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Abstract 

This thesis aims at studying, comparing, and improving the performance and scalability 

of event processing (EP) systems. 

In the last 15 years, event processing systems have gained increased attention from 

academia and industry, having found application in a number of mission-critical 

scenarios and motivated the onset of several research projects and specialized startups. 

Nonetheless, there has been a general lack of information, evaluation methodologies 

and tools in what concerns the performance of EP platforms. Until recently, it was not 

clear which factors impact most their performance, if the systems would scale well and 

adapt to changes in load conditions or if they had any serious limitations. Moreover, the 

lack of standardized benchmarks hindered any objective comparison among the diverse 

platforms. In this thesis, we tackle these problems by acting in several fronts. 

First, we developed FINCoS, a set of benchmarking tools for load generation and 

performance measurement of event processing systems. The framework has been 

designed to be independent on any particular workload or product so that it can be 

reused in multiple performance studies and benchmark kits. FINCoS has been made 

publicly available under the terms of the GNU General Public License and is also 

currently hosted at the Standard Performance Evaluation Corporation (SPEC) repository 

of peer-reviewed tools for quantitative system evaluation and analysis. 

We then defined a set of microbenchmarks and used them to conduct an extensive 

performance study on three EP systems. This analysis helped identifying critical factors 
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affecting the performance of event processing platforms and exposed important 

limitations of the products, such as poor utilization of resources, trashing or failures in 

the presence of memory shortages, and no/incipient query plan sharing capabilities.  

With these results in hands, we moved our focus to performance enhancement. To 

improve resource utilization, we proposed novel algorithms and evaluated alternative 

data organization schemes that not only reduce substantially memory consumption, but 

also are significantly more efficient at the microarchitectural level. Our experimental 

evaluation corroborated the efficacy of the proposed optimizations: together they 

provided a 6-fold reduction in memory usage and order-of-magnitude increase on query 

throughput. In addition, we addressed the problem of memory-constrained applications 

by introducing SlideM, an optimal buffer management algorithm that selectively 

offloads sliding windows state to disk when main memory becomes insufficient. We 

also developed a strategy based on SlideM to share computational resources when 

processing multiple aggregation queries over overlapping sliding windows. Our 

experimental results demonstrate that, contrary to common sense, storing windows data 

on disk can be appropriate even for applications with very high event arrival rates. 

We concluded this thesis by proposing the Pairs benchmark. Pairs was designed to 

assess the ability of EP platforms in processing increasingly larger numbers of 

simultaneous queries and event arrival rates while providing quick answers. The 

benchmark workload exercises several common features that appear repeatedly in most 

event processing applications, including event filtering, aggregation, correlation and 

pattern detection. Furthermore, differently from previous proposals in related areas, 

Pairs allows evaluating important aspects of event processing systems such as 

adaptivity and query scalability. 

In general, we expect that the findings and proposals presented in this thesis serve to 

broaden the understanding on the performance of event processing platforms and open 

avenues for additional improvements in the current generation of EP systems. 
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Resumo 

Esta dissertação tem por objetivo estudar e comparar o desempenho dos sistemas de 

processamento de eventos, bem como propor novas técnicas que melhorem sua 

eficiência e escalabilidade.  

Nos últimos anos os sistemas de processamento de eventos têm tido uma difusão 

bastante rápida, tanto no meio acadêmico, onde deram origem a vários projetos de 

investigação, como na indústria, onde fomentaram o aparecimento de dezenas de 

startups e fazem-se hoje presentes nos mais diversos domínios de aplicação. No 

entanto, tem-se observado uma falta generalizada de informação, metodologias de 

avaliação e ferramentas no que diz respeito ao desempenho das plataformas de 

processamento de eventos. Até recentemente, não era conhecido ao certo que fatores 

afetam mais o seu desempenho, se os sistemas seriam capazes de escalar e adaptar-se às 

mudanças frequentes nas condições de carga, ou se teriam alguma limitação específica. 

Além disso, a falta de benchmarks padronizados impedia que se estabelecesse qualquer 

comparação objetiva entre os diversos produtos. Este trabalho visa preencher estas 

lacunas, e para isso foram abordados quatro tópicos principais. 

Primeiramente, desenvolvemos o framework FINCoS, um conjunto de ferramentas de 

benchmarking para a geração de carga e medição de desempenho de sistemas de 

processamento de eventos. O framework foi especificamente concebido de modo a ser 

independente dos produtos testados e da carga de trabalho utilizada, permitindo, assim, 

a sua reutilização em diversos estudos de desempenho e benchmarks. 
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Em seguida, definimos uma série de microbenchmarks e conduzimos um estudo 

alargado de desempenho envolvendo três sistemas distintos. Essa análise não só 

permitiu identificar alguns fatores críticos para o desempenho das plataformas de 

processamento de eventos, como também expôs limitações importantes dos produtos, 

tais como má utilização de recursos e falhas devido à falta de memória.  

A partir dos resultados obtidos, passamos a nos dedicar à investigação de melhorias de 

desempenho. A fim de aprimorar a utilização de recursos, propusemos novos algoritmos 

e avaliamos esquemas de organização de dados alternativos que não só reduziram 

substancialmente o consumo de memória, como também se mostraram 

significativamente mais eficientes ao nível da microarquitetura. Para dirimir o problema 

de falta de memória, propusemos SlideM, um algoritmo de paginação que seletivamente 

envia partes do estado de queries contínuas para disco quando a memória física se 

torna-se insuficiente. Desenvolvemos também uma estratégia baseada no algoritmo 

SlideM para partilhar recursos computacionais durante o processamento de queries 

simultâneas.  

Concluímos esta dissertação propondo o benchmark Pairs. O benchmark visa avaliar a 

capacidade das plataformas de processamento de eventos em responder rapidamente a 

números progressivamente maiores de queries e taxas de entrada de dados cada vez 

mais altas. Para isso, a carga de trabalho do benchmark foi cuidadosamente concebida 

de modo a exercitar as operações encontradas com maior frequência em aplicações reais 

de processamento de eventos, tais como agregação, correlação e detecção de padrões. O 

benchmark Pairs também se diferencia de propostas anteriores em áreas relacionadas 

por permitir avaliar outros aspectos fundamentais, como adaptabilidade e escalabilidade 

com relação ao número de queries. 

De uma forma geral, esperamos que os resultados e propostas apresentados neste 

trabalho venham a contribuir para ampliar o entendimento acerca do desempenho das 

plataformas de processamento de eventos, e sirvam como estímulo para novos projetos 

de investigação que levem a melhorias adicionais à geração atual de sistemas.  
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Chapter 1  

Introduction 

For more than thirty years, database systems have been the cornerstone of enterprise 

data management. However, the ubiquitous use of computing devices, the automation of 

once manual processes, and the popularization of Internet in recent years have brought 

data generation to unprecedented levels. Recent estimates from IBM indicate that 2.5 

quintillion (i.e., 10
18

) bytes are produced every day – so much that 90% of the data in 

the world today has been created in the last two years [30]. Following this outstanding 

information growth, more and more decision makers, in the most diverse domains, start 

to recognize the importance of continuously monitoring their businesses and 

infrastructures and respond immediately as the world changes. As a result, an entire 

class of novel applications has emerged, demanding automated and timely answers to 

new data as it arrives. It soon became evident that the classical database approach of 

persisting data first before it can be queried and emitting results only when explicitly 

asked by users was incompatible with this emerging paradigm.  

The limitations of conventional data management platforms in dealing with those data-

intensive, time-sensitive, applications led to the development of the event processing 

engines, a novel class of system specifically designed to meet users need for more agile 

data processing and analysis. Event processing (EP) systems provide the ability to 

extract valuable information from real-time continuous data sources, such as sensor 
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readings or stock market ticks, and promptly react to them. Contrary to regular 

databases, EP systems continuously produce updated query results as new data (events) 

arrive. The operations performed by these continuous queries can range from simple 

moving averages to the detection of complex patterns of events. EP systems also allow 

specifying reactive rules to determine which action must be taken upon the detection of 

a situation of interest. Typical reactions include updating dashboards, generating alerts 

(e.g., attempt of intrusion) or performing some task (e.g., sell a stock). 

The concept of event processing exists for many years, but it was only recently that it 

has become a discipline by its own. Most of the research work in the area started in the 

mid to end of the nineties, under two independent fronts. The first formal attempt to 

make sense from the multitude of events happening at large-scale information systems 

was carried out at the RAPIDE [89] research project, from Stanford University. The 

goal of the project was to develop a language and a set of tools that allowed identifying 

timing and causal relationships among sets of seemingly unrelated events. At the same 

time, the database community started to realize that in many application scenarios data 

assumed the form of time-ordered streams rather than static datasets, with new pieces of 

information arriving continuously, usually at very high rates. Soon a whole new 

research area emerged, aimed at coping with the challenges posed by this new model of 

data processing. This resulted in the introduction of novel concepts and techniques, such 

as continuous queries and sliding windows [9], and the creation of a number of 

prototype data stream management systems (DSMS). From the University of Berkeley 

came the first general purpose DSMS: TelegraphCQ [23]. Shortly after, STREAM [11], 

the Stanford stream data manager, was released, and the Aurora project [1] was 

launched in a joint effort by Brandeis University, Brown University and MIT. Few 

years later many of those academic projects ended up turning into fully-functional 

products, some subsequently becoming major players in the event processing industry 

today (e.g., Progress Apama [74] and Streambase [94]). 
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The RAPIDE project did not evolve into a commercial product, but influenced 

considerably the field, with many of its proposed features being incorporated by event 

processing platforms of today (e.g., event pattern detection). As a consequence, the 

distinction between the two research fronts became less clear, and the systems started to 

be called by different denominations, including Stream Processing Engines (SPE), 

Event Stream Processing (ESP) systems, Complex Event Processing (CEP) systems or 

simply Event Processing systems, depending on the context of the problem and the set 

of features supported by the platforms
1
. In spite of its different inheritances – and the 

divergences in nomenclature they might cause – , the last ten years have witnessed the 

consolidation of event processing as an important research discipline and industrial 

trend, with several specialized companies emerging and major technology providers, 

like IBM, Microsoft and Oracle, entering the market to offer their own solution. 

1.1 Motivation and Problem Statement 

As the technology matured, event processing platforms started to become increasingly 

prevalent in the most diverse domains of industry, including capital markets, telecom, 

healthcare, sensor networks, and many others [48]. It turns out that many of these event-

driven applications are mission critical and, for most of them, the value of the responses 

provided by EP systems is proportional to their timeliness. For instance, in a variety of 

domains, such as algorithmic trading and business activity monitoring, identifying a 

trend or opportunity a few seconds or even milliseconds ahead of competition might 

mean the difference between success and complete failure. To make matters worse, EP 

systems are also expected to deal with massive amounts of data, usually coming from 

                                                 

 

 

1 In this dissertation we use these terms interchangeably. 
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disperse event sources. In many application scenarios, input rates can be as high as 

thousands of events per second. 

For this reason, it is fundamental to subject event processing platforms to rigorous 

performance analysis in order to guarantee that they are capable of meeting the stringent 

requirements posed by these event-driven applications. Nonetheless, there has been a 

general lack of information, evaluation methodologies and tools in which concerns the 

performance of event processing systems. Vendors have disclosed some performance 

numbers over the last years, but usually without the necessary details for replicating the 

results. Apart from that, only a few neutral studies have been published (e.g., [26], 

[27]), but they consisted in very simple tests and did not exercise the entire spectrum of 

features offered by event processing systems.  

Furthermore, the event processing market today is very heterogeneous, with several 

competing products, each with their own functionality, query languages and 

implementation styles. It is therefore important to establish standard methods to 

compare them, so that users can be better informed when deciding which product best 

fits their needs. Traditionally, benchmarks have been used for this purpose, but for EP 

systems no proposal has been made up to date.   

1.2 Research Objectives 

This dissertation aims at addressing the aforementioned gaps by proposing standardized 

methodologies and tools that allow evaluating and comparing the performance of event 

processing platforms. In addition, this dissertation introduces a number of techniques to 

enhance the performance and scalability of EP systems. 
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1.3 Contributions 

The main contributions of this dissertation can be grouped in four major areas: 

 Performance Evaluation Tools (Chapter 3) 

A fundamental part of the performance evaluation process consists in 

developing tools for submitting load to the system under test (SUT) and 

gathering metrics from it. In the case of event processing systems, though, this is 

a particularly challenging task because of the significant differences found in the 

application scenarios and the heterogeneity of the available products. We 

address this issue by introducing FINCoS [63], a set of benchmark tools to 

assess the performance of the diverse event processing platforms under different 

test scenarios. In order to achieve that, the framework has been designed to be 

independent of any particular workload or product. Users can configure fully 

customizable synthetic workloads to stress specific aspects of event processing 

platforms or use real event traces to mimic their production environments. The 

framework can then be used to submit load to any product capable of 

exchanging events via the standard JMS API. This flexibility allows FINCoS to 

be used both in independent performance studies and also as a reusable 

component in multiple benchmark kits. Recently, the framework has undergone 

a thorough review process, having been accepted to integrate SPEC Research 

Group’s repository of quantitative evaluation and analysis tools [84]. 

 Performance Analysis (Chapter 4)  

There has been very little information available about the performance of event 

processing systems, and the impact the different workload factors have on it. 

What are the bottlenecks? Will performance degrade gracefully in the presence 

of bursts? Will the systems scale appropriately as the number of simultaneous 

queries increases? Which product offers the best performance for a given 

workload scenario? In order to answer these questions, we propose a set of 
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microbenchmarks, and use them to conduct a thorough study examining the 

performance and scalability of three widely used EP engines. This work 

represented the first attempt in the area to systematize the evaluation of event 

processing platforms and is still to date one of the few disclosed studies where 

different systems were tested under comparable conditions. 

 Novel Algorithms and Optimization Techniques (Chapters 5 and 6) 

The results of our performance analysis revealed important limitations in the 

current generation of event processing platforms. The problems ranged from 

poor utilization of computational resources to failures in the presence of 

memory shortages. We then propose novel algorithms and techniques to 

overcome those issues. In particular, our efforts concentrated in two areas: i) 

better utilization of CPU and memory resources (Chapter 5) by improving query 

execution at the micro-architectural level and employing more lightweight data 

structures and ii) memory management (Chapter 6), by introducing a paging 

algorithm that selectively offloads query state to disk when main memory 

becomes insufficient. We conduct extensive experimental evaluations to validate 

all the proposed techniques. In our experiments, the optimizations in CPU-RAM 

data path resulted in 6-fold reduction on memory consumption and order-of-

magnitude increase on throughput for moving aggregation operations. Our 

experimental results also corroborated the efficacy of the proposed paging 

algorithm, which proved to sustain very high input rates (up to 300,000 events 

per second) for very large windows (about 30GB) while consuming small 

amounts of main memory (few kilobytes) and keeping latency under desirable 

levels (< 20ms). 

 Benchmarking (Chapter 7) 

As noted in recent surveys [32] [39] [73], the event processing community has 

long resented the lack of standardized workloads that allow evaluating and 
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comparing the performance of the several platforms available. Some 

performance numbers have been made available by vendors (e.g., [33] [86] 

[103]), but each study employed its own workload, methodology and tools, 

which hinders any objective comparison among the products. In order to address 

this lack of standardized evaluation methods, we propose the Pairs benchmark. 

Pairs was designed to assess the ability of the EP systems in processing 

increasingly larger number of continuous queries and event arrival rates while 

providing quick answers – three quality attributes any event processing engine 

should possess. The final part of this thesis introduces the benchmark workload, 

metrics and tools. We also implement Pairs on two event processing engines 

and present a comparative performance study. 
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Chapter 2  

Background 

In this chapter we provide a broad overview on the topic of event processing systems. 

We start by describing their purpose, main characteristics and processing model. We 

then present the several implementation styles adopted by the different platforms of 

today and conclude by discussing the key performance aspects to consider when 

evaluating their performance.  

2.1 Event Processing: An Overview 

Essentially, event processing systems attempt to answer one question: “What is going 

on in my business/infrastructure/information system right now? The idea is to use the 

information contained in the thousands or millions of events happening on a given 

environment to gain insight about its current state and then react appropriately. For 

example, EP platforms have been widely used by analysts in capital markets to process 

the constant updates in stock prices in order to detect trading opportunities. By 

computing moving averages, correlating the current price with historical data, or simply 

following the sequence of price movements, they are able to determine if a certain stock 

is likely oversold or overbought and then, with that information, take the appropriate 

action (i.e., buy or sell the stock). Similarly, EP systems can be used in many other 
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scenarios to detect undesired situations, such as a network intrusion attempt or a critical 

health condition of patients in an intensive care unit. 

To understand how event processing systems work, we need first to define accurately 

some terms. An event is defined as something that happens [62] or also as a significant 

change in the state of the universe [48]. From the perspective of an EP system, an event 

can be seen as an object that shall be subjected to computer processing [62]. This object 

consists in a record, with a number of attributes, containing information about the 

occurrence, much like a row in a relational database.  

<Order> 
<attribute name="orderNo" value="12587"/> 
<attribute name="customerID" value="5341"/> 
<attribute name="itemID" value="28"/> 
<attribute name="date" value="12/04/2013"/> 
<attribute name="time" value="22:15:05"/> 

<Order> 

Figure 2.1: An “Order” event, represented as a XML, field-value pair, record. 

Events can arrive from the outside world (e.g., sensor readings), be produced by 

information systems (e.g., ticks from electronic trading systems), or generated by the EP 

engine itself. In the first two cases, events are usually referred as being simple or raw, 

as they represent direct observations of the environment activity. In the latter, they are 

denominated complex, composite, or derived events, because they result from the 

composition of lower-level events. For instance, EP systems might respond to 

sequences of raw events such as SNMP traps and ATM transactions producing complex 

events like a network invasion alert or a fraudulent transaction warning. As illustrated in 

Figure 2.2, complex events are typically the ones that end-users are interested in
2
. 

                                                 

 

 

2 As a matter of fact, the discipline is often called “Complex Event Processing” precisely because one of 

its major goals is to identify such complex events from the myriad of seemingly unrelated simpler events. 
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Of course, not all patterns that users are looking for are a straight combination of low-

level events. Very often EP systems are required to transform incoming events into 

high-level data first, by performing one or more intermediate operations, such as 

aggregations or correlations. For example, spotting a trading opportunity in capital 

markets might involve computing the average price of a stock over the last hour and 

then comparing this aggregate event with the stock price over the last week. In fact, 

these operations constitute a fundamental part of most event-driven applications and are 

at the core of the functionality provided by most EP platforms. 

 

Figure 2.2: Event processing overview. 

The main benefit of employing event processing systems lies in taking actions sooner, 

when they are more effective. For instance, the sooner a fraud occurrence is detected 

and countermeasures are taken, the lower the chances of significant financial loss. 
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Another advantage is that these actions are taken based on better-informed decisions, as 

EP systems are designed to rapidly extract and distill information from massive 

amounts of data that otherwise would be impossible for humans to analyze. Note that 

computer-aided processing of events has existed for many years, almost always 

implemented via special-purpose, custom-code software (e.g., proprietary algorithmic 

trading platforms and intrusion detection tools). EP systems, though, take the concept to 

a further level, by providing an abstraction layer that relieves developers from the 

burden of manually implementing efficient event processing logic. This results in 

shorter development cycles and usually better performance. 

2.2 Event Processing Functionality 

Event-driven applications come in the most diverse forms and shapes, and their 

functional and non-functional requirements tend to vary significantly from one domain 

to another. At the same time, EP systems differ considerably in their capabilities and 

implementation styles and for this reason it is frequently hard to delimitate precisely 

what consists the functionality of an event processing platform. Ultimately, event 

processing can be defined as any kind of computation that manipulates events. There is, 

however, a core set of event processing operations that are required by nearly all 

applications and are supported in a way or another by most products. Those include: 

 Filtering: the process of extracting information from event streams often starts 

by selecting which portions of the incoming records must proceed for further 

processing. This data reduction process can be carried out either horizontally, by 

discarding entire events and keeping only those that satisfy a given predicate, or 

vertically, by removing some attributes of each event. Note that these two 

operations are respectively equivalent to the relational operations selection (σ) 

and projection (π).  
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 Moving Aggregations and Windowing: another common competence of event 

processing systems is to compute moving aggregations (i.e., AVG, COUNT, SUM, 

etc.) over event streams, automatically updating their results whenever new 

tuples arrive. The aggregation operation (Σ) is usually applied in conjunction 

with moving windows – data structures that retain only the most recently arrived 

events of a stream. Moving windows allow to limit the amounts of items (or 

time interval) to be considered when computing the aggregation function rather 

than using the entire set of events received since the beginning of execution  

(e.g., count the number of transaction records over the last hour or determine the 

average price of the last three updates for stock X). 

 Correlation/Enrichment: very often it is necessary to correlate events coming 

from different sources in order to obtain useful information. For instance, in 

order to detect non-ideal environmental conditions in a factory it might be 

necessary to merge readings from multiple sensor types (e.g., temperature and 

humidity). Another common scenario is to join (⋈) real time information carried 

by events with historical data stored in databases or data warehouses, with the 

purpose of enriching the incoming tuples or identifying deviations from the 

historically observed behavior.  

 Event Pattern Matching: one of the most fundamental features offered by event 

processing platforms consists in detecting sequences of events that together 

represent a situation of interest. An event pattern query is generally a statement 

that specifies a set of constituent events, their relative order, and a time interval 

within which the events must happen. For instance, an intrusion detection 

application might register a pattern query looking for a sequence of five 

consecutive failed login attempts, coming from the same remote terminal, within 

an interval of one minute. A slight variation of the concept, negative patterns 

look for the non-occurrence of events. For example, a fleet management 

software might need to emit a warning if a vehicle is known to have departed 
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but no corresponding notification informing of its arrival at the destination is 

received within its expected travel time. 

 Integration: event-driven applications need some form of integration with 

existing systems in order to receive events from external sources and data feeds, 

and output results to consumers. To address this need, most event processing 

platforms are bundled with a set of input and output adapters that allow them to 

communicate through diverse technologies and protocols (e.g., JMS, JDBC, 

FIX, RSS feeds, CSV files, etc.). 

Note that although presented here separately, the aforementioned operations are 

typically strongly coupled in an event-driven application. In fact, most of such 

applications can be seen as a chain of those basic operations, through which events 

flow, as illustrated in Figure 2.3 below.  

 

Figure 2.3: General structure of an event processing application. 

Throughout the process, events are transformed, discarded, and new ones are created, 

until finally the answers of interest are produced, and delivered to the appropriate 

destinations. 
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2.3 Processing Model 

EP systems adopt a processing model considerably different from that of conventional 

data management systems. These divergences are in fact a natural consequence of the 

different requirements posed by event-driven applications in comparison with regular 

transaction processing and analytical applications. For example, data is produced at 

much higher rates in event-driven applications (hundreds or thousands of events per 

second) than in classic OLTP and OLAP applications. The data also differs in nature. 

While databases deal with data that need to be stored for posterior access, the usefulness 

of events is usually limited to a short time after their occurrence. Therefore, contrary to 

conventional databases, which operate over persistent data stored on disks, event 

processing systems manipulate transient data, which is kept most of the time in main 

memory to ensure fast answers. 

Another difference is how information is obtained from the data sources. Database 

systems adopt a pull-based approach, which requires applications to issue a query in 

order to retrieve data. EP systems, on the other hand, are designed to deal with 

applications that require automatic updated answers whenever new data arrives (push-

based model). In that sense, the two approaches can be considered to be orthogonal: 

instead of storing data once and executing queries multiple times over it, in EP systems 

queries are registered once and then data is matched against them, producing a 

continuous flow of answers.   

2.4 Implementation Styles 

Due to their different inheritances, EP systems differ considerably in the way users 

express their event processing logic. Generally, vendors adopt one of three main design 

styles: SQL-based query languages, composition rules and production rules [31]. 
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Most SQL-based event processing platforms have their roots in early academic research 

on data stream systems. They provide query languages similar to the SQL database 

standard, extended with some new elements to support streaming operations (e.g., 

windowing). Adopted by several products such as Esper [34], Oracle OEP [72], 

Streambase [94] and Sybase ESP (formerly Aleri) [97], the SQL-based approach is the 

prevalent implementation style today. The listing below, expressed with Esper EPL 

query language, illustrates the usage of this approach. 

EXAMPLE: “Retrieve the average temperature over the last minute for each room”:  

select   roomId, avg(temperature) 
from     SensorReading.win:time(1 minute) 
group by roomId 

Composition rules are used by pattern matching systems, like the commercial event 

processing platform RuleCore [79] and the academic prototype SASE [104]. With this 

approach, event patterns are specified by composing single events through predefined 

operators. These composition operators can be seen as functions whose input and 

output are streams of events. For instance, a sequence operator takes two streams A and 

B and produces a stream C of events whenever an event from A is followed by another 

from B.  Other common composition operators are conjunction, disjunction and 

negation. The listing below exemplifies the specification of a pattern matching query 

using the SASE+ language: 

EXAMPLE: “Detect an uptrend in temperature”:  

PATTERN SEQ (SensorReading s1, SensorReading s2, SensorReading s3) 
WHERE     s1.roomId = s2.roomId AND s2.roomId = s3.roomId AND 

 s1.temp > s2.temp AND s2.temp > s3.temp 
WITHIN    1 minute 
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Production rules are at the core of Rete-based systems, like the Drools Fusion EP 

engine [29], and constitute an important part of the TIBCO Business Events platform 

[99]. A production rule is a statement consisting in two parts: a “WHEN” condition and a 

“THEN” action. Whenever the condition becomes true, the specified action is executed 

by the engine. The listing below shows an example of a production rule expressed using 

Drools Fusion language. 

EXAMPLE: “Emit alert in case average temperature rises above a given threshold”:  

rule  “High-temperature alert” 
when 
  TemperatureThreshold($max : max) 
   Number(doubleValue > $max) from accumulate( 

SensorReading($temp : temperature) over window:time(1m), 
   average($temp)) 

then 
  System.out.println(“Room temperature above threshold!”) 

end 

The heterogeneity found in the event processing landscape, where each of the many 

competing products adopt their own languages, architectures, data models, and 

processing techniques, reinforces the importance of standardized evaluation methods. 

