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Abstract 

In the present context of global climate changes and exponential increase of 
the human population, environmental contamination by chemicals 
(anthropogenic/natural sources) and temperature are most relevant stressors in 
aquatic ecosystems. Forested streams are particularly vulnerable because of their 
relatively low water volume and dependence on the riparian vegetation (major 
source of organic matter). This organic matter is processed by the detritivorous 
community, especially by shredders, which have a central role in nutrient cycling. 
The litter and leafs provided by particular riparian species (e.g. Eucalyptus 

globulus) may have toxins and a relatively low nutricional quality when compared 
to native species (e.g. Alnus glutinosa). In South Europe streams, considerable 
changes of water temperature are common in some periods of the year and the 
simultaneous exposure of shredders to eucalyptus toxins and other environmental 
contaminants, such as metals (e.g. copper), is likely to occur. However there is a 
lack of knowledge on the effects induced by multi-stressors, particularly on 
shredders. Therefore, the main goal of the present Thesis was to investigate the 
single and combined effects of copper, an ubiquous environmental contaminant, 
and eucalyptus leaf leachates (EL), planted in monocultures and widespread in 
Portugal, on three shredder species found in South Europe streams (the shrimp 
Atyaephyra desmarestii, the amphipod Echinogammarus meridionalis and the insect 
Schizopelex festiva) at two ecologically relevant temperatures (10 and 20°C).  

In the first study (Chapter II), the acute toxic effects of EL and copper on A. 

desmarestii, E. meridionalis and S. festiva were investigated in 96h toxicity 
bioassays using mortality as effect criterium. The median lethal concentrations 
(LC50) of EL to the tested species ranged from 81.1 to 567.8 mg/L at 10°C; and 
from 34.4 to 482.1 mg/L at 20°C (concentration of tannic acid). The LC50s of 
copper ranged from 0.22 to 9.0 mg/L at 10°C, and from 0.04 to 7.3 mg/L at 20°C. 
Comparison of the toxicity curves indicated that the most tolerant species was S. 

festiva. The relative sensitivity of A. desmarestii and E. meridionalis was chemically 
and termally dependent, with E. meridionalis being particularly sensive to copper 
at 20°C. Interactions between EL and copper (antagonism in A. desmarestii and 
synergism in E. meridionalis) and an increase of the toxicity with temperature raise 
were found.  

 These findings raised several questions on the molecular/physiological 
mechanisms that may contribute to the differences of sensitivity found. Therefore, 
the acute effects of EL, copper and their mixtures were further investigated 
(Chapter III) by analyzing the activity of the enzymes cholinesterases (ChE), 
involved in neurotransmission, and glutathione S-transferases (GST), involved in 
biotransformation and lipid peroxidation prevention, and the levels of lipid 
peroxidation (LPO), as indicative of oxidative damage.  Results suggest that these 
shredders have different sensitivities to chemically-induced acute stress and that 
some of the mechanisms of toxicity and detoxication involved are modulated by 
temperature. At increased temperature, in control organisms, the ChE activity in S. 

festiva, and the GST activity in S. festiva and E. meridionalis were reduced, while 
LPO levels increased in S. festiva and A. desmarestii.  

In the wild, the most common situation is the long-term exposure to 
relatively low concentrations of environmental contaminants. Thus, in Chapter IV, 
the single or combined exposure to EL and copper on the most tolerant (S. festiva) 
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and the most sensitive species (E. meridionalis) were assessed at 10 and 20°C using 
growth, food consumption and survival rates as effect criteria. Elemental body 
composition and selected biomarkers (ChE, GST and LPO) were evaluated in S. 

festiva. Temperature significantly accelerated growth rates of S. festiva while the 
presence of the chemical agents determined lower intrinsic growth rates (at both 
temperatures) and no effects on survival were detected. For E. meridionalis the 
presence of low concentrations of chemical agents increased growth rates at 10°C. 
Survival was negatively affected by increased temperature and stressors exposure. 
S. festiva is unable to remain homeostatic and the ability to retain phosphorus is 
compromised (at higher temperature and increased copper concentrations). 
Increasing oxidative damage at 20°C was also observed. Results suggest that, even 
low amounts of chemical agents in chronic exposures, are able to affect life history 
parameters of both S. festiva and E. meridionalis with possible negative 
consequences for stream macroinvertebrates.  

Deterrent effects of afforestations namely the replacement of native trees 
(e.g. Alnus glutinosa) by monocultures of E. globulus in riparian areas may affect 
shredders that may feed on these particular leaves. Therefore, the effects of 
consuming high (alder) or low (eucalyptus) quality leaves combined with the 
influence of temperature (10 and 20°C) were tested in E. meridionalis (Chapter V). 
Elemental body composition and selected biomarkers (ChE, GST and LPO) were 
determined. Results suggest that invertebrates are homeostatic even when fed low 
quality food (eucalyptus). At 20°C increased oxidative damage in shredders fed 
with eucalyptus was observed.  

In summary, the results indicated: (i) differences of sensitivity to acute and 
chronic stress induced by copper and EL at ecologically relevant concentrations; 
(ii) that temperature change interacted with the toxicity of both stressors in a 
species-specific manner probably due to differences at physiological/molecular 
levels; (iii) that exposure to stressors influences the stoichiometrical composition 
of the invertebrates. These findings suggest that EL and/or copper contamination 
may modulate the structure and dynamics of the shredder’s community in streams 
and exposure to increased temperature may influence the process. Alterations in 
the shredders community may cause throphic imbalances, alterations of ecosystem 
functioning and reduction of ecosystem services.  

 
 

 

Keywords: Atyaephyra desmarestii; Echinogammarus meridionalis; Schizopelex 

festiva; shredders; copper; eucalyptus; temperature; acute and chronic toxicity; 
biomarkers; elemental composition. 

 



III 

 

Resumo 
No atual contexto de mudanças climáticas globais e aumento exponencial da 

população humana, a contaminação ambiental por produtos químicos de origem 
antropogénica e natural e a temperatura são dos factores de stress mais relevantes 
em ecossistemas aquáticos devido aos seus potenciais impactos adversos. Ribeiros 
em áreas florestais são especialmente vulneráveis a estes impactos devido ao seu 
volume de água reduzido, e dependência da vegetação ripícola que é a principal 
fonte de matéria orgânica nestes ecossistemas. Esta matéria orgânica é processada 
pela comunidade de detritívoros, nomeadamente pelos trituradores que têm um 
papel fulcral no ciclo dos nutrientes. Esta matéria orgânica fornecida por 
determinadas espécies (e.g- Eucalyptus globulus - eucalipto) pode conter toxinas e 
uma qualidade nutricional relativamente baixa quando comparadas com as 
espécies nativas (e.g. Alnus glutinosa – amieiro). Em ribeiros do Sul da Europa, 
onde variações consideráveis da temperatura da água são comuns em alguns 
períodos do ano, a exposição simultânea dos trituradores a toxinas de eucalipto e 
outros contaminantes ambientais, tais como os metais (e.g. cobre), é de provável 
ocorrência. Apesar da investigação que tem vindo a ser desenvolvida nos últimos 
anos, o conhecimento científico sobre os efeitos induzidos simultaneamente por 
múltiplos factores de stress é ainda bastante limitado, especialmente nas 
comunidades de detritívoros. Assim, o objetivo central do presente estudo foi 
investigar os efeitos isolados e combinados da exposição ao cobre, um dos 
contaminantes ambientais mais comuns e, a lixiviados de folhas de eucalipto (EL), 
comum em Portugal e frequentemente plantado em regime de monocultura, em 
três espécies trituradoras encontradas em ribeiros do Sul da Europa (o camarão 
Atyaephyra desmarestii, o anfípode Echinogammarus meridionalis e o insecto 
Schizopelex festiva) a duas temperaturas ecologicamente relevantes (10 e 20°C).  

No primeiro estudo realizado (Capítulo II), foram investigados os efeitos 
tóxicos agudos de EL e do cobre em A. desmarestii, E. meridionalis e S. festiva em 
bioensaios de toxicidade de 96h baseados nos efeitos letais induzidos. Nos 
bioensaios com os agentes isolados, as concentrações letais medianas (LC50) de 
EL, para as espécies testadas variaram entre 81,1 e 567,8 mg/L a 10°C e entre 34,4 
e 482,1 mg/L a 20°C (concentração de ácido tânico). Os LC50 para o cobre 
variaram entre 0,22 e 9,0 mg/L a 10°C e entre 0,04 e 7,3 mg/L a 20°C. A 
comparação das curvas de toxicidade e a análise geral dos dados indicaram que a 
espécie mais resistente foi S. festiva. A sensibilidade relativa das outras duas 
espécies parece ser dependente da temperatura e do agente testado, sendo E. 

meridionalis particularmente sensível ao stress induzido pelo cobre à temperatura 
mais elevada (20°C). Nos bioensaios de misturas, foram observadas interacções 
toxicológicas entre EL e cobre (antagonismo em A. desmarestii e sinergismo em E. 

meridionalis), tendo-se ainda verificado um aumento da toxicidade com o aumento 
da temperatura.  

Os resultados dos ensaios agudos levantaram várias questões interessantes, 
sobre os mecanismos moleculares/fisiológicos que podem contribuir para as 
diferenças de sensibilidade observadas entre as três espécies. Assim, no Capítulo 
III foram investigados os efeitos agudos do EL e do cobre, isolados e em mistura na 
atividade das enzimas colinesterases (ChE), envolvidas na neurotransmissão 
colinérgica, e glutationa S- transferases (GST), envolvidas na biotransformação e 
prevenção da peroxidação lipídica, e os níveis de peroxidação lipídica (LPO), 
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indicativo de dano oxidativo nos lípidos. Nos organismos controlo, verificou-se 
uma diminuição da atividade das ChE em S. festiva , das GST em S. festiva e E. 

meridionalis e aumento dos níveis de LPO em S. festiva e A. desmarestii com o 
aumento da temperatura. Os resultados obtidos sugerem que as espécies testadas 
possuem diferenças a nível molecular e/ou fisológico, as quais podem contribuir 
para as diferenças de sensibilidade observadas, indicando ainda a influência da 
alteração da temperatura em alguns dos processos. 

Na natureza, a situação mais comum é a exposição a longo prazo a 
concentrações relativamente baixas de vários contaminantes ambientais. Assim, no 
capítulo IV, o efeito da exposição isolada ou combinada de EL e de cobre nas taxas 
de crescimento, consumo e sobrevivência dos detritívoros S. festiva (mais 
resistente) e E. meridionalis (mais sensível) foram avaliadas a duas temperaturas 
(10 e 20°C). A composição corporal elementar e os biomarcadores (ChE, GST e 
LPO) também foram avaliados em S. festiva. Na ausência de stress químico, o 
aumento da temperatura acelerou de forma significativa as taxas de crescimento 
de S. festiva e, a presença de substâncias tóxicas, determinou taxas de crescimento 
intrínsecas menores (a ambas as temperaturas), não sendo detectados efeitos 
sobre a sobrevivência. Para E. meridionalis a presença de pequenas quantidades de 
tóxicos aumentou as taxas de crescimento a 10°C. A sobrevivência foi afetada 
negativamente pelo aumento da temperatura e exposição a tóxicos (isolados e em 
combinação), especialmente na temperatura mais alta. A manutenção da 
homeostasia em S. festiva é comprometida nomeadamente a capacidade de 
retenção de fósforo na presença de cobre a 20°C. Um aumento dos danos 
oxidativos ocorreu a 20°C. Os resultados sugerem que, mesmo pequenas 
quantidades de agentes químicos em exposições crónicas, são capazes de afetar 
parâmetros funcionais de ambos os invertebrados com possíveis consequências 
negativas para estas comunidades. 

A alteração da vegetação ripícola, nomeadamente a substituição de espécies 
nativas por eucalipto pode afetar os trituradores que se alimentam destas folhas. 
Por conseguinte, os efeitos do consumo de alimento de elevada (amieiro) ou de 
baixa qualidade (eucalipto) assim como a influência da temperatura foram 
testados na espécie E. meridionalis (Capítulo V), determinando ainda a composição 
elementar e biomarcadores. Os resultados obtidos sugerem que os invertebrados 
são homeostáticos independentemente da temperatura, mesmo quando 
alimentados com alimento de baixa qualidade (eucalipto). No entanto a 20°C, um 
maior dano oxidativo foi detectado em trituradores alimentados com folhas de 
eucalipto. 

Em resumo, os resultados obtidos no âmbito da presente Tese indicam que: 
(i) existem diferenças de sensibilidade entre as espécies testadas ao stress agudo e 
crónico induzido por cobre e EL a concentrações de exposição ecologicamente 
relevantes; (ii) a temperatura interage com a toxicidade dos dois agentes químicos 
de modo diferente em espécies distintas, provavelmente porque eles têm 
diferenças ao nível fisiológico/molecular; (iii) que a presença de cobre e de EL 
pode influenciar a composição elementar das espécies testadas (S. festiva). 

Portanto, estes resultados sugerem que a contaminação de ribeiros por EL 
e/ou cobre podem modular a estrutura e dinâmica das comunidades de 
trituradores e que a variação de temperatura pode influenciar o processo. 
Alterações na comunidade de trituradores podem causar desequilíbrios tróficos, 
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alterações no funcionamento e redução dos serviços prestados por estes 
ecossistemas. 
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means±S.E.M.; n=10. Different letters indicate statistically significant differences at 
0.05 (ANOVA and Tukey’s test or non-parametric equivalent). Enzymatic activities 
(mean±S.E.M.) in control groups at 10°C: 4.95 U/mg protein±0.41; Corresponding 
values at 20°C: 5.58 U/mg protein± 0.29.  

 
Fig. 11 - Effects of eucalyptus leachates (EL), copper (Cu), and their 

equitoxic mixtures (mg/L) to Echinogammarus meridionalis after 96h of exposure 
at 10 (A) and 20°C (B). GST – body without head glutathione S transferases activity. 
Enzymatic activities are expressed in Units (U) per concentration of protein, one U 
corresponding to 1 nano mole of substrate hydrolised per minute per mg of 
protein. Values are the means±S.E.M.; n=10. Different letters indicate statistically 
significant differences at 0.05 (ANOVA and Tukey’s test or non-parametric 
equivalent). Enzymatic activities (mean±S.E.M.) in control groups at 10°C: 7.18 
U/mg protein±0.87; Corresponding values at 20°C:  3.26 U/mg protein±0.58.  
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Fig. 12 - Effects of eucalyptus leachates (EL), copper (Cu), and their 
equitoxic mixtures (mg/L) to Echinogammarus meridionalis after 96h of exposure 
at 10 (A) and 20°C (B). LPO - body (without head) lipid peroxidation levels. Values 
are the means±S.E.M.; n=10. Different letters indicate statistically significant 
differences at 0.05 (ANOVA and Tukey’s test or non-parametric equivalent). Lipid 
peroxidation levels (mean±S.E.M.) in control groups at 10°C: 92.27 nmol/g. 
w.w.±18.13; Corresponding values at 20°C:  191.64 nmol/g. w.w.±34.94.   

