
FIRE RESISTANCE OF COMPOSITE COLUMNS MADE OF
CONCRETE FILLED CIRCULAR HOLLOW SECTIONS AND WITH

RESTRAINED THERMAL ELONGATION
Un

ive
rsi

ty 
of 

Co
im

br
a 

FIR
E 

RE
SIS

TA
NC

E 
OF

 C
OM

PO
SIT

E 
CO

LU
MN

S 
MA

DE
 O

F 
CO

NC
RE

TE
 F
ILL

ED
CIR

CU
LA

R 
HO

LL
OW

 S
EC

TIO
NS

 A
ND

 W
ITH

 R
ES
TR

AIN
ED

 T
HE

RM
AL

 E
LO

NG
AT

IO
N

 
Tia

go
 A

nc
elm

o 
de

 C
arv

alh
o 

Pir
es 

de
 O

liv
eir

a

Tiago Ancelmo de Carvalho Pires de Oliveira

Thesis presented in fulfillment of the requirements for the Degree of Doctor of
Philosophy (PhD) in “Construção Metálica e Mista” - Dept. of Civil Engineering -

Faculty of Sciences and Technology of the University of Coimbra 

2013



 

 

 

 

 

 

 
 
 
 

 
 
 

FIRE RESISTANCE OF COMPOSITE COLUMNS MADE OF 

CONCRETE FILLED CIRCULAR HOLLOW SECTIONS AND WITH 

RESTRAINED THERMAL ELONGATION 
 
 
 

Thesis presented in fulfillment of the requirements for the Degree of Doctor of 
Philosophy (PhD) in “Construção Metálica e Mista” – Dept. of Civil Engineering – 

Faculty of Sciences and Technology of the University of Coimbra 
 
 
 
 

Author 

Tiago Ancelmo de Carvalho Pires de Oliveira 

 

Supervisors 

Prof. João Paulo Correia Rodrigues 
University of Coimbra, Portugal. 
 

Prof. José Jéferson do Rêgo Silva 

Federal University of Pernambuco, Brazil. 
 
 

Coimbra, September 2013 

Institu te for Sustainability and

Innovation in Structural Engineering



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation ACKNOWLEDGEMENTS 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira ii 

 

ACKNOWLEDGEMENTS 

 

To my supervisors Professors João Paulo Correia Rodrigues and José Jéferson do Rêgo Silva 

for their tireless dedication to the supervision of this work, it was indispensable to the success 

of this research. 

The PhD scholarship of Erasmus Mundus in the framework of the “Improving Skills Across 

Continents (ISAC)” Programme, the Portuguese Foundation for Science and Technology 

(FCT) due to financial for the research in the framework of PTDC ECM 65696/2006 research 

project, Metalcardoso S.A. and A. da Costa Cabral for providing steel profiles at a reduced 

price for the experimental tests and other enterprises that contributed to the research. 

Professors, employees and friends of the PhD program “Construção Metálica e Mista” of the 

University of Coimbra, the Division of International Relations at the University of Coimbra 

and other bodies of the University of Coimbra who contributed immensely to the realization 

of this work. 

To the University of Coimbra, Coimbra city and the Portuguese State who welcomed me 

during this period. 

To my friend and Professor Dayse Duarte of the Federal University of Pernambuco – Brazil, 

which was always encourage my academic career. 

To the friends I met on this journey, which facilitated the adaptation and coexistence stay in 

Coimbra, Portugal. 

To my uncles, cousins, brothers, friends, who directly or indirectly took part in all this. 

Finally, but not least to my family: Dad, Mom, Camila and Dede, you more than anyone else 

lived this journey by minors. Thanks for your patience, I apologize for my shortcomings, and 

I dedicate this work to you. 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation ABSTRACT 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira iii 

 

ABSTRACT 

Composite columns made of Concrete Filled Circular Hollow (CFCH) sections or CFCH 

columns become popular principally in high-rise and industrial buildings as a good solution 

for fire situation due advantages such as high load-bearing capacity, high seismic resistance; 

attractive appearance, slenderness, fast construction times and reduced costs. 

Despite several research studies on fire resistance of CFCH columns, its behaviour in fire is 

not completely understood. Most of these studies did not consider the restraining to column 

thermal elongation, important parameter for behaviour of the column on fire when that one is 

inserted in a structure. 

This thesis presents the results of a series of forty fire resistance tests on CFCH columns with 

axial and rotational restraining to thermal elongation. Parameters such as the slenderness of 

the column, its load level, the stiffness of the surrounding structure, the ratio of steel 

reinforcement and the degree of concrete filling inside the column, were tested. Circular 

Hollow Sections (CHS) columns (i.e. steel columns) were tested also for comparison. 

A three-dimensional nonlinear finite element model developed in ABAQUS (2011) to predict 

the behaviour in fire of these columns is presented and validated in comparison with the fire 

tests. The model includes the relevant parameters tested experimentally. 

The research is complemented with a numerical analysis that includes a range of practical 

values of load level, diameter of the column and ratio of reinforcement for the columns. Based 

on this study, simple equations to evaluate the critical time of the CFCH columns are 

proposed. Finally, a comparison between the research results and the simple methods 

proposed by EN1994-1-2 (2005) is presented. 

The thesis shows critical times smaller than the fire resistance suggested in literature for the 

studied CFCH columns. The stiffness of the surrounding structure does not lead to major 

changes in the critical times. The numerical model presents results in close agreement with 

the experimental data. Based on numerical data simplified equations to evaluate the critical 

time of these columns with restrained thermal elongation were proposed. The tabulated data 

method may be unsafe and the simple calculation model is conservative to evaluate the fire 

resistance of CFCH column in the fire. 

 

Keywords: fire, column, steel, concrete, resistance, thermal restraining. 
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RESUMO 

As colunas tubulares em aço de secção circular preenchidas por betão (CFCH) tornaram-se 

populares na indústria da construção civil, especialmente em plantas industriais ou prédios 

altos, como uma boa solução em situação de incêndio. Isto deve-se a sua alta capacidade de 

carga, resistência sísmica, elegância, esbeltez, tempos e custos de construção reduzidos. 

Apesar de vários estudos de investigação sobre a resistência ao fogo de colunas CFCH, o seu 

comportamento em caso de incêndio ainda não é completamente compreendido. A maioria 

destes estudos não considera a restrição ao alongamento térmico do pilar, parâmetro 

importante para seu desempenho ao fogo quando este se encontra inserido em uma estrutura. 

Este trabalho apresenta os resultados de uma série de quarenta ensaios de resistência ao fogo 

realizados em colunas CFCH com restrição a rotação e a deformação axial durante o 

alongamento térmico. Parâmetros como a esbeltez da coluna, seu nível de carga, a rigidez da 

estrutura circundante, a taxa de armadura e o grau de preenchimento com betão no interior da 

coluna, foram testados. Colunas tubulares em aço de secção circular (CHS) também foram 

testadas como referência. 

Um modelo tridimensional não linear em elementos finitos desenvolvido na ABAQUS (2011) 

para prever o comportamento do fogo das referidas colunas é apresentado e validado em 

comparação com os resultados experimentais. Os parâmetros testados experimentalmente 

mais relevantes para o comportamento ao fogo dos pilares foram considerados no modelo. 

A pesquisa é complementada com uma análise numérica que abordou diferentes valores de 

níveis de carga, diâmetros externos e taxa de armadura para as colunas. Baseado nestes 

resultados equações simples para avaliar o tempo crítico das colunas CFCH foram propostas. 

Por último, é apresentada uma comparação entre os resultados da pesquisa e os métodos 

simplificados da EN1994-1-2 (2005). 

As colunas apresentaram tempos críticos inferiores aos divulgados na literatura. A rigidez da 

estrutura circundante não influenciou os tempos críticos. O modelo numérico apresentou 

resultados em conformidade com os experimentos. Baseados nestes resultados foram 

propostas equações simplificadas para o cálculo do tempo crítico de colunas com restrição ao 

alongamento térmico e em situação de incêndio. O método tabular pode ser inseguro para 

alguns casos, já o método simplificado proposto pela referida norma mostrou-se conservativo 

para avaliar a resistência ao fogo de colunas CFCH em situação de incêndio 

 

Palavras-chave: fogo, colunas, aço, betão, resistência, restrição à dilatação. 
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NOTATION 

 

Latin symbols 

 

Aa Cross-sectional area of the steel profile or steel hollow section 

Ac Cross-sectional area of the concrete 

As Cross-sectional area of the reinforcing bars 

Ea Modulus of elasticity of structural steel at ambient temperature 

Ec Effective modulus of elasticity for concrete at ambient temperature 

Es Modulus of elasticity of reinforcing bars at ambient temperature 

Ea,θ,σ Tangent modulus of stress-strain relationship for structural steel at temperature θ 

and for a stress σa,θ 

Ec,θ,σ Tangent modulus of stress-strain relationship for concrete at temperature θ and for a 

stress σc,θ 

Es,θ,σ Tangent modulus of stress-strain relationship for reinforcing bars at temperature θ 

and for a stress σs,θ 

(EA)eff Effective axial stiffness 

(EI)eff Effective flexural stiffness 

Ia Moment of inertia of the steel profile or steel hollow section, related to the central 

axis y or z of the composite cross-section 

Ic Moment of inertia of the concrete, related to the central axis y or z of the composite 

cross-section 

Is Moment of Inertia of the reinforcing bars, related to the central axis y or z of the 

composite cross-section 

K Stiffness of the surrounding structure 

Kas Axial stiffness of the surrounding structure 

Krs,i Rotational stiffness of the surrounding structure in “i” direction 

Kas,c Axial stiffness of the column 

Krs,c Rotational stiffness of the column 

L Real length of the column 

Le Buckling length of the column 

Ned Design value of the buckling load at room temperature 

Npl,Rk Characteristic value of the plastic resistance of the composite section to compressive 

normal force at room temperature 

Ncr Elastic critical or Euler buckling load at room temperature 

Nfi,rd Design axial buckling load at elevated temperature 

Nfi,cr Elastic critical or Euler buckling load at elevated temperature 

Nfi,pl,rd Design value of the plastic resistance to axial compression of the total cross-section 

P Applied load on the column 

P0 Initial applied load on the column 
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b Width of the steel section 

d Diameter of the column 

e Thickness of steel wall profile 

fay Yield strength of structural steel at ambient temperature 

fau Ultimate tensile strength of structural steel at ambient temperature 

fcu,j Compressive cube strength of concrete at “j” days 

fc,j Compressive cylinder strength of concrete at “j” days 

fsy Yield strength of reinforcing bars at ambient temperature 

fsu Ultimate tensile strength of reinforcing bars at ambient temperature 

h Depth or height of the steel section 

hc Convective heat transfer coefficient 

lθ Relevant buckling length in fire situation 

t Fire duration time 

us Axis distance of reinforcing bars 

umáx Maximum axial deformations of the column 

  

Greek symbols 

α Degree of axial restraint 

βi Degree of rotational restraint in “i” direction 

εm Emissivity of the material 

εf Emissivity of fire 

ϕ Diameter (size) of a steel reinforcing bars 

ϕr Radiation configuration factor 

    Relative slenderness 

η Load level 

ηfi,t Load level for fire design 

ρ ratio of reinforcement with reinforcing steel bars 

σ Stephan-Boltzmann constant 

σa,θ Stress in structural steel at temperature θ 

σc,θ Stress in concrete at temperature θ 

σs,θ Stress in reinforcing bars at temperature θ 

γM,fi,a Partial safety factor of structural steel for fire design 

γM,fi,c Partial safety factor of concrete for fire design 

γM,fi,s Partial safety factor of reinforcing bars for fire design 

θ Temperature of material 

θ0 Initial temperature 
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1. INTRODUCTION 

1.1 General Considerations 

The Fire Safety Engineering had a large development in the 80s, important regulations and 

reference documents were addressed around the world such as the European 

Recommendations for the Fire Safety of Steel Structures – ECCS (1983). 

In the 90s, the European Committee for Standardization (CEN) published the first editions of 

the parts concerned with Fire Safety Design of the Eurocodes. Actually, these documents 

were: 

 Eurocode 1: Actions on Structures. Part 1.2: General Actions – Actions on Structures 

Exposed to fire (EN 1991-1-2:2002); 

 Eurocode 2: Design of Concrete Structures. Part 1.2: General Rules – Structural Fire 

Design (EN 1992-1-2:2004); 

 Eurocode 3: Design of Steel Structures. Part 1.2: General Rules – Structural Fire 

Design (EN 1993-1-2:2005); 

 Eurocode 4: Design of Composite Steel and Concrete Structures. Part 1.2: General 

Rules – Structural Fire Design (EN 1994-1-2:2005); 

 Eurocode 5: Design of Timber Structures. Part 1.2: General Rules – Structural Fire 

Design (EN 1995-1-2:2004); 

 Eurocode 6: Design of Masonry Structures. Part 1.2: General Rules – Structural Fire 

Design (EN 1996-1-2:2005); 

 Eurocode 9: Design of Aluminium Alloy Structures. Part 1.2: General Rules – 

Structural Fire Design (EN 1999-1-2:2007); 

However since a long time ago and until nowadays, fires cause numerous and irreparable 

losses to the world heritage these are financial, life, cultural, environmental and others losses. 

Figure 1.1 presents the number of fires and Figure 1.2 the number of deaths related to fires by 

location group registered in Great Britain (UK) according the fire statistics of Department for 

Communities and Local Government. Most of deaths were in dwellings fires (Figure 1.2). 
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Figure 1.1 – Fires by location group in UK (Department for Communities and Local 

Government, 2012). 

 

Figure 1.2 – Fatalities from fires by location group in UK (Department for Communities and 

Local Government, 2012). 
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The United States of America (USA) registered 1.6 millions of fires in 2005 with 3677 deaths, 

83% of these deaths occurred in dwellings fires (Seito et al. 2008).  

Each year hundreds of deaths and billions of dollars in property losses occur due to fires 

(Buchanan, 2001). Drysdale (1998) reported that in the United Kingdom (UK) direct losses 

such as physical property, human life, and in the production line due fires exceed more than ₤ 

1 billion of sterling pounds and over than 800 deaths each year. 

In USA the financial losses due fire are around 85 billions of dollars according Quintiere 

(1998). Later, Hall Jr. (2005) points out that theses costs were 93.9 billions of dollars in 2003. 

The Canada has an annual cost due fires in the order of 11 billions of Canadian dollars based 

on 1991 values according Schaenman et al (1995). Denmark in 1998 had damages due fires 

around 10,825 millions of Danish kroner (Moller, 2001).  

The fire costs represented 0.813% of USA Gross Domestic Product (GDP), 0.864% of 

Denmark GDP and 0.729% of UK GDP according to Ramachandran (1998). 

Table 1.1 presents the costs with direct losses and deaths due fires in years from 2005 up to 

2007 according The Geneva Association apud segurancaonline@ (2012). 

 

Table 1.1 – Direct losses and deaths due fires (Adapted from segurancaonline@, 2012) 

Country 

Direct losses 

(in billions of Euros)  
Deaths 

2005 2006 2007 %GDB 2005 2006 2007 
Deaths 

/1000 hab. 

Germany 2.9 3.3 3.4 0.13 605 510 - 0.68 

EUA 8.3 9.0 11.4 0.10 4000 3550 3750 1.23 

France 3.4 3.3 3.4 0.19 660 620 605 1.02 

UK 2.1 1.8 1.8 0.3 515 515 465 0.82 

Japan 2.3 2.4 2.1 0.12 2250 2100 2050 1.67 

 

Unfortunately the inexistence of a standard form to collect, analyze and publish theses 

statistics and the fact that not all fires are taken into account introduce some vies in analysis 

making so difficult a comparison. However it is clearly the high cost to society of fire 

damages and the necessity of a fire risk management. 
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The modern fire risk management models include the behaviour in fire situation of structures 

such as the model based on performance proposed by Fitzgerald (2003). In this way the 

analysis of the structure subject to fire is an important step of a fire risk management model. 

In last decade the use of composite structures and in particular composite columns made of 

Concrete Filled Circular Hollow (CFCH) sections or to keep it simple CFCH columns 

become popular in high-rise and industrial buildings as a good solution for fire situation. 

This choice is justified by the advantages of this type of column such as the high load-bearing 

capacity and high seismic resistance; the attractive appearance and better use of the built 

space due to the possibility of use columns with smaller cross-sections; the fast construction 

technology and reduction in costs due to avoid formworks; and finally, its good fire 

performance. Therefore, these columns seem to be an adequate construction solution in terms 

of load-bearing capacity at ambient temperature and in fire 

The behaviour of CFCH columns when subjected to fire has been studied by several authors 

for years in experimental approaches such as the tests of National Research Council of 

Canada summarized in Kodur (1999), the tests realized by Han et al. (2003a and 2003b) and 

the tests presented by Romero et al. 2011. Numerical researches such as the presented by Lie 

(1994), Ding and Wang (2008), Hong and Varma (2009), Schaumann et al. (2009) and 

Espinos et al. (2010), complemented the experimental researches.  

However most of these studies did not consider the restraining to column thermal elongation. 

The response of these columns when inserted in a building structure is different than when 

isolated. Restraints on the thermal elongation of the column, provoked by the building 

surrounding structure, plays a key role on columns stability, since it induces different forms of 

interaction between the heated column and the cold adjacent structure. The increase in the 

stiffness of the surrounding structure to the column subjected to fire increases not only the 

axial but also the rotational restraining, while the former reduces the critical time (also the 

critical temperature) of the columns, the latter increase them (Ali et al., 1998; Valente and 

Neves, 1999; Rodrigues et al., 2000 and Neves et al., 2002). 

Thereby the restraining to thermal elongation is an important parameter on fire performance 

of structures that was not considered in previously researches and its influence on the 

behaviour of CFCH columns subjected to fire is one of the main aims of this research. 

On the other hand, there are important differences on the experimental and numerical models 

presented in literature such as the column failure criteria, the thermo-mechanical model 

applied for steel and concrete materials or in the simulation of relevant aspects as the thermo-

mechanical behaviour in the interface between the steel tube and concrete core. These 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 1 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  5 

 

differences make difficult a comparison between the results and lead to divergences in the fire 

resistance of the columns. 

This thesis presents the results of a series of forty fire resistance tests on CFCH columns with 

axial and rotational restraining to thermal elongation. The columns were filled with plain 

concrete (CFCH-PC) and reinforcing concrete (CFCH-RC). Relevant parameters that had 

influence in fire resistance of the columns were tested, such as: slenderness and cross-

sectional external diameter of the column; load level; stiffness of the surrounding structure 

which imposes restraining to thermal elongation of the column; percentage of steel bar 

reinforcing; and degree of concrete filling inside the column. Circular Hollow Sections (CHS) 

columns (i.e. steel columns) were tested also for comparison. 

A three-dimensional nonlinear finite element model developed with ABAQUS (2011) to 

predict the behaviour of these columns is also presented, verifying its more relevant 

parameters, and considering the restraints of columns to their thermal elongation that adds a 

rather difficult step to the problem analysis. The model is validated in comparison with the 

experimental fire tests results.  

The study of the behaviour in fire of CFCH columns with restrained thermal elongation was 

complemented with an analysis based on numerical data obtained with the proposed 

numerical model. A range of practical values of load level, diameter of the column and ratio 

of reinforcement was studied. Based on numerical data simplified equations to evaluate the 

critical time of CFCH columns with restrained thermal elongation were proposed. 

In addition, a comparison between experimental results and a set of simplified equations 

proposed with the tabulated and the simple calculation methods proposed by EN1994-1-2 

(2005) are presented in order to verify the capacity of these methods to assess the structural 

behaviour in fire of CFCH columns with axial and rotational restraining to thermal 

elongation. 

 

1.2 Objectives 

1.2.1 General objective 

Aggregate knowledge on the structural performance of steel and composite steel and concrete 

structures in fire. 
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In particular analyse the behaviour in fire of CFCH columns with axial and rotational 

restraining to thermal elongation testing the main parameters that had great influence in its 

fire performance. 

 

1.2.2 Specific objectives 

1. Carry out an experimental research by fire resistance tests on CFCH columns 

with restraining to thermal elongation; 

2. Develop and validate a numerical finite element model to assess the fire 

performance of these columns in fire; 

3. Review of the state of the art in the behaviour of CFCH columns in fire; 

4. Compare the results with the simple methods proposed for these columns in 

EN1994-1-2 (2005) and suggest improvements; 

5. Contribute to a standard method to assess the fire resistance of CFCH columns 

closer than a real situation; 

 

1.3 Scope of thesis 

This thesis is divided in the following chapters: 

Chapter 1 presents the introduction to the problem and the necessity to study fire risk 

management of structures in particular the behaviour in fire of CFCH columns. Also the 

objectives and an overview of this research are presented in this chapter. 

Chapter 2 presents the state of the art in the behaviour of CFCH columns subjected to fire. An 

overview of the studies published in international papers and conference proceedings 

concerning the object of study of this thesis (i.e. CFCH columns subjected to fire) is 

presented. In addition others researches were added for a better understanding of the fire 

behaviour of these columns. 

Chapter 3 describes the experimental programme carried out with details of the experimental 

method and the parameters tested. Then results of temperatures, restraining forces, axial 

deformation, critical times and failure modes are showed. 
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Chapter 4 presents the numerical model developed in ABAQUS and its features implemented. 

The results are presented in a comparison with the experimental tests in order to validate the 

model. 

Chapter 5 presents a numerical analysis to complement the study of the behaviour of CFCH 

columns in fire. Equations to evaluate the critical time of these columns are presented. In 

addition a comparison with the simple calculation methods presented in EN1994-1-2 (2005) is 

presented. 

Chapter 6 presents the general conclusions of this research also the prospects of future studies. 

Chapter 7 contains a list of biography used in this thesis.  
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2. STATE OF THE ART 

2.1 Introduction 

Concrete Filled Hollow (CFH) columns have a good fire performance (i.e. fire resistance 

above 60 minutes). That does not mean that they do not need to be designed for fire situations. 

In this situation, their behaviour is totally different from that at an ambient temperature. 

First of all, the reduction in mechanical properties and changes in the characteristics of the 

materials (i.e. steel and concrete) due to the high temperatures reduce the resistance of the 

columns. 

However the concrete infill, the thermal conductivity of which is less than that of steel, delays 

the rise in temperatures in the cross-section, thus benefiting its fire resistance. On the other 

hand the steel tube protects the concrete core from direct exposure to fire, thus retaining its 

integrity and reducing the probability of spalling. Furthermore the concrete core reinforced by 

steel bars or steel fibres may support the load for longer and, consequently, increase the fire 

resistance of the columns. 

Some authors (Lu et al., 2009, Ding and Wang, 2009 and Espinos et al., 2010) divide the 

behaviour of these columns during heating into 4 stages: (1) the steel tube directed exposed to 

fire heats and expands more than the concrete core leading to a loss of contact between the 

concrete core and the loading plate thus transferring all the applied load to the steel tube. (2) 

After reaching its critical temperature, local buckling of the steel tube occurs and it starts to 

shorten until the concrete core returns into contact with the loading plate. (3) After this, the 

load is progressively transferred to the concrete core thus starting its major contribution since 

due to the high temperature of the steel tube, its resistance is very low. (4) Finally with the 

increase of temperature in the concrete core, the concrete mechanical properties degrade and 

the column fails. Figure 2.1 illustrates the stages described above. 

