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“… For I observe, that of late Chymistry begins, as indeed it deserves, to be cultivated 

by Learned Men who before despis'd it; and to be pretended to by many who never 

cultivated it, that they may be thought not to ignore it: Whence it is come to passe, that 

divers Chymical Notions about Matters Philosophical are taken for granted and 

employ'd, and so adopted by very eminent Writers both Naturalists and Physitians. Now 

this I fear may prove somewhat prejudicial to the Advancement of solid Philosophy: For 

though I am a great Lover of Chymical Experiments, and though I have no mean esteem 

of divers Chymical Remedies, yet I distinguish these from their Notions about the causes 

of things, and their manner of Generation. And for ought I can hitherto discern, there 

are a thousand Phӕnomena in Nature, besides a Multitude of Accidents relating to the 

humane Body, which will scarcely be clearly & satisfactorily made out by them that 

confine themselves to deduce things from Salt, Sulphur and Mercury, and the other 

Notions peculiar to the Chymists, without taking much more Notice than they are wont 

to do, of the Motions and Figures, of the small Parts of Matter, and the other more 

Catholick and Fruitful affections of Bodies. Wherefore it will not perhaps be now 

unseasonable to let our Carneadeswarne Men, not to subscribe to the grand Doctrine of 

the Chymists touching their three Hypostatical Principles, till they have a little examin'd 

it, and consider'd, how they can clear it from his Objections, divers of which 'tis like 

they may never have thought on;” 

 

In the Sceptical Chymist, 1661, by Robert Boyle 
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Resumo 

A principal via para determinar a biodisponibilidade de um fármaco é a permeação 

passiva através de membranas biológicas. No entanto, para se prever a permeação de 

um fármaco através de uma membrana é necessário o conhecimento quantitativo das 

velocidades de interacção com as diferentes barreiras biológicas (inserção, desorção e 

translocação). Para a grande maioria dos fármacos este perfil cinético é desconhecido e 

a velocidade de permeação é estimada através da sua hidrofobicidade, que é 

determinada pela constante de partição entre o octanol e a água. Considerando que as 

membranas são sistemas altamente anisotrópicos, é demasiado redutora a simples 

comparação com as fases homogéneas (octanol). A orientação dos lípidos membranares 

com o seu grupo polar, em contacto com a fase aquosa e as cadeias hidrocarbonadas 

orientadas para o centro da bicamada, origina gradientes de polaridade, densidade e 

carga. Dessa assimetria surge uma propriedade importante que é o potencial dipolar. 

Além disso, a maioria dos fármacos e ligandos biológicos têm uma distribuição 

assimétrica de carga, sendo expectável que a inter-relação entre o momento dipolar de 

uma anfifíla e o potencial membranar desempenhe um papel importante nos seus 

parâmetros de interacção. No entanto, esta questão não tem merecido a devida 

importância por parte da comunidade científica.  

Neste trabalho apresenta-se um estudo detalhado da cinética e termodinâmica de 

interacção entre duas anfifílas fluorescentes, RG-C14 e CBF-C14, e membranas com 

diferentes composições lipídicas, características das membranas de células eucarióticas. 

Adicionalmente, determinou-se o seu coeficiente de partição relativo (água/membrana) 

e solubilidade em diferentes membranas, bem como se atendeu à sua localização na 

interface membranar. As anfifílas fluorescentes foram escolhidas tendo em conta a 

orientação oposta do seu momento dipolar, quando inseridas na membrana, e contendo 

uma cadeia hidrofóbica de 14 carbonos. Os resultados experimentais foram 

racionalizados em termos do potencial membranar, cujo valor para as composições 

lipídicas de interesse, foi determinado usando monocamadas. Observou-se um aumento 

do potencial dipolar, em membranas contendo colesterol, devido ao o efeito de 

condensação do colesterol, bem estabelecido, promovendo um maior empacotamento 

dos lipídos. O grupo carbonilo na cadeia acilo sn-2 dos fosfolípidos demonstrou ter um 
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papel preponderante no potencial dipolar final, e a sua ausência no caso da SpM leva a 

uma diminuição do potencial dipolar. Os resultados obtidos permitem uma previsão do 

perfil do potencial dipolar da membrana plasmática que é assimétrica, enriquecida em 

SpM e colesterol na monocamada externa e com quantidades significativas de PE e PS 

na monocamada interna. Surpreendentemente observou-se que o potencial dipolar 

reforça o potencial transmenbranar. A RG-C14 demonstrou uma solubilidade em água 

menor do que a CBF-C14, revelando o seu carácter mais hidrofóbico. Adicionalmente, a 

RG-C14 demonstrou uma tendência para agregar, quando inserida na membrana, em 

particular para bicamadas na fase líquido-ordenado (POPC:CHOL(5:5) e 

SpM:CHOL(6:4)). O coeficiente de partição relativo, para ambas as sondas, entre POPC 

e membranas aceitantes distintas demonstrou um decréscimo linear com o potencial 

dipolar para membranas de POPC:CHOL. No entanto, o declive encontrado foi maior 

para a RG-C14 (mesma orientação do dipolo que a potencial membranar) do que para 

CBF-C14 indicando uma maior estabilidade para esta última nas fases do líquido 

ordenado. A caracterização da cinética e termodinâmica de interacção entre a CBF-C14 e 

a RG-C14 com diferentes bicamadas lipídicas, obtidas neste trabalho, representa um 

avanço determinante na actual literatura sobre este assunto. Os resultados permitem 

estabelecer regras de inter-relação entre o momento dipolar de anfifílas e o potencial 

membranar. Observou-se que a desorção da RG-C14 é mais lenta do que a da CBF-C14, 

de acordo com uma maior estabilização da RG-C14 quando inserida na membrana. Para 

o movimento transmembranar das amostras, verificou-se que a velocidade de 

translocação é maior para a RG-C14 do que para a CBF-C14, em concordância com o 

grupo mais polar da CBF-C14 (carregada negativamente). A interacção entre o momento 

dipolar das anfifilas, em diferentes localizações, e o potencial membranar (estado 

inserido equilíbrio e estado de transição para desorção/inserção e translocação) contribui 

significativamente para a energia global dos diferentes estados, sendo particularmente 

evidente no termo entálpico. A varição de entalpia para a formação do estado de 

transição, tanto para a desorção como para translocação, é menos favorável para a  

RG-C14 do que para CBF-C14, de acordo com uma maior estabilização do estado da  

RG-C14 quando inserido na membrana. Este facto será atribuido à força atractiva entre o 

momento dipolar da RG-C14, quando inserida na membrana, e o potencial dipolar da 

membrana, enquanto que para a CBF-C14 esta força é repulsiva. 
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Abstract 

The passive permeation across biological membranes is a main route determining a drug 

bioavailability. However, the prediction of its permeability requires the quantitative 

knowledge of the kinetic parameters for interaction with the distinct membrane barriers 

(insertion, desorption and translocation). For most drugs this kinetic profile is unknown 

and their permeability rate is estimated based on their general hydrophobicity, assessed 

through partition between octanol and water. Considering that membranes are highly 

anisotropic systems, the comparison with homogenous phases is simpleminded. The 

orientation of the lipids in membranes, with their polar groups oriented to the aqueous 

phase and the non-polar hydrocarbon chains oriented towards the bilayer mid-plane, 

generates transversal gradients of polarity, density and charge. One important property 

that arises from this asymmetry is the dipole potential. Moreover, most drugs and 

biological ligands have an asymmetrical charge distribution, and the interplay between 

the amphiphile dipole moment and membrane potential is expected to play an important 

role in their interaction parameters. This question has however been overlooked by the 

scientific community.  

In this work we presented a detailed study of the kinetics and thermodynamics of the 

interaction between two fluorescent amphiphilic molecules, RG-C14 and CBF-C14, and 

membranes with distinct lipid compositions characteristic of eukaryotic cell 

membranes. Furthermore, their relative water/bilayer partition coefficient and solubility 

in distinct membranes, as well as the location at the membrane interface, were 

recovered. The probes were chosen to have an opposite dipole moment orientation, once 

inserted in the bilayer, and a hydrophobic chain of 14 carbons length. The experimental 

results were rationalized in terms of the membrane dipole potential, whose value was 

determined for the lipid compositions of interest using monolayers. The well-

established condensation effect of cholesterol promotes lipid packing and, consequently, 

the dipole potential is increased. The carbonyl group in the sn-2 acyl chains of 

phospholipids showed a preponderant role in the final dipole potential, and its absence 

in SpM leads to a decrease in the dipole potential. The results obtained allow the 

prediction of the dipole potential profile of the asymmetric plasma membrane, enriched 

in SpM and cholesterol in the outer and with significant amounts of PE and PS in the 
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inner monolayer. Interestingly, it is found that the dipole potential reinforces the 

observed transmembrane potential. The RG-C14 showed a smaller aqueous solubility 

than CBF-C14, revealing its more hydrophobic character. Moreover, RG-C14 showed a 

tendency to aggregate when inserted in the membranes, especially for bilayers in the 

liquid ordered phase (POPC:CHOL(5:5) and SpM:CHOL(6:4)). The relative partition 

coefficient, of both probes, between POPC and the different acceptor membranes, 

showed a linear decrease with the membrane dipole potential for POPC:CHOL 

membranes. Moreover, the slope was higher for the RG-C14 (same dipole orientation 

has the membrane) than for CBF-C14 indicating a higher stability for the latter in the 

liquid ordered phases.  

The characterization of the kinetics and thermodynamics for the interaction of both 

CBF-C14 and RG-C14 with the different lipid bilayers performed in this work represents 

a major step forward in the currently available literature on this subject. The results 

obtained lead to the establishment of rules for the interplay between the amphiphiles 

dipole moment and the membrane dipole potential. We observe that desorption of  

RG-C14 is slower than that of CBF-C14, in agreement with a stabilization of the inserted 

state for RG-C14. For the transbilayer movement of the probes, it was observed that the 

rate of translocation was faster for RG-C14 than for CBF-C14, in agreement with the 

more polar headgroup for the CBF-C14 (negative charge). The interaction between the 

amphiphile dipole moment and the membrane dipole potential at the different location 

of the amphiphiles (inserted state at equilibrium and transition states for 

desorption/insertion and translocation) contributes significantly to the overall energy of 

the distinct states, and is particularly evident in the enthalpy term. The enthalpy 

variations upon formation of the transition state in both desorption and translocation 

was more unfavourable for RG-C14 than for CBF-C14, in agreement with a more 

stabilized state of RG-C14 when inserted in the membrane. This was attributed to the 

attractive force between the dipole moment of RG-C14, when inserted in the bilayer, and 

the dipole potential of the membrane while it is repulsive for the case of CBF-C14.  
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I.1 Objectives  

The dipole potential of membranes has been implicated in several biological phenomena 

such as modulating the activity of membrane proteins [1] or affecting the interaction of 

drugs with membranes [2]. Additionally, our group proposed that the magnitude and 

orientation of the dipole moment of amphiphiles could influence the partition of 

amphiphiles into lipid bilayers with distinct dipole potentials [3]. However, quantitative 

data regarding the interaction of amphiphiles (with different dipole moment) with 

different membranes has not been the preferential target of the scientific community. 

This is important given that most drugs have a dipole moment which may differently 

affect the interaction with membranes and, therefore, their bioavailability. Moreover, 

this subject is particularly important in design and development of xenobiotics which 

have to cross biological membranes to be pharmacologically available.  

The subject of this work is to study the interaction of two fluorescence amphiphiles, a 

Rhodamine (RG-C14) and Carboxyfluorescein (CBF-C14) derivative with membranes. 

Both probes have a 14 carbon alkyl chain but a distinct dipole moment either in 

magnitude and orientation. The rationalization of the experimental data in terms of the 

amphiphile dipole moment and membrane dipole potential is the main focus of this 

work. Does this interplay affect the positioning, partition, and kinetics of interaction of 

amphiphiles with membranes? 

 

 

I.2 Outline 

The Chapter II consists on a literature review of biological membranes that is crucial for 

the comprehension and critical analysis of the experimental results. Starting with a brief 

historical overview we address, during this review, important physical-chemical 

properties of membranes with a main focus in the electrostatic characteristics.  

Chapter III consists in a compilation of most material and equipment used in the 

experimental work along with detailed description of the methodologies followed 

throughout the experiments.  
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In Chapter IV the dipole potential of pure and biologically relevant lipid mixtures was 

obtained using lipid monolayers formed at the air-water interface. Studies of mean area 

per lipid, in lipid mixtures, were also performed. The results were rationalized first in 

single component monolayers and afterwards in mixtures, according to the lipids 

physical-chemical properties.  

The Chapter V describes the relative partition coefficient (Kprel) of the fluorescence 

amphiphiles between bilayers with distinct lipid composition. Moreover, fluorescence 

anisotropy and lifetimes measurements were obtained to address the localization of the 

amphiphilic probes in the membrane-water interfacial region. The aggregation of 

amphiphiles in membranes was attained for different membranes. The results were 

rationalized considering both the amphiphiles dipole moment and membrane dipole 

potential previously determined. 

The Chapter VI addresses the kinetics and thermodynamics of interaction of RG-C14 

and CBF-C14 with membranes in the liquid disordered and liquid ordered phase. A 

detailed study at different pH for the carboxyfluorescein derivative was performed and, 

once again, a rationalization with the membrane dipole potential was obtained. 

In the conclusions we summarize the relevant results from the previous chapters.  
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II.1 The cell membrane 

“It can truly be said of living cells, that by their membranes ye shall know them” 

In Battaglia, 1997 as reference to Davson and Danielli 

II.1.1 Biological Membranes: Historical Perspective and Function 

In 1855, the botanists Naegeli and Cramer proposed the existence of an osmotic barrier 

surrounding plant cells, which explained the plasmolysis phenomena. They observed 

that cells can modify its volume upon osmotic changes induced in the surrounding 

environment [4]. Later, 1877, Pfeffer published his major work "Osmotische 

Untersuchungen” formulating the concept that a Plasma-membrane surrounds the 

protoplasm of cells, which separates the aqueous environments with different 

composition [5]. He further postulated that this plasma skin was a barrier to the free 

passage of water and solutes from surrounding media to the cell interior making the 

analogy with the observed properties of copper ferrocyanide artificial membrane [5]. 

The observations presented by Pfeffer and later by de Vries 1884 were fundamental to 

the acceptance of membrane as a semi-permeable barrier and settled the pillars for the 

development of membrane theory [6]. 

In 1895 Ernest Overton examined different solutes and recognized a relationship 

between the chemical characteristics of solutes and their osmotic properties. He 

declared that substances that dissolved in lipid permeate the cell faster than the ones 

dissolved in water [4]. Furthermore, Overton made the first observation regarding the 

chemical nature of the plasma membrane asserting that this must be a lipid-impregnated 

boundary layer with properties similar to those of cholesterol esters and lecithin [7]. 

Since Overton, the picture of the correct model describing cell membrane has been 

exchanging. However, in 1972 Singer and Nicolson proposed the fluid mosaic model of 

biomembranes which became widely accepted [8]. They considered the lipid membrane 

as a two dimensional fluid where proteins are embed and free for laterally diffuse 

(Figure II.1). Although nowadays increasing evidence sustain a highly heterogeneous 

and dynamic biological membrane, such as existence of more ordered domains in the 
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bilayer (lipid rafts), the fluid mosaic model remains as the central membrane model 

structure. This model proposed the establishment of strong interactions between 

proteins and close lipids promoting a short-range order, which do not influences the 

remaining lipids. It is interesting to recognize that these interactions may, in fact, 

require different kinds of lipids supporting one plausible argument for the critical vast 

diversity of lipids controlled by cells. 

Biological membranes are very important cell structures they provide a boundary, 

physically separating the interior of all cells from the outside environment. Being 

selectively-permeable, biological membranes regulate solute permeation rigorously 

controlling the fluid content within a cell, crucial to keep cells under physiological 

activity [9]. Their low permeability to charged solutes allows establishing a non-

equilibrium state within a cell, essential to maintain its correct function and avoid death 

by apoptosis [10]. Cell membranes are involved in several other processes such as the 

transfer of signals, between cells, through complex systems of communication  

(cell signalling). They comprise associated proteins that are vital to cell function  

e.g. cell adhesion, transport proteins and cell receptors. In addition, cell membrane 

serves as support surface for the extracellular glycocalyx and intracellular cytoskeleton  

[9, 11, 12]. 

By now, it is explicit that membranes are complex dynamic heterogeneous lipid 

structures that perform various vital roles in the accurate function of cells. In the next 

section, we will exploit with more detail the lipid organization within membranes taking 

into account the structural constraints and chemical variety of lipid molecules. 

 

 

Figure II.1. The fluid mosaic model of Singer and Nicolson (1972). Adapted from [8] 
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II.2 The Lipid Bilayer and Membrane Lipids  

“It is clear that all our results fit in well with the supposition that the chromocytes are 

covered by a layer of fatty substances that is two molecules thick.” 

Gorter and Grendel 1924 

II.2.1 Membrane Lipids: From Diversity to Function 

The vast lipid repertoire and complexity which confers a countless number of functions 

to lipids is intrinsically related to their particular chemical features as bimodal 

molecules. Lipids comprehend two chemically different domains; one that is 

hydrophobic and, therefore, repelled from the water and other that is hydrophilic and 

readily interacts with the water environment. This amphiphilic nature of lipids is the 

structural characteristic that allows cells to segregate its inner constituents from the 

external media. 

A eukaryotic cell in order to synthesize its lipids diversity spends a substantial amount 

of genome [13-15]. Hence, the biological role of lipid molecules as macro-assemblies 

cannot be resumed to structurally support membrane proteins, which mediate 

fundamental cell functions such as protein-trafficking and signaling. Lipids accomplish 

diverse functions such as energy storage in the form of triacylglycerols and steryl esters, 

in some cellular processes they change the membrane features of associated proteins, 

and they work as secondary messengers and signalling molecules in recognition 

processes [13, 15-17]. Depending on the residence time on the proteins, different 

surrounding lipids can be identified and named either restricted or annular (interfacial), 

this connection between lipids and membrane proteins may, in fact, affect their 

biological activity. Cholesterol and phosphatidylinositol are necessary lipids for activity 

of the membrane associated proteins Na+/K+-ATPase and Glycophorin, respectively 

[18-20].  

There are a vast number of diseases commonly called lipid-related disorders that along 

with cardiovascular diseases, cancer and Alzheimer’s have a lipid component. This has 

increase the interest of researchers in the lipids quantification [21]. Moreover, there are 

a number of drugs such as statins that target lipid metabolism and signalling pathways. 
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One of the main biological functions of lipids is serving as structural components of cell 

membranes. The structural lipids present in eukaryotic membranes are predominantly 

glycerol and sphingosine backbone lipids, and the other widely existing class has a 

chemical composition based in sterol. Within glycerol lipids membranes contain 

glycerophospholipids, which result from the phosphodiester connection between the 

glycerol backbone and the polar headgroup, remaining the hydrophobic tail (one) or 

tails (two) attached by an ester or ether linkages.  

The Sphingolipids are based in a sphingosine backbone, which associated to a fatty acid 

forms a ceramide. The hydroxyl groups present at the ceramide backbone provide the 

capability of additional linkages and, by attaching a phosphocholine headgroup to a 

hydroxyl group sphingomyelin may be achieved (Table II.1).  

The complexity and variety of these biological molecules increases by changing both 

the hydrophilic (headgroup) and the hydrophobic components (alkyl chain length and 

unsaturation). The headgroup may be modified through a phosphodiester linkage in the 

sn-3 position of the glycerol backbone leading to phosphatidylcholine (PC) 

phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerate (PG), 

phosphatidylinositol (PI) and the unmodified phosphatidic acid (PA). The alkyl chains, 

at positions sn-1 or sn-2, may be changed in three different ways: by its total length 

(number of carbons); by the number of double bonds; and by changing the nature of the 

linkage between the backbone and the alkyl chains (ether, ester, alkenyl ether). The 

possible combination of headgroup and lipid tails allows the existence of more than 

1000 different lipid species in an eukaryotic cell [22]. 

The most common phospholipids in the cells are PC, PE, PS, PA and PI. The PC is 

commonly used in biophysical membrane studies and is one of the most biologically 

prevailing lipid headgroup. It accounts for about 50% of the total lipid in most 

eukaryotic cells, is a zwitterionic lipid with a negative charge on the phosphate and a 

positive charge on the amino group and, due to its cylindrical shape, it self-organizes 

into planar bilayers. PA, PG and PS are the most general negatively charged lipid 

headgroups. The PE, due to their small and less hydrated headgroup, displays a distinct 

conical shape that inflicts curvature stress on the bilayer surface exposing the 

hydrocarbon chains. The primary sphingophospholipid present in mammalian cells is 

sphingomyelin (SpM), which has narrower cylindrical shape length than PC lipids with 
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same alkyl chain length. Moreover, this straightening in the geometrical form allows 

promoting a greater packing within bilayers. 

 

Table II.1. Most common structural Glycerolipids and Sphingolipids in eukaryotic cells R,R1,R2 and R3 
represent the fatty acid acyl chain, and highlighted in red is the glycerol backbone. 
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The fatty acids are the fundamental building blocks of lipids, and most biological 

abundant fatty acids have an even number of carbons [23]. The alkyl chains of lipids 

(either saturated or unsaturated) may have lengths between 12 and 26 carbon atoms. 

While saturated chains, have a more common numbers of carbons of 16 or 18, the 

unsaturated composition is mostly 18 with one or two double bonds (C18:1 or C18:2) 

and 20 with four double bonds (C20:4) (Table II.2) [12]. The alkyl chains of lipids 

always tend to be straight due to Van Der Walls forces, but the rotation of the  

carbon-carbon bonds allows different bond conformations and consequently to either 

separating (gauche) or maintaining (trans) both chains in proximity. The nature of the 

C-C bonds in lipids alkyl chains establishes some important biophysical properties of 

membranes such as dynamics, permeability and fluidity. The double bonds in lipids acyl 

chains are cis and introduce a kink in the acyl chain orientation, which affects the lipid 

packing. 

 

Table II.2. Fatty acid composition of most representative phospholipids in the Major Lipid classes of Rat 
Liver Plasma Membranes. The highlights correspond to the more demonstrative saturated and unsaturated 
fatty acid acyl chain. Adapted from [24]. 

Carbons Number LysoPC SPM PC PS+PI PE FFA 

<14:0 t.a. t.a. 0.1 t.a. t.a. t.a. 

14:0 0.2 0.2 0.5 t.a. 0.2 2.93 

15:0 1 0.2 0.5 t.a. 0.6 - 

16:0 33.4 18.7 30.2 12.1 26 31.6 

16:1 0.1 0.1 0.8 0.5 0.3 3.07 

17:0 3.4 0.1 t.a. t.a. 1.5 - 

18:0 45 39.2 29.8 49.2 31.9 21.9 

18:1 4.0 3.7 9.6 4.6 6.5 19 

18:2 3.7 4.2 15.3 5.2 12.4 13.2 

20:4 5.9 12.8 11.6 26.4 15.4 6.26 

Values expressed as percentage of total fatty acids; FFA- free fatty acid; t.a.- trace amounts 
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II.2.2 Lipid Assemblies: Liposomes  

In 1924, Gorter and Grendel examined the surface area of the plasma membrane of 

mammalian erythrocytes. They initially predicted that if it is a bilayer the surface area 

should be half of that occupied by the lipids in a monolayer. The comparison between 

the measurements in a monolayer and red blood cells provided, within error, a ratio 

cell:monolayer of 1:2 reinforcing a plasma membrane model formed by a bilayer [25]. 

This simple yet significant experimental finding in the coming years supported the 

development of membrane models where a lipid bilayer structure was the central 

feature. 

The amphipathic structural identity of a lipid molecule concedes that, at physiological 

concentrations, (well above its aggregation concentration) they may associate in distinct 

macromolecular structures, which are inherently dependent on the geometrical shape of 

the molecule (Figure II.2). The formation of these aggregated lipid structures is 

favoured due to the increase in system entropy, once the water molecules do not need to 

self-organize surrounding the non-polar part of the solute. The relationship between 

molecular shape, aggregated structure and the way how they could be controlled  was 

examined by Tanford [26] and later by Israelachevily et al (1976). The latter author 

proposed a mathematical theory that describes how the molecular shape affected the 

size and arrangement of the aggregate, commonly named critical packing parameter 

[27]. Accordingly, the aggregate geometry depends on three packing constraints, the 

optimal cross sectional area occupied by the polar interface (S0), the maximum length of 

the alkyl chain (lc) and the molecular volume of the hydrocarbon portion of the 

amphiphile (v). Those parameters, together, determine the critical packing parameter 

(CPP). 

 

0.c

v
CPP

l S
                                                                                                                        (II-1) 
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Figure II.2. Geometrical shapes of amphiphilic molecules and their correspondent macromolecular 
assemblies. The balance between the volume under projection of the effective headgroup area, and the 
alkyl chain volume is one of the main determinants in geometrical packing. Adapted from [28]. 

 

Bilayers are the key structural basis for cell membranes, and they can be prepared to 

produce close vesicles with a radius that goes from some angstroms to millimetres [12] 

(Figure II.3). This arrangement of lipids into bilayers permits the hydrocarbon core to 

be tightly packed apart from water and, moreover by imposing curvature in the bilayer 

sheet so that it will form a vesicle, the hydrophobic edge can be removed avoiding the 

exposure of hydrophobic groups to water molecules [29]. The liposomes are spherical 

lipid vesicles made either by a single (unilamellar) or multiple bilayers enclosing small 

volumes of aqueous solution in the inner compartment of the vesicle. These vesicles are 

widely used in in-vitro studies to mimic cell membranes [30] or cell organelles [31]. 

They are also utilized to reconstitute membrane proteins in their natural lipid 

environment examining the effects either in lipid structure or protein conformation [32]. 

In in-vitro studies, the curvature of the vesicles is a fundamental property, and below a 

given value it strongly influences membrane properties [33-35]. The phase behaviour of 

pure dipalmitoyl-phosphatidylcholine (DPPC) vesicles is dependent on the vesicles 

diameter for values below 70 nm [36, 37]. Since the topology of the vesicle changes, via 

increasing curvature, there is some difficulty for lipids with cylindrical geometry to fit 

and this DPPC miss packing in highly curved bilayers leads to a decrease in the phase 

transition temperature. Structures with high curvature are found normally in biological 
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systems and this has a vital role, allowing them to have a higher bending energy 

facilitating membrane fusion processes [34]. In this work unilamellar vesicles (LUV) 

with a diameter of 100 nm are used, consequently, under those experimental conditions 

the effects of curvature stress can be neglected. 

 

 

Figure II.3. Schematic drawing of the spontaneous formation of lipid vesicles, in aqueous solution, with 
multi layers of lipids (MLVs). Separating each lipid layer there is the aqueous solution (dark blue). By 
extrusion or sonication of the MLVs one can obtain vesicles composed by a single lipid bilayer (LUVs 
and SUVs) with aqueous solution in its interior and outside. 

 

 

II.2.3 The Asymmetric Lipid Distribution in the Plasma Membrane  

Biological membranes contain a broad variety of lipids in each membrane fraction 

which is different for the distinct cell types and organelles. Glycerophospholipids 

account for nearly 70% of the total lipid content in mammalian cells while the 

remaining 30% comprise cholesterol, sphingomyelin and glycosphingolipids.  

(Table II.3). As mentioned earlier in the text (II.2.1 above) phosphatidylcholine is the 

most prevailing phospholipid (40-50%), phosphatidylethanolamine is the second most 

abundant phospholipid and its quantity ranges from 20% up to 45% depending on the 
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organism. Phosphatidylserine, Phosphatidylinositol and Phosphatidic acid are present in 

smaller amounts (10%) [38]. 

 

Table II.3. Lipid composition (%mol) of the plasma membrane in several organisms. Adapted from [39]. 

  

 

The asymmetric distribution of proteins in cell membranes is well established and vital 

for cells. The observation that some proteins require specific surrounding lipids to 

acquire their native structure points towards an asymmetric distribution of lipids as well. 

[18]. The lipids structural diversity, the cytoskeleton and the different chemical nature 

of the internal and external environments, in contact with membranes, promoted the 

additional arguments to foretell a different lipid distribution within a cell membrane [12, 

40]. A membrane whose asymmetric distribution of lipids is well characterized is the 

plasma-membrane. The outer leaflet lipid composition of this membrane is PC, SpM 

and cholesterol and the inner cytoplasmic leaflet includes considerable amounts of PE 

and negatively charged phospholipids [39-41] (Figure II.4).  

The indicated transmembrane asymmetry of membrane cells can be related to relevant 

biological phenomena such as: maintenance of membranes proteins activity [42] or 

mechanical stability [43, 44]. A further enlightening example of the importance of this 

asymmetric distribution arises from the, almost exclusive, inner leaflet localization of 

PS in erythrocytes plasma membranes. This PS lipid is well known as a signaling 

molecule for clearance by the reticuloendothelial system [45] and, by restraining its 

localization to the inner leaflet, the removal of healthy functional erythrocytes is 

avoided [38].   
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The transversal movement (translocation) of phospholipids in membranes is slow due to 

the polar headgroup, generally with charges, whose solubility in the hydrophobic core 

of a membrane is very low. Therefore, to maintain lipids asymmetric distribution 

membranes have specific carriers (proteins) that translocate lipids against the 

concentration gradient (Figure II.4). The ATP-dependent aminophospholipid 

translocase and floppase enzymes move particular lipids and are the foremost 

responsible for their uneven distribution in the plasma membrane [46]. The 

aminophospholipid translocase, transfers PS and PE from the outer to the inner leaflet 

of the plasma membrane, in a selective manner (PS transfer is faster than PE) [47, 48], 

while PC is not transferred by the enzyme [49]. The floppase is less specific because 

transfers several phospholipids (PS, PE and PC), and unlike translocase, catalyses lipids 

movement from the inner to the outer leaflet being the transfer rate by floppase much 

smaller than the translocase [47, 48]. The work promoted by both ATP dependent 

floppase and aminotranslocase maintaining the transversal lipid asymmetry may be 

disrupted by the activity of scramblase other enzyme that is much less lipid specific and 

promotes a bidirectional transfer of phospholipids between leaflets. Scramblase, as the 

others, is also ATP-dependent, but in order to be effective it demands the presence of 

Ca2+, that under physiological conditions is in the micromolar range [46-48]. Therefore, 

the indicated enzyme is essentially inactive in normal conditions being the asymmetry  

ensured by both floppase and aminotranslocase [44]. Nevertheless the role of the 

scramblase protein is essential, once active it facilitates the transbilayer movement 

exposing PS lipids to the surface of apoptotic cells [46].  

The phosphatidylserine transversal asymmetry rigorously secured with the help of the 

aforementioned protein macro-assemblies is necessary since, it provides some 

electrostatic interactions with proteins present in the inner leaflet like the  membrane 

skeletal protein, spectrin, [50] and structural protein kinase C [51] confined to the 

membrane cytoplasmic side. Additionally it is striking to mention that the inclusion of 

charged molecules exclusively in the inner leaflet of eukaryotic cells promotes itself a 

transmembrane potential. 
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Figure II.4. Phospholipid asymmetry and ATP dependent lipid-translocating enzymes in the plasma 
membrane of normal eukaryotic cells. Phosphatidylcholine (PC) and sphingomyelin (SM) are primary 
located in the external leaflet, while phosphatidylethanolamine (PE), phosphatidylinositol (PI) and 
phosphatidylserine (PS) are mostly in the internal leaflet. Adapted from [52] and [53]. 
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II.3 Membrane Thermotropic Behaviour  

“One of the most remarkable characteristics of lipids is their ability to combine in one 

phase a periodically ordered long-range organization (in one, two or three dimensions) 

and a highly disordered short-range conformation; many properties of lipids, and 

probably their function in biological membranes, are closely related to this peculiar 

mingling of order and disorder.” 

In Tardieu 1973  

 

II.3.1 Lipid Phases 

In the last 5 decades the scientific community spent a significant effort trying to 

understand the phase behaviour of biological membranes, nonetheless, the extended 

lipid variety found in biomembranes and their complex chemical structure makes this 

task challenging [22, 54-59].  

Membranes arrange in oriented layers exhibiting, on one hand, a partial and long range 

order and, on the other hand, they contain some level of fluidity and disorder; therefore 

they can be classified as liquid crystals [60]. Within liquid crystals, membranes have 

characteristics that resemble a thermotropic and lyotropic liquid crystal, forming lipid 

phases with different properties by variations in either temperature or water content. A 

lipid bilayer may exist in different physical phases depending on lipid mobility, lateral 

organization or the molecular order, moreover changing a certain feature of the system 

(e.g. temperature) may result a discrete transition from one state towards the other. 

The interaction between hydrocarbon chains of lipids is essentially ruled by Van der 

Walls forces which are also responsible for packing and lateral order of a  

bilayer [12, 61]. The phase transformation that occurs in lipids results from their 

motional freedom relative to nearby lipids, and during these alterations bilayers change 

their packing density and organization (disorder). For phospholipids whose geometrical 

shape favours a bilayer macro-structure, e.g phosphocholine, there is a sequence of 

phases with increasing temperature. The thermotropic phase transformation may occur 
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at a particular well defined temperature (Tm), for instance the transition from gel phase 

(Lβ) to liquid crystalline phase (L) in DPPC, classified as a first order transition [62].  

