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Resumo

Esta tese apresenta uma nova proposta para a modelação do comportamento

dos preços dos activos financeiros, cujo aspecto mais relevante é a inclusão de es-

truturas de memória. De forma a motivar novos modelos de avaliação de opções,

a presente tese inicia-se com a apresentação de vários modelos para os activos

subjacentes, começando com uma formalização mais clássica e aumentando o

nível de complexidade até aos modelos mais sofisticados onde já se encontra

presente a memória no preço e na volatilidade do activo. Tendo por base estes

modelos, são posteriormente derivados os modelos de avaliação de opções tradi-

cionais. Estes modelos são representados por sistemas diferenciais sem solução

analítica, o que implica a utilização de métodos numéricos. Na presente tese foi

adotado o método de Galerkin. Para a solução do problema algébrico foram uti-

lizados dois métodos: o Interative Method of Successive Over-Relaxation - SOR e

o algoritmo de Picard.

Ao longo da tese existe um esforço matemático assinalável para modelar os

preços das opções na presença de estruturas de memória (processo JTDD). E,

dada a necessidade de teoria estatística, em especial do Lema de Itô, é apre-

sentada a formulação deste Lema para o processo JTDD com coeficientes não

constantes. Também de igual importância na área do cálculo estocástico, é aqui

demonstrada a exponencial estocástica para aquele processo.

Um ponto retratado na presente tese, muito relevante para a economia fi-

nanceira, é a possibilidade das séries dos preços dos activos financeiros apre-
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sentarem algum tipo de persistência, sobretudo para periodicidades intradiá-

rias. A memória nas séries financeiras é aqui captada através da consideração

de processos de telégrafo.
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Abstract

This thesis provides a new proposal for modeling the dynamics of financial

prices that takes into account memory structures. In order to motivate new

option pricing models, this thesis presents several models for the price of the

underlying asset, beginning with the classical models and increasing the com-

plexity until more sophisticated models with memory in price and in volatility.

In this framework, new pricing models are derived for plain vanilla options.

These models are represented by differential systems with no analytical solu-

tion, and therefore they impose the use of numerical methods. Here it is adopted

the Galerkin method, and the solution of the algebraic problem is found using

two methods: the Interactive Method of Successive Over-Relaxation (SOR) and

Picard algorithm.

Throughout this thesis there is a significant mathematical effort aiming to

model option prices in the presence of memory structures (JTDD process). Given

the need for statistical theory, in particular for the Itô’s Lemma, here it is shown

the formulation of the Itô’s lemma for JTDD process with non-constant coef-

ficients. Also of great importance in the stochastic calculus field, the thesis

presents a demonstration of the exponential stochastic process for JTDD.

An important issue for financial economics is the possibility that series have

some kind of persistence, at least in a high frequency setting. In this thesis

this aspect of the prices time series is captured through the consideration of

Telegraph processes.

ix



x



Contents

Acknowledgments iii

Resumo vi

Abstract viii

Contents xi

List of Figures xv

1 Introduction 1

2 Concepts in Stochastic Calculus 7

2.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Variations of Stochastic Processes . . . . . . . . . . . . . . . . . . . . 9

2.3 Stochastic exponential . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Numerical Simulation of SDE 23

3.1 Euler-Maruyama Method . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Milstein Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Interpolation of the Approximation of the Discrete Time . . . . . . 25

3.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Strong Convergence . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



3.4.3 Study of Convergence . . . . . . . . . . . . . . . . . . . . . . . 27

4 Modeling Financial Assets 31

4.1 Classic Model - Black & Scholes . . . . . . . . . . . . . . . . . . . . . 31

4.2 Some improvements on the classical model . . . . . . . . . . . . . . 34

4.2.1 Jump-Diffusion Model . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Geometric Telegrapher’s Process . . . . . . . . . . . . . . . . 51

5 Asset Models with Memory in Price and Volatility 53

5.1 The JTDD-Process For Asset Pricing . . . . . . . . . . . . . . . . . . 54

5.2 Same Particular Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 JTDD-Process with Memory in the Volatility . . . . . . . . . . . . . 63

6 Itô’s Lemma 67

6.1 Quadratic variation of the TDD-Process . . . . . . . . . . . . . . . . 68

6.2 Ito’s Lemma for JTDD-Process . . . . . . . . . . . . . . . . . . . . . . 72

7 Option Pricing with Memory in the Underlying Asset 77

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Mathematical Model for European Options . . . . . . . . . . . . . . 79

7.3 Mathematical Model for American Options . . . . . . . . . . . . . . 85

7.4 Galerkin Method for European Option . . . . . . . . . . . . . . . . . 90

7.4.1 Variational Formulation for European Option Pricing . . . . 90

7.4.2 Approximation by Finite Element Methods . . . . . . . . . . 95

7.4.3 Approximation in Time . . . . . . . . . . . . . . . . . . . . . . 98

7.5 Galerkin Method for American option . . . . . . . . . . . . . . . . . 99

7.5.1 Variational Formulation . . . . . . . . . . . . . . . . . . . . . 99

7.5.2 Approximation by Finite Elements . . . . . . . . . . . . . . . 102

7.5.3 Approximation in Time . . . . . . . . . . . . . . . . . . . . . . 103

xii



7.6 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.6.1 Examples: Recovering the Standard Black and Scholes Model105

7.6.2 Examples: Memory in Assets . . . . . . . . . . . . . . . . . . 107

8 Conclusion 113

8.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography 115

xiii



xiv



List of Figures

3.1 Analytical solution and Euler Approximation . . . . . . . . . . . . . . . . . 28

3.2 Error analysis of the Euler Approximation . . . . . . . . . . . . . . . . . . . 28

3.3 Analytical solution and Euler Approximation . . . . . . . . . . . . . . . . . 29

3.4 Error analysis of the Euler Approximation . . . . . . . . . . . . . . . . . . . 29

3.5 Analytical solution, Euler and Milstein Approximation . . . . . . . . . . . . 29

3.6 Error analysis of the Euler and Milstein Approximation . . . . . . . . . . . 29

4.1 Historical close prices of IBM stocks traded at NYSE (26-11-2008 to

24-11-2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Simulation of a geometric Brownian motion with µ = 0.30 and σ = 0.50. . . . 33

4.3 Simulation of a geometric Brownian motion with µ = 0.30 and σ = 0.30. . . . 33

4.4 Simulation of a geometric Brownian motion with µ = 0.10 and σ = 0.50. . . . 33

4.5 Simulation of a geometric Brownian motion with µ = 0.40 and σ = 0.50. . . . 33

4.6 Jumps in the trajectory of DM/USD exchange rate, sampled at 5-

minute intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 A trajectory of (4.4) with µ = 0.20, σ = 0.50 and λ = 1.0. . . . . . . . . . 37

4.8 A trajectory of (4.4) with µ = 0.20, σ = 0.50 and λ = 1.0 . . . . . . . . . . 37

4.9 Daily returns on three European stock indexes: FTSE100, CAC40 and

MIB30 (raw returns, nonparametric density estimate and normal ap-

proximation and correlogram of squared returns)(Billio and Sartore

[1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xv



4.10 Asset pricing simulation by Hull and White model with µ = 0.20 and volatil-

ity by Figura 4.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.11 Simulated volatility by Hull and White model with φ = 0.20 and ε = 0.50. . . 42

4.12 Asset pricing simulation by Hull and White model with µ = 0.20 and volatil-

ity by Figura 4.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.13 Simulated volatility by Hull and White model with φ = 0.20 and ε = 0.30. . . 42

4.14 Simulated returns corresponding of the asset price in Figure 4.10. . . . . . . 43

4.15 Simulated returns corresponding of the asset price in Figure 4.12. . . . . . . 43

4.16 Asset pricing simulation by Heston model for µ = 0.20. . . . . . . . . . . . . 44

4.17 Simulated volatility by Heston model for φ = 0.20 and ε = 0.50. . . . . . . . . 44

4.18 Asset pricing simulation by Heston model for µ = 0.20. . . . . . . . . . . . . 45

4.19 Simulated volatility by Heston model for φ = 0.20 and ε = 0.30. . . . . . . . . 45

4.20 Simulated Return corresponding of the asset price in Figure 4.16. . . . . . . 45

4.21 Simulated Return corresponding of the asset price in Figure 4.18. . . . . . . 45

4.22 Asset pricing simulation by Hobson & Roger model for deviation simulation

in Figure 4.23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.23 Simulated of deviation of the current price for volatility model with η = 0.40. 49

4.24 Asset pricing simulation by Hobson & Roger model for deviation simulation

in Figure 4.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.25 Simulated of deviation of the current price for volatility model with η = 0.50. 49

4.26 Simulated Return corresponding of the asset price in Figure 4.22. . . . . . . 50

4.27 Simulated Return corresponding of the asset price in Figure 4.24. . . . . . . 50

4.28 Asset Pricing Simulation by Geometric Telegraph Process (4.18) with inten-

sities of Poisson process is 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.29 Asset Pricing Simulation by Geometric Telegraph Process (4.18) with inten-

sities of Poisson process is 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Asset Prices Simulation by JTDD-process. . . . . . . . . . . . . . . . . . 59

5.2 Evolution of the Jump Telegraph Process (5.9) for λ = 4 and h± = ±0.5 60

xvi



5.3 Evolution of the JTD Process (5.11) with λ = 4, σ± = 0.40 and h± = ±0.5. 62

5.4 Evolution of the JTD Process (5.11) for λ = 4, σ± = 0.70 and h± = ±0.5. 62

5.5 Asset pricing simulation by JTDD-Process with Memory in the Volatility

(Hobson & Roger) for deviation simulation in Figure 5.6. . . . . . . . . . . . 65

5.6 Simulated values of deviation of the current price for volatility model (Hob-

son & Roger) with λ = 6 and ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Asset pricing simulation by JTDD-Process with Memory in the Volatility

(Hobson & Roger) for deviation simulation in Figure 5.8. . . . . . . . . . . . 65

5.8 Simulated values of deviation of the current price for volatility model (Hob-

son & Roger) with λ = 3 and ε = 0.1. . . . . . . . . . . . . . . . . . . . . . . 65

5.9 Asset pricing simulation by JTDD-Process with Memory in the Volatility

(Hobson & Roger) for deviation simulation in Figure 5.8. . . . . . . . . . . . 66

5.10 Simulated values of deviation of the current price for volatility model (Hob-

son & Roger) with λ = 6 and ε = 2. . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Call Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Put Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 European put option in the Black and Scholes framework . . . . . . . . 106

7.4 European option in a Black-Scholes framework with respect to under-

lying price and time to maturity . . . . . . . . . . . . . . . . . . . . . . . 106

7.5 Option prices with memory in the underlying asset . . . . . . . . . . . 107

7.6 Option prices with memory in the underlying asset - positive information. . . 108

7.7 Option prices with memory in the underlying asset - negative information. . 108

7.8 Option pricing with memory assets in time of maturity. . . . . . . . . . 108

7.9 Option pricing with memory assets - positive information. . . . . . . . . . . 109

7.10 Option pricing with memory assets - negative information. . . . . . . . . . . 109

7.11 Option pricing with memory assets in time of maturity. . . . . . . . . . 109

7.12 Option pricing with memory assets in time of maturity. . . . . . . . . . 110

7.13 Option pricing with memory assets - positive past information. . . . . . . . . 110

xvii



xviii List of Figures

7.14 Option pricing with memory assets - negative past information. . . . . . . . 110

7.15 Option pricing with memory assets in time of maturity. . . . . . . . . . 111

7.16 Option pricing with memory assets - positive information. . . . . . . . . . . 111

7.17 Option pricing with memory assets - negative information. . . . . . . . . . . 111

7.18 Option pricing with memory assets in time of maturity. . . . . . . . . . 112



1 Introduction

What is the fair value of a financial option? This is probably one of the most

important questions in the modern finance framework. However, although this

question maintain its pertinence today, it is quite old, and it can be traced back

to the beginning of the XX century, when it can be found in the work of Louis

Bachelier[2] in 1900. Only in the late 1960’s Black, Scholes and Merton provided

a satisfactory solution to the problem, for which they have received a Nobel Prize

in economics.

After Black and Scholes[3], there were several seminal studies on this topic.

For instance, in 1973 Merton[4] presented a model for option pricing on a stock

that pays dividends, showing also that an American call option on a stock that

pays no dividend, can be priced as an European call option. Cox and Ross[5]

presented option pricing models considering other stochastic processes than the

geometric Brownian motion for the underlying asset. More recently, in 2002,

Lisa Borland[6] brought back this issue, supporting her research on findings in

nonextensive statistical mechanics by Tsallis[7] in 1988 and Curado and Tsal-

lis[8] in 1991. According to Tsallis the random walk process can be interpreted

as a generalized Wiener process, governed by a Tsallis probability distribution,

for the entropy with nonextensive thermodynamic parameter “q”. Borland[6]

presented a generalized form of the Black and Scholes model, for which she

derives the partial differential equations and closed form solutions for European

options. The author shows that when “q tends to 1” the geometric Brownian

1



2 Introduction

motion is recovered and thus the model recovers the basic theory developed by

Black and Scholes[3].

In 1976, Merton[9] proposed a dynamic process for the underlying asset that

essentially reassembles a geometric Brownian motion with random jumps with

a Poisson distribution. These jumps were interpreted as a component of non-

systematic risk. In this framework, jumps model the arrival of new information,

unanticipated by the financial markets, and imply discontinuities in the under-

lying asset price process.

Recent research in option pricing brought into discussion another level of

complexity by considering some kind of memory structure in the price of the un-

derlying asset. This new research path intends to achieve a more realistic way of

modeling the data features of financial prices. In fact, in a high frequency setting

prices have memory mainly due to market microstructure features and volatility

has a hyperbolic decaying rate. Based on the ideas originally presented by Di

Crescenzo and Pellerey[10], where Geometric Telegraph Processes are proposed

as way to describe the price dynamics of risky assets, Nikita Ratanov[11, 12, 13],

presented a new class of models of financial prices based. These models are con-

structed in a no-arbitrage and complete world, if the price’s jumps have a certain

correspondence with the behaviour of interest rates, the model can be complete

without assuming the existence of another asset with the same sources of ran-

domness. These three articles present detailed descriptions of the Telegraph

Processes. In paper [11] the author proposes a Jump-telegraph model for the

dynamics of the underlying asset. Ratanov assumed that the volatility is equal

to zero, which is, in fact, a completely inadequate assumption if one intends to

model financial prices. In the other two papers, the author tackles the problem

of European options and derives explicit pricing formulas, however also here

there are some problems. For instance, in [12] it is assumed that the price of

the underlying asset has a stochastic component governed by a telegraph pro-
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cess, but this process is completely unrealistic because it does not accommodates

some main features of financial data. Probably, the most important criticism to

the work of Ratanov, which is in fact the main criticism to the Black and Scholes

model, is that the author assumes that the price volatility is a constant.

Currently, the majority of academic work is no longer based on the unrealis-

tic assumption that the volatility of the underlying asset is constant over time.

In most cases, volatility is viewed as having a deterministic and a stochastic

parts. Sometimes, the stochastic component explicitly considers its temporal

dependence, i.e. volatility has memory. Nevertheless, models with this feature

usually do not reach nice numerical results. For example, this happens in the

"finite memory" model of Arriojas at el. [14] and in the "infinite memory" model

of Kazmerchuk et al. [15].This model may be represented by a Markov system

with more state variables than the number of risky assets.

Engle[16] in 1982 presented ARCH-type models (again, a Nobel Prize in eco-

nomics). Posteriorly in 1986, Bollerslev[17] generalizes the dynamics of the

volatility process, introducing the GARCH process as a model with good forescast

abilities. Also in 1986, Stephen J. Taylor[18] proposed the concept that the

volatility itself followed a stochastic process. Hull and White[19] in 1987 exa-

mined the option pricing problem when the underlying asset has stochastic vo-

latility, being the option price resolved in series form in the case of independent

stochastic volatility.

In 2000, Broadie et al.[20] presents a formulation for pricing American op-

tions, when the underlying asset has stochastic dividends and volatility. Because

the theoretical model is very complex, the authors introduce a non-parametric

approach that allows the analysis of the short-form and the testing of the de-

cision on early exercises, as it is defined by Harvey and Whaley[21, 22] and

Fleming and Whaley[23].

In 1998, Hobson and Rogers[24] proposed an original class of models of the
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price process of a financial security in continuous time setting, considering a

non-constant volatility. They defined volatility in terms of exponentially weighted

moments of historic log-price and thus the instantaneous volatility is driven by

the same stochastic factors as the process price. Therefore, unlike many other

models of stochastic volatility, it is not necessary to introduce new sources of ran-

domness. In 2004, Di Francesco and Pascucci[25]presented a complete model

with stochastic volatility in the sense of Hobson and Rogers, concluding that,

in this framework, option prices are solutions to degenerate partial differen-

tial equations obtained from the inclusion of other state variables describing

the dependence on the past prices of the underlying asset. In 2009, Foschi and

Pascucci[26] empirically tested option pricing models with Hobson and Rogers’

volatility, achieving positive results, as they could replicate the observe “smile

efffect” and the patterns of the implied volatility structure. A calibration proce-

dure based on an ad-hoc numerical scheme for “hypoelliptic PDEs” is proposed

and used for the performance analysis of the model price, using a data on the

S&P500 option prices.

The early exercise feature, present in the American style options, has proven

to be of great complexity has it implies the nonexistence of analytical pricing

solutions and therefore it became necessary to use numerical methods.

Boyle[27] introduced the Monte Carlo simulation method to evaluate options.

However, there are many studies that consider this technology inapplicable to

American options, since their algorithm specification involves determining the

optimal strategy of early exercise, by an action of dynamic “backwards” program-

ming.

In 1977 and 1978, Brennan and Schwartz[28, 29] applied finite difference

methods to solve the partial differential equations for an American option. Cox

et al.[30] used a discrete process in time and binomial in space for approximate

the continuous process. Johnson[31] and Geske and Johnson[32] showed how
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to value a American put option using the extrapolation method of Richardson.

Duffie[33] presented the Crank-Nicholson algorithm for finite differences for

the calculation of debentures and options on them. Hull and White[34] sug-

gested changes in the explicit finite difference scheme, similar to that presented

by Courtadon[35], ensuring that options have positive transition probability,

in allusion to the trinomial model. According to Hull[36] the finite difference

methods are commonly used to price exotic derivatives, including European and

American options on debentures and interest rates. However, these methods are

very complicated and “expensive” computationally, as its complexity increases

substantially with the number of variables that determine the option value, sim-

ply because the mesh becomes multidimensional.

Broadie and Glasserman[37] presented a simulation algorithm to estimate

the American option prices, providing point estimates of error and confidence

intervals for the true price value. Oliveira[38] and Rochman[39] presented com-

parisons of various numerical methods for solving this problem. Marcozzi, et

al.[40] used radial basis functions, and Song Wang[41] applied the volume me-

thod. The use of finite element methods is presented in my thesis, Thomaz[42]

defended at LNCC - Brazil and also in my recent work[43], presented at the

5th Portuguese Finance Network Conference. In this paper I present a formula-

tion for an option on various underlying assets (multi-assets) and its numerical

solution using finite element methods in order to study the influence of the de-

finition of the range of the underlying asset price for the numerical solution of

option pricing on one and two assets.

The derivation of the option pricing formulae can be based on an equivalent

local martingale measure or Itô Lemma, therefore this work presents the for-

mulation of two models for pricing European and American options considering

memory in the price of the underlying asset. For this task it was necessary to

use some stochastic calculus tools, which are shown in Chapter 2. Chapter 3
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presents a numerical simulation of SDE, and a method for studying its conver-

gence. Chapters 4 and 5 give a general idea of underlying asset models under

scrutiny, namely in Chapter 4 there is an overview of the classical model intro-

duced by Black and Scholes, as well as other models suggested in the literature

that overcome some critics and flaws of the classical model. Chapter 5 presents

the stochastic processes of the underlying asset that serve the basis for new op-

tion prices models. In fact, it was necessary to reformulate the Itô’s lemma for

this new classes of stochastic Processes. This is conducted in Chapter 6, with the

proof of the Itô’s lemma for the jump-telegraph-diffusion-drift stochastic process.

Chapter 7 derives the option pricing formulae, in the presence of this new un-

derlying asset pricing processes, motivates the use of the Galerkin method for

solving the resulting differential equations system.



2 Concepts in Stochastic Calculus

This chapter introduces some concepts and properties on non-random func-

tions, stochastic processes and stochastic calculus. All functions are defined on

[0,+∞[. The main purpose is to prepare the groundwork for a discussion on

modeling underlying assets and options prices.

This chapter also presents the Brownian motion or Winner process , which

plays an important role in the classic valuation problem of the underlying asset.

Pricing models for derivative assets are usually formulated in continuous time,

but these models are normally applied in discrete small time intervals.

2.1 Stochastic Processes

Time series of financial prices are commonly interpreted as a sequence of

random variables, in continuous time, i.e. as a stochastic process. A basic block

for modeling prices of financial assets is the Brownian motion or Winner process.

The Brownian motion or Winner process, W (t), is a continuous random pro-

cess, that can be used to model the cumulative effect of a pure white noise. This

process satisfies the following assumptions:

1. Independence of Increments: W (t) −W (s), for t > s, is independent of

the past, that is, of W (u), for u ∈ [0, s], or of Fs, the σ-field generated by

W (u), u ∈ [0, s].

7
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2. Normal Increments: W (t)−W (s), u < s, has a normal distribution with

zero mean and variance t− s.

This assumption implies (taking s = 0) that W (t)−W (0) has a N(0, t) dis-

tribution.

