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Abstract

This work presents a study on top quark flavour-changing-neutral-

currents (FCNC) interactions. These interactions are characterised

by a vertex with a top quark and a light u or c quark, together with

one of the neutral gauge bosons: gluon, photon and Z boson. They

are highly suppressed in the Standard Model (SM), and are therefore

a good place to search for physics beyond the SM.

We start by presenting a theoretical introduction divided in three

chapters. The first one is dedicated to the subject of collider physics,

where the main aspects related to the physics and mathematical back-

ground of collider experiments are discussed. A brief account of the

SM is then given followed by a more detailed chapter where the sub-

ject of Effective Theories and their use in FCNC top quark physics is

described.

In the following chapters we first present a study where improvement

of FCNC top quark interaction limits were tested in an electron-

positron collider. A post LHC scenario where no FCNC physics is

found was assumed. Then we present a study on the well-known

asymmetry measured in top quark pair production at the Tevatron,

and its deviation with respect to the SM prediction. The study ad-

dresses the problem using a set of six dimension effective operators in

order to reproduce this asymmetry. In the following chapter a new

Monte Carlo event generator, MEtop, is presented. It is a generator

conceived primarily for FCNC direct top events with LO and NLO

precision, but it also generates FCNC single top @ LO. The generator

allows the user to generate events from three different sets of effective

operators. Finally, experimental simulations were performed in order



to study the performance of MEtop in FCNC top quark searches @

LHC.



Resumo

Este trabalho apresenta um estudo sobre interacções FCNC (flavour-

changing-neutral-currents) do quark top. Estas interacções são carac-

terisadas por um vértice entre o quark top e o quark leve u ou c, em

conjunto com um dos bosões neutros: gluão, fotão e o bosão Z. Elas

são altamente suprimidas pelo Modelo Padrão (MP), o que produz

um boa janela de procura de f́ısica para além do MP.

Começamos pela apresentação de uma introdução teórica dividida em

três caṕıtulos. O primeiro é dedicado ao assunto de F́ısica de Colision-

adores, onde são discutidos os principais aspectos relacionados com os

fundamentos f́ısicos e matemáticos de experiências de colisão. Uma

breve descrição do MP é depois dada seguida por um caṕıtulo onde

se descreve com mais detalhe os fundamentos das Teorias Efectivas e

o seu uso na f́ısica FCNC do quark top.

Nos caṕıtulos seguintes apresentamos primeiro um estudo onde o mel-

horamento dos limites da interacção FCNC do quark top foram tes-

tados num colisionador electrão-positrão. Para este estudo foi assum-

ido um cenário post LHC onde f́ısica FCNC não é descoberta. No

caṕıtulo seguinte é apresentado um estudo sobre a conhecida medida

da assimetria na produção de quarks top no Tevatron, e o seu desvio

relativamente às previsões do MP. O estudo aborda o problema através

de um conjunto de operadores effectivos de dimensão seis, de forma a

reproduzir a referida assimetria. De seguida é apresentado um novo

gerador de acontecimentos Monte Carlo, MEtop. É um gerador con-

cebido principalmente para acontecimentos ”FCNC Direct top” com

precisão LO e NLO, apesar de também gerar ”FCNC single top @

LO”. O gerador permite ao utilizador gerar acontecimentos a par-

tir de três conjuntos diferentes de operadores efectivos. Finalmente,



foram realizadas simulações de forma a estudar a performance dos

acontecimentos gerados pelo MEtop, bem como a procura de quarks

top FCNC no LHC.
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1

Introduction

The Large Hadron Collider (LHC) at CERN has now concluded its operation at

8 TeV centre-of-mass energy. The LHC top factory will allow us to scrutinise the

heaviest of all known quarks with unprecedented precision. Flavour physics is

on the top of the agenda as one of most interesting research topics that can be

addressed at this collider, through the study of flavour-changing-neutral-currents

(FCNC) in top-quark production and decay. In fact, a wide variety of models

show a strong dependence on the measurable FCNC quantities: for instance, top

quark FCNC branching ratios can vary from extremely small in the Standard

Model (SM) to measurable values at the LHC in a variety of SM extensions (1).

Therefore, the large number of top quarks being produced provide a means to

search for deviations from the SM, however small they are. It is clear that the

simplest way to search for new FCNC physics is to look for rare top decays like

for example t→ qγ where q = u, c is an up-quark or c-quark, respectively. Limits

on the BR(t→ qγ) were set indirectly at LEP (2, 3, 4, 5) and HERA (6, 7) and

directly at the Tevatron (8) (see (9) for references and details). Presently, the

best bound on the photon FCNC current is the one from HERA while the best

experimental bounds on BR(t→ qZ) were obtained at the Tevatron (10, 11) and

at the LHC (12, 13). Finally, the best bound on the strong FCNC current tqg

was recently obtained in direct top production at the LHC (14).

In this work we will present new contributions to the field of top FCNC

physics. Using an effective operator formalism we will be able to scrutinise classes

1



1. INTRODUCTION

of models that have the SM as its low energy limit. This effective Lagrangain

approach will be implemented using specific sets of higher order dimensional op-

erators. The actual Lagrangian is build specifically for the study of top quark

FCNC physics. Therefore, besides respecting the SM symmetries, redundant op-

erators are removed by using the equation of motion and Fierz identities. This

effective formalism is presented in chapter 4 just after a short review of the SM

in chapter 3

Chapter 2 is dedicated to collider physics. It presents a brief overview of the

mathematical and physics aspects needed to understand collider physics exper-

iments. Concerning the mathematical issues, the main focus will be on Monte

Carlo integration, together with a detailed account of the well known VEGAS

algorithm. There is also a section describing Markov Chains and the Metropolis

algorithm. This algorithm will be used to map a multidimensional phase space

with a consequent increase of computational efficiency. Concerning the physi-

cal aspects, the main topic is the full event simulation at a collider experiment

(except for hadronization). The starting point is the calculation of the partonic

cross section which amounts to the phase space integration of the transition am-

plitude, |M |2, for the process under study. This calculation, when performed at

some fixed order in perturbation theory, gives rise to divergences. This problem

can be solved analytically by the introduction of higher order corrections to the

partonic cross section. However, when the aim is to simulate real events, alterna-

tive techniques must be introduced. A common method to avoid the problematic

divergences is to restrict the phase space kinematics to safe regions. The danger-

ous ones, where the divergences occur, will then be covered by the introduction

of parton showers. This method is part of a technique called matching. Addition-

ally, the parton showers are needed to simulate the full event, since they will be

responsible for the simulation of so-called jets. In chapter 2 we will show how to

correctly generate higher order events using a combination of analytical methods

and parton showers.

In chapter 5 we focus on top FCNC physics in a post LHC scenario. As

mentioned above, the gap between the current limits on the top FCNC effective

couplings and the SM predictions is still humongous. This gap will be gradually

closed as more data is gathered at the LHC. However, it is important to address

2



the question of what will be the next step in top FCNC physics after the LHC.

Clearly, one of the possibilities investigated at present by the physics community

is a new electron-positron collider. Hence, in chapter 5 we compare the predic-

tions for the LHC operating at 14 TeV with the ones for a future electron-positron

collider. With this chapter we also wish to contribute to the physics case of a

future electron-positron collider (and possibly a photon-photon collider) in the

field of top FCNC physics.

Chapter 6 is devoted to the study of the measured forward-backward asymme-

try at Tevatron in the framework of FCNC effective operators. This asymmetry

is measured in the tt̄ production process. Althogh the SM predicts no asymme-

try at tree-level, the most recent measurement performed by CDF collaboration

shows an asymmetry of Att̄
FB = 0.158 ± 0.074 (15), far from the SM Next-to-

Leading (NLO) correction Att̄,SM
FB = 0.058 ± 0.009 (16, 17). Additionally, the

total tt̄ cross section measured is in agreement with the SM prediction. There-

fore, this scenario could hint at physics beyond the SM. In order to probe this

scenario we have introduced a set of top FCNC effective operators that could

induce a forward-backward asymmetry in tt̄ production. This set include strong,

electroweak and four-fermion operators. A Monte Carlo Markov Chain fit was

then performed using a set of physical experimental observables, allowing us to

understand if top FCNC operators contribute to the observed asymmetry at the

Tevatron.

In chapter 7 we present a new generator, MEtop, for the study of top quark

physics with effective operators. It is the first generator which can generate

FCNC direct top events with NLO precision in QCD. The matching procedure

mentioned above is implemented using the so-called effective approximation (18).

In this approximation the phase space is divided in two regions, where one will

be covered by the parton showers while the other is described by the transition

amplitude. The matching is then performed using a resolution parameter, which

in the present case is the top transverse momentum. Besides FCNC direct top,

MEtop additionally generates FCNC top production processes, namely FCNC

t + jet production. Several sets of effective operators for top FCNC studies are

available to use in MEtop. These include combinations of strong, electroweak

and four-fermion operators allowing the study of a number of Lorentz structures.

3



1. INTRODUCTION

In chapter 7 some examples will be provided.

Finally, in chapter 8 we present a study on the performance of the MEtop

generator by performing a detector level analysis of the process of direct top pro-

duction at the LHC. We start by reproducing the ATLAS experiment analysis

presented in (14), but for
√
s = 8 TeV. We compare the use of LO and NLO

generated events to understand what is the error in considering a constant K-

factor. We also investigate the contribution of the FCNC t + jet events to the

same analysis. We then perform a second analysis where an extra hard jet is

considered. We then compare the limits obtained for the strong FCNC coupling

constants for the different scenarios.
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2

Collider Physics

2.1 Introduction

Over the last century, particle physics research has always been supported by

experiments where particle collisions took place. The core of many of the apparata

used in those experiments involved some type of collision - from the cloud chamber

used in the beginning of the 20th century to the present day high energy proton-

proton collider, CERN’s LHC. It is in this context that collider physics discipline

emerges. In this chapter a short description of the fundamental concepts of

collider physics is presented. The main focus will be on the computational and

mathematical tools and in particular in the use of Monte Carlo generators and

also more phenomenological issues like for example the physics of parton showers.

2.2 Monte Carlo event generation

The most relevant physical quantity in any collision process is its cross section.

Experimental analyses are performed using this information as well as the cross

section behaviour with the measurable kinematical variables. The cross section

of a given process is defined as the probability of some interaction to occur and

therefore it can be measured experimentally just by counting the events in the

initial and final states. Initial and final states refer to the times before and after
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2. COLLIDER PHYSICS

the collision. Mathematically, this probability is calculated within the framework

of Quantum Field Theory (QFT), and is done by writing a transition amplitude

(actually its square), with respect to a specific configuration in phase space.

This amplitude’s square is usually denoted by |M |2. In this context, the total

cross section can be viewed as a weighted average, where the sum extends to all

kinematically allowed phase space configurations and where each point in this

space is weighted by the value |M |2 at that point. This calculation is in fact just

a Riemann sum, which means that the total cross section calculation is no more

that an integration of |M |2 in the allowed phase space domain. As one would

expect, these |M |2 amplitudes are usually long and complex expressions which

in most cases cannot be integrated analytically. To solve this problem, particle

physicists usually use numerical methods, in particularly the very popular method

of integration known as VEGAS (19).

2.2.1 VEGAS

We start by reviewing the basic principle of Monte Carlo integration. The starting

point is the useful approximation shown in equation 2.1:

I =

∫
V

f(x)dx ∼ V × 1

N

N∑
i

f(xi) = V < f >, (2.1)

where xi are random points in a generic V space. The integral is then interpreted

as a simple function average, < f >, normalised to the volume phase space. The

next step is to estimate the precision of such approximation which is done by

calculating the variance of f and its relation to the integral variance, σI . The

two variances are shown in equations 2.2 and 2.3:

σ2
f =

1

N

N∑
i=1

(f(xi)− < f >)2 =< f 2 > − < f >2 (2.2)

σ2
I ≡ V ar(I) = V ar(

V

N

∑
f) =

V 2

N2

∑
V ar(f) =

V 2

N
σ2
f . (2.3)
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2.2 Monte Carlo event generation

Hence, the error of σI behaves as 1/
√
N . When compared with other methods,

like for example the Trapezoidal rule or Simpson numerical integration, where

for a d dimensional case the error goes with N−2/d and N−4/d respectively, we

conclude we are facing an inefficient numerical method of integration. However,

equations 2.2 and 2.3, have exactly the same form whether we are working in 1 or

in d dimensional space. Therefore, the error in a MC integration always behaves

as 1/
√
N , regardless of the integration space dimension d. We conclude that, for

high dimensional integration, the MC method is more efficient, and consequently

the preferred one in particle physics, due to the frequently high number of final

state particles in each collision, which leads to high dimensional phase spaces.

In order to improve the convergence rate of 1/
√
N there are mainly two varia-

tions of the above MC integration: Stratifed sampling and Importance sampling.

In Stratifed sampling the integrand phase space domain is divided into kd sub-

spaces, where k is the total number of divisions performed in each dimension.

Each subspace is then a hypercube where MC integration can be separately per-

formed. The full integral I will be the sum of partial integrals Ij, with j = 1, ..., kd,

which can be written as

I =
k∑

j=1

V ol(Mj)

Nj

Nj∑
i

f(xji ), (2.4)

where Nj is the total number of sample points taken in the Mj hypercube. The

corresponding variance is

σI =
k∑

j=1

V ol(Mj)
2

Nj

σ2
f (Mj). (2.5)

This result does not guarantee that Stratifed sampling has a faster convergence

behaviour. From 2.5 we can only say that if we are able to choose the Mj hyper-

cubes, in such a way that the variance is reduced in each individual hypercube,

then we are sure to have a faster convergence rate. This is where Importance

sampling comes into play. In this sampling method, the random points are orien-

tated through a probability density function (pdf), in such a way that the integral

7



2. COLLIDER PHYSICS

variance will be smaller as compared to the case of uniformly generated random

points. The pdf can be introduced via a change of variables as shown in equation

2.6.

∫
f(x)dx =

∫
f(x)

p(x)
p(x)dx =

∫
f(x)

p(x)
dP (x),

where p(x) =
∂d

∂x1...∂xd
P (x) and

∫
p(x)dx = 1. (2.6)

The integral is obviously equivalent to the one in equation 2.1, and the statistical

error is again given by V σf/
√
N

E = V
1

N

N∑
i=1

f(xi)

p(xi)

σ2
f =

1

N

N∑
i

(
f(xi
p(xi)

)2

− E2. (2.7)

The variance now depends on the pdf one uses, and therefore it can be minimised

by an appropriate pdf definition. A perfect choice would be p(x) = cf(x), which

by using equation 2.7 would result in σf = 0, and therefore a precise result. How-

ever, the use of this pdf would require sampling points from it, and that in turn

would mean that the integral I was known; but I is precisely the quantity we

want to calculate! Therefore one usually chooses a pdf that can reproduce as re-

liable as possible the shape of the integrand function reducing the final variance.

The VEGAS-algorithm is an iterative combination of these two methods:

Stratifed and Importance sampling. The algorithm starts by defining a grid by

dividing the phase space into the kd subspaces mentioned above. In each of these

d-dimensional cubes a simple MC integration is performed, which then results in

a grid readjustment according to the weight each region has in the integral. After

this step, a new iteration starts, with the sampling points weighted according to

the new grid. In many MC tools, like event generators, this method is imple-

mented in a two step calculation. The first one aims to find the best possible

grid, for which several iterations are performed with a small number of MC in-

tegration sampling points. In the second step, a single iteration is defined, and
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2.2 Monte Carlo event generation

a considerable number of MC sampling points are requested, resulting in a very

good precision for the final integral. The final integral estimation is obtained by

combining cumulatively all iterations. For each one we get the following estimate

Ej and variance σ2
j

Ej = V
1

Nj

Nj∑
i=1

f(xi)

p(xi)
, σ2

j =
1

Nj

Nj∑
i=1

(
f(xi)

p(xi)

)2

− E2
j (2.8)

where Nj is the number of sampling points in the iteration j. The final result

reads

E =

(∑m
j=1Ej

(
E2

j

σ2
j

))
(∑m

j=1

E2
j

σ2
j

) , σI = E

(
E2

j

σ2
j

)−1/2

, (2.9)

which is no more than a weighed average over all iterations.

In MEtop (chap. 7) all cross section integrations are calculated using the

VEGAS algorithm embedded in the Cuba library (20).

2.2.2 Regularization

A common issue when dealing with the |M |2 integration is the problem of sin-

gularities. It is known that almost all transition amplitudes contain dangerous

propagators, that are likely to result in possible divergences. These singularities

arise mainly due to poles of virtual particles propagators of the form

1

q2 −m2
, (2.10)

which diverge in the case where virtual particles become on-shell. A common

method to solve this problem is to include an extra term in the denominator

of equation 2.10, so that the on-shell divergent point is avoided. The introduc-

tion of this new factor is justified by considering higher order corrections to the

propagator and it is usually written as

1

q2 −m2 − iΓm
, (2.11)
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where Γ is the particle’s width. In the current physical production processes

implement in MEtop, there are two of these potentially dangerous poles: one

from top quark and another from W boson propagators. In both cases, this

correction has been implemented and the value of the top and W widths can be

defined in the parameters file ”param.txt”.

Another problem one has to deal with, when performing MC integrations, is

the lack of precision in peaked regions. It will always result in large contributions

to the final variance, even with the VEGAS algorithm, originating a poor precision

in the MC integration. A common solution is to perform a regularization, in order

to transform these peaks in smooth and/or flat regions, easier to integrate. As

an example we consider the case where the peaked region has its origin in an

s-channel propagator; in that case one usually applies a change of variables to

the integral ∫ smax

smin

dŝ, (2.12)

where s represents here the off-shell particle’s squared momentum. To regularize

it we start by applying the following identity:

∫ smax

smin

dŝ =

∫ smax

smin

dŝ
g(s)

g(s)
, g(s) =

ΓM

tan−1( s−M2

ΓM
)− tan−1( smin−M2

ΓM
)
. (2.13)

The new integration variable is defined by:

ρ = tan−1(
s−M2

ΓM
), (2.14)

which results in the transformation

dŝg(s) =
dρ

tan−1( s−M2

ΓM
)− tan−1( smin−M2

ΓM
)

(2.15)

and in the final integration

∫ ρmax

ρmin

dρ
(ΓM tan(ρ))2 +M2Γ2

ΓM
, ρmax

min
= tan−1(

smax
min

−M2

ΓM
). (2.16)
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2.2 Monte Carlo event generation

In the production processes introduced in MEtop, there are only two dangerous

divergent poles that one needs to regularize. These peaks come from the resonant

behaviour of the top quark and W boson propagators. In MEtop, regularization

was introduced in the cross section integration as well in the event generation.

2.2.3 Event generation

The next step in a MC event generator is, as expected, to generate events. One

starts by sampling points from the phase space according to their configuration

weights, which are given by the transition amplitude |M |2. One of the first prob-

lems one has to deal with is that in order to perform such sampling the inverse

of |M |2 must be used. However, for a typical high energy scenario this is usually

impossible, due to the its highly complicated form. Therefore, just like impor-

tance sampling uses a pdf to sample the integration points, the same idea can be

used, in combination, once more, with stratified sampling, to sample the phase

space points where the integrand has its larger contributions. Now, instead of

calculating an average, and therefore a MC integration, we just have to apply

an acceptance-rejection method algorithm (Von Neumann) in order to save, or

not, our final event coordinates. In figure 2.1 a simple example of this method is

exemplified. In a), the pdf adopted is Ch(x), where the C ≥ 1 and h(x) a uni-

form distribution whose value is equal to the maximum of f(x) (in the example

C = 1). The phase space points (here x) are sampled according to Ch(x), and

the event is accepted if and only if uCh(xi) ≤ f(xi), where xi is the phase-point

in question, and u a uniform random number between 0 and 1. In b), an improve-

ment is obtained. Here, the pdf is a step function, and the points are sampled

according to the same algorithm, with the difference that now the random x are

more likely to be inside the section where the function has its peak, producing a

more efficient event generation.

In MEtop, the event generation is performed using this accept-rejection algo-

rithm, where a d-dimensional grid is defined, with d being the number of inde-

pendent variables for the physical process in question. The first step is to find the

maximum value for each cube. This is done throwing a total of 250 random points

per cube. The largest value is then multiplied by a factor C = 1.5. With the grid
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calculation performed, a cumulative function is then built and the event genera-

tion is ready to be started. As in the example above, a cube is found according to

its weight and the event configuration is saved according to the accept-rejection

algorithm.

C h(x)

C h(x)

f (x)

x

f (x)

(a)

(b)

Figure 2.1: Acceptance-Rejection method. From (21)

2.2.4 LHE format

When one event configuration is accepted, all the information regarding the par-

ton (momentum, spin, etc.) should be written in a standard format, so that

any external software is able to read it. Additionally, in most cases events are

generated at the partonic level only and therefore all subsequent physical pro-

cesses, like for example showering and hadronization, must be handled by other

software like PYTHIA (22) or HERWIG (23). Hence, MEtop outputs the event

information in the known LHE (24) format. This is a standard format containing

all relevant information about a partonic event, and can be read by most high

energy MC generators.
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2.3 Theory of Hadronic collisions

2.3 Theory of Hadronic collisions

2.3.1 Hard Process

A parton level cross section is characterised by the interaction between asymp-

totically free states, which do not exist in Nature in a stable state. In order to

connect these partonic collisions with the real process, we must take into con-

sideration the fact that initial partons are ”extracted” form colliding beams of

nucleons. This is the case of the LHC, which is a proton-proton collider. The

real process is related to the parton level one through the introduction of the

so-called parton distributions functions (PDF). In short, these functions give us

the probability ”to extract” the initial partons from the nucleon under consid-

eration, for a given momentum p and a specific factorization scale μF . In doing

this, we assume a factorization process, which means we consider the partonic

process to be independent of the nucleon configuration. The extraction and the

collision are interpreted to occur at different ”times”, which allow us to perform

each calculation separately. The convoluted cross section can then be written as:

σH1H2(p1, p2) =
∑
ij

∫
dx1x2f

H1
i (x1, μF )f

H2
j (x2, μF )σ̂ij(x1p1, x2p2), (2.17)

where σ̂ and σ represent the partonic and total cross section, respectively. The

sums over i and j are included in order to account for all possible production

processes originating the same final state. The f functions are the already men-

tioned PDF. They are phenomenologically modelled by several groups, like for

example CTEQ (25) or MRST (26), and depend on the momentum fraction xi

(the ratio of the parton momentum to the nucleon momentum), as well as on

the factorization scale μF . Typically, this scale is chosen to be of the same order

as that of the hard scattering process. For example, for all physical processes

in this work, which concern top quark production, we use μF = Mtop. In the

section where parton showers are discussed we will elaborate on the reasons for

this choice.

The partonic cross section, σ̂, is calculated through a perturbative series. In

QCD, this series is an expansion in the strong coupling constant αS, where the
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first term correspond to what is usually called Leading Order (LO), the second

term Next-to-Leading Order (NLO), and so on. Once we start calculating these

higher order corrections, unwanted though unavoidable divergences will arise. In

order to have a better understanding of these issues, we will now analyse in more

detail an example of a NLO calculation.

2.3.2 NLO calculation

Figure 2.2: Born diagram of eē → qq̄. From (27)

Figure 2.3: Virtual corrections to eē → qq̄. From (27)

The LO calculation is the first term in a QCD perturbative calculation. Al-

though in most calculations the LO is the largest contribution to the cross section,

its theoretical uncertainty together with the need to match the attained experi-

mental accuracy forces the calculation of higher order contributions to the cross

section. Matching the experimental precision at colliders and in particular at

the LHC requires high precision calculations in order to test the SM limits, or

search for physics beyond it. Therefore, NLO calculations should be performed

whenever possible. We present an overview on how this type of calculation is

performed. To simplify, we show the NLO calculation of the process eē → qq̄,
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where only the photon exchange is considered. In figure 2.2 we show the Born

diagram for such process. Its cross section is proportional to |MB
qq|2 (whereMqq is

the transition amplitude and the superscript B stands for Born-level) , and since

there are no QCD interactions involved, it is labelled as order α0
S. The inclusion

of virtual corrections is done by simply inserting QCD loops in the Born diagram.

This is shown in figure 2.3. As a result, the total cross section is proportional to

|MB
qq +MV

qq|2, which results in a sum of the form: Aα0
S +Bα1

S + Cα2
S. The NLO

cross section is the sum of the first and second terms. For this process, the Born

cross section is easily calculated to give (28):

σqq̄ = NcQ
2
q

4πα2

3s
, (2.18)

where Nc is the total number of colours and Qq is the quark charge. By includ-

ing loop diagrams, unavoidable divergences will emerge. These can be divided

in two types: Ultraviolet (UV) and Infrared (IR) divergences. UV divergences

are related to ill-defined distribution in QFT and for some theories they can be

removed by the so-called process of renormalization. Whenever it is possible to

remove all UV divergences the theory is said to be renormalisable. The infini-

ties appear in the bare parameters like masses and coupling constants, and are

removed by addition of counterterms in such a way that the renormalised param-

eters are fixed by experiment. This is called renormalisation procedure. One of

the most used techniques to deal with the infinities is dimensional regularization.

The phase space integration is performed not in D = 4 but in D = 4− 2ε dimen-

sions, where the limit ε → 0 is taken at the end. This technique is used because

the divergences can be clearly isolated in powers of ε.