In the gel (Lβ), also called solid (So), phase, lipid alkyl chains exhibit a stiff and fully 

extend all-trans conformation corresponding to a two-dimensional hexagonal  

lattice [55, 63]. This high lipid packing existing in Lβ phase bilayers, dramatically 

diminishes the lipid lateral diffusion which is 10-11 cm2s-1 compared  

to ~ 10−8–10−7 cm2s-1 [64] in fluid phases. Depending on the water content of the bilayer 

the Lβ phase may be converted into Lβ´, which, is very similar to the Lβ with the 

exception of the alkyl chains that present a tilt with respect to the normal plane of the 

bilayer [12, 65]. The tilting occurs when the area packing requirements of the lipid 

headgroup exceed that of the chains, and the tilt permits to accommodate this packing 

mismatch. The acyl chain tilt angle increases with the membrane water content and, 

hence, the phase Lβ’ have a larger incorporation of water molecules than Lβ [55]. 

Moreover, the tilted alkyl chains lead to a decrease in the membrane thickness which is 

more obvious in the presence of water. 

The membrane fluid phase (Lα) can be distinguished due to a substantial fraction of 

trans-gauche isomerization of the hydrocarbon alkyl chains and lateral diffusion 

significantly higher than gel phase. Additionally, the phospholipids headgroup hold an 

orientation parallel while the hydrocarbon chains have an average perpendicular 

orientation relative to the membrane surface normal (Figure II.5).  

At very-low temperatures, there is the formation of a crystal phases (LC/LC’’) where the 

alkyl chains of the phospholipids are in the all-trans conformation and the headgroups 

form an ordered 3D lattice [66]). 

 

 
Figure II.5. Representative structures of Lβ, Lβ’, Lα, and ripple (Pβ’) membrane phases. Adapted from 
[67]. 
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II.3.2 Cholesterol and the Liquid Ordered Phase in Membranes 

Regardless of the fact that phospholipid molecules are the building blocks of biological 

bilayers, sterols are other fundamental part of membranes. The phospholipid diversity 

(previously addressed) contrasts with the major sterol component present in eukaryotic 

cells membranes, the cholesterol. It is the primary component in plasma membranes 

controlling its fluidity and intervening in some signalling processes [68].  

Cholesterol molecular structure derives from the tetracyclic hydrocarbon 

perhydrocycloentanophenantrene with a single hydroxyl group attached to carbon 3, an 

iso-octyl hycrocarbon side chain at carbon 17 and a double bond between carbon 5 and 

6 (Figure II.6). The trans arrangement of the four fused rings makes cholesterol a planar 

and rigid molecule whereas the hydroxyl group confers its amphiphilic character. The 

presence of the hydrophilic OH group orients the cholesterol molecule in the membrane 

so that this functional group will face interfacial water, with localization near the polar 

headgroups of phospholipids, maximizing the hydrogen-bonding interactions. 

Cholesterol ring structure is embedded in the hydrophobic core of the membrane and, 

notably, this hydrophobic part may be distinguished in two separate “faces”. A rough 

(β) one that contain the methyl groups, the iso-Octyl side chain and the OH group, 

which are attached to the same planar face of the ring structure, and a smoother (α) side 

of the cholesterol that contains hydrogen atoms [69]. 

 

 

Figure II.6. Structural formula of cholesterol. 

 

The asymmetric distribution, recognized for phospholipids in the plasma membrane of 

eukaryotic cells, is less apparent with regard to cholesterol due to its fast translocation 
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rate between leaflets [70]. Therefore, there is the assumption that cholesterol equally 

distributes between both leaflets or, it may be partially enriched in the outer monolayer 

due to its greater affinity for phosphatidylcholine and sphingomyelin [40]. Cholesterol 

is present in the plasma membrane at high proportions, so it is necessary to study the 

structure and organization of membranes both in the absence and the presence of 

cholesterol. 

Being a flat and rigid molecule, cholesterol packing with all-trans alkyl chains  

(gel phase) is better than with chains containing a large fraction of gauche 

conformations. However, the geometrical shape of cholesterol is distinct from the lipid 

ordered alkyl chains and therefore, cholesterol tends to disturb their lateral packing. The 

addition of cholesterol leads to a different membrane physical state whose properties are 

in between the Lβ and Lα state, named a liquid ordered phase (Lo or lo) [71]. This liquid 

ordered phase, promoted by the presence of high cholesterol contents can be 

distinguished by a high acyl chain order and a high translational mobility, supported 

through NMR measurements and micromechanical studies [72, 73]. 

Several studies were performed using different phospholipid membranes containing 

cholesterol to observe the thermotropic behaviour of these mixtures. In a 

DPPC:Cholesterol mixture for cholesterol mole concentrations above 7 % there is an 

abolishment of the pre-transition, and above 50 %, the main phase transition also 

disappears [72]. Vist et al, 1990, further revealed that within a broad cholesterol % mole 

range and below the main phase transition temperature there is coexistence of Gel and 

liquid phase while, above Tm, the Lo phase coexists with Lα (Figure II.7). From the 

Figure II.7, as aforementioned, changes in the phospholipid acyl chain nature lead to a 

bilayer with different thermotropic properties and, the final phase diagram may vary 

drastically. In the POPC:Cholesterol mixture for cholesterol percentages above 50% the 

membrane is exclusively in the liquid ordered state. Moreover, coexistence between Lα 

and Lβ occurred, at 25 ºC, for Cholesterol percentages from less than 10 % up to 40 %. 
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Figure II.7. Phase diagrams of mixtures of DPPC/Cholesterol and POPC/Cholesterol obtained from  
2H-NMR [72] and from trans-Parinaric Acid Fluorescence [74] respectively. 
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II.4 Membrane Hydration 

“Biomembranes are composed of lipids, proteins and carbohydrates (glycolipids and 

glycoproteins). The basic structure is generally a lipid bimolecular sheet in which the 

integral proteins are embedded. The relationship between water structure and these 

various components is most important for determining the final biomembrane structural 

arrangement.” 

From D. Chapman 1994 

II.4.1 Properties of Water as Solvent 

Water is the most universal solvent since nearly all the chemical substances partially 

dissolve in water. Furthermore, the aqueous environment provides the midst for 

molecular interactions in living organisms since it constitutes half of the weight of a 

living cell [75]. Despite its abundance water is a relatively small molecule which 

possesses unique physicochemical properties (vaporization heat, melting and boiling 

points) that dramatically differ from other liquids with comparable size [75, 76]. 

The Hydrogen bonding between molecules is the main feature allowing water to form a 

three-dimensional tetrahedral network like structure. An important physical aspect of 

hydrogen bonds is their polarizability, which confers to water a high dielectric constant 

and a different dipole moment in gas (1.86 D) and bulk phase (2.4-2.6 D) [77]. The 

water high dielectric constant permits an effective decrease in the electrostatic 

interactions (charge screening) allowing high solubility of salts.  

The chemical nature of the interactions between the first shell of water molecules and 

the groups present at the surface is of extreme importance to the properties of the 

hydration water. For instance, in the presence of nonpolar solutes water forms 

polygonal cages around the solute with the first shell of water molecules forming the 

maximum number of possible hydrogen bonds between them [75]. Additionally, to 

reduce the number of first shell water molecules and associated decrease in entropy, the 

nonpolar solutes, above a certain concentration, associate in water. The aqueous solvent 

provides the driving force (entropic) for the self-assembly of nonpolar solutes. 
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II.4.2 Interfacial Water in Biological Supramolecular Assemblies 

The biological stability of a supramolecular assembly strongly depends on the water 

present at the interface of the biological structures and, at such constrained environment 

the water-macromolecule and water-water interactions have a primary role in 

physiological processes [78]. For instance, the water that is solvating DNA does not 

have the same interactions and, therefore, an equal pattern behaviour than the one 

confined to lipid bilayers [79].  

In solution, the intermolecular forces that promote or repel the interaction between 

macromolecules are the attractive Van der Waals and repulsive double layer forces [80, 

81]. While the presence of the former is irrevocably, the double layer force is dependent 

on the existence of a surface charge. Moreover, studies with neutral bilayers, in water, 

revealed a strong exponentially repulsive force when they were separated by 

nanometres [82]. This disjoining force is due to the oriented boundary layers of water 

adjacent to the surfaces restricting the approximation of macromolecules and  

colloids [83].  

Molecular dynamics revealed that water presents a tetrahedral ordering from the 

membrane surface that exponentially decreases with the distance from the bilayer 

surface [84, 85]. Furthermore, the dynamics of membrane bound water is significantly 

reduced compared to bulk water [86], showing a dependence with lipid  

headgroup [87-90] and apolar part [88]. The presence of cholesterol, influences bilayers 

hydration increasing the number of bound water per phospholipid, due to a larger 

distance between adjacent phospholipid headgroups [88, 91]. Accordingly, in DPPC and 

DMPC bilayer, a high cholesterol content promotes an inefficient packing of the acyl 

chains, increasing water penetration (see II.3.2 above) [92]. 

The effect of macromolecules promoting order in water like structures generates the so-

called hydration force [93]. This hydration force was confirmed as a dominant short 

range interaction (1-3 nm) accounting for a repulsive pressure between bilayers [82]. 

The ordered water layer may modify properties at the membrane interface, like the 

electrostatic dipole potential, or its physical features such as the main transition 

temperature [94]. Those bilayer properties will affect the activity of membrane 

associated proteins as is the case for voltage gated pumps [95].  
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II.5 Electrostatic Potential of a Membrane  

“The positive potential presumably arises at the level of the dipoles of the ester linkage, 

with the oxygens oriented towards the aqueous phase. The general implications of such 

a potential for membrane transport have only just begun to be considered.” 

By Haydon , D A and Hladky, S B (1972) 

 

II.5.1 The Membrane Electric Profile 

There are numerous membrane-mediated physiological processes such as, 

adsorption/desorption of peripheral and insertion/desorption of acylated membrane 

proteins, ionic channels and solutes transport which affect or involve movement of 

charge within or through the membrane. The hydrophobic core of the membrane 

constitutes an energetic barrier to the transfer of polar solutes and ions between both 

sides of a cell. Therefore, the discovery of particular ion-transporting proteins 

elucidated the mechanisms behind their transport. One of the stimuli that regulate the 

opening of these channel proteins is the voltage across a bilayer, e.g. Na+, K+ Ca2+ ion 

pumps. The electric field, generated by the movement of ions, varies the membrane 

potential, which changes the proteins conformation and allows the unidirectional 

transportation of ions. Hence, this transmembrane potential ( ) is responsible for 

regulation of ion-pump proteins [9]. It is accepted that the main origin for this 

transmembrane potential relies in the dissimilar charge balance between the inside and 

outside of the cell. 

The distribution of specific ions inside and outside cells is not at equilibrium. This 

asymmetry, together with the distinct permeability of each ion, generates a charge 

unbalance which leads to the development of a transmembrane potential of about  

10-100mV being the cytoplasmic side negative relative to the outside [96]. This 

potential can be readily measured by placing a microelectrode on both sides of the 

membrane, using fluorescent probes, hydrophobic ions or Spin-labeled EPR probes 

[12]. At the steady state the transmembrane potential can be determined from the 
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relative ions concentrations ([X]) and their relative permeability (Px), applying the 

Goldman-Hodgkin-Katz equation. 
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where R is the gas constant, T is the temperature and F is the faraday constant. This 

equation is for a case where the K+ Na+ and Cl- are the dominant permeable ions. 

Typically most biological membranes have negatively charged phospholipids  

(see II.2.3 above for details), resulting in a negative surface charge. This superficial 

charge is electrically neutralized by the counterions, which create a diffuse double layer. 

Therefore, in the presence of charged lipids a surface potential component must be 

considered, in addition to the transmembrane potential, when the electrostatic potential 

of the membranes are considered. This reports the potential difference between the 

membrane surface and the aqueous bulk.  

The surface potential exponentially decays over a certain distance from the membrane 

surface, and its measurement is not a simple task. The common method to 

experimentally evaluate the surface potential is through the measurement of the zeta-

potential (ξ). This is the potential at the hydrodynamic plane of shear, usually 

considered to be about 2 Å beyond the charged vesicle surface [97]. The ξ potential can 

be calculated from the electrophoretic mobility (μ) of lipid vesicles, which in an electric 

field will migrate towards an electrode of opposite sign, using the Henry equation [98]. 
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where  is the aqueous solution viscosity, 0  is the permittivity of free space, r  is the 

relative permittivity of the medium and ( )f ka  is the Henry function. The zeta potential 

of biological membranes is usually only tens of millivolts in magnitude.  

In a bilayer, lipids are subject to a restricted orientation with the hydrocarbon chains 

facing each other forming a nonpolar region and the headgroups in contact with the 



Chapter II 

28 

aqueous solution. This orientation of the lipids leads to preferential orientation of their 

dipoles as well as to an orientation of the water molecules interacting with the interface. 

The alignment of dipoles leads to a new potential called the dipole potential, which 

magnitude is ≈ 400 mV in PC monolayers [99].  

According to the aforementioned, it is clear that the electric profile of a biological 

membrane does not change linearly across the bilayer. Instead it depends on the sum of 

several internal potentials from different origins such as the transmembrane potential, 

the surface potential and the dipole potential (Figure II.8). From the three electrostatic 

potential components of lipid bilayers, the dipole is the less well characterized due 

essentially to the experimentally drawbacks of its measurement. Furthermore, this 

potential decays over a small distance within the membrane, of approximately 1nm 

(lipid headgroup region), generating an electric field, in monolayers, in the range  

of 108-109 V/m. This magnitude is much larger than the transmembrane  

potential (≈90 V/m) [9]. During the last decades, several approaches have been followed 

to obtain information on the magnitude of the dipole potential (either using lipid 

monolayers or vesicles). In the next section the different methodologies available to 

measure this potential will be presented and the advantages and drawbacks of each one 

will be discussed. 

 

 

Figure II.8. Electrostatic potential profile across a symmetrical membrane with different ion 
concentration in each side of the bilayer. The figure shows the transmembrane potential (ΔΨ), the surface 
potential (Ψs) and the dipole potential of both monolayers (ΨD1, ΨD2). Electrical fields of these 
potentials are represented by arrows in the upper part of the figure. Adapted from [100]. 
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II.5.2 Methods to Measure the Membranes Dipole Potential: A Long 

Way to Go… 

The dipole potential of lipid membranes can be obtained through two distinct 

approaches. One uses monolayers of lipids, formed at an interface between water and 

air, and in the other the potential is obtained using bilayers but is an indirect 

measurement that relies on molecular probes (from the study of permeability of 

different ions or ratiometric behaviour of external probes). The dipole potential 

determined using monolayers is direct, yet, the properties of the monolayers may differ 

from those of half a bilayer.  

The most common method to obtain the dipole potential in monolayers is the Kelvin or 

Vibrating plate method, in which an applied voltage suppress the potential difference 

when the dipoles are at the air-water interface [99]. Typically, the difference in potential 

that arise due to the dipoles present at the interface is approximately 400 mV for PC 

monolayers [99]. The potential in monolayers is, usually, recovered at a pressure of  

30 mN/m accepted to be the lateral pressure in bilayers. Nevertheless, the results 

obtained in monolayers are higher, 100-200 mV, then in bilayers. Brockman et al put a 

lot of effort trying to understand and analyse this difference, which had to do with the 

methodology and its limitations [99]. One of the major contributions attributed to the 

different dipole potential obtained in monolayers and bilayers is related with the water 

rearrangement that occurs at air/water interfaces in the presence of a lipid monolayer. 

The potential measured is the difference between the one observed for the lipid 

monolayer at 30 mN and that of the water/air interface, and changes observed in the 

water orientation due to the presence of the lipid affect the dipole potential measured. 

Further addressing this limitation of the monolayers experiments, Brockman include 

some alterations to the classical Helmholtz equation. It assumed a dielectric constant of 

1 and added a potential component due to water rearrangement ( 0 ). 
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The 0  parameter was extensively studied for several types of lipids and lipid 

mixtures. They observed that it was dependent on the lipid being approximately  
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100-150 mV for phosphatidylcholines and close to zero for the negatively charged 

lipids. With this component, the agreement between the values obtained for monolayers 

and bilayers improved. However, this interesting and thorough work done by Brockman 

did not have continuity and this area independent potential did not get out of the 

speculative field. 

In bilayers, two approaches were used to measure the dipole potential. In the first 

approach Liberman and Topaly,1969, estimated the dipole moment comparing the 

activation energies for permeation of two hydrophobic ions, which was smaller for the 

anion than for cation due to a positive membrane potential in the interior [101]. 

However, they neglected the distinct hydration energies of the ions considered, which 

proved to be significant leading to a large inaccuracy in the final dipole potential 

obtained. The second methodology, introduced by Gross et al [100], measured the 

fluorescence shifts in voltage sensitive dyes, such as RH421 and di-8-ANEPPS  

(Figure II.9). However, to apply this methodology some requirements must be attained. 

First the concentration of probes must be low enough so that the membrane dipole 

potential is not affected by the presence of the probe. Second, the probe must report 

exclusively the dipole potential and no other changing membrane features such as 

fluidity. However, this is not always attained and both RH421 and di-8-ANEPPS 

showed a strong dependence with membrane viscosity being the choice of the emission 

wavelength crucial to avoid this effect. Another limitation of this method is due to the 

fact that these probes report changes in the local electrical field, being the fluorescence 

strongly dependent on the positioning of the chromophore. This subject is particularly 

important given that the membrane electric profile is a sum of several potentials, 

therefore, depending on the interfacial localization the probe may be sensing other 

potential change rather than membrane dipole potential. Moreover, to correlate the 

fluorescence shifts and the membrane dipole potential, for RH421 and di-8-ANEPPS, a 

calibration curve was performed using the membrane dipole potential observed in 

monolayers and a final correlation value of 0.8 was obtained [102]. Therefore, the 

experiments using ratiometric probes require a careful design to relate the observed 

changes with the membrane dipole potential and for each probe used a detailed study 

with different membranes must be done in order to confirm that the probe is actually 

reporting the membrane dipole potential.    
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Figure II.9. Structures of styryl probes used in dipole potential measurements. The probe location is 
illustrated by showing two phosphatidylcholine (PC). From reference [103]. 

 

During this topic, we established that none of the conventional techniques, due to their 

limitations, gives a solid and reliable value for the dipole potential of biological 

membranes. Although the dipole measurements using monolayers may be not 

comparable to the real one in bilayers the drawbacks found using other methodologies 

lead us to measure the dipole potential using monolayers. Moreover, the monolayers 

technique is one of the main methodologies to obtain the dipole potential, and there is a 

considerable amount of data available 

 

II.5.3 Contributions to Membrane Dipole Potential and Models in 

Monolayers 

The potential in the water lipid interface may be subdivided in two distinct kinds of 

potential, the surface potential and the dipole potential. While the former is well 

described using the Guoy-Chapman theory the latter is very difficult to estimate and 

measure.  

The breakthrough experiment of Liberman and Topally, 1969, revealed that two 

structurally related hydrophobic ions (TPB- TPBB+) were able to permeate lipid bilayer 

at surprisingly different rates. From electric conductivity measurements they observed 
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that the negative hydrophobic ion had a 105 times higher conductivity than the positive 

ion. Assuming the same diffusion coefficient they speculated that a different partition 

coefficient towards the bilayer centre would originate their distinct conductivity. 

According to these results they hypothesized that the membrane had a positive potential 

inside [101]. The term dipole potential, however, emerged a few years later, also, from 

conductivity experiments [104].  

During the years, the research community has spent a meaningful amount of time, 

investigating the contributions to the membrane overall dipole potential. It is now 

accepted that the phospholipids headgroups, the carbonyl groups, the terminal methyl 

groups and the interfacial water molecules promote the major contribution to the global 

membrane dipole [99, 105]. In phospholipid headgroup region there are the Pδ+Oδ- , the 

Cδ+= Oδ- and Pδ-Nδ+ dipoles, which account a total dipole moment of ≈20 D. In PC the 

Pδ-Nδ+ dipole does not contribute significantly to the total membrane dipole potential 

due to its preferential parallel orientation relative to the membrane surface [106, 107]. 

However, in ethanolamines the Pδ-Nδ+ is oriented towards the aqueous phase and a 

contribution to the final dipole moment is expected [108, 109]. Moreover, the binding 

of charged molecules may also change the magnitude and orientation of this  

dipole [110, 111]. In the case of the phosphatidic acid (PA), which does not have any  

Pδ-Nδ+, it is interesting to note that an increase in the dipole moment is observed, 

suggesting a minor role for this dipole in the global dipolar potential.  

The orientation of the carbonyl group of the lipids, pointing towards the aqueous phase, 

was confirmed through x-ray diffraction [112] and infrared-spectroscopy [113]. 

Moreover, it has strong dipole magnitude which is positioned near the hydrocarbon 

region, with low dielectric constant. Those considerations support a significant 

contribution of this group to the total membrane dipole potential [114]. Furthermore, the 

replacement of ester-bonded fatty acids chains (DPPC) for  

ether-bonded alkyl chains, 2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) 

showed a 118 ± 15 mV decrease in the overall bilayer potential [115]. However, the 

contribution from a distinct orientation of the hydration layer can not be ignored. 

The role of the Pδ+=Oδ- and Pδ+Oδ- dipoles in the membrane electrostatic dipole 

potential has not been studied in detail. Nevertheless a preferential orientation of the 
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oxygen atoms towards the aqueous media, observed through infrared spectroscopy, 

reinforces the membrane potential [116]. 

In contrast to the aforementioned dipoles, the contribution of the acyl chains has been 

controversial [117, 118]. In 1955 Davies and Rideal [119] proposed a role of CH2 

groups in the membrane dipole potential. However, in late 80’s Vogel and Mobius [120] 

assumed that only the terminal methyl groups contribute to the final dipole potential. In 

2002, a study using black lipid membranes showed a reduction in the final dipole 

potential due to the substitution, in one hydrocarbon chain, of carbons by sulphur atoms. 

They conclude that the methyl groups contribute for the increase/decrease in lipid 

packing, therefore, changing the dipole potential [121]. 

The contribution of water molecules to the membrane dipole potential arises from many 

evidences. First the lipid dipole potential in monolayers shows a strong dependence 

with the composition of the subphase (despite their related area per lipid). Secondly, 

structurally distinct lipids revealed a similar dipole potential, highlighting the role of the 

solvent [122]. Third, in DHPC membranes the dipole potential was positive inside, 

although the absence of the carbonyl group, and the authors proposed a compensation 

by the water molecules [115]. Moreover, the ions nature, present in the subphase, 

significantly influenced the water organization, changing the dipole potential [123]. 

The discovery of new molecular contributions to the membrane dipole potential was, 

closely, supported the mathematical models using monolayers (Figure II.10). 

Considering that most lipids are zwitterionic at physiological pH the dipole potential 

can be assumed as resulting from the sum of dipoles present in the lipid and water. 

Therefore, the presence of lipid molecules in the interface may be interpreted as a 

capacitor between air and water. Based in this capacitor model and assuming a dielectric 

constant for the interfacial region of 1 Helmholtz generated an equation that relates the 

dipole potential with the area per lipid in monolayers: 
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                                                                                                                                    (II-5) 

 

where   is the dipole potential,   is the effective molecular dipole moment oriented 

according to the normal of the interface and A is the molecular area occupied by each 

lipid (see [99] for details). However, this model does not distinguish between the 
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contributions of the several dipoles situated at different localizations within the 

monolayer. Therefore, Vogel and Mobius described the two layer capacitor, and then 

Davies and Rideal introduced the three layer capacitor equation. This is the recent 

theoretical model, which was improved by Demchak and Fort to include the effective 

dielectric constants in each layer (II-6) [124].  
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where, n  and n  are the dipole moment and the dielectric constant at different regions 

of the monolayer (for more details [125]).  

The sources of the dipole potential, briefly addressed in this section, not only reveal the 

contribution of the aligned dipoles present in the lipid molecules but also the ones that 

are present in the solvent. The contribution of each one to the final membrane dipole 

potential is experimentally impossible to obtain because of the inherent limitations 

presented, nevertheless, the ever growing literature concerning the dipole potential 

importance in membrane-mediated physiological processes makes the answering of the 

origins of the dipole potential a crucial concern. 

 

 

 

 

Figure II.10. Schematic representation of the Voglius Mobius 2-layer (left panel) and Demchak and Fort 
three-layer (right panel) capacitor model of monolayer and at the air-water interface. While in the 2-layer 
model the μ1 represents the lipid headgroup moment as well as the effects in the subphase the tree-layer 
capacitor separates the headgroup momentum from the moment arising from effects occurring in the 
subphase, additionally it adds the different permittivity constant in each region. Adapted from [125]. 
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II.5.4 Biological Role of the Membrane Dipole Potential 

The magnitude of the dipole potential, significantly larger than the other membrane 

electrostatic potentials, highlights its important biological function. Moreover, the cell 

developed several pathways through which the membrane dipole potential may be 

affected, such as changes in the lipid headgroup, lipid compositions or cholesterol 

content. Hence, the developments of these pathways, that may modify/regulate the 

membrane potential, may constitute an indirect proof of the important biological role of 

membrane dipole potential.  

In their structure proteins have several polar groups, being polarizable macromolecules. 

Therefore, when subjected to an electrical field they have different responses such as 

topology changes. These conformational changes are particularly important in 

membrane attached proteins, where the protein orientation is constrained by the 

anisotropic nature of the membrane. Typically the transmembrane portions of proteins 

are organized in an alpha-helix secondary structure with all the peptide residues oriented 

in the same direction along the helical axis (Figure II.11). A single peptide unit has a 

characteristic dipole moment of 3.5 Debye. Considering that 20-25 amino acid residues 

are necessary for an alpha helix to cross the hydrophobic core of biological membranes. 

This would account for a total dipole moment of 70-88 Debye with the partial positive 

net charge at the amino terminal and a negative charge at C-terminal. Roughly this 

electrostatic dipole moment corresponds to the appearance of approximately two 

opposite sign 0.5 elementary charges in each side of a 4 nm bilayer [126]. Membrane 

proteins need to be oriented to develop their function as channels or transporters. We 

speculate that the interaction between membrane dipole potential and protein dipole 

moment is a major determinant in the orientation and function of membrane proteins.  
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Figure II.11. Dipole arrangement in proteins. Panel A: Dipolar charges on a peptide bond. Panel B: 
Multiple peptide dipoles aligned along the axis of theα-helix summate to produce a macrodipole. From 
reference [127]. 

 

The effect of the dipole potential has been essentially overlooked by the scientific 

community and is addressed in very few studies. One of those works showed that the 

mechanisms for the formation and dissociation of the gramicidin channel involve dipole 

movements, which are controlled by the membrane dipole potential [128, 129]. In 

another work, the activation of Phospholipase C, due to the mediated bradykinin 

receptor leads to an increase in the intramembranous potential. Given that the surface 

and transmembrane potentials were minor contributors, the authors hypothesized that 

the dipole potential increase was due to a higher dipole moment of the reaction product 

(Dyacylglicerol) compared to substrate (phosphatidylinositol) [1].  

In order to unravel the biological role of the membrane dipole potential, most of the 

scientific literature uses molecules that once inserted in the membranes change its 

dipole potential (e.g. phloretin and 6-Ketocholestanol). The addition of phloretin leads 

to an increase in the translocation of cations while for anions it decreases. This was 

attributed to the phloretin mediated decrease in the membrane dipole potential. 

Moreover, changes in the membrane dipole potential lead to opposite effects in 

conductance and lifetime of the voltage-gated syringomycin E channel [130, 131]. The 

association of β-amyloid peptide (Aβ) with negatively charged lipid membranes was 

inhibited by the presence of phloretin [132]. This methodology may seem very indirect 

or even controversial due to the addition of molecules, which biological function may 

be far beyond the change in the membrane dipole. However, evidences for the 

membrane dipole potential physiological role start to grow. 
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The cholesterol and sphingolipids in biological membranes form a liquid ordered phase 

which is segregates from a fluid phase composed of PC, called rafts. This ordered phase 

has a higher dipole potential than the rest of the membrane. As aforementioned 

membrane proteins have a well oriented and considerable dipole moment, can their 

segregation into, or out off, lipid rafts be modulated by the membrane dipole potential? 
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II.6 Membrane Dynamics and Permeability 

“It occurred to me early on that all those compounds that are readily soluble in ether, 

fatty oils, and similar solvents, or better are more readily soluble in these than they are 

in water, for that is what really matters, penetrate faster into the Protoplast; whereas 

those compounds that are readily soluble in water but very sparingly soluble in fatty 

oils do not penetrate or only penetrate the Protoplast extremely slowly.” 

By E. Overton (1899) (translated by W. Vaz) 

II.6.1 Lipid Dynamics 

The biological membranes are highly flexible and dynamic self-assembled structures 

that can undergo conformational transitions vital to several biological processes. This 

membrane dynamic state is related to the phospholipids motions that can go from 

individual motions; such as trans-gauche isomerization and bond oscillation; 

phospholipid rotation about a long axis; lateral diffusion; phospholipid transbilayer 

movement (Flip-Flop); to combined motions like undulations of large patches of the 

membrane (Figure II.12). 

 

                  

Figure II.12. Schematic representation of membrane lipid motions and their characteristic time scale for 
a bilayer in the fluid state. Adapted from [133]. 
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Membranes conformational and dynamic transitions at different time scales are 

biologically relevant. Macroscopically, the lateral diffusion of lipids affects signal 

transduction processes and microscopically, the membrane fluidity and order has a 

considerable impact in solute permeation and uptake/release processes. The membrane 

fluidity implies that all its components, even the proteins, are able to have different 

types of motions with different time scales. Additionally, changes in membrane fluidity 

may strongly affect the electrical profile of a membrane. It is known that sterols 

modulate the properties of a bilayer not only in its fluidity but also in the membrane 

dipole potential. Therefore, by changing its fluidity/dipole potential the membrane may 

modulate the interaction and permeability of dipolar molecules. Accordingly, our 

research group showed that amphiphilic molecules partitioning and kinetics of 

interaction is different for membranes containing cholesterol [134-136]. 

 

II.6.2 Membrane Permeation 

The permeability restrictions in membranes allow the establishment of solute 

concentrations gradients which are very important in biological systems. Transport 

across biomembranes is however crucial in many cellular processes and its importance 

is being increasingly acknowledged in medical and pharmaceutical industry [137]. 

There are different pathways for a molecule to pass through a lipid membrane. While in 

passive transport mechanisms, the permeation of particles through the bilayer occurs in 

the direction of a concentration gradient. In active transport, particles may go through 

the bilayer in the direction opposing the concentration gradient, requiring the 

consumption of energy. If the permeation of most solutes, across membranes, were done 

through carriers the cell would spend a considerable amount of energy synthesizing 

these highly distinct protein assemblies. Moreover, several xenobiotic would not be able 

to permeate these biological barriers, given their structural diversity. Since most of the 

pharmaceutical active drugs are not substrates of the carriers available in 

biomembranes, the passive diffusion is a major process for their absorption. 

The membrane permeability was first addressed by Overton who, together with Meyer, 

formulated the well-known rule for passive permeation. Briefly, it states that the 

permeability coefficient of a molecule correlates linearly with its partition coefficient 
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between oil and water [4]. In other words, a more hydrophobic substance would 

permeate the membrane faster than a more hydrophilic. This correlation, accurately 

predicts the permeability trends for a large number of solutes and, most of the currently 

used permeability models account for this relation between permeability and partition 

coefficient. 

 

II.6.2.1 Solubility-Diffusion Model 

Based on the Overton’s laws for the permeation the solubility-diffusion mechanism 

emerged. It treats the membrane as a thin static slab of hydrophobic matter surrounded 

by an aqueous environment [138]. This model makes some simplifications and 

assumptions which may challenge its reliability such as; the rate-limiting step for a 

solute to cross a membrane is its diffusion through the bilayer hydrophobic region. 

Nevertheless, this model has been extensively and successfully applied to predict the 

permeation of small nonpolar solutes across the lipid bilayers. Accordingly, for the 

permeating solute to cross the membrane it has to follow three important steps: 

 

1) Partition of the permeant into the hydrophobic region of the membrane  

2) Diffusion across the apolar region of the membrane  

3) Partition into the aqueous phase on the other side of the membrane 

 

This model, in essence, combines the Overton’s rules for permeability across a bilayer 

with Fick’s first law of diffusion which describes the movement of the solute down a 

concentration gradient, allowing the calculation of a solute permeability coefficient (P) 

across a membrane. 
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Where, Kp is the partition coefficient, D is the diffusion coefficient (m2/s) across the 

hydrocarbon region and d (m) is the bilayer thickness. However, some inconsistencies 

using this model and the experimental results are described below. 

For more ordered membranes (high cholesterol content) there is a divergence of the 

experimentally obtained permeability coefficient with the one obtained through the 

model [139]. Furthermore, depending on the hydrophobic nature of the solute the main 

barrier for permeation may not be the bilayer hydrophobic core [140]. Accordingly, our 

group showed that in a homologous series of fluorescent fatty amines the translocation 

step is not always the rate-limiting step [141].  