An event processing benchmark can help identifying good and bad design decisions, 

which in turn might serve to improve existing systems and assist in the definition of 

standards. Recent efforts [20] [53] have achieved some advance on this topic by 

proposing methods to identify and conciliate the functional differences among the 

several products, but a standard event processing query language is still an open 

research issue. 

2.5 Performance Concerns in EP Systems 

The performance of event processing systems is generally measured in terms of 

throughput and processing latency. The former represents the number of events that an 
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EP system can process per unit of time, while the latter is the time it takes for the engine 

to produce a result after its triggering event has happened. These metrics have been 

commonly used because they allow measuring the ability of EP systems in meeting the 

two most critical performance requirements of event-driven applications, namely 

processing of massive amounts of data and timeliness
3
. 

Overall, these two main metrics are directly affected by the number and complexity of 

continuous queries running at the EP engine. In addition, their values tend to vary over 

time as a result of changes in the system and load conditions (e.g., state size of queries, 

garbage collection activity, selectivity of predicates). Thus, the performance of an EP 

system is closely related to its ability in processing increasingly larger numbers of 

concurrent queries and gracefully dealing with changes in load conditions. We discuss 

these two quality attributes next and briefly review how the problems have been 

addressed by previous work. 

2.5.1 Query Scalability and Plan Sharing 

In many scenarios, hundreds to thousands of continuous queries and rules might be 

running simultaneously at an EP engine, some of which may be very similar in terms of 

the computation performed or memory structures used. For instance, a stock trading 

system typically executes multiple strategies from diverse analysts, each monitoring a 

set of securities and with slightly different triggering conditions. Ideally, an event 

processing engine should be able to identify similarities between the configured queries 

                                                 

 

 

3 It should be noted that different applications have different definitions for timeliness. The requirements 

differ not only on the length of the time span (i.e., minutes, seconds, milliseconds, etc.) but also on how 

consistently the answers are provided on time. For instance, in some scenarios it is satisfactory if the EP 

system is able to provide answers, on average, before a given threshold. Others, however, have more 

stringent requirements, demanding some guarantees that the specified deadline is not going to be missed. 

These different definitions affect the metric selection process, as in some cases it might be appropriate to 

use the average to summarize the different latency observations, but for others it might make more sense 

to use the maximum observed latency or a percentile measure. 
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and process them in a shared way. This allows the system to handle more gracefully 

increasing loads without having to resort to hardware upgrades.  

As pointed out by early research in the data streams field [11], there are at least three 

components of a continuous query execution plan that can be shared:  

i. Operators: queries that perform the same operation on the same incoming data 

can share the execution of the common operators, thus saving CPU cycles; 

ii. Intermediary queues: intermediate results of internal operators can be shared 

among queries, thus saving memory space; 

iii. Synopsis structures: likewise, shared synopsis structures (e.g., sliding windows) 

can help reducing memory space requirements. 

Figure 2.4 illustrates the execution of two continuous queries, Q1 and Q2, in a shared 

way. The former is a selection over a join of two streams, R and S, while the latter is a 

join of three streams, R, S, and T. The join between streams R and S is common to both 

query plans, thus both the operator (O1) and its output queue (q3) can be shared among 

them. 

 

Figure 2.4: Sharing Continuous Query Plans [11]. 
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Shared query processing has been subject of extensive research in the context of data 

stream systems [8] [11] [56]. A number of techniques have been proposed to efficiently 

share resources among stateful operations like sliding-window aggregates and joins. 

More recently, it has also been demonstrated that significant performance gains can be 

achieved by sharing both storage and computation when processing multiple pattern 

matching queries in event processing systems [3]. 

2.5.2 Adaptivity 

Event processing applications run continuously for hours or even days without 

interruption, and as such it is very likely that the conditions change during their 

execution. For this reason, there has been considerable work on adaptive query 

processing techniques that allow stream processing engines to dynamically adjust their 

behavior in response to changes in load conditions. Essentially, the proposals aim at 

either improving the processing of continuous queries when their execution plan 

becomes sub-optimal [13] or dealing with overload conditions, for instance, by 

shedding load [1][57]. Recent work has also demonstrated the benefits of adaptivity in 

distributed configurations. Aniello et al [7] propose scheduling mechanisms for the 

Storm stream processing engine [92] that adapt their behavior according to the topology 

and runtime communication pattern of applications in order to reduce response time. 

2.6 Summary 

In this chapter we provided background information necessary for a clear understanding 

and better appreciation of this dissertation. The main concepts and characteristics of 

event processing systems were introduced. We described their functionality and 

processing model, and presented the main implementation styles adopted by the several 

products. We also discussed the key performance metrics of EP platforms, namely, 

throughput and processing latency, as well as closely related quality attributes such as 

query scalability and adaptivity.  
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Chapter 3  

Benchmarking Tools for EP Systems 

In this chapter we present the first of the four major contributions of this dissertation, 

namely addressing the lack of common tools for evaluating the performance of event 

processing platforms. For that, we propose FINCoS, a framework for load generation 

and performance measurement of EP systems. FINCoS leverages the development of 

novel benchmarks by allowing researchers to create synthetic workloads, and enables 

users of the technology to evaluate candidate solutions using their own real datasets. An 

extensible set of adapters allows the framework to communicate with different EP 

systems, and its architecture permits to distribute load generation across multiple nodes. 

FINCoS is used repeatedly in most experimental evaluations conducted throughout this 

dissertation. The framework is also publicly available for use by the general audience in 

[38] and [84]. 

3.1 Motivation and Contributions 

As mentioned in section 1.1, event processing platforms are in many cases a central part 

of mission-critical applications, such as algorithmic trading, fraud detection, healthcare 

systems, and traffic control. In those scenarios, a failure to respond on time might cost 

lives or incur in severe material losses. It is therefore fundamental to subject EP systems 
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to rigorous evaluation in order to ensure they perform well and as expected even when 

faced with eventual fluctuations in load conditions.  

However, evaluating the performance of event processing systems when standards, 

applications and capabilities of this evolving technology are not clearly defined is a 

challenging task. The diversity of application scenarios and the lack of standard 

benchmarks make it necessary to experiment with multiple test workloads. Moreover, 

the variety of products available, each adopting their own implementation style and 

query language, makes difficult to specify precisely the workload and the interfaces 

between the test infrastructure and the event processing platforms. 

In that context, our goals with FINCoS were twofold: to reduce the amount of work 

necessary to carry out a performance evaluation study on EP systems and minimize the 

impact of the structural and functional divergences among the products on the process 

as a whole. The first goal was achieved by ensuring that synthetic workloads can be 

quickly devised and easily swapped from one test to another. Also, the framework 

provides common mechanisms for data generation, event scheduling, and performance 

measurement, freeing users from having to implement routines for that. This not only 

accelerates the process but also ensures that the diverse systems can be measured under 

comparable conditions, using identical methodologies and criteria. The second goal was 

achieved by means of an extensible set of adapters, which decouple most of the 

framework functionality from the event processing products. 

The main contribution of FINCoS is to provide a unified approach through which 

diverse event processing systems can be evaluated and objectively compared 

independently of their inherent differences. This is beneficial for both users of the 

technology, which are now able to better assess the performance of their candidate 

platforms, and the academic community, which can more quickly develop and 

experiment novel benchmarks for the event processing field. 



3.2. Architecture 23 

 

3.2 Architecture 

The FINCoS framework is composed by five main components as shown in Figure 3.1. 

 

Figure 3.1: Overview of FINCoS components 

Drivers simulate external event sources, submitting load to the system under test (SUT). 

On the opposite side, Sinks receive the results produced by the SUT, storing them in log 

files for subsequent answer validation and performance measurement. The 

communication with the EP engine in both cases is made through an extensible set of 

adapters, which convert the events produced by the framework into a data format 

understood by the target system and vice-versa. A graphical application, denominated 

Controller, allows users to configure, execute, and monitor performance tests. The 

results of these performance runs can then be visualized both in real-time and after test 

completion, using the Performance Monitor component. 

3.3 Characteristics and Core Features 

FINCoS provides a wide range of options in the definition of experimental evaluations. 

For instance, the execution of drivers can be split into phases, each with its own 
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workload characteristics (e.g., event submission rate, types and datasets). This is useful 

not only for breaking performance tests into well-defined parts (e.g., warm-up and 

measurement interval) but also for evaluating the ability of event processing platforms 

in adapting to changes in the load conditions. In addition, users can choose if events 

should be generated by the framework itself or read from files containing real-world 

event data. The former shall be useful for researchers studying the performance of event 

processing platforms while the latter should help customers trying to mimic their 

environments. The workload can also be seamlessly scaled by simply adding more 

drivers and sinks to the configuration. 

 

Figure 3.2: Configuration of a workload based on a user-provided data file. 

Besides enabling users to define arbitrarily complex and realistic workloads, the 

framework was also designed to be portable across different EP products. FINCoS 

allows running performance tests with any EP system capable of exchanging events 

through a standard JMS middleware. In addition, the framework supports direct 
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communication with event processing platforms through custom adapters (using 

products APIs). 

3.4 Performance Measurement 

After test completion, the performance of the system under test is measured using the 

performance monitor application and the log files produced by sinks (the framework 

also allows measuring performance while tests are running at the cost of a slight 

overhead). The tool presents performance stats in both tabular and graphical formats – 

the former displays a snapshot of throughput and latency for each query running at the 

SUT, while the latter shows the evolution of these metrics over time. It is also possible 

to visualize the statistical distribution of the latency samples as shown in Figure 3.3. 

 

Figure 3.3: Latency histogram displayed by the FINCoS Performance Monitor tool. 

Response time is measured by computing the difference between the time the SUT 

emitted a given result and the timestamp of the incoming event that triggered it. For 

that, output tuples produced by the CEP engine must explicitly include the timestamp of 
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the causer event (the timestamp of the result itself is automatically collected and 

appended by the framework). 

Since there is a great variance in the way the several event processing platforms 

operate, FINCoS provides some flexibility for computing response time. Figure 3.4 

illustrates the three possible definitions of response time supported by the framework.  

 

Figure 3.4: Latency measurement modes supported by FINCoS 

The first, which we denominate end-to-end latency, represents the time it takes for an 

output tuple to arrive at a sink after the corresponding event that triggered it is sent by a 

driver. Note that in this definition the time for converting the event from the internal 

representation of the framework to a format understood by the SUT (and vice-versa) is 

accounted as part of the response time. Alternatively, the second definition can be used 

if the user wants to measure only the processing time of events inside the EP engine. In 

this case, the events are timestamped inside the adapters, immediately before and after 

sending and receiving events to the SUT. A third option is available and is intended for 

accounting for delays introduced when the dispatch of events blocks on their processing 

at the EP engine (the framework then uses the event scheduled time instead of a 

measured time). 
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In addition to the point where events are timestamped, FINCoS allows users to choose 

the resolution used to compute latency – either milliseconds or nanoseconds. Generally, 

the nanoseconds resolution should be preferred as it is more accurate and many EP 

systems offer sub-millisecond processing latencies. However, response times can be 

measured in nanoseconds only if drivers and sinks run in the same machine. It also 

incurs in more overhead than a millisecond resolution, so users should balance the need 

for accurate response time measurement and high event submission rates. 

3.5 Summary 

The FINCoS framework is a highly configurable tool that provides load generation and 

measuring capabilities for users and researchers who desire to carry out performance 

evaluations on event processing platforms. Fully-customizable workloads can be 

configured and tests can be performed on virtually any event processing platform, via 

standard JMS middlewares or directly, through customized adapters. These 

characteristics not only reduce substantially the amount of work involved in the 

evaluation of event processing systems but also leverage the development of novel 

benchmarks, as the framework can be reused as a portable component in multiple 

benchmark kits.  

The first version of FINCoS was released in 2008 [63], and since then it has been 

considerably extended and improved. Earlier this year, the framework has undergone a 

rigorous review process, having been accepted to integrate SPEC Research Group’s 

repository of peer-reviewed quantitative evaluation and analysis tools [84]. FINCoS is 

an open-source tool, and can be downloaded free of charge from the project web site 

[38]. A user guide and a tutorial with detailed instructions on how to use the framework 

are also available. 
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Chapter 4  

A Performance Study of EP Systems 

In the last chapter we proposed the FINCoS framework as a solution for the lack of 

standardized tools for performance evaluation of event processing platforms. In this 

chapter we focus on establishing a systematic evaluation methodology and analyze how 

several workload factors affect the performance of EP systems. For that, we propose a 

set of microbenchmarks to exercise the core aspects of EP platforms. The tests were 

designed to be simple and with clear queries semantics, so that they could be easily 

understood and replicated. We then execute the microbenchmarks on three different 

engines while we vary workload factors such as window size and policy, predicate 

selectivity, and injection rate. Among other things, results reveal that similar operations 

have widely different performances on the tested engines, and that improvements in 

some areas are required. 

4.1 Introduction 

There has generally been little information regarding the performance of event 

processing systems. Until recently, most of the available numbers had been provided by 

vendors, using tests designed by themselves (e.g., [33], [86], and [103]). Besides the 

obvious partiality issue, the lack of common workloads, metrics and methodologies and, 

in some cases, of details, hinder any objective comparison among the results obtained in 
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those studies and make it difficult to replicate them. Apart from those sponsored results, 

a neutral performance study of two EP platforms has been previously presented in [27]. 

The tests, however, were limited to event pattern matching, involved relatively low 

input rates, and were conducted in non-production hardware. Thus, it is still hard to say 

how EP engines will perform in more diversified or demanding situations, which factors 

affect most their performance, and where vendors should focus their optimization 

efforts. To make matters worse, the range of scenarios where event processing systems 

are being deployed is very broad and presents very different operational requirements in 

terms of throughput, response time, type of events, patterns, number of sources, number 

of sinks, scalability, and more. It is unclear what type of requirements demand more 

from engines, what happens when those parameters are varied, or if performance 

degrades gracefully when load conditions change. 

4.1.1 Summary of Contributions 

In this chapter we address this lack of information by conducting a comprehensive 

performance study where the diverse aspects of event processing platforms are 

exercised. In particular, we make the following contributions: 

 We introduce a number of microbenchmarks to stress fundamental operations of 

EP systems, including selection, projection, aggregation, join, pattern detection, 

and windowing. 

 We present the results of an extensive experimental evaluation of three widely-

used EP products (two commercial, one open-source), with varying 

combinations of window type, size, and expiration mode, join and predicate 

selectivity, tuple width, incoming throughput, reaction to bursts and query 

sharing. 

The remainder of this chapter is organized as follows. Section 4.2 defines concepts and 

terminology necessary to understand the experiments. Section 4.3 introduces the 
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proposed microbenchmarks and section 4.4 describes the testing methodology. Results 

are presented in section 4.5. Finally, section 4.6 discusses related work and section 4.7 

summarizes our conclusions. 

4.2 Background 

4.2.1 Window Policies 

Moving windows are fundamental structures in EP engines, being used in many types of 

queries. Windows with different properties produce different results and have radically 

different performance behaviors. Window policies determine when events are inserted 

and removed (expired) from moving windows and when to output computations. Three 

aspects define a policy [40]:  

 Window type: determines how the window is defined. Physical or time-based 

windows are defined in terms of time intervals. Logical, count-based, or tuple-

based are defined in terms of number of tuples
4
. 

 Expiration mode: determines how the window endpoints change and which 

tuples are expired from the window. In sliding windows endpoints move 

together and events continuously expire with new events or passing time (e.g., 

“last 30 seconds”). In tumbling or jumping windows the head endpoint moves 

continuously while the tail endpoint moves (jumps) only sporadically (e.g. 

“current hour”). The infrequent jump of the tail endpoint of tumbling windows 

is said to close or reset the window, expiring all tuples at once. In a landmark 

                                                 

 

 

4 There are also semantic windows whose contents depend on some property of the data (e.g., all events 

between events “login” and “logout”). We do not consider semantic windows in our study, though, 

because two of the tested engines do not support them. 
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window one endpoint is moving, the other is fixed, and events do not expire 

(e.g., “since 8:00 AM”). 

 Update interval (evaluation mode): determines when to output results: every 

time a new event arrives or expires, only when the window closes (i.e., reaches 

its maximum capacity/age), or periodically at selected intervals. 

In practice, EP platforms do not support all the combinations above. 

4.2.2 Event Pattern Matching 

In pattern detection queries, an additional aspect to be considered is the consumption 

mode (also called consumption policy), which determines which event occurrences may 

be used for event composition when multiple candidates exist [22]. For example, 

consider the simple pattern matching query: 

A -> B 

The statement above looks for any situation when an event “A” is followed by an event 

“B”. Assume that this query is registered in an EP engine and then the following event 

sequence is received:  

A1, A2, B1, A3, B2 

(where A1, A2, and A3 are three different occurrences of event A and B1 and B2 are two 

different occurrences of event B). 

Research [22] describes two types of policy: chronicle consumption policy finds the 

first occurrence of each event necessary for the event composition and the recent 

consumption policy finds the most recent occurrence of each event necessary for the 

event composition. 

However, in practice, the engines we tested do not offer exactly these consumption 

policies. Instead, they offer the possibility to mark the member events with keywords 

like ALL or ONE. The keyword ONE implies that an event can only be member of a 
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single composite event. The keyword ALL implies that events can be reused as 

members in multiple composite events. These two keywords can then produce four 

variations of the example composite event: 

i. “ALL A -> ALL B” 

 Output: (A1,B1), (A2,B1), (A1,B2), (A2,B2), (A3,B2) 
 

ii. “ALL A -> ONE B” 

 Output: (A1,B1), (A1,B2), (A2,B2), (A3,B2) 
 

iii. “ONE A -> ALL B” 

 Output: (A1,B1), (A2,B1), (A3,B2) 
 

iv. “ONE A -> ONE B” 

 Outputs: (A1,B1), (A2,B2), 

As a matter of fact, consumption policies for pattern matching queries are one of the 

areas where event processing languages differ most. After examining the documentation 

of the engines tested in this study, we concluded that only the all-to-all policy had the 

exact same semantics across all of them. 

4.3 Microbenchmarks 

A few event processing uses cases have been published over the past years [17], but 

none of them is representative of the entire field. Nonetheless, as discussed in section 

2.2, there is a core set of operations used in most scenarios, which are available, in one 

form or another, in all products, including:  

 Filtering (Selection/Projection)  Correlation/Enrichment (Join)  

 Windowing  Pattern Detection 

 Aggregation  

Thus, the overall performance of an event-driven application running at an EP engine 

shall depend on how efficiently those basic operations are implemented. In addition, 

workload parameters such as window type and size, and predicate selectivity will 
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determine how much work the EP engine must perform to answer the queries. Finally, 

external factors such as available resources, incoming data, and number and type of 

queries and rules might positively or negatively impact the system performance. 

The purpose of the microbenchmarks introduced in this chapter is to evaluate the 

capacity of EP engines in processing those core event processing operations and 

quantify the effect that the different workload factors have on their performance. In 

addition, we also evaluate how well the engines adapt to changes in event arrival rates 

and scale with respect to the number of simultaneous queries. Table 4.2 summarizes the 

experiments conducted throughout this chapter (a detailed description of each 

microbenchmark is provided in section 4.5).  

As input, we use a synthetic dataset because it allows exploring the parameter and 

performance space more freely than any single real dataset. The dataset schema is based 

on sample schemas available at the Stream Query Repository (SQR) [93]. In most 

application domains of SQR, event records consist in: i) an identifier for the entities in 

the domain (e.g., stock symbols in trading examples); ii) a set of domain-specific 

properties (e.g., “price”, “speed”, or “temperature”), typically represented as floating 

point numbers; and iii) the time when the event happened or was registered. Based on 

these observations, we define the generic dataset schema shown in Table 4.1. 

Table 4.1: Schema of the dataset used. 

Field Type Domain 

ID int Equiprobable numbers in the range (1, MAX_ID) 

A1...AN double Random values following a uniform distribution U(1,100) 

TS long Timestamp. 

The ID field identifies the entity being reported in the event stream. The number of 

different entities, MAX_ID (ranges from 10 to 5,000,000), can greatly affect the 

performance of joins, pattern matching queries, and grouped aggregations. Tuple width 
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is varied with the number of attributes Ai (from 1 to 125). The TS timestamp field is 

expressed in milliseconds and assigned by the load generator at runtime. 

Table 4.2: Summary of microbenchmarks. 

†
 The definition and meaning of each metric is discussed later on this chapter. 

Query Factors under analysis Metrics
†
 

Filtering  Selectivity: [1%, 5%, 25%, 50%] 

 # attributes: [5, 10, 25, 50, 125] 

 Throughput 

Aggregation 

and 

Windowing 

 Window type: [count-based, time-based] 

 Window size 

- count-based: 500 to 500K tuples 

- time-based: 10 minutes to 12 hours 

 Window expiration: [sliding, jumping] 

 Aggregation function: [SUM, MAX, STDEV] 

 Injection Rate (events/sec): 500 to100K 

 Throughput 

 Memory consumption 

Joins 

 Input source:  
     [window, in-memory table, DB table] 

 Input size (# events): 500 to 100M 

 Join selectivity: 0.01 to 10 

 Throughput 

Pattern 

Detection 

 Window size (seconds): 10 to 600 

 Attribute cardinality: [100, 1k, 10k, 100k] 

 Predicate selectivity: 0.1% to 10% 

 Throughput 

Adaptivity  Injection rate 

 Maximum latency 

 Latency degradation 

ratio 

 Recovery Time 

 Post-peak latency 

variation ratio 

Scalability  Number of queries: [1, 4, 16, 64] 

 Window size: 400k to 500k events 

 Throughput  

 Memory consumption 
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4.4 Setup and Methodology 

4.4.1 Tests Setup 

The tests were performed on a server with two Intel Xeon E5420 (12M Cache, 2.50 

GHz, 1333 MHz FSB) Quad-Core processors (a total of 8 cores), 16 GB of RAM, and 4 

SATA-300 disks, running Windows 2008 x64 Datacenter Edition, SP2.  

We ran our queries on three EP engines, two of which are developer’s editions of 

commercial products and the other is the open-source Esper [34]. Due to licensing 

restrictions, we are not allowed to reveal the names of the commercial products, and 

will call engines henceforth as “X”, “Y”, and “Z”. We tried multiple combinations of 

configuration parameters to tune each engine to its maximum performance (e.g., 

enabling buffering at client side, or using different event formats and SDK versions). 

Figure 4.1 shows the components involved in the performance tests.  

 

Figure 4.1: Architecture of evaluation setup. 
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Two slightly different architectures were employed. In either case, the load generation 

component communicates with an intermediary process called Adapter via plain socket, 

and CSV text messages
5
. The Adapter then converts these messages into the native 

format of EP engines and transmits them using their respective application 

programming interfaces (API). The difference between the two architectures shown in 

Figure 4.1 is that engines X and Z are standalone applications (architecture 1), while 

engine Y consists in a .jar file that is embedded into an existing application 

(architecture 2). This means that X and Z, receive/send events/results using inter-

process communication, while Y uses lower-latency local method calls. 

The input streams data were generated and submitted by the FINCoS framework. Both 

the load generation components and the event processing engines under test ran in a 

single machine to eliminate network latencies and jitter. CPU’s affinity was set to 

minimize interferences between the load generator, adapters and EP engines. For all 

tests, unless otherwise stated, EP engines ran in a single dedicated CPU core, while the 

load generator and adapters ran in the remaining ones. 

4.4.2 Methodology 

Tests consisted in running a single continuous query at the EP engine (except for the 

multiple-query tests of Section 4.5.6). They began with an initial 1 minute warm-up 

phase, during which the load injection rate increased linearly from 1 event per second to 

a pre-determined maximum
6
. After warm-up, the tests proceeded for at least 10 minutes 

in steady state with the load generation and injection rate fixed at the maximum 

                                                 

 

 

5 Older versions of the FINCoS framework used CSV messages and a dedicated Adapter application to 

isolate the communication with EP systems. Currently, adapters are integrated into Drivers and Sinks. 
6 The maximum injection rate was determined by running successive tests with increasing throughputs 

until CPU utilization was maximized or some other bottleneck was reached. 
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supported by the engines. Tests requiring more time to achieve steady state (e.g. using 

long time-based windows) had a longer duration.  

We collected both application-level and system-level metrics. Average throughput and 

latency were computed by the FINCoS framework. Memory consumption, CPU 

utilization, and other system metrics were collected using the native System Monitor 

tool of MS-Windows. All the measures reported represent averages of at least two 

performance runs after the system reaches a steady state. 

4.5 Results 

In this section we discuss the results obtained after running the microbenchmarks on 

three EP engines. We emphasize that our primary goal is not to provide an in-depth 

comparison of existing EP engines, but rather to give a first insight into the performance 

of current products as a way to identify bottlenecks and opportunities for improvement. 

We focus on analyzing general behavior and performance trends of the engines (e.g. 

variations with respect to window size, tuple width, or selectivity). 

4.5.1  Selection and Projection Filters 

Our first microbenchmark consists in two queries that filter rows (selection) or columns 

(projection) from a stream of events. The general structure of these queries is illustrated 

in Figure 4.2 (written in CQL [9]): 

Q1:  SELECT ID, A1,…,Am, TS 

FROM   stream1 

WHERE  ID <= K 

Figure 4.2: Filtering tests query. 
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Three parameters, K, N, and m, have their values varied across the several experiments. 

K is used to force the desired selectivity, N is the number of input attributes and m is the 

number of projected output attributes (m≤N). Two different tests are performed: 

i. Row selection: varies predicate selectivity from 1% to 50%; the other 

parameters are kept constant (N=m=5). 

ii. Column projection: varies number of input attributes N from 5 to 125; m is fixed 

at 1 and row selectivity at 100%.     

The results of these two experiments are shown in results in Figure 4.2 below.  

   

Figure 4.3: Results of filtering tests (selection and projection). 