In addition, restraints on the thermal elongation of the column, provoked by the surrounding 

structure, plays a key role in column stability and influences the deformation of the axial 

column and the restraining forces that act on the columns. 

The response of these columns when inserted into a building structure induces different forms 

of interaction between the heated column and the cold adjacent structure. The increase in the 

stiffness of the structure surrounding the column subjected to fire increases not only axial but 

also rotational restraining, while the former reduces the critical time (and also the critical 
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temperature) of the columns, the latter increase them (Ali et al., 1998; Valente and Neves, 

1999; Rodrigues et al., 2000 and Neves et al., 2002). 

 

Figure 2.1 – Stages during the heating of a CFH column (Espinos et al. 2010). 

 

Parameters such as loading level, cross-sectional dimensions, length of buckling, slenderness, 

degree of concrete filling and type of concrete used to fill the column (i.e. plain concrete – 

CFH-PC, steel bar reinforced concrete – CFH-RC or steel fibre reinforced concrete – CFH-

FRC) have a significant influence on the fire resistance of the CFH columns. 

The influence of other parameters, such as the strength of the concrete and steel, the type of 

aggregates and the eccentricity of the load is moderate. On the other hand, the ratio of steel 

reinforcement, the thickness of the steel tube wall and the distance from the axis of the 

reinforcing bars to the internal wall surface of the steel tube, have little influence on the fire 

resistance of the columns. The influence of the stiffness of the surrounding structure on the 

behaviour of these columns subjected to fire has been little studied and remains unclear. 

Over the last 20 or so years, there have been a number of research studies on the behaviour of 

CFH columns subjected to fire. The sub-sections below give an overview of the main 

experimental and numerical research studies, in chronological order. This overview focuses 

principally on Concrete Filled Circular Hollow (CFCH) columns with infill of plain concrete 

(CFCH-PC) or steel bar reinforced concrete (CFCH-RC) since these are the main objective of 

study of this thesis. However, research on other types of CFH columns, steel columns and 

steel elements is also presented for a better understanding of the behaviour of these columns 

in fire. Finally, a brief overview of the tabular method and simplified method proposed by 
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EN1994-1-2 (2005) is presented to enable a comparison to be made with the numerical and 

experimental results obtained in this thesis. 

 

2.2 Experimental researches 

An extensive experimental programme in the fire behaviour of concrete filled hollow columns 

was carried out at the National Research Council of Canada (NRCC) and the test results can 

be found in Lie and Chabot (1990), Chabot and Lie (1992), Lie et al. (1992), Lie and Irwin 

(1992), Lie and Chabot (1992), Kodur and Lie (1995), and Kodur and Lie (1996). From now 

on these tests will be reported as NRCC tests. 

Kodur (1999) summarized the NRCC tests. They are a series of 75 fire tests in CFH-PC, 

CFH-RC and CFH-FRC columns with circular and square cross-sections. The external 

diameters varied from 141 to 406mm for the circular columns and the width from 152 to 

305mm for the square ones. The thickness of the tube wall was between 4.8 and 12.7mm and 

the length of the columns was 3810 mm. 

The parameters studied were the cross-sectional dimension, the thickness of the tube wall, 

load level, end conditions, concrete strength, type of aggregate in the concrete and the infill 

material (PC, RC or FRC). The strength of the concrete at 28 days varied between 30 and 50 

MPa and the ratio of steel fibre reinforcement was 1.77% by mass. The load level applied was 

between 10% and 45% of the compression resistance at ambient temperature of the composite 

column and the heating rate followed the standard fire curve, ASTM E119 (1990) or 

CAN/ULC-S101 (1989). 

In these tests the load was kept constant and the failure criterion was when the column could 

no longer sustain the load. The maximum displacement rate of the hydraulic jack was 76 

mm/min. 

The results of these tests showed that the fire resistance of the CFH-PC columns was between 

1h and 2h, while for those filled with RC or FRC, this reached 3h (Figure 2.2). These levels of 

fire resistance is much higher than those obtained from columns not filled with concrete (i.e. 

steel columns) and without fire protection which resisted for around 15 minutes. 

Also these tests showed that the load applied on CFH- PC columns had to be reduced in order 

to obtain practical fire resistances and failure in these occurred due to the rapid propagation of 

cracking in the concrete core, thus impairing its strength. A sensitivity to eccentric loads of 

such columns was also found. The infill of the CFH-RC and CFH-FRC columns avoided this 
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cracking and thus increased the load bearing capacity and consequently the fire resistance but 

RC infill is not recommended for columns with small dimensions due to the space being 

restricted.  

 

Figure 2.2 – Typical fire resistance of CFH columns (Kodur, 1999). 

 

The failures modes varied from compression to buckling due to the size of the column and the 

type of filling. In the case of CFH-PC columns, the most common failure mode was buckling, 

principally in columns with a cross-section dimension of less than 203mm. 

Rodrigues et al. (2000) published results obtained from a series of 168 fire resistance tests on 

compressed steel elements (i.e. small scale samples) with restrained thermal elongation. 

Parameters were tested such as the slenderness of the elements, load eccentricity, stiffness of 

the surrounding structure and type of end supports. It was concluded that for the case of pin-

ended elements with centred loading, the higher the axial stiffness of the surrounding 

structure is, the lower is the critical temperature. 

A series of experimental tests on residual strength of 18 CFH columns after exposure to the 

ISO834 (1975) standard fire was presented in Han et al. (2002) and Han and Huo (2003). 

CFH columns with circular, rectangular and square cross-sections were tested. All columns 

were filled with PC. Some columns were fire protected by intumescent sprayed mortar to a 

thickness of 25mm. Other parameters studied were the slenderness of the columns and the 

eccentricity of the load applied. 
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Table 2.1 presents a summary of the characteristics of the specimens such as cross-section 

dimensions, wall thickness of steel tube and the effective buckling length of the columns as 

well as the mechanical properties of the materials used in the columns tested. In all concrete 

compositions, the fine aggregate used was silica-based sand and the coarse aggregate was 

carbonate stone. 

 

Table 2.1 – Characteristics and material mechanical properties of CFH columns tested in Han 

et al. (2002) and Han and Huo (2003). 

Property/ 

characteristic 

Rectangular    

cross-section 

Circular        

cross-section 

Square             

cross-section 

Cross-section (mm) 100x80 and 120x90 108 100 

e (mm) 2.93 4.32 2.93 

L (mm) 900 and 1200 600, 900 and 1200 600, 900 and 1200 

Slenderness 26.0 - 41.6 22.2 - 44.4 20.8 - 41.6 

fay (MPa) 294 356 294 

Ea (GPa) 195 201 195 

fc, 28day (MPa) 34.4 70.2 34.4 

fc, test day (MPa) 36.2 71.3 34.8 

Ec (GPa) 27.4 31.1 27.4 

Concrete mix (kg/m
3
): 

Cement 

Water 

Sand 

Coarse aggregate 

 
457 

206 

1129 

608 

 
536 

176 

1099 

589 

 
457 

206 

1129 

608 

 

According to the authors, the heating rate followed the ISO834 (1975) standard fire curve 

during 90min for the composite columns without fire protection and 180min for those that 

did. After heating, the columns were loaded to failure and the residual strength of the columns 

was determined. Table 2.2 presents the residual strength as a percentage of the column 

resistance at ambient temperature as laid down in EN1994-1-1 (1996). 

The authors of these research studies pointed out the smaller loss of strength in the columns 

with fire protection. The predominant failure mode was global buckling and due to the infill, 

the columns behaved in a relative ductile manner and thus testing proceeded in a smooth and 

controlled way. 
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Table 2.2 – Residual strength of the CFH columns tested in Han et al. (2002) and Han and 

Huo (2003). 

CFSH columns 
Rectangular    

cross-section 

Circular        

cross-section 

Square             

cross-section 

Without fire protection 40.1% - 62.5% 45% - 68.4% 45% - 78.3% 

Fire protected 64.1% - 89.6% 92.3% - 94.7% 87.7 - 99.7% 

 

Also the authors stated that the dimension of cross-section, slenderness and heating time have 

a great influence on the residual strength of the columns. The higher the cross-sectional 

dimensions are, the higher the residual strength of the columns is. In the other parameters, 

inverse fire behaviour takes place (i.e. the higher the slenderness or heating time, the lower 

the residual strength of the columns). The steel ratio, load eccentricity ratio, width-to-depth 

ratio, and strength of concrete and steel have a moderate influence on the residual strength of 

the columns. 

Finally the authors suggested formulae for calculating the residual strength of composite 

columns made of CFH sections after exposure to ISO834 (1975) fire standard curve. They 

concluded that the results calculated were in reasonable accordance with the experimental 

tests and mathematical model presented in greater detail in Han (2001). 

In the following year a series of tests on the fire behaviour of CFH columns with and without 

fire protection submitted to axial and eccentric loads were presented in Han et al. (2003a and 

2003b). These tests are different from the others presented above by the same author because 

they were not residual tests realized after exposure to fire. 

The heating rate followed the typical ISO834 (1975) standard curve and the failure criteria of 

the columns was the maximum axial contraction of 0.01 L in mm or the maximum rate of 

axial contraction of 0.003 L in mm/min as per ISO834 - Part 1 (1975). As the length of the 

columns tested in this research was 3810mm, these failure values were 38mm and 

11.4mm/min respectively. 

It is important to point out that even with columns of the same length these failure values are 

smaller than those adopted in the NRCC tests previously cited. Neither of studies considered 

restrained thermal elongation. 
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The main parameters considered in this research were the shape of the cross-section (i.e. 

rectangular, square or circular), the cross-section dimensions, the thickness of the wall of the 

tube and fire protection, slenderness and finally the eccentricity of the load applied. 

The columns were loaded with 77% of the design load of the member at room temperature 

and two 20mm semi-circular holes were provided as vent holes for the water vapour pressure. 

Just 3000mm of the columns were heated, the rest of the column being outside the furnace. In 

all concrete compositions, the fine aggregate used was silica-based sand and the coarse 

aggregate was carbonate stone. Other details of the columns and concrete mixes are given in 

Table 2.3. 

 

Table 2.3 – Characteristics and material mechanical properties of the CFH columns tested in 

Han et al. (2003a and 2003b) 

Property/ 

characteristic 

Rectangular              

cross-section 

Circular        

cross-section 

Square             

cross-section 

Cross-section (mm) 300x200 and 300x150 150 - 478 219 and 350 

e (mm) 7.96 4.6 - 8.0 5.3 and 7.7 

L (mm) 3810 3810 3810 

fay (MPa) 341 259, 293 and 381 246 and 284 

Ea (GPa) 187 168 and 201 200 and 183 

fc, 28day (MPa) 47.3 39.6/68.8 17.8 

fc, test day (MPa) 49.0 - 18.7 

Ec (GPa) 30.2 27.8/29.4 26.7 

Concrete mix (kg/m
3
): 

Cement 
Water 

Sand 

Coarse aggregate 

 

425 
170 

630 

1175 

 

713/542 
449/151 

224/524 

1014/1183 

 

318 
171 

636 

1275 

 

In these tests the fire resistance and the critical temperature of steel of the CFCH-PC columns 

were from 7min to 32min and from 434ºC to 564ºC, respectively (Figure 2.3). Other results 

for the ones with square and rectangular cross-sections besides the circular cross-section are 

given in Table 2.4. 

These fire resistances are much smaller than those reported in the NRCC tests cited above. 

However, differences in the experimental method (e.g. the failure criterion adopted) and the 

parameters tested (e.g. load level) may justify these divergences. 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 2 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  15 

 

 

Figure 2.3 – Axial deformation of tested CFCH-PC columns (Adapted from Han et al. 

2003b). 

 

The main conclusions of these studies are not so different from those previously drawn. Again 

the authors ratified that the section size of the column and the thickness of the fire protection 

have a significant influence on the fire resistance of the column. If one of them is increased, 

the fire resistance will increase too. The effect of load eccentricity on fire resistance is 

insignificant when the column has a constant load ratio. 

Also the authors recommended that the fire resistance of these columns should be enhanced 

by using a fire protection coating if a high load ratio was applied. According to the authors, it 

frequently happens that CFH columns in tall buildings subjected to high loads and filled only 

with PC cannot reach the required fire resistance. 
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The failure modes observed were by compression and global buckling. The latter was the 

predominant failure mode (Figure 2.4). 

 

Table 2.4 – Fire resistance and steel critical temperature of the CFH-PC columns tested in 

Han et al. (2003a and 2003b) 

CFH columns 
Rectangular    

cross-section 

Circular        

cross-section 

Square             

cross-section 

Without fire protection 

Fire resistance (min) 

Critical temperature of steel (ºC) 

 

16 - 24 

636 - 786 

 

7 - 32 

434 – 564 

 

- 

- 

Fire protected 

Fire resistance (min) 

Critical temperature of steel (ºC) 

 

78 - 146 

500 - 530 

 

120 - 196 

533 – 829 

 

109 - 169 

504 - 668 

 

 

Figure 2.4 – Typical failure mode of CFH-PC columns (Han et al., 2003b). 

 

In addition Han et al. (2003a) explained the composite action between the steel tube and 

concrete core that enhanced the structural behaviour of the CFH columns during a fire. 

According to them, first the steel tube expands at the early stage of heating, thus reducing the 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 2 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  17 

 

load on the concrete core. Next, the steel tube buckles locally due to the high temperatures 

reached in the steel tube and the load is transmitted to the concrete core. Finally, the steel tube 

can no longer confine the concrete core and it fails in a brittle manner. 

As in their previous studies, the authors suggested formulae to calculate the fire resistance and 

fire protection of CFH columns. They concluded that the accuracy of their results is 

reasonable when compared with the numerical model presented in Han, 2001 and the 

experimental tests. In general, the results calculated are conservative if compared with the 

experimental tests (Figure 2.5).  

 

Figure 2.5 – A comparison of fire resistance calculated by Han´s et al. formula and test results 

(Adapted from Han et al., 2003b). 

 

In 2005, Han et al. presented a further series of residual fire tests with CFH columns but this 

time focused on the flexural behaviour besides the compression performance. Eight 

specimens were tested, namely four stub columns under compression and four beams under 

bending. They reconfirmed the accurate prediction of their numerical model cited above and 

expanded the formulae to calculate the residual axial strength of post-fire damaged columns to 

calculate the residual bending moment for beams. 

In 2007 Tan et al. presented a series of 15 fire resistance tests on rectangular hollow sections 

columns (i.e. steel columns) axially restrained. The effective length of the columns was 1.74m 

(real length of 1.50m), the end conditions were pinned-pinned and the load applied was 50% 
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of the ambient column load bearing capacity, which was determined experimentally. 

Parameters such as slenderness (45, 55, 81 and 97) and 4 levels of axial restraint ratio 

increasing from zero to around 0.16 were tested. The heating rate was 8ºC/min. The main 

conclusions were that axial restraints as well as initial imperfections significantly reduce the 

failure times of axially-loaded steel columns. 

Lu et al. (2010) presented a study on the fire performance of 6 self-consolidating concrete 

filled double skin tubular columns. The main parameters tested were the load level which 

varied from 31% to 65%, the eccentricity of the applied load of 0mm and 74mm, the cavity 

ratio which varied from 43% to 78% and the shape of steel tube. Combinations of double 

circular, double square and square-circular steel hollow tubes were tested with a width of 

280mm and external diameter of 300mm. The diameter of the inner tubes was 125 or 225mm 

for circular tubes and the width of the square tubes was 140mm. The length of the columns 

was 3810mm and the thickness of wall tube was 5mm in all cases. The heating and failure 

criteria of the columns were as laid down in ISO834 and a pinned-fixed end condition was 

adopted. The yield strength of the tubes was 320MPa, the concrete had a 28-day cube strength 

of 26 MPa and 17.7 GPa of elastic modulus. 

The main conclusions were that the self-consolidating double skin tubular columns have 

higher limiting temperatures on outer steel tubes than unfilled and CFH columns and 

consequently better endurance in the event of fire; there is a composite action between the 

steel tube and concrete in composite columns during a fire. The authors stated that there was 

no slipping between the outer steel tube and the concrete; the cavity ratio affected the fire 

endurance of the composite columns. This claim of there being no evidence of slipping is 

contrary to the findings of other authors such as Espinos et al. 2010. 

In 2011 Romero et al. presented 16 fire resistance tests conducted on slender CFCH columns. 

The columns were filled with normal and high strength concrete. The main parameters tested 

were the strength of concrete (30 and 80MPa), the type of infill (PC, RC and FRC), and the 

load level (20% and 40%). The relative slenderness of all columns was greater than 0.5 and 

they were tested under fixed-pinned end conditions. The lengths of the columns were 

3810mm, their external diameter was 159mm and the steel tube wall was 6mm thick. S275JR 

grade steel was used although the real yield strength was around 337MPa and the steel 

modulus of elasticity was 210GPa. The columns were tested as per the ISO834 (1980) fire 

curve and with unrestrained column elongation. Finally in the CFCH-RC columns, 4 

longitudinal reinforcing bars, each 12mm in diameter, and 6mm stirrups are located every 

30cm. Thus, the reinforcement ratio was close to 2.5%. As to the columns reinforced with 

steel fibre, a ratio of 40kg/m
3
 of high strength Dramix 40/60 steel fibres was used. 
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The main conclusions of this study were: there was no spalling in the columns filled with high 

strength concrete probably due to their external diameters being small and the short duration 

of the fire tests; using filling with reinforcing bars was more advantageous in columns filled 

with high strength concrete than in those filled with normal concrete (i.e. for the same fire 

resistance level, the axial load may be increased in the first columns); high second order 

effects induced by the curvature of a steel tube cannot be transferred to a fragile material like 

an unreinforced concrete core and consequently it is not effective in very slender columns; the 

EN1994-1-2 (2005) simple calculation method has limitations and should be revised; the fire 

resistance of columns filled with high strength concrete and with a higher contribution of the 

concrete core was less than in those filled with normal concrete due to spalling. However the 

filling with high strength concrete is interesting because this enables the load level to be 

increased and a moderate fire resistance to be obtained; finally, the filling with FRC was not 

so advantageous when compared with PC. 

Table 2.5 shows the fire resistance of the CFCH columns tested in this research. These fire 

resistances are smaller than those obtained in the NRCC fire tests already presented in this 

chapter. Another difference in these tests was the fire behaviour of the CFCH-FRC columns, 

the fire resistance of which are not higher than the columns filled with PC. 

 

Table 2.5 – Fire resistance of the CFCH columns tested in Romero et al. (2011) 

CFH columns 
PC 

filled 

RC 

filled 

FRC 

filled 

Normal concrete (30MPa) 
Load level of 20% 

Load level of 40% 

Load level of 60% 

 
42 

25 

14 

 
43 

30 

13 

 
37 

22 

- 

High Strength concrete (80MPa) 
Load level of 20% 

Load level of 40% 

 
38 

11 

 
65 

19 

 
36 

16 

 

Also two fire tests on pinned-pinned CFCH-PC columns were presented. The fire resistance 

of the columns was 13min and 18min respectively for load levels of 20% and 40%. The 

columns were filled with normal concrete (30MPa). These results suggest that if the end-

conditions are changed from pinned to fixed, the fire resistance will be increased. However, 

there are few tests that enable major conclusions to be drawn. 
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2.3 Numerical and analytical researches 

In numerical approach, one of the first researches was presented by Lie in 1994. The author 

presented a mathematical model to evaluate the fire resistance of CFCH-RC columns. The 

column temperature was calculated by a finite difference method and the heating rate 

followed the ASTM E119 (1990) or CAN/ULC-S101 (1989) standard curves. The model 

considered the retard in the development of temperature caused by the evaporation of 

moisture but did not consider the migration of moisture toward the centre of the column. The 

strength of the column (i.e. the maximum load that the column can bear) was calculated by a 

method based on a load-deflection or stability analysis (Allen and Lie, 1974 apud Lie 1994). 

In the calculation of column strength some assumptions were made: (a) the properties of steel 

and concrete follow the model proposed in Lie (1994); (b) concrete has no tensile strength; (c) 

plane sections remain plane; (d) there is no slip between steel and concrete; (e) there is no 

composite action between the steel and concrete; (f) the reduction in column length before 

exposure to fire is negligible. 

The model was validated in a comparison with two specimens tested and presented in Chabot 

and Lie (1992). The columns were 3810mm long, had an external diameter of 273mm, the 

tube wall was 6.35mm thick and the bar reinforcement ratio was 2.3%. The strength of 

concrete on the test day was around 47MPa and the yield strength specified for the steel tube 

was of 350MPa. Two load levels were applied: 37% (in column 1) and 67% (in column 2) of 

the compression resistance of the CFCH column as per CAN3-S16.1-M89 (1989). Figure 2.6 

shows a comparison for temperatures and axial deformation between those that were 

theoretically calculated in Lie´s model and those that were measured in test in column 1. 

Figure 2.7 shows this comparison for column 2. 

Lie also concluded that the development of temperature showed good agreement between that 

measured and that calculated except at an early stage due to the migration of moisture toward 

the centre of the column. According to him the slow rises in temperature around 100°C may 

be because this migration of moisture is being induced. 

There was reasonably good agreement for axial deformation between the calculated and 

measured results. According to Lie, there were some differences, however, due to several 

factors that influence axial deformation such as load, thermal expansion, bending, and creep 

that cannot be completely taken into account in the theoretical calculations. 

Lie stated that a difference of 10% in the coefficients of thermal expansion of steel may cause 

a difference of approximately 5mm in axial deformation. The effect of creep that is more 

pronounced at the later stages of fire exposure may be even greater. 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 2 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  21 

 

 

 

Figure 2.6 – A comparison of results between those that were calculated using Lie´s model 

and tests results for column 1 (Lie, 1994). 

 

 

Figure 2.7 – A comparison of results between those that were calculated using Lie´s model 

and tests results for column 2 (Lie, 1994). 
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Also he pointed out that the calculated fire resistance results were 20% lower for column 1 

and 10% for column 2 than the test results. According to him the differences were probably 

due the considerable contraction of the columns which the model cannot totally take into 

account but in general the results indicated that the model is conservative in its predictions. 

In the following year Lie and Irwin (1995) presented a mathematical model similar to the one 

shown in Lie (1994). However, it is able to predict the fire resistance of CFH-RC columns 

with rectangular cross-sections. Again the model was validated by comparison with tests 

presented in Chabot and Lie (1992). This time, three columns were used with different cross-

section sizes (203, 250 and 305mm). Again the columns were 3810mm tall and the thickness 

of the steel tube was 25mm. 

In 1996 Lie and Kodur presented a parametric study based on numerical models presented in 

(Lie, 1994 and Lie and Irwin, 1995). In their paper, Lie and Kodur analyzed the behaviour of 

CFH-RC columns with circular and square cross-sections, the external cross-sectional 

dimension ranged from 178 to 305mm for square columns and from 168 to 406mm for 

circular columns. The effective lengths varied from 2500 to 4500mm, the bar reinforcement 

ratio were 1.5%, 3% and 5% and the compression strength of the concrete was 20, 35 and 

50MPa using axis distance of reinforcing bars us of 20 and 50mm. Siliceous and carbonate 

aggregates were studied. 