A major discrepancy between the predicted and the experimentally obtained 

permeability was observed for ions. The main source for this inconsistency is their 

relative insolubility in the membrane (low partition coefficient), which is described by 

the Born energy electrostatic term. This term reports the energy involved in the transfer 

of an ion or dipole from a medium with a high dielectric constant (water) to a medium 

with a low dielectric constant (membrane interior). To account for the failure of the 

solubility-diffusion model in the description of ion permeability, an alternative solute 

permeation mechanism emerged. In this model, the permeant is assumed to cross the 

bilayer through transient water-filled pores, produced by thermal fluctuations in the 

bilayer (Figure II.13, Panel B). These membrane thermal fluctuations create some voids 

that are filled by water molecules, forming with each other hydrogen bonds and creating 

a hydrophilic pore. This pore allows the charged particles to overcome the Born energy 

required to permeate and explain the high permeability rates encountered by Nichols 

and Deamer for protons and hydroxyl ions. 

 

 

 

 

 

 

Figure II.13. Two distinct mechanisms for solute permeation across membrane. Panel A: The  
solubility-diffusion mechanism. The solute in one side of the bilayer enters in hydrophobic core diffuse 
across the bilayer and leaves in the other side of the membrane. Panel B: Permeation through transient 
hydrophilic pore formation due to thermal fluctuations. 

A B 
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From the two models presented above it is clear that while the solubility-diffusion 

model correctly predicts the permeability of small and neutral solutes with a large 

affinity for membranes, for small polar solutes (ions) the results are best explained by 

the pore mechanism. Consequently the applicability of the solubility-diffusion model is 

much broader than the pore mechanisms. Despite its vast applicability the  

solubility-diffusion model simplifies a complex system such has a bilayer and 

exceptions (besides proton permeability already mentioned) have been found that may 

question the model. If we consider the case of amphiphilic molecules, which have a 

preferential orientation in the membrane exceptions to this model may occur, even 

within structurally related solutes [141]. This oversimplified vision that the solubility-

diffusion model imposes to the biological membranes, lead to the appearance of more 

complex models. An example is the 4 regions model by Marrink and Berendesen, which 

divide the membrane in 4 regions with different properties [142, 143]. Another example 

is the 3 layers of Nagle that calculates the permeability across a bilayer by combining 

the permeation across each layer [144].  

The alignment of the lipids in membranes, with their polar groups oriented to the 

aqueous phase and the non-polar hydrocarbon chains oriented towards the bilayer  

mid-plane, generates transversal gradients of polarity, density and charge. This 

asymmetry is described by the membrane large internal dipole potential that arises from 

preferred alignment of lipid and water dipoles, at the membrane-solution interface. 

Moreover, most membrane permeating drugs are amphiphilic and have a considerable 

dipole moment which provides a preferential alignment of the drug in the membrane. 

Therefore, the electrostatic interplay of drug dipole moment and membrane dipole 

potential should be an important factor affecting the permeability of amphihilic drugs. 

However, the lack of knowledge of the correct partition coefficient and diffusion rate 

constant across the bilayer for a large number of molecules makes this task challenging.  
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II.6.2.2 Factors Influencing the Membrane Permeability  

Molecules permeability across membranes depends on several factors, which correlate 

with the membrane and solute chemical properties such has dipole moment [145, 146]. 

The relationship between solute properties and bilayer structure may contribute to a 

deeper understanding of rules that govern drug permeation, and new improved 

predictive models for unique groups of molecules could arise. Moreover, the ability to 

forecast drug permeability across biological barriers such as membranes is a valuable 

tool in drug design and modulation. 

 In this topic, we will briefly, address some molecular factors that are significant in drug 

modulation and design to predict their permeability across biological membranes.  

 

II.6.2.2.1 Partition Coefficient 

In drug development and design, the oil/water partition coefficient (Kp) is a central 

parameter because the biological fate of a drug (absorption, distribution, etc) until it 

reaches the final target involves the passage through several lipid membranes. 

Therefore, the drug effectiveness is associated to their tendency to permeate these 

membranes. As described above, Overton made the correspondence between the solute 

permeation and its ability to solubilize in the hydrophobic interior of the lipid bilayer 

[4]. This propensity for molecules to be more/less soluble in the membrane may be 

estimated by their partition coefficient, which describes the solute concentration ratio in 

the hydrophobic and the aqueous phase at equilibrium. Hence, a larger partition 

coefficient point out a greater affinity of the solute for the lipid phases (higher 

lipophilicity). 

The Kp estimates drug lipophilicity and, frequently, it is obtained utilizing octanol as 

solvent to mimetize the membrane.  
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Where, Kpo,w is the partition coefficient between octanol (o) and water (w) and [X] 

represents the molar concentrations of species X. This partition coefficient is widely 

used essentially due to its relative simple experimental determination and the success in 

determining the permeability of several related solutes. However, there are several 

limitations which make the Kp octanol/water a questionable approximation. i) the 

octanol homogeneous phase does not account for the complexity of biological 

membranes, and the interactions between drugs and membranes may not be well 

described by a simple homogeneous fluid; ii) biological membranes have several lipid 

compositions which can not be mimicked by octanol; iii) the apolar environment of 

octanol do not support the introduction of membrane proteins. 

The anisotropic nature of biological membranes makes the use of the partition 

coefficient octanol/water, commonly considered to represent Kp, a very shallow 

approximation. This may in fact, explain some deviations of the solubility diffusion 

model to the experimental results. It is therefore extremely important to determine the 

correct partition coefficient of the amphiphiles to membranes. This will enable the 

accurate assessment of the permeability rate. 

Moreover, by studying the partition coefficient of amphiphiles with distinct structural 

properties, e.g. headgroups, allows the establishment of rules, which govern their 

permeation. Some rules are already well established and will be presented below. 

 

II.6.2.2.2 Hydrogen Bonding 

The hydrogen bond capacity of a solute has a crucial role and can significantly affect its 

permeation across biological membranes. Depending on the ability of the solute to 

establish hydrogen bonds with water (water solubility) or lipid headgroups the partition 

and the translocation energy barrier may be affected. Upon transfer from water to the 

apolar membrane interior, the polar groups of the solute will suffer desolvation. 

Additionally, lipid bilayers have several groups located in the phospholipid headgroup 

region that are able to establish hydrogen bonds. In order to translocate, a solute must be 

hydrophobic enough to break all the hydrogen bonds and overcome the energy penalty. 

Partridge et al, 1979, showed that the blood brain barrier (BBB) penetration increased 

with the lowering of the solute overall ability to hydrogen-bond [147]. Moreover, 

permeation studies of several compounds across the BBB indicated that the parameter Δ 
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log P, which is related to the overall hydrogen-bonding ability of a compound, has a 

strong correlation with experimentally determined brain permeation [148]. The 

compound hydrogen bond ability is a fundamental chemical property (descriptor) to 

predict the permeability of new drugs across membranes, and its most simple estimation 

relies on the calculus of H-bond donor and H-bond acceptor of the drug. Nevertheless, 

depending on the software, more complex models related to the compound hydrogen 

bond ability may be applied [149, 150].  

 

II.6.2.2.3 Molecular Size 

Lieb and Stein (1969) compared the size dependence for solutes permeability and their 

diffusion across the apolar interior of the membrane. They established that solutes with 

higher molecular weight would diffuse more slowly in the membrane hydrophobic core 

[146]. Accordingly, other study [151] using small solutes with partition coefficients 

ranging over 4 orders of magnitude, observed that the dependence of the partition 

coefficient with the solute size could not explain the high permeability found. 

Therefore, the size dependence diffusion through the hydrocarbon core was the main 

reason. These studies, however, showed that the comparison between the membrane 

interior and an isotropic hydrocarbon solution was simpleminded, being the membrane 

close related to a soft polymer [146, 151, 152].  

In the 90´s simulations revealed that there is a molecular size dependence for solute 

partition, and the permeation is a combination of both partitioning as well as diffusion 

in the ordered-chain region of the lipid bilayer, although their relative roles in 

determining the overall size selectivity are still unknown [143, 145]. 

In 2001, Lipinski analysed the permeability of several compounds formulating the well-

known rules for drugs absorption, which point out among other factors that drugs with a 

molecular weight smaller than 500 Da have a favourable absorption [153]. In agreement 

with the Lipinski rules for permeation, in 1995 Pardridge showed a good correlation 

between permeation through the blood-brain barrier and logP up to a molecular size 

threshold of 400-600 Da. 
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III.1 Material 

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-

L-serine (POPS), cholesterol (CHOL) and egg-sphingomyelin (SpM) were from Avanti 

Polar Lipids, Inc. (Alabaster, Alabama, USA) and bovine serum albumin (BSA) was 

from Applichem (Darmstadt, Germany). The 5-carboxyfluorescein, succinimidyl ester 

(single isomer) (CBF) and rhodamine green carboxylic acid n-hydroxysuccinimidyl 

ester hydrochloride 5(6)-mixed isomers (RG) were from Molecular Probes and 1,2 

dipalmitoyl-sn-glycero-3-phosphoethanolamine-n-(lissamine rhodamine B sulfonyl) 

(Avanti) (RhB-DPPE) was from Avanti. The tetradecylamine was from Fluka. All other 

reagents and solvents were of high purity grade, from Sigma-Aldrich Química S.A. 

(Sintra, Portugal).  

The aqueous solutions used throughout this work were prepared using distilled water 

(Aquatron A4000), further purified in a system containing particles and charcoal filters 

and UV irradiation. The final purity of water was evaluated through conductivity 

analysis and kept below 0.5 µS. 

 

 

III.2 Equipment 

 Steady state fluorescence spectra, fluorescence anisotropy and fluorescence 

kinetics measurements were performed on a Cary Eclipse fluorescence 

spectrophotometer (Varian) equipped with a thermostatted multicell holder 

accessory and automatic polarizers.  

 Fluorescence lifetime measurements were done on a home-built TCSPC 

apparatus with a Horiba-JI-IBH NanoLED at excitation wavelength (λexc) of 460 

nm, a Jobin-Ivon monochromator, a Philips XP2020Q photomultiplier, and a 

Canberra instruments TAC and MCA as described elsewhere [154].  
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 UV-Vis absorption was performed on a Unicam UV530 spectrophotometer 

(Cambridge, U.K.).  

 Fluorescence fast step kinetics (up to 1000 s) were performed on a thermostated 

stopped-flow fluorimeter (Hi-Tech model SF-61) by mixing equal volumes of 

two solutions, as required for each particular case studied. The λexc was defined 

by a monochromator and an appropriate band-pass (Thermo Corion) 520 nm 

emission wavelength filter.  

 The probes purification was performed by High Performance Liquid 

Chromatography (HPLC) with a Diode Array (model G1315D from Agilent, 

USA) and Fluorescence detector (model G1321A from Agilent, USA) 

 The surface pressure in different monolayers was measured in a Kibron µtrough 

S instrument 

 

 

III.3 Aqueous Buffer 

The aqueous buffer solution used throughout this experimental work was composed of 

150 mM NaCl, 10 mM hepes, 1 mM EDTA and 0.02 % (m:v) NaN3 and adjusted to 

physiological pH (7.4) using sodium hydroxide (NaOH).  

 

 

III.4 Preparation of Large Unilamelar Vesicles (LUVs) 

First, 40×10-3 M stock solutions of POPC, POPE, POPS, SpM, and CHOL were, 

independently, prepared in an azeotropic mixture composed of chloroform and 

methanol (CHCl3:MeOH, (87%:13%, v:v)). To obtain the final desired lipid mixture 

compositions, appropriate amounts of the pure component solutions were mixed and 

stirred in a vortex. The solvent was rapidly evaporated to dryness under a gentle stream 

of nitrogen while the solution was simultaneously heated by blowing hot air over the 

external surface of the tube. The dry lipid residue was maintained, at room temperature 
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and reduced pressure, in a vacuum desiccator for 6-8 h to remove trace amounts of 

solvent.  

The lipid film was hydrated with a pH 7.4 aqueous buffer (III.3 above) pre-heated in a 

water bath at 60 ºC, for cholesterol containing mixtures, or at room temperature ~25 ºC, 

for pure POPC and lipid mixtures without cholesterol. The hydration volume added was 

previously determined to obtain the final desired total lipid concentrations. The samples 

were submitted to vortex/incubation cycles, at the described temperatures, until the 

entire residue was fully hydrated, generally 30-60 min.  

In order to obtain 100 nm LUVs the resulting multilamellar vesicle (MLV) suspensions 

were extruded, using a minimum of 15 passes, through two stacked polycarbonate 

filters (Nucleopore) with a pore diameter of 0.1 µm (Figure III.1) [155]. During the 

procedure, the water-jacketed extruder (Lipex Biomembranes, Inc., Vancouver, Canada) 

was maintained at desired temperature depending on the lipid mixture. The final LUVs 

samples containing mixtures of lipids were subject to at least two slow cycles of 

heating, to 60 ºC, and cooling to the lowest temperature used in the experimental work. 

This heat treatment is called annealing and is widely used in metallurgy refining the 

structure properties and making it more homogeneous. All the LUVs samples were left 

to equilibrate for ~1 h at the final experimental temperature. 

Considering that the prepared LUVs were used within 1-2 weeks the storage of the 

samples was different taking into account their lipid composition. While the final 

cholesterol containing mixtures were stored at the room temperature the other solutions 

were kept at 7 ºC, all protected from light exposure. 
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Figure III.1. Typical results, obtained by dynamic light scattering (DLS), for the size distribution of a 
POPC sample prepared by extrusion through two staked polycarbonate filters 0.1 μm. The average 
diameter considered for this sample was that given by the volume distribution ≈ 113 nm. 

 

 

III.5 Liposomes Chemical Composition and Quantification 

The methodology, described above, to obtain LUVs is complex having several small 

steps that end with a turbulent mechanic extrusion procedure therefore, it is reasonable 

to expect that the total lipid concentration may suffer some small variations. This is 

more critical when we use complex lipid mixtures where a drastic loss of one or more 

components may actually induce completely different membrane properties  

(different phase state). Hence, is fundamental to quantify and analyse the lipid 

composition of each sample used in the experiments.  

The total phospholipid concentration of LUVs was analysed using a phosphate 

quantification method which was modified from its original version of Bartlett 

phosphate assay [156]. The cholesterol content was analysed through the  

Lieberman-Burchard method described by Taylor et al [157]. Both methods are briefly 

described below. 

 



Material and Methods 

53 

III.5.1 The Bartlett Phosphate Assay: 

 A calibration curve was generated using a stock 1 mM potassium hydrogen 

phosphate (K2HPO4) solution and pipetting appropriated volumes (in duplicate) 

in a final range of 0-1 μmol. 

 The samples, whose phospholipid concentrations remained to be determined, 

were diluted to a final expected concentration of 0.5 μM (in duplicate) and the 

final volume of all samples was set to 300 μL using deionized water. 

 700 μL of perchloric acid was added to the solutions which were vortexed, 

covered with marbles and placed in a block heater at 190 ºC for 1-2 h, until 

complete colourless.  

 After the samples cooling, 2 ml of a solution containing 1% (m:v) of ammonium 

molybdate and 2 ml of a 4% (m:v) solution of ascorbic acid were added to each 

tube, and all the samples were kept at 37 ºC for 1-2 h. 

 The absorbance of the solutions was read at 700 nm and a calibration curve was 

obtained as well as the final phosphate concentration of the LUVs samples of 

interest (Figure III.2, Panel A). 

 

III.5.2 The Lieberman-Burchard Cholesterol Assay: 

 A calibration curve was prepared pipetting the appropriated volumes, from a  

2.4 mM stock solution of cholesterol in isopropanol to give a final range of 

concentrations from 0 to 0.5 μmol  

 The LUVs samples containing cholesterol were diluted to give a final 

concentration of 0.25 μM and all the tubes were filled to same volume with 

isopropanol (100 μl). 

 3 ml of a solution composed of glacial acetic acid, acetic anhydride and 

sulphuric acid (35:55:10, v:v:v), previously prepared and kept on ice, were 

added to each tube.  
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 After 20 min of incubation at 37 ºC the absorbance of the samples was read at 

625 nm (Figure III.2, Panel B).  
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Figure III.2. Determination of the phosphate (A) and cholesterol (B) concentration in LUVs. The circles 
represent the standard and the squares the sample solutions. 

 

 

III.6 Synthesis and Purification of the RG-C14 and CBF-C14 

Amphiphiles 

The RG-C14 and CBF-C14 fluorescence amphiphiles were synthesized by the addition of 

a chloroform/methanol (1:1,v:v) solution containing the tetradecylalkylamine  

(10-fold molar excess over dye reagent) to a dimethylformamide (DMF) solution of the 

dye reagent (Rhodamine green carboxylic acid N-hydroxysuccinimidyl ester 

hydrochloride ‘‘mixed isomers’’ or 5-carboxyfluorescein succinimidyl ester (single 

isomer)), with a few grains of anhydrous sodium carbonate. Ever since the formation of 

a precipitate or turbulence was detected in the solution a small amount of DMF was 

added. The reaction mixture was stirred using vortex and allowed to stand for 24 h at 

room temperature under constant agitation (exposure to direct light was avoided). The 

solvent was evaporated at a reduced pressure and using small amounts of methanol, 

facilitating the evaporation procedure.  

The solvent free residue was dissolved in a chlorophorm:methanol (1:1, v:v) solution 

after which the desired product along with other compounds present in the solution were 
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separated in a preparative thin layer chromatography plate using a 

chlorophorm:methanol (1:1, v:v) eluent. The final bands with different retention factors 

were separately removed from the silica with chlorophorm and methanol solution. 

Considering that methanol also dissolves the silica we performed an additional reverse 

phase chromatography step using the C18-RP as a stationary phase and methanol as 

eluent.  

The final fractions, with different retention factors, for both RG-C14 and CBF-C14 were 

further purified by HPLC through a reverse phase column from Agilent Technologies 

(Zorbax ODS 4.6×250 mm) with methanol/water (98:2, v:v) for RG-C14 and 

methanol/water (80:20, v:v) for CBF-C14, as eluent. The fraction, suspected to be the 

one with a higher concentration of the desired probe, was firstly injected and a highest 

peak appeared in the chromatogram for both probes with a retention time of 8 and 20 

min for RG-C14 and CBF-C14, respectively (Figure III.3). Given the separations 

obtained for the peak of interest and other smaller peaks we were able to further purify 

and isolate fractions containing RG-C14 and CBF-C14 from the other components, so 

that only one major peak appeared in the chromatogram. The final purity of RG-C14 and 

CBF-C14 was verified being >85% (Figure III.3).  

The fluorescent amphiphiles concentrations in methanol solution were determined by 

absorption spectrophotometry using a molar extinction coefficient of 7.8×104 M-1 cm-1 

for RG-C14 and 6.5×104 M-1 cm-1 for CBF-C14 at 502 nm and 490 nm, respectively.  

The reaction scheme for the formation of the RG-C14 fluorescent probe is represented in 

Figure III.4. 
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Figure III.3. HPLC chromatogram for the final reaction product RG-C14 (A) and CBF-C14 (B). 
Conditions: reverse phase column (see above for details); room temperature; mobile phase, MeOH:H2O 
(98:2) for RG-C14 and MeOH:H2O (80:20) for CBF-C14; the detection was performed through  
exc= 502 nm and exc= 490 nm with the retention time (tR) of ≈ 8 min; ≈20 min for RG-C14 and CBF-C14 
respectively. 

 

 

 

 

Figure III.4. Schematic representation of the nucleophilic attack of the tetradecylamine to the partially 
positive carbon attached to the C-5 of the fluorophore (Rhodamine green). A similar chemical reaction 
leads to formation of CBF-C14. 
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III.7 Determination of the Amphiphile Critical Aggregation 

concentration (CAC) 

The amphiphile aggregation experiments were performed for a Rhodamine derivative 

with a shorter (10 carbons) alkyl chain length, RG-C10, due to a predicted very low 

water solubility of the RG-C14 making it impossible to experimentally determine. For 

CBF-C14 and considering it is negatively charged we expected a higher CAC therefore it 

was directly measured using steady state fluorescence.  

A set of 3 concentrated stock solutions of RG-C10 or CBF-C14 in methanol were 

prepared so that a minimum volume (20-100 μL) was collected to prepare the different 

dilutions of interest. Several solutions containing different volumes of each probe, 

covering the relevant experimental range of concentrations (0-100 nM for RG-C10 and 

0-25 nM for CBF-C14), was prepared from the methanol stock solutions. Methanol was 

rapidly evaporated under a gentle nitrogen stream while the solution was simultaneously 

heated by blowing hot air over the external surface of the tube. The dry residue of each 

probe was hydrated with 2 ml of buffer solution and gently stirred using vortex (with a 

very low speed), and the solutions were left to equilibrate at 25 ºC for 1 h. The emission 

fluorescence intensity of the RG-C10 and CBF-C14 was observed at 530 nm and 525 nm 

with an excitation wavelength of 502 nm and 490 nm respectively.  

The fluorescence intensity was measured with a cuvette path length of 1cm and a slow 

integration step so that the spectra had a significant signal:noise ratio.   

 

 

III.8 Amphiphile Aggregation Studies in Membranes 

The LUVs containing the amphiphile of interest were prepared, according to the 

previously described procedure (III.4 above), using a RG-C14 probe: lipid molar ratio 

1:200, at 60 ºC and a lipid concentration of 1 mM. Such high temperature permitted the 

amphiphile aggregation to be avoided during the extrusion procedure. A higher probe to 

lipid ratio (1:50) was used for membranes with a very slow aggregation process at 

1:200.  
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An absorption spectrum of the amphiphile (t= 0 h) was obtained, with the solution at  

60 ºC, after which the temperature was rapidly decreased to 25 ºC being followed in 

time. Considering that the LUVs samples significantly disperse light, giving high 

absorptions, the final dispersion-free absorption spectrum was attained by subtracting to 

the raw experimental absorption spectrum a simulated dispersion curve that served as 

baseline. To do this, the solver utility from excel® program was used generating a line 

described by a polynomial expression of the degree n that best fitted the values of 

absorbance between 300 nm and 400 nm and between 650 nm and 700 nm for RG-C14 

and CBF-C14, respectively. This line serves as a dispersion baseline for the 

experimentally obtained absorption spectrum (Figure III.5, Panel A).  

The absorption maximum of the samples was recovered and the time evolution of the 

calculated local monomer concentration fitted with a dimerization process. The probe 

local concentration at each time frame was calculated based on absorption maximum 

and taking into account the experimental concentration and the molar volume of the 

lipids of interest (Figure III.5, Panel B).  
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Figure III.5. Panel A: Dispersion free absorption spectra of RG-C14 (Blue) obtained by subtracting to the 
raw spectra (Black) a polynomial curve that describe the LUVs dispersion (Red). Panel B: Absorption 
spectra of RG-C14 at t= 0 h (Red) and t~ 2 h (Blue). The green line represents the deconvoluted monomer 
absorption spectra at t~ 2 h, obtained through the overlap of the absorption spectra at t= 0 h (red) to 
 the t~ 2 h (blue).   
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III.9 Determination of the CBF-C14 Ionization Constant in 

LUVs 

LUVs with different lipid compositions containing the CBF-C14, in a probe: lipid molar 

ratio 1:100 and a final concentration of 1 mM, were prepared according to III.4 above) 

and hydrated with a solution containing NaCl 150 mM, NaN3 0.02%, EDTA 1 mM in a 

controlled pH range between 11-12. Three stock solutions of hydrochloric acid (HCl) 

with 0.01 M, 0.1 M and 1 M were previously prepared. Through the addition of small 

aliquots (1-5 μL) of the HCl correspondent stock solution, directly to the cuvette, going 

from the more diluted towards the more concentrated while stirring the solution to 

homogenize, we were able to decrease, by a small value, the pH of the solution. The 

stirring was maintained during approximately 3-5 min after which the pH, with the help 

of an electrode, was directly measured in the cuvette. The absorption spectrum was 

obtained after the pH stabilization. Finally, a second reading of the solution pH was 

measured in order to have a more accurate value.     

 

 

III.10 Methodology for the Partition of RG-C14 and CBF-C14 

between Donor POPC LUVS and Acceptor LUVs 

The low water solubility of RG-C14 precluded the direct measurement of the partition 

coefficient between water and membranes, restraining the method to the transfer 

between different vesicles. From this methodology one may obtain the relative partition 

coefficient between the distinct membranes, given that the partition to the donor 

membrane is known or that the fraction of amphiphile in the aqueous media is 

negligible. The donor vesicles were composed of a final 0.1 mM (after addition of 

acceptor vesicles) POPC, loaded with RG-C14 or CBF-C14, at a probe: lipid molar ratio 

of 1:500 for RG-C14 and CBF-C14, and the fluorescence lipid, RhB-DPPE (Figure III.6) 

at 1:100, molar ratio. The acceptor vesicles were composed of single POPC or a mixture 

of phospholipids, POPC:CHOL(5:5), POPC:CHOL(7:3) SPM:CHOL(6:4), 

POPC:CHOL:POPE(5:3:2) and POPC:CHOL:POPE:POPS(4:3:2:1), at different lo, ld 
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phases or with phase coexistence. The transfer of the amphiphiles was followed by an 

increase in RG-C14 (at 530nm) or CBF-C14 (at 525 nm) fluorescent intensity upon the 

addition of growing concentrations of an acceptor vesicle in a final range of 

concentrations of 0.05 mM to 2 mM, depending on the acceptor lipid composition. The 

solutions were allowed to equilibrate at a constant temperature 25 ºC for 2 h before the 

fluorescence readings. The cuvette path length used was such that the maximum optical 

density (absorption plus scattering) was smaller than 0.12 at the excitation wavelength. 

 

 

Figure III.6. Chemical structure of the fluorescence quencher RhB-DPPE used in this work. 

 

 

 

III.11  Methodology for the Kinetics of Interaction of RG-C14 

and CBF-C14 between Donor POPC LUVS and Acceptor 

LUVs 

The aqueous solubility of the amphiphiles, namely RG-C14, was very low and the 

kinetics of their interaction with membranes was obtained using the transfer between 

donor and acceptor vesicles. The donor vesicles were composed of 0.1 mM of pure 

POPC or a mixture of lipids loaded with RG-C14 or CBF-C14, at a probe: lipid molar 

ratio of 1:500, and the fluorescence lipid quencher RhB-DPPE at 1:100. Considering 

that the observed experimental time for transfer (less than 1 min) was considerably fast 

the possibility of occurring cholesterol exchange between vesicles was negligible. 
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Therefore, we have exploited the transfer rate for distinct, or the same lipid 

compositions for donor and acceptor vesicles.  

The donor and acceptor vesicles solutions were mixed, using stopped-flow equipment, 

at an equal volume, and an increase in the fluorescence, due to binding of the 

amphiphiles to the acceptor LUVS was followed in time. The excitation was set as  

530 and 490 nm for RG-C14 and CBF-C14, respectively and the emission was recorded 

through a band pass filter of 520 nm.  

The data collected proved to be bi-exponential, with a slower step for longer times, due 

to the translocation of the amphiphiles between lipid monolayers. For the correct 

quantitative assessment of the slower rate process we have opted to perform the 

experiment in the kinetic mode of the spectrofluorimeter. Experimentally, we added a 

solution containing the donor vesicles (0.4 mM, initial concentration) loaded with the 

amphiphile of interest and the quencher RhB-DPPE, at the aforementioned molar ratios, 

to acceptor vesicles (at different concentrations) previously in the cuvette and followed 

the final solution fluorescence intensity while stirring. In this case and taking into 

account that this slow step could take several hours the vesicles had the same lipid 

composition avoiding any cholesterol exchange during the experiment. 

 

 

III.12 Fluorescence Anisotropy and Lifetimes 

The fluorescence anisotropy, lifetime and quantum yield was obtained for both RG-C14 

and CBF-C14 in different lipid composition bilayers and in methanol, at a final 

concentration of 2 μM for CBF-C14 and for RG-C14 and a lipid concentration of  

0.5 mM. For the anisotropy a determination of the geometrical factor (G factor) was 

attained using a fluorescence non-dispersive methanol solution with 2 μM of the 

fluorescent probe of interest. 

Fluorescence lifetime measurements were done on a home-built TCSPC apparatus with 

a Horiba-JI-IBH NanoLED at λexc =460 nm. 
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III.13 Monolayers Experiments 

The main focus of this work is the interplay of both the membrane dipole potential and 

amphiphile dipole moment. Therefore, experimental measurements of the membrane 

potential have to be attained. For this we used the well-known monolayers methodology 

(see II.5.2), which experimental details are described below.  

 

III.13.1 Measurement of the Potential Difference across Lipid 

Monolayers  

The potential was measured in lipid monolayers formed at the air-aqueous interface. 

The system utilized is based on a high impedance circuit which connects an ionizing 

electrode of polonium in the air and a reference (Ag/AgCl) electrode immersed in the 

aqueous solution. The monolayers are formed, at the air-aqueous solution interface 

(NaCl 150 mM, Sodium azide 0.02% (m:v), EDTA 1 mM and Hepes 10 mM at pH 7.4), 

by gently adding crescent aliquots of lipids (dissolved in chlorophorm) with a 

microseringe until we reach a point, where further addition of lipid does not induce any 

change in the measured dipole potential(Vlipid). The difference between the potential 

without any lipid (Vsolution) and the potential Vlipid allow us to recover the dipole 

potential of the formed monolayer [158].  

For zwitterionic lipids the measured potential is exclusively of dipolar origin while for 

POPS containing monolayers it includes the contribution of the surface charge potential 

(Ψ0). An approximate value for the Ψ0 was obtained from the electrical density charge 

at the experimentally determined area per lipid at the saturation pressure (πsat), using the 

Guoy-Chapman theory.  
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where, σ is the electric charge density, ε0 is the vacuum permittivity, εr the relative 

permittivity, R is the ideal gas constant, T is the temperature, F is the Faraday constant, 

Ci and zi are the concentration and formal charge of the i species, respectively. 



Material and Methods 

63 

III.13.2 Monolayer Surface Pressure Experiments  

The formation of monolayers at an aqueous surface was monitored through changes in 

the surface pressure, using Kibron μTrough S equipment, with the addition of lipid at a 

constant area and temperature (25 ºC). Small aliquots of a chlorophorm solution 

containing the lipids of interest (0.5 mM) were carefully spread on a clean surface of an 

aqueous buffer and left to equilibrate until the surface pressure reaches a constant value. 

When the addition of further lipid results in no visible changes in surface pressure 

(saturation) the excess lipid form aggregates in the subphase and the thermodynamic 

and interfacial properties are comparable to those of a bilayer. This procedure allows for 

a spontaneously lipid stabilization in the aqueous-air interface without applying any 

lateral pressure [158, 159]. The areas per lipid at the saturation pressure (πsat) were 

obtained from the variation of the surface pressure versus the amount of lipid through 

the interception of two lines, one describing the high pressures region (small slope) and 

other describing the region with the steepest slope (Figure III.7).  
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Figure III.7. Typical results for π-total lipid (nmol) isotherm where the two lines represent the plateau at 
high pressures and the region with steepest slop, respectively. The saturation point is represented by 
interception of both regimes. 
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IV.1 Introduction 

The total electric profile of a membrane may be defined by three distinct kinds of 

potential: the transmembrane potential, the surface charge potential and the dipole 

potential. The first is a consequence of the charge displacement from one side to the 

other of a membrane, due to a difference in ion concentrations between both 

compartments. The surface charge potential, which is described by Guoy-Chapman 

theory, results from the presence of charged groups and ion distribution in the electrical 

double layer on the membrane surface. The latter, but not less important, is the 

membrane dipole potential, which is originated from the preferred alignment of water 

molecules and certain constitutive dipoles of lipid groups.  

The dipole potential was first discovered by Liberman and Topaly, 1969, through 

membrane conductivity changes upon addition of large hydrophobic anion and cation 

(TPPB-, TPPB+). They observed that the membrane conductivity was much larger for 

the hydrophobic anions than for the cations. This difference was attributed to their 

distinct partition into the centre of the membrane and they supposed that the presence of 

a more positive potential within the membrane was the main reason for the permeability 

differences [101].  

The main sources contributing to this membrane internal dipole potential are considered 

to be the lipid carbonyl groups, the dipole resulting from the phospholipid headgroup 

(choline-phosphate dipole in the case of phosphatidylcholines), the alkyl chain terminal 

methyl group and the interfacial water hydrating the phospholipid headgroups [96, 160]. 

These sources account for a larger value of the dipole potential than the surface charge 

or the transmembrane potentials (see II.5.3 for details).  

Studies in monolayers with phosphatidylcholines revealed a dipole potential of 

approximately 400 mV and, such high value suggests an important biological role for 

the dipole potential. The binding affinity or the orientation of a membrane peptide can 

be affected by the dipole potential [161, 162], moreover the permeability of charged 

molecules is further affected by the dipole potential [163, 164] and alterations in the 
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activity of a membrane embedded peptide was attributed to changes in the internal 

dipole potential [165]. 