As it can be seen, the throughputs achieved in this test series were very high, measured 

in millions of events per second. As expected, more selective predicates allow higher 

throughputs. The acute drop in performance in the projection query as the number of 

input attributes increases shows that tuple-width greatly affects performance. It should 

be noted that in both tests, Engine X was not fully utilizing the available resources 

(utilization of its CPU was between 50% and 90%) when its client API adapter became 

the bottleneck. Dedicating more CPU-cores to the adapter (up to 7) did not solve the 

issue. 
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4.5.2 Aggregation and Windowing 

Count-Based Windows 

The second microbenchmark (query Q2 in Figure 4.4) evaluates aggregations over 

different count-based window configurations. 

Q2:  SELECT ID, f(A1) 

FROM   stream1 [ROWS R SLIDE S] 

GROUP  BY ID 

Figure 4.4: Aggregation over count-based window tests query. 

We vary window size (parameter R from 500 to 500K), window type (parameter S=1 

implies sliding window and parameter S=R implies tumbling window), and aggregation 

function (parameter f=MAX, AVG, STDDEV, MEDIAN). Note that some functions can be 

computed at fixed cost (STDDEV, AVG) while others become more expensive as the 

window gets larger (MAX on sliding windows, or MEDIAN). Regarding expiration mode, 

we expected sliding windows to be more expensive than tumbling for two reasons. First, 

sliding windows expire tuples one-by-one while tumbling windows expire them in 

batches. Second, sliding windows might need to keep more in-memory state (to deal 

with tuple-by-tuple expirations) while tumbling windows may keep only counters and 

small summary data. Results are summarized in Figure 4.5. 
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Figure 4.5: Results of aggregation tests: varying windows sizes and policies. 

Oddly, engine X had a worse performance with the tumbling expiration mode than with 

sliding one. The cause seems to be inefficient batch-expiration of the tumbling window 

tuples as shown by the peak CPU utilization coinciding with the time when the periodic 

batch-expiration is expected to occur (Figure 4.6).  

 

Figure 4.6: CPU utilization of engine X during aggregation test (tumbling window). 

On engine Z, the performance difference between the two expiration modes was 

surprisingly large: very high throughputs with tumbling windows (the best of the three 
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engines at around 550 thousands tuples per second) but very low throughputs with 

sliding windows (the worse of the three, reaching only 50 tuples/second for windows of 

size 500K). For engine Y, results appear at first to meet our expectations, but in fact 

these two test cases are not directly comparable since Y’s sliding windows output 

updated results for every tuple while its jumping windows update results only on 

window reset. Indeed, jumping windows showed a better performance not due to an 

implementation that benefit from the characteristics of this expiration mode, but rather, 

to a reduced evaluation/output frequency – examining Y’s code we observed that the 

MAX aggregation is always computed by keeping the events of the window in a sorted 

structure; while this is a reasonable approach for sliding windows, it is inefficient for 

jumping windows, where MAX could be computed at constant cost. Except for the 

aforementioned issue regarding computation of MAX on engine Y, varying the 

aggregation functions between AVG, STDEV and MAX generally had minor effects on 

performance of all engines. In contrast, all engines achieved considerably lower 

throughputs in the tests with the MEDIAN function. The MEDIAN function also showed 

to be more sensitive to window size than the other functions, as illustrated in Figure 4.7. 

 

Figure 4.7: Performance of MEDIAN and SUM aggregates. 
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Time-Based Windows 

Large time-based windows over high throughput sources may quickly drain system 

resources if all incoming events need to be retained. For example, one hour of 20-byte-

size events, arriving at a rate of 50k tuples per second, represents around 3.4 GB of 

space cost. Fortunately, most event-driven applications that compute aggregates require 

results to be updated only periodically, say every second, rather than for every new 

event. In those cases, it has been demonstrated [59] that it is possible to compute the 

aggregation at a much more modest space cost, by pre-aggregating incoming events 

over a time window of a size equal to the desired update interval, and only then 

performing the aggregation over a time window with the original size
7
. For example, 

the aggregation query Q3 can be rewritten into an equivalent, more efficient query Q4, 

as shown in Figure 4.8 below. 

Q3:  SELECT AVG(A1) 

FROM   A [RANGE 1 HOUR SLIDE 1 SECOND] 

Q4: SELECT SUM(s1)/SUM(c1) 

FROM  (SELECT SUM(A1) AS s1, COUNT(A1) AS c1 

      FROM A[RANGE 1 SECOND SLIDE 1 SECOND] 

     )[RANGE 1 HOUR]; 

Figure 4.8: Two versions of aggregation query over a time-based window. 

Q4 computes 1-second aggregates on the inner query and 1-hour aggregates over the 1-

second aggregates with the outer query. This results in a significant reduction on 

memory consumption as depicted next: 

                                                 

 

 

7 Note that this optimization is applicable only for distributive and algebraic aggregation functions [42]. 
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Cost of Inner window: (50,000 events/second * 20 bytes/event) * 1 second = 977KB  

Cost of Outer window: (1 tuple/second * 20 bytes/tuple) * 3,600 seconds = 70KB 

As it can be seen, the optimized version, Q4, has a theoretical space cost of about 1 MB, 

a three-order of magnitude reduction in comparison with the original cost of 3.4 GB
8
.  

The microbenchmark of this section consists in running both Q3 and Q4, for different 

window sizes and varying input rates, with the goal of determining if the tested EP 

engines are able to automatically perform the aforementioned optimization, and, if not, 

to quantify, on practice, the performance benefits of employing it. Two distinct 

experiments were then performed. In the first, input rate was progressively increased 

while the size of the time window was kept fixed at 10 minutes. The second experiment 

tested the growth of the queries space cost in the opposite way, by keeping input rate 

fixed at 100,000 events per second while progressively increasing window size from 20 

minutes up to 12 hours. Results are displayed in Table 4.3 and Table 4.4. 

Table 4.3: Memory consumption (MB) of the tested engines (10-minute window). 

  Input Rate (events/sec) 

Engine Query 500 5,000 50,000 100,000 

X 
Q3 187 1,553 Out-of-memory Out-of-memory 

Q4 39 40 64 98 

Y 
Q3 455 3,173 Out-of-memory Out-of-memory 

Q4 139 141 1,610 1,652 

Z 
Q3 56 64 56 55 

Q4 69 68 77 91 

                                                 

 

 

8 In fact, depending on the aggregation function being computed, only the tuples in the outer window 

might need to be maintained, reducing even more the query space cost. Note that the cost of this “paned” 

approach [59] can be significantly impacted by the number of groups, if a grouped aggregation were used 

instead. We discuss this topic in further details on Chapter 6. 
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The numbers reveal that the rewritten query version, Q4, indeed reduced memory 

consumption when compared to the original query, Q3, for engines X and Y. As 

expected, Q3 showed a near-linear growth with respect to input rate. The results for X 

and Y not only demonstrate that the two engines do not automatically implement the 

two-level aggregate optimization but also reveal an excessive usage of memory 

resources – for instance, the expected space cost for a input rate of 5,000 event/sec (20-

byte events) is about 57 MB, an amount significantly lower than the memory 

consumption observed in the tests with those two engines. As a consequence, engines X 

and Y ended up exhausting the available memory (more than 13GB) for input rates 

above 50k events/sec, even on a relatively small 10-minute window. Interestingly, 

engine Z had its memory consumption only slightly affected by the input rate, with 

almost identical values for both query versions. These results suggested at first that Z 

could be the only engine employing the optimization or a similar one. 

We then ran the second series of experiments, with much larger windows. The durations 

of these tests were always 1.5 times the window size. For engines X and Y, we ran the 

tests only with the optimized version, Q4, since they could not finish the tests using the 

original query, due to out-of-memory failures. For engine Z we tested both versions, Q3 

and Q4.Table 4.4 summarizes the results. 

Table 4.4: Memory consumption (MB) of the engines for large time-based windows. 

  Window Size 

Engine Query 20 min 1 hr. 2 hrs. 6 hrs. 12 hrs. 

X Q4 114 128 141 146 147 

Y Q4 5,275 5,303 5,232 5,362 5,279 

Z 
Q3 70 73 55 58 52 

Q4 63 58 46 48 48 

As expected, memory consumption remained very stable for all engines when using the 

rewritten query version Q4, in spite of the window size being increased by a factor of 
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36. These results confirm that the two-level aggregate optimization is very effective in 

reducing resource consumption for aggregations over large temporal windows.  

More importantly, however, the new experiments exposed a behavior of engine Z not 

revealed in previous tests. While in the first experiments Z was roughly unaffected by 

the number of events in the window, in this second series of tests, the CPU utilization 

and consequently maximum throughput were severely impacted by the window size.  

As shown in Figure 4.9, Q3 had a drastic drop in maximum throughput as window size 

was increased, while Q4 maintained a very steady throughput curve.  

 

Figure 4.9: Results of the aggregations over large time windows test (engine Z). 

While in the tests with Q3 CPU was always pushed to its maximum (for windows of 20 

min and beyond), with Q4 CPU utilization stayed always around 1%. These numbers 

indicate that Z also does not perform the optimization mentioned earlier, and employ 

instead an alternative implementation strategy that sacrifices query throughput to keep 

memory consumption controlled. 
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4.5.3 Joins 

The third series of tests evaluated the join performance of EP engines. There are 

numerous factors that affect performance of joins such as the input source type (e.g., 

stream, window, or table), number of elements in each input, join selectivity (i.e., 

number of results generated per input event), cardinality (number of unique values) of 

the join attribute, number of joining sources, join types, and throughputs of incoming 

streams. In this microbenchmark we focus on equi-joins. Three test series are defined, 

each with different data sources and factors under analysis:  

J1. Window-to-window: joins two sliding windows that are constantly being 

updated by event arrivals in the corresponding input streams; 

J2. Stream-to-in-memory-table: simulates the situation where the content of an 

input stream must be enriched with static data stored in an in-memory table;  

J3. Stream-to-DBMS-relation: joins events with data stored in a table of an external 

database. 

Query definitions and results of the tests above are presented next. 

J1: Window-to-window 

The query for the window-to-window join test is shown Figure 4.10 below. 

Q5:  SELECT * 

FROM   stream1 [ROWS S SLIDE 1] AS S1, 

       stream2 [ROWS S SLIDE 1] AS S2 

WHERE  S1.ID = S2.ID 

Figure 4.10: Window-to-window join tests query. 

Q5 joins the contents of two sliding windows of size “S” defined over two distinct 

streams, using the attribute “ID” of each stream as correlation criteria. We then define 

two tests with the objective of examining how window size and join selectivity affect 

the query performance: 
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J1-1 Varying window size and keeping join selectivity fixed: parameters S and 

MAX_ID take the same values, from 500, to 500k, which ensures a constant 

100% join selectivity (each input event finds one and only one match on the 

other window); 

J1-2 Varying join selectivity and keeping window size fixed: MAX_ID takes the 

values 5k, 50k, 500k, and 5M while parameter S is held at 50k (each event finds, 

on average, 10, 1, 0.1 and 0.01 matching events on the other window). 

Figure 4.11 below shows the results for this test series. 

   

Figure 4.11: Results of window-to-window join tests. 

The tests reveal that engine X is more sensitive to window size while engine Y 

performs very well when join selectivity is low, but degrades more quickly when it gets 

close to or exceeds one. Once more engine Z had an acute drop on query throughput as 

the window size was increased, similarly to what happened in the aggregation tests of 

section 4.5.2. In order to minimize the cost of window maintenance, and thus be able to 

observe the effect of selectivity on Z, we ran a modified version of J1-2, with a smaller 

window (size 500, not shown in the graph). However, there were no noticeable 

performance differences when varying the join selectivity, showing again that sliding 

windows are not efficiently handled by Z, and for this reason dominate query cost. 
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J2/J3: Stream-to-in-memory-table and Stream-to-DB-relation 

We now discuss the results for the stream enrichment tests (J2 and J3). The queries for 

those experiments have the format shown in Figure 4.12. 

Q6:  SELECT * 

FROM   stream1 AS S, 

       table1  AS T 

WHERE  S.ID = T.ID 

Figure 4.12: Stream-to-table join tests query. 

In both tests an event stream “S” with 4 fields is joined with a static table “T” with 10 

fields. In J2 the EP engine is responsible for maintaining the table in main memory and 

for performing the join. In J3 the table is stored in an external database, which becomes 

responsible for the join (every new event in stream S fires a parameterized query to the 

DBMS; we tested both with MS-SQL Server™ 2005 and Oracle™ 11g, and the results 

were similar). The number of records in the table ranged from 1k to 10M for J2 (in-

memory), and from 1k to 100M for J3 (DB). The join selectivity in all tests is 100% 

(i.e., every event in the stream is matched against one and only one record in the table). 

Figure 4.13 shows the corresponding results. 

   

Figure 4.13: Results of stream-to-table join tests. 
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In series J2, engine Y could not complete the test with 10M because it ran out of 

memory (prolonged garbage collections made it unresponsive). It is also interesting to 

observe how engine Z had a considerably better join performance when operating over 

a table rather than over sliding windows (see J1-1, in Figure 4.11).  

In the J3 experiment series, two facts are worth mentioning: first, neither the EP engines 

nor the DBMS were in their processing limits; the bottleneck was primarily the 

communication between these two components. Second, the performance was virtually 

unaffected from 1k to 1M as the DBMS was able to buffer the entire table into main 

memory. From this point on, the presence of I/O, resulting from disk requests, 

significantly lowered the query throughput, as it can be seen in Figure 4.13. 

4.5.4 Pattern Matching 

Event pattern matching was exercised using queries with the structure of query Q7 

below. Q7 searches for instances of two related events (i.e., with the same “id”), 

happening within a time-window of size interval, where the “A1” attribute of the 

second event is above some threshold K.  

Q7:  SELECT * 

PATTERN SEQ(A a1, A a2) 

WHERE   a1.id = a2.id  

        AND  

        a2.A1 > K                        

WITHIN  interval 

Figure 4.14: Pattern matching tests queries (expressed using SASE+ language). 

The consumption policy used in the tests was always the “all-to-all”, the only supported 

and semantically equivalent across all the tested EP engines. The purpose of the 

“a2.A1>K” predicate is to verify that EP engines indeed benefit of predicates in 

pattern detection by pushing them earlier in query plan construction. We then examine 

the effect of three factors:  
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i. Window size: we vary parameter interval from 10 up to 600 seconds. The other 

parameters are kept fixed (MAX_ID:10k and K ensures a selectivity of 0.1%); 

ii. Cardinality of attribute ID: MAX_ID ranging from 100 to 100k. interval was 

held constant at 1 minute and K ensures selectivity of 0.1%; 

iii. Predicate selectivity: the predicate selectivity varied from 0.1% to 10%, while 

interval was held at 1 minute and MAX_ID at 10k. 

Figure 4.15 show the results for the three test series. Interstingly, in the first experiment, 

all the engines had a very similar decrease in throughput as interval got larger (a total 

drop of 50% for engine X and 54% for engine Y). We could not determine the 

performance of engine Z for windows of sizes above 5 minutes because it consumed all 

available memory before tests could reach steady state (the  edition we tested was 

limited to address at most 1.5 GB of memory). Considering only the values of interval 

parameter between 10 and 120, throughput in Z dropped 28%, 24% in engine X, and 

29% in engine Y. 

As expected, increasing the cardinality of the correlation attribute ID decreases query 

cost, since less tuples pairs will have matching IDs. Similarly, more selective predicates 

(lower percentages) yield better performance as less tuples are considered as potential 

patterns matches – the results of this last test series indicate that all engines indeed 

employ the predicate push-down optimization. 
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Figure 4.15: Results of the pattern matching tests. 
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4.5.5 Adaptivity to Bursts 

Different from the previous tests, which stressed a particular basic event processing 

operation, this microbenchmark has the objective of assessing how fast and efficiently 

the tested engines adapt to changes in the load conditions. Although many factors may 

cause variations in the execution of continuous queries, here we focus solely on input 

rate. In order to evaluate the adaptivity of engines to bursts on event arrivals, we 

arrange each experiment in four distinct parts (see Figure 4.16): 

 An 1-minute warm-up phase during which the injection rate is progressively 

increased until a maximum value λ that makes CPU utilization around 75%; 

 A 5-minute steady phase during which the injection rate is kept fixed at λ; 

 A  10-second peak phase during which the injection rate is increased 50% (to 

1.5λ), making the system temporarily overloaded; 

 A 5-minute recovery phase in which the injection rate is again fixed at λ. 

 

Figure 4.16: Adaptivity test. 
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We then define the following metrics in order to characterize the adaptivity of the event 

processing systems: 

 Maximum peak latency: the maximum observed response time either during or 

after the injection of the peak load. 

 

 Peak latency degradation ratio: quantifies the increase in latency caused by the 

peak. It is computed as the ratio between the 99.9th-percentile latency of peak 

phase with respect to 99.9th-percentile latency of steady phase: 

                  

                    
 

 

 Recovery Time: measures how long it takes for the system to return to the 

latency levels of the steady phase after the peak in the load is interrupted. 

Algebraically: 

τrecovery - τpeak 

where τrecovery represents the timestamp of the first output event after peak 

injection whose latency is less than or equal the average latency of the steady 

phase and τpeak is the timestamp of the last input event of the peak phase. 

 

 Post-peak latency variation ratio: measures the variation of average latency 

after recovery in comparison with the average latency during steady phase. The 

purpose of this metric is to determine if the systems return, after the peak, to a 

similar state to the one they were before the peak. It is computed as follows:  
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The workload of the adaptivity tests consisted in the aggregation query Q2, from section 

4.5.2. 

Discussion: Blocking/Non-Blocking API and Latency Measurement 

Recall from Figure 4.1 that events are sent to engines through API calls. On engine X, 

those API calls are non-blocking while on engines Y and Z they are blocking. In 

practice this means that X continues queuing incoming events even if overloaded while 

Y and Z prevent clients from submitting events at a higher rate than that they can 

process. As discussed in section 3.4, there are multiple ways of computing latency. In 

order to properly measure latency for blocking calls, it is necessary to employ the 

scheduled time of input events instead of their send time – formula (3) in Figure 3.4. 

This way it is possible to account for the delays introduced by the blocking mechanism 

of the client APIs, which otherwise would pass unnoticed if we employed the moment 

immediately before sending the event. 

Results 

Table 4.5 and Figure 4.17 summarize the results of the adaptivity tests. As it can be 

seen, engine X, which adopts a non-blocking approach in the communication with 

clients, took much longer to recover from the peak and had a higher maximum latency 

than the two blocking engines, Y and Z. After recovery, though, all engines returned to 

virtually the same latency level as that observed before the peak. 

Table 4.5: Results of Adaptivity Tests. 

 Engine 

Metric X Y Z 

Maximum Peak Latency (ms) 4,725.0 1,262.0 1,483.0 

Peak latency degradation ratio 82.8 57.4 5.9 

Recovery time (seconds) 43.1 1.3 1.6 

Post-peak latency variation ratio 1.0 0.9 1.0 
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Figure 4.17: Scatter plot of latency before, during, and shortly after the peak. 
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4.5.6 Multiple Queries and Resource Sharing 

The objective of this microbenchmark is to analyze how the EP engines scale with 

respect to the number of simultaneous similar queries, and if they perform some form of 

resource sharing. The query used in this experiment is a window-to-window join, like 

Q5 of section 4.5.3. We tested two variations: 

 Test 1: Identical queries. In this test we focus on computation sharing and the 

main metric is throughput. Window size is fixed in 1000 rows. To keep output 

rate fixed (1 output per input event), all queries have a predicate whose 

selectivity increases as we add more queries. 

 Test 2: Similar queries with different window sizes. In this test we focus on 

memory sharing, so windows are large enough to observe differences when we 

increase the number of queries (in the range [400k-500k events]) and the 

injection rate is low so that CPU does not become a bottleneck. 

In both experiments, the number of concurrent queries was progressively increased, 

assuming the values N= {1, 4, 16, 64}. Results are shown in Figure 4.18 below.  

 

Figure 4.18: Results of scalability tests. 

The numbers indicate that neither Y nor Z implement any query plan sharing 

mechanism. In the first test both engines had their throughput dropping linearly with the 
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number of simultaneous queries (in spite of those performing exactly the same 

computation). Overall, engine X showed to be the only one to implement some kind of 

query plan sharing – its throughput remained unaffected when the number of queries 

was increased in the first test.  

However, in the second test, in which queries were similar but different, engine X was 

not able share resources, and memory consumption increased linearly with the number 

of simultaneous queries. The same happened with memory consumption of Y in the 

second test – as a consequence, it ran out of memory in the experiment with 64 queries. 

We could not determine memory consumption for engine Z in the second test because it 

became unresponsive while the window was being filled.  

4.6 Related Work 

There have been some previous efforts in characterizing the performance of event 

processing platforms. Dekkers [27] conducted a study for evaluating event pattern 

detection performance of two open-source EP engines: Esper [34] and Streamcruncher 

[95]. The tests consisted in sending a progressively larger number of synthetic event 

patterns (with and without noise events between their component events) and measuring 

how long the engines take to process them. The results of this study showed that Esper 

outperformed Streamcruncher in all tests. 

A performance study of the Bea WebLogic Event Server engine (now Oracle OEP) is 

presented by White et al. [103]. The tests simulate a simple financial trading 

application, which monitors the price movements of a number stock symbols. The 

workload consists in two continuous queries, replicated for each of the 200 symbols 

being monitored, on a total of 400 queries. Injection rate ranged from 100,000 up to 

1,000,000 events per second. The results of the study demonstrate the engine’s ability in 

handling very large volumes of events while providing deterministic latencies. It should 
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be noted, though, that the queries used are very simple, especially regarding memory 

cost (the engine keeps sliding windows of only two or three tuples).  

The STAC benchmark council [82] disclosed a report measuring the performance of the 

Aleri Event Stream Processor (now incorporated into the SAP-Sybase portfolio [97]) in 

consolidating order book data from two high-volume feeds, fed through a Reuters 

Market Data System (RMDS) [86]. The objective was to measure the total latency 

introduced by the Aleri solution when running on RMDS. The results demonstrated 

very low latencies (less than 3 milliseconds) for input rates of up to 180,000 order book 

updates per second. The report, however, did not disclose sufficient details about the 

test case that allowed fully understanding how complex the scenario was or replicating 

the results. 

The open-source engine Esper is distributed with a toolkit for evaluating its 

performance. The tests simulate a simple stock market application and consist in 

computing the volume-weighted average price (VWAP) of 1,000 symbols. A report 

with results using this kit can be found in [33]. 

It is worth noting that all the aforementioned work and tools touch only part of the event 

processing functionality. To the best of our knowledge, the study presented in this 

chapter is the first to exercise the wide range of functions provided by an event 

processing platform. A more recent work by Dayarathna and Suzumura [26] follows 

this comprehensive approach, and present a study comparing the performance of the 

stream processing engines System S, S4 and Esper using a number of application 

scenarios and microbenchmarks.  
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4.7 Summary 

In this chapter we presented an extensive performance study of event processing 

systems. We proposed a series of microbenchmarks to exercise the core event 

processing operations and then carried out experimental evaluations on three EP 

platforms. The tests confirmed that very high throughputs can be achieved by EP 

engines when performing simple operations such as filtering. In these cases the 

communication channel – in our tests, the client API – tends to be the bottleneck. We 

also observed that window expiration mode had a significant impact on the cost of 

queries. In fact, for one of the tested engines the difference in performance between 

tumbling and sliding windows was about 4 orders of magnitude. Aggregation tests also 

revealed a poor utilization of memory resources by two of the three tested systems. 

Further, the well-known optimization of pre-aggregating data when computing periodic 

sliding-window aggregates was not implemented by any engine. With respect to joins, 

tests revealed that accessing data stored in databases can significantly lower system 

throughput. Pre-loading static data into EP engine offers good performance and may 

thus solve the issue, but this approach is feasible only when data does not change often 

and fits in main memory. We also concluded that the tested engines had very disparate 

adaptivity characteristics, with the approach used to receive events from clients – either 

blocking or non-blocking – apparently playing a fundamental role on that aspect. 

Finally, the tests with multiple queries showed that plan sharing happened only in one 

EP engine and only for identical queries. We also note that the EP engines were not able 

to automatically benefit from the multi-core hardware used in our tests. In general 

terms, we concluded that no EP engine showed to be superior in all test scenarios, and 

that there is plenty of room for performance improvements. We dedicate the next two 

chapters of this dissertation to this goal, by investigating and proposing ways to enhance 

efficiency and scalability of EP systems. 
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Chapter 5  
 

Performance Enhancements for 

EP Systems - Part I: CPU and Memory 

The study conducted in the last chapter revealed important performance issues on the 

current generation of event processing platforms. In particular, we observed that some 

systems grossly waste resources and that their performance tends to drop significantly 

as query state increases. In this chapter we further quantify some of these inefficiencies, 

identify their causes, and propose changes on internal data structures and cache-aware 

algorithms to overcome them. We test the before and after system both at the 

application and microarchitecture level and show that: i) the changes improve 

microarchitecture metrics such as clocks-per-instruction, cache misses or TLB misses; 

ii) and that some of these improvements result in very high application level 

improvements such as a 44% improvement on stream-to-table joins with 6-fold 

reduction on memory consumption, and order-of-magnitude increase on throughput for 

moving aggregation operations. 

5.1 Motivation and Related Work 

Previous work by Ailamaki [4], Ramamurthy [77], and Abadi [2] showed that 

microarchitecture inspired improvements such as cache-aware algorithms and changes 

of internal data representations can lead to high improvements on the performance of 

conventional data management systems. Encouraged by this work, we took a similar 
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position and set-out to discover the microarchitecture performance of event processing 

systems. 

Using Esper [34], a widely used open-source EP engine, we measured the system 

performance executing common operations such as moving aggregations and stream-to-

table joins. We monitored the system at the microarchitecture level using the Intel 

VTune® profiler [51], and also collected application-level metrics such as memory 

consumption and peak sustained throughput. 

To isolate from secondary effects, we then replicated the main algorithms and data 

structures on our own event processing prototype and progressively improved them 

with microarchitecture-aware optimizations. These optimizations were then validated 

first by running the tuned prototype in a multi-query scenario, and then porting the 

modifications back into Esper.  