3. Continuity of Paths: W : t→W (t) is continuous.

Let W (t) be a Wiener process and ∆W (t) an increment corresponding to a

time increment ∆t. Then

1. ∆W (t) = ε(t)
√
∆t, where ε(t) is a random variable that follows a standard

normal distribution with zero mean and unitary standard deviation;

2. The random variables ε(t), t ≥ 0, are not serially correlated, that is E(ε(t)ε(t−
1)) = 0 for t 6= 0.

When the time interval ∆t becomes infinitesimally small, we can represent

the incremental changes in the Wiener process, dW , in continuous time, as

dW (t) = ε(t)
√
dt. (2.1)

A standard Brownian motion with trend is an extension of the above process,

being represented by the following stochastic equation

dS(t) = µdt+ σdW (t) , for a given S(0), (2.2)

where µ is the trend (or growth) parameter, σ is the variance parameter and

S = {S(t)}t≥0 is the stochastic process, for example, of an asset price. For any

time interval ∆t, the increment in S(t), has a Normal distribution, with mean

E(∆S(t)) = µ∆t, and variance V ar(∆S(t)) = σ2∆t.
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2.2 Variations of Stochastic Processes

This section discusses some concepts in stochastic calculus that will be used

in the formulation of both models for the underlying asset and for the option

prices. First, it presents functions variations and then stochastic process varia-

tions, which are the foundations for the next section.

Definition 2.2.1 (First Variation of Function). If f is a function of a real varia-

ble, its variation on [0, T ] is defined as

FV[0,T ](f) = sup
n−1
∑

k=0

|f(tnk+1)− f(tnk)| , (2.3)

where the supremum is taken over all partitions πn = {tn0 , tn1 , · · · , tnn},

0 = tn0 ≤ tn1 ≤ · · · ≤ tnn = T ,

of [0, T ].

By the triangle inequality, the sums in (2.3) increase as new points are added

to the partitions. Therefore, the variation of f is given by

FV[0,T ](f) = lim
||πn||→0

n−1
∑

k=0

|f(tnk+1)− f(tnk)| . (2.4)

where ||πn|| is defined as

||πn|| = max
k=0,··· ,n−1

(tnk+1 − tnk) ,

If FV[0,T ](f) is finite then f is said to be a function of finite variation on [0, T ].

Next there are two examples that motivate the first variation of a function as

defined in 2.2.1.

Example 2.2.1. If f is differentiable and f ′ is integrable, then the Mean Value

Theorem implies that in each subinterval [tk, tk+1], there is a point t∗k such that

f(tnk+1)− f(tnk) = f ′(t∗k)(t
n
k+1 − tnk).
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Consequently
n−1
∑

k=0

|f(tnk+1)− f(tnk)| =
n−1
∑

k=0

|f ′(t∗k)|(tnk+1 − tnk)

and

FV[0,T ](f) = lim
||πn||→0

n−1
∑

k=0

|f ′(t∗k)|(tnk+1 − tnk) =

∫ T

0

|f ′(t)|dt.

Example 2.2.2. Let f be a regular right-continuous (càdlàg) function or regular

left-continuous (cáglád) in [0, T ] that changes only in jumps:

f(t) =
∑

0 ≤ s ≤ t

|∆f(s)| , (2.5)

where ∆f(t) = f(t+)− f(t−), with

f(t−) = lim
s↑t

f(s) (f is a left-continuous function) ,

and

f(t+) = lim
s↓t

f(s) (f is a right-continuous function) .

Then it is easy to see from the definition that

FV[0,T ](f) =
∑

0 ≤ s ≤ t

|∆f(s)| . (2.6)

Definition 2.2.2 (Finite/Bounded Variation of a Function). Let f be of finite

variation if FVt(f) < ∞ for all t. Then function f is of bounded variation if

suptFVt(f) < ∞. In other words, for all t, FVt(f) < C, where C is a constant

independent of t.

Definition 2.2.3 (Quadratic Variation of a Function). If f is a function of real

variable, its quadratic variation on [0, T ] is defined as

〈f, f〉t = lim
||πn||→0

n−1
∑

k=0

[

f(tnk+1)− f(tnk)
]2

, (2.7)

if the limit exists, where πn and ||πn|| have the same meaning as in Definition

2.2.1
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Theorem 2.2.1. If f is continuous and of finite variation on [0, T ], then its qua-

dratic variation on [0, T ] is zero.

Proof: See Klebaner[44]

It can be easily proved that if f is differentiable and f ′ is integrable, then

〈f, f〉t = 0 .

In fact, since

n−1
∑

k=0

[

f(tnk+1)− f(tnk)
]2

=
n−1
∑

k=0

[

f ′(t∗k)
]2

(tnk+1 − tnk)
2 ≤ ||πn||

n−1
∑

k=0

[

f ′(t∗k)
]2

(tnk+1 − tnk)

then

〈f, f〉 ≤ lim
||πn||→0

||πn|| lim
||πn||→0

n−1
∑

k=0

[

f ′(t∗k)
]2

(tnk+1 − tnk) = lim
||πn||→0

||πn||
∫ T

0

[

f ′(t)
]2

dt ,

where the last limit equals to zero.

Definition 2.2.4 (Quadratic Covariation Between Two Function). If f and g are

real variable functions, the quadratic covariation (or simply covariation) of f and

g on [0, T ] is defined (when it exists) as

〈f, g〉t = lim
||πn||→0

n−1
∑

k=0

[

f(tnk+1)− f(tnk)
][

g(tnk+1)− g(tnk)
]

, (2.8)

where πn and ||πn|| have the same meaning as in the previous definitions.

Theorem 2.2.2. If f is continuous and g is of finite variation on [0, T ] , then their

covariation on [0, T ] is zero, i.e.

〈f, g〉t = 0 .

The proof of this result is similar to the proof of Theorem 2.2.1.

The previous definitions are presented hereafter in the context of stochastic

processes with the same probability space (Ω,F,P).

The following definition of a quadratic variation of a stochastic process is

given in Protter[45].
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Definition 2.2.5 (Quadratic Variation of Stochastic Process). Suppose that Y (t)

is a real-valued stochastic process defined on a probability space (Ω,F,P) and

with time index t ranging over the non-negative real numbers. Its quadratic

variation is the process defined by

〈Y, Y 〉t = lim
||πn||→0

n−1
∑

k=0

[

Y (tk+1)− Y (tk)
]2

, (2.9)

where π ranges over all partitions of the interval [0, t] and the norm of the par-

tition π is the mesh size. This limit, if it exists, is defined using convergence in

probability.

Definition 2.2.6 (Quadratic Covariation of Stochastic Process). The quadratic

covariation of two processes X and Y is defined by

〈X, Y 〉t = lim
||πn||→0

n−1
∑

k=0

[

X(tk+1)−X(tk)
][

Y (tk+1)− Y (tk)
]

. (2.10)

The quadratic variation and covariation of processes X and Y are usually

denoted by

〈Y, Y 〉t =
∫ t

0

[dY ]2 and 〈X, Y 〉t =
∫ t

0

dXdY

Equivalently it can be used the differential notations

d〈Y, Y 〉t = [dY (t)]2 and d〈X, Y 〉t = dX(t)dY (t) .

Definition 2.2.7 (Finite Variation of Stochastic Process). A process Y is said to

have finite variation if it has bounded variation over every finite time interval

(with probability 1).

Remark 2.2.1 (Properties of the Quadratic Variation of a Stochastic Process).

Here are stated and explained the fundamental properties of the quadratic varia-

tion process, proofs are omitted as they can be found in Klebaner[44].

1. If Y (t) is a semimartingale, then 〈Y, Y 〉t exists and is an adapted process.
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2. It is clear from the definition 2.2.5 that quadratic variation over non-over-

lapping intervals is the sum of the quadratic variation over each interval.

As such, 〈Y, Y 〉t is a non-decreasing function of t. Consequently 〈Y, Y 〉t is a

function of finite variation.

3. It follows from the Definition 2.2.6, SDE (2.10), that 〈X, Y 〉t is bilinear and

symmetric, that is, 〈X, Y 〉t = 〈Y,X〉t and

〈αX + Y, βU + V 〉t = αβ〈X,U〉t + α〈X, V 〉t + β〈Y, U〉t + 〈Y, V 〉t . (2.11)

4. Polarization identity

〈X, Y 〉t =
1

4

[

〈X + Y,X + Y 〉t − 〈X − Y,X − Y 〉t
]

, (2.12)

which can be written as

〈X, Y 〉t =
1

2

[

〈X + Y,X + Y 〉t − 〈X,X〉t − 〈Y, Y 〉t
]

. (2.13)

This property follows directly from the previous one.

5. 〈X, Y 〉t is a regular right-continuous (càdlàg) function with finite variation.

This follows from the polarization identity, as 〈X, Y 〉t is the difference of two

increasing functions.

6. The jumps of the quadratic covariation process occur only at points where

both processes have jumps,

∆〈X, Y 〉t = ∆X(t)∆Y (t) .

7. If one of the processes, X or Y , has finite variation, then

∆〈X, Y 〉t =
∑

s≤t

∆X(s)∆Y (s) .

Notice that although the summation is taken over all s not exceeding t, there

are at most a countable number of terms different from zero.
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Remark 2.2.2. The first variation of a Brwonian motion, W (t), on [0, T ] is not

finite.

This classical result shown in Lévy [46], is also presented in Bingham and

Kiesel[47]. However, an alternative proof of this result is presented here.

Theorem 2.2.3 (Lévy). The quadratic variation of a Brownian motion over [0, T ]

exists and equals T , in mean square (and hence in probability):

〈W,W 〉t = T (2.14)

Proof: Let {t0, t1, · · · , tn} be a partition of [0, T ]. To simplify the presentation

consider Dk =W (tk+1)−W (tk). Then Qπ is the quadratic variation, such that

Qπ =

n−1
∑

k=0

D2
k .

Then

Qπ − T =
n−1
∑

k=0

[

D2
k − [tk+1 − tk]

]

.

Consider an individual summand D2
k − [tk+1 − tk]. As

E
(

D2
k − [tk+1 − tk]

)

= 0 ,

it follows that

E(Qπ − T ) = E

(

n−1
∑

k=0

[

D2
k − [tk+1 − tk]

]

)

= 0.

For j 6= k, the terms D2
j − [tj+1 − tj ] and D2

k − [tk+1 − tk] are independent because
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the increments of W are independent. So

V ar(Qπ − T ) =
n−1
∑

k=0

V ar
[

D2
k − [tk+1 − tk]

]

=
n−1
∑

k=0

E
[

D4
k − 2[tk+1 − tk]D

2
k − [tk+1 − tk]

2
]

=
n−1
∑

k=0

[

3[tk+1 − tk]
2 − 2[tk+1 − tk]

2 + [tk+1 − tk]
2
]

= 2
n−1
∑

k=0

[

tk+1 − tk

]2

≤ 2||πn||T .

Thus

E(Qπ − T ) = 0, and V ar(Qπ − T ) ≤ 2||πn||T.

As ||πn|| → 0, V ar(Qπ − T )→ 0, and

Qπ − T
L2

−→
||πn||→0

0 .

This proof is concluded once one considers that the L2 convergence implies the

convergence in probability. The definition of convergence concepts can be seen in

Arnold[48].

�

As corollary of this result, the quadratic variation of a Brownian motion is

not finite. It can be shown that the variation of order p is finite if and only if

p > 2.

Remark 2.2.3 (Differentiable Representation). Consider that

E
([

W (tk+1)−W (tk)
]2

− [tk+1 − tk]
)

= 0 .

and, as it has been showed above, that

V ar
([

W (tk+1)−W (tk)
]2

− [tk+1 − tk]
)

= 2[tk+1 − tk]
2 .
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Then when [tk+1− tk] is small, [tk+1− tk]2 is very small, implying the approximate

equation
[

W (tk+1)−W (tk)
]2

≃ tk+1 − tk

which may be informally written as

dW (t)dW (t) = dt.

Note that Brownian motion paths are not differentiable in the ordinary sense

of calculus. Therefore Ito calculus must be used instead.

The Brownian process applied to financial series has known limitations, such

as infinite first variation and independence of log-returns increments that leads

to a pathologic behaviour of asset prices. In other words, the transition density

of the Brownian motion satisfies the heat equation, which is characterized by

infinite propagation speed, reflecting a pathology induced by the mathematical

model.

The prototype of a stochastic processes with finite variation is the telegraph

process (see Goldstein [49] and Kac [50]) that describes the position of a parti-

cle moving on the real line, alternatively with constant velocity +v or −v. The

changes of direction are governed by a homogeneous Poisson process N(t) with

rate λ > 0.

The Telegraph process1 is defined by

X(t) = V (0)

∫ t

0

(−1)N(ν)dν , t > 0 , (2.15)

where the initial velocity V (0) assumes the values ±v with equal probability and

independence of {N(t)}t>0.

The description of the price dynamics of a financial asset can be performed

using the following telegraph Process: Let N+ = {N+(t)}t≥0 and N− =

1In the literature, this process is alternatively called the Telegraph process or the Telegra-

pher’s process.
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{N−(t)}t≥0 be two counting Poisson processes with alternating intensities λ+,

λ−, λ+, · · · and λ−, λ+, λ−, · · · , respectively; that is, as ∆t→ 0,

P(N+(t+∆t) = 2n+ 1|N+(t) = 2n) = λ+∆t + o(∆t),

P(N+(t+∆t) = 2n+ 2|N+(t) = 2n+ 1) = λ−∆t + o(∆t),

P(N−(t+∆t) = 2n+ 1|N−(t) = 2n) = λ−∆t + o(∆t),

P(N−(t+∆t) = 2n+ 2|N−(t) = 2n+ 1) = λ+∆t + o(∆t).

where n = 0, 1, · · · , o(∆t) is the “Landau Notation” or “Asymptotic Notation”,

defined by f = o(∆t) meaning that “f/∆t→ 0” (see Hardy and Wright[51]).

It is also assumed that all stochastic processes subscribed by + or − are

adapted to the filtrations generated by N+ and N−, respectively, and have right

continuous trajectories.

Let g+(t) = (−1)N+(t) and g−(t) = −(−1)N−(t), and define the Telegraph process

with states (ν+, λ+) and (ν−, λ−) as

X+(t) =

∫ t

0

νg+(τ)dτ (2.16)

and

X−(t) =

∫ t

0

νg−(τ)dτ. (2.17)

Theorem 2.2.4 (Quadratic Variation of Telegraph Process). If X± is a Telegraph

process then

〈X±, X±〉t = 0.

Proof: Replacing the Telegraph process defined in (2.16) or (2.17),

FV[0,T ](X±) = lim
||Πn||→0

n−1
∑

k=0

∣

∣

∣

∣

∫ tk+1

0

νg±(τ)dτ −
∫ tk

0

νg±(τ)dτ

∣

∣

∣

∣

.
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Therefore

n−1
∑

k=0

∣

∣

∣

∣

∫ tk+1

0

νg±(τ)dτ −
∫ tk

0

νg±(τ)dτ

∣

∣

∣

∣

≤
n−1
∑

k=0

∣

∣

∣

∣

∫ tk+1

tk

νg±(τ)dτ

∣

∣

∣

∣

≤
n−1
∑

k=0

∣

∣

∣

∣

∫ tk+1

tk

max(|ν+|, |ν−|)dτ
∣

∣

∣

∣

≤ |max(|ν+|, |ν−|)|
n−1
∑

k=0

[tk+1 − tk]

≤ |C|T

Hence, one can conclude that the Telegraph process has finite variation. Finally,

the proof in concluded once Theorem 2.2.1 is considered .

�

2.3 Stochastic exponential

This section presents some concepts and results (see Klebaner[44]) that play

a crucial role in supporting the main results of the Chapter 5, on models asset

models with memory in the underlying asset.

Because the models used for the dynamics in time of assets pricing are sto-

chastic differential equation (SDE) where the analytical solution is a stochastic

exponential, therefore the interest on these concepts, especially for the semimar-

tigale case.

Definition 2.3.1 (Semimartingales). A regular right-continuous with left limits

(càdlàg) adapted process is a semimartingale if it can be represented as a sum of

two processes: a local martingale M(t) and a process of finite variation A(t), with

M(0) = A(0) = 0, and

S(t) = S(0) +M(t) + A(t) . (2.18)
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Remark 2.3.1. For a semimartingale X, the jump process ∆X is defined by

∆X(t) = X(t)−X(t−) , (2.19)

and represents the jump at point t. If X is continuous, then of course, ∆X = 0.

In general, stochastic integrals with respect to martingales are only local

martingales rather than true martingales. This is the main reason for intro-

ducing local martingales. It is also common to see, in this context, the use of

stoppings and truncations for the expectations computation. These ideas moti-

vate the following

Definition 2.3.2. A property of a stochastic process X(t) is said to hold locally if

there exists a sequence of stopping times τn, called the localizing sequence, such

that τn ↑ ∞ as n → ∞ and for each n the stopped processes X(t ∧ τn) has this

property.

Local martingales are defined by localizing the martingale property.

Definition 2.3.3. An adapted process M(t) is called a local martingale if there

exists a sequence of stopping times τn, such that τn ↑ ∞ and for each n the stopped

processes M(t ∧ τn) is a uniformly integrable martingale in t.

Theorem 2.3.1. Let Y (t) be a real semimartingale such that Y (0) = 0, then the

stochastic process Z = {Z(t)},t≥0 for

Z(t) = Exp







Y (t)− 1

2
〈Y, Y 〉t +

1

2

∑

ν∈(0,t]

[∆Y ((ν))]2







×

×
∏

ν∈]0,t]

[

1 + ∆Y (ν)
]

Exp
{

−∆Y (ν)
}

, t ≥ 0. (2.20)

And it follows that Z is a semimartingale cádlág which verifies the equation

Z(t) = 1 +

∫

]0,t]

Z(ν−)dY (ν) , t ≥ 0 ,

i.e. dZ(t) = Z(t−)dY±(t) .

Proof: See Protter[45].
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Definition 2.3.4 (Predictable Process). H(t) is predictable if it is one of the fol-

lowing:

1. A left-continuous adapted process, in particular, a continuous adapted pro-

cess.

2. A limit (almost sure, in probability) of a left-continuous adapted processes.

3. A regular right-continuous process such that, for any stopping time τ , H(τ)

is Fτ -measurable, being the σ-field generated by the sets A ∩ {τ < t}, where

A ∈ Ft.

4. A Borel-measurable function of a predictable process.

Example 2.3.1. The Poisson process N(t) is right-continuous and is obviously

adapted to its natural filtration. It can be shown that it is not predictable. Ho-

wever, its left-continuous modification N(t−) = lims↑tN(s) is predictable, because

it is adapted and left-continuous (item 2 of the Definition 2.3.4). Any measu-

rable function (even right-continuous) of N(t−) is also predictable (item 4 of the

Definition 2.3.4.

Definition 2.3.5 (Stochastic Integrals with respect to Semimartingales). Let S

be a semimartingale with representation

S(t) = S(0) +M(t) + A(t) , (2.21)

where M(t) is a local martingale and A(t) is a finite variation process. Let H(t)

be a predictable process such that
∫ t

0

|H(t)|dVA(t) <∞ (2.22)

where VA(t) is the variation process of A(t) and
√

∫ t

0

H2(t)d〈M,M〉t is locally integrable . (2.23)
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Then the stochastic integral is defined as the sum of integrals,
∫ t

0

H2(t)dS(t) =

∫ t

0

H2(t)dM(t) +

∫ t

0

H2(t)dA(t) . (2.24)

As in Klebaner[44], if M(t) is a continuous local martingale then the stochas-

tic integral is well defined
∫ t

0

H2(t)d〈M,M〉t <∞ a.s. .

Corollary 2.3.1.1. If Y (t) is a semimartingale of finite variation, then Y cm(t) ≡ 0.

Consider that Y (t) is a semimartingale and that 〈Y, Y 〉cont denotes the path-

by-path continuous part of 〈Y, Y 〉. Klebaner[44], page 232, presented

〈Y, Y 〉t = 〈Y, Y 〉contt +
∑

0<ν≤t

[∆Y (ν)]2 . (2.25)

Analogously, if 〈X, Y 〉cont denotes the path-by-path continuous part of 〈X, Y 〉 then

∑

ν≤t

[∆Y (ν)]2 <∞

The next result establishes the existence and uniqueness of the solution of

the SDE.

Theorem 2.3.2 (Stochastic Exponential of Semimartingale). Let Y (t) be a semi-

martingale. Then the stochastic equation

U(t) = 1 +

∫ t

0

U(ν−)dY (ν) (2.26)

has a unique solution, given by

U(t) = εt(Y ) = eY (t)−Y (0)− 1
2
〈Y,Y 〉cont(t)

∏

ν≤t

[1 + ∆Y (ν)]e−∆Y (ν) . (2.27)

This is called the stochastic exponential of Y (t) and can be stated in an equivalent

form by using the quadratic variation where εt(Y (t)) is given by

εt(Y ) = eY (t)−Y (0)− 1
2
〈Y,Y 〉t

∏

ν≤t

[1 + ∆Y (ν)]e−∆Y (ν)+ 1
2
[∆Y (ν)]2 . (2.28)

Proof: See Klebaner[44].
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Through this work it is frequent to consider SDE, where the existence and

uniqueness of its solution are guaranteed by the following theorem.

Theorem 2.3.3 (Existence and Uniqueness of the Solution of a SDE). Let Y (t)

be such that

dY (t) = f(Y (t), t)dt+G(Y (t), t)dM(t) , Y (0) is given (2.29)

and M(t) = {M(t)}t≥0 is a stochastic process. Consider the following conditions:

1. The coefficients are locally Lipschitz in x uniformly in t, that is, for every T

and N , there is a constant K depending only on T and N such that for all

|x|, |y|. N and all 0 ≤ t ≤ T

|f(x, t)− f(y, t)|+ |G(x, t)−G(y, t)| < K|x− y| , (2.30)

2. The coefficients satisfy the linear growth condition

|f(x, t)|+ |G(x, t)| < K[1 + |x|] , (2.31)

3. Y (0) is independent of (M(t), 0 ≤ t ≤ T ), and EY 2(0) <∞.

If these conditions are satisfied then there exists a unique strong solution Y (t)

of (2.29). Y (t) has continuous paths, moreover

E
{

sup
0≤t≤T

Y 2(t)
}

< C
[

1 + E{Y 2(0)}
]

, (2.32)

where the constant C depends only on K and T .

