3.13)

In the activity level, there are not only each human movement probabilities, but

also the environmental parameters:

P(Act | TowardeContact MAMB) =
P(Act)P(Towarde|Act)P(Contact|Act)P(MA|Act)P(MB|Act)

P(Towarde)P(Contact)P(MA)P(MB)
(3.14)

where MA, MB and Act denote the movement state of person A and B, and activity,

respectively, and n denotes the number of body parts.

Fig. 3.8-b) presents the dependencies of all those different variables (LLFs, Re-

lationship’s component, movement, activity) in two different spaces (related and not

related to the environmental parameters) in one model. Fig. 3.9 presents the BP’s

correspondent of the proposed human action and interaction model.

Fig. 3.10 presents two examples of the model results in different steps. First

scenario is about pushing activity. Fig. 3.10-a) and Fig. 3.10-b) present both persons’

movements classifier results, and Fig. 3.10-c) shows their trajectories in the scene.

Fig. 3.10-d) presents the results of the activity classifier. Another scenario shows

handshaking activity. Fig. 3.10-e) presents a sequence of three images of the related

activity. Fig. 3.10-f) shows the model of the same scenario that was obtained by

the motion tracker suit, and Fig. 3.10-g),Fig. 3.10-h),Fig. 3.10-i) and Fig. 3.10-j)

present results movement classifier of person A and person B and the trajectories of



3.3. Context-based human behaviour analysis 71

P
ro

g
ra

m

.



D
es

cr
ip

ti
o
n



S
p

ec
ifi

ca
ti

o
n
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Figure 3.9: Bayesian Program for the human interaction model.
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both persons in the scene, and finally, activity results, respectively.

3.3.4.2 Hidden Markov model

HMM as a DBN is a common approach to estimate human activities based on sequence

states. In this work concurrent HMM was implemented, which is described more detail

in [KAM+11]. A concurrent HMM is composed of several HMMs (see Fig. 3.11-a),

and each one describing one class. The inputs of the model are all probabilities of both

persons movement classes, and the probabilities of the relationship parameters, which

are obtained by the performed BN in the Movement and Relationship layers. In every

sequence of data, the activity class, which has most probability of its corresponding

HMM, is the output of the model (see Fig. 3.11-b). This is performed by finding the

HMM Act that maximizes P(Act|Ot−n...Ot) where the Ot denotes observation data at

time t .

3.3.5 Experiments

To obtain the input data (3D position and acceleration of body parts such as hands,

feet, head, etc.) The body motion tracker (MVN suit) [KAQ+11] is used (Chapter 2).

The suit uses a global reference in the scene as a starting point which is known. Thus,

the distance between human body and other such as another person or a robot, during

the activities, can be calculated.

Several different human movements and activities are performed. One second win-

dow which shifts half a second, during each record is defined to feature extraction

process of all performed movements. Two series of data are achieved; 3D human body

parts positions related to the body centre, and the person’s 3D position related to a

global reference which the person is supposed to interact with, in the scene. A free

Bayesian toolbox provided by Kervin Murphy and Berkeley [MB05] is used to imple-

ment the BN model.

The BN estimates the high probability of the person movement and activity states in

each second. Table.3.3 presents the classification results in movement level, as inputs

of activity level of the model. This data is obtained from around 100 sequences of

human movements with different duration (first half of the data is used in learning and

others in classification process and then vice versa (the first half of data is used for the
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a) b)

c) d)

e)

f) i)

g) h)

j)

Figure 3.10: The diagrams present two samples; first is a pushing activity scenario,
the persons trajectories were shown in (c), and movements classification results in (a
and b) and activity in (d). Second scenario presents handshaking activity. e) shows
a sequence of three images to present a normal handshaking activity. f) presents an
example handshaking scenario which was obtained by the motion tracker suit. g) and
h) shows the movement classifier results of both persons. i) shows the trajectories and
j) shows the related activity classifier results.
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a)

b)

Figure 3.11: a) Structure of proposed HMM to classify human activity (Act) by having
several inputs; movements type of person A (MA) and person B (MB), and Relation-
ship parameters related to environment (Relationship) as the Towardeand the Contact
components, at time t and t−1. For each class of Act we have one HMM of that. b)
A diagram shows the log-likelihood of each class during the sequence of data. The
log-likelihood data is the output of the model. Thus, the class which has more log-
likelihood than the others will be the activity model estimation result.

classification process and the others for the learning).

To be able to have a comparison with the state-of-the-art, we attempt to find

the related works in 3D based analysis which is the main characteristic of the work,

however the experimental setup is not the same, and it’s not a quite fair compari-

son. In [HMNP11], 3D data-based classification results for different numbers of human

movements can be seen. The overall result for classification of six human movements

was maximum 89.58%. In this aspect our model provided better performance with

96.45% accuracy. in [TVC08] very accurate classification results (overall 98.78%) were

estimated, but their performed movements are quite different in spatial aspect. For

instance, there is no running movement in their movement classes which can be eas-

ily confused with walking movement for this kind of models. Probably that is the

reason that their walking movement class always estimated 100%. As can be seen

in [HMNP11], their less accurate results were around between walking and running

movements.
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Walk Run Sit Rise Fall Stand %

Walk 63 2 96.92
Run 1 72 2 96.00
Sit 46 2 95.83

Rise 34 1 97.14
Fall 1 1 26 92.85

Stand 155 100

Table 3.3: Human movement classification result

To make the multi-layer classifier results more visible, Fig. 3.12 and Fig. 3.13 show

probability diagrams of both classifiers of movement and activity in a sequence of steps.

In the first sample of Fig. 3.12 (first column), one person is in walking and another

in running movement state. These two persons will meet in the end and shake hands,

but in the 6th frame we see the pushing result activity, because of the person who was

in the running state in the previous step, that usually happens more in pushing than

handshaking activity in a normal scenario. In the second column, one person runs and

pushes the other. In Fig. 3.13 and in the first column presents a scenario which shows

a person who walks and passes near another person who is in standing state. Finally,

the second column shows two persons in the running state, but one of them is faster

than the other, thus, in the activity results show the person is going away from the

other one.

Table.3.4 presents the result of the model for human activities level using the BN

model. The result shows that our model for handshaking activity is not as accurate as

others. The reason is that the related features are not sufficient enough to distinguish

between handshaking and pushing activities.

To implement the HMM approach, an interface which was described in [KAM+11],

is used. The input data in this case consists of several sequences of the observations

which consist of both persons movement states and relationship parameters probabil-

ities. For each class, several sequences data for leaning and for classification process,

are collected.

Table.3.5 presents the result of the model for human activity level using the HMM

in the last layer. The result shows that the model is more reliable than the previous one,

with less false detections. It can be improved by using other relationship parameters

[Hut74]. The advantage of the HMM approach is using a sequence of observations,

which is relevant to the activity definition [Bob97]. The results also proved the Bobick’s
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a)

b)

c)

d)

e) —– ————-

Figure 3.12: Two sequences steps of changing the human activity states from two
human movements in a scene. a) and b) present the both human movements classifier
results, c) and d) show the activity classifier results in different schema, and e) presents
scenarios (Handshaking and Pushing) in different steps.
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a)

b)

c)

d)

e) —– ————-

Figure 3.13: Two sequences steps of changing the human activity states from two
human movements in a scene. a) and b) present the both human movements classifier
results, c) and d) show the activity classifier results in different schema, and e) presents
scenarios (Passing and following) in different steps.
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Rch Spd Pas Flw Hsk Psh Oth %

Rch 133 0 2 0 0 0 7 93.66
Spd 0 141 6 0 0 0 5 92.76
Pas 8 1 127 9 0 0 3 85.81
Flw 1 1 6 50 0 0 3 81.96
Hsk 3 0 0 0 53 11 1 77.94
Psh 0 2 0 0 3 68 3 89.47
Oth 1 1 4 1 1 2 211 95.48

Table 3.4: Human activity classification result using the BN which can be seen in Fig.
3.8-b)

Rch Spd Pas Flw Hsk Psh Oth %

Rch 45 0 1 0 1 1 0 93.75
Spd 0 45 1 0 0 2 0 93.75
Pas 3 0 43 0 1 1 0 89.58
Flw 0 0 0 45 0 1 0 97.83
Hsk 0 1 0 0 42 5 0 87.50
Psh 0 0 1 1 2 44 0 91.67
Oth 0 0 0 0 1 1 55 94.49

Table 3.5: Human activity classification result using the HMM as can be seen in Fig.
3.11

terminology.

A general discussion and comparison between the existing methods for human ac-

tivities understanding was presented in [Pop10]. In this work, we presented the two

most popular methods (BN and HMM) in the related area, to show their results in the

mentioned framework also. Each has its own advantages, for instance; however HMM

needs previous state knowledge, but it gives better results than the BN approach. We

believe that HMM shows better performance for complex activities.

By having the obtained information by the models, it is possible to analyse more

complex human activities, like rubbery (when the rubber performs first reaching and

then spreading activity in running movement state’s), fighting (reaching in running

or falling down movement’s states), etc. It means, these relationship parameters can

assist us to analyse even more complex human activities in different concepts and

applications.
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3.4 Improved semantic-based scene understanding

Human activity analysis can be categorized as context-free based and context based.

In context-free based approaches the model is independent of scene parameters, and

just relies on the features belonging to the person. However, in reality, context-based

features play a very important role in analysing human activities. For instance, when

a person is going to reach a chair, we will realize that the person is going to sit on the

chair, not to sleep in it.

As Delaitre et al, described in [DFL+12], since object detection is a widely studied

topic in computer vision, analysing the relation between human movements and the

existent objects around, can produce valuable information for human daily activities.

For instance, people have learned the (most probable) normal activities when the person

is reaching to a chair, thus, people have a probabilities set of activities depending on

the objects in the scene.

The question which level of human movement information might be useful, and

then how can a general framework be defined for analysing any possible human-object

interactions. For the mentioned aspect, the lowest level information such as body parts

motions and the higher ones such as human interactions can be useful. A complex

model is needed to deal with the mentioned different information. Thus, a hierarchical

framework is used to reduce the complexity of the model [AR11] and to provide multi-

level of human activity analysis [RD13b].

Probability distributions of the relationship between human motions and human-

object information, can be obtained by giving the possible activities and the interested

objects in the scene. LMA system, which consists of several components, is used to

define proper human motions (Effort, Shape) [KAQ+11, KAQ+10] and human-scene

relations (Relationship) [RD13a, Hut74] variables. Gupta et al. in [GKD09] tackled

the problem, based on the 2D images. Therefore, they were focused more on the com-

puter vision problems for the mentioned applications, and used human hand trajectory

information to analyse human-object interactions (reaching and manipulation). Their

mentioned Bayesian model cannot deal easily with the extension of the work for other

activities. Thus, we propose a hierarchical model to deal with the problem. To avoid

the limitation of the 2D-based analysis, the motion tracker suit (MVN) with several

inertial sensor attached on the different body parts, is used. The suit provides 3D

pose of human body parts with maximum 120 frames per second resolution. However,
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Category LMA Variable States Feature’s
Component Domain

Effort Time Sudden / Frequency
Body parts Sustained

motion Rising/
Shape Vertical Still/ Spatial

Sinking
Toward Toward/
(H-O1) Still/

Away
H-O Relationship Toward Toward/ Spatial

relationship (H-O2) Still/
Away

Contact Connected/
(H-O1) Disconnected

Table 3.6: Different LMA components in a couple of categories which are defined for
human interaction analysis. H-O1 denotes Human-Object1. In the experiment, O2 is
used as another person, and O1 as a chair.

there are several works using 3D-based human movement analysis with high accuracy

[MS10, CGV+11], and also in 3D virtual applications [ENVRZ09], but only focused

on simple human movements classification.

3.4.1 Hierarchy-based human activity analysis

Table.3.6 presents the defined LMA parameters based on the three components (Effort,

Shape and Relationship) for this study.

Based on the mentioned features, various human-object interactions can be anal-

ysed. For this study, depending on the interested objects, a set of interactions is defined.

Sitting and standing up actions for human-chair interaction, pushing and handshaking

actions for human-human interaction purpose, and reaching and spreading in general

are defined. Table.3.7 shows the defined classes for both movement and interaction

variables.

3.4.2 Bayesian network modeling

As it was explained before, BN is a well-known approach to model an hierarchical-based

analysis [RD13a], because of its flexibility and capability of fusing different types of
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Variable Classes

Movement Walking, Running, Falling down,
Sitting, Rising, Standing

Interaction Reaching, Spreading, Sitting on the chair,
Standing up, Handshaking, Pushing, Other

Table 3.7: Human movement and interaction classes. Other means any activities which
are not belong to the defined classes.

features, and deal with uncertainty, decision making problem and prediction process.

The Bayesian graphical model for the mentioned system can be seen in Fig. 3.14, which

presents the dependencies between the different levels of information.

In each level of the BN, the probability of defined variables are modeled by Bayesian

rule formulation. In the highest level, we intend to estimate the probability of each

human interaction state, given the movement states probabilities of both person a and

person o1, and the relation between person a and the two defined objects (o1 which

is other person and o2 which is a chair). Thus the Eq. 3.15 presents the mentioned

Bayesian rule, which can see the dependencies.

P(Ia|Ma,Mo1,Ra−o1,Ra−o2) =

P(Ia)P(Ma|Ia)P(Mo1|Ia)P(Ra−o1|Ia)P(Ra−o2|Ia)
P(Ma)P(Mo1)P(Ra−o1)P(Ra−o2)

(3.15)

where, Ia,Ma and Ra−o1 denote person a’s Interaction, Movement and Relationship

with respect to object o1, variables respectively.P(Ma|Ia) denotes the estimation of

Movement’s states of person a probabilities given probability of its Ia states.

In the Eq. 3.15 the variables which are located in lower levels, need to be solved.

For instance; Equation 3.16 which proposed in [KAQ+11], was used to model human

movement.

P
(

Ma|E
bp
a Sv

a
)

=
P(Ma)P

(
Ebp

a |Ma
)

P(Sv
a|Ma)

P
(

Ebp
a
)

P(Sv
a)

(3.16)

where Ebp
a and Sv

a denote Effort component of LMA for bp’s body part of per-

son a, and Shape component of LMA for person a in vertical plane, respectively.
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Figure 3.14: A hierarchical framework for scene understanding. LLF’s level contains

frequency-based features (Max
{

f bp
}

) and spatial-based ones (∆Db for body parts mo-

tion’s category and ∆De for human-object relationship). LMA’s Level contains Effort
and Shape components of the people and Relationship component. In the Movement
level, we have Ma and Mb which denote movement classes belong to person a and
b given their related Effort and Shape components, respectively. Finally Interaction
variable are estimated given both person a and b movement classes and the existent
Relationship states.

bp is the index of body parts which are used (hands, feet and head). P
(

Ebp
a
)

,

P(Sv
a)and P

(
Ra−o1

)
denote probability of Effort, Shape and Relationship components

of LMA, respectively. The mentioned LMA components probabilities are estimated by

[KAQ+11, RD13a], given frequency and spatial based features.