In this particular example we are presenting, i.e., e+e− → qq̄ , the UV NLO

QCD corrections cancel when we add all diagrams and therefore there is no

dependence on the renormalization scale. We should emphasise however that in

general there is a dependence in the renormalization scale that has to be taken

into account. We now move to the study of IR divergences as they are the main

purpose of this section. In equation 2.19 we present the virtual corrections the
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cross section for eē→ qq̄ (28):

σV
qq̄ = σqq̄3Q

2
q

CFαS

2π
H(ε)[− 2

ε2
− 3

ε
− 8 +O(ε)] (2.19)

H(ε) =
3(1− ε)2

(3− 2ε)Γ(2− 2ε)
, (2.20)

where CF = N2
c−1
2Nc

and Γ is the Euler Gamma function. In this expression only

IR divergences appear and the final result is obtained by taking the limit ε→ 0.

As we can see the divergences are isolate in poles of ε. The 1/ε is related to the

collinear divergences while 1/ε2 concerns the soft divergence terms. We have now

to consider another process of the same order in the strong coupling constant,

the real emission process. As we will see, this process will remove the infinities

introduced by the virtual corrections. The reason to introduce the real emission

diagrams is the detector’s resolution limitations in any experiment, which makes

a process with a collinear or soft real emission indistinguishable from the same

process with no emission. Therefore, since one must account for all possible

processes to be detected, the real emission diagram with a low energy gluon or

a gluon collinear with a quark must be considered. For the present case the

diagrams are shown in figure 2.4.

Figure 2.4: Real radiation correction. From (27)

Applying again dimensional regularization the result can be written as (28):

σqq̄g = σqq̄3Q
2
q

CFαS

2π
H(ε)[

2

ε2
+

3

ε
+

19

3
+O(ε)]. (2.21)

It is clear that all poles have the opposite sign of the ones in equation 2.19.
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Therefore, when adding the contributions, the final result is free of divergences.

We should mention that when dealing with NLO corrections of processes with

quarks in the initial state, the soft divergences also cancel but the collinear sin-

gularity is absorbed by a redefinition of the quark distribution function. The soft

terms cancellation works for any physical process as proved by the so-called KLN

theorem (29, 30). This property is called infrared safety.

Regarding UV divergences, we have stated that all divergences cancel out at

NLO. However, when one calculates the NNLO corrections, a renormalization of

the coupling constant αs must be introduced. There are several ways to imple-

ment this renormalization procedure and as a consequence the final result will

have a scale dependence. This scale is what is usually called renormalization

constant μR, and, in principle, if one would be able to sum to all orders in αS,

the dependence on μR constant would disappear. As it is well known, it is im-

possible to sum to all orders in αS. Therefore μR is usually chosen by looking

for the region where the calculated physical observable change less with μR, i.e.,

the plateau region. Since this is not a truly reliable method to remove unwanted

scale sensitivity, μR is considered to be a contribution to the systematic error of

any physical observable, and to determine this error the scale is usually varied

between μR/2 and 2μR.

We now show in equation 2.22 the general formula for a production process

with n partons in the final state at NLO,

dσNLO = B(Φn)dΦn + V (Φn)dΦn +R(Φn+1)dΦn+1 (2.22)

where B(Φn) stands for the Born contribution, V (Φn) are the virtual corrections

and R(Φn+1) the real emission process, which is characterised by having a differ-

ent number of final state particles, specifically n + 1 partons. This leads to an

additional problem when event simulation with NLO precision is required. As we

saw above, this does not present an analytical problem since the divergences are

isolated and cancelled through the dimensional regularization method. However,

when an event simulation is needed, one cannot use the same technique due to

the fact that 4-dimensional numerical points must be used. This problem will be

addressed bellow.
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2.4 Parton Showers

2.4.1 Introduction

Just like electric charges emit electromagnetic radiation through bremsstrahlung

emission, a coloured particle, quark or gluon, will also radiate ”QCD radiation”,

i.e., gluons, due to ”colour charge” acceleration. This emission process occurs

before and after the hard process takes place, and is characterised by a cascade

of collinear and soft gluons. These emissions result in a radiation bunch that can

be viewed as a shower of partons, which, in consequence of hadronization, are the

experimentally observed jets.

In principle, we could apply the ideas explained above and calculate the full

final ”showered state Matrix Element”. Of course, because of the high number of

final partons, this is far from doable and therefore an alternative procedure must

be used. Besides, even if we would manage to calculate and integrate such ME,

we would still had to deal with all divergences associated with collinear and soft

partons, typical in a fixed-order ME calculation.

2.4.2 eē→ γ → qq̄

In order to solve this problem we start by analysing again in more detail the

simple production process eē→ γ → qq̄. The amplitude |M |qq̄ can be written as:

Mqq̄ = iQqe
2v̄(p2)γμu(p1)

gμν

s
ūa(q1)γνδabvb(q2), (2.23)

where p1 and p2 are the positron and electron momenta, q1 and q2 the exter-

nal quarks momenta, and a, b the colour running indices. After squaring and

integrating it, we get the following cross section:

σqq̄ = NcQ
2
q

4πα2

3s
. (2.24)

As discussed this is the LO result (order α0
S) which is free of divergences. In order

to calculate the NLO correction we follow the steps summarised in equation 2.22.
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For the real part we just have to include a gluon emission from each of the external

leg as shown in figure 2.4. The correspondent amplitude is given by:

Mqq̄g = iQqe
2v̄(p2)γμu(p1)

gμν

s
ū(q1)igs/ε

ata
i(/q1 + /q3)

(q1 + q3)2
γνv(q2) (2.25)

−iQqe
2v̄(p2)γμu(p1)

gμν

s
ū(q1)igs/ε

ata
i(/q2 + /q3)

(q2 + q3)2
γνv(q2), (2.26)

which leads to

1

4

∑
|Mqq̄g|2 = 24CFQ

2
qe

4g2s
(q1.p1)

2 + (q1.p2)
2 + (q2.p1)

2 + (q2.p2)
2

(p1.q2)(p1.q3)(q2.q3)
. (2.27)

In order to integrate it we use the phase space formula

∫
dΦ3 =

s

128π3

∫
dx1dx2 , xi =

2Ei√
s
, (2.28)

where the integral runs over a Dalitz plot contour, and the xi variables are related

with the particle’s momentum through:

x1 = 1− 2(q2.q3)

s
(2.29)

x2 = 1− 2(q1.q3)

s
(2.30)

x3 = 1− 2(q1.q2)

s
, (2.31)

where x1 + x2 + x3 = 1. These analytical manipulations are quite useful because

the final real emission cross section can be written in the simple formula

dσqq̄g = σqq̄CF
αs

2π

x21 + x22
(1− x1)(1− x2)

dx1dx2. (2.32)

We can easily check that this cross section is singular for x1 → 1 and x2 → 1,

which correspond to the soft and collinear singularities. In order to distinguish
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them we use equations 2.29-2.31 to rewrite:

q1.q3 =
s

2
(1− x2) = E1E3(1− cos θ13) =

sx1x3
4

(1− cos θ13) (2.33)

q2.q3 =
s

2
(1− x1) = E2E3(1− cos θ23) =

sx2x3
4

(1− cos θ23), (2.34)

which results in

1− x1 =
x2x3
2

(1− cos θ23) (2.35)

1− x2 =
x1x3
2

(1− cos θ13). (2.36)

Additionally, we can write the following relation:

x21 + x22
(1− x1)(1− x2)

=
1 + x2
x1 − 1

+
1 + x1
x2 − 1

. (2.37)

These equations clarify the origin of the problematic singularities. The collinear

divergences are both originated from the cos θ13 → 1 and cos θ23 → 1 limits. Each

one can be interpreted as a collinearity between the emitted gluon and each of

external quarks. cos θ23 → 1 corresponds to a collinearity between partons 2 and

3 and cos θ13 → 1 to a collinearity between partons 1 and 3. Besides these two,

we can still point out a third singular point, x3 → 0, which physically represents

the soft singularity. A second conclusion that can be drawn from equation 2.37

is that the final result can be written as the product of two distributions. This

means that the real radiation process, eē → qq̄g, can be viewed as two distinct

physical processes: a first one where the hard process occurs, namely eē → qq̄,

followed by an independent gluon emission from either one of the external quarks.

Therefore, we are again facing the possibility of factorization, which on one the

hand allow us to simplify the calculations, and on the other hand to apply the

same idea recursively. We can now start to picture how we will simulate the

total collision process. Applying this same idea iteratively in a Monte Carlo type

algorithm, we will be able to ”dress” the hard process with successive emissions.

This process is what is called a parton shower that ultimately corresponds to the

observed jets.
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In order to implement these emissions iteratively, we first make a suitable

change of variables. Defining pT as the gluon transverse momentum and z the

energy fraction with respect to its hadron’s parent energy, we can write:

x1 =
p2T
s

+ z (2.38)

x2 =
p2T

s(z − 1)
+ 1 (2.39)

dx1dx2 = z(1− z)(1− z − z

z − 1

p2T
s
). (2.40)

Because the cross section is heavily enhanced in the pT → 0 region, a p2T expansion

of equation 2.32 can be performed. In the low pT region we can then write

dσqq̄g = σqq̄
∑

partons

CF
αs

2π

dp2T
p2T

dz
1 + z2

1− z
. (2.41)

The collinear divergences are now located in the regions where pT → 0 while

the soft singularities appear in the limit z → 1. In order to deal with them

we first need to understand what is the physical reason behind their existence.

In an exclusive analysis, we would be looking for a final state with two partons

(or two-jet state to be more realistic) in the case of eē → qq̄ , or a final state

with three partons (three jet state) in the case of eē → qq̄g. However, we are

already aware that it is not possible to observe such definite final states. First,

because there is no way to tell weather we are detecting just one parton or two

collinear partons with the same momentum. Second, because it is not possible to

experimentally detect a single parton with a negligibly small amount of energy.

One solution is to introduce a resolution parameter in our analysis, so that one

is able to parametrize the detector’s physical limits. This parameter can be the

parton energy, the total or the transverse momentum, or any other discriminating

variable. In this case we define a cutoff Q0 on the pT variable, and a minimum

energy ε to regulate the energy fraction z. These resolution parameters will play

a double role. On the one hand they will produce finite cross sections and on the

other hand they will allow us to distinguish between exclusive n jets and n + 1
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jets final states. In terms of these resolution parameters the cross section from

equation 2.41 will be proportional to

αs

2π
log(

p2T
Q0

) and
αs

2π
log(

p2T
Q0

) log(
1

ε
), (2.42)

where the single logarithm correspond to the collinear divergence only, and the

double logarithm to a collinear and soft divergence.

We could be tempted to think that by applying this cutoff we would be loosing

part of the cross section (for the σqq̄g case), because the full phase space integration

region is not entirely covered. In fact, the cross section obtained for σqq̄g after the

cuts (pT < Q0 and z < ε) must be added to the exclusive two-jet cross section,

which together with the virtual terms dσV
qq̄, will cancel the unwanted singularities,

resulting in a final cross section free of singularities.

Universal factorization

We now return to equation 2.41. Although it refers to the eē → qq̄g process,

the z dependence structure is ”universal”. It can be shown that a general σn+g

case (where n stands for a given hard process) can be written, in the collinear

limit, as a product of σn and an emission term. The emission factors are called

Altarelli-Parisi splitting functions (31), and give us the branching probability as

a function of the fraction of energy z, carried by the final parton (z can also

be defined for example as the momentum fraction). They play a central role in

the shower simulation. There are a total of three possible branchings: q → qg,

g → gg and g → qq̄. The respective splitting functions (spin averaged) are given

by:

Pq,qg(z) = CF
1 + z2

1− z
(2.43)

Pq,qg(z) = CA

(
z

1− z
+

1− z

z
+ z(1− z)

)
(2.44)

Pq,qg(z) = TF
(
z2 + (1− z2)

)
, (2.45)
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where CF = N2
c−1
2Nc

, CA = Nc and TR = 1
2
. A final comment about equation 2.41:

besides transverse momentum, other kinematic variables, like the angle or parton

virtuality, could be used as well. The criteria is that the kinematic dependence

should be proportional to the branching angle. Currently, several parton shower

simulators use different definitions, and the most common are:

virtuality : t = (k + l)2 ∼ E2θ2z(1− z) (2.46)

transverse momentum : p2T = l2T ∼ E2θ2z2(1− z)2 (2.47)

angular variable : θ2 (2.48)

As we can see, all of these three definitions depend on θ and obey

dθ2

θ2
=
dp2T
p2T

=
dt

t
. (2.49)

Soft divergences and angular ordering

Until now we have assumed a collinear approximation. However, we still have

to deal with the cases where we face a soft singularity in a wide angle scenario.

The treatment is similar to the collinear case. We have shown that the total

σqq̄g cross section can be factorized into σqq̄ times a gluon emission probability

factor. In the soft emission case it can also be shown that the processes can be

factorized in a similar way but only at the amplitude level. In fact, factorization

is not possible after the amplitude is squared. It can be shown (see (28)) that, in

a soft emission scenario, a n+ 1-parton distribution can be written as a function

of n-parton through the relation:

dσn+1 = dσn
dEg

Eg

dΩ

2π

αS

2π

∑
ij

CijWij, (2.50)

where Eg is the emitted gluon energy, Ω the solid angle for the emitted gluon,

Cij a color factor that must be computed case by case, and Wij the so-called
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radiation function given by:

Wij = E2
g

pi.pj
(pi.pg)(pj.pg)

=
1− cos θij

(1− cos θig)(1− cos θjg)
. (2.51)

In equation 2.50 the sum runs over all partons pairs, which is a consequence of a

non-negligible interference terms (the sum runs over all possible pair combinations

from where the gluon can be radiated). For the eē → qq̄g process, the sum has

one term only. In figure 2.5 we show the emission of a gluon from a quark with

momentum p1. The angle θk1 is the angle between the emitted gluon and p1,

θk2 is the equivalent angle for quark 2 with momentum p2 and θ12 is the angle

between p1 and p2. For the present case Wij is given by:

W12 =
1− cos θ12

(1− cos θk1)(1− cos θk2)
. (2.52)

Figure 2.5: QCD coherence. The emission outside the cone of angle θ12 is sup-
pressed.

We now analyse three case scenarios. A first one where θk1 << θk2 	 θ12, a

second one where θk2 << θk1 	 θ12 and a third one with θ12 << θk1 	 θk2. By

using cos θ ∼ 1− θ2/2 for small angles we obtain:

• θk1 << θk2 	 θ12 : W12 ∝ 1
θ2k1

• θk2 << θk1 	 θ12 : W12 ∝ 1
θ2k2

• θ12 << θk1 	 θk2 : W12 ∝ θ212
θ2k1

.

We can confirm the expected 1/θ2 behaviour in the first two scenarios which is

due to the collinear divergence. However, the same is not true for the third sce-

nario. In this case, the W12 function is highly suppressed. Therefore, we can
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conclude that gluon emissions where the angle lies outside the cone drawn by the

two partons momenta are suppressed (it can be shown that there is in fact no

emission outside this cone). Note that the polar angle of the solid angles around

p1 and p2 are equal to the angle between p1 and p2. This property is called ”an-

gular ordering” and can be generalised to any pair of partons. To sum up, it

says that the emitted radiation from any pair of partons is limited to the volume

produced by the sum of both solid angles drawn from each parton line (see figure

2.6 - the radiation is limited to the volume defined by the red and blue cones).

In conclusion, in a QCD showering all emitted radiation will be angular or-

dered, i.e., as the shower goes on, the radiation will be emitted at increasingly

smaller angles. As we saw in the previous section, this ordering does not present

a problem in the case the shower is simulated through the angle variable θ. How-

ever, if one uses the transverse momentum pT, or the virtuality t, the angular

ordering is not guaranteed and therefore a correction must be implemented.

Figure 2.6: QCD soft gluon emission region.

2.4.3 General case

Figure 2.7: Collinear Factorization. From (32)
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We are now ready to generalise the shower algorithm. In figure 2.7 we show a

schematic diagram representing the factorization of a n+1-parton into a n-parton

process radiating a gluon from one of the external legs. The procedure can be

written

|Mn+1|2dΦn+1 =⇒ |Mn|2dΦn
αS

2π

dt

t
Pq,qg(z)dz

dφ

2π
, (2.53)

where Mj represents the respective l-parton squared amplitude. The variables

t,z and φ describe the branching kinematics, and their definitions are the same

as for the electron-positron example discussed above. Since in this case we are

considering a gluon emission, the splitting function Pq,qg(z) must be used. Finally,

the phase space is defined as

dΦn(P ; p1, ..., p2) = δ4(P −
n∑

i=1

pi)
n∏

i=1

d3pi
(2π)32Ei

. (2.54)

As we mentioned above, there are several ways to define the virtuality t (equal-

ities shown in equations 2.46-2.48). This ”virutality” controls the order of the

branching cascade, creating an ordered shower with respect to t (or p2T or θ). The

parton shower simulation is performed by recursively applying a Markov-Chain

type of algorithm, using the factorization shown in equation 2.53 , where in each

step a new t is calculated. This is shown in figure 2.8.

Figure 2.8: Q2 ordered shower. From (33)

We also note that in order to introduce higher order corrections to gluon emis-
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sions we must consider a running coupling constant αS(t), rather than a fixed one

(34). As a consequence the final state configuration will be affected. Since αS(t)

increases as the scale gets lower, the probability of emission will increase as well,

and therefore, as we approach the cut-off scale Q0, more emissions will occur.

Additionally, we must make sure that the cut-off Q0 is above QCD scale, ΛQCD.

This follows from the fact that bellow ΛQCD, αS is above 1, which means that

QCD can no longer be considered a perturbative theory.

Sudakov Factor

Let us now consider the probabilistic term from equation 2.53

dPi =
αS

2π

dt

t
Pi,ij(z)dz

dφ

2π
. (2.55)

It give us the probability of a gluon j being emitted from parton i, with ”vir-

tuality” between t and t + dt, for a given z and φ configuration. Now, together

with this information, we must know the non-emission probability factor. This

information is needed because the branching generation will be equivalent to a

nuclear decay simulator, i.e., in order to describe an emission for a given time

t′, we need to know the decay probability for t′ and the probability of no decay

between the initial time t0 and time t′. From unitary we have

Pno emission(t1 > t > t0) = 1− Pemission(t1 > t > t0). (2.56)

Using this expression we can calculate the total non emission probability (NE)

as function of the emission probability (E). This is done by diving the t domain

in infinitesimal segments:

PNE(t1 > t > t0) = lim
N→∞

N−1∏
n=0

(1− PE(tn+1 > t > tn)) , tn+1 =
t1 − t0
N

(2.57)

= exp

(
− lim

N→∞

N−1∑
n=0

PE(tn+1 > t > tn)

)
(2.58)

= exp

(
−

∫ t1

t0

dPE(t)

dt
dt

)
. (2.59)
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We then arrive to the general formula:

Δi(t1, t0) = exp

(
−

∑
jl

∫ t1

t0

dt
αS(t)

2π

∫
dzPi,jl(z)

)
, (2.60)

where azimuthal symmetry has been assumed, as well a sum over all possible

emissions to account for other branching possibilities. This Δ(t0, t1) function is

the so-called Sudakov form factor, and plays a central role in the shower simula-

tion. It is the probability of non emissions between the scales t1 and t0. Once this

information is included in the parton shower algorithm, we can claim that the

final states generated are fully exclusive, rather than inclusive. They allow us to

generate fixed multi-parton configurations, weighted according to the probability

of no additional partons being present. This is a fundamental improvement, since

the simulation of exclusive events from ME, at fixed-order, is constrained due to

the known infra-red divergences. Additionally, with the use of the Sudakov form

factor virtual corrections are actually being included. This is a direct result of

unitary. The main idea is that an αS order cross section is the sum of the virtual

part, the non resolved one and resolved real emission. Unitarity implies this sum

must be equal to 1. But again, and also because of unitary, the resolved real

emission probability is equal to 1 minus the non emission probability, and there-

fore the sum of virtual and real unresolved terms is equal to the Sudakov factor.

We should mention that this is only true in the collinear and soft approximation

we are working in (designated by Leading Log (LL) approximation).

2.4.4 Final State Radiation

We now have all the tools to simulate the shower. We start by considering a phase

space configuration weighted according to the n-parton Matrix Element (ME).

The next step is to generate a branching from one of the external partons. For

that a starting scale must be specified, which in equation 2.60 is referred to as

t1. Let us call this scale Q. The starting scale value is usually a debatable point

since there are no analytical arguments predicting which scale should be chosen.

The most usual choice is the one defined by the typical hard process scale. For
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example in the case of FCNC direct top production (final state with just a top

quark in the hard parton process), which will be discuss in detail later, we choose

Q =Mtop. There is an heuristic argument that supports this approach. Suppose

we start the shower in a much higher scale and therefore the first branching

occurs also at a very high scale. It can happen that this configuration will be

double counted from one originated in an external leg from a hard process that

radiates a soft gluon. In such case, we could make a simple veto in order to

correct this problem. However, it would be much better to veto the one with the

hard emission, since the shower algorithm is built within the approximation of

soft and collinear emissions. Therefore, it is simpler to prevent this to happen in

first place by setting the starting scale equal to the scale of the hard scattering

process.

Having defined the initial scale Q, we can now start the shower algorithm. Its

main steps are:

1. Set t1 = Q (the starting scale);

2. Generate a uniform random number r with 0 < r < 1 and solve the equation

r = Δi(t1, t) for t;

3. If t < t0, the shower ends and no more emission occurs;

4. If t ≥ t0, the first branching scale has been found. From Pjl(z), generate

a z value, and from z the energies Ej = zEi and El = (1 − z)Ei. The

azimuthal angle is uniformly generated within the domain [0, 2π], and the

angle θ between partons j and l is obtained from the scale t, using equations

2.46-2.48;

5. Reconstruct the full momentum;

6. Set t1 = t for each of the final partons and go back to point 2.

The final scale t0 will act here as the cut-off mentioned above and is needed to

regularize singular regions as well as to include the detector resolution limit. This

limit is usually defined to be of order 1 GeV, which is the typical minimum scale

at which the radiation is no longer resolvable. As we have previously showed,
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this algorithm can reproduce, in a first approximation, higher order corrections

of the full event. Moreover, it has the advantage of being computationally less

expensive. This is a very important point because of the extremely high statistics

needed to simulate the events.

After the shower the next simulation step is a process called hadronization.

This is the phase where the final partons combine to form bound states, the

hadrons. Until now there is no fundamental model on how hadronization occurs

and therefore its simulation is based on phenomenological models adjusted from

experimental data. The main reason for this ignorance is the fact that hadroniza-

tion occurs at scale ΛQCD, which prevent us to apply perturbative QCD.

Finally, we note that although these 4 steps seem quite simple to implement,

there are some subtleties (mainly technical) that make the coding of the algorithm

not so straightforward. For example, special attention must be paid in solving

the equation in point 2 since it is not analytically solvable. Also, momentum-

energy conservation implies that the branching mechanism has to be performed

trough an off-shell particle. This brings an additional problem as the collinear

approximation is based on on-shell (external) final state particles. Therefore,

a momentum reshuffling has to be done at the end of the branching. There is

no unique way to perform this reshuffling and depending on the parton showers

generators, different recipes are applied.

2.4.5 Inital State Radiation

Until now we have considered radiation emitted from the final state partons only.

This is called Final State Radiation (FSR). In order to simulate the real process

one must also take into account radiation from the initial partons, known as

Initial State Radiation (ISR). The simulation of this process is very similar to

simulating the FSR. In ISR we must take into account the fact that the partons

are originated from a hadron, with some associated PDF, and that the initial hard

parton may itself have its origin in the QCD radiation. Therefore, in order to

simulate this radiation process, we must simulate the entire chain, i.e., from the

hadron to the hard process, with several possible branchings. We show an example

in figure 2.9. The main difference between ISR from FSR is the fact that now
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Figure 2.9: Initial State Radiation. From (32).

the incoming partons have space-like virtualities, i.e., ti = −q2i , with increasing

values towards the hard process. This is shown in figure 2.9 where t1, t2 < 0

and t2 > t1. Simulating ISR following the FSR algorithm would mean to begin

from the colliding hadron and to numerically run all possible scale configurations

such that, after several branchings, we would end up with an incoming parton

with hard scale tfinal = −Q2. Obviously, this would be a very computationally

expensive task. To solve this problem, shower simulators invert the process and

simulate ISR originated from the hard process until the hadron scale is reached.

As in the FSR case, this scale is usually set to t0 ∼ 1 GeV. This is called backward

evolution. The algorithm is very similar to the FSR one, with the difference that

now we consider that the colliding parton did not originate from the hadron’s

”parton sea” but rather from a previous QCD radiation. The first emission

probability must then take into account three terms: the non-emission probability

from the starting scale t1 to the splitting scale t′, the branching probability of

parton i to be radiated from some parton j at the scale t′, and the probability

of extracting parton j from the ”quark sea” with scale t′. Putting everything

together we get

dPfirst =
∑
j

f
(h)
j (z, t′)

αS(t
′)

2π
Pij(x/z)Δi(t1, t

′)
dt1
t1

dz

z

dφ

2π
, (2.61)

where f
(h)
j is the PDF of parton j, which is radiated the colliding parton i; Pij

is the splitting function for the branching j → i, and Δi the Sudakov factor. In

order to find the first branching scale, we must know how this probability evolves
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with t′. After some algebra (see (32)) this evolution can be written as:

dPfirst

dt′
=

∂

∂t′
[f

(h)
i (x, t′)Δi(t1, t

′)], (2.62)

which means that in respect to the branching scale t′, the product f (h)
i (x, t′)Δi(t, t

′)

as a direct correspondence in respect to the first branching probability. Therefore,

in order to find the first emission one just had to solve the equation

r =
f
(h)
i (t′, x)Δ(t, t′)

f
(h)
i (t, x)

(2.63)

for t′ ,where r is a uniform random number within the domain 0 < r < 1. We

note that the denominator was introduced in order to normalize the equation for

the case where t = t′. Apart from this step, the ISR algorithm is equivalent to

the FSR one. We also note that the radiation emitted can originate additional

radiation and therefore a shower simulation must be performed starting from

these partons. Since they are now final state partons, this simulation must use

the FSR procedure.