The dipole potential can be changed through the addition of certain dipolar molecules 

such as phloretin [166], cholesterol and an analogue 6-ketocholestanol [167, 168], that 

consequently modify the membrane permeability properties. The cholesterol molecule is 

one of the main lipids of many biological membranes and its effect in the dipole 

moment was first addressed by Szabo et al in 1974 using the hydrophobic ions. They 

observed that upon the addition of cholesterol to a neutral membrane there was a 30-

fold increase in anion permeability relative to a 100-fold decrease in cation 

permeability. This distinct behaviour for anion and cation was compatible with an 

increase in dipole potential of cholesterol containing membranes. Later this observation 

was confirmed through measurements of the dipole potential of Egg 

Phosphatidylcholine (EggPC) with cholesterol monolayers [169]. The main reason why 

cholesterol increases a membrane potential is by promoting an enhancement of the 

membrane lipid packing, the so-called condensation effect [170].  

Biological membranes are asymmetric structures composed not only by cholesterol but 

also by several kinds of phospholipids, which abundance depends on the chemical 

environment that is in direct contact with each monolayer [40]. 

While sphingomyelin (SpM) phosphatidylcholines (PC) and cholesterol (CHOL) are the 

major components of the outer exoplasmic leaflet of the plasma membranes in 

eukaryotic cells, the composition of the inner leaflet composition is mainly PC, 

phosphatidylethanolamines (PE) and phosphatidylserines (PS) phospholipids [171]. The 

dipole potential of phosphatidylcholines, sphingomyelin and mixtures with cholesterol 

has been a subject widely discussed in literature, to get insights on the sources 

contributing to the dipole potential change [108]. However the dipole potential of 

biologically relevant lipid mixtures has not been addressed in literature, gap that we 

pretend to fulfil with this work.  

Typically, the erythrocyte membrane contains between 10-20% of serine phospholipids 

and 10-25% of phosphatidylethanolamines [172] so, the dipole potential study of 

mixtures of POPC and cholesterol with 10% of POPS and 20% of POPE is biologically 

relevant.  
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The dipole potential for pure lipid and lipid mixtures has been studied mainly through 

experiments using monolayers. Briefly it consists in measuring the potential difference 

across an air/water interface first in the absence and then in the presence of a formed 

monolayer [99, 173]. The difference between both measured potentials will give the 

contribution of the dipole of lipids therefore, the dipole potential (in zwitterionic lipids). 

For charged lipid molecules the measured potential comprehends a contribution of the 

lipids dipole potential and the surface charged potential (Ψ0) (IV-1). Therefore, in order 

to obtain the dipole potential in monolayers containing charged lipids we must 

determine the Ψ0 using the Guoy-Chapman theory. 

 

0measured Dipole                                                                                                  (IV-1) 

 

While the surface potential is more relevant for charged molecules near the membrane 

interface affecting their partition coefficient, the dipole potential is particularly 

important for amphiphilic molecules and membrane proteins which are inserted in 

membranes being in close interaction with this strong electrical field. 

The quantification of the membrane dipole potential with different lipid compositions is 

important to understand its role in permeation of certain amphiphilic molecules, 

especially the ones which contain a preferential dipole moment orientation. Moreover, 

in the latest years, our group has characterized the interaction of different 

amphiphiphiles and drugs with distinct zwitterionic lipid bilayers [134, 174, 175] and 

the magnitude of the membrane dipole potential seems to have a crucial role [3].  

In this work the membrane dipole potential results were complemented by mean area 

per lipid data, either obtained from literature or through experimental measurements. 

The obtained results showed that cholesterol increases the dipole potential of a 

monolayer formed at the air-water interface due to a decrease in the average area per 

lipid. The effect of POPE strongly depends on the constituting lipids of the monolayer, 

while in the presence of POPC it increases the dipole potential of the membrane in 

mixtures with cholesterol a decrease is observed. The presence of negatively charged 

POPS increases the dipole potential of monolayers even though an enhancement in the 

monolayer packing is not evident. This increase in the dipole potential due to POPS and 

the smaller dipole of monolayers containing large amounts of SpM generates a non-zero 
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transmembrane potential in the asymmetric plasma membrane. The lipid composition 

mimicking the inner leaflet of plasma membrane of eukaryotic cells showed a large 

dipole potential and an unexpected, given the presence of cholesterol, high area per 

lipid. 

 

 

IV.2 Dipole Potential in Lipid Monolayers  

The quantification of the dipole potential through lipid monolayers gives an important 

contribution to understand their organization in bilayers [159]. The comprehension of 

dipole potential variation in biologically relevant lipid mixtures requires a primary 

analysis of less complex mixtures and pure lipid behaviour. Consequently, pure POPC, 

POPE, SpM and POPS dipole potentials were obtained in monolayers formed at the  

air-water interface ( 

 

Figure IV.1). In agreement with other studies [99, 176], our results show that 

ethanolamine and serine headgroups pack densely leading to an increase in monolayer 

dipole potential compared to pure POPC.  

A much smaller dipole potential for SpM compared to POPC was obtained although a 

higher packing (smaller area at the same pressure) was observed by other authors [177]. 

SpM alkyl chain motional constraints and its ability to establish a network of hydrogen 

bonds between headgroups increases the lipid packing in these membranes [178-180]. 

Despite this increase in packing there are structural differences compared to POPC  

(an OH instead of a carbonyl) that influence the dipole potential, and account for the 

observe decrease in dipole potential. 
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Figure IV.1. Dipole potential in pure POPC, POPE, POPS and SpM monolayers at pH 7.4 with hepes 
buffer at 25 ºC. The dipole potential of POPS was determined from equation IV-1 with a Ψ0≈-135mV. 

 

The addition of increasing percentages of cholesterol to POPC enhances the dipole 

potential from 417 mV to ~ 490 mV, at 50% cholesterol, due to the increase in 

membrane lipid packing in those membranes (Figure IV.2) [177, 181]. This dipole 

potential variation (15%) is in agreement with the observed difference for 

EggPC:Cholesterol monolayer at equimolar concentrations [176] and smaller than the 

observed using bilayers containing 40% of cholesterol [182]. The addition of 

biologically relevant percentages of POPS (10%) and POPE (20%) to POPC lead to a 

small increase in the final dipole potential obtained. The lipid packing of both 

monolayers is affected in opposing ways and while the mean area per lipid at saturation 

pressure is the same for the pure POPC and POPC:POPS (90:10) in the presence of 20% 

POPE there is a substantial decrease in the mean area per lipid.  

Upon the addition of POPE (20%) and in the presence of cholesterol there is a dipole 

potential increase of approximately 4% from 463 mV in POPC:CHOL(7:3) to 482 mV 

in POPC:CHOL:POPE(5:3:2), though compared with the more packed 

POPC:CHOL(5:5) monolayer the dipole potential is slightly smaller. The quaternary 

mixture representing the inner leaflet of plasma membrane showed that the presence of 

POPS does not, significantly, change the dipole potential comparing the 482 mV 

obtained for POPC:CHOL:POPE(5:3:2) monolayer with 474 mV. This is in agreement 

with the results obtained for POPC:POPS(9:1) which almost no variation occurred when 

compared to pure major component. Although both SpM:CHOL(6:4) and 
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POPC:CHOL(5:5) monolayers have a similar lipid packing at 30 mN/m the dipole 

potential obtained at πsat is much smaller for the former than for the latter. 
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Figure IV.2. Dipole Potential, at 25 ºC, in monolayers composed by a mixture of lipids, where PC, PS, 
PE, C and SpM abbreviations entitle POPC, POPS, POPE, Cholesterol and SpM, respectively. The 
numbers between commas correspond to the lipid molar fraction in the mixture. 

 

 

IV.3 Area per Lipid in Monolayers  

The area per lipid parameter describes quantitatively the differences in lipid packing 

within a monolayer and, studies the effect on the membrane dipole potential promoted 

by mixing different zwitterionic lipids. Moreover, this study together with the results of 

dipole potential allows rationalizing the effect (condensation/expansion) of different 

lipids in more complex lipid mixtures. In this work we calculated the area per lipid from 

the changes in the surface pressure as a function of the amount (nmol) of lipid added 

(Figure IV.3).  

The lipid compositions were chosen considering the previously obtained dipole 

potential as well as the literature data. We measured the area per lipid in a well 

characterized monolayer such as POPC and taking into account the mixtures reported in 

the literature we selected most biologically relevant mixtures, POPC:POPS(9:1), 

POPC:CHOL:POPE(5:3:2) and POPC:CHOL:POPE:POPS(4:3:2:1). 
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Figure IV.3. Formation of monolayers of phospholipids measured by the changes in surface pressure as a 
function of nmol of lipid added at 25 ºC. Panel A: Pure POPC (□); POPC:  
POPS(9:1, molar ratio) (O); POPC:POPE(8:2) (Δ); Panel B: POPC:CHOL:POPE(5:3:2) (◊); 
POPC:CHOL:POPE:POPS (4:3:2:1)( ); at 25 ± 1 ºC. The line is a guide to the eye. 

 

For either pure or mixtures of lipids the mean area per lipid found in literature is, 

generally, presented at a surface pressure of 30 mN/m which is assumed to be the lateral 

pressure in a bilayer [183] and in order to compare our results with previously reported 

data we fitted a polynomial equation, for areas smaller than 100 Å2  

(liquid expanded/condensed state), to the experimental results of π-Area isotherm and 

the area per lipid at a surface pressure of 30 mN/m may be recovered (Figure IV.4).  

The π- Area isotherm profile and the area per lipid obtained for the pure POPC 

molecule at πsat and 30 mN/m is similar, within error, to the values obtained either 

experimentally [184, 185] and by molecular dynamics studies [186]. For the 

POPC:POPE(8:2) mixture the area per lipid decreases, both at 30 mN/m and at 

saturation pressure, compared to the major lipid component and the π-area profile is 

similar in either a more expanded or condensed state of the monolayers. In the presence 

of 10% of POPS an increase in the mean area per lipid of pure POPC was observed at 

30mN/m, and the curve is shifted to higher surface pressures indicating a more 

expanded monolayer than POPC and POPC:POPE(8:2), yet in a more condensed state it 

present a surface and area per lipid similar to pure POPC. At pressures  

below ~50 mN/m it seems that there is some electrostatic repulsion between the 

negatively charged serine groups (higher areas) that with further compression of the 

monolayer weakened. Considering that in literature there is considerable amounts of 
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work regarding the effect of cholesterol in POPC we have focus our interest in other 

biologically relevant mixtures containing lipids such has POPE and POPS.  

The ternary mixture containing POPC:CHOL:POPE(5:3:2) showed an area per lipid at 

πsat and 30mN/m slightly smaller than POPC:POPE(8:2) but significantly higher than 

POPC:CHOL(5:5) which indicates that the condensation of cholesterol is somehow less 

efficient in the presence of POPE. The lipid composition mimicking the inner leaflet of 

plasma membrane showed an area per lipid close to the pure POPC monolayer. 

Although the presence of POPE and cholesterol may in fact contribute to a more 

condensed monolayer as observed by the decrease in area per lipid of POPC:POPE(8:2) 

and POPC:CHOL(5:5) leading to a consequent increase the dipole potential, this 

condensation effect is lost by inclusion of POPS. Moreover, the area per lipid isotherm 

for the quaternary mixture is deviated towards higher areas per lipid when compared 

with the ternary mixture. A summary of data obtained in this work or reported in 

literature, for monolayers, is presented in Table IV.1. 
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Figure IV.4. Mean Area per lipid isotherm for POPC (□), POPC:POPS(90:10), ○, and  
POPC:POPE( 80:20) ∆ at 25 ºC. The line is the best fit of a polynomial equation for areas smaller than 
100 Å2 in the liquid expanded state. 

 

 

 

 

 



Dipole Potential of Monolayers with Biologically Relevant Lipid Compositions 

75 

Table IV.1. Summary of the mean area per lipid and the dipole potential obtained for different lipid 
compositions monolayers formed at the air/water interface, at 25 ºC. 

(a) [186]; (b) [187]; (c) [188]; (d) [181]; (e) Final dipole potential obtained from equation IV-1. 

 

 

IV.4 Effect of Lipid Composition in the Dipole Potential of 

Membranes 

The mean area per lipid obtained for pure POPC both at saturation and 30 mN/m agrees 

with the published experimental and molecular dynamics results. At the saturation 

pressure the POPC monolayer is in a more condensed state given that the observed 

small area per lipid and surface pressure are close related to other results in which the 

POPC is in a transition from a liquid expanded to a more condensed state [189].  

The dipole moment normal to the aqueous subphase (μ) of unionized monolayers may 

be calculated using the Helmholtz equation and assuming 1 has dielectric constant of 

the medium [99].  

 

Lipid composition 

Area per 
lipid at 

π=30mN/m 
(Å2) 

Area per 
lipid at πsat      

(Å 2) 

Total 
lipid at 
πsat 

(nmol) 

Saturation 
Pressure 

(mN) 

Dipole 
Potential at 
πsat (mV) 

POPC 64.5 49.4±3.4 4.6 50 417±12 

POPS 55.0(a) - - - 465±4.2(e) 

POPE 56.0(b) - - - 494±16 

SPM 48.0(c) - - - 341±7.1 

POPC:POPS(9:1) 69.8 51.0±4.0 4.3 51 441±2.5(e) 

POPC:POPE(8:2) 59.6 45.4±3.0 4.8 47 424±15 

POPC:CHOL(7:3) 48.0(d) - - - 463±6.9 

POPC:CHOL(5:5) 44.0(d) - - - 490±5.7 

POPC:CHOL:POPE(5:3:2) 56.0 46.4±2.7 5.6 46 481±1.4 

POPC:CHOL:POPE:POPS
(4:3:2:1) Inner 

61.5 49.7±2.6 5.3 49 474±11(e) 

SPM:CHOL(6:4)outer 39.0(c) - - - 408±6.3 
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12 /V A                                                                                                                               (IV-2) 

 

Where, the ∆V is the dipole potential variation between aqueous phase and the 

monolayer (mV) and A is the mean area per molecule (Å2). According to other results 

the dipole moment normal to the aqueous phase (μ) of POPC monolayers is very 

similar to POPE [189], therefore considering the experimentally obtained dipole 

potential we may determine the area per lipid of POPE monolayer at the saturation point 

(43 Å2). The small area per lipid determined, at saturation pressure, agrees with the 

observed higher dipole potential compared to pure POPC, this thigh packing of POPE is 

due to the ability of the ethanolamine headgroup to form an hydrogen bond network 

significantly decreasing its area per lipid [187] [190]. For POPS monolayer, although its 

smaller area per lipid at 30 mN/m [186] at the saturation pressure it has a similar area to 

POPC [189, 191]. This negatively charged phospholipid showed a lower measured 

potential (Ψdipole+Ψ0) compared to other phospholipids in accordance with other 

reported results containing negatively charged lipids [189, 191].  

The contribution of the surface potential (Ψ0) to the experimentally observed dipole 

potential of POPS was obtained (-135 mV) through the Gouy-Chapman theory (see 

equation III-1) considering a formal charge of -1 per lipid [192] originating a surface 

charge density (σ) of -3.1 C/m2 at an area equal to POPC (49.4 Å2). The dipole potential 

of POPS is smaller (465 mV) than POPE revealing a lower packing of the monolayer, in 

the saturation pressure, and give, according to the Helmholtz equation, a dipole moment 

normal to the aqueous phase of ≈ 610 mD. The dipole potential of POPS monolayer 

considerably higher than POPC at both 30 mN/m and πsat due to the presence of a 

primary amine in the POPS which is able to form hydrogen bonds that significantly 

increase its lipid packing [193], therefore we would expect an area per lipid for POPS at 

the πsat smaller than POPC and close related to the area per lipid of POPE.  

The μ of pure lipid monolayers calculated using the Helmholtz equation may be 

separated in different dipolar contributions according to the three layer capacitor model 

of Demchak and Fort (DF) [124]. They considered three main contributions to the 

monolayer normal dipole moment with different relative permittivity (see II.5.3 for 

details). The aqueous subphase as a dipole moment contribution, μ1, due to the water 

molecules polarization with the monolayer formed, the headgroup, μ2, and the acyl 
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chain, μ3, dipole moments are the other contributors to the μ which should be written 

as: 

 

1 1 2 2 3 3( / ) ( / ) ( / )                                                                                                       (IV-3) 

 

where, ε1, ε2 and ε3 represent the relative permittivity in each region of the monolayer. 

The acyl chain group was assumed to contribute with a dipole moment (μ3/ ε3) twice the 

one obtained for a stearic acid monolayer (236 mD) [191] and using the interfacial 

parameters suggested from Oliveira et al [194] (ε2=6.4 mD and μ1/ ε1=-65 mD) we are 

able to obtain the contribution from the different headgroups using the DF model 

 (Table IV.2).  

The values obtained for the headgroup dipole moment contribution agree well with 

other published results using the same model [191] and are smaller than the calculated 

dipole moment of the P-N vector dipole (20 D), nevertheless this dipole moment 

contribution is negligible because is lying flat to membrane surface [195], hence the 

main input to the total dipole potential comes from the carbonyl group which is aligned 

vertically to membrane surface [115]. The observation that the contribution of the 

carbonyl group is prominent is further supported by the results obtained for SpM whose 

μ2 is considerably smaller given the absence of a carbonyl in its sn-2 acyl chain. 

Accordingly, McIntosh et al, 1992, observed that the dipole potential difference 

between brain sphingmyelin and dipalmitoylphosphatidylcholine (DPPC) membranes 

was, essentially, due to the presence of the hydroxyl group in the sphingomyelin [176]. 

Although the mean area per lipid for SpM at the saturation was assumed, by excess, to 

be 43 Å2 it should be notice that an even smaller area would decrease the calculated μ2 

accentuating the difference between SpM and the other studied lipids. It is observed a 

higher μ for the POPS monolayer probably due to a distinct orientation of the carbonyl 

group reinforcing the dipole moment in these monolayers. 
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Table IV.2. Monolayer properties in pure lipids according to DF model. 

 POPC POPE POPS SpM 

Areasat (Å
2) 49 43 49 43 

∆Vmeasured (mV) 417 494 331 341 

ΨDipole (mV) 417 494 465 341 

Ψ0 (mV) 0 0 -135 0 

μ (mD) 546 564 612 390 

μ1/ ε1+μ2/ ε2 (mD) 328 328 306 154 

μ2 (D) 2.52 2.52 2.94 1.4 

 

Considering that most mammalian cell membranes in their composition have some 

amount (~10%) of negatively charged lipids the study of mixtures containing negative 

lipids have a preponderant role (see II.2.3 above for details). The mixture of POPC with 

10% of POPS showed an increase in the dipole potential compared to pure POPC. 

Considering that for this mixture and for pure POPC a similar packing was observed at 

the saturation point, where the dipole potential is obtained, the differences are due to the 

interfacial dipoles either from polarizable in the membrane interface water or from lipid 

headgroup in the presence of the POPS. The subphase used in the experiments contain 

Na+ counter ions which are known to induce a considerable dehydration of POPC/POPS 

bilayer and promote a P-N dipole reorientation of the POPC headgroup, that in pure 

water is lying flat on the membrane surface and in the presence of the salt and POPS has 

narrower and smaller angle distribution [196]. 

In the mixture POPC:POPE(8:2) there is a decrease in the area per lipid at both  

30 mN/m and at πsat leading to a higher dipole potential in this mixture, at πsat, compared 

to POPC, however the increase in membrane packing should suppose an even higher 

dipole potential. Therefore, the difference must rely on the dipole moment normal to the 

membrane surface that decreases from 564 mD in pure POPC to 510 mD with the 

presence of 20% of POPE. The magnitude of the dipole moment of both headgroups is 

similar then the observed decrease can be attributed to changes in the interfacial water 

in POPC in the presence of POPE. The ternary mixture showed a distinct behaviour and 

the area at 30 mN/m increases compared to both POPC:CHOL mixtures, nevertheless 

the dipole potential is very similar to the POPC:CHOL(5:5) monolayer which is in a 
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liquid ordered phase [74] [197]. Since that the hydrogen and electrostatic interactions 

between POPE headgroups is stronger than the interactions between POPE and 

Cholesterol [198, 199] it could be that in this mixture there is a coexistence between 

two liquid phases being one more enriched with cholesterol than the other. In this 

ternary mixture the formation of cholesterol rich domains was observed by Atomic 

Force Microscopy using monolayers [199]. These more ordered domains and oriented 

water dipoles present at interface may explain the reinforcement of the dipole potential 

in POPC:CHOL:POPE(4:3:2) relative to POPC:CHOL(7:3) monolayer although its 

higher area per lipid at 30mN/m.  

The quaternary mixture, which mimics the inner leaflet of the erythrocyte membranes, 

at πsat, has a dipole potential slightly smaller than the ternary mixture due to a smaller 

packing of the monolayer (larger mean area per lipid) in the presence of the POPS 

phospholipid.   

Although SPM:CHOL(6:4) and POPC:CHOL(5:5) similar area per lipid at 30mN/m the 

latter has a smaller dipole potential in accordance with the fact that SpM hydroxyl 

group in the sn-2 acyl chain rather than a carbonyl of POPC contributes to a lower 

dipole potential.  

The dipole orientation and magnitude, is the main responsible force for the total 

potential observed in the zwitterionic membranes, we can predict the total 

transmembrane potential of a bilayer arising from different zwiterrionic monolayers that 

exclusively result from the transmembrane asymmetry in phospholipids distribution. A 

POPC and POPE asymmetric bilayer, according to our experimental results, give a non-

zero transmembrane potential (~77 mV) in good agreement with experimental results in 

bacterial PE and 1,3 Diollein [200] and further observed by molecular dynamics 

simulations [201]. 

Even though cholesterol, according to our results, is one of the main contributors to the 

membrane dipole potential, in the plasma membrane is essentially equally distributed in 

both leaflets while SpM is almost exclusively in the outer leaflet. Interestingly if we 

consider a lipid composition POPC:POPE:CHOL:POPS(4:3:2:1) mimicking the inner 

leaflet of eukaryotic cell membranes and SpM:CHOL(6:4) as the outer leaflet this 

would give a total non-zero transmembrane potential (~30 mV) being negative in the 

interior of the cell relative to its exterior, reinforcing the measured transmembrane 
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potential in eukaryotic cells [9]. From the mixtures studied we observe that POPS has 

also an important role and in its absence the inner leaflet composition would have a 

smaller dipole potential, fact that could have important biological implications. POPS 

molecule it is known as a recognition molecule in apoptotic cells and when exposed to 

the outer leaflet it serves as a signal for phagocytosis [45]. According to our results the 

disruption in transmembrane lipid asymmetry by exposing POPS to the outer leaflet 

leads to an increase in the intrinsic dipole potential of this monolayer and a consequent 

decrease in the magnitude of the transmembrane potential which may influence the 

normal function of membrane proteins accelerating the programed cell death.  
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IV.5 Chapter Highlights  

In this chapter we have characterized the dipole potential and the area per lipid for 

monolayers, at the water-air interface, with relevant lipid compositions. The dipole 

potential for the pure lipids was in accordance with the literature reported values. With 

POPE and POPS presenting a higher dipole potential due to the headgroup ability to 

form hydrogen bonds and, therefore, decrease the mean area per lipid. Moreover, the 

pure SpM showed a smaller dipole potential due to the presence of a hydroxyl group in 

the sphingosine alkyl chain. Consequently the mixture SpM:CHOL(5:5) also had a 

smaller dipole potential than POPC:CHOL(5:5), despite their reported similar areas per 

lipid. 

An increase in the dipole moment with cholesterol content was observed for 

POPC:CHOL mixtures due to a decrease in the mean area per lipid. For the ternary 

mixture, POPC:CHOL:POPE(5:3:2), although it presented a similar area to 

POPC:CHOL(7:3) a significant increase in the dipole potential was observed for the 

former mixture, due to the an reorientation of the interfacial dipoles (water+ lipids). The 

quaternary mixture showed a lower packing than the ternary mixture and therefore a 

smaller dipole potential. Considering the composition of the inner and outer leaflet we 

predict a non-zero dipole potential variation being negative in interior of the cell, 

reinforcing the transmembrane potential observed in cells. 
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V.1 Introduction 

Lipid anchored proteins that include the Glycosylphosphatidylinositol (GPI) anchors, 

sterols and saturated or unsaturated fatty acid modifications are functionally important 

for cells. The lipid modification not only provides a stable membrane anchor for a water 

soluble protein, through changes in its hydrophobicity and conformation, as it also 

promote some protein sorting within the membrane either by preferential  

protein-protein or protein-lipid interactions contributing to biological membrane 

heterogeneity [202-204]. The correct functioning of acylated proteins requires their 

binding to the membrane being the lipid modification imperative in protein activity 

control and targeting.  

The most common protein fatty acylation are N-myristoylation and S-acylation. In the 

latter the protein is covalently attached, by a cysteine residue via thiol, to a long fatty 

acid acyl chain, and in the former the protein is linked via the N-terminal of the glycine 

residue to myristate acyl chains (14 carbons) Figure V.1. Previous studies showed that 

palmitoylation and myristoylation was a pre-requisite to find transmembrane proteins 

associated with detergent resistant membranes, being the fatty acid anchor 

hydrophobicity the main factor for protein targeting in lipid rafts [203, 205]. The 

preferential packing of the saturated acyl chains for more ordered lipid domains leads to 

a predicted association with these microenvironments while proteins with unsaturated 

long acyl chains are preferentially located in disordered membrane domains [206]. More 

recently, results obtained using giant plasma membranes vesicles proved that although 

palmitoylation may be necessary for the partition of transmembranes proteins into rafts 

it is not the unique requirement since that some palmitoylated transmembrane proteins 

may be found segregated from rafts [207, 208]. Moreover, although the mysristoylation 

is required for some membrane associated proteins a single acyl chain lipid 

modification is barely sufficient to attach the protein to the membrane and additional 

acylations (palmitoylation) or some hydrophobic transmembrane fragments of the 

proteins are required [209]. Therefore, the presence of increasing hydrophobicity is not 

the only driven force responsible for the association of acylated proteins to lipid rafts 

[210].  
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The presence of oriented water molecules and lipid dipoles at the interface of a lipid 

bilayer originates a membrane potential with a positive pole near the centre of the 

bilayer hydrocarbon region. This dipole potential, 400 mV for phosphatidylcholine 

monolayers [99], is located in a small region of each lipid monolayer (~1 nm) 

generating a very strong local electrical field (109 V m-1). It is several orders of 

magnitude larger than the one generated by transmembrane potential (107 V.m-1), which 

modulates and controls the activity and function of membrane proteins such as the 

voltage gate proteins ion transporters [211]. It is therefore expected a strong influence of 

the dipole potential on the association of proteins with membranes and on the function 

of transmembrane or lipid anchored proteins. Additionally, the liquid ordered 

microdomains present in lipid bilayers have a dipole potential different from the 

continuous lipid phase, due to the higher lipid packing, and this may have a 

fundamental role in the sorting and function of membrane proteins.  

 

          

Figure V.1. Panel A: The saturated palmitoyl fatty acid chains allow the protein to pack within the liquid-
ordered domains of a membrane lipid raft. Panel B: Schematic structure of common palmitoylated and 
miristoylated membrane proteins. 

 

The interaction of small molecules with lipid bilayers (association, location and 

permeation) may also be significantly affected by the magnitude and the orientation of 

the membrane dipole potential and the ligand dipole moment. The binding interaction of 

human immunodeficiency virus protease inhibitor saquinavir was shown to be affected 

by the bilayer dipole potential having a crucial role in the interaction of this molecule 

with lipid bilayers [212]. Furthermore the presence of amphiphilic molecules such as  

6-ketocholestanol and phloretin, that induce alterations in the global membrane 

potential, where shown to affect the conformation and insertion of a mitochondrial 

peptide [162]. The adsorption of peptides to membranes is strongly affected by 

electrostatic and hydrophobic forces and also by the free area and dielectric properties at 

A B 
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the membrane interface [213]. These factors are intrinsically related with the global 

membrane dipole potential, that arises from the alignment of several small dipoles from 

the lipids and solvating water which are constrained in the interfacial region. 

It is well established that the function of several membrane anchored proteins is 

dependent on their degree of self-association and clustering with additional membrane 

proteins. The formation of clusters of GPI-anchored proteins in the cell surface is the 

initial trigger in signal transduction cascades [214, 215]. Although the interactions 

between the protein and the membrane have been appointed as the main reason behind 

protein clustering the mechanism is not well known. Computer simulations studies 

indicate that one fundamental property affecting the rate and extent of protein clustering 

in the membrane is the length of the hydrophobic anchor (hydrophobic mismatch)  

[216, 217]. Given the high dipole potential of the membranes, and the usually 

significant dipole moment of the proteins, it is expected that the electrostatic properties 

of proteins and membranes plays a significant role in protein-protein interactions but 

this has been only elusively addressed.  

Previous work done by our group addressed the role of the amphiphiles dipole moment 

in their interaction and solubility in membranes [3]. Following the same line of work we 

now present a detailed study of the relative partition between POPC vesicles and several 

acceptor vesicles with different lipid compositions, for two distinct fluorescent 

amphiphiles. The lipid composition of the acceptor vesicles was chosen to be either in 

the liquid ordered phase (lo), liquid disordered phase (ld) or with lo and ld phase 

coexistence. Both amphiphiles have the same hydrophobic myristic acyl chain and 

different hydrophilic headgroups, one being a Rhodamine derivative (RG-C14) and the 

other a Carboxyfluorescein (CBF-C14) (Figure V.2). The polar headgroups were chosen 

to have opposite orientations of the dipole moment and similar magnitudes  

(Figure V.2). The effect of those electrostatic properties on the relative association of 

amphiphiles and vesicles with lipid composition representative of cell membranes was 

characterized through their transfer between POPC LUVs and lipid vesicles with 

distinct dipole potentials. The kinetics and equilibrium parameters for their aggregation 

in the different membranes were also characterized, to gain insight on the effect of 

amphiphile dipole moment and membrane dipole potential on the aggregation of 

membrane associated amphiphiles. While Carboxyfluorescein did not aggregate in any 

of the membranes studied (even at high local concentrations, 2 mol %), RG-C14 showed 
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a time and concentration dependent aggregation which was more extensive for 

membranes in the liquid ordered state. Additionally, results for the fluorescence 

anisotropy and lifetimes showed that in liquid ordered membranes CBF-C14 has a more 

shallow localization, at the lipid-water interface, while RG-C14 was buried deeper in the 

membrane. A notable exception was obtained for POPC membranes were both probes 

were essentially in the same region. 

               
 
             
 
 
 
 
 
                       
 
 
 
                                       Rhodamine green ™       5-Carboxyfluorescein™

 
Figure V.2. Chemical structures for the fluorescent amphiphiles used in this work at pH 7.4. 

 

 

V.2 Aqueous Solubility of RG-C14 and CBF-C14  

The solubility of RG-C14 in aqueous solution was too small to be experimentally 

characterized. Therefore, we measured the solubility, as monomer, for a smaller chain 

derivative (RG-C10) and extrapolated to the 14 carbons length amphiphile based on the 

dependence with the alkyl chain length obtained previously for other homologous series 

of amphiphiles [175].  

Solutions of the amphiphiles in the aqueous buffer (III.3 above) were set through 

hydration of a recently formed film of the amphiphile, prepared from evaporation of the 

required amount of solution in methanol, and were allowed to equilibrate for 1 h at  

25 oC with occasional vortex (see III.7 above). The aqueous solubility of the amphiphile 

in the monomeric form (critical aggregation concentration, CAC) was obtained through 

deviations from the, predicted, linearity dependence of the fluorescence intensity with 

the amphiphile concentration (Figure V.3, A). The amphiphile with the shorter alkyl 

chain, RG-C10, showed a linear behaviour up to 10 nM, while at higher amphiphile 

( ) 32 13
R CHCH= -
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concentrations there were clear deviations, with the aggregated form presenting smaller 

fluorescence quantum yield. Additionally, the standard deviation associated with the 

fluorescence results at concentrations above 10 nM are much higher due to stochastic 

events involved in the formation of aggregates in very dilute solutions. Based on the 

CAC dependence with the length of the alkyl chain obtained previously for a 

homologous series of fatty amines [175], ΔΔG0= -3.4 kJ/mol per CH2, the CAC 

predicted for RG-C14 is 42 pM. The other fluorescence amphiphile in study, CBF-C14, 

was found to be soluble in aqueous solution up to 2.5 ± 1 nM (Figure V.3, Panel B).  