3.4.3 Learning process

To obtain conditional probability of each variable in different levels of analysis, learning

process is needed. Maximum likelihood is a well-known approach in the learning pro-

cess. For each class of movement, several data by the motion tracker suit was collected.

The interested features were extracted for different body parts (feet, hands and head).

To obtain the conditional probability for a variable in each level, histogram-based ap-

proach is used. Fig. 3.15, presents a sample of the obtained histogram of the frequency
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Figure 3.15: Histogram of the frequency-based features of a specific body part for
different movements in different frequency sub-domains [RD13a].

content in different sub-domains for different types of human movements [RD13a].

Then, after applying the learning process in the all levels, we obtain the P
(
∆De | Ro1−o2

)
to estimate Eq. 3.11, P

(
Ebp

a |Ma
)

and P(Sv
a|Ma) to estimate Eq. 3.16, and P(Ma|Ia),

P(Mo1|Ia), P
(
Ra−o1|Ia

)
and P

(
Ra−o2|Ia

)
to estimate Eq. 3.15.

3.4.4 Experiments

The motion tracker gives body parts positions depending on a global reference which

is obtained in the sensors calibration step. Based on that global reference the other

interesting objects positions in the scene, are estimated (see Fig. 3.16). For the feature

extraction step the sliding window approach is performed. The length of window has

been defined in duration of one second, that the window shifts by half of the window’s

length. The frame rate of the system is 120 Hz. Ten different sequences (each sequence

contains more than 1000 frames) are collected for each type of human movements,

which performed inside of the different defined actions and interactions.
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Figure 3.16: The scene with a sample of people activities, provided by the motion

tracker suit (MVN®)

Table 3.8 presents the classification results of two window-slide sequences. As can be

seen, different levels of information were presented semantically and probabilistically.

The overall results can be seen on the Table 3.9. The obtained results prove that

the context-based knowledge improves the accuracy of the model (from 92.22% to

96.80%) by reducing the false detections which were presented on the previous section

[RD13a]. As can be seen, between human-chair interactions and human-human ones

there is no false detection, however, there are still some false detections between those

similar context-based activities and especially between most of the classes with the

Other’s class. Most of those false detections happen in the boundary of between two

classes, because of the use of sliding window-based segmentation approach. When a

slide window occurs in the boundary, the new class of activity will be considered in the

ground truth, though the window slide which had more signal belongs to the previous

one.
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Frame Level States with their probability
180

LMA.Effort.Time-Head Sudden:45%, Sustained:55%
LMA.Effort.Time-LFoot Sudden:63%, Sustained:37%
LMA.Effort.Time-RFoot Sudden:61%, Sustained:39%
LMA.Effort.Time-RHand Sudden:55%, Sustained:45%
LMA.Effort.Time-LHand Sudden:55%, Sustained:45%

LMA.Shape.Vertical Sinking:15%,Still:75%,Rising:10%
LMA.Relationship.T/A H-O1 Toward:21%, Away:79%
LMA.Relationship.T/A H-O2 Toward:68%, Away:32%

LMA.Relationship.Contact H-O1 Connected:8%, Disconnected:92%
Movement Walking:45%, Standing:12%, Running:22%,

Sitting:8%,Rising:7%,Falling:6%
Reaching:48%, Spreading:6%,

Action and Interaction Sitting on the chair:14%Standing up:10%,
Handshaking:4%,Pushing:6%,other:12%

240
LMA.Effort.Time-Head Sudden:35%, Sustained:65%
LMA.Effort.Time-LFoot Sudden:29%, Sustained:71%
LMA.Effort.Time-RFoot Sudden:25%, Sustained:75%
LMA.Effort.Time-RHand Sudden:54%, Sustained:46%
LMA.Effort.Time-LHand Sudden:25%, Sustained:75%

LMA.Shape.Vertical Sinking:25%,Still:60%,Rising:15%
LMA.Relationship.T/A H-O1 Toward:45%, Away:55%
LMA.Relationship.T/A H-O2 Toward:55%, Away:45%

LMA.Relationship.Contact H-O1 Connected:87%, Disconnected:13%
Movement Walking:16%, Standing:40%, Running:10%,

Sitting:8%,Rising:16%,Falling:10%
Reaching:8%, Spreading:10%,

Action and Interaction Sitting on the chair:10%,Standing up:6%,
Handshaking:37%,Pushing:17%,other:12%

Table 3.8: A table with different levels of body-motion based information belong to
a person who walks to reach another person and do handshaking (in a couple of se-
quences). The frame number shows the last frame number of the sliding-window (The
first and second step contains the frames [60-180] and [120-240], respectively ).

Reach Spread Sit Stand Hand-shak Push Other

Reach 97,78% 1,22% 0,00% 0,00% 0,00% 0,00% 2,22%
Spread 0,00% 95,74% 0,00% 0,00% 0,00% 0,00% 4,26%

Sit 0,00% 0,00% 96,67% 0,00% 0,00% 0,00% 3,33%
Stand 0,00% 0,00% 2,70% 97,30% 0,00% 0,00% 0,00%

Hand-shak 0,00% 0,00% 0,00% 0,00% 97,83% 2,17% 0,00%
Push 0,00% 0,00% 0,00% 0,00% 2,27% 97,73% 0,00%
Other 1,09% 2,17% 1,09% 1,09% 0,00% 0,00% 94,57%

Table 3.9: Classification results
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3.5 Conclusion

In this chapter, to deal with different levels of human movement analysis, a semantic-

based hierarchical framework is proposed. LMA parameters are used to provide a

standard description on body motion analysis level, which we call LMA level. There

are three components in the LMA level, Effort (deal with temporal domain), Shape

(deal with spatial domain) and Relationship (deal with the context-based information),

which are formulated in this study. Bayesian-based approaches are used to model

the multi-layer framework. This study is divided in three steps; individual human

movement analysis, context-based human behaviour analysis, and semantic-based scene

understanding. Output of the first step is used for the other ones output. In the second

step, we attempted to formulate Relationship component to analyse different types of

human actions and interactions. In the end, the semantic and context-based knowledge

with respect to the Relationship component is used for modelling process to improve the

accuracy of estimations. In the output of the model, a probabilistic-based descriptor

for human activities is presented in the different levels. Based on the results, it is

proved that the context of a scene, where the humans interact, can highly avoid the

possible false detections, however, there are still a few drawbacks which happen in the

boundaries of two classes of activities.



Chapter 4

Enhanced human movement segmentation

4.1 Introduction

Action recognition is an active research topic within the scientific community, with

several applications, which include human-machine interfaces, intelligent video surveil-

lance, video indexing and analysis, to name just a few. The action segmentation

problem is a key issue in action recognition and may be divided in two stages: (1)

Learning and (2) Classification. The learning stage often involves a data preprocess-

ing step to find alternative, discriminant representations for different properties of the

input signal. In this work, we consider a data driven probabilistic representation for

the action model, which is learned from a set of training data. This action model is

posteriorly used to identify to which action class each observable feature belongs.

A popular applied method in this problem is the sliding window approach. The

window is used to progress sequentially through the input signal, creating data seg-

ments from which features are extracted. This method is popular because of its direct

integration with the majority of classification algorithms. However, fixed parameter

values are a significant cause of classifier under-performance: slow convergence and/or

borderline decisions. Choosing the ideal parameter values is not a trivial task and

an optimal selection may differ for different performers and/or actions. Thus in this

study, which is a joint work with Luis Santos, we present a dynamically adaptive slid-

ing window, where classification entropy is used to adjust the window length and time

shift parameters at every step. Fig.4.1 presents that all levels of the proposed human

behaviour analysis framework can be related to this chapter.

87
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Figure 4.1: Human behaviour analysis in different levels with respect to this chapter
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4.1.1 Action segmentation issues

A human action instance differs from person to person. Factors like rigidly defined

performance instructions, mobility restrictions introduced by the experimental set-up,

cultural or anatomical characteristics are known to introduce variability. The major-

ity of action models usually rely on a set of assumptions, which somehow jeopardize

generalization and present classification challenges. In our work, we are addressing the

following problems:

� Frameworks can present high classification accuracy and the majority of the

correct decisions are of low confidence. This fact is specially true as the number

of different actions grows.

� The time it takes for a model to make a decision is highly dependent on the gen-

erated features, whereas decision anticipation is of great interest for an accurate

temporal segmentation.

Approaches within action segmentation somehow try to address these factors. In this

research, we are focused on extending our previous work using a fixed length sliding

window approach [RSAD12a, LS09], improving our segmentation solution to cope with

the variability issue. A survey on action segmentation [WRB11] identifies other works

which also use fixed length sliding windows [ZMI01, ZSV04, FC05, KSH05, KSH07],

where some are augmented with multiple concurrent classifiers using windows of differ-

ent lengths at the expense of increasing computational cost. Sliding windows can also

be integrated with Dynamic Time Warping [DP93, ML98], or Grammars [BI98, WB99].

Approaches which allow adjusting the sliding window parameters for action segmenta-

tion are seldom explored [LOB11].

4.1.2 Other related works on action segmentation

A recent survey by Weinland et al. [WRB11], has identified three major action segmen-

tation categories: Sliding Window , Boundary detection and Grammar Concatenation.

The already reviewed Sliding windows are used to divide a motion sequence into mul-

tiple overlapping segments, which are bounded by the window limits. The information

within the window, may or may not be processed for alternative representations. Each

candidate segment (or equivalent representation) is then used for sequential classifica-

tion. The success of this approach strongly depends on the discriminant abilities of the
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generated representations. As mentioned this technique is easily integrated with the

majority of static and dynamic classifiers. The major drawbacks of this technique are

computational burden, and the need of multiple window sizes to overcome the variabil-

ity problem. Boundary detection methods generally identify discontinuities or local

extrema in observed motion signals. The boundaries usually define an implicit basic

action taxonomy, without however depending on specific class definitions. A branch

of works identify boundary at the cost of the dynamics of the observed signal, such

as [VKD08, LLF00]. Others depend on geometric property changes observed through

techniques like Principal Component Analysis [BSP+04] or piecewise arc fitting mod-

els [AM09, BN10]. A related research addresses the segmentation problem from the

subspace separation perspective, exploring the so called Agglomerative Lossy Compres-

sion [RTVM10]. In [RA00], the authors apply Singular Value Decomposition (SVD)

to a long sequence of optical flow images in order to detect trajectories discontinuities

within SVD component trajectories. Ogale et al. [OKGfA04] also explore optical flow

of body silhouettes, performing segmentation by detecting minima and maxima values

of the absolute value sequence. A method using features from visual hulls is developed

in [WRB06]. This category of approaches is very sensitive to noise and other related

errors (e.g. camera perspectives). Additionally, it allows generic segmentation, but is

not particularly suitable for labelling purposes. The focus is on boundary identification

rather than interpretation of intermediate data. Lastly, Weinland et al. [WRB11] iden-

tify Grammars as another category. The common approach is to model state transitions

between actions, where Hidden Markov Models (HMM) are a popular approach. Multi-

ple methods can be used to generate features. Some examples are curvature scale space

and centroid distance function [Bea06], joint angles alone [LN06, PVW07], or together

with velocity profiles [KI95], dynamic system representations [PR00, THB00, Kah03]

and geometrical property encoding [OSK02]. These are applied to segment and la-

bel action sequences, at the expense of computing a minimum-cost path through the

model using techniques like Viterbi path, Conditional Random Fields or Markov Mod-

els. However, these methods rely on the comprehensiveness of state grammars, which

may jeopardize the model effectiveness and the generalization purpose, if large amount

of training data is not available.
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4.1.3 Definitions and problem statement

We define motion instance as human corporal activity, which is composed by a sequence

of different basic actions. Let motion instance Ω be a sequence of 3-D Cartesian

coordinates defining a discrete trajectory of random duration T , for a body part such

that:

Ω =


Y1
...

YT

 ,Y ∈ R3 and T ∈ N (4.1)

In the processing stage, Ω is divided into multiple, overlapping segments δ, generated

upon using a sliding window of length ωt samples and each δ is separated in time by

a time shift ∆t , such that:

δt ⊂Ω : δt =


Yt−ωt

...

Yt

 ,ωt < T (4.2)

To avoid using the raw segment data, each δt is transformed into a representative

feature vector V , of lower dimension, for which a transformation function exists, such

that δ 7→V : { f1, · · · , fi} ∈V = g(δ). Our framework uses two different variable classes

for analysing motion instances. One corresponds to a set of motion descriptors defined

upon Laban Movement Analysis [KAQ+10], which is referred to as cn ∈ C . The other

emerges a combination of variables cn, and defines the action space Λ = {α1, · · · ,αa}
Consider a sequence of N action segments α, where each αN is a non-overlapping

sub-set of Ω. A single label cn is assigned to each segment α j during a supervised

learning approach. The challenge is devising an association process to learn the action

model, envisioning its generalization capabilities. The model is posteriorly used in a

classification process, from which the temporal segmentation of Ω is derived.

α j =

[
Y
...

]
cn←−− C ,α j ∈Ω (4.3)

Consider a new action α, for which applying a sliding window approach generates

multiple segments δ. Most misclassified samples have their errors emerging from the

incorrect selection of the fixed window parameters. Therefore, we hypothesize that

adapting these parameters at each step will improve classification, thus coping with the
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variability of different performances for the same action. In fact, rather than selecting

a method to optimize the fixed window parameters, the challenge is to formulate a

model, which iteratively readjusts the length and the time shift based on entropy

feedback and knowledge of previous parameter definition. Table 4.1 summarizes the

relevant variables, which are used throughout this study.

Problem - Given an activity sequence Ω, find the current window length ω that best

fits the current segment δ, minimizes the classification entropy h over cn ∈ C .

wt+1 = f (ht ,wt)⇒ min(ht) (4.4)

Additionally, when uncertainty is high (e.g. on class transition), adjust the time step

so the classifier can adapt to changes without diverging to misclassified samples.

∆t+1 = f (ht ,wt ,∆t)⇒ min(ht) and ↓ errors (4.5)

Consider sequences to be subject to noise and instance variability for the same actions

performed at different instants of time.

Ω
′ = Ω + η (4.6)

where η is a source of additive white noise.