They showed that the external diameter/dimension (Figure 2.8), effective length (Figure 2.9), 

and the load on the column (Figure 2.10) have the greatest influence on the fire resistance of 

CFH-RC columns. The first is directly proportional to the fire resistance and the others are 

inversely proportional to it. The strength of the concrete as well as the type of aggregate has 

moderate influence on fire resistance. The resistance of the carbonate aggregates was 10% 

higher than that of the siliceous aggregates and the higher the concrete strength, the higher the 

fire resistance is. The influence of the thickness of the steel tube, bar reinforcement ratio and 

axis distance of reinforcing bars us on fire resistance is small. 

In addition they proposed simple equations for calculating the fire resistance of CFH-RC 

columns with square and circular cross-sections. There are slight differences between the 

results calculated using the equations and those predicted by the numerical model (Figure 

2.11) or measured experimentally (Figure 2.12). But according to the authors, the expressions 

are able to predict the fire resistance reasonably accurately. 
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Figure 2.8 – Influence of the external diameter of a column on fire resistance (Lie and Kodur, 

1996). 

 

 

Figure 2.9 – Influence of the effective length of a column on fire resistance (Lie and Kodur, 

1996). 
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Figure 2.10 – Influence of load applied on fire resistance (Lie and Kodur, 1996). 

 

 

Figure 2.11 – Fire resistance calculated by Lie and Kodur´s equation and numerical 

predictions (Lie and Kodur, 1996). 
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Figure 2.12 – Fire resistance calculated by Lie and Kodur´s equation and test results (Lie and 

Kodur, 1996). 

 

In another paper (Kodur and Lie, 1996b), they presented a similar mathematical model for 

evaluating the fire resistance of CFCH-FRC columns. As in their other studies, the model was 

validated by making a comparison with two tested columns. The lengths of the columns were 

3810mm, their walls were 6.35mm thick and their external diameters 324 and 356mm. Both 

columns were made of tube with steel grade 350, the concrete strength on the day of the test 

was 57MPa and the steel fibre ratio was 1.77% by mass. 

Following year Wang (1997) concluded that the ENV1994-1-2 (1994) calculation method is 

conservative and suggested that “curve a” should be adopted instead of “curve c” when 

designing for elevated temperatures, thus giving less conservative results. Moreover, Wang 

proposed a simple method to implement the general calculation method of ENV1994-1-2 

(1994) and concluded that the equivalent time concept from ENV1991-2-2 (1994) is 

applicable to CFH columns but the equation should be modified to consider the inter 

dependence between load and the ventilation factor. These conclusions were based in a 

comparison between 43 CFH-PC columns (36 columns with circular and 7 with square cross-

sections) presented in NRCC tests and its predicted fire resistance as per as the calculation 

method proposed by ENV1994-1-2 (1994). 
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Later, Kodur (1998) presented a parametric study using the numerical model already 

presented above. The main conclusions were: the external diameter, the effective length, and 

the load applied had a great influence on the fire resistance of CFH-FRC columns; however, 

the strength of concrete and the type of aggregates have only a moderate influence; and the 

influence of the steel tube wall on fire resistance is insignificant. 

Also two simple equations to evaluate the fire resistance of these types of columns were 

presented. The equations take into account parameters such as load applied, cross-section 

dimensions of the column and the strength of the concrete. 

Still based on these parametric studies, Kodur (1999) summarized a unique simplified design 

equation to evaluate the fire resistance of CFH-PC, CFH-RC, CFH-FRC columns. 

The equation is a function of the following parameters: compression strength of concrete after 

28 days, dimension and shape of the cross-section of the column, applied load, effective 

length of buckling length, infill material (i.e. PC, RC or FRC), reinforcement ratio and axis 

distance of reinforcing bars us. The values obtained by the equation are generally 10-15% 

more conservative than those results observed in the experimental tests with which they were 

compared. 

He ratified that the infill material, cross-section dimension, effective length and applied load 

have a great influence on the fire resistance of the CFH columns. The influence of the 

compression strength of concrete and aggregate type is only moderate and the thickness of the 

tube wall had no effect on the fire resistance. 

Finally, Kodur concluded that the use of CFH columns is a good solution for improving 

resistance to fire. For this to be greater than 120 min, he suggested the use of CFH-RC and 

CFH-FRC columns. Such CFH columns should also be used for slender columns and for 

columns with eccentric loads because the behaviour of CFH-PC columns is unpredictable 

under these conditions. For high axial compression loads, RC filling should be considered. 

Moreover, according to Kodur, using circular cross-sections and carbonate aggregate in 

concrete filling provides higher fire resistance than square cross-sections and siliceous 

aggregate respectively. 

In addition he gave guidelines for the construction such as the use of FRC rather than RC 

filling for cross-section diameters smaller than 200mm, a minimum axis distance of 

reinforcing bars us of 20mm, stirrups over the full length of the column and pairs of small 

vent holes (i.e. minimum diameter of 12.7mm) on each floor level to avoid the columns 

bursting under steam pressure due to heat from the fire. 
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In 1999, Valente and Neves presented the results of a numerical study on H profile steel 

columns with axial and rotational restraining. The parameters studied were the slenderness of 

the column (40, 80 and 120), the eccentricity of the applied load (0, h/2 and h), the axial 

restraint level (0, 5, 50 and 5000 kN/cm) and the rotational restraint level of the surrounding 

structure (0, 9.3 10
2
, 9.3 10

3
, 9.3 10

4
 kN m and ∞). The constant load applied was 70% of the 

design value of the buckling resistance of a hinged column at ambient temperature as per 

ENV1993-1-1 (1992). It was concluded that increasing axial restraining led to a reduction in 

the critical temperatures while rotational restraining has the opposite effect. 

In the same year Wang (1999) presented a numerical research using finite-elements on the 

effects of structural continuity on the fire resistance of CFH columns. A parametric studied 

was carried on CFH-PC and CFH-RC columns and tested parameters such as column lengths, 

cross-section sizes and load ratios. The main conclusions were: the recommendation of 

ENV1994-1-2 (1994) on the effective length of columns at the fire limit state is correct; the 

additional axial loads in columns due to restrained thermal elongation are very small; and the 

column bending moments in a fire become much lower than those at ambient temperature. 

Therefore, he said that to calculate the column fire resistance it may be considered as pure 

axially loaded equal to its ambient temperature value. Also he reported for slender columns a 

complex double curvature bending mode but this did not reduce the fire resistance of the 

column. 

Han (2001) presented an analytical method to predict the fire resistance of CFH columns and 

beam-columns with circular or square cross-sections. A finite element method was applied to 

determine the temperature in the cross-section. One of the greatest innovations of this model 

was to consider the composite action between the steel tube and the concrete core, which is 

often neglected by other researchers. This effect was considered introducing a constraining 

factor into the stress-strain relationship of the concrete. These relationships were defined 

based on test results of short CFH columns under constant temperature conducted by Han. 

Figure 2.13 presents a comparison between the fire resistances calculated and the 

experimental tests undertaken by the NRCC and by Han. 

Other conclusions of this research were that if the dimension is increased (Figure 2.14) or the 

slenderness is reduced (Figure 2.15), the fire resistance of the columns is higher. However, 

the influence of other parameters such as steel reinforcement ratio, load eccentricity, strength 

of concrete and steel on fire resistance is small. 

Yin et al. (2006) presented a numerical nonlinear analysis model for predicting the fire 

resistance of CFH-PC columns with circular and square cross-sections. By comparing 
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different sizes of cross-sections and thickness of the steel tube, they showed that circular 

columns have a slightly higher fire resistance than square columns. They emphasized too that 

the calculation of stress in concrete is more difficult than in steel because concrete is 

influenced not only by the temperature dependent on material properties but also by thermal 

strain and other strains such as transient and stress-induced strains. 

 

Figure 2.13 – Fire resistance calculated by Han´s model and test results (Han, 2001). 

 

 

Figure 2.14 – Influence of the dimension on fire resistance (Han, 2001). 
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Figure 2.15 – Influence of the slenderness on fire resistance (Han, 2001). 

 

In 2008, Ding and Wang (2008) presented a numerical model developed in the commercial 

finite element package ANSYS to access the behaviour in the event of fire of CFH columns 

with circular and rectangular columns. 

Assuming uniform heating along the length of columns and due to the symmetry of the 

geometry and boundary conditions, they simulated thermal analysis with a 2D model and 

modelled only one quadrant of the cross-section. The fire resistance (i.e. structural analysis) 

was calculated using a 3D finite element model and due to the symmetry, only half of the 

columns were analysed. The type of elements applied for the thermal analysis were PLANE55 

(the 2-D solid thermal element) for the cross-section and SURF151 (the 2-D thermal surface 

element) for the external layer exposed to the fire. For the structural analysis, SOLID145 (the 

3-D structural solid element) was applied. 

The model was validated by making a comparison with calculated and measured tests on 34 

CFH columns conducted by the NRCC as cited above and by CIDECT (Comité international 

pour le développement et l´étude de la construction tubulaire) and presented in CIDEC 

Report C1/C2 apud Ding and Wang (2008). 

Important features often neglected by other researchers were addressed in this study such as 

the influence of an interface air gap and slip between the steel tube and concrete core, the 

concrete tensile behaviour and the initial imperfection of a column on the fire behaviour of 

CFH columns. 
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They justified the air gap at the interface between the steel tube and concrete core as being 

due to the differences in the thermal expansion coefficients of the two materials. Steel has a 

higher radial expansion than concrete does and also these differences in thermal expansion 

and strain in longitudinal direction may overcome the bond at this interface. Figure 2.16 

presents the effect of the different gap values between the steel tube and concrete core in the 

numerical simulations and makes a comparison with a CFH-RC column with square cross-

sections which had a 200mm external side and a 6.3mm thick tube wall.  

Also they point out that it is difficult to determine the thermal properties of concrete due to its 

complexity. Therefore it is difficult to obtain accurate predictions of concrete temperature in, 

for example, the inner concrete core (Figure 2.16 “b” and “c”). However they stated it is 

possible to improve predictions of temperature simply by introducing an air gap. 

 

 

 

Figure 2.16 – Temperature calculated using Ding and Wang´s model and test results (Ding 

and Wang, 2008). 
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Figure 2.17 presents a comparison between the results calculated by the model proposed by 

Ding and Wang (2008) and the test results in (a) the vertical displacement at the top of a 

200mm CFH-RC column which has a 6.3mm thick tube wall and in (b) a general comparison 

of all fire resistances. The difference in general does not exceed 15% according to the authors. 

 

Figure 2.17 – Results calculated using Ding and Wang´s model and test results (Ding and 

Wang, 2008) 

 

A parametric study was conducted using this model and the main conclusions were: whether 

or not slipping between the steel tube and concrete core is included, this has a minor influence 

on the calculated fire resistance but including the slip gives a better prediction of column 

deflections; the influence of tensile strength and tangential stiffness of concrete on fire 

resistance is small; making use of the air gap for calculations improves the accuracy of 

predictions for temperatures and structural behaviour; and the influence of the initial 

deflection of the column on fire resistance is small. They suggest a maximum initial 

imperfection of L/1000. 

Hong and Varma (2009) proposed a three sequentially coupled analysis to predict the fire 

behaviour of CFH columns. The first step is a fire dynamics analysis conducted on a Fire 

Dynamics Simulator (FDS) to simulate the heat transfer from the fire source to the outermost 

surface of the column. The second is a heat transfer analysis to calculate the temperatures 

along the cross-section and column length and finally the third step is a stress analysis to 

simulate the structural response. The latter two steps are developed in the finite element 

program ABAQUS. The model was validated by making a comparison with 15 CFH columns 

with and without fire protection tested by other authors including the NRCC tests and those 

reported in Han et al. (2003a). 
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The heat transfer and stress analysis were conducted respectively with a DC3D8 and a 

C3D8R 3-D finite element type eight node continuum for the concrete core and a DS4 and 

S4R four node shell for the steel tube. The model did not consider any movement and 

transmigration of water vapour within the concrete core. In addition the steel and concrete 

temperatures in the interface were assumed to be equal. The reinforcement was modelled 

using a T3D2 two node truss element embedded in the concrete elements. The isotropic 

multiaxial plasticity model with Von Mises yield was used for the steel elements and the 

concrete damage plasticity model for concrete. 

A detailed sensitivity analysis was conducted and the main parameters were identified, thus 

giving recommendations for the simulation of CFH columns. The suggestions were: (a) the 

steel tube should be modelled using the stress-strain-temperature model proposed by Poh 

(2001) apud Hong and Varma (2009), (b) the concrete using the stress-strain-temperature 

model proposed by Lie and Irwin (1995), (c) the linear thermal expansion models for steel 

and concrete may be used and (d) the full composite action with no local buckling may be 

used to model the columns. 

A comparison between the temperatures predicted with the Hong and Varma (2009) model 

and those measured in tests is presented in Figure 2.18. Two CFH-RC columns with square 

cross-sections were presented: in (a) a column with an external side of 203mm, four 

reinforcing bars with 16mm of diameter, and 16% of load level; and in (b) a column with an 

external side of 305mm, four reinforcing bars with 25mm of diameter, and 33% load level. 

The length of both columns was 3810m, the steel tube was 6.35mm thick and had fixed end 

conditions. 

 

 

Figure 2.18 – Temperature calculated using Hong and Varma´s model and test results (Hong 

and Varma, 2009). 
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Some differences were observed in the temperatures and the authors justified these due to the 

variations in the thermal properties of the material and the approach used to model the 

moisture content of the concrete infill. 

Figure 2.19 shows the comparison between the axial deformations predicted using Hong and 

Varma´s (2009) model and those measured in fire tests. In (a) and (b), the same columns as 

described above are used. In (c), a CFH-RC column with external dimension of 254mm, four 

reinforcing bars with 16mm of diameter is presented. The steel tube is 3.25mm thick, 

3810mm in length, has a 32% load level and fixed end conditions. In (d), an CFH-PC is 

presented. Its external dimension is 300mm, the steel tube is 9mm thick, 3500mm in length, 

has a 75% load level and pin ended conditions. The failure time is indicated by solid black 

circles in the Figures.  

 

 

Figure 2.19 – Axial deformation calculated by Hong Varma´s model and test results (Hong 

and Varma, 2009) 
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The failure times predicted with Hong and Varma´s (2009) model and measured in fire tests 

are presented in Table 2.6. According to the authors, the numerical predictions with pin ended 

conditions neither reproduced the failure times nor the axial deformation accurately. 

Therefore columns 13 and 14 were recalculated with fix ended conditions and these produced 

better results. 

 

Table 2.6 – Failure times calculated using Hong Varma´s model and test results (Adapted 

from Hong and Varma, 2009) 

Column 

Experimental 

failure time 

(min) 

Numerical 

failure time 

(min) 

     –       
(min) 

             

             
 

1 150 149 1 1.01 

2 110 93 17 1.18 

3 212 201 11 1.06 

4 33 32 1 1.03 

5 180 197 17 0.92 

6 165 180 15 0.92 

7 148 161 13 0.92 

8 98 108 10 0.91 

9 188 183 5 1.03 

10 135 112 23 1.20 

11 194 112 82 1.73 

12 87 71 16 1.22 

13 169 
59 – pin 110 - 

120 – fix 49 1.41 

14 143 
98 – pin 45 - 

146 – fix 3 0.99 

15 110 85 25 1.29 

 

The authors justified the discrepancies between numerical and experimental results due to the 

assumptions and limitations of the numerical models and potential errors while conducting the 

fire tests. The variability and uncertainty of the behaviour of the materials at elevated 

temperatures; the limitation of the element type (i.e. continuum C3D8R and the S4R shell) on 

modelling bending and flexural behaviour; the fact of the model not taking into account 

accurately the tension cracking behaviour of concrete; the complexity of fire tests in columns 
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with few experimental tests for comparison; and the unintentional errors during the 

experimental measuring were pointed out as main limitations. 

According to the authors despite these assumptions, limitations and potential errors, the model 

predicted the fire behaviour of the columns with reasonable accuracy and it is able to conduct 

parametric studies to design guidelines. 

In 2009 Schaumann et al. presented a 2D numerical research focused on the fire behaviour of 

CFH-PC, CFH-RC and CFH-FRC columns. High strength concrete was used to fill the 

columns and they compared the results obtained using the North American code provisions 

CSA A23.3-M04 (1994) and CSA S16.1 (2001) and those obtained from European Union 

material properties as per EN1992-1-2 (2004) and EN1994-1-2 (2005) – Figure 2.20. 

 

Figure 2.20 – Fire resistances calculated using the Schaumann et al. model and test results 

(Schaumann et al., 2009). 

 

The variables considered in this research were different types of concrete filling, moisture 

content, section size, cross-sectional shape, column slenderness, load eccentricities and the 

compression strength of concrete. A parametric study was carried out in the transient, 

nonlinear, incremental computer code BoFire. First, the model evaluates the temperatures of 

the cross-section (thermal response) then determines the deformation and remaining strength 

of the members (mechanical response). The failure criterion was when the resistance of the 

member was less than the initial applied load. 
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The authors concluded that there are major differences in material properties of high strength 

concrete proposed by the North American and European codes at high temperatures. The 

same was not verified for normal concrete which has a different behaviour in these conditions. 

For steel, the material properties are well-established in these codes and do not have major 

differences but for concrete the fire resistance results using the North American properties are 

more conservative with regard to increasing concrete strengths and decreasing cross-sectional 

dimensions. 

Other conclusions were the possibility of the model overestimating results due to local effects 

such as gaping cracks and local plastic buckling that are not considered by most conventional 

simulation tools and might occur in CFH-PC columns. Also high strength concrete filling is 

beneficial for massive columns with a low A/V section factor rather than in leaner columns 

and in non-slender columns with moderate load eccentricity; CFH columns with circular 

cross-sections provide a higher fire resistance than the ones with square cross-sections of 

similar cross-sectional area besides which by adding reinforcement (i.e. reinforcing steel bars 

or steel fibres) to the concrete, the fire resistance may be enhanced. 

An advanced three-dimensional nonlinear finite element model developed in ABAQUS for 

evaluating the fire behaviour of axially loaded CFCH columns was presented by Espinos et al. 

(2010). In an extensive research study, including important features such as the thermal 

conductance and friction model of the steel-concrete interface, the thermal expansion 

coefficients of steel and concrete and the type of finite element used in the simulation of the 

reinforcing bars, they validated the model by comparing results from it with experimental 

tests undertaken by the NRCC already presented in this chapter and by CIDECT in research 

reports 15B and 15C1/C2 apud Espinos et al. (2010). 

The model was meshed with three-dimensional eight-node solid elements for both the steel 

tube and the concrete core and two-node elements for the reinforcing bars. The mesh density 

was controlled so that the maximum size of an element size was 20mm. The mechanical 

model for concrete was that proposed by Lie (1994) and the thermal properties at elevated 

temperatures were extracted from EN1992-1-2 (2004). For the steel tube both the thermal and 

mechanical properties followed the recommendations of EN1993-1-2 (2005). As to the 

reinforcing steel, the thermal and mechanical properties were the same as those for the steel 

tube. However the strength and deformation were reduced using the factors recommended by 

EN1992-1-2 (2004). 

In addition the thermal expansion coefficient for concrete was replaced by the value proposed 

by Hong and Varma (2009). The moisture content of concrete in the column was taken into 

account through a peak value in specific heat. According to the authors, the best results were 
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obtained with 3% moisture for the siliceous aggregate (peak value in specific heat of 2020J/kg 

ºC) and 10% for the calcareous aggregate (peak value in specific heat of 5600J/kg ºC). 

An initial geometrical imperfection of the column was considered following the first buckling 

mode shape of the hinged column multiplied by a factor of L/1000. According to the authors, 

a sequentially coupled thermal-stress analysis was designed instead of a fully coupled one due 

to the latter requiring a high amount of computational time and convergence problems may 

occur. 

The values of the governing parameters to solve the heat transfer problem recommended by 

EN1991-1-2 (2002) were adopted. The thermal resistance at the boundary between the steel 

tube and the concrete core was modelled by applying a constant value of 200W/m
2
 ºC for the 

gap conductance. A radioactive heat transfer was also modelled in the steel tube-concrete core 

interface with emissivity of both steel and concrete surfaces of 0.7 and a configuration factor 

of 1. The tangent behaviour was modelled using the Coulomb friction model with a constant 

friction coefficient of 0.3. 

The authors explained the structural behaviour of CFCH columns in 4 stages. The first occurs 

when heating begins where the steel tube heats and expands more quickly due to its higher 

thermal conductivity than the concrete core and the fact of its being directly exposed to fire. 

Therefore, a slip occurs in the steel tube-concrete core interface and the concrete core loses its 

contact with the top plate. Consequently the entire applied load starts to be transferred to the 

steel tube. The second stage starts after the steel tube reaches the critical temperature of the 

steel, buckling locally and starts to shorten. The third stage starts when the top plate of the 

columns enters in contact again with the concrete core due to the steel tube shortening, and 

thus a transfer of the applied load to the concrete core starts. Because of its low thermal 

conductivity the concrete core degrades more slowly than the steel tube but finally when the 

concrete loses its strength and stiffness, the column fails and the last stage occurs (Figure 2.1). 

Figure 2.21 presents a comparison of the axial displacement at the top between those 

calculated using the model by Espinos et al. (2010) and those measured in the fire tests. The 

columns are 3810mm tall, 319.1mm in external diameter, the thickness of the steel tube is 

4.78mm (in “a”) and 8.18mm (in “b”), they have fixed- fixed end conditions and a load level 

of around 25%. 
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Figure 2.21 – Axial deformation calculated using the model by Espinos et al. and test results 

(Espinos et al., 2010). 

 

According to the authors, for the CFCH columns with normal concrete (i.e. resistance under 

40MPa), there was good agreement between the numerical and experimental results. Most of 

the fire resistance results calculated were in the range of 15% error (Figure 2.22 “a”). 

However for medium or high strength concrete filling, the occurrence of spalling may cause 

divergence in results and a more advanced thermo-hydro-mechanical model is required to 

predict spalling (Figure 2.22 “b”). 

 

Figure 2.22 – Fire resistances calculated using the model by Espinos et al. and tests results 

(Espinos et al., 2010). 
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Also the authors pointed out that the best results were observed in columns with the smallest 

external diameters. While the introduction of a concrete core in massive columns is a major 

contribution, this also leads to more errors due to the complex failure mechanism of concrete. 

In addition, better results were observed when pinned-fixed end conditions were simulated 

even when the real end condition was pinned-pinned columns.  

As to the thermal model, the temperatures showed a good agreement with test results except 

for the concrete core layers in the range between 100ºC and 200ºC where the evaporation of 

moisture occurs and the model cannot realistically predict moisture movement and 

evaporation (Figure 2.23). 

 

Figure 2.23 – Temperatures calculated by Espinos et al. and test results (Espinos et al., 2010). 

 

2.4 EN1994-1-2 – Tabulated data and simple calculation method 

Besides the approach of using advanced calculation models to assess the structural behaviour 

of composite columns in the event of a fire, EN1994-1-2 (2005) offers two other approaches 

that are easier to apply: tabulated data and simple calculation models. 

The first is extremely easy to apply and gives the fire resistance based on recognized design 

solutions for specific types of structural members exposed to the ISO834 (1999) standard for 

fire. For CFH columns, a table sets out the minimum cross-sectional dimensions, minimum 
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reinforcement ratios and minimum axial distance of the reinforcing bars for a specified load 

level (i.e. 28%, 47% and 66%) in order to reach a standard fire resistance (Table 2.7).  