2.4.6 Matching

In the previous sections we discussed two different approaches to simulate the

final state events in a collider. In the first one the full matrix element is used and

in the other a parton shower. The later was introduced for two main reasons.

First, to calculate the ME for a multi-final parton state is an almost impossible

task; second, even if this was possible, ME fixed-order calculations always contain

unwanted divergences beyond leading order. The use of parton showers solved this

problem, but it assumes however a collinear and soft radiation approximation.

Consequently, event simulation will be characterised by a lack of precision in

the hard and wide angle jet regions. This problem can be avoided by using the

full ME element, since the ME contain the full kinematics information. Also,

the ME would always be preferable because quantum interferences are included

by construction and are not included in the PS. However, when PS are used
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the divergent logarithms equivalent to the ones in equation 2.42 are reproduced,

which does not happen if one had used ME only. Also, realistic multiple final

state partons, which in the end give origin to the observed jets can only be

simulated via PS. Therefore, one must conclude that a good simulation is one

that combines both approaches: in the collinear and soft regions the events are

simulated through a PS and in the hard and wide angle regions they are simulated

through the correspondent ME. The process of joining these two methods is

known as Matching.

One of the first issues that must be taken into consideration, when Matching

is implement in a MC generator, is the double counting problem. Back to the

eē→ γ → qq̄ example, we can easily see that the real radiation correction ( figure

2.4) can be simulated, within specific limits, from either of the two methods:

• through the use of the exact Matrix-Element,

• through a parton shower mechanism, where the real radiation would be the

first emission.

Therefore, if Matching is performed without any considerations regarding what

phase space is being covered, there is a chance to generate several events with

the same kinematic configuration. This overestimation is known as the double

counting problem. In order to solve this problem one must separate the final

phase space in two regions where each region undergoes with a different type of

simulation. The collinear/soft region will be best simulated by using a PS while

the hard and wide angle by using the ME. This phase space separation can be

done by defining one or more resolution parameters, depending on how many final

state particles we will be working with. For example, the MEtop generator, to

be discussed later, performs a merging between a 2 → 1 and a 2 → 2 processes,

where only a single resolution parameters is needed (in our case the top pT ).

The matching is then usually done in an event-by-event basis, so that in case

one event is generated in a ”forbidden” phase space region, an event veto will be

imposed. In section 7.4 a more detailed explanation will be given about which

matching procedure is used in the MEtop generator.
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2.5 Markov Chain Monte Carlo

2.5.1 Introduction

As we will see in the next chapter, the main theoretical background to the FCNC

studies dealt with this thesis is a framework where we assume a phenomenologi-

cal approach through effective Lagrangians. A high number of effective operators

are considered in order to probe physics beyond the SM. In case one wants to

use the available experimental data to inquire which operator or set of operators

can best describe the measurable observables, one needs statistical tools to help

us discriminate between operators or/and to point us out which operators per-

form better. A common method to deal with this problem is to use a Bayesian

approach, where ”several models” are proposed and tested, through fits to the

most updated experimental data. A note must be added about these so-called

”models”. Technically, they are not theoretical models, since we will always be

working within the effective Lagrangians approach. In this framework, the op-

erators will be parametrized through dimensional coupling constants, that will

dictate the ”strength” of the new interaction introduced. Therefore, this fitting

will be done by adjusting the values of the parameters to the observable data.

2.5.2 The Bayesian approach

Contrary to the Frequentist paradigm, where the probabilities are interpreted as

a simple consequence of the outcome data, the Bayesian method assumes that it

is possible to define an absolute concept of probability for some specific outcome.

This means that one can in principle calculate the probability of some specific

model to be correct, i.e., to reproduce some data from our model, as well to

determine the probability to obtain some data from a specific model. By using

these two concepts, the Bayes’ theorem can be written as

p(m|d) = L(d|m)p(m)∫
L(d|m′)dm′ , (2.64)
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where p(m|d) is the probability of model m being correct in case data d is mea-

sured - this is called the posterior probability -, L(d|m) is the likelihood distri-

bution which give us the probability for d to be reproduced given a model m,

and p(m) is the referred probability of model m to be correct, which is named

the prior probability. Clearly, it is very unlikely that one can calculate the prior

probability p(m), as well as to be able to integrate the likelihood for all models,

L(d|m). Nevertheless, since we are interested in comparing ”several models” and

not in studying a single specific model, we can take the ratio of the posterior

probabilities of two hypothetical models:

p(m1|d)
p(m2|d) =

L(d|m1)

L(d|m2)
, (2.65)

where we have assumed that the prior probabilities of all models are equal, that is

p(m1) = p(m2). Although this assumption seems, at first, quite strong, remember

that we will not analyse pure physical models, but rather fit the best set of

effective operators to the experimental data, through the respective parameter

value variation. Therefore, if we sample this set of parameters search, using flat

random numbers, we can interpret models m1 and m2 has having equal prior

probabilities. This ratio is usually called Bayes factor and by using some specific

set of experimental data it will tell us which model performs better in fitting that

same data.

2.5.3 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) approach is based on the last section

considerations. We aim to find the best possible fit by successively testing the

possible models, with the value of Bayes factor as guidance and a pre-defined set

of physical observables that will play the data role. The search will be performed

iteratively, where in each cycle the Bayes factor is calculated, and the parameter

phase point saved. A chain is then built as the iteration is performed and a map

of the full phase space can then be extracted. As we concluded in the previous

section, the Bayes factor is calculated by taking the ratio of the Likelihood of

two competing models. When performing a MCMC, we usually assume that the
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2. COLLIDER PHYSICS

Likelihood for each physical observable obeys to a Gaussian distribution:

Lj(xi) = exp(−(Oj(xi)− O
exp
j )2

σ2
j

), (2.66)

where Oj(xi) is the expected observable value for the parameter vector xi =

{α1, ..., αn}, αi measures the corresponding effective operator, Oexp
j is the exper-

imental observable and σj is the correspondent experimental error. The total

Likelihood is then the product of all Likelihood functions:

L(xi) = exp(
∑
j

−(Oj(xi)− O
exp
j )2

σ2
j

). (2.67)

We note that the exponential factor is the classical Chi-square factor.

The chain is then constructed from the Metropolis-Hastings algorithm:

1. Generate a flat random starting point x0 and define a frequency variable

f0 = 1 (fi = 1 for the subsequent cases). In the work presented in chapter

6 we set the domain αi = [−10, 10].

2. Calculate its Likelihood using equation 2.67.

3. Generate an adjacent point xi starting from the previous xi−1. At this step

a generation distribution must be defined. We have used a Gaussian centred

at the departing point (xi), with a 0.1 variance.

4. Calculate the new Likelihood value.

5. Generate an uniformly distributed random number between 0 and 1, and

evaluate the inequality condition:

rand() <
L(xi+1)

L(xi)
. (2.68)

6. if True, save fi, xi, the respective Likelihood and physical observables. Set

xi = xi+1 and fi = 1. Return to step 3 or stop if the number of iterations

has reached its maximum.
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7. if False, set fi = fi + 1 and return to step 3 or stop if the number of

iterations has reached its maximum.

The variable fi is used to save the number of times the chain was ”stuck” in some

possible local maximum. It will also work as a weight, when plotting the chain

results. Finally, from the saved chains one can obtain the information needed

to perform the fit analysis, and we can extract the maximum likelihood value,

which will indicate the best fit scenario, and more important, will give us all the

probability distribution and correlations between variables.
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3

The Standard Model

3.1 Introduction

The Standard Model (SM) is a fundamental model describing the dynamics of

the subatomic particle interactions. It is considered the most reliable description

of Nature, and up to now has shown an extraordinary agreement with most of the

available experimental data (35). There are however a number of experimental

results that the SM fails to describe. The most relevant issues are the baryon

asymmetry, the dark matter problem and the neutrino masses. Therefore, it is

clear that an extension of the SM is needed and we expect the LHC will give us

some hint on new lines of research that could point us to the right extension of

the SM.

The SM is a mathematical model within a Quantum Field Theory (QFT)

framework and therefore each subatomic particle is represented by a quantum

field that obey the quantum interpretation of matter in a four dimensional space-

time. Additionally, the respective interactions are written by a Lagrangian den-

sity and the dynamics is described by the well-known Euler-Lagrange equations

of motion. The final form of this Lagrangian is obtained by the introduction

of global and local gauge symmetries making the SM a gauge theory. Regard-

ing global invariance, the total Lagrangian is forced to be invariant under the

Poincaré group of transformations. This is a direct consequence of the trans-
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lational and rotational symmetries, together with the fundamental principle of

invariance between inertial references frames.

The SM Lagrangian density is then built to be invariant under local gauge

translations. Imposing local symmetries imply specific transformation laws for

the matter fields which in turn forces the introduction of the so-called gauge fields

(the interaction mediators) in order to preserve the symmetries of the Lagrangian.

These new fields, the gauge bosons, mediate the interactions between matter. The

SM gauge symmetries can be written as a continuous group SU(3)×SU(2)×U(1).
The group SU(2) × U(1) gives origin to the electroweak interactions which uni-

fies electromagnetism and the weak interactions. The SU(3) group describes the

strong interaction and is usually treated as a separate model known as Quantum

Chromodynamics (QCD).

The SM describes three of the four known fundamental forces: electromag-

netic, weak and strong; being gravity the remaining missing part. Although the

first two are now unified in the so-called electroweak interaction, a search for a

unified model with the strong interaction is still a subject of research.

3.2 Gauge Theories

We begin with a short account of gauge theories. In this formalism, the physical

model is a field theory described by a Lagrangian density, which has been forced

to be invariant under a specific continuous group of local transformation. To

show how this mechanism works we start with a simple example of a scalar field

(φ) theory, with mass m. The free Lagrangian for such a field is given by

L = (∂μφi)
†∂μφi −m2φ†

iφi (3.1)

where i = 1, 2, ..., n, with n the total number of components that φ may have. We

now impose that the scalar fields are transformed by a dimensionN representation

V (x), of an internal symmetry G

φ(x) → φ′(x) = V (x)φ (3.2)
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3.2 Gauge Theories

with V (x)V †(x) = 1. In case of infinitesimal phase transformations, V (x) can be

expanded into

V (x) = 1 + iαa(x)ta (3.3)

where ta are the generators of the group G, and αa are real parameters. Due to

unitarity and the defining representation, the group generators obey the commu-

tation relations

[ta, tb] = ifabctc (3.4)

Tr[tatb] =
δab

2
(3.5)

where ifabc are the group structure constants. We note that in this case the

generators don’t commute which means we are dealing a non-abelian gauge the-

ory. The weak and strong interaction are non-abelian while electromagnetism is

described by the abelian U(1) group.

Our main objective is to have an invariant Lagrangian under the transfor-

mation V . However, if we apply this transformation to equation (3.1), only the

second term is invariant

φ†φ→ φ†δV †δV φ = φ†φ, (3.6)

where we have neglected second order terms. Ensuring that the kinematic term of

(3.1) is also invariant lead us to replace ∂μ by the covariant derivative Dμ shown

in eq. (3.7) which transforms according to equation (3.8)

Dμ = ∂μ − igAa
μt

a (3.7)

(Dμφ)
′ = V (Dμφ). (3.8)
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3. THE STANDARD MODEL

In this covariant derivative a new field is introduced, namely Aμ. This is the

gauge field and it will be responsible for making the total Lagrangian invariant

under the transformation. The gauge field transformation law follows directly

from equation (3.8) and is given by

Aa
μ → Aa

μ −
1

g
(∂μα

a) + fabcαbAc
μ. (3.9)

With the introduction of the new gauge vector field we can now write the invariant

Lagrangian as

L = (Dμφ)†(Dμφ)−m2φ†φ. (3.10)

Although the full Lagrangian is now invariant, nothing prevent us from introduc-

tion further gauge invariant terms built with the new gauge field Aa
μ. This can

be done by introducing a new quantity [Dμ, Dν ], that from (3.8) transforms as

[Dμ, Dν ] → V (x)[Dμ, Dν ]φ. (3.11)

Using the definition of the covariant derivative Dμ we then have

[Dμ, Dν ]φ = −ig
[
∂μA

a
ν − ∂aν + gfabcAb

μA
c
ν

]
taφ

= −igF a
μνt

aφ (3.12)

with F a
μν given by equation (3.13). This is called field strength tensor and is the

analogue to the electromagnetic field tensor.

F a
μν = ∂μA

a
ν − ∂νA

a
μ + gfabcAb

μA
c
ν . (3.13)

From F a
μν we can build the quantity 1

4
F a
μνF

aμν , which is a gauge-invariant term

dependent only on the gauge field, Aa
μ. We redefine the Lagrangian to:

L = (Dμφ)†(Dμφ)−m2φ†φ− 1

4
F a
μνF

aμν . (3.14)
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3.3 Electroweak interaction

We have just laid out the guiding principles of how to build a gauge theory. This

is the starting point and it’s juts enough to allow us to move on to the next

section where the Lagrangian for the electroweak and strong interactions will be

introduced.

3.3 Electroweak interaction

Historically, the final version of the unified electroweak theory is attributed to

the work of three authors: Glashow (36), Salam (37) and Weinberg (38). This

fundamental theory incorporates two interactions. One is the classical electro-

magnetic interaction known since the 19th century and described by Maxwell’s

equations; the second is the weak force which was discovered as a consequence

of beta decay studies. Theoretically, the weak force was originally described as a

four-fermion interaction in the context of an effective formalism (we will address

this mechanism in more detail).

Today, the electroweak interaction is understood within the context of gauge

symmetries as described in the previous section. Unification is in some sense at-

tained by the introduction of one semisimple group SU(2)×U(1), where SU(2) is
the special unitary group of dimension 2, and U(1) the group of all 1× 1 unitary

matrices. The SU(2) generators can be represented by the matrices τ i = σi/2,

where σi are the Pauli matrices. The SU(2) charge is called isospin, I, while the

U(1) charge is named hypercharge, Y . The SU(2) generators commutation rules

are given by

[τ i, τ j] = iεijkτ k (3.15)

[τ i, Y ] = 0. (3.16)

The full SU(2)× U(1) invariant Lagrangian has the form

L = LG + LF + LH + LM . (3.17)
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The first term in equation (3.17), LG, is the Yang-Mills Lagrangian, the equivalent

to what was presented in equation 83.13) for the U(1) case. These are the gauge

boson kinematic terms together with the self-interaction ones which arise because

the group is non-Abelian. It can be written as

LG = −1

4
F i
μν(W )F i,μν(W )− 1

4
Fμν(B)F μν(B), (3.18)

with

F i
μν(W ) = ∂μW

i
ν − ∂νW

i
μ + gεijkW j

μW
k
ν (3.19)

Fμν(B) = ∂μBν − ∂νBμ, (3.20)

where W i
μ = {W 1

μ ,W
2
μ ,W

3
μ} are the SU(2) gauge fields while Bμ is the U(1) field.

Their corresponding infinitesimal gauge transformations are given by

δBμ = ∂μθ (3.21)

δW i
μ = ∂μθ

i − gεijkθjW k
μ = Dij

μ θ
j, (3.22)

where g is the SU(2) gauge coupling constant, and θ and θi are real parameters.

In order to describe Nature with the SU(2) × U(1) gauge group, the matter

(spin 1/2) fields have to decompose in chirality eigenstates. These eigenstates,

the left and right components of the spinor, are built from the chirality operators

γL and γR such that

fR = γRf =
1

2
(1 + γ5)f (3.23)

fL = γLf =
1

2
(1− γ5)f (3.24)

where f is a spinor field. The reason for this decomposition is that the elec-

troweak interactions do not conserve chirality. The left chirality components

are vectors under SU(2) while the right components are scalars under the same

gauge group. That is, the right component has zero weak quantum number (weak
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Isospin I = 0). In this context fermions are organised as shown in the table 3.1.

The index i runs over the three known generations of quarks and leptons. We

note that in the lepton family the neutrinos exist only as left-handed (we are

treating the neutrinos as massless particles). Finally, there is mixing between

the three quark generations which is accounted for by the introduction of the

Cabibbo-Kobayashi-Maskawa matrix VCKM , to be described below.

Quarks
qiL =

(ui
L

d′iL

)
, d′iL = VCKMdL left-handed quark doublets

uiR diR right-handed quark singlets

Leptons
liL =

(νiL
eiL

)
left-handed lepton doublets

eiR right-handed lepton singlets

Table 3.1: Fermions families. The subscript i runs over three generations.

The second term in equation (3.17), LF , corresponds to the fermion’s kinetic

terms and their interactions with the gauge fields. Taking into account the pre-

vious chirality description, we can write LF as

LF = il̄iLDLl
i
L + iēiRDRe

i
R + iq̄iLDLq

i
L + iūiRDRu

i
R + id̄iRDRd

i
R, (3.25)

where the corresponding covariant derivatives and the fermion transformation

rules are given by

DL,μ = ∂μ − ig
σi

2
W i

μ − ig′
Y

2
Bμ (3.26)

DR,μ = ∂μ − ig′
Y

2
Bμ (3.27)

δψ = (ig′
Y

2
θ(x) + ig

σi

2
θi(x))ψ, (3.28)

where g′ is the U(1) gauge coupling constant. The charge operator is defined by

the relation Q = I3 + Y/2, where I3 it’s one of third isospin components.

So far the Lagrangian written in equations (3.18) and (3.25) has no mass

terms. The next step is to introduce the Lagrangian terms that give a particle’s

mass. In the previous section a mass term was introduced in equation (3.1),
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with the form m2φ†φ and therefore one would be tempted to apply the recipe

here. However, including mass terms int the same way would explicitly break the

SU(2) gauge symmetry. This was a known problem for a long time and it was

solved by the introduction of the so-called Higgs mechanism. In this mechanism

the fermions as well the gauge bosons mass terms are not present in the initial

Lagrangian but rather ”hidden” in newly introduced invariant terms built with

a new postulated scalar field, the Higgs boson. Masses will be generated when

this field acquires a non-zero vacuum expectation value which will result in the

spontaneous breaking of the SU(2)×U(1) symmetry to the electromagnetic U(1)

symmetry. With this mechanism the theory remains manifestly locally invariant

and the symmetry is broken at lower energies only.

The Higgs field is a complex SU(2) doublet, with hypercharge Y = 1, that

can be written as

Φ =

(
φ+

φ0

)
≡

(
1√
2
(φ1 + iφ2)

1√
2
(φ3 + iφ4)

)
(3.29)

and is incorporated in the total Lagrangian through the insertion of a kinematical

and a potential term

LH = (DL,μΦ)
†(Dμ

LΦ)− V (Φ), (3.30)

where the potential is given by

V (Φ) = μ2Φ†Φ + λ(Φ†Φ)2. (3.31)

In case μ2 < 0, the minimum of the potential Φ is given by

(Φ†Φ)min = −2μ2

λ
=
v2

2
. (3.32)

As a consequence, the potential develops a vacuum expectation value (vev), which

is given by:

< Φ >=

(
0
v√
2

)
, (3.33)
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where v ≈ 246 GeV. All calculations will now be performed perturbatively from

the final Lagrangian density. This mean that the particle spectrum as well as all

interactions will be described by an expansion around the minimum energy. This

expansion has to be done with respect to the vev shown in equation (3.33). The

minimum condition can be written as

(φ2
1 + φ2

2 + φ2
3 + φ2

4) = v2, (3.34)

which describes a 3-dimensional surface with an infinite number of minima. To

implement the perturbative expansion around a minimum implies the choice of a

specific direction in the fields space. This choice is the spontaneous breaking of

the symmetry. The point which is usually chosen is

φ1 = φ2 = φ4 = 0 , φ2
3 = v2. (3.35)

Around this point the expansion is written as

Φ =
1√
2

(
θ2 + iθ1

v + h(x)− iθ3

)
, (3.36)

where h(x) is the Higgs field and θi are the Goldstone bosons. These are non-

physical fields that arise whenever a global symmetry is broken (Golsdstone’s

theorem). They can be removed by a judicious choice of the gauge we will be

working in. In particular, choosing the unitary gauge allow us to write the field

expansion as

Φ =
1√
2

(
0

v + h(x)

)
. (3.37)

Replacing this field into equation (3.30), and considering only the terms that will

originate the gauge bosons masses, we have

|(−igσ
i

2
W i

μ − i
g′

2
Bμ)Φ|2 = 1

8
(vg)2[(W 1

μ)
2 + (W 2

μ)
2] (3.38)

+
1

8
(g′Bμ − gW 3

μ)(g
′Bμ − gW 3,μ). (3.39)
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At this point it is convenient to diagonalize the mass matrix, so that we can

explicitly obtain the mass states

W±
μ =

1√
2
(W 1

μ ∓W 2
μ) , MW =

gv

2
(3.40)

Zμ =
1

g2 + g′2
(gW 3

μ + g′Bμ) , MZ =
1

2

√
(g2 + g′2) v (3.41)

Aμ =
1√

g2 + g′2
(g′W 3

μ + gBμ) , MA = 0, (3.42)

whereW±
μ and Zμ are the gauge bosons mediators of the weak interaction and Aμ

is the photon. The rotation from the group eigenstates to the mass eigenstates

of the neutral bosons is usually written as

(
Aμ

Zμ

)
=

(
cos θW sin θW

− sin θW cos θW

)(
Bμ

W 3
μ

)
, (3.43)

where θW is the weak mixing angle defined by

cos θW =
MW

MZ

. (3.44)

The remaining terms in this Lagrangian will give origin to the Higgs mass as well

as to its interactions with the gauge bosons.

The fermionic masses arise from a similar mechanism. This is the fourth term,

LM , in equation (3.17), and is called Yukawa Lagrangian

LM = −ye,ij l̄iLΦejR − yd,ij q̄
i
LΦd

j
R − yu,ij q̄

i
L(iσ

2Φ)ujR + h.c., (3.45)

where y are the Yukawa matrices. We have shown that the gauge boson masses

are just a consequence of having a non-zero vev. In the fermion case the masses

are generated by its interaction with the Higgs field.

We will now discuss the appearance of the CKM matrix in the weak inter-

actions. Equation (3.45) suggests that quark generation mixing could occur (in

principle also lepton mixing). Let us concentrate on the mass terms only. In or-
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der to obtain the mass terms we have to rotate the fermion fields from the gauge

basis to the mass basis. In other words we have to reduce the Yukawa matrix

into a diagonal form. The diagonalization procedure can be written as

yu,d → (UL,R)−1
u,dyU

L,R
u,d = Du,d (3.46)

where u and d refer to up and down type fermion respectively and L,R are chi-

rality indices. This means we need a total of four unitary matrices to diagonalize

the quark terms. Back to equation (3.45), we then have, for example, for the

second term

yd,ij q̄
i
LΦd

j
R →d̄iL(U

−1)ijyd,jk(U)kld
l
R

v + h√
2

(3.47)

= Diid̄
i
Ld

i
R

v + h√
2
, (3.48)

which when summed with the hermitian conjugate term originates the down

quark mass terms. Note that the matrix that diagonalizes the masses is the same

that diagonalizes the Higgs field. Therefore the neutral interactions are flavour

diagonal and that is why FCNC are highly suppressed in the SM. Now, this

rotation has a different effect in the charged sector. It is in fact this rotation

that originates the CKM matrix. Back to the Lagrangian term LF , written in

equation (3.25), and considering only the charged sector we obtain

iq̄iLDLq
i
L → −g√

2
W+

μ ū
i
Lγ

μdiL (3.49)

→ −g√
2
W+

μ ū
i(UL

u )
†γμγL(UL

d d
i) (3.50)

=
−g√
2
W+

μ ū
iγμγLVijdj, (3.51)

where i and j run over the quark generations. As mentioned above, Vij is the
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CKM matrix and it results in:

VCKM ≡ (Uu
L)

†Ud
L =

⎛
⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎠ . (3.52)

As mentioned above, its presence will result in quark mixing, namely Flavour

Changing Currents (FCC), mediated by the gauge boson W±
μ . In principle this

mixing could be observed in the lepton families as well. However, the rotation

matrices we used to construct the CKM matrix would depend on the neutrino

masses which from today’s measurements are extremely low (for a long time they

were actually thought to be zero) which makes the mixing extremely small.

We end this section with a short comment about gauge fixing and Faddeev-

Popov (FP) ghosts. At the quantum level two more pieces of the Lagrangian

should be included, namely the gauge fixing Lagrangian and FP Lagrangian.

The gauge fixing Lagrangian has to be introduced to define the gauge we will

be working in. The same happens in ordinary electromagnetism. We define a

four-component field for the photon while we know that the photon has only

two degrees of freedom. Due to this freedom the path integral formulation is

ill-defined. Faddeev and Popov have devised a method to solve the problem by

introducing unphysical particles called ghosts. These particles can only appear

inside loops and allow for a consistent way of performing perturbation theory

using the Feynman diagramatic approach.