4.1.4 Our approach

In our work, we are addressing temporal action segmentation of body part trajectories

generated upon random human activity performances, as an extended solution to our

fixed sliding window classifiers in action recognition [RSAD12a, LS09]. To acquire

3-D trajectories from different body parts, we are using a Motion capture (Mo-Cap)

device, which is synchronized with a video sequence I of activity performances. Feature

vectors are computed upon application of a Discrete Fast Fourier Transform (DFFT)

Table 4.1: Summary of relevant variables.
Variable Set Space

f V Low-level Features
cn C Laban Descriptors
α Λ Action
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to the acceleration signals generated from the acquired body part trajectories. This

feature approach has been previously applied with success in human motion analysis

problems [RSAD12b]. To learn the action model, we apply a mixture model based

approach, a popular methodology in action segmentation and recognition, for which

we have past experience [RSAD12a, LS09]. The sliding window approach requires the

learning process to be supervised, as it plays a crucial role for the success or failure

of the model [WRB11]. The learned conditional models are integrated in a Dynamic

Bayesian Network classifier, which using Bayesian inference, is used to segment an

activity sequence using a maximum likelihood approach.

In our experimental set-up, two different parameters are adapted, both indepen-

dently and simultaneously. One strategy adapts the window length ω and is referred

to, using the acronyms Adapt-ω (ωmin,ωmax) or Fix-ω, considering whether we are

using the adaptive or fixed approach respectively. The other is concerning the time

shift ∆t . The acronyms for this approach are Adapt-∆ or Fix-∆ for adaptive and fixed

strategies. Acronyms are then combined, so to allow identifying the applied strate-

gies. Our proposed adaptive sliding window methodology (illustrated in Figure 4.2),

is presented as an improvement to classic fixed sliding window classification methods

which:

� shows increased classification confidence;

� increases the classifier speed therefore anticipating the decision;

� dynamically adapts to different sources of performance variability.

Figure 4.3 encompasses the proposed concept illustration, of the adaptive parameter

based on entropy feedback and knowledge of previous parameters.

Action 
Class 

),( 11  tt

Feature Generation 
g() 

),( tt  Entropy 
Feedback Model 

Sliding window 
(,t) 

Hierarchical 
Classifier 

 

))((),( 1 ntt cPfhh 

Activity 
Trajectory 

 )( P

),|( ncP 

Figure 4.2: Simplified Block Diagram over-viewing our proposed approach.
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Fig.1.1 in the first chapter, presents the related levels of proposed human behaviour

analysis framework in this chapter.
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4.2 Learning the action model

In this section, the trajectory feature generation process is presented and also how

different window size values influence the resulting probability distributions, upon ap-

plication of the learning strategy.

4.2.1 Preprocessing

Our work emerges as an improved classification strategy to our previously developed

research in action recognition, where features are represented in the frequency domain.

An acceleration time series is computed from the Cartesian trajectories. Then, the

Discrete Fast Fourier Transform (DFFT) and signal Power Spectrum (PS) are applied.

Let the segment δ be bounded by a sliding window of length l, such that:

δ =


Y1
...

Yl

 ,Y ∈ R3 (4.7)

Given the segment trajectory δ we compute acceleration at = ∆v
∆t , where vt = ∆Y

∆t . The

generated acceleration sequence a(t) = a1, ...,at will be decomposed using DFFT algo-

rithm, generating the list of coefficients x of a finite combination of complex sinusoids,

ordered by their frequency.

a(t) =
l−1
∑

n=0
xne
−i2πkn

l (4.8)

We can then calculate the PS of the acceleration signal, knowing that a(t) is a finite

energy signal, as:

Φ(ω) =

∣∣∣∣∣ 1√
2π

−∞

∑
∞

a(t)eiωt
∣∣∣∣∣
2

(4.9)

The continuous approach can be generalized to discrete, for which are able to compute

the energy spectral density. Feature variables are generated upon dividing the PS

coefficient value ranges into four distinct classes as depicted in (4.10).

V = {no, low,medium,high} (4.10)

Further details on the presented feature generation process can be found in [RSAD12a,

KAQ+10].
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4.2.2 Learning

The learning method follows a Mixture Model approach, in which feature vectors are

clustered according to a class cn they belong, through supervised learning methodol-

ogy (which has been conducted offline). The mixture obeys the following Gaussian

decomposition:

P(V |C ) =
n
∑
i=1

φi g(ci|µi,σi) (4.11)

where class ci is represented by an average vector µi and a covariance matrix σi. To

evaluate the action model, we assess class variance which is an indicator of disper-

sion, and separability criteria for measuring inter-class distances. Variance σi appears

directly from the formulation of equation (4.11). A popular measure is the Fisher’s

Discriminant (FD) [Fis36], which is applied to measure the separability between two

classes. Rao [Rao48] generalized the FD to more than two classes, an extended for-

mulation to find the subspace containing all class variability. First we define the class

scatter as:

Sc =
1
ni

n
∑
i=1

(xi−µc)(xi−µc)T (4.12)

where ni is the number of samples for a given class i. From the class scatter, we can

compute the within class scatter SW =
ni
n ∑

c
i=1 Si, with n the total number of samples.

Considering the Gaussian Mixture Model defined in (4.11), the between class variability

can be defined for each class as:

SB =
c
∑
i=1

ni
n

(µi−µ)(µi−µ)T (4.13)

where µ is the mean of class means and ni the samples for class i. The class separability

will be given by

J =
det(V T SBV )

det(V T SWV )
(4.14)

Vector V is computed by solving the eigenvalue problem SBV = λSWV , where V is the

eigenvector corresponding to the largest eigenvalue.

4.2.3 Experimental learning results

We now demonstrate how different lengths have direct impact in the supervised learning

process. The presented results aim to show that selected values for length ω have con-
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Figure 4.4: Class clusters for 4 different actions: standing, walking, running and falling.
The images represent clusters computed upon a fixed window approach of: 0.75 seconds;
1.00 seconds; 1.25 seconds.
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sequences which are reflected in the action model, both visually and through adequate

metrics. This impact naturally propagates to the classification algorithm, and thus, in

the entropy. The class clusters for the 2 dimensions of the feature vector are presented

in Figure 4.4 using three different fixed window sizes. When using ω = 0.75 seconds,

we observe an overlap between class pairs standing-walking and running-falling. In the

1 second case, class running is completely inside falling, whereas with l = 1.25 seconds,

there are multiple overlapping regions. Let us recall that the DFFT is being applied to

the acceleration signal, therefore falling and running fall in the high acceleration sig-

nals while standing is mostly a static activity and walking is situated in between. Most

importantly, we can visually verify that changes in the length of the window size, are

reflected in the class learning process. We extend our analysis using the quantitative

metrics presented in Table 4.2. Variables Si represent scatter measures for each class.

SB refers to interclass average covariance, which can be interpreted as a dispersion

measure, since it reflects the weighted distance from the class centres to their average

value. The bigger the value of J, the better defined and separated are the learned

Table 4.2: Generalized linear discriminant analysis coefficients for the cases presented
in Figure 4.4

Window size (ω)
0.75 s 1.00 s 1.25 s

S
ca

tt
er

V
al

u
es

S1 [sx,sy] [1187,2657] [904,1493] [1859,3632]
S2 [sx,sy] [2273,1671] [533,572] [5731,4138]
S3 [sx,sy] [443,114] [245,93] [465,202]
S4 [sx,sy] [1185,643] [609,548] [794,148]

J 1.191 29.594 12.279

class distributions. It is visible that, small changes on ω have high impact on class

dispersion.

Table 4.3: Summary of implicit signal rules. N/R = Not relevant.

dH h dW w d2H h ŵ
+ Worst + Increasing N/R N/R (-) Shrink
0 Stable + Increasing + Increasing Tendency (-) Smaller Shrinkage
0 Stable + Increasing - Decreasing Tendency (+) Smaller Growth
- Good + Increasing N/R N/R (+) Growth
+ Worst - Decreasing N/R N/R (+) Growth
0 Stable - Decreasing + Increasing Tendency (+) Smaller Growth
0 Stable - Decreasing - Decreasing Tendency (-) Smaller Shrinkage
- Good - Decreasing N/R N/R (-) Shrinkage
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4.3 Action classification

Our framework aims to segment actions in different abstraction symbolic levels, by

means of a Bayesian classifier. Those levels are:

� Laban Movement Analysis: a set of activity invariant descriptors based on the

LMA’s component Relationship.

� Action: a variable whose states represent different movements as a combination

of Laban variables.

The input signal in our experimental set-up are 3-D Cartesian trajectories of body

parts and stationary object positions, acquired using a Motion Capture device, the

inertial measuring unit based MVN suit from XSENS and Polhemus Liberty magnetic

tracker. The generated spatial and frequency-based features are used as evidence in

a Bayesian classifier model towards action segmentation. We have used our public

domain database.

4.3.1 Action classification model

The action model is a hierarchical framework, in which inference occurs sequentially.

To learn the model two strategies are assumed. To associate Laban variables to the

frequency based features, we use Gaussian distributions. While learning the action

model, a statistical approach is applied, where occurrences of cn are accounted and

normalized, into generating histogram probabilistic distributions. The first layer of the

action model is parametrized as:

P(laban|V ) = P(laban)
∏

i
q=1 P(Vq|laban)

∏
i
q=1 P(Vq)

(4.15)

We will be focusing our attention at this level, because it is where the window param-

eters will have most impact. In fact, the Laban model is learned based on the data

bounded by the window. The entropy used to feedback the window’s parameters is

computed from the output P(laban|V ). The action variable states are inferred as a
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combination of previously estimated laban variables. An action is inferred based on:

P(action|laban) = P(action)
∏

n
q=1 P(labanq|action)

∏
n
q=1 P(labanq)

(4.16)

The estimation occurs using Bayesian inference algorithms, where a Maximum A Pos-

teriori (MAP) approach is applied, which is done using numerical approach, given that

our formulation poses a closed-form solution. The most probable state for a variable θ

upon knowledge from observations x is given by:

Θ̂(x) = argΘmaxP(θ)P(x|θ) (4.17)

The variable states for each abstraction level which present the maximum probability

value, are selected as the ones describing the corresponding segment δ, thus segmenting

a sequence Ω.

4.3.2 Adaptive sliding window

Since human movements occur variably temporally and spatially, the classification

inference algorithms which apply fixed parameter sliding windows have difficulty in

selecting optimal parameters. Actually, an optimal segmentation of human movements

in different situations by fixed sliding approaches might not be obtained. Thus, to solve

the mentioned classic sliding window approaches drawback, we propose an adaptive

method, which continuously adjusts the window parameters, is proposed. In this study,

as it was mentioned, we explore the effects of a couple of important parameters of

the sliding window approaches; window size and time shift, in the proposed adaptive

approach.

Consider that for a distribution p = {x1, · · · ,xn}, the entropy can be estimated by

h =−
n
∑

i=1
P(xi)logP(xi). Bear in mind, entropy is a normalized value, h ∈ [0,1].

4.3.2.1 Window Size

Table 4.3 explains the proposed adaptive window size approach. To represent the idea

more clearly, we assume the different cases as following (ht , wtdenote Entropy value

and Window size at time t, respectively.);
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� The entropy value is decreasing; ht−1 > ht , it means the model has become less

uncertain at time t, which was obtained from previous window sizes wt−1. Then

the scale direction which is obtained from the first order backward difference,

does not need to be changed, and the window size follows the same direction.

� The entropy value is increasing; ht−1 < ht , it means the model has become less

certain at time t, which was obtained from previous window sizes wt−1. Then the

scale direction which is obtained from the first order backward difference, needs

to be changed, and the window size needs to follow in the opposite direction.

� The first backward difference is zero, then the first order backward difference is

replaced by its second order, which represents the direction tendency. Equivalent

to analysing the second derivative for a continuous time series, we assume that

upwards concavity represents a tendency to increase and vice-versa. However the

scaling factor needs to be constrained, depending on using the first and second

order difference.

Formulation

The basic definition for adapting window length can be defined as; wt = (1 + α)wt−1,

and the variable α = [amin,amax] a scaling factor such that:

wmin ≤ wt ≤ wmax (4.18)

where wd , wmin and wmax denotes default, minimum and maximum window size, re-

spectively. The scaling direction according to the aforementioned rationale , is formu-

lated mathematically as −dH
dt

dW
dt , where the dH

dt and dW
dt denote first order difference

of entropy and window size (H and W denote Entropy and Window size in a time series,

respectively.). Where dH
dt = 0, this argument is replaced by the second order backward

difference d2H
dt2

.

However, the second order difference is considered a weak indicator. Therefore, we

propose a couple of constraints ( a, b) that provides the impact of dH
dt more than d2H

dt2
,

in the model. Thus, we obtain:

− dW
dt

(
a∗ dH

dt
+ b∗ d2H

dt2

)
(4.19)
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Figure 4.5: Envelope function for the growth percentage. When x→∞ then y→ 100%

Another specific case, which should be considered, is where dW
dt = 0, in which the

result of equation 4.19 leads to zero. The solution is making scaling direction converge

to the default window size, Then:

(wd−w)

∣∣∣∣∣a∗ dH
dt

+ b∗ d2H
dt2

∣∣∣∣∣ (4.20)

Then with respect to the derivation of window size, the scaling direction ~a can then be

summarized as:

~α =


−dW

dt

(
a∗ dH

dt + b∗ d2H
dt2

)
, dW

dt 6= 0

(wd−w)

∣∣∣∣a∗ dH
dt + b∗ d2H

dt2

∣∣∣∣ , dW
dt = 0

(4.21)

The obtained scalling factor answers that how much should the window grow or shrink

needs to be address (wt = (1 + α)wt−1). This factor should be proportional to the

margins between the current and maximum/minimum values for window size (wmax and

wmin). In addition, the selected function should be symmetric to the origin, meaning

that the factor α should share the same signal as ~α. Thus, equation 4.22 was proposed:

α =

√
(1 + 4~α2)−1

2~αk
(4.22)

where k is an inverse proportional factor which may limit growth (default k = 1). Figure

4.5 illustrates equation 4.22 for a clearer visualization.
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Approach Description

Adapt1-∆ During movement transition, apply short time shifts
Adapt2-∆ During movement transition, apply long time shifts
Adapt3-∆ The movement transition dedicated by first entropy deviation

Table 4.4: Time shift approaches

To avoid scaling the window size beyond the defined limits in the equation (4.18),

the following formulation is proposed:

wt =

wt−1 + α|wmax−wt−1| i f ~α > 0

wt−1 + α|wmin−wt−1| i f ~α < 0
(4.23)

which means that we are growing only a percentage of what is left within the window

limits, assuring the window will never grow beyond them.

4.3.2.2 Time Shift

The other relevant parameter in sliding window approaches, is time shift, which con-

cerns about segment overlap and the time between each classification. Selecting an

appropriate value might present itself as an easier task than with the size parameter.

However, as previously stated, we hypothesize that adjusting the time shift can opti-

mize the segmentation process, speeding up the classifier and reducing the redundancy

and adjusting segment overlap accordingly. Let us consider the time shift ∆ limits

as
f
n︸︷︷︸

∆min

< ∆ <
(n−1)∗ f

n︸ ︷︷ ︸
∆max

, which f denotes the acquisition frequency and n denotes a

constaint.