Proof: See Klebaner[44].



3 Numerical Simulation of SDE

Often when working with SDE it is impossible to find analytical solutions,

and therefore one must use a numerical method to find the approximate solu-

tions.

Progressively, the SDE has become a widely used technology to model and

solve various problems in economics and finance. A classic example is the use of

the Geometric Brownian motion (SDE) for modeling stock dynamics.

This chapter deals with applications of SDE in assets pricing problems. Since

some of these equations have no analytical solution, this chapter also conducts

an examination on the numerical analysis (study of the convergence) of the

approximate solution, in time discretization, by Euler-Maruyama method and

Milstein method. The SDE (2.29) is used here as an working example. For the

particular case f(Y (t), t) = µY (t), G(Y (t), t) = σY (t) and M(t) is Brownian Mo-

tion, one obtains the analytical solution given by

Y (t) = Y (0) exp

{[

µ− 1

2
σ2

]

t+M(t)

}

, (3.1)

shown in Arnold[48] and Thomaz[52].

So, this study is particularly focused on the presentation of the numerical

solution of the SDE, and on the study of convergence to the analytical solution,

with the illustration of some numerical results.

23
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3.1 Euler-Maruyama Method

Consider that in interval t ∈ [0, T ], there is the partition

0 = t0 < · · · < tN = T

with ∆n = tn+1− tn, not necessarily uniform. Let Yn = Y (tn) be an approximation

function defined by the Euler method

Yn+1 = Yn + f(Yn, tn) ∆n +G(Yn, tn)
[

W (tn+1)−W (tn)
]

, (3.2)

for n = 0, · · · , N − 1 and Y0 is known. Let δ be given as δ = maxn ∆n. In

(3.2) f and G are defined according to the SDE (2.29) with f(Y (t), t) = µY (t),

G(Y (t), t) = σY (t). Additionally, consider the uniform grids tn = t0 + nδ, with

δ = ∆n ≡ ∆ = (T − t0)/N for some integer N large enough so that δ ∈ (0, 1) .

The sequence of Euler approximation values to Yn for n = 0, . . . , N , defined

by (3.2), are computed as in the deterministic case. The main difference is that

there is need to generate the random increments ∆Wn = W (tn+1) − W (tn) for

n = 0, 1, · · · , N − 1, of the Wiener process. These increments can be genera-

ted by a random number generator for independent Gaussian pseudo-random

numbers. Here it is used the Polar Marsaglia generator presented in Kloeden

and Platen [53].

3.2 Milstein Method

This section presents a discrete time approximation called the Milstein me-

thod. Its order of convergence is grater than the one of the Euler-Maruyama

method, which, in fact, is the simplest of all numerical methods.

Already the Milstein approximation, in the one-dimensional case, is given for

only a sum of terms of the expansion of Ito-Taylor,

G′GI(1,1) =
1

2
G′G

[

(∆Wn)
2 −∆n

]
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in the Euler-Maruyama approximation, then we get the Milstein Method

Yn+1 = Yn + f∆n +G∆Wn +
1

2
G′G

[

(∆Wn)
2 −∆n

]

, (3.3)

In addition to these methods of Milstein and Euler-Maruyama, there are

others presented in the literature applied to the stochastic problem of the ini-

tial value. For example, the Heun method (Mcshane[54], Saito and Mitsui[55]),

the Derivative-free method (Klonden and Platen[56]), the FRKI method (New-

ton[57]), The Improved 3-Stage RK method (Mcshane [54] or Saito and Mi-

tsui[55]), the Taylor method (Milshtein[58] or Klonden and Platen[56]), the ERKI

method (Newton[57]) and the method of Local Linearization (Biscay et al.[59] or

Jimenez [60]).

3.3 Interpolation of the Approximation of the

Discrete Time

The numerical methods of Euler-Maruyama (3.2) and Milstein (3.4) deter-

mine values of the approximating process at discrete times only. If required,

more precise values can then be determined at intermediate instants using an

appropriate interpolation method.

The approximated values Yn at intermediate instants can be determined by

an appropriate interpolation method. The simplest one is the piecewise cons-

tant interpolation with nt Y (t) = Ynt
, t ∈ [0,∞) , where nt is an integer defined

by nt = Max(0, 1, · · · , N : tn ≤ t), that is the largest “n” for which tn does not

exceed t.

By a linear interpolation procedure, one obtains an approximation Y (t) for

t ∈ [tn, tn+1], defined by

Y (t) = Yn +
[

t− tn

]Yn+1 − Yn
∆n

. (3.4)

This procedure is often used because of its simplicity and continuity.
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The emphasis is on the approximated values at given discrete instants. In

fact, it is impossible to reproduce the finer structure of sample paths of an Ito’s

process as they have the irregularity property of the sample paths of the driving

Wiener’s process; in particular they are not differentiable.

3.4 Convergence

In assessing the quality of a numerical scheme it is necessary to have some

kind of measure of how well the method approximates the analytical solution,

i.e. a procedure to measure how the numerical solution converges to the analy-

tical solution. In a stochastic environment, unlike the deterministic case, there

is more than one method for measuring convergence. We consider the two main

types of convergence, namely weak and strong convergence.

3.4.1 Strong Convergence

The strong convergence method derives from the concept of absolute error,

which is just the expectation of the absolute value of the difference between the

numerical approximation and the analytical solution in time “t”, i.e. E|X(t) −
Y (tn)|. One says that a discrete approximation in time Y (tn), to the exact solu-

tion X(t) of a SDE, converges in the strong sense with rate γ > 0 if there is a

constant C <∞ such that

E|X(t)− Y (tn)| ≤ C∆γ , (3.5)

for all the fixed steps ∆ ∈ (0, 1). The strong convergence provides a measure of

approximation of the individual sample trajectories to the solution of a SDE.
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3.4.2 Weak Convergence

Strong convergence is computationally expensive and it is not a necessary

condition to compute the expected values, only information on the type of solu-

tion is needed. For example, if and only if one is interested in computing the

moments of the solution X(t) , then there is no need to know how the individual

paths approach X(t). This leads to the concept of weak convergence. One says

that a discrete approximation in time, Y (tn) , of a solution X(t) of a SDE con-

verges in the weak sense with rate γ > 0 if, for any polynomial g , there is a

constant C <∞ such that

|E(g(X(t)))−E(g(Y (tn)))| ≤ C∆γ , (3.6)

for all fixed steps ∆ ∈ (0, 1), provided that they are functional. This criterion

provides an error measure for the mean, variance or any other moment that is

necessary to calculate. It is usually easier and faster to implement numerical

methods subject to the condition of weak convergence. Therefore, it is impor-

tant, when dealing with an identification problem (if possible), to know if a good

approximation of the path is required or if an approximation of a functional so-

lution is sufficient.

Remark 3.4.1. The expected strong convergence theoretical rate for the Euler-

Maruyama approximation is γ = 1/2 , while for the Milstein approximation is

γ = 1. Thus, the Milstein approximation is a better approximation technique in

the presence of discretization because it does not requires a high refinement of the

mesh for the numerical solution. This reduces the computational cost and leads

to more accurate responses.

3.4.3 Study of Convergence

The simulations presented in this section aim to verify the convergence of

the numerical solution given by the Euler-Maruyama method (3.2) and by the
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Milstein method (3.4) for the Classic Model - Black & Scholes (2.29) which has

an analytical solution (3.1).

The expected theoretical rate of strong convergence is γ = 1/2 using the

Euler-Maruyama Method applied to the discretization of time for (2.29).

The computational simulations presented hereafter assume the following pa-

rameters: h = 0.001, µ = 0.15, σ = 0.30, with initial value S0 = 100. It was also

adopted a ∆γ , for time Steps, equal to 16, 32, 64, 128 and 256.
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Figure 3.1: Analytical solution and Euler Approxi-

mation
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Figure 3.2: Error analysis of

the Euler Approximation

Figure 3.1 shows one path for the analytical solution of (2.29) and its appro-

ximated values obtained from the Euler-Maruyama method. Figure 3.2 presents

a graphical analysis of the approximation error, and it confirms a convergence

rate of 1/2, as predict by the theory, since this is the slope of the line in the space

log2(∆)× log2(E|error|).
Figure 3.3 presents a different sample trajectory than 3.1, for the same pa-

rameters. However, the same convergence can be seen in Figure 3.4.

The next figures present a comparative analysis of the Euler-Maruyama and

Milstein approximation methods, performed by a simulation using the previous

parameters.
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Figure 3.3: Analytical solution and Euler Approxi-

mation
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Figure 3.5: Analytical solution, Euler and Milstein

Approximation
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Figure 3.6: Error analysis of

the Euler and Milstein Approxi-

mation

Figure 3.6 confirmes the convergence at a rate of the 1/2 for the Euler-Ma-

ruyama approximation and at a rate of 1 for Milstein approximation, as can be

seen by the slope of line corresponding to the plot log2(∆)×log2(E|error|). Already

in Figure 3.5 present the path for the analytical solution of and its approxima-

ted values obtained from the Euler-Maruyama and Milstein approximation me-

thods.





4 Modeling Financial Assets

The analysis of the price dynamics of underlying assets is a crucial issue in

pricing financial options. Since the simplified Brownian stochastic differential

equation proposed by Black and Scholes [3], several models were proposed in

the literature. The aim of this chapter is to present the most significant asset

pricing models that were introduced to overcome the limitations of the Black

and Scholes model.

4.1 Classic Model - Black & Scholes

The most popular model to describe the time evolution of asset prices is the

one proposed in 1973, by Black and Scholes [3] where the authors establish

SDE for the asset price depending on a Brownian motion process (also called

a diffusion process). This chapter begins by evoking the concept of Brownian

motion.

Assuming that the underlying asset S(t) follows a geometric Brownian mo-

tion with constant drift µ and volatility σ, Black and Scholes[3] introduced the

equation

dS(t) = µS(t)dt+ σS(t)dW (t) , where S(0) is given (4.1)

to describe the time evolution of the price of an asset traded in the spot market.

Figure 4.1 shows historical daily closing prices, since 26-11-2008 until 24-

11-2009, of International Business Machines Corp. (IBM corp.) stocks traded

31
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at the New York Stock Exchange (NYSE). It appears that, over time, this asset

has a positive expected rate of return, which can be interpreted as the long run

investment compensation.

Figure 4.1: Historical close prices of IBM stocks traded at NYSE (26-11-2008 to

24-11-2009).

The equation (4.1) can then be used to model a stock price that fluctuates

randomly. Its solution admits the representation

S(t) = S(0) exp

{[

µ− 1

2
σ2

]

t+W (t)

}

. (4.2)

In order to illustrate the trajectory dependence on parameters µ and σ of an

asset price given by (4.2), some simulations were done with different parame-

ters but with the same noise, so trajectories change only due to changes in the

parameters.

Assume that the drift parameter, i.e. the expected rate of return (µ), is 0.30.

Figure 4.2 shows a trajectory for σ = 0.50, while Figure 4.3 shows a trajectory for

σ = 0.30. Obviously, because the volatility is a measure of dispersion, the first
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case presents a greater dispersion. In other words, the path presented in Figure

4.2 is more jagged than the one in Figure 4.3.
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Figure 4.2: Simulation of a geometric

Brownian motion with µ = 0.30 and σ =

0.50.
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Figure 4.3: Simulation of a geometric

Brownian motion with µ = 0.30 and σ =

0.30.

The following figures present new simulations, by setting σ = 0.50 and vary-

ing the drift parameter. The trend is more pronounced in Figure 4.5, for µ = 0.40

than in Figure 4.4 for µ = 0.10, while the variability is the same.
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Figure 4.4: Simulation of a geometric

Brownian motion with µ = 0.10 and σ =

0.50.
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Figure 4.5: Simulation of a geometric

Brownian motion with µ = 0.40 and σ =

0.50.

The study of stochastic calculus, especially SDE with white noises was firstly

presented in Langevin[61] in 1908, where the author analyzed the Brownian

motion. However, only in 1951, Itô[62] defined the improper integral, which
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raised up the formalization of the SDE theory. Subsequently, several have been

the contributions to the development of what is today known as stochastic calcu-

lus especially SDE. Accordingly, stochastic calculus has been increasingly used

for modeling problems in economics and finance. Some seminal works are those

of Skorokhod[63], McKean[64], Gikhman and Skorokhod[65], Dynkin[66], Ar-

nold[48], Oksendal[67], Kloeden and Platen[53] and Look[68].

4.2 Some improvements on the classical model

The SDE (4.1) or its solution (4.2) has been largely used to model asset prices

in spot markets. However there exist some pertinent differences between the be-

havior of real prices and simulated prices. The pathologic behavior of (4.2) is well

illustrated in the literature and it is consequence, for instance, of the following

properties: the trajectories of asset prices are continuous, S(t) is independent of

its history and parameters µ and σ do not depend on the asset prices.

Consequently, it is commonly accepted that the dynamics of asset prices can-

not be described by the geometric Brownian motion with constant drift and

volatility. Several sophisticated theoretical constructions have been presented

in the literature to capture the real features of asset prices dynamics.

The next sections present some of these models that intent to avoid the patho-

logical behavior induced by the Black and Scholes model (4.1). Namely the

model proposed by Merton in [9] which is basically characterized by the exis-

tence of jumps, the models with stochastic volatility, especially the one proposed

in Hobson and Roger[24] and finally the models introduced by Di Crescenzo and

Pellerey[10] and by Ratanov[11, 12, 13] which are characterized by telegraph

processes.
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4.2.1 Jump-Diffusion Model

Several undesirable properties have been observed when the SDE (4.1) is

used to model the time dynamics of the prices of financial assets. The first one

was pointed out, for instance in Tankov and Voltchkova[69], and it is related

with the continuous trajectories. In a model with continuous paths, the price

process behaves locally like a Brownian motion and the probability that the as-

set moves by a large amount over a short period of time is very small, unless one

fixes an unrealistically high value for the volatility. Therefore, in the short run

modeled prices have smaller moves than those observed in real markets.

Figure 4.6: Jumps in the trajectory of DM/USD exchange rate, sampled at 5-

minute intervals.

For example, consider the time evolution of the DM/USD exchange rate, with

5-minute time resolution, over a two-week period in 1992 taken from Tankov and

Voltchkova[69] (see Figure 4.6). One can observe that there exists at least three

instants where the rate jump 100bp within a 5-minute interval which appears as

discontinuities in the price trajectory. Price movements like these ones clearly

cannot be described by a diffusion model with continuous paths, therefore it was
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necessary to construct a stochastic process which admits discontinuities in its

trajectories.

In order to incorporate discontinuities in the price process, Merton in [9] as-

sumed the partition of the asset price process into three components: a linear

drift, a Brownian motion representing "normal" price variations, and a com-

pound Poisson process that generates an "abnormal" change (jump) in prices

due to the arrival of new information. The jump value is determined by sam-

pling from an independent and identically distributed (i.i.d.) random variable.

The asset price is then described by the following SDE

dS(t) = µS(t)dt+ σS(t)dW (t) + dJ(t) , (4.3)

where µ is the instantaneous expected return on the asset, σ is the instanta-

neous volatility of the return, conditional on the inexistence of "news" (i.e., the

Poisson event does not occur) and dW (t) is a standard Gauss-Wiener process. In

(4.3) the process J(t) is given by

J(t) =

N(t)
∑

i=1

[

Vi − 1
]

whereN(t) is a Poisson process with rate λ (the mean number of arrivals per unit

time), Vi is a sequence of independent identically distributed (i.i.d.) nonnegative

random variables. Hence, J(t) is the independent Poisson process described by

1. P

{

the event does not occur in the time interval[t, t + dt]
}

= 1− λdt+ O(dt),

2. P

{

the event occurs once in the time interval [t, t + dt]
}

= λdt+O(dt),

3. P

{

the event occurs more than once in the time interval [t, t + dt]
}

= O(dt)

where O(dt) is the asymptotic order symbol defined by ψ(dt) = O(dt) if

lim
dt→0

[

ψ(dt)

dt

]

= 0 .

It is assumed that dJ and dW are independent.
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If λ = 0 (and therefore, dJ = 0), then the return dynamics would be identical

to those of Black and Scholes[3] and Merton[4].

The solution of the SDE (4.3) is shown in Kou [70] and [71] as

S(t) = S(0)Exp

{[

µ− 1

2
σ2

]

t+ σW (t)

}N(t)
∏

i=1

[Vi] . (4.4)

The stochastic process S(t) is usually called the Jump-Diffusion process.

Figure 4.7: A trajectory of (4.4) with µ = 0.20, σ = 0.50 and λ = 1.0.

Figure 4.8: A trajectory of (4.4) with µ = 0.20, σ = 0.50 and λ = 1.0

Figures 4.7 and 4.8 display two trajectories of the jump-diffusion process (4.4)

with expected rate of return µ = 0.20, volatility σ = 0.50 and a rate of the Poisson
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process λ = 1.0. Although the paremters are the same, the two trajectories seem

quite different, even in relation to the number of realized jumps.

From a risk management perspective, the inclusion of jumps in the model

allows to quantify and take into account the risk of an abrupt stock price move-

ment over short time intervals which appear to be non-existent in the Brownian

framework. For the purpose of option pricing, Merton assumed that the jumps

are log-normally distributed. This special case renders estimation and hypothe-

sis testing tractable and has become the most important representation of the

jump-diffusion process. Moreover, by adding discontinuous jumps to the Black-

Scholes model and choosing the appropriate parameters of the jump process,

log-normal jump models can accommodate volatility smiles.

From the point of view of hedging, continuous models of stock price gene-

rally lead to a complete market or to a market which can be made complete by

adding one or two additional instruments. Since in such market every terminal

payoff can be exactly replicated, options are redundant assets, and the exis-

tence of traded options becomes a puzzling issue. The mystery is easily solved

by allowing discontinuities: in real markets, due to the presence of jumps in

prices, perfect hedging is impossible and options enable the market participants

to hedge risks that cannot be hedged by using the underlying asset only (Tankov

and Voltchkova[69]).

The jump-diffusion models seem more realistic than the Black-Scholes model

(4.1), however some questions remain unanswered. The main problem with

jump-diffusion models is that they cannot capture the volatility clustering ef-

fects. This has been the main motivation for the stochastic volatility models

([71]) presented in the next section.
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4.2.2 Stochastic Volatility

This section starst by introducing some motivation to the need of stochas-

tic volatility in modeling asset prices. To illustrate empirically the stylized

facts that motivate the need of stochastic volatility, Billio and Sartore[1] present

examples of three European stock indexes: the FTSE100, the CAC40 and the

MIB30, which are market indexes for the London, Paris and Milan equity mar-

kets, respectivelly. These series run from 4th January 1999 to 12th August 2002,

yielding 899 daily observations.

Figure 4.9: Daily returns on three European stock indexes: FTSE100, CAC40

and MIB30 (raw returns, nonparametric density estimate and normal approxi-

mation and correlogram of squared returns)(Billio and Sartore [1])

Figure 4.9 presents graphically some properties of these three series. The

raw returns time series suggest that there are periods of volatility clustering,

that is, days of large price movements are followed by days with the same cha-
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racteristics. This is confirmed by the a correlogram on squared returns series,

which shows significant correlations at quite extended lag lengths. Figure 4.9

also gives a density estimate of the unconditional distribution of returns series

together with the corresponding normal approximation, which suggest that re-

turns series are leptokurtic.

These stylized facts can be summarized as follows: non-significant serial cor-

relation in the levels of return, volatility clustering, which implies a significant

and positive serial correlation in the squared returns series, heavy tails and

persistence in volatility.

There is strong evidence that the volatility depends on the present asset price

(leverage effect) and on the past price realization (volatility persistent) as well

as on other parameters of the market like time or maturity. Several approaches

have been proposed in the literature to resolve the limitations of the constant

volatility models: in the first one the volatility was assumed to be a deterministic

function of time and current asset prices S(t). In this case the asset price is given

by (4.1) where volatility is such that σ = σ(S(t), t), this is, S(t) is the solution of

the following SDE

dS(t) = µS(t)dt+ σ(S(t), t)S(t)dW (t) , t > 0 , S(0) is given , (4.5)

and, as before, W (t) denotes a Winner process. See for instance Cox and Ross[5],

Geske[72], Rubinstein [73] and Bensoussan et al. [74]. In this case the market is

complete (see Harrison and Pilska[75]). Another class of models was introduced

taking into account that the volatility depends on the asset price but with some

delay, that is, S(t) satisfies

dS(t) = µS(t)dt+ σ(S(t− τ), t)S(t)dW (t) , t > 0 , (4.6)

S(t) is given for t ∈ [−τ, 0] .

This type of models were proposed in Arriojas at al. [14], Kazmerchuk et al [15]

and Lee at al. [76].
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In the asset price models (4.5) and (4.6) there is only one source of random-

ness given by W (t). However the volatility randomness can be induced by ano-

ther source. One of the first models of this class is the one proposed in Hull and

White [19]. The authors assume that both the underlying asset S(t) and the

variance σ2(t) follow a geometric diffusion process

dS(t) = µS(t)dt+ σ(t)S(t)dW1(t) (4.7)

dσ2(t) = φσ2(t)dt+ εσ2(t)dW2(t) (4.8)

such that ρ is the correlation coeficient between the two Brownian motions dW1(t),

dW2(t) which is assumed to be constant with modulus less than one. The para-

meter φ denotes the expected rate of volatility and ε represents the volatility of

the volatility. In Hull and White [19] it was considered that ρ ≡ 0.

The solution of SDE (4.8) with initial conditions σ2(0) admits the representa-

tion

σ2(t) = σ2(0) Exp

{[

φ− 1

2
ε2
]

t + εW2(t)

}

.

For S(t) one must use numerical methods because it has no known analytical

solution. For instance, one may obtain the numerical solution for S(t) combining

Euler’s method (3.2) and the interpolation method (3.4), where we have

f(Sn, tn) = µS(t) and G(Sn, tn) = σ(t)S(t) .