 

Table 2.7 Standard fire resistance and minimum requirements for CFH columns (EN1994-1-2, 

2005) 

 

Standard Fire Resistance 

R30 R60 R90 R120 R180 

1. Minimum cross-sectional dimensions for load 

level ηfi,t ≤ 0.28:   
   

1.1 Minimum dimensions h and b or minimum 

diameter d (mm) 
160 200 220 260 400 

1.2 Minimum ratio of reinforcement As/(Ac+As) 

in (%) 
0 1.5 3.0 6.0 6.0 

1.3 Minimum axis distance of reinforcing bars us 

(mm) 
- 30 40 50 60 

2. Minimum cross-sectional dimensions for load 

level ηfi,t ≤ 0.47:   
   

2.1 Minimum dimensions h and b or minimum 
diameter d (mm) 

260 260 400 450 500 

2.2 Minimum ratio of reinforcement As/(Ac+As) 

in (%) 
0 3.0 6.0 6.0 6.0 

2.3 Minimum axis distance of reinforcing bars us 

(mm) 
- 30 40 50 60 

3. Minimum cross-sectional dimensions for load 

level ηfi,t ≤ 0.66:   
   

3.1 Minimum dimensions h and b or minimum 

diameter d (mm) 
260 450 550 - - 

3.2 Minimum ratio of reinforcement As/(Ac+As) 

in (%) 
3.0 6.0 6.0 - - 

3.3 Minimum axis distance of reinforcing bars us 
(mm) 

25 30 40 - - 

 

However this method limits the user to a few solutions presented in the code. In addition this 

method was based on test results which as shown above do not consider important parameters 

that may influence fire resistance such as restraining thermal elongation although the same 

code states that this method should give conservative results. 
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The other method (i.e. simple calculation method – SCM) presents in annex H of EN1994-1-2 

(2005) a way to access the fire resistance of CFH columns with circular and rectangular cross-

sections exposed to the ISO834 (1999) standard fire curve on all sides. The method is divided 

into two steps which are described below. 

The first step is to determine the temperature distribution on the CFH column cross-section 

based on the acknowledged principles and assumptions of the theory of heat transfer. 

EN1994-1-2 (2005) does not give an explicit formulation to obtain the temperatures; it only 

gives recommendations. As shown above, the non-uniform distribution of temperature in the 

concrete core is a complex problem to solve. 

In the second step, the design of the axial buckling load at elevated temperature Nfi,rd may be 

obtained by Equations 2.1 to 2.3 presented in EN1994-1-2 (2005). The design axial buckling 

load Nfi,rd is defined when the elastic critical load Nfi,cr becomes equal to the design value of 

the plastic resistance to axial compression of the total cross-section Nfi,pl,rd. The 

recommendation of the code is to increase the strain in steps until Equation 2.1 is satisfied. On 

the other hand, due to the non-uniform temperatures and consequently a non-uniform 

distribution of material strength and stiffness, the terms of Equations 2.2 and 2.3 (Ei,θ,σ Ii and 

Ai σi,θ respectively) should be calculated as a summation of all elementary elements dy dz 

having temperature θ after a fire duration t. Thus, a numerical aid is needed to solve the 

equations and users usually find the method is not easy to apply. 

 

                        (2.1) 

        
                              

  
  (2.2) 

          
      

       
 

      

       
 

      

       
 (2.3) 

 

Wang (2000) highlighted this difficult that users have in implementing the method and 

proposed an alternative simple method to access the fire resistance of unprotected and 

protected CFH columns where it is no longer necessary to evaluate the non-uniform 

temperature distribution in the column and only a few linear interpolations are required to 

obtain the column squash load and rigidity. According to the author the method is sufficient 
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for evaluating the load bearing capacity of a column under fire conditions reasonably 

accurately. 

Kodur (1999) and Han et al. (2003b) also proposed alternative simple methods as already 

cited above. 

 

2.5 Chapter remarks 

This chapter presented an overview of the main experimental and numerical research studies 

carried out in the last 20 or so years, principally those focused on CFCH columns subjected to 

fire. In addition, other studies and a brief overview of the simple methods presented in 

EN1994-1-2 (2005) were presented to complement the state of the art. This research was 

fundamental to define the main way of the steps of this thesis which will be presented in the 

following chapters. The main conclusions of this chapter were: 

 There are few experimental data from tests conducted with CFH columns subjected to 

fire; 

 The influence of the stiffness of the surrounding structure on the behaviour of these 

columns subjected to fire had been little studied and is not very clear. Some research 

studies pointed out that the higher the axial restraining is, the lower the fire resistance 

is. Rotational restraining has the opposite effect: increasing one increases the other; 

 Slenderness of the column, cross-sectional dimensions, effective length, load level and 

type of concrete filling (PC, RC or FRC) have a great influence on the fire resistance 

of CFH columns. Other parameters such as the strength of the concrete and steel, the 

type of aggregates and the eccentricity of the loading have a moderate influence and 

the ratio of steel reinforcement, the thickness of the steel tube wall and the axis 

distance of reinforcing bars us only have a minor influence on the fire resistance of 

these columns; 

 There are great differences in the experimental methods applied (e.g. differences in 

failure criterion, heating rate and test procedure) or in important parameters (e.g. load 

level, restraining level and end conditions). This fact hampers comparisons and 

induces differences in the test results; 

 The numerical models also presented some important differences such as the 

numerical model applied, the finite element mesh, the thermal and mechanical 

properties of steel and concrete adopted and the thermo-mechanical behaviour in the 
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interface between the steel tube and concrete core. The modelling of the concrete 

behaviour in high temperatures such as the migration of humidity inside concrete are 

difficult problems to solve; 

 Few numerical models simulate the restraints on thermal elongation imposed by the 

surrounding structure and validate them with experimental tests probably due to few 

fire tests having restrained CFH columns; 

 Most experimental research studies were performed in CFH columns with low load 

level and smaller external diameters. Consequently several numerical models were 

validated based in this situation; 

 CFH-PC columns cannot reach high fire resistances since a high load level is applied 

(Kodur, 1999; Han et al. 2003a and 2003b). The load level should be reduced or a fire 

protection should be designed. This column is not recommended in slender situations 

according to Romero et al. (2011). 

 CFH columns with circular cross-sections have a slightly higher fire resistance than 

the ones with square cross-sections (Yin et al. 2006; Schaumann et al. 2009); 

 There is a need to improve the simple methods presented in EN1994-1-2 (2005) so 

that they are easier to apply and still give accurate results and consider the most 

important parameters that influence the behaviour of CFH columns in the event of a 

fire. 
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3. FIRE RESISTANCE TESTS ON CONCRETE FILLED CIRCULAR 

HOLLOW COLUMNS 

3.1 Introduction 

This chapter presents the fire resistance tests on Concrete Filled Circular Hollow (CFCH) 

columns with axial and rotational restraining to thermal elongation performed at the 

Laboratory of Testing Materials and Structures of the University of Coimbra, in Portugal.  

The columns were filled with plain concrete (CFCH-PC columns) and reinforced concrete 

(CFCH-RC columns). The parameters considered on the series of tests carried out included 

the slenderness, cross-sectional diameter (168.3 and 219.1mm), loading level (30% and 70% 

Ned), stiffness of surrounding structure (a lower level with Kas of 13 kN/mm and Krs of 4091 

and 1992 kN m/rad and a higher level with Kas of 128 kN/mm and Krs of 5079 and 2536 kN 

m/rad), steel reinforcement ratio (0% and around 2.5%) and degree of concrete filling inside 

the steel tube (completely filled or with a ring around the internal surface of the steel tube 

wall). Also Circular Hollow Sections (CHS) columns (i.e. steel columns) were tested for 

comparison. 

The results obtained showed that the critical time of the columns was less than 46 min. The 

use of a concrete ring around the internal surface of the column wall is no offering advantage 

in terms of its behaviour under fire conditions because this concrete ring suffers extensive 

spalling and cracking due to the overheating of the steel tube. The main failure mode of the 

columns was global buckling. However in several cases local buckling also occurred. Details 

of tests conducted and results of development of temperatures in furnace and columns, 

restraining forces, axial deformations, critical times and temperatures, and failure modes are 

presented and discussed in the following sections. 

 

3.2 Experimental programme 

3.2.1 Test set-up 

An experimental system was mounted at the Laboratory of Testing Materials and Structures 

of the University of Coimbra, in Portugal for fire resistance tests on building columns with 

restrained thermal elongation (Correia and Rodrigues, 2011 and 2012 and Pires et al., 2012a). 

The following figures show steps of the system assembly. 
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Figure 3.1 – Restraining steel beams and 

M27 threaded rods 

 

 

Figure 3.2 – Upper restraining steel beams 

 

Figure 3.3 – Upper restraining frame 

assembly 

 

 

Figure 3.4 – Furnace modules 
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Figure 3.5 – Furnace assembly 

 

Figure 3.6 – 2D reaction frame assembly 

 

Figure 3.7 – 3D restraining frame 

assembly 

 

 

Figure 3.8 – Final configuration of test 

apparatus 

 

Below is given a detailed description of each component of the test apparatus and its location 

is indicated in the general view (Figure 3.9) and in the scheme (Figure 3.10) of the testing set 

up. 
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A 3D restraining steel frame (1), consisting of four columns, two upper and two lower beams, 

arranged orthogonally, simulates the stiffness of the structure surrounding the column 

subjected to fire. Different positions for the columns of this restraining frame allowed 

different values for the stiffness of the surrounding structure to the column in test. Values of 

axial stiffness (Kas) between 13 and 128kN/mm and of rotational stiffness (Krs) between 4091 

and 5079kN·m/rad in direction X1 and between 1992 and 2536kN·m/rad in direction X2 may 

be achieved by this restraining frame. M24 bolts, grade 8.8, were used for the connections of 

the restraining frame, except the ones between its peripheral columns and the upper beams, 

where M27 threaded rods (2), steel grade 8.8, were used. 

During all tests, a constant compressive load was applied to the test column in order to 

simulate its serviceability load when in a real building structure. This load was applied using a 

hydraulic jack with a total capacity of 3 MN (3). The applied load was controlled by a load 

cell (4), placed between the upper beam of the 3D restraining frame and the head of the piston 

of the hydraulic jack. The hydraulic jack was fixed in a 2D reaction frame (5), in which a 

safety structure (6) was also mounted to prevent damage to the experimental setup in case of 

sudden collapse of the column. 

 

Figure 3.9 – General view of testing set up. 
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The thermal action was applied by a modular electric furnace (7) comprising two modules of 

1.5 m x 1.5 m x 1.0 m and one module of 1.5 m x 1.5 m x 0.5 m, placed on top of each other, 

thus forming a 2.5 m high chamber around the column. 

A special device was built to measure the restraining forces generated in the columns tested 

during the fire resistance tests (8). It consists of a hollow and stiff cylinder of high strength 

steel, rigidly connected to the upper beams of the 3D restraining frame, into which a massive 

steel cylinder, rigidly connected on the top of the test column, was placed. The lateral surface 

of the massive cylinder was Teflon (PTFE) lined in order to prevent friction with the external 

hollow steel cylinder. The restraining forces were measured by a 3MN load cell, placed inside 

the hollow steel cylinder, which was compressed by the massive steel cylinder due to the 

column having been thermally elongated during the fire resistance test. 

To measure the axial displacements of the columns, linear variable displacement transducers 

(LVDT) were used. Three were placed three on the top and four on the bottom of the test 

columns (9) orthogonally arranged for also measuring the rotations. The lateral deflections of 

the columns were also measured by cable LVDT placed at different levels (10). However, due 

to the fact that there were not any well-defined bending plan in the test columns, it was 

difficult to determine these displacements. 

 

Figure 3.10 – Scheme of testing set up. 
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To determine the axial stiffness of the 3D restraining frame (Kas) a specific test at ambient 

temperature was conducted and measurements taken of this parameter in the two frame 

positions used in the fire tests, viz., the lower restraining level (Klow) and the higher restraining 

level (Khigh). To test the reliability of these measurements, the restraining stiffness was also 

calculated with the values of the restraining forces and axial displacements measured in the 

fire resistance tests. Figure 3.11 shows the axial stiffness measured for the lower and higher 

restraining level (stiffness test 1 and 2 respectively). Also the axial stiffness obtained in fire 

resistance tests A20 and A40 were plotted for comparative purposes. 

 

Figure 3.11 – Axial stiffness of the 3D restraining frame. 

 

The rotational stiffness of the 3D restraining frame (Krs) was numerically calculated with 

ABAQUS (2011) program. For each restraining level there are two different values of 

rotational stiffness: one in direction X1 and the other in the perpendicular direction X2. Figure 

3.12 shows the rotational stiffness in direction X1 and X2 for the lower and higher restraining 

level (stiffness test 1 and 2 respectively). 

The test starts by applying the serviceability load to the test column. Prior to the fire 

resistance test, in order to transfer the applied load to the test column, the nuts of the M27 

threaded rods (see 2 Figure 3.9) were loosened. When the loading in the test column reached 

the serviceability load, the nuts of the threaded rods were tightened and the surrounding 

structure started to exert axial restraining on the column being tested. Having done so, the fire 

resistance test was fit to start. 
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Figure 3.12 – Rotational stiffness of the 3D restraining frame. 

 

3.2.2 Test columns 

All the test columns were made from CHS tubes, steel grade S355, with two different external 

diameters, 219.1 mm and 168.3 mm, both 6 mm thick walls. Concrete C25/30 class (EN 206-

1, 2007) was used in the fabrication of the test columns. The concrete completely filled or 

covered, in a ring, the internal wall surface of the steel tube. The concrete ring was 50 and 40 

mm thick for the 219.1 mm and 168.3 mm diameter columns, respectively. 

Some of the columns were filled with steel reinforced concrete and others no. The steel 

reinforcement used being 6 steel bars with diameter of 10mm for the columns with external 

diameter of 168.3 mm and 6 steel bars with diameter of 12mm for the ones of 219.1 mm 

diameter (see Table 3.3). The steel grade of the reinforcing bars was A500 (EN 10080, 2005). 

In all these cases, 6 mm diameter stirrups, spaced 200 mm apart, were adopted. The axis 

distance for reinforcing bars to the inner surface of the column wall (us) was 30 mm in all the 

cases (Figure 3.13). 

All the columns length were 3 m, but only 2.5 m of specimen length was directly exposed to 

the furnace heating. 

The internal ring on the CFCH column was made with a Styrofoam cylinder placed in the 

steel tube before casting (Figure 3.14). After the casting this cylinder was dissolved by 

propanone (acetone – C3H6O).  
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At the bottom of the columns 4 stiffeners were welded in the connection of the steel tube with 

the steel plate (Figure 3.16). The same was done at the top of the columns. Also 4 small vent 

holes were done at the steel tube wall, two at the bottom and two at the top of the column for 

water vapour releasing during the heating. 

 

 

Figure 3.13 – Reinforcing steel bars and 

stirrups (steel reinforcement). 

 

Figure 3.14 – CFCH-RC column with 

concrete ring before casting. 

 

Figure 3.15 – Steel reinforcement with 

Styrofoam cylinder. 

 

Figure 3.16 – Stiffeners welded at the 

base/top of a CFCH column. 

 

The curing of the concrete in all specimens took place under laboratory ambient conditions 

for a minimum period of 90 days after concrete casting (Figure 3.18). The concrete mixed 

used in the fabrication of the test columns is presented in Table 3.1. The mechanical 

properties at ambient temperature of the materials as well as the humidity and density of 

concrete were tested (Appendix A). The Table 3.1 summarizes the results for concrete and 

Table 3.2 for steel. 
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Figure 3.17 – Columns before the casting 

 

Figure 3.18 – Curing of the CFCH 

columns 

 

Figure 3.19 – Casting of the CFCH 

columns. 

 

 

 

 

Table 3.1 – Mechanical properties of the concrete at ambient temperature 

Reference Quantity Unit 

Concrete compositions: 

Calcareous aggregate 

Fine siliceous sand  
Medium  siliceous sand  

Cement II/A-L 42.5 R (EN197-1, 2001) 

Super - plasticizer Mira 44S 

Water 

 

900 

320 
550 

330 

3.3 

195 

 

Kg/m3 

Kg/m3 
Kg/m3 

Kg/m3 

Kg/m3 

Kg/m3 

Compressive strength at 28 days (fcu,28)
 33.2 MPa 

Compressive strength at the age of the first test
 34.2 MPa 

Compressive strength at the age of the last test
 35.8 MPa 

Humidity rate 4.25 % 

Dry density  2186 Kg/m3 
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Table 3.2 – Mechanical properties of the steel at ambient temperature 

Reference 
Quantity 

(MPa) 

Steel tube 168.3mm: 

Yield strength (fay) 
Ultimate strength (fau)

 

 

430.5 
510.7 

Steel tube 219.1mm: 

Yield strength (fay) 

Ultimate strength (fau)
 

 

529.0 

591.7 

Reinforcing steel bars: 

Yield strength (fsy) 

Ultimate strength (fsu)
 

 

505.7 

624.3 

 

The temperatures in the specimens were measured with type K thermocouples, placed at five 

cross-sections (S1 to S5) of the specimen column, as shown in Figure 3.20. 

 

 

 

Figure 3.20 – Position of thermocouples on the columns by height and cross-section 
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3.2.3 Test plan 

The values of the serviceability load applied to the columns were 70% and 30% of the design 

value of the buckling load at room temperature (Ned) calculated according to the methods of 

EN1994-1-1 (2005). The heating curve adopted was the ISO 834 fire curve (ISO834-1, 1999). 

Two values of stiffness of the surrounding structure were applied to the tests, that 

corresponded to 13kN/mm of axial stiffness and 4091 and 1992kN·m/rad of rotational 

stiffness in directions X1 and X2 respectively, for lower stiffness (Klow) and 128kN/mm of 

axial stiffness and 5079 and 2536kN·m/rad of rotational stiffness in directions X1 and X2 

respectively, for higher stiffness (Khigh). 

Table 3.3 presents the parameters of all the 40 test columns. Table column 1 indicates the 

specimen reference, column 2 the external diameter of the steel tube, column 3 the degree of 

concrete filling, column 4 the relative slenderness λ (Eq. 3.1) according to EN1994-1-1 

(2005), column 5 the steel reinforcement used, column 6 the serviceability load applied to the 

columns, column 7 the degree of axial restraint α (Eq. 3.2), columns 8 and 9 the degree of 

rotational restraint β1 (direction X1) and β2 (direction X2) (Eq. 3.4), column 10 the critical 

times and column 11 the failure mode of the test columns. 

    
      

   
 (3.1) 

  
   

     
 (3.2) 

      
       

  
 (3.3) 

   
     

     
 (3.4) 

      
        

  
 (3.5) 

 

The test columns can be identified as follow: AXX (XX is the reference code presented in 

Table 3.3) followed in subscript by the external diameter of the column (168 or 219), by the 

degree of concrete filling (RING or TOT), by the type of concrete filling (PC or RC), by the 

loading level (30% or 70%) and by the stiffness of the surrounding structure (Klow or Khigh) 

(e.g. A01 168-TOT-PC-70%-Klow). 
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Table 3.3 – Test plan, critical times and failure modes. 

Ref. 
Diameter 

(mm) 

Degree of 

concrete filling 

Relative 

slenderness 

   
Reinforcement 

Serviceability 

load (kN) 

(% Ned) 

Axial 

restraint 

α 

Rotational 
restraint Critical 

time (min) 
Failure mode 

β1 β2 

A01 168.3 Total  0.883 -- 816 (70%) 0.038 1.388 0.676 16 global buckling 

A02 168.3 Total  0.911 6ϕ10mm 874 (70%) 0.035 1.345 0.655 13 global+local buckling 

A03 168.3 Ring (40 mm) 0.855 -- 775 (70%) 0.043 1.404 0.684 15 global+local buckling 

A04 168.3 Ring (40 mm) 0.885 6ϕ10mm 753 (70%) 0.040 1.360 0.662 12 global+local buckling 

A05 168.3 -- 0.826 -- 593 (70%) 0.073 1.751 0.852 8 global+local buckling 

A06 219.1 Total 0.682 -- 1359 (70%) 0.025 0.570 0.278 16 global buckling 

A07 219.1 Total 0.698 6ϕ12mm 1478 (70%) 0.023 0.546 0.266 19 global+local buckling 

A08 219.1 Ring (50 mm) 0.653 -- 1242 (70%) 0.029 0.581 0.283 19 global+local buckling 

A09 219.1 Ring (50 mm) 0.672 6ϕ12mm 1363 (70%) 0.027 0.556 0.271 14 global+local buckling 

A10 219.1 -- 0.629 -- 877 (70%) 0.056 0.774 0.377 11 global+local buckling 

A11 168.3 Total 0.883 -- 350 (30%) 0.038 1.388 0.676 27 global buckling 

A12 168.3 Total  0.911 6ϕ10mm 375 (30%) 0.035 1.345 0.655 30 global buckling 

A13 168.3 Ring (40 mm) 0.855 -- 332 (30%) 0.043 1.404 0.684 26 global+local buckling 

A14 168.3 Ring (40 mm) 0.885 6ϕ10mm 323 (30% ) 0.040 1.360 0.662 15 global buckling 

A15 168.3 -- 0.826 -- 254 (30% ) 0.073 1.751 0.852 14 global buckling 

A16 219.1 Total 0.682 -- 583 (30% ) 0.025 0.570 0.278 27 global buckling 

A17 219.1 Total 0.698 6ϕ12mm 633 (30% ) 0.023 0.546 0.266 43 global buckling 

A18 219.1 Ring (50 mm) 0.653 -- 532 (30% ) 0.029 0.581 0.283 29 global buckling 

A19 219.1 Ring (50 mm) 0.672 6ϕ12mm 584 (30% ) 0.027 0.556 0.271 23 global+local buckling 

A20 219.1 -- 0.629 -- 376 (30% ) 0.056 0.774 0.377 14 global+local buckling 
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Table 3.3 – Test plan, critical times and failure modes (cont.). 