5.1.1 Summary of Contributions 

The main contributions of this chapter are the following: 

 We analyze how current event processing systems perform at both application 

and hardware levels. By collecting and correlating metrics such as throughput, 

CPI, and cache misses during execution of continuous queries, we show that 

microarchitectural aspects significantly influence the final performance of 

common event processing tasks, being in some cases the sole cause for 

performance degradation when the input is scaled up (Section 5.3). 

 We demonstrate how alternative data structures can drastically improve 

performance and reduce resource consumption in EP systems (Section 5.4). 

 We implement, test and evaluate an adapted version of the Grace Hash 

algorithm [55] for joining event streams with memory-resident tables. Results 
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revealed that by reducing the impact of microarchitectural aspects on query 

execution performance was improved by up to 44% (Section 5.5). 

 We propose, implement, test and evaluate a microarchitecture-aware algorithm 

for computing moving aggregations over sliding windows. In our 

experimentation evaluation the proposed optimization provided performance 

gains ranging from 28% to 35% (Section 5.5). 

5.2 Background 

From the microarchitectural point of view, the amount of time a given computational 

task T takes to complete depends primarily on two factors: the task size, measured in 

number of instructions (a.k.a. instruction count or IC), and the average duration of 

instructions (frequently expressed as cycles per instruction or CPI). Algebraically, in 

number of cycles [47]: 

CPU execution time = IC × CPI 

Better performance can be achieved by reducing either factor or both. Traditionally, 

software developers have focused on reducing IC by improving time complexity of 

algorithms, but an increased interest in making a more efficient use of hardware 

resources has been observed over the last years [4][5][90][107]. 

To understand how these optimizations targeted at the hardware level work, it is 

necessary to know the internals of CPU operation. Every single instruction is executed 

inside the processor as series of sequential steps across its several functional units. 

During this sequence of steps, generally referred as pipeline, CPU instructions are 

fetched from memory, decoded, executed and finally have their results stored back into 

registers or memory. To increase throughput, instructions in different stages/functional 

units are processed in parallel (Instruction-Level Parallelism). In ideal conditions, the 
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processor pipeline remains full most of the time, retiring one or more instructions per 

cycle (implying CPI ≤ 1).  

Many factors, however, can cause instructions to stall, thus increasing average CPI. The 

gap between processor and memory speeds is one of them: an instruction that access 

data resident in main memory may require tens to hundreds of CPU cycles to complete. 

Another typical cause of stalls is data dependency: when an instruction j depends on a 

value produced by an instruction i that was fetched closely before it, j cannot execute 

until i completes (in fact, if the processor issues instructions in program order, when 

instruction j stalls, no later instructions can proceed, thus aggravating the performance 

impact of the data dependency). Finally, control dependencies, which happen when the 

instruction flow cannot be determined until a given instruction i (e.g., a conditional 

branch) completes, can also adversely affect the degree of instruction-level parallelism 

achieved. 

In order to attenuate the aforementioned stalls, hardware vendors have devised several 

techniques. For example, to minimize memory-related stalls, smaller and faster cache 

memories are placed in the data path between processor and main memory. The strategy 

is to benefit from the locality principle and serve most memory requests with data 

coming from lower-latency cache accesses. Additionally, data dependencies are 

minimized by allowing instructions to execute out-of-order inside the pipeline. Finally, 

control dependencies are partially addressed via speculative execution (i.e., the 

processor executes instructions that lie beyond a conditional branch as if it had been 

already resolved). 

In practice, the characteristics of the applications determine whether the hardware 

techniques above will be successful or not at making the processor execute close to its 

full capacity. With that in mind, a number of novel database systems had been 

developed over the last years, in an attempt to better exploit the internal features of 

processors [90] [107]. Examples of microarchitectural optimizations employed by such 

databases include a column-oriented data organization and compression techniques 
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which together provide a more efficient use of memory hierarchy (e.g., [90] and [107]). 

Also, recently proposed compression algorithms [108] minimize the negative impact of 

branch mispredictions by avoiding if-then-else constructs in their critical path. 

In this chapter, we argue that similar optimizations can be applied in the context of 

event processing systems. In fact, our expectation is that those microarchitectural 

improvements result in potentially higher gains as, contrary to databases which 

manipulate data from secondary media, most of the data processed by EP systems 

resides in main memory. 

5.3 Performance Analysis 

In order to validate that hypothesis, we conduct a preliminary performance analysis of 

the Esper event processing platform. Our goal is to assess how well the engine uses the 

available resources and verify if microarchitectural aspects indeed play a significant 

role on the overall system performance. In the rest of this section we introduce the 

workload and methodology used to stress the Esper engine and discuss the results of 

this preliminary analysis. Later in this chapter, we use the same test case to validate the 

optimizations proposed in the following sections. 

5.3.1 Test Case 

Similarly to the study presented in Chapter 4, we use common core operations 

performed by event processing systems to assess the engine under test. The workload 

here consists in processing either:  

i. A moving aggregation over a windowed event stream or  

ii. A join of an event stream with historic data.  

These two queries and the dataset are described in detail next.  
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Dataset 

Input data for the experiments of this chapter consisted in a generic event stream S and 

table T with schemas shown in Figure 5.1 and Figure 5.2. 

STREAM S ( 

     ID integer, 

    A1 double, 

     A2 double, 

    TS long 

      ) 

Figure 5.1: Schema of input event stream “S”. 

In our tests the values assumed by S attributes are not relevant for query performance 

evaluation, so they were filled with a fixed, pre-generated, data value – this ensures that 

measurements are minimally affected by data generation. The exception is the attribute 

ID, which is used to join stream S with table T. In this case, S’s ID was filled with 

random values uniformly distributed in the range of T’s ID. 

TABLE T ( 

     ID integer, 

    T1 integer, 

     T2 integer, 

    T3 integer, 

    T4 integer 

      ) 

Figure 5.2: Schema of historical table “T”. 

The ID attribute of table T, used to perform the join with the event stream, assumes 

unique values ranging from 1 to TABLE_SIZE_IN_ROWS (a parameter that changes 

from one experiment to another). The other four attributes in T do not influence query 

performance and are filled with random data. 
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Aggregation Query 

The aggregation query used in this test case computes a moving average over a count-

based sliding window. The query specification is shown next using the syntax of the 

CQL language [9]: 

SELECT AVG(A1) 

FROM   A [ROWS N SLIDE 1]  

Figure 5.3: Aggregation query. 

For this particular query, every event arrival at stream S causes the output of an updated 

result. Parameter N represents the window size, which varies across the tests, ranging 

from 1,000 to 100 million events. 

Join Query 

To examine the behavior of the EP system under test when performing a join, we used a 

query based on a real use-case of a telecom company that needed to join streaming call 

detail records (CDR) (here represented by stream S) with historic data (represented by 

table T). In our tests this query is expressed as follows: 

SELECT  S.ID, S.A1, T.T1 

FROM    S, T 

WHERE   S.ID = T.ID  

Figure 5.4: Join query. 

Since the goal here is to focus on the performance of processor and memory hierarchy, 

the table is maintained in main memory, thus eliminating eventual effects of the I/O 
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subsystem on the results
9
. The selectivity of the query is always 100% (i.e., every event 

is matched against one and only one record in the table) and the table size is varied 

across tests, ranging from 100 to 10 million rows. 

5.3.2 Setup and Methodology 

All the tests were carried out on a server with two Intel Xeon E5420 Quad-Core 

processors (Core® microarchitecture, L2-Cache: 12MB, 2.50 GHz, 1333 MHz FSB), 16 

GB of RAM, running Windows Server 2008 x64 and Sun Hotspot x64 JVM.  

The performance measurements were done as follows: 

 A single Java application was responsible for generating, submitting and 

consuming tuples during the performance runs. Events are submitted and 

processed through local method calls, so that measurements are not affected by 

network/communication effects. 

 In the tests with join queries, load generation was preceded by an initial loading 

phase, during which the in-memory table was populated with a given number of 

records. 

 Load generation started with an initial 1-minute warm-up phase, with events 

from stream S being generated and consumed at the maximum rate supported. 

 Warm-up was followed by a 15-minute measurement phase, during which we 

collected both application-level metrics and hardware-level metrics. 

Application-level metrics, namely throughput and memory consumption, were 

gathered inside the Java application. Throughput was computed as total event 

                                                 

 

 

9 As pointed out before, keeping the dataset in memory is commonplace in most EP applications, 

especially those which require high processing throughputs and/or low latencies. 
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count divided by elapsed time. Memory consumption was computed using 

totalMemory() and freeMemory(), standard Java SDK Runtime 

class methods. Hardware-level metrics were obtained using the Intel VTune® 

profiler [51], as described in detail next. As in the warm-up phase, events were 

submitted at the maximum rate sustained by the specific implementation. 

 Each test was repeated 3 times and the reported metrics were averaged. 

VTune collects metrics by inspecting specific hardware counters provided by Intel 

processors. To avoid excessive monitoring overhead, only one or two events are 

collected at a time – for doing that, VTune breaks event collection in “runs”.  In our 

tests, each run has a duration of 2 minutes (1 minute for calibration and 1 minute for 

counters collection), and 6 runs were necessary to collect all the configured metrics. 

5.3.3 Results 

Figure 5.5 illustrates the results for the join query running at the event processing 

system Esper, with two different tuple representations used by the engine: Map and 

POJO (in the former events are represented as instances of the standard HashMap Java 

class, while in the latter events are represented as fixed-schema Plain Java Objects)
 10

.  

Two important observations can be made from the results shown in Figure 5.5. First, for 

both tuple representations, the throughput dropped about 40% from a join with a 1,000 

rows table to a join with a 10-million rows table. Note that this drop occurred even 

though the employed algorithm (i.e., hash join) has a theoretical O(1) runtime 

complexity. The collected metrics indicate that this behavior was mainly due to 

                                                 

 

 

10 In this chapter we focus on Esper due to its open-source nature, which allowed us to port some of the 

optimizations here proposed into a real engine. Still, the results here presented are representative of event 

processing engines in general, given that the behavior exhibited by Esper is similar to what was observed 

in previous chapter with all the other tested systems. 
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microarchitectural aspects, and to a lesser extent, to increased garbage collection 

activity. 

 

Figure 5.5: Performance of join query on the Esper EP engine. 

 

Figure 5.6: Relation between application performance and hardware metrics. 
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As it can be seen in Figure 5.6, query throughput decreased at a similar proportion – 

86% drop from 1k to 10M rows – to the increase observed in the CPI metric – about 

78% from 1k rows to 10M rows. In the same interval, the time spent with garbage 

collection increased from 0.01% to 1.90%, which justifies the slightly larger drop on 

application throughput than the performance degradation at the hardware level.  

The second point worth mentioning is that measured memory consumption during 

query execution was 4 to 60 times the space strictly required for keeping the table data. 

Examining Esper’s source code we concluded that this excessive memory consumption 

was caused by non-optimized internal representation of tuples as further explored in the 

next section. 

5.4 Optimizing Data Structures 

In order to address the problem of excessive memory consumption, we focused first in 

optimizing the structures used to keep data items in main memory (i.e., the window for 

the aggregation query and the table for the join query). Specifically, we were interested 

in finding out if the original representations used by Esper to represent the events and 

table tuples could be improved and if a column-oriented storage model would result in 

enhanced performance in the context of event processing.  

It is worthy to notice that column-store formats are especially useful for read-intensive, 

scan-oriented, non-ad-hoc queries. Thus, while on one hand EP systems, with their 

scan-oriented, non-ad-hoc queries may benefit from a column-oriented storage model, 

on the other hand, the read/write nature of those queries might reduce, or even 

eliminate, the eventual gains obtained with this alternate data organization scheme. 

To assess the impact of data structures on query performance, we started representing 

events/tuples as instances of the HashMap class – Figure 5.7 (a) – and then employed 

progressively more lightweight representations: first arrays of Objects (b), and then 
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fixed-schema Plain Java Objects (POJO) (c). Finally we tested the column-oriented 

storage model (d), in two different modalities: first keeping all original attributes of 

events/tuples (here named “Col-Store”) and then keeping (projecting) only the attribute 

referenced in the query (“Col-Store Proj.”). In the Col-Store format, N aligned arrays of 

primitive types are kept in memory (where “N” is the number of attributes of the 

incoming events), while in the Col-Store Proj format only one array containing the 

values for the referenced attribute is maintained. 

 

 

Figure 5.7: The different data structures used to represent tuples. 

(a) Maps; (b) Object array; (c) Plain Objects; (d) Column-store 
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We tested each tuple representation with both the aggregation and the join queries, 

using our own event processing engine prototype – we used a neutral small prototype to 

avoid that the evaluation became tied to a particular product and prevent results from 

being affected by any specificities of the Esper engine. The algorithm for computing the 

aggregation query works as follows. The sliding window is implemented as a circular 

buffer, internally represented as a fixed-length array; the average aggregation itself is 

computed by updating count and sum state variables upon event arrival/expiration. The 

join algorithm is also straightforward: it keeps the table into a hash index structure with 

the join attribute as key and then performs a lookup in that hash table every time a new 

event arrives. The results of these tests are summarized in Figure 5.8, Table 5.1, and 

Table 5.2. 

 

   (a) 

 

   (b) 

Figure 5.8: Impact of internal representation on performance  

(a) aggregation (b) join. 

The numbers corroborate that considerable gains in final performance and resource 

consumption can be obtained by using more lightweight data structures. For the join 

query, the most efficient representation achieved more than 3 times more throughput 

than the original one, while consuming less than 15% memory space of what was 

originally required. The gains for the aggregation query were even more impressive: the 
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best performing implementation (column-store keeping only required data) achieved on 

average about 35 times more throughput than the one using maps as event 

representation and reduced memory consumption to around 1.5% of the memory space 

occupied by that implementation. 

 

 

Table 5.1: Data structures and memory consumption (in MB): aggregation query. 

Tuple  

Format 

Window Size 

1k 10k 100k 1M 10M 100M 

Map 0.8 5.5 51.4 511.5 5,112.9 - 

Array 0.5 2.1 17.9 176.5 1,755.0 - 

POJO 0.3 0.8 6.3 61.2 682.1 6,103.0 

Col-Store 0.2 0.5 2.8 26.9 267.2 2,670.5 

Col-Store Proj. 0.2 0.3 0.9 7.8 76.0 763.1 

 

 

Table 5.2: Data structures and memory consumption (in MB): join query. 

Tuple  

Format 

Table Size 

100 1k 10k 100k 1M 10M 

Map 0.2 1.1 9.3 92.1 920.0 9,131.2 

Array 0.2 0.4 2.8 27.3 268.4 2,654.8 

POJO 0.2 0.3 1.4 13.6 130.6 1,275.3 

Col-Store 0.2 0.3 1.4 13.2 126.8 1,237.0 

Col-Store Proj. 0.2 0.3 1.3 11.7 111.5 1,083.8 
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Discussion: Aggregation Query 

A couple of facts in the aggregation tests results are worth mentioning. First, using 

optimized data structures allowed the aggregation query to operate over windows of 

larger sizes, which otherwise would not be possible if employing the original non-

optimized tuple representations (e.g., it was not possible to run the aggregation query 

over a window of 100M events when they were represented as Maps or arrays of 

Objects because these implementations required more memory space than it was 

physically available).  

Second, the POJO format, although more efficient than Map and array representations, 

suffered severe drops in performance in two distinct points of the graph: from 10k to 

100k and from 1M on. The collected metrics reveal that the first drop was primarily 

caused by microarchitectural aspects (more specifically, an increase in L2 cache 

misses), while the second was due to an increased garbage collection activity (the 

percentage of time spent on GC jumped from 11% at 1M to 53% at 10M, and to 83% at 

100M). 

The results also indicate that the column-oriented storage model addressed partially or 

even totally the aforementioned issues. For instance, in contrast with the POJO format, 

the Col-Store organization did not suffer with garbage collection issues, resulting in no 

significant performance loss for large window sizes (i.e., 10M and 100M tuples; see 

Figure 5.8 (a)). Further, when keeping in memory only the attribute referenced by the 

query, the column-oriented model was also able to eliminate the microarchitectural 

issues. This was possible because for that particular implementation (i.e., Col-Store 

Proj.) the memory access pattern is essentially sequential – consuming events from the 

stream and inserting them into the window means sequentially traversing a primitive 

type array – which maximizes performance at the microarchitectural level and ensures a 

steady throughput over the most different window sizes. Indeed, this observation was 

corroborated experimentally, with the CPI metric remaining basically unaffected in all 
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tests of that specific implementation (ranged from 0.850 to 0.878 for windows of 1,000 

up to 100-million events). 

Discussion: Join Query 

Interestingly, for the join query the column-oriented storage model did not provide 

considerable performance gains with respect to the POJO representation
11

. This 

behavior can be attributed to the fact that the amount of memory consumed by the 

payload itself (i.e., tuples attributes) in this case is small compared to the overhead of 

inherent factors of the Java programming environment, such as object alignment, 

wrappers for primitive types, and especially the heavyweight nature of the HashMap 

class, the structure used for indexing the table in our tests. Since most of the space is 

consumed by the index, using a more concise representation for the tuples results in 

very little performance gains. Overall, the final performance of column-store 

implementation for the join query oscillated around +3% and -5% in comparison with 

the tests with POJO tuples. 

5.5 Improving Algorithms Efficiency at the CPU Level 

Nearly all results presented in previous section revealed that the throughput of both 

aggregation and join queries dropped significantly as their state size increased, even 

though the employed algorithms have a constant theoretical runtime complexity. 

Similarly to the tests with Esper, the throughput decrease at the application-level was 

strongly linked to performance degradation at the micro-architectural level. As shown in 

Figure 5.9, this correlation was observed not only when using conventional tuple 

                                                 

 

 

11 For the sake of clarity, the lines “Col-Store” and “Col-Store Proj” were omitted in Figure 5.8 (b) 

precisely because the results with these two implementations were very similar to the POJO case. 
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representation formats (i.e., Maps and Objects) but also for the column-oriented 

organization scheme. In this section we delve into the causes for this behavior and 

propose optimizations to improve queries scalability with respect to input size. 

      

 

Figure 5.9: Query throughput vs. cycles per instruction. 
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5.5.1 Aggregation Query 

As mentioned before, the algorithm for computing subtractable [42] aggregations such 

as AVG, SUM or COUNT over sliding windows consists essentially in updating some 

fixed set of state variables upon event arrival while maintaining the events of the 

window in main memory. As such, the algorithm has a O(N) space complexity but a 

theoretical O(1) time complexity. In practice, however, several factors can make the 

running time of the algorithm grow when the input size is increased. One of them is 

garbage collection: generally, the bigger the working set size and the higher the 

throughput, the more time will be spent on GCs. Besides, execution efficiency at the 

CPU tends to be hurt when more elements are referenced due to an increased 

probability of cache misses. This is particularly the case when events are represented as 

Objects, because there is no guarantee that consecutive elements in the window will be 

allocated contiguously in the heap by the JVM. Therefore, even though the algorithm 

logically traverses the window in a sequential way, the memory access pattern tends to 

be essentially random. One possible way of eliminating this undesirable effect is to 

employ the column-oriented storage model, which avoids the random walks through the 

heap by keeping attributes as arrays of primitive types. However, care should be taken if 

the number of attributes referenced in the query is large, as in this case, consuming an 

event from the stream and inserting it into the window will involve accessing several 

memory locations (one entry per attribute in different arrays).   

In order to overcome this issue, we propose a tuned algorithm that minimizes the 

performance penalty due to multiple inserts. The idea is to avoid references to distant 

memory locations by using a L2-resident temporary buffer for accommodating the 

incoming events. This temporary buffer consists in N aligned arrays (one per attribute) 

as in the original window, but with a capacity of only 100 events. Once these small 

arrays get full, the events are copied back to the window, one attribute at a time, so that 

they can be expired later. The algorithm is described in detail in Table 5.3. Figure 5.10 
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compares the performance of the proposed algorithm with the original column-oriented 

implementation. 

Table 5.3: Cache-aware algorithm for computing sliding-window aggregations. 

Input:    S: incoming event stream 

 K: the size of the L2-resident temporary buffer      

Output: R: stream of results 

 

for each event E in S do 

for each attribute Ai of event E do 

store Ai on the corresponding temporary location Ti 

compute aggregation (update aggregator state) 

insert aggregation result into output stream R 

if temporary buffer T is full then 

for each attribute Ai of event E do 

for each item Ij in temporary buffer Ti do 

copy Ij to the appropriate location in corresponding window Wi 

reset the temporary location T 

slide the window W in K positions 

The optimized algorithm provided gains in performance that ranged from 28 to 35 

percent when compared to the original column-store. The hardware metrics confirmed 

that it indeed exploits better the characteristics of the CPU: the CPI was almost half of 

the CPI of the original column-store and L2 cache miss rate was reduced to around 70% 

of what was originally measured. Evidently, this microarchitecture-aware algorithm is 

best-suited for medium-to-large windows, since for smaller sizes the working set of the 

original column-oriented implementation already fits in L2 cache. 
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Figure 5.10: Conventional column-store algorithm vs. cache-aware algorithm. 

5.5.2 Join Query 

In theory, the cost of a lookup on a table indexed with a hash index should be 

independent on the number of elements stored on it. We have seen, however, that in 

practice CPU operation – and in particular cache behavior – is considerably affected by 

working set size and performance tends to drop when larger tables are used (see Figure 

5.9). Indeed, further analysis of the hardware metrics collected during the tests of 

section 5.4 confirmed that the increase in CPI was due to less efficient memory access 

patterns. For example, as the table size was increased from 1,000 rows to 10-million 

rows, L2 cache miss per instruction metric went from 0.6% to 3.1% and TLB miss 

penalty metric jumped from 0.3% to 19.4%. Notice also that up to 10k rows, the table 

fits in the 12MB L2 cache, which explains the negligible performance drop from 1k to 

10k, and the significant degradation from that point on. 

To improve data locality of the join query, we implemented an adapted version of the 

grace hash join algorithm [55] used in conventional DBMSs. The idea is to reduce the 

number of times data is brought from main memory to cache by splitting the whole 

table into partitions and accessing them in bulks. The algorithm works as follows: 
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 When the table is being populated, the records are stored into partitions using a 

given partitioning function g (in our tests the table was split into 1,000 

partitions); 

 Incoming events are then processed in batches. They are buffered into a 

partitioned list until the batch is complete. (The partitioning function is the same 

as the one used for splitting the table, which ensures that matching tuples in the 

batch and the table will be kept in corresponding partitions). 

 Once the batch is complete, the corresponding partitions from event batch and 

table are loaded in pairs. The event partitions are then sequentially scanned, 

performing for every event a lookup on the corresponding table partition. 

Figure 5.11 shows test results with both the conventional hash join algorithm and the 

batch grace hash algorithm, for table sizes ranging from 10-million to 80-million rows. 

As it can be seen in the second graph, the batch algorithm indeed improved locality of 

data accesses, which in turn caused a reduction in average CPI. This resulted in 

performance gains that ranged from 11% to 44%, as illustrated in the uppermost graph. 

Notice that there are a couple of competing factors influencing the performance of the 

batch grace hash algorithm. For example, each table partition should ideally fit in L2 

cache in order to minimize the high penalties associated with memory accesses. 

Assuming that table size is application-specific and cannot be changed, the only way 

this can be achieved is by increasing the number of partitions in the table. Doing so, 

however, means that the number of partitions in the batch of events is also increased, 

thus reducing the number of events per partition. A reduced number of events per 

partition will probably hurt performance as a good fraction of the lookups in the table 

will incur in compulsive cache misses. For avoiding this to happen, batch size could be 

increased in the same proportion as the number of partitions, but obviously this is only 

feasible if there is availability of memory resources. 
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Figure 5.11: Conventional hash join vs. batch grace hash join. 

5.6 Multi-Query Scenario 

A natural question that might arise after analyzing the results of previous sections is 

whether similar improvements in performance would be observed once we move from a 

scenario with only one continuous query running at a time to a multi-query scenario. In 

this section we answer this question and present the results for a set of tests in which the 

proposed optimizations are validated by measuring system performance during the 
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execution of multiple simultaneous queries. More specifically, we tested three different 

situations: 

i. N instances of the same query are computed over a single event stream in a 

single thread; 

ii. N instances of the same query are computed over independent but identical 

event streams in a single thread; 

iii. N instances of the same query are computed over independent but identical 

event streams in N threads. 

For aggregation, we performed tests with 1 up to 16 simultaneous queries, with sliding 

windows of 10 million events each. For join queries, we tested 1 up to 8 simultaneous 

queries operating over N tables of 10 million records (there was no physical memory 

available to test with 16 queries). We then analyzed the evolution of throughput and 

hardware-level metrics as we progressively added more queries to the configuration. 

The output throughput of each setting is shown in Figure 5.12. 

Application-level and hardware-level metrics collected during tests indicate that the 

proposed optimizations are also effective in a multiquery scenario. For instance, the 

microachitecture-aware aggregation algorithm introduced in section 5.5.1 achieved 

superior performance than the conventional column-store in all multi-query tests. Also, 

the “Col-Store Proj”, which achieved the highest throughputs in the single aggregation 

query scenario due to improved microarchitectural performance, was once more the best 

performing implementation. 
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            (a) 

 
            (d) 

 
            (b) 

 
            (e) 

 
            (c) 

 
            (f) 

Figure 5.12: Optimizations in a multi-query scenario. 
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With respect to the join query, the speedup of the batch grace hash algorithm over the 

conventional hash algorithm oscillated from 1.02 to 1.64. On average, the optimized 

implementation achieved 22% more throughput than the conventional non-optimized 

one, a slightly better speedup than the one observed in the single query scenario (20%). 

Once more, hardware-level metrics followed the trend observed in the single query 

scenario (on average, the conventional hash algorithm had a CPI of 7.52 and L2 cache 

miss rate of 3.5% against a CPI of 3.46 and a L2 cache miss rate of 1.6% for the batch 

grace hash algorithm). 

A few words about the shape of the curves: on (a) the output throughput increased 

sligthly when more queries were added as a result of a reduction on the relative weight 

of event instantiation on the workload (event is created once but processed N times). 