During the exploration of different strategies to adapt time shif based on the values

of the entropy, three different approaches are selected, which are summarized in Table

4.4, and introduced as following:

1. When entropy is high, we want to apply short time shifts. This approach aims

at an exhaustive exploration of the data, by augmenting the number of analysed

samples per second. Although we recognize that increasing the number of samples

in degenerate data samples will naturally increase the number of miss-classified

samples, we expect true positive results to be in greater number, resulting in a

better overall accuracy ratio. The proposed formulation for this first approach
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(Adapt1-∆), is as follows:

4t+1 =
wt − (ht ∗wt)

f
(4.24)

where f stands for sampling frequency, ht the entropy at instant t and wt the

current window size measured in samples.

2. During action class state transitions, entropy values tend to be higher. In this

case, we hypothesize that forwarding the window to a time period where the new

action is already well defined can reduce the number of false positive results.

Hence, we want to extend the time shift to its maximum value, thus yielding a

minimum successive window overlap. Therefore, we propose the following formu-

lation, which reflects our idea (Adapt2-∆):

∆t+1 =
wt − ((1−ht)∗wt)

f
(4.25)

3. Another approach to detect class state transitions is proposed by addressing

entropy when it becomes a volatile signal, i.e. it experiences big differences

in consecutive computed values, which is reflected in its first derivative, as is

illustrated in Figure 4.7. It means the high deviation in entropy signal is a good

indicator for action transitions. In the low deviation entropy value the second

approach was used. Thus equation (4.25), integrating the first order backward

difference for the entropy signal, is proposed as:

∆t+1 =


wt−((1−5H)∗wt)

f , 5H ≥ thr
wt−((1−ht)∗wt)

f , 5H < thr
(4.26)

where 5H = ht−ht−1 corresponds to the first order backward difference, and thr

to a pre-defined numerical threshold.

4.3.3 Classification results

To evaluate the effects of the two mentioned parameters (Window size and time shift),

with respect to the proposed approaches, the classification results of different combi-

nations of the approaches are presented on the Figure 4.3.3-a) and Figure 4.3.3-b) by

two different measurements (Precision and recall). Precision measures the number of
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a)

b)

c)

d)

W Ru S Ri F No

Walking 1 0 0 0 0 0
Running 0.16 0.84 0 0 0 0
Sitting 0 0 0.97 0 0.03 0
Rising 0 0 0 0.98 0 0.02
Falling 0 0 0.03 0 0.97 0
No Move 0 0 0 0 0 1

Figure 4.6: (a) Precision and (b) Recall measures for the different scenarios (enumer-
ated in Table4.5), (c)classification confidence improvement ration (%) with respect to
fixed approach and (d)per-frame classification accuracy for the best approach Adapt-
10-Tsfix-80-140.
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Table 4.5: Different combinations of proposed approaches (ωt and ∆t denote window
slide size and time shift). The description is defined as (type of approach, type of ωt
approach (if it is adaptive=min ωt -max ωt), ∆t approach (if it is adaptive=which one
of them/fixed=the amount of ∆t)).

Acronym Description

Fix-ω-Fix-∆ Fixed (our previous approach), fixed ωt and ∆t
Adapt-ω (80,140)-Fix-∆ 10 Adaptive, Adaptive ωt (80-140), Fixed ∆t (10)
Adapt-ω (80,140)-Adapt1-∆ Adaptive, Adaptive ωt (80-140), Adaptive ∆t
Adapt-ω (80,140)-Adapt2-∆ Adaptive, Adaptive ωt (80-140), Adaptive ∆t
Adapt-ω (80,140)-Adapt3-∆ Adaptive, Adaptive ωt (80-140), Adaptive ∆t
Adapt-ω (70,160)-Fix-∆ 10 Adaptive, Adaptive ωt (70-160), Fixed ∆t (10)
Adapt-ω (60,180)-Fix-∆ 10 Adaptive, Adaptive ωt (60-180), Fixed ∆t (10)
Fix-ω-Adapt1-∆ Adaptive, fixed ωt , Adaptive ∆t
Fix-ω-Adapt2-∆ Adaptive, fixed ωt , Adaptive ∆t
Fix-ω-Adapt3-∆ Adaptive, fixed ωt , Adaptive ∆t
Adapt-ω (60,180)-Fix-∆ 60 Adaptive, Adaptive ωt (60-180), Fixed ∆t (60)
Adapt-ω (60,180)-Fix-∆ 100 Adaptive, Adaptive ωt (60-180), Fixed ∆t (100)

correctly classified samples, i.e. the model accuracy, and is given by:

precision =
true positive

true positive + f alse positive
(4.27)

Precision is mostly used together with Recall, which represents the number of relevant

classifications within all the results yielding a given class, such that:

recall =
true positive

true positive + f alse negative
(4.28)

The different adaptive parameter approach combinations are listed on Table 4.5.

As can be seen on the diagrams, using adaptive Window size with fixed time shift,

improves the classification results, however, the different thresholds for shrinking and

extending of the window slide did not affect the results impressively. On the other hand,

The size of time shift affected the results significantly. As it was mentioned before,

the mentioned approaches try to adjust the model to be more confident when making

classification decisions. Thus, Figure 4.3.3-c) presents the improvement in classification

results confidence, which constitutes a relevant achievement. The vertical axis values

represent the ratio between the number of accurate samples in each of the adaptive

approach, when compared with the fixed strategy. As can be seen, all of the approaches

are successful in improving model confidence. Approaches using adaptive time shift,

especially those which use the second and third time shift approaches, exhibit better
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improvement in confidence ratio. The left axis represents the augmented confidence,

in percentage values, with respect to the fixed window approach. In addition to the

presented results, Table 4.3.3-d) shows the confusion table with the per-frame classifi-

cation amongst all available classes. As visible, the adaptive sliding window size has

show impressive accurate results, with an overall ratio of 95%, which is an improvement

with respect to our previous fixed approach [RSAD12a], which is depicted in a red bar

in Figures 4.3.3-a) and 4.3.3-b). We conclude the section with Figure 4.8, where we

can see an action sequence, the ground truth annotation and the corresponding delay

and classified classes.

4.3.4 Action anticipation

One other relevant factor is the convergence speed. In this subsection we analyse

the amount of missed frames in the classification process, i.e. the number of frames

between the ground truth annotation and the actual model classification. This effect

is specially felt on action transitions, where the model needs to re adjust the classified

state from one action class to a different one. Figure 4.7 illustrates the differences

between using fixed and the adaptive time shift approach. It aims to demonstrate

that we can anticipate the convergence to the correct class with respect to ground

truth annotation. The Bayesian nature of the classifier, will show some resistance to

this change, due to the effect of the prior probability, which naturally delays the state

transition. The lowest image of Figure 4.7, presents that most of the approaches are

improved the convergence speed particularly the approaches belong to adaptive window

size, with fixed time shift. We can see there are approaches which reduce the delay in

almost 70% with respect to fixed with approach, whereas our best approach in terms

of precision and recall, also reveals itself to be the best in terms of speed improvement.

In terms of segmentation accuracy, it means that segments will be labelled much more

accurately, due to the fact that model classification decisions tend to be closer to their

ground truth markers.

4.3.5 Result discussion

Based on the presented results, we can observe that the proposed approaches can

improve the classification accuracy, confidence, and the speed with which the model

achieve its decision with respect to an action class. The two tampered parameters are



4.3. Action classification 109

Figure 4.7: A sample results of adaptive sliding window approach using fixed and
adaptive time shift approach (The colored top bar of the frames show the ground truth,
the black line shows the entropy signal). Convergence speed Improvement (Percentage)
with adaptive approaches when compared to fixed approach delays.
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effective in some of the measurements which are categorized on Table 4.6.

As it was expected, the adaptive slide window approach shows high impact to

improve the all mentioned important classification process outputs. However it shows

less impact than the adaptive time shift approaches on the results confidence. On the

other hand, adaptive time shift approaches have more capabilities to deal with low

confidence data. Thus using adaptive time shift approaches can be complementary of

the adaptive slide window approach to increase the results confidence.

Table 4.6 shows that shorter time shift affects the classification results and the

action anticipation speed. However, it should be mentioned that by having shorter

time shift the computational process increases. Therefore, there is a trade off between

amount of time shift and the computational process, which is where the adaptive time

shift approach can play a relevant role.

Table 4.6: Compare the effect of different parameters with different approaches
Measure Description

Classification results adaptive ωs with fixed
shorter ∆t , ωs’s thresholds
have less effect

Results confidence adaptive ∆t , especially 2nd
and 3rd ∆t approaches

Action anticipation speed adaptive ωs with fixed
shorter ∆t , ωs’s thresholds
have less effect
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4.4 Conclusions and future work

In this study, we propose a solution to action classification, an adaptive approach to

continuously adjust the two key parameters in sliding windows: size and time shift.

We have demonstrated that changes in these parameters have a high impact in the

model learning. We have posed this as an entropy minimization problem, formulating

a feedback model, based on entropy and previous sliding window parameters, which

allowed the window to continuously adapt itself to the classification process. We have

tested numerous scenarios, using different values for the limits of each parameter, and

successfully demonstrated our approach to improve results, verified through adequate

classification metrics: precision, recall, accuracy and convergence time (measured in

frames). Moreover, our formulation is generalizable, i.e. it can be applicable to abstract

classification frameworks, as long as they are based on the sliding window paradigm

and values for entropy and window parameters are available.

Our future work encompasses the extension of our research to an accurate selection

of window parameter limits. We expect to obtain generalizable limit selection, which

can be applied in general classification problem in which a set of variables are known.



Chapter 5

Social context-based analysis

5.1 Introduction

A recent research trend is trying to analyse complex human activity, which usually

appears under social contexts, which is named Interpersonal Behaviour (IB). This work

proposes a model to parametrize a set of IB characteristics using a body movement

descriptor, Laban Movement Analysis (LMA) [Hut74], by formulating the model under

a Bayesian Network (BN) formalism (Fig. 5.1).

In society, people interact and influence each other, generating a number of complex

dynamic processes (such as social roles, relationships, etc.) which happen when inter-

acting. Human communication analysis has been studied by psychologists for decades,

and they believe that there is a meaningful connection between nonverbal signals and

social interactions [VSP09]. In [For10], studying of groups was named group dynamics

and it is related to psychology,sociology, and communication studies. In the field, a

group is commonly defined as more than one individual who is connected with others

by social relationships.

As discussed before, LMA provides a language and vocabulary for interpreting body

movement, which is useful to extract features from complex human movements such

as interpersonal activities [LLRE07]. To analyse group dynamics, Pentland [Pen08]

presents several definitions for IBs which allow to enhance the existent connections

between psychology and artificial intelligence science. Certainly there are many groups

investigating group dynamics in psychology, but the Pentland’s recent investigation is

probably the first noticeable work which attempts to analyse the IBs, relating both

113
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Figure 5.1: Proposed approach for interpersonal behaviour understanding

sciences.

In this study, two different approaches were proposed. The first one explored

through LMA components to find the existent dependencies between people body mo-

tions for each defined IBs. Then we explored through LMA parameters in frequency

domain to find more reliable features to analyse those IBs and one Social Role (SR)

which is ”Leading”. Fig.5.2 presents the related levels of proposed human behaviour

analysis framework in this chapter.

Fig.5.2 presents the related levels of proposed human behaviour analysis framework

in this chapter.
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Figure 5.2: Human behaviour analysis in different levels with respect to this chapter
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5.2 Related work

Nowadays human behaviour analysis is a big challenge in different fields, specially

in the social aspect. Social signals which come out of a group, are very important

in social science and surveillance systems, in many applications like decision making

and analyzing social behaviour, which is the core of social intelligence [VPB09]. For

the first time, Pentland’s group [Pen08] proposed social signal processing for different

applications like salary negotiations and hiring interviews. A few groups are researching

about social behavior analysis using different types of sensor data, in different scenarios

such as small group interactions, roles recognition (in broad cast material and small

scale meeting), and user interest sensing in computer characters. In [VPB09], a couple

of works related to each of these categories can be found.

The behaviour or social signal can appear from different kind of features which

can be generally categorized in three parts; facial expression, voice and body motion

[PPNH06]. Analyzing human motion is a prerequisite for understanding human activi-

ties, such as human-robot and human-human interaction. Analysis of human activities

can be investigated in different levels. Bobick in [Bob97] presented a survey about the

different levels of human motion definitions, such as human movement, activity and

action. In Bobick’s terminology, the movements are the lowest level of human motions

which do not need any contextual or previous knowledge to be identified, but to un-

derstand human action or behaviour we need to have a sequence of human movements,

related to the scenario. Several surveys about human motion-based analysis issue such

as [ACLS94, CS95, Gav99, Pen00, MbK06, WHT03, Pop07] were published. As can

be realized from those previous works, analyzing IBs based on human body motion is

less explored.

James Borg states that human communication consists of 93 percent of body lan-

guage and paralinguistic cues, while only 7 percent of communication consists of words

themselves [Bor10]. Others assert that between 60 and 70 percent of all meaning is

derived from nonverbal behavior [Eng06]. Thus body language analysis became very

interesting for social and computer scientists.

Recently, some groups are investigating in social behaviour analysis deeply. For

instance; Zancanaro et al. in [ZLP06], attempted to detect group functional roles

through face to face interactions. To understand the person role, they used his/her

speech and fidgeting activities which come from voice detectors and Motion History
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Images (MHI). This work presents that to analyse some of IBs for a person, the features

of other people are useful. As Zancanaro et al. concluded in their paper, using a state-

based model (like HMM) may eventually lead to better results, and they had a plan

to add more features starting from vocal energy, 3D postures and focus of attention to

analyze group roles.

Human voice and visual body energy based features were used by Dong et al.

in [DLC+07], to analyse human social roles under different approaches ( SVM and

influence model). The authors suggestions were hierarchical training and adding more

features to improve their work. Sun et al. in [SNTP11], used just visual motion energy-

based features to analyse an IB (mimicry). In the work it also was mentioned that

kinematic-based features are needed to have better results. Thus, they “will focus on

the optical flow fields in motion parts of a body, computation of kinematic features

(e.g., divergence, velocity, symmetric flow fields etc.)” in their future work.

Jayagopi et al. in [JHYGP09], explained their study about the effect of different

audiovisual nonverbal cues for modelling dominance patterns in a group conversation

scenario. They realized that; “It was particularly interesting to observe that reasonable

performance was achievable in the most dominant case without having to listen to the

conversations at all.”. However, it was concluded that audio-based features gives better

results. It should be mentioned that they just analysed 2D based features in video side.