The figures that follow illustrate the volatility and corresponding asset prices

defined by the Hull-White model with parameters: φ = 0.20, ε = 0.50 or 0.30 and

µ = 0.20.
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Figure 4.10: Asset pricing simulation by

Hull and White model with µ = 0.20 and

volatility by Figura 4.11.
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Figure 4.11: Simulated volatility by

Hull and White model with φ = 0.20 and

ε = 0.50.
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Figure 4.12: Asset pricing simulation by

Hull and White model with µ = 0.20 and

volatility by Figura 4.13.
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Figure 4.13: Simulated volatility by

Hull and White model with φ = 0.20 and

ε = 0.30.

It can be seen that there are time intervals with high and low volatility, thus

creating volatility clusters (this is also visible in in Figures 4.14 and 4.15, that

display the simulated returns given the two sets of parameters).

One can also observe that in the Figure 4.11 for ε = 0.50 there is a greater

dispersion in the trajectory than in 4.13 where ε = 0.30. Thus, trajectory is

steepest in Figure 4.11 than in Figure 4.13.

The increase in the volatility parameter of the volatility, leads to an increase

in the price dispersion. One can observe this effect through the simulation of the
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two processes by computing continuous returns.

Y (t) = log

(

S(t)

S(t− 1)

)

where S(t) is the asset price in time t. This simulations are presented in Figures

4.14 and 4.15.
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Figure 4.14: Simulated returns corres-

ponding of the asset price in Figure 4.10.
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Figure 4.15: Simulated returns corres-

ponding of the asset price in Figure 4.12.

Heston[77] proposed a mean reverting square root process for the volatility

process. In this model, the price S(t) and the squared volatility processes σ2(t),

are presented in the risk neutral measure, by the following system of SDE’s

dS(t) = µS(t)dt+ σ(t)S(t)dW1 , t > 0 ,with S(0) known , (4.9)

dσ2(t) = γ
[

φ− σ2(t)
]

dt+ εσ(t)dW2 , t > 0 ,with σ2(0) known , (4.10)

where φ is the mean long-term volatility that satisfies ρ 6= 0, γ denotes the

rate at which the volatility reverts toward its long-term mean. Therefore the

variance is a stochastic process such that exhibits a tendency to revert towards

a long-term mean φ at a rate γ. It also exhibits a volatility proportional to the

square root of its level and the source of its randomness is correlated (with cor-

relation ρ) with the randomness of the underlying’s price processes.

The SDEs (4.9) and (4.10) have unknown analytical solutions, and therefore

it must be approximated numerically using, for instance, the linear interpolation
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(3.4) with σn = σ(tn) as defined by the Euler-Maruyama’s method (3.2) and an

initial condition σ(0). So

f(σn, tn) = γ
[

φ− σn

]

and

G(σn, tn) = εσn .

For S(t) with dynamics (4.10) and a given initial condition S(0) the method im-

plies that

f(Sn, tn) = µSn and G(tn, Yn) = σ(tn)Sn ,

The numerical results for Sn and σn, plotted in the next figures, were obtained

combining the linear interpolation procedure (3.4) with the Euler-Maruyama

method (3.2). Figures 4.16 to 4.19 illustrate the behavior of the asset price S(t)

and volatility σ(t) according to the Heston model (4.9), (4.10) when φ = 0.20,

ε = 0.50 or 0.30, µ = 0.20 and γ = 0.50, wich implies an adjustment in the

volatility of 50%.
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Figure 4.16: Asset pricing simulation by

Heston model for µ = 0.20.
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Figure 4.17: Simulated volatility by He-

ston model for φ = 0.20 and ε = 0.50.
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Figure 4.18: Asset pricing simulation by

Heston model for µ = 0.20.

00 . 20 . 40 . 60 . 8 1
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1V ol atilit y

t
S t o c h a s t ic V o la t i l it y S i m u la t io n b y H e s t o n S t o c h a s t ic V o la t i l it y

Figure 4.19: Simulated volatility by He-

ston model for φ = 0.20 and ε = 0.30.

Figures 4.20 and 4.21, show the return corresponding of the asset price paths

of Figures 4.16 and 4.17.

The path in Figure 4.17, with parameter ε = 0.50, presents a higher disper-

sion than in Figure 4.19 with ε = 0.30. Additionally, an increase in the volatility

parameter of the volatility leads to an increase in the dispersion of the underly-

ing asset prices, as can observed in Figure 4.16 and Figure 4.18.
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Figure 4.20: Simulated Return corres-

ponding of the asset price in Figure 4.16.
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Figure 4.21: Simulated Return corres-

ponding of the asset price in Figure 4.18.

As in the Hull and White model, the Heston model have moments of high and

low volatility, creating volatility clustering as can be seen in the compounded

return in Figures 4.20 and 4.21.
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Several extensions of these two stochastic volatility models were proposed in

the literature (see for instance, two examples presented by in Andersson[78] for

the Swedish option market).

A particular issue in the Hull-White and Heston models deserves some addi-

tional comments. In those models the asset price and the volatility are computed

at the same time level. But in the delayed asset pricing models, the volatility

depends on the asset price at some point in the past. Hence a certain point-

wise memory effect is introduced. The literature presents some evidence that

the asset prices dynamics do not depend only on their current values but also on

past values (not point wisely) (see, for example, Akgiray[79], Scheinkman and

LeBaron[80] and Kind at al [81]). One of the most important model where asset

prices dynamics do not depend only on their current values, but also on past

values is the one proposed in Hobson and Rogers[24]. This model can be seen

as a generalizations of the so-called level-dependent volatility models, where the

volatility is usually a function of time and current price level and therefore mar-

ket is complete. Hobson and Rogers[24] assume, that the volatility depends on

the past prices of the risky assets. Consequently the mathematical description

of the market behavior is enriched and it reproduces correlations and dependen-

cies which are observed in practice.

Let Z(t) be the discounted log-price process defined by

Z(t) = log(e−rt S(t)) , (4.11)

where r is the (constant) risk-free interest rate, as introduced in Hobson and

Rogers[24]. The authors define the offset function of order m, D(m)(t), by

D(m)(t) = θ

∫ +∞

0

e−λv
[

Z(t)− Z(t− v)
]m

dv, λ > 0.

where the parameter λ describes the rate at which past information is dis-

counted, and thus describes the weight of historic observations.
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In what follows consider the particular case m = 1. In this case

D(t) = Z(t)−
∫ +∞

0

θe−λv Z(t− v)dv, λ > 0 , (4.12)

is equivalent to

D(t) = Z(t)− θ

∫ t

−∞

e−λ(t−v)Z(v) dv .

So D(t) is decomposed as the deviation of the current price from an exponen-

tially weighted average of past records, such that θ determines the horizon of

the “moving time window” of the integral on the right. For bigger values of this

parameter, S(t) is more dependent on the recent past, while small values almost

identify the offset increments with price changes. Obviously in this case a level

dependent volatility assumption would be numerically more convenient.

As in the discrete-time ARCH and GARCH environments, this is designed

to reflect the perception that large movements of the asset price in the past

tend to forecast higher future volatility. It can also be shown that the model

encompasses a wide variety of smiles and skews, and can account for volatility

term structures as the average of prices evolves through time.

It is assumed that the dynamics of Z(t) are described by the following SDE

dZ(t) = µ(D(t)) dt+ σ(D(t)) dW1(t),

where W1(t) is a Brownian motion and σ(.) and µ(.) are deterministic functions

of D(t). For D(t) Hobson and Rogers[24] establish that

dD(t) =
[

µ(D(t))− θD(t)
]

dt+ σ(D(t)) dW1(t). (4.13)

Considering

β(D(t)) =
1

2
σ(D(t)) +

µ(D(t))

σ(D(t))
,

(4.13) can be rewritten in the equivalent form

dD(t) = −
[

1

2
σ2(D(t)) + θD(t)

]

dt+ σ(D(t)) dW2(t) , (4.14)
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where

W2(t) =W1(t) +

∫ t

0

β(D(v)) dv .

Consequently the asset price S(t) is described by an Itô process of the form

dS(t) =
[

µ(D(t)) + r
]

S(t)dt+ σ(D(t)) S(t)dW1(t) (4.15)

The SDEs (4.14) and (4.15) do not have known analytical solutions, and the

solutions must be approximated by numerical methods. For instance, one may

use the linear interpolation (3.4) where Yn is defined by the Euler-Maruyama

method (3.2) for D(t) in (4.14) and an initial condition D(0), such that

f(Dn, tn) = −
[

1

2
σ2(Dn) + θDn

]

and

G(Dn, tn) = σ(Dn) ,

and for S(t) with dynamics (4.15) and a given initial condition S(0) such that

f(Sn, tn) =
[

µ(D(tn)) + r
]

Sn

and

G(Sn, tn) = σ(D(tn))Sn .

In our numerical experiments we take

µ(D(tn)) =
1

n

tn
∑

t=t0

D(t) (4.16)

and

σ(Dn) = min
{

η
√

1 +D2
n, N

}

, (4.17)

being (4.17) suggested in Hobson and Rogers[24]. In (4.17) N , ε and η are posi-

tive constants where η is minimal level of implied volatility. The constant ε is

a scaling parameter introduced to take into account the influence of the initial

offset in the volatility function.
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The next figures plot two simulations of asset prices by Hobson and Roger

model and the corresponding deviation of the current price for volatility models.

The parameters are r = 0.2, η = 0.40 or 0.50, ε = 5.0, and a large constant N . The

rate at which past information gets discounted into the offset function is θ = 1.
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Figure 4.22: Asset pricing simulation by

Hobson & Roger model for deviation sim-

ulation in Figure 4.23.
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Figure 4.23: Simulated of deviation of

the current price for volatility model with

η = 0.40.
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Figure 4.24: Asset pricing simulation by

Hobson & Roger model for deviation sim-

ulation in Figure 4.25.
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Figure 4.25: Simulated of deviation of

the current price for volatility model with

η = 0.50.

As one can see in Figure 4.25, when the parameter η (minimal level of implied

volatility) has its value equal to 0.50 there is a greater dispersion in the devia-

tion values, as compared with Figure 4.23 with η = 0.40, meaning that prices

have higher volatility. When comparing Figures 4.25 and 4.23 one also observe
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that there is a change in the value of the asset price in function of the difference

in the η value.

Figures 4.26 and 4.27 show the return processes corresponding to the asset

price processes of Figures 4.22 and 4.24. As expected, returns in Figure 4.26

have higher volatility than those in Figure 4.27, this volatility increase is due to

the higher value of the parameter η.
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Figure 4.26: Simulated Return corres-

ponding of the asset price in Figure 4.22.
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Figure 4.27: Simulated Return corres-

ponding of the asset price in Figure 4.24.

In fact, the Hobson and Rogers model is equivalent to a 2-dimensional Markov

model. Thus the problem of pricing and hedging a derivative asset leads to the

solution of a linear PDE (Hallulli and Vargiolu[82]). The Hobson and Rogers

model has two qualities: Firstly, it is potentially able to reproduce smiles, skews

of different directions, and volatility term structures, and secondly, it preserves

the completeness of the market. Since no exogenous source of risk is added,

the classical arbitrage pricing and hedging theory is appliable. This last fea-

ture constitutes an advantage over fully stochastic volatility processes, where

arbitrage considerations are not sufficient to identify uniquely the “risk premia”

(Platania and Rogers[83]).

Other models for the asset price, with the delayed effect, based in the one

proposed by Hobson and Rogers have been proposed in the literature (see, for in-

stance, V. Hallulli and Vargiolu[84, 85]), but the Di Francesco and Pascucci[25]



4.2. Some improvements on the classical model 51

model deserves a special reference. The authors propose a complete model with

stochastic volatility in the sense of Hobson and Rogers[24], such that the op-

tions are the solutions to degenerate partial differential equations obtained by

the inclusion of other state variables describing the dependence on past prices of

the underlying asset. Foschi and Pascucci[26] have tested empirically with op-

tion prices assuming a volatility structure as in Hobson and Rogers[24] market

completeness, and were able to reproduce the“smile” and observed patterns of

implied volatility structure.

Andersson[78] presents a stochastic volatility model where the volatility chan-

ges randomly according to some SDE or some discrete random process. Our main

reference for this theory is Jean-Pierre et al. [86]. This type of stochastic vola-

tility model introduces more random sources then the number of traded assets

and therefore the market is not complete. Pricing in a market with stochas-

tic volatility is thus an incomplete market problem, which means that it does

not exist a unique martingale measure, and the derivative cannot be perfectly

hedged with just the underlying asset and a riskless asset.

4.2.3 Geometric Telegrapher’s Process

As pointed out before, the Brownian process has some limitations like infi-

nite first and second variations, independence of of the log-returns increments,

which lead to a pathologic behavior of asset prices. To avoid such limitations in

financial market several authors have considered the telegraph process to model

the dynamics of the underlying asset price. Among these authors stand out Di

Crescenzo and Pellerey[10] that assume that S(t) evolves in time according to

the following process

S(t) = S0 exp
{

αt+ σX(t)
}

, t ≥ 0. (4.18)

where α = µ − 1
2
σ2, σ > 0, X(t) is the Telegraph process (2.15) and V (0) =

1. Given that X(t) has a bounded first variation, then S(t) in (4.18) has also
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a bounded first variation. This seems a more realistic way to model paths of

financial prices, however it is still not a satisfactory one, because in this process

the drift and volatility are still constant over time.

Figure 4.28 displays a trajectory of the geometric Telegraph process with pa-

rameters µ = 0.30, σ = 0.50 and intensity of Poisson process equal to 2. In Figure

4.29 there is a trajectory for the same µ and σ but with an intensity of Poisson

process equal to 3. The changes of direction are governed by a homogeneous

Poisson process N(t) with rate λ > 0. When λ increases from 2 to 3, changes

occur more frequently.
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Figure 4.28: Asset Pricing Simulation

by Geometric Telegraph Process (4.18)

with intensities of Poisson process is 2.
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Figure 4.29: Asset Pricing Simulation

by Geometric Telegraph Process (4.18)

with intensities of Poisson process is 3.

Ratanov[11, 12, 13] introduces a new class of models where the Telegraph

process of Di Crescenzo and Pellerey[10] is replaced by a Jump Telegraph pro-

cess. This new Telegraph process is characterized by two intensities (λ±) and

two velocities (c±). The next chapter presents in detail this new model.



5 Asset Models with Memory in

Price and Volatility

The Geometric Telegraph Process (4.18) studied in Section 3.2.3, arises in

the literature to improve some features of the Telegraph model proposed by

Crescenzo and Pellerey[10]. It should be pointed out that the first process des-

cribes a random motion with finite velocity and it is usually suggested as an

alternative to classical diffusion model.

The aim of this chapter is to improve the models studied in Ratanov[11, 12,

13]. In fact these models are characterized by constant volatility and they do not

take into account the drift (measure of the average rate of growth of the asset

price). Also, to include the stochastic volatility we follow the approach presented

in Hobson and Roger[24].

Section 5.1 displays a natural extension of the SDE (4.1) for the asset price

where the drift is included and the volatility is constant and same particular

cases are present in Section 5.2. The stochastic volatility is considered in Section

5.3.

53
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5.1 The JTDD-Process For Asset Pricing

Here, it is admitted that the model for the dynamics of the underlying asset

returns is given by the Jump Telegraph Diffusion Drift Process (JTDD-process),

dS(t) = µS(t)dt+ σS(t−)dW (t) + σS(t−)dX±(t) + S(t−)dJ±(t) , (5.1)

where σ is the volatility of the asset’s price S(t) and µ is the expected return of

asset, S(t). It is assumed that the price process is right-continuous.

Let ν±, r±, h± be real numbers such that ν+ > ν−, r± ≥ 0 and h± > −1. Let

(Ω,F,P) be a complete probability space, and let λ± be positive numbers. The

dynamics of the underlying asset in (5.1) incorporates the following processes:

• A pure Jump process J± = {J±(t)}t≥0 with jumps at the Poisson times τj ,

j = 1, 2, · · · , with alternating jumps of sizes h± ∈ (−1,∞), defined by

J+(t) =

∫ t

0

hg+(τ)dN+(τ) =

N+(t)
∑

j=1

hg+(τj−) (5.2)

and

J−(t) =

∫ t

0

hg−(τ)dN−(τ) =

N−(t)
∑

j=1

hg−(τj−), (5.3)

where g+(t) = (−1)N+(t) and g−(t) = −(−1)N
−(t).

• The Telegraph process X±(t) = {X±(t)}t≥0 with velocity ν± defined by (2.16)

and (2.17), and

• A pure Diffusion process (Wiener’s process) for W (t) = {W (t)}t≥0 .

Let r± ≥ 0 be the riskless interest rate which is in the initial state + or −.

The riskless asset is given by the exponential B(t) = eY±(t) of the process

Y± = {Y±}t≥0 =
{
∫ t

0

r±dτ

}

t≥0

,
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where the interest rates r± > 0 and + or − indicate the initial market state.

Here again Y± = {Y±(t)}t≥0 is a Telegraph process with velocity values r±.

In view of such trajectories, the market is set up as a continuous process

that evolves with velocities ν+ or ν−, changes the direction of movement from ν±

to ν∓, and exhibits jumps of sizes h± whenever velocity changes. The different

parameters for up and down movements lead to a gain/loss asymmetry.

Ratanov[13] presents the following characterization:

Theorem 5.1.1. Jump-Telegraph-Diffusion process (JTD-process) is a martin-

gale if and only if

λ+h+ = −ν+ and λ−h− = −ν− . (5.4)

Theorem 2.3.2 is then used to establish the solution of (5.1). This result

agrees to the representation

S(t) = S0 EXP

{[

µ− 1

2
σ2

]

t+ σW (t)

}

εt

{

σX±(t) + J±(t)
}

,

where S0 = S(0) and εt(·) denotes the stochastic exponential. Additionally

εt

{

σX±(t) + J±(t)
}

= eX±(t)K±(t) ,

Km(t) =
∏

τ≤t

[

1 + ∆J±(t)
]

=

N±(t)
∏

j=1

[

1 + hg±(τj−)

]

.

Where τj , j ≥ 1 are the jumping times of the Poisson processes N±.

With Z = σX± + J± one gets

εt

{

Z
}

= eZ(t)− 1
2
〈Z,Z〉cont(t)

∏

0<τ≤t

[

1 + ∆Z(τ)
]

e−∆Z(τ).

As

〈Z,Z〉cont = 〈σX± + J± , σX± + J±〉cont = 0
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and

εt

{

σX± + J±

}

= eσX±+J±
∏

0<τ≤t

[

1 + ∆J±(τ)
]

e−∆J±(τ)

= eσX±+J±e−J±(t)
∏

0<τ≤t

[

1 + ∆J±(τ)
]

= eσX±
∏

0<τ≤t

[

1 + ∆J±(τ)
]

.

Finally one obtains

S(t) = S0 EXP

{[

µ− 1

2
σ2

]

t+ σW (t) + σX±(t)

}

K±(t), (5.5)

with

K±(t) =

N±(t)
∏

j=1

[

1 + hg±(τj−)

]

.

Hereafter, it is proven that one may in fact apply Theorem 2.3.2 to legitimize

the above construction. Note that (Ω,F, P ) is a complete probability space, with

a complete filtration F = (Ft, t ≤ 0), generated by the Wiener process W (t) and

N±, and all stochastic processes with index + (or −) are adapted to filtration

generated by N+ (or N−).

Theorem 5.1.2 (Stochastic Exponential of JTDD-Process). The stochastic equa-

tion of JTDD-process (5.1), has a unique solution, given by (5.5). Moreover this

solution is a semimartingale.

Proof: The SDE (5.1) admits the following representation

dS(t) = S(t−)dY±(t) , S(0) is given ,

with

Y±(t) =M(t) + A±(t) (5.6)

where

M(t) = σW (t) , A±(t) = µt + σX±(t) + J±(t) , t ≥ 0 .



5.1. The JTDD-Process For Asset Pricing 57

Assume the existence of the integration for SDE (5.1). For all t > 0,
∫ t

0

S2(x)dx < +∞ a.s.

and
∫ t

0

|S(x)|dVA± < +∞ a.s. ,

where VA± is the variation process of A±.

Note that the definition (2.3.1) of semimartingales is verified for (5.6) due to

the fact that the Wiener process W (t), with W (0) = 0 a.s., is a local martingale

because it is a martingale with continuous trajectories (see definition (2.3.2) and

(2.3.3)). According to this condition, M(t) = σW (t) is also a local martingale.

The process A± is of finite variation due to the fact that σX±(t) and J±(t)

are of finite variation (σX±(t) is continuous and J±(t) is pure jump) and µt is a

continuous and monotonic function.

Moreover,

M(0) = σW (0) = 0 a.s. , A±(0) = σX±(0) + J±(0) = 0 .

and

Y±(t) = Y±(0) +M(t) + A±(t) with Y±(0) = 0 , a.s.

Applying Theorem 2.3.1, which was presented for instance in Protter[45], one can

show that

S(t) = Exp







Y±(t)−
1

2
〈Y±, Y±〉t +

1

2

∑

ν∈(0,t]

[∆Y±((ν))]
2







×

×
∏

ν∈]0,t]

[

1 + ∆Y±(ν)
]

Exp
{

−∆Y±(ν)
}

, t ≥ 0, (5.7)

with Y±(t) given by (5.6). For this last stochastic process it is defined that

∆Y±(ν) = Y±(ν)− Y±(ν) = ∆J±(t) ,

µt is a continuous function and σX±(t) and σW (t) are processes with continuous

trajectories.
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The quadratic variation process of Y (t), 〈Y±, Y±〉t, is given by

〈Y±, Y±〉t = 〈M + A±,M + A±〉t

and applying the property of Remark 2.2.1, then

〈Y±, Y±〉t = 〈M,M〉t + 〈M,A±〉t + 〈A±, A±〉t

= σ2〈W,W 〉t + 2
∑

ν≤t

∆A±(ν)∆M(ν) +
∑

ν≤t

[∆A±(ν)]
2 .