This constrasts with the workload on (b) where event instantiation is replicated in the 

same proportion as queries, which explains the steady line (individual throughput of 

queries decreases, but total system throughput remains the same). Interestingly, the 

curves on (c) did not present a linear (or close to linear) growth that one would expect 

when increasing the amount of resources for a set of independent tasks (as happened on 

(f), for example). We found out that this happened because the CPI metric in these tests 

increased essentially in the same proportion as the number of queries. The reason for 

this behavior, however, is unclear to us since the other hardware metrics (i.e., cache 

miss rates, instruction fetch stalls, resource stalls, etc.) did not show any change that 

could justify this increase in CPI. Finally, it should be noticed that the drop on 

performance when jumping from 4 to 8 queries on (d) was caused by increased garbage 

collection activity (for 8 queries the system ran close to the maximum memory 

available). 
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5.7 Optimizations on the EP System  

We now examine how the proposed optimizations affect the performance of the EP 

engine Esper. Figure 5.13 below shows the maximum throughput and memory 

consumption for the aggregation query, using different representation formats.   

    

Figure 5.13: Optimizations on Esper (aggregation query). 

As in the tests with the EP prototype, the modified version of Esper using a column-

oriented storage model achieved higher throughputs and scaled better than the original 

implementations using Maps or POJOs as event representation. The column-oriented 

implementations also proved once more to be useful for reducing memory consumption 

for aggregation queries. Interestingly, the throughput difference between the “Col-

Store” and “Col-Store Proj.” implementations was significantly smaller in the tests with 

the Esper engine (around 2.7%) than the one observed with the prototype (2-fold 

increase). This is probably related to the fact that the maximum throughputs achieved 

by Esper were considerably lower than the obtained by the prototype. Thus, with other 

bottlenecks limiting maximum achievable throughput, the net effect of the 

optimizations is reduced. For the same reason, the optimizations specifically targeted at 

the microarchitectural level had only modest effects on Esper: both the cache-aware 

aggregation algorithm and the batch hash grace join algorithm resulted in an 

improvement of around 1 percent – situating them in-between the “Col-Store” and 
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“Col-Store Proj.” results, like in the tests with the prototype. These results indicate that 

the relative weight of the aggregation operation itself is small compared to the overall 

processing path of tuples on Esper. Thus, higher gains should be observed in scenarios 

with multiple queries (where their relative weight is higher) or if other bottlenecks of 

the engine are minimized or removed. 

5.8 Summary 

In this chapter we investigated ways to improve the efficiency of event processing 

systems. In particular, we demonstrated that the excessive memory consumption 

observed in our previous study is related to a bad choice of data structures used for 

maintenance of events payload. We also verified that microarchitectural aspects play a 

fundamental role on the performance degradation observed when query state increases. 

We then proposed, implemented, and evaluated changes in data organization and novel 

algorithms to improve resource utilization and execution speed of continuous queries. 

Specifically, we tested a column-oriented approach, where attributes of incoming events 

are stored independently, in aligned arrays of primitive types, rather than as regular 

Objects. This alternative organization scheme resulted in significant memory savings 

(up to 67 times less space required) and, in some cases, in considerable gains on query 

throughput (e.g., a 35-fold increase, for aggregation queries). We also proposed cache-

aware algorithms for aggregation and join operations in order to minimize the 

performance penalty suffered by queries with large state sizes. Experimental results 

revealed an improvement of up to 35% for aggregation queries and 44% for joins. 
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Chapter 6  
 

Performance Enhancements for 

EP Systems - Part II :  

When Memory is not Enough 

In the last chapter we proposed algorithms and evaluated different data organization 

schemes focused in improving the execution of continuous queries at the CPU-RAM 

level. In this chapter we move our focus to large-scale event-driven applications, whose 

state does not fit in main memory. We introduce SlideM, an optimal buffer management 

algorithm that handles memory shortages by sending portions of large sliding windows 

to disk. We also extend the proposed algorithm and devise a strategy to share 

computational resources when processing multiple queries over overlapping sliding 

windows. We implement both techniques in a real event processing platform and 

demonstrate that they scale for input rates as high as 300,000 events per second, while 

consuming small amounts of memory and putting minimal load on the I/O subsystem. 

6.1 Introduction 

Many event-based applications involve the computation of aggregates over sliding 

windows, which allow users to better measure the quality-level of their businesses and 

systems in real-time. For example, consider a call-center monitoring application where 
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information about customers’ calls is constantly analyzed by an event processing 

system. A typical query executing at the EP engine in such scenario is:  

Query 1: “Report, every second, the average time during which customers are waiting 

for service, across the last hour.” 

SELECT AVG(waitTime) 

FROM   calls [RANGE 1 HOUR SLIDE 1 SECOND] 

The query above, expressed using the CQL [9] language syntax, specifies an AVG 

aggregation query over a sliding window with two parameters: RANGE, which defines 

the span of the window (i.e., for how long tuples of the event stream “calls” are 

considered in query answer computation); and SLIDE, which defines when tuples are 

expired out of the window and controls the frequency in which updated results are 

produced. 

As discussed in section 2.1, EP systems use main memory for processing their 

continuous queries. Unfortunately, many queries have an unbounded space cost, which 

cannot be determined beforehand. For instance, the memory consumption of Query 1 

typically depends on the event arrival rate, which might vary significantly during query 

execution. In those circumstances, one would expect EP systems to be prepared to 

handle memory shortages. However, we have demonstrated in Chapter 4 that many 

commercial EP engines deal badly with this situation – some suffer from thrashing due 

to OS paging or excessive garbage collection activity while others simply crash with 

out-of-memory errors.  

In this chapter we address this problem for analytic workloads composed by a large 

number of continuous aggregation queries. We introduce SlideM, a buffer management 

algorithm that selectively offloads sliding windows state to secondary storage when 

main memory becomes insufficient. Our approach is based on the observation that for 

most aggregation queries the memory consumption and access pattern is dictated by the 
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sliding window, and that this access pattern can be exploited to achieve excellent 

performance while using small amounts of main memory.  

This work was in part motivated by the scalability problems faced by real event-based 

applications we had contact with, while working in cooperation with industrial partners. 

Most of these applications required computing several metrics (aggregates) over very 

large sliding windows, under stringent memory requirements. Throughout the rest of the 

chapter, we use one of such use-cases, the call-center monitoring application introduced 

earlier and described in detail in section 6.5.2, to illustrate the problem. The 

requirements of this application include the computation of about 150 KPIs over 24-

hour sliding windows, under an input rate of around 1,000 events per second, running 

on a machine with 2 gigabytes of main memory. Note that, given the moderate input 

rate, relative simplicity of the KPIs being computed (SUM, COUNT and AVG aggregates) 

and the large size of the window, the application tends to be memory-bound rather than 

CPU-bound. A simplistic calculation gives an idea on the dimension of the problem: 

considering that the average event size is 94 bytes, and that all tuples need to be 

maintained until they are expired out of the window, a single aggregation query will 

require at least: 1000 X 24 X 3600 X 94 bytes = 7.6 gigabytes (we show in Section 6.2 

that the commonly used technique of pre-aggregating data instead of storing tuples may 

require even more space). Our goal is to allow such memory-intensive applications to 

run smoothly on an EP engine whether they fit on available memory or not. 

6.1.1 Summary of Contributions 

In this chapter we make the following contributions: 

 We analyze current proposals for executing sliding-window aggregates and 

show that frequently-used techniques, designed to reduce memory consumption 

and create opportunity for resource sharing, in many cases do not produce the 

desired effects (Section 6.2). 
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 We propose SlideM, an optimal buffer management algorithm to deal with 

memory shortages during execution of sliding-window aggregation queries. We 

demonstrate that, contrary to common sense, storing windows data on disk can 

be appropriate even for applications with very high event arrival rates (Section 

6.3). 

 We build upon the proposed buffer management algorithm and develop a 

strategy (SSM) to share computational resources when processing multiple 

aggregation queries over overlapping sliding windows (Section 6.4). 

 We implement our proposed techniques in a real EP system [75] and validate 

their effectiveness through an extensive experimental evaluation (Section 6.5). 

6.2 Background: Sliding-Window Aggregates (SWA) 

Continuous queries in EP engines are computed over infinite event streams rather than 

bounded datasets. However, many operations cannot be executed over infinite inputs in 

bounded memory, and some blocking operations require seeing the entire input before 

producing any result (e.g., join) [40]. Traditionally, these two issues have been 

addressed by limiting the amount of data over which operations take place through the 

use of sliding windows. As discussed in section 4.2, a sliding window is a construct that 

retains only the most-recently arrived tuples of an event stream. The size of a sliding 

window determines the amount of data to be retained, and can be specified in number of 

tuples (count-based windows) or through an interval (time-based windows). Stale tuples 

are purged when the window slides, due to arrival of new event or time passing.  

A sliding-window aggregate (SWA) computes an aggregation function over a sliding 

window content and produces an updated result every time the window slides. For 

example, consider our motivating scenario where a stream of statistics continuously 

generates new information about call-center interactions with its customers. Query 1 



6.2. Background: Sliding-Window Aggregates (SWA) 93 

 

defines a sliding window that retains the data items that arrived in the last hour, 

computes the average “waiting time” from this set of elements, and reports a new result 

every second. A common variation of this query structure is to have a grouped 

aggregation, where the input stream is logically partitioned into sub-streams, based on a 

grouping key, and one aggregate is produced for each partition. For instance, a GROUP-

BY clause could be added to Query 1 in order to produce the average waiting time per 

customer region or per employee. 

Sliding-window aggregates are recognized as one of the fundamental operations of EP 

platforms and have been extensively studied in previous work [8] [12] [56] [59]. In the 

rest of this section we discuss how SWAs have been traditionally implemented. We 

present the two most frequently-used approaches, and compare how well they utilize 

memory resources in different workload scenarios. 

6.2.1 SWA Implementation 

Many important aggregates such as AVG, SUM, COUNT, MIN and MAX can be computed 

incrementally, in a single-pass over data items. This, in principle, allows an aggregation 

operator to discard events right after they have been processed. For instance, an AVG 

aggregate can be computed in O(1) space by simply keeping two variables – sum and 

count – and updating them upon event arrivals. However, when the aggregate is applied 

over a sliding window, tuples are eventually expired and this tuple removal has to be 

reflected into the query answer – in the AVG example, this means subtracting from the 

sum variable the value of the aggregated field in the expired tuples and decrementing 

the count variable by the number of expired tuples. Therefore, an SWA operator needs 

to maintain information about events that arrived previously so that the result can be 

updated properly when they eventually leave the window. 

Traditionally, two approaches have been used to keep this information about past events 

in an SWA. The first, simply keeps all tuples in the window until it is time to expire 

them [9]. Normally, the sliding window is an operator by itself, which forwards 
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incoming and expired tuples to subsequent, aggregate operators (Σ), as depicted in 

Figure 6.1.  

 

Figure 6.1: Query plan of a SWA using the single-window (1W) scheme. 

The second approach, first introduced in [59], and adopted in subsequent proposals 

(e.g., [56]) sub-aggregates the incoming stream using smaller windows and then 

aggregates these sub-aggregates into a window of the original size in order to produce 

the final query result (see Figure 6.2). Taking Query 1 as example, SUM and COUNT sub-

aggregates are computed over a 1-second window and then aggregated over a 1-hour 

window, thus producing the final result. The main advantage of this two-level 

aggregation (2LA) scheme over the former one-window (1W) approach is that the space 

cost of the query no longer depends on the input rate. However, as we are going to 

discuss next, it does not guarantee a bounded space cost, and for some workloads, it 

actually results in increased memory consumption. 
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Figure 6.2: Execution plan for SWA Query 1 using the 2LA scheme. 

6.2.2 Space Cost Analysis  

In this section we examine the space cost of the two widely-used SWA 

implementations. In particular, we demonstrate that either approach can incur in 

considerable memory costs, eventually bringing event processing applications to run out 

of memory. We also show that the 2LA technique, originally designed to reduce space 

cost of SWAs, might in many cases aggravate the problem. 

Two-Level Aggregation (2LA) 

The 2LA technique can be very useful for reducing space and computation cost of 

periodic sliding-window aggregates, particularly when input rates are high and/or the 

answer does not need to be updated often. However, there are a couple of issues that 
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limit its effectiveness in many important scenarios. Probably the most relevant of them 

is that its space cost grows linearly with the number of aggregates being computed. This 

is particularly critical since most monitoring applications compute not one, but several 

aggregates – either because different aggregation functions are needed, distinct sets of 

attributes of the input streams are aggregated, or different grouping criteria are used. 

For instance, the users of the call-center monitoring application are interested not only 

in the average waiting time, but also in the total waiting time, the average call time, and 

the average waiting time per region. With the 2LA scheme, each such aggregate results 

in a pair of operators, a tumbling-window aggregate (TWA) and a subsequent sliding 

window aggregate (SWA), as illustrated in Figure 6.2.  

Another issue is that aggregations with a GROUP-BY clause implemented using the 2LA 

scheme have their space and computation cost directly affected by the number of 

groups. This is because the TWA operator will produce as much aggregates as the 

number of distinct groups seen during the lifetime of its window. Each of these 

aggregates consumes space and computation in the subsequent SWA operator. 

Moreover, since the number of groups seen during the interval of the TWA window 

cannot be determined a priori, the 2LA scheme does not guarantee a bounded space cost 

for grouped sliding-window aggregates. Taking into account the aforementioned 

factors, the total space cost when computing a set of aggregates using the 2LA scheme is 

determined as follows
12

.  

Consider that N sliding-window aggregates, Σ1,…,ΣN, are to be computed – each 

representing a unique combination (Φi, Fi, Pi) of aggregation function (Φ), aggregated 

fields (F) and grouping criteria (P) – over a common sliding window with size W and 

                                                 

 

 

12 For the sake of brevity, we limit our discussion to time-based windows, but similar analysis applies to 

count-based windows. 
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update interval U. The space cost of each aggregate Σi is given by the sum of the costs 

of its inner tumbling-window and sliding-window aggregates: 

           (                   

The TWA operator does not keep tuples in a window and only consumes the space 

required to maintain an aggregation state s’ for each of the g groups seen during period 

U as shown below:  

              

The SWA operator, on the other hand, keeps both the tuples produced by TWA and a 

per-group aggregation state:  

         
 

 
            

In the formula above, 
 

 
 is the rate at which tuples arrive at SWA from TWA, tagg is the 

size of the tuples produced by TWA, G is the total number of groups seen during W, and 

s is the size of the aggregation state per-group. The final space cost of the 2LA scheme 

for A aggregates is then given by the formula below: 

                  
      

 
       

(6.1) 

Note that depending on the function being computed, the aggregation state sizes s and s’ 

can be constant or grow with the number of tuples in the corresponding window. As 

discussed elsewhere ([8] and [59]), subtractable aggregates like SUM, COUNT, AVG, and 

VARIANCE can be computed with constant storage, but distributive (e.g., MIN and MAX) 

and holistic (e.g., QUANTILE) functions require O(N) space. 

To Sub-Aggregate or not to Sub-Aggregate 

We now examine the space cost of the one-window approach. As it can be seen from 

Figure 6.1, the memory consumption for the 1W scheme corresponds to the sum of the 
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space required to maintain the tuples in the main sliding window, and the state of each 

aggregate Σi. The former is obtained by the product of the window size W, the input rate 

λ, and the tuple size t. The latter is given by the product of the number of aggregates N, 

the total number of groups G seen during W, and the state size of each aggregate 

operator s. Or algebraically: 

                    (6.2) 

We can see from formulas (6.1) and (6.2) that each approach is more sensitive to a 

given factor than the other. With the 1W implementation, the space cost will be 

substantial for large windows if the input rate is high. On the other hand, the 2LA 

scheme is immune to the input rate
13

, independently on how large the window is, but 

can be severely penalized if the workload has many aggregates or groups.  

As an example, we compare the memory consumption of the two different approaches 

using parameters taken from the call-center monitoring use-case. Let W=24 hours, 

U=10 seconds, λ=1000 events/sec, N=104 aggregates, G=10000 groups, g=1000 groups, 

s=s’=16 bytes
14

, t=94 bytes, and tagg=20bytes. The space cost of each scheme is in this 

case: 

                        
        

  
                 

                                        

As we can see, for this particular use case, performing a two-level aggregation in the 

end results in less efficient usage of memory resources than when computing the 

aggregates with a single window. More importantly, considering that in this application 

                                                 

 

 

13 Assuming that the number of groups g seen during period U is not affected by the input rate, which 

typically is not the case. 
14 Only subtractable aggregates are computed. We simplify discussion using a single value to represent 

the average state size of the different aggregation functions in the application. 
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the available memory is limited to less than 2GB, neither of the two approaches allows 

the workload to run entirely at RAM. In this situation, it is necessary to selectively spill 

part of the queries state to disk so that the application does not run out of memory. Note 

that in either scheme the queries space cost is largely dominated by the state of the 

sliding window(s). For this reason, we address the problem of insufficient memory 

resources during computation of SWAs with an algorithm to manage the content of 

sliding windows. 

6.3 The SlideM Buffer Management Algorithm 

In this section we introduce SlideM, an algorithm for managing the working set of 

sliding windows. The proposed algorithm exploits the fact that sliding-window 

operators are most of the time manipulating only a small fraction of their data set and 

are doing so in a very predictable pattern – once a tuple is stored on the window it is not 

going to be accessed by the sliding-window operator until it is time to expire it, which 

may take long (e.g., consider a 6-hour time-based window). 

SlideM is employed on a per-operator basis, that is, each window physical operator in 

the query plan is given a repository to hold its tuples. The actual location of tuples 

(either RAM or disk) is encapsulated by this repository, which internally implements a 

buffer management strategy based on SlideM. The repository includes a buffer pool 

(BP) for holding the memory-resident part of the window and a handle for accessing 

tuples at secondary media. Both the buffer pool and the data file at disk are divided in 

non-spanned blocks with a fixed block factor. These blocks are the unit of transfer 

between main memory and disks. 

The algorithm operates as illustrated in Figure 6.3: when the buffer pool gets full, it first 

sends to disk the block containing the most recently arrived tuples because these are the 

ones that are not going to be needed for the longest time. Similarly, when the oldest 

block at RAM is expired and hence the BP has space left once more, SlideM brings 
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back from disk the least recently written (LRW) block, because it contains the tuples 

which are going to be needed next among the ones currently at disk. This behavior 

ensures that memory will always contains the tuples that are going to be needed by the 

sliding-window operator in the shortest time. The algorithm operation is described in 

details in Figure 6.4 and Procedures 1 and 2. 

 

Figure 6.3: Overview of SlideM operation. 

Procedure 1 describes event arrivals: every time a new tuple needs to be stored in the 

window, the algorithm checks whether the block at the tail of the window still has space 

left. If so, it stores the tuple normally at the end of the block; otherwise it allocates a 

new block at the buffer pool (as shown in step 2 of Figure 6.4). If the buffer pool is full 

(3), the algorithm first spills the most recently written (MRW) block to disk (4) to free 

space for the new block that will be soon allocated. The MRW block is written at a free 

position on disk (9) or at the end of the data file, if there are no free blocks (5). 
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Procedure 1 add(Tuple t) 
 
  let recent_block: block at RAM holding recently arrived tuples 

 

1: if recent_block is full then 

2:    if buffer pool is full then     

3:       if there are free blocks at disk then 

4:          diskPos ← address of least recently released block 

5:       else 

6:          diskPos ← end_of_file 

7:       end if 

8:       WRITETODISK(diskPos, recent_block); 

9:    end if 

10:    recent_block ← ALLOCATENEWBLOCK(); 

11: end if 

12: recent_block.APPENDTUPLE(t); 

 

 

Procedure 2 expireOldest() 
  
 let ancient_block: block at RAM holding soon-to-expire tuples 

 

1: if ancient_block is empty then 

2:    buffer_Pool.REMOVE(ancient_block); 

3:    if there is data at disk then 

            // position at disk of least recently written block. 

4:       lrw ← GETLRWDISKBLOCKADDRESS(); 

5:       lrwDiskBlock ← READFROMDISK(lrw); 

6:       buffer_pool.ADD(lrwDiskBlock); 

7:    end if 

8:    ancient_block ← buffer_pool.GETLRWBLOCK();  

9: end if 

10: ancient_block.REMOVEOLDESTTUPLE(); 

 

Tuple expiration happens as in Procedure 2: when the repository receives a request to 

remove a tuple at the beginning of the window it checks whether the oldest block is now 

empty. If so, the block is removed from the buffer pool (as shown in step 6 of Figure 



102 Chapter 6. Performance Enhancements for EPS - Part II : When Memory is not Enough 

 

6.4); if there is data at disk, the LRW disk block is brought to the buffer pool, at the 

position of the just-dismissed block (7). Then, the tuple is finally removed from the 

(newly arrived to memory) ancient block. 

 

Figure 6.4: SlideM algorithm in the several phases of its execution. 

It should be clear that SlideM operation results in a very small memory consumption. In 

its strict sense, the algorithm needs only the equivalent to two blocks, one for holding 

the oldest part of the window (ancient block) and another for accommodating the newly 

arriving events (recent block). In fact, the performance of SlideM should not be affected 

by buffer pool size, unless BP is large enough to hold the entire working set of the 

window – if the window does not fit at RAM the algorithm will necessarily be 

swapping data to/from disk. More importantly, SlideM is optimal in terms of the amount 

of generated I/O as it always evicts to disk the block that is not going to be referenced 
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for the longest time (the optimality of clairvoyant page replacement policies has been 

first established at [14]; a short proof can be found at [78]).  

6.3.1 Discussion: I/O Load 

We now examine the I/O demand of the SlideM buffer management algorithm.  As 

explained before, SlideM issues disk read requests every time blocks at RAM are 

expired and performs disk write operations whenever a new block needs to be created at 

buffer pool but there is no space left. Thus, the number of I/O operations requested per 

second (IOPS) by SlideM for a single sliding window operator is given by: 

IOPS = Expired_Blocks/sec + New_Blocks/sec 

Assuming that events are fixed-size and there is a balance between event arrival and 

expiration rates – which is always true for count-based sliding windows and is also 

frequently the case across a period [τ, τ+WINDOW_RANGE] of a time-based sliding 

window – the following property holds: 

Expired_Blocks/sec = New_Blocks/sec 

From which we derive: 

IOPS = 2 New_Blocks/sec 

Now, the rate at which new blocks are produced is a function of the event arrival rate, λ, 

as follows: 

New_Blocks/sec = λ / block_factor 

Where block_factor represents the number of tuples stored inside a block. This relation 

gives us the final I/O demand: 

IOPS = 2 λ /  ⌊block_size / tuple_size⌋ (6.3) 

IObandwidth = IOPS block_size (6.4) 
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EXAMPLE: For an input rate of λ=1000 events/sec, 94-bytes tuples, as found in the call-

center use-case, and a block size of 64KB, the IO demand of SlideM will be (assuming 

the 1W scheme is used): 

IOPS = 2 1000 / ⌊64 1024 / 94⌋ = 2.9 iops 

IObandwidth = 2.9 64 / 1024 = 0.18 MB/sec 

Note that these numbers are far less than the theoretical transfer rate of modern hard 

drives (e.g., up to 204 MB/sec [81]), or the maximum measured disk bandwidth 

achieved under workload conditions similar to the modeled application (around 

25MB/sec). Therefore, SlideM is capable of handling much larger input rates than the 

ones mentioned so far or to process a much larger number of simultaneous sliding 

window operators before the I/O subsystem starts to become a bottleneck. Nevertheless, 

the scalability of the algorithm can still be greatly improved by sharing the content of 

overlapping windows as we discuss next. 

6.4 Sharing State of Overlapping Sliding Windows 

The previous section introduced SlideM, an efficient algorithm to manage the state of a 

single sliding window operator. Now we extend the discussion to a multi-query 

scenario, where multiple overlapping sliding windows are defined over a common event 

stream. The problem is of foremost importance as large-scale monitoring applications 

usually process several aggregation queries over different time granularities – e.g., 

average price of a stock in the last hour, 12 hours, last day and so on. In a naïve 

approach, each of these overlapping windows would be mapped into an operator inside 

the query execution plan. Obviously, this limits system scalability and performance 

since having one operator per window implies that tuples (or pointers to tuples) are 

stored multiple times at different places, thus wasting memory space. Using the 

algorithm of the last section only address partially this issue as the bottleneck is 

eventually moved from the memory system to the I/O subsystem. We then build upon 
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the SlideM algorithm and propose a shared execution scheme we call Shared SlideM 

(SSM) to improve the usage of computational resources when processing multiple 

overlapping sliding windows. 

6.4.1 Shared SlideM (SSM) 

We consider the problem of processing a set of N aggregation queries over N sliding 

windows of different sizes, defined over a common event stream S. For example, 

assume that three SWA queries are defined over a stream “calls” as follows: 

Q1: SELECT AVG(waitTime) 

FROM calls [RANGE 1 HOUR] 

Q2: SELECT AVG(waitTime) 

FROM calls [RANGE 6 HOURS] 

Q3: SELECT AVG(waitTime) 

FROM calls [RANGE 12 HOURS] 

A direct translation of this set of queries would result in an execution plan like the one 

shown in Figure 6.5, with aggregation (Σ) and sliding window (ω) operators being 

replicated for every query in the set. 

 

Figure 6.5: Unshared execution plan for three SWA queries. 
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This naïve approach simplifies query plan generation, but wastes memory during query 

execution, since the tuples stored in the smaller windows are also, by definition, present 

in the larger windows, and could be instead maintained in a single, shared, location. 

This is illustrated in Figure 6.6: the tuples that arrived in the interval [τnow - 1hour, τnow] 

are part of all three windows; similarly, tuples belonging to the interval [τnow - 6hours, 

τnow - 1hour] are shared by both the 6-hour and 12-hour windows. In the end, having 

one operator per window implies that roughly half of the tuples in the query set are 

stored more than once. 

 

Figure 6.6: Three overlapping sliding windows. 

Using the SlideM algorithm reduces the pressure over main memory since portions of 

the windows can be offloaded to disk, but does not solve the problem of unnecessary 

data redundancy. Moreover, assuming that the windows do not fit in main memory, 

each query will produce a pair of IO operations from time to time (read for the ancient 

part of the windows and write for the recent segment). Eventually, as the number of 

queries increases, the I/O subsystem will become saturated. 