The results obtained for the solubility of the monomeric form of the amphiphiles are in 

accordance with the fact that CBF-C14 is negatively charged presenting a higher CAC 

while RG-C14 is zwitterionic at pH 7.4. The value obtained for the CAC of RG-C10 is 5 

times smaller than the one recently obtained by our group for the neutral amphiphile 

NBD-C10 (50 nM) [175] highlighting the smaller aqueous solubility of the Rhodamine 

polar group.  
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Figure V.3. Typical experimental results obtained for the dependence of the fluorescence intensity at the 
maxima of RG-C10 (panel A, □) and CBF-C14 (Panel B;○; Δ) as a function of its total concentration in 
the aqueous solution at 25 ºC. In plot A the linear best fit of the fluorescence intensity vs amphiphile 
concentration for values below the CAC is also shown. The inset represents the linear region of the 
fluorescence with amphipile concentration. In Plot B the lines represent the linear best fit for the 
fluorescence vs CBF-C14 concentration and the interception between the two regimes was considered to 
be the amphiphile CAC (2.6 nM). 
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V.3  Partition of RG-C14 and CBF-C14 between Donor POPC 

LUVs and Acceptor LUVs with Various Lipid 

Compositions  

Partition between aqueous and lipid phases cannot be directly assessed for the case of 

amphiphiles with solubility in the aqueous phase below the sensitivity of the method 

used. This difficulty has been overcome by us through the prior binding of the 

amphiphile to Bovine Serum Albumin (BSA), which is faster and requires smaller 

concentrations due to little scattering in the UV-Visible region. The amphiphile is then 

transferred from BSA and the relevant lipid bilayer allowing the characterization of the 

partition coefficient to the membrane [135, 175]. This methodology was initially 

attempted with RG-C10, but the binding efficiency was extremely high requiring the use 

of BSA concentrations in the nM range to accurately characterize the equilibrium 

binding constant, KB, (data not shown). We have therefore characterized the association 

of the amphiphiles with the various lipid bilayers from their transfer between liposomes. 

This methodology was commonly used in the eighties [218, 219] and permits the 

characterization of the relative partition coefficient between donor and acceptor 

vesicles, ( ) ( )P Acceptor P DonorK K . The transfer was followed by fluorescence intensity that 

increased upon partition of the amphiphile into the acceptor vesicles due to quenching 

by energy transfer to RhB-DPPE in the POPC donor vesicles. Typical titration curves 

for both amphiphiles are shown in Figure V.4. The association is assumed to occur 

according to the following kinetic scheme. 
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Where, wA  is the amphiphile (RG-C14 or CBF-C14) as a monomer in the aqueous phase, 

in
DALV  , 

out
DALV

,
out

AALV  in
AALV  represent the amphiphile associated with the inner 

(in) or the outer (out) leaflets in the donor ( DLV ) and acceptor ( ALV ) LUVs 

respectively, DKL and AKL  are the equilibrium associations constants for donor and 

acceptor vesicles. The f
k , k-  and k+  represent the translocation, desorption and 

insertion rate constants respectively, in either donor (D) or Acceptor (A) vesicles. After 

the equilibration for 2 h the amphiphile concentration associated with the 

acceptor, [ ]A t
ALV , and donor, [ ]D t

ALV  vesicles are given by V-1; 
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  

                                    (V-1) 

 

where,  TA , is the total concentration of amphiphile in the system and  *TA  is the total 

concentration of amphiphile that is free to equilibrate between the donor and the 

acceptor vesicles. Depending on translocation, insertion and desorption rate constants of 

the amphiphiles in donor and acceptor vesicles two additional parameters are required, 

Dd  and Ad , related with the amphiphile equilibration in both vesicles. The equilibration 

factors, Dd  and Ad , represents the ratio between the variation in amphiphile 

concentration in the inner monolayer of the donor or the acceptor vesicles and in the 

outer monolayer during the experimental time (2 h in this work, equation V-2). When 

translocation is fast, the amphiphile is equilibrated between both monolayers and the 

variation is equal for both resulting in ( )D Ad =1. If the rate of translocation is very small, 

no variation is observed in the concentration of amphiphile in the inner monolayer 

and ( )D Ad =0.5. Partial equilibrium between the inner and the outer monolayer leads to 
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an equilibration factor range from 0.5 to 1. For donor POPC vesicles the Dd =1 for both 

amphiphiles. In the acceptor vesicles for RG-C14 the parameters considered were 

: (5:5)PC CHd =1, : (7:3)PC CHd =1, : (6:4)SM CHd =0.7, : : (5:3:2)PC CH PEd =1 and : : : (4:3:2:1)PC CH PE PSd =1 

while for CBF-C14 were : (5:5)PC CHd =0.8, : (7:3)PC CHd =1, : (6:4)SM CHd =0.5, 

: : (5:3:2)PC CH PEd =0.8, and : : : ( 4:3:2:1)PC CH PE PSd =1. The parameters were determined from the 

rate constants observed for pure POPC, POPC:CHOL(5:5) and SpM:CHOL(6:4) for the 

2 h experimental time. For all other lipid compositions a rational value was assumed 

based on the experimental data obtained.  
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The fluorescence increase that occurs upon partition of the amphiphile from donor to 

acceptor vesicles was used to determine the apparent partition coefficient between 

POPC LUVs and distinct membrane acceptors in ld and lo phases. The experimental 

total fluorescence at equilibrium is given by the quantum yields and the amphiphile 

concentration in each compartment;  

 

[ ] [ ] [ ]
A DF A ALV A ALV Dt t t

I A ALV ALVa F +F +F
                                  (V-3) 

 

where, the relative quantum yields of the amphiphile in water ( AF ), in acceptor 

vesicles (
AALVF ) and POPC donor vesicles (

DALVF ) as well as binding constants of the 

amphiphile to the donor (KLD) and acceptor vesicles (KLA) can be obtained from the 

best fit to the experimental results of equations V-1 and V-2 simultaneously. From the 

best fit to the experimental results the value of the relative partition coefficient, 
relPK  , 

may be obtained;  
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where, 0
DonorLUV

V and 0
AcceptorLUV

V represent the molar volume of the outer monolayer of 

donor and acceptor vesicles. Being the donor LUVs composed of pure POPC it was 

considered a vesicle formed by 9×104 lipid molecules with 0.757 dm3 per mole of lipid 

[220]. For the lipid mixtures used as acceptor vesicles the number of lipid molecules per 

LUV was obtained based on the experimental area per lipid of 40 Å2 for the 

SpM:CHOL(6:4) [188], and POPC:CHOL(5:5) [181], 48 Å2 for POPC:CHOL(7:3) 

[181], 48 Å2 for POPC:CHOL:POPE(4:3:2) and 52 Å2 for PC:CHOL:PE:PS(4:3:2:1), 

obtained using monolayers (see chapter IV). Additionally, we assumed, in the 

determination of 0
AcceptorLUV

V , a volume for POPC, POPE, POPS of 0.757 dm3/mol 

independently on the cholesterol composition, 0.702 dm3/mol for SpM [220] and  

0.325 dm3 for cholesterol [221]. With the considered volumes of phospholipids and 

cholesterol a thickness of 4.5 nm for POPC:CHOL(5:5), 4.6 nm SpM:CHOL(6:4) and  

4 nm, for all other lipid compositions was obtained in accordance with experimental 

[222] and simulation data [223].  
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Figure V.4. Partition of RG-C14 (A) and CBF-C14 (B), at pH 7.4, between donor POPC LUVs and 
different acceptor Luvs at 25 °C. Plot A: Typical results obtained for the titration of RG-C14 from POPC 
LUVs 0.1 mM (final concentration) at 0.2 μM with acceptor POPC LUVs (□),  
POPC:CHOL(7:3) (○), POPC:CHOL(5:5) (), and SpM:CHOL(6:4) (). The line is the best fit of 
equations V-1 to V-3 with KpAcceptor/KpPOPC ~ 1, 0.39, 0.20 and 0.03 for, POPC, POPC:CHOL(7:3), 
POPC:CHOL(5:5) and SpM:CHOL(6:4) acceptor vesicles. Plot B: Typical results obtained for the 
titration of CBF-C14 from POPC LUVs (0. 1 mM, final concentration) at 0.2 μM with acceptor 
POPC:CHOL(7:3) LUVs between 0 M and 1.2x10-8 M (□), POPC:CHOL:POPE(5:3:2) (), 
POPC:CHOL(5:5) (○), and SpM:CHOL(6:4) (◊). The line is the best fit of equations V-1 toV-3 with 
KpPOPC/KpAcceptor = 0.6, 0.3, 0.4 and 0.07 for, POPC:CHOL(7:3), POPC:CHOL:POPE(5:3:2), 
POPC:CHOL(5:5) and SpM:CHOL(6:4) acceptor vesicles. 

 

The value obtained for the KpAcceptor is somewhat dependent on KpDonor when the 

fraction of the amphiphile in the aqueous phase is significant. This is not the case for the 

RG-C14 that is expected to partition efficiently to the donor liposomes, we predict that 

KpDonor ~107 based on its low solubility in water and on the equilibrium constants 

obtained for the homologous series of fluorescent fatty amines NBD-Cn [175]. The 

affinity of the CBF-C14 for donor POPC vesicles may however be lower and the KpDonor 

was experimentally obtained at 25 ºC, Figure V.5. The low CAC of CBF-C14 (≈3 nM) 

associated to the observed decrease in quantum yield upon partitioning to membranes 

difficult the attainment of CBF-C14 binding constant by traditional fluorescence titration 

methodology (low signal:noise). Therefore, we used a different approach and measured 

the kinetic of interaction (transfer rate constant) between CBF-C14, at probe 

concentrations slightly higher than CAC (to improve the signal:noise ratio), and POPC 

at increasing concentrations. The aqueous solutions containing the CBF-C14 were 

always freshly prepared and different concentrations were tested from 1 nM to 15 nM 

with no noteworthy changes in the final binding constant indicating that the probe 

aggregation is not significant. The recovered binding constant from the insertion and 

desorption rate constants lead to a KpDonor= (7.4 ± 0.5) ×105 in POPC. The comparison 
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between Kprel obtained for the transfer of CBF-C14 between POPC and  

POPC:CHOL (5:5), 0.37, vesicles and its direct transfer from water to both membranes 

(0.33) shows a very good agreement, giving a considerable confidence to the recovered 

results using the vesicles transfer experiments.  

 The amphiphile as a monomer in water interacts with the lipid vesicles (LV) according 

to the following scheme: 
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The system can be analytically solved if we consider either fast or slow amphiphile 

translocation rate, resulting in equations V-6 or V-7 respectively  

(see appendix for details). 
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Slow translocation step: 
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Figure V.5. Variation of the characteristic rate constant for POPC (left, □) and PC:CH(5:5) (right, 0) as a 
function of [LUV] at 25 ºC. The line is the best fit of equation V-7 to all experimental results with a 
KL=2.6x1010 M-1 for POPC and KL=7.5x109 M-1 for POPC:CHOL(5:5). The inset shows the rate of 
association between CBF-C14 at 15 nM with POPC (left) and 5 nM with PC:CHOL(5:5) (right) being the 
experimental results represented by a grey line and the best fit to a monoexponential by a black line.    

 

With the predicted (RG-C14) and experimentally obtained (CBF-C14) partition 

coefficients to POPC LUVs one could calculate the aqueous concentration of each 

amphiphile under the experimental conditions used in the transfer experiments. In the 

most unfavourable conditions, no acceptor vesicles present, the RG-C14 water 

concentration is equal to its predicted CAC value, while for the CBF-C14 is 3 nM, 

slightly above the determined CAC. Therefore, the experiments were done under no 

striking amphiphile aggregation conditions. Another experimental concern was the 

eventual transfer of cholesterol from the acceptor to the donor LUVs during the 2 h 

equilibration time. This was evaluated from the known rates of interaction of the 

fluorescent cholesterol analogue Ergosta-5,7,9(11),22-tetraen-3β-ol  

(dehydroergosterol, DHE) with relevant lipid bilayers at 25 oC [224]. During the 

experimental time (2 h) we predict that less than 5% of cholesterol leaves the 
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SpM:CHOL(6:4) acceptor vesicles while for other acceptor lipid compositions the 

variation is smaller than 1%. For the incorporation of cholesterol in the donor vesicles 

and considering other worst case scenario, high concentrations of POPC:CHOL(5:5), 

there is an absorption of 1% of cholesterol in the POPC donor vesicles, being the 

number much smaller for other acceptor lipid compositions.  

In the partition of an amphiphile into lipid bilayers in distinct phases, is accepted that it 

depends mainly on its apolar portion, but this and previous work done by our group [3] 

show that the polar region of an amphiphile also have an important role regarding the 

global amphiphile solubility in membranes with distinct phase properties. From the 

obtained results it is clear that the relative partition coefficient of the RG-C14 derivative 

from POPC to different acceptor membranes is smaller than its homologous CBF-C14 

(Table V.1). Furthermore, for both fluorescent probes there is a decrease in the Kprel 

with the bilayer ordering. The presence of 20 % POPE in POPC:CHOL:POPE(5:3:2) 

bilayers as well as 10 % of POPS in POPC:CHOL:POPE:POPS(4:3:2:1) decrease the 

Kprel (neglecting the charge repulsion for CBF-C14) for RG-C14 and CBF-C14 relative to 

the POPC:CHOL(7:3). For membranes in the same liquid ordered state, 

SpM:CHOL(6:4) and POPC:CHOL(5:5) there is a highest difference in Kprel for the 

RG-C14 (≈ 7 times) relative to CBF-C14 (≈6 times) being the Kprel always smaller in 

SpM:CHOL(6:4) than in POPC:CHOL(5:5). Previous work done by our group using 

NBD fluorescent phospholipids (NBD-DMPE) and lysophospholipids (Lyso-MPE) also 

corroborate the fact that SpM:CHOL(6:4) membranes are a more unfavorable solvent 

than POPC:CHOL(5:5) for amphiphilic molecules [134, 136].  
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Table V.1. Equilibrium Parameters for the transfer of the RG-C14 and CBF-C14 from POPC donor 
bilayers to acceptor bilayers at distinct lipid compositions and phase states at 25 oC. 
 

(a) 

0
Acceptor POPCpG G G   

 

(b) Relative partition coefficient excluding the charge repulsion effect between POPS and CBF-C14, 
obtained using Guoy-Chappman theory. It was considered for mathematical purposes a Ψ0= −17 mV 
recovered from reference [174]. 

 

 

V.4  Aggregation of RG-C14 and CBF-C14 in Lipid Bilayers  

The aggregation of RG-C14 and CBF-C14 in different membranes was studied to 

characterize the equilibrium and kinetics dependence with membrane composition 

(Figure V.6). This particular topic endorses an important biological issue, trying to 

understand the clustering of acylated membrane proteins. Moreover, it allows us to have 

some insights regarding the effect of the bilayer properties in the stabilization of the 

aggregated form of amphiphiles with different headgroups and electrostatic properties 

under high probe: lipid molar ratio. In LUVs prepared from pure POPC, mixtures of 

POPC:POPE(80:20) and POPC:POPS(90:10) the absorption spectra of the RG-C14 

fluorescent amphiphile remains practically unchanged up to 230 h  

(larger experimental time measured) even at a probe: lipid molar ratio as high as 1:50. 

The obtained results and the fact that the fluorescence spectra has a similar shape to the 

one obtained in methanol, lead us to the conclusion that under these conditions the 

        RG-C14          CBF-C14 

 

Acceptor Bilayer
Acceptor

rel
POPC

KP
KP

KP
=

∆GP
0 (a) 

(kJ/mol) 
 

Acceptor
rel

POPC

KP
KP

KP
=

∆GP
0 (a) 

(kJ/mol) 

POPC:CHOL (7:3) 0.4±0.05 2.3±0.3  0.6±0.07 1.7±0.3 

POPC:CHOL (5:5) 0.2±0.008 4.1±0.1  0.4±0.03 2.5±0.2 

SpM:CHOL (6:4) 0.03±0.004 8.9±0.4  0.06±0.01 6.9±0.6 

POPC:CHOL:PE 
(5:3:2) 

0.30±0.02 3.0±0.2  0.5±0.09 1.9±0.5 

POPC:CHOL:PE:PS 
(4:3:2:1) 

0.30±0.05 3.2±0.5  0.2±0.04 0.6±0.1b 4.0±0.5 
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probe is monomeric in those lipid bilayers. In POPC:CHOL:POPE(5:3:2) and 

POPC:CHOL(7:3) LUVs the RG-C14 amphiphile showed a distinct behaviour with a 

time dependent decrease in the absorption intensity maxima at 502 nm and an 

associated appearance of a second band in the spectral region of approximately 545 nm, 

which was considered to correspond to an aggregated form of the fluorophore in the 

membrane. This behaviour was more extended in POPC:CHOL(5:5) and 

SpM:CHOL(6:4), even at a smaller lipid: probe ratio of 1:200, and the red shifted 

absorption band was deviated to higher wavelength (574 nm) in POPC:CHOL(5:5), 

(Figure V.6).  
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Figure V.6. Time evolution of the RG-C14 absorption spectra in LUVs inserted into LUVs prepare from 
pure POPC (A), POPC:CHOL:POPE (5:3:2) (B), POPC:CHOL (5:5, molar ratio) (C) and 
SpM:CHOL(6:4) (D). The molar ratio of the fluorescent lipid amphiphile to the host lipid was 1:50 for all 
cases except POPC:CHOL (5:5) and SpM:CHOL (6:4) where it was 1:200. 

 

The fact that the absorption spectrum of the RG-C14 in SpM:CHOL(6:4) was 

completely reverted to its initial shape within 35 min at 60 ºC and the excitation at the 

red shift absorption band resulted in no fluorescence emission intensity, were 

indications that fluorescent probe is aggregating in the membrane. The decrease in the 

absorption maxima at 502 nm was followed in time and the kinetic curve was well fitted 
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by a dimerization process (Figure V.7). This type of aggregation profile for this 

particular amphiphile has been observed by our group using MLVs instead of the LUVs 

[3]. Furthermore, dimerization of xanthene dyes has been widely studied and 

characterized both in water and in liposomes [225-227] and a similar behaviour was 

found. The aggregation process was defined by the following kinetic scheme: 

 

[ ]
[ ]

2

1

2
2

1

,;k

dk

Dk
M M D K
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where, M  and D  are the monomer and dimer species, and Kd is the dimerization 

equilibrium constant. From the best fit of the resulting equation for the dimer formation 

to the experimental results we obtain the second order aggregation constant, k2, the first 

order disaggregation rate constant, k1, and, Kd summarized in Table V.2. The time 

dependent variation in the concentration of the monomer is specified by V-8 and the 

correspondent derivation may be found in the appendix.  

 

       

    

     

 

0

2
0

0 0

1
2

2

2 exp

4
1 1 exp

4

t t

t t

t

D kt
M M

k
D kt

k

D D D

k
k k M

k



 



   
 

       
 

  

 
    

                                              (V-8) 

 

 

 

 



Effect of Amphiphile Dipole Moment in Solubility and Partition to Lipid Bilayers 

101 

0 60 120 180 240 300

0,5

1,0

1,5

2,0

2,5

3,0

0 120 240 360 480 600

1,2

1,5

1,8

2,1

2,4

2,7

BA

[R
G

-C
14

] Lo
ca

l (
x1

0-2
M

)

Time (x103s)

 [R
G

-C
14

] Lo
ca

l (
x1

0-3
M

)

Time (x103s)  

Figure V.7. Time dependence at 25 oC of the local concentration of RG-C14 in SpM:CHOL(6:4) (A) and 
POPC:CHOL(7:3) (B) LUVs at a lipid: probe molar ratio of 1:200 and 1:50 respectively. The open 
squares are the experimental data and the line is the best fit of the experimental results with equations V-8 
and k2=4.4x10-3 M-1s-1 and a k1= 3.7x10-6 s-1 for SpM:CHOL(6:4) and k2=1.6x10-4 M-1s-1 and a  
k1= 4.9x10-6 s-1 for POPC:CHOL(7:3). 

 

There is a substantial difference between the recovered aggregation constants for  

RG-C14 in the POPC:CHOL(7:3) and the results previously obtained by our group [3]. 

Unlike the previous work we selected LUVs instead of MLVs and permanently agitated 

the solution, this procedure avoids vesicle sedimentation at long times that may explain 

the divergence in the obtained results. From the experimental results we can observe 

that the second order aggregation constant is greater in membranes with higher 

cholesterol content. Furthermore, while the first order rate constant for the 

disaggregation has comparable values in both liquid ordered phases composed of 

POPC:CHOL (5:5) and SpM:CHOL(6:4), the dimerization is 1.6 times slower in the 

former than in the latter bilayer. The presence of 20% of POPE increases both the 

dimerization and the disaggregation rate constants of RG-C14, resulting a ≈1.8 times 

favorable Kd relative to the POPC:CHOL(7:3) bilayer. So, the ethanolamine small 

headgroup promotes, even at a small 20% quantity, the aggregation of RG-C14 in the 

membrane.  
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Table V.2. Kinetic parameters for aggregation of RG-C14 in bilayers at 25 ºC. 

(a) Mole fraction equilibrium constant:
 
 2

/
;

/

D T
m T D L m

m T

n n
K n n n n

n n
    , where nD, nm and nL are 

the number of moles of dimer, monomer and lipid in the system, respectively. 
(b)

ln
2 m

RT
G K   , where 2 is the number of amphiphiles in the aggregate (for details see [228]) 

 

The aggregation of CBF-C14 amphiphile was studied in SpM:CHOL(6:4) bilayer, which 

gave the higher Kd for RG-C14, at a probe: lipid molar ratio 1:50. The absorption was 

followed during 6 days and after an initial lag period of one day there was a decrease of 

approximately 15% of the band maxima at 490 nm and an increase in the other 

absorption band at 468 nm, contrasting with the RG-C14 where a new band appeared at 

longer wavelengths (Figure V.8, Panel B). Although the experiments were done at 

considerable higher concentrations a similar aggregation behaviour was observed for the 

6-Carboxyfluorescein (6-CBF) in egg phosphatidylcholine liposomes [226]. According 

to the ionization equilibrium for carboxyfluorescein the CBF-C14 is negatively charged 

at pH 7.4, however there was an increase in absorption at 468 nm indicating the 

presence of aggregates, which may be occurring either within the bilayer or in the 

aqueous solution. It is known that fluorescein dimerization in water occurs at a range of 

concentrations 10-5-10-4 M [229], moreover CBF-C14 has a CAC of approximately 3nM, 

so it is predicted under the experimental conditions ([SpM:CHOL,6:4]= 1 mM and 

lipid:CBF-C14= 1:50, molar ratio) the formation of aggregates in water due to the high 

aqueous concentration of CBF-C14 (~0.9uM). Furthermore, when the CBF-C14 in 

SpM:CHOL(6:4) solution, stored at 25 oC for 6 days, is heated to 60 oC it takes a 

considerable longer time (8 h) than RG-C14 (35 min) for the final absorption spectra to 

have the same profile has the initial spectra recovered at no aggregation conditions 

 POPC:CHOL 
(5:5) 

SpM:CHOL 
(6:4) 

POPC:CHOL 
(7:3) 

POPC:CHOL:PE 
(5:3:2) 

k2 (×10-3 M-1s-1) 2.4±0.9 3.6±1.4 0.2±0.04 0,5±0,1 

k1 (×10-6 s-1) 3.4±0.8 3.9±0.8 4.2±0.6 7.2±1.0 

Kd (×102 M-1) 7.0±1.5 9.0±2.5 0.4±0.1 0.7±0.3 

Km (×102)(a) 12±0.3 16±0.4 0.6±0.1 1±0.4 

∆G (kJ mol-1) (b) -8.8±0.3 -9.1±0.4 -5±0.3 -6±0.6 
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(Figure V.8, A). To further clarify whether the aggregates of the CBF-C14 where 

actually in the aqueous phase another procedure was followed. Both RG-C14 and  

CBF-C14 solutions containing the aggregates where independently extruded through a 

pore with a diameter of 100 nm. We expected that the membrane aggregates would not 

be affected by the extrusion methodology, with the absorption spectra maintaining its 

profile, while aggregates in water with sizes bigger than the 100nm would be trapped in 

the filter and the final absorptions spectra should be similar to the one at time zero. 

Although some probe was lost during the extrusion procedure, remarkably while the 

shape of the spectra for RG-C14 was maintained, with the aggregation characteristic red 

shifted band, for the CBF-C14 the spectra was very similar to the one obtained for the 

same solution at time= 0 h. This result, the long-time reversibility at 60 oC, the fact that 

no additional red shifted band was present and the low partition coefficient of the  

CBF-C14 (high water concentrations) lead us to speculate that its aggregated form is 

mainly in the aqueous solution rather than in the membrane. Since that in the more 

ordered SpM:CHOL(6:4) membrane the aggregation of the carboxyfluorescein 

amphiphile was not evident no further studies with the other lipid mixtures membranes 

were performed. So, both probes studied presented a completely different aggregation 

profiles and while RG-C14 aggregates in the membrane phase appearing a new band in 

the region of 675 nm, the CBF-C14 aggregates in aqueous solution without any band 

maxima appearance in the 550-700 nm spectral region. The aggregation of the RG-C14 

occurred more drastically in membranes which contained cholesterol enhancing the fact 

that the increase in membrane packing, order and dipole potential stabilizes the 

aggregated form of RG-C14.  
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Figure V.8. Panel A: Time dependence absorption spectra of the CBF-C14 in SpM:CHOL(6:4) LUVs at 
25 ºC at a lipid: probe molar ratio of 1:50. The straight line is at time = 0 h, dash at t= 24 h and  
dot t= 6th day. Panel B: Reversibility test in the absorption of CBF-C14 in SpM:CHOL (6:4, molar ratio) 
LUVs at 60 ºC at a lipid: probe molar ratio of 1:50. The straight line is at 60 ºC and t = 0 h, dashed line is 
after incubation at 60 ºC during 8 h and dot is the spectrum of the aggregated solution after the 6th day at 
25 ºC. 

 

 

V.5  Spectral Properties of the RG-C14 and CBF-C14 in Liquid 

Ordered and Liquid Disordered Phases  

The absorption and fluorescence spectra of probes like Rhodamine and in particular 

Carboxyfluorescein are very sensible to the media where they are located and shifts may 

be observed depending on the probe local environment [230]. Considering the 

amphiphilic nature of the Rhodamine and Carboxyfluorescein derivatives, used in our 

work, the absorption and fluorescence emission spectra were obtained in methanol and 

lipid bilayers, either in the liquid ordered or the liquid disordered state, with a total lipid 

concentration of 1 mM and a final amphiphile concentration of 2 μM, decreasing the 

amphiphile aggregation probability (Figure V.9). To perform this study we selected the 

POPC membrane, used as donor in the partition experiments and in the liquid 

disordered state, POPC:CHOL(5:5) and SpM:CHOL(6:4) membranes both in the liquid 

ordered state but with distinct results either in amphiphiles KPrel and membrane 

aggregation of RG-C14. When the RG-C14 fluorescent probe was dissolved in methanol 

solution the differences were significant, with both the absorption and fluorescence 

emission spectra showing an evident red shift in membranes, indicating that the RG-C14 

chromophore in methanol is sensing a different viscosity and polarity than in 
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membrane. Considering that the probe is most probably localized in the interfacial 

region of the lipids headgroup where the dielectric constant changes from 80 in water to 

2 in the hydrocarbon region, RG-C14 is in a more polar environment than in methanol. 

In the membranes no relevant changes in the absorption of RG-C14 was notice, but in 

the fluorescence emission spectra of CBF-C14 there were continuous small blue shift 

going from the POPC to POPC:CHOL(5:5) and then to SpM:CHOL(6:4) membranes. 

For the CBF-C14 amphiphile in the more disordered bilayer (POPC) the absorption 

spectra presented a completely different shape from the one obtained for both liquid 

ordered membranes, with two band maxima at 490 nm and 468 nm which are red 

shifted compared to the spectra in methanol. Within POPC:CHOL(5:5) and 

SPM:CHOL(6:4) liquid ordered membranes the absorption maintains the same profile 

with a single band maxima, nonetheless comparing to the amphiphile in POPC there is a 

evident red shift of 9 nm and 8 nm for POPC:CHOL(5:5) and SpM:CHOL(6:4), 

respectively. With regard to CBF-C14 fluorescence emission in SpM:CHOL(6:4) it 

presents a maximum at 524 nm while for POPC and POPC:CHOL(5:5) bilayers the 

spectra it is slightly red shifted by 3 and 4 nm respectively (Table V.3). The spectral 

changes of CBF-C14 are more evident when the probe is inserted in the liquid disordered 

POPC bilayers, showing that the amphiphile headgroup is in a distinct environment 

when compared to membranes in lo phase. Song et al (2000) observed that depending on 

whether it was on a anionic or cationic surfactant vesicles the absorption spectra shape 

of a butyl derivative of fluorescein changed drastically, essentially due to the fact that 

the pKa in both micelles was very distinct, while in anionic micelles the predominant 

specie was the monoanion in cationic micelles was the dianion form. [231] The relative 

quantum yield obtained in membranes showed a distinct behaviour for both probes. 

While for RG-C14 inserted in POPC the quantum yield presented a higher value than the 

POPC:CHOL(5:5) and SpM:CHOL(6:4) bilayers, for the CBF-C14 probe the relative 

quantum yield was minimum in the more disordered pure POPC bilayer. 
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Figure V.9. Normalized Absorption spectra of CBF-C14 (A) and RG-C14 (B) in, methanol (straight line), 
POPC (dash line), POPC:CHOL(5:5) (grey line) and SpM:CHOL(6:4) (dotted dashed line), at 25 ºC and 
LUVs concentration of 1mM and lipid to probe ratio of 1:500 mole ratio. 

 

Carboxyfluorescein is widely known as a pH sensible dye where both the ground and 

the excited state may be affected by the solvents [232] and, as a result of a distinct probe 

location within the membrane, its pKa may change depending on whether it is inserted 

in a more ordered or disordered liquid phase membrane. In water carboxyfluorescein 

present three distinct ionization equilibrium, a first one at 2.1, where the cation and the 

neutral species are prevalent, a second around 4.3, where both neutral and monoanion 

exist in equilibrium, and a third around 6.4, for the conversion of monoanion to the 

dominant fluorescent form, the dianion [232]. To determine the ionization constant we 

have followed the decrease in the absorption maxima band at 497 nm of CBF-C14 as a 

function of the pH decrease in POPC, POPC:CHOL(5:5) (Figure V.10). The titration 

curve showed that, inserted in the membranes, CBF-C14 has two near pKa. In POPC the 

pKa2≈ 6.9 ± 0.6 and pKa3≈ 8.9 ± 0.5 while in POPC:CHOL(5:5) the pKa2≈ 5.2 ± 0.4 and 

pKa3≈ 7.6 ± 0.1. This difference between membranes reflect the more external 

localization of the CBF-C14 headgroup in the POPC:CHOL(5:5) compared to POPC. 

The reported value for the ionization constant of fluorescein in water is 6.4, which is 

considerably lower than the values obtained for CBF-C14 in membranes, but an increase 

in the pKa due to a change in polarity sensed by the fluorescein or other fluorescent 

derivatives, upon their solubilization in liposomes, has been observed [233,175]. 

Furthermore in non-ionic surfactant micelles the value obtained for the fluorescein pKa 

was in total agreement with values found in pure POPC bilayers [234].  
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Figure V.10. Typical titration curve obtained for CBF-C14 (2 μM) inserted in POPC bilayers (1 mM) at 
25 ºC. The red line is best fit of equations A-21 (see appendix) with pKa2= 6.4 and pKa3= 8.8.  

 

 

Table V.3. Spectroscopic characteristics of the probes used in this work in distinct solvents at 25 ºC. 

(a)The quantum yield are given with reference to quantum yield of RG-C14 in POPC and CBF-C14 in 
POPC:CHOL(5:5) 

 

V.6 Fluorescence Anisotropy and Lifetimes  

The apparent partition coefficient, the aggregation equilibrium and the spectral 

properties of the RG-C14 and CBF-C14 in lipid bilayers suggest that there is a strong 

dependence with the amphiphile headgroup or with the membrane phase and electrical 

properties. Nevertheless, these parameters do not allow predicting the position of the 

probe within the membrane, so it is interesting to relate all the determined parameters 

with the positioning of the amphiphile in distinct membranes. With the photophysical 

 
λ Max Absorption (nm)  

λ Max Fluorescence 
(nm) 

 Quantum Yield(a) 

 RG-C14 CBF-C14  RG-C14 CBF-C14  RG-C14 CBF-C14 

Methanol 503 455  528 535  - - 

POPC 509 490  534 528  1 0.16±0.01 

POPC:CHOL 
 (5:5) 

508 499  532 527  0.25±0.05 1 

SpM:CHOL 
(6:4) 

509 498  530 524  0.30±0.08 0.71±0.02 
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characterization, namely fluorescence anisotropy and lifetimes, of  

RG-C14 and CBF-C14 we pretend to elucidate about the effect of the membrane and 

compare, taking into account their polarity, the differences between both probes used. 

The steady state anisotropy and the fluorescence lifetime may in fact produce important 

information regarding the local environment sensed by the probe within the membrane. 