 

 
Chapter IV 

 

Fig. 13 - Mean dry mass of Schizopelex festiva (n=180; corrected for 
mortality) at two different temperatures, 10°C and 20°C, for a maximum 
period of 126 days. Values are means±S.E.M. Legend for the different 
treatments is displayed in the graphics. 

 
Fig. 14 - Consumption rates of Schizopelex festiva expressed as mg 

leafconsumed/mgAnimalDW/day at two different temperatures - 10°C (white 
bars) and 20°C (black bars). Values are means±S.E.M. Legend for the different 
treatments is displayed in the graphics. Different letters indicate statistically 
significant differences at 0.05 (ANOVA and Tukey’s test or non-parametric 
equivalent) at 10°C (lowercase letters) and 20°C (uppercase letters).  

 
Fig. 15 - Growth of  Echinogammarus meridionalis (n=180; corrected for 

mortality) at two different temperatures - 10°C and 20°C, for a maximum period of 
77 days. Values are means±S.E.M Legend for the different treatments is displayed 
in the graphics. 

 
Fig. 16 - Consumption rates of Echinogammarus meridionalis expressed in 

mg leafconsumed/mgAnimalDW/day at two different temperatures - 10°C (white 
bars) and 20°C (black bars). Values are means±S.E.M. Legend for the different 
treatments is displayed in the graphics. Different letters indicate statistically 
significant differences at 0.05 (ANOVA and Tukey’s test or non-parametric 
equivalent) at 10°C (lowercase letters) and 20°C (uppercase letters).  

 
Fig. 17 - Survival (%) of Echinogammarus meridionalis (n=180), at two 

different temperatures (10°C and 20°C), for a maximum period of 126 days. 
Legend for the different treatments is displayed in the graphics. 

 
Fig. 18 - C:N, C:P and N:P body elemental ratios of Schizopelex festiva 

exposed to 10°C (white bars) and 20°C (black bars). Values are means±S.E.M. 
Different letters indicate statistically significant differences at 0.05 (ANOVA and 
Tukey’s test or non-parametric equivalent) at 10°C (lowercase letters) and at 20°C 
(uppercase letters). 

 
Fig. 19 - Values of head cholinesterase (ChE), and total body homogenates 

glutathione S transferase (GST) and lipid peroxidation levels (LPO) in Schizopelex 

festiva  at 10°C (white bars) and 20°C (black bars) in the selected treatments. Values 
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represent the mean of 10 samples (one organism per sample) and the 
correspondent standard error bars. Significant differences between treatments 
(Tukey’s test) at 10°C (lowercase letters) and 20°C (uppercase letters) are displayed 
in the graphic. 
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Table 8 - ANOVA results (F and p values) of leaves, body and faecal ratios of 
Echinogammarus meridionalis analysis. Leaves ratios were compared by 1-way 
Analysis of variance (1-ANOVA) and body or faecal ratios with 2-way Analysis of 
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Acronyms and abbreviations 

 

AChE - Acetylcholinesterase enzyme 

ATSDR - Agency for Toxic Substances and Disease Registery, U.S. 

Department of Health and Human Services, Atlanta, Georgia 

C - Carbon 

CaCO3 - Calcium carbonate (indicative of water hardness)  

Cd - Cadmium 

CDNB - 1 chloro-2,4-dinitrobenzene  

ChE - Cholinesterases enzymes 

CPOM - Coarse particulate organic matter  

D.O. - Water dissolved oxygen  

DTNB -  5.5’ -Dithio-bis - (2-nitrobenzoic acid) 

EL - Eucalyptus leaf leachates 

FPOM - Fine particulate organic matter 

GST - Glutathione S-transferases enzymes  

H2O2 - Hydrogen peroxide 

IPCC - Intergovernmental  Panel on Climate Change 

 
K+ - Potassium ion 

LC10 - 

 

 

Concentration of the test substance(s) that induced 10% of 

mortality in the population of the tested species in the 

experimental conditions used . 
  

LC20 - 

 

 

Concentration of the test substance(s) that induced 20% of  

mortality in the population of the tested species in the 

experimental conditions used. 
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LC50 - 

 

 

 

Concentration of the test substance(s) that induced 50% of 

mortality in the population of the tested species in the 

experimental conditions used.  

 LPO - Lipid peroxidation  

MIX - Mixture 

N - Nitrogen 

Na+ - Sodium ion 

NADH - Nicotinamide adenine dinucleotide reduced  

NADP+ - Nicotinamide adenine dinucleotide phosphate  

NADPH - Nicotinamide adenine dinucleotide phosphate reduced  

O2− - Superoxide anion  radical 

OH- - Hydroxyl radical 

P - Phosphorus 

Pb - Lead 

PMS -  Post-mitochondrial supernatant fraction 

PO43- - Phosphate ion 

ROS - Reactive oxygen species  

S.E.M. - Standart error of the mean 

SD - Sample standard deviation  

SOD -  Superoxide dismutase  

TBARS -  Thiobarbituric acid reactive species  

Tris - Tris(hydroxymethyl)-aminomethane  
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In the present context of climate changes and human population growing 

exponentially, an increasing demand of chemicals are required to support higher 

needs of food, industrialization, prevention and treatment of human and animal 

diseases. Such higher demands increase the production of more residues 

increasing environmental contamination namely that of aquatic ecosystems 

(Woodward et al., 2010), the most impaired systems of the world (Malmqvist and 

Rundle, 2002; Dudgeon et al., 2006). Several of these ecosystems are also 

contaminated by natural toxins (e.g. cyanotoxins, plant toxins) whose occurrence 

have been increased and geographically spread as a result of anthropogenic 

activities and/or abiotic alterations promoted by global climate changes (Sokolova 

and Lannig, 2008; Ormerod et al., 2010).  

Studies indicate that the exposure to elevated concentrations of 

environmental contaminants may impair ecosystem function compromising 

ecosystem services (Leslie et al., 1999; Camargo and Alonso, 2006, Guilpart et al., 

2013). In spite of that, the knowledge on the effects of multiple stressors is still 

limited, especially when considering scenarios of temperature changes. 

Temperature is a main stressor per si because several biological processes are 

temperature-dependent (Woods et al., 2003). In addition, temperature has been 

shown to interact with the toxicity of some environmental contaminants to several 

aquatic species (Prato et al., 2009; Kopecka-Pilarczyk, 2010). This knowledge is 

urgently needed to improve the scientific basis for ecological risk assessment of 

both environmental contaminants and climate changes (Laskowski et al., 2010; 

Spurgeon et al., 2010). 
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1.1. Stream ecosystems 

A stream used to be considered simply as a body of water with a defined 

current and contained within a narrow channel and banks (Langbein and Iseri, 

1995). Nowadays growing importance has been attributed to the study of not only 

this confined channel but also of its drainage basin and its composition, namely the 

composition of the riparian areas. It is though very important to assess the effects 

of disturbances not only on the river channel but also in its drainage basin. First 

through third order streams are also called headwater streams and these are 

located at the head of the fluvial continuum, constituting up to 85% of the total 

length of a lotic system (Anderson and Sedell, 1979). Forested headwaters are 

heterotrophic and instream processes are mainly dependent on the organic matter 

supplied by the surrounding riparian areas. Here, the light input is low due to the 

presence of an extent canopy covering the stream. Primary productivity is very 

low; therefore, litterfall (allochthonous organic matter supplied by the riparian 

vegetation), constitutes the main energy source for the stream food webs (Fisher 

and Likens, 1973). The amount and type of detritus present in the streams 

depends on the geography, characteristics of the riparian forest but also on 

morphological characteristics of the streams (that may enable in different ways 

and extents the retention of these detritus for longer time periods). In temperate 

regions, up to 73% of the total leaf litter from the surrounding deciduous forests 

ends up on streams banks or channels in autumn (Abelho and Graça, 1998). These 

allochtonous organic inputs are mainly constituted by leaves (although depending 

on the type of forest present, woody debris may also be important) that, after 

entering the streams, are rapidly trapped and further decomposed. The 



Chapter I | 4 

 

breakdown of these leaves occur in more or less defined phases that may overlap: 

leaching, conditioning and fragmentation. The duration and intensity of each one 

depend on leaf intrinsic properties (chemistry), stream biota (Hieber and Gessner, 

2002, Gulis et al., 2006) and environmental factors such as temperature (Spänhoff 

and Meyer, 2004), current velocity (Ferreira and Graça, 2006), water chemistry 

(Sridhar and Bärlocher, 2000; Gulis et al., 2006), among others. Leaves 

decomposition is a key ecosysytem-level process integrating biological and abiotic 

features of a stream; its sensitivity to environmental stressors allows its use as a 

functional tool for the assessment of river ecosystem health (Young et al., 2008). 

Leaching is the initial phase of leaves decomposition and starts immediately 

after leaves immersion in the stream. A rapid loss of soluble inorganic and organic 

compounds (Suberkropp et al., 1976) occurs usually in the first 24 to 48h 

determining an important mass loss of the leaf (e.g. Canhoto and Graça, 1996; 

Gessner et al., 1999). Microbial colonization typically follows leaching. Leaves are 

colonized by fungi (mainly Aquatic Hyphomycetes) that dominate in early phases 

of decomposition and bacteria in a process usually designated as conditioning 

(Boling et al., 1975; Gessner et al., 1999). Conditioned leaves are more palatable 

for invertebrates (Graça, 2001), because the increase in microbial (fungal) biomass 

and fungal activities make leaves softer and increase their nutritional value. In fact, 

fungi are known to be able to enzymatically digest recalcitrant leaf polymers and 

to promote nutrient immobilization making leaves more palatable for 

invertebrates (Gessner et al., 1999; Krauss et al., 2011). Fragmentation may occur 

due to physical abrasion promoted by water turbulence, discharge or 

invertebrate’s biological activity (Hieber and Gessner, 2002). Invertebrates that 
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feed on coarse particulate organic material (CPOM) such as leaves or woody debris 

are known as shredders (Cummins, 1973). It is generally accepted that shredders 

accelerate decomposition (e.g. Mckie and Malmqvist, 2009) and that they prefer 

conditioned over unconditioned leaves, specific fungi or leaf/fungi associations 

(Lecerf et al., 2005). Such feeding behavior is frequently species-specific 

(Kominoski et al., 2012) depends on invertebrates’ development stage, and has 

important repercursions in their survival, growth and reproduction (Canhoto and 

Graça, 2006).  

Shredders functional feeding group plays a crucial role transforming CPOM 

into fine particulate organic matter (FPOM) by their actions of ingestion, digestion, 

egestion and excretion (Eggert and Wallace, 2007; Villanueva et al., 2012). These 

invertebrates usually present high feeding rates and low assimilation efficiencies 

(Wallace et al., 1982) contributing to the nutrient cycling (Vanni, 2002).  In 

temperate areas, mixed deciduous riparian forests supply low order streams with 

leaf litter material presenting large differences between their nutrient content and 

those from the consumers. Imbalances between this CPOM and invertebrates 

(Sterner and Elser, 2002) are normally counteracted by the leaf conditioning 

process and may dependent on  the type of leaf present, colonizers and 

colonization status, and the taxonomic characteristics of the invertebrates (Vanni 

et al., 2002; Frost et al., 2006). Based on the ecological stoichiometry (ES) theory, 

invertebrates tend to maintain their elemental composition (carbon (C), nitrogen 

(N) and phosphorus (P) content) at a fairly constant rate (Homeostasis), regardless 

of their feeding habits, presenting lower C:nutrient ratios and high N and P 

contents than detritus or living plants (Sterner and Elser, 2002; Cross et al., 2005; 
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Evans-White et al., 2005). It is though generaly accepted that invertebrates may 

use different physiological and behavioral strategies in order to compensate 

imbalances in the elemental composition of dead leaf material and their bodies, 

controlling feeding, egestion and/or excretion rates (Balseiro and Albariño, 2006, 

Villanueva et al., 2012). To understand how invertebrates deal with differences 

between the elemental composition of resources and their ecological necessities, 

and the way stressors presence may modify these relationships with effects on 

ecosystem processes, are actually important lines of inquiry. 

1.2. Environmental stressors in streams  

Streams, important spots of diversity (Dudgeon et al., 2006), are 

particularly vulnerable to environmental stressors mainly due to their close 

dependence on terrestrial subsidies, and low water volume which minimizes its 

buffering abilities against physical (e.g. temperature, D.O., pH), or chemical (e.g. 

metals) stressors.  

Eucalyptus. In Mediterranean areas, low order streams are frequently 

submitted to seasonal droughts. Such hydrological pattern is expected to be 

amplified in frequency, time length and intensity due to global warming (IPCC, 

2007) and anthropogenic activities such as changes in forestry practices. In fact, 

permanent streams running through mixed native forests have been referred to 

become intermittent when the riparian cover was replaced by eucalyptus 

(Eucalyptus globulus Labill.) monocultures (Canhoto et al., 2013). Such reduction in 

riparian diversity (Kominosky et al., 2013) and quality (Pozo et al., 1998) along 

with low flow/drought events (Canhoto and Laranjeira, 2007) are already known 

to promote deleterious consequences on the structure and function (Abelho and 
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Graca, 1996; 1998; Canhoto and Graca, 1996; 1999) of these stream ecosystems. 

However, the specific reasons for such consequences are still far from completely 

understood.  

Eucalyptus plantations are economically important in several countries of 

the world (Diaz-Balteiro et al., 2009; Huu-Dung and Yeo-Chang, 2012), Portugal 

included (eucalyptus represent over 812000 acres in Portuguese forest; IFN6, 

2013). Trees are mainly used to get timber for the papermill industry and also for 

pharmaceutical uses. Eucalyptus essential oils, mainly gathered from the leaves, 

are important due to their antiseptic, analgesic, antibacterial (Cimanga et al., 2002, 

Hendry et al., 2009, Bendaoud et al., 2009, Patrone et al., 2010) and antioxidant 

properties (Lee and Shibamoto, 2001; Eyles et al., 2004; Naceur Ben Marzoug et al., 

2011). The importance of these compounds in terrestrial, riparian and aquatic 

systems have been tested with recognised deleterious direct and indirect effects on 

the ecology of the edafic and lotic fauna (Canhoto and Graça, 2006; Canhoto and 

Laranjeira, 2007; Larrañaga et al., 2009; Canhoto et al., 2013; Martins et al., 2013). 