Ref. 
Diameter 

(mm) 

Degree of 

concrete filling 

Relative 
slenderness 

   
Reinforcement 

Serviceability 

load (kN) 

(% Ned) 

Axial 

restraint 

α 

Rotational 

restraint Critical 

time (min) 
Failure mode 

β1 β2 

A21 168.3 Total 0.883 -- 816 (70% ) 0.372 1.723 0.860 15 global buckling 

A22 168.3 Total 0.911 6ϕ10mm 874 (70% ) 0.349 1.670 0.834 17 global+local buckling 

A23 168.3 Ring (40 mm) 0.855 -- 775 (70% ) 0.421 1.743 0.870 14 global buckling 

A24 168.3 Ring (40 mm) 0.885 6ϕ10mm 753 (70% ) 0.391 1.689 0.843 12 global buckling 

A25 168.3 -- 0.826 -- 593 (70% ) 0.722 2.173 1.085 10 global buckling 

A26 219.1 Total 0.682 -- 1359 (70% ) 0.244 0.708 0.354 16 global buckling 

A27 219.1 Total 0.698 6ϕ12mm 1478 (70% ) 0.229 0.677 0.338 19 global buckling 

A28 219.1 Ring (50 mm) 0.653 -- 1242 (70% ) 0.286 0.722 0.360 17 global buckling 

A29 219.1 Ring (50 mm) 0.672 6ϕ12mm 1363 (70% ) 0.266 0.690 0.344 13 global+local buckling 

A30 219.1 -- 0.629 -- 877 (70% ) 0.550 0.960 0.480 14 global+local buckling 

A31 168.3 Total 0.883 -- 350 (30% ) 0.372 1.723 0.860 26 global buckling 

A32 168.3 Total 0.911 6ϕ10mm 375 (30% ) 0.349 1.670 0.834 31 global buckling 

A33 168.3 Ring (40 mm) 0.855 -- 332 (30% ) 0.421 1.743 0.870 21 global buckling 

A34 168.3 Ring (40 mm) 0.885 6ϕ10mm 323 (30% ) 0.391 1.689 0.843 14 global buckling 

A35 168.3 -- 0.826 -- 254 (30% ) 0.722 2.173 1.085 12 global buckling 

A36 219.1 Total 0.682 -- 583 (30% ) 0.244 0.708 0.354 21 global buckling 

A37 219.1 Total 0.698 6ϕ12mm 633 (30% ) 0.229 0.677 0.338 46 global buckling 

A38 219.1 Ring (50 mm) 0.653 -- 532 (30% ) 0.286 0.722 0.360 26 global buckling 

A39 219.1 Ring (50 mm) 0.672 6ϕ12mm 584 (30% ) 0.266 0.690 0.344 28 global buckling 

A40 219.1 -- 0.629 -- 376 (30% ) 0.550 0.960 0.480 13 global+local buckling 
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3.3 Results 

3.3.1 Evolution of temperatures 

The mean temperature in the furnace was similar in all the tests. Figure 3.21 shows a 

comparison between the evolution of the mean temperature in the furnace for all the fire 

resistance tests and the ISO834 (1999) fire curve. A difference between them was observed in 

the first 8 min of heating due to the furnace thermal inertia that the electric system did not 

have enough power to eliminate. 

 

Figure 3.21 – Evolution of furnace temperature as a function of time for all the tests 

 

Figure 3.22 shows the evolution of temperature at cross-section S3 corresponding to the mid-

height of the column. As can be observed in all the tests, the temperature in the steel tube 

increased much faster than in the concrete and tends to follow the furnace temperatures 

(Figure 3.22). The concrete core remains colder than the steel tube and the rise in its 

temperature varies linearly with time. Hence, there was a huge thermal gradient at the steel 

concrete interface (Figure 3.22).  

Figure 3.23 shows the evolution of temperature in a cross-section of a column with an internal 

ring of concrete. The evolution of temperature in this case was similar to Figure 3.22. The 

evolution of temperatures in all 5 cross-sections (S1 up to S5) of all tested columns is 

presented in Appendix B. 
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Figure 3.22 – Distribution of temperature in cross-section S3 for test column A17 219-TOT-RC-

30%-Klow. 

 

 

Figure 3.23 – Distribution of temperature in cross-section S3 for test column A19 219-RING-RC-

30%-Klow 
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A slightly reduction in the increase of temperatures in the steel tube was observed in the 

CFCH columns as pointed out by other authors such as Romero et al. 2011. 

The Figure 3.24 presents the mean evolution of temperatures in the steel tube at cross-section 

S3 for the columns with external diameter of 168.3mm. As the load level and the stiffness of 

the surrounding structure do not influence the evolution of temperature, there are 4 similar 

tests for each type of CFCH column: total filled with PC, total filled with RC, ring filled with 

PC and ring filled with RC beyond the CHS column (i.e. steel column). 

 

Figure 3.24 – Effect of filling in steel tube temperature of CFCH columns with d = 168.3mm 

at cross-section S3. 

 

Figure 3.25 presents the same results for the columns with 219.1mm. The major reduction in 

steel tube temperature was observed in the CFCH-PC columns total filled. This demonstrates 

the influence of the filling reducing the temperatures in the steel tube due to the smaller 

thermal conductivity of the concrete than steel. 

Figure 3.26 shows the distribution of temperature in the different thermocouples by specimen 

height at the instant of failure. The temperatures were quite uniform in the central part of the 

column and reduced in the direction of the column end supports, which were outside the 

furnace. 
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Figure 3.25 – Effect of filling in steel tube temperature of CFCH columns with d = 219.1mm 

at cross-section S3. 

 

Figure 3.26 – Distribution of temperature over height at the moment of failure for column 

A17 219-TOT-RC-30%-Klow. 
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A high thermal gradient was observed along the cross-section of the CFCH columns due the 

filling with concrete. The Figure 3.27 presents the temperature distribution along the cross-

section at the moment of failure for column A17 219-TOT-RC-30%-Klow. 

The ends of the columns were outside of the furnace and remained colder than the rest of the 

column (i.e. central part of the column) during the heating. This is the reason of the lower 

temperatures in sections S1 and S5 in Figure 3.27. 

 

Figure 3.27 – Distribution of temperature along the cross-section at the moment of failure for 

column A17 219-TOT-RC-30%-Klow. 

 

3.3.2 Restraining forces 

The restraining forces as a function of time are represented from Figure 3.28 to Figure 3.35. 

They are represented in a non-dimensional way, dividing the absolute load by the initial 

applied load (P/P0). The initial applied load is a percentage of the design value of the buckling 

load at room temperature (Ned) calculated according to the methods of EN1994-1-1 (2005). 
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These relative restraining forces increase up to a maximum value then decrease due to the 

degradation of the mechanical properties of the materials (steel and concrete) until they again 

reach the initial applied load. 

As can be observed, the stiffness of the restraining frame did not influence the critical time of 

the columns. Nevertheless higher restraining forces were observed in columns of the same 

type of cross-section and load level in which the stiffness of the restraining frame was higher.  

In addition the results showed that an increase in load level reduces the critical time of the 

columns and the relative restraining forces (e.g. see Figure 3.28 and Figure 3.32 or Figure 

3.29 and Figure 3.33). The CFCH columns with 70% Ned presented the smallest relative 

restraining forces and critical times (e.g. Figure 3.28 to Figure 3.31). 

 

 

Figure 3.28 – Restraining forces for a load level of 70%, column diameter of 168.3 mm and 

axial stiffness of the surrounding structure of 13 kN/mm. 
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Figure 3.29 – Restraining forces for a load level of 70%, column diameter of 168.3 mm and 

axial stiffness of the surrounding structure of 128 kN/mm. 

 

 

Figure 3.30 – Restraining forces for a load level of 70%, column diameter of 219.1 mm and 

axial stiffness of the surrounding structure of 13 kN/mm. 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 3 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  64 

 

 

Figure 3.31 – Restraining forces for a load level of 70%, column diameter of 219.1 mm and 

axial stiffness of the surrounding structure of 128 kN/mm. 

 

When the slenderness of the columns was changed by increasing the diameter of the cross-

section, an increase in the critical times of the columns was observed but the effect on the 

relative restraining forces was not so clear. Sometimes this increased them (e.g. A34168-RING-

RC-30%-Khigh and A39219-RING-RC-30%-Khigh in Figure 3.33 and Figure 3.35 respectively) and 

sometimes it reduced them (e.g. A14168-RING-RC-30%-Klow and A19219-RING-RC-30%-Klow in Figure 

3.32 and Figure 3.34 respectively). Therefore, major conclusions cannot be drawn about the 

influence of the slenderness of a column on the restraining forces. 

The concrete filling increases the critical times of the columns and reduces the relative 

restraining forces (e.g. Figure 3.34). In general, the CHS columns (i.e. steel columns) 

presented the smallest critical times and the largest relative restraining forces that after 

reaching the maximum value drop quite suddenly. In the CFCH columns, probably due to the 

concrete core inside the steel tube, the relative restraining forces diminished more gradually 

(e.g. Figure 3.35). 

Sometimes the contribution of concrete core was not so evident in the restraining forces 

graphs (e.g A36219-TOT-PC-30%-Khigh and A37219-TOT-RC-30%-Khigh in Figure 3.35). The reason may 

be that CFCH-PC columns may not transfer the load to concrete core and the failure occurs by 

buckling of the steel tube as pointed out by Romero et al. (2011). 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 3 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  65 

 

 

Figure 3.32 – Restraining forces for a load level of 30%, column diameter of 168.3 mm and 

axial stiffness of the surrounding structure of 13 kN/mm. 

 

 

Figure 3.33 – Restraining forces for a load level of 30%, column diameter of 168.3 mm and 

axial stiffness of the surrounding structure of 128 kN/mm. 
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Figure 3.34 – Restraining forces for a load level of 30%, column diameter of 219.1 mm and 

axial stiffness of the surrounding structure of 13 kN/mm. 

 

 

Figure 3.35 – Restraining forces for a load level of 30%, column diameter of 219.1 mm and 

axial stiffness of the surrounding structure of 128 kN/mm. 
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3.3.3 Axial deformations 

The axial deformations of the column as a function of time are represented from Figure 3.36 

to Figure 3.43. The axial deformations developed in a very similar way to the restraining 

forces, they increased up to a maximum value after which they declined until reaching the 

initial value. 

The results indicate that the stiffness of the surrounding structure influences the development 

of axial deformation. In general an increase in this parameter reduces the axial deformation 

(e.g. Figure 3.36 and Figure 3.37). 

Also an increase in the load level reduces the axial deformation of the columns (e.g. Figure 

3.36 and Figure 3.40). 

 

 

Figure 3.36 – Axial deformations for a load level of 70%, column diameter of 168.3 mm and 

axial stiffness of the surrounding structure of 13 kN/mm. 

 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 3 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  68 

 

 

Figure 3.37 – Axial deformations for a load level of 70%, column diameter of 168.3 mm and 

axial stiffness of the surrounding structure of 128 kN/mm. 

 

 

Figure 3.38 – Axial deformations for a load level of 70%, column diameter of 219.1 mm and 

axial stiffness of the surrounding structure of 13 kN/mm. 
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Figure 3.39 – Axial deformations for a load level of 70%, column diameter of 219.1 mm and 

axial stiffness of the surrounding structure of 128 kN/mm. 

 

 

Figure 3.40 – Axial deformations for a load level of 30%, column diameter of 168.3 mm and 

axial stiffness of the surrounding structure of 13 kN/mm. 
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In general the column axial deformation was very small when the axial stiffness of the 

surrounding structure was 128 kN/mm (e.g. Figure 3.41). 

In general, as the results obtained show, the axial deformation was higher in CHS columns – 

steel columns (which also presented greater restraining forces) than in CFCH ones. This result 

is coherent given that the concrete filling reduces restraining forces and consequently it  

reduces the axial deformation (e.g. Figure 3.42). 

As in the restraining forces, no visible influence of the slenderness of the columns on the axial 

deformation was registered. Sometimes an increase in the diameter reduces the axial 

deformation and sometimes the reverse was observed (e.g. Figure 3.41 and Figure 3.43). 

There were not any well defined bending plan in the test columns, it hampered the 

measurements of lateral deflections and may introduce a bias in results. Thereby these results 

were not presented in the main text of this thesis. Anyway the lateral deflections of the CFCH 

columns are presented in Appendix C. 

 

 

Figure 3.41 – Axial deformations for a load level of 30%, column diameter of 168.3 mm and 

axial stiffness of the surrounding structure of 128 kN/mm. 
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Figure 3.42 – Axial deformations for a load level of 30%, column diameter of 219.1 mm and 

axial stiffness of the surrounding structure of 13 kN/mm. 

 

 

Figure 3.43 – Axial deformations for a load level of 30%, column diameter of 219.1 mm and 

axial stiffness of the surrounding structure of 128 kN/mm. 
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3.3.4 Critical times 

As the tests conducted in this research were not standard fire resistance tests, it was deemed to 

be more appropriate to use the concept of critical time instead of fire resistance (EN1994-1-2, 

2005). Critical time is here defined as the instant when the restraining forces return to the 

value of the initial applied load, after increasing due to column restraining thermal elongation 

and decreasing due to the degradation of the mechanical properties with the temperature. The 

critical times obtained in these tests are presented in Table 3.3. 

In these tests, the maximum critical time was 14 min for CHS columns (i.e. steel columns e.g. 

A30219-70%-Khigh). For the CFCH-PC columns the maximum critical time was 27 min for those 

that were completely filled (e.g. A16219-TOT-PC-30%-Klow) and 29 min for those filled with a ring 

(e.g. A18219-RING-PC-30%-Klow). In the CFCH-RC columns the maximum critical time was 46 min 

for those completely filled (e.g. A 37219-TOT-RC-30%-Khigh) and 28 min for those filled with a ring 

(e.g. A39219-RING-RC-30%-Khigh). 

These critical times are in general smaller than those registered by the National Research 

Council of Canada (NRCC) researchers except for the CHS columns (i.e. steel columns). 

However, it should be highlighted that these tests were carried out without restraining to 

thermal elongation of the column and the failure criterion adopted was different to the one of 

this study. 

The critical times obtained in this study as a function of the parameters tested are presented 

from Figure 3.44 to Figure 3.48. A 5% error margin was considered. 

This study also set out to study the influence of the stiffness of the surrounding structure on 

the critical times of the columns. Therefore, tests employing two different surrounding 

structure stiffness were conducted: Klow (Kas= 13kN/mm, Krs,X1= 4091 and Krs,X2= 

1992kN·m/rad) and Khigh (Kas= 128kN/mm, Krs,X1= 5079 and Krs,X2= 2536kN·m/rad). The 

results obtained show that changing the stiffness of the surrounding structure, between the 

values mentioned, did not lead to great changes in the critical times of the columns (Figure 

3.44).  

This phenomenon may occur because usually associated with an increase on axial restraining 

is an increase on rotational restraining. The increasing of both restraining is common in real 

structures but in fact an increasing on axial restraining does not mean an increasing on 

rotational restraining. As it is known an increasing on axial restraining leads to a reduction on 

the critical time and temperature of the columns while an increasing on the rotational 

restraining has the opposite effect (Correia and Rodrigues, 2011). 
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Figure 3.44 – Comparison of the critical times of columns obtained for the lower surrounding 

structure stiffness with the critical times of other columns for the higher stiffness. 

 

As it is expected, the load level has a significant influence on the critical times of the CFCH 

columns. It was noticed, in all tests that for CFCH columns with a load level of 30% Ned, the 

critical times were higher than those obtained for those with a load level of 70% Ned (Figure 

3.45). In other words, the increasing in the column load level reduces its critical time. Similar 

results were also obtained for CHS columns (i.e. steel columns). 

The maximum critical time registered in this experimental study was 46 min for a load level 

of 30% Ned (e.g. A37219-TOT-RC-30%-Khigh). For the load level of 70% Ned the maximum critical 

time obtained was 19 min (e.g. A08219-RING-PC-70%-Klow). This suggests that this load level is 

probably too high for the fire design of these columns. 
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Figure 3.45 – Comparison of the critical times of columns obtained for the load level of 30% 

with columns bearing a load level of 70%. 

 

Figure 3.46 shows the critical times of the tested columns comparing the influence of the 

external diameter (219.1 mm and 168.3 mm). It is observed that the critical times of columns 

with 219.1 mm were higher the ones of columns with 168.3 mm diameter. 
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Figure 3.46 – Comparison of the critical times obtained for columns with diameter of 219.1 

mm with columns that have a diameter of 168.3 mm 

 

In general, the CFCH columns that were completely filled presented higher critical times than 

the ones with a concrete ring inside (Figure 3.47). Thus, partially filling of CFCH columns 

does not seem to be an appropriate solution for fire resistance. Despite the concrete ring 

increases the critical time of the columns, the unconfined internal concrete face may 

contribute to the occurrence of concrete spalling. In fact, sounds of spalling could be “heard” 

during the tests in the CFCH columns with concrete ring. 

On comparing CFCH columns completely filled, it was also noticed that adding reinforcing 

steel bars increases their critical time, as shown in Figure 3.48. This result was especially 

noticed in cases where the load level was 30% Ned.  

The critical times of CFCH-RC columns loaded with 30% Ned varied from 36 to 46 min. 

These results were the highest ones obtained in this series of tests with CFCH columns. 
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Figure 3.47 – Comparison of the critical times of CFCH columns obtained for the completely 

filled columns with the critical times for partially filled columns (concrete ring). 

 

3.3.5 Failure mode 

The failure mode in most of the columns was global buckling (Figure 3.49). Global buckling 

with double curvature (similar to a slight “s”) in some cases (e.g. A01168-TOT-PC-70%-Klow and 

A14168-RING-RC-30%-Klow in Figure 3.49) was also observed. Wang (1999) observed similar 

deformed shapes. 

The EN1994-1-1 (2005) states that the effects of local buckling may be neglected when the 

d/e ratio is less than 59 for these types of CFCH columns. All the columns presented here had 

a smaller ratio diameter thickness d/e (i.e. 28 in 168.3 mm and 37 in 219.1 mm columns). 

Nevertheless several cases of local buckling were observed (Figure 3.50). 

Figure 3.51 shows the percentage of columns tested that presented local buckling as a 

function of the stiffness of the surrounding structure, the load level, the column diameter and 

the degree of concrete filling. 
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Figure 3.48 – Comparison of the critical times obtained for the CFCH columns with steel bars 

reinforcement with those without. 

 

On comparing all the results obtained, it is seen that local buckling occurred more often in the 

following cases: 

 Lower stiffness of surrounding structure (Klow i.e. Kas= 13kN/mm, Krs,X1= 4091 and 

Krs,X2= 1992kN·m/rad); 

 Load of 70% Ned; 

 A cross-section diameter equal to 219.1 mm (these cross-sections have higher 

diameter-thickness – d/e ratio than those with a diameter equal to 168.3 mm); 

 CHS columns (i.e. steel columns); 
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 CFCH columns partially filled with concrete (concrete ring), compared to those that 

are completely filled. The concrete filling avoids local buckling. However, a concrete 

ring was not effective enough to prevent local buckling. 

 

 

Figure 3.49 – Deformed shape of tested columns. 

 

The largest number of local buckling cases was observed in columns tested with low stiffness 

of the surrounding structure that may be justified by a higher transmission of the applied 

loading to the columns in the failure phase. It is important to point out that the failure modes 

could only be observed after the tests (i.e. after the opening of the furnace). This fact hampers 

determining the principal failure mode of the columns and when it occurs. However certainly 

it occurs in the later stages of the test. 

The Appendix D presents figures of deformed shapes of all tested columns. Finally the 

Appendix E presents the results for two CFCH-FRC (steel + polypropylene fibre reinforced 

concrete) columns tested in addition. 
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Figure 3.50 – Local buckling in tested columns. 

 

 

Figure 3.51 – Percentage of columns tested that presented local buckling. 
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3.4 Chapter remarks 

This chapter reported the results of an experimental study carried out on the behaviour of 

CFCH columns with restraining thermal elongation and subjected to fire. The following 

conclusions may be drawn from the results of this research: 

 

Critical times 

 The critical times of the CFCH columns tested in this research were smaller than those 

registered by the NRCC researchers for similar experimental tests however without 

restraining to their thermal elongation; 

 Increasing the stiffness of the surrounding structure from Klow (Kas= 13kN/mm, Krs,X1= 

4091 and Krs,X2= 1992kN·m/rad) to Khigh (Kas= 128kN/mm, Krs,X1= 5079 and Krs,X2= 

2536kN·m/rad) did not lead to major changes in the critical times of the columns; 

 The load level and slenderness of the columns had a great influence on the critical 

time of the columns. Reducing these parameters contributes to enhancing the 

performance of the columns in fire; 

 Concrete filling improves the behaviour of CFCH columns when there is a fire. 

However the use of a concrete ring does not seem to be a good solution. The critical 

times of the CFCH columns filled with a concrete ring were lower than those of the 

ones completely filled; 

 The use of RC increase the critical time of a column, especially in columns with a load 

level of 30%; 

 CFCH-RC columns completely filled and with a load level of 30% presented the 

highest critical times (between 30 min and 46 min); 

 

Restraining forces 

 Increasing the axial stiffness of the surrounding structure leads to an increase in the 

restraining forces of the columns although this did not influence the critical time; 

 Relative restraining forces were higher for the small load level (30%); 
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 Relative restraining forces were also higher in CHS columns (i.e. steel columns) than 

in CFCH columns; 

 A higher degree of concrete filling reduces the relative restraining forces of the 

columns. 

 

Axial deformation 

 Increasing the stiffness of the surrounding structure or the load level reduces the axial 

deformation of the columns; 

 A higher degree of concrete filling also reduces the axial deformation of the columns. 

CHS columns (i.e. steel columns) presented a greater axial deformation than CFCH 

columns. 

 

Failure mode 

 The main failure mode of the columns was global buckling, however in several cases 

local buckling also occurred, although the columns presented a diameter-thickness 

ratio (d/e) smaller than 59; 

 In general, the probability of local buckling occurs increases with the reduction of the 

stiffness of the surrounding structure, the increasing of the load level or the increasing 

of the cross-section diameter; 

 Concrete filling avoids local buckling, but concrete ring was not enough effective to 

prevent the occurrence of this phenomenon. 
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4. NUMERICAL ANALYSIS OF CONCRETE FILLED CIRCULAR 

HOLLOW COLUMNS SUBJECTED TO FIRE 

4.1 Introduction 

This Chapter presents a three-dimensional nonlinear finite element model developed in 

ABAQUS (2011) to predict the behaviour of Concrete Filled Circular Hollow (CFCH) 

columns in a fire situation, after verifying their most relevant parameters, and considering the 

restraints of columns to their thermal elongation. This adds a rather difficult step to the 

problem analysis. 

Validation of the proposed model is investigated by comparing numerical results and 

experimental data obtained in fire tests, presented in Chapter 3, conducted with thermal 

elongation restrained CFCH columns. 

The model considers these parameters have an influence on the fire resistance of the columns 

used in the fire tests. These parameters include slenderness, cross-sectional diameter, loading 

level, stiffness of surrounding structure, steel reinforcement ratio and degree of concrete 

filling inside the steel tube (which may be completely filled or with a ring around the internal 

surface of the steel tube wall). 

Continuing the research on this area, this model makes use of the main suggestions proposed 

by the authors presented in Chapter 2 of this thesis, such as the friction and thermal model for 

the steel tube-concrete core interface. 

The model shows a good agreement between the numerical and experimental results and is 

able to assess the fire performance of CFCH columns. 

 

4.2 Numerical model 

4.2.1 Geometry 

Basically the numerical model is divided into three parts: the steel tube including the steel 

plates (top and bottom of columns); the concrete core; and the steel bar reinforcement. 

Obviously some of these parts may be suppressed according to the type of column simulated. 

For example, bare steel columns do not have bar reinforcement nor does the concrete core. 
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As commonly adopted in numerical analysis of columns, an initial geometric imperfection is 

imposed on the columns (due to the manufacturing process, for instance). A large range of 

different values for maximum imperfection along the length of columns can be found in the 

literature reviewed (L/7500 is suggested by Hong and Varma, 2009 while L/1000 up to 

L/2000 is proposed by Espinos et al., 2010). In this thesis, the value of L/1000 is adopted, as 

this seems to be the value recommended by most authors. 