Moreover, as ∆M(ν) = 0, then

〈Y±, Y±〉t = σ2t+
∑

ν≤t

[∆J±(ν)]
2 .

Considering the previous conclusions in (5.7), one obtains

S(t) = Exp

{

Y±(t)−
1

2
σ2t− 1

2

∑

ν≤t

[∆J±((ν))]
2 +

1

2

∑

ν≤t

[∆J±((ν))]
2

}

×

×
∏

ν∈]0,t]

[

1 + ∆J±(ν)
]

Exp
{

−∆J±(ν)
}

,

which is equivalent to

Z(t) = Exp

{[

µ− σ2

2

]

t+ σW (t) +X±(t) + J±(t)

}

×

×
∏

ν∈]0,t]

[

1 + ∆J±(ν)
]

Exp
{

−
∑

ν∈]0,t]

∆J±(ν)
}

= Exp

{[

µ− σ2

2

]

t+ σW (t) +X±(t)

}

×
∏

ν∈]0,t]

[

1 + ∆J±(ν)
]

.

Furthermore, the SDE dS(t) = S(t−)dY±(t) can be written as

dS(t) = σS(t−)dW (t) + σS(t−)dA±(t)

because
∫ t

0

S(ν−)dY±(ν) =
∫ t

0

S(ν−)dM(ν) +

∫ t

0

S(ν−)dA±(ν)

where the last integral coincides with the Lebesgue-stiltjes integral because A± is

of finite variation.
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�

Figure 5.1 plots a trajectory of the JTDD-process for an underlying asset with

the intensity of the Poisson process equal to 4, σ = 0.70 and µ = 0.30.

05 01 0 01 5 02 0 02 5 03 0 0
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

S(t)
t

A s s e t P r i c i n g S i m u l a t i o n b y J T D D ã P r o c e s sJ T D D ã P r o c e s s ã S ( t )

Figure 5.1: Asset Prices Simulation by JTDD-process.

In this model, the parameter of the expected rate of return is included, but

still volatility is assumed to be constant. Thus, in the next section this model is

extended by including the Hobson and Roger model for the volatility, which, in

facts, results in giving a memory structure to the volatility.

5.2 Same Particular Cases

A particular case of (5.1) is presented in Ratanov[11, 12] where the price of

the risky asset S(t) is described by

dS(t) = S(t−)d
{

X±(t) + J±(t)
}

. (5.8)

The solution of the initial stochastic differential problem (5.8) with an initial

condition S(0) was presented in Ratanov[11, 12] as

S(t) = S(0) eX(t)

N±(t)
∏

j=1

[

1 + hg±(τj−)

]

(5.9)



60 Asset Models with Memory in Price and Volatility

and its behavior is hereafter illustrated.

Figure 5.2 plots a trajectory of the Jump Telegraph process (5.9) with para-

meter of intensity of Poisson process, λ, equal to 4 and jumps of sizes h± equal to

0.5.

05 01 0 01 5 02 0 02 5 03 0 03 5 04 0 04 5 0
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

S(t)
t

A s s e t P r i c i n g S i m u l a t i o n b y J u m p T e l e g r a p h P r o c e s sJ T ã P r o c e s s ã S ( t )

Figure 5.2: Evolution of the Jump Telegraph Process (5.9) for λ = 4 and h± =
±0.5

The comparison between the model of Ratanov and the model of DiCrenzo,

highlights that the main difference is the discontinuity (the jumps).

It is clear that the mathematical model (5.9) cannot be used to describe the

evolution of the asset prices in a real market. In fact, the parameter that cha-

racterize the asset prices market like the volatility and the expected rate return

are not included in the model.

To obtain a more realistic mathematical model to describe the asset price

evolution, a diffusion process was introduced in the previous model (5.8) in

Ratanov[13], that is

dS(t) = S(t−)d
{

X±(t) + J±(t) +D±(t)
}

, (5.10)

where D±(t) is given by

D±(t) =

∫ t

0

σ±dW (τ) ,
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where σ± is a real parameter. Therefore, this model can be interpreted as a

diffusion process with Markov switching (see Ratanov[13]).

The stochastic exponential of JTD-process (5.10) with the initial condition

S(0) has the form

S(t) = S(0) exp

{

X±(t) +D±(t)−
1

2

∫ t

0

σ2
±dτ

}N±(t)
∏

j=1

[

1 + hg±(τj−)

]

. (5.11)

The behaviour of (5.11) is illustrated in Figure 5.3, with the parameter of

Poisson intensity, λ, equal to 4, the volatility parameter (σ±) equal to 0.40 and

jumps of sizes h± equal to 0.5. Figure 5.4 presents a trajectory for the same

parameters, except that (σ) is 0.70.
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Figure 5.3: Evolution of the JTD Process (5.11) with λ = 4, σ± = 0.40 and h± =
±0.5.
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Figure 5.4: Evolution of the JTD Process (5.11) for λ = 4, σ± = 0.70 and h± =
±0.5.

One can conclude that changes in the volatility parameter changes the pat-

tern of trajectory. More precisely, when σ± = 0.40 the asset price behavior is

dominated by Telegraph process, when σ± = 0.70 the diffusion process is the

dominant pattern.

In the stochastic process S(t) given by (5.11) the volatility was included. Ne-

vertheless S(t) does not depend on the expected rate of return. It is obvious

that the mathematical model of Ratanov needs to be modified in order to include
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this parameter. Another handicap of the Ratanov’s model is that it assumes

a constant volatility. More realistic models can be constructed considering, for

instance, the approaches of Cox and Ross[5] or Hobson and Rogers[24].

The next section presents new mathematical models for the asset price where

the volatility is described as following the approach of Hobson and Rogers.

5.3 JTDD-Process with Memory in the Volatility

Consider the JTDD-process (5.1) for the asset prices but with a random vola-

tility as in Hobson and Rogers[24]. More precisely, assume that the volatility is

described using the approach introduced by these authors but with the random-

ness introduced as in S(t).

As before, let Z(t) the be defined by (4.11). Now suppose that

dZ(t) = µ(D(t)) dt+ σ(D(t)) dW1(t) + σ(D(t)) dX±(t) + dJ±(t) , (5.12)

where D(t) is given by (4.12) and σ2(D(t)) is the Hobson and Roger volatility of

the price of asset S(t), and µ(D(t)) is the expected return.

So, the dynamics of the asset price S(t) is governed by the SDE

dS(t) =
[

µ(D(t)) + r
]

S(t)dt+ σ(D(t)) S(t−)dW1(t) +

+ σ(D(t)) S(t−)dX±(t) + S(t−)dJ±(t) (5.13)

It can be shown that D(t) holds the following SDE

dD(t) =
[

µ(D(t))− θD(t)
]

dt+ σ(D(t)) dW1(t) +

+ σ(D(t)) dX±(t) + dJ±(t) . (5.14)

and consequently

dD(t) = −
[

1

2
σ2(D(t)) + θD(t)

]

dt+ σ(D(t)) dW2(t) +

+ σ(D(t)) dX±(t) + dJ±(t) . (5.15)



64 Asset Models with Memory in Price and Volatility

The SDEs (5.13) and (5.15) have unknown analytical solution, and its solu-

tion may be computed at least numerically using, for instance, the linear inter-

polation (3.4) where Yn is defined by the Euler-Maruyama’s method

Yn+1 = Yn + f(Yn, tn) ∆n +G1(Yn, tn)
[

W2(tn+1)−W2(tn)
]

+

+ G2(Yn, tn)
[

X±(tn+1)−X±(tn)
]

+ (5.16)

+ G3(Yn, tn)
[

J±(tn+1)− J±(tn)
]

.

For S(t) in (5.13) and initial conditions S(0) one has

f(Yn, tn) =
[

µ(D(tn)) + r
]

Yn and G1(Yn, tn) = G2(Yn, tn) = σ(D(tn))Yn ,

G3(Yn, tn) = Yn .

for D(t) in (5.15) and initial condition D(0) have

f(Yn, tn) = −
[

1

2
σ2(Yn) + θYn

]

and G1(Yn, tn) = G2(Yn, tn) = σ(Yn) ,

G3(Yn, tn) = 1 .

In the following numerical experiments it is used (4.17) as suggested in Hob-

son and Rogers[24].

Figures 5.5 and 5.6, show simulated values of deviation of the current price

for volatility models and corresponding asset prices by the JTDD-process with

Hobson and Roger models for volatility. The following parameters are used:

r = 0.1, S0 = 150.00, D(0) = 0.5, h+ = 0.5, h− = −0.5, η = 0.40, ε = 0.1 and a

large constant N . The rate at which the past information gets discounted into

the offset function is θ = 1. The parameter of intensity of the Poisson process is

λ = 6.
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5 01 0 01 5 02 0 02 5 03 0 03 5 04 0 04 5 05 0 0
0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1S(t)

t
A s s e t P r ic i n g S i m u la t io n b y J T D D ¤ P r o c e s s w it h S t o c h a s t ic V o la t i l it y M o d e lJ T D D ¤ P r o c e s s ¤ S ( t )

Figure 5.5: Asset pricing simulation

by JTDD-Process with Memory in the

Volatility (Hobson & Roger) for deviation

simulation in Figure 5.6.
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Figure 5.6: Simulated values of devia-

tion of the current price for volatility

model (Hobson & Roger) with λ = 6 and

ε = 0.1.

Figures 5.7 and 5.8 present a new simulation with the same parameters, except

that the λ is equal to 3.
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Figure 5.7: Asset pricing simulation

by JTDD-Process with Memory in the

Volatility (Hobson & Roger) for deviation

simulation in Figure 5.8.
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Figure 5.8: Simulated values of devia-

tion of the current price for volatility

model (Hobson & Roger) with λ = 3 and

ε = 0.1.
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Finally, Figures 5.9 and 5.10 present another simulation, but this time with a

value of 2 for the ε.
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Figure 5.9: Asset pricing simulation

by JTDD-Process with Memory in the

Volatility (Hobson & Roger) for deviation

simulation in Figure 5.8.
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Figure 5.10: Simulated values of de-

viation of the current price for volatility

model (Hobson & Roger) with λ = 6 and

ε = 2.

In Figure 5.5 with λ = 6 and Figure 5.7 with λ = 3, as expected one observes

the existence of a variation in the number of jumps, plus change in trajectory

due to the telegraph process. However, when one changes the parameter ε it is

apparent that the price oscillation has changed, due to the fact that the Hobson

and Roger[24] volatility takes larger values, as in Figures 5.5 with ε = 0.1 and

5.9 with ε = 2.
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The Itô’s Lemma is the key ingredient in the establishment of partial diffe-

rential equations for option pricing. Denoting Cm,n as the set of functions F (x, y)

such that
∂mF

∂xm
and

∂nF

∂yn
are continuous, then the classic formulation of the Itôt’s

Lemma is the following:

Lemma 6.0.1 (Itô’s Lemma). If Y (t) is a continuous semimartingale and F ∈
C2,1, then

F (Y (t), t) = F (Y (0), 0) +

∫ t

0

∂F

∂t
dt+

∫ t

0

∂F

∂Y
dY +

1

2

∫ t

0

∂2F

∂Y 2
d < Y, Y >t .

The main goal of the present chapter is the construction of the Itô’s lemma

for functions of the generalization of the JTDD process (5.1) introduced in the

last chapter.

The approach followed here was presented, for instance, in Cont and Tan-

kov[87] and Hanson[88]. This last author proposes a chain rule for calculating

the differential of a composite process F (S(t), t). The author begins by interpre-

ting the differential as an infinitesimal increment and recognizing that, since

the poisson jumps are instantaneous, it cannot be interpreted as a change in

continuous time. Thus, a critical assumption in deriving the chain rule is that

the continuous changes and jump changes can be calculated independently.

Therefore, following the assumption of independence, the overall JTDD pro-

cess is spited into a TDD process and Jump process and then the Itô’s Lemmas is

developed for each part. Section 6.1 presents the quadratic variation of the TDD
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process, under convenient assumptions, necessary to deduce the Itô’s Lemma for

the TDD process. Section 6.2 combines the results and shows the Itô’s Lemma

for the JTDD process.

6.1 Quadratic variation of the TDD-Process

Our aim is to establish the Itô’s lemma for the JTDD-process.

S(t) = S(0) +

∫ t

0

A(S(τ), τ)dτ +

∫ t

0

B(S(τ), τ)dW (τ) +

+

∫ t

0

C(S(τ), τ)dX±(τ) +

∫ t

0

D(S(τ), τ)dJ±(τ) , (6.1)

where W is a standard Brownian motion and X± is a Telegraph process (5.2)

for positive past information or (5.3) for negative past information. We observe

that the processes W and X± are independent and adapted with respect to the

filtration F = σ(σ(W (τ), τ ≤ t) ∪ σ(N(τ), τ ≤ t)).

We assume that the coefficients A(S(τ), τ), B(S(τ), τ) and C(S(τ), τ) are F-

predictable processes and Lipschitz with respect to the first argument.

We replace the SDE (5.1) by this new SDE in (6.1) to include in the dynamic

of the asset price non-constant volatility and non-constant drift as in Heston[77],

Comte and Renault[89], Hobson and Rogers[24], Francesco and Rogers[25], Fos-

chi and Pascucci[26] and Arriojas et al. [14] among others.

We remark that the existence and uniqueness of the solution of (6.1) for cons-

tant coefficients was established in the previous section. Moreover, for C(S(τ), τ)

and D(S(τ), τ) are zero, the conditions on A(S(τ), τ) and B(S(τ), τ) that lead to

a unique solution can be seen in Theorem 5.1.2. Numerical evidence allows one

to believe that (6.1) is a unique solution provided that convenient smoothness

conditions on the coefficients A(S(τ), τ), B(S(τ), τ), C(S(τ), τ), D(S(τ), τ) and on

the initial condition are assumed. However, the existence and uniqueness of this

problem will not be discussed in this work.
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Consider (6.1) without the jump process, that is, with D(S(τ), τ) = 0. In

order to compute its quadratic variation one may adopt the following natural

assumptions on the coefficients A, B and C

∫ t

0

|A(S(τ), τ)|dτ <∞ , (6.2)

∫ t

0

[

B(S(τ), τ)
]2

dτ <∞ (6.3)

and
∫ t

0

[

C(S(τ), τ)
]2

dτ <∞ . (6.4)

As it will be shown hereafter, these assumptions are crucial for the establish-

ment of the quadratic variations of TDD-process. In order to simplify the pre-

sentation, let’s consider the following notations

Int1(t) =

∫ t

0

A(S(τ), τ)dτ ,

Int2(t) =

∫ t

0

B(S(τ), τ)dW (τ)

and

Int3(t) =

∫ t

0

C(S(τ), τ)dX±(τ) .

If one proves that Int2(t) is a local martingale and Int1(t) + Int3(t) has finite

variation, then one may conclude that S(t) is a semimartingale (see Definition

(2.3.1)). For Int1(t) + Int3(t) one has

FV[0,T ](Int1(t) + Int3(t)) = lim
||πn||→0

[

n−1
∑

k=0

|Int1(tk+1)− Int1(tk)|+

+
n−1
∑

k=0

|Int3(tk+1)− Int3(tk)|
]

= lim
||πn||

[

Sum1 + Sum2

]

.

As

Sum1 ≤
n−1
∑

k=0

∣

∣

∣

∣

∫ tk+1

tk

A(S(τ), τ)dτ

∣

∣

∣

∣
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and
n−1
∑

k=0

∣

∣

∣

∣

∫ tk+1

tk

A(S(τ), τ)dτ

∣

∣

∣

∣

=

∫ T

0

|A(S(τ), τ)|dτ < +∞

then

Sum1 < +∞.

For sum2 one obtains successively

I2 =

n−1
∑

k=0

∣

∣

∣

∣

∫ tk+1

0

C(S(τ), τ)dX±(τ)−
∫ tk

0

C(S(τ), τ)dX±(τ)

∣

∣

∣

∣

≤
n−1
∑

k=0

∣

∣

∣

∣

∫ tk+1

tk

C(S(τ), τ)dX±(τ)

∣

∣

∣

∣

≤
n−1
∑

k=0

∣

∣

∣

∣

∫ tk+1

tk

C(S(τ), τ)νg±(τ)dτ

∣

∣

∣

∣

≤
n−1
∑

k=0

∫ tk+1

tk

∣

∣

∣
C(S(τ), τ)

∣

∣

∣

∣

∣

∣
νg±(τ)

∣

∣

∣
dτ

≤
[

n−1
∑

k=0

∫ tk+1

tk

[

C(S(τ), τ)
]2

dτ

]
1
2
[

n−1
∑

k=0

∫ tk+1

tk

[

νg±(τ)

]2

dτ

]
1
2

≤
[
∫ T

0

[

C(S(τ), τ)
]2

dτ

]1/2
[

max(|ν+|, |ν−|)
]√

T .

Consequently

Sum2 < +∞ .

Consider now Int2(t). As

∫ T

0

B(S(τ), τ)dτ < +∞ ,

Int2(t) is an Itô integral and then it is a local martingale (see Definitions 2.3.2

and 2.3.3 and Remark 2.2.1)

Now, consider the computation of the quadratic variation of S(t). One has

〈S, S〉t = 〈Int1, Int1〉t + 〈Int2, Int2〉t + 〈Int3, Int3〉t + 2〈Int1, Int2〉t +

+ 2〈Int1, Int3〉t + 2〈Int2, Int3〉t (6.5)
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As Int1(t) is given by a Riemann-Stieltjes integral, Int1(t) is differentiable

with

Int1(t)
′ = A(S(t), t) .

Consequently

〈Int1, Int1〉t = 0 .

As mentioned before, Int2(t) is an Itô integral which implies that

〈Int2, Int2〉t =
∫ t

0

[

B(S(τ), τ)
]2

dτ .

It was proven that Int3(t) has finite variation and it can be seen under the as-

sumption (6.4) that it is continuous. So

〈Int3, Int3〉t = 0 .

For the covariances between Int1(t), Int2(t) and Int3(t), it is direct to observe

that

〈Int1, Int2〉t = 0 ,

because, under the assumption (6.2), Int1(t) has finite variation and Int2(t) is

continuous. Under the assumption (6.4), Int3(t) is continuous and then

〈Int1, Int3〉t = 0.

One also has

〈Int2, Int3〉t = 0 .

The previous considerations are summarized in the next result:

Theorem 6.1.1. Under the assumptions (6.2), (6.3) and (6.4), S(t) defined by

(4.1) with D = 0 is a semimartingale and

〈S, S〉t =
∫ t

0

[

B(S(τ), τ)
]2

dτ . (6.6)
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6.2 Ito’s Lemma for JTDD-Process

In order to obtain an Itô’s Lemma for the complete process (JTDD-process)

in (6.1), one follows the approach considered in the literature as in Cont and

Tankov[87] and Hanson[88].

The model for dynamic of underlying assets return (6.1) can be rewritten in

the equivalent form

dS(t) = dcont S(t) + djump S(t) ,

where the continuous and discontinuous parts, dcont(t), djump(t), respectively, are

given by

dcont S(t) = A(S(t), t)dt+B(S(t), t)dW (t) + C(S(t), t)dX±(t)

and

djump S(t) = D(S(t), t)dJ±(t) .

Thus, the change of a function depending on the state process S(t), dF±(S(t), t),

can be decomposed into the sum of continuous and discontinuous changes.

Now, one may proceed with the formalization of the Itô’s lemma for the TDD-

process. As S(t) is a semimartingale and F± ∈ C2,1, then F (S(t), t) is a semi-

martingale (see in Klebaner[44]). According to Lemma 6.0.1

F±(S(t), t) = F±(S(0), 0) +

∫ t

0

∂F±
∂t

dt +

∫ t

0

∂F±
∂S

dS +
1

2

∫ t

0

∂2F±
∂S2

d〈S, S〉t (6.7)

and, from (6.6), it follows that

F±(S, t)− F±(S(0), 0) =

∫ t

0

∂F±
∂t

dt+

∫ t

0

∂F±
∂S

dS +
1

2

∫ t

0

B2∂
2F±
∂S2

dt. (6.8)
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Using now (6.1) with D(S(t), t) = 0 in (6.8), one obtains

F±(S(t), t)− F±(S(0), 0) =

∫ t

0

∂F±
∂t

dt+

∫ t

0

A
∂F±
∂S

dτ +

∫ t

0

B
∂F±
∂S

dW (τ) +

+

∫ t

0

C
∂F±
∂S

dX±(τ) +
1

2

∫ t

0

B2∂
2F±
∂S2

dτ

=

∫ t

0

[

∂F±
∂t

+ A
∂F±
∂S

+
1

2
B2∂

2F±
∂S2

]

dτ +

+

∫ t

0

B
∂F±
∂S

dW (τ) +

∫ t

0

C
∂F±
∂S

dX±(τ) .

Theorem 6.2.1 (Itô’s Lemma for TDD Process). Let S(t) be defined by (6.1) with

D = 0 and F ∈ C2,1. Under the assumptions (6.2), (6.3) and (6.4),

dF±(S(t), t) =

[

∂F±
∂t

+ A
∂F±
∂S

+
1

2
B2∂

2F±
∂S2

]

dt+B
∂F±
∂S

dW (t) +

+ C
∂F±
∂S

dX±(t) . (6.9)

Consider now the Itô’s lemma for the Jump process defined by (6.1) with

B(S(τ), τ) = C(S(τ), τ) = 0, where the Jump Process, J±(t), is a compound Pois-

son Process and a drift term is the continuous part of S(t). If F± ∈ C1,1, using the

Proposition for Itô formula for jump-diffusion process (Proposition 8.14 of Cont

and Tankov[87]), we can write F±(S(t), t)− F±(S(0), 0) as

F±(S(t), t) − F±(S(0), 0) =

∫ t

0

∂F±
∂τ

dτ +

+
∑

0≤τ≤t, hg±(τ) 6=0

[

F±(S(τ−) +D hg±(τ), τ)− F (S(τ−), τ)
]

which leads to the following result:

Theorem 6.2.2 (Itô’s Lemma for Jump Process). Let S(t) be defined by (6.1) with

B = C = 0 and F± ∈ C2,1. Under the assumption (6.2), then

dF±(S(t), t) =
∂F±
∂t

dt+
[

F±(S(t−) +Dhg±(t), t)− F±(S(t−), t)
]

dJ±(t) . (6.10)
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Let F± be C2,1 and let τi, i = 1, 2, · · · be the jump times of S(t). Between the

the two consecutive time jumps τi and τi+1 the evolution of S(t) is described by

the TDD-process. As dS(t) = dcontS(t) on this interval, applying the Itô’s formula

(6.9) one gets

dcontF±(S(t), t) =

[

∂F±
∂t

+ A
∂F±
∂S

+
1

2
B2∂

2F±
∂S2

]

dt+B
∂F±
∂S

dW (t) + C
∂F

∂S
dX±(t) .