3.4 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the gauge theory that describes the strong

force. The strong force acts between quarks only and is mediated through a

gauge boson named gluon. It is the force responsible for baryons and mesons

binding, like for example the proton or the Kaon. Theoretically, this interaction

is described by a gauge theory along the same lines of the electroweak interaction.
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3.4 Quantum Chromodynamics

The QCD Lagrangian is invariant under the group SU(3) and is given by

LQCD = ψ̄(iγμDμ −m)ψ +
1

4
Ga

μνG
a,μν , (3.53)

where the covariant derivative and the gluon field strength have the form

Dμ = ∂μ + igs
λa

2
Gμ

a (3.54)

Ga
μν = ∂μG

a
ν − ∂νG

a
μ − gsfabcG

b
μG

b
ν . (3.55)

where λa are the group generators, also known as Gell-Mann matrices, which

obey the following commutation relations

[ta, tn] = ifabct
c , ta =

λa

2
, (3.56)

and fabc are the group structure constants. Besides being characterised by the

usual quantum numbers like charge or spin, the quarks have now a new quantum

number. This new quantum number was suggested by the Δ++ baryon which

is made of three u quarks resulting in a JP = 3
2

+
state. This would violate

Pauli’s exclusion principle since the interchange of two quarks would not be anti-

symmetric. As a consequence a new degree of freedom, the colour quantum

number, was proposed. Each quark has one in a total of three colours: red, green

or blue. The quark colour is a colour charge of SU(3) in much the same sense

as the electric charge is charge of the electromagnetic U(1). Also, just like there

are positive and negative electric charges, anti-quarks have anti-colour charge:

anti-red, anti-green and anti-blue.

In the context of group symmetries, the quark fields are then described as

vectors in a 3-dimensional fundamental representation of the gauge group SU(3)

and the antiquarks are in the complex conjugate representation. The gauge field

Ga
μ is said to be in the adjoint representation of SU(3) which is an octet (a total

of eight fields) where each one carries a combination of one colour and one anti-

coulor charge.

An interesting fact about QCD is that up to now only stable colour singlets
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3. THE STANDARD MODEL

have been observed. This means that no free quarks or gluons were ever observed

but rather composite states like baryons or mesons. This is a unique characteristic

of QCD and is due to a property called colour confinement. This effect is a direct

result of the peculiar behaviour of the strong coupling constant with the system

energy. Calculating its dependence with the energy scale, Q, we obtain

αs(Q) ∼ 1

b0 ln(Q/Λ)
, (3.57)

where b0 is a coefficient related with the number ”available” flavours, and Λ are

the QCD scale. This scale dependence shows an increase of the strong interaction

strength with decreasing energy scale. Hence, if we try to separate the quarks

inside some stable hadron (through a high energetic collision) the binding will

respond with an increasing ”density tube” of gluons. If enough energy is present,

spontaneous generation of extra quarks will occur such that new stable and less

energetic hadrons will be created. This colour confinement is the property re-

sponsible for the appearance of jets in particle collisions rather than individual

quarks or gluons. These jets are ”bunches” of hundreds, or thousands, of baryons

that were created through this mechanism. This process is called hadronization.

Another important property that is a consequence of equation (3.57) is that

QCD is asymptotically free. That is, when the binding energy increases the cou-

pling strength decreases. This means that in case quarks are in a very high energy

state, like for example in a LHC proton-proton collision, the strong interaction

between them will be very weak and we may consider them as free colliding

particles.
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4

Effective Lagrangians

4.1 Introduction

The main idea behind effective theories is the concept of scale. Any physical

problem is solved at a given scale even if most of the times that scale is not

stated clearly. The energy scale is usually the defining variable that sets the

physical domain we are working in and consequently will point us to the best

approach (theory or model) we should use. High Energy Particle Physics is no

exception. The energy scale is used to define what should be taken into account

when studying a given physical process. For instance, gravitational effects are

not important when one considers a high energy particle collision - they belong

to a different energy scale. Additionally to this selection criteria, one should also

take into account which is the most appropriate description to the study of some

physical process. Once more, the energy scale will play the role of the discrim-

inant variable helping us to decide which theory or model should be used. It is

in this context that the concept of effective theories is introduced. They can be

interpreted as simplifications of some underlying model, known or not, that allow

us to work with a simpler version of the model and that can also make calcula-

tions easier. It should be stressed that sometimes the approximation refers to an

unknown model and therefore effective theories are sometimes a means to gain

some insight on the underlying theory. A simple example of an effective approach
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Figure 4.1: Fermi Effective Theory

in a case where we know the underlying theory is Special Relativity kinematics.

Certainly no one would use Special Relativity to perform basic calculations of

average speed from home to work. Newtonian Mechanics is a much simpler and

easier model do deal with this range of velocities. In this case effectiveness means

that the speeds involved are well below the speed of light and that we can take

the limit c→ ∞.

Effective theories are not, and do not aim to be, fundamental models of Na-

ture, and they are only proposed as an appropriate description of the physical

process under study. Quoting Georgi:

”It is not necessary to use an effective theory, if you think that you

know the full theory of everything. You can always compute anything

in the full theory if you are sufficiently clever. It is, however, very

convenient to use the effective theory. It makes calculations easier,

because you are forced to concentrate on the important physics.” (39).

A classical example of an effective approach in Particle Physics is Fermi’s theory

of the weak interaction (40). In this description, the W boson responsible for the

weak interaction (see Figure (4.1)) was integrated out and the result is a process

described by a contact four-fermion interaction. Provided that the working en-

ergies are well below the W and Z masses this is a good approximation. It can

be shown that there is in fact a good matching between the two descriptions at

sufficiently low energies. The unknown parameter in the effective approach ex-
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ample is the Fermi’s constant GF which was parametrized by experiment. In this

example a top-down approach is followed since we already know the fundamen-

tal model and the effective approach is no more than a simplification. However,

we can also follow the opposite approach. Instead of starting with some already

known fundamental model, we can assume that there is some other fundamental

model not yet known and that for instance the SM is just an effective theory. In

this case the SM will now be the low energy asymptotic limit of the unknown

model and will play the role of an effective theory resulting from integrating out

the heavy fields from the underlying model. In this bottom-up approach the main

objective is to study possible new interactions and processes that are not pre-

dicted by the SM as they only occur at energy scales of the order of the heavy

fields. Therefore, the initial idea of effective theories gains versatility. The main

purpose is no longer just a simplification but rather to introduce a method to

study physics beyond the SM. This effective approach is usually implemented by

the introduction of a set of effective operator with the SM symmetries. These

operators will be used to parametrize the possible existence of new physics from

experimental data. They can be build from combinations of the already existing

fields or with the addition of new fields. Therefore, we are in the presence of a

model where we can concentrate on the possible new physics we are interested in.

The ordering of the operators, regarding their contribution to the physical pro-

cesses, is done by accounting for the operator’s mass dimension. This expansion

is shown in equation (4.1)

L = LMP +
∞∑
i

CiOi. (4.1)

For dimension d ≤ 4 there is a finite set of renormalizable effective operators,

while for d > 4 there is an infinite set of non-renormalizable operators. The

parametrization is done through the constants Ci, known as Wilson Coefficients

and defined as

Ci =
αi

Λdi−4
, (4.2)

where the constants αi are dimensionless and Λ has dimension of mass. In this

approach the new interactions can be treated in the traditionally perturbative
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4. EFFECTIVE LAGRANGIANS

way (provided Λ is large enough) which in turn means we can interpret the α

parameters as coupling constants that measure the strength of the interaction.

As previously mentioned, there is an infinite number of effective operators

that can be added to the renormalizable piece of the Lagrangian. Consequently

there is also an infinite number of constants αi parametrizing the interactions.

This means that in principle we would need an infinite number of experimental

observables to either calculate or limit the constants αi. To solve this problem

we can begin by applying the Appelquist-Carazzone (41) theorem, which in short

states that if the effective operators will not produce heavy masses when the scale

parameter Λ goes to infinity, then the action derived from the total Lagrangian

can be expanded in a power series in 1
Λ
. In practical terms we are saying that

the heavy fields responsible for the new interaction have an infinite mass and

their contribution for new physics at a given scale is negligible. This property

is known as decoupling which we assume as a postulate in the reminder of this

work. We should now establish a limit on the precision intended in order to

truncate the power series in 1
Λ
. Since the work we will be presenting concerns the

top quark, we focus on the present measurement of the top mass with its error

(173.07 ± 0.52 ± 0.72) GeV (35) which amounts to an experimental precision of

0.5%. From each additional contribution to the SM we expect and increment of

approximately (
E

Λ

)k−4

, (4.3)

where E is the typical energy of the processes under study, k the effective operator

mass dimension and Λ the energy scale that we take to be 1 TeV. So, due to

the fact that the partonic processes under study will always concern top quark

production, it is reasonable to assume E = Mtop. For this energy the maximum

value of k that would result in a clearly measurable contribution is k = 6. This

results in operators with a maximum dimension of six

LTotal = LMP +
1

Λ
L(5) +

1

Λ2
L(6) +O(

1

Λ3
). (4.4)

After the dimensional truncation we can now start to impose additional phys-
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ical constraints in order to further reduce the total number of effective operators.

We follow the work of Buchmuller and Wyler (42) that have developed the first

systematic approach to build the most general dimension six Lagrangian con-

strained by the SM symmetries. First, no additional fields are considered when

building the operators. The underlying model may have some new heavy fields

but as mentioned above we consider that we are working at energy scales where

these fields can be integrated out. Therefore we use just the SM fields shown

in table 4.1. Second, we impose baryon and lepton number conservation. As a

qiL =
(ui

L

diL

)
, i = (1, 2, 3) left-handed quark doublets

uiR diR , i = (1, 2, 3) right-handed quark doublets

φ , φ̃ = iσ2φ Higgs boson doublet

Ga
μ , a = 1, ..., 8 Gluon

Ga
μν = ∂μG

a
ν − ∂νG

a
μ + gsf

abcGb
μG

c
ν Gluon Strength Field Tensor

W I
μ , I = 1, 2, 3 W boson

W a
μν = ∂μW

I
ν − ∂νW

I
μ + gεIJKW J

μW
K
ν W Strength Field Tensor

Bμ B boson

Ba
μν = ∂μBν − ∂νBμ B Strength Field Tensor

Table 4.1: Particle Fields considered.

consequence, no dimension five operators can be built which limits our set to di-

mension six operators only. Third, we force the underlying model to be invariant
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4. EFFECTIVE LAGRANGIANS

under the SM symmetry group. Therefore, the effective operators must be invari-

ant with respect to SU(3)×SU(2)×U(1). Even with these three conditions the

total number of operators can still be reduced using the equations of motion as

well as Fierz transformations. In (42) Buchumeller and Wyler initially proposed

a total of 80 independent operators but latter Grzadkowski et al (43) reduced this

number to 59 operators. Previously, Saavedra (44) had reduced the independent

set of operators one has to take into account to study top quark physics. It is

this set we will be using in our analysis.

4.2 Flavour Changing Neutral Current (FCNC)

FCNC processes are interactions that at the partonic level conserve charge but not

flavour. These processes are highly suppressed in the SM by the known Glashow-

Iliopoulos-Maiani (GIM) (45) mechanism and are only present at higher order in

perturbation theory. This suppression can be easily understood from equations

(3.49)-(3.51). In order to obtain these equations we have rotated the fermion fields

into a mass basis, which gave origin to the mass terms in the Yukawa Lagrangian.

We saw that as a consequence we got the CKM matrix which induces quark

flavour mixing with charged currents. Now, if we proceed in the same manner

but with the neutral currents Lagrangian term, we will end up with a diagonal

mixing matrix. Note that this would not be true if we had more than one Higgs

doublet. Therefore, within the SM all FCNC currents are forbidden at tree level,

and can only occur at loop level. One example of such a case is shown in figure

4.2. From this diagram, we see that the FCNC current is suppressed by a loop

Z0

t u

W+ W+

b

Figure 4.2: SM top quark FCNC loop diagram.

factor (1/(16π2)) and by the W propagator m2
b/M

2
W . Additionally, due to the
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4.2 Flavour Changing Neutral Current (FCNC)

off diagonal CKM matrix elements included, which in the example shown would

be Vbu ∼ 10−3, we end up with a total transition amplitude highly suppressed.

The SM prediction for the largest top quark FCNC branching ratios is for t→ gc

decay and is of order ∼ 10−12 (46) (1). This value is a long way from the most

recent measurement which gives rise to the limit Br(t → ug) < 2.9× 10−4 (35).

However, other models predict much larger values for these branching ratios,

like for example the Two Higgs Doublet Model (47) (2HDM), where the FCNC

branching ratios can be larger by up to eight orders of magnitude. In table 4.2

we show the branching ratios for top quark FCNC decay in five different models:

with Q = 2/3 quark singlets (QS), a general 2HDM, a flavour-conserving (FC)

2HDM, the Minimal Supersymmetric Standard Model (MSSM) and with R parity

violating SUSY.

BR(t→ FCNC) in several modes
SM QS 2HDM FC 2HDM MSSM R SUSY

t→ qγ ∼ 10−14 ∼ 10−9 ∼ 10−6 ∼ 10−9 ∼ 10−6 ∼ 10−6

t→ qZ ∼ 10−14 ∼ 10−4 ∼ 10−7 ∼ 10−10 ∼ 10−6 ∼ 10−5

t→ qg ∼ 10−12 ∼ 10−7 ∼ 10−4 ∼ 10−5 ∼ 10−5 ∼ 10−4

Table 4.2: top quark FCNC branching ratios comparison (1).

Taking into account the extremely low branching ratio values for the SM and

the striking disagreement with several other models, top quark FCNC creates

a perfect opportunity to study physics beyond the SM. Our starting point to

perform top FCNC related studies is to write the effective Lagrangian. This

means writing all effective operators where at least one top quark is present. As

previously stated the Lagrangian is available in (44) where a minimum set of

operators for top studies has been determined. We should note that the total

number of operators will now depend on the physical process under study. In

this work three types of production processes were considered

• Direct top: production of one top quark.

• Single top: production of one top quark and one additional jet.

• tt̄: production of a top anti-top pair tt̄.
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Following the notation of (44), we now present a list of the total set of operators

taken from (42) which describe top strong and electroweak FCNC interactions.

Due to the specificity of each physical process, the four-fermion operators sets

will be considered together with each production process.

4.2.1 Effective operators in the strong sector

For the strong FCNC interaction we can have three effective operators:

O
ij
uGφ = q̄iL λ

a σμν ujR φ̃ G
aμν , (4.5)

and

O
ij
uG = ūiR λ

a γμDνu
j
RG

aμν , O
ij
qG = q̄iL λ

a γμDνq
j
LG

aμν , (4.6)

where Ga
μν is the gluonic field tensor, uiR stands for a right-handed quark singlet

and qiL represents the left-handed quark doublet. FCNC occurs because one of the

indices is always equal to 3 while the other is either 1 or 2, that is, there is always

one (and one only) top-quark present in the operator; the remaining fermion field

in the interaction is either a u or a c-quark. Throughout this thesis we assume

that Oij and Oji are independent operators and the hermitian conjugate of all

the operators are included in the final Lagrangian.

4.2.2 Effective operators in the electroweak sector

There are also effective operators stemming from the electroweak sector that

would give rise to new FCNC interactions involving the top quark (48, 49). We

start by listing the chirality flipping operators which are the equivalent to the

ones in the strong sector, the only difference being the gluonic tensor replaced by

the U(1) and SU(2) field tensors. They can be written as

O
ij
uBφ = q̄iL σ

μν ujR φ̃ Bμν , O
ij
uWφ = q̄iL τI σ

μν ujR φ̃W
I
μν , (4.7)
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and

O
ij
uB = ūiR γμDνu

j
RB

μν , O
ij
qB = q̄iL γμDνq

j
LB

μν , O
ij
uW = q̄iL τI γμDν q

j
LW

I
μν ,

(4.8)

where Bμν and W I
μν are the U(1)Y and SU(2)L field tensors, respectively. There

are also equations of motion in the electroweak sector that relate the operators

in (4.7) with the ones in (4.8) and with four-fermion operators (50). Therefore,

according to the production process we are interested in, one will be able to dis-

card some of these operators.

Besides chirality-flipping operators there are chirality conserving FCNC op-

erators. Their flavour conserving counterparts are already present in the SM

Lagrangian at tree-level. In fact, the vertex t̄tZ has two vector contributions

of different magnitudes, one proportional to γμ γL and the other proportional

to γμ γR. Hence the flavour conserving contribution would modify the Z boson

neutral current. All the chirality conserving operators involve the Higgs doublet.

As the Higgs field is electrically neutral, there are more effective operators which

will only contribute to new Z FCNC interactions. This set of operators can be

written as

O
ij
φu = i (φ†Dμφ) (ū

i
R γ

μ ujR) , (4.9)

O
(1),ij
φq = i (φ†Dμφ) (q̄

i
L γ

μ qjL) , O
(3),ij
φq = i (φ† τI Dμφ) (q̄

i
L γ

μ τI q
j
L) , (4.10)

and

O
ij
Du

= (q̄iLD
μ ujR)Dμφ̃ , O

ij

D̄u
= (Dμq̄iL u

j
R)Dμφ̃ . (4.11)

4.3 Direct top

FCNC Direct top production can be represented by the tree level diagram shown

in figure 4.3 It was shown in (44) that the strong sector for top FCNC can be

reduced to a single effective operator, which is shown in equation (4.12). This is

the same of operator of equation (4.5) but shown here in a different notation. The

next-to-leading (NLO) QCD correction to Direct top production was calculated in

(51). They found that this correction amounts to a cross section enhancement of
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g

q

t

Figure 4.3: Direct top production, q = u, c.

up to 60% for the Tevatron and 40% for LHC at 14 Tev, relative to the tree-level

result. Therefore we face a non negligible correction that should be taken into

account. Part of the work we will be presenting here concerns the development

of a parton-level event generator for FCNC Direct top production at NLO (a full

chapter will be dedicated to this process).

OS = gs
ki

Λ
t̄σμνT a(f i + ihiγ5)qG

a
μν q = u, c (4.12)

4.4 FCNC Single top

FCNC Single top production refers to a partonic final state of a top quark plus

a jet from a light quark. In principle we could also have a gluon as a jet in the

final state but this process will be treated as the real radiation part of the FCNC

Direct top at NLO. The FCNC Single top can arise both at an electron-positron

or at a hadronic collider. We will determine the minimum effective Lagrangian

for each case.
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γ, Z0

e+

e−

t

q

Figure 4.4: top+ jet production from e+e−, q = u, c.

4.4.1 e+e− → tq̄

From (42), (52) and (43) there are 13 effective operators that contribute to the

process e+ e− → t q̄, with q = u, c. Eight of them are four-fermion operators

O11k3
lq = (l̄L1 γ

μ lL1) (q̄Lk γμ qL3), (4.13)

O11k3
eu = (ēR γ

μ eR) (ūRk γμ uR3), (4.14)

O13k1
lu = (l̄L1 uR3) (ūRk lL1), (4.15)

Ok113
qe = (q̄Lk eR) (ēR qL3), (4.16)

O11k3
lqε = (l̄L1 eR) [(q̄Lk ε)

T uR3], (4.17)

O113k
lqε = (l̄L1 eR) [(q̄L3 ε)

T ) uRk], (4.18)

Ok113
qlε = (q̄Lk eR) [(l̄L1 ε)

TuR3], (4.19)

O311k
qlε = (q̄L3 eR1) [(l̄L1 ε)

T uRk], (4.20)

with k = 1, 2. The remaining five come from the contribution through FCNC

electroweak couplings with the top quark:

O
(1,ij)
φq ,O

(3,ij)
φq ,Oij

φu (4.21)

O
ij
uW ,O

ij
uBφ, (4.22)

where we have introduced the flavour indices i, j in the second set of opera-

tors to distinguish the top-up (i, j = {1, 3}, {3, 1}) from the top-charm i, j =

{2, 3}, {3, 2} anomalous coupling. To sum up, the total effective Lagrangian for

e+ e− → t q̄ is constituted by the operators in Table 4.3.
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O11k3
lq O

(1,ij)
φq

O11k3
eu O

(3,ij)
φq

O13k1
lu O

ij
φu

Ok113
qe O

ij
uW

O11k3
lqε O

ij
uBφ

O113k
lqε

Ok113
qlε

O311k
qlε

Table 4.3: Minimum set of effective operators for e+e− → tq̄.

In principle the operators Oij
qW , Oij

qB, O
ij
uB, O

ij
Du and O

ij

D̄u
should also be consid-

ered but as shown in (44) these operators can be written as a linear combination

of the ones in table 4.3 which makes them redundant. We note however that

although the operator O13
qW concerns only the FCNC coupling between a top and

a u-quark, its equation of motion includes the O32
uW operator which contributes

to the FCNC coupling between a top and a c-quark. Therefore, when discard-

ing these redundant operators we will also include the operators with top quark

couplings to c-quarks. The final minimal Lagrangian for the process is shown in

equation (4.23).

Le+ e− →t q̄ =
∑

i,j=1,3
or

i,j=2,3
i �=j

(
αij
uWO

ij
uW + αij

uBφ O
ij
uBφ + αij

φuO
ij
φu + α

(3,ij)
φq O

(3,ij)
φq + α

(1,ij)
φq O

(1,ij)
φq

)

+
2∑

k=1

[
α11k3
lq (ēL γ

μ eL)(ūLk γμ tL)− 1

2
α13k1
lu (ēL γ

μ eL)(ūRk γμ tR)

−1

2
αk113
qe (ēR γ

μ eR)(ūLkγμtL) + α11k3
eu (ēR γ

μ eR)(ūRkγμtR)(αk113
qlε

2
+ α11k3

lqε

)
(ūLk t)(ēL e) +

1

8
αk113
qlε (ūLkσ

αβt)(ēLσαβe)

+
(α311k∗

qlε

2
+ α113k∗

lqε

)
(ūRk t)(ēR e) + α311k∗

qlε (ūRkσ
αβt)(ēRσαβe)

]
. (4.23)
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4.4 FCNC Single top

4.4.2 qq → tq

For hadronic FCNC single top quark production we only considered gluons and

q = u, ū quarks in the initial state. We adopt this simplification since processes

with other quarks in the initial state will be suppressed with respect to u quarks

and gluons due to their low PDF values. This means that the cross section for

e.g. cc → tc is much smaller than the equivalent cross section for uu → tu. At

most we could have included processes that have d quarks in the initial state but

this would massively increase the final number of operators. For this reason we

decided to exclude these cases.

Again from (42), (52) and (43) we extract the 16 effective operators that con-

tribute to FCNC single top production in hadronic collisions, i.e, to the processes

gq → tg, qq → tq and gg → tq. Nine of them are four-fermion operators

Oijkl
qq =

1

2
(q̄Li γ

μ qLj) (q̄Lk γμ qLl), (4.24)

O
ijkl
qq′ =

1

2
(q̄Lia γ

μ qLjb) (q̄Lkb γμ qLla), (4.25)

Oijkl
uu =

1

2
(ūRi γ

μ uRj) (ūRk γμ uRl), (4.26)

O
ijkl
ud = (ūRi γ

μ uRj) (d̄Rk γμ dRl), (4.27)

O
ijkl
ud′ = (ūRia γ

μ uRjb) (d̄Rkbγμ dRla), (4.28)

Oijkl
qu = (q̄Li uRj) (ūRk qLl), (4.29)

O
ijkl
qu′ = (q̄Lia uRjb) (ūRkbqLla), (4.30)

O
ijkl
qd = (q̄Li dRj) (d̄Rk qLl), (4.31)

O
ijkl
qd′ = (q̄Lia dRjb) (d̄RkbqLla), (4.32)

(4.33)

where i, j, k, l = 1, 2, 3 are flavour indices and the indices a, b represent the

contraction of colour indices, only if this pairing is different from the one for the

spinor contraction. In (52) this set of operators is further simplified to the set of

operators show in table 4.4. There are in total 24 different combinations coming

from setting two of the indices i, j, k equal to 1 while the other is set to 1 or

2. These 24 can be reduced to 12 operators since for single top production we

65



4. EFFECTIVE LAGRANGIANS

are just interested in operators that have a single FCNC coupling. This is not

the case, for example, for the operator (c̄Rγ
μuR)(ūLγμtL) which introduces two

FCNC fermionic flows. Finally, the 12 independent four-fermion operators are

implemented by setting k = j = 1 and i = 1, 2.

1
2
(αkji3

qq + αijk3
qq′ )(ūLkγ

μuLj)(ūLiγμtL) −1
2
αk3ij
qu′ (ūLkγ

μuLj)(ūRiγμtR)

−1
2
αijk3
qu′ (ūRkγ

μuRj)(ūLiγμtL)
1
2
αkji3
uu (ūRkγ

μuRj)(ūRiγμtR)

−1
2
αk3ij
qu (ūLkaγ

μuLjb)(ūRibγμtRa) −1
2
αijk3
qu (ūRkaγ

μuRjb)(ūLiaγμtLa)

Table 4.4: Four-fermion operators to FCNC single top production.

The remaining seven effective operators come from the FCNC electroweak and

strong couplings with the top quark

O
ij
uφ,O

(1,ij)
φq ,O

(3,ij)
φq , (4.34)

O
ij
φu,O

ij
uGφ,O

ij
uW , (4.35)

O
ij
uBφ. (4.36)

As before we have discarded the operators O
ij
qG, O

ij
qW , Oij

qB, O
ij
uG, O

ij
uB, O

ij
Du

and O
ij

D̄u
since they can be proved redundant using the equations of motion (44).