 

4.2.2 Thermal and mechanical properties 

Steel 

The steel model follows the temperature dependent formulation for thermal and mechanical 

properties presented in EN1993-1-2 (2005), as suggested by EN1994-1-2 (2005), and the 

isotropic classical metal plasticity model was adopted. 

A small reduction of 10% in the thermal expansion coefficient of steel led to a reduction of 

maximum axial deformations (umax), as also observed by Lie (1994), and a better agreement 

with the measured values of this parameter. However, problems with convergence and major 

divergences in critical times were noted for results with this reduced coefficient. Therefore, 

the thermal elongation of steel recommended by EN1993-1-2 (2005) was adopted in the 

model and this still led to acceptable results. 

 

Concrete 

A wide variety of concrete models has been presented in the international literature presented 

in Chapter 2, especially for mechanical properties at elevated temperatures. The numerical 

model presented in this research follows the mechanical and thermal properties presented in 

EN1992-1-2 (2004) while minor changes will be pointed out in what follows. The concrete 

damaged plasticity model was adopted. A thermal dependent formulation was used to 

simulate the effects of heating due to fire, except for the thermal expansion coefficient and the 

density of concrete. 

The EN1992-1-2 (2004) mechanical model for concrete presented very similar results when 

compared to the model proposed by Lie (1994). Thus, the EN1992-1-2 (2004) mechanical 

model was adopted in this work. Hong and Varma (2009) and Espinos et al. (2010) followed 

Lie’s model. 
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A constant value of 6x10-6 ºC
-1

 for the thermal expansion coefficient of concrete, a 

simplification suggested by Hong and Varma (2009), is adopted as well as a constant value of 

2300 kg/m
3
 for concrete density, as suggested by most researches instead of the temperature 

dependent formulation proposed in EN1992-1-2 (2004). 

The EN1994-1-2 (2005) takes into account the effect of moisture in concrete by using a peak 

value in the specific heat. The values of 2020J/kg K for moisture content of 3% of concrete 

weight and 5600J/kg K for moisture of 10% are recommended. The numerical model adopts a 

peak value of 2659J/kg K corresponding to moisture of 4.25% determined in the experimental 

tests (Chapter 3), obtained from linear interpolation. 

 

4.2.3 Analysis procedure 

Sequentially, coupled thermal-stress analysis was carried out instead of fully coupled thermal-

stress analysis, because the former is less time-consuming and leads to fewer problems of 

convergence than the latter, as suggested by Espinos et al. (2010). 

In fact, the first approach simplifies the problem because the stress/strain solution is 

dependent on the temperature, but the inverse relation is not. In a fully coupled thermal-stress 

analysis, the conductance thermal gap decreases when the steel tube and concrete core 

surfaces are detached, due to the different thermal expansion of these materials. Therefore, the 

thermal and structural solutions affect each other and this approach seems to better represent a 

real situation than a sequentially coupled thermal-stress analysis. 

However, as indicated in Section 4.3, results obtained with sequentially coupled thermal-

stress analysis showed good agreement with experimental tests and thus it can be concluded 

that a more complex analysis does not seem to be necessary. Given this, the numerical 

analysis runs as follows: the nodal temperatures (output), obtained from thermal analysis of 

CFCH columns, are the input data for stress analysis. In the following, details of each analysis 

models will be further discussed. 

 

Thermal model 

The thermal model corresponds to a pure heat transfer analysis. The surfaces of the CFCH 

columns were submitted to the furnace temperature curve measured in experimental tests 

(Chapter 3) and two mechanisms of heat transfer were considered: convection and radiation. 

In the inner part of the CFCH columns, conduction was the heat transfer mechanism. The 
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values suggested in EN1991-1-2 (2002) were used and the main parameters are presented in 

Table 4.1. 

Table 4.1 – Parameters for the thermal model 

Parameter Value Unit 

Convective heat transfer coefficient (hc) 25 W/m2 K 

Radiation configuration factor (ϕr) 1 -- 

Stephan-Boltzmann constant (σ) 5.67 x 10-8 W/m2 K4 

Absolute zero temperature -273 ºC 

Emissivity of the material (εm) 0.7 -- 

Emissivity of fire (εf) 1 -- 

Initial temperature (θ0) 20 ºC 

 

The heat transfer mechanism in the steel tube-concrete core interface and concrete core-steel 

bar reinforcement will be detailed in Section 4.2.4. 

 

Structural analysis 

The structural model corresponds to non-linear thermal-mechanical stress analysis. The nodal 

temperatures at the inner and outer surfaces of the CFCH column, obtained from heat transfer 

analysis, are the input data for the structural model. The meshes are the same for all 

simulations. The structural analysis is divided into two steps. 

In the first step all the load is applied on the top plate of the CFCH columns. The plate 

distributes the load to the steel tube and to the concrete core. In the second step, the restraint 

to thermal elongation is active and heating starts. 

 

4.2.4 Interaction 

Steel tube – concrete core interface 

Espinos et al. (2010) commented that the thermal interface between the wall of the steel tube 

and the surface of the concrete core had been traditionally ignored and recommended a 

constant gap conductance of 200 W/m
2
 K, as suggested by Ding and Wang (2008), and a 
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radiation heat transfer for this interface. The recommended emissivity (εm) for both materials 

(steel and concrete) is 0.7 and the radiation configuration factor (ϕr) is 1.0. 

In ABAQUS software, the mechanical interface may be modeled with normal and tangential 

behavior. The normal behavior considers the “hard” contact formulation that uses the classical 

Lagrange multiplier method and allows any pressure value when the surfaces are in contact 

while no pressure is allowed when the surfaces are not in contact. The tangential behavior 

considers the penalty method of the friction model which permits some relative motion 

between the surfaces (an “elastic slip”) when they should be sticking to each other. The hard 

contact option and the friction coefficient equal to 0.3 were adopted in this thesis, following 

Espinos et al. (2010). On the other hand, these authors commented that no difference was 

observed when employing different values of friction coefficient due to the separation of the 

steel tube from the concrete core in a fire situation. The same behavior was also observed in 

this research study. 

 

Steel bars - concrete core interface 

To define the interface between the reinforcement steel bars and the concrete core, a tie 

constraint was used, namely each node of the steel bar element was tied to the corresponding 

node of the concrete core element. This constraint ties two separate surfaces together so that 

there is no relative motion between them. 

 

Thermal elongation restraint 

A basic axial flexion wire feature connector was applied on the top plate of the CFCH 

columns to simulate the restraint of the surrounding structure to thermal elongation. An axial-

rotational spring was set-up at the top plate with the respective value for the stiffness of the 

surrounding structure. 

 

4.2.5 Load and boundary conditions 

The load was considered as uniformly distributed over a central square area on the top plate of 

the CFCH columns to avoid a high concentrated load at a specific point. Gravity was also 

considered in the entire column. 
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The bottom plate was fixed, simulating the action of the floor where the columns were 

supported. Then, the initial load is applied and afterwards, the top plate is submitted to an 

axial-rotational spring that imposes stiffness to axial deformation and rotation on the top of 

the columns. 

These load conditions are coherent for the load conditions used in the experiments presented 

in Chapter 3. 

The initial temperature in the columns for the numerical thermal model was 20ºC. The final 

temperatures obtained with this modelling were then applied as the thermal load (input data) 

for the structural numerical modelling. 

 

4.2.6 Mesh 

All parts of the model (except the reinforced bars) were meshed with three-dimensional 

twenty node solid elements: a DC3D20 element for the thermal model and a C3D20R element 

for the structural model. The bars were meshed with one-dimensional three node truss 

elements (T3D3 element) for the structural model and with a three node heat transfer link 

(DC1D3 element) for the thermal model. An approximate global size of 2cm for the element 

was defined and was sufficient for the accuracy of the numerical results to be good (see 

Section 4.3). Figure 4.1 presents an example of the finite element mesh applied. 

 

Figure 4.1 – Three-dimensional finite element model for CFCH columns 
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Some studies use solid linear elements in order to save computing time. This thesis employs 

quadratic geometric order elements, instead. Despite the increase in computing time 

(computer time was not a variable to be studied in this thesis), this was preferred so as to try 

to avoid any possible approximation error due to discretization and to make all computer runs 

uniform. In fact, sometimes different and refined mesh was employed in order to verify if the 

results converged. In the end, with the mesh adopted, the convergence of the results was 

considered acceptable, and no further refinement was justified. Table 4.2 resumes details of 

the mesh used in each simulation. 

 

Table 4.2 – Mesh details for the numerical models 

Model Columns 
Diameter 

(mm) 

Element type Nº of 

elements 

Nº of 

nodes thermal mechanical 

1 CHS columns 

(i.e. without filling) 

168.3 
DC3D20 C3D20R 

1728 9538 

2 219.1 2062 11898 

3 CHS columns total 

filled with PC 

168.3 
DC3D20 C3D20R 

10542 50609 

4 219.1 16174 76017 

5 CHS columns total 

filled with RC 

168.3 DC3D20/

DC1D3* 

C3D20R/ 

T3D3* 

8484 38787 

6 219.1 26464 115611 

* In reinforced steel bars 

 

4.3 Validation of the model 

The numerical model was validated by a comparison with the fire resistance tests on the 

CFCH columns previously summarized in Chapter 3. 

The numerical results show a good agreement with the experimental tests. Figure 4.2 to 

Figure 4.5 show the development of the relative restraining forces and axial deformation over 

time by making a comparison between the numerical and experimental results for some 

CFCH columns. 
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Figure 4.2 – Experimental vs. numerical restraining forces for a load level of 30% and 70%, a 

column diameter of 168.3mm and axial stiffness of the surrounding structure of 13 kN/mm 

 

 

Figure 4.3 – Experimental vs. numerical axial deformations for a load level of 30% and 70%, 

a column diameter of 168.3mm and axial stiffness of the surrounding structure of 13 kN/mm 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 4 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  90 

 

 

Figure 4.4 – Experimental vs. numerical restraining forces for a load level of 30% and 70%, a 

column diameter of 168.3mm and axial stiffness of the surrounding structure of 128 kN/mm 

 

 

Figure 4.5 – Experimental vs. numerical axial deformations for a load level of 30% and 70%, 

a column diameter of 168.3mm and axial stiffness of the surrounding structure of 128 kN/mm 
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The axial deformation presents greater differences between the experimental and numerical 

results than the relative restraining force does. However this difference is small if compared 

with the total length of the columns (3000mm) – see Figure 4.5. 

The following sections present a generalized comparison between the numerical and 

experimental results of CFCH columns, for which three key-points were chosen: the critical 

time (tcr), the maximum relative restraining forces (P/P0máx) and the maximum axial 

deformation (umáx). Comments on each of these results are presented in what follows. 

In addition a comparison between the failure mode of the CFCH columns simulated by the 

numerical model and the ones registered in the tests is presented. 

 

4.3.1 Critical times 

The critical time defined in this research is the instant when the restraining forces return to the 

initial value (i.e. the value of the initial load applied). The choice of this definition rather than 

fire resistance is because these tests are not standard fire tests (EN 1994-1-2: 2005). 

Figure 4.6 presents a comparison between the critical times obtained with the numerical 

model and the experimental results measured in the tests. Two 5-minute error lines were 

plotted to aid the analysis. 

In general, the numerical critical times are slightly higher than the experimental ones. In 75% 

of the cases, the difference between the numerical and experimental critical time was less than 

5 minutes as can be observed in Figure 4.7 which plots the absolute frequency of this 

difference in a histogram graph and its cumulative frequency in a line graph. 

One of the reasons that may explain the critical times in the numerical results being higher 

than in the experimental tests is that the temperatures calculated with the numerical model 

were slightly lower than those measured in the experimental tests such as in column A01168-

TOT-PC-70%-Klow (Figure 4.8). Consequently the critical time of the column will be greater. 

Ding and Wang (2008), and Hong and Varma (2009) pointed out similar differences in 

temperature values numerically calculated and measured in their tests, especially in the 

concrete core. Hong and Varma (2009) justify the divergence due to variations in the thermal 

properties of the material and the approach used to model the moisture content of the concrete 

infill. 
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Figure 4.6 – Numerical vs. experimental critical times 

 

 

Figure 4.7 – Frequency of the num-exp critical time difference 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 4 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  93 

 

 

 

Figure 4.8 – Temperatures in the middle height cross-section of column A01168-TOT-PC-70%-Klow 

 

In fact, as the numerical model considers the effect of the moisture in the concrete core simply 

as an increase in the specific heat peak, this may justify the deviation in temperatures 

principally at the earlier stages (between 100 and 200ºC), as also suggested by Lie (1994). A 

better mathematical modelling of the behaviour of the migration of moisture along the 

concrete core leads to an improvement in the results. 

After the first few minutes of exposure to fire, the temperatures calculated with the model and 

measured in tests present a tendency of convergence, principally in the steel tube. 

Columns A12168-TOT-RC-30%-Klow, A16219-TOT-PC-30%-Klow, A32168-TOT-RC-30%-Khigh and A36219-TOT-

PC-30%-Khigh present the greatest differences between the numerical and experimental critical 

times (i.e. greater than 7 minutes – see Table 4.3). All of them shared the same load level 

(30% Ned). 

However the frequency of these results was very low (i.e. just 16.7% of total – see Figure 4.7) 

and further studies are necessary.  

For larger columns, those with the largest concrete cores (i.e. an external diameter of 

219.1mm), the model has presented a reasonable agreement with tests. Espinos et al. (2010) 

report some problems with simulations of massive columns. According to these authors, the 
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errors observed in massive columns are due to the higher contribution of the concrete core and 

its more complex failure mechanisms. Other authors also presented similar comments (Lie, 

1994; Ding and Wang 2008; Schaumann et al., 2009; Hong and Varma, 2009). 

This numerical validation addressed CFCH columns with a maximum diameter of 219.1mm. 

There are columns with larger diameters in practical situations. Therefore and in agreement 

with the above comments, further studies should be conducted so as to better represent the 

behaviour of concrete at elevated temperatures in numerical models. 

Finally the average error between the numerical and experimental critical times was 4.2min 

with a standard deviation of 4.6min (Table 4.3). 

Table 4.3 – Exp vs. Num - Critical times and Maximum axial deformation 

Column 
Critical times (min) Maximum axial deformation (mm) 

Exp. Num. |Exp – Num| Exp. Num. |Exp – Num| 

A01168-TOT-PC-70%-Klow 15.5 17 1.5 4.3 5.6 1.3 

A02168-TOT-RC-70%-Klow 12.5 18.8 6.3 1.9 4.4 2.5 

A03168-RING-PC-70%-Klow 14.5   4.1   

A04168-RING-RC-70%-Klow 12.2      

A05168-70%-Klow 8.3 11.3 3.0 6.3 10.5 4.1 

A06219-TOT-PC-70%-Klow 15.7 19.8 4.1 7.2 4.2 3.0 

A07219-TOT-RC-70%-Klow 18.5 18.5 0.0 6.1 3.2 2.9 

A08219-RING-PC-70%-Klow 19.0      

A09219-RING-RC-70%-Klow 13.7      

A10219-70%-Klow 10.8 12.8 2.0 9.7 11.4 1.7 

A11168-TOT-PC-30%-Klow 27.0 22.8 4.2 12.4 14.1 1.8 

A12168-TOT-RC-30%-Klow 30.3 40.0 9.7 12.6 11.5 1.1 

A13168-RING-PC-30%-Klow 25.8   11.6   

A14168-RING-RC-30%-Klow 14.7      

A15168-30%-Klow 13.5 15.4 1.9 13.8 16.0 2.2 

A16219-TOT-PC-30%-Klow 27.2 36.0 8.8 12.4 14.2 1.8 

A17219-TOT-RC-30%-Klow 42.7 45.5 2.8 10.6 13.4 2.8 

A18219-RING-PC-30%-Klow 29.0      

A19219-RING-RC-30%-Klow 22.8      

A20219-30%-Klow 13.8 16.3 2.5 15.5 16.7 1.2 

A21168-TOT-PC-70%-Khigh 15.2 16.5 1.3 1.3 4.2 2.9 

A22168-TOT-RC-70%-Khigh 16.8 18.8 2.0 3.4 3.3 0.1 

A23168-RING-PC-70%-Khigh 13.8   1.7   

A24168-RING-RC-70%-Khigh 12.0      
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Table 4.3 – Exp vs. Num - Critical times and Maximum axial deformation (cont.) 

Column 
Critical times (min) Maximum axial deformation (mm) 

Exp. Num. |Exp – Num| Exp. Num. |Exp – Num| 

A25168-70%-Khigh 10.0 9.2 0.8 2.7 7.4 4.8 

A26219-TOT-PC-70%-Khigh 16.2 18.8 2.6 1.1 3.5 2.4 

A27219-TOT-RC-70%-Khigh 18.7 18.8 0.1 1.6 2.9 1.3 

A28219-RING-PC-70%-Khigh 17.0           

A29219-RING-RC-70%-Khigh 13.2           

A30219-70%-Khigh 14.3 16.7 2.4 4.5 8.1 3.6 

A31168-TOT-PC-30%-Khigh 25.5 23.8 1.7 5.9 9.6 3.7 

A32168-TOT-RC-30%-Khigh 31.0 50.0 19.0 6.6 8.4 1.9 

A33168-RING-PC-30%-Khigh 21.2     1.6     

A34168-RING-RC-30%-Khigh 14.3           

A35168-30%-Khigh 12.3 14.5 2.2 4.9 11.4 6.5 

A36219-TOT-PC-30%-Khigh 20.8 35.0 14.2 5.0 10.6 5.6 

A37219-TOT-RC-30%-Khigh 45.7 51.5 5.8 6.4 9.9 3.5 

A38219-RING-PC-30%-Khigh 26.2           

A39219-RING-RC-30%-Khigh 27.8           

A40219-30%-Khigh 13.3 16.1 2.8 6.7 13.5 6.7 

       

Average error   4.2   2.9 

Standard deviation   4.6   6.7 

 

4.3.2 Maximum relative restraining forces 

Figure 4.9 indicates the numerical and experimental results of the maximum relative 

restraining forces. A difference with an order of magnitude of around 10%, between 

calculated and measured internal forces, is acceptable for practical design purposes. Thus, a 

10% error line is also plotted on the graph. 

The numerical model shows a very good agreement with the test results measured for the 

maximum restraining forces. The error between the numerical and experimental results was 

less than 10% for 83.3% of the cases tested (Figure 4.10). Just four columns (A22168-TOT-RC-

70%-Khigh, A30219-70%-Khigh, A32168-TOT-RC-30%-Khigh and A37219-TOT-RC-30%-Khigh) present errors 

greater than 10%, all of them being columns tested with the higher stiffness of the 

surrounding structure (khigh). 

Figure 4.10 plots the absolute frequency of the difference in maximum relative restraining 

forces in a histogram graph and its cumulative frequency in a line graph. 
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Figure 4.9 – Numerical vs. experimental maximum relative restraining forces 

 

 

Figure 4.10 – Frequency of the difference in num-exp maximum relative restraining forces 
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4.3.3 Maximum axial deformation 

The axial deformation presents some differences between the numerical and experimental 

results but in general the differences are acceptable (Figure 4.11). 

Figure 4.11 compares the numerical and experimental results for the maximum axial 

deformation and note that in general the numerical results are higher than the experimental 

ones. Error lines of 5mm (1.7‰ of columns length) were plotted. 

 

Figure 4.11 – Numerical vs. experimental maximum axial deformation 

 

In most cases (87.5%), the difference between the numerical and experimental maximum 

axial deformation was up to 5mm (Figure 4.12). This difference was greater than 5mm in only 

three columns (A35168-30%-Khigh, A36219-TOT-PC-30%-Khigh and A40219-30%-Khigh) (Table 4.3). 

The average error between the numerical and experimental maximum axial deformation was 

2.9mm with a standard deviation of 6.7mm (Table 4.3). 
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The axial deformation (less than 20mm) is too small if compared with the column length 

(3000mm). Moreover, as suggested by Lie (1994), several factors influence axial deformation 

such as load, the thermal expansion coefficient, bending, creep and these cannot be 

completely taken into account in software simulations. Due to the influence of these factors, 

the differences between calculated and measured axial deformations obtained here are 

irrelevant. 

Figure 4.12 plots the absolute frequency of the maximum axial deformation differences in a 

histogram graph and its cumulative frequency in a line graph. 

 

Figure 4.12 – Frequency of num-exp maximum axial deformation differences 

 

4.3.4 Failure mode 

Figure 4.13 presents a comparison between numerical and experimental deformed shapes of 

some the columns studied from which the following comments can be drawn. 

First, the deformed shapes simulated with the numerical model were very similar to those 

observed in the experimental tests. In most cases, the failure mode was global buckling but 

local buckling of the steel tube also occurred. 
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Figure 4.13 – Num-exp deformed shapes of CFCH columns 
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Second, it is visually clear that the CFCH columns subjected to the lower stiffness of the 

surrounding structure (klow) presented a deformed shape, suggesting a pinned-fixed end-

condition (A01168-TOT-PC-70%-Klow and A14168-RING-RC-30%-Klow). However, those with the highest 

stiffness in the surrounding structure (khigh) suggested there is a fixed-fixed end-condition 

shape (A25168-70%-Khigh and A35168-30%-Khigh). 

Lastly, even in cases where it was difficult to identify the failure mode (A21168-TOT-PC-70%-

Khigh), in general, the columns presented an agreement with the deformed shape registered in 

tests and with the results (i.e. critical time, maximum relative restraining forces and maximum 

axial deformation). 

Future research studies might well focus on the failure mode of CFCH columns and its 

influence in fire resistance. 

 

4.4 Chapter remarks 

This chapter proposed a three-dimensional nonlinear finite element model to predict the 

behaviour of CFCH columns in a fire situation. The model also takes into account the restraint 

of columns to thermal elongation, a novelty that has not so far been widely discussed in the 

literature. 

How to determine the most relevant parameters is discussed and the values used for these 

parameters widen the analysis, given that restraint of columns to thermal elongation is not 

commonly addressed (experimentally and numerically) and very few data have been reported 

in the literature. 

The proposed model was validated with the support of a set of fire experiments realized with 

thermal elongation restrained CFCH columns and presented in Chapter 3. As shown, the 

numerical results obtained are in close agreement with the experimental ones. It is important 

to stress, however, that it is quite difficult for any numerical model to represent all 

imperfections of experimental tests accurately. 

The following remarks about the results obtained sum up the performance of the numerical 

approach: 

 The proposed numerical approach presented results in close agreement with the 

experimental tests and therefore can be considered as an option to assess the fire 

performance of CFHS columns; 
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 The numerical critical times obtained were slightly higher than the experimental ones. 

However, in most cases, this difference was not large, i.e. less than 5 minutes; 

 The temperatures calculated with the numerical model were slightly lower than those 

measured in the experimental tests; 

 The numerical relative restraining forces obtained were in close agreement with those 

measured in the experimental test. In general, the error was less than 10%; 

 In general, the numerical axial deformations were higher than those in the 

experimental results. However, in most cases, this difference was less than 5mm, 

which is negligible given the length of the columns. 