Moreover, we can observe whether the dipole moment of the probe together with the 

membrane dipole potential contributes towards a shallower or a deeper positioning of 

the probe. The experimental steady state fluorescence anisotropy and lifetime of the 

RG-C14 and CBF-C14 are reported in Figure V.11 and Figure V.12, respectively. For 

RG-C14 the fluorescence anisotropy increases with membrane order from pure POPC to 

equimolar POPC:CHOL bilayers, moreover there is also a further increase for the 

SpM:CHOL (6:4) bilayers. The fluorescent lifetimes of the CBF-C14 and RG-C14 were 

obtained for pure POPC, POPC:CHOL(5:5) and SpM:CHOL(6:4) membranes, and the 

data was well fitted to a single exponential decay formalism. Considering the membrane 

where they are inserted the lifetimes of the excited state seems to decrease slightly with 

the increasing order degree of the lipid bilayer, from POPC to POPC:CHOL(5:5) and 

finally SpM:CHOL(6:4). The lifetime in methanol was also studied and a similar 3.93 

ns and 4.17 ns for CBF-C14 and RG-C14 were obtained, Table V.4. The lifetimes of the 

RG-C14 and CBF-C14 compare well with literature reported values for the fluorescein 

molecule and for Rhodamine 110 in water which present a single lifetime of 

approximately 4 ns [226, 235, 236]. In a fully saturated di-palmitoyl 

phosphatidylcholine (DPPC) liposomes a multiexponential decay (with up to 3 

lifetimes) for some carboxyfluorescein compounds was obtained, but under such 

saturation conditions there is a large probability that the membrane physical chemical 

properties may change conditioning and restricting the probe localization, moreover in 

such conditions some energy transfer was observed. 
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Figure V.11. Anisotropy results for the RG-C14 (A) and CBF-C14 (B) in 1 mM LUVs of POPC (○), 
POPC:CHOL(5:5) (□) and SPM:CHOL(6:4) (Δ) between 530 and 570 nm at 25 ºC. The amphiphile 
concentration was 2 μM for CBF-C14 while for RG-C14 was 3.3 μM. 

 

 

 

 

Figure V.12. Fluorescence emission decay for RG-C14 in 0.5 mM POPC (A) and CBF-C14 in  
SpM:CHOL (6:4) (B) LUVs obtained with λexc = 460 nm at 25 ºC. The thinner lines in the decays are the 
instrumental response function (IRF). For a better judgment of the quality of the fits, weighted residuals  
(W.R. scale, −3 ≤ σ ≤ +3), autocorrelation functions (Autocorr.), and chi-square values (χ2) are also 
presented. 
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Table V.4. Fluorescence Anisotropy (r) and Lifetimes () of RG-C14 and CBF-C14 in membranes in the lo 
and ld phase, at 25 ºC. The results were obtained for three independent experiments being the fluorescence 
anisotropy the average calculated value for the wavelength range from 530 to 570 nm. 

 

 

V.7 Rationalization of the Experimental Results with 

Membrane Dipole Potential 

The relative partition of probes between coexisting phases has been widely studied in 

different lipid compositions and longer saturated acyl chains fluorophores partition 

preferentially towards a more ordered phase while the ones with smaller  

(< C12) or unsaturated acyl chains prefer more disordered phases. The headgroup of a 

certain amphiphilic probe is somehow neglected to predict the relative partition between 

phases. De Almeida et al (2009) [237] showed that NBD- [1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine] (NBD-DOPE) prefers more ordered membrane phases while 

Rhodamine-DOPE has a 4 times higher partition favouring a more disordered phase. 

Forster resonance energy transfer experiments, using NBD and Rhodamine fluorescent 

derivatives with the same acyl chain length, showed that the headgroup itself seems to 

play an important role in partition between phases [238]. In our experimental work the 

acyl chain of the amphiphiles have the same 14 carbons length while the polarity of 

their headgroup is distinct. Therefore, the observed differences in partition, aggregation 

and photophysics for CBF-C14 and RG-C14 are essentially due to headgroup polar 

properties and positioning in the lipid-water interfacial region. In this region there is an 

ordering of the water molecules due to hydrogen bond interactions with the lipids 

 r (×10-2 a.u)   (ns) 

 RG-C14 CBF-C14  RG-C14 CBF-C14 

Methanol - -  4.2±0.03 3.9±0.04 

POPC 23±0.5 21±0.7  3.9±0.04 4.2±0.04 

POPC:CHOL 
(5:5) 

24±0.3 16±0.6  3.9±0.02 4.2±0.1 

SPM:CHOL 
(6:4) 

27±1.0 18±0.8  3.8±0.09 4.0±0.04 
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headgroup [87], this more ordered water has a 100 times decrease in mobility compared 

to bulk water [86]. With the exception of POPC:CHOL:POPE:POPS(4:3:2:1) we 

studied membranes with a neutral charge, so the surface potential may be neglected and 

the only electrostatic potential present in those membranes is of dipolar origin. To 

compare the effect of dipole moment orientation and magnitude for RG-C14 and CBF-

C14 with membrane dipole potential we performed the AM1 semi empirical theoretical 

calculations of the amphiphiles in the minimum energy conformations, method included 

in the Hyperchem® version 8 package 1. They emphasize a higher hydrophilic character 

of CBF-C14 (23 D) relative to RG-C14 (15 D), corroborating our water solubility 

measurements, and opposite dipole orientations Figure V.13. If on one hand the dipole 

moment orientation of the CBF-C14 points in the same direction as the membrane dipole 

potential, on the other hand the RG-C14 have an opposite dipole moment orientation.  

 

 

Figure V.13. Structures of RG-C14 and CBF-C14 (dianion) and the correspondent orientation and 
magnitude of the dipole moment obtained from semi-empirical quantum mechanical calculations (AM1) 
using the Hyperchem® version 8 package. Two views are presented showing the orientation of the 
fluorophore relative to the alkyl chain. Black, blue and red filled balls represent carbon, nitrogen and 
oxygen balls, respectively. 

 

The addition of cholesterol to a POPC monolayer up to 50% leads to a concomitant 

increase in the dipole moment of the monolayer of some mV due essentially to the 

decrease in the area per lipid (increase in lipid packing) [163, 169] (see chapter IV). 

Comparing Kprel for distinct membrane compositions (with different dipole potential) 

                                                 

1 To validate the geometry optimization and the dipole moment determined for our molecules we 
previously tested the same methodology in small well-known molecules such as the acetic acid.  



Chapter V 

112 

with the polar nature of the amphiphile (dipole moment) we observe a linear 

dependence of Kprel with dipole potential increase in cholesterol containing membranes, 

(Ψ POPC< Ψ POPC:CHOL (7:3) < Ψ POPC:CHOL:POPE (5:3:2) < Ψ POPC:CHOL(5:5)). This dependence 

was observed for both probes being the slope slightly higher for RG-C14 than for  

CBF-C14 (Figure V.14).  

The higher dependence of Kprel and ΔGrel with membrane dipole potential for RG-C14 

results from a lower stability of its fluorescent headgroup in the interfacial region of the 

membrane phase compared to the CBF-C14. These results are corroborated by the fact 

that an increase in cholesterol content further contributes to RG-C14 faster aggregation, 

with the Kd in POPC bilayers containing 30% and 50% of cholesterol of 7.2x102 M-1 

and 3.8x101 M-1 respectively while for CBF-C14 no membrane aggregation was 

observed. When inserted in the membrane the distinct dipole moment orientation of 

RG-C14 compared to CBF-C14 induce a more unfavourable membrane solvation 

contributing to an energy minimum in its aggregated state. Moreover, the presence of 

crescent amounts of cholesterol in POPC containing membranes increasing the 

membrane dipole potential that further destabilizes the RG-C14 in the membrane 

decreasing the Kprel and increasing the Kd of RG-C14. Although CBF-C14, at pH 7.4 is 

negatively charged we predict a higher dependence on the Kprel compared to RG-C14 

due to the Born energy effect upon transfer of the charged amphiphile headgroup from 

water (higher dielectric constant) to membrane-water interface (lower dielectric 

constant). Our results show that a favourable amphiphile dipole orientation leads to a 

reduced perturbation of the CBF-C14 once in the membranes overcoming the 

unfavourable born-energy effect due to the presence of charges.  

The POPE phospholipid has a NH3 group which is capable of establish intramolecular 

and intermolecular hydrogen bonding with lipids, leading to a significant decrease in the 

area per lipid and higher order parameter (aligned tails relative to lipid bilayer normal) 

[239]. The lipid packing promoted by both the presence of cholesterol and the ability of 

POPE to hydrogen bond in the mixture of POPC:CHOL:POPE(5:3:2) endorses an 

higher dipole potential of this lipid mixture relative to the POPC:CHOL(7:3). This 

increase in the dipole potential due to the presence of the POPE phospholipid supports 

the observed decrease in RG-C14 membrane solubility and the decrease in partitioning 

of both amphiphiles relative to POPC:CHOL(7:3). Nevertheless the effect of POPE 

phospholipid in the Kprel of CBF-C14 is smaller than RG-C14. The addition of 10% of 
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POPS had no additional effect in the Kprel of both probes (neglecting the charge 

repulsion effect in the case of CBF-C14) and in the  

RG-C14 solubility, being the value similar to POPC:CHOL:POPE(5:3:2) membranes. 

The partition coefficient reveals the difference in interactions of the amphiphile in the 

membrane and in bulk water. From the results it was observed that compared to  

CBF-C14 the RG-C14 is less stabilized in the membrane with the increase in dipole 

potential. However, the amphiphile partition coefficient to membranes may be defined 

by the insertion and desorption rate constants and in the next chapter we will address 

this topic for membranes with different dipole potential.  
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Figure V.14. Dependence of the RG-C14 (filled symbols) and CBF-C14 (non-filled symbols) Kprel (A) and 
∆Grelative (B) with experimental dipole potential for POPC (square), POPC:CHOL (7:3) (circle), 
POPC:CHOL:POPE(5:3:2) (triangle), POPC:CHOL(5:5) (diamond), POPC:CHOL:POPE:POPS(4:3:2:1) 
(inverted triangle) and SPM:CHOL(6:4) (pentagon) membranes. The line is the linear fit to the 
experimental results for POPC, POPCHOL(7:3), POPC:CHOL(5:5) and POPC:CHOL:POPE(5:3:2) lipid 
compositions. 

 

The fact that the increase in dipole potential of POPC containing membranes differently 

affects the probes either in partitioning or in aggregation studies prompted us to analyse 

the chromophore localization in membranes in the liquid ordered and liquid disordered 

phase. The fluorescence anisotropy and lifetimes experimental results showed that the 

negative charge of the CBF-C14 has a determinant role in its shallower localization 

compared to RG-C14. Kachel, K et al (1998), using the parallax method, showed that in 

liposomes the presence of a charge in the fluorescein derivative “pulled” the probe 

towards the aqueous media, while a zwitterionic probe (Rhodamine) would be buried 

deeper within a membrane [240]. An interesting exception was observed in this study 
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for POPC membranes where the smaller fluorescence anisotropy of the  

CBF-C14 relative to RG-C14 is compensated by its higher fluorescence lifetime and both 

probes are sensing the same environment viscosity in these particular membranes. 

Additionally, its smaller relative quantum yield and the shape of the absorption spectra 

(similar to the carboxyfluorescein neutral form) support a CBF-C14 deeper location in 

POPC than in POPC:CHOL(5:5) and SpM:CHOL(6:4). An explanation for the similar 

localization of the CBF-C14 and RG-C14 in POPC is the presence of hydrogen bond 

between the CBF-C14 and lipid headgroups holding the chromophore in a deeper region. 

Hydrogen bonds between other fluorescent amphiphiles and the POPC headgroup was 

previously observed by our group by molecular dynamics simulations [241]. 

Additionally, the observed higher pKa of CBF-C14 in POPC membranes further support 

an increase in its neutral form leading to a deeper localization.  

The photophysical studies together with the partition and aggregation demonstrate that 

both in the liquid ordered phase the SpM:CHOL(6:4) and POPC:CHOL(5:5) have 

distinct physical properties that makes them different solvents for the studied 

amphiphiles. The change of glicerophospholipid by a sphingolipid contributed to 

stabilization of the aggregated state of RG-C14 (higher Kd) and a higher decrease of the 

KPrel for both probes. Based on the SpM:CHOL(6:4) dipole potential we expected that 

its smaller value compared to the POPC:CHOL(5:5) bilayers [176] would increase the 

RG-C14 solubility, instead of the observed decrease. Nevertheless sphingomyelin 

containing membranes have peculiar properties, they pack more densely than POPC at 

the same surface pressures in the presence or absence of equimolar cholesterol 

concentrations [177]. The water permeability in di-palmitoyl-phosphatiodylcholine 

(DPPC) and palmitoyl sphingomyelin (PSM) bilayers under cholesterol equimolar 

concentrations is much smaller for the latter than for the former PC containing bilayer 

[242], moreover the fact that cholesterol molecule has an preferential interaction for 

sphingolipids rather than with the glicerophospholipids [243], contribute to a more 

ordered and rigid SpM:CHOL (6:4) membrane relative to POPC:CHOL (5:5).  

This structural properties of SpM:CHOL (6:4) bilayers overlap the effect of the decrease 

in their dipole potential, promoting a lowering of the relative partition coefficient of 

both probes compared to POPC:CHOL (5:5). Although the tendency of Kprel with 

membrane dipole potential showed for other membranes was not observed for 

SpM:CHOL (6:4) the Kprel continues to be lower for the RG-C14 than CBF-C14 
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reinforcing the idea that the dipole orientation of amphiphiles has an important role in 

partitioning to membranes.  

 

V.8 Chapter Highlights 

In this chapter, we studied the effect of the amphiphile dipole moment in their partition 

into lipid bilayers with different dipole potential. We observed, through semi empirical 

calculations that RG-C14 and CBF-C14 have opposite dipole potentials when inserted in 

the membrane. While, the latter has a dipole moment orientation opposite to the 

membrane dipole potential, the former has the same orientation. The CAC predicted for 

RG-C14 is 42 pM while for CBF-C14 is 2.5 ± 1 nM, in accordance with the fact that the 

latter is negatively charged and the former is zwitterionic. Given their low solubility the 

partition coefficient was measured through transfer between donor and acceptor 

vesicles, assessing a Kprel. For POPC:CHOL membranes we observed that as the dipole 

potential increases the Kprel for both probes decreases. In spite of the smaller dipole 

potential of SPM:CHOL(6:4) membranes, a lower Kprel was observed for both probes 

due to peculiar properties of these membranes (higher packing density). 

The RG-C14 showed a time dependent decrease at 502 nm and an associated appearance 

of a second band at 545 nm, which was considered to be an aggregated form of the 

fluorophore in the membrane. In POPC:CHOL membranes as the dipole potential 

increases the aggregation of RG-C14 increases. 

The negative charge of CBF-C14 has a determinant role in its shallow localization in 

POPC:CHOL(5:5) and SPM:CHOL(6:4) when compared to RG-C14. However, in 

POPC membranes CBF-C14 and RG-C14 are sensing the same environment viscosity 

due to an increase in pKa of the CBF-C14. 

In the next chapter we will address the effect of the membrane dipole potential in the 

kinetics parameters (insertion and desorption). 
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Effect of the Amphiphile Dipole Moment in the 

Kinetics of Interaction with Lipid Bilayers in 

Liquid Ordered and Liquid Disordered Phases 
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VI.1 Introduction  

The passive permeation of molecules across lipid bilayers is a fundamental process both 

in cell biology and drug design and development. The discussion of whether passive 

permeation is the major transport route for solutes and metabolites is increasing and, 

some researchers assume different opinions. A few authors support a negligible role for 

passive route in biological cells, being drugs mostly transported by carriers [244]. Other 

authors, nevertheless, support a dominant role for passive permeation based on: i) the 

structural diversity of membrane permeating molecules and metabolites ii) the fact that 

a lipid bilayer does not have specific binding site, so molecules are less subject to 

transport inhibition due to their structure and iii) it is a non-saturable route [245, 246]. 

Some other authors support the coexistence between carrier-mediated and passive 

transport across membranes [247]. However, evidence that several carriers are limited 

by substrate size, creates an additional argument for the importance of passive 

permeation [246]. Moreover, if the passive permeation of an amphiphilic drug is very 

fast so that it overcomes the effluxes of a carrier mediated protein it is the interaction 

with the membrane that dictates the bioavailability of the drug. A study employing 

central nervous systems drugs (CNS-drugs) revealed that passive transportation is a key 

point, with 94% of the reported drugs displaying a high passive permeability along with 

non CNS-drugs [248].  

Passive transcellular permeation of amphiphilic molecules requires their insertion in the 

outer leaflet of the biological membrane followed by translocation through the 

hydrophobic core and finally desorption from the inner leaflet into the other aqueous 

compartment. The permeation through passive routes involves a critical balance 

between molecular hydrophobic and hydrophilic components. While a very 

hydrophobic compound will remain in the bilayer interior, a more hydrophilic, will 

persist in the aqueous solution. Therefore, the partition coefficient of molecules into 

membranes allows quantitatively assessing solute lipophilicity and, for simplicity, this 

parameter has been obtained from the relative distribution of amphiphilic molecules 

between octanol and water solvents. This over simplistic methodology does not detain 
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the anisotropic nature of biological membranes and, it has been criticized by different 

authors [249-251].  

The solubility-diffusion model predicts the passive permeability rate of molecules 

across biological membranes (see II.6.2.1 for details). The foundations of this model are 

the well-known Overton rule, which consider that the rate-limiting step, in permeation, 

is the translocation of the amphiphilic molecule in the hydrophobic core of the bilayer. 

The quantitative assessment of the permeability rate, using solubility-diffusion model, 

requires knowing both the partition coefficient and the translocation rate of the solute in 

membranes. However, the latter step is frequently unknown for most of the 

amphiphiles, being assumed to be slow and not strongly dependent on the structure of 

the solute. This premise it is not always valid and our group showed that, even within 

the same homologous series, exceptions to the Overton rule occur namely due to 

variations in the rate limiting step that may be the desorption from the bilayer [141]. 

Therefore, the quantitative description of the rates for each step (insertion, translocation 

and desorption) is extremely important to predict the permeability across membranes. 

Additionally, the asymmetric lipid distribution in membranes makes it crucial to study 

the kinetics of the interaction of amphiphiles with membranes containing distinct lipids. 

Our research group, in the latest years, has been committed to fulfil this scientific gap 

by independently studying the partition coefficient and kinetics of interaction between 

different homologous series of molecules and bilayers with distinct lipid compositions 

[134-136, 141, 174, 175, 224, 252-255].  

Most amphiphilic molecules have an asymmetric charge distribution (defined has the 

dipole moment) and when inserted in a membrane they are subject to a considerable 

electric field resulting from the membrane dipole potential (see II.5 for details). This 

membrane dipole potential, generated from the contributions of small dipoles present in 

the lipid, may modulate the interaction with amphiphles. In the former chapter, the 

dipole potential was shown to affect the partition of two amphiphilic molecules towards 

bilayers in distinct physical states. In this chapter we will characterize the kinetics of 

interaction between RG-C14 and CBF-C14 amphiphiles and distinct lipid bilayers, in 

terms of the membrane dipole potential and the amphiphile dipole moment. This is the 

first work that correlates desorption and translocation rates with the electrical properties 

of both membranes and amphiphiles. Moreover, the contribution of this work is 
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unquestionable once that, markedly, increases the available data where a full 

characterization of kinetics and thermodynamics of the interaction of amphiphiles with 

membranes was attained.  

 

 

VI.2 Kinetics of RG-C14 and CBF-C14 Exchange between 

LUVs  

The aqueous solubility of the amphiphiles, specifically RG-C14, is very low  

(see V.2 above for details), and the kinetics of their interaction with membranes, of 

different composition, could not be obtained directly. This difficulty was overcome 

through the transfer between donor and acceptor vesicles. The donor vesicles 

composition was 0.1 mM (final) of pure POPC or a mixture of lipids, loaded with RG-

C14 or CBF-C14 at a probe:lipid molar ratio of 1:500 and the fluorescence lipid quencher 

RhB-DPPE at 1:100, molar ratio (see III.11). The acceptor vesicles were composed of 

pure lipids with the composition in study. 

In the experiments, fluorescence equipment’s with different time resolution were used 

so that the transfer and translocation rates could be accurately obtained. In the stopped 

flow equipment the time limit is 1000 s and the slowest step, at lower temperatures, can 

not be well determined. Moreover, using a steady state fluorimeter the mixture has to be 

prepared manually, within the cuvette (see III.11), and if the fast step occurs within a 

few minutes (which is the case for RG-C14 and CBF-C14 at pH 7.4) its kinetics is poorly 

defined. Hence, for experimental times larger than 1000 s both methodologies had to be 

applied. The complete kinetic scheme and the set of differential equations for the 

transfer of the amphiphiles from donor to acceptor vesicles are given below. 
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Set of differential equations for amphiphile in different compartments: 
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In this scheme the subscript A and D, represent the acceptor and donor lipid vesicles 

respectively. Briefly, the amphiphile symmetrically loaded to the inner ALVin
D and 

outer ALVout
D leaflet of donor vesicles, is in equilibrium with its monomeric form in the 

aqueous medium (Aw). Upon addition of the acceptor vesicles (LVA) the amphiphile in 

the aqueous phase equilibrates with the outer (ALVout
A) leaflet of the acceptor vesicles 

and, from here, with the inner leaflet (ALVin
A). The kinetic rate constants k-, k+ and kf, 

represent desorption, insertion and translocation, while the correspondent superscript A 

and D denote the acceptor and donor vesicles, respectively.  

The transfer of the amphiphiles between vesicles was observed via increase in 

fluorescence intensity upon partition of the probes from donor LUVs, where it is 

quenched by the RhB-DPPE, to an acceptor lipid bilayer. The increase in the 

fluorescence intensity of the RG-C14 or CBF-C14, after mixing both donor and acceptor 

vesicles, is displayed on Figure VI.1. It is evident that for both probes the experimental 

data is biphasic, with a fast process accounting for 60-70% of the total fluorescence 

variation for all vesicles studied. This indicates that the equilibrium distribution of the 

amphiphiles is not symmetric, being enriched in the outer leaflet of donor and/or 

acceptor vesicles, or that the fluorescence quantum yield of the amphiphiles is smaller 

when inserted in the outer than in the inner leaflet of the donor vesicles (due to an 

enrichment of quencher in the outer leaflet). We have obtained information from 

independent experiments (irreversible quenching of RhB-DPPE by dithionite) that 
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indicate a preferential location of the quencher in the external monolayer of the donor 

vesicles in agreement with its molecular shape with a larger cross-sectional area for the 

polar region. Based on the same arguments it is also expected a small enrichment of the 

amphiphiles in the outer leaflet of the LUVs (both donor and acceptor) and, 

consequently, the rate constant for translocation from the inner to the outer leaflet (kf) 

will be slightly larger than that for the reverse direction (k-f). We have however 

considered that both rate constants have the same value because they could not be both 

obtained accurately from the experimental data and also because the difference expected 

is small (kf / k-f  1.5). It should also be stressed that the asymmetry should be very 

similar for both amphiphiles in the LUVs with all lipid compositions because of the 

similar molecular shapes and LUVs curvature. 

The characteristic time of the fast process, at 25 ºC and pH 7.4, is smaller than 2 

minutes, while the slower step may take several hours for both amphiphiles. This 

biphasic behaviour, observed in the experimental data, was due to two processes 

occurring at distinct time scales. An initial fast process owed to the transfer of the 

amphiphile from donor to the outer monolayer of the acceptor vesicles, which was 

responsible for the highest fluorescence intensity variation, and the slowest step was 

attributed to translocation of the probe in the acceptor vesicle. Additionally, as 

translocation of the probe from the inner to the outer monolayer of the donor vesicles 

occurs it allows more amphiphile to partition into the acceptor, increasing the final 

fluorescence intensity in solution. 
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Figure VI.1. Typical curve at 25 ºC for the time dependence of the fluorescence intensity of RG-C14 (A 
and B) and CBF-C14 (C and D) upon transfer between 0.1mM (final concentration) donor vesicles and 1.2 
mM (final) acceptor vesicles with the same lipid composition, POPC (□), POPC:CHOL(5:5) (Δ). At 
negative times the experimental points represent the fluorescence of each probe exclusively in the donor 
vesicles while at t= 0 s the acceptor LUVs were manually added. The red lines are the best fit of 
equations VI-1. 

 

The system of differential equations given in VI-1, may be analytically solved if the two 

steps (desorption or translocation) occur at distinct times scales. The biphasic behaviour 

encountered indicates that the rate of translocation is much slower than the rate of 

insertion/desorption and, therefore, the analytical solution was encountered with the 

assumptions: (kf
D<< k-

D; k+
D [LVD] and kf

A<< k-
A; k+

A [LVA]. As referred above in the 

text it was assumed that the rate constant for translocation was equal in both directions 

(inner to outer and outer to inner; f fk k ).This resulted in equations VI-2 for the rate 

constant of the fast step () and equilibrium distribution of probe in the acceptor LUVs 

( ( )
A
tALV  ). 
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According to equation VI-2, if the equilibrium binding constant for the acceptor is not 

known the accurate assessment of the rate constants for interaction with acceptor 

vesicles requires the determination of the experimental rate constant for the fast step (β) 

for different acceptor concentration. Moreover, the equilibrium binding constant (KL
D) 

and desorption rate constant from the donor must be previously obtained.  

When donor and acceptor vesicles with distinct lipid compositions are used, for 

[LVD]>> [LVA] the exchange rate constant () is equal to desorption rate constant from 

the acceptor (k-
A) while, for [LVA] >> [LVD]  gives the desorption rate constant from 

the donor (k-
D). Moreover, as the ratio between [LVA]/[LVD] increases,  varies 

monotonically between the k-
D and k-

A with a characteristic dependence that reflects the 

relative partition of the amphiphile between the donor and acceptor vesicles. For 

vesicles with the same lipid composition there is no dependence of the transfer rate 

constant with the acceptor lipid concentration and the average value of beta gives the 

rate constant for desorption from the vesicles (Figure VI.2, Panel B). If the equilibrium 

binding constant is known the rate of insertion may be obtained from the desorption rate 

constant (k+=KL k-). 

From Figure VI.1 it is clear a poorly defined desorption step and, experiments with 

shorter time length had to be performed independently for both probes, using the 

stopped-flow equipment. Moreover, for RG-C14 at lower temperatures, the two steps are 

mixed making the definition of both rate constants a difficult task. This was overcome 

through a global fit of the experimental results obtained for short and long times using 

the differential equations VI-1 integrated numerically (Figure VI.2, Panel A). In order 

to, increase the confidence and accuracy in RG-C14 desorption rate constant its 

dependence with the acceptor concentration was assessed (Figure VI.2, Panel B). 

Considering that there was no significant variation in k-, its final value was an average 

for all acceptor concentrations. 
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Figure VI.2. Panel A: Time dependence at 25 ºC of the RG-C14 fluorescence intensity variation upon its 
transfer between donor (0.1 mM) and acceptor (0.2 mM ) POPC LUVs, using the stopped-flow 
equipment (short time experiment) and the steady-state fluorimeter results (long times, inset). The red line 
is the global fit of differential equations VI-1 to the experimental results with a k- and kf equal to 1.5×10-2 
and 2.6×10-3 s-1, respectively. Panel B: Dependence of desorption rate constant obtained with the acceptor 
concentration, leading to k- equal to (1.6 ± 0.04)×10-2 s-1. 

 

In opposition to RG-C14, for CBF-C14 at pH 7.4 both processes are well separated in 

time (more than 1 order of magnitude) and the experimental data may be independently 

fitted (Figure VI.3; Panel A). In order to obtain the CBF-C14 β for distinct vesicles two 

distinct approaches were followed. In the first β for POPC was determined from 

experiments using vesicles with the same lipid composition. In this case, as 

aforementioned, β does not depend on the lipid concentration and, therefore, is equal to 

desorption rate constant (k-) of CBF-C14 from POPC vesicles. 

In the second approach, the experiments were performed from donor, POPC vesicles, to 

acceptor POPC:CHOL(5:5) or SPM:CHOL(6:4) vesicles and, a dependence of β with 

acceptor concentrations with a downward curvature was obtained  

(Figure VI.3, Panel B). Using distinct donor and acceptor vesicles the best fit to the 

experimental results using equation VI-2 required a previous knowledge of k-
D and KL

D 

for donor POPC at the temperature of interest, in order to determine both the insertion 

and desorption rate constants for the acceptor vesicles. Through the transfer between 

similar POPC vesicles (first methodology) the desorption of CBF-C14 from POPC was 

determined, moreover, a KL
D of 2×1010 M-1 was previously known from independent 

experiments (see V.3 above) for POPC vesicles, at 25 ºC. Therefore, we were able to 

determine, from the best fit to the experimental results, the insertion and desorption of 
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CBF-C14 into/from acceptor vesicles using the transfer between POPC and different 

vesicles. 
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Figure VI.3. Panel A: Time dependence, at 25 ºC, of the CBF-C14 fluorescence intensity variation upon 
its transfer from donor POPC (0.1 mM) to acceptor POPC:CHOL(5:5) vesicles at 0.1, 0.2, 0.4, 2 and  
4 mM. The arrow indicates the increase in acceptor concentrations. Panel B: Dependence of the exchange 
rate constant,β, with the POPC:CHOL(5:5) concentration. The best fit to the experimental data using 
equation VI-2 is also shown, with k-

A= 1.0 s-1 and k-
D= 4.7×10-1 s-1

  

 

From the insertion and desorption rate constants of CBF-C14, determined for the 

acceptor vesicles, we may obtain the equilibrium binding constant (KL=k+/k-). The KL of 

CBF-C14 determined for POPC:CHOL(5:5) is 8.0x109 M-1 and it is very similar to 

7.5x109 M-1 previously obtained from independent experiments using a distinct 

methodology (see V.3 above). The agreement between the equilibrium constants 

obtained using the different approaches for CBF-C14, at 25 ºC, gives confidence on the 

methodologies followed in this work.  

When using membranes with different lipid composition, and depending on the final 

experimental time, lipid transfer may occur between the donor and acceptor vesicles 

altering their composition. This is particularly relevant for membranes containing 

cholesterol because the exchange rate constant for this lipid is relatively fast occurring 

in the time scale of hundreds of minutes to hours depending on the vesicle 

concentration, temperature and lipid composition [224]. This process does not affect the 

experimental results obtained for insertion/desorption (occurring in less than 2 min) but 

may be relevant in the time scale necessary to define the translocation rate (hours). 
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Thus, the translocation was characterized from the exchange between vesicles with the 

same lipid composition. The kinetics for the association of CBF-C14 and RG-C14 with 

lipid bilayers of distinct lipid compositions is summarized in Table VI.1. 

 

Table VI.1. Kinetic rate constants and equilibrium for the association of RG-C14 and CBF-C14 to lipid 
bilayer membranes at pH 7.4 and 25 ºC. 

 RG-C14
(a) CBF-C14 

 k- (s
-1) k- (s-1) k+ (M-1s-1)(b) KL  

POPC (ld) 1.6±0.1 (×10-2) 4.7±0.8 (×10-1) 9.4±0.8 (×109) 2.0 (×1010) 

POPC:CHOL  
(5:5) (lo) 

7.0±2.0 (×10-2) 1.1±0.02 8.8±0.8 (×109) 8.0 (×109) (c) 

SpM:CHOL 
(6:4) (lo) 

1.5±0.4 (×10-1) 1.2±0.4 7.2±2.0 (×109) 6.0 (×109) (c) 

(a) Due to RG-C14 low water solubility we were not able to accurately measure KL to POPC, 
therefore, the transfer was made between similar vesicles and only k- may be obtained.  

(b) The k+ was obtained from k- considering KL= 2.0×1010M-1, previously obtained for POPC, at  
25 ºC (see section V.3). 

(c) KL obtained from k- and k+ using equation L

k
K

k




  

 

The desorption rate constant of CBF-C14, at 25 ºC, from POPC, POPC:CHOL(5:5) and 

SpM:CHOL(6:4) is ≈ 25, ≈ 15 and 8 times higher, respectively, compared to that of  

RG-C14. The, expectable, higher desorption rate constant of CBF-C14 was due to its 

negatively charged polar group, which confers a greater water solubility and, therefore, 

a presumable weaker interaction with the lipid bilayer (see V.2 for details). Moreover, it 

agrees with the fact that the estimated Kp of RG-C14 (≈107) to POPC is considerable 

higher than the one obtained for CBF-C14 (7.5x105), reflecting their different 

lipophilicity. Additionally the different values obtained for k- of both probes has its 

origin in a different headgroup packing within the lipid bilayer interface, with the  

RG-C14 establishing stronger interactions with membranes compared to the CBF-C14. 

This may be further enlightened from the thermodynamic decomposition of the energy 

evolved in the formation of the transition state in the desorption step. 

Literature reports containing the equilibrium and kinetics of interaction of amphiphiles 

with lipid bilayers are scarce. Among them it is worth note the work of Nichols (1985) 
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[256] using NBD-PC and the work performed by this research group either using lipid 

derivatives (NBD-DMPE and NBD-LysoMPE) or fluorescent fatty amines (NBD-Cn) 

(Table VI.2) [134, 136]. By comparing the desorption rate constant obtained for  

CBF-C14 and RG-C14 with previous work from this research group, we observed that, in 

POPC, the results lie between those obtained for NBD-DMPE (4.7×10-6 s-1) [136] and  

NBD-LysoMPE (15 s-1) [134] being more similar to the NBD-C14 (1.2×10-2 s-1) [141].  

 

Table VI.2. Summary of the desorption and insertion rate constants, at 25 ºC, for different amphiphiles 
including this and other works from our research group. 