Regarding four-fermion operators and focusing on the top-charm anomalous

couplings we can have the following classes of operators: (ūΓμ u)(c̄Γμ t), (c̄Γ
μ u)(ūΓμ t)

and (ūΓμ c)(ūΓμ t). The later will not be considered because any Fierz transfor-

mation will result in two ”FCNC” currents. Because the second operator can be

Fierz transformed into the first one, the final Lagrangian is therefore

Lqq,qg,gg→t q̄ =
∑

i,j=1,3
or

i,j=2,3
i �=j

(
αij
uGO

ij
uGφ + αij

uWO
ij
uW + αij

uBφ O
ij
uBφ + αij

φuO
ij
φu + α

(3,ij)
φq O

(3,ij)
φq

+α
(1,ij)
φq O

(1,ij)
φq + αuφ O

ij
uφ

)
+ L4fu + L4fc (4.37)

66



4.4 FCNC Single top

where L4fu is the four-fermion Lagrangian for anomalous top-up coupling

L4fu =
1

2
(α1113

qq + α1113
qq′ )(ūL γ

μuL)(ūLγμtL)

−1

2
(α1311

qu′ +
1

3
α1311
qu )(ūLγ

μuL)(ūRγμtR)

−1

2
(α1113

qu′ +
1

3
α1113
qu )(ūRγ

μuR)(ūLγμtL)

+
1

2
α1113
uu (ūRγ

μuR)(ūRγμtR)

−1

4
α1311
qu (ūLγ

μλauL)(ūRγμλ
atR)

−1

4
α1113
qu (ūRγ

μλauR)(ūLγμλ
atL) (4.38)

and L4fc is the four-fermion Lagrangian for anomalous top-charm coupling

L4fc =
1

2
(α1123

qq + α2113
qq′ +

1

3
α2113
qq +

1

3
α1123
qq′ )(ūL γ

μuL)(c̄LγμtL)

−1

2
(α1321

qu′ +
1

3
α1321
qu )(ūLγ

μuL)(c̄RγμtR)

−1

2
(α2113

qu′ +
1

3
α2113
qu )(ūRγ

μuR)(c̄LγμtL)

+
1

2
(α1123

uu +
1

3
α2113
uu )(ūRγ

μuR)(c̄RγμtR)

−1

4
α1321
qu (ūLγ

μλauL)(c̄Rγμλ
atR)

−1

4
α2113
qu (ūRγ

μλauR)(c̄Lγμλ
atL)

+
1

4
(α2113

qq + α1123
qq′ )(c̄Lγ

μλatL)(ūLγ
μλauL)

+
1

4
α2113
uu (c̄Rγ

μλatR)(ūRγ
μλauR)

+(
1

3
α2311
qu′ + α2311

qu )(c̄LtR)(ūRuL) +
1

2
α2311
qu′ (c̄Lλ

atR)(ūRλ
auL)

+(
1

3
α1123
qu′ + α1123

qu )(c̄RtL)(ūLuR)) +
1

2
α1123
qu′ (c̄Rλ

atL)(ūLλ
auR).(4.39)

The operators with the Gell-Mann matrices come from the ones where quark

colours indices are explicitly summed, and we have rearranged them in this form
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+ +

Figure 4.5: Auxiliary field mechanism.

to allow the implementation in LanHEP (53) which is a Feynman rules generator.

All four-fermion operators presented in equation (4.38) and (4.39) join four

colour particles in one vertex, which is a type of interaction LanHEP is not able

to handle automatically, due to the complex colour flow. Therefore, we had to

implement these operators using an auxiliary field mechanism (54), where the

4-colour vertex is replaced by 3-colour vertices that when combined in s, t and u

channels, will reconstruct the 4-fermion interaction. This is shown in Figure 4.5.

These 3-colour vertices are implemented by introducing the interaction terms in

the initial Lagrangian together with a unit mass field with a point-like propagator.

In equation (4.40) a vectorial auxiliary field example is shown. We can easily check

that the equation of motion for the Xμ field results in the initial Lagrangian.

L4F = (ψ̄i
Lγ

μψj
L)(ψ̄

k
Lγμψ

l
L) → (ψ̄i

Lγ
μψj

L)Xμ +Xν(ψ̄k
Lγνψ

l
L) +

1

2
XμX

ν (4.40)

4.5 tt̄

As previously discussed, the effective operator selection will always depend on

the physics process under study. In this section we discuss the case of tt̄ FCNC

production (to be discussed in detail in chapter 6). The physics case was the devi-

ation from the SM of the tt̄ asymmetries measured at Tevatron. The goal was to

check weather the deviation could be explained by FCNC top interactions. Like

before we consider dimension-six operators only as dimension-five were excluded

due to baryon and lepton number conservation.

We divide the dimension six operators in two groups: the four-fermion (4F)

operators and the non-4F operators. The latter can then be grouped according to
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the gauge boson present in the triple vertex. As we are discussing tt̄ production,

the non-4F operators contributing to the process have at least one top quark in

the interaction. Operators with one top quark, a light up-quark and one gauge

boson will be called FCNC operators. If the gauge boson is a gluon they are

classified as strong FCNC operators (55, 56); otherwise they will be called elec-

troweak FCNC operators (48, 49).

Before studying the possible dimension six FCNC operators that would ex-

plain the tt̄ asymmetry, we make a small comment on anomalous gtt̄ interaction.

They can also originate tt̄ production through diagrams shown in figure 4.6, and

so we could as well think of it as a source of such asymmetry. However, because

g

t

�g

�

t

t g

t

�g

�

t

t

Figure 4.6: Feynman diagrams for t t̄ production via anomalous gtt̄ interaction.

the initial state is symmetric, these diagrams will only contribute to the cross

section but not to the asymmetry. Therefore, any differences produced by these

operators would change only the cross section, but not the asymmetry where the

discrepancy is.

In the FCNC case, there are two sets of diagrams one has to consider: the

ones initiated by gluons and the ones initiated by light quarks. For the same

reasons discussed above, the contribution from the diagrams in fig 4.7 should

also be negligible. Therefore there are only contributions coming from the di-

agrams in fig 4.8. Regarding those diagrams (fig 4.8), and taking into account

that the contribution of the c-quark is much smaller in respect to the u-quark,

all contributions with a c quark in the initial state, were discarded. Note that

there are no s-channel contributions for the FCNC case because we have a top-

antitop pair in the final state. Finally, we will consider all four-fermion operators
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g
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t

Figure 4.7: Feynman diagrams with FCNC operators for t t̄ production via gluon
fusion.

u, c

γ, Z

�u, c

�
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�u, c

�

t

t

Figure 4.8: FCNC Feynman diagrams for t t̄ production via qq̄ fusion.

which will produce the diagram of figure 4.9. Additionally, we will consider not

q

q̄ t

t̄

�

Figure 4.9: Four-fermion Feynman diagrams for t t̄ production.

only the interference term with the SM contribution, of order 1/Λ2 but also the

modulus-square terms of order 1/Λ4. We will now discuss the minimum number

of operators to be used in our analysis.
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4.5.1 Strong and Electroweak sector

For the strong FCNC interaction, we can have three effective operators:

O
ij
uGφ, (4.41)

and

O
ij
uG , O

ij
qG. (4.42)

The operators in (4.41) are related to the operators in (4.42) through equations

of motion that also involve 4F operators (42, 43, 50, 55, 56). However, the four-

fermion operators appearing in those equations have either one or three top-

quarks (50), which means the operators in (4.6) can be discarded as well. The

operators presented in this section will give rise to the FCNC vertices of the form

g t ūi (with ui = u , c) and the corresponding hermitian conjugate interaction

with an independent coefficient.

In respect to the electroweak sector we have again the same effective operators

described above. The first group:

O
ij
uBφ,O

ij
uWφ (4.43)

and a second group:

O
ij
φu, (4.44)

O
(1),ij
φq ,O

(3),ij
φq , (4.45)

O
ij
Du
,Oij

D̄u
. (4.46)

Again, the use of the equations of motion allow us to discard the operators

in (4.46). In the electroweak sector, there are now four-fermion operators with

one top and one anti-top. However, those four-fermion operators always have one

b-quark in the interaction or, if not, are CKM suppressed making its contribution

to the tt̄ asymmetry negligible. Furthermore, as was shown in (50), for all the

operators in (4.44) and (4.45), Oij and Oji are not independent. This means that

the number of independent operators in (4.44) and (4.45) is reduced to three
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4. EFFECTIVE LAGRANGIANS

(for each light flavour). Finally, for this particular study, we can group O
(1),ij
φq

and O
(3),ij
φq under the same Lorentz structure which further reduces the number

of independent operators in (4.45) to two for each light flavour.

The above discussion leads us to the conclusion that the minimum number of

operators needed to describe the asymmetry is 8 for each light flavour.

4.5.2 Four-fermion operators

We now turn to the four-fermion operators. In order to make the analysis as clear

as possible we will reduce the operators to a manageable number making use of

all allowed reduction procedures, from equations of motion to Fierz identities.

Again, because the largest contribution to tt̄ production occurs in uū fusion, we

will discard all non u-quarks contribution in our study. We end up with a total

of 12 operators in agreement with (57), that is, 12 operators for each light up-

quark flavour and we do not consider operators with down-quarks in the initial

state. This simplification allow us to find hints of the type of operators that can

contribute to the asymmetry according to the its Lorentz structure. We write

the four fermion lagrangian as

L4F
6 =

g2s
Λ2

∑
A,B

[
C1

AB(ūAγμuA)(t̄Bγ
μtB) + C8

AB(ūAT
aγμuA)(t̄BT

aγμtB)
]
+

g2s
Λ2

∑
A �=B

[
N1

AB (ūAγμtA)(t̄Bγ
μuB) +N8

AB (ūAT
aγμtA)(t̄BT

aγμuB)
]

where T a = λa/2, {A,B} = {L,R}, and the exponent 1 and 8 denotes a colour

singlet and a colour octet interaction, respectively.
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5

top FCNC physics at a Linear

Collider

This chapter summarises the work presented at LCWS10/ILC10 and published

in http://arxiv.org/abs/1007.2992v1.

5.1 Introduction

In this work we will address the following question: will there still be top FCNC

physics to explore after the LHC at an electron-positron and/or at a photon col-

lider? Such a study would require a precise knowledge about the total luminosity

that will be collected at the LHC. Moreover, it is still not clear when a new

electron-positron or photon-photon collider will be built let alone its centre-of-

mass energy and luminosity. Hence, we have chosen as the ”future” the LHC at

100fb−1 and have relied on the benchmarks available in the literature for pro-

posed electron-positron and γγ colliders. Evidently, the luminosity collected at

the LHC could reach 300fb−1 or more (with the Super Large Hadron Collider)

before any other collider starts operation. However, it is not clear what the effect

on bounds obtained for top FCNC related observables would be and it is reason-

able to assume that most limits will stay within the same order of magnitude due

to the difficulties of operating at very high luminosity. We will focus on the sce-
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5. TOP FCNC PHYSICS AT A LINEAR COLLIDER

nario where no evidence for new physics is found - otherwise a different approach

has to be taken to understand what is the vertex or vertices that give the main

contribution to the new physics observed.

In the next section we will first set the framework for our study; we will then

proceed to a review of the results on top FCNC physics and the predictions avail-

able for the LHC; finally we will discuss top FCNC physics at a linear collider

and at a photon collider.

5.2 The story so far and the LHC

The search for new top FCNC physics started with indirect measurements of the

branching ratios of top decaying to qZ, qγ and qg at LEP (q stands for the sum

of u and c-quarks). Indirect measurement are bounds on the branching ratios

that have their origin in bounds on the cross sections of FCNC top production

processes, with a subsequent decay t→ bW . This translation is correct if only one

coupling constant describes the interaction t̄qV , where q = u, c and V is a gauge

boson. As a simple example, the production cross section for e+e− → t̄q, has

contribution from operators of the type t̄qV but also from four-fermion operators.

Therefore, a measurement of this cross section will not allow, in the most general

case, to put a bound on any of the branching ratios BR(t → qV ). Moreover,

bounds on cross sections that are converted on bounds on the branching ratios

rely on the fact that the experimental analysis is not contaminated with other

physical processes that would invalidate the conversion. In table 5.1 (see (49) for

LEP HERA Tevatron

Br(t→ q Z) < 7.8% < 49% < 3.7% d

Br(t→ q γ) < 2.4% < 0.64%(u) < 3.2% d

Br(t→ q g) < 17% < 13% < 0.045%

Table 5.1: Current experimental bounds on FCNC branching ratios. The super-
script ”d” refers to bounds obtained from direct measurements, as explained in the
text.

a complete list of references) we present the experimental limits obtained at LEP,

HERA and Tevatron. The superscript ”d” refers to bounds obtained from direct
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5.2 The story so far and the LHC

measurements, that is, from tt̄ production with one of the top-quarks decaying to

bW and the other to qV , with q = u, c and V = Z, γ. The best bounds are now

at the % level, except for the indirect bound on t → qg which is 0.045%, from

the measurement of the direct top production cross section at the Tevatron.

The gauge structure of the SM implies that a given dimension 6 operator

with an impact on top interactions can also have a parallel effect on processes

involving only bottom quarks. The most recent analysis for top-FCNC operators

using all available B physics data was performed in (58) (see also (59)). The

underlying SM gauge structure gives rise to a hierarchy of constraints: the gauge

structure manifests more strongly in the operators denoted by LL in (58) as these

operators are built with only SU(2) doublets. Operators RR, built with singlets

alone, are obviously the least constrained as no relation exists between a R-top

and a R-bottom. In Table 5.2 we present the set of constraints on the branching

OLL
φ ORL

tWφ ORL
tBφ OLR

tWφ OLR
tBφ ORR

φt

Br(t→ c Z) O(10−6) 3.4× 10−5 8.4× 10−6 4.5× 10−3 d d
Br(t→ c γ) − 1.8× 10−5 4.8× 10−5 2.3× 10−3 d d
Br(t→ uZ) O(10−5) 4.1× 10−5 1.2× 10−4 3.2× 10−3 d d
Br(t→ u γ) − 2.1× 10−5 6.7× 10−4 1.6× 10−3 d d

Table 5.2: Bounds from B-physics obtained in (58).

ratios obtained in (58) when only one operator is taken at a time. Considering

the prediction for the LHC with an integrated luminosity of 100 fb−1 (60, 61, 62),

as shown in Table 5.3, it is clear that, in this approximation, operators of the

type LL are already constrained beyond the reach of the LHC. This is true for

ATLAS & CMS (10 fb−1) ATLAS & CMS (100fb−1)

Br(t→ q Z) 2.0× 10−4 4.2× 10−5

Br(t→ q γ) 3.6× 10−5 1.0× 10−5

Br(t→ q g) (ATLAS) 1.3× 10−3 4.2× 10−4

Table 5.3: Direct bounds based on the processe pp → tt̄ → bW q̄X at 95 % CL.

operators of type LL, while limits on LR and RL operators are close to what

is expected to be measured at the LHC. B factories and the Tevatron are still

collecting data and therefore these constraints will be even stronger by the time
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the LHC starts to analyse data. As B physics only constraints operators with

origin in the electroweak sector the best bound on Br(t→ q g) is still the Tevatron

indirect bound. Note that the prediction for the LHC at 14 TeV for Br(t→ q g)

(and 100 fb−1) is similar to the indirect Tevatron bound. Again, this is because

the Tevatron’s is an indirect bound - a similar analysis for direct top production

at the LHC for a 14 TeV center-of-mass energy and 10 fb−1 integrated luminosity

(ATLAS only) gives Br(t→ q g) < 9× 10−5 (63).

So far we have discussed bounds on the branching ratios even if some of them

stem from limits on the productions cross sections, where FCNC is present, by

taking one operator at the time. However, those bounds can also be used to

place restrictions on the operators themselves. This is particularly true when

four-fermion operators are present because those operators do not contribute to

any of the top FCNC branching ratios discussed so far. In fact, four-fermion

operators contribute only to Br(t → q e+e−), a process that was not studied

at the LHC. Both theoretical (64) and experimental (LEP) (65) studies were

performed for the four-fermion operators and restrictions on the four-fermion

coupling constants were set. It was shown in (64) that the direct bounds on

the four-fermion coupling constants will improve at a future electron-positron

collider which is a consequence of the corresponding production cross sections

growth with energy. Therefore, this is clearly a case where bounds on couplings

will definitely improve with the next generation of electron-positron colliders.

5.3 Is there top FCNC left to explore?

Several studies dedicated to top production and decay involving FCNC couplings

were performed for electron-positron colliders. Direct bounds based on the pro-

cess e+e− → tt̄ → bW q̄X were calculated in (66, 67) for
√
s = 500 GeV and√

s = 800 GeV. In Table 5.4 we present limits for Br(t → q Z) and Br(t → q γ)

taken from (66, 67) for
√
s = 500 GeV and 300fb−1 of integrated luminosity.

The bounds degrade as the center-of-mass energy rises due to a decreasing tt̄ pro-

duction cross section and improve as the center-of-mass energy approaches the

tt̄ threshold. There are several analysis of single top production where FCNC is
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√
s = 500 GeV (300fb−1)

Br(t→ q Z) O(10−3)
Br(t→ q γ) O(10−4)

Table 5.4: Direct bounds based on the process e+e− → tt̄ → bW q̄X at 95 % CL.

present in the production process and not in the decay. Process e+e− → tc̄+ ct̄,

where t → bW , was studied in (68) in an effective Lagrangian approach, us-

ing the most general top FCNC three-point interactions. The same process was

discussed in the same approach but with the inclusion of the four-fermion op-

erators in (64). Other top-FCNC production processes like e+e− → tc̄νν̄ and

e+e− → tc̄e+e− were studied in (64, 69). We will use the results obtained for fu-

ture electron-positron colliders to understand if these predictions can improve the

bounds on all or some of the FCNC branching ratios after the LHC has collected

100 fb−1 per experiment at
√
s = 14 TeV.

5.3.1 Electron-positron collider

To simplify our study we have considered all coupling constants real. We have

made a further simplification by requiring that operators of type Oij cannot be

distinguished from operators of type Oji, that is, all operators are independent

of where the top quark is placed. We have checked that these approximations

do not affect our conclusions. We have randomly generated 400K points for the

coupling constants written as ”a 10b”, with −5 < a < 5 and −8 < b < −1. In

Figure 5.1 we present the e+e− → tc̄ + ct̄ cross section, for
√
s = 500 GeV as a

function of the branching ratio BR(t→ qγ) (up) and BR(t→ qγ)+BR(t→ qZ)

(down) with q = u, c. First we should note that when all couplings are taken into

account, there is no simple proportionality between cross section and branching

ratio. However a bound on the cross section can still be translated to a bound on

a branching ratio. In the figures we draw a horizontal line that correspond to the

upper limit set by the analysis in (68) for
√
s = 500GeV and a luminosity of 500

fb−1. The vertical line in Figure 5.1 corresponds to the 14 TeV LHC prediction

for 100 fb−1. We conclude that, because the lines cross inside the painted region,

even if close to the border, the bound can only be improved with either an increase
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Figure 5.1: σe+e−→tc̄+ct̄ as a function of the branching ratio BR(t → qγ) (up)
and BR(t → qγ) +BR(t → qZ) (down) with q = u, c for

√
s = 500 GeV.

in luminosity or in center-of-mass of the electron-positron machine (68).

In Figure 5.2 we discuss how the inclusion of just one set of operators can

affect the bounds on the branching ratios. There is still no bound or prediction

available for BR(t → qe+e−), but the LHC has the means to do it. It will

probably be of the same order of magnitude of the one for BR(t → Zq), that

is, O(10−4). In the up panel we present the cross section for e+e− → tq̄ + qt̄ as

a function of BR(t → qe+e−) with only four-fermion operators. The horizontal

line is the same as the one in the previous plots while the vertical line points

to a rough estimate of the bound that would be set on BR(t → qe+e−). When

only four-fermion operators are taken into account this bound is O(10−9). In the

down panel we present the same plot but without the four-fermion operators. In
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Figure 5.2: σe+e−→tq̄+qt̄ as a function of the branching ratio BR(t → qe+e−)
with q = u, c with only four-fermion operators (up) and no four-fermion operators
(down).

this case the bound is O(10−5). If all operators are taken into account the bound

becomes unreliable due to interference terms but if any it will always be worst

than O(10−5).

The simplest process that could probe is the strong FCNC branching ratio

is e+e− → tq̄g. In this case FCNC could come either from the strong, from the

electroweak, or from the four-fermion sector. We have checked that the bound

is several orders of magnitude worst than what is expected for the equivalent

indirect bound at the LHC.
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5.3.2 γγ collider
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Figure 5.3: σγγ→tc̄+ct̄ as a function of
√
s. We present the LHC bounds for

BR(t → qγ) for integrated luminosities of 10 and 100 fb−1.

Finally we will just briefly comment on the bounds that can be obtained for

a γγ collider. This is a particularly interesting case because, in our framework,

there is only one coupling constant involved in the process γγ → tq̄ + qt̄ which

means that it can be unambiguous translated onto a limit on BR(t → q̄γ). A

detailed study was presented in (70) (see also (71)) for
√
s = 400, 500, and 800

GeV center-of-mass energies. Using their results and the predicted bounds for

BR(t → qγ) with q = u, c for the 14 TeV LHC for integrated luminosities of

10 and 100 fb−1, it is clear that the LHC bound on BR(t → qγ) has a good

chance to be improved at a future γγ collider. Figure 5.3 shows that a total

luminosity of 40 fb−1 would be enough to overcome the LHC 100 fb−1 bound

almost independently of the γγ collider center-of mass energy.
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5.4 Conclusions

In this chapter we have discussed what will be left to study in top FCNC physics

after the LHC has reached a stage where no significant change in FCNC bounds

will occur. We have concentrated on the scenario where no evidence for new

physics is found - otherwise, the role of a linear collider has still to be investigated.

Taking into account the predictions done so far for an electron-positron (γγ)

collider our conclusions are as follows:

• In this scenario, improving the LHC bounds on the BR, depends on the

energy and especially on the luminosity of the future collider. Taking as a

benchmark the available studies no significant improvement on the bounds

of the branching ratios is expected. If new physics is found particular

operators can be probed with definite observables.

• Regarding the four-fermion operators, the bounds on the coupling constants

will certainly improve due to rise of cross section with the collider’s energy.

• Improvement on other specific couplings taken one at a time can also be

achieved. We did not consider those scenarios in our study.

• A photon-photon collider will most certainly improve the bound on the

t→ qγ FCNC branching ratio.

• Finally, NLO QCD corrections to top FCNC decays to Z and γ were shown

to be negligible for our choice of operators (72). Correction to t → qg,

q = u, c were shown to be of the order of 20 % (72).
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6

tt̄ Asymmetry

This chapter summarises the work published in the reference:

Phys. Rev. D86, 014016 (2012).

6.1 Introduction

The most recent measurement of the forward-backward asymmetry, Att̄
FB, in top

quark pair production at the Tevatron (15, 73) was performed by the CDF col-

laboration using a data sample with 5.3 fb−1 of integrated luminosity (74). After

background subtraction, the value of Att̄
FB in the center-of-mass (CM) frame of

the top quarks is

Att̄
FB = 0.158± 0.074 (6.1)

which constitutes about two standard deviations above the Next-to-Leading-

Order (NLO) Standard Model (SM) prediction (16, 17)

Att̄,SM
FB = 0.058± 0.009. (6.2)

Despite the discrepancy in Att̄
FB, the total tt̄ production cross section is in good

agreement with the SM prediction. In fact, with 4.6 fb−1 collected luminosity,
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the top quark pair production cross section (75) yields the result

σMeasured
tt̄ = 7.70± 0.52 pb (6.3)

for a top quark of mass 172.5 GeV, which is in good agreement with the theoretical

prediction (76)

σSM
tt̄ (MCFM) = 7.45+0.72

−0.63 pb (6.4)

where MCFM stands for Monte Carlo for FeMtobarn processes (77). Measure-

ments of the tt̄ differential cross section with the tt̄ invariant mass (mtt̄), dσ/dmtt̄

were also performed by the CDF collaboration (78). With an integrated lumi-

nosity of 2.7 fb−1, CDF has tested the mtt̄ spectrum for consistency with the

SM prediction. The results are presented in table 6.1. They have concluded

that there is no evidence of non-SM physics in the mtt̄ distribution of the cross

section. Hence, whatever new physics explains the forward-backward asymme-

try in tt̄ production, it has to comply with all other measurements that are in

agreement with the SM. Finally, measurements of the asymmetry for two regions

of the top-antitop rapidity difference (ΔY ) and for two regions of the invariant

mass (mtt̄) were performed by the CDF collaboration in (74). The results are

presented in table 6.2 together with the theoretical predictions. The asymmetry

at high mass is 3.4 standard deviations above the NLO prediction for the charge

asymmetry of QCD. Recently, the electroweak contributions to the asymmetry

were re-analysed (79, 80) just to conclude that the observed mass-dependent

forward-backward asymmetry still shows a 3σ deviation in the high mass region.

Inclusion of corrections beyond NLO does not change this picture as well (81).