In streams with eucalyptus riparian cover, considerable inputs of biologically 

active substances may enter into the water through leaves and other litter 

components as most eucalyptus leaf defenses remain active after senescence and 

immersion (Canhoto and Graça, 1999; Canhoto et al., 2002, Canhoto and 

Laranjeira, 2007). Some of these substances, their degradation products and/or 

metabolites may be toxic to shredders (Canhoto and Graça, 2006; Canhoto and 

Laranjeira, 2007, Larrañaga et al., 2009) although little is known on their 

mechanisms of toxicity. Invertebrates may be exposed to these toxins through 

feeding and/or by exposure to leachates mainly released to the water during the 
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leaching phase. Responses to such stressors seem to be species-specific and are 

clearly modulated by environmental factors (Larrañaga et al., 2009; Canhoto et al., 

2013). 

Most studies on the effects of E. globulus afforestations on stream biota 

occurred in periods of permanent and high flow and when water temperatures are 

lower. Approaches dealing with harsh periods are scarce (e.g. Otermin et al., 2002) 

but needed to fully understand the observed empoverishment of the biota of the 

eucalyptus stream when compared with their deciduous counterparts (Abelho and 

Graca, 1996; 1998; Bärlocher and Graça, 2002; Canhoto and Graca, 1996; 1999): 

low flow/drought events promotes deterioration of water quality through the 

concentration of leachates, increased temperature in leachates pools and low 

oxygen conditions, that may impact shredders (Canhoto and Laranjeira, 2007).  

Copper. Heavy metals have been increasing in several European countries as 

a direct result of human activities, for example, agriculture, minning, industry 

(Sonmez et al., 2006). These anthropogenic activities contribute to mobilize and 

diffuse metals in the environment faster than that expected for natural occurring 

processes. At elevated environmental concentrations, they are toxic to aquatic 

organisms, including shredders (Vargas et al., 2001), crucial players in the transfer 

of energy to higher trophic levels in the detritus based food chains.   

Among metals, copper is of special interest because it is an element 

essential for a high number of species, is one of the metals commonly found in 

aquatic ecosystems (Schintu et al., 2008), including streams, it can be accumulated 

by several species (Martins et al., 2011; Rainbow et al., 2012), and may induce 

adverse effects at different levels of biological organization at ecologically relevant 
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concentrations. Copper is very important for organisms as a functional part of the 

respiratory protein hemocyanin found in most invertebrates. All invertebrate 

animals have the universal copper cellular proteins: cytochromes, iron-sulfur 

proteins, superoxide dismutase, cytochrome oxidase. As trace metals copper have 

an affinity for nitrogen or sulphur, and can be easily bound to proteins inside 

invertebrate’s organism. Copper intake by aquatic organisms is in proportion to 

the dissolved concentration of the metal (Rainbow, 1995). Deterrent effects of 

copper in excess on organisms are responsible for increased mortality (Gerhardt 

and Palmer, 1998; Brown et al., 2004a), neurological impairment (Vieira et al., 

2009), increased oxidative stress (Vutukuru et al., 2006), egg loss and hatching 

impairment (Brix et al., 2006). Sub lethal exposure resulted in growth inhibition, 

reproduction impairment and affected embryo hatching on snails (Real et al., 

2003).  

Temperature. Stream water temperature varies with factors like latitude 

and altitude (Flenner et al., 2010) or riparian cover (Rutherford et al., 2004). The 

effects of the stream’s thermal regime in the aquatic biota may be direct (Brown et 

al., 2004b) and indirect through changes in oxygen solubility, standing stock of 

organic matter, the hydrological regime or intensity of anthropogenic stress 

(Buzby and Perry, 2000; Berezen et al., 2005; Ormerod, 2009; Woodward et al., 

2010; Chinnayakanahalli et al., 2011). It is generally accepted that temperature 

variation interacts with chemical agents (Laskowski et al., 2010) and 

higher/increases in temperature may amplify the toxicity of heavy-metals to 

organisms (Khan et al., 2006; Prato et al., 2009; Kopecka-Pilarczyk, 2010, Lapointe 

et al., 2011).  
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In the same ecosystem daily and seasonal variations are registered. Such 

oscillations, with distinct degrees of amplitude, are often considered to require 

adaptation from the biota (Flenner et al., 2010). The range of tolerance to 

temperature may be different among distinct invertebrate species and thus 

temperature is a key driver of the structure and dynamics of shredders 

communities (Imholt et al., 2009, Dallas and Ketley, 2011). Native shredder 

communities are in general well adapted to a certain degree of temperature 

variation but variations outside the optimal range may be tolerated up to a certain 

degree requiring increased demands of energy that needs to be allocated from 

other functions. Increasing temperature may be directly responsible for effects on 

reproduction and decreased survival (Hofmann and Todgham, 2010) and 

functional parameters such as growth rates may also be affected (Sutcliffe et al., 

1981). Several studies indicate that this key environmental factor may affect 

invertebrate’s growth directly by influencing food ingestion rates, assimilation and 

metabolism efficiency (Sweeney et al., 1986) and, indirectly,  by affecting microbial 

colonization on leaf conditioning and faecal content and consequently 

consumption by shredders or filter feeders (Rowe et al., 1996).   

With rising importance on the understanding of predicted changes in 

stream’s water temperature under the influence of global warming scenarios, the 

study of the isolated or combined effects of temperature and other stressors (e.g. 

heavy metals, biotoxins) on macroinvertebrate communities is much needed in 

order to fully protect shredders communities and minimize the possible negative 

ecological effects.  
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1.3. Assessment of stressors effects in stream shredders 

The effects of environmental contaminants and other stressors such as 

temperature on the biota may be assessed directly in real scenarios or in 

laboratory conditions (or using both approaches). Common assessments of the 

effects in the field include biomonitoring studies in natural populations (e.g. Conti 

et al., 2011; Guimarães et al., 2012) and in situ bioassays (Faria et al., 2007, Correia 

et al., 2013). Laboratorial assessments include several types of assays, from which 

laboratorial toxicity bioassays (hereafter indicated as bioassays) are of special 

relevance. Field assessments have a very high ecological relevance and thus they 

are strongly recommended when this aspect is determinant for the objectives of 

the study. However, in general the control of environmental conditions other than 

the factor(s) under study is difficult and this is a limitation to their use for specific 

purposes. On the contrary, laboratory bioassays offer the possibility of controlling 

in a more effective way the experimental conditions, while the need of 

extrapolation from laboratory to field (that may be particularly difficult in some 

cases) may cause some limitations to their use for in several situations. 

In general, in laboratory bioassays, standard species are used (e.g. OCDE, 

2011; 2012a,b). However, the sensitivity of these species may considerable differ 

from native species and therefore the extrapolation from the evaluations made to 

real scenarios may be challenging. Thus, it is of interest to assess the effects of 

environmental stressors using native species (Pestana et al., 2007; Macedo-Sousa 

et al., 2008). In low order streams the use of shredder species in laboratorial/field 

tests seem particularly relevant due to their pivotal role in nutrient cycling in the 

detritus-based systems. 
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Common used effect criteria in ecotoxicity bioassays are mortality, growth 

and reproduction because they have a direct impact on population growth rate and 

thus they have a high ecological relevance (Gravato and Guilhermino, 2009; 

Oliveira et al., 2012). However, because the first effects of stressors are in general 

induced at the molecular level and may result in a cascade of successive alterations 

along the increasing biological organization levels, in the last decades employment 

of other effect criteria at individual and sub-individual levels (e.g. molecular, 

cellular, organs, physiological functions), generally known as environmental 

biomarkers, have been used (Depledge and Fossi, 1994; Lagadic et al., 1994). In the 

last years researchers have assessed different “biomarkers” to evaluate the extent 

of the damage provoked by the contact of these toxicants with organisms. A 

biomarker is a biological response to an environmental chemical which gives a 

measure of exposure, and sometimes also of toxic effects (Peakall and Walker, 

1994). It could be the measurement of a certain enzymatic rate or the increase in a 

selected compound in the organisms for example. Cholinesterases (ChEs) are a 

family of enzymes, which includes acetylcholinesterase (AChE) and 

pseudocholinesterase (PChE) and are amongst the most used biomarkers. AChE 

plays an important role in neurotransmission of both vertebrates and 

invertebrates (Guilhermino et al., 1998), being responsible for the degradation of 

the neurotransmitter acetylcholine in cholinergic synapses. ChE inhibition disrupts 

nervous system leading to overstimulation of the central and peripheral nervous 

systems, and may cause adverse effects on several functions including respiration, 

feeding and behavior eventually leading to death.  These enzymes have been 

widely used as biomarkers for environmental contaminants such as 
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organophosphates and carbamate pesticides (e.g. Varò et al., 2003, Xuereb et al., 

2009). More recently, ChEs of some species have been also found to be inhibited by 

some heavy metals (Diamantino et al., 2003; Guilhermino et al., 1998; Frasco et al., 

2005).  

Several contaminants (such as nitroaromatic compounds or metals e.g. 

Winston and Di Giulio, 1991; Stohs and Bagghi, 1995; Orbea et al., 2002) induce the 

production of reactive oxygen species (ROS) causing oxidative stress. To minimize 

oxidative damage to cellular components, organisms have developed antioxidant 

defense mechanisms. Enzymes such as glutathione S-transferases (GST) are 

involved in both detoxification and lipid peroxidation prevention. Soluble 

glutathione-S-transferases (GST) belong to a supergene family of proteins that 

catalyse the conjugation of glutathione (GSH) with endogenous substances and 

xenobiotic compounds (Ketterer et al., 1983), increasing their water solubility and 

facilitating their elimination, and play an important role preventing oxidative 

damage. These enzymes can respond to the presence of several environmental 

contaminants (Frasco and Guilhermino, 2002; Vieira et al., 2009).  

 Organisms can adapt to increasing ROS production by regulating 

antioxidant defenses, regulating the activities of antioxidant enzymes (Livingstone, 

2003). Failure of these antioxidant defenses to detoxify excess ROS production can 

lead to significant oxidative damage. In particular, lipid peroxidation is considered 

to be one of the major mechanisms contributing to tissue damage as a result of 

oxyradicals action, leading to alterations in physicochemical properties of cell 

membranes and consequently impaired cellular function which in turn may 

disrupt vital functions.  
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In recent years, researchers have been particularly interested in the 

relationship between sub organism level measurements and impairment at 

population and ecosystem level in order to develop successful indicators to predict 

the effects of stressors. Therefore the use of biomarkers may enable us to identify 

early effects of stressor exposure and relate them to ecological or functional 

parameters, contributing to forecast stressors effects. 

 

2. Thesis aims 

The main goal of the present thesis was to investigate the single and 

combined effects of copper and eucalypt leaf leachates (EL) on three shredder 

species found in Portuguese streams at two ecologically relevant temperatures (10 

and 20°C). This is particularly relevant because the existing knowledge on the 

effects of multi-stressors on shredders is limited, and this information is most 

important to improve the basis for ecological risk assessments of environmental 

contaminants and climate changes in freshwater ecosystems, particularly in South 

Europe streams.   

The invertebrates Atyaephyra desmarestii (Millet, 1831) (Crustacea, 

Decapoda), Echinogammarus meridionalis (Pinkster, 1973) (Crustacea, 

Amphipoda) and Schizopelex festiva (Rambur, 1842) (Insecta, Trichoptera) were 

selected as test organisms for this study because they are common in central 

Portuguese streams, where they may appear in large numbers and play an 

important role in leaf processing. These invertebrates present distinct feeding 

approaches and therefore they might be exposed to stressors by different ways.  
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A. desmaresti is one of the few freshwater shrimps in Europe, omnivorous, 

tolerant to temperature and salinity variations (Fidalgo and Gerhardt, 2003). Also, 

toxicity tests with freshwater gammarids from the genus Echinogammarus are 

scarce but we can find information regarding lethal toxicity of pollutants with 

Echinogammarus tibaldii (Pantani et al., 1997). S. festiva is an insect species 

present in our small streams in Central Portugal, phylogenetically related to other 

important sericostomatidae: Sericostoma vittattum, responsible for the processing 

of leaf litter inputs in low order streams and, that we know of, never have been 

utilized in toxicity assays.  

EL and copper were selected as test substances for the present study 

because they are ecological relevant contaminants of streams water in several 

regions of South Europe, Portugal included, as previously indicated. 

10°C is a common water temperature in headwater streams during 

autumn/winter seasons or day/night dichotomy and 20°C may be observable in 

these same reaches particularly those that run through eucalyptus plantations 

during summer or in leachates pools (Canhoto and Laranjeira, 2007). 

 

2.1. Thesis objectives 

To attain this general goal, five specific objectives were considered to: 

1) assess the acute toxic effects of EL and copper, single and in mixture, to A. 

desmarestii, E. meridionalis and S. festiva, at 10 and 20°C. This was considered 

important to understand the relative sensitivity of the tested species to EL and 

copper, the possible toxicological interactions potentially resulting from the 
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simultaneous exposure to these agents that is likely to occur in real scenarios, 

and the potential influence of temperature on the process.  

2) investigate selected mechanisms of toxicity potentially contributing to the 

effects observed at individual level. This was considered relevant to 

understand any potential differences of sensitivity among species to the acute 

stress induced by the environmental contaminants and the influence of 

temperature. In addition it could help on the selection of endpoints to be used 

in further experiments. 

3) evaluate the effects of long-term chronic exposure to lower concentrations of 

eucalyptus leaf leachates, copper and their equitoxic mixtures to invertebrate 

species by evaluating different growth-developmental parameters (growth, 

consumption and mortality rates). As contaminants often occur in small 

concentrations, and organisms are often exposed for long time periods, it was 

important to assess the extent of low chronic exposure effects on functional 

parameters. 

4) evaluate the extent of neurotoxic and oxidative damage after long-term 

chronic exposure to sub-lethal concentrations of eucalyptus leaf leachates, 

copper and their equitoxic mixtures as well as the effects on the elemental 

composition and selected biomarkers (ChE, GST and LPO).  

5) understand if different exposure routes to eucalyptus toxicity (via ingestion of 

eucalyptus leaves) influences invertebrates by determining elemental body 

composition and quantifying biomarkers expression (ChE, GST and LPO) after 

consuming high (alder) and low (eucalyptus) quality leaves and considering 

the influence of temperature on this process.  
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2.2. Thesis outline 

 This thesis is organized in seven chapters: a general introduction (Chapter 

I), four chapters where the specific objectives were addressed (Chapters II to V), a 

general discussion (Chapter VI) where the main findings and their contribution to 

the advance of the knowledge are discussed in an integrated way, and a final 

Chapter (VII) with the list of the references that supported all the previous 

Chapters.  

The 1st chapter corresponds to a general introduction where the threats to 

freshwater systems, in particular small water courses, are identified and a general 

view on the structure, function and sensitivity of these small water courses, 

especially shredders communities, to main stressors is presented. The importance 

of temperature in modulating biological processes is discussed and the importance 

of detecting effects at individual level by evaluating stoichiometrical composition 

and biomarker expression of shredders is also focused. 