The discontinuous change follows from the transformation of the jump in S(t) at

time t given the previous time of the jump in the composite function F±(S(t), t),

djumpF±(S(t), t) =
[

F±(S(t−) +Dhg±(t), t)− F±(S(t−), t)
]

dJ±(t) .

Combining the continuous and discontinuous process,

dF±(S(t), t) =

[

∂F±
∂t

+ A
∂F±
∂S

+
1

2
B2∂

2F±
∂S2

]

dt+B
∂F±
∂S

dW (t) +

+ C
∂F±
∂S

dX±(t) +
[

F±(S(t−) +Dhg±(t), t)− F±(S(t−), t)
]

dJ±(t)

Theorem 6.2.3 (Itô’s Lemma for the JTDD Process). Let S(t) be defined by (6.1)

with F ∈ C2,1. Under the assumptions (6.2), (6.3) and (6.4),

dF±(S(t), t) =

[

∂F±
∂t

+ A
∂F±
∂S

+
1

2
B2∂

2F±
∂S2

]

dt+B
∂F±
∂S

dW (t) +

+ C
∂F±
∂S

dX±(t) + (6.11)

+
[

F±(S(t−) +Dhg±(t), t)− F±(S(t−), t)
]

dJ±(t) .

We recall that martingales and measures are critical to the risk-neutral va-

luation. A martingale is a zero-drift stochastic process. Any variable following

a martingale has the simplifying property that its expected value at any future

time equals its value today.
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We remark that if the dynamic of S(t) is described by (6.1), then F±(S(t), t) is

not a martingale. To construct related martingales one has to calculate the exact

representation of expectations E(X±(t)|Fs) and E(J±(t)|Fs) (see Ratanov[90])

E
(

X±(t)|Fs

)

= X±(s) +
ν+λ− + ν−λ+
λ− + λ+

[t− s] +

+λ±

[

ν± + ν∓
λ− + λ+

] [

1− e−(λ−+λ+)(s−t)

λ− + λ+

]

6= X±(s) ,

E
(

J±(t)|Fs

)

= J±(s) +
λ−λ+
λ− + λ+

[h− + h−][t− s] +

+λ±

[

λ±h± − λ∓h∓
λ− + λ+

] [

1− e−(λ−+λ+)(s−t)

λ− + λ+

]

6= J±(s) ,

for t > s. In particular, for λ± = λ, h± = h, ν± = ν and

E
(

X±(t)|Fs

)

= X±(s) + ν[t− s] ,

E
(

J±(t)|Fs

)

= J±(s) + λh[t− s] .

Therefore it is quite important to modify or to compensate the processes X±(t)

and J±(t) in order to obtain martingales that lead to a martingale F±(S(t), t) If

one defines

M1±(t) = X±(t)− νt (6.12)

and

M2±(t) = J±(t)− λht , (6.13)

then E
(

M1±(t)|F
)

= M1±(s) and E
(

M2±(t)|F
)

= M2±(s), that is M1±(t) +

M2±(t) is a martingale.





7 Option Pricing with Memory in

the Underlying Asset

7.1 Introduction

The works of Black and Scholes[3] and Merton[4] were pioneers on the use of

Itô’s Lemma to establish the PDE’s for option pricing. Since then, the literature

has been quite fruitful on the use of such approach to study the evolution of

option prices (see, for instance, Wilmott et al. [91], Neftci[92], Hanson[88] and

Cont and Takov[87] and the references contained in these two last books).

The well-known Black-Scholes equation was established under the following

assumptions (Black and Scholes[3]):

1. The short-term interest rate is known and constant through time.

2. The stock price follows a random walk in continuous time with a variance

rate proportional to the square of the stock price. Thus the distribution of

possible stock prices at the end of any finite interval is log-normal. The

variance rate of the return on the stock is constant.

3. The stock pays no dividends or other distributions.

4. The option is “European”, that is, it can only be exercised at maturity.

5. There are no transaction costs in buying or selling the stock or the option.
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6. Its possible to borrow any fraction of the price of a security to buy or to hold

it, at short time interest rate.

7. There are no penalties to short selling. A seller who does not own a security

will simply accept the price of the security and will agree to settle with the

buyer at some future date by paying him an amount equal to the price of

the security on that day.

8. let S(t) the price of the stock at time t.

dS(t)

S(t)
= µdt+ σdW (t) , S(0) is given .

This equation was then used separately for pricing European put and call

options using the so called delta-hedge portfolio theory. The two problems can

be stated as follows:

PROBLEM EP: Find p ∈ C2,1
(

R
+ × (0, T ]

)

such that

∂p

∂τ
− 1

2
σ2S2 ∂

2p

∂S2
− rS

∂p

∂S
+ rp = 0 in R

+ × (0, T ],

with the initial condition

p(S, 0) = (E − S)+ =Max{E − S, 0}, S ∈ R
+,

and with the boundary conditions

p(0, T − τ) = Ee−rτ (7.1)

lim
S→∞

p(S, τ) = 0, τ ∈ (0, T ]. (7.2)

PROBLEM EC: Find c ∈ C2,1
(

R
+ × (0, T ]

)

such that

∂c

∂τ
− 1

2
σ2S2 ∂

2c

∂S2
− rS

∂c

∂S
+ rc = 0 in R

+ × (0, T ],

with the initial condition

c(S, 0) = (S − E)+ =Max{S − E, 0}, S ∈ R
+
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and with the boundary conditions

c(0, T − τ) = 0, τ ∈ (0, T ] (7.3)

lim
S→∞

c(S, T − τ)− S = 0, τ ∈ (0, T ]. (7.4)

Hereafter, the purpose is to establish an initial boundary value problem for

V = (V +, V −) where V + and V − are European option prices when the asset price

satisfies (5.1), that is (6.1) with A(S(t), t) = S(t)µ, B(S(t), t) = C(S(t), t) = S(t−)σ

and D(S(t), t) = S(t−) but with the compensated processes (6.12) and (6.13). The

approach that is used here is similar to the one used to establish Black-Scholes

equations: delta-hedge portfolio theory and the Itô’s lemma.

Section 7.2 establishes the initial boundary value problem for V when V +

and V − are European put or call options prices, respectively. The mathematical

problem for American options is presented in Section 7.3. The initial boundary

value problem for European options is solved numerically using the so called Fi-

nite Element Method in Section 7.4. More precisely, this section introduces the

variational problem for European options which is solved discretizing in space

using finite element methods and in time with the implicit Euler’s method. Sec-

tion 7.5 applies the approach introduced in Section 7.4 to American options.

Finally, Section 7.6 presents several numerical illustrations.

7.2 Mathematical Model for European Options

Let V +(S(t), t) be an European option price with initial state information

on up prices (positive information) and let V −(S(t), t) be the European option

price with initial state information on down prices (negative information). Let

one assume that the underlying asset is described by (5.1), where X±(t) and

J±(t) are replaced by the compensated processes (6.12) and (6.13), respectively.
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Considering that V + satisfies the assumptions of Theorem (6.2.3), one has

dV + =

[

∂V +

∂t
+
∂V +

∂S
µS(t) +

1

2
σ2S2(t)

∂2V +

∂S2

]

dt+
∂V +

∂S
σS(t−)dW (t) +

+
∂V +

∂S
σS(t−)dX+ +

[

V +(S + Shg+(t), t)− V +(S, t)
]

dJ+ .

A jump occurs if g+(t) = −1. Then

dV + =

[

∂V +

∂t
+
∂V +

∂S
µS(t) +

1

2
σ2S2(t)

∂2V +

∂S2

]

dt+
∂V +

∂S
σS(t−)dW (t) +

+
∂V +

∂S
σS(t−)dX+ +

[

V +(S + Sh−, t)− V +(S, t)
]

dJ+ .

To obtain the system of PDE’s shown in Ratanov[12] for the particular case of

European options when the underlying asset is modeled as a JT process, one

needs to impose that

V +(S + Sh−, t) = V −(S + Sh+, t) .

Because there is the assumption of the compensated processes (6.12) and (6.13),

then

dX+(t) = dM1+(t) + νdt and dJ+(t) = dM2+(t) + λhdt ,

that leads to

dV + =

[

∂V +

∂t
+
∂V +

∂S

[

µ+ νσ
]

S(t) +
1

2
σ2S2(t)

∂2V +

∂S2
+

+λh
[

V −(S + Sh+, t)− V +(S, t)
]

]

dt+
∂V +

∂S
σS(t−)dW (t)+

+
∂V +

∂S
σS(t−)dM1+(t) +

+
[

V −(S + Sh+, t)− V +(S, t)
]

dM2+(t) . (7.5)

Let Π+ = V +
1 − ∆+

2 V
+
2 − ∆+

1 S be the value of the hedge portfolio. Where V +
1

is the European option price with initial state information of an up price and

maturity date “T1”, V
+
2 is European option price with initial state information

of the up price and maturity date “T2”. The formulation of the portfolio and the
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mathematical development presented here are based on the reasoning presented

by Wilmott[91] for interest rate options.

Considering the increase in the value of the portfolio in a space-time, keeping

fixed ∆+
1 and ∆+

2 rates, this implies that

dΠ+ = dV +
1 −∆+

2 dV
+
2 −∆+

1 dS . (7.6)

Using (7.5) in (7.6), we deduce

dΠ+ =

[

∂V +
1

∂t
+
∂V +

1

∂S

[

µ+ νσ
]

S(t) +
1

2
σ2S2(t)

∂2V +
1

∂S2
+

+λh
[

V −1 (S + Sh+, t)− V +
1 (S, t)

]

]

dt+
∂V +

1

∂S
σS(t−)dW (t)+

+
∂V +

1

∂S
σS(t−)dM1+(t) +

[

V −1 (S + Sh+, t)− V +
1 (S, t)

]

dM2+(t)−

−∆+
2

{[

∂V +
2

∂t
+
∂V +

2

∂S

[

µ+ νσ
]

S(t) +
1

2
σ2S2(t)

∂2V +
2

∂S2
+

+λh
[

V −2 (S + Sh+, t)− V +
2 (S, t)

]

]

dt+
∂V +

2

∂S
σS(t−)dW (t)+

+
∂V +

2

∂S
σS(t−)dM1+(t) +

[

V −2 (S + Sh+, t)− V +
2 (S, t)

]

dM2+(t)

}

−

−∆+
1 dS .

Taking into account (5.1) and (6.12) and (6.13), then

dΠ+ =

[

∂V +
1

∂t
−∆+

2

∂V +
2

∂t
+

[

∂V +
1

∂S
−∆+

2

∂V +
2

∂S
−∆+

1

]

µS(t)+

+

[

∂V +
1

∂S
−∆+

2

∂V +
2

∂S
−∆+

1

]

νσS(t) +
1

2
σ2S2(t)

[

∂2V +
1

∂S2
−∆+

2

∂2V +
2

∂S2

]

+

+λh
{[

V −1 (S + h+S, t)− V +
1 (S, t)

]

−∆2

[

V −2 (S + h+S, t)− V +
2 (S, t)

]

−

− ∆1S(t)
}

]

dt + σS(t)

[

∂V +
1

∂S
−∆+

2

∂V +
2

∂S
−∆+

1

]

d
{

W (t) +M1+(t)
}

+

+
{[

V −1 (S + h+S, t)− V +
1 (S, t)

]

−∆2

[

V −2 (S + h+S, t)− V +
2 (S, t)

]

−

− ∆1S(t)
}

dM2+(t) .
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Fixing now ∆+
1 and ∆+

2 by

∆+
1 =

∂V +
1

∂S
−
S

∂V +
1

∂S
−
[

V −1 (S + h+S, t)− V +
1 (S, t)

]

S
∂V +

2

∂S
−
[

V −2 (S + h+S, t)− V +
1 (S, t)

]

∂V +
2

∂S

∆+
2 =

S
∂V +

1

∂S
− V −1 (S + h+S, t)− V +

1 (S, t)
]

S
∂V +

2

∂S
−
[

V −2 (S + h+S, t)− V +
1 (S, t)

] ,

One obtains for dΠ+ the representation

dΠ+ =





∂V +
1

∂t
−
S

∂V +
1

∂S
−
[

V −1 (S + h+S, t)− V +
1 (S, t)

]

S
∂V +

2

∂S
−
[

V −2 (S + h+S, t)− V +
1 (S, t)

]

∂V +
2

∂t
+

+
1

2
σ2S2(t)

∂2V +
1

∂S2
− (7.7)

− 1

2
σ2S2(t)





S
∂V +

1

∂S
−
[

V −1 (S + h+S, t)− V +
1 (S, t)

]

S
∂V +

2

∂S
−
[

V −2 (S + h+S, t)− V +
1 (S, t)

]





∂2V +
2

∂S2



 dt.

Considering that the return of the portfolio Π+ is constant, then, in equili-

brium, it must be equal to the riskless interest rate r+, which implies that

dΠ+

dt
= r+Π

+

and according to (7.7) that

rV +
1 − r





S
∂V +

1

∂S
−
[

V −1 (S + h+S, t)− V +
1 (S, t)

]

S
∂V +

2

∂S
−
[

V −2 (S + h+S, t)− V +
1 (S, t)

]



V +
2 − r

∂V +
1

∂S
S(t)−

− r





S
∂V +

1

∂S
−
[

V −1 (S + h+S, t)− V +
1 (S, t)

]

S
∂V +

2

∂S
−
[

V −2 (S + h+S, t)− V +
1 (S, t)

]





∂V +
2

∂S
S =

∂V +
1

∂t
−

−





S
∂V +

1

∂S
−
[

V −1 (S + h+S, t)− V +
1 (S, t)

]

S
∂V +

2

∂S
−
[

V −2 (S + h+S, t)− V +
1 (S, t)

]





∂V +
2

∂t
+

1

2
σ2S2(t)

∂2V +
1

∂S2
−

− 1

2
σ2S2(t)





S
∂V +

1

∂S
−
[

V −1 (S + h+S, t)− V +
1 (S, t)

]

S
∂V +

2

∂S
−
[

V −2 (S + h+S, t)− V +
1 (S, t)

]





∂2V +
2

∂S2
. (7.8)
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Finally from (7.8) one obtains

∂V +
1

∂t
+ 1

2
σ2S2 ∂

2V +
1

∂S2 − rV +
1 + rS

∂V +
1

∂S

S
∂V +

1

∂S
−
[

V −1 (S + h+S, t)− V +
1 (S, t)

] =

∂V +
2

∂t
+ 1

2
S2σ2 ∂2V +

2

∂S2 − rV +
2 + r

∂V +
2

∂S

S
∂V +

2

∂S
−
[

V −2 (S + h+S, t)− V +
2 (S, t)

] (7.9)

The left-hand side of (7.9) depends on V +
1 while the right-hand side depends

on V +
2 . The only way to achieve (7.9) is that both sides of the equation are

independent of the maturity date. Thus, dropping the subscript from “V ”, one

gets
∂V +

∂t
+ 1

2
σ2S2 ∂2V +

∂S2 − rV +
1 + r ∂V

+

∂S
S

S ∂V +

∂S
−
[

V −(S + h+S, t)− V +(S, t)
] = A(S, t) ,

for some function A(S, t). At this point, there is the need for an additional as-

sumption. Therefore, consider that

A(S, t) = γ(S, t) + λh.

where γ(S, t) is the market price of risk, i.e. a measure of the reward-to-risk ratio

of the market portfolio. Taking into account the expression for A one finally gets

∂V +

∂t
+

1

2
σ2S2∂

2V +

∂S2
− rV + + r

∂V +

∂S
S(t) =

=

[

S
∂V +

∂S
−
[

V −(S + h+S, t)− V +(S, t)
]

]

[

γ(S, t) + λh
]

or equivalently

∂V +

∂t
+

1

2
σ2S2∂

2V +

∂S2
+
[

r − γ(S, t)− λh
]

S(t)
∂V +

∂S
=

=
[

r + γ(S, t) + λh
]

V + −
[

γ(S, t) + λh
]

V −(S + h+S, t) (7.10)

which is the equation for positive past information that defines the diffe-

rential system for European options.

Similarly to the positive past information case, the equation for negative

past information can be obtained as

∂V −

∂t
+

1

2
σ2S2∂

2V −

∂S2
+
[

r − γ(S, t)− λh
]

S(t)
∂V −

∂S
=

=
[

r + γ(S, t) + λh
]

V − −
[

γ(S, t) + λh
]

V +(S + h−S, t) (7.11)
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For the European put options the following boundary value problem with a

final condition can be stated:

PROBLEM EPH: Find p = p± ∈ C2,1
(

R
+ × [0, T )

)

depending on past informa-

tion such that, in R
+ × [0, T ),















































∂p+

∂t
+

1

2
σ2S2∂

2p+

∂S2
+ [r − γ(S, t)− λh]

∂p+

∂S
− [r + γ(S, t) + λh]p+

= −[γ(S, t) + λh]p−(S + h+S, t)

∂p−

∂t
+

1

2
σ2S2∂

2p−

∂S2
+ [r − γ(S, t)− λh]S

∂p−

∂S
− [r + γ(S, t) + λh]p−

= −[γ(S, t) + λh]p+(S + h−S, t)

(7.12)

with payoff conditions

p+(S, T ) =Max{E − S, 0} , S ∈ R
+,

p−(S, T ) =Max{E − S, 0} , S ∈ R
+,

(7.13)

and boundary conditions

p+(0, t) = Ee−r+[T−t] , lim
S→+∞

p+(S, t) = 0, t ∈ (0, T ),

p−(0, t) = Ee−r−[T−t] and lim
S→+∞

p−(S, t) = 0, t ∈ (0, T ).
(7.14)

Similarly, for European call options the pricing problem may be stated using

the following boundary value problem with a final condition:

PROBLEM ECH: Find c = c± ∈ C2,1
(

R
+ × [0, T )

)

depending on past informa-

tion such that, in R
+ × [0, T ),















































∂c+

∂t
+

1

2
σ2S2∂

2c+

∂S2
+ [r − γ(S, t)− λh]S

∂c+

∂S
− [r + γ(S, t) + λh]c+

= −[γ(S, t) + λh]c−(S + h+S, t)

∂c−

∂t
+

1

2
σ2S2∂

2c−

∂S2
+ [r − γ(S, t)− λh]S

∂c−

∂S
− [r + γ(S, t) + λh]c−

= −[γ(S, t) + λh]c+(S + h−S, t)

(7.15)

with payoff conditions

c+(S, T ) =Max{S − E, 0} , S ∈ R
+,

c−(S, T ) =Max{S − E, 0} , S ∈ R
+

(7.16)
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and boundary conditions

c+(0, t) = 0 , lim
S→+∞

c+(S, t) ≈ S , t ∈ (0, T )

c−(0, t) = 0 and lim
S→+∞

c−(S, t) ≈ S , t ∈ (0, T ) .
(7.17)

In order to solve numerically the two problems stated above one needs to

replace the domain R
+
0 × [0, T ] by a bounded domain. If one assume Smax large

enough, then the first domain may be replaced by [0, Smax]× [0, T ] in the differen-

tial problems with the convenient modifications, and the boundary conditions

(7.14) and (7.17) are replaced by the following

p+(0, t) = Ee−r+[T−t], p+(Smax, t) = 0 , t ∈ (0, T ),

p−(0, t) = Ee−r−[T−t], p−(Smax, t) = 0 , t ∈ (0, T ),
(7.18)

and

c+(0, t) = 0 , c+(Smax, t) = Smax −Ee−r+[T−t] , t ∈ (0, T ),

c−(0, t) = 0 and c−(Smax, t) = Smax − Ee−r−[T−t] , t ∈ (0, T ),
(7.19)

respectively.

7.3 Mathematical Model for American Options

This section deals with the mathematical formulation of pricing American op-

tions as a free boundary problem. Here, the same idea presented by Wilmott[91]

to the standard Black and Scholes Framework is used.

First let one tackles the American put problem. If at any time t∗ < T the price

of the underlying asset is S∗ < E(1− e−r(T−t
∗)), the put option must be exercised

immediately, because the income L generated by the premature exercise satisfies

L = (E − S∗) > E(e−r(T−t
∗)) > p+∗ (S

∗, t),

or

L = (E − S∗) > E(e−r(T−t
∗)) > p−∗ (S

∗, t),
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where p+(S∗, t) is the price of the European put option with “positive past infor-

mation” and with the exercise price E and maturity in T−t∗ years and p−(S∗, t) is

the price of the European put option with “negative past information” and with

the exercise price E and maturity in T − t∗ years. Because the return is always

(E−S)+ in t = T and this has the same value that the European option, so there

is no portfolio that represents a better alternative that the premature exercise.

Notice that in this case the price P+(S∗, t∗) or P−(S∗, t∗) should have the value

E − S∗ in a no-arbitrage setting.

In particular, one has for S∗ = 0, P+(0, t∗) = E or P−(0, t∗) = E using the

No-arbitrage argument, and then

P+(S, t) ≥ (E − S)+ = 0, ∀ S ≥ E,

or

P−(S, t) ≥ (E − S)+ = 0, ∀ S ≥ E.

It appears that for each instant of time t, the prices that give the premature

exercise have interval [0, Sf ], whose upper limit is called the optimal point of

exercise.