BN presents many advantages on using prior knowledge and modeling the dynamic

dependencies between parameters of object states. In related fields, this approach is

popular and researchers have been keen on applying it, such as Rett [Ret08], who ap-

plied a general BN framework for analyzing human motions, and Ryoo and Aggarwal

[RA06], who presented a framework for human action modeling by using BN for ana-

lyzing human activities. There are several reasons to use a Bayesian approach in our

application: Bayes theorem is valid in all common interpretations of probability, can

represent and solve decision problems under uncertainty, it is a common approach to

predict, an explicit approach to follow states, does not need a large amounts of data

to be trained, and it is able to fuse different types of data in one model [KAQ+11].

Pentland’s group in [Pen08] presented an interesting work to analyze IBs in different

context like classroom, casino, etc. , defined several features as Honest signals and

measured them by a mechanism, namely, Sociometer. Then, a number of social roles

was defined by combination of those signals. Recently, a few works have been proposed

in this direction, for example; simple body motion-based and speech-based features are
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used in [DLC+07], and silhouette motion-based features are used in [SNTP11], for

the mentioned purpose. A brief survey about social signal analysis was published in

[VPB09].

The state-of-the-art shows that there are several works which have been done in

simple human motions activities and behaviours, but there is still a big gap between

body motions and IBs context applications. This kind of applications, when you just

rely on body motions, are very valuable in many applications such as surveillance

systems, but less explored. Thus, in this work, based on the pentland’s definitions to

estimate the different social signals or behaviors, an approach is proposed to obtain

them by using just body motion-based features, which is less explored and can be

achieved by LMA descriptor [Hut74, ZB05]. The main contribution of this work is

presenting a new approach to parameterize IBs using LMA components which can

bridge the gap between human motion signals and the complex human behaviours.
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5.3 LMA-based IBs analysis

This section focuses just on 3D body motion-based signals as a part of nonverbal signals

to analyse IBs. The related works rely more on voice and facial expression features,

but the contribution of this work is to explore through different features which only

belong to body parts motions to analyse IBs. Based on the interested IBs definitions,

the parameters in Laban components and IB level with their corresponding states are

analysed and modelled using a BN technique.

5.3.1 Variable space

In order to parameterize the IBs, we should firstly define some interesting parameters

or variables. The proposed model in this work is divided into two abstraction layers.

Each of those layers has its own set of variables. These variables are inspired by both

Pentland’s and Laban’s work. The model aims to use body motion information to

infer IBs. Thus, we use features obtained by LMA in Feature Space, to estimate IB

variables, defined by Pentland’s definitions in the Behavior Space.

5.3.1.1 LMA components

Composing the Feature Space are Laban Components, which constitute the observa-

tions driving the model. LMA is a framework to describe, interpret and analyze human

motions using five different components. Each component deals with different aspects

of human motion [Ret08, Hut74, BPW93]. All variables defined in feature space are

inside the five component set (Fig. 5.3-Left): Effort, Space, Shape, Body and Rela-

tionship.

Effort describes the dynamics of body motion [Ret08], and is divided into four qual-

ities: Time, Space, Weight and Flow. Each of them has a bipolar state. For instance;

Effort.time presents if the body part motion is in sustained (like touching carefully

movement) or sadden (like punching movement) state, and Effort.space describes if

the motion is in direct (like hand pointing) or indirect (like bye bye) state, etc.

Space interprets the trajectory of each body part in a 3D space [Ret08]. Researchers

were discretized the direction of body motions with some states depending on their

applications. Shape describes deformation of a body as a blob in three plans; sagittal,
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Figure 5.3: Left) LMA framework with five components [BPW93]. Right) Interpersonal
behaviours which were explored in [Pen08]

LMA components States

Space.Head Forward, Backward
Space.Hands Forward, Backward, Up, Down, Right, Left
Effort.Time Sudden, Sustained
Effort.Space Direct, Indirect

Shape.Sagittal Advancing, Retreating
Shape.Vertical Rising, Sinking

Shape.Horizontal Spreading, Enclosing

Table 5.1: LMA parameters

vertical and horizontal [SD10], and it consists of some states in each plan; like if

the whole body is rising or sinking in vertical, advancing or retreating in sagittal,

and spreading and enclosing in the horizontal plan. Since we are using hands and

head poses in this work, the mentioned blob will consist of the space between hands

and head. Body shows body part relative state to body centre [BL80]. Relationship

appears as the less studied component and presents the relation between body parts

and environmental parameters or others [Hut74].

Depending on the objective, researchers rarely use all LMA components. To quote

some examples, [KAQ+11] uses Shape and Effort for human action recognition, whilst

Rett or Zhao [Ret08, ZB05] use Space and Effort to classify and analyze human gestures.

Given the Pentland’s descriptions of IB, the selected Laban Components for Feature

Space are:

FeatureSpace ∈ {E f f ort,Space,Shape} (5.1)

Table.5.1 presents all defined LMA parameters based on the three components for

this work.
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5.3.1.2 Interpersonal behaviour

The last decade brought multiple works using LMA-based computational systems to

characterize different phenomena in different applications: human-robot interaction

[Ret08], human gesture analysis [ZB05], rehabilitation [FW06] and human movement

understanding [KAQ+11].

All over-mentioned works somehow address human gesture classification in single

person perspective. This work goes one step further, using LMA concepts to character-

ize human behavior rather than gesture, in context of social interaction. To undertake

such task, the Pentland’s definitions are used to categorize IBs, which are behavior

(Honest) signals present in all social interactions. Thus, this work defines the set of

IB variables as (Fig. 5.3-Right)); Indicator, Empathy, Interest and Emphasis. Each of

the IBs variables has two states, which are defined as follows:

Indicator ∈ {in f luenced, in f luent} (5.2)

The set.5.2 presents a variable which consists of two possible states, influenced

and influent. As Pentland’s describes [Pen08], within a group, there is tendentially

someone who tries to have an edge over the remaining. This edge is described as

a person’s capability to aggregate others around the same line of thought, or more

generally, to be the emerge as group leader. Hence, we call it Indicator variable.

Empathy ∈ {uncoordinated,mimicry} (5.3)

Mimicry is a state, which is related to Empathy behaviour, and as Pentland men-

tioned in [Pen08], more empathetic people are more likely to mimic their conversational

partners. Therefore, the Empathy variable has two states (Set.5.3), mimicry state if

there is imitation motions, otherwise uncoordinated state.

Interest ∈ {passive,active} (5.4)

The Interest variable represents whether a person is engaged to the situation or

outside context. This behaviour is characterized by, what Pentland describes, level of

activities. Thus, we defined two states, passive and active, for this variable (Set.5.4).
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Figure 5.4: Presenting all possible connection between the two layers in different times.
P1 and P2 denote the first and second persons, and LMAp1 and IBp1 denote all defined
variables inside of LMA and IB for the first person.

Emphasis ∈ {consistent, inconsistent} (5.5)

The last defined IB is Emphasis variable, which explains a person’s focus in a

situation, another person or object. If the person has a wandering mind, his/her

behaviour will be variable or inconsistent. Set.5.5 defines the two possible states of

Emphasis variable, which are consistent or inconsistent.

5.3.1.3 General schema of the variable spaces

The key point of this work is to explore through all the obtained features in LMA space

to estimate the interested classes in IB space. We present how those features can affect

the estimation of each IB, and based on that analysis, the sufficient model of each IB is

proposed. Fig. 5.4 shows an overview of the different variable spaces with all possible

connections between those layers. In the next section, the sufficient connection will be

found for each IB.
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IBs IB definition [Pen08] LMA [Hut74]

Indicator More energy body motions than others Effort
Empathy Copying each other activities and nodding Space
Interest Presenting energetic motion Effort

Emphasis Movements become jerky or not Effort, Space

Table 5.2: A brief description of the relation between the IB definitions and LMA
components for each of the IBs

5.3.2 Global human interpersonal behaviour model

As mentioned before, this work parametrizes IBs with Laban components, by explicitly

defining two different abstraction layers. The reason why this work does not infer IB

from input signal features directly, is because information will be lost. There are several

works that developed models to classify Laban parameters from input signal features

[SD10, KAQ+11, Ret08, BPW93]. Thus, the present model uses Laban movement

analysis as observations. We will describe both IB and LMA components, demonstrat-

ing the latter has enough information to characterize human behaviour.

As mentioned, four IBs are defined: Indicator, Interest, Empathy, Emphasis. In

the following sections, the dependencies between LMA and Pentland’s definitions are

explored (as can be seen in Table.5.2 briefly) and based on them, a Bayesian model

for each of IBs is proposed. As can be seen in the following subsections, Empathy and

Emphasis are modeled by dynamic Bayesian approach and explain the reasons for the

use of the previous knowledge.

5.3.2.1 Selection of effective LMA components in learning process

Eq.5.6 presents a general Bayesian model, and based on that, we explain the general

learning process briefly. For all the variables, we only formulate the learning distribu-

tions, and the process is analogous for all.

P(A|B) = P(A) .P(B|A)/P(B) (5.6)

Variable A is formulated as seen in this equation. Observing the second term

of the equation, we have the prior distribution P(A), the likelihood P(B|A) and the

normalization factor P(B). The likelihood is a conditional probability corresponding

to previous knowledge which needs to be learned.
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Figure 5.5: Histogram of the different LMA features for Indicator variable

Histogram-like approach is a common supervised learning method. To illustrate

this method, let’s analyze the learning histogram for the Indicator variable (See Fig.

5.5).

From the collected labeled signals we built an histogram counting all obtained LMA

states given the knowledge of the Indicator variable state. This allows us to generate

the necessary distributions, and this means that, the method allows us to visualize those

LMA parameters that better discriminate the IB’s states. By comparing the different

states of the same LMA variable (e.g. Effort.Time for states Sudden and Sustained), it

is possible to empirically select the ones that exhibit the highest dynamics between the

IB variable states. In this investigation, depending on the IBs, the previous knowledge

of the mentioned person and others are also used, as can be seen in Fig. 5.4.

5.3.2.2 Indicator model

In different scenarios, such as people conversation or negotiation, it is interesting to

realize who has influence over other participants in many aspects of social context.

While interacting with others, a person can be either influent or influenced. Indicator

is the variable which we define with these two possible states.

In [Pen08] most of the influence signals analysis are based on human speech, de-

scribed in some examples like a student-teacher argument or salary negotiations. How-

ever, Krauss mentioned [KH99] that hand gestures which people produce, play an
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a) b)

Figure 5.6: a) The dependencies between LMA parameters and Indicator and variable
(PersonA=first person , PersonB=second person). b) Dependency diagram among LMA
parameters and Empathy characteristic for person A. The same can be applied for
person B.

important role in any communication. We interpret these facts, that when a person

is trying to gain influence over others, he/she usually produces more energy through

his/her body part motion, such as hand motion in a conversation scenario, to be more

representative.

LMA framework encompasses a component, Effort, which analysis is concerned

with the changing patterns which occur in the ebb and flow of energy within the body

[Hut74]. Thus, to measure the influent and influenced states of a person, Effort com-

ponent should be sufficient. In this concept, when a person has a more representative

body part motion, the probability of being influent over others is higher. Therefore,

the probability of a person being an Indicator, will be the probability of being influ-

ent or not, given the obtained Effort characteristics, of him/herself and others. The

related histogram which is obtained in the learning process (Fig. 5.5) also proves the

mentioned analysis.

Based on the dependency diagram in Fig. 5.6-a, the relation between LMA and

Indicator is formulated as follows:

P

(
Indi | ∏

h=1:n,i=1:m
E f h

i

)
=

P(Indi) ∏
h=1:n,i=1:m

P
(
E f h

i |Indi
)

∏
h=1:n,i=1:m

P
(
E f h

i
) (5.7)

where Indi and E f h
i denote respectively, Indicator variable for ithperson, and Effort

component variable for hth body part of ith person. n and m denote the number of

body parts and persons.
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Figure 5.7: Left) Histogram of the different LMA features in different states of Interest
variable. Right) Dependency diagram among LMA and Interest characteristic.

5.3.2.3 Interest model

In a social interaction, the activity level of the human body is a visible unconscious

signal to present human interest and excitement level. In a communication between

people, when a person is interested or excited, he/she presents more energetic motion.

A visible example to show the issue presented in [Pen08] is the connection between

the activity level and excitement for children in special events like a birthday party.

Excited kids usually talk faster and louder, fidget more and run around, and similar

of those effects also happen in adults. Thus this IB also relates to how much energy is

consumed by the person which can be interpreted by Effort component of LMA.

As seen in Fig. 5.7-left, most of the features are quite dynamic, but those features

which include less parameters and also also cover the mentioned analysis are selected.

The difference between Interest and Indicator variables is that for Interest just one

person’s data is sufficient but for Indicator, we need to have more than one person

involved (in a social context).

Based on the dependency diagram shows in Fig.5.7-right, the relation between LMA

and Interest behaviour is formulated as follows:

P

(
Inti | ∏

h=1:n
E f h

i

)
=

P(Inti) ∏
h=1:n

P
(
E f h

i |Inti
)

∏
h=1:n

P
(
E f h

i

) (5.8)
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where Inti and E f h
i denote Interest variable for ithperson and Effort component variable

for hth body part of ith person respectively.

5.3.2.4 Empathy model

When people who are deeply engaged in a conversation are on the same wavelength,

it is called Empathy [Pen08]. Empathy can be felt by some interactive motion signals.

One of the common signals is mimicry. The engaged people copy each other’s activities,

such as smiling, body gesture, head nodding and etc. during a conversation. Those

mimicry motions, usually occur when motion is similar in space, but not necessarily

relating to its dynamics. Thus, the LMA spatial-based features are more meaningful

and reliable inputs to discretize this IB. Space component of LMA describes body

motion trajectory, specific direction, level, distance, or degree of motion [Hut74].

Algorithm 1: Algorithm to decide the similarity value for each LMA parameter, to be

used for mimicry histogram generation (see Fig. 5.6-b).

for each fA ∈ LMA(At)
fB: corresponding feature to fA
if value( f t

A) = value
(

f t−1
B

)
f t
A.mimicry ←′ same′

else
f t
A.mimicry ←′ di f f erent′

end.

To prove the idea, Fig. 5.8-left) and Fig. 5.8-right) show generated histograms that

will be used for mimicry and uncoordinated states, respectively. In each of these two

histograms, the first dimension shows the LMA parameters, and the second dimension

indicates the decided value for mimicry or uncoordinated states. For each person

(for example A) these values are obtained by considering the difference between the

corresponding LMA features among the current person in time t ( f t
A) and the other

person in previous time ( f t−1
B ). Such a process is shown in Algorithm.1 for the mimicry

state, and is similar for uncoordinated state.

Comparing the two histograms, it can be seen that Space component has highly

distinct behaviors than the remaining. Thus in Eq.5.15, just space component features

of the person and previous data of other person are used.