In Chapter II, the hypotheses that chemical contaminants (eucalyptus leaf 

leachates and copper) present in streams water at high concentrations for short 

periods of time are able to disrupt the balance among different populations of 

shredders due to distinct sensitivities to the chemicals present, and that 

temperature is able to modulate chemicals’ toxicity were tested. In laboratory 

acute toxicity bioassays (96h) carried out at 10 and 20°C, the sensitivity of A. 

desmarestii, E. meridionalis and S. festiva, to copper and eucalyptus leaf leachates 

(as single substances and in mixture) were compared. The results obtained 

indicated that S. festiva, A. desmarestii and E. meridionalis have differences of 

sensitivity to stressors in single and combined exposures with S. festiva being the 
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less sensitive species at both 10 and 20°C. A. desmarestii and E. meridionalis 

relative sensitivity to chemical exposure seems to be chemical and temperature 

dependent and the simultaneous exposure to copper and eucalyptus extracts 

resulted in toxicological interactions.  

The chapter III investigated the neurotoxic and oxidative stress effects of 

eucalyptus leaf leachates (EL) and copper, single and in equitoxic mixtures, in 

three shredder species: S. festiva, A. desmarestii and E. meridionalis by determining 

effects on three different biomarkers (AChE, GST and LPO); these were used as 

tools to determine the effects at sub-individual levels as a response to combined 

effects of toxics and temperature. Both copper and EL were found to be able to 

induce neurotoxicity and oxidative damage with different responses between 

species. Temperature raise was able to influence the pattern of response to 

chemical stress and/or its intensity.  

In Chapter IV it was investigated the effects, of long-term chronic eucalyptus 

leaf leachates and copper toxicity exposure to two of the invertebrates S. festiva 

(the least sensitive) and E. meridionalis (the most sensitive species) (assessed in 

Chapter II and III) by evaluating growth rates, mortality and consumption rates at 

two selected temperatures (10 and 20°C). After chronic exposure to toxicants, 

stoichiometrical composition and biomarkers were determined at both 

temperatures in S. festiva to evaluate if, despite lower mortality rates, exposing this 

species to toxics triggers any effects at sub individual level. Toxic exposure and 

increased temperature negatively affected growth rates. E. meridionalis survival 

was also negatively affected by exposure to toxics and increased temperature. 

Elemental body composition indicated that invertebrate’s ability to retain 
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phosphorus may be compromised upon exposure to higher temperature and 

increased copper concentrations. Biomarker determination suggested that 

increased temperature and the presence of high amount of eucalyptus leachates or 

the combination of both toxics leads to ChE inhibition with possible decreased 

responses in neurological mechanisms. Increasing oxidative damage (increased 

LPO levels) especially at 20°C that was not prevented by GST (as inhibition occurs) 

was also detected. 

Eucalyptus monocultures may affect stream invertebrates through 

waterborne toxicity or by the ingestion of their leaves. Chapter V included an 

additional approach to assess, at sub-individual level, the potential effect of 

eucalyptus leaves toxicity to E. meridionalis (the most sensitive species). 

Invertebrates were fed with leaves of distinct quality (Alnus glutinosa or 

Eucalyptus globulus) and maintained under two thermal scenarios: 10 and 20°C 

and elemental composition and selected biomarkers (ChE, GST and LPO) were 

investigated after short exposure. Low quality food did not affect the elemental 

composition of the shredder. No neurotoxic effects were detected but a significant 

increase of LPO levels, indicative of oxidative damage, was found in invertebrates 

fed with eucalyptus leaves, at 20°C. The combination of increased temperatures 

and low food quality may have adverse effects on stream invertebrate’s 

physiology. 

The chapter VI is composed by a general discussion and final remarks. Here, 

the relative sensitivity of the three species in this study is discussed and also the 

importance of temperature in modulating relationships in the environment as well 

as the overall influence on toxicity of eucalyptus leaf leachates and copper. Also the 
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importance of further studies on the effects of eucalyptus leaf leachates toxicity for 

freshwater invertebrates is highlighted. 

The chapter VII is the last chapter of the thesis and is composed by the 

bibliographical references used in this thesis. 
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Chapter II 
 

Comparison of three shredders response to 

acute stress induced by eucalyptus leaf 

leachates and copper: single and combined 

exposure at two distinct temperatures 
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Comparison of three shredders response to acute stress induced 

by eucalyptus leaf leachates and copper: single and combined 

exposure at two distinct temperatures. 

 

ABSTRACT 

 

The objectives of this study were to compare the sensitivity of three 

shredder species (Atyaephyra desmarestii, Echinogammarus meridionalis and 

Schizopelex festiva) to acute stress induced by eucalyptus leaf extracts and copper, 

single and in mixtures, and the ability of temperature to influence the chemicals’ 

toxicity. Laboratory bioassays based on mortality with single substances and 

mixtures were carried out with the three species at 10 and 20°C. After 96h of 

exposure, S. festiva, A. desmarestii and E. meridionalis were found to have 

differences of sensitivity to copper, eucalyptus leaf extracts and their mixtures, 

with S. festiva being the less sensitive species at both 10 and 20°C. The relative 

sensitivity of A. desmarestii and E. meridionalis to chemical exposure seems to be 

chemical and temperature dependent. The simultaneous exposure of A. desmarestii 

and E. meridionalis to copper and eucalyptus extracts resulted in toxicological 

interactions. The type of interaction was synergism in E. meridionalis, and 

antagonism in A. desmarestii. Overall, these findings suggest that single and 

combined chemical stress may modulate the biodiversity of stream shredders 

communities due to differential sensitivity of individual species and that the 

process may be influenced by temperature, highlighting the need for more 
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knowledge on this matter as well as on the molecular mechanisms responsible for 

chemicals toxicity. 

 

 

Keywords: chemical acute toxicity, combined effects of stressors, Atyaephyra 

desmarestii, Echinogammarus meridionalis, Schizopelex festiva 
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1.  INTRODUCTION 

Small forested streams depend on their riparian areas as a source of energy 

and nutrients (Canhoto and Graça, 2006). Their strong interactions with the 

catchment and their relative low water volume make them particularly vulnerable 

to changes caused by natural factors and/or anthropogenic activities (Malmqvist 

and Rundle, 2002; Ormerod 2010; Woodward et al., 2010). Quantitatively they are 

very important, as headwater streams may constitute up to 85% of the total length 

of the fluvial net (Allan and Castillo, 2007). These heterotrophic systems play a 

pivotal role as hot spots of biodiversity and are key organic matter suppliers to 

higher order streams (Perkins et al., 2010); thus, efforts should be devoted to the 

preservation of their good ecological status. 

Detritus processing is a key process for the stream heterotrophic 

production that is primarily protagonized by fungi, namely aquatic hyphomycetes, 

and shredders (Cummins 1973), a functional feeding group of detritivorous 

invertebrates. The abundance and richness of these shredder communities mainly 

depend on water physicochemical characteristics and are closely linked with the 

type, amount, spatial and temporal distribution of leaves in the watercourse 

(Gessner et al., 2010). The importance of this group, as a link between detritus and 

higher trophic levels, and the distinct sensitivities of macrobenthos to 

environmental factors make them important tools to assess the effects of 

environmental stressors on stream ecosystems (Liess and Beketov, 2011; Brix et 

al., 2011; Peters et al., 2011). Alterations in these communities potentially 

resulting from the influence of single or multiple stressors, may have reflexes at 
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higher levels of biological organization and on ecosystem functioning (McMahon et 

al., 2012; Sanpéra-Calbet et al., 2009).  

Forestry practices constitute one of the main threats to stream ecosystems 

(Lecerf and Richardson, 2010). Among these, exotic eucalyptus afforestations are 

now one of the main causes of streams impairment in several regions (e.g. 

Molinero and Pozo, 2004). Eucalyptus monocultures are frequently associated 

with altered flow regimes, modified food webs and distinct dynamics of organic 

matter, where shredder’s role as leaf processors has been reduced (Graça et al., 

2002, Larrañaga et al., 2009). This has been related with eucalyptus leaf litter low 

quality and toxicity (Canhoto and Graça, 1999; Canhoto et al., 2013). Whether 

these effects are generalized across the shredders guild or modulated by 

temperature is still not known but they are particularly important in an era where 

air and water thermal conditions are changing (Morrill et al. 2005; IPCC, 2007).  

In addition to natural toxins, other environmental contaminants may be 

present in stream’s water and sediments. Among these, ubiquitous contaminants 

such as metals (e.g. copper) are of special interest because they are introduced at 

considerable amounts in aquatic ecosystems as result of several anthropogenic 

activities (e.g. different industries, mining activities, agriculture, veterinary and 

human medicine) and they have been found to induce adverse effects on shredders 

as a result of long-term exposure to low contamination levels (Farag et al., 1998; 

Leslie et al., 1999; Forrow and Maltby, 2000; Macedo-Sousa et al., 2007; Faria et al., 

2007, 2008; Hogsden and Harding, 2012), or to punctual exposure to high levels of 

contamination (Dédourge-Géffard et al., 2009; Macedo-Sousa et al., 2008). Because 

the combined exposure of shredders to both leaf toxins and metals is likely to 
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occur in streams and toxicological interactions may occur, it is particularly 

important to investigate the combined effects of these environmental 

contaminants on these organisms. In the last years, some studies showed that the 

presence of metals in streams may affect leaf conditioning processes and 

consequently shredders consumption and growth rates with possible ecologically 

relevant impacts (Batista et al., 2012; Pradhan et al., 2012). However, a lack of 

knowledge on the potential toxicological interactions between leaf toxins and 

metal contamination in shredders still exists. 

Temperature has a major influence on biological and ecological processes: it 

may be a stressor by itself (Ferreira et al., 2010; McFeeters and Frost, 2011; 

Wojewodzic et al., 2011), it may modify the toxicity of chemicals (Prato et al., 2009; 

Lapointe et al., 2011; Vieira and Guilhermino, 2012), and may change abiotic 

conditions (e.g. water eutrophication and oxygen depletion) (Woodward et al., 

2010). Furthermore, warmer temperatures are usually coupled with low flow 

events (Malmqvist and Rundle, 2002; Woodward et al., 2010; Canhoto et al., 2013) 

that favor the increased concentration of chemical contaminants in the water 

(Chatzinikolaou, 2006). Considering the warming scenarios expected for several 

regions as a result of global climate changes (IPCC, 2007), the expected increase of 

chemicals use by a growing human population (Dudgeon et al., 2006), and the key 

ecological role of shredders communities on stream ecosystems (Graça, 2006), it is 

most important to investigate the combined effects of chemical and thermal stress 

on these organisms.  

Therefore, the objective of this study was to compare the sensitivity of three 

shredder species (Atyaephyra desmarestii, Echinogammarus meridionalis and 
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Schizopelex festiva) to acute stress induced by eucalyptus leaf extracts and a 

common metal, copper, single and in mixture. Considering the ability of 

temperature to influence the chemicals’ toxicity (Boeckman and Bidwell, 2006; 

Prato et al., 2009), tests were performed at both 10 and 20°C that are common 

temperatures in colder and warmer seasons, respectively, in the streams from 

where the invertebrates came from (Canhoto and Laranjeira, 2007; Ferreira et al., 

2010). A. desmarestii, E. meridionalis and S. festiva were chosen as they play a key 

role in leaves decomposition in low order streams, are abundant and easily 

maintained in the laboratory; their distinct morphological and physiological 

characteristics may allow evaluating distinct sensibilities to stress. Furthermore, A. 

desmarestii and E. meridionalis have been used as model species in ecology and 

ecotoxicology (Pantani et al. 1997; Gerhardt et al. 2004; Pestana et al. 2007; 

Macedo-Sousa et al. 2007, 2008). 

 

2. MATERIAL AND METHODS 

2.1 - Collection and acclimation of invertebrates 

Organisms were collected in the wild (A. desmarestii: 40°10.248’N, 

8°18.101’W; E. meridonalis: 39°58.726’N, 8°34.393’W; S. festiva: 40°32’01’’N, 

8°09’15’’W) from January 2010 to February 2011, including those used in 

preliminary assays. Individuals were brought to the laboratory in coolers filled 

with stream water and maintained in 5L aquaria filled with aerated ASTM hard 

water (ASTM 1980), which had a layer of (10cm) sterile sediment, under a 12h 

light (L): 12h dark (D) photoperiod. Specimens were fed ad libitum for one week 

prior to the start of the test, with conditioned alder leaves (as described below), 
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with medium renewal every other day until the beginning of the experiments. 

During this period, half of each species organisms were maintained at 10±1°C and 

the other half at 20±1°C according to their further use in bioassays. Alder leaves 

were collected from the same stands of trees in the autumn of 2009, just after 

abscission, and were air-dried and stored until needed. Leaves were weighed in 

batches of 4.5–5g, moistened, enclosed in coarse mesh bags (10 mm mesh size) 

and colonized for 3 weeks in natural conditions (Ribeira de S. João 40°11’N; 8° 

25’E). 

 

2.2- Bioassays with eucalyptus leachates 

Eucalyptus leaf leachates were prepared from senescent eucalyptus leaves 

(E. globulus) collected, just after abscission, between September and October 2009. 

Leaves were transported to the labõratory, air dried in paper boxes at room 

temperature and stored in the dark until needed. Leaf leaching was obtained from 

28 g/L of dried eucalyptus leaves immersed in the artificial reconstituted ASTM 

hard water (ASTM 1980) (alkalinity 110 to 120 mg/L as CaCO3 and hardness 160 

to 180 mg/L as CaCO3;) hereafter indicated as ASTM, for 7 days, under continuous 

moderate aeration (15°C; photoperiod 12h light: 12h dark). The leachate was 

decanted and stored at 4°C until further use. Before the experiments, the leachate 

was analysed for total polyphenols (Graça et al. 2005), pH (JENWAY 3310, Essex, 

UK), conductivity (WTW LF 330, Weilheim, Germany), dissolved organic carbon 

(Elementar Analysensysteme Gmbh LiquiTOC, Hanau, Germany) and dissolved 

oxygen (WTW ProfiLine Oxi 3210, Weilheim, Germany). The characterization of 

the leachate is indicated in Table 1.  
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Table 1 - Physico-chemical characteristics of eucalyptus leachates. 
Analysis was performed in a mixed sample of leachate solutions (28g 
eucalyptus leaf litter/L; n=3).  