Figure 7.1: Call Option Figure 7.2: Put Option

The point Sf , divides the domain in a segment where the option is exercised,

and in another where the immediate exercise is not optimal. Thus, the pricing
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problem of an American put option may be seen as a free boundary problem,

where the free boundary is given by Sf = Sf(t).

The free boundary problem can be formulate in two well defined regions

for “positive past information”, one where the option is exercised,

0 ≤ S ≤ Sf .

where we must exercise the option

p+(S, t) =Max{E − S, 0} ,

∂p+

∂t
+

1

2
σ2S2∂

2p+

∂S2
+ [r − γ(S, t)− λh]S

∂p+

∂S
−

− [r + γ(S, t) + λh]P+ ≤ −[γ(S, t) + λh]P−(S + h+S, t) ;

and another

Sf ≤ S ≤ ∞.

where there is no premature exercise of the option

P+(S, t) > Max{E − S, 0} ,

∂P+

∂t
+

1

2
σ2S2∂

2P+

∂S2
+ [r − γ(S, t)− λh]S

∂P+

∂S
−

− [r + γ(S, t) + λh]P+(S, t) = −[γ(S, t) + λh]P−(S + h+S, t) .

The conditions of the interface between the two regions of the domain in

points Sf , the discussed in more detail from the point by Willmott[91], are given

by

P+(Sf , t) =Max{E − Sf , 0} and
∂P+

∂S
(Sf , t) = −1 .

Besides the final time condition, i.e. the payoff function

P+(S, T ) =Max{E − S, 0} , s ∈ R
+
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and its behavior at the boundary point S = 0 and when S →∞ is given by

P+(0, t) = Ee−r+(T−t) and lim
S→∞

P+(S, t) = 0, t ∈ [0, T ) .

Analogous problem can be established for put European options P− with

“negative past information”.

The problem of pricing of the American put option is stated as

PROBLEM APH: Find P± ∈ C2,1
(

R
+ × [0, T )

)

depending on past information,

in R
+ × [0, T ), such that, for regions where early exercise is optimal, 0 ≤ S ≤ Sf

and

P+(S, t) =Max{E − S, 0} , P−(S, t) =Max{E − S, 0}














































∂P+

∂t
+

1

2
σ2S2∂

2P+

∂S2
+ [r − γ − λh]S

∂P+

∂S
− [r + γ + λh]P+

≤ −[γ + λh]P−(S + h+S, t) ,

∂P−

∂t
+

1

2
σ2S2∂

2P−

∂S2
+ [r − γ − λh]S

∂P−

∂S
− [r + γ + λh]P−

≤ −[γ + λh]P+(S + h−S, t) ,

(7.20)

For regions where early exercise is not optimal, Sf ≤ S ≤ ∞ and

P+(S, t) > Max{E − S, 0} , P−(S, t) > Max{E − S, 0}














































∂P+

∂t
+

1

2
σ2S2∂

2P+

∂S2
+ [r − γ − λh]S

∂P+

∂S
− [r + γ + λh]P+

= −[γ + λh]P−(S + h+S, t) ,

∂P−

∂t
+

1

2
σ2S2∂

2P−

∂S2
+ [r − γ − λh]S

∂P−

∂S
− [r + γ + λh]P−

= −[γ + λh]P+(S + h−S, t) ,

(7.21)

The conditions of the interface between the two regions are

P±(Sf , t) =Max{E − Sf , 0} ,
∂P±

∂S
(Sf , t) = −1,

(7.22)
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P± satisfies at t = T the payoff condition,

P±(S, T ) =Max{E − S, 0} , S ∈ R
+ , (7.23)

and boundary conditions,

P±(0, t) = Ee−r+(T−t) ,

lim
S→∞

P±(S, t) = 0 , t ∈ [0, T ) .
(7.24)

Similarly, the pricing problem of an American call option is stated as

PROBLEM ACH: Find C± ∈ C2,1
(

R
+ × [0, T )

)

depending on past information,

in R
+ × [0, T ), such that, for regions where early exercise is optimal, 0 ≤ S ≤ Sf

and

C+(S, t) > Max{E − S, 0} , C−(S, t) > Max{E − S, 0}














































∂C+

∂t
+

1

2
σ2S2∂

2C+

∂S2
+ [r − γ − λh]S

∂C+

∂S
− [r + γ + λh]C+

−[γ + λh]C−(S + h+S, t) ,

∂C−

∂t
+

1

2
σ2S2∂

2C−

∂S2
+ [r − γ − λh]S

∂C−

∂S
− [r + γ + λh]C−

= −[γ + λh]C+(S + h−S, t) ,

(7.25)

For regions where early exercise is not optimal, Sf ≤ S ≤ ∞ and

C+(S, t) =Max{E − S, 0} , C−(S, t) =Max{E − S, 0}














































∂C+

∂t
+

1

2
σ2S2∂

2C+

∂S2
+ [r − γ − λh]S

∂C+

∂S
− [r + γ + λh]C+

≤ −[γ + λh]C−(S + h+S, t) ,

∂C−

∂t
+

1

2
σ2S2∂

2C−

∂S2
+ [r − γ − λh]S

∂C−

∂S
− [r + γ + λh]C−

≤ −[γ + λh]C+(S + h−S, t) ,

(7.26)

Hold interface conditions between the two regions, two boundary conditions at

the free boundary,

C±(Sf , t) = (Sf −E)+ ,

∂C±

∂S
(Sf , t) = 1 ,

(7.27)
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C± satisfies at t = T the payoff conditions,

C±(S, T ) =Max{S − E, 0} , S ∈ R
+ , (7.28)

and boundary conditions,

C±(0, t) = 0 ,

lim
S→∞

C±(S, t)− S = −Ee−r+(T−t) , t ∈ [0, T )
(7.29)

7.4 Galerkin Method for European Option

This section proposes de use of finite element approximations in space do-

main (assets) and of finite differences in time domain for solving the option pri-

cing problems.

Subsection 7.4.1 presents the Variational Formulation for European options

with memory in the underlying assets. Subsections 7.4.2 and 7.4.3 shows the

approximation by Finite Elements and the approximation in time, respectively,

for European options with memory in the underlying assets.

7.4.1 Variational Formulation for European Option

Pricing

In order to solve numerically the two problems presented in this section

(problems EPH and ECH) one needs to replace the domain R
+
0 × [0, T ] by a

bounded domain. Let Smax be the highest price that the underlying asset may

achieve in the spot market. An usual approach is to replace R
+
0 × [0, T ] by

[0, Smax] × [0, T ] in the differential problems with the convenient modifications,

and then boundary conditions (7.14) and (7.17) are replaced by the following

p±(0, t) = Ee−r+[T−t],

p±(Smax, t) = 0 , t ∈ (0, T ),
(7.30)
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and

c±(0, t) = 0

c±(Smax, t) = Smax − Ee−r+[T−t] , t ∈ [0, T ),
(7.31)

respectively.

A natural question is the magnitude of Smax. According to Oliveira[38] and

Thomaz[42], Smax should be fixed sufficiently large but one needs to take into

account the accuracy of the numerical method used as well as the computational

cost. It has been observed that values Smax between 1, 5E and 3E provide good

results.

An open question is the dependence of Smax on the parameters of the model

as well as on the maximum error allowed.

Making the time variable change τ = T − t, problem EPH is converted in the

following initial boundary value problem:

PROBLEM IEPH: Finding P± ∈ C2,1
(

(0, Smax) × (0, T ]
)

depending on past

information, in (0, Smax)× (0, T ], such that














































∂p+

∂τ
− 1

2
σ2S2∂

2p+

∂S2
+ [r − γ − λh]S

∂p+

∂S
− [r + γ + λh]p+

= −[γ + λh]p−(S + h+S, τ)

∂p−

∂τ
− 1

2
σ2S2∂

2p−

∂S2
+ [r − γ − λh]S

∂p−

∂S
− [r + γ + λh]p−

= −[γ + λh]p+(S + h−S, τ)

(7.32)

with initial conditions,

p±(S, 0) =Max{E − S, 0} , S ∈ (0, Smax) , (7.33)

and boundary conditions,

p±(0, τ) = Ee−r±τ ,

p±(Smax, τ) = 0, τ ∈ (0, T ) .
(7.34)

The variable τ represents the time remaining to the maturity of the option,

although the system presented here does not require the condition τ ≤ T , the
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model assumes that it is calculating the option price at this time limit. An ini-

tial boundary value problem that replaces problem IECH can be established

considering in this case the boundary conditions

c±(0, τ) = 0

c±(Smax, τ) = Smax − Ee−r±τ , τ ∈ (0, T ] .
(7.35)

In order to simplify, we assume that the market price of risk is zero, γ = 0,

this means that the market players are all risk neutral.

To solve numerically the initial boundary value problem IEPH or its cor-

respondent for call option problem, several approaches can be considered. The

two main approaches are the Galerkin methods and the finite difference me-

thods. As the last class of methods enable us to compute an approximation for

the solution of the problem in its strong formulation, that is, in this case, in

C2,1
(

[0, Smax] × [0, T ]
)

, we use in what follows a Galekin method that enable us

to compute an approximation for the solution of in its weak formulation that we

present now. We start to write the system (7.32) in vector equivalent form

∂p

∂τ
− 1

2
σ2S2I

∂2p

∂S2
− (r − λh)SI

∂p

∂S
+ (r + λh)Ip− F(p) = 0 , (7.36)

where p =
(

p+, p−
)

,
∂ip

∂Si
denotes the vector whose components are

∂ip±

∂Si
, i = 1, 2,

and F(p) =
(

F+(p
−), F−(p

+)
)

where

F+(S, τ) =















λhp−([1 + h+]S, τ), for S ∈
[

0,
1

(1 + h+)Smax

]

0 for S ∈
[

1

(1 + h+)Smax
, Smax

]

and

F−(S, τ) =















λhp+([1 + h−]S, τ), for S ∈
[

0,
1

(1 + h−)Smax

]

0 for S ∈
[

1

(1 + h−)Smax
, Smax

] .

As Smax is fixed to be large, the replacement of
(

λhp−([1 + h+]S, τ), λhp
+([1 +

h−]S, τ)
)

by F do not disturbs p in the region Ω of interest.
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We use the notations: Ω = [0, Smax], ∂Ω = {0, Smax}, L2(Ω), H1(Ω), and H1
0(Ω)

denote the following functional spaces L2(Ω) = L2(Ω)×L2(Ω), H1(Ω) = H1(Ω)×
H1(Ω) and H1

0(Ω) = H1
0 (Ω)×H1

0 (Ω), respectively, where L2(Ω), H1(Ω) and H1
0 (Ω)

denote the usual Sobolev spaces. In H1(Ω) we consider the usual norm ‖.‖H1(Ω).

Let L2(0, T ;H1(Ω)) be the space of functions u : [0, T ]→ H1(Ω)) such that

∫ T

0

‖u(τ)‖2
H1(Ω) dτ <∞ ,

where, for v ∈ H1(Ω), ‖v‖H1(Ω) =
(

‖v1‖2H1(Ω) + ‖v1‖2H1(Ω)

)1/2

. We consider the

following subspace of L2(0, T ;H1(Ω))

U =
{

v ∈ L2(0, T ;H1(Ω)) ; v(0, τ) = Ee−rτ , v(Smax, τ) = 0
}

,

In L2(Ω) we consider the usual inner product

(

u,v
)

=

∫

Ω

u(x)tv(x) dx , (7.37)

where u(x)t represents the transpose of u(x).

To define the so called variational problem associated with equation (7.36) com-

plemented with the introduced boundary and initial conditions, we multiply,

with respect the inner product (7.37), by a test function v ∈ H1
0(Ω). As

1

2
S2 ∂

2p

∂S2
=

1

2

∂

∂S

(

S2 ∂p

∂S

)

− S
∂p

∂S
,

that is

(

∂p

∂τ
,v

)

−
(

1

2
σ2I

∂

∂S

(

S2 ∂p

∂S

)

,v

)

−
(

(r − λh− σ2)SI
∂p

∂S
,v

)

+
(

(r + λh)I p,v
)

=
(

F,v
)

, (7.38)

using integration by parts in (7.38) for v = (v1, v2) ∈ H1
0(Ω), one obtains

(

∂p

∂τ
,v

)

+

(

1

2
σ2I S

∂p

∂S
, S
∂v

∂S

)

−
(

(r − λh− σ2)SI
∂p

∂S
,v

)

+
(

(r+λh)I p,v
)

=
(

F,v
)

,
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that leads to

(

∂p+

∂τ
, v1

)

+

(

∂p−

∂τ
, v2

)

+
1

2
σ2

((

S
∂p+

∂S
, S
∂v1
∂S

)

+

(

S
∂p−

∂S
, S
∂v2
∂S

))

−(r − λh− σ2)

((

S
∂p+

∂S
, v1

)

+

(

S
∂p−

∂S
, v2

))

+(r + λh)
(

(p+, v1) + (p−, v2)
)

− (F+(p
−), v1)− (F−(p

+), v2) = 0

(7.39)

Thus, the pricing problem for put options can be formulated as follows

PROBLEM IEPHV: Finding p = (p+, p−) ∈ U such that

(

∂p+

∂τ
, v1

)

+

(

∂p−

∂τ
, v2

)

+ a(p,v) = 0 a.e. in (0, T ) ,

∀v ∈ H1
0(Ω),

(7.40)

satisfying the initial condition,

p(S, 0) = (max{E − S},max{E − S})

In (7.40), a(·, ·) denotes the bilinear form a(·, ·) : H1(Ω)×H1(Ω)→ R defined by

a(p,v) = a1(p
+, v1) + a2(p

−, v2)−
(

F+(p
−), v1

)

−
(

F−(p
+), v2

)

,

for p = (p+, p−),v = (v1, v2) ∈ H1(Ω), and

a1(p
+, v1) =

1

2
σ2

(

S
∂p+

∂S
, S
∂v1
∂S

)

− (r − λh− σ2)

(

S
∂p+

∂S
, v1

)

+(r + λh)(p+, v1).

(7.41)

The previous problem is nonhomogeneous in what concerns the boundary condi-

tions. In what follows we replace the problem IEPHV by an homogeneous one.

Let p̂ = (p̂1, p̂2) be defined by

p̂i = Ee−rτ
Smax − S

Smax
, i = 1, 2.

Then w = (w1, w2) defined by

w = p− p̂
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belongs to L2(0, T ;H1
0(Ω)) and satisfies the following variational equation

(

∂w1

∂τ
, v1

)

+

(

∂w2

∂τ
, v2

)

+ a(w,v)

= −
(

∂p̂1
∂τ

, v1

)

−
(

∂p̂2
∂τ

, v2

)

− a(p̂,v)
(7.42)

for all v ∈ H1
0(Ω).

We introduce now the following variational problem:

PROBLEM IEPHVH : Find w = (w1, w2) ∈ L2(0, T ;H1
0(Ω)) such that (7.42)

holds almost everywhere in (0, T ) and for all v ∈ H1
0(Ω), and w satisfies the

initial condition

w(0) = (max{E − S} −E
Smax − S

Smax
,max{E − S} − E

Smax − S

Smax
) .

Solving problem IEPHVH we obtain the solution of problem IEPHV consi-

dering

p = w + p̂ .

The existence and uniqueness of solution of the variational problem IEPHVH

can be seen in Brezis[93].

7.4.2 Approximation by Finite Element Methods

The Galerkin method enable us to obtain an approximation (continuous in

time) for the solution of problem IEPHVH replacing the space H1
0 (Ω) by a fi-

nite dimension space. The central idea of finite element methods, which is a

Galerkin method, is to define the mentioned finite dimension space with par-

ticular properties that lead to a significant reduction in the computational cost

when compared with general Galerkin methods.

For the construction of an finite elements approximation, we build a partition

of the domain in sub-regions elements, establishing points in this partition,

called nodes, where the approximate solution will be evaluated and built with
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basis of polynomial functions in general associated with each node of the parti-

tion, and characterized by not only zero in the elements adjacent to the associa-

ted node. The determination of each basis function is obtained by requirement

of a set of restrictions of the node.

Let Th be a partition of Ω = [0, Smax] into n elements k. Based on this partition

we define the finite dimension space

Uk
h,0 = {vh ∈ C0(Ω) : vh = 0 on ∂Ω, vh|k ∈ Pk(K)},

where Pk(K) is the polynomial set of degree ≤ k defined in K. In Uk
h,0 we fix a

basis {Ni, i = 2, . . . , n − 1} where each Ni has compact support contained in a

small set of elements. By Uk
h,0 we denote the spaces Uk

h,0 × Uk
h,0.

The finite element method enable us to obtain an approximation (continuous

in time) for the solution of problem IEPHVH replacing the space H1
0(Ω) by Uk

h,0.

PROBLEM IEPHVHh: Finding wh = (w1, w2) ∈ Uh,0 = {vh ∈ L2(0, T ;Uk
h,0)}

depending on past information such that

(

∂w1

∂τ
, v1

)

+

(

∂w2

∂τ
, v2

)

+ a(w,v) = G(w,v) (7.43)

with the initial condition

wh(0) =

(

max{E − S} − E
Smax − S

Smax

,max{E − S} −E
Smax − S

Smax

)

.

In (7.43) G is defined by

G(p̂,v) = G1(p̂1, v1) +G2(p̂, v2)−
(

F+(u2), v1

)

−
(

F−(u1), v2

)

,

with

Gi(p̂i, vi) = −
(

∂p̂i
∂τ

, vi

)

− ai(p̂i, vi)

for i = 1, 2.

Let {Ni, i = 2, . . . , n − 1} be a basis of Uk
h,0 being each Ni associated with

the node xi and having support contained in a few elements of the partition.
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Considering

w1(S, τ) =
n−1
∑

i=2

w1,i(τ)Ni(S), w2(S, τ) =
n−1
∑

j=2

w2,j(τ)Nj(S), (7.44)

in (7.43), we obtain

n−1
∑

i=2

dw1,i

dτ
(τ)(Ni, v1) +

n−1
∑

i=2

dw1,i

dτ
(τ)a1(Ni, v1)

+

n−1
∑

j=2

dw2,j

dτ
τ(τ)(Nj , v2) +

n−1
∑

j=2

dw2,j

dτ
(τ)a2(Ni, v1)

−
n−1
∑

j=2

w2,j(τ)(F+(Nj), v1)−
n−1
∑

i=2

w1,i(τ)(F−(Ni), v2)

= G1(p̂1, v1) +G2(p̂, v2)− (F+(p̂2), v1)− (F−(p̂2), v2)

(7.45)

for (v1, v2) ∈ Uk
h,0.

Taking now in (7.45) v1 = Nℓ, v2 = Nq for ℓ, q = 2, . . . , n− 1, we deduce

n−1
∑

i=2

dw1,i

dτ
(τ)(Ni, Nℓ) +

n−1
∑

i=2

dw1,i

dτ
(τ)a1(Ni, Nℓ)

+
n−1
∑

j=2

dw2,j

dτ
τ(τ)(Nj , Nq) +

n−1
∑

j=2

dw2,j

dτ
(τ)a2(Ni, Nq)

−
n−1
∑

j=2

w2,j(τ)(F+(Nj), Nℓ)−
n−1
∑

i=2

w1,i(τ)(F−(Ni), Nq)

= G1(p̂1, Nℓ) +G2(p̂, Nq)− (F+(p̂2), Nℓ)− (F−(p̂2), Nq).

(7.46)

Ordinary differential system (7.46) can be rewritten using a matrix notation.

In order to do that we introduce the following block matrices:

M =





M1 0

0 M2



 , A =





A1 0

0 A2



 , F =





F1 0

0 F2



 ,

where

M1,i,ℓ = (Ni, Nℓ), M2,j,q = (Nj, Nq) ,

A1,i,ℓ = a1(Ni, Nℓ), A2,j,q = a2(Nj , Nq) ,
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and

F1,i,q = (F−(Ni), Nq), F2,i,q = (F+(Nj), Nℓ) .

By G(τ) we represent the vector with components defined by the right-hand side

of (7.46).

Let W(τ) be the vector of the components of w1,i(τ), i = 2, . . . , n − 1, w2,j(τ),

j = 2, . . . , n− 1. Thus W(τ) is solution of the ordinary differential system

MdW
dτ

(τ) +AW(τ)− FW(τ) = G(τ), τ ∈ (0, T ], (7.47)

complemented with an initial condition W(0) which is the vector of the compo-

nents of wh(0) with respect to the fixed basis.

7.4.3 Approximation in Time

Let ∂τp(τ) be an approximation of implicit finite difference of first-order for

∂p(τ)/∂τ . Dividing the interval [0, T ] into sub-intervals [τm−1, τm], where τm =

m∆τ , m = 0, 1, 2, · · · , mmax, as τ0 = 0 and τmmax
= T , the implicit Euler scheme to

approximate of ∂p(τ)/∂τ is given by

∂p±

∂τ
(τm) ≈ ∂τp

m,± =
pm+1,± − pm,±

∆τ
.

Thus, the approximation by finite differences is

PROBLEM IEPHhm: For m = 0, 1, 2, · · · we finding pmh (S, τ), where pmh (S, τ) =

pm,+
h (S, τ) and pmh (S, τ) = pm,−

h (S, τ) depending on past information, and pmh (S, τ) ∈
Uh
τ such that

(

∂τp
m
h ,vh

)

+ a1(p
m+1
h ,vh) =

(

Fm
h ,vh

)

, ∀v ∈ Uh
0 ,

with initial condition

(

p0
h,vh

)

=
(

ph(S, 0),vh

)

=











(

p+h (S, 0), v
+
h

)

(

p−h (S, 0), v
−
h

)











, ∀vh ∈ Uh
0 ,
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with the bilinear form given by

a1(p
m+1
h ,vh) =

1

2
σ2

(

S(τ)
∂pm+1

h

∂S
, S(τ)

∂vh

∂S

)

−

−(r − λh− σ2)

(

S(τ)
∂pm+1

h

∂S
,vh

)

+ (r + λh)
(

pm+1
h ,vh

)

Considering the definition of ∂τp(τ) and introducing the boundary conditions

the PROBLEM IEPHhm, results in the following system of algebraic equations

for each m = 0, 1, 2, · · · ,

(M +∆τK)Pm+1 = ∆τRm+1 −MPm,

M is the mass matrix, K the rigidity matrix, Rm+1 is the vector of nodal actions

in the moment m+1, resulting in the imposition of the boundary conditions, Pm

and Pm+1 are nodal values in the moments m and m+ 1, respectively.