 The deformed shapes of the columns subjected to the lowest stiffness of the 

surrounding structure (klow) suggested a pinned-fixed end-condition failure. However, 

those subjected to the highest stiffness of the surrounding structure (khigh) suggested 

they were of a fixed-fixed end-condition shape. 
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5. AN ANALYSIS BASED ON NUMERICAL DATA OF CONCRETE 

FILLED CIRCULAR HOLLOW COLUMNS SUBJECTED TO FIRE 

5.1 Introduction 

This chapter presents simplified equations to represent the fire performance of Concrete Filled 

Circular Hollow (CFCH) Columns based on experimental and numerical results. The 

behaviour of CFCH columns when there is a fire was simulated with a three-dimensional 

nonlinear finite element model developed in ABAQUS (2011). The numerical simulations 

make use of the suggestions already presented in Chapter 4 for column discretization. 

A series of results was then obtained using ABAQUS (2011), employing the numerical 

modelling already tested, in order to discuss the response of CFCH Columns on fire, based on 

the numerical data. The parameters chosen for this study were: load level (10%, 20%, 30%, 

50%, 70% and 90% Ned), the diameter of the column (168.3mm, 219.1mm, 323.9mm and 

457mm) and the ratio of reinforcement with reinforcing steel bars (0% – without 

reinforcement, 3% and 6%). These ranges include typical values for CFCH columns, 

especially for load level and steel reinforcement bars. Values outside these ranges have no 

meaning for practical cases. 

All the columns were simulated with grade S355 steel tubes, which had a wall that was 6 mm 

thick, C30/37 class concrete (EN 206-1, 2007) that filled the entire cross section and grade 

A500 reinforcing steel bars. The distance from the central axis of the longitudinal bar to the 

inner surface of the column wall was 30 mm in all cases. All the columns were 3 m long and 

the whole length was exposed to an ISO834 curve (ISO834-1, 1999). 

Based on the numerical data obtained, simplified equations for the design of CFCH columns 

are studied using standard regression analysis. As the regression functions for the numerical 

data obtained showed acceptable approximation, a set of simplified equations is thus 

developed to predict the critical times of CFCH columns. 

In addition, a comparison with the simple calculation methods given in EN1994-1-2 (2005) is 

presented. This comparison showed that the tabulated method can be unsafe for some cases 

and the simple calculation method may be conservative, when compared to the results 

obtained from the simplified equations developed or by the tests (Chapter 3). 

It should be emphasized that issues such as the lack of experimental results, especially for 

more massive CFCH columns, the difficulty in standardizing tests in order to compare results, 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 5 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  103 

 

the use of different criteria to define the fire resistance, the limitation on representing the 

experiments numerically, and the accuracy of mathematical models that describe the 

mechanical behaviour of materials raise challenges as to completely understanding the 

behaviour of CFCH columns subjected to fire. Nevertheless, the proposal of simplified 

equations prompts discussion on some of these key points, and seeks to contribute towards 

future studies that will be undertaken in this field. 

 

5.2 Numerical data – discussion and simplified equations 

Figure 5.1 to Figure 5.3 show the calculated critical times arising from the load level for 

different CFCH columns with reinforcement ratios of 0%, 3% and 6% respectively. 

The results ratify the great influence of the load level on the critical times of the columns, as 

previously shown in Chapter 3. The higher the load level, the lower the critical time is. 

However, in general, the simulated columns present low critical times (i.e. under 30min) for 

load levels above 50% Ned, especially for reinforcement ratios of 0% and 3%. 

 

 

Figure 5.1 – Critical times arising from a load level of CFCH columns with a reinforcement 

ratio of 0% 
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Figure 5.2 – Critical times arising from a load level of CFCH columns with a reinforcement 

ratio of 3% 

 

 

Figure 5.3 – Critical times arising from a load level of CFCH columns with a reinforcement 

ratio of 6% 
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A regression analysis was carried out and a relationship between the independent variables 

(i.e. load level η, column diameter d and reinforcement ratio ρ) and the dependent variable 

(i.e. critical time) was defined. Figure 5.1 to Figure 5.3 also present the regression functions. 

The regression functions presented an acceptable approximation with the numerical data. The 

choice of regression function was the coefficient of determination R
2
 above 0.9. 

Therefore, the critical times of CFCH columns may be expressed by Equations 5.1, 5.2 and 

5.3, as shown below. 

 

For the reinforcement ratio ρ = 0 % 

    

              

              

              

              

            
            
            
            

   (5.1) 

 

For the reinforcement ratio ρ = 3 % 

    

              

              

              

              

            
            
            
            

  (5.2) 

 

For the reinforcement ratio ρ = 6 % 

    

              

              

              

              

            
            
            
            

   (5.3) 

 

The numerical results also showed that for load levels of 10% and 20% the greater the 

diameter of the columns is, the greater the calculated critical times are. For a load level of 

30% the critical time does not change and, finally, for load levels above 50% a slight 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 5 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  106 

 

reduction in critical times is observed (see Figure 5.4). The same tendency was observed for 

columns with reinforcement ratios of 0% and 6%. 

 

Figure 5.4 – Critical times arising from CFCH column diameters with 3% steel reinforcement 

 

On applying the concept of fire resistance as employed by some authors and presented in 

Chapter 2, it is expected that this resistance will increase for CFCH columns with the highest 

diameters. This same tendency was identified when applying the critical time criteria, as used 

in this thesis (Chapter 3). As mentioned in Chapter 4, the same numerical and experimental 

data were used to compare these models, and showed good agreement. In this chapter, the 

discretization and boundary conditions of the columns followed the modelling described in 

Chapter 4, for all computer runs. On the other hand, in order to study the standard behaviour 

of CFCH columns the data used for the mechanical properties of materials correspond to the 

theoretical standard values given in the literature while for the fire curve, ISO834 (ISO834-1, 

1999) was adopted. 

However, in this case, for columns with the highest diameters, as mentioned above, an 

increase in the critical time was not observed for the highest load levels (Figure 5.4). Several 

comments may be made about these results. 

It has been commented in the literature, as for instance by Espinos et al. (2010), that the 

agreement between experimental and numerical results is better for less massive columns than 

for massive ones. According to these authors, the error observed in these larger columns may 
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be justified by the higher contribution of the concrete core and its more complex failure 

mechanisms. However, further studies are still necessary before this conclusion can be drawn. 

There are two others key questions that arise from this issue. First, how large can the column 

diameter be with regard to applying the numerical techniques available? Second, what is, in 

fact, the influence of the load level on the behaviour of the largest columns? 

It is important to observe that in their interesting paper Espinos et al. (2010) analysed 

columns with diameters of up to 273.1mm and load levels up to 45%. The NRCC (National 

Research Council of Canada) experimental tests, presented in Chapter 2, also worked for load 

levels of up to 45%. The numerical results obtained here tend to show similar behaviour for 

load levels of up to 30% and diameters of 168.3mm and 219.1mm. Comparisons between 

experimental and numerical results for columns with larger diameters are scarce due to the 

inherent difficulty of the tests. However, far from proposing a final conclusion, these values 

should be taken as a reference for future research. It is also important to comment that the fire 

resistance adopted in the studies mentioned above differs from the critical time considered 

here. 

Furthermore, all the experimental and numerical analyses carried out in this study have taken 

into account the axial and rotational restriction to thermal elongation, thus simulating the 

effect of the surrounding structure.  

This consideration has not yet been taken into account in research about CFCH columns in a 

fire situation. 

Another key point: the failure mode also may justify the column behaviour shown by the 

numerical results. The thickness was kept constant when the diameter of the columns was 

increased. On analysing the deformed shapes of the columns (ABAQUS, 2001 output), local 

buckling is more frequent for higher diameters (Figure 5.5). This may suggest the failure is 

sooner of CFCH columns with a steel tube thickness of 6.3mm, a higher load level, and 

diameters of 323.9 and 457mm. 

Previously, the experimental (Chapter 3) and numerical analyses (Chapter 4) showed that the 

higher the diameter of the columns, the higher the volume of local buckling is. This same 

tendency is observed when using numerical data. The number of cases of local buckling 

increases in columns with diameters of 323.9 and 457mm. In addition, local buckling in 

columns with a reinforcement ratio of 6% (Figure 5.6) is less frequent. 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation CHAPTER 5 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  108 

 

 

Figure 5.5 – Influence of diameter on the failure mode of the CFCH column 

 

 

Figure 5.6 – Number of CFCH columns that presented local buckling 
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Steel reinforcement and the increase in its ratio in CFCH columns slightly increase the critical 

time of the columns calculated, especially for those with a reinforcement ratio of 6% (Figure 

5.7). However, this small increase does not justify great changes in the critical time of the 

CFCH columns due to there having been an increase in the reinforcement ratio. 

 

Figure 5.7 – Critical times arising from a reinforcement ratio for CFCH columns with a 

diameter of 168.3mm 

 

Considering the above conclusions, a simpler equation (Equation 5.4) independent of the 

reinforcement ratio may be addressed for CFCH columns and provides good agreement with 

numerical data. Figure 5.8 presents the regression function for this situation and its coefficient 

of determination R
2
. 

Equations (5.1 to 5.4) may be a reference for future studies. It seems that further research 

should be carried out including into other parameters such as the thickness of the steel tube, 

the compressive resistance of concrete, the yield strength of the steel tube and the support 

boundary conditions, principally for massive CFCH columns. A wider database would 

probably provide a non-linear multivariate regression analysis and, consequently, a more 

general equation would be proposed (perhaps with greater reliability) to predict the critical 

time of CFCH columns. However, it is not known to the author whether or not a similar study 

has already been addressed for CFCH columns with restrained thermal elongation, and 

therefore, the simplified equations presented here are the first attempt to approach a 

parametric study for this purpose. 
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Figure 5.8 – Critical times arising from the CFCH load level 

 

    

              

              

              

              

            
            
            
            

 (5.4) 

 

5.3 Comparison with simple methods of EN1994-1-2 (2005) 

In Chapter 2 two simple methods for assessing the structural behaviour of CFCH columns 

under fire were presented. They are: the tabulated data method and the simple calculation 

model (SCM) both presented in EN1994-1-2 (2005). A comparison of both methods with the 

experimental and numerical results obtained for similar columns will be presented in what 

follows. 

 

5.3.1 Tabulated data method 

Table 4.7 of EN1994-1-2 (2005) prescribes minimum cross-sectional dimensions, minimum 

reinforcement ratios and minimum axis distance for reinforcing bars of CFCH columns to 

reach a standard fire resistance according to their load levels η. 
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Table 5.1 presents the standard fire resistance, according to Table 4.7 of EN1994-1-2 (2005), 

and the experimental critical time of eight CFCH columns presented in Chapter 3. Figure 5.9 

plots these values. The other tested columns could not be classified in accordance with the 

standard fire resistance (i.e. they have fire resistance under 30min) and thus a comparison was 

not possible for these cases. In fact, the load level applied in the tests was slightly higher than 

the limits prescribed by the code and a 2% tolerance was considered to enable comparison. 

 

Table 5.1 – Standard fire resistance and critical times for CFCH columns  

CFCH columns 
Standard Fire 

resistance 

Critical Time 

tcr (min) 

Cross-section diameter: d = 168.3mm 

Reinforcement ratio: ρ = 0.0% 

Distance of reinforcing axis bars: us = 30mm  

 

R30 

 

26 – 27 

 

Cross-section diameter: d = 219.1mm 

Reinforcement ratio: ρ = 0.0% 

Distance of reinforcing axis bars: us = 30mm  

 

R30 

 

21 – 27 

 

Cross-section diameter: d = 168.3mm 

Reinforcement ratio: ρ = 2.5% 

Distance of reinforcing axis bars: us = 30mm  

 

R30 

 

30 – 31 

 

Cross-section diameter: d = 219.1mm 

Reinforcement ratio: ρ = 2.2% 

Distance of reinforcing axis bars: us = 30mm 

 

R60  

 

43 – 46 

 

Three columns with a diameter of 219.1mm are in the unsafe zone (i.e. they have critical 

times lower than the standard fire resistance) and lie outside the 5min tolerance line. Two 

columns with a diameter of 168.3 mm are in the unsafe zone and the other two columns are 

close to the limit of the safe zone. 

Figure 5.10 plots the standard fire resistance of the columns versus their critical time as 

evaluated in numerical simulations. Some columns, especially the larger columns with 

diameters of 323.9 and 457.0mm, presented critical times lower than the tabulated standard 

fire resistance, so they are positioned in the unsafe zone. 

These results suggest that the tabulated data method may be slightly unsafe especially for 

larger columns. 
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Figure 5.9 – Tabulated method vs. experimental critical time of CFCH columns 

 

Figure 5.10 – Tabulated method vs. numerical study of the critical time of the CFCH columns 
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Figure 5.11 plots the results obtained by the simplified equations versus the experimental 

tests. The columns approximated to the safe zone. The columns with a diameter of 168.3mm 

and one with a diameter of 219.1 are slightly within the unsafe zone but on the 5min tolerance 

line. 

 

Figure 5.11 – Simplified equations vs. experimental critical time of the CFCH columns 

 

5.3.2 Simple Calculation Model 

EN1994-1-2 (2005) presents a simple calculation model (SCM) to determine the design value 

of the resistance of a CFCH column in axial compression and in the fire situation. This 

method was discussed in Chapter 2.  

Figure 5.12 to Figure 5.15 show the critical times obtained by the SCM, in experimental tests 

(load level of 30% and 70%) and in simplified equations (load level between 10% and 90%) 

for similar CFCH columns. 

The temperatures measured of the columns in experimental tests were used as the first step of 

the simple calculation model (SMC). In the second step, the design axial buckling load Nfi ,Rd 

was normalized by the design value of the buckling load at room temperature Nb,rd in order to 
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make the comparison for each load level η possible. The partial material safety factor in fire 

design was 1.0. 

Figure 5.12 to Figure 5.15 also show that the simple calculation model for fire resistance 

gives smaller results for critical times than those obtained with experimental tests and 

numerical simulations. This suggests that the simple calculation model is conservative when 

evaluating the design value of the resistance of a CFCH column in a fire situation 

The implementation of the SCM is not a straightforward task. In addition to not proposing a 

simple mathematical model for heat transfer problem, it requires an incremental solution for 

the mechanical problem. It can be concluded that the simplified equations proposed can be a 

viable alternative to determine critical times instead of using SCM as shown by Figure 5.12 to 

Figure 5.15. 

 

 

Figure 5.12 – Critical times for SMC, experimental tests and simplified equation for a CFCH-

PC column total filled which has a diameter of 219.1mm 
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Figure 5.13 – Critical times for SMC, experimental tests and simplified equation for a CFCH-

RC column total filled which has a diameter of 219.1mm 

 

 

Figure 5.14 – Critical times for SMC, experimental tests and simplified equation for a CFCH-

PC column total filled which has a diameter of 168.3mm 
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Figure 5.15 – Critical times for SMC, experimental tests and simplified equation for a CFCH-

RC column total filled which has a diameter of 168.3mm 

 

5.4 Chapter remarks 

This chapter presented a numerical study about the fire performance of CFCH columns. The 

numerical simulations were carried out in a three-dimensional nonlinear finite element model 

developed in ABAQUS (2011). The parameters studied were: load level (10%, 20%, 30%, 

50%, 70% and 90% Ned), column diameter (168.3mm, 219.1mm, 323.9mm and 457mm) and 

reinforcement ratio with reinforcing steel bars (0% – without reinforcement, 3% and 6%). 

Ranges outside these values have less practical meaning. 

Based on numerical data, simplified equations were proposed for design of CFCH columns. In 

addition, a comparison with the simple calculation methods from EN1994-1-2 (2005) was 

presented. 

In accordance with the numerical results it can be said: 

 The higher the load level, the lower the critical time is; 

 The larger the diameter of the columns, the greater its critical time for low load levels. 

For higher load levels the same was not observed; 
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 Increasing the in diameter of the columns, while keeping the thickness of the tube wall 

constant, increases the number of cases of local buckling; 

 The ratio of steel reinforcement does not justify great increases in critical times; 

 

The following remarks may be also addressed: 

 The tabulated data method was shown to be slightly unsafe when compared to the 

results obtained in experimental and numerical simulations, especially for larger 

columns; 

 The SCM leads to safe results in comparison with the numerical simulations and 

experimental tests; 

 The simplified equations proposed can be a viable alternative to determine critical 

times instead of using SCM and principally the tabulated method. 
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6. CONCLUSIONS 

In the last ten years or so Concrete Filled Circular Hollow (CFCH) columns have become 

popular principally in high-rise and industrial buildings as a proper solution for fire situations.  

Advantages such as their having a higher load-bearing capacity and seismic resistance; an 

attractive appearance; being slender; and the construction process being less time-consuming 

and at reduced cost justify this choice. 

Despite several studies on fire resistance of CFCH columns (e.g. the NRCC tests – 

summarized in Kodur, 1999, Han et al., 2003a and 2003b, Ding and Wang, 2008, Hong and 

Varma, 2009, Schaumann et al., 2009, and Espinos et al., 2010) their mechanical behaviour in 

a fire situation is not completely understood. Most of these studies did not consider columns 

with restrained thermal elongation, which is an important parameter for the columns´ response 

to fire especially when considering the stiffness of the surrounding structure connected to the 

columns (Ali et al., 1998, Valente and Neves, 1999, Rodrigues et al., 2000, and Neves et al., 

2002). 

This thesis presented the results of a series of forty fire resistance tests conducted on circular 

CFCH columns with restrained axial and rotational thermal displacements. The columns were 

filled with plain concrete (CFCH-PC) and reinforced concrete (CFCH-RC). Relevant 

parameters that have considerable influence on the fire resistance of the columns were tested. 

They are: the slenderness and cross-sectional external diameter of the column; its load level; 

the stiffness of the surrounding structure which imposes restraints on the thermal elongation 

of the column; the ratio of steel bar reinforcement; and the degree of concrete filling inside 

the column. Circular Hollow Sections (CHS) columns (i.e. steel columns) were also tested for 

comparison. 

A three-dimensional non-linear finite element model developed in ABAQUS (2011) to predict 

the behaviour of these columns was studied in order to verify its most relevant parameters, 

and took the restraints of columns to their thermal elongation into account. This adds a rather 

difficult step to the analysis of the problem. The numerical model was validated in a 

comparison with the results of the experimental fire tests. 

The study of the behaviour, in a fire, of CFCH columns with restrained thermal elongation 

was complemented with the development of a parametric study. A range of practical values of 

the load level, the diameter of the column and the ratio of reinforcement was studied. Based 

on numerical data, simplified equations to evaluate the critical time of CFCH columns with 

restrained thermal elongation were proposed. 
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In addition, a comparison between experimental results and the set of simplified equations 

proposed is presented using the tabulated and the simple calculation methods proposed by 

EN1994-1-2 (2005). This is done in order to verify the ability of these methods to assess the 

structural behaviour in a fire of the CFCH columns with axial and rotational restraints to 

thermal elongation. 

The main conclusions from this research are commented on in what follows. 

State of the art 

 Few experimental results from tests conducted with CFH columns subjected to fire 

can be found in the literature, especially those with massive columns. There is much 

less data available on taking into account the influence of the stiffness of the 

surrounding structure; 

 Significant differences can be identified in general experimental procedures (e.g. 

failure criterion, heating rate) and in important test parameters (e.g. load level, 

restraint level and end conditions). This fact hampers comparisons and induces 

differences in the test results; 

 Numerical models also presented some important differences (e.g. the thermal and 

mechanical properties of steel and concrete, and the thermo-mechanical behaviour in 

the steel tube-concrete core interface). The numerical modelling of the behaviour of 

concrete at high temperatures still requires further experiments for massive CFH 

columns; 

 Few numerical models simulate the restraints on thermal elongation imposed by the 

surrounding structure; 

 Most experimental research studies were performed on CFH columns with low load 

levels and smaller external diameters. Consequently, several numerical models were 

validated based on these situations; 

Experimental tests 

 The critical times of the CFCH columns tested in this research were smaller than those 

registered by the NRCC researchers for similar experimental tests – however without 

restraining their thermal elongation; 

 Increasing the stiffness of the surrounding structure did not lead to major changes in 

the critical times of the columns; 
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 The load level and slenderness of the columns had a great influence on the critical 

time of the columns. If one of them is reduced, the column critical time increases; 

 Concrete filling improves the behaviour of CFCH columns when subjected to fire, but 

the use of a concrete ring does not seem to be a good solution; 

 Increasing the stiffness of the surrounding structure leads to an increase in the 

restraining forces of the columns, although this did not influence the critical time; 

 Increasing the stiffness of the surrounding structure or the load level reduces the axial 

deformation of the columns; 

 CHS columns (i.e. steel columns) presented a greater axial deformation than CFCH 

columns. 

 The main failure mode of the columns was global buckling. However in several cases 

local buckling also occurred, although the columns presented a diameter-thickness 

ratio (d/e) smaller than 59; 

Numerical model 

 The proposed numerical model presented results in close agreement with those 

obtained in fire experiments conducted with thermal elongation restrained CFCH 

columns. Therefore, numerical modelling can be considered as an option to assess the 

fire performance of CFHS columns; 

 The numerical critical times obtained were slightly higher than the experimental ones. 

However, in most cases, this difference was not large, less than 5 minutes; 

 The temperatures calculated with the numerical model were slightly lower than those 

measured in experimental tests; 

 The numerical relative restraining forces obtained were in close agreement with those 

measured in the experiments. In general, the error was less than 10%; 

 In general, the numerical axial deformations were higher than the experimental results. 

However, in most cases this difference was less than 5mm, which is negligible given 

the length of the columns. 

Numerical analysis 

 The ratio of steel reinforcement does not justify great increases in critical times; 
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 The set of simplified equations proposed is a viable alternative for assessing the 

critical times of CFCH columns; 

 The tabulated data method was shown to be slightly unsafe when compared to the 

results obtained in experimental and numerical simulations especially for larger 

columns; 

 The SCM leads to safe results in comparison with the numerical simulations and 

experimental tests; 

Future studies 

 Experimental tests may include other parameters such as end conditions (pinned-

pinned, pinned-fixed and fixed-fixed) and thickness of the steel tube wall; 

 Experimental tests should be conducted with CFH columns including other variables, 

such as: larger diameters, higher slenderness, other cross-section shapes (square, 

rectangular and elliptical) and eccentricity of applied load. Always considering the 

restrain to thermal elongation; 

 Advances in the mathematical model to represent the concrete behaviour at high 

temperatures should be addressed, considering, for example, the migration of water 

during the heating (i.e. thermo-chemo-hydro-mechanical models); 

 Parametric studies should be conducted, thus widening the numerical database. 

Therefore, a non-linear multivariate regression analysis should be planned to obtain 

approximated equations to evaluate the critical times of CFH columns of greater 

reliability, including also other parameters that influence the fire resistance of the 

columns; 

 Further research studies are still required to focus on the failure mode (buckling of the 

columns) and its influence on fire performance. 
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APPENDIX A – Mechanical properties of concrete and steel at 

ambient temperature and other tests 

 

A.1 Mechanical properties of concrete at room temperature 

 

 

Figure A.1 – Cubic compressive strength of concrete at 28 days, in the age of the first test and 

in the age of the last test. 
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A.2 Mechanical properties of steel at room temperature 

 

 

Figure A.2 – Yield strength (fay), Ultimate strength (fau), and Modulus of Elasticity (Ea) for the 

CHS steel tube with 168.9mm of diameter. 