To overcome these issues, we propose SSM, an adaptation of the SlideM algorithm in 

which multiple overlapping sliding windows are processed in a shared way. SSM works 

much like SlideM, in the sense that it sends parts of the window to disk when main 

memory is insufficient and brings data back from disk when it is time to expire them. 

However, contrary to SlideM, SSM manages a tuple repository that serves multiple logical 

window operators. We use the term ‘logical’ here because the several windows are in fact 
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implemented by a single operator (Ω) as illustrated in Figure 6.7. This allows sharing 

computation of tuple arrivals as we explain next. 

 

Figure 6.7: Shared execution plan for three SWAs. 

A SSM tuple repository shared by multiple overlapping windows looks like the structure 

shown in Figure 6.8. The recent block (MRW), which stores the newly-arriving tuples, is 

common to all windows, but each window has its own ancient block (LRW), containing 

the tuples which are about to expire. 

 

Figure 6.8: Shared SSM tuple repository serving multiple windows. 

As the recent block is shared by all windows in the set, incoming tuples are processed 

only once by the shared operator Ω. Tuple arrivals in SSM occur essentially in the same 

way as in SlideM (see Procedure 1), with the exception that the request for adding tuples 

in the repository is now shared by multiple windows and the block sent to disk when the 
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buffer pool is full is not necessarily the recent block (line 9 in Procedure 1) – a victim 

block must be selected instead. The major differences are, though, on the way tuple 

expirations are handled: first, tuples are not purged out of the repository unless the 

window which requested expiration is the largest one in the set. Intuitively, a tuple can 

only be discarded when it no longer belongs to any window, which happens when the 

largest window in the set requests its expiration – the same holds in a, coarser, block-

level granularity. Another difference is that SSM does not prefetch data from disk when 

a block at RAM gets empty as SlideM does. This is because the LRW block at disk is 

not necessarily the block which is going to be needed next by the set of windows – with 

multiple windows the disk access pattern is no longer strictly sequential. Since 

determining which block will be required next is a potentially expensive operation, SSM 

skips pre-fetching and only brings data from disk when a request to a non-memory-

resident block is issued. As a consequence, when the ancient block of a window gets 

empty it is no longer guaranteed that its “new” ancient block will be already at RAM, 

and as such it might be necessary to bring data from disk. Additionally, if the buffer 

pool is full, it will be also necessary to send a block to disk in order to open room for 

the upcoming block. The expiration process under the SSM scheme is described in detail 

in Procedure 3 (note that the procedure has a parameter to indicate which window the 

request comes from). 

6.4.2 Discussion: I/O Load and Eviction Policy 

The major advantage of SSM lies in a better use of memory space by avoiding that 

tuples are stored multiple times in the several window operators. This guarantees that no 

matter how many windows are defined over a given stream, the space cost will never 

exceed the size of the largest window in the set. As a consequence, SSM can handle a 

much greater number of queries than an unshared approach with the same amount of 

available memory before having to resort to secondary storage. 
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Procedure 3 expireOldestShared(window_rank) 
 
let ancient_block: block at RAM holding soon-to-expire tuples of the window passed as 

argument 

let valid_index: index of the oldest, non-expired tuple in the ancient block of the 

window passed as argument 

 

1: ancient_block ← GETANCIENTBLOCK(window_rank); 

2: valid_index ← GETVALIDINDEX(window_rank); 

3: if ancient_block has only expired tuples then 

4:    if window_rank is the largest then 

5:       buffer_pool.REMOVE(ancient_block); 

6:    end if 

7:    new_AB ← GETNEXT(window_rank, ancient_block); 

8:    if new_AB is at buffer pool then    

9:       new_AB_Addr ← GETBPBLOCKADDRESS(new_AB); 

10:       ancient_block ← buffer_pool.GET(new_AB_Addr);    

11:    else 

12:       new_AB_Addr ← GETDISKBLOCKADDRESS(new_AB); 

13:       ancient_block ← READFROMDISK(new_AB_Addr);  

14:       if buffer pool is full then 

15:          victim_block ← GETVICTIMBLOCK(); 

16:          buffer_pool.SWAP(victim_block, ancient_block); 

17:          WRITETODISK(new_AB_Addr, victim_block); 

18:       else 

19:          buffer_pool.ADD(ancient_block);          

20:       end if 

21:    end if 

22:    SETANCIENTBLOCK(window_rank, ancient_block); 

23:    valid_index ← 0; 

24: end if 

25: valid_index ← valid_index + 1; 

26: SETVALIDINDEX(window_rank, valid_index); 
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Now another important aspect is once the memory has been exhausted and access to 

disk is required, how much load SSM puts into the I/O subsystem. In order to determine 

that, consider that there are N windows of different sizes: W1 < W2 <…< WN. Let ρ be the 

likelihood of the next oldest block of a window being already at RAM after the current 

ancient block gets empty (see line 8 in Procedure 3)
15

. Assuming the buffer pool is full, 

the I/O pattern will be as follows: i) a write request will be issued every time a new 

recent block is created and ii) expiration of the ancient block of window Wi will incur, 

with likelihood (1-ρ): one read request, and, if i < N, one additional write request (for i= 

N, the ancient block is effectively removed from the buffer pool, and as such, there is no 

need to send data to disk to open room for the new ancient block). Algebraically: 

#IO = W + (1-ρ)  [(N-1) (R+W) + R] (6.5) 

Note that in the limit, for ρ=0, the amount of I/O generated when processing the query 

set using SSM will be exactly the same as in SlideM (one pair of read and write request 

per window): 

#IO = W + (N-1) (R+W) + R = N (R+W) 

This means that the shared execution mechanism will never perform more I/O than the 

unshared approach, and in the worst case the I/O pressure of the two schemes will be 

equivalent. For any ρ>0, SSM will reduce the amount of I/O, and the reduction will be 

as large as ρ. As discussed in previous section, the optimal eviction policy that 

maximizes ρ is the one that sends to disk the block that is not going to be needed for the 

longest time. For the single-window case, the choice is straightforward: the optimal 

victim block is always the most recently written block. This does not hold for multiple 

windows though, as the MRW block might be needed earlier by a small window than an 

intermediate block by larger windows. Instead, the optimal victim block in a multi-

                                                 

 

 

15 In fact, ρ represents the hit rate of the buffer pool.  
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window scenario can be determined by computing the distance – in number of blocks or 

time units – of the candidate blocks at the buffer pool to the ancient block of each 

window as follows: let dki be the distance of block k at BP to the ancient block of 

window wi. For any block k, refk denotes the next time the block will be referenced by 

any window, and corresponds to the minimum value in the set of distances: refk = 

min{dki | dki >0}. The victim block v is the one with the maximum value for refk among 

the B candidates at buffer pool:  v = (k | refk = max{ref1,…, refB}). 

This distance-based replacement policy creates clusters of blocks in the BP, 

immediately after the ancient block of each window as illustrated in Figure 6.9 below: 

 

Figure 6.9: Arrangement of blocks at the buffer pool with SSM replacement policy.   

Since each block is referenced only once by each window, the buffer pool hit rate of the 

scheme is given by the average percentage of blocks residing at memory of each 

segment: 

     
 

 
 (      

 

   

 (6.6) 

where Bi is the number of memory-resident blocks of each segment and Si is the 

corresponding  total number of blocks. 

Clearly, the more memory is available (larger Bi) and the more overlapping the windows 

are (smaller Si), the higher the buffer pool hit rate ρSSM will be.  
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6.5 Experimental Evaluation 

In this section we present an extensive experimental evaluation of the SlideM algorithm 

and the sharing scheme SSM. We have performed a wide variety of experiments with 

the objective of assessing:  

1. Effectiveness of SlideM in a real-world use-case: we demonstrate the ability of 

the proposed algorithm in addressing memory shortages in a real scenario and 

compare its performance against the conventional memory-only 

implementations discussed earlier in this chapter (Section 6.5.2). 

2. High-performance nature of SlideM: we examine SlideM performance under 

heavy load conditions. Results reveal that the algorithm was capable of handling 

very high input rates for multi-gigabyte windows while keeping latency under 

desirable levels (Section 6.5.3). 

3. Performance and scalability of SSM: we show that the sharing mechanism SSM 

scales significantly better than an unshared approach (Section 6.5.4). 

For the first set of experiments, we used queries and stream definitions taken from a real 

use-case. For the other two sets, we used synthetic queries and datasets. Tests setup and 

methodology are described next. 

6.5.1 Setup and Methodology 

We implemented our proposed techniques in Pulse [75], a Java-based stream processing 

engine from our industrial partner. Experiments were conducted on a server with two 

Intel Xeon E5420 2.50 GHz Quad-Core processors, 4 GB of RAM, and 4 SATA-300 

disks distributed in two RAID-0 arrays, running Windows Server 2008 x64 and Hotspot 

x64 JVM (configured with a 1 GB heap size). One RAID array was used to host the OS 

while the other was used to hold window data during tests.  

Measurements were taken as follows: 
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 A single Java application was responsible for generating, submitting and 

consuming tuples during the performance runs. Input data was submitted to the 

EP engine through local method calls using its API. 

 Tests consisted in a warm-up phase, during which the EP system was brought to 

a steady state, and a subsequent measurement interval (MI), when the 

performance of the system was measured. The duration of both warm-up and MI 

was set to the time necessary for traversing 1.5 times the window – e.g., an 

experiment with a 6-hour window ran for 18 hours (9h of warm-up plus 9h for 

MI).  

 We collected both application-level and system-level metrics. Average 

throughput was computed as the ratio between processed tuple count and 

elapsed time. Latency was computed through the nanoTime() method of the 

Java runtime, called immediately before and after sending tuples to the EP 

engine. Memory consumption was computed by the end of tests using standard 

Java SDK methods. CPU, disk, and process metrics were collected using the 

System Monitor tool of MS-Windows. 

All experiments with SlideM and SSM used a fixed block size (64 kilobytes). 
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6.5.2 Call-Center Use-Case Results 

Our first set of experiments mimics the workload conditions of a real event processing 

application, the call-center monitoring use-case we referred throughout this chapter. As 

mentioned earlier, the purpose of the application is to provide a real-time view of the 

operation of a large call-center chain. The company is spread over 20 geographical sites 

and has around 12,000 agents serving more than 3 million customer requests per day. A 

statistical module collects information about the calls and produces a stream of data 

items describing each step of the interactions between the call center and its customers. 

This data stream, whose schema is shown Figure 6.10, is then fed into the EP engine, 

where several KPIs are continuously computed. 

AgentInteractions (  

timestamp   long, 

instance   int, 

start   long, 

sessionId int, 

serviceId int, 

agentId int, 

interactionLegId int, 

alertingTime int, 

busyTime int, 

wrapUpTime    int, 

waitTime int, 

direction   int, 

mediaId int, 

helpTime int, 

agentReleased bool, 

mediaOutcome int, 

finalSegment bool, 

agentSite int, 

callSite int, 

availableTime int, 

availableTimeByService int, 

held int, 

help int 

)  

Figure 6.10: Schema of the input stream in the call-center monitoring application 
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Overall, the application workload consists in processing a number of aggregation 

queries like Query 2 below: 

Query 2: Compute call-center statistics for the last 24 hours 

SELECT   COUNT(*), 

         SUM(busyTime), 

         AVG(busyTime) 

FROM     calls [RANGE 24 HOURS SLIDE 10 SECONDS] 

GROUP BY serviceId 

On total, the application computes 144 aggregates, as the query above is applied to 6 

different fields (alertingTime, busyTime, wrapUpTime, waitTime, helpTime, and 

availableTime), using 8 distinct grouping criteria (instance, serviceId, agentId, mediaId, 

interactionLegId, agentSite, callSite, and direction). Overall, since the COUNT aggregate 

can be shared by the queries with different fields, the engine is able to process those 144 

aggregates using only 104 distinct SWA operators. 

In our experimental evaluation we filled the tuples of the stream AgentInteractions with 

synthetic data since real datasets were not available due to confidentiality issues. The 

generated data, however, respected the critical properties of the original input stream, 

such as the cardinality of the attributes used as grouping key in the queries and the 

distribution of these groups over time. We did not replicate eventual oscillations on 

tuple arrival rate though, keeping the injection rate fixed in 1,000 tuples per second. All 

the tests were performed in a virtual machine with 8 cores, 2GB of RAM, and running 

Window Server 2008, as found in the production environment. 

Results 

We then compare the performance of memory-only SWA implementations against 

application performance when paging sliding window content to disk through the 

SlideM algorithm. Both the 1W and the 2LA SWA approaches were tested in each case. 

Results are presented in Figure 6.11. 
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Memory-Only SlideM 

 

 

 

 

 

 

Figure 6.11: Performance of SlideM vs. memory-only implementations  

in real-world-based workload conditions (call-center use-case). 
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The three leftmost graphs show the performance of the two non-managed 

implementations, and illustrate what typically occurs with memory-constrained event 

processing applications in most Java-based EP engines: as the application working set 

approaches the available memory threshold, the system spends progressively more time 

with garbage collection, increasing the tuple processing latency and preventing the EP 

engine to cope with the data input rate. Since there is no data to be purged until the 

sliding window closes, the system eventually crashes with an out-of-memory error. In 

our tests this happened before 3 hours for the 1W implementation and before 1 hour 

when using the 2LA scheme, as signalized in Figure 6.11.  

The results above contrast with application behavior when the SlideM algorithm is 

employed to manage the state of the sliding windows, as illustrated in the right part of 

Figure 6.11. Using our proposed algorithm allowed the experiments to complete 

without errors, while keeping performance metrics in desirable levels. As expected, 

memory consumption and tuple processing latency was larger when using the 2LA 

scheme than with the 1W approach in this use-case. 

6.5.3 Performance of SlideM 

As discussed before, many event processing applications, like those found in the 

financial trading environment, require that EP systems be able to process a considerable 

volume of data within very short periods of time. Using disks in these cases might be 

inadequate if they are not able to cope with the very high arrival rates and stringent 

latency requirements. In this section we examine how SlideM performs in such critical 

scenarios. For that, we employ a simple microbenchmark, which consists in computing 

one or more aggregations over a stock market data stream. Each input tuple has 4 

attributes: Timestamp, Symbol, Price and Volume (about 28 bytes). We fill tuples by 

repeatedly cycling through a list of 100 stock symbols and assigning the tuple creation 

time to the timestamp field and random values to the other two. The workload consists 

in computing the volume-weighted average price (VWAP) of each stock over the last 



118 Chapter 6. Performance Enhancements for EPS - Part II : When Memory is not Enough 

 

hour, as shown in Query 3. Six runs of this experiment are performed, progressively 

scaling the injection rate from 50,000 up to 300,000 tuples per second. 

Query 3: Compute the VWAP of each stock over the last hour 

SELECT   Symbol, SUM(Volume*Price)/SUM(Volume) 

FROM     Stock [RANGE 1 HOUR] 

GROUP BY Symbol 

Note that the window definition in the query above does not include a SLIDE, which 

means that the result must be updated whenever a new tuple arrives at the Stock 

stream
16

. In all experiments, the buffer size was set to the minimum, 2 blocks (128KB), 

so that system performance is always measured under maximum I/O pressure. Results 

are shown in Table 6.1 

As we can see, the system was able to handle up to 300,000 tuples per second, with the 

CPU being the limiting factor at that point. Average processing latency was fairly low 

in all experiments (a few microseconds), and even the absolute maximum latency 

remained under acceptable levels as the load was increased. Disk utilization was also 

quite low in all runs, as it can be seen from the average disk queue length (ADQL) 

metric in Table 6.1. The reason is that the disk bandwidth required by SlideM at the 

maximum load of 300,000 tuples per second in this benchmark is only 16 MB/sec, 

which is still far from the maximum measured disk transfer rate, as discussed in section 

6.3.1. This moderate load posed by SlideM into the I/O subsystem was crucial to 

remove a bottleneck (memory) without creating a new one, thus allowing the EP engine 

to fully exploit the available CPU power.  

                                                 

 

 

16 An aggregation query without a SLIDE clause would probably make little sense if its result were to be 

output (i.e., used for monitoring purposes). In many cases, however, the result of an aggregation is used 

as input for further processing (e.g., pattern detection), and updated results must be produced as soon as 

new data is available. 
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Table 6.1: SlideM Performance, scaling injection rate 

Injection Rate 

(tuples/sec) 

Space Cost 

(GB) 

Avg. 

Latency 

(ms) 

Max. 

Latency 

(ms) 

% CPU ADQL 

50,000 4.7 0.009 2.9 5% 0.016 

100,000 9.4 0.012 3.6 13% 0.035 

150,000 14.1 0.007 3.9 23% 0.056 

200,000 18.7 0.012 16.7 37% 0.071 

250,000 23.5 0.008 14.4 69% 0.103 

300,000 28.2 0.008 18.9 100% 0.145 

 

 

6.5.4 Performance of SSM 

We now examine the performance of the shared execution scheme SSM and quantify to 

which extent it scales better than an unshared approach. Experiments here consist in 

processing N instances of Query 3, using either the original SlideM algorithm or its 

shared counterpart, SSM, under an input rate of 5,000 tuples per second. The number of 

queries in each experiment, N, took the following values: N = {2, 4, 8, 16, 32}. All N 

queries in the set have different window sizes, uniformly distributed in the interval 

[3600, 7200] seconds. Available memory was set to 512MB in all experiments (for the 

non-shared version, this amount was equally divided among the N buffer pools). We 

then measured for each algorithm the total space cost and the amount of pressure put 

onto the I/O subsystem. Results are depicted in Figure 6.12: 
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Figure 6.12: SlideM (unshared) vs. SSM (shared) in a multi-query scenario. 

As expected, the total space cost (memory and disk) of the unshared approach grows 

linearly with the number of windows while with the shared strategy the space cost 

remains constant (it is bounded to the size of the largest window). SSM was also 

significantly more I/O-efficient, issuing up to 22 times less disk requests than the 
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unshared implementation. The explanation for this remarkable difference in the number 

of I/O requests between the two algorithms is that SSM benefits from the fact that 

adding more queries to the set reduces the distance between the overlapping windows, 

thus increasing the hit rate of the buffer pool as expressed in formula (6.6). This way, 

while the I/O pressure of the unshared implementation consistently grows as more 

windows are used, with SSM it tends to stabilize since the increase on buffer hit rate 

compensates for the increased number of simultaneous queries. The result is a much 

better scalability as we can see in Figure 6.12. 

6.6 Related Work  

There has been considerable work on resource management in stream processing 

systems [12] [40] [69]. For dealing with memory shortages, two approaches have been 

widely employed. The first consists in providing approximate answers by shedding load 

[28] [85] [98], with research on this area focusing essentially on minimizing error of 

approximations. However, many event processing applications rely on exact answers to 

perform complex data analysis and support real-time decision making. In these cases, 

techniques such as load shedding or approximation are not applicable. The alternative, 

then, is to use secondary storage as an extension of main memory. Indeed, such disk-

based approach has been adopted in a number of proposals [21] [37] [61]. The focus of 

those works, though, is on processing of join queries. Liu et al [61] consider queries 

with multiple operators and propose strategies to choose which part of the operator 

states to spill during query execution in order to maximize the overall throughput. As 

discussed before, this is not an issue for sliding-window aggregates since the data 

access pattern can be accurately predicted. Farag and Hamad [37] propose a two-phase 

external-memory algorithm that joins the arriving tuples of one stream with the 

memory-resident data of the other streams, and postpones matching with the disk-

resident portion until the stream runs out-of-space or arrival of new tuples stalls. 

Chakraborty and Singh [21] propose an Exact Window Join algorithm that deals with 
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memory shortages by deferring the load during high workload, and processing the 

deferred load during the period of low workload. This strategy, however, results in high 

delays (> 5 seconds) even for moderate data input rates (450 tuples per second). To the 

best of our knowledge, our work is the first to address the problem of exact answer 

computation of aggregations in memory-limited, high-throughput, environments. 

Shared processing of sliding-window aggregates has been previously explored in a 

couple of proposals. Arasu and Widom [8] devise two algorithms for sharing execution 

of multiple sliding-window aggregates, where a common aggregation function is 

computed over different window sizes. These algorithms assume an aperiodic scenario, 

where results are produced on-demand (when user polls a query). Our proposed 

strategy, on the other hand, is for periodic aggregates and applies even when different 

aggregation functions are used. In [56] Krishnamurthy proposes a strategy for sharing 

the execution of multiple periodic sliding-window aggregates implemented under the 

2LA scheme. The strategy focuses on computation sharing, and consists in computing 

the partial aggregates with only one shared operator, rather than using one operator per 

query. It does not address, however, the space sharing problem introduced in this 

chapter, as the partial aggregates are still stored several times at the main window. 

6.7 Summary 

In this chapter we introduced techniques for overcoming the traditional memory 

limitations faced by event processing systems when processing aggregation queries over 

large sliding windows. We address the problem by proposing a novel buffer 

management algorithm, SlideM, which offloads sliding window state to disk during 

memory shortages. In order to further increase algorithm scalability, we also proposed 

SSM, a query sharing strategy that prevents explosion of space cost by storing the state 

of multiple overlapping sliding windows in a single, shared, repository. Experimental 

results demonstrated that the two techniques together provide significant performance 
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and scalability benefits. With SlideM the system was able to handle up to 300,000 

events per second for multi-gigabyte windows while consuming only 128 kilobytes of 

main memory. In a scenario with multiple simultaneous queries, SSM reduced space 

cost by a factor of up to 24, issuing up to 22 less disk requests. 
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Chapter 7  

Benchmarking EP Systems 

The last three chapters have focused on performance analysis and optimization of event 

processing platforms. In this chapter, we move our attentions to benchmarking. We start 

by examining the unique challenges present in the development of an event processing 

benchmark and outlining possible approaches for addressing them. We then propose the 

Pairs benchmark for EP systems, and briefly review its tools. We finish the chapter by 

carrying out a comparative performance study of two event processing engines using 

Pairs as test case.  

7.1 Introduction 

Since the dawn of computing there has always been great interest in evaluating and 

comparing different systems with respect to their performance. Historically, these 

activities have been carried out with the help of benchmarks, synthetic programs that 

simulate the operations performed in a real environment, while collecting a series of 

metrics that characterize the performance of the target system. A well designed 

benchmark brings a number of benefits to its domain of application. First and foremost, 

it allows objective comparisons between existing systems, which usually serves as a 

stimulus for technology providers to improve their offerings. In addition, benchmarks 

are often used to assess the effectiveness of optimizations proposed in academia and 
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industry. Finally, they serve as reference for end-users to estimate the expected 

performance of candidate platforms on their production environments, assisting them in 

tasks like system sizing and capacity planning. 

However, developing benchmarks for the event processing area is not a trivial task. In 

addition to the traditional challenges faced in any benchmarking initiative – e.g., need 

for representativeness, repeatability, resistance to benchmark specials, etc. – , the 

evaluation of EP systems imposes a number of other difficulties, such as the lack of 

standards and a very diversified application domain. In the remainder of this chapter we 

analyze in more details these challenges and discuss how we addressed them when 

developing the Pairs benchmark for EP systems. We introduce the benchmark dataset, 

workload, metrics, and execution rules, and then conduct a set of experiments involving 

two implementations of Pairs on real event processing engines. 

7.1.1 Summary of Contributions 

Overall, the main contributions of this chapter are: 

 We review the key goals and major challenges for the development of an event 

processing benchmark and indicate approaches to tackle them (section 7.2). 

 We propose the Pairs benchmark for EP systems (section 7.3) and introduce its 

toolkit (section 7.4). 

 We present the results of an experimental evaluation using implementations of 

the Pairs benchmark on two popular event processing platforms (section 7.5). 

7.2 Design Principles 

In order to be useful, a benchmark should meet a number of quality requirements [43]: 

first, it should be relevant, that is, there must be a target audience interested in the 

information provided by the benchmark and confident that it is representative of its 
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application domain. Second, it should be simple, i.e., its specification should be easily 

understood by the general audience. It should also be portable, that is, it must not be 

bound to any specific system or architecture. Finally, it should be scalable, i.e., it must 

not pose any limitation for testing larger systems or loads. As we are going to see next, 

among those four quality attributes, relevance and portability are particularly 

challenging when dealing with event processing platforms. 

7.2.1 Relevance 

In order to be relevant, a benchmark must be representative, that is, it must realistically 

simulate how the target systems are used in their application domain. Thus, the design 

of a representative benchmark generally involves identifying a core set of operations 

frequently performed by a number of real applications, deriving their respective 

proportions, and reproducing them on the benchmark workload. Representativeness is 

arguably the most important attribute of industry benchmarks – those produced by 

standardization bodies like SPEC [88] and TPC [100]. Very often the performance 

information provided by those benchmarks is a compelling factor in customers 

purchasing decision, and consequently vendors tend to invest considerable resources in 

optimizing their solutions to achieve better results. It is therefore essential that a 

benchmark exercises the right operations, so that the invested resources actually 

improve the users experience. However, designing a general-purpose representative 

event processing benchmark is particularly challenging because there has generally 

been little information about how EP systems have been used in the real world. In spite 

of the several successful projects in the most diverse application domains, and the 

recent efforts in documenting use-cases by the Event Processing Technical Society 

(EPTS) [35], detailed and more concrete characterizations are still rare.  

Another aspect of relevance is the applicability of a benchmark. Ideally, a benchmark 

should provide useful information for all users of its target technology. In the event 

processing context, the major obstacle for achieving this goal lies in the vast range of 
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domains where the technology has been employed, each with their own functional and 

performance requirements. For example, users in the capital markets are generally very 

concerned about processing latency, as short response times represent competitive 

advantage. Thus, sub-millisecond latencies are typically expected in the algorithmic 

trading domain. However, other applications, are generally not so latency-sensitive, and 

response times in the order of few milliseconds (e.g., fraud detection), seconds (e.g., 

traffic monitoring), or even minutes (e.g., supply-chain management) are acceptable. 