Parameters 

 

Mean 

(±S.E.M.) 

pH 3.90 (0.115) 

Conductivity (µS/cm) 1116 (54.354) 

Tanic acid equivalents (mg/L) 465 (41.8) 

Oxygen (mg/L) 1.70 (0.231) 

DOC (µg/L) 

 

2.538 (0.055) 

 

 

The following range of dilutions, prepared from the original leachate 

solution, were used: 465 (T1), 232.50 (T2), 116.25 (T3), 58.10 (T4), 29.10 (T5), 

14.50 (T6), and 7.30 (T7) mg/L tannic acid equivalents corresponding to 100%, 

50%, 25%, 12.5%, 6.25%, 3.13% and 1.56% of the original eucalyptus leachate. An 

additional treatment (ASTM only) was used as control (T8). For S. festiva, a second 

bioassay with tannic acid concentrations between 349, 412 and 465 mg/L 

corresponding to 75, 89 and 100% of eucalyptus leachates at 10°C and 279, 325 

and 434 mg/L corresponding to 60, 70, 93 % of eucalyptus leachates at 20°C was 

conducted. The pH values of test solutions measured at the beginning of the 

eucalyptus leachates bioassay carried out at 10°C were (mean±SE): 3.9±0.00 (T1); 

4.5±0.04 (T2); 7.3±0.01 (T3); 7.6±0.04 (T4); 7.6±0.04 (T5); 7.7±0.02 (T6); 

7.7±0.05 (T7); 7.7±0.02 (T8). The corresponding pH values in the 20°C bioassay 

were: 3.9±0.01 (T1); 4.6±0.07 (T2); 7.3±0.05 (T3); 7.6±0.01 (T4); 7.6±0.03 (T5); 

7.7±0.00 (T6); 7.7±0.08 (T7); 7.7±0.02 (T8).  
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The bioassays were carried out under laboratory conditions (12:12-hour 

light/dark photoperiod; 10±1°C or 20±1°C). A total of 160 organisms per species 

(n=80 for each temperature) were used in the bioassays, with the following ranges 

of dry weight (mean dry weight (d.w.) ±S.E.M.) 2.67±0.024mg for A. desmarestii, 

1.11±0.008mg for E. meridionalis and 0.02±0.0002mg for S. festiva. In each 

bioassay, 10 individuals were randomly distributed per each of the 8 different 

treatments (7 eucalyptus leachates concentrations and 1 ASTM control). 

Organisms were individually exposed in plastic test chambers filled with 200 ml of 

the test solution (hereafter indicated as eucalyptus leachates) with continuous 

aeration. Feeding was stopped 24h before the starting of the assays and no food 

was provided during the exposure period (96h). Effect criteria was mortality, 

recognized by immobility after stimulating, by a gentle touch, the invertebrates 

with a plastic pipette (or when found outside the case for S. festiva). Water 

temperature, conductivity, pH, dissolved oxygen (D.O.), and invertebrate’s 

mortality were monitored and recorded at 24 h intervals.  

 

2.3 - Bioassays with copper 

  Copper 96h-bioassays were also carried out with single species at both 

temperatures in equal laboratorial conditions (12:12-hour light/dark photoperiod; 

10±1°C or 20±1°C). For each bioassay, a stock solution of copper sulfate 

pentahydrate (CAS no. 7758-99-8 purchased from Merck KGaA , Darmstadt, 

Germany) was prepared in ultra pure water (conductivity <5 μS/cm; Seralpur PRO 

90 CN, Seral, Ransbach-Baumbach, Germany). The concentration of the stock 

solution was 25.5 mg/L (ionic Cu). Test solutions were obtained by serial dilution 
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of the stock solution in ASTM (ASTM 1980). The following Cu concentrations were 

tested (selection based on preliminary bioassays): 3.26, 1.63, 0.81, 0.41, 0.20, 0.10, 

0.05, 0.03 mg/L for A. desmarestii at both temperatures; 0.81, 0.41, 0.20, 0.10, 0.05, 

0.03 mg/L for E. meridionalis at 10°C and 0.41, 0.20, 0.10, 0.05, 0.03, 0.01 and 

0.006 mg/L for E. meridionalis at 20°C; and 8.14, 4.07, 2.04, 1.02, 0.51 and 0.25 

mg/L Cu for S. festiva at both temperatures.  

To assess the lethal toxicity of copper, 180 specimens of A. desmarestii 

(n=90 for each temperature), and 160 E. meridionalis and S. festiva were used 

(n=80 for each temperature) with the following ranges of dry weight (mean dry 

weight (d.w.)±S.E.M.): 2.90mg±0.01 for A. desmarestii, 1.12mg±0.002, for E. 

meridionalis and 0.017mg±0.0002 for S. festiva. Ten individuals were randomly 

distributed per treatment as described in section 2.1. 

 

2.4 - Combined effects of eucalyptus leachates and copper, and 

temperature effects 

The experimental design for mixture bioassays, carried out at 10 and 20°C 

with the three species, was based on the LC10, LC20 and LC50 obtained in the 

bioassays with single substances (Table 2), except in the case of S. festiva where 

the concentration of tannic acid in the 100% eucalyptus leachates (465 mg/L) was 

tested, because the estimated LC50 of tannic acid was higher than the maximal 

tannic acid concentration present in the eucalyptus leaf leachates prepared (Table 

1). Briefly, for each mixture bioassay and temperature, four treatments were 

considered: control (ASTM only), copper LC10 + eucalyptus leachates LC10 (Cu-

LC10+EL-LC10); Cu LC20 + eucalyptus leachates LC20 (Cu-LC20+EL-LC20); and Cu 
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LC50 + eucalyptus leachates LC50 (Cu-LC50+EL-LC50). Mixture test solutions were 

prepared by diluting stock solutions of copper and eucalyptus leachates (prepared 

as described in previous sections) in ASTM hard water. Bioassays were carried out 

in conditions similar to those described in sections 2.1 and 2.2. The ranges of dry 

weight (d.w.) of the tested organisms were: 2.68mg±0.010 at 10°C and 

2.67mg±0.011 at 20°C for Atyaephyra desmarestii, 1.12mg±0.003 at 10°C and 

1.12mg±0.004 at 20°C for Echinogammarus meridionalis and 0.017mg±0.0002 at 

10°C and 0.015mg±0.0004 at 20°C for Schizopelex festiva.  

 

2.5 - Statistical analysis 

The concentrations inducing 10% (LC10), 20% (LC20) and 50% (LC50) of 

mortality were determined from the log concentration vs response (probit 

transformation of mortality percentages) toxicity curves. To compare the 

sensitivity of different species at distinct temperatures, a two-way analysis of 

covariance (2 way-ANCOVA) was used. The probit transformed % of mortality was 

used as dependent variable; temperature and species as independent variables 

(fixed factors) and the log10 of the chemical concentration as covariate; when 

significant differences were found, one-way analysis of covariance (ANCOVA) was 

used to identify their potential causes, followed by à posteriori LSD tests whenever 

necessary.  

Preliminary check of ANCOVA assumptions was done. To investigate the 

type of toxicological interactions of copper and eucalyptus leachates in the studied 

species, the Toxic Units (TU) based approach (Sprague and Ramsay, 1965; Wang et 

al., 2011) was used:  
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TU=∑
=

n

i ECxi

ci

1

  

where: n is the number of mixture components (i); ECҳi is the concentration of the 

mixture component i that induces  ҳ% of effect in single exposure bioassay ; ci is 

the concentration of the mixture component i in the mixture. If TU = 1 the 

interaction is addition, if TU < 1 the interaction is synergism, and if TU > 1 the 

interaction is antagonism. Analyses were performed using the SPSS 17.0® 

software package. The significance level was 0.05. 

 

3. RESULTS 

3.1- Species sensitivity to single substances and temperature effects 

In all the bioassays carried out with eucalyptus leachates, the mortality in 

control treatments was always equal or inferior to 10% except in the test with E. 

meridionalis, at 20°C, where a 20% of mortality in the control group was recorded. 

In each test chamber, the water temperature variation was less than 1°C, the water 

dissolved oxygen was always higher than 9.12 mg/L; the maximum pH variation 

was 0.91; and the conductivity variation was always lower than 71 µS.cm-1. The 

mortality recorded is indicated in Appendix 1, while the 96h LC10, LC20 and LC50 

calculated from the toxicity curves (Figure 1) are indicated in Table 2. For S. festiva, 

the calculation of LCx values from the results of the first bioassay was not possible 

because mortality was only observed at the highest concentration tested. In the 

second bioassay, the calculation of LC10, LC20 and LC50 was possible but without 

confidence limits; also, the estimated LC50 of tannic acid exceeded its 

concentration in 100% of eucalyptus leachates. Therefore, due to these 
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constraints, this species was not included in further statistical analysis. The LC50s 

obtained for the other species in single bioassays ranged from 34.4 to 141.6 mg/L 

of tannic acid equivalents (Table 3). The lowest values were obtained at 20°C for 

both species being about 4.1 and 1.2 folds lower than the corresponding values 

obtained at 10°C for A. desmarestii and E. meridionalis, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1- Acute toxicity of eucalyptus leachates to Atyaephyra desmarestii and Echinogammarus 

meridionalis after 96h of exposure at 10°C and 20°C. Lines represent linear regression, r square for 
the two organisms and temperatures are displayed in the graphic. 

 

The comparison of A. desmarestii and E. meridionalis toxicity curves (Figure 

1) by 2 way-ANCOVA indicated no significant differences between species 

(F(1,16)=0.5, p>0.05); a significant effect of temperature (F(1,16)=10.8, p<0.05) 

explaining 40.3% of the total variance, and a significant interaction between 

species and temperature (F(1,16)=5.9, p<0.05) explaining 26.9% of the variance. The 

 A. desmarestii 10ºC: r2=0.8964 

. A. desmarestii 20ºC: r2= 0.9112

E. meridionalis 10ºC: r2= 0.7071

E. meridionalis 20ºC: r2= 0.6870
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raise of temperature from 10°C to 20°C, significantly increased the toxicity of 

eucalyptus leachates to A. desmarestii (ANCOVA: F(1,8)=36, p<0.05) but not to to E. 

meridionalis (ANCOVA: F(1,8)=0.4, p>0.05). 

 

In all the bioassays carried out with copper, the mortality in control 

treatments was always equal or lower than 10%, the water temperature variation 

was less than 1°C; water dissolved oxygen was always higher than 9.09 mg/L; the 

maximum of pH variation was 0.6; and the conductivity variation was always 

lower than 62 µS cm-1. The mortality recorded in copper bioassays is indicated in 

Appendix 1, while the LC10, LC20 and LC50s are shown in Table 2. The LC50s of 

copper ranged from 0.036 to 9.0 mg/L, with LC50 values being higher at 10°C than 

at 20°C (about 1.3 folds for both S. festiva and A. desmarestii, and 7.4 folds for E. 

meridionalis, respectively) (Table 2). The comparison of the toxicity curves (Figure 

2) by 2-way ANCOVA, indicated significant differences among species 

(F(2,22)=162.1, p<0.05) contributing  for 94% of the variance; significant effects of 

temperature (F(1,22)=51.2, p<0.05) explaining 70% of the variance and the 

interaction between species and temperature was also significant (F(1,22)=25.0, 

p<0.05) explaining 69% of the variance. Comparing now the three species at 10°C, 

significant differences of sensitivity were found (ANCOVA F(1,11)=68.87, p<0.05) 

with S. festiva being less sensitive (Table 3) than E. meridionalis (S. festiva vs A. 

desmaresti: p<0.05; S. festiva vs E. meridionalis: p<0.05), while no significant 

differences of sensitivity between A. desmarestii and E. meridionalis were found 

(p>0.05). At 20°C, significant differences of sensitivity between S. festiva and each 

of the others were found (S. festiva vs A. desmaresti: p<0.05; S. festiva vs E. 
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meridionalis: p<0.05), with S. festiva being less sensitive that the other species; 

significant differences between A. desmarestii and E. meridionalis were also found 

(p<0.05). Temperature significantly increased the toxicity of copper for A 

.desmarestii and E. meridionalis (ANCOVA F(1,8)=6.5, p<0.05 for A. desmarestii and 

F(1,8)=53.6, p<0.05 for E. meridionalis) with more pronounced effects in E. 

meridionalis. No significant differences between temperatures were found for S. 

festiva (ANCOVA F(1,3)=4.3, p=0.13). 

 

 

 

 

 

 

 

 

Fig. 2 - Acute toxicity of copper to Atyaephyra desmarestii, Echinogammarus meridionalis, and 
Schizopelex festiva after 96h exposure at 10°C and 20°C. Lines represent linear regression, r square 
for the three organisms and temperatures are displayed in the graphic. 
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Table 2 - Eucalyptus leachates (EL) and copper (Cu) concentrations causing 10% (LC10), 20% (LC20) and 50% (LC50) of mortality on Atyaephyra desmarestii, 

Echinogammarus meridionalis and Schizopelex festiva at 10 or 20°C. 95% confidence intervals are shown within brackets.  

  A. Desmarestii E. meridionalis S. festiva 

  LC10 LC20 LC50 LC10 LC20 LC50 LC10 LC20 LC50 

EL 

(mg/L) 

10°C 46.24 67.89 141.58 12.91 24.26 81.13 348.48 412.05 567.78 

(19.398-71.369) (35.748-99.193) (96.638-221.824) (3.557-24.340) (9.639-41.080) (48.887-148.447) - - - 

20°C 8.30 13.51 34.35 7.93 16.35 65.28 273.84 332.52 482.10 

(2.653-14.561) (5.710-21.633) (21.408-53.331) (1.466-16.918) (4.938 -30.095) (36.679-124.597) - - - 

Cu 

(mg/L) 

10°C 0.05 0.08 0.22 0.05 0.09 0.27 2.30 3.68 9.00 

(0.018-0.087) (0.038-0.133) (0.139-0.343) (0.012-0.088) (0.034-0.144) (0.161-0.541) (0.372-3.868) (1.508-7.084) (5.209-94.989) 

20°C 0.04 0.07 0.17 0.01 0.01 0.04 1.84 2.95 7.27 

(0.016-0.073) (0.032-0.106) (0.106-0.251) (0.001-0.011) (0.003-0.019) (0.020-0.062) (0.397-3.055) (1.244-5.008) (4.394-32.498) 
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3.2. Mixture bioassays  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 - Acute toxicity after 96h of simultaneous exposure to copper and eucalyptus leachates to 
Atyaephyra desmarestii and Echinogammarus meridionalis at 10°C and 20°C.  Lines represent linear 
regression, r square for the two organisms and temperatures are displayed in the graphic. 
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significant differences between temperatures (2-way ANCOVA F(1,6)=108.45, 

p<0.05) explaining 95% of variability, and no significant interaction between 

species and temperature (2-way ANCOVA: F(1,6)=3.95, p=0.09). 

 

Table 3 - Acute toxicity after 96h of simultaneous exposure to eucalyptus leachates and copper for 
Atyaephyra desmarestii, and Echinogammarus meridionalis at 10°C and 20°C. LC50- 50% lethal 
concentrations calculated from the toxicity curves (log concentrations vs probit transformation of 
mortality %). Cu – copper; EL – eucalyptus leachates concentrations expressed in mg of tannic 
acid/L. 95% confidence limits for the estimates are given within brackets. 