The separate results at high mass and large ΔY contain partially independent

information on the asymmetry mechanism. Therefore, a total of 14 observables

were measured at the Tevatron. This set of experimental values will be used to

investigate whether the complete set of effective dimension six operators is able

to describe any new physics responsible for the observed discrepancies while re-

taining the measurements in agreement with the SM. Note that we will use only

the 8 bins presented in table 6.1 of the 9 bins measured in (78) together with

the total cross section. To those 9 observables we add the 4 observables shown in
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table 6.2 for the asymmetry together with the total asymmetry. Hence, we use

14 observables in total and it can be easily seen that they are all independent.

Recently D0 (82) has measured Att̄
FB with 5.4 fb−1 of collected luminosity. As

discussed in (83), their analysis does not observe a significant rise of the folded

detector level asymmetry with respect to mtt̄− and ΔY . Until these results are

unfolded they can not be directly compared to the CDF ones, even if at the

detector level they appear to be consistent within errors. We did not use the

results (82) in our analysis.

Bin σ (CDF result) σ (SM-NLO)
(GeV) (pbarn) (pbarn)
350-400 3.115± 0.559 2.450
400-450 1.690± 0.269 1.900
450-500 0.790± 0.170 1.150
500-550 0.495± 0.114 0.600
550-600 0.285± 0.071 0.400
600-700 0.230± 0.073 0.310
700-800 0.080± 0.037 0.100
800-1400 0.041± 0.021 0.036

Table 6.1: CDF measurements of dσ/dmtt̄ (78) (integrated in each bin). We bin-
wise scale our SM result (at LO) to match the SM-NLO result to emulate a mtt̄

dependent k-factor for fitting. The SM-NLO values are extracted from the plot
in (84).

Observables CDF result SM prediction

Att̄
FB(|ΔYt| < 1.0) (0.026± 0.118) (0.039± 0.006)

Att̄
FB(|ΔYt| > 1.0) (0.611± 0.256) (0.123± 0.008)

At
FB(mtt̄−) (−0.116± 0.153) (0.040± 0.006)

At
FB(mtt̄+) (0.475± 0.114) (0.088± 0.013)

Table 6.2: CDF measurements (74) and SM predictions for the Forward-Backward
Asymmetry for two regions of ΔYt and for two regions of mtt̄. A

t
FB(mtt̄+) stands

for Att̄
FB(mtt̄ > 450 GeV), while At

FB(mtt̄−) stands for Att̄
FB(mtt̄ < 450 GeV).

There have been several attempts to explain this discrepancy. The most pop-

ular collection of models among theorists when trying to account for the Tevatron
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results are the ones with new gauge bosons, and in particular, axigluons, W ′ and

Z ′ bosons (85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,

102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114). Explanations

in the framework of supersymmetric models were discussed in (115, 116). Other

possible justifications for the inconsistency between theory and experiment in the

asymmetry, while leaving the cross section for tt̄ production within measured un-

certainties, include s-channel coloured unparticle contributions (117) or s-channel

new colour octet vector bosons contributions (118, 119, 120, 121, 122, 123), extra

dimensions (124, 125, 126, 127), SO(5) ⊗ U(1) gauge-Higgs unification mod-

els (128), new heavy quarks (129) and diquark models (130, 131, 132, 133).

The search for resonances decaying into tt̄ has also been carried out at the

Tevatron (134) (see also (135)) with negative results. CDF has tested vector res-

onances with masses between 450 GeV and 1500 GeV with widths equal to 1.2

% of their mass. With 4.8 fb−1 of integrated luminosity they found no evidence

of resonant production of tt̄ candidate events. This result supports the argument

of integrating out new heavy fields and strengthens the idea of adopting a model

independent approach in explaining the measured asymmetry at the Tevatron.

An independent approach, using dimension-six operators was already discussed

in (136, 137, 138, 139, 140, 141, 142). In this work we propose to study the ef-

fect of dimension six flavour changing neutral current (FCNC) operators together

with four fermion (4F) operators. In order to find the best set of parameters that

fits the data we will use a Markov Chain Monte Carlo (MCMC) approach.

6.2 Parameter sampling method

In order to find the best set of parameters that fits the data we use a Markov

Chain Monte Carlo (MCMC) approach (see section 2.5). We have constructed 10

chains, each started with a different random starting point. In all calculations of

the top production cross sections we use the top mass as the renormalization and

factorization scale. We take mt = 175 GeV and to take into account the NLO

corrections we have chosen a k−factor of 1.41 (76, 77). Further, we use a bin-

wise scaling for themtt̄ distribution to emulate themtt̄ dependent k−factor. Once
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again we note that the 14 observables used as input in this study as measured

by the CDF and D0 collaborations are all independent. These 14 observables are

described in the previous section. We notice that the chains resulted in a very

good convergence behaviour.

6.3 Strong and Electroweak operators

In order to simplify the notation we have replaced the original constants from

the operators in the strong and electroweak sectors by αi with i = 1, 8. This

correspondence between constants αi and the operators themselves is presented

in table 6.3. As an example, the first operator Out
uGφ would appear in the effective

Lagrangian as
αut
uGφ

Λ2
Out

uGφ . (6.5)

Considering Λ = 1 TeV then α1 is defined as

α1 =
αut
uGφ

Λ2
TeV2 (6.6)

which renders α1 dimensionless. Similar definitions hold for the remaining αi

constants. Table 6.3 shows the relations between all the constants shown in the

plots and the independent FCNC operators in the strong and electroweak sectors.

We first present our results for the Strong and Electroweak FCNC operators

(SEFCNC). In fig 6.1 we present the χ2 as a function of α1, α3 and α7, keeping

only one of the coefficients non-zero at a time. These three curves are representa-

tive of the χ2 distribution behaviour for the complete set of SEFCNC operators.

In fact, we can group operators α1 and α2 as for both α1 = 0 and α2 = 0 are the

most favoured values. The operators that are preferentially non zero when taken

one at a time are α3, α4, α5 and α6. In this case the preferred values are close

to αi = ±4 (see α3 in fig 6.1). Finally both α7 and α8 seem to be completely

unconstrained as they have an almost flat χ2 distribution for the entire αi range

presented.
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Constant Operator
α1 Out

uGφ

α2 Otu
uGφ

α3 Out
uWφ

α4 Otu
uWφ

α5 Out
uBφ

α6 Otu
uBφ

α7 Out
φu + Otu

φu

α8 O
(3,tu)
φq + O

(3,ut)
φq

Table 6.3: Relation between the constants presented in the plots and the inde-
pendent FCNC operators in the strong and electroweak sectors.
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Figure 6.1: The χ2 as a function of α1, α3 and α7 with each parameter taken
non-zero one at a time. The most favoured values are α1 = 0 and |α3| �= 0. There
are no preferred values for α7.

We have then proceeded to scan over the 8 parameters (αi, i = 1 − 8) using

the MCMC method with flat prior as described in the previous section. The

range for all parameters was chosen to be −10 < αi < 10. The complete set of

14 experimental observables, presented in the introduction, is used to calculate

the χ2 and hence the likelihood. After the likelihood mapping for the model,

we have obtained the one dimensional likelihood distribution of the parameters

which is presented in fig 6.2. It is clear from the figure that both α1 and α2,

the FCNC operators stemming from the strong sector, are strongly constrained

to be in the range −2 to 2. Operators α3 to α6, the chirality-flipping FCNC

operators coming from the electroweak sector, have to be in the range −4 to 4.
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Figure 6.2: One dimensional likelihood distribution of the parameters α1 to α8

after the fit.

Finally the chirality-conserving operators from the electroweak sector, α7 and α8

are very mildly constrained and, as we will show later, the center-peaked shape

of the distribution is only a reflection of the correlations of these parameters

with the constrained ones. In order to understand how well the model fits into
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Figure 6.3: One dimensional likelihood distribution of the total cross section and
all asymmetries after the fit.

89



6. T T̄ ASYMMETRY

the experimental observables we present in fig 6.3 the one dimensional likelihood

distribution of the observables after the fit. Considering the central values of

the observables presented in the introduction, we conclude that the SEFCNC set

of operators prefer a lower value of the cross section while generating suitable

values for the total forward-backward asymmetry. The values for At
FB(m

+
tt) and

At
FB(y

+
t ) are below their experimental central values but well within the error

bands. This shows that there is some compromise between the values of the

parameters in the attempt to fit all observable simultaneously giving rise to a

slight difference between the input observables and the ones originated from the

posterior probability distribution functions (pdfs).

We now move to the study of the possible two-dimensional correlation between

pairs of parameters. In fig 6.4 we present the two-dimensional correlation plots

for the most representative scenarios. It is clear from the figure that there is no

correlation between α1 and α2. Furthermore, these operators are very strongly

constrained. On the other hand, there are several pairs of values that cannot be

zero simultaneously. This is the case of (α3,α4) – the ones from SU(2), (α5,α6)

– the ones from U(1) and (α3,α5), (α4,α6) – these are the U(1) and SU(2) com-

bination where the indices of the operators Oij are the same as for example in

Out
uWφ and Out

uBφ. For the pairs (α4,α5) and (α3,α6) the preferred values lie in the

region α2
4 = α2

5 and α2
3 = α2

6 respectively. This happens to the combination of

SU(2) and U(1) operators with the ij indices exchanged. Finally operators α7

and α8 do not appear to be much constrained when plotted against the remaining

operators. There are however mild correlations - if we take for instance the pair

(α4,α7) it is clear that for α4 < 0, α7 prefers to be positive and if α4 > 0, α7

prefers to be negative.

With the hints from fig 6.4 about which parameters prefer to be non-zero

after the fit, we have tried to understand if one could make a more strong state-

ment about the appearance of new physics related to the Strong and Electroweak

dimension six FCNC operators. We note that the contributions of α7 and α8

are irrelevant because the change in likelihood is very small when these param-

eters are varied as shown in figures 6.1 and 6.2. On the other hand, α1 and α2

can lead to a large change in the likelihood - the preferred points are therefore

α1 = 0 = α2. Hence, we look at the most relevant combinations of the remaining
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Figure 6.4: Two-dimensional correlation plots for the strong and electroweak
FCNC parameters. Only the most relevant correlations are shown. The shaded
areas are the ones where the values of αi reach their highest probability - the darker
ones represent 95 % CL while the lighter ones are for 68 % CL

parameters. The likelihood distributions for those combinations are shown in

fig 6.5. It is clear that all the correlated pairs of parameters prefer to be non-zero

simultaneously, like for instance (α3,α4), which have a peak between 5 and 10.

Again, the likelihood plot for α2
3 − α2

6 peaks at 0 indicating that α2
3 = α2

6 is the

preferred parameter choice as also seen in fig 6.4. However, the most interesting

case is the likelihood for α2
3 + α2

4 + α2
5 + α2

6 – in this case we are certain that at

least one of the four parameters has to be non-zero in order to fit the data. This
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Figure 6.5: Likelihood distributions for the most relevant combination of param-
eters.

is a very strong statement because it means that new physics coming from these

operators can help curing the asymmetry discrepancy and in order to solve it at

least one of the operators has to be present.

In fig 6.6 we present the two-dimensional correlation between several observ-

ables after the fit. In the first row one can see that there is a negative correlation

between asymmetries and total cross section. Hence, to get the right asymme-

tries the cross section moves to its lower preferred value. On the other hand, all

asymmetries have positive correlations and are highly correlated – if one of them

increases the other increases as well. Therefore, there is a tension between cross

sections and asymmetries that reflects the difficulty of fitting all the observables

with the set of SEFCNC operators. Nevertheless, a non-zero contribution from

the operators α3 to α6 provides a better fit than the SM one.

In table 6.4, we show the best fit values along with 68% and 95% Bayesian

confidence intervals (BCI) for all the parameters and selected observables. The

BCIs are derived from the one-dimensional marginalized distributions, as shown

in figures 6.1 and 6.2, while the best fit point is the one with least χ2 = 14.2.

Thus, the best fit point does not need to be at the center of the marginalized
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Figure 6.6: Two-dimensional correlations between cross sections and asymme-
tries and between the different asymmetries.

BCIs. For the SM we have χ2 = 24.0 and it is the sizeable contributions from

α3, ..., α6 operators that lead to the reduction in the χ2 for our fits. We again

note that the combination α2
3+α

2
4+α

2
5+α

2
6 > 7.5 with 97.5% CL, i.e. it is almost

certainly non-zero.

We have also listed the posterior BCI for the cross section and the asymme-

tries in table 6.4. The best fit value of the total cross section, and also the 95%

BCI, are somewhat smaller than the measured central value. The same trend is

observed for all the asymmetries except for the integrated asymmetry Att̄
FB which

is correctly reproduced and the At
FB(mtt) asymmetry which is most likely positive

in our model. As previously discussed, the reduction of the cross section values

and asymmetries is a result of the negative correlations between them.

6.4 Four fermion operators

We now turn our attention to the four-fermion (4F) effective Lagrangian. We

should start by mentioning that recently (143), a complete calculation of the
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68% interval 95% interval
Quantities Best fit lower upper lower upper
α1 −0.548 −1.081 1.066 −1.797 1.793
α2 −0.449 −1.102 1.053 −1.812 1.781
α3 −2.024 −2.222 2.293 −3.257 3.288
α4 2.913 −2.327 2.250 −3.443 3.446
α5 2.403 −2.210 2.254 −3.334 3.379
α6 0.742 −2.172 2.163 −3.330 3.317
α7 −3.318 −5.257 4.901 −8.763 8.536
α8 −3.146 −4.106 4.647 −7.931 8.148
σtt 6.817 6.670 7.093 6.453 7.299
Att̄

FB 0.153 0.102 0.155 0.078 0.181
At

FB(mtt̄−) 0.044 0.018 0.041 0.006 0.053
At

FB(mtt̄+) 0.310 0.220 0.309 0.177 0.354
At

FB(Yt < 1) 0.126 0.090 0.126 0.074 0.144
At

FB(Yt > 1) 0.245 0.143 0.248 0.093 0.299
α2
3 + α2

4 + α2
5 + α2

6 18.91 11.43 19.39 7.50 23.46

Table 6.4: Best fit values and the Bayesian confidence intervals (BCI) for param-
eters and the observables.

forward-backward asymmetry and of the total cross section of top quark pair pro-

duction induced by 4F-operators was performed for the Tevatron up to O(α2
s/Λ

2).

The results show that next-to-leading order QCD corrections can change both

the asymmetry and the total cross section by about 10%. As discussed in sec-

tion 4.5.2, there are a total of 12 independent operators for the study of tt̄ produc-

tion and under the conditions described previously which mainly means we are

only considering the u-quark contribution in the initial state. We have scanned

linearly over the 12 parameters from the 4F-Lagrangian using the MCMCmethod.

The range chosen for all parameters was again from −10 to 10. In fig 6.7 we

present the likelihood distribution for all the 4F parameters, after the fit. A few

comments are in order. First, operators in one row can only interfere with pa-

rameters in the same row. Second, only parameters in the first row interfere with

the SM Lagrangian and consequently the main contribution for the asymmetry

has to come from the parameters presented in the first row. This is clear from the

plot as the four distributions in the first row are the only asymmetric ones - all
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Figure 6.7: Likelihood distribution for the parameters of the four-fermion La-
grangian, after the fit.

other parameters in the following two rows have not only symmetric distributions

but they show that the preferred value of these parameters is zero. However, in

the case of 4F operators the cross sections and the asymmetries depend only on

six combinations of the parameters. Therefore we have decided to present in

fig 6.8 the likelihood distribution for those combinations together with the like-

lihood distributions of the total cross section and a few selected asymmetries.

The relation between the new parameters and the original ones present in the 4F
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Figure 6.8: Likelihood distribution for the total cross section and for the asym-
merties and for the six independent combinations of the 4F Lagrangian parameters,
after the fit.

Lagrangian is

C1 = C8
LL + C8

RR

C2 = C8
LR + C8

RL
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LR)
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RL)
2 +

2

9

[
(N8

LR)
2 + (N8

RL)
2
]

. (6.7)

It is clear that the experimental observables are well described by the fit. Re-

garding the parameters, the most relevant fact, that could already be inferred
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from fig 6.8, is that C2 prefers to be non-zero and, for the same reason, the like-

lihood of both C12 and C22 peaks at 1. A similar trend can now be seen in the
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Figure 6.9: Two-dimensional correlations between the parameters that can give a
significant contribution to the asymmetry. Also shown are typical examples of the
correlations between cross section and asymmetries and between two asymmetry
observables.

two-dimensional correlations presented in fig 6.9. It is clear that at 95 % CL the

value zero is excluded in the top right plot. In the top left plot the value zero is

still inside the 95 % CL contour. Regarding the correlations between cross sec-

tion and asymmetries, and between pair of asymmetries, after the fit, the general

trend is very similar to the one presented in the previous section for the strong

and electroweak FCNC operators. Therefore we will make no further comments

on those correlations.

In fig 6.10 we present two dimensional correlations between C1 and C2 and
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Figure 6.10: Two-dimensional correlations between the parameters C1 and C2

and the total cross section, total asymmetry and the parameter C22.

the total cross section, total asymmetry and the parameter C22. We see that

while C1 is positively correlated with both the cross section and the asymmetry,

C2 is positively correlated with the cross section but negatively correlated with

the asymmetry. Furthermore C1, C2 and C22 are all negatively correlated with

each other. Finally, we conclude that either C2, C22 or both have to be non-zero

which is not surprising given the relations presented in eqs. (3.5).

In table 6.5, we show the best fit point along with 68% and 95% BCIs. The

best fit point is the one with least χ2 = 6.28. As seen in figure 6.9, only C8
AB oper-

ators have relevant contributions to both the asymmetries and the cross sections.

The weak operators, C1
AB do not interfere with the SM diagrams, contributing

therefore more to the cross sections and much less to the asymmetries. Thus,

they are strongly constrained through the measured values of the cross sections.

The N i
AB operators contribute only to the cross sections and consequently are

also strongly constrained and irrelevant as possible new physics contributions.

Again, due to the negative correlations between the cross section and the

asymmetries, there is a slight tension in the fits. This leads to a mild preference

for lower values of the total cross section. The asymmetries, on the other hand,
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6.4 Four fermion operators

68% interval 95% interval
Quantities Best fit lower upper lower upper
C8

LL 0.915 −0.385 0.968 −1.119 1.466
C8

RR 0.418 −0.368 0.980 −1.104 1.476
C8

LR −0.934 −1.487 −0.406 −2.031 0.064
C8

RL −0.963 −1.488 −0.406 −2.035 0.071
C1

LL −0.136 −0.420 0.420 −0.794 0.792
C1

RR 0.002 −0.422 0.419 −0.795 0.793
C1

LR −0.082 −0.316 0.316 −0.606 0.606
C1

RL 0.049 −0.316 0.318 −0.606 0.607
N1

LR 0.057 −0.212 0.212 −0.405 0.405
N1

RL −0.036 −0.212 0.212 −0.405 0.404
N8

LR 0.070 −0.442 0.441 −0.848 0.846
N8

RL 0.040 −0.446 0.443 −0.852 0.850
σtt 7.054 6.601 7.181 6.315 7.453
Att̄

FB 0.191 0.131 0.199 0.096 0.231
At

FB(mtt−) 0.107 0.077 0.114 0.059 0.132
At

FB(mtt+) 0.321 0.211 0.327 0.151 0.379
At

FB(Yt < 1) 0.121 0.084 0.128 0.063 0.148
At

FB(Yt > 1) 0.420 0.281 0.430 0.205 0.496

Table 6.5: The table of best fit values for the 4F case along with 68% and 95%
BCI.
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are reasonably well reproduced. We note that, At
FB(mtt) prefers to be positive

with 4F operators.

6.5 Bounds on the effective operators

In this section we discuss all possible bounds on the dimension six effective op-

erators described in the previous sections. Our goal is to ascertain whether the

values of the couplings multiplying each operator, that could explain the mea-

sured asymmetry discrepancy, are still allowed by the available experimental data.

We start by considering the dimension six FCNC operators. We have seen above

that the only effective operators stemming from the electroweak sector were likely

to fit the Tevatron data on the top quark better than the SM. In fact, it is the

sizeable contributions from the α3, ..., α6 operators that lead to the reduction in

the χ2 for our fits. We again note that the combination α2
3 + α2

4 + α2
5 + α2

6 > 7.5

with 97.5% CL, it is almost certainly non-zero. Therefore, we have now to focus

on the bounds for operators α3 to α6 to understand if such a high value of the

constants is not in contradiction with experimental data from other sources.

A very complete analysis on the electroweak FCNC operators was performed

in (58) using not only all available data from B physics but also the data from

direct FCNC top decays (the later will be updated in this work) 1. The bounds

obtained on the operators taken one at a time are (58) α2
3 < 0.81, α2

4 < 0.011

and α2
6 < 0.096 while the best bound on α5 was shown to come from the

direct constraint on BR(t → qZ) and BR(t → qγ). Therefore, to satisfy

α2
3 + α2

4 + α2
5 + α2

6 > 7.5 one needs α5
5 ≈ 6.5. However, such a value of α5 would

imply that BR(t → qZ) ≈ 3.7% and BR(t → qγ) ≈ 6.3%. The most recent

direct bounds on BR(t→ qγ) and BR(t→ qZ) are the ones from the Tevatron,

3.2% (148) and from the LHC, 1.1% (149), respectively. Hence, it is clear that

such high values of α5 are disallowed by Tevatron and LHC data on the direct

searches for FCNC top decays with a photon or a Z-boson in the final state. Fur-

thermore, indirect bounds from HERA, where bounds on cross sections are con-

verted on bounds on the branching ratio, set a limit BR(t → qγ) � 0.5% (150).

1Other analysis based on B physics observables and electroweak precision constraints were
also performed in (59, 144, 145, 146, 147) leading to similar conclusions.
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Also, a combined study on B physics and Tevatron data on top quark production

cross section places an indirect bound on the sum of the FCNC branching ratios

forcing them to be below the percent level (151). In conclusion, experimental

data from very different sources constrain the operators that could explain the

asymmetry in such a way that we consider that it is very unlikely that the ob-

served discrepancy could be explained by these operators.

Contrary to the dimension six FCNC operators, there are no useful bounds

on the four fermion operators involving two top quarks and this is even more so

if the top is right-handed. Therefore, only the LHC could place constraints on

these operators. However the values of the constants Ci and Cij that could help

explain the discrepancy give an extra cross section that is always below 10 pb

even for
√
s = 14 TeV. Hence, given the error of tt̄ production cross section it is

very unlikely that these operators will be constrained in the near future.

6.6 Discussion and conclusions

In this chapter we have used a dimension six Lagrangian with FCNC interaction

together with four-fermion operators to gain some insight in understanding the

discrepancy between the experimental values obtained for the top pair production

asymmetry and the corresponding SM predictions. We have built a minimal set

of operators and we have used an MCMC approach to find the best simultaneous

fit of all independent operators to the available data. Our conclusions regarding

which operators give the best fit are as follows:

• Strong FCNC operators with coefficients α1,2 are most likely close to zero

in order do fit the cross section values.

• Regarding Electroweak FCNC operators with coefficients α3 to α6 we con-

clude that one of them must be non-zero - the sum of the operators α3 +

α4 + α5 + α6 was shown to be larger than 7.5 with 97.5 % CL.

• Electroweak FCNC operators with coefficients α7,8 are not relevant.

• Bounds on electroweak FCNC operators reveal that it is very unlikely that

the asymmetry can come from new physics described by these operators -
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in fact, the relation α3 + α4 + α5 + α6 > 7.5 is disallowed by the existing

experimental bounds on the operators.

• Four-fermion operators with coefficients C8
AB contribute to the asymmetries

while the ones with coefficients C1
AB give small contributions; the 4F combi-

nations C1, C2, C12, C22 contribute to the asymmetries; we should note that

for the best fit point only C8
LR and C8

Rl are not consistent with zero at one

sigma level.

• Four-fermion operators with coefficients N i
AB contribute to the cross sec-

tions only.

• There is in all cases some tension between cross section and asymmetries

when a simultaneous fit to all observables is performed.

• The contribution of 4F operators to the cross-section at LHC7 is of the order

±1.5 pb, which is allowed by the present estimates of the cross-section (152).

It is important to ask how do we figure out which operators are actually responsi-

ble for the asymmetry. To that end we note that the asymmetry, although called

forward-backward, is actually a C-odd and for CP conserving interaction that

can therefore be created by P -odd interactions as well. Further, our operators

contribute to the asymmetry in two ways: kinematically and dynamically. The

t-channel diagrams with FCNC interaction naturally originate more top quarks

in the direction of the incoming u-quark leading to a positive asymmetry as mea-

sured by the CDF collaboration. This coupling does not need to be chiral to

produce the required asymmetry, although our operators are chiral. For the 4F

case, there is no such kinematical asymmetry generation and it is dominantly

generated by the unbalance between left and right chiral operators interfering

with the SM contribution. Thus, in both cases, we have the presence of chiral

interaction, which also incarnates in the form of polarization of the produced

top-quark. Hence, a study of such polarization effects (153) as a function of

rapidity will be able to provide a probe of possible new physics. Further, our op-

erators are also constrained by B-physics observables and for simplicity we have

not accounted for them in our MCMC. We have nevertheless used the constraints
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from B-physics to conclude that FCNC operators are unlikely to account for the

measured asymmetry at the Tevatron. We should stress that low mass mediators

(like the Z ′) are not included in our study. In fact, the effective operator ap-

proach integrates out all interaction mediators, which is allowed only if they are

heavy. Previous studies show that the low mass mediators are more successful

in generating a large asymmetry while keeping the SM production cross section

within the experimental measured values. Our work strengthens this conclusion.