The several domains also have very different requirements in terms of volume of data, 

number of concurrent queries or query state size. These significant divergences makes 

virtually impossible for a single benchmark, with a single metric, to be representative of 

the entire spectrum of applications and provide all the information required by its 

heterogeneous target audience. The solution in this case might involve devising a set of 

smaller, domain-specific benchmarks, each with its own workload, dataset and metrics, 

or having a fully-customizable benchmark, like the SPECjms2007 [80], where users are 

able to configure and customize the workload accordingly to their requirements
17

. 

A final aspect of relevance is how challenging the workload of the benchmark is. Most 

EP systems are able to process very high volumes of data under certain workload 

conditions, as demonstrated in [86] and [103]. However, the test scenarios used in the 

studies so far are too simplistic, involving either a quite limited number of concurrent 

queries or very small queries states. Instead, a good benchmark should instigate vendors 

to implement state-of-the-art techniques that allow overcoming performance and 

scalability difficulties found by real users when implementing their applications.  

                                                 

 

 

17 Note that even for customizable benchmarks a canonical setup still needs to be defined, so that 

comparable results can be produced and made generally available. 
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7.2.2 Portability 

Portability has been a less concerning issue on many domains of benchmarking (e.g. 

databases, web servers), as industry standards like SQL and Java today facilitate the 

implementation of benchmarks on the most diverse platforms. This does not hold, 

however, in the event processing context, where the lack of standard approaches and 

query languages constitutes an important benchmark design challenge. As discussed in 

section 2.4, current EP engines have very different approaches for expressing event 

processing logic. Even when the systems follow the same design style, as it is the case 

with products like Esper, Streambase and Oracle, all using SQL-like query languages, 

often the syntax of one system is very different than that of another, and their features 

and capabilities also differ considerably. This not only makes hard to specify the 

benchmark in a precise and unambiguous way, but also complicates the implementation 

of the benchmark in different platforms.  

In the next section we discuss how we addressed those issues in the context of the Pairs 

benchmark. 

7.3 The Pairs Benchmark 

The goal of Pairs is to assess the ability of EP platforms in processing increasingly 

larger number of continuous queries and event arrival rates while providing quick 

answers – three quality attributes equally important for an event processing engine. For 

that, the benchmark was specifically designed to meet a number of important 

requirements, while addressing some challenges, as discussed in previous section: 

 Relevance: Pairs focus on an application domain where EP systems have been 

increasingly prevalent and for which performance is widely regarded as critical. 

 Representativeness/Comprehensiveness: the workload scenario of Pairs is 

inspired on a real event processing use-case. In addition, the benchmark 
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workload exercises a core set of operations that appear repeatedly in most event 

processing applications and are offered in a way or another by all EP systems. 

 Challenging: In order to excel on Pairs, EP systems will be required to have 

outstanding performance and scalability attributes, for instance by employing 

shared query processing techniques and gracefully adapting to changes. 

 Portability: The workload of Pairs is specified in terms of high-level operations 

rather than a fixed set of queries to which EP systems must strictly adhere to. 

This allows the benchmark to be implemented on the most diverse platforms, in 

spite of all their functional and structural differences.   

 Configurability: in order to minimize the effects of the vast range of EP 

application domains, the benchmark offers a great deal of customization, so that 

users can carry out experiments that resemble more closely their environments. 

7.3.1 Scenario 

The scenario for Pairs is an investment firm where a number of analysts interact with 

an enterprise trading system responsible for automating and optimizing the execution of 

orders in stock markets. Users of the system pose trading strategies which are 

continuously matched against live stock market data. The exercised trading strategies 

belong to a category broadly known in the financial domain as statistical arbitrage and 

consist in monitoring the prices of two historically correlated securities, looking for 

temporary digressions that indicate an opportunity to capitalize on market 

inefficiencies.  

The general structure of the benchmark scenario, including the main entities and the 

corresponding cardinalities, is depicted in Figure 7.1.  
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Figure 7.1: Overview of the Pairs benchmark scenario. 

Per each one of the M stock markets, a number of securities (100) are monitored by the 

system, from which half are known to be mutually correlated (thus 25 correlations). 

Each of the users of the system manages exactly five strategies. The number of users 

per market ranges from five up to fifty, depending on the benchmark scale factor. In the 

basis case (5 users), there will be 25 strategies, each defined over a unique pair of 

correlated securities. On the limit, each pair of correlated securities on a given stock 

market is monitored by ten strategies of different users, each with its own parameters. 

7.3.2 Input Data 

Input data for the Pairs benchmark consists in a stream of simulated stock market data 

with the following schema: 

StockTick ( 

    symbol           

    price                 

    size                              

    tickTS   

    TS           

) 

:  string, 

:  int, 

:  int, 

:  long, 

:  long 

Figure 7.2: Input of the Pairs benchmark. 
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Each incoming tuple represents a trade operation executed in the stock market, such that 

symbol identifies the security being traded, price indicates the value, in cents, of the 

transaction, size represents the number of shares negotiated, tickTS is the time, in 

milliseconds, at which the trade has been executed (i.e., simulation clock time) and TS 

is the actual time the record was sent to the system under test (i.e., wall clock time)
18

.  

In the standard configuration, two hours of simulated market data is generated by a data 

generator application and submitted afterwards by a driver application to the system 

under test (SUT). For the sake of simplicity and understandability of results, all 

securities in the fictional market have the same update frequency, so the symbol 

attribute is filled by repeatedly cycling through a list of pre-generated Strings. The price 

in a tick is filled with data following a geometric brownian motion, a stochastic process 

widely used to model stock price behavior [6][103]. The size attribute is filled with 

random numbers, multiples of 10, uniformly distributed in the interval [100, 1000]. The 

timestamp is filled with the time the tick was generated, accordingly to the arrival 

pattern described next. The raw size of each tick tuple is 48 bytes. 

Tick arrivals follow a Poisson process [6], with its λ parameter – which represents the 

average arrival rate – varying over time, resulting in an arrival pattern similar to the one 

illustrated in Figure 7.3. The reason for having a varying input rate is to simulate more 

realistically what happens in most real event processing applications, where new data 

arrives at different rates depending on the period of the day. Moreover, a varying input 

rate allows evaluating, with a single run, how the system responds to progressively 

larger loads. 

                                                 

 

 

18 The TS field is used for computing response time and must be added to the records by the benchmark 

test harness during the performance runs. 
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Figure 7.3: Input rate over time. 

7.3.3 Workload 

As mentioned earlier in this section, the benchmark workload consists in processing 

simultaneously a number of Pairs strategies. A Pairs strategy operates on the 

assumption that two securities are correlated and for this reason their prices tend to 

move together, as illustrated in Figure 7.4 (the chart shows the prices of two securities 

of a real stock exchange [19]). Eventually, though, oscillations in the market might 

make the prices to temporarily diverge. A Pairs strategy tries to identify these situations 

and react appropriately – for instance, by buying stocks from one security whose price 

remained stable when the price of the other security has risen – hoping that the prices 

will converge again soon. For that, the strategy makes use of a popular technical 

analysis tool called Bollinger Bands, computed over the ratio between the prices of the 

two securities (see Figure 7.5). By definition, the value of the ratio is high when it is 

above the upper band, and is low when it is below the lower band. A high ratio means 

that the first security is likely overvalued and/or the second security is probably 

undervalued. A low ratio means the opposite of that.  
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Figure 7.4: Price movement of two correlated securities. 

(source: BM&F Bovespa [19]) 

In general, all strategies in the benchmark perform the same set of operations, described 

below, but each with different parameters: 

1. Compute indicators: calculates the ratio and bands values that indicate the 

current state of correlation between the prices of the two monitored securities. 

2. Signal opportunities: detects when the ratio crosses one of the bands. 

3. Position: once a possible opportunity has been spotted, the system checks if it 

must change its current market position.  

4. Place orders: if a change in market positioning is indeed required, the system 

must emit a pair of SELL and BUY orders. This step involves identifying the 

appropriate values for the parameters of each order (i.e., size and price). 
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5. Manage risks: once a market position has been assumed, it might be necessary 

to leave it sometime afterwards if the securities prices keep drifting apart, 

countering the expected reversal trend. The system must signal anytime price 

digression exceeds a given threshold and then react appropriately by emitting 

stop-loss orders. 

Each of the steps above is discussed in further detail on next sections. Note that some of 

the operations will necessarily be replicated for each strategy running at the EP engine 

while for others sharing might be possible. 

 

Figure 7.5: Indicators produced by a Pairs strategy. 

Indicators Computation 

The computation of indicators starts by filtering the incoming stock market data, letting 

pass only ticks from the two securities that are part of the strategy. Then, the prices of 

each symbol are aggregated over a given time interval (e.g., the average price during the 

last 10 seconds). These aggregates are then correlated to produce a ratio. Once more, 
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the last values of this ratio are aggregated over a count-based window (e.g. the last five 

tuples), finally producing the final metrics: the last value of the ratio, a moving average 

of the ratio and upper and lower bands (which correspond to the moving average plus 

the standard deviation multiplied by a positive and negative factor respectively). A 

schematic representation for the computation of indicators is illustrated in Figure 7.6. 

 

Figure 7.6: Indicators computation. 

In order to ensure repeatability, the time window over which the two securities prices 

are initially aggregated is defined over the tickTS field of the input stream StockTick. In 

other words, the incoming ticks serve also as a clock in the benchmark simulation, so 

the concept of time passing is strictly associated with the arrival of new tuples. Note 

that by this definition, the aggregations must produce an updated result whenever the 

corresponding time window closes, which might happen even if the most recently 

arrived tick is not one of the two referenced in the strategy. Regarding the last sliding-
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window aggregate operations (i.e., LAST, AVG, and STDEV over the ratio values), results 

must be emitted only after its count-based window is full (i.e., if the window size is 10, 

the aggregation must output a result if and only if the window contains 10 elements). 

Opportunity Signaling 

The values produced in the previous step are used to determine possible opportunities to 

capitalize on market inefficiencies. This happens when the line formed by the values of 

the ratio crosses either the lower or the upper band (see Figure 7.5), a condition 

expressed algebraically as: 
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where ratio(τi), Upper(τi), and Lower(τi) correspond respectively to the values of the 

ratio between the securities, the upper band and the lower band at the period τi.  

Positioning 

Whether the detection of a possible opportunity triggers the emission of orders or not 

depends on the current state of the strategy. More specifically, a strategy can be in three 

distinct states, namely: flat, long-short, short-long. In the flat state the strategy does not 

own any security. All the strategies start and finish the performance run at the flat state. 

In the other two states, the strategy holds a market position for one of the securities. For 

convention, long-short means that the strategy holds stocks from the first security and 

short-long, indicates that it owns shares from the second security. Figure 7.7 below 

illustrates the transitions between the states and their corresponding triggers. 
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Figure 7.7: State machine of a Pairs strategy. 

Order Placement 

A transition from one state to another is completed only after the corresponding BUY and 

SELL orders have been emitted (if the strategy is currently on the FLAT state, only a BUY 

order for one of the securities is issued.). For that, the system must first determine the 

size and the price of each order.  The price of both SELL and BUY corresponds to the 

price of the last trade executed in the market, for the securities in question. In practice, 

this means that the system must keep track of the last tick received for every security 

being monitored.  

The size of the orders is determined by the amount of funds available for the strategy in 

question  (in case of a BUY order) and the number of stocks currently owned (in case of a 

SELL order), which in turn must be maintained and constantly updated by the system as 

new orders are issued. The entire process of determining the sizes and prices of the 

orders is described in Procedure 4. For simplicity, the orders are assumed to be always 

accepted by the market and executed immediately. 
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Procedure 4 placeOrder() 

  let toSell: the security to be sold 

  let toBuy: the security to be bought 

  let sellGain: amount of funds earned with the sell order  

  let available: total funds available 
 
1: sellPrice ← GETLASTPRICE(toSell); 

2: sellSize ← GETSHARES(toSell); 

3: sellGain ← sellSize   sellPrice; 

4: available = CURRENTBALANCE() + sellGain; 

5: buyPrice ← GETLASTPRICE(toBuy); 

6: buySize ←     ⌊          / (            ⌋; 
7: SELL(toSell, sellPrice, sellSize); 

8: BUY(toBuy, buyPrice, buySize); 

9: UPDATEBALANCE(available – buySize); 

Risk Management 

Another condition that might trigger a change in a strategy state is when the prices keep 

drifting apart, countering the expected trend of reversal. If a strategy is currently 

positioned (i.e., either in the long-short or short-long states), the system must signalize 

this increase on market anomaly to prevent further losses. Again, the condition is 

expressed in terms of the ratio indicator computed in the first step: 

     (      (              (             

 

  , when in the short-long state 

OR 

     (      (              (             

 

 , when in the long-short state 

Where perc represents a percentage threshold, ratio(τnow) represents the current value of 

the ratio metric, and ratio(τpositioning) corresponds to the value of the ratio metric at the 

moment when the strategy took its current position.  

When this situation is detected, the system must return to the flat state by emitting a 

SELL order for the currently owned security. 
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7.3.4 Output 

The output of the Pairs benchmark consists in two event streams: Indicator and 

MarketOrder, whose tuples have the following forms: 

Indicator (     MarketOrder  ( 

    strategy           

    ratio                 

    avgRatio            

    upperBand                

    lowerBand                  

    inputTickTS   

    inputTS           

) 

:  string, 

:  double, 

:  double, 

:  double, 

:  double, 

:  long, 

:  long 

        strategy           

    type                 

    symbol            

    price                

    size                  

    inputTickTS   

    inputTS           

) 

:  string, 

:  string, 

:  string, 

:  int, 

:  int, 

:  long, 

:  long 

Figure 7.8: Output of the Pairs benchmark. 

The first represents the output of the first step in the strategy execution process and is 

used in the benchmark scenario for visualization and auditing purposes (the stream 

serves to produce a graph like Figure 7.5 that allows users to better understand the 

decisions taken by the strategies). The second stream represents the orders that were 

issued as a result of the execution of each strategy. 

Tuples of the Indicator stream consist in a field strategy, indicating which strategy 

generated the result, and the fields ratio, avgRatio, upperBand and lowerBand, 

containing the values of the indicators described earlier. The MarketOrder stream 

consists in the fields strategy, again identifying the strategy that triggered the output, 

type, identifying the order as ‘BUY’ or ‘SELL’, and the fields symbol, price and size, 

which have the same meaning as in the input stream StockTick, and are computed as 

specified in the previous section. Besides the payload, tuples from both streams include 

two timestamps: inputTickTS and inputTS. Both are derived from the input event that 

triggered the emission of the output tuple and represent respectively the tick occurrence 

time (simulation clock) and its arrival time (wall clock). The former is used for 
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checking the correctness of the results while the latter is used for response time 

computation purposes. 

7.3.5 Scaling 

The workload of the Pairs benchmark is scaled by increasing the number of 

simultaneous strategies and, in some cases, the input rate. More specifically, the 

benchmark scale factor (SF) affects the number of users, and consequently the number 

of strategies executed in parallel as follows: 

 Number of users: 5   SF 

 Total number of strategies: 25   SF 

Additionally, per every increment of ten in the scale factor, the basis input rate is 

incremented by 5,000 and the number of symbols is increased by 100 (this is to avoid 

too many similar strategies over the same symbols and to allow to assess how the 

system scales with changes in input rate and cardinality). The effect is as if a whole new 

market were now being monitored by a new team of analysts. 

EXAMPLES:  

 For a scale factor of 8, there will be 40 users, each managing 5 strategies, on a total 

of 200 strategies running in parallel on the trading system. 

 For a scale factor of 15, there will be 75 users, each managing 5 strategies, on a total 

of 375 strategies running in parallel on the trading system, from which 250 are over 

the first set of 100 symbols and 125 are over the second set of 100 symbols. 

While unconventional, this two-dimensional scaling scheme reflects more accurately 

what happens in stock markets (where tick arrival rates are directly related to the 

number of securities). In addition, the possibility of scaling the workload only by 

increasing the number of strategies, while keeping input rate or cardinalities fixed, 

allows assessing directly aspects like query scalability and resource sharing. 
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7.3.6 Measures 

The performance of an event processing engine after a run of the Pairs benchmark is 

summarized using the pscore metric, which is defined as follows: 

       
    

            
 

In the formula above, the term load represents the amount of computational work per 

unit of time that the benchmark poses to the SUT, and is a function of both the input 

rate and the number of concurrent strategies running at the engine – these two are 

ultimately determined by the scale factor. The denominator of the metric is the 

measured 99
th

-percentile processing latency, in seconds, for the tuples of the output 

event stream MarketOrder
19

. 

The intent of the metric above is to facilitate comparison among the several systems and 

benchmark runs. When defining the metric, we tried to benefit systems that are able not 

only to process high volumes of events, but also react quickly and scale well with 

respect to the number of concurrent queries. Therefore, in order to excel in Pairs, an 

event processing system must be able to: 

i. Provide quick answers, and do that consistently; 

ii. Handle increasingly larger loads (be it due to the number of simultaneous 

queries, input rate, or both). 

Thus, a system A that does not reply as quickly as another B might have a lower score 

even if it manages to process more load. Also, if it replies quickly on average, but 

occasionally takes a long time to reply, it will also be penalized. Similarly, if a system 

                                                 

 

 

19 . A detailed explanation on how the term load is computed and the rationale behind the pscore metric is 

presented in Appendix A. 
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replies very quickly, but only manages to achieve low scales factors, its score will 

hardly be outstanding.  

Note that summarizing different performance aspects into a single number is always 

controversial, since different users have different perceptions on the value of each 

dimension depending on their requirements (e.g., for some, the best system is simply 

the one that replies faster, while for others it is the one that handles more load). 

Therefore, besides indicating the main metric, a Pairs report should include a number of 

other measures and information (e.g., number of strategies, input rate, average and 

maximum latency, latency histogram, etc.) to help users better understand the 

performance of the system under test and judge whether it fits their needs or not. 

7.3.7 Execution Rules 

Each run of Pairs starts with a short ramp-up phase (1 minute), during which the input 

rate progressively increases from zero up to its peak value
20

. The ramp-up is then 

followed by a 30-minute period where the input rates decreases until its basis value. 

After this period, the measurement interval (MI) of the benchmark run starts. The MI 

has a total duration of 1 hour, during which the input rate again increases to its peak 

value and then returns to its basis value. A final 30-minute period follows the MI, now 

with an increasing input rate. The several phases of the benchmark run are illustrated in 

Figure 7.9. 

As mentioned before, the intent of this variation on the input rate is to observe how the 

performance of the SUT evolves across different load levels. Event processing 

applications run continuously for hours or even days without interruption, and as such it 

                                                 

 

 

20 The purpose of the ramp-up is to give some time to the SUT for initializing its components and 

performing any JIT optimization on its code before handling the high event volumes. 
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is very likely that the conditions change during their execution. Gracefully responding 

to these load variations is therefore a fundamental quality that EP engines should 

possess. Furthermore, the shape of the event rate curve aims at simulating what 

typically happens in capital markets, where higher volumes of transactions are observed 

at market open and close, with sporadic peaks during the day. In the standard 

configuration of Pairs, the amplitude of the load variation is 1.5 (i.e. during peak, the 

input rate is 50% larger than the basis input rate). 

 

Figure 7.9: A Pairs benchmark run. 

Note that for performance measuring purposes only the measurement interval is 

considered, but the SUT is required to produce correct answers for all the events 

received during the entire run. 

 

7.3.8 Discussion: Is Pairs a good workload scenario? 

There are a number of reasons why we believe the Pairs benchmark represents a good 

test case for EP platforms. First, the workload exercises several common features that 

appear repeatedly in most event processing applications, including:  
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1. filtering out ticks from securities which are not of interest; 

2. aggregating events data over temporal and count-based windows; 

3. correlating price data for interrelated securities; 

4. detecting patterns from price movements; 

5. keeping track and updating strategies’ state upon the occurrence of certain 

events (position changes); 

6. performing lookups to determine orders price and size; 

7. processing reactive rules to determine which action must be taken when a 

opportunity or risk is spotted. 

In addition, different from most benchmarks, which have a fixed set of queries 

(e.g.,[10]), the number of queries in Pairs increases with the system size. This is in 

conformance with what happens in many real event processing applications and allows 

evaluating important aspects like query scalability and resource sharing.  

Other key benefits of Pairs are understandability and representativeness. The 

benchmark mimics a niche of application where event processing platforms have 

perhaps been most successful – capital markets. In fact, most products use simple 

financial use-cases to exemplify the usage of their features and languages in their 

documentation, so in principle it should be easy for anyone reasonably familiar with the 

area to understand Pairs. Moreover, Pairs is loosely based on a real use-case, and as 

such has a good chance to be representative of its domain of application. 

It is also worth noticing that the benchmark offers a certain degree of freedom by not 

firmly specifying a set of queries to which EP platforms must strictly adhere to. The 

systems are free to make the best use of any of their individual features as long as they 

produce the correct answers. This is useful for addressing the portability issues 

discussed in section 7.2. 
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Finally, Pairs allows a great deal of customization. Users can control load intensity by 

setting high-level workload parameters like input rate and number of simultaneous 

strategies, or by altering scenario characteristics such as number of securities and 

configuration of the strategies. While the results obtained from these “customized” runs 

cannot be compared to standard runs, the ability to customize the workload enables 

users to exercise the systems in a manner closer to their own real environment. 

7.4 Benchmark Implementation 

The Pairs benchmark should be implemented and executed as illustrated in Figure 7.10 

below: 

 

Figure 7.10: Benchmark execution flow. 
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1. The user specifies the workload parameters or, typically, uses the standard 

benchmark configuration; 

2. A data generator application generates the benchmark input data files, 

containing the tuples of the StockTick stream, and an auxiliary file to be used by 

the query generator; 

3. A query generator produces the benchmark workload and outputs it in a neutral 

representation (xml file); 

4. A vendor-specific translator parses the file generated by the query generator and 

translates it into the query language used by the SUT; 

5. The resulting queries/rules are loaded into the SUT; 

6. The user starts the performance run; 

7. A test harness (e.g., FINCoS framework) loads the generated data file(s) and 

submits the events on it to the SUT; 

8. The SUT delivers results to the test harness; 

9. A validator verifies the correctness of the answers produced by the SUT 

Note that the benchmark infrastructure above enables users to run tests with real stock 

market data, thus allowing them to evaluate candidate platforms in a way that resembles 

more closely their production environments. 

All the aforementioned tools are written in Java and require very little effort to be 

executed. The Data Generator, Query Generator and Validator applications are specific 

to the Pairs benchmark and are available for download at [16]. The FINCoS framework 

is benchmark-independent and can be downloaded from [38]. We describe each tool in 

further detail in Appendix B. 
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7.5 Experiments 

In this section we present the results of a preliminary study where we implement the 

Pairs benchmark on two widely-used event processing platforms – one open-source and 

the other a developer version of a commercial product
21

. We acknowledge that the 

employed implementations may not be optimal, as they represent our own view on how 

the benchmark functional requirements could be met using the products available 

features. We recall, though, that the main goal of this section is to validate the Pairs 

benchmark, so we encourage researchers and vendors to create alternative 

implementations and disclose their numbers. 

7.5.1 Setup and Methodolgy 

All the tests were performed on a single server with two Intel Xeon E5420 (12M Cache, 

2.50 GHz, 1333 MHz FSB) Quad-Core processors (a total of 8 cores), 16 GB of RAM, 

and 4 SATA-300 disks, running Windows 2008 x64 Datacenter Edition, SP2. 

Tests were conducted as indicated in section 7.4. Benchmark input data was submitted 

using the FINCoS framework. Likewise, the results produced by the target EP engines 

were received, processed and stored on disk by the framework. Latency measures were 

obtained by processing the sink output log file. Those observations were then saved into 

a database, from which we computed latency metrics (average, minimum, maximum, 

and 99
th

-percentile). System-level metrics like CPU utilization and memory 

consumption were collected using the System Monitor tool of MS-Windows 

                                                 

 

 

21 The products are kept anonymous due to licensing restrictions. Throughout the rest of this section we 

refer to them as engines “X” and “Y”. 
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7.5.2 Results 

Table 7.1 below shows the 99
th

-percentile latency and the corresponding pscore achieved 

by engines X and Y for scale factors ranging from 1 to 5. 

Table 7.1: Results of the tests with Pairs on two event processing platforms. 

   Metric/Engine 

Scale 

Input 

Rate
†
 No. of 

99th-percentile latency (ms) pscore 

Factor (evts/sec) Strategies X Y X Y 

1 5,000 25 63 22 47.62 136.36 

2 5,000 50 175 24 34.29 250.00 

3 5,000 75 203 - 44.33 - 

4 5,000 100 351 - 34.19 - 

5 5,000 125 91,862 - 0.16 - 

† 
Basis input rate. 

As it can be seen, engine Y performed considerably better than X, with its best result 

(250, for SF=2) outperforming the best result obtained by X (~48, for SF=1) by a factor 

of more than five. Interestingly, while engine Y had a better performance during tests, it 

was unable to execute the benchmark for scale factors above 2 – the system threw an 

exception during load phase (step 5 shown in Figure 7.10) indicating that the parsed 

application exceeded an limit of the Java environment (64KB method size). In contrast, 

engine X was able to run the benchmark without problems up to a scale factor of 4 – for 

SF=5 the system was most of the time overloaded, resulting in prohibitively high 

processing latencies, as it can be seen in Table 7.1.  

7.5.3 Analysis 

Besides allowing objective comparisons among different event processing platforms, 

another goal of Pairs is to serve as a relevant test case for analyzing the performance of 

the engines. In this section we carry out one such analysis taking engine X as example. 
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The results of our experimental evaluation revealed some interesting aspects about the 

performance of engine X. First, the CPU utilization across the tests with different scale 

factors presented an erratic behavior when compared to the expected load put into the 

system. As shown in Figure 7.11, the increase on CPU utilization was always very 

different from the linear growth expected for that particular range (i.e., from SF=1 to 

SF=5). The sub-linear increase from SF=1 up to SF=3 suggested at first that the engine 

were perhaps benefitting from the similarities among the running strategies via some 

computation sharing strategy. However, we could not confirm that hypothesis in the 

subsequent experiments, with scale factors of 4 and 5, since CPU utilization climbed at 

a much higher rate than expected at those points. 