Temperature 
(°C) 

Species LC50 
(mg/L) 

10 

A. desmarestii 
0.26 Cu + 160.87 EL 

(0.161-17.151;111.564-3782.292) 

E. meridionalis 
0.12 Cu + 35.90 EL 

(0.093-0.178;26.409-52.589) 

20 

A. desmarestii 
0.10 Cu + 20.87 EL 

(0.061-0.515;12.055-114.242) 

E. meridionalis 
0.003 Cu + 4.97 EL  

(n.a.;n.a.) 
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Table 4 - Type of toxicological interaction between copper (Cu) and eucalyptus leachates (EL) in Atyaephyra desmarestii, and Echinogammarus 

meridionalis at 10°C and 20°C. Temp. – temperature. Conc. Mix – concentration in the mixture causing 50% of mortality; 96h-LC50 – 50% lethal 
concentrations of the single toxicants after 96 hours of exposure. TU – toxic units. 95% confidence limits of LC50s within brackets. 

Species  
 

Temp 
(°C) 

 
Conc. 

Cu 
mixt 

Cu 
LC 

single 
(mg/L) 

TU 
(Cu) 

Conc. 
EL 

mixt 

EL 
LC 

single 
(mg/L) 

TU 
(EL) 

ΣTU 
 

Type of 
interaction 

A. desmarestii 
10°C LC50 0.26 

(0.161-17.151) 
0.22 1.18 160.9 

(111.564-3782.292) 
141.6 1.14 2.32 Antagonism 

20°C LC50 0.10 
(0.061-0.515) 

0.17 0.59 20.9 
(12.055-114.242) 

34.4 0.61 1.20 Antagonism 

E. meridionalis 10°C LC50 0.12 
(0.093-0.178) 

0.27 0.44 35.9 
(26.409-52.589) 

81.1 0.44 0.88 Synergism 
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4. DISCUSSION 

4.1- Bioassays with single substances and temperature effects 

The low mortality of S. festiva in the bioassays with single substances and 

the lack of significant influence of temperature on the toxicity of the chemicals 

tested indicate that this species is less sensitive to chemical stress and temperature 

changes than A. desmarestii and E. meridionalis. Several causes may contribute to 

this relative tolerance to chemicals, including toxicant avoidance or any other 

mechanisms able to decrease stress exposure, general mechanisms decreasing 

toxicant uptake and/or increasing toxicants elimination, specific mechanisms of 

tolerance to copper and eucalyptus toxins, low sensitivity of molecular targets, 

among other possibilities. Toxicant avoidance or reduced exposure to the tested 

substances is likely to have occurred during our experiments because S. festiva has 

a case and the test period was relatively short (96h); in these conditions, the 

starvation pressure may have not been high enough to force the organisms to go 

out of the case to search for food and thus they were able to avoid (or reduce) the 

exposure to environmental contaminants; this could explain also at least in part 

the lack of influence of temperature on chemicals’ toxicity in this species. The 

finding that this species was the less sensitive to both eucalyptus leachates and 

copper may also suggest the presence of general mechanisms decreasing the 

uptake of environmental contaminants or increasing their elimination from the 

body, which do not exclude the potential protective effects of the invertebrate’s 

case. Mechanisms of tolerance to metals are present in other Trichopteran larvae 

(Darlington and Gower, 1990) as well as differential patterns of metal 

accumulation (Cain and Luoma, 1998; Rainbow, 2002, 2007; Rainbow et al., 2012) 
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so they may also exist in S. festiva. The lower sensitivity of this species to chemical 

stress relatively to other shredder species found in the present study is in good 

agreement with previous findings in the caddisfly Sericostoma vittatum exposed to 

aerated eucalyptus leachates (Canhoto and Laranjeira, 2007; Canhoto et al., 2013), 

suggesting a ability common to this family. Independently of the mechanisms 

involved that will be very interesting to investigate, the relatively low sensitivity of 

this species should be considered when planning monitoring studies with 

shredders.  

The results of Figure 1 and their statistical analysis indicate that A. 

desmarestii and E. meridionalis have no significant differences of sensitivity to 

eucalyptus leachates not to copper at 10°C. However, temperature raise from 10 to 

20°C significantly increased the toxicity of eucalyptus leachates to A. desmarestii 

(but not to E. meridionalis) and of copper for both species with more strong effects 

on E. meridionalis (Figure 2). Therefore, the relative sensitivity of the species to 

chemical stress is dependent of the substance/substances and temperature. Thus, 

in real scenarios the potential pre-existing equilibrium between populations of A. 

desmarestii and E. meridionalis is not expected to be disrupted after exposure to 

copper or eucalyptus leachates in the range of concentrations tested at 

temperatures around 10°C but the outcome may be considerable different at 

higher temperatures.  

From the conclusions above, at least two interesting questions emerge: (i) 

why temperature raise increases the toxicity of copper (both species) and 

eucalyptus leachates (one species)? Why the temperature effect is different in the 

two species? Copper is a well known oxidative stress inducer in both vertebrates 



Chapter II | 43 

 

(e.g. Olivari et al., 2008; Vieira et al., 2009; Roy et al., 2009; Boveris et al., 2012) 

and invertebrates (Gomes et al., 2012; Maria and Bebianno, 2011), including 

shredders (Bouskill et al., 2006; Sroda and Cassu-Leguiller, 2011), a mechanism of 

toxicity that may lead to death (Brinkman and Johnston, 2008; Tollet et al., 2009). 

Thus, damage in crucial molecules (e.g. proteins, lipids, DNA), resulting from 

oxidative stress, may contribute significantly for its toxic effects. Temperature is 

also known to increase the formation of radical oxygen species (ROS) (Abele et al., 

1998, 2002; Heise et al., 2003) and therefore the expected result is an increase of 

copper toxicity at higher temperatures. Temperature is also able to modulate 

several other processes and thus it may influence cooper uptake, its disposition, 

interaction with molecular targets and elimination. Thus, the increase of copper 

toxicity at higher temperatures, as well as the differences among species found 

may be due to differences in these processes. Eucalyptus oils and extracts contain 

several valuable components, such as anti-oxidant agents (Amakura et al., 2002), 

as well as toxins (e.g. tannic acid, Table 1). The extracts are complex mixtures of 

substances and some of them may undergo biotransformation (Pass et al., 1999; 

Liapis et al., 2000), therefore, differences between species may have additional 

causes such as differences in biotransformation and distinct sensitivities of targets 

of the substances present in the extracts. These are very interesting issues 

deserving further investigation.  
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4.2- Mixture bioassays 

Toxicological interactions between copper and eucalyptus leachates were 

found in both A. desmarestii and E. meridionalis (Table 4). In A. desmarestii, the 

exposure to the mixture resulted in antagonistic effects at both 10 and 20°C. 

Because copper is a well know oxidative stress inducer (Bouskill et al., 2006; Sroda 

and Cassu-Leguiller, 2011) and eucalyptus components present in oils and extracts 

have anti-oxidant properties (Sacchetti et al., 2005; Singh et al., 2012), this may 

contribute at least in part for the antagonism found. Interestingly, in E. 

meridionalis, synergistic effects were found indicating a distinct response to 

mixture exposure, suggesting differences between the species in the mechanisms 

of toxicity and biotransformation, among others, as the results from single 

substances bioassays also suggested. Stressors’ exposure may be a most important 

pressure driving the composition and dynamics of shredders communities, mainly 

because different species may have distinct sensitivities to them (Liess and Schulz, 

1999; Woodcock and Huryn, 2005; Maltby and Hills, 2008). Thus, under stress 

exposure, the populations of the most sensitive species are expected to decline and 

even disappear, while the most tolerant ones may overdevelop due to the lack of 

competition, possibly occupying the ecological niches of the extinct ones. 

 

Conclusions 

In summary, the results of this study indicated that S. festiva, A. desmarestii 

and E. meridionalis have differences of sensitivity to copper, eucalyptus leaf 

extracts and their mixture, with S. festiva being the less sensitive species at both 10 

and 20°C and the relative sensitivity of A. desmarestii and E. meridionalis being 
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chemical and temperature dependent. Overall, these findings suggest that single 

and combined chemical stress may modulate the biodiversity of stream shredders 

communities due to differential sensitivity of individual species and that the 

process may be influenced by temperature, highlighting the need of more 

knowledge on the subject as well as on the molecular mechanisms responsible for 

chemicals toxicity.  
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Chapter III 
 

Effects of eucalyptus leachates and copper 

(single and in mixture) on cholinesterase 

activity and oxidative stress parameters of 

three shredder species assessed at two 

temperatures 
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Effects of eucalyptus leachates and copper (single and in mixture) 

on cholinesterase activity and oxidative stress parameters of 

three shredder species assessed at two temperatures 

 

ABSTRACT 

 

In the present study, the effects of eucalyptus leachates (EL) and copper 

(single and in mixture) on cholinesterase activity and oxidative stress parameters 

of three shredder species (Atyaephyra desmarestii, Echinogammarus meridionalis 

and Schizopelex festiva) were investigated at two different temperatures (10 and 

20°C). For each species, 96h laboratory bioassays were conducted, by exposing 

groups of organisms to control conditions, LC10, LC20 and LC50 of EL, copper and 

their equitoxic mixtures previously determined, at both temperatures. At the end 

of the bioassays, the following biomarkers were determined: the activity of the 

cholinesterases (ChE) enzymes as a neurotoxicity biomarker; the activity of 

glutathione S-transferases (GST) enzymes which are involved in biotransformation 

and oxidative stress prevention mechanisms; and lipid peroxidation levels (LPO) 

as indicative of oxidative damage. The results indicate that temperature raise from 

10 to 20°C significantly reduced ChE activity in S. festiva, GST activity in S. festiva 

and E. meridionalis, and increased LPO levels in S. festiva and A. desmarestii 

(control organisms). Thus, these effects should be taken in consideration when 

using these parameters as biomarkers under temperature variation scenarios. In S. 

festiva, no significant anti-cholinesterase effects were observed, and lipid oxidative 

damage was only found at one mixture concentration, possibly due to a scavenger 
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effect of GST. A. desmarestii ChE were significantly increased by exposure to the 

highest mixture concentration, and both EL and copper (single and in mixture) 

were able to significantly increase LPO levels at 10°C but not at 20°C. The highest 

concentration of EL and the mixture caused a significant inhibition of ChE in E. 

meridionalis at 20°C but not at 10°C, and significant oxidative damage in the 

mixture at the lowest temperature but not at the highest one. Overall, these 

findings indicate that the tested shredder species have different sensitivities to 

chemically-induced acute stress and at least some of the mechanisms of toxicity 

and detoxication involved are modulated by temperature. Therefore, more studies 

on the combined effects of chemical and temperature stress on these species 

should be carried out to improve the basis for ecological risk assessment of both 

environmental contaminants and climate changes, especially on freshwater 

shredders community. 

 

 

Keywords: Atyaephyra desmarestii, Echinogammarus meridionalis, Schizopelex 

festiva, temperature and chemical stress, mixture toxicity, biomarkers
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1. INTRODUCTION 

Shredders play a crucial role in small streams ecosystems supporting the 

transfer of trophic energy and organic matter from the surrounding forests to 

lower stream sections as a consequence of their feeding/egestion activities (Eggert 

and Wallace, 2007). These ecosystems experience daily or seasonal temperature 

fluctuations and are particularly vulnerable to chemical contamination either from 

anthropogenic activities (e.g. mining, fertilizers and pesticides from surrounding 

crops) or from natural sources, such as toxins from riparian vegetation 

(Chatzinikolaou, 2006; Borgmann et al., 2007; Maltby and Hills, 2008).  

Distinct invertebrate species may have different sensitivities to stressors 

and the presence of environmental contaminants may change shredder 

communities with potential impacts at ecosystem level (Schulz et al., 2002, Liess 

and Von der Ohe, 2005). Differences of sensitivity to chemical stressors among 

species in response to metal exposure namely copper have been reported 

(Boeckman and Bidwell, 2006; Roman et al., 2007). Different invertebrates may 

cope distinctly with the presence of metals. Decapods regulate concentrations of 

essential elements (e.g. Cu) to approximately constant levels, excreting the excess 

metal (Rainbow, 2007) and amphipods are net accumulators of essential metals 

(Rainbow and White, 1989; Rainbow, 1998). Some species of Trichoptera are able 

to accumulate copper (Solá and Prat, 2006) and exhibit differential patterns of 

metal accumulation (Cain and Luoma, 1998; Rainbow, 2002, 2007; Rainbow et al., 

2012). And mechanisms of behavioural avoidance after stressor exposure have 

also been observed for several invertebrates (Gerhardt and Palmer, 1998; Amorim 

et al., 2005; 2008). 
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Eucalyptus (Eucalyptus globulus) is now the predominant tree in the 

Portuguese forest (IFN6, 2013). Afforestations with this species are known to have 

serious impacts on streams ecosystems (Abelho and Graça, 1996; Larrañaga et al., 

2006) namely on shredders (Larrañaga et al., 2009). Negative impacts of 

eucalyptus leachates on streams ecosystems have been detected (Canhoto and 

Laranjeira, 2007; Canhoto et al., 2013) although further research is needed to 

accurately predict and mitigate impacts on macroinvertebrate communities. 

Therefore the objective of the present study was to investigate the effects of 

eucalyptus leachates (EL) and copper (single and in mixture) on cholinesterase 

activity and oxidative stress parameters of three shredder species (Atyaephyra 

desmarestii, Echinogammarus meridionalis and Schizopelex festiva) at two different 

temperatures. These particular effects were selected because copper was found to 

inhibit the activity of ChE of several species (Garcia et al., 2000; Brown et al., 

2004a; Vieira et al., 2009) and is a well known oxidative stress inducer (Mosleh et 

al., 2006; Maria and Bebbiano, 2011; Gomes et al., 2012), while eucalyptus toxins 

have been showing anti-oxidant properties (Bendaoud et al., 2009; Naceur Ben-

Marzoug et al., 2011). Ten and 20°C were selected to represent natural 

temperatures observed in the invertebrate’s streams of origin during colder and 

warmer seasons (Canhoto and Laranjeira, 2007; Ferreira et al., 2010).  
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2. MATERIAL AND METHODS 

2.1 - Collection and acclimation of organisms 

The organisms were collected between May 2010 and February 2011 in 

three streams of Central Portugal: A. desmarestii in Varandas do Ceira, Condeixa, 

central Portugal (40°10.248’ N, 8°18.101’W); E. meridionalis in Redinha, Pombal, 

central Portugal (39°58.726’N, 8°34.393’W) and S. festiva in Múceres, Caramulo, 

central Portugal (40°32’01’’N, 8°09’15’’W). They were transported to the 

laboratory in containers with water from the original streams. In the laboratory, 

organisms were maintained in photoperiod (12h light: 12h dark) and temperature 

(10 or 20°C according their further use) controlled rooms, in aerated aquariums 

(5L of capacity, with a 5cm layer of sterile sediment) with 4 L of ASTM hard water 

(ASTM, 1980) for one week prior to the start of the tests. During this time period, 

invertebrates were fed ad libitum with conditioned alder leaves. Twenty-four 

hours prior to the start of the test food was retrieved to allow gut clearance. 