 NBD-DMPE(a) NBD-
LysoMPE(b) 

NBD-C14
(c) CBF-C14 RG-C14 

 k- 
(s-1) 

k+ 
(M-1s-1) 

k- 
(s-1) 

k+ 
(M-1s-1) 

k- 
(s-1) 

k+ 
(M-1s-1) 

k- 
(s-1) 

k+ 
(M-1s-1) 

k- 
(s-1) 

POPC (ld) 
4.7±1.8 
(×10-6) 

6.2±0.5 
(×105) 

1.4±0.2 
(×101) 

2.6±0.3 
(×1010) 

1.2±0.4 
(×10-2) 

7.8±1.6 
(×109) 

4.7±0.8 
(×10-1) 

2.0±0.6 
(×1010) 

1.6±0.1 
(×10-2) 

POPC:CHOL
(5:5) (lo) 

1.2±0.2 
(×10-5) 

1.1±0.1 
(×106) 

1.6±0.1 
 (×101) 

1.3±0.1 
(×1010) - - 

1.1±0.02 8.4±2.0 
(×109) 

7.0±2.0 
(×10-2) 

SpM:CHOL 
(6:4) (lo) 

3.2±1.6 
(×10-6) 

6.8±1.6 
(×104) 

2.9±0.1 

 

6.9±0.1 
(×108) - - 

1.2±0.4 
 - 

1.5±0.4 
(×10-1) 

(a) [136]; (b) [134]; (c) [141]. 

 

Surprisingly, as the membrane ordering increases from pure POPC to 

POPC:CHOL(5:5) and SpM:CHOL(6:4) the desorption rate constant increases for both 

probes studied in this work. The observed variation is opposite to the one reported for 

the NBD-LysoMPE, and distinct from the non monotonic variation noticed for  

NBD-DMPE (Table VI.2). This is due to the distinct headgroup properties being the RG 

and CBF a more bulky polar group whose packing at the interface is more difficult. 

According to the kinetic scheme (1) and rate constants shown above, the rate of the 

insertion step is described by the bimolecular insertion rate constant (k+). Considering 

that vesicles are the reactant species this bimolecular insertion rate may be directly 

compared to the predicted diffusion rate constant (kdiff=4πreffDeffNA). Where, the reff is 

the effective radius for the encounter between the amphiphile and the LUVs (given by 

the sum of both radii), Deff is the effective translational diffusion coefficient and NA is 
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the Avogadro constant. The calculated diffusion controlled rate constant for the 

amphiphiles studied in this work and LUVs with a radius of 50 nm  

(kdiff≈ 2×1011 M-1 s-1, at 25 oC) is at least one order of magnitude larger than the rate 

constant for insertion obtained for CBF-C14 [257]. This is in agreement with the 

previous studies done by this group using other amphiphiles and indicates that insertion 

in lipid bilayers is not a diffusion controlled process (Table VI.2). The insertion rate 

constant of CBF-C14 is only slightly higher to the liquid disordered state, (k+ POPC > k+ 

POPC:CHOL), than to the liquid ordered state. Given that the membrane free volume 

decreases in the presence of cholesterol [258] the probability of finding a void with the 

correspondent size of the amphiphile is higher in those membranes compared to more 

ordered membranes. This leads to an increase in the insertion rate constant for POPC , 

in agreement with the previously reported values for NBD-LysoMPE [134]. 

Interestingly, the values found for insertion of the CBF-C14 are similar (by a factor of 2) 

to the values previously obtained for NBD-LysoMPE and NBD-C14. However, a much 

larger difference exists in the insertion of NBD-DMPE, which has a two acyl chains. 

These results are particularly significant because they highlight the role of the 

hydrophobic portion of the amphiphile in the kinetics of the insertion process.  

 

 

VI.3 Kinetics of Translocation of the RG-C14 and CBF-C14 in 

LUVs 

The rate of translocation for the fluorescent amphiphiles was evaluated through the 

analysis of the slower step, resulting from their transfer between similar vesicles. In 

opposition to desorption, the translocation may take several hours and the transfer of 

cholesterol between vesicles would be likely to occur, modifying the properties of both 

donor and acceptor vesicles. Therefore, the use of similar donor and acceptor vesicles 

was a requirement in these experiments. 

As aforementioned, the best fit of the experimental results was performed using the 

differential equations VI-1, either through a global analysis, obtaining both kf and k-, or, 

if the processes are well-separated in time, translocation was characterized maintaining 
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desorption rate constant fixed in the value obtained from the analysis of the fast transfer 

experiments. In the second approach, a 15% variation of k- was allowed to account for 

the uncertainty associated with this parameter.  

Given the long times required to characterize the translocation step, one must evaluate 

whether some of the RhB-DPPE could be transferred from donor to acceptor vesicles 

and this was calculated from the rate constants available in the literature for  

NBD-DMPE [136] (Figure VI.4). We estimate that less than 5% of RhB-DPPE is 

transferred at all temperatures and acceptor concentrations for the different lipid 

compositions studied. 
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Figure VI.4. Simulation, at 25 ºC, of the percentage of quencher (RhB-DPPE) associated with donor 
(black line) and acceptor (red line) vesicles, for the worst case scenario considered in this work (higher 
concentration of acceptor vesicles), with the lipid composition POPC:CHOL(5:5) or SpM:CHOL(6:4), 
panel A or B respectively. The data was generated using the kinetic parameters of  
NBD-DMPE [136, 252]. 

 

The Figure VI.5 represents a typical experimental result obtained for RG-C14 and  

CBF-C14 in different membranes. As abovementioned (section VI.20 above) the 

biphasic behaviour is due to two distinct processes occurring during the total 

experimental time. A fast process, related to the interaction of the amphiphile with the 

outer leaflet of the acceptor vesicles and, a slower process due to its translocation. 

Considering that; i) the interaction of the amphiphile with acceptor vesicles is always 

through its outer leaflet (the one accessible to the aqueous media in contact with donor 

vesicles) and ii) the translocation of the amphiphile to the inner leaflet of the acceptor 

vesicles does not changes its quantum yield; one may ask why is there an increase in the 
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fluorescence intensity when the amphiphile goes from the outer to the inner leaflet of 

acceptor vesicles? This is because translocation of the amphiphile to the inner leaflet of 

acceptor vesicles shifts the equilibrium between the amphiphile in the aqueous media 

and the outer leaflet of the monolayer, increasing the total amount of amphiphile in the 

acceptor vesicles. 
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Figure VI.5. Time dependence ,at 25 ºC, of the fluorescence intensity of RG-C14 (A) and CBF-C14 (B) 
upon transfer between similar vesicles of SpM:CHOL(6:4) (A) and POPC:CHOL(5:5) (B), with a final 
lipid concentration of 0.1 mM for donor and 1.2 mM for the acceptor vesicles. The parameters for RG-C14 
were obtained from the global best fit to the results obtained in two different times scales, the inset shows 
the best fit of the same parameters to the results obtained at small times, more sensitive to the desorption 
step. The red line is the best fit of the differential equations in VI-1 with k-= 2.7×10-1 s-1 and 
 kf=1.6×10-4 s-1 for RG-C14 and kf = 1.4×10-4 s-1 for CBF-C14 (B). 

 

The transfer of the amphiphiles between vesicles requires a more complex analysis 

[259] than the transfer of the amphiphile from protein (monomerizing agent) or directly 

from water [135, 175]. Furthermore, some experiments using SpM:CHOL(6:4) carried a 

considerable amount of time to reach the plateau and, to discard any change in the 

membrane properties, e.g fusion between vesicles, the dependence of the RG-C14 

translocation rate constant with the concentration of acceptor LUVs was studied  

(Figure VI.6). Within the range of the experimental error, it was observed that the rate 

of translocation was independent of the concentration of acceptor vesicles, giving 

confidence in the obtained results for kf. 
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Figure VI.6. Dependence of RG-C14 translocation rate constant with the SpM:CHOL(6:4) (Panel A,  
25 ºC) and POPC:CHOL(5:5) (Panel B, 55 ºC) acceptor concentration with an average  
kf ≈ 2.7±0.4(×10-4) s-1and 1.4±0.1(×10-1) s-1, respectively.  

 

The translocation rate constants of CBF-C14 and RG-C14 in distinct lipid compositions, 

at 25 ºC, are summarized below, in Table VI.3. The value of kf for both probes decrease 

with the ordering of the membranes corroborating previous results obtained by our 

research group for similar membranes using other amphiphiles (see Table VI.4, below). 

The translocation rate of RG-C14 and CBF-C14 decreases with the membrane ordering, 

being smaller for SpM:CHOL(6:4) membranes, however, a less stark decrease is 

observed compared to NBD-DMPE and NBD-LysoMPE.  These results confirm the fact 

that the SpM:CHOL(6:4) mixture is a more cohesive and ordered membrane and that 

the headgroup structural properties of the amphiphile have an important role its 

translocation. 

Contrary to the experimental results obtained for the single chain amphiphile  

NBD-LysoMPE, both RG-C14 and CBF-C14 have a kf larger (2-3 orders of magnitude) 

than the lipid derivative NBD-DMPE, for all membranes studied. Moreover, the values 

of kf are approximately one and two orders of magnitude smaller, for RG-C14 and  

CBF-C14 respectively, than the fluorescent fatty amine NBD-C14, in the liquid 

disordered POPC membrane. This is a consequence of the bulkiness of RG and CBF 

groups compared to NBD, moreover the presence of charges in those polar groups 

further contribute to a slower translocation. 

The translocation of CBF-C14 is slower than RG-C14 according with the fact that the 

former has a negative charge while the latter is zwitterionic, at pH 7.4. Considering that 
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upon translocation the amphiphile has to cross the hydrophobic core of the membranes, 

with a low dielectric constant, this is expected to be energetically more unfavourable for 

a negatively charged molecule (CBF) than for a zwitterionic one (RG).  

In molecules, which contain ionizable groups (CBF-C14) the observed translocation rate 

will, strongly, depend on the amphiphile ionization state once inserted in the bilayer. 

For instance, from Table VI.4 it is clear that for fatty acids the translocation rate is large 

in spite of the negative charge on their carboxylic headgroup (pKa≈ 4.5 in aqueous 

media). However, upon their partition to membranes a considerable shift in the 

carboxylic group pKa occurs, to higher values, and they are believed to translocate in its 

unionized form, which is considerably faster [260]. A shift of the pKa2 and pKa3 

towards higher values was also observed for CBF-C14 in membranes. 

 

Table VI.3. Values of the translocation rate constants in distinct lipid composition LUVs, at 25 ºC.  

 Translocation rate (s-1) 

 RG-C14 CBF-C14 

POPC (ld) 2.6±0.1(×10-3) 2.1±0.2(×10-3) 

POPC:CHOL(5:5) 
(lo) 

9.5±2.0(×10-4) 2.0±0.5(×10-4) 

SpM:CHOL(6:4) 
(lo) 

3.1±0.8(×10-4) - 

 

Given the lack of quantitative data reporting the translocation of amphiphiles in 

liposomes, the comparison of the experimental results is challenging. The few studies 

reported in literature for membranes in liquid disordered and gel phase have been 

collected in Table VI.4. Moreover, translocation of amphiphiles in lipid systems similar 

to those reported in this work, namely with POPC:CHOL(5:5) and SpM:CHOL(6:4), 

are even more scarce in literature and the only works found are from this research group 

using the NBD-DMPE, NBD-LysoMPE and NBD-C14 amphiphiles. Therefore, caution 

must be taken when comparing the obtained results with the ones reported by other 

authors, where the liposomes lipid composition and size are very distinct. Nevertheless, 

it is evident that for membranes in the liquid disordered phase, the phospholipids 

derivatives have a translocation characteristic time of several hours being significantly 

slower than the translocation for both RG-C14 and CBF-C14. 
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Table VI.4. Literature reported data for the translocation of different amphiphiles in membranes  

 Amphiphil
e 

System Temp 
(ºC) 

Membrane 
lipid 

kf (s
-1) Method Ref. 

L
ip

id
 D

er
iv

at
iv

es
 

DMPC 

LUV 30 DMPC 
≤2.1×10-5 Transfer 

between 
vesicles 

[261] 

SUV 30 DMPC 
≤2.1×10-6 Transfer 

between 
vesicles 

DPPC (a) 
Non 

defined 
30 Egg-PC 

3.0×10-5 Spin label 
paramagnetic 

[262] 

NBD-DPPE SUV 
25 DPPC ≤ 2.1×10-5 Reduction by 

dithionite 
[263] 

45 DPPC ≈7.1×10-4 

NBD-DMPE LUV 25 

POPC 2.0×10-5 

Reduction by 
dithionite 

[252] 
POPC:CHOL 

(5:5) 
1.3×10-6 

SpM:CHOL 
(6:4) 

4.6×10-8 

NBD-
LysoMPE 

LUV 25 

POPC 8.4×10-6 

Reduction by 
dithionite 

[252] 
POPC:CHOL 

(5:5) 
2.8×10-7 

SpM:CHOL 
(6:4) 

1.1×10-8 

[N-13 
CH3]DOPC 

 30 DOPC 
≥ 1.6×10-5 Exchange 

protein 
[264] 

C12PN-PC 

Non 
defined 

37 POPC 

5.6×10-7 Transfer 
between 
vesicles 
(Pyrene- 

phospholipids) 

[265] 
C12PN-PA 5.5×10-6 

C12PN-PE 1.9×10-5 

C12PN-PG 2.8×10-6 

F
at

ty
 A

ci
ds

 Fatty acid (b) 
LUV 

37 EggPC 
≥ 20 

Pyranin [260] 
SUV ≥ 69 

9-(3-pyrenyl) 
nonanoic 

acid (PNA) 
SUV 

37 DMPC ≥ 17 Transfer 
between 
vesicles 

[266] 
37 DPPC ≥ 17 

Oleate (c)  LUV 25 EggPC 
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BSA 
[267] 
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e 

NBD-C14 LUV 25 POPC 4×10-1 
Reduction by 

dithionite 
[141] 

(a) Labeled in the polar region with paramagnetic nitroxide group. 
(b)There was no apparent dependence of the kf with acyl chain length for the fatty acids 14:0; 16:0; 18:0; 
18:1, at pH 7.4. 
(c)At pH 7.4 
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VI.4 Thermodynamics of the Interaction of RG-C14 and  

CBF-C14 with LUVs 

In this section, we will address the thermodynamics of the interaction of RG-C14 and 

CBF-C14 with lipid bilayers, both in the liquid ordered (lo) or in the liquid disordered 

state (ld). The discussion and analysis of the experimental results will be supported on 

the Transition State Theory and models for the insertion/desorption and translocation 

processes, described in the literature. 

 

 

VI.4.1 Transition State for Insertion/Desorption of RG-C14 and  

CBF-C14 

The results for CBF-C14 and RG-C14 insertion and desorption were analyzed based on 

the model developed by Aniansson et al 1976 [268], to describe the amphiphile 

monomer-micelle dissociation. This model has been widely used in the literature  

[219, 261], describing the energetics of the activated state in desorption of amphiphiles 

from lipid bilayers, and it can be pictorially described as: 
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Figure VI.7. Schematic representation of the insertion into and desorption from lipid bilayers with the 
correspondent high energy transition state. 

 

Briefly, when the insertion/desorption process is considered, the higher energy state is 

assumed to occur when the amphiphile moved, in the plane normal to the bilayer, and 

only the terminal carbon is preventing the membrane to collapse filling the cavity 

beneath the amphiphile. In this process, the amphiphile lost most of the interactions 

with the bilayer being, almost completely, in the aqueous phase. However, the lipids 

acyl chains had not yet relaxed and, in the transition state, two cavities are present 

which lead to an increase in enthalpy due to the loss of favourable water-water and  

lipid-amphiphile (or lipid-lipid) interactions. Being the amphiphile, in the transition 

state, extensively exposed to the water a reduction in the entropy of the system occurs. 

Nevertheless, there is an entropic compensation due to the increase in membrane 

entropy that results from a higher conformational freedom of the lipids next to the 

cavity, in the transition state. 

Before development of the Transition State Theory an empirical Arrhenius equation was 

widely used,
aE

RTk Ae


 , in the determination of energy for reactions. This law relates 

the activation energy (Ea) with the reaction rate constant k, being A the pre-exponential 

term, T the temperature in Kelvin and R the universal gas constant. Reformulating the 

Arrhenius equation, applying the natural logarithm to both sides, one obtains; 
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ln ln aE
k A

RT
                                                                                                       (VI-3) 

 

From an Arrhenius plot (ln k vs 1/T) a linear trend is predicted and the activation energy 

(Ea) may be obtained from the slope. However, using the Arrhenius equation we can 

only relate the rate constants with the activation energy. Therefore, to obtain the 

thermodynamic parameters for the transition state of the amphiphiles in the interaction 

with lipid bilayers the Transition State Theory (TST) must be used. This theory has 

three postulates: 

 

1- From the reactants to the products, along a surface potential curve, the molecule 

has to overcome a region of high potential energy, which is the transition state. 

This must be the energy maximum in the reaction coordinate. 

2- It is assumed that there is quasi-equilibrium between the molecules in the 

transition state and the reactants. 

3- The rate of reaction (r) is given by the concentration of molecules in the 

transition state multiplied by the frequency, at which they pass towards the 

product state. 

 

The TST, also called absolute-rate theory, was introduced in 1935 by Eyring and Polany 

[269-271] and provided the first theoretical attempt to determine the absolute reaction 

rates [272]. Using the TST postulates and assuming a frequency factor of Bk
T

h
  , for 

the deactivation of the transition state, Eyring and Polanyi developed a thermodynamic 

formulation of the transition state theory (VI-4) which allowed to obtain the enthalpic 

(∆‡H0) and entropic (∆‡S0) contribution from the temperature dependence of the 

experimental rate constants.  
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‡ ‡0 0S H
B R RT

k T
k e e

h

 


                                                                                                                   (VI-4) 

 

This equation resembles the Arrhenius equation, except that ∆‡H0 appears instead of Ea 

being the pre exponential factor given by: 

 

‡ 0S
B R

k T
A e

h



                                                                                                                               (VI-5) 

 

Reformulating the equation (VI-4), applying the natural logarithm to both sides, one 

obtains; 

 

‡ 0 ‡ 0

ln ln Bk T S H
k

h R RT

     
 

                                                                                              (VI-6) 

 

According to the linearized equation VI-6, from the experimental Arrhenius type plot, 

the ∆‡H0 and ∆‡S0 can be obtained with the least square analysis procedure. Moreover, 

the obtained ∆‡H0 and ∆‡S0can be easily converted into Gibbs free energy, ∆‡G0, 

using ‡ 0 ‡ 0 ‡ 0G H T S     . 
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VI.4.2  Thermodynamics of CBF-C14 and RG-C14 Desorption from 

LUVs 

From the temperature dependence of desorption rate constants, the thermodynamic 

parameters for desorption of RG-C14 and CBF-C14 from bilayers with distinct 

composition was recovered (Figure VI.8) (Table VI.5). However, given that KL was not 

measured at different temperatures the thermodynamics for insertion of CBF-C14 and 

RG-C14 into LUVs can not be obtained from the experimental data (see equationVI-2). 
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Figure VI.8. Arrhenius type plot for the desorption of RG-C14 (Panel A) and CBF-C14 (Panel B) from 
POPC (□), POPC:CHOL(5:5) (∆) and SpM:CHOL(6:4) (), at pH 7.4. The average experimental value ± 
standard deviation of, at least, three independent experiments is shown. The line is the best fit of equation 
VI-6, the grey dashed line is the extrapolation of the desorption rate constant to temperatures not 
measured experimentally. 

 

 

Table VI.5. Thermodynamic parameters, for desorption of RG-C14 and CBF-C14 from lipid bilayers. 

T=25 ºC 
RG-C14 CBF-C14 

POPC 
ld 

POPC:CHOL 
(5:5) lo 

SpM:CHOL 
(6:4) lo 

POPC 
ld 

POPC:CHOL 
(5:5) lo 

SpM:CHOL 
(6:4) lo 

∆‡G0 

(kJmol-1) 
83±0.1 80±1.0 78±0.5 75±2.0 73±0.5 72±1.5 

∆‡H0 

(kJmol-1) 
84±3.0 64±4.0 62±4.0 45±1.0 49±2.0 64±3.0 

T∆‡S0 

(kJmol-1) 
0.9±3.0 -16±4.0 -16±4.0 30±1.0 -24±2.0 -8±3.0 
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Considering the desorption step of amphiphiles from lipid bilayers the transition state is 

the one where the amphiphile is barely attached to the membrane interface and almost 

completely in the aqueous phase. This state requires the formation of two cavities, one 

in the monolayer from where the amphiphile is emerging and other in the interfacial 

water where it is inserting (see Figure VI.7, above). The formation of these two cavities 

requires a considerable amount of energy increasing the enthalpy of the system. 

However, the variation in the system’s entropy results from two opposing effects: an 

increase due to the higher motion of membrane lipids in the surroundings of the cavity, 

and a decrease due to the ordering of water molecules around the non-polar surface of 

the amphiphile.  

According to the results for desorption of both probes from the lipid bilayers, listed in 

Table VI.5, it is clear that the process is dominated by the enthalpic contribution, in 

agreement with previous reports (Lyso-MPE and NBD-DMPE) [134, 136, 141]. 

Interestingly, while for RG-C14 the ∆‡H0 increases with membrane ordering for  

CBF-C14 a reciprocal trend is observed, given their opposite dipole moment this could 

be due to their distinct interaction with membrane dipole potential. Assuming the same 

transition state for both amphiphiles, its formation is energetically more unfavourable 

for RG-C14 than for CBF-C14, for all the membranes studied (∆‡G0
RG-C14 > ∆‡G0

CBF-C14). 

While for POPC and POPC:CHOL(5:5) this is due to a significantly higher enthalpic 

contribution for RG-C14 relative to CBF-C14, for SpM:CHOL(6:4) the variation is 

essentially due to the entropic contribution. Considering that the acyl chain in both 

amphiphiles is the same (C=14), this enthalpy difference between both amphiphiles 

relies on a distinct interaction between the amphiphile headgroup and the bilayer 

interface, namely the interaction between the amphiphile dipole moment and the 

membrane dipole potential. Since that CBF-C14 has a negative charge, the positioning of 

this amphiphile, compared to that of RG-C14, is shallower decreasing the interactions 

with membrane lipids. This is reasonable for membranes in lo phase, where a more 

external positioning of CBF-C14 compared to RG-C14 was confirmed from fluorescence 

anisotropy measurements (V.6, above). In POPC, however, the localization of both 

probes was shown to be essentially the same and, nevertheless, CBF-C14 presents a 

considerable lower ∆‡H0. The exposed may be explained based on a stronger interaction 

of RG-C14 dipole moment with the dipole potential of POPC bilayers, due to their 

opposite orientation when the amphiphile is inserted. The entropy variation profile 
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observed for both probes and for different membranes reveals a compensation effect. 

Systems with a lower enthalpy due to favorable interactions tend to have lower entropy 

as well. 

 

 

VI.4.3 Thermodynamics of CBF-C14 and RG-C14 Translocation in 

LUVs 

The transition state model for the translocation step is depicted in Figure VI.9. Briefly, 

upon translocation of a molecule from one monolayer to the other the high energy state 

is the one where the amphiphile lies in the midplane of the bilayer, oriented parallel to 

the membrane surface. Accordingly, the major contribution to the work involved in the 

translocation process is the one necessary to put the polar group in the non-polar 

membrane interior. However, a previous work done by this laboratory [141], studying a 

homologous series of fluorescence fatty amines, showed an effect of the acyl chain 

length on the translocation rate. Furthermore, results obtained in bilayers with a smaller 

thickness challenged this model and, for very polar solutes, a defect mediated 

translocation was considered [138]. The results for thermodynamic parameters for 

translocation are summarized in Table VI.6. 

 

Figure VI.9. Schematic representation of the translocation of an amphiphile with the correspondent high 
energy transition state.  
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Figure VI.10. Arrhenius type plot for the translocation of RG-C14 (Panel A) and CBF-C14 (Panel B) in 
POPC (□), POPC:CHOL(5:5) (∆) and SpM:CHOL(6:4) () bilayers. The results show the average 
experimental value ± standard deviation of, at least, three independent experiments. The line is the best fit 
of equation VI-6 and the grey dashed line are the extrapolation of experimental results for POPC. 

 

 

 

Table VI.6. Thermodynamic parameters for translocation of RG-C14 and CBF-C14 in lipid bilayers. 

 RG-C14 CBF-C14 

T=25 ºC POPC 
(ld) 

POPC:CHOL 
(5:5) (lo) 

SpM:CHOL  
(6:4) (lo) 

POPC 
(ld) 

POPC:CHOL  
(5:5) (lo) 

∆‡G0 (kJmol-1) 88±0.1 90±0.5 93±0.6 88±0.3 94±0.7 

∆‡H0 (kJmol-1) 106±6.0 132±4.0 143±6.0 98±10 104±8.0 

T∆‡S0 (kJmol-1) 18±6.0 42±4.0 49±6.0 10±9.0 10±8.0 

 

The results show an increase, for both amphiphiles, of the energy barrier (∆‡G0) from 

POPC to SpM:CHOL(6:4) membranes. Given the currently accepted model for the 

transition state, the decrease in translocation rate for more ordered membranes can only 

be due to a variation in the Gibbs free energy of the transition state as a consequence of 

either a decrease in polarity at the bilayer midplane or a lower stabilization of the 

amphiphiles in the transition state. This is because the TST assumes a frequency for the 

deactivation of the transition state which does not depend on the physical state of the 

membrane. If we considered a smaller frequency factor for more ordered membranes, 
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which is reasonable, the translocation rate constant could be smaller for ordered 

membranes, as observed, in spite of the same energy barrier (∆‡G0). The frequency 

factors are however unknown and therefore, in this work we use the absolute rate theory 

with the same frequency factor for all membranes (kBT/h) and the differences observed 

in the rate constants are tentatively interpreted in terms of the energetics of the transition 

state. This uncertainty affects the value obtained for the entropy variation upon 

formation of the transition state, but not the enthalpy variation.  

The translocation of this amphiphiles is dominated by enthalpy has observed in other 

amphiphiles (Table VI.7). Moreover, the work required to place the NBD in the 

nonpolar bilayer center is higher than for both RG and CBF headgroups. 

The enthalpy variation reports the interactions established by the amphiphile with 

neighboring lipids in its inserted state, moreover, it is further related with the work 

required to place a polar group in the bilayer midplane. If we consider that the work 

required to place the amphiphile headgroup in the membrane interior is not significantly 

different for membranes in either ld or lo phase, the results indicate that enthalpy of both 

probes in the inserted state is larger for more disordered membranes. Comparing both 

probes we observed an increase in ∆‡H0 for translocation of RG-C14 in bilayers in lo 

phase relative to ld, and a much smaller increase is observed for CBF-C14. These results 

confirm that, in the liquid ordered membranes, the probes establish stronger interactions 

with neighboring lipids, which stabilize their inserted state, being this particularly 

evident for the RG-C14. The increase in RG-C14 stabilization of the inserted sate 

compared to CBF-C14 in ld and lo, observed from the higher ∆‡H0, agrees with 

thermodynamic results for desorption and consolidate the argument that their distinct 

dipole moment orientation affects the kinetics of interaction with the membrane. 

From the results we observed a significantly lower entropy variation, for lo phase, upon 

formation of the transition state for CBF-C14 compared to RG-C14 which may be 

explained based on the formation of a membrane defect due to the presence of this 

amphiphile, larger for the case of CBF-C14. This defect leads to an increase in the 

entropy of the amphiphile neighbouring lipids which in turn decreases the ∆‡S0 

associated with the formation of the transition state. However, in the liquid disordered 

state the RG-C14 probe have a similar ∆‡S0 and ∆‡H0 to CBF-C14, compatible with a 

deeper localization of CBF-C14. This similar membrane location and an increase in the 
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neutral fraction (higher pKa) of CBF-C14 in POPC contribute to similar thermodynamic 

parameters and rate constants between both probes in POPC.  

Comparing the thermodynamic parameters obtained for RG-C14 with those reported for 

NBD-LysoMPE, we observe that in lo phase the main difference is the entropic 

contribution, being higher for the former. Both probes have similar ∆‡H0 even though 

RG-C14 translocate faster than NBD-LysoMPE due its negative charge. For CBF-C14, 

the NBD-LysoMPE establish more interactions with lipids being this enthalpy 

difference the main responsible for the translocation rate difference observed between 

these probes for all membranes. 

 

Table VI.7. Thermodynamic parameters for translocation of NBD-DMPE and NBD-LysoMPE in lipid 
bilayers, recovered from literature. 

 NBD-DMPE (a) NBD-LysoMPE (a) 

T=25 ºC POPC  

(ld) 

POPC:CHOL 

(5:5) (lo) 

SpM:CHOL 

(6:4) (lo) 

POPC  

(ld) 

POPC:CHOL 

(5:5) (lo) 

SpM:CHOL 

(6:4) (lo) 

∆‡G0 
(kJmol-1) 

98±1.0 104±4.0 112±2.0 99±0.3 109±1.0 116±1.0 

∆‡H0 
(kJmol-1) 

119±5.0 143±2.0 153±8.0 131±2.0 133±5.0 141±12 

T∆‡S0 
(kJmol-1) 

21±5.0 39±2.0 41±7.0 32±2.0 24±5.0 25±11 

(a) [252] 
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VI.5 Effect of the pH in Kinetics and Thermodynamics of 

Interaction of CBF-C14 with LUVs 

Carboxyfluorescein is a dye with three distinct ionization equilibria and its 

photophysical properties are sensitive to local pH. Considering that CBF-C14, at pH 7.4, 

has a negative charge its effect in desorption and translocation rate constants may be 

significant. Therefore, this effect was evaluated through the k- and kf dependence with 

pH, in a range between 6 and 7.4. According to literature, in this pH range we are 

mostly changing the fraction of anionic and di-anionic CBF-C14, considering that the 

reported pKa for this equilibrium in water is 6.4 and the other pKa values are 2.1 and 

4.3, for the equilibrium between the cationic and neutral forms and between the neutral 

and anionic forms, respectively. However, from our previous results, in the range from 

pH= 3 to pH= 11, we found a pKa for CBF-C14 in membranes, which were significantly 

higher than the reported values in water. The distinct localization of the amphiphile in 

POPC and POPC:CHOL(5:5) leads to different ionization constants and, while in the 

former bilayer the pKa2≈ 6.9 ± 0.6 and pKa3≈ 8.9 ± 0.5, in the latter the recovered 

values were pKa2≈ 5.2 ± 0.4 and pKa3≈ 7.6 ± 0.1. 

The expectations were that, upon the pH increase, the negatively charged fraction of 

CBF-C14 predominates, promoting opposite effects in the translocation and desorption 

rate constants. From the ionization constants of CBF-C14, and by fitting the 

experimental results with the ionization equilibrium formalism, the rate constants for all 

the CBF-C14 species could be attained. Moreover, the temperature dependence at the 

different pH values was also recovered, and this enables a complete description of the 

thermodynamic parameters for the ionized and neutral species. In the next topic, we will 

address desorption and translocation rate constants as a function of the pH, for CBF-C14, 

and characterize the thermodynamic parameters for the transition state. Finally, the 

extrapolation of the experimental results for the neutral and charged species of CBF-C14 

will be further discussed. 
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VI.5.1 Effect of the pH in Desorption of CBF-C14 from LUVs 

As aforementioned the desorption rate constant of CBF-C14, from LUVs in ld and lo 

phase, was obtained for pH = 6; 6.5; 7 and 7.4 (Figure VI.11), being the results at  

pH 7.4 exposed and discussed in the previous sections. According to the time separation 

of desorption and translocation steps, which depended on the value of pH in opposite 

directions, the experimental results were fitted through a global analysis or each 

parameter was obtained from independent experiments. The Figure VI.11 shows the 

experimental results and their best fit at different pH. It is clear that as the pH decreases, 

the translocation and desorption steps became closer in time, with desorption CBF-C14 

becoming slower while translocation is accelerated. This was predictable since that by 

lowering the pH we are promoting an increase in the fraction of monoanionic and 

neutral species in solution. Considering that both species are less water soluble than the 

dianionic, the final CBF-C14 desorption rate constant will decrease. Moreover, the 

translocation rate will increase due to the decrease in amphiphile polarity.  
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Figure VI.11. Typical curves, at 25 ºC for the time dependence of the fluorescence intensity of CBF-C14 
upon transfer between 0.1 mM (final concentration) donor vesicles and 1.2 mM (final) acceptor vesicles 
with the same lipid composition, at pH= 6 (A and C) and pH= 7 (C, D), POPC (□), POPC:CHOL(5:5) 
(∆). In inset there are the independent experimental curves for desorption step in a smaller timescale. The 
red line represents the best fit of equations VI-1.  

 

Performing the experiments described above, Figure VI.11, between 25 ºC and 55 ºC, it 

is possible to obtain the temperature dependence of the desorption rate constant at 

different pH and lipid bilayers compositions (Figure VI.12). The kinetic data was used 

to generate the Arrhenius type plot for k- of CBF-C14 allowing us to obtain the ∆‡H0, 

∆‡S0 and ∆‡G0 at different pH and lipid bilayers, which are summarized in Table VI.8. 
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Figure VI.12. Arrhenius type plots for the desorption of CBF-C14 from POPC (Panel A) and 
POPC:CHOL(5:5) (Panel B) at pH= 6 (□); pH= 6.5 (○); pH= 7.0 (∆) and pH= 7.4 ().The results show 
the average experimental value ± standard deviation of, at least, three independent experiments. The line 
is the best fit of equation VI-6. 