Fig. 5.6-b presents the relation between LMA and Empathy, which is formulated

as follows:
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Figure 5.8: Histograms of LMA variable states similarity of two persons between time t
and t−1 for the both Empathy variable states; Mimicry histogram is represented in the
left and Uncoordinated in the right image. The blue and orange bars show statistically
how much each of LMA parameters data belong to person A at time t and person B
at time t-1, are different and the same, respectively.

P

(
Empi(t) | ∏

h=1:n

(
Sph

i (t) ∏
j=1:m, j 6=i

Sph
j(t−1)

))
=

P(Empi(t)) ∏

h=1:n, j=1:m, j 6=i
P
(

Sph
i (t)Sph

j (t−1)|Empi(t)
)

∏

h=1:n
P

(
Sph

i (t) ∏

j=1:m, j 6=i
Sph

j (t−1)

)
(5.9)

where Empi(t) and Sph
i (t) denote Empathy variable for ithperson and Space component

variable for hth body part of ith person at time t, respectively. n and m denote the

number of body parts and persons. In the experiment, we just applied a couple of

people and three body parts data, however it can be extended to more people and

body parts data.

5.3.2.5 Emphasis model

When a person is thinking about different things simultaneously, his/her speech and

movements become jerky and inconsistency paced ([VV96] in [Pen08]). It means that

depending on context, people’s emphasis can be consistent or variable, and the rela-

tive consistency or variability of human activity conveys different messages for people.

Those messages can play an important role in social aspect. To estimate this IB we

should look for variation of both Space and Effort components features of the person

along time. When they remain constant, it means the person is focused or his/her
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Figure 5.9: Histogram of LMA variable states similarity of one person between time t
and t−1 for the both Emphasis variable states; Consistent histogram is represented in
the left and Inconsistent in the right image. The blue and orange bars show statistically
how much each of LMA parameters data belong to person A at time t and t-1, are
different and the same, respectively.

behavior is consistent, giving emphasis to that person’s actions.

Similar to the previous section, Histograms of the Emphasis model are generated

and presented in Fig. 5.9, but instead of using previous data of other person in Empathy

model, previous data of the same person is used in the current model. The left image

corresponds to the Consistent state, and presents whether LMA parameters for the

person at time t, correspond to the LMA parameters of the same person at time

t−1 or not. The right image presents the same histogram but for Inconsistent state.

Comparing the two histograms, it can be seen that Space and Effort components have

high distinct behaviors. The following equation expresses the Bayesian model (see Fig.

5.10-a) for Emphasis variable:

P

(
Em fi(t) | ∏

h=1:n

(
Sph

i(t) E f h
i(t) Sph

i(t−1)
E f h

i(t−1)

))
=

P
(

Em fi(t)

)
∏

h=1:n

(
P
(

Sph
i(t) Sph

i(t−1)
E f h

i(t) E f h
i(t−1)

|Em fi(t)

))
∏

h=1:n

(
P
(

E f h
i(t)

)
P
(

E f h
i(t−1)

)
P
(

Sph
i(t)

)
P
(

Sph
i(t−1)

))
(5.10)

where Em fi(t) and E f h
i(t) and Sph

i(t) denote Emphasis variable for ithperson and Effort

and Space component variables for hth body part of ith person at time t.
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a) b)

Figure 5.10: a) A dependencies diagram among LMA parameters and Emphasis char-
acteristic. b) A person with a special suit (motion tracker) for 3D data capturing and
Space parameters presented on a dummy.

5.3.3 Experiments

A set of experiments have been carried out to demonstrate the effectiveness of the

proposed models. The experiments are performed in the smart-room of the MRL of

ISR∗. Our setup is comprised of a 3D human motion tracking sensor, called MovenSuit†

(see Fig.5.10-b), and a network of cameras installed on the ceiling of the room. A set of

conversation scenarios is defined in which the contexts are the IB activities performed

by two persons. Note that the proposed model has the capability of being used for a

multi persons case, however, here due to some limitation in the data acquisition setup

we have just used two persons in order to prove the concept. In each scenario the body

movements for each person are recorded using the MovenSuit device. After recording

the scenarios in each sequence and for each of the acting person, an expert, called

annotator, manually annotated the LMA parameters and IB states by observing the

recorded videos from the ceiling cameras. The used LMA parameters and IB states are

based on our definitions provided on sections 2.1 and 2.2. Each sequence has a length

of about 400 seconds.

The annotated data by the expert is used for the learning stage. For classifications,

the LMA parameters are automatically extracted from the 3D tracker based on our

previous works [KAQ+11]. The frequency for both annotation and classification stages

is 1Hz. Among the annotated data, half of them are used for learning and the other

half is used for classification.

∗http://paloma.isr.uc.pt/mrl/
†http://www.xsens.com/en/general/mvn
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Figure 5.11: An exemplary short sequence including five frames (5 sec. length, labeled
from 1 to 5). The extracted LMA features related to these sequence are fed to each IB
model. The histogram in this figure represents the output for each IB for the seconds
2 to 5.

For the purpose of classification, the automatically obtained LMA parameters from

each frame are fed to the proposed IB models. Fig. 5.11 shows an exemplary short

sequence including five frames (5 sec. length, labeled from 1 to 5). The extracted LMA

features related to this sequence are fed to each IB model. The histogram in this figure

represents the output for each IB for the seconds 2 to 5.

Fig. 5.12 presents the classification results for some long sequence data. In Fig.

5.12-a) the result for the Indicator model is plotted. As can be seen, the classification

result converges after passing a maximum of three frames. The convergence for the

Interest model, shown in Fig. 5.12-b), is faster. The reason is because as can be seen

in Fig. 5.5-right, this model just depends on the data of the same person independent

of previous data.

Fig.5.12-c) presents the Empathy model results. The graph is divided in two parts.

The first part corresponds to the first 33 frames and presents the results based on using

head-space feature (nodding), and the rest is based on comparison algorithm proposed
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a)

b)

c)

d)

Figure 5.12: Classification results over the time axis for the four IBs states Influent,
Active, Mimicry, Inconsistent which are respectively shown in (a), (b), (c) and (d).

Indicator Interest Empathy Emphasis
Inft Infd Act. Pas. Mim. Unc. Con. Inc.

PCR 72% 70% 93% 90% 80% 74% 88% 53%

Table 5.3: Positive Classification Rate (PCR) results for IBs models

in Alg.1. As can be seen, the first part shows faster convergence but we have slower

convergence for the second part. The reason is that the nodding model requires no

data from previous time whereas the comparison algorithm needs data from previous

moments, which makes the convergence slower.

Fig. 5.12-d) presents the result for Emphasis model. As seen, in most parts the

classification result converges to the ground truth. Only a few frames diverge from the

ground truth signal (78th,79th frame), because the states were changed fast. Table.5.3

summarizes the positive classification results for all IB variables based on the obtained

LMA states at every second. In this table, the classifications percentage for the Em-

phasis state is lower than the other IBs. It is due to the difficulty of interpretation

for this behaviour state even for an expert. As can be seen in the presented results,

when the observation data changes, it takes a while to converge. We expect to have

better results with faster convergence if a higher frequency could be used (currently

1Hz) [KAQ+10].
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IBs IB definition [Pen08] States [RSAD12b] LMA [Hut74]

Ind. More body motions than others influenced/influent Effort
Emp. mimicking and nodding uncoordinated/mimicry Space
Int. Energetic motion passive/active Effort
Emf. Jerky movements consistent/inconsistent Effort, Space

Table 5.4: A brief description of IBs with their states, and their relevant LMA compo-
nents [RSAD12b]

5.4 LMA-based IBs analysis in frequency domain

In this step, we propose using human body motions in frequency domain to estimate

the IBs and a SR. In the previous section the IBs were analysed [RSAD12b], but this

work explores LMA features on the frequency domain to estimate both IBs and a SR.

5.4.1 Interpersonal primitive and social behaviour

Various social roles in different scenarios were investigated by Alex Pentland, to find

relevant connections between features, which could be analysed by computer scientist

[Pen08]. To fill the existent big gap between features (voice, body motion) and SRs, a

set of IBs was proposed;

IB ∈ {Indicator, Interest,Empathy,Emphasis} (5.11)

then by combination of the IBs, a number of SRs; Searching, Teaming, Listening and

Leading, were described. In this study, we intend to estimate Leading social role by

analysing the IBs, which will be estimated by using body parts motion information in

frequency domain.

A Bayesian graph in three layers, which was obtained based on our recent work

[RSAD12b], is presented in Figure 5.13. LMA parameters of people, which are in a face

to face interaction scenario, are located in the first layer. Then IBs will be estimated

given those LMA features, and finally in the last layer the SR will be analysed given

the IBs. Table 5.4 shows the brief description of the IBs, which were achieved in

[RSAD12b].

Based on the Pentland’s definition about the SRs, the Leading role described as

combination of attention, interest and great focus in thought and purpose [Pen08].
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IBs State

Indicator high level of influence
Empathy No relevant
Interest high activity level

Emphasis consistency emphasis and rhythm

Table 5.5: IBs states for Leading role [Pen08]

Figure 5.13: proposed BN model of IBs and Leading’s social role understanding.

Thus, the IBs states which present the Leading role, can be described as in Table 5.5.

As seen, only Empathy did not consider as an effective IB of the mentioned role.

By analysing the Table 5.4 and Table 5.5, Effort component is the most important

feature for the Leading role analysis. Thus we consider to use only Effort component

as input features to analyse the IBs. Since the Effort-Time component was analysed in

frequency domain [KAQ+10], we are able to use the advantages of frequency domain

features (as an invariant feature) to reach more high level information.

5.4.2 Social behaviour modelling

Social role is a high level human behaviour information, which consists of different

kinds of features related to human being in any society. Based on the obtained results

in our recent work [RSAD12b] (modeling the IBs), and Pentland’s definition about

Leading role which was described before, we attempted to analyse body parts motions

in frequency domain to estimate the mentioned SR, with respect to the LMA-Effort

property. Thus, to provide the corresponding models, we divided the analysis into a
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Figure 5.14: Bayesian model for Effort.time sub-component proposed in [KAQ+10].

E f bp
timeand f bp

i denote Effort.time variable for bp’s body part, and ithfrequency-based
feature obtained from accelaration signal of bp’s body part.

couple of steps; LMA-based human movement and IBs and social role analysis.

5.4.2.1 LMA based human movement analysis

As described before, LMA has several components which were invented to interpret

human motions in different domains. Space and Shape were analysed in spatial do-

main [Ret08, KAQ+11] and Effort in frequency domain [KAQ+11]. Depending on the

application, researchers select a number of more representative LMA parameters. This

study relies on Effort-Time sub-component which is related to the frequency domain

analysis. To estimate Effort-Time, PS signals of different body parts are obtained from

the corresponding acceleration signals [KAQ+10]. Figure 5.14 shows the model of the

LMA-Effort-Time which contains a couple of states (Sustained/Sudden).

By having the obtained PS signals, the first four coefficients of the signals are

collected as input features for the model to estimate the Effort-Time sub-component

[KAQ+11]. Eq.5.12 presents the Bayesian rule of the mentioned model (Chapter 2):

P
(

E f bp
time| f

bp
1 f bp

2 f bp
3 f bp

4

)
=

P( f bp
1 |E f bp

time)P( f bp
2 |E f bp

time)P( f bp
3 |E f bp

time)P( f bp
4 |E f bp

time)P(E f bp
time)

P( f bp
1 )P( f bp

2 )P( f bp
3 )P( f bp

4 )
(5.12)

where E f bp
timeand f bp

i denote to Effort-Time component variable for bp body part

motion, and ith coefficient of the PS signal which was obtained from bp body part

movement, respectively. The Bayesian equation consists of several parameters as fol-

lows;

� P
(

E f bp
time| f

bp
1 f bp

2 f bp
3 f bp

4

)
, the posterior probability, the probability of E f bp

time
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Term(s): Description

P
(

E f bp
time| f

bp
1 f bp

2 f bp
3 f bp

4

)
: posterior probability

P( f bp
1 |E f bp

time), P( f bp
2 |E f bp

time), P( f bp
3 |E f bp

time) and P( f bp
4 |E f bp

time): likelihood parameters

P(E f bp
time): prior probability

P( f bp
1 ), P( f bp

2 ), P( f bp
3 ) and P( f bp

4 ): The normalisation terms

Table 5.6: The movement Bayesian rule variables descriptions
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Pertinent variables :

Pb ∈ {Head,Le f t hand,Right hand}
f p∈{pb}
i=1:4 ∈ {No, low,Medium,High}

E f p∈{pb}
time ∈ {Sustained,Sudden}

Decomposition :

(
P
(

E f p
time

i=1:4
∏
(

f p
i
))

=
i=1:4
∏
(
P
(

f p
i
))

P
(

i=1:4
∏
(

f p
i
)∣∣E f p

time

))p∈{pb}

Parametric forms :

P
(

f p
i
)p∈{pb}

i=1:4 : uni f orm

P
(

f p
i=1:4

∣∣E f p
time
)p∈{pb} : histogram(Matrix)

Iden.

Ques. : P
(

E f p
time

∣∣∣∣i=1:4
∏
(

f p
i
))p∈{pb}

Figure 5.15: Bayesian Program for the human movement model.

given f bp
1 , f bp

2 , f bp
3 and f bp

4 in the Bayesian rule,

� The likelihood parameters, P( f bp
1 |E f bp

time), P( f bp
2 |E f bp

time), P( f bp
3 |E f bp

time) and

P( f bp
4 |E f bp

time), which are the probability of evidences given the E f bp
time state,

� P(E f bp
time), the prior probability, is the probability of E f bp

time before having the

evidences,

� The normalisation terms, which are P( f bp
1 ), P( f bp

2 ), P( f bp
3 ) and P( f bp

4 ).

Table 5.6 presents the list of variables with their relevant descriptions. Figure 5.15

presents the BP’s correspondent of the proposed human movement model.

Figure 5.16-(a) shows a sample of LMA-Effort-Time signals which are obtained

from the PS signals of LLFs as was proposed in Chapter 2.
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5.4.2.2 Human interpersonal behaviour and social role analysis

In our previous work [RSAD12b], the LMA components were analysed in each instance

(one-second) and were used for IBs estimation. The previous approach was more

reliant on the instant evidences, and it just used previous knowledge through DBN

rules. However, the process needs longer data (thirty-seconds [Pen08]) to be able to

analyse the IBs. Since the time period of performing the IBs is variant and longer than

one second, instead of using each instant estimated LMA parameters to analyse IBs

[RSAD12b], a sequence of the LMA-Effort-Time data is collected from a sequence of

instances (Figure 5.16-(a)).