 

2.2 - Preparation of stock and test solutions  

ASTM was used in all tests (alkalinity 110 to 120 mg/L as CaCO3; hardness 

160 to 180 mg/L as CaCO3). A stock solution of copper sulfate was prepared with 

copper sulfate pentahydrate (CAS no. 7758-99-8, from Merck KGaA, Darmstadt, 

Germany) in ultra pure water, corresponding to 25.5 mg/L of ionic copper. EL 

were prepared as indicated in Canhoto and Laranjeira (2007) by adding 28g of dry 

eucalyptus leaves per L of ASTM and maintaining the solution in continuous 

moderate aeration for 7 days in controlled conditions (15°C; photoperiod 12h 

light: 12h dark). After this time period, the leachates solution was decanted and 
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stored at 4°C. Prior to the beginning of the bioassays this solution was analyzed for 

polyphenols (Graça et al., 2005), dissolved organic carbon (DOC) (Elementar 

Analysensysteme Gmbh LiquiTOC, Hanau, Germany) dissolved oxygen (WTW OXI 

92 oxygen meter), pH (Wissenschaftlich Technische Werkstätten 537 pH meter, 

WTW, Weilheim, Germany), and conductivity (WTW LF 92 conductivity meter). 

The concentration of the polyphenolic compounds in the solution, expressed as 

tannic acid equivalents, was extremely high (465±42.0 mg/L). This solution 

presented high dissolved organic carbon (DOC) levels (2.48±0.05 µg/L) and 

conductivity (1127±322 µS.cm-1), low oxygen concentrations (1.88±0.355 mg/ml) 

and acidic pH (3.96±0.731). 

Test solutions were prepared by dilution of these stock solutions (copper 

and EL) in ASTM. Mixture test solutions were prepared by adding the 

correspondent copper and/or leachates stock solutions and adjusted to the final 

intended volume with ASTM hard water. 

 

2.3 - Experimental design and exposure conditions 

Bioassays were carried out for 96h in a temperature (10±1°C or 20±1°C) 

and photoperiod (12h light: 12h dark) controlled room. In previous bioassays the 

LC10, LC20 and LC50 of copper and eucalyptus leachates to A. desmarestii, E. 

meridionalis and S. festiva were determined at both 10 and 20°C. Concentrations of 

EL (expressed as mg/L of tannic acid) and copper (ionic concentrations in mg/L) 

where tested single and in mixture (LC10 EL + LC10 Cu; LC20 EL + LC20 Cu; LC50 

EL + LC50 Cu) at both 10 and 20°C as indicated below (Table 5) 
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In each bioassay, a control with ASTM only was included in the 

experimental design. Organisms were exposed individually in test chambers (plastic 

cups) filled with 200 ml of each solution and no food was provided during the 

assays. Mortality, dissolved oxygen, conductivity and temperature were monitored 

at each 24h intervals. Organisms that died during the assays were immediately 

removed and frozen at -80°C. At the end of the bioassays, organisms were collected 

and frozen at -80°C until being used for biomarkers determination. 

 

Table 5 - Concentrations of eucalyptus leachates (EL) and copper (Cu), single and in mixture, used in 
the bioassays with Atyaephyra desmarestii, Echinogammarus meridionalis and Schizopelex festiva 
carried out at 10°C and 20°C. These were the estimated concentrations causing 10%, 20% and 50% 
of mortality in previous bioassays. EL concentrations are expressed in mg/L of tannic acid and 
copper concentrations correspond to Cu(II). 

 
Species Temperature Treatment    Stressor concentration (mg/L) 

   EL Cu Mixture 

A
. 

d
e

sm
a

r
e

st
ii

 

10°C LC10 46 0.05 46EL+0.05Cu 

LC20 68 0.08 68EL+0.08Cu 

LC50 142 0.22 142EL+0.22Cu 

20°C LC10 8 0.04 8EL+0.04Cu 

LC20 14 0.07 14EL+0.07Cu 

LC50 34 0.17 34EL+0.17Cu 

E
. 

m
e

r
id

io
n

a
li

s 

10°C LC10 13 0.05 13EL+0.05Cu 

LC20 24 0.09 24EL+0.09Cu 

LC50 81 0.27 81EL+0.27Cu 

20°C LC10 8 0.005 8EL+0.005Cu 

LC20 16 0.01 16EL+0.01Cu 

LC50 65 0.036 65EL+0.036Cu 

S
. f

e
st

iv
a

 

10°C LC10 349 2 349EL+2Cu 

LC20 412 4 412EL+4Cu 

LC50 465 9 465EL+9Cu 

20°C LC10 279 2 279EL+2Cu 

LC20 325 3 325EL+3Cu 

LC50 434 7 434EL+7Cu 
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2.4 - Biomarkers  

Biomarkers analysis were done individually in A. desmarestii and S. festiva, 

thus in a total of 10 replicates (individual organisms) per treatment. In the case of 

E. meridionalis, because of their small size and the relatively low enzymatic 

activities recorded in preliminary assays, 4 replicates (pooled samples of 10 

animals each) were used per treatment. Heads were isolated on ice and used for 

ChE enzymatic determinations, while the remaining bodies were isolated on ice 

and used for GST activity and LPO determinations. Heads samples were put in 0.5 

ml of ice cold phosphate buffer (0.1 M, pH 7.4), homogenized (Ystral GmbH d-7801 

Dottingen homogeniser) for 30s on ice, and centrifuged at 3300×g for 3min at 4 °C 

(SIGMA 3 K 30). The supernatants were carefully collected and used to determine 

ChE activity after standardization of protein content (1 mg/mL) by the Ellman’s 

technique (Ellman et al., 1961) adapted to microplate (Guilhermino et al., 1996). 

Briefly, at each 0.05 ml of sample it was added 0. 250 ml of the reaction solution 

(30 ml of K-phosphate buffer (pH=7.2, 0.1M), 1 ml of a dithiobisnitrobenzoate 10 

mM solution (20 mM of acid dithiobisnitrobenzoate and 18 mM of sodium 

hydrogen carbonate in 0.1 M K-phosphate buffer, pH 7.2), and 0.2 mL of 

acetylcholine iodide in u.p. water (75 mM)). The increase of absorbance was 

measured at 412 nm in a microplate reader (Bio Tek Power Wave 340) at 25 °C. In 

all the determinations, acetyltiocholine was used as substrate. As no previous 

characterization of the enzymes present in the head of the tested species was 

made, the cholinesterase activity measured will be hereafter indicated as the 

activity of all the ChE enzymes present in the samples.  
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Body samples were also homogeneized (Ystral GmbH d-7801 Dottingen 

homogeniser) in 1ml of ice cold phosphate buffer (0.1 M, pH 7.4) for 30s on ice and 

then half of this homogenized (0.5ml) was centrifuged (SIGMA 3 K 30) at 10000×g 

for 20 min at 4 °C. GST activity was quantified by the method of Habig et al. (1974) 

with adaptations (Frasco and Guilhermino, 2002) through the conjugation of 

reduced glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB). To 0.250 mL 

of the reaction solution (75 mL of phosphate buffer 0.2 M pH 6.5, 2.34 mL of 1-

chloro-2,4 dinitrobenzene in ethanol (60mM) and 13.5 mL of a 10 mM GSH 

solution in ultra-pure water), 0.05 mL of sample (previously diluted in 

homogenization buffer in order to have a final protein concentration of 1 mg/mL), 

was added in the microplate well. Absorbance was measured at 340 nm in a 

microplate reader (Bio Tek Power Wave 340) for 5 min at 25°C.   

ChE and GST activities were expressed per Units (U) per concentration of 

protein; one U corresponds to 1 nano mole of substrate hydrolyzed per min per mg 

of protein. The concentration of protein in the samples was determined according 

to Bradford et al. (1976) adapted to microplate (Frasco and Guilermino, 2002) 

using bovine γ -globulin as protein standard.  

The thiobarbituric acid reactive species (TBARS) were measured to 

determine LPO, following the methods described in Ohkawa et al., 1979 and Bird 

and Draper (1984), with some modifications (Torres et al., 2002; to prevent 

artifactual lipid oxidation, by adding 0.2 mM butylhydroxytoluene). To each 

sample, 1 mL of 12% trichloroacetic acid, 0.8 mL of 60 mM Tris–HCl solution (pH 

7.4) with 0.1 mM diethylenetriaminepentaacetic acid (DTPA) and 1 mL of 0.73% 

thiobarbituric acid (TBA) were added. Samples were incubated at 100°C for 60 



Chapter III | 56 

 

min. Then, centrifuged at 12000×g for 5 min at 4°C, and the resultant supernatant 

was used to determine LPO levels at 535 nm. Results were expressed in nano 

moles of TBARS per gram of wet weight. A Jasco V-630 spectrophotometer was 

used.  

 

2.5 - Data analysis 

Data were checked for normality of distribution using the Kolmogorov–

Smirnov test, and for homoscedasticity using the Levene’s test.  Appropriated data 

transformations (log (x+1)) were made when necessary (Zar 1999). For each 

biomarker, species and temperature, different treatments were compared by one-

way analysis of variance (ANOVA). When significant differences among treatments 

were found by ANOVA, the Tukey’s test was used to identify significantly different 

treatments. When the ANOVA assumptions could not be achieved, the Kruskal-

Wallis analysis was used to compare different treatments and the multiple 

comparisons test was used to identify significantly different treatments. The 

controls at 10 and 20°C were compared with a Student t-test. StatSoft\Statistica 

8® software package was used for all the analysis. In all cases, the significance 

level was 0.05. 

 

3. RESULTS AND DISCUSSION 

3.1 - Effects of stressors on S. festiva 

No significant effects of EL, copper and their mixtures on S. festiva ChE 

activity were found (Figure 4), either at 10°C (F(9,89)= 1.11, p>0.05) or at 20°C 

(F(9,90)= 1.15, p>0.05). These results indicate that in the range of concentrations 
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tested and in the experimental conditions used, the environmental contaminants 

have no anti-cholinesterase effects in this species. They also indicate that the 

mortality induced by EL and copper single and in mixture on S. festiva is not due to 

effects on the cholinergic system. 

At 10°C, significant effects of EL, copper and their mixtures on S. festiva GST 

activity (H(9,88)=48.68, p<0.05) and LPO levels (F(9,90)= 3.90, p<0.05) were found. In 

exposures with single chemicals, S. festiva GST activity was reduced by both EL and 

copper in a dose dependent manner (Figure 5A), reaching about 74% and 80% of 

decrease at the highest concentrations of EL (465 mg/L) and copper (9mg/L). 

Under simultaneously exposure to EL and copper, S. festiva GST activity was 

reduced by about 80% at all the concentrations tested and no dose-response was 

observed. The decrease of GST activity may be due to the binding of the enzyme to 

the environmental contaminants to decrease their free amount and thus their toxic 

effects. This is a well known role of this enzyme (Klaassen, 2008). Inhibition of GST 

under exposure to copper was also observed in the aquatic worm Tubifex tubifex 

(Mosleh et al., 2005) and in the gastropod Nucella lapillus (Cunha et al., 2007). The 

lack of significant increase of LPO levels in organisms exposed to the most part of 

copper and EL treatments seems to support this hypothesis (Figure 6A). At the 

highest concentration of the mixture tested, a significant increase of LPO levels was 

observed (Figure 6A). This finding and the GST response pattern in mixture 

treatments suggests that anti-oxidant defenses were not able to cope with the 

oxidative stress and thus lipid damage occurred. Because lipids are important 

components of cell membranes, lipid damage may have a wide range of severe 

effects (Klaassen, 2008). These effects may have contributed to the mortality 
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observed as suggested by the higher mortality recorded at the highest mixture 

concentration (33 %) than in the remaining ones (0% and 10%, respectively) 

(Chapter II). 

The raise of temperature from 10 to 20°C (Figures 4B, 5B and 6B), 

significantly reduced the activity of ChE (T=6.03; p<0.05) and GST (T=-2.72; 

p<0.05) enzymes, and increased LPO levels (T=-4.37; p<0.05) in control 

treatments. These effects should be considered when using the ChE activity of this 

species as a biomarker under scenarios of temperature variation. At 20°C, 

significant differences in GST activity (F(9,90)= 8.12, p<0.05) and LPO levels (F(9,90)= 

3.46, p<0.05) among treatments were also found but with some differences in the 

pattern of response relatively to 10°C (Figures 5B and 6B). Regarding GST and 

relatively to the control group: a significant reduction of activity was observed 

under EL exposure but only at the intermediate concentration with the activity 

becoming not significantly different from the control group at the highest 

concentration tested; and no significant effects of copper nor of the mixture 

treatments were found. These findings suggest that the raise of temperature 

modifies the pattern of some S. festiva responses to chemical stress. In addition, 

they also indicate that S. festiva is relatively resistant to the oxidative stress 

induced by copper that is a well known oxidative stressor (Boveris et al., 2012). 
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Fig. 4 - Effects of eucalyptus leachates (EL), copper (Cu), and their equitoxic mixtures (mg/L) to Schizopelex festiva after 96h of exposure at 10°C (A) and 20°C (B). ChE - 
head cholinesterase activity. Enzymatic activities are expressed in Units (U) per concentration of protein, one U corresponding to 1 nano mole of substrate hydrolised per 
minute per mg of protein. Values are the means±S.E.M.; n=10. Enzymatic activities (mean±S.E.M.) in control groups at 10°C: 26.53 U/mg protein±1.82; Corresponding values 
at 20°C: 15.40 U/mg protein±0.78.  
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Fig. 5 - Effects of eucalyptus leachates (EL), copper (Cu), and their equitoxic mixtures (mg/L) to Schizopelex festiva  after 96h of exposure at 10°C (A) and 20°C (B). GST – 
body without head glutathione S transferases activity. Enzymatic activities are expressed in Units (U) per concentration of protein, one U corresponding to 1 nano mole of 
substrate hydrolised per minute per mg of protein. Values are the means±S.E.M.; n=10. Different letters indicate statistically significant differences at 0.05 (ANOVA and 
Tukey’s test or non-parametric equivalent). Enzymatic activities (mean±S.E.M.) in control groups at 10°C: 2.87 U/mg protein±0.0.30; Corresponding values at 20°C:  1.83 
U/mg protein±0.29.  
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Fig. 6 - Effects of eucalyptus leachates (EL), copper (Cu), and their equitoxic mixtures (mg/L) to Schizopelex festiva  after 96h of exposure at 10 (A) and 20°C 
(B). LPO - body (without head) lipid peroxidation levels. Values are the means±S.E.M.; n=10. Different letters indicate statistically significant differences at 
0.05 (ANOVA and Tukey’s test or non-parametric equivalent). Lipid peroxidation levels (mean±S.E.M.) in control groups at 10°C: 79.53 nmol/g. w.w.±35.24; 
Corresponding values at 20°C:  255.54 nmol/g. w.w.±38.29. 
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3.2 - Effects of stressors on Atyaephyra desmarestii. 