To conclude, we remark that the Att̄
FBobserved at CDF can be casted in terms

of dimension-six operators and we need more observables, from top-polarization

and B-physics, to constrain them due to the multitude of these operators.
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7

MEtop

This chapter summarises the work published with the reference:

Eur.Phys.J. C72, 2222 (2012).

7.1 Introduction

In this chapter we present a tool to measure FCNC effects related to the top quark

at the production level. More evolved top FCNC searches can only be performed

if a dedicated generator for top FCNC studies is available. Events for direct

top production pp(gu+ gc) → t studies can be generated at leading order by the

PROTOS generator (154), the TopReX generator (155) and also by multi-purpose

generators such as CompHEP (156) (see for instance the analysis in (157, 158)),

CalcHEP (159) or MadGraph (160). We considered that it was both necessary

and timely to make available a generator for top FCNC physics that included a

larger set of FCNC operators together with a larger set of physical processes at

the production level. This is the purpose of the MEtop event generator.

The MEtop main process is direct top production, pp(gu + gc) → t, but

calculated at NLO. NLO direct top was implemented by adopting an effective

NLO approximation as described in (18). Besides direct top, MEtop can be used

to generate events at LO for all FCNC processes with a top and a gluon or any

quark other then the top in the final state. We plan to include other processes
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like pp → tV , with V = γ, Z,W in the near future. From the theoretical point

of view we will adopt the effective operator formalism as described in chapter 4.

We use a set of dimension six effective operators always involving at least one

top-quark. Due to computational limitations and efficiency requirements, it is

not possible to include all effective operators described in chapter 4. Therefore,

MEtop comes with several choices of packages where different sets of effective

operators are available. The set of operators is classified in three different groups:

strong, electroweak and four-fermion (4F) operators. The list of operators in each

package is presented in appendix A. Furthermore, the User Manual is presented

in appendix B.

7.2 Direct top @ LO

g

q

t

Figure 7.1: Feyman diagram for FCNC Direct top production, q = u, c.

In figure 7.1 we show the Born diagram for FCNC Direct top production.

This is the main considered process for strong FCNC top studies, and it can be

parametrized through the effective operator of equation (4.12) given by:

OS = gs
ki

Λ
t̄σμνT a(f i + ihiγ5)qG

a
μν , i = u, c. (7.1)

The operator is parametrized by the factor ki, which works here as a coupling

constant. From the operator OS, the Feynman rules are extracted and the squared

and averaged amplitude results in:

|MB|2 = 8παS

3

(
ki

Λ

)2

m4
t . (7.2)
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The corresponding cross section is given by:

σ̂B(z) =
8παS

3s

(
ki

Λ

)2

m2
t δ(1− z), (7.3)

where the variable s is the usual Mandelstam definition: s = (k1 + k2)
2, with

k1 and k2 the incoming momenta, and z = m2
t/s. The total cross section is

obtained by using equation (2.17). In table 7.1 we show the total cross section

for the LHC running at 8 TeV, and Tevatron at 2 TeV, with ku,c = 0.01. As we

Subprocess Tevatron @ 2Tev LHC @ 7 Tev
ug → t 0.57 6.12
cg → t 0.028 0.91

Table 7.1: FCNC Direct top LO cross sections for ku,c = 0.01. The calculation
was includes t̄ production.

can see from equation (7.3), the total cross section will depend on the ki value

we use. As mentioned above this variable parametrizes OS, and it is from its

experimental bounds that FCNC interactions constraints are found. Today’s most

recent boundaries on ku,c were measured by the ATLAS collaboration and are

show in table 7.2. The limits were converted for ku,c defined as in chapter 4. We

also included the corresponding limits on the FCNC branching ratios Br(t→ ug)

and Br(t → cg), calculated with NLO precision in (161). The results in table

ku < 4.8× 10−3 Br < 5.7× 10−5

kc < 11.3× 10−3 Br < 2.4× 10−4

Table 7.2: ku,c limits measured in (14).

7.2 were obtained with the use of the Monte Carlo event generator PROTOS

(154), which is today the most recent available tool that simulates FCNC Direct

top production events. We will show that MEtop can also produce this type of

events.
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Figure 7.2: Feyman diagrams for NLO FCNC Direct top production, q = u, c.

7.3 Direct top @ NLO

As explained in section 2.3.2, the cross section calculation is based on a series

expansion in the coupling constant αS (for QCD as our QFT), where the first

term is what we have been calling LO cross section. In order to include higher

precision, the next term in the series must be considered. This will be the NLO

calculation. In figure 7.2 we show a summary of all extra diagrams. In it, we

show the same Born diagram dealt in the previous section, the virtual diagrams

and a extra group, which is the real radiation process. As we saw in section

2.3.2, this extra process must be added in order to cure the infrared divergences

originated from the inclusion of virtual diagrams. Additionally, since we are now

including the extra parton radiation, and integrate it in the full 2 → 2 process

phase-space, the final result is an inclusive cross section calculation, rather than

pure exclusive. On top of this, since experimentally the radiated real gluon

will be indistinguishable from, for example, an external final parton, one must

add all possible FCNC process contributions with the final state t + q, where

q = u, c, d, s, b (together with the respective antiparticles). This processes are

summarised in figure 7.3. The NLO calculation was taken from (51), and we

show in table 7.3 the LO and NLO results for the LHC running at 7 TeV, with
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q2
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t

q

g

g

t

q

Figure 7.3: Feyman diagrams for p, p → t, q with q = u, c, d, s, b.

a top mass of mt = 173.1 GeV. This NLO result does not include the t + q

processes. As we can see, the NLO result bring an accountable enhancement to

the LO result. For the shown results the improvement of the ug → t cross section

is 43%, while for cg → t is 84%. This is an accountable improvement, since from

the experimental point of view, it means that by considering a K-factor only, a

gain in the branching ratio limit of the same order will be obtained. In table 7.4

we show the FCNC top production cross sections but for the t+ q case.

Subprocess LO NLO
ug → t 6.12 8.74
cg → t 0.91 1.67

Table 7.3: FCNC Direct top LO and NLO cross sections for ku,c = 0.01 and LHC
@ 7 TeV. The calculation includes t̄ production.

Subprocess ku = 0.01 kc = 0.01
p, p→ t, q 1.12 0.40

Table 7.4: FCNC t + q with ku,c = 0.01 at the LHC @ 7 TeV and PTcut = 10
GeV. The calculation includes t̄ production.
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7.4 Effective NLO approximation

In this approach, a merging scheme between 2 → 1 and 2 → 2 events is performed,

where each process will separately populate two distinct but joint regions of the

phase-space. A resolution parameter must then be defined, which in the present

case is the cut in transverse momentum of the top quark applied to the real

radiation process. P cut
T will then play a role of a matching variable, Pmatch

T . The

phase-space region for small PT will be described by the 2 → 1 process and the

subsequent parton shower (PS) mechanism, whereas the hard PT region will be

described by the 2 → 2 process. One must then just make sure that the transition

is done in a smooth way. The virtual corrections are included via a K-factor

applied to the cross section of the 2 → 1 process. We assume this to be a good

approximation because the kinematics of the Born and Virtual configurations of

the direct top process are identical. The events will then be generated according

to the following relation

σNLO = KσLO(P
PS
T < Pmatch

T ) + σReal(PT > Pmatch
T ) (7.4)

where σLO is the tree-level direct top contribution, σReal is the real radiation part,

K is the K-factor and P PS
T and Pmatch

T are the transverse momentum of the first

PS emission and the integration cut of the real radiation process, respectively.

Once the direct top events are produced, they will be radiated through a radiator

like the one in PYTHIA (162). In order to avoid double counting, the matching

must ensure that the first PS emission from the 2 → 1 process will not fall within

the 2 → 2 configuration phase-space. There are two ways of accomplishing it:

either by vetoing all radiated 2 → 1 events that would be within the 2 → 2

configuration phase-space or simply by limiting the phase-space region of the

radiated 2 → 1 events to the boundaries defined by the resolution variable. We

choose to adopt the later.

In order to follow this approach, one must ensure that the PS mechanism

added to the generated events from the Born configuration will populate the

region with PT < Pmatch
T which can be assured using a PT-ordered shower [44],

available in both current PYTHIA versions 6.4 and 8.1. We therefore assume that
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Figure 7.4: PT distribution of the top quark for
√
s = 7 TeV. The black solid line

is for direct top production after the first branching in ISR, with starting scale of
mt. The blue dashed line is for the hard process top+gluon production.

the generated events will be showered by a PT-ordered mechanism. Therefore

we start by calculating the three cross sections from equation (7.4), with P cut
T =

Pmatch
T for the 2 → 2 process. For the σNLO cross section we have used the

expressions from (51), where the top quark is on-shell. The tree-level direct top

and top+gluon amplitudes were generated with CalcHEP where the top quark

and the W decays were included in order to preserve spin correlations. The

cross sections are then calculated with the Cuba library. Hence, the K factor is

calculated ”on the fly” for each sub-process. After extracting the K-factor, the

events are generated weighed according to equation (7.4). The PS starting scale

can then be configured to start the branching in Pmatch
T for the 2 → 1 events

configuration, which in MEtop is done by preparing the .lhe files to be used by

PYTHIA. A short remark is in order - in the 2 → 1 configuration, no meaningful

FSR from the top quark can be present due to its large mass. Hence, we consider

a good approximation to take only ISR into account.

In figure 7.4, the black solid line represents the PT distribution of the top

quark in direct top production, after the first branching in ISR, with starting

scale of mt. In the same figure, the blue dashed line represents the hard process:

top+gluon production. As described previously, PT is the kinematical variable

chosen to match the two processes avoiding double counting in the low PT region.
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Figure 7.5: PT distribution of top quark after the first ISR branching with a
Pmatch
T of 10 GeV (left) and 15 GeV (right).

In figure 7.5 we present the PT distribution of the top quark after the first

ISR branching with a Pmatch
T of 10 GeV (left) and 15 GeV (right). The natural

criterion to determine the value of the PT matching parameter in the effective

NLO approximation is the smoothness of the transverse momentum distribution.

There are no significant differences when the value of Pmatch
T is varied in the 5 GeV

to 20 GeV range. As can be seen in figure 7.5, there is never a completely smooth

transition between the two sets of events. This only occur at partonic level as

we will show that the smoothness is regained when the full shower is performed.

Nevertheless, this effect should be included as part of the systematic uncertainties.

This feature was checked for a large range of Pmatch
T . After including the full

shower (ISR+FSR) and Multiple Interaction (MI) we have opted for a value of

Pmatch
T of 10 GeV.

In figure 7.6 we show the PT (left) and η (right) distributions of the top quark

at the partonic level after the full shower and MI for PT = 10 GeV. The blue

dashed line represents the real radiation part while the black line is the direct

top fully showered but with the PT starting scale at 10 GeV. The solid black line

is the final NLO distribution which amounts to the sum of the previous two.

In figure 7.7 we present the LO and NLO PT (left) and η (right) distributions

of the top quark at the partonic level after the full shower and MI. It is clear from

figure 7.7 that the PT and η distributions of LO direct top production are quite

different from the corresponding NLO direct top ones. In fact, the distributions

show that the use of a constant K factor does not correctly describe the behaviour
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Figure 7.6: PT (left) and η (right) distributions of the top quark at the partonic
level after the full shower (ISR+FSR) and Multiple Interaction.
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Figure 7.7: Comparison of the LO and NLO PT (left) and η (right) distributions
of the top quark at the partonic level after the full shower (ISR+FSR) and Multiple
Interaction.

of direct top at NLO. Hence, a new analysis is needed to improve the accuracy

of the bounds on the strong coupling constants κu and κc. The direct top NLO

PT distribution is shifted to low values of PT as compared to the LO distribution

while the eη distributions are shifted to higher values of η as compared to the

LO one. Obviously this applies only to the inclusive direct top analysis. In fact,

analysis where a a high PT jet is detected alongside the top-quark, like the one

performed by the D0 collaboration (163), will not be modified significantly by

using MEtop.

The actual experimental analysis is performed by looking at the distributions

of the final state particles. Therefore, in figure 7.8 we present the comparison

between LO and NLO PT (left) and η (right) distributions of the lepton from

t → bW → blν at the partonic level after the full shower and MI. Again, it is
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clear that the level of improvement by considering the NLO distributions heavily

depends on the particular analysis being performed.
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Figure 7.8: Comparison of the LO and NLO PT (left) and η (right) distributions
of the lepton from t → bW → blν at the partonic level after the full shower
(ISR+FSR) and Multiple Interaction.

Finally, in figure 7.9 we compare the LO and NLO PT (left) and η (right)

distributions of the b-quark coming from t → bW → blν at the partonic level

after the full shower and MI.
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Figure 7.9: Comparison of the LO and NLO PT (left) and η (right) distributions
of the b-quark from t → bW → blν at the partonic level after the full shower
(ISR+FSR) and Multiple Interaction.

We have just described how we generate a sample of inclusive direct top

production at NLO. However, for the reasons we explained above, we need to

add the parton level processes gg → t + q and q1q2 → t + q, where q, q1, q2 are

quarks. Although the main contribution to top + jet production comes from the

reaction where the jet is a gluon, all processes where the strong FCNC operator

intervenes should be taken into account in the analysis. As these processes also
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7.4 Effective NLO approximation

suffer from infrared and collinear divergences, we have decided to avoid them by

using a similar cut to that of Pmatch
T , that is, PT > 10 GeV. The complete NLO

QCD corrections to the FCNC process of top+jet production were presented in

(164). The corrections can increase the cross section by 10 % to 30 % at the

LHC@14TeV.
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Figure 7.10: ub̄ → tb̄ contribution to single top production, representing a SM
type of diagram (left) and the corresponding strong FCNC diagram (right) that
interferes with the SM one.
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Figure 7.11: uu → tu contribution to single top production as an example of
strong FCNC diagrams that do not interfere with the SM ones.

When generating the top + quark subprocesses we have to decide what is

considered as signal in our analysis. pp → tq has three different classes of sub-

processes: the ones which are exclusive to the Standard Model, like ub̄ → tb̄

(figure 7.10, left) , the ones that are originated exclusively via FCNC interac-

tions, e.g. uu → tu (figure 7.11) , and the ones where interference between SM

diagrams and pure FCNC diagrams occurs, like ub̄→ tb̄ (figure 7.10, right).

We define as FCNC signal the contributions from the two latter classes of

subprocesses. For the pure FCNC processes this poses no problems. However,

for the interference terms this procedure leads to the inclusion of a small portion

of events that will also be counted as background. However, choosing the effective

strong coupling constants as κu = 0.01 (Λ = 1 TeV) , fu = 1/
√
2 and hu = 1/

√
2

and for a CM energy of 7 TeV, the pure FCNC cross section is 8.718 pb, the

interference term is 1.205 pb while the SM contribution amounts to only 0.018

pb. Hence, the SM contributions can be safely neglected. Note that the diagrams
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presented in this section are just examples of the three type of diagrams in single

top FCNC production - all diagrams with a top quark in the final state are

included in MEtop.
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Figure 7.12: PT (left) and η (right) distributions of the top quark for NLO direct
top (solid line) and NLO direct top plus pp → tq with Pmatch

T = 10 GeV and jet
PT > 10 GeV.

In figure 7.12 we show the PT and η distributions for the direct top at NLO

summed with pp → tq for a Pmatch
T = 10 GeV and the PT > 10 GeV. It is clear

that the shape of the distributions do not change much with the inclusion of the

pp → tq process but still the pp → tq process gives a contribution of the order

of 10 % to the total cross section of the inclusive top production at the LHC at√
s = 7 TeV.

7.5 Single top beyond the strong FCNC opera-

tors

In the previous sections we have discussed NLO direct top and t+ q production

when only the strong FCNC operator is considered. We note that the leading or-

der contribution to direct top does not receive contributions from other operators.

Therefore, the NLO calculation is again performed with only the strong FCNC

operator. As long as no excess is found at the LHC in the single top channel, the

procedure described in the previous section gives us the best possible bound on

the anomalous strong FCNC coupling when all other operators are discarded.
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7.5 Single top beyond the strong FCNC operators

In the hard PT region, the process pp → t + jet gets contributions from the

complete set of independent operators. As these operators are independent from

each other (and therefore so are the respective coupling constants) the interfer-

ence terms between strong and electroweak or 4F could be sizeable. If an excess

is found in the single top channel, one has to take into account all possible contri-

butions from the remaining operators. A thorough analysis of the distributions of

each individual operator will help us understand which operators could be impor-

tant for a given experimental analysis. Moreover, even if an excess is not seen in

the single top channel, dedicated analysis could most probably help constraining

definite sets of operators.
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Figure 7.13: PT (left) and η (right) distributions of the top quark when only the
strong operator is turned on with P cut

T = Pmatch
T = 10 GeV. Process considered is

direct top at NLO plus pp → tq for
√
s = 7 TeV and three values of ku with Λ = 1

TeV.

We start by considering the strong operator. When all other operators are

turned off the PT and η distributions have a very mild dependence on the strong

coupling constant κ (κu to be more precise, and we have set κc = 0). This is

shown in figure 7.13 where the PT (left) and η (right) distributions of the top-

quark are shown for three values of κ, 0.001, 0.01 and 0.1 and Λ = 1 TeV. The

process is direct top NLO plus pp → tq for
√
s = 7 TeV and P cut

T = Pmatch
T = 10

GeV. It is clear that the shape of the distributions does not vary much making

it possible to perform the analysis for one constant and then to extract a bound

on the strong operator.

We now move to the study of the electroweak operators. We first consider only
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Figure 7.14: PT (left) and η (right) distributions of the top quark when just one
electroweak operator, OuWφ, is turned on. The process is pp → tq for

√
s = 7 TeV

and P cut
T = 10 GeV.

one operator OuWφ turned on. At the end of section 2 we showed that present

bounds on the coupling constant for this operator are of the order 0.3 TeV−1. In

figure 7.14 we present the PT (left) and η (right) distributions of the top-quark for

three values of αuWφ, 0.01 , 0.1 and 1 and Λ = 1 TeV. As αuWφ → 0 we recover

the pure SM contribution of electroweak origin. The SM cross section for this

process and for 7 TeV is σ = 0.019 pb while the total cross section for αuWφ =

0.01, 0.1 and 1 are σ = 0.0020 pb, 0.148 pb and 12.4 pb respectively. Therefore

the different shapes of the PT and η distributions are due to the interference

with the SM contribution. When αuWφ = 1, the total cross section is almost 100

times larger than its pure SM counterpart. Therefore, this value shows how the

distribution behaves when the SM contribution is negligible.

This kind of behaviour can occur for any operator on the list, provided that

the coupling constants are such that SM and FCNC cross sections are of the same

order of magnitude. Any deviation relative to the SM showing up in the distribu-

tions could mean an interference with one or more operators. Understanding the

different distribution requires dedicated studies with no assurance however that

the responsible operators could be identified. One should emphasise that a thor-

ough study of the PT and η distributions of the top-quark could help identifying

classes of FCNC operators. A similar discussion applies to the 4F operators case.

One should also note that pp → tq does not include direct top, because the

strong operator is turned off. Contrary to strong operator scenario, in this case
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the distributions change with the value of the electroweak constant. Therefore,

any bound based on the production process has to take into account that different

coupling constants can lead to different distributions.
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Figure 7.15: PT (left) and η (right)distributions of the top quark when just one
operator is taken non-zero at a time. We compare the distributions of the strong
FCNC operator with one electroweak, OuWφ, and one 4F operator. The process is
pp → tq for

√
s = 7 TeV and P cut

T = 10 GeV.

Having studied the distributions of a definite operator representative of each

class, we will now perform a comparison between classes. In figure 7.15 we present

the PT (left) and η (right) distributions of the top-quark when just one operator

is taken non-zero at a time. We compare the distributions of the strong FCNC

operator with one electroweak operator (with coupling constant αuWφ), and one

4F operator, (ū γμ γL u) (ū γ
μ γL t). It is clear from the figure that the distributions

can be quite different and therefore distinguishable to some extent. The ability

to distinguish the different operators depends heavily on the relative values of

the coupling constants. If an excess in single top production is seen we can try to

understand its origin by looking at all possible distributions. However, this will

always be a hard task because different operators give similar distributions and

therefore only very particular scenarios can be probed.

7.6 Conclusions

We have presented a new generator for the study of FCNC top interactions. The

generator MEtop comes with different packages, each with a subset of a complete
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set of dimension six operators. At the moment MEtop can generate events for

direct top and for top plus jet production, where the jet can be any quark other

than the top or it can be a gluon.

The direct top production process is implemented at NLO using an effective

NLO approximation. Also, the inclusive contribution to direct top coming from

pp → tq can be included in the event generation. We have shown that the top

PT and η distributions show clear differences when the events are generated at

LO or at NLO. Therefore, the use of a constant K-factor does not provide an

accurate description of direct top production at NLO. We conclude that a new

experimental analysis is needed in order to improve the constraints on the strong

FCNC coupling constants. The inclusion of the inclusive process pp → tq will

further improve this bound. We note that a detailed study of the PT and η

distributions of the top-quark could help identifying classes of FCNC operators .

At LO, the contributions stemming from the different operators can be com-

pared in the single top production process. In particular, 4F operators can be for

the first time constrained at hadron colliders. Constraining the 4F operators can

help us understand their role in the asymmetry measured at the Tevatron.

The bounds on BR(t → u(c)Z) and BR(t → u(c)γ) are obtained in the

process pp → tt̄ where one of the top-quarks decays as t → bW while the other

decays as t → u(c)Z or t → u(c)γ. This means that all electroweak FCNC

couplings always appear in the same combination. With MEtop we are able to

look for distribution that isolate each electroweak FCNC operator. This way

more detailed information can be obtained about each operator.

New final states with FCNC contributions, like for instance pp → tW (165),

are to be included in the next version of MEtop.
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8

Experimental Simulation

This chapter summarises the work published in the reference:

Phys. Rev. D88, 114011 (2013).

8.1 Introduction

The purpose of this chapter is threefold. First we want to compare the previous

analysis where the events were generated at LO and normalized with a K-factor

with one where the direct top events are generated at NLO using MEtop described

in the previous chapter. We will therefore redo the analysis performed by the

ATLAS collaboration in (14) with the NLO events generated by MEtop. Second,

because MEtop also includes the LO hard FCNC process pp → tj, where j is a

light jet, we will account for the contribution of the hard process to the analysis

already performed. Our goal is to check weather a sizeable improvement in the

limit is obtained just by adding the events from the FCNC single top process

to the direct top events. Finally, we will perform an analysis where again we

follow (14) but allow for one extra hard jet in the signal. It is clear that the final

state will then be very similar to the SM single top one. Hence, our objective

is to check if the major increase in the background can be compensated by the

increment in the number of signal events.
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8.2 Data Sample

Three different sets of signal events were generated with METop,

• FCNC direct top @LO: DtopLO,

• FCNC direct top @NLO: DtopNLO,

• FCNC direct top @NLO plus FCNC single top @LO: DtopNLO + (t+ j)LO.

The last set (DtopNLO+(t+j)LO) is a weighed combination of direct top produc-

tion at NLO with FCNC single top production at LO. As discussed in chapter 4,

only one FCNC operator for each light quark (u and c) contributes to the direct

top process. Therefore, each set is composed of two samples - one where only the

ugt coupling is turned on and the other where only the cgt coupling is turned

on. The generation of the FCNC single top quark events in DtopNLO + (t+ j)LO

followed the same rule. All events were generated assuming a SM top quark

decay, i.e., BR(t → W+b) ≈ 100 % and only the leptonic decay of the W was

considered. Additionally, the full τ leptonic decay was taken into consideration in

both signal and background. We have used the Parton Density Function (PDF)

set CTEQ6 for all LO processes and CTEQ6.6 for the NLO cross sections.

As previously stated the SM FCNC cross section is negligible due to its very

low rate. The most significant backgrounds are single top production, tt̄ pro-

duction, W/Z plus jets (both light and heavy jets), diboson production and the

multijet background. The single top background (t-channel, s-channel and Wt

associated production) together with tt̄ were generated with POWHEG (166) at

NLO and the CTEQ6.6 NLO PDFs were used. For W plus light jets, Wc plus

light jets, Wbb̄, Wcc̄ (plus light jets) and Z plus light jets we have used Alp-

GEN (167) with the CTEQ6 LO PDFs. In all events generated with AlpGEN

the jets have a transverse momentum above 20 GeV and ΔRjj > 0.7. Further,

in the W plus jets case, the jets have |ηj| < 4.9 and for Z plus jets |ηj| < 2.5.

For both the W and the Z plus jets events, the number of jets was varied from

0 to 3. To remove overlaps between n and n + 1 partons the MLM matching

scheme (168) was used. The cross sections were then normalized at NLO using

MCFM (76, 77).
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The events were then submitted to a parton shower simulator performed with

PYTHIA 6 in order to include initial (ISR) and final (FSR) state radiation, as

well as multiple interactions. The Perugia tune (169) was used to handle the

underlying events in POWEG while the ATLAS MC09 tune (170) was used for

events generated with AlpGen. Finally, both signal and background detector

simulation was performed with Delphes (171), which is a framework for the fast

simulation of a generic detector in a collider experiment. For the detector and

trigger configurations, we resorted to the ATLAS default definitions in Delphes.