 

 

 

Table VI.8. Thermodynamic parameters for the formation of the transition state and rate constant for 
desorption of CBF-C14 from lipid bilayers of POPC and POPC:Chol (5:5), at different values of pH. 

T=25ºC POPC (ld) POPC:CHOL(5:5) (lo) 

pH≈ 6.0 6.5 7.0 7.4 6.0 6.5 7.0 7.4 

k- (s
-1) 2.1±0.9 

(×10-2) 
7.5±3.0 
(×10-2) 

2.2±0.2 
(×10-1) 

4.7±0.8
(×10-1) 

1.4±0.6 
(×10-1) 

4.6±0.9 
(×10-1) 

8.1±0.9 
(×10-1) 

1.1±0.02 

∆‡G0 

(kJmol-1) 
82±1.0 80±1.0 77±0.2 75±2.0 78±0.8 76±0.2 73±0.3 73±0.5 

∆‡H0 

(kJmol-1) 
75±7.0 75±6.0 55±5.0 45±1.0 60±6.0 51±7.0 47±4.0 49±2.0 

T∆‡S0 

(kJmol-1K) 
-7±7 -5±5 -22±5.0 -30±1.0 -18±6.0 -25±7.0 -26±4.0 -24±2.0 

f CBF-C14
0 (a) 0.89 0.72 0.45 0.24 0.15 0.05 0.01 0.004 

f CBF-C14
1- (a) 0.11 0.28 0.54 0.74 0.83 0.87 0.77 0.58 

(a) f CBF-C14
0 and f CBF-C14

1- represent the molar fraction of the neutral and monoanionic species in 
solution, respectively, calculated from the values of pKa of CBF-C14 inserted in the bilayers obtained in 
this work (section V.5). 

 



Chapter VI 

150 

The results presented in Table VI.8 show some common trends for both membranes. 

There is an increase in k- and consequently a decrease in the ∆‡G0 with the increase in 

the value of pH which is due, as referred earlier in the text, to an increase in the  

dianionic fraction of the CBF-C14. The other observed trend is the decrease in the 

enthalpy variation for formation of the transition state with the increase in pH.  

The positive enthalpy variation observed in the formation of the transition state in the 

desorption process is due to the formation of two cavities, one in the interfacial water 

and another in the monolayer from where the amphiphile is exiting. Considering that the 

∆‡H0 for the formation of the water cavity is essentially the same for both membranes 

the observed differences are due to the interactions that the amphiphile establishes when 

inserted in the membrane such as, the interplay between the amphiphile dipole moment 

and membrane dipole potential. Accordingly, has the pH decreases the neutral form of 

CBF-C14 is more stabilized in the membrane leading to an increase in ∆‡H0 for both 

membranes studied. 

A deeper localization of the headgroup for lower pH could be responsible for a bigger 

increase in the membrane entropy when going to the transition state, which may explain 

the increase in T∆‡S0. Moreover, the higher pKa2 and pKa3 of CBF-C14 in POPC 

compared to POPC:CHOL(5:5) and its higher anisotropy (see V.6 above) corroborate 

the deeper positioning of the headgroup in the former membranes compared to the 

latter. 

From the results it is clear that for POPC and POPC:CHOL(5:5) the differences are 

larger for ∆‡H0 than for ∆‡S0. This indicates that the interactions which are broken when 

going from POPC to POPC:CHOL(5:5) are not compensated by a corresponding 

increase in entropy, suggesting that a more ordered membrane is not able to take 

advantage of a nearby cavity to increase its conformational entropy. 

Comparing the variations in the thermodynamic parameters with increase in the value of 

pH for both membranes, we observe that the decrease in ∆‡H0 (when going from pH=6 

to 7.4) in POPC is significantly larger than in POPC:CHOL (5:5) and that the effect in 

∆‡H0 is similar to that observed for ∆‡S0. This is probably related with the larger 

variation in the global charge of CBF-C14 in POPC than in POPC:CHOL (5:5) for this 

pH variation (-0.11 to -0.74 (-0.67)) in POPC versus -0.87 to -1.42 (-0.54) in 

POPC:CHOL (5:5)). 
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By knowing the values of k- at different pH and the pKa of CBF-C14, which was 

previously determined, we can calculate k- for the different CBF-C14 species in solution. 

The global rate of translocation is given by: 
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From the dependence of the observed desorption rate constant with pH, the rate constant 

of each CBF-C14 species may be calculated. The experimental results and the best fit are 

presented in Figure VI.13. Considering the limited pH range studied and given the 

complexity of the titration curve, with two ionization constants in the pH range 

considered, some concerns in recovering the kinetic constants are inevitable. First, the 

desorption at lower pH is very slow and given that there are no further data for pH 

lower than 6 the curve is not well defined in this region. Therefore, during the fit it was 

necessary to impose a constraint on the value of k- for the neutral specie (≥ 0), otherwise 

the values would be meaningless. Moreover, given that the experimental points 

represent a very narrow region of the titration curve, the confidence in the desorption 
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rate constant obtained for the species in solution was very small. For instance it is clear 

from Figure VI.13 (A) that the result for the dianionic species is obtained without the 

presence of any experimental results. Therefore, in order to obtain confident results for 

the different CBF-C14 species, a larger pH range must be covered including the plateau 

present at higher pH (≥8) and at low pH (≤6). Although it seems tempting to give the 

values for the desorption of the neutral mono and dianionic species of CBF-C14 from the 

best fit, the reasons aforementioned tell us that the more correct decision is to perform a 

more detailed study (higher pH range) before being compromised with any value.  
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Figure VI.13. Desorption rate constants obtained, at 25 ºC, for CBF-C14 in POPC (□) and 
POPC:CHOL(5:5) (∆) lipid bilayers at different pH buffer solutions. The line is the best fit of equations 
VI-7 and VI-8 to the experimental results, with pKa2= 6.9, pKa3= 8.9 and k- for the neutral, monoanionic 
and dianionic equal to 0, 2.4×10-1 and 14 s-1, for POPC. For POPC:CHOL(5:5) bilayers the best fit was 
performed with pKa2= 5.3 and pKa3= 7.6 with the k- for the neutral monoanionic and dianionic forms 
equal to 0, 2.5×10-1 s-1 and 2.3 s-1, respectively. 

 

 

VI.5.2 Effect of the pH in Translocation of CBF-C14 in LUVs 

Translocation is an essential step in the permeation of amphiphilic molecules and 

xenobiotics across cell membranes, moreover, the phospholipids in cells are subject to 

the transbilayer movement, which is crucial to maintain the cell membrane asymmetry 

(for details see II.2.3 above). The ionization state of an amphiphile strongly affects its 

translocation has shown recently, by our group, with the anti-psychotropic drug 

chlorpromazine [174]. Furthermore, fatty acids display a high dependence of the 
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translocation rate constant with pH. This was elucidated based on an increase in the 

fraction of neutral form, due to the increase in pKa upon the insertion in membranes 

[260]. 

From the experimental results shown above (see Figure VI.9) the translocation at 

different pH (6.0-7.4) was obtained. Moreover, performing the experiments at different 

temperatures, between 25 ºC and 55 ºC, the Arrhenius type plots and the 

thermodynamics for the translocation process at each pH were attained (Figure VI.14). 

In Table VI.9, there is a compilation of all the experimental results, at different pH, for 

CBF-C14. 
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Figure VI.14. Arrhenius type plots for the translocation of CBF-C14 in bilayers of POPC (Panel A) and 
POPC:CHOL(5:5) (Panel B) at pH= 6 (□); pH= 6.5 (○); pH= 7.0 (∆) and pH= 7.4 ().The results show 
the average experimental value ± standard deviation of, at least, three independent experiments. The line 
is the best fit of equation VI-6. 
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Table VI.9. Thermodynamic parameters, for the transition state, and rate constant for translocation of 
CBF-C14 in lipid bilayers at different pH. 

T=25 ºC POPC (ld) POPC:CHOL(5:5) (lo) 

pH≈ 6.0 6.5 7.0 7.4 6.0 6.5 7.0 7.4 

kf (s
-1) 

1.2±0.2 
(×10-2) 

8.2±3.0 
(×10-3) 

4.8±0.9 
(×10-3) 

2.1±0.2
(×10-3) 

2.6±0.6 
(×10-3) 

1.4±0.4 
(×10-3) 

6.2±2.0 
(×10-4) 

2.0±0.5 
(×10-4) 

∆‡G0 

(kJmol-1) 
84 85 86 88 88 90 92 94 

∆‡H0 

(kJmol-1) 
76±4.0 86±6.0 90±4.0 98±10 90±11 92±10 95±6.0 104±8.0 

f CBF-C14
0 (a) 0.89 0.72 0.45 0.24 0.15 0.05 0.01 0.004 

f CBF-C14
1 (b) 0.11 0.28 0.54 0.74 0.83 0.87 0.77 0.58 

 

From the results summarized in Table VI.9 it is clear that, as expected, with the pH 

increase the rate of translocation decreases (approximately 1 order), in accordance to a 

more prominent fraction of negatively charged CBF-C14. The increase in ∆‡H0, with the 

pH, have two major contributions, one related with the interactions between the 

amphiphile and the membrane lipids, in the inserted state, and another owned to the 

desolvation of the amphiphile headgroup upon its translocation to the inner core of the 

bilayer. Considering that, as the pH increases, the headgroup of the CBF-C14 is more 

exposed to the aqueous phase we believe that the increase in enthalpy is due to the water 

displacement from the amphiphile headgroup. Moreover, upon this water displacement 

from the interfacial region an increase in entropy would be expectable with the pH, 

corroborating the obtained experimental results. 

The different positioning of the headgroup in POPC and POPC:CHOL(5:5), once again, 

has a major effect in the translocation precisely due to its different solvation. In POPC 

CBF-C14 has a more internal localization in the membrane interface, compared to 

POPC:CHOL(5:5), corresponding to a lower solvation of the headgroup and, therefore, 

upon its transfer to the bilayer inner region a lower ∆‡H0 and a higher T‡∆S0 are 

obtained. Furthermore, the enthalpy variation for the transition state, with the increase 

in pH, is higher for the POPC than for POPC:CHOL(5:5) due to a more extensive 

delocalization of the amphiphile headgroup and an higher global charge variation of 
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CBF-C14 in the former membrane than in the latter. Namely, in the POPC membranes, 

with the pH increase, there is a higher displacement of the headgroup towards the water 

phase than POPC:CHOL(5:5), which is already deeper inserted in the aqueous phase. A 

significant contribution to this deeper and shallower positioning of the amphiphile, both 

with the pH and the membrane composition, may be attributed to the  

amphiphile-membrane dipole interactions and this will be further discussed in the next 

topic. 

Knowing the pH and the pKa of CBF-C14, the translocation of the neutral, monoanionic 

and dianionic species may be obtained (Figure VI.15). Contrarily to what was observed 

in the desorption step, it is now the translocation of the dianionic species that is very 

slow. Therefore, the best fit was obtained assuming that the rate constant for 

translocation of [CBF-C14]
2- is equal to zero. Moreover, in POPC the kf of the  

[CBF-C14]
1- had also to be equal to zero allowing only assessing, for this membrane, the 

kf of the neutral species. Considering the lack of experimental data to correctly assess 

the translocation of the species we opted once again not to recover a value for the 

translocation rate constant. 
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Figure VI.15. Translocation rate constants, at 25 ºC, obtained for CBF-C14 in POPC (□) and 
POPC:CHOL(5:5) (∆) lipid bilayers at different values of pH. The line is the best fit of equations VI-7 
and VI-8 to the experimental results, with pKa2= 6.9, pKa3= 8.9 and k- for the neutral equal to  
1.2×10-2 s-1and 0 s-1 for the monoanionic and dianionic, in POPC. For POPC:CHOL(5:5) bilayers the best 
fit was performed with pKa2= 5.3 and pKa3= 7.6 with the k- for the neutral, monoanionic and dianionic 
forms equal to 1.4×10-2 , 5.6×10-4 and 0 s-1, respectively. 
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In the sections above the thermodynamics and kinetic parameters for the interaction of 

RG-C14 and CBF-C14 (at different ionization states) with bilayers, in the ld and lo phase, 

were discussed. However, the role of the membrane dipole potential and amphiphile 

dipole moment was, on purpose, vaguely addressed because it requires a deeper and 

more global analysis. Therefore in the next section the role of the electrostatic potential, 

in the above parameters, will be discussed.  
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VI.6 Role of Membrane Dipole Potential and Amphiphile 

dipole Moment in Kinetics and Thermodynamics of 

interaction with lipid bilayers, in ld and lo phase. 

The dipole moment of the amphiphiles was determined through semi empirical 

calculations (V.7 above). When inserted in the membrane, the dipole moment 

orientation of the CBF-C14 has the same direction of the membrane dipole potential, 

while that of RG-C14 has an opposite orientation (Figure VI.16). This different 

orientation of the dipole moments of the amphiphiles may influence their interaction 

with lipid bilayers. Considering that the interaction between the amphiphile dipole 

moment and the membrane dipole potential is essentially of enthalpic origin in this topic 

we will, exclusively, refer to the enthalpy variations observed in the experimental 

results.  

 

 

Figure VI.16. Schematic representation of CBF-C14 (yellow) and RG-C14 (green) and respective dipole 
moment orientation when inserted in a monolayer of lipids (grey). The large arrow represents the 
membrane dipole potential orientation with a gradient fill from blue (positive pole) to red (negative pole). 
Once inserted in the bilayer CBF-C14 and RG-C14 have distinct dipole orientations. The amphiphiles are 
exaggerated for a best understanding from the reader. 

 

Let us consider first the desorption process at pH 7.4, where, the enthalpy and the 

entropy variation upon formation of the transition state was higher for the RG-C14 than 

for CBF-C14, Table VI.5, while the rate constant was smaller Table VI.1. According to 

this, the opposite dipole orientation relative to the membrane dipole potential increases 

the stability of the inserted state of RG-C14 leading to an increase in enthalpy variation 

that dominates the energetic contribution. An interesting tendency was observed in the 

variation of ∆‡H0, for desorption, with the lipid composition of the bilayer. While for 

RG-C14 it decreases with membrane ordering (from POPC to SpM:CHOL (6:4)), for 
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CBF-C14 the opposite tendency is observed. This can be attributed to the difference in 

the interaction of the amphiphile dipole moment and membrane dipole potential, due to 

the headgroup localization in the membrane interface. Considering that it was observed, 

through fluorescence anisotropy and pKa measurements, a more external positioning of 

the amphiphile headgroup with membrane ordering. The displacement of RG-C14, which 

inserted has a favourable interaction with membrane dipole potential, towards the water 

leads to a decrease in the strength of the interaction with the membrane dipole potential. 

Contrarily, a more external location of the polar headgroup of CBF-C14 leads to a more 

favourable (less unfavourable) electrostatic interaction. Consequently, while in RG-C14 

the ordering of the membrane leads towards a decrease in the enthalpy variation for 

desorption, in CBF-C14 an increase is observed revealing a less unfavourable dipole 

interaction in the inserted state with the increase in membrane ordering Figure VI.17.  

 

 

Figure VI.17. Schematic representation of the effect of RG-C14 (green amphiphile) and CBF-C14 (yellow 
amphiphile) interfacial headgroup localization in the enthalpy variation for the formation of the transition 
state in POPC (1), POPC:CHOL (5:5) (2) and SpM:CHOL (6:4) (3) membranes. The arrow in the 
amphiphile headgroup represents its dipole moment orientation and the thicker arrow represents the 
membrane dipole potential orientation, being the red and the blue ends the negative and the positive pole, 
respectively. For simplicity the energy was normalized for the transition state and the blue arrows 
represent the enthalpy variation from the inserted state to the transition sate. 
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The translocation results, at pH 7.4, showed that RG-C14 compared to CBF-C14, has a 

higher enthalpy and entropy variation upon formation of the transition state. This 

highlights the increasing stability of the RG-C14, when inserted in membrane, compared 

to CBF-C14 due to favourable dipole interaction. Moreover, the increase in membrane 

dipole potential, POPC:CHOL(5:5), rises the ∆‡H0, particularly for the RG-C14, due to 

an increasing stability of its inserted state for those membranes. In POPC membranes, 

however, the ∆‡H0 is essentially the same for both amphiphiles because in this 

membranes the CBF-C14 has a higher neutral fraction  

(smaller dipole moment, μ≈ 9.4 D). 

At pH 7.4, CBF-C14 is negative while RG-C14 is a zwitterion. The translocation process 

requires placing the polar group in the inner core of the membrane and this is 

energetically more unfavourable (leading to higher activation energy and, consequently, 

a slower rate) for charged molecules. Therefore, ideally, the comparison should be made 

between the results of the neutral CBF-C14 and RG-C14. However, the lack of 

experimental results describing the titration curve did not permit to characterize 

accurately k- and kf of the neutral CBF-C14. From the pH dependence of the 

thermodynamic parameters associated with the desorption process, we observe that a 

decrease in pH leads to a higher ∆‡H0 due to an increase in the fraction of the neutral 

form (with smaller dipole moment) pointing to a less unfavourable interaction of  

CBF-C14 dipole moment with the membrane dipole potential. Moreover, this variation is 

less accentuated for POPC:CHOL(5:5) due to a much smaller neutral fraction in 

solution in the pH range studied when compared to POPC. In translocation, although the 

amphiphile dipole and membrane potential interactions have an important role certainly 

a major contribution comes from putting charges inside the membrane. Therefore, the 

decrease in neutral fraction as the pH increases leads to a higher enthalpy variation. This 

is particularly evident in POPC membranes where a higher charge variation occurs. 

From the rationalization of the membrane potential with the orientation of the 

amphiphile dipole moment, it was shown that the opposite orientation of both leads to 

further stability of the amphiphile when inserted in the bilayer. This translates into 

larger activation energy in the processes of translocation and desorption resulting in 

smaller translocation and desorption rates, which may be extremely relevant when 

predicting the permeation of amphiphilic molecules across biological membranes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 



 

 

 



Conclusions 

163 

In this work, we have characterized the kinetics and thermodynamics of interaction of 

two distinct amphiphiles with lipid bilayers having different physical properties. 

Moreover, the aqueous solubility, the relative equilibrium partition coefficient between 

the aqueous phase and the membranes and the probes localization in the lipid bilayers 

was also studied. The amphiphilic probes have a 14 carbons alkyl chain length attached 

to distinct fluorescent headgroup with different dipole moments. While the dipole 

moment of RG-C14 inserted in the membrane has an orientation opposite to the 

membrane dipole potential, in CBF-C14 the orientation of both dipoles is similar. This 

important characteristic of the amphiphiles headgroup allows establishing some 

conclusions, regarding the interplay between their dipole moment and the membrane 

dipole potential in the kinetics and thermodynamics of interaction with lipid bilayers. 

Our group has previously addressed this topic, speculating that the magnitude and the 

orientation of the dipole potential could affect the partitioning of amphiphiles to 

membranes with different dipole potentials, however no quantitative detail was given 

[224]. The complete kinetic and thermodynamic characterization performed in this work 

is a foremost step given that only a few authors have reported, with such detail, the 

interaction of amphiphiles with different lipid bilayers.  

In order to reveal the effect of headgroup dipole moment and membrane dipole 

potential, in the interaction of RG-C14 and CBF-C14 with bilayers, it is crucial to assess 

their magnitude. For the amphiphiles, this was accomplished through semi empirical 

calculation and the dipole potential of membranes was obtained using monolayers 

formed at the air-water interface. The amphiphiles showed, as expected, an opposite 

orientation for their dipole moments, its magnitude being higher for CBF-C14 (23 D) 

than for RG-C14 (15 D). In monolayers, the experiments were performed with either 

pure or mixtures of lipids, to gain insight into the contribution from each lipid class and 

allow the estimation of the dipole potential of complex lipid mixtures present in 

biological membranes. The results showed a smaller dipole potential for SpM due to 

their hydroxyl group in the sphingosine alkyl chain. The dipole potential of monolayers 

showed an increase with the cholesterol content due to a higher packing of the lipids 

(smaller area per lipid), in accordance with other reported data [170]. In the quaternary 

mixture of POPC:CHOL:POPE:POPS(4:3:2:1), which mimmetize the inner leaflet of 

the plasma membrane, a smaller dipole potential than that of the ternary mixture 
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POPC:CHOL:POPE(5:3:2) was found, which was interpreted as an increase in the 

average area per lipid. This result highlights the effect of 10% of negatively charged 

lipid increasing the free volume, and disordering, of this quaternary mixture. Moreover, 

the dipole potential of membranes with the composition similar to the plasma 

membranes showed an orientation and magnitude that reinforces the transmembrane 

potential in those membranes.  

The amphiphile CBF-C14 has a CAC of 2.5 nM, seen from fluorescence shifts to the 

predicted linear dependence with concentration. However, the aqueous solubility of  

RG-C14 (42 pM) was too small to be measured directly being estimated from the 

experimentally determined CAC for the homologous RG-C10 and the solubility 

dependence with the length of the alkyl group measured for the homologous series 

NBD-Cn [175]. The aqueous solubility of RG-C14 and CBF-C14 revealed that the latter is 

more soluble in the aqueous media than the former, as expected from its negative charge 

at pH=7.4. The partition between aqueous and lipid phases cannot be directly assessed 

for the case of RG-C14 whose solubility in the aqueous phase is below the sensitivity of 

the method used. Therefore, we have characterized the association of these amphiphiles 

with various bilayers from their transfer between liposomes. This allows recovering a 

relative partition coefficient (Kprel) between donor (POPC) vesicles and different 

acceptor vesicles. The value of Kprel obtained was smaller for CBF-C14 than for the 

homologous RG-C14 for all lipid compositions. Furthermore, for both fluorescent probes 

there is an increase in Kprel with the bilayer ordering. The rationalization in terms of 

membrane dipole potential was performed, for POPC:CHOL membranes, and a linear 

decrease of ln(Kprel) and ∆Grel with the dipole potential increase (which corresponds 

also to an increase in the membrane order) was observed for both probes. The 

aggregation of both probes in the distinct membranes was also studied. For RG-C14, the 

time evolution was well described by a dimerization process, while for CBF-C14 there 

was no indications of aggregation in membranes. The aggregation of RG-C14 in more 

pronounced in liquid ordered membranes, (POPC:CHOL and SpM:CHOL), with 

equilibrium dimerization constants, Kd, of 7.0±1.5(×102) and 9.0±2.5(×102) M-1, 

respectively. Moreover, for POPC:CHOL membranes an increase in the dipole potential 

leads to an increase in the RG-C14 Kd, indicating a stabilization of the amphiphile 

aggregated form. The localization of RG-C14 and CBF-C14 headgroup was assessed 

through fluorescence anisotropy and lifetimes measurements. As expected, the 
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negatively charged CBF group was found to be located in a more external position, 

more exposed to the aqueous media, than the zwitterionic RG group for lipid bilayers 

containing cholesterol. However, and surprisingly, the location of the polar fluorescent 

groups of CBF-C14 and RG-C14 was very similar when the amphiphiles are inserted in 

POPC bilayers. This deeper localization for CBF-C14, in POPC, is explained based on 

an increase in the neutral fraction of CBF-C14, due to a shift of pKa for higher values. 

In order to predict the passive permeation of a solute across biological membranes it is 

essential to know the kinetics of their interaction with lipid bilayers. Considering that 

most amphiphilic drugs have an asymmetric charge distribution (dipole moment) the 

interaction between amphiphiles with distinct dipole orientation and membranes with 

different dipole potential has a high relevance in pharmacokinetics and bioavailability. 

Therefore, in this work, we studied the kinetics of interaction between RG-C14 and 

CBF-C14 with lipid bilayers in the liquid disordered and liquid ordered phase. From the 

different steps that lead a molecule from one side of a bilayer to the other side, 

(insertion, translocation and desorption) the translocation and desorption were 

determined for different temperatures and the thermodynamics was obtained. 

Additionally, based on the estimated (RG-C14) and experimentally (CBF-C14) obtained 

binding constant to POPC and POPC:CHOL (5:5) at 25 ºC, it is predicted that the 

insertion rate process is not diffusion controlled (k+<<kdiff) for both probes. The 

desorption of CBF-C14 from lipids bilayers was faster than for RG-C14, moreover, it 

increases with the order of the membrane for both probes. These distinct rates reflect a 

more stabilized inserted state of the RG-C14 compared to the CBF-C14, due to a stronger 

interaction between its dipole moment and membrane dipole potential. This is in clear 

contradiction with the information obtained from the effect of the membrane dipole 

potential on the relative partition coefficients for both probes. The elucidation of this 

aspect requires the quantitative characterization of the rate of insertion, but it may be 

anticipated that the increase in the membrane dipole potential decreases the rate of 

insertion for amphiphiles with the orientation of the dipole moment similar to RG-C14. 

This dipole-dipole interaction established when the amphiphile is inserted in the bilayer 

is reflected in a larger ∆‡H0 for the desorption of RG-C14 as compared to that of  

CBF-C14. In translocation, a smaller rate was obtained for CBF-C14 in accordance with 

its negative charge, although ∆‡H0 was higher for RG-C14 than for CBF-C14. This, once 

again, reflects the different interactions between the dipole moment of the amphiphiles 
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and the membrane dipole potential. Therefore, the antiparallel dipole moment 

orientation of RG-C14, compared to CBF-C14, favours its interaction with the membrane 

dipole potential when inserted in the bilayer increasing the value of ∆‡H0 for formation 

of the transition state in translocation. The results obtained for desorption of CBF-C14 at 

different pH were in agreement with the above interpretation. Accordingly, the increase 

in ∆‡H0 observed for desorption of CBF-C14 at lower pH reflects a more favourable (or 

less unfavourable) interaction with the membrane dipole potential stabilizing the 

inserted state. 

This work showed that the polar region of an amphiphilic drug affects its interaction 

with lipid bilayers, both its partition and kinetics. Moreover, the comparison between 

probes with opposite dipole moments showed that the asymmetric charge distribution in 

the amphiphilic molecule has a fundamental role in the kinetics of its interaction with 

lipid bilayers. It was shown that a molecule with a dipole moment orientation 

antiparallel to the dipole potential of the membrane is more stabilized when inserted in 

the lipid bilayer and this results in slower rates of desorption and translocation. This is a 

significant achievement that represents a step forward in the establishment of rules to 

predict the permeability of drugs from their chemical structure. 
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 Chapter V. “Effect of Amphiphile Dipole Moment in Solubility and 

Partition to Lipid Bilayers in Liquid Ordered and Liquid Disordered 

Phases” 

 

 

V.3 Partition of RG-C14 and CBF-C14 between Donor POPC LUVs and Acceptor 

LUVs with Various Lipid Compositions  

 

For amphiphiles which are soluble in the aqueous phase as monomers the complete 

kinetic scheme is given by: 

                                  
f

f

kk LV out in
w k k

A ALV ALV-+

-

                               (1) 

The amphile as monomer collides with lipid vesicles as (LUV) and eventually inserts 

with a rate constant k+ in the outer monolayer of the lipid bilayer (ALVout). Then it may 

translocate to the inner leaflet with rate constant kf or dissociate from the lipid bilayer 

with a rate constant k-. 

 

The kinetic scheme (1) is described by the following differential equations: 
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  



 
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 

 

 

                              (A-1) 

With the following mass balance: 

    in out
wT

A A ALV ALV                                                                                  (A-2) 

 



Appendix 

170 

To analytically solve the differential equations two approximations must be made. 

 

 Slow translocation rate approximation  

In some conditions the translocation rate constant is smaller when compared to the 

insertion and desorption characteristic time, in this case in
VAL  =0, and we can describe 

the whole process by a differential equation of the form: 

 

    d x
x b

dt
                                                                                                    (A-3) 

 

Whose integration leads to an equation of the type: 

 

         ( ) 0

t

t
x x x x e

 
                                                                              (A-4) 

 

From this approximation the exchange rate constant, β, and the concentration of 

amphiphile bound to lipid bilayers at equilibrium is given by: 

 

    
 

[ ]

1
L T

L

k LV k

K LV A
ALV

K LV

  



 




                                                                                          (A-5) 

 

 Fast Translocation step approximation. 

For a fast translocation step the concentration of amphiphile bound to lipid vesicles is 

given by:
 

 

out in out
V V V VAL AL ; AL 2 AL                                                                                     

(A-6) 

 

From the differential equations the exchange rate constant and the amphiphile bound to 

lipid bilayers at equilibrium is given by: 
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    
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2 1
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k
k LV

K LV A
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K LV

 




 




                                                                                         (A-7) 

Considering these two approximations both k- and k+ can be recovered from the linear 

dependence of the transfer rate ( ) with the LUV concentration. In these solutions the 

fk ≈ fk . 

 

 

V.4. Aggregation of RG-C14 and CBF-C14 in Lipid Bilayers 

 

 In the case of Monomer dimer equilibrium we have the following kinetic 

scheme.  

                                                  
2

1

k
k

M M D                                                      (2) 

 
The rate equations that describe the scheme are: 
 

     2
2 1

d D d
k M k D

dt dt


                                                                                      (A-8) 

 

     22
2 12

d A
k M k D

dt
   .                                                                                      (A-9) 

 

Considering that: 

   

   
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M t

D M

D D

M M


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                                                                                                  (A-10) 

where, the parameter Δ denotes the displacement from the equilibrium.  
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The substitution of equations (A-9) in the rate equation for dimer (A-7) gives: 

 

     
     

2
2 1

2 2
2 2 1 1
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                                           (A-11) 

 

Applying the equilibrium condition,
 
 

   22
1 22
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D k
k D k M

kM
   , to equation (A-11): 
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2 2 1
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                                                                      (A-12) 

where  

1
0

2

k
K

k
 .                                                                                                                    (A-13) 

 
A rate equation of type  
 

 2
1 1 ,

dc
c c

dt
                                                                                                    (A-14) 

 
has the following solution 
 

 
1

2 1 1

(0)exp( )
( )

1 ( / ) (0) 1 exp( )

c t
c t

c t
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therefore, the solution for equation (A-11) is given by: 
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   2

(0)exp 1
( ) ( )

1 4 / (0) 1 exp( ) 2D M
kt

t t
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where, 

 2 0(4 )k k M K  .                                                                          (A-17) 
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V.5. Spectral Properties of the RG-C14 and CBF-C14 in Liquid Ordered and Liquid 

Disordered Phases 

 

The ionization equilibrium of CBF-C14 in solution is given by: 

 

                                     

1

2

0 1
14 14

1 2
14 14

Ka
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CBF C CBF C H

CBF C CBF C H

 

  
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where, 
0
14CBF C ,

1
14CBF C  , 

2
14CBF C  represent the neutral, anionic and di-anionic 

species of the CBF-C14 in solution, respectively. The Ka1 and Ka2 are the equilibrium 

ionization constants given by: 
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                                                                                       (A-18) 

 

The mass Balance: 

  0 1 2
14 14 14 14T

CBF C CBF C CBF C CBF C                                               (A-19) 

 

Combining the equations A-1 and A-2 the concentration of each specie in solution may 

be obtained from the experimental pH. 
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                                                                      (A-20) 

 

The total absorption of the solution at a certain pH is given by the concentration of each 

species multiplied by the proportionality constant (φi). 
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 ChapterVI “Effect of the Amphiphile Dipole Moment in the Kinetics of 

Interaction with Lipid Bilayers in Liquid Ordered and Liquid Disordered 

Phases” 

 

VI.2. Kinetics of RG-C14 and CBF-C14 Exchange between LUVs 

The kinetic parameters of both probes used in this work were assessed via transfer 

between vesicles. The complete kinetic scheme and the set of differential equations for 

the transfer of the amphiphiles from a donor to acceptor vesicles are given below. 
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where, wA  is the amphiphile (RG-C14 or CBF-C14) as a monomer in the aqueous phase, 

in
DALV  , 

out
DALV

,
out

AALV  in
AALV  represent the amphiphile associated with the inner 

(in) or the outer (out) leaflets in the donor ( DLV ) and acceptor ( ALV ) LUVs 

respectively. The f
k , k-  and k+  represent the translocation, desorption and insertion 

rate constants respectively, in either donor (D) or Acceptor (A) vesicles. 
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The kinetic scheme (4) is described by the following ordinary differential equations 
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The mass balance: 

    out in out in
A A D DT w

A A ALV ALV ALV ALV                                                     (A-23) 

 

To analytically solve the differential equations slow translocation in donor and acceptor 

vesicles was assumed and fk = fk  in both acceptor (A) and donor (D) vesicles. The 

exchange rate constant (β) of the amphiphile bound to the acceptor vesicles ( AALV ), 

at equilibrium, is given by 
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                (A-24) 

Where, A
LK  and D

LK represent the equilibrium association constants of the amphiphiles 

to acceptor and donor vesicles, respectively.  

From the equations is clear that for vesicles with the same lipid composition the 

desorption constant. Considering vesicles with distinct lipid composition if the [LVD]>> 

[LVA] the exchange rate is equal to desorption rate constant from the acceptor while, for 

[LVA] >> [LVD] the β gives desorption rate from donor 
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