 

 

 

 

Figure A.3 – Yield strength (fay), Ultimate strength (fau), and Modulus of Elasticity (Ea) for the 

CHS steel tube with 219.1mm of diameter. 
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Figure A.4 – Yield strength (fsy) and Ultimate strength (fsu) for the reinforcing steel bars. 

 

 

A.3 Humidity rate and density of concrete 

Table A.1 – Mass variation of concrete samples along the days in the kilns. 

Meas. 

Sample 01 Sample 02 Sample 03 Sample 04 Sample 05 

Date Mass 

(g) 

Δm 

(%) 

Mass 

(g) 

Δm 

(%) 

Mass 

(g) 

Δm 

(%) 

Mass 

(g) 

Δm 

(%) 

Mass 

(g) 

Δm 

(%) 

m0 3642.6 - 1169.6 - 1272.4 - 145.7 - 135.0 - - 

m1 3514.7 3.64 1128.7 3.62 1218.4 4.43 139.2 4.67 129.1 4.57 1st day 

m2 3511.7 0.09 1128.0 0.06 1217.7 0.06 139.2 0.00 129.1 0.00 4th day 

m3 3509.8 0.05 1127.6 0.04 1217.3 0.03 139.2 0.00 129.1 0.00 12th day 

*Average temperature in the kilns of 115ºC 

 

Table A.2 – Humidity and density of concrete samples. 

Meas. Sample 01 Sample 02 Sample 03 Sample 04 Sample 05 Mean 

Dimensions (mm)* 150x150x68 150x80x45 152x74x48 75x50x17 75x51x16 - 

Dry mass (g) 3509.8 1127.6 1217.3 139.2 129.1 - 

Density (kg/m
3
) 2294.0 2088.1 2254.7 2183.5 2109.5 2186.0 

Humidity (%) 3.78 3.72 4.53 4.67 4.57 4.25 

*Prismatic samples 
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APPENDIX B – Evolution of temperatures in the tests 

 

 

 

 

Figure B.1 – Distribution of temperature in cross-sections S1 to S5 for test 

column A01 168-TOT-PC-70%-Klow. 

 

 

 

 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation APPENDIX B 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  133 

 

 

 

 

 

 

Figure B.2 – Distribution of temperature in cross-sections S1 to S5 for test 

column A02 168-TOT-RC-70%-Klow. 
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Figure B.3 – Distribution of temperature in cross-sections S1 to S5 for test 

column A03 168-RING-PC-70%-Klow. 
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Figure B.4 – Distribution of temperature in cross-sections S1 to S5 for test 

column A04 168-RING-RC-70%-Klow. 
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Figure B.5 – Distribution of temperature in cross-sections S1 to S5 for test 

column A05 168-70%-Klow. 
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Figure B.6 – Distribution of temperature in cross-sections S1 to S5 for test 

column A06 219-TOT-PC-70%-Klow. 
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Figure B.7 – Distribution of temperature in cross-sections S1 to S5 for test 

column A07 219-TOT-RC-70%-Klow. 
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Figure B.8 – Distribution of temperature in cross-sections S1 to S5 for test 

column A08 219-RING-PC-70%-Klow. 
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Figure B.9 – Distribution of temperature in cross-sections S1 to S5 for test 

column A09 219-RING-RC-70%-Klow. 

 

 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation APPENDIX B 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  141 

 

 

 

 

 

 

Figure B.10 – Distribution of temperature in cross-sections S1 to S5 for test 

column A10 219-70%-Klow. 
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Figure B.11 – Distribution of temperature in cross-sections S1 to S5 for test 

column A11 168-TOT-PC-30%-Klow. 
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Figure B.12 – Distribution of temperature in cross-sections S1 to S5 for test 

column A12 168-TOT-RC-30%-Klow. 
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Figure B.13 – Distribution of temperature in cross-sections S1 to S5 for test 

column A13 168-RING-PC-30%-Klow. 
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Figure B.14 – Distribution of temperature in cross-sections S1 to S5 for test 

column A14 168-RING-RC-30%-Klow. 
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Figure B.15 – Distribution of temperature in cross-sections S1 to S5 for test 

column A15 168-30%-Klow. 
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Figure B.16 – Distribution of temperature in cross-sections S1 to S5 for test 

column A16 219-TOT-PC-30%-Klow. 
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Figure B.17 – Distribution of temperature in cross-sections S1 to S5 for test 

column A17 219-TOT-RC-30%-Klow. 
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Figure B.18 – Distribution of temperature in cross-sections S1 to S5 for test 

column A18 219-RING-PC-30%-Klow. 
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Figure B.19 – Distribution of temperature in cross-sections S1 to S5 for test 

column A19 219-RING-RC-30%-Klow. 
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Figure B.20 – Distribution of temperature in cross-sections S1 to S5 for test 

column A20 219-30%-Klow. 
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Figure B.21 – Distribution of temperature in cross-sections S1 to S5 for test 

column A21 168-TOT-PC-70%-Khigh. 
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Figure B.22 – Distribution of temperature in cross-sections S1 to S5 for test 

column A22 168-TOT-RC-70%-Khigh. 
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Figure B.23 – Distribution of temperature in cross-sections S1 to S5 for test 

column A23 168-RING-PC-70%-Khigh. 

 

 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation APPENDIX B 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  155 

 

 

 

 

 

 

Figure B.24 – Distribution of temperature in cross-sections S1 to S5 for test 

column A24 168-RING-RC-70%-Khigh. 
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Figure B.25 – Distribution of temperature in cross-sections S1 to S5 for test 

column A25 168-70%-Khigh. 
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Figure B.26 – Distribution of temperature in cross-sections S1 to S5 for test 

column A26 219-TOT-PC-70%-Khigh. 
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Figure B.27 – Distribution of temperature in cross-sections S1 to S5 for test 

column A27 219-TOT-RC-70%-Khigh. 
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Figure B.28 – Distribution of temperature in cross-sections S1 to S5 for test 

column A28 219-RING-PC-70%-Khigh. 
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Figure B.29 – Distribution of temperature in cross-sections S1 to S5 for test 

column A29 219-RING-RC-70%-Khigh. 
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Figure B.30 – Distribution of temperature in cross-sections S1 to S5 for test 

column A30 219-70%-Khigh. 
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Figure B.31 – Distribution of temperature in cross-sections S1 to S5 for test 

column A31 168-TOT-PC-30%-Khigh. 
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Figure B.32 – Distribution of temperature in cross-sections S1 to S5 for test 

column A32 168-TOT-RC-30%-Khigh. 
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Figure B.33 – Distribution of temperature in cross-sections S1 to S5 for test 

column A33 168-RING-PC-30%-Khigh. 
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Figure B.34 – Distribution of temperature in cross-sections S1 to S5 for test 

column A34 168-RING-RC-30%-Khigh. 
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Figure B.35 – Distribution of temperature in cross-sections S1 to S5 for test 

column A35 168-30%-Khigh. 
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Figure B.36 – Distribution of temperature in cross-sections S1 to S5 for test 

column A36 219-TOT-PC-30%-Khigh. 
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Figure B.37 – Distribution of temperature in cross-sections S1 to S5 for test 

column A37 219-TOT-RC-30%-Khigh. 
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Figure B.38 – Distribution of temperature in cross-sections S1 to S5 for test 

column A38 219-RING-PC-30%-Khigh. 
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Figure B.39 – Distribution of temperature in cross-sections S1 to S5 for test 

column A39 219-RING-RC-30%-Khigh. 
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Figure B.40 – Distribution of temperature in cross-sections S1 to S5 for test 

column A40 219-30%-Khigh. 
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APPENDIX C – Lateral deflections of tested columns 

The lateral deflections of the columns were not presented in the main part of this thesis 

because there were not any well defined bending plan in the test columns, it was difficult to 

determine the lateral deflections and these results may be a bias in measurements. 

 

Figure C.1 – Lateral deflections in two perpendicular directions for test 

column A01 168-TOT-PC-70%-Klow. 

 

Figure C.2 – Lateral deflections in two perpendicular directions for test 

column A02 168-TOT-RC-70%-Klow. 
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Figure C.3 – Lateral deflections in two perpendicular directions for test 

column A03 168-RING-PC-70%-Klow. 

 

 

Figure C.4 – Lateral deflections in two perpendicular directions for test 

column A04 168-RING-RC-70%-Klow. 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation APPENDIX C 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  174 

 

 

Figure C.5 – Lateral deflections in two perpendicular directions for test 

column A05 168-70%-Klow. 

 

 

Figure C.6 – Lateral deflections in two perpendicular directions for test 

column A06 219-TOT-PC-70%-Klow. 
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Figure C.7 – Lateral deflections in two perpendicular directions for test 

column A07 219-TOT-RC-70%-Klow. 

 

 

Figure C.8 – Lateral deflections in two perpendicular directions for test 

column A08 219-RING-PC-70%-Klow. 

 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation APPENDIX C 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  176 

 

 

Figure C.9 – Lateral deflections in two perpendicular directions for test 

column A09 219-RING-RC-70%-Klow. 

 

 

Figure C.10 – Lateral deflections in two perpendicular directions for test 

column A10 219-70%-Klow. 
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Figure C.11 – Lateral deflections in two perpendicular directions for test 

column A11 168-TOT-PC-30%-Klow. 

 

 

Figure C.12 – Lateral deflections in two perpendicular directions for test 

column A12 168-TOT-RC-30%-Klow. 
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Figure C.13 – Lateral deflections in two perpendicular directions for test 

column A13 168-RING-PC-30%-Klow. 

 

 

Figure C.14 – Lateral deflections in two perpendicular directions for test 

column A14 168-RING-RC-30%-Klow. 
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Figure C.15 – Lateral deflections in two perpendicular directions for test 

column A15 168-30%-Klow. 

 

 

Figure C.16 – Lateral deflections in two perpendicular directions for test 

column A16 219-TOT-PC-30%-Klow. 
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Figure C.17 – Lateral deflections in two perpendicular directions for test 

column A17 219-TOT-RC-30%-Klow. 

 

 

Figure C.18 – Lateral deflections in two perpendicular directions for test 

column A18 219-RING-PC-30%-Klow. 
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Figure C.19 – Lateral deflections in two perpendicular directions for test 

column A19 219-RING-RC-30%-Klow. 

 

 

Figure C.20 – Lateral deflections in two perpendicular directions for test 

column A20 219-30%-Klow. 
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Figure C.21 – Lateral deflections in two perpendicular directions for test 

column A21 168-TOT-PC-70%-Khigh. 

 

 

Figure C.22 – Lateral deflections in two perpendicular directions for test 

column A22 168-TOT-RC-70%-Khigh. 
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Figure C.23 – Lateral deflections in two perpendicular directions for test 

column A23 168-RING-PC-70%-Khigh. 

 

 

Figure C.24 – Lateral deflections in two perpendicular directions for test 

column A24 168-RING-RC-70%-Khigh. 
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Figure C.25 – Lateral deflections in two perpendicular directions for test 

column A25 168-70%-Khigh. 

 

 

Figure C.26 – Lateral deflections in two perpendicular directions for test 

column A26 219-TOT-PC-70%-Khigh. 
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Figure C.27 – Lateral deflections in two perpendicular directions for test 

column A27 219-TOT-RC-70%-Khigh. 

 

 

Figure C.28 – Lateral deflections in two perpendicular directions for test 

column A28 219-RING-PC-70%-Khigh. 
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Figure C.29 – Lateral deflections in two perpendicular directions for test 

column A29 219-RING-RC-70%-Khigh. 

 

 

Figure C.30 – Lateral deflections in two perpendicular directions for test 

column A30 219-70%-Khigh. 
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Figure C.31 – Lateral deflections in two perpendicular directions for test 

column A31 168-TOT-PC-30%-Khigh. 

 

 

Figure C.32 – Lateral deflections in two perpendicular directions for test 

column A32 168-TOT-RC-30%-Khigh. 
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Figure C.33 – Lateral deflections in two perpendicular directions for test 

column A33 168-RING-PC-30%-Khigh. 

 

 

Figure C.34 – Lateral deflections in two perpendicular directions for test 

column A34 168-RING-RC-30%-Khigh. 
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Figure C.35 – Lateral deflections in two perpendicular directions for test 

column A35 168-30%-Khigh. 

 

 

Figure C.36 – Lateral deflections in two perpendicular directions for test 

column A36 219-TOT-PC-30%-Khigh. 
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Figure C.37 – Lateral deflections in two perpendicular directions for test 

column A37 219-TOT-RC-30%-Khigh. 

 

 

Figure C.38 – Lateral deflections in two perpendicular directions for test 

column A38 219-RING-PC-30%-Khigh. 
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Figure C.39 – Lateral deflections in two perpendicular directions for test 

column A39 219-RING-RC-30%-Khigh. 

 

 

Figure C.40 – Lateral deflections in two perpendicular directions for test 

column A40 219-30%-Khigh. 
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APPENDIX D – Deformed shapes of tested columns 

 

Figure D.1 – Deformed shape of column 

A01 168-TOT-PC-70%-Klow. 

 

 

Figure D.2 – Deformed shape of column 

A02 168-TOT-RC-70%-Klow. 

 

Figure D.3 – Deformed shape of column 

A03 168-RING-PC-70%-Klow. 

 

 

Figure D.4 – Deformed shape of column 

A04 168-RING-RC-70%-Klow. 
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Figure D.5 – Deformed shape of column 

A05 168-70%-Klow. 

 

 

Figure D.6 – Deformed shape of column 

A06 219-TOT-PC-70%-Klow. 

 

 

Figure D.7 – Deformed shape of column 

A07 219-TOT-RC-70%-Klow. 

 

 

Figure D.8 – Deformed shape of column 

A08 219-RING-PC-70%-Klow. 
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Figure D.9 – Deformed shape of column 

A09 219-RING-RC-70%-Klow. 

 

 

Figure D.10 – Deformed shape of column 

A10 219-70%-Klow. 

 

 

Figure D.11 – Deformed shape of column 

A11 168-TOT-PC-30%-Klow. 

 

 

Figure D.12 – Deformed shape of column 

A12 168-TOT-RC-30%-Klow. 
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Figure D.13 – Deformed shape of column 

A13 168-RING-PC-30%-Klow. 

 

 

Figure D.14 – Deformed shape of column 

A14 168-RING-RC-30%-Klow. 

 

 

Figure D.15 – Deformed shape of column 

A15 168-30%-Klow. 

 

 

Figure D.16 – Deformed shape of column 

A16 219-TOT-PC-30%-Klow. 



 
Fire Resistance of CFCH columns with Restrained Thermal Elongation APPENDIX D 

 

 

 

Tiago Ancelmo de Carvalho Pires de Oliveira  196 

 

 

 

Figure D.17 – Deformed shape of column 

A17 219-TOT-RC-30%-Klow. 

 

 

Figure D.18 – Deformed shape of column 

A18 219-RING-PC-30%-Klow. 

 

 

Figure D.19 – Deformed shape of column 

A19 219-RING-RC-30%-Klow. 

 

 

Figure D.20 – Deformed shape of column 

A20 219-30%-Klow. 
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Figure D.21 – Deformed shape of column 

A21 168-TOT-PC-70%-Khigh. 

 

 

Figure D.22 – Deformed shape of column 

A22 168-TOT-RC-70%-Khigh. 

 

 

Figure D.23 – Deformed shape of column 

A23 168-RING-PC-70%-Khigh. 

 

 

Figure D.24 – Deformed shape of column 

A24 168-RING-RC-70%-Khigh. 
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Figure D.25 – Deformed shape of column 

A25 168-70%-Khigh. 

 

 

Figure D.26 – Deformed shape of column 

A26 219-TOT-PC-70%-Khigh. 

 

 

Figure D.27 – Deformed shape of column 

A27 219-TOT-RC-70%-Khigh. 

 

 

Figure D.28 – Deformed shape of column 

A28 219-RING-PC-70%-Khigh. 
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Figure D.29 – Deformed shape of column 

A29 219-RING-RC-70%-Khigh. 

 

 

Figure D.30 – Deformed shape of column 

A30 219-70%-Khigh. 

 

 

Figure D.31 – Deformed shape of column 

A31 168-TOT-PC-30%-Khigh. 

 

 

Figure D.32 – Deformed shape of column 

A32 168-TOT-RC-30%-Khigh. 
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Figure D.33 – Deformed shape of column 

A33 168-RING-PC-30%-Khigh. 

 

 

Figure D.34 – Deformed shape of column 

A34 168-RING-RC-30%-Khigh. 

 

 

Figure D.35 – Deformed shape of column 

A35 168-30%-Khigh. 

 

 

Figure D.36 – Deformed shape of column 

A36 219-TOT-PC-30%-Khigh. 
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Figure D.37 – Deformed shape of column 

A37 219-TOT-RC-30%-Khigh. 

 

 

Figure D.38 – Deformed shape of column 

A38 219-RING-PC-30%-Khigh. 

 

Figure D.39 – Deformed shape of column 

A39 219-RING-RC-30%-Khigh. 

 

 

Figure D.40 – Deformed shape of column 

A40 219-30%-Khigh. 
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APPENDIX E – Fire tests on fibre reinforced concrete filled 

circular hollow (CFCH-FRC) columns 

 

This appendix presents two Concrete Filled Circular Hollow (CFCH) columns that were filled 

with steel + polypropylene fibre reinforced concrete (FRC). The columns were tested in the 

same apparatus previously presented in this thesis. Table E.1 presents the concrete 

composition used in the casting of these columns. 

 

Table E.1 – Steel + polypropylene fibre reinforced concrete composition. 

Composites 
Quantity 

(Kg/m3) 

Calcareous aggregate 900 

Fine siliceous sand 320 

Medium  siliceous sand 550 

Cement 52.5 300 

Super - plasticizer Sika 3002HE 3.2 

Water 172 

steel fibers 39.7 

polypropylene fiber 2 

 

The external diameters of the columns were 168.3 and 219.1mm and the length 3000mm. The 

concrete filling formed a ring around the inner wall of the steel tube and the ring thicknesses 

were 40 and 50mm respectively for the 168.3 and 219.1mm columns. The load level applied 

was 30% of the design value of the buckling load at room temperature (Ned) calculated as per 

EN1994-1-1 (2005) and the stiffness of the surrounding structure was 13kN/mm (axial 

stiffness), 4091 and 1992 kN m/rad (rotational stiffness in the main perpendicular directions). 

The heating rate followed the ISO834(1999) standard curve. Table E.2 presents the main 

parameters of these columns and its critical times and failure modes. 

Thermocouples type K registered the evolution of temperatures along the time in the steel 

tube surface (T1) and in the concrete ring (T2). Five different sections were instrumented (S1 

to S5) along the column length (Figure E.1). 
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Table E.2 – Test plan, critical times and failures modes of the fibre reinforced columns 

Ref. 
Diameter 

(mm) 

Degree of 

concrete 

filling 

Relative 

slenderness 

   

Serviceability 

load (kN) 

(% Ned) 

Critical 

time 

(min) 

Failure 

mode 

A41 168.3 
Ring 

(40mm) 
0.924 

376 

(30%) 
28 

global 

buckling 

A42 219.1 
Ring 

(50mm) 
0.714 

640 

(30%) 
31 

global 
buckling 

 

 

Figure E.1 – Position of thermocouples on the columns by height and cross-section 

 

Results of restraining forces and critical times  

Figures E.2 and E.3 present the relative restraining forces in function of the time for the tested 

columns. The results of CFCH-RC and CFCH-PC columns also were plotted for a 

comparison. 

The graphs shows that the columns filled with plain concrete (PC) or fibre reinforced concrete 

(FRC) presented higher critical times, being even higher for those filled with fibre concrete. 
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The columns filled with fibre reinforced concrete (FRC) presented a small reduction in the 

restraining forces, maybe due to a better bonding strength between the concrete and the steel 

profile that reduced the thermal elongation of the column. Also these columns have higher 

stiffness than the others. 

 

Figure E.2 – Restraining forces of CFCH columns with 168.3mm of diameter 

 

 

Figure E.3 – Restraining forces of CFCH columns with 219.1mm of diameter 
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The columns filled with steel reinforcing bars (RC) presented the worst behaviour in terms of 

critical times. However the restraining forces in these columns were slightly higher than in the 

others. The use of reinforcing steel bars in a concrete ring of small thickness is not a good 

solution. The steel bar instead of increasing the concrete strength, contributed due to 

expansion, to its excessive cracking and collapse. In this case the use of steel + polypropylene 

fibre concrete (FRC) proved to be a better solution.  

The critical times of CFCH-PC and CFCH-FRC columns were very similar for both diameters 

(26 and 28min respectively for the columns with diameter of 168.3mm and 29 and 31min for 

the columns with 219.1mm). The critical times of the CFCH-RC are much smaller than others 

(15min for the column with diameter of 168.3mm and 23min for the column with 219.1mm) 

(Figures E.2 and E.3). 

The critical times of the columns with 168.3mm of diameter (Figure E.2) were slight smaller 

than the ones of 219.1mm of diameter (Figure E.3), maybe due to the higher slenderness of 

the columns with smaller diameter.  

 

Results of axial deformations 

Figures E.4 and E.5 presents the axial deformations in function of the time for the tested 

columns. Again a comparison with similar CFCH ring columns was done.  

In the restraining forces graphs (Figures E.2 and E.3) was observed that the CFCH-FRC 

columns presented the smaller relative restraining forces that corresponded to smaller axial 

deformations (Figures E.4 and E.5). The same justification advanced for the restraining forces 

is maybe also valid for this case. The maximum axial deformation was very similar for the 

two diameter of the column tested. They were around 8mm for the FRC and 12mm for the RC 

and PC columns.  

 

Failure mode 

In fact the columns were designed as pin-ended but the failure modes were more similar to 

pin-fixed-ended or fixed-fixed-ended columns (see Appendix D). The surrounding structure 

imposed some rotational restraint to the test columns that is usually not considered in the 

design. 
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Figure E.4 – Axial deformations of CFCH columns with 168.3mm of diameter 

 

 

 

Figure E.5 – Axial deformations of CFCH columns with 219.1mm of diameter 
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The major failure mode of the columns was global buckling presenting the columns at the 

final stage a deformed shape in “S”. The higher deformation is slightly upward may be due to 

the furnace thermal gradient in height and/or the high stiffness of the steel piston for 

measuring the restraining forces that was located on the top of the test column connecting it to 

the 3D restraining frame. 

In some cases, mainly the CFCH-PC and CFCH-RC columns, presented local buckling (see 

Appendix D). This suggests that the filling with steel fibre concrete (FRC) avoid the local 

buckling. The addition of polypropylene fibres could avoid the spalling of the concrete inside 

the columns, keeping intact the concrete ring longer and thus avoiding their local buckling 

 

Remarks 

The main conclusions about the fire performance of CFCH-FRC columns are: 

 The concrete reinforcement with steel + polypropylene fibres (FRC) reduced the 

restraining forces and axial deformations and improved the fire performance in terms 

of critical times and avoiding the local buckling; 

 It was observed sudden failure and shorter critical times for the CFCH-RC columns 

due to the small thickness of the concrete ring. Add steel fibres to the concrete in these 

columns are advisable. 

 So, the use of steel + propylene fibre concrete (FRC) for filling CFCH columns can be 

a better solution than using plain (PC) or steel bar reinforced (RC) concrete especially 

in small diameters. 

 


	Capa Tiago Ancelmo
	Tese_Tiago_Ancelmo