To explore the changes in LMA-Effort-Time signals, the corresponding second

derivative of the signals (
d2(E f bp

time)

dt2
), is calculated (Figure 5.16-(b)). Then PS tech-

nique is used to extract frequency based features from the obtained second derivative

of the LMA-Effort-Time signals (Figure 5.16-(c)). Then, coefficients of each PS signals

are collected. For estimating each IBs, based on the previous work [RSAD12b], the

representative body parts are selected, and the needed coefficients from relevant PS

signals are collected for feeding our Bayesian model.

� Indicator

It is common that when a person tries to influence others, (s)he usually consumes more

energy and move more his/her body parts, e.g. hand in a conversation scenario, to

be more representative. PS technique is a proper approach to analyse the consumed

energy from performed body parts motion by people. It means that who influences

more others, usually has more energy (amplitude) in the PS signals. Thus, Bayesian

model of this IB is defined as:

P

(
Indi | ∏

h=1:n,i=1:m

aE f h
i

)
=

P(Indi) ∏
h=1:n,i=1:m

P
(

aE f h
i |Indi

)
∏

h=1:n,i=1:m
P
(

aE f h
i
) (5.13)

where i, h, n and m denote person index, body parts index, number of body parts

and number of involved people, respectively. P(Indi),P
(

aE f h
i

)
denote probability of

IB of Indicator for person i, and probability of Effort-Time of body part h for person i

based on amplitudes (a) of PS signals coefficients, respectively. The Bayesian equation

consists of several parameters as can be seen in Table 5.7, which presents the list of

variables with their relevant descriptions.
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(a) (b)

(c)

Figure 5.16: (a) and (b) show a sample of LMA-Effort-Time signals and their second
derivative signals correspondent, respectively. (c) presents PS signals obtained from
(b). In (a) presents probability of the sustained state of a person during a conversation
scenario. Hands shows some changes, but there is no considerable movement in the
body part of head. Then, we produce the second derivative of the (a) which can be seen
in (b). (c) shows the energy of signals presented in (b) for each frequency domains.

Figure 5.17 presents the BP’s correspondent of the proposed Indicator model.

� Interest

In any social interaction, the activity level of human body is a visible unconscious

signal to present human interest and excitement level [Pen08]. Eq.5.14 presents the

relations between LMA parameters and Interest IB. The needed features are similar to

Indicator, but this one doesn’t have connection to other people’s behaviour. Thus;

P

(
Inti | ∏

h=1:n

aE f h
i

)
=

P(Inti) ∏
h=1:n

P
(

aE f h
i |Inti

)
∏

h=1:n
P
(

aE f h
i

) (5.14)
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Term(s): Description

P

(
Indi | ∏

h=1:n,i=1:m

aE f h
i

)
: posterior probability

P
(

aE f head
i=1:m|Indi

)
, P
(

aE f Right−hand
i=1:m |Indi

)
, and P

(
aE f Le f t−hand

i=1:m |Indi

)
: likelihood parameters

P(Indi): prior probability

P
(

aE f head
i=1:m

)
, P
(

aE f Right−hand
i=1:m

)
, and P

(
aE f Le f t−hand

i=1:m

)
: The normalisation terms

Table 5.7: The Indicator Bayesian rule variables descriptions
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Pertinent variables :
Pb ∈ {Head,Le f t hand,Right hand}
E f p∈{pb}

i=1:2 (a) ∈ {No, low,Medium,High}
Indi=1:2 ∈ {In f luenced, In f luent}
Decomposition :(

P

(
Indk

i=1:2
∏

p∈{pb}

(
E f p

i (a)
))

=
i=1:2
∏

p∈{pb}
P
(
E f p

i (a)
) i=1:2

∏
p∈{pb}

P
((

E f p
i (a)

)
|Indk

))k=1:2

Parametric forms :

P
(
E f p

i (a)
)p∈{pb}

i=1:2 : uni f orm(
P
((

E f p
i (a)

)
|Indk

)i=1:2,
p∈{pb}

)k=1:2
: histogram(Matrix)

Iden.

Ques. : P

(
Indk

∣∣∣∣∣ i=1:2
∏

p∈{pb}

(
E f p

i (a)
))k=1:2

Figure 5.17: Structure of Bayesian program for proposed Indicator model.
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Term(s): Description

P
(

Inti | ∏
h=1:n

aE f h
i

)
: posterior probability

P
(

aE f head
i |Inti

)
, P
(

aE f Right−hand
i |Inti

)
, and P

(
aE f Le f t−hand

i |Inti
)

: likelihood parameters

P(Inti): prior probability

P
(

aE f head
i

)
, P
(

aE f Right−hand
i

)
, and P

(
aE f Le f t−hand

i

)
: The normalisation terms

Table 5.8: The Interest Bayesian rule variables descriptions
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Pertinent variables :
Pb ∈ {Head,Le f t hand,Right hand}
E f p∈{pb}

i=1:2 (a) ∈ {No, low,Medium,High}
Inti=1:2 ∈ {Passive,Active}
Decomposition :(

P

(
Inti ∏

p∈{pb}

(
E f p

i (a)
))

= ∏
p∈{pb}

P
(
E f p

i (a)
)

∏
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P
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i (a)

)
|Inti

))i=1:2

Parametric forms :

P
(
E f p

i (a)
)p∈{pb}

i=1:2 : uni f orm
P
((

E f p
i (a)

)
|Inti

)i=1:2
p∈{pb} : histogram(Matrix)

Iden.

Ques. : P

(
Inti

∣∣∣∣∣ ∏
p∈{pb}

(
E f p

i (a)
))i=1:2

Figure 5.18: Structure of Bayesian program for proposed Interest model.

where Inti and E f h
i denote Interest variable for ithperson and Effort component

variable based on amplitudes (a) of PS signals coefficients for hth body part of ith

person respectively. The Bayesian equation consists of several parameters as can be

seen in Table 5.8, which presents the list of terms with their relevant descriptions.

Figure 5.18 presents the BP’s correspondent of the proposed Interest model.

� Empathy

This IB is highly connected to the spatial based features [RSAD12b]. However, head

nodding signals, which is one of the important mimicry characteristics, can be analysed

in frequency domain. Thus, besides the spatial based features (Shape component), PS

signal of head Effort-Time data is used to feed the model, and Eq.5.15 presents the

relations between LMA parameters and Empathy’s IB:
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Term(s): Description

P
(

Empi |aE f head
i Spi(t)Sp j(t−1)

)
: posterior probability

P
(

aE f head
i |Emp

)
and P

(
Spi(t)Sp j(t−1)|Empi

)
: likelihood parameters

P(Empi): prior probability

P
(

aE f head
i

)
, P(Spi(t)), and P

(
Sp j(t−1)

)
: The normalisation terms

Table 5.9: The Empathy Bayesian rule variables descriptions
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Pertinent variables :
E f head

i=1:2(a) ∈ {No, low,Medium,High}
Spi=1:2

T∈{t,t−1} ∈ {Rising,Still sinking}
Empi=1:2 ∈ {Mimicry,Uncoordinated}
Decomposition :(
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t Sp j
t−1

)
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i (a)
)

P
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Parametric forms :
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: histogram(Matrix)
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Figure 5.19: Structure of Bayesian program for proposed Empathy model.

P
(

Empi | aE f head
i Spi(t)Sp j(t−1)

)
=

P(Empi)P
(

aE f head
i |Empi

)
P(Spi(t)Sp j(t−1)|Empi)

P
(

aE f head
i

)
P(Spi(t)) P(Sp j(t−1))

(5.15)

where Empi,
aE f head

i and Spi(t) denote Empathy variable for ithperson, Effort-

Time variable based on amplitudes (a) of PS signals coefficients for head’s body part

of ith person, and spatial-based features, respectively, were j 6= i. For the spacial-based

features, we used a property of Shape component in vertical axes, which has triple

states; Sinking, Still, Rising. Since, the spatial-based feature extraction isn’t this

article concern, for more information about it, we refer our recent work [RSAD12b].

The Bayesian equation consists of several parameters, as can be seen in Table 5.9,

which presents the list of variables with their relevant descriptions.

Figure 5.19 presents the BP’s correspondent of the proposed Empathy model.
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Term(s): Description

P
(

Em fi | ∏
h=1:n

dE f h
i

)
: posterior probability

P
(

dE f head
i |Em f i

)
, P
(

dE f Right−hand
i |Em f i

)
, and P

(
dE f Le f t−hand

i |Em f i

)
: likelihood parameters

P(Em fi): prior probability

P
(

dE f head
i

)
, P
(

dE f Right−hand
i

)
, and P

(
dE f Le f t−hand

i

)
: The normalisation terms

Table 5.10: The Emphasis Bayesian rule variables descriptions

� Emphasis

When a person is thinking about different things simultaneously, his/her body parts

movements become jerky and inconsistency paced ([VV96] in [Pen08]). It means that

depending on the context, people’s emphasis can be consistent or variable (inconsistence).

To analyse this IB, usually, who is more consistent has energy in a higher frequency

domain than who is less. Thus, the frequency domain of first PS signal’s peak, is

used to feed the model. Eq.5.16 presents the relations between LMA parameters and

Emphasis IB in frequency domain.

P

(
Em fi | ∏

h=1:n

(
dE f h

i

))
=

P(Em fi) ∏

h=1:n

(
P
(

dE f h
i |Em fi

))
∏

h=1:n
P
(

dE f h
i

) (5.16)

where Em fi and dE f h
i (t) denote Emphasis variable for ithperson and Effort com-

ponent variables based on frequency domain (d) of PS signal’s coefficient for hth body

part of ith person, respectively. The Bayesian equation consists of several parameters,

as can be seen in Table 5.10, which presents the list of variables with their relevant

descriptions. Figure 5.20 presents the BP’s correspondent of the proposed Emphasis

model.

� Social Role of Leading

Social roles present the different types of relationships between people in a community.

In [Pen08], various examples proposed to illustrate how the social roles can be estimated

by combination of the IBs. Figure 5.13 presents the global BN of the whole proposed

system. This is performed by finding the Bayesian rule of the SR, that maximizes

Eq.5.17.
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P
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P
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i (d)
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Figure 5.20: Structure of Bayesian program for proposed Emphasis model.

P

(
SR | ∏

l=1:k
IBl

)
(5.17)

where l, k, IBl and SR denote the IB index (for the four IBs), number of IBs, lth IB, and

the interesting social role (Leading) variable. Figure 5.21 presents the corresponding

BP for the proposed Leading social role model.

Figure 5.22 presents a sample of IBs states during a Leading social role analysis.

As can be seen in the figure, the considered leader is highly interested and performs

many body motions to be influent for others. (S)He moves often and consistently, with

no concerns for the other person movements (low empathy). Thus, in the diagram, low

probability of Indicator means that the person is in influenced, otherwise in influent

state, and low probability of Empathy means the person is in uncoordinated, otherwise

in mimicry state. Low probability of Interest means the person is in passive, otherwise

in active state, and low probability of Emphasis means the person is in consistent,

otherwise in inconsistent or variable state.

In this study, we tested the model on peer interaction scenarios. For modelling the

variables by having more persons, estimation of LMA components for all people can be

applied individually, in parallel approach. For Interest and Emphasis variables, since

they are not related to others, can be estimated individually, however, Empathy and

Indicator variables need other’s knowledge, which increase the complexity of the mod-

eling process. Thus, to simplify the process, influence model can be used [DLC+07].
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IB ∈ {Indicator, Interest,Empathy,Emphasis}
Indicator ∈ {In f luenced, In f luent}
Interest ∈ {Passive,Active}
Empathy ∈ {Mimicry,Uncoordinated}
Emphasis ∈ {Consistance,Variable}
SR ∈ {Leading,No−Leading}
Decomposition :(

P

(
SRi ∏

B∈{IB}
(Bi)

)
= P(SRi) ∏

B∈{IB}
P(Bi |SRi )

)i=1:2

Parametric forms :(
BB∈{IB}

i=1,2

)
: Estimated f rom previousstep

P(Bi |SRi )
i=1:2
B∈{IB} : histogram(Matrix)

Iden.

Ques. : P

(
SRi

∣∣∣∣∣ ∏
B∈{IB}

(Bi)

)i=1:2

Figure 5.21: Structure of Bayesian program for proposed Leading-role model.

Figure 5.22: A probabilistic-based social role analysis.
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Figure 5.23: The motion tracker suit used by an actor and its correspondent skeleton.

5.4.3 Experiments

For collecting data, a motion tracker suit, which gives body parts 3D position, is used

(Figure 5.23). Different people put on the suit and after doing the calibration process

(for the suit’s sensors), people performed arbitrary conversation. Outputs of the suit’s

sensors as a XML file for each record series, were stored. The mentioned experiment

process was performed by ten different people. Each person in different acquisition

times participated in an arbitrary conversation with another person. Afterwards, the

states of the IBs and the SR of each person, were labeled for the learning and classifi-

cation process.

To extract features, sliding-window approach is used [KAQ+11]. The window size

was defined as one second, which shifts by a half of the window size [KAQ+11]. The

frame rate is 120 Hz. More than one hundred sequences (each sequence contains

less than 30 seconds of the body motions data) are collected, which are performed

in different IBs and SR (as leader or not-leader) states.

For the classification step, each sequence is analysed to extract LMA signals. Then

frequency based features from the second derivative of LMA signals are extracted as

was explained in previous section. Those frequency-based features are used to estimate

the IBs and the SR states probability. Half of the data was used for the learning, and

the others for the test process. Figure 5.24, Figure 5.26 and Figure 5.28 present three

scenarios, which consist of different levels of signal processing from the LLFs to the SR

estimation;

� Scenario A: a couple of people, a supervisor and a student are in a formal conver-

sation, and the supervisor is guiding the student about his work. Figure 5.24-(a)
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presents the skeletons of the people during the conversation. The right person is

the supervisor.

� Scenario B: two colleagues are talking about a project. One of them, a PhD

student, is describing the project, which is related to his PhD study, to a new

researcher of the laboratory. Figure 5.26-(a) presents a sequence of the people’s

movements and the corresponding skeletons during the conversation. The person

on the right is the PhD student.

� Scenario C: two colleagues are arguing. The person on the right is attacking the

person on the left about what (s)he did, and the person on the left is defending

him/herself. Figure 5.28-(a) presents a sequence of the people’s movements and

corresponding skeletons during the conversation.

In each of those figures, we present the corresponding signal processing in different

steps;

� First step: shows the scenario of conversation by a sequence of images of body

movements performed by the people involved, labeled as (a).

� Second step: a sequence of PS signals obtained from the body parts acceleration

signals during the conversation, which can be seen on the second row of the

figures, for each person, labeled (b) and (c). The mentioned diagrams present

the changes of PS signals of each body part during conversations.