 

Figure 7.11: CPU utilization vs. benchmark load. 

An odd CPU utilization pattern could also be observed in the course of a single 

benchmark run as illustrated in Figure 7.12. Not only was CPU utilization significantly 

higher in the second half of the experiment but it also more than doubled when injection 

rate was increased by a factor of only 1.5. The cause for the higher utilization at the 
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second half of the test seems to be on an increased garbage collection activity, probably 

due to larger query state sizes. It is not clear for us, however, why the CPU utilization 

increased at a higher proportion than the input rate – as a matter of fact, none of the two 

aforementioned patterns were observed in the tests with engine Y.  

 

Figure 7.12: CPU utilization over time for engine X (SF=4). 

Another interesting aspect to observe is how application performance, in particular, 

processing latency, is affected by the system state. Figure 7.13 shows the latency over 

time for the tests with scale factors 4 and 5. In the first graph, it is possible to clearly see 

some peaks in processing latency at the second half of the measurement interval, 

coinciding with the period of increased CPU utilization shown in Figure 7.12. The 

second graph illustrates the overload condition in which engine X executed during the 

experiments with a scale factor of 5, as mentioned in the previous section. As it can be 

seen, processing latency remained prohibitively high during almost half of the 

measurement interval, reaching a maximum of 92 seconds approximately 12 minutes 
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after the injection rate hit its peak. The system would then return to its normal latency 

levels only 10 minutes after that. 

 

 

Figure 7.13: Processing latency over time, engine X. 
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7.6 Related Work 

The performance of EP systems has been subject of much attention and debate. 

However, even though several numbers have been disclosed over the last years (e.g., 

[27], [33], [86], and [103]), there was, up to now, no obvious way to quickly and 

objectively compare the performance of the different offerings. To the best of our 

knowledge, the Pairs benchmark represents the first comprehensive work specifically 

targeted at addressing this gap. There have been, nonetheless, other benchmark 

proposals in related areas as well as ongoing initiatives in the event processing context 

itself.  

Berndtsson et al [15] present the BEAST benchmark for active databases systems. The 

benchmark is designed to stress the performance-critical components of active database 

systems, including event detection, rule management, and rule execution. While 

BEAST was designed for active databases, it provides valuable insights on which 

aspects to focus on when assessing reactive behavior, and as such represents an 

important reference for evaluation of EP systems, particularly with respect to processing 

of event pattern rules. 

In the context of data stream management systems, two research benchmarks have been 

proposed. The Linear Road benchmark [10] simulates a tolling system for a 

metropolitan area, where tolls for a given expressway are calculated based on 

congestion and accident proximity. Input data consists in a stream of position reports 

coming from simulated vehicles, over which a number of continuous and historical 

queries must be computed. The metric of the benchmark, L-Rating, represents the 

amount of load (measured in number of expressways) that a target system is able to 

handle while still meeting the established response time and correctness constraints.  

Another benchmark for DSMS’s, NEXMark [71], out of the Portland State University, 

simulates an online auction system where new items are continuously submitted for 

auction and new bids are continuously arriving. In spite of having been a work-in-
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progress already for many years, NEXMark is an interesting complement to the more 

mature Linear Road benchmark, in that it provides more information about the systems 

under tests. Each of its eight queries was designed to test a specific operation provided 

by data stream engines (e.g. selection, aggregation, joins, windowing), which facilitates 

end-users to understand where exactly a given system is better than the other, and helps 

vendors to focus their optimization efforts. 

The two aforementioned benchmarks are particularly relevant references as many event 

processing platforms of today have their roots on early academic projects in the data 

stream processing area. There are, however, a couple of issues that limit their adoption 

in the event processing context. First, being benchmarks designed for data stream 

management systems, they do not encompass the entire spectrum of functionality 

required by modern event processing applications – their workloads focus mainly on 

SQL-like operations, like selections, aggregations and joins, while touching very 

superficially (Linear Road) or not at all (NEXMark) features like event pattern detection 

and reactive behavior. In addition, the benchmarks do not measure important 

capabilities of EP engines, like the ability to adapt to changes in load conditions or 

share execution plans between similar queries. 

Focusing on the communication side of event-driven applications, Sachs et al [80] 

introduce the SPECjms2007 benchmark for evaluating the performance and scalability 

of JMS-based messaging systems. SPECjms2007 allows measuring the performance of 

messaging systems in two distinct ways, using what has been called topologies. The 

horizontal topology evaluates the ability of messaging middlewares in handling 

increasing number of destinations (queues and topics), while keeping a fixed message 

traffic per location. The vertical topology, on the other hand, evaluates their ability in 

handling increasing message traffic while keeping fixed the number of destinations. 

The Securities Technology Analysis Center (STAC) [82] is an industry consortium that 

focuses on the creation of standard methods for measuring the performance of trading 

systems. The benchmarks produced by the consortium cover a variety of technologies 
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used in capital markets, from messaging middlewares through tick databases. For this 

reason, STAC divides its benchmarks into three main categories: market data (STAC-M 

benchmarks), analytics (STAC-A), and execution (STAC-E). Each of these domains is 

further divided, based on the way financial firms buy products today. Of particular 

interest for the event processing community is the STAC-A1 benchmark, which, 

according to STAC, has the purpose of testing solutions that take inbound events from 

one or more sources, apply specific algorithms to those events, and generate outbound 

events [87]. The benchmark, though, is not available to the general public and has been 

in development phase for several years, with no status updates since 2008. 

7.7 Summary 

In this chapter we introduced Pairs, a benchmark for evaluating and comparing the 

performance and scalability of event processing platforms. We started by reviewing the 

major challenges involved in the development of a benchmark for EP systems. We have 

seen that the diversity of products, lack of standards, and wide spectrum of application 

domains make it difficult to meet essential benchmark quality attributes, like relevance 

and portability. Pairs addresses the lack of common approaches and languages by not 

strictly specifying a set of queries, but rather the operations that must be performed – 

which in the end is what users are concerned with. This not only offers freedom for the 

products to implement the benchmark using their unique approaches, languages, and 

features, but also stimulates creative thinking on finding more efficient ways to solve 

the posed problems. The benchmark is also relevant, in that it exercises a set of 

operations that are present in almost all event processing applications. In addition, since 

it is based on a real use-case, chances are that its workload will mimic well how EP 

systems are used in the real-world. It is still hard to foresee, though, how general the 

benchmark is, and whether the information it provides will be valuable in other 

application domains. We believe, however, that the benchmark configurability 

properties might help to minimize this issue. 
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Having presented the benchmark specification, we then described how Pairs should be 

implemented on EP platforms and introduced its core tools. The benchmark toolkit is 

publicly available for download and includes a data generator, a query generator, and 

an answer validation tool. The benchmark also makes use of the FINCoS framework, as 

test harness, and a set of vendor-specific translators. 

After implementing Pairs on two popular event processing platforms, we concluded this 

chapter by presenting the results of a comparative performance study. In our 

experiments, one of the engines managed to reach a maximum scale factor of 4, with 

processing latencies ranging from 1 up to 446 milliseconds (average: 49 ms; 99
th

-perc.: 

351 ms), obtaining a pscore of 34.19 – the best result though was obtained for a scale 

factor of 1 (pscore = 47.62), due to considerably lower latencies (99
th

-perc.: 63 ms). The 

second engine achieved a significantly higher pscore: 250, with a 99
th

-perc latency of 24 

milliseconds, running at a scale factor of 2. However, it was unable to run the 

benchmark for scale factors above that. The tests also revealed some interesting facts 

about the performance of the first engine, like a regular increase of response time when 

faced with larger load levels and an odd variation on CPU utilization across the 

measurement interval   
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Chapter 8  

Conclusions 

Recent years have witnessed the consolidation of the event processing paradigm as an 

important research field and industrial trend. A number of projects were initiated at 

academic institutions, while tens of specialized startups appeared in industry, each 

offering their own event processing solution. EP systems then started to experiment 

increased adoption on the most diverse application domains, such as financial services, 

fraud detection, infrastructure management, business activity monitoring, and many 

others.  

However, in spite of being often used in many mission-critical scenarios and having 

timeliness as one of their central compelling traits, until recently very little was known 

about the performance of event processing platforms. Only a few neutral scientific 

studies had been published, and there was a lack of common workloads and tools that 

allowed a unified approach for evaluating EP systems under comparable conditions. 

This dissertation advanced the state-of-the-art by expanding the understanding on the 

performance of EP platforms via a series of experimental evaluations, and also by 

providing the instruments for others to conduct further studies and disclose more 

findings and results. Furthermore, a number of techniques aimed at improving the 

performance and scalability of event processing systems were proposed. 
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Specifically, in Chapter 3 we introduced FINCoS, a set of benchmarking tools for load 

generation and performance measuring of EP platforms. We then conducted an 

extensive performance study of three distinct systems in Chapter 4. Our experiments 

revealed some recurrent performance issues, which we addressed in the following 

chapters. In Chapter 5 we evaluated alternative data organization schemes (e.g., 

column-oriented) and proposed cache-aware algorithms to reduce memory consumption 

and improve the execution of continuous queries at the CPU. In Chapter 6 we addressed 

the problem of memory-constrained applications by introducing the SlideM buffer 

management algorithm and the SSM shared processing strategy. Finally, in Chapter 7 

we described the Pairs benchmark for EP systems, and presented results for two engine 

implementations.  

8.1 Contributions 

In general, this dissertation provides the following practical contributions: 

 FINCoS, a highly-configurable, scalable, and portable framework that the 

community can use to more rapidly evaluate the performance of event 

processing platforms, as well as to devise and experiment novel benchmarks. 

 The Pairs benchmark, a comprehensive workload scenario and set of 

accompanying tools, which can be used to objectively assess and compare the 

performance of different EP systems. 

 SlideM, an algorithm for managing the contents of very large sliding windows in 

memory-constrained scenarios, and its shared counterpart SSM, for processing 

multiple overlapping windows in a resource-efficient way. 

In addition, this work offers a number of valuable insights regarding the performance of 

event processing platforms: 
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 In Chapter 4 we have verified that event processing platforms are indeed capable 

of handling very high input rates (up to one-million events per second for simple 

filtering queries), as emphasized in previous studies disclosed by vendors. 

However, we also noted that these figures vary dramatically depending on 

workload parameters, like window size and policy, tuple sizes, predicate 

selectivity, and cardinalities, and therefore much lower throughputs are typically 

achieved in practice. Results also exposed a poor utilization of memory 

resources by two of the three tested engines, which ended up causing trashing 

and out-of-memory failures in some tests. Finally, our study also revealed that 

the tested engines do not implement well-known optimization techniques such 

as paning for sliding-window aggregate operations or resource sharing when 

processing multiple similar queries. 

 In Chapter 5, we have examined the impact of different data structures on the 

performance of two common event processing operations: moving aggregations 

over windowed event streams, and join of event streams with historic data. We 

have shown that a column-oriented organization scheme can outperform other 

widespread representations such as plain Java Objects, Object-arrays and key-

value maps by considerable margins (e.g., increases on query throughput by 

factors of up to 20, 34, and 272, respectively, in our aggregation tests) and also 

reduce memory consumption considerably (up to 67 times less space required). 

We consider that these findings are valuable for both users implementing their 

event processing applications, which are now able to choose more wisely their 

event representation format, and vendors, which can enhance their products, for 

instance, by incorporating concepts from the column-oriented approach. In the 

same chapter, we have also identified a strong link between microarchitectural 

aspects and the performance degradation observed when query state grows. We 

have then proposed novel algorithms to minimize the losses caused by increased 

cache misses. The results were promising, with gains on query throughput 

ranging from 30% to 44% on our prototype.  
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 In Chapter 6 we have demonstrated that for some workloads it is possible to 

make use of disks (thus saving memory resources), even under very high event 

arrival rates (hundreds of thousands of events per second), without incurring in 

severe performance penalties (e.g., processing latency was in the worst case 

below 20 milliseconds). 

8.2 Future Work 

This dissertation covered several areas of the broad topic of event processing systems 

performance, including measurement tools, evaluation methodologies, experimental 

studies, and optimization techniques. Each of these areas constitutes a wide research 

space by itself and presents many interesting avenues for future work. Related to this 

particular work we can cite:  

 Measurement Tools: the graphical nature of the FINCoS framework greatly 

facilitates the definition and monitoring of experiments, but might become 

troublesome for large experiment sets. Thus, we plan to extend the framework to 

support automated execution of performance runs. 

 Performance Analysis and Optimization: we obtained promising results with the 

microarchitectural optimizations presented in Chapter 5, thus it would be 

interesting to delve more deeply into the topic and verify if EP systems in 

general can benefit from them in more diversified conditions. Likewise, the 

techniques proposed in Chapter 6 were designed to exploit the access pattern of 

sliding window operators during event arrivals/expirations, which allows 

excellent performance for aggregation queries. A natural direction for future 

work would then be to investigate state-spilling mechanisms that work well for a 

more diversified gamma of operations (e.g., joins or pattern matching). Also, the 

results presented in that chapter were obtained with conventional hard drives. It 

shall be interesting to observe the behavior of the proposed techniques in 
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conjunction with faster storage technologies such as solid-state disks (SSDs) and 

phase-change memories (PCMs). 

 Benchmarking: another interesting avenue for future work is to conduct more 

studies using the Pairs benchmark on additional platforms and under more 

varied (non-standard) conditions. Also, given the wide range of application 

domains where EP systems have been employed and the strong tendency for 

specialization that has been observed recently, we believe that Pairs will 

unlikely solve completely the lack of benchmarks. We consider that this 

diversity of domains will eventually require the development of additional 

benchmarks and hope that our work serves as inspiration for future research in 

this area. 
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Appendix A  

The pscore Metric 

In this section we discuss the rationale behind the metric of the Pairs benchmark, 

      , whose purpose is to facilitate comparison among different benchmark runs and 

systems. As mentioned earlier, the metric takes into consideration both the amount of 

load posed by the benchmark workload and the speed of the responses produced by the 

SUT. The metric has been chosen as to be fair. More specifically, it had to present two 

properties: 

i. If two systems manage to handle the same load (i.e., same scale factor), the ratio 

between their scores must be exactly the ratio between their processing latency; 

ii. If two systems present the same processing latency, the ratio between their 

scores must be exactly the ratio between the load they handled. 

Note, however, that due to the way the benchmark scales, the load to which the SUT is 

submitted does not increase linearly with the scale factor. For instance, going from a 

scale factor of 9 to 10 has the only effect of adding 25 more strategies over the same set 

of symbols. On the other hand, going from a scale factor of 10 to 11 not only adds 25 

more strategies, and over a whole new set of symbols, but also increases the benchmark 

basis input rate by 5,000 events per second. Table A.1 below summarizes the 

differences in the workload parameters for the aforementioned scale factors: 
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Table A.1: Workload parameters for different scale factors 

 Scale Factor 

Parameters 9 10 11 

# Markets 1 1 2 

# Symbols 100 100 200 

# Strategies 225 250 275 

Basis input rate 5,000 5,000 10,000 

Clearly, the load level over the SUT is a function of both the input rate and the number 

of strategies, or algebraically: 

         (1) 

Where   represents the number of events per unit of time and W represents the amount 

of work required to process each event (which is affected by the number of strategies) – 

the unit of load is therefore expressed as work per unit of time (e.g., work/sec). 

However, doubling the input rate, as when going from a scale factor of 10 to 11, does 

not mean that the system is twice more loaded because a great part of the incoming ticks 

is matched with fewer strategies. For instance, for SF=11, half of the ticks are simply 

ignored as they are not correlated, one quarter of them are matched with 10 strategies 

over the first market, and the other quarter is matched with only one strategy over the 

second market. So, even though the input rate doubled, ¾ of the incoming events are 

actually ignored or have a much shorter processing path. In formula (1), this means that 

  doubled, but the average value of W decreased substantially.  
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We account for that reduction, by splitting the processing of every incoming event into 

two separate phases and assigning weights to them
22

: 

                             (2) 

i. filtering (weight: 1) 

ii. passing forward in the execution path of the strategies (weight: 100) 

In both phases, the amount of work depends on the number of strategies involved: 

             (3) 

                  (4) 

Where   is the total number of strategies in execution and        is the number of 

strategies that are actually affected by the incoming tick. As mentioned before,   is 

straightforwardly derived from the scale factor as follows: 

        (5) 

On the other hand, the number of strategies that are actually executed        depends 

on the incoming tick. In particular, one of three things can happen: 

i. The tick is simply ignored, as it does not belong to any known correlation; 

ii. The tick is matched with exactly 10 strategies, if it belongs to one of the first M-

1 markets (for M > 1); 

iii. The tick is matched with 1 up to 9 strategies, if it belongs to the last market M. 

 

                                                 

 

 

22 We assign a small weight for the first phase as in essence it involves only String comparison. 



176 Appendix A. The pscore Metric 

 

The average value of        is then given by: 

      

 

   

 

Where    is the probability associated with each of the three situations above, and    is 

the number of strategies executed in each case.  

Considering that half of the securities are not part of any strategy, independently on the 

scale factor, and that only the first M-1 markets have exactly ten strategies, we have: 

i.               

ii.         
   

 
          

iii.         
 

 
       (               

Which gives: 

          
   

 
  

 

  
  (                

(6) 

From formulas (2) to (6), we have: 

                 
   

 
  

 

  
  (                 

Simplifying:  

            
   (     (              
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Since the input rate is a linear function of the number of markets (  λ   ), from 

formula (1) we have: 

                   (   (     (                 

Eliminating the constant (25λ), and since    
  

  
 , we have the final value for the load, 

expressed as a function of the scale factor: 

          
  

  
          

  

  
     (                   /     

The metric of Pairs is then expressed in terms of the scale factor as:  

       
    

  
  

          
  
  

     (               

            
     /     
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Appendix B  

Pairs Benchmark Tools 

In this section we describe the tools required for running the Pairs benchmark. 

B.1 Data Generator 

The Data Generator application can be executed in either console or graphical mode. In 

the console mode, the user specifies a couple of parameters in a configuration file and 

then executes the tool passing that file as argument. The data generation process then 

starts immediately. If no configuration file is specified, the data generator starts in 

graphical mode as illustrated in Figure B.1. As it can be seen, when executed in 

graphical mode, the data generator allows customizing a number of workload 

parameters, including: 

 Number of symbols N (default: 1    
  

  
 ) 

 Number of correlations K (default: 25% of the number of symbols, i.e., half of 

all the symbols are liable to be monitored by a strategy) 

 Number of strategies (default:      ) 

 Input rate:  

- Basis event input rate (default:       
  

  
 ) 
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- Whether inter-arrival times are exponentially distributed (default) or constant; 

- Whether input rate varies over time (default) or not;  

- Peak event input rate (default:               ) 

- Test duration (default: 2 hours) 

The output of the data generator tool consists in one or more benchmark input data files 

containing ticks data, and an auxiliary file describing the number of strategies and the 

list of correlations for the chosen configuration, which will then be used as input by the 

query generation tool. 

 

Figure B.1: The Data Generator tool (graphical mode). 
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B.2 Query Generator 

The purpose of the Query Generator is to produce a neutral representation of the Pairs 

workload that will be later translated into a vendor-specific implementation for the 

target EP engine. The output of the tool consists in an xml file containing the 

parameters of the strategies to be executed by the SUT during the benchmark run, as 

illustrated in Figure B.2. The number of such strategies varies according to the scale 

factor, as specified in section 7.3.5, and the parameters of each strategy are generated as 

described in Table B.1 below. 

Table B.1: Parameters of a Pairs strategy. 

Attribute Description Possible Values 

alias Unique identifier of the strategy 
Incremental: st-00001, 

st-00002, …, st-0000N 

availableFunds Amount of funds available for the strategy. {10k, 20k, 50k} 

symbol1 The first security of the strategy. 
One of the symbols in 

the list of correlations  

symbol2 The second security of the strategy. 
produced by the data 

generator. 

periodLength 
The size of the time-based window used in 

the initial price aggregation (in seconds). 
{5, 10, 20, 30, 60} 

numPeriods 

The size of the count-based window over 

which the average and standard deviation 

of ratio are computed. 

{5, 6, 7, 8, 9, 10, 15, 20, 

25, 30} 

bandsMultiplier 
The multiplication factor used to compute 

the upper and lower bands. 
{1.2, 1.5, 1.8, 2.0} 

stopLossPerc Threshold used by stop-loss protections. {10%, 20%, 30%} 
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<Strategies> 

 <PairsStrategy 

   alias="st_00001" 

   availableFunds="1000000" 

   symbo11="MCBEIV" 

   symbo12="AYFBLW" 

   periodLength="20" 

   numPeriods="5" 

   bandsMultiplier="1.25" 

   stopLossPerc="0.3"> 

 </PairsStrategy> 

</Strategies> 

Figure B.2: Snippet of the output produced by the Query Generator tool. 

 

B.3 Translator 

The Translator is the only part of the Pairs benchmark infrastructure that is vendor-

specific, which means that a separate translator has to be developed for each target EP 

engine. Due to the significant differences in the implementation styles adopted by the 

diverse event processing platforms (see section 2.4), users implementing Pairs are free 

to use any feature or language construct allowed by the target system. The ultimate 

implementation requirement is to produce the expected answers (i.e., to pass in the 

validation test). The use of user-defined functions or any other kind of integration with 

common programming languages is strongly discouraged through, as we consider that 

any EP system should natively support the set of operations exercised by Pairs, and the 

goal of the benchmark is to assess event processing engines rather than software 

development environments. 
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B.4 Test Harness 

The Pairs benchmark uses the FINCoS framework, introduced in Chapter 3, as its test 

harness. The task of the framework is to submit load to the system under test and 

receive answers from it. For that, it reads the data file produced by the Data Generator 

tool, transforms the events on it into an appropriate representation, and send them to the 

target EP engine. On the opposite direction, FINCoS subscribes to the output streams at 

the EP engine and stores all incoming results on disk for subsequent validation and 

performance measurement. The framework is also responsible for assigning timestamps 

to both input tuples and output results (for the sake of response-time computation). 

Note that some previous configuration is required before running performance tests 

with FINCoS. Detailed instructions on how to use the framework can be found on its 

user guide [38]. A sample FINCoS test setup file for Pairs is also provided in [16]. 

B.5 Validator 

The purpose of the Validator application is to verify the correctness of the set of 

answers produced by the SUT after a benchmark run. For that, it takes the input file 

created by the data generator and the strategies file produced by the query generator to 

produce the expected output for this particular configuration. Then, it reads the sink log 

file, generated by the FINCoS framework, which contains the answers produced by the 

SUT, and compares it with the expected output. 

Like the data generator application, the validation tool can be executed in either console 

or graphical mode. Once more, to execute in console mode, the application must be 

executed passing a configuration file as argument. The application will execute and then 

generate a report like the one shown next.   
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 Validation result: FAILED! 

  - Indicators: 

    # validator answers: 13884 

    # SUT answers: 29878 

    # correct answers: 13884 

    # missing answers: 0 

    # undue answers: 15994 

    # wrong answers: 0 

 - Orders: 

    # validator answers: 1936 

    # SUT answers: 3939 

    # correct answers: 1884 

    # missing answers: 0 

    # undue answers: 2003 

    # wrong answers: 52 

 

Figure B.3: Output of the Validator tool (console mode). 

For each output stream, the validator reports: 

 The number of expected answers (validator answers); 

 The number of answers produced by the SUT (SUT answers); 

 The number of correct answers; 

 The number of answers that have been generated by the validator, but not by the 

SUT (missing answers); 

 The number of answers that have been generated by the SUT, but are not part of 

the set of expected answers generated by the validator (undue answers) and 

 The number of answers that were generated by both the SUT and the validator, 

but with different values (wrong answers). 

When validation fails, like in the sample report above, the graphical mode of the 

validation tool (Figure B.4) shall be useful to identify the cause, as it allows visualizing 

the set of incorrect answers (e.g., see Figure B.5). In the graphical mode, the user 

specifies the paths for the files containing: (i) the answers produced by the SUT, (ii) the 
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benchmark input data, and (iii) the parameters of the strategies. In alternative to the last 

two, it is possible to reuse the answers produced during the last validation (“use 

existing” option) to skip the computation of the expected output – this shall make 

validation to finish much quicker, but only applies if neither the input data nor the 

strategies file has changed since last run.  

 

Figure B.4: The Validator tool (graphical mode). 
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After the validation has finished, a report similar to the one of the console mode is 

displayed, now with the option to visualize the entries, by clicking in the icon on the 

right side of the results. A window like the one shown in Figure B.5 will then appear.  

 

Figure B.5: Viewing the incorrect answers using the Validator tool. 
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B.6 Configuration File 

As mentioned in previous sections, a configuration file is required in order to execute 

most Pairs benchmark tools (or at least execute them in headless mode). A sample 

configuration file is included in the tools package. The file consists in a set of properties 

as shown below: 

# Folder where the Data Generator tool saves its output. 

dGenFolder=./data/ 

 

# Folder where the Query Generator tool saves its output. 

qGenFolder=./queries/ 

 

# Folder where the Translator tool saves its output. 

translatorFolder=./impl/Esper/ 

 

# Folder where the Validator tool saves its output. 

validFolder=./valid/ 

 

# [Data Generator] Benchmark scale factor. 

scaleFactor=2 

 

# [Data Generator] Split the data generated by the Datagen tool into one or 

more files. 

fileCount=1 

 

# [Validator] The file containing the answers produced by the SUT 

sutFile=C:\\FINCoS\\log\\SF=2.log 

 

# [Validator] Indicates whether the input file must be processed (set to 

false) or not (set to true) 

skipInputValidation=true 

 

The first four properties indicate where each of the four Pairs tools will save its output. 

The scaleFactor property is used by the data generator to create input data under the 

corresponding scale. The fileCount property can be used to tell the data generator to 

split its generated data into a given number of files (for instance, for distributing load 

generation among multiple drivers). The sutFile property is used by the validator tool 

and indicates the path for the file containing the answers produced by the SUT during 

the benchmark run. Finally, the skipInputValidation property, also used by the 

validator, allows to skip processing of input data to produce the expected answers, by 

reusing the last validation result. 
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