However, in order to reproduce the ATLAS analysis as faithful as possible we have

redefined the sum of the ET in a cell to be calculated within a cone of ΔR = 0.3

for the lepton, and ΔR = 0.4 for the jet. Additionally, the b-tagging efficiency

was set to be 57%, and the b-mistagging to 0.2% for light-quark jets and 10%

for c-quark jets. These values were chosen to match the ATLAS analysis (14).

Finally, we have not considered the diboson and multijets background which in

the ATLAS analysis (14) amounts to 9 % of the total background (the largest

contribution comes from multijets with about 6.7 %).

8.3 Event selection

As previously discussed we have performed two different analyses. The first one is

similar to one presented in (14) by the ATLAS collaboration. It should be noted

however that besides the usual cut-based analysis, ATLAS uses a multivariate

analysis technique (neural-network) to separate signal from background. As we

will not be using this multivariate technique, our results cannot be compared

with theirs. This is not an issue because our aim is not to compare our analysis

with the experimental one but rather to study its performance for different sets of

events generated with MEtop. The ATLAS analysis will be used as our standard

analysis because it provides the best current limits on the ugt and cgt strong

FCNC couplings. It will also serve as a means to control our background. In the

present work the limits on the FCNC couplings were obtained using the ATLAS

cut-based part of the analysis plus an additional cut on the top invariant mass.

From now on, we shall call this analysis ”ATLAS” but it should be clear that this
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is not the ATLAS analysis performed in (14). A detailed description of what we

call the ”ATLAS” analysis will be presented below. Still in the framework of this

first analysis we will consider a new set of signal events, DtopNLO + (t + j)LO,

that is, we will add the FCNC single top to the NLO direct top. The ATLAS

final state consists of one b-quark jet, one lepton (electron or muon) and missing

energy. In the analysis, we ask for exactly zero non-b jets. However, a jet can

only be identified with pT > 25 GeV and |ηj| < 2.5. This means that some of the

events from FCNC single top will still pass the selection if the non b-jet is soft.

Hence, we will study how the inclusion of the FCNC single top events will affect

the bound on the couplings.

The second analysis will be performed considering a different final state topol-

ogy with an extra hard non-b jet. In table 8.1 we present the total cross section

for each of the three set of events, where the FCNC coupling constants were set

to either zero or κqgt/Λ = 0.01 TeV−1, where κqgt is defined in equation (4.12).

The t + j sample and the corresponding total cross section is produced with a

10 GeV cut on the jet pT . For the chosen value of the coupling constant, the

FCNC single top cross section gives an additional contribution of 14% and 27%

to the full NLO direct top cross section, for the ugt and cgt operators respec-

tively. These extra events are kinematically similar to the SM single top ones and

are therefore expected to be mainly located in regions discarded by the ATLAS

analysis. Nevertheless, it is important to understand if an analysis that considers

an extra hard jet can lead to an improvement on the FCNC couplings limit. We

will refer to this analysis as ATLAS(m).

σ(DtopLO) (pb) σ(DtopNLO) (pb) σ(DtopNLO + (t+ j)LO) (pb)
ugt 2.245 2.972 3.374
cgt 0.355 0.567 0.720

Table 8.1: DtopLO, DtopNLO and DtopNLO + (t + j)LO total cross sections for√
s = 8 TeV, κqgt/Λ = 0.01 TeV−1 and leptonic channel.

We have used the ATLAS default trigger card on the Delphes detector with

an isolated electron with pT > 25 GeV or an isolated muon with pT > 20 GeV In

the analysis we demanded at least one electron or one muon with pT > 25GeV .
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ATLAS ATLAS(m)
Process Events (1fb−1) Efficiency (%) Events (1fb−1) Efficiency (%)
Single top 330.8 0.286 1198.5 1.035
tt̄ 111.0 0.052 773.1 0.365
W + light jets 2900.1 0.026 4300.3 0.039
Wc + light jets 1796.2 0.317 2384.4 0.421
Wbb̄/Wcc̄ + light jets 45.9 0.591 128.7 1.656
Z + jets 66.4 0.002 116.2 0.004
Total background 5250.4 8901.2

Table 8.2: Number of events and efficiency for the background processes in the
ATLAS and in the ATLAS(m) analyses.

Exactly one reconstructed jet with pT > 25 GeV is required. This jet has to be

identified as a b-quark jet (b-tagged). We excluded events with missing transverse

energy /ET < 25 GeV In order to further reduce the multijet background - most

of it with low /ET and low values of the reconstructed W -boson transverse mass

MW
T =

√
2plT /ET − 2(plx /Ex + ply /Ey) - we have required MW

T + /ET > 60 GeV

Finally, the top-quark invariant mass is set to be above 140 GeV. This last cut

was not implemented by ATLAS in their cut-based part of the analysis (14) but

it is included in the multivariate part.

In the ATLAS(m) analysis we have changed the requirements regarding jets:

we have asked for one or two reconstructed jets with pT > 25 GeV, where one jet

must be a b-jet and the second is forced to be a non-b jet. In the left panel of

fig. 8.1 we show the jet multiplicity for jets with pT > 25 GeV. In the right panel

we show the top quark invariant mass before the respective cut is implemented

which allow us to understand the effect of this additional cut in the analysis.

In table 8.2 we list all backgrounds considered in the analysis as well as the

event yield and the efficiency for a luminosity of 1fb−1. These are the final events

gathered after all cuts. As expected there is a significant increase in the single

top and tt̄ backgrounds because there is an extra non-b jet in the ATLAS(m)

analysis. However, the overall increase in the total background in ATLAS(m)

relative to ATLAS is not as large because the major contributions to the total

background comes from W+jets where the increment is not so dramatic.
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Figure 8.1: In the left panel we present the jet multiplicity for jets with pT > 25
GeV. On the right we show the top-quark invariant mass.

ATLAS ATLAS(m)
Process Efficiency (%) Efficiency (%)
DtopLO(κugt) 2.509 –
DtopLO(κcgt) 3.428 –
DtopNLO(κugt) 2.591 –
DtopNLO(κcgt) 3.581 –
DtopNLO(κugt) + (t+ j)LO 2.413 3.283
DtopNLO(κcgt) + (t+ j)LO 3.072 4.142

Table 8.3: Efficiencies for the signal processes.
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8.3 Event selection

In table 8.3 we list the efficiencies for the signal processes after all cuts. There

is no significant difference between the LO and NLO samples in the ATLAS

analysis. The only notable difference arises in the ATLAS(m) analysis for the

DtopNLO + (t + j)LO sample. As expected the efficiency is better in ATLAS(m)

than in ATLAS which is in accordance with the design of ATLAS(m). We now

have to check if the rise in the number of signal events is enough to compensate

for the increase in the total background.
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Figure 8.2: K-factor as function of the transverse momentum cut on the b-tagged
jet.

As the LO and NLO results are quite similar, the NLO result seems to be well

described by the LO sample with a constant K-factor. In figure 8.2 we plot the

K-factor as a function of the transverse momentum cut of the b-tagged jet. In this

plot we have performed all cuts except the one on the b-jet in the ATLAS analysis.

Then we have calculated the ratio between the number of events coming from the

NLO sample and the same number with the LO sample for different values of

the pT cut on the b-tagged jet. It is clear that the use of a constant K-factor

is justified up to approximately a pT = 60 GeV cut. For large pT the recipe

fails. However, the number of events decreases steeply with the b-jet pT cut for
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large pT values and therefore their contribution to the total number of events

becomes negligible. We have checked several other distributions always reaching

the same conclusion - the regions where the use of a constant K-factor would not

be allowed, contribute with a small number of events to the analysis. Obviously,

one should note that this is true for this particular analysis and not a general

rule.

8.4 Limits

In this section we will present the bounds on the anomalous couplings for four

different scenarios: ATLAS analysis with the three samples DtopLO, DtopNLO

and DtopNLO + (t + j)LO and ATLAS(m) with DtopNLO + (t + j)LO. In fact,

because the ATLAS analysis with the DtopLO and DtopNLO leads to very similar

results we will only show the results for the NLO sample. Further, the ATLAS(m)

analysis with only direct top events has negligible signal events yields.

As previously stated, the best current exclusion limit (assuming only one

non-zero coupling at a time) was obtained in (14) by ATLAS. With an energy of√
s = 7 TeV and a total integrated luminosity of 2.05 ± 0.08 fb−1 the obtained

limits at 95% C.L. were

κugt/Λ < 4.8× 10−3 TeV−1 κcgt/Λ < 11.3× 10−3 TeV−1 . (8.1)

As discussed, our goal is not to compete with this analysis but rather to under-

stand if there is a way to improve it. According to our analysis there would be

two possibilities to improve the bounds on the couplings. The first one would

be to just include the FCNC single top events in the signal, that is, to use the

sample DtopNLO + (t + j)LO. The second would be to change the analysis by

including an extra hard non-b jet (ATLAS(m)). In order to obtain the 95% CL

limits for κugt/Λ and κcgt/Λ, we have used the code described in (172).

In fig. 8.3 we present the results for
√
s = 8 TeV and a total integrated

luminosity of 20 fb−1. In the left panel we show the 95% C.L. upper limit on

the coupling constant κugt/Λ and κcgt/Λ according to the ATLAS analysis for the
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Figure 8.3: Up -Upper limit on the coupling constant κugt/Λ and κcgt/Λ according
the ATLAS analysis. Bottom - Upper limit on the coupling constant κugt/Λ and
κcgt/Λ according the ATLAS(m) analysis.

DtopNLO sample (black line) and for the DtopNLO + (t + j)LO sample (slashed

red line). The LO result with the K-factor is almost on top of the the NLO one

and therefore it is not shown in the figure. Hence, for this particular analysis,

no significant difference is seen when using the NLO generator. In the botton

panel we show the ATLAS(m) analysis with the DtopNLO + (t + j)LO sample.

The numeric results for the limits with each coupling taken non-zero at a time

are shown in table 8.4 (they correspond to the intersection of the exclusion curve
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with the x and y axes).

ATLAS ATLAS(m)
Process κ/Λ [10−3] TeV −1 κ/Λ [10−3] TeV
DtopNLO(κugt) 6.4 –
DtopNLO(κcgt) 12.5 –
DtopNLO(κugt) + (t+ j)LO 6.2 5.2
DtopNLO(κcgt) + (t+ j)LO 12.0 10.1

Table 8.4: Limits of the κqgt/Λ.

The results presented in fig. 8.3 and in table 8.4 allow us to conclude that

a slight improvement in the bound can be achieved by including the full set of

events DtopNLO + (t + j)LO in the ATLAS analysis. The same is true for the

ATLAS(m) analysis when compared with ATLAS, even when the DtopNLO+(t+

j)LO is considered. However, we should look at this results as an indication that

a full detector analysis is worth doing. First because the improvement is only

of the order a few % and second because since we did not consider the multi-jet

background, we could be overestimating the sensitivity in ATLAS(m).

8.5 Conclusions

We have studied top production at the LHC via FCNC interactions. We have

performed two different analyses using the MEtop generator which allows for the

production of NLO direct top events and LO FCNC pp→ tj events. In the first

one we have followed ATLAS in (14) but using two different samples, one with

only direct top NLO events and the other one with direct top NLO plus the LO

t + j FCNC events. In the second analysis we allow for an extra hard non-b jet

in the final state increasing both the signal and the background yields.

We have concluded that the inclusion of the FCNC single top events has in-

creased the sensitivity. Even if the limit is better by only a few percent this

should be implemented in the experimental analysis because this is a real contri-

bution to the process and should not be neglected. Furthermore, its inclusion is

straightforward with MEtop. In the second analysis the limit on the couplings
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is significantly better. In this case however we should look at the result as an

indication that an experimental analysis is worth performing.

Before the present thesis has been concluded new top FCNC coupling limits

were measured by ATLAS (173), where FCNC Direct top @ NLO events generated

by MEtop were used. They present now the best current limits on top FCNC

physics.

We show in figure 8.4 the measured coupling constant upper limits κugt/Λ

and κcgt/Λ, which can be compared with the our fast simulation analysis results

shown in 8.3. By comparison we can concluded that although we have performed

a fast simulation, close upper limits values were obtained.

Figure 8.4: Upper limit on the coupling constant κugt/Λ and κcgt/Λ according
the new ATLAS analysis . From (173).
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Conclusions

A number of new results in top FCNC physics have been presented in this work.

We began with a presentation on the subject of collider physics where we gave

the reader the necessary basic tools for understanding the key issues behind the

many technicalities one must consider before studying a collision process at a high

energy collider. The main focus was on the use of Monte Carlo generators, on the

theory of hadronic collisions and parton shower simulation. A brief description

of the MCMC method was also introduced.

The main purpose of the LHC is to test the SM of strong and electroweak in-

teractions. After presenting the SM, a detailed account of the effective lagrangian

formalism was given. We have used a dimension six Lagrangian to parametrize

physics beyond the SM. As explained, this Lagrangian has the SM as its low

energy limit and a particular subset was built for the study of top physics related

to flavour changing neutral currents. Different subsets were used according to

the study being performed as was shown later: the subset used in FCNC top

pair production is not the same as the one used in direct top production. Similar

differences occur if a process is studied at a hadron or at a lepton collider.

In chapter 5 we showed a study of FCNC single top production at a future

electron-positron collision. The main question we wanted to address was what

could a lepton colider tell us after the LHC was shut down. The main con-

clusion was that in some of the proposed scenarios for the ILC (for example a

centre-of-mass energy of
√
s = 500 GeV and 500 fb−1 of luminosity) no significant
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improvements on the bounds and branching ratios is expected for the electroweak

operators. On the contrary, an improvement is expected for the four-fermion op-

erators due to significant increase of the total cross section that grows with the

collider’s energy. In case of a γγ collider we have concluded that a good improve-

ment on the Br(t→ qγ) bound can be obtained, using a single effective operator.

We have then moved to chapter 6 where an attempt was made to understand

the discrepancy between the experimentally measured values and the SM predic-

tions for the forward-backward asymmetry in top pair production using the ef-

fective operator formalism. We have investigated the possibility that new physics

described by top FCNC effective operators could account for the measured asym-

metry at the Tevatron. Therefore a minimal set of dimension six FCNC operators

(including four-fermion operators) was tested. The search was made through a

fit of 14 physical observables using Markov Chain Monte Carlo approach. The

final result showed that it is very unlikely that the asymmetry can be described

by either electroweak or strong FCNC effective operators. A tension between the

measured value of the total cross section, which agrees with the SM prediction,

and the asymmetries, revealed to be one the main issues preventing that a good

fit to all observables could be obtained. Regarding four-fermion operators a good

fit to all observable was obtained. Since there are no strong constraints on the 4F

operators, they could in fact explain the discrepancy observed at the Tevatron.

Most of the time devoted to this thesis was used in building a new Monte

Carlo generator for top FCNC studies. The MEtop generator was presented in

chapter 7 where its main features were highlighted. It is the first generator where

NLO direct top events can be produced. We have shown that in the NLO events,

the top quark kinematical distributions presented a significant differences form

the LO ones. Therefore a simple K-factor recipe applied to the LO distributions

does not work in general. The generator also allows for the generation of single

top FCNC events at LO. Hence, an inclusive analysis of FCNC direct top plus

one jet can also be performed. Several sets of dimension six operators were made

available allowing for the study of different Lorentz structures. The generator

is now being used by the ATLAS collaboration, in particular by the very recent

analysis results presented in (173).

In chapter 8 two detector level analyses were performed in order to test MEtop
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performance. In the first one we have followed ATLAS in [3] but using two difer-

ent samples, one with only direct top NLO events and the other one with direct

top NLO plus the LO t + j FCNC events. In the second analysis we allow for an

extra hard non-b jet in the final state increasing both the signal and the back-

ground yields. We have concluded that the inclusion of the FCNC single top

events has increased the sensitivity. Even if the limit is better by only a few

percent this should be implemented in the experimental analysis because this is

a real contribution to the process and should not be neglected. Furthermore, its

inclusion is straightforward with MEtop. In the second analysis the limit on the

couplings is significantly better. In this case however we should look at the result

as an indication that an experimental analysis is worth performing.

CERN’s hadron collider will soon resume its operation with the center-of-

mass energy increased to 13 or 14 TeV. The search for FCNC in top physics has

therefore just began. The SM values for the branching ratios of top rare decays

will not be achieved even at very high luminosity. However, even if no signal of

top FCNC is found, stringent limits will be put on the coupling constants of the

effective operators and therefore restrict the class of models that have the SM as

its low energy limit.
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Appendix A

Available Model files

At the moment there are three different packages available in MEtop, with a

different set of effective operators. The main reason to have the different packages

is to make the generation of events faster. The lightest version includes only the

strong sector. Then there are two other versions one with strong plus electroweak

operators and the other one with strong plus 4F operators. The set of operators

follows from the calculations shown in chaper 4.

In equation A.1 we present the strong FCNC lagrangian as it is written in the

package ”MEtop S vxx.tar.gz”

LS = co1OuG + co2OcG + h.c. (A.1)

with

OuG = i
gs
Λ
ūλaσμν(fu+ hu γ5)tG

a
μν , OcG = i

gs
Λ
c̄λaσμν(fc+ hc γ5)tG

a
μν(A.2)

and co1, co2, fu, hu, fc, hc are real constants to be chosen in the file param.dat.

The constants fi, hi allow the choice of different chiralities while coi are overall

normalization constants. Although it usually considered that f 2
i + h2i = 1, this

relation has to be implemented by the user by a judicious choice of parameters

fi and hi.

The package ”MEtop SEW vxx.tar.gz” contains the strong and electroweak
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sectors. The lagrangian introduced in this package is

LSEW = LS +
1

Λ2

∑
i,j=1,3
i �=j

(
αij
uWO

ij
uW + αij

uBφ O
ij
uBφ + αij

φuO
ij
φu + α

(3,ij)
φq O

(3,ij)
φq

+α
(1,ij)
φq O

(1,ij)
φq + αuφ O

ij
uφ

)
(A.3)

where the electroweak operators are

O
ij
uφ = (φ†φ) (q̄Li uRj φ̃) , O

(1,ij)
φq = i (φ†Dμ φ) (q̄Li γ

μ qLj)

O
(3,ij)
φq = i (φ†Dμ τ

I φ) (q̄Li γ
μ τ I qLj) , O

ij
φu = i (φ†Dμ φ) (ūRi γ

μ uRj)

O
ij
uW = (q̄Li σμν τI uRj) φ̃W

I
μν , O

ij
uBφ = (q̄Li σμν uRj) φ̃ Bμν

and all coupling constants are real. In param.dat all coupling constant have the

form coi. The relation between the coupling constants presented in equation A.3

and the coi parameters to be chosen in param.dat is presented in table A.1.

co3 → αut
uW co4 → αtu

uW co5 → αut
uBφ co6 → αtu

uBφ

co7 → αut
φu co8 → αtu

φu co9 → α
(3,ut)
φq co10 → α

(3,tu)
φq

co11 → α
(1,ut)
φq co12 → α

(1,tu)
φq co13 → αut

uφ co14 → αtu
uφ

Table A.1: Coefficient dictionary for LSEW .

Finally, the file ”MEtop S4F vxx.tar.gz” contains the strong and 4F sector

LS4F = LS + L4fu + L4fc (A.4)

where the 4F lagrangians were presented in equations 4.38 and 4.39. The relation

between the parameters these equations and the corresponding coi parameters in

the param.dat file is shown in table A.2:

Finally we note that any combination of parameters can be made in a new

package and can be made available upon request. Generator and the different

packages can be downloaded at http://coimbra.lip.pt/∼miguelwon/MEtop/.
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co27 → α1113
qq + α1113

qq′ co33 → α1123
qq + α2113

qq′ co39 → α1123
uu

co28 → α1311
qu′ co34 → α2113

qq + α1123
qq′ co40 → α2113

uu

co29 → α1113
qu′ co35 → α1321

qu′ co41 → α2311
qu′

co30 → α1113
uu co36 → α1321

qu co42 → α1123
qu′

co31 → α1311
qu co37 → α2113

qu′ co43 → α2311
qu

co32 → α1113
qu co38 → α2113

qu co44 → α1123
qu

Table A.2: Coefficient dictionary for LS4F .
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Appendix B

MEtop User Manual

B.1 Installation

MEtop is written in C and python and it generates events following the .LHE

format. It can therefore be easily interfaced with PYTHIA or Herwig. In order

to compile it, you need a C compiler 1 and python version 2.6 or later. To run

the package you must additionally install

• Cuba Library version 3.0

• LHAPDF version 5.8.6

• Numpy version 1.3.0

The Cuba and LHAPDF library must be available through the library environ-

ment variable (for example).

To install MEtop you just have to execute ”make” in the main directory.

1There is one file written in Fortran and therefore you also need a Fortran compiler.
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B.2 The generator

B.2.1 param.dat

In MEtop all parameters are set in one file: ”param.dat”. Table B.1 summarizes

the definition of each parameter.

Mx Particle’s masses (x=u,d,c,s,b,t,e,μ,τ ,W,Z,H)
wx Particle’s Widths (x=W,t,Z,H)
sx Values for CKM matrix elements (x=12,23,13)
SW sin θW ( θW is the Weinberg angle)
EE Electromagnetic coupling constant
cox couplings of the x operator (x=1,2,...,9)
fx,hx Chirality parameters from operators co1 and co2
Q Factorization scale
miuR Renormalization scale for Direct top at NLO
L Energy scale
ECM Centre of mass Energy
PTmatch PT for matching
PTmin Cut in PT for LO 2 → 2 processes
NEvnts Number of events to generate
pdf PDF name according to LHAPDF
pp Type of collider: 1 for pp and -1 for pp̄
DecMod Turn on/off W decay modes
SpCorr Turn on/off Spin Correlations
ttbar t, t̄ channel. 0-t only;1-t̄ only;2-t and t̄
seed Turn random number seed

Table B.1: Summary description of ”param.dat” file.

B.2.2 Physical processes

In addition to the parameters defined in table B.1 there are two more flags in

”param.dat” file: ”cs” and ”Process”. The first one dictates whether or not to

calculate the cross sections and/or to generate events. The second sets which

physical process should be taken into account. If ”cs” is set to 0, the cross

sections for all sub-processes defined by the ”Process” flag will be calculated and
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B.2 The generator

no generation will be performed. The result will be stored in the CS folder, in

a csX.txt file, where X can be ”Dtop”,”Gtop” and ”Lqtop”. If ”cs” is set to 1,

only the event generation will be performed. In this case events are produced

according to the calculated cross sections. After generation, the .LHE files will

be stored in the Events folder together with a file ”runinfo.txt” which stores all

information related to the event generation.

top-quark FCNC interactions were introduced in MEtop through an effective

lagrangian. Depending on which operators are ”turned on”, different physics will

be generated. Two different topologies are available: 2 → 1 → 3 and 2 → 2 → 4. 1

The first one concerns ”Direct top” production, and the second is related to

”top+gluon” and ”top+ light quark”.

Process Number Description Comments
1 Direct top (LO) Strong Op. only
2 top+gluon (LO) Strong Op. only; set PTmin
3 top+quark (LO) All Op.; set PTmin
21 Direct top (NLO) Strong Op. only
22 Direct top (NLO) + top+quark (LO) All Op.

Table B.2: Processes available in MEtop

Strong FCNC top interactions are included in MEtop through two equivalent

effective operators, one for the top-up-gluon interaction, and the other for the

interaction of the top with a c-quark. In process 1, only the strong coupling

constants are needed. Process 2 has the same effective operators but due to the

infrared divergences appearing in top+gluon production a cut in the top-quark

transverse momentum has to be set via the variable PTmin. In process 3, top

+ light quark 2 production, all operators can contribute, strong, electroweak and

4F. It is now possible to choose which operators to include. Again a value for

PTmin has to be chosen.

1 When ”SpCorr” is set to 0, the top-quark decay will not be performed in MEtop, that is,
the generated events will have the topology 2 → 1 and 2 → 2. In this case the spin correlations
are lost.

2Here light quark stands for the set u, ū, d, d̄, c, c̄, s, s̄, b, b̄.
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Process 21 is inclusive direct top production at NLO and again only strong

operators intervene. The NLO result is obtained by a matching procedure (as

described previously) which depends on one variable, PTmatch, to be chosen by

the user. The cross section results are written in three files: ”csDtopLO.txt”, the

LO result for direct top, ”csDtopNLO.txt”, the NLO increment relative to the LO

result (σTotal
NLO − σTotal

LO ), and ”csGtop.txt”, the LO cross section for ”top+gluon”

process with a top quark transverse momentum above ”PTmatch”. Therefore the

variable ”PTmin” is irrelevant for this process. After the generation, the results

are stored in one file in the Events folder named ”DtopNLO.lhe”, containing

2 → 1 → 3 and the 2 → 2 → 4 configurations. These events constitute the

inclusive direct top NLO event generation, and must subsequently be showered

by PYTHIA using the PT -ordered scheme, in order to complete the matching

procedure. Finally, with process 22, MEtop sums process 21 with process 3. The

”PTmacth” variable plays the same role as in process 21 and ”PTmin” will be

the top transverse momentum cut, for the ”top + quark” sub-processes.

B.3 Running MEtop

To run the package you just have to execute the command ”./run.py” in the

main directory. Care should be taken when changing the values of the physical

parameters and/or the process you wish to calculate. In such cases you must

always recalculate the value of the cross section. In addition, if you change

the process used for the generation, you must be sure that all cross sections

pertaining the new process are calculated beforehand. This is mandatory because

the generation is done using the cs*.txt files saved in the CS folder.
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