� Third step: presents a sequence Effort-Time results provided from the sequence

PS signals, obtained in the previous step (estimated by the Eq. 5.12). The

sequence Effort-Time results is presented in the third row of the figures, for each

of the involved persons, labeled (d) and (e).

� Fourth step: the PS signal obtained from the corresponding second derivative

of Effort-Time signal for each body part, is presented in the fourth row of the

figures, labeled as (f) and (g).

� Fifth step: the obtained probabilities of IBs and the SR are presented in the last

row, as labeled (h) and (i), each of them belongs to one of the involved people.
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Results discussion:

Figure 5.24-(a) presents a sequence of the scenario A. Figure 5.24-(b) and Figure 5.24-

(c) present the right and left person PS signals in every 50 frames (50/120 second time

shift), respectively. As we expected, in the Figure 5.24-(b), we can see more energy in

the supervisor’s body parts PS signals, than in the student ones which can be seen in

Figure 5.24-(c) (about 10 times).

The sequence of Effort-Time data from the person on the right, shows high varia-

tion in the corresponding signals of the supervisor’s hands (Figure5.24-(d)), than the

student’s ones, which is presented in Figure 5.24-(e). It shows that the supervisor

wants to influence the student, and the student presents a few motions to show that

he is interested in the conversation.

Then, Figure 5.24-(f) and Figure 5.24-(g) present that in the estimated PS signals

from the supervisor’s corresponding Effort-Time signals, has several high amplitudes

(peaks) in various frequency domains for his hands, but for the student it is not the

same.

Figure 5.24-(h) and Figure 5.24-(i) present the estimated four IBs and SR proba-

bilities. As can be seen in the Figure 5.24-(f) and Figure 5.24-(g), the coefficients of

the right person’s PS signals has a higher amplitude than the left person. Thus, the

right person has more probabilities in Influent and Active states than the other. Since

there are no head nodding signals, we don’t see a considerable difference between the

couple’s Mimicry states.

The first coefficient of the person on the right appears in a lower frequency domain

than the other one, thus, we see less probability distribution in consistence state of

Emphasis variable for the right person than the left one. However, several coefficients

in higher frequency domains for the right person can be seen, which illustrate that

the Variable state’s probability should be lower than we obtained. In the future, that

information can be considered to improve the model. It can be inferred that the person

who is in the Leading role state, consumes more energy in his body motions, however,

the probability of Variable state of the person, is much higher than the other, which

makes sense (the one has more energy in his/her body movement, usually has more

chance to lose his/her consistency).

Figure 5.25 shows second by second the conversation scenario A. The number of

each frame is shown on the corresponding skeleton images. Between each two se-
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— — — —
(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 5.24: A sample of data processing for a sequence of a couple of persons move-
ments (through the proposed scenario A), is presented ( skeletons and images of the
people can be seen in (a)) . left column belongs to the right person (who is the leader)
and the right column belongs to the other. (b) and (c) show PS signals of the human
body parts acceleration for every 1/2.4 second. (d) and (e) present the obtained LMA-
Effort-Time probability signals of each body parts of the people (1:sustained state/
0:sudden state). (f) and (g) show the PS signals which are obtained from (d) and (e).
(h) and (i) present the outputs of model which are the IBs and the SR probability for
the left and right persons, respectively.
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quence frames, two diagrams show the PS signals obtained from LMA data of the

people, and one comparative diagram for their IBs and SR probabilities with order

of Indicator(influent), Interest(active), Empathy(mimicry), Emphasis(consistent) and

SR(Leading). It should be mentioned that in each step the results are estimated by

using all obtained data until the current frame. It can be seen that during the con-

versation, the person on the right is more active to influence the other, and one on

the left is following the right person by showing some body motion as a good listener.

Thus, the most probability for leading state always belongs to the person on the right,

indicated with blue colors.

In Figure 5.26 another example of a conversation scenario (scenario B) can be

seen, with a sequence of images of the people’s movements and their corresponding

skeletons. In this trial, the left person shows low interest in the conversation, and

performed smooth body movements during the conversation, as can be realized on the

obtained corresponding LMA signals. The Effort.Time signals for the right person

shows that the person is very active to influence the other person. Thus, it caused

the high probability Indicator’s IB and the Leading SR, which shows the meaningful

relation between Indicator’s IB and the Leading role. From the obtained results, we

can understand that through those presented conversations there are no considerable

signals related to the Empathy IB (head nodding and mimicry movements).

Figure 5.27 shows second by second the conversation scenario B. The number of

each frame is shown on the corresponding skeleton images. Between each two se-

quence frames, two diagrams show the PS signals obtained from LMA data of the

people, and one comparative diagram for their IBs and SR probabilities with order

of Indicator(influent), Interest(active), Empathy(mimicry), Emphasis(consistent) and

SR(Leading). It should be mentioned that in each step the results are estimated by

using all obtained data until the current frame. It can be seen that during the conver-

sation, one of the persons is not very interested in the conversation subject. Thus, the

most probability for leading state always belongs to the person on the right, indicated

by blue colors.

In Figure 5.28 other types of conversation scenario (scenario C) can be seen, with

a sequence of images and corresponding skeletons of the people. In this conversation,

both persons are highly engaged in the conversation, and trying to convince the other

that they are right. The left person is in a more defensive position and moves his/her

body parts more smoothly than the other. PS signals and LMA data of both persons
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— — — —
(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 5.26: A sample of data processing for a sequence of a couple of people movements
(through the proposed scenario B) (part (a)) is presented. left column belongs to the
right person (as a leader) and the right column belongs to the another. (b) and (c)
show PS signals of human body parts acceleration for every 1/2.4 second. (d) and (e)
present the obtained LMA-Effort-Time probability signals of each body parts of the
people (1:sustained state/0:sudden state). (f) and (g) show the PS signals which are
obtained from (d) and (e). (h) and (i) present the outputs of model which are the IBs
and the SR probability for the right and left persons, respectively.
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IBs & SR Indicator Interest Empathy Emphasis Leading Role
State Inft. Infd. Act. Pas. Mim. Unc. Con. Inc. Leading No-Leading
PCR 78% 95% 98% 95% 71% 74% 97% 98% 0.93% 0.88%

Table 5.11: Positive Classification Rate (PCR) results for the IBs and the SR models

show that they are performing body motions to influence the other, but the right

person, presented in the left column, performed more energetic movements, which can

be seen in Figure 5.28-(c) and Figure 5.28-(e). The PS signals of LMA.Effort.Time

signals for the right person, show higher coefficients in lower frequency domains (even

for his head). It means that he is more active to influence another person. Thus, we

see high probability Indicator’s IB and the Leading SR for the right person, however,

the left person signals shows that (s)he is highly engaged in the conversation, but (s)he

hasn’t succeeded in influencing the other.

Figure 5.29 shows second by second the conversation scenario C. The number of

each frame is shown on the corresponding skeleton images. Between each two se-

quence frames, two diagrams show the PS signals obtained from LMA data of the

people, and one comparative diagram for their IBs and SR probabilities with order

of Indicator(influent), Interest(active), Empathy(mimicry), Emphasis(consistent) and

SR(Leading). It should be mentioned that in each step the results are estimated by

using all obtained data until the current frame. It can be seen that during the conver-

sation, the higher probability of each IBs and leading role between people are changed.

For instance; during 840 to 960 frames the leading state is changed from the right per-

son to the left one, indicated by blue and red colors respectively. However, in overall

result, the right person is presented with a more leading role state than the other.

Table 5.11 presents the overall results for all sequence performed scenarios. The

results prove that by using frequency-based features in LMA space, the accuracy of

IBs recognitions are more precise, than the previous approach [RSAD12b] (from about

77% to about 88%). We should mention that in the previous approach the analysis

results were based on one second window slide data, while, the obtained results in this

work are analysed based on the whole data of each sequence (less than 30 seconds).

Thus using longer data, improves the accuracy of the results, as it was mentioned in

[Pen08], which concluded that the adequate time for such an analysis is thirty seconds.

It should be mentioned that this study concerns only body motion based IB analysis,

and our annotation and the learning process were just based on the body motion

features. In the future, the adequate duration segmentation for the proposed model
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 5.28: A sample of data processing for a sequence of a couple of people’s move-
ments and their corresponding skeletons (through the proposed scenario C) (part (a))
are presented. The left column belongs to the right person (as a leader) and the right
column belongs to the another. (b) and (c) show PS signals of human body parts ac-
celeration for every 1/2.4 second. (d) and (e) present the obtained LMA-Effort-Time
probability signals of each body parts of the people (1:sustained state/0:sudden state).
(f) and (g) show the PS signals which are obtained from (d) and (e). (h) and (i) present
the outputs of model which are the IBs and the SR probability for the right and left
persons, respectively.
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can be investigated.
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5.5 Discussion

The body part motion-based IBs are analysed in a couple of different approaches. In

the first proposed approach, we used a common approach for learning and recognition

process. We proposed a sliding window approach to analyse LLFs to estimate LMAs

and then IBs on each sliding window. By shifting the slide window we apply the same

process on the new slide, to have new LMA and IBs results by using the obtained

previous knowledge. Thus, the confusion table was obtained based on all obtained

results for those sliding windows process. However, social scientists claim that some

seconds are needed to understand IBs properly. To follow the mentioned role, another

approach was proposed. We still use the sliding window approach to obtain LMA

parameters, but we don’t go directly to analyse IBs. A sequence of sliding windows

was selected to obtain their LMA data. Then, based on obtained LMA data which we

call LMA signals, we explore frequency properties to estimate IBs. It means that in

this approach we used several sliding windows information, which contain some seconds

of body motion information, to estimate IBs. Then, the defined SR was estimated

based on those IBs. As can be seen in the obtained results accuracy, a magnificent

improvement can be seen. In the first step, we have every second IBs states for each

person, but in the second approach we have more reliable results.
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5.6 Conclusion

In this study, a new approach to parameterize human Interpersonal Behavior (IB)

using body motion description (LMA) evidence was proposed. To find the dependen-

cies between body part motions-based features and the IBs, we inspired ourselves in

the definitions of social signal by Alex Pentland and the human motion descriptor of

Rudolph Laban. We used Bayesian Network (BN) to define our models and a his-

togram approach to perform supervised learning. The results are encouraging, and

motivate us to further explore this work. Then, based on the Pentland’s definition and

our previous work, we realized that most of the IBs are highly connected to Effort com-

ponents. Then, we attempted to explore through obtained Effort signals in frequency

domain to find more reliable features to estimate the IBs and the Leading role. The

existent dependencies are implemented by using BN approach. The results present the

capability of the frequency based features to analyse those IBS and the social role.

To improve the model, and using both approaches advantages, it is possible to merge

those approaches by having another sliding window analysis on the LMA level (such

as LLF level). We intend to extend this work to analyse different SRs based on the

other tracker data such as kinect-based or camera network based.
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Overall conclusions and future work

In this thesis study, body motion-based human behaviour was investigated in a bottom-

up strategy, as can be seen in Fig.1.1. A motion tracker suit was used to collect different

class of human activities data. The data was the 3D position, velocity, acceleration,

etc. of different body parts which were stored as XML files. However, we obtained

multi-modal based dataset from PROMETHEUS European Project, and we applied it

in some of our related experiment tests [KAM+11].

Human movement analysis is a very complex problem because of the existing sev-

eral dependencies and high flexibility between different human body parts and scene

context. Thus, to simplify the complexity of the system and fill the existing big gap

between LLFs and human activities, a human movement analysis system was used.

Laban Movement Analysis (LMA) is the system which provides several components,

which contain the needed features, to interpret any human movements in a scene,

by choreography scientists. Meanwhile we could use the LMA semantics to interpret

human movements in different level of analysis.

For implementing the idea, Bayesian approaches have been used. A Bayesian ap-

proach presents many advantages on using prior knowledge and modeling the dynamic

dependencies between parameters of object states. In the related fields, this approach

is popular and researchers have been keen on applying it. There are several reasons

to use the Bayesian approach in the mentioned application: Bayes theorem is valid in

all common interpretations of probability, can represent and solve decision problems

under uncertainty, it is a common approach to predict, an explicit approach to follow

states, does not need large amounts of data to be trained, and it is able to fuse different

159
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types of data in one model.

The first level of analysis was estimating LMA components by obtained LLFs. The

contribution of this study in this step, was exploring through frequency domain features

to estimate Effort property of LMA. Effort component was provided to explain how

human consume energy during his/her body part motions. Thus, FFT and Power

Spectrum (PS) techniques were used on the acceleration signals of each body parts,

to extract the needed invariant coefficients and features for estimating Effort.Time

subcomponent [KAQ+10]. Those acceleration signals obtained in body-centred system,

and the reference coordinate was located in the body centre (independent of the scene).

Meanwhile, to analyse individual actions, we used another LMA component in spatial

domain ”Shape” to complement Effort component which was obtained in frequency

domain [KAQ+11].

In the next step, we attempt to model the Relationship component of LMA, which

contains all possible relations between each body part motion with other body parts,

outside stationary objects and another person, to estimate different human context-

based activities [RD13a], such as human-object and human-human interaction. To

improve the model, context-based knowledge was also used to analyse human activities

[RD13b].

Since the human movement is variant in temporal and spatial domains, several false

detections usually appear during some of the classification process. The false detections

usually happen in the boundary of two different movements during a sequence of human

movements. Thus, an adaptive sliding window approach, which used the previous

estimation entropy as a feedback to the next analysis, was proposed to deal with such

a common problem in human movement understanding.

The proposed framework allowed us to explore in more complex human behaviour

in social context. Inspired by of Alex Pentland investigation [Pen08], four basic Inter-

personal Behaviours (IBs) were analysed based on the LMA components [RSAD12a].

To improve the obtained IBs recognition accuracy, frequency-based analysis in LMA

level was proposed to estimate not only the IBs, but also a social role ”Leading”, which

could be obtained by those obtained IBs.

We agree with Aggarwal and Ryoo’s opinion, as they mentioned in [AR11]; ” In

the near future, hierarchical approaches together with strong action level detectors

will be explored for reliable recognition of complex activities”. As they have covered
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in [AR11],” hierarchical approaches have their advantages in recognition of high-level

activities performed by multiple persons, and they must be explored further in the

future to support demands from surveillance systems and other applications”.

We believe that the obtained framework has the capability to be extended to dif-

ferent complex applications and scenarios. We intend to explore more in social context

scenarios and robotic-based applications, which are going to be the near future interest-

ing challenges in the related communities. In this work, we did not study 3D body part

pose estimation problems from image-based data, because it was out of scope of this

study. Meanwhile, we realized that 3D body part pose estimation from image-based

data is still an active challenge in the relevant communities. However, by using some

devices such as Kinect, we are quietly confident that the problem will be solved soon.

Based on the reason, we are preparing a global dataset of different human activities

using both motion trackers and kinect. Then, we will continue this research based on

the new dataset.
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