7.5 Galerkin Method for American option

7.5.1 Variational Formulation

Defining the subset of functions limited below by g(S), which is the payoff

value, which is for a put option g(S) = (E−S)+ and for call option g(S) = (S−E)+,

as

KV =
{

P ∈ U(Ω) ; P(S, τ) ≥ g(S)
}

. (7.48)

The system (7.25) can be written in vector form as

∂P

∂τ
− 1

2
σ2S2I

∂2P

∂S2
− (r − λh)SI

∂P

∂S
+ (r − λh)IP ≥ F(P) (7.49)

and the system (7.26) as

∂P

∂τ
− 1

2
σ2I S2∂

2P

∂S2
− (r − λh)SI

∂P

∂S
+ (r − λh)IP = F(P) , (7.50)
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where P =
(

P+, P−
)

,
∂iP

∂Si
denotes the vector whose components are

∂iP±

∂Si
,

i = 1, 2, and F(P) =
(

F+(P
−), F−(P

+)
)

where

F+(S, τ) =















λhP−([1 + h+]S, τ), for S ∈
[

0,
1

(1 + h+)Smax

]

0 for S ∈
[

1

(1 + h+)Smax
, Smax

]

and

F−(S, τ) =















λhP+([1 + h−]S, τ), for S ∈
[

0,
1

(1 + h−)Smax

]

0 for S ∈
[

1

(1 + h−)Smax
, Smax

] .

As Smax is fixed large, the replacement of
(

λhP−([1+h+]S, τ), λhP
+([1+h−]S, τ)

)

by F do not disturbs P in the region of Ω of interest.

To define the so called variational problem associated with equations (7.49)

and (7.50) complemented with the introduced boundary and inicial conditions,

we multiply, with respect the inner product (7.37), by (v − P), where function

v ∈ KV . As

1

2
S2∂

2P

∂S2
=

1

2

∂

∂S

{

S2∂P

∂S

}

− S
∂P

∂S
,

this results in

(

∂P

∂τ
,v−P

)

−
(

1

2
σ2I

∂

∂S

(

S2∂P

∂S

)

,v−P

)

−
(

(r − λh− σ2)SI
∂P

∂S
,v−P

)

+
(

(r + λh)I P,v −P

)

≥
(

F,v −P

)

,

(7.51)

using integration by parts in (7.51) for v = (v1, v2) ∈ KV , we obtain

(

∂P

∂τ
,v −P

)

+

(

1

2
σ2I S

∂P

∂S
, S

∂

∂S
(v−P)

)

−
(

(r − λh− σ2)SI
∂P

∂S
,v −P

)

+
(

(r + λh)I P,v−P

)

≥
(

F,v −P

)

,
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that leads to
(

∂P+

∂τ
, v1 − P+

)

+

(

∂P−

∂τ
, v2 − P−

)

+
1

2
σ2

((

S
∂P+

∂S
, S
∂v1 − P+

∂S

)

+

(

S
∂P−

∂S
, S
∂v2 − P−

∂S

))

−(r − λh− σ2)

((

S
∂P+

∂S
, v1 − P+

)

+

(

S
∂P−

∂S
, v2 − P−

))

+(r + λh)
(

(P+, v1 − P+) + (P−, v2 − P−)
)

−
(

F+(P
−), v1 − P+

)

−
(

F−(P
+), v2 − P−

)

≥ 0

(7.52)

Thus, the pricing problem for an American put option pricing can be formu-

lated as follows

PROBLEM IAPHV: Finding P = (P+, P−) ∈ KV such that
(

∂P+

∂τ
, v1 − P+

)

+
(

∂P−

∂τ
, v2 − P−

)

+ aA(P,v−P) ≥ 0 ,

a.e. in (0, T ) , ∀ v ∈ KV ,
(7.53)

satisfying the initial condition

P(S, 0) =
(

P+(S, 0), P−(S, 0)
)

=
(

max{E − S}, max{E − S}
)

In (7.53), aA(·, ·) denotes the bilinear form and defined by

aA(P,v−P) = aA1(P
+, v1 − P+) + aA2(P

−, v2 − P−)

−
(

F+(P
−), v1 − P+

)

−
(

F−(P
+), v2 − P−

)

,

for P = (P+, P−), v = (v1, v2) ∈ KV , and

aA1(p
+, v1 − P+) =

1

2
σ2

(

S
∂p+

∂S
, S

∂

∂S
(v1 − P+)

)

−(r − λh− σ2)

(

S
∂p+

∂S
, v1 − P+

)

+(r + λh)(p+, v1 − P+).

(7.54)

The previous problem is nonhomogeneous in what concerns the boundary condi-

tions. In what follows we replace problem IAPHV by an homogeneous one. Let

P̂ = (P̂1, P̂2) be defined by

P̂i = Ee−rτ
Smax − S

Smax
, i = 1, 2.
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Then wA = (wA,1, wA,2) defined by

wA = P− P̂

belongs to L2(0, T ;H1
0(Ω)) and satisfies the following variational inequation

(

∂wA,1

∂τ
, v1 − P+

)

+

(

∂wA,2

∂τ
, v2 − P−

)

+ aA(wA,v −P)

≥ −
(

∂P̂1

∂τ
, v1 − P+

)

−
(

∂P̂2

∂τ
, v2 − P−

)

− aA(P̂,v−P)
(7.55)

for all v ∈ KV .

We introduce now the following variational problem:

PROBLEM IAPHVH : Find wA = (wA,1, wA,2) ∈ L2(0, T ;H1
0(Ω)) such that

(7.55) holds almost everywhere in (0, T ) and for all v ∈ H1
0(Ω), and wA satisfies

the initial condition

wA(0) =

(

max{E − S} − E
Smax − S

Smax
,max{E − S} −E

Smax − S

Smax

)

.

Solving problem IAPHVH we obtain the solution of problem IAPHV consi-

dering

P = wA + P̂ .

The existence and uniqueness of solution of the variational problem IAPHVH

can be seen in Brezis[93].

7.5.2 Approximation by Finite Elements

In order to construct a finite element approximation, one defines the ap-

proximation Kh
V for the set KV ,

Kh
V =

{

Ph(S, τ) ∈ Uk
h,0;Ph(S, τ) ≥ g(S)

}

, (7.56)

i.e. the inequality constraint will be checked only at the nodal points of the finite

element mesh.
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By using the Galerkin method in PROBLEM IAPHVH us to obtain an ap-

proximation (continuous in time) for the solution, as follows

PROBLEM IAPHVHh: Finding wA = (wA,1, wA,2) ∈ Kh
V depending on past in-

formation such that

(

∂wA,1

∂τ
, v1 − P+

)

+

(

∂wA,2

∂τ
, v2 − P−

)

+ aA(wA,v −P) ≥ G(wA,v −P) (7.57)

with the initial condition

wh(0) =

(

max{E − S} − E
Smax − S

Smax

,max{E − S} −E
Smax − S

Smax

)

.

In (7.57) G is defined by

G(P̂,v−P) = G1(P̂1, v1−P+)+G2(P̂ , v2−P−)−
(

F+(u2), v1−P+
)

−
(

F−(u1), v2−P−
)

,

with

Gi(P̂i, vi − P j(i)) = −
(

∂P̂i

∂τ
, vi − P j(i)

)

− aAi(p̂i, vi − P j(i))

for i = 1, 2, j(i = 1) = + or j(i = 2) = −.

7.5.3 Approximation in Time

The approximation of a parabolic variational inequality is similar to the

case of an elliptical if one considers a discretisation in time, i.e. approximating

the time domain [0, T ] for a partition 0 = τ1 < τ2 < · · · < τmmax
= T for uniform

intervals with time ∆τ . The implicit Euler scheme to approximate of ∂P (τ)/∂τ

is given by

∂P±

∂τ
(τm) ≈ ∂τP

m,± =
Pm+1,± − Pm,±

∆τ
.

Thus, the approach to the American put options problem is

PROBLEM IAPHhm: For m = 0, 1, 2, · · · we find Pm
h ∈ Kh

V satisfying

(∂τP
m,vh −Pm) + aA1(P

m+1
h ,vh −Pm) ≥

(

Fh,vh −Pm
)

, ∀ vh ∈ Kh
V ,
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satisfying the initial condition

(

P0
h,vh

)

=
(

Ph(S, 0),vh

)

=











(

P+
h (S, 0), v+h

)

(

P−h (S, 0), v−h

)











, ∀ vh ∈ Kh
V ,

with the bilinear form given by

aA1(P
m+1
h ,vh −Pm+1) =

1

2
σ2

(

S
∂Pm+1

h

∂S
, S
∂vh

∂S

)

− (r − λh− σ2)

(

S
∂Pm+1

h

∂S
,vh −Pm+1

)

+

+ (r + λh)
(

Pm+1
h ,vh −Pm+1

)

7.6 Numerical Simulation

This section presents the results of numerical experiments in order to illus-

trate some important aspects concerning the application of numerical methods

in financial markets. More precisely, the use of finite element methods (Galerkin

Method) for numerical solutions of equations and inequalities corresponding to

European and American options with memory in the underlying assets.

The implementation code for the finite element method is written in Matlab

in the spirit of C. Cartensen et al. in series [94, 95, 96] and more J.T. Oden [97]

One remarks that the purpose of these simulations is to provide an easier

overview of the theoretical results presented throughout this work.

The numerical results were obtained with the Picard’s Algorithm with the

method of Successive Over-Relaxation - SOR(ω) for European option pricing. For

American options, this last method was replaced by the method of Successive

Over-Relaxation SOR(ω) with projection on the convex set.
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7.6.1 Examples: Recovering the Standard Black and

Scholes Model

One uses the following economic parameters: $36.00 is the initial price of

underlying asset, the exercise price is $40, the interest rate is 6%/year, and the

time of maturity is one year. Here, in this example, the volatility is constant (σ)

at a level of 30%/year. The memory parameters are all zero.

For implementing the Finite Element Method one need to add the following

parameters: 51 is the number of steps of time and 51 is the number of steps of

underlying asset (space).
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0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0051 01 52 02 53 03 54 0
A s s e t s P r i c eO pti onP ri ce P r i c e o f E u r o p e a n O p t i o n ( F i n i t e E l e m e n t M e t h o d )M E FB l a c k − S c h o l e sP a y o f f

Figure 7.3: European put option in the Black and Scholes framework

As one can see in figure, Figure 7.3, the Black and Scholes model has been reco-

vered, i.e. the numerical values found by the Finite Element Method are equal

to those obtained via the Black and Scholes formula. A detailed study of the

convergence of Numerical Solution for the Black-Scholes formula is presented in

the Thomaz master’s thesis [42]. The next figure, Figure 7.4, shows the option

price as a function of price and time to maturity.

00 . 20 . 40 . 60 . 810 2 0 4 0 6 0 8 0 1 0 0051 01 52 02 53 03 54 0
T i m e t o M a t u r i t y

P r i c e o f E u r o p e a n O p t i o n ( F i n i t e E l e m e n t M e t h o d )

A s s e t s P r i c e
O pti onP ri ce

Figure 7.4: European option in a Black-Scholes framework with respect to un-

derlying price and time to maturity
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7.6.2 Examples: Memory in Assets

In this example, we present the solutions for an European and American put

and call options, assuming memory in the underlying asset.

The economic parameters for the European put or call option are the follo-

wing: $30.00 is the initial price of the underlying asset, the exercise price is $80,

the interest rate is 21%/year and the time to maturity is one year.

Here, in this example, the volatility is constant (σ) at 50%/year. The discon-

tinuity parameter of the underlying asset is λ = 0.1 and the parameter of jump’s

size is h = 1.0.

Furthermore, the numerical method’s parameters are: 51 for the number of

steps of time and 41 for the number of steps for the underlying asset (space). Fi-

gure 7.5 shows the option price as a function of the underlying asset price, while

Figure 7.6 and Figure 7.7 show the option price in a three dimension context as

a function of price and time to maturity.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

O pti onP ri ce
P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )M E F − P l u sM E F − N e gB l a c k − S c h o l e sP a y o f f

Figure 7.5: Option prices with memory in the underlying asset

Option pricing with memory assets with positive and negative information along

time,
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00 . 20 . 40 .60 . 81 05 01 0 01 5 02 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )

T i m e t o M a t u r i t yO pti onP ri ce −positi vepasti nf ormati on

Figure 7.6: Option prices with

memory in the underlying asset -

positive information.

00 . 20 .40 . 60 . 81 05 01 0 01 5 02 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )

T i m e t o M a t u r i t yO pti onP ri ce −negati vepasti nf ormati on

Figure 7.7: Option prices with

memory in the underlying asset -

negative information.

Changing to λ = 0.05 as the discontinuity parameter of the underlying asset,

found

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

O pti onP ri ce
P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )M E F − P l u sM E F − N e gB l a c k − S c h o l e sP a y o f f

Figure 7.8: Option pricing with memory assets in time of maturity.
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Over time of option pricing with memory assets with positive and negative in-

formation,

00 . 20 . 40 . 60 .81 05 01 0 01 5 02 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )

T i m e t o M a t u r i t yO pti onP ri ce −positi vepasti nf ormati on

Figure 7.9: Option pricing with

memory assets - positive informa-

tion.

00 .20 . 40 . 60 . 81 05 01 0 01 5 02 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )

T i m e t o M a t u r i t yO pti onP ri ce −negati vepasti nf ormati on

Figure 7.10: Option pricing with

memory assets - negative informa-

tion.

If λ = 0.0 is discontinuity parameter of the underlying asset recovering the

Standard Black and Scholes Model.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

O pti onP ri ce
P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )M E F − P l u sM E F − N e gB l a c k − S c h o l e sP a y o f f

Figure 7.11: Option pricing with memory assets in time of maturity.

American put option with the same parameters with λ = 0.1 is discontinuity

parameter of the underlying asset.
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0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

O pti onP ri ce
P r i c e o f A m e r i c a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )M E F − P l u sM E F − N e gP a y o f f

Figure 7.12: Option pricing with memory assets in time of maturity.

Over time of option pricing with memory assets with positive and negative in-

formation,

00 . 20 . 40 . 60 . 81 05 01 0 01 5 02 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

P r i c e o f A m e r i c a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )

T i m e t o M a t u r i t yO pti onP ri ce −positi vepasti nf ormati on

Figure 7.13: Option pricing with

memory assets - positive past infor-

mation.

00 .20 . 40 . 60 . 81 05 01 0 01 5 02 0 001 02 03 04 05 06 07 08 0
A s s e t s P r i c e

P r i c e o f A m e r i c a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )

T i m e t o M a t u r i t yO pti onP ri ce −negati vepasti nf ormati on

Figure 7.14: Option pricing with

memory assets - negative past in-

formation.

Now, let us work with call options. The parameters are: $30.00 is the initial

price of underlying asset, exercise price is $100, interest rate is 23%/year. Here in

this example the volatility is constant (σ) de 57%/year and the time to maturity

of the option is one year.
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Furthermore we have λ = 0.1 as the discontinuity parameter of the underly-

ing asset and h = 1.0 is parameter of jump’s size.

The numerical method’s parameters are: 51 is the number of step of time, 41

is the number of underlying asset (space).

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0− 2 002 04 06 08 01 0 01 2 01 4 01 6 01 8 0
A s s e t s P r i c e

O pti onP ri ce
P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )M E F − P l u sM E F − N e gB l a c k − S c h o l e sP a y o f f

Figure 7.15: Option pricing with memory assets in time of maturity.

Over time of option pricing with memory assets with positive and negative in-

formation,

0 0 .2 0 . 4 0 . 6 0 . 8 105 01 0 01 5 02 0 02 5 03 0 0− 2 002 04 06 08 01 0 01 2 01 4 01 6 01 8 0
T i m e t o M a t u r i t y

P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )

A s s e t s P r i c eO pti onP ri ce −positi vepasti nf ormati on

Figure 7.16: Option pricing with

memory assets - positive informa-

tion.

0 0 . 2 0 .4 0 . 6 0 . 8 105 01 0 01 5 02 0 02 5 03 0 0− 2 002 04 06 08 01 0 01 2 01 4 01 6 01 8 0
T i m e t o M a t u r i t y

P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )

A s s e t s P r i c eO pti onP ri ce −negati vepasti nf ormati on

Figure 7.17: Option pricing with

memory assets - negative informa-

tion.
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If λ = 0.0 is discontinuity parameter of the underlying asset recovering the

Standard Black and Scholes Model.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0− 2 002 04 06 08 01 0 01 2 01 4 01 6 01 8 0
A s s e t s P r i c e

O pti onP ri ce
P r i c e o f E u r o p e a n O p t i o n w i t h M e m o r y ( F i n i t e E l e m e n t M e t h o d )M E F − P l u sM E F − N e gB l a c k − S c h o l e sP a y o f f

Figure 7.18: Option pricing with memory assets in time of maturity.

As can be seen in Figure 7.18, as was expected, the new model presented in

this work restores the traditional modeling when the parameters of memory are

equal to zero. When this parameters are nonzero values, has a new model that

try to get a better match to the market.



8 Conclusion

8.1 Concluding Remarks

Mainly, this work presents new models for pricing options considering me-

mory in the underlying asset process. These new models are specially based on

the works of Di Crescenzo and Pellerey[10], Ratanov[11, 12, 13] and Hobson and

Rogers[24]. However other more specific results are also presented here.

This work shows new stochastic calculus tools which are quite important as

they have direct application in the pricing framework. For instance the Levy

theorem (Theorem 2.2.3), the stochastic integral for Semimartigales (Definition

2.3.5), Theorem of Exponential Stochastic of the Semimartigales (Theorem 2.3.2)

and the Theorem of Existence and Uniqueness of a solution for a special SDE

(Theorem 2.3.3). It also focuses on the implementation of numerical methods

analysing SDE.

Although there has been a proliferous production of literature on option pri-

cing, the main models for the underlying asset, since the Black and Scholes[3]

model, are highlighted here focusing on their main characteristics, the SDEs,

the analytical or numerical solutions and examples of price trajectories.

The aim of the study of underlying asset process was to produce the theo-

retical background to motive other processes. Firstly, it is presented the Jump-

Telegraph-Diffusion-Drift processes model (JTDD process), which basically is a

generalization of the model studied in Ratanov[11, 12, 13], by the inclusion of

113
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the drift. Consequently, it is shown the Exponential Stochastic of JTDD-process

(Theorem 5.1.2) which is essential to formalize the analytical solution for pricing

assets with memory. Secondly, the level of complexity was increased by conside-

ring stochastic volatility. Here the work was conducted on the ground of Hobson

and Roger[24] framework. Therefore, the final result was a pricing model with

a complex memory structure, which is present not only in the volatility but also

in the price itself - The JTDD-Process with Memory in the Volatility.

The use of the Jump-Telegraph-Diffusion-Drift processes (JTDD process) To

model the dynamics of the underlying asset created the need to develop a new

Ito’s Lemma, resulting in different systems according to the option’s type: sys-

tems of equations (7.12) and (7.15) refers to the European put and call options,

respectively; while the systems of differential inequalities (7.20, 7.21) and (7.25,

7.26) are the pricing formulae for American put and call options, respectively.

The solution of the previous systems of PDEs were approximated using a

combination between the Galerkin method and the Implicit Euler’s method. The

fully discrete problem was numerically solved using the Picard’s algorithm.

A direct extension for this work would be to consider the underlying asset

as described in (5.12) with a random volatility in the Hobson and Rogers[24]

sense. Other extension would be to consider stochastic interest rates, therefore

resulting on a three-factor model. Finally, although this is a theoretical work

one should not disregard the importance of the empirical work. In fact, it is

essencial for the calibration of volatility function, as in Foschi and Pascucci[26].
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69:348Ű359, 2005.

[86] F. Jean-Pierre, P. George, and S.K. Ronnie. Derivatives In Financial Mar-

kets With Stochastic Volatility. Cambridge university press, Cambridge,

2000.

[87] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Financial

Mathematics Series. Chapman & Hall/CRC, 2004.



124 Bibliography

[88] F.B. Hanson. Applied Stochastic Process And Control For Jump-Diffusions,

Modeling, Analysis, and Computation. Advances in Design and Control.

Society for Industrial and Applied Mathematics - SIAM, 2007.

[89] F. Comte and E. Renault. Long memory in continouus-time stochastic

volatility models. Mathematical Finance, 8(4):291–323, 1998.

[90] N. Ratanov. Quantile hedging for telegraph markets and its applications to

a pricing of equity-linked life insurance contracts. Borradores de Investi-

gación 62, Universidad del Rosario, Apr 2005.

[91] P. Wilmott, J. Dewynne, and S. Howison. Option Pricing, Mathematical

Models and Computation. Oxford Financial Press., 2000.

[92] S.N. Neftci. An introduction to the matematics of financial derivatives. Aca-

demic Press, second edition, 2000.

[93] H. Brézis. Análisis Funcional Teoria y Aplicaciones. Alianza editorial,

Madrid, 1984.

[94] J. Alberty, C. Cartensen, and S.A. Funken. Remarks around 50 lines of mat-

lab: short finite element implementation. Numerical Algorithms, 20:117–

137, 1999.

[95] J. Alberty, C. Cartensen, S.A. Funken, and R. Klose. Matlab implemen-

tation of the finite element method in elasticity. Cumputing, 69:239–263,

2002.

[96] C. Cartensen and R. Klose. Elastoviscoplastic finite element analysis in 100

lines of matlab. J. Numer. Math., 10:157–192, 2002.

[97] E.B. Becker, G.F. Carey, and J.T. Oden. Finite Elements An Introduction,

volume 1. Prentice-Hall, 1981.