In A. desmarestii bioassays, significant differences in ChE activity among 

treatments were found (Figure 7) at both 10°C (H(9,90)=23.89, p<0.05) and 20°C 

(F(9,89)= 5.21, p<0.05). In single exposures, EL and copper did not caused significant 

changes in the enzymatic activity, but a significant increase in the groups exposed 

to the highest concentration of the mixture was observed at both 10°C (112%) and 

20°C (170%). The increase of ChE observed in the present study carried out in vivo 

may be due to several mechanisms including: (i) an increased release of 

acetylcholine to the synaptic cleft potentially induced somehow by the highest 

concentration of the mixture and the induction of ChE activity in an attempt of 

degrading the excess of the neurotransmitter avoiding the overstimulation of post-

synaptic receptors; and (ii) a general increase of ChE activities to bind or hydrolyse 

the toxic substances in circulation and decreasing their toxic effects, a function of 

these enzymes that is especially important towards some compounds (Johnson 

and Moore, 2012; Taylor et al., 2013). Unfortunately our experiment design does 

not allow going further in this interesting question. No significant differences in 

ChE activity between controls of bioassays carried out at 10 and 20°C were found 

(T=-0.77; p>0.05) suggesting that A. desmarestii ChE activity is not affected by 

temperature variation in the 10-20°C range.  

At 10°C, no significant differences in GST activity were found among 

treatments (F(9,90)= 1.69, p>0.05), suggesting no involvement of this enzyme in the 

biotransformation of the tested substances at this temperature (Figure 8). The 

raise of temperature from 10 to 20°C (Figure 8B) did not significantly increased 

the GST activity in the control group (T=0.78; p>0.05). However, at 20°C, 
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significant differences in GST activity among treatments were found (F(9,90)= 1.69, 

p>0.05), with the highest concentration of the mixture causing a reduction of the 

enzymatic activity (≈54%). This suggests that GST may be binding to the toxicants 

or their metabolites resulting in the decrease of its activity. 

At 10°C, exposure to EL, copper and their mixtures significantly (F(9,90)= 

4.98, p<0.05) increased LPO levels (Figure 9A) suggesting that lipid peroxidation 

damage occurred in A. desmarestii. The raise of temperature from 10 to 20°C 

significantly increased the levels of LPO in controls (T=-7.81; p>0.05) (Figure 9B). 

However, despite the overall increase of LPO levels, no significant differences 

among treatments were found (H(9,90)= 13.15, p>0.05).  
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Fig. 7 - Effects of eucalyptus leachates (EL), copper (Cu), and their equitoxic mixtures (mg/L) to Atyaephyra desmarestii after 96h of exposure at 10 (A) and 20°C (B). ChE - 
head cholinesterase activity. Enzymatic activities are expressed in Units (U) per concentration of protein, one U corresponding to 1 nano mole of substrate hydrolised per 
minute per mg of protein. Values are the means±S.E.M.; n=10. Different letters indicate statistically significant differences at 0.05 (ANOVA and Tukey’s test or non-
parametric equivalent).  Enzymatic activities (mean±S.E.M.) in control groups at 10°C: 26.53 U/mg protein±1.82; Corresponding values at 20°C:  15.40 U/mg protein±0.78. 
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Fig. 8 - Effects of eucalyptus leachates (EL), copper (Cu), and their equitoxic mixtures (mg/L) to Atyaephyra desmarestii  after 96h of exposure at 10 (A) and 20°C (B). GST – 
body without head glutathione S transferases activity. Enzymatic activities are expressed in Units (U) per concentration of protein, one U corresponding to 1 nano mole of 
substrate hydrolised per minute per mg of protein. Values are the means±S.E.M.; n=10. Different letters indicate statistically significant differences at 0.05 (ANOVA and 
Tukey’s test or non-parametric equivalent). Enzymatic activities (mean±S.E.M.) in control groups at 10°C: 2.57 nmol/min/mg protein±0.29; Corresponding values at 20°C:  
2.34 nmol/min/mg protein±0.48.  
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Fig. 9 - Effects of eucalyptus leachates (EL), copper (Cu), and their equitoxic mixtures (mg/L) to Atyaephyra desmarestii after 96h of exposure at 10 (A) and 20°C (B). LPO - 
body (without head) lipid peroxidation levels. Values are the means±S.E.M.; n=10. Different letters indicate statistically significant differences at 0.05 (ANOVA and Tukey’s 
test or non-parametric equivalent). Lipid peroxidation levels (mean±S.E.M.) in control groups at 10°C: 58.35 nmol/g. w.w.±12.25; Corresponding values at 20°C:  600.06 
nmol/g. w.w.±128.48. 
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3.3 - Effects of stressors on Echinogammarus meridionalis 

At 10°C (Figure 10A), no significant differences in ChE activity were found 

(H(9,30)=14.74, p>0.05) indicating that at this temperature the environmental 

contaminants tested, either as single agents or in mixture, have no anti-

cholinesterase effects. The raise of temperature from 10 to 20°C did not 

significantly altered ChE activity in controls (T=-0.82; p>0.05). However, at 20°C 

(Figure 10B), significant differences among treatments were found (H(9,30)=28.22, 

p<0.05), with the highest concentration of EL and of the mixture causing a 

significant reduction of ChE activity (69% and 72%, respectively). These results 

suggest an interaction between temperature and EL effects.   

Significant differences in GST activity among treatments were found both at 

10°C (F(9,30)= 6.10, p<0.05) and 20°C (F(9,30)=2.65, p<0.05), and in LPO levels at 

10°C (F(9,30)= 4.596, p<0.05) but not at 20°C (F(9,30)=1.70, p>0.05). At 10°C (Figure 

11A), EL when tested alone significantly decreased GST activity by about 78% at 

all the concentrations tested. A significant decrease of GST relatively to control 

values was also induced by the lowest concentration of copper (0.05 mg/L) and 

the lowest concentrations of the mixture but a recovery of activity was observed at 

higher concentrations. Because a significant increase of LPO levels in organisms 

exposed to the highest concentration of the mixture (Figure 12A) and a slightly 

increase in those exposed to the highest concentration of copper, it is possible that 

the GST activity increase was an attempt to cope with increased levels of oxidative 

stress. Temperature increase reduced E. meridionalis GST activity in the control 

group (T=2.58; p<0.05) and had no significant effects on LPO levels (T=-1.89; 

p>0.05). At 20°C, only the highest concentration of the mixture induced a 
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significant change of GST activity (≈ 70 % reduction) from the control group. Thus, 

these findings suggest that temperature change was able to modify the response to 

oxidative stress.  
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Fig. 10 - Effects of eucalyptus leachates (EL), copper (Cu), and their equitoxic mixtures (mg/L) to Echinogammarus meridionalis after 96h of exposure at 10 (A) and 20°C (B). 
ChE - head cholinesterase activity. Enzymatic activities are expressed in Units (U) per concentration of protein, one U corresponding to 1 nano mole of substrate hydrolised 
per minute per mg of protein. Values are the means±S.E.M.; n=10. Different letters indicate statistically significant differences at 0.05 (ANOVA and Tukey’s test or non-

parametric equivalent).  Enzymatic activities (mean±S.E.M.) in control groups at 10°C: 4.95 U/mg protein±0.41; Corresponding values at 20°C:  5.58 U/mg protein±0.29.  
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Fig. 11 - Effects of eucalyptus leachates (EL), copper (Cu), and their equitoxic mixtures (mg/L) to Echinogammarus meridionalis after 96h of exposure at 10 (A) and 20°C (B). 
GST – body without head glutathione S transferases activity. Enzymatic activities are expressed in Units (U) per concentration of protein, one U corresponding to 1 nano 
mole of substrate hydrolised per minute per mg of protein. Values are the means±S.E.M.; n=10. Different letters indicate statistically significant differences at 0.05 (ANOVA 
and Tukey’s test or non-parametric equivalent). Enzymatic activities (mean±S.E.M.) in control groups at 10°C: 7.18 U/mg protein±0.87; Corresponding values at 20°C:  3.26 
U/mg protein±0.58.  
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Fig. 12 - Effects of eucalyptus leachates (EL), copper (Cu), and their equitoxic mixtures (mg/L) to Echinogammarus meridionalis after 96h of exposure at 10 (A) and 20°C (B). 
LPO - body (without head) lipid peroxidation levels. Values are the means±S.E.M.; n=10. Different letters indicate statistically significant differences at 0.05 (ANOVA and 
Tukey’s test or non-parametric equivalent). Lipid peroxidation levels (mean±S.E.M.) in control groups at 10°C: 92.27 nmol/g. w.w.±18.13; Corresponding values at 20°C:  
191.64 nmol/g. w.w.±34.94.   
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 Conclusions 

In summary, the results of the present study indicate that temperature raise 

from 10 to 20°C significantly reduced ChE activity in S. festiva, GST activity in S. 

festiva and E. meridionalis, and increased LPO levels in S. festiva and A. desmarestii 

(control organisms). Thus, these effects should be taken in consideration when 

using these parameters as biomarkers under temperature variation scenarios.  

The environmental contaminants tested here were not able to induce 

significant anti-cholinesterase effects on S. festiva; the lipid oxidative damage was 

only found at one mixture concentration and GST seems to have an effective role in 

protecting against oxidative stress possibly by binding to the toxicants or their 

metabolites. A. desmarestii ChE were significantly increased by exposure to the 

highest mixture concentration at both 10 and 20°C. Both EL and copper (single and 

in mixture) were able to significantly increase LPO levels at 10°C but not at 20°C. 

This suggest that this species is more sensitive to chemical stress at the 

lowest temperature tested, possible because at higher temperatures GST may play 

an important role in preventing oxidative damage. The highest concentration of EL 

and of the mixture caused a significant inhibition of ChE in E. meridionalis at 20°C 

but not at 10°C, and significant oxidative damage in the mixture, at the lowest 

temperature but not at the highest one. Overall, these findings indicate that the 

tested shredder species have different sensitivities to chemically-induced acute 

stress and at least some of the mechanisms of toxicity and detoxication involved 

are modulate by temperature. 
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Chronic toxicity of eucalyptus leaf leachates 

and copper to Schizopelex festiva and 
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Chronic toxicity of eucalyptus leaf leachates and copper to 

Echinogammarus meridionalis and Schizopelex festiva assessed at 

two distinct temperatures 

Abstract 

 

In this study, the single or combined exposure to eucalyptus leaf leachates 

and copper were assessed on growth, consumption and survival rates of the 

shredders Schizopelex festiva and Echinogammarus meridionalis, at two different 

temperatures (10 and 20°C). Elemental body composition and selected biomarkers 

(ChE, GST and LPO) were also evaluated on S. festiva. Temperature significantly 

accelerated growth rates for S. festiva and the presence of toxics determined lower 

intrinsic growth rates (at both temperatures) and lower final invertebrate’s size 

especially at 10°C. No effects on survival were detected. For E. meridionalis the 

presence of low amounts of toxics increased growth rates only at 10°C. The 

increase in temperature accelerates growth rates in the absence of the toxics. 

Survival was negatively affected by increased temperature. Stressors exposure 

(single and in combination) negatively affected survival rates especially at the 

highest temperature. Elemental body composition indicates that S. festiva ability to 

retain phosphorus may be compromised upon exposure to higher temperature in 

treatments with increased copper concentrations. Biomarker determination 

suggests that exposure to increased temperature and the presence of high amount 

of leachates or the combination of both toxics leads to ChE inhibition. Increasing 

oxidative damage (increased LPO levels), especially at 20°C, and GST inhibition (in 
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the presence of single copper treatments) was also detected. Overall results 

suggest that long term contamination of freshwaters by eucalyptus leaf leachates 

and copper may result in distinct responses by the invertebrate species present 

and may lead to imbalances in invertebrate’s physiological mechanisms, with 

possible ecological relevant consequences in species abundance or presence. To 

this it is important to highlight the negative impact of increased temperatures on 

these processes. 

 

 

Keywords: eucalyptus, copper, shredders, growth, stoichiometry, biomarkers 
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1. INTRODUCTION 

Due to increased industrialization, urbanization, overexploitation of 

resources and increased human activities, contamination of inland waters by 

heavy metals such as copper has rapidly spread (Malmqvist and Rundle, 2004; 

Valavanidis and Vlachogianni, 2010). Copper is an essential trace metal but can 

become a severe pollutant depending on the dosage. Being one of the most used 

chemicals in the world in agricultural fields (as herbicides/fungicides) (ATSDR, 

1990), acute copper toxicity to freshwater organisms has been broadly studied 

(Van der Geest et al., 2000; Milam et al, 2005; Evans et al., 2006; Solá and Prat, 

2006, Vutukuru et al., 2006; Knakievicz and Ferreira, 2008). Nonetheless the 

effects of long-term, chronic Cu exposure are comparatively less reported in 

freshwater environments (e.g. Roman et al., 2007; Brix et al., 2011). Increased 

afforestations with Eucalyptus globulus have expanded throughout the 

Mediterranean area, being this tree species currently widespread in continental 

Portugal (IFN6, 2013) with monocultures lining headwaters or forming more or 

less dense riparian corridors in streams draining agricultural areas or under the 

influence of copper contamination. Several studies have reported deleterious 

impacts of eucalyptus plantations on shredders (Canhoto and Graça, 1999; 

Canhoto and Laranjeira, 2007; Larrañaga et al., 2009; Villanueva et al, 2011), 

namely on the negative effects of exposure to eucalyptus leaf leachates (Canhoto et 

al., 2013) but a lack of knowledge on the effects of long term chronic toxic 

exposure to these invertebrates still exists.  

Invertebrates tend to present a homeostatic elemental body composition 

(Sterner and Elser, 2002; Karimi and Folt, 2006) inspite of recognised imbalances 
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between these consumers and their resources (Cross et al., 2003). Studies with 

shedders tend to corroborate that theory (Balseiro and Albariño, 2006). 

Nevertheless little is known on this ability to cope with such imbalances when 

facing multiple stressors, with temperature possibly having an important influence 

in the process (Persson et al., 2011; Wojewodzic et al., 2011; Villanueva et al., 

2011).  

In recent years, growing importance of evaluating stressor exposure effects 

between different levels of biological organization lead to the use of different 

endpoints. In this scenario, combining the determination of functional parameters 

and the measurement of biochemical endpoints such as biomarkers or the 

understanding of stoichiometrical relationships may aid in understanding the 

effects of these stressors. Therefore it seems relevant to establish the relationship 

between ecological relevant parameters (such as growth, consumption rates and 

mortality), biomarkers and invertebrates homeostatic capacity in the presence of 

multiple stressors (copper and eucalypt leachates) and relevant thermal scenarios. 

In the last few years studies have positively demonstrated the relationship 

between ecologically relevant parameters and biomarkers (Moreira et al. 2006; 

Gravato and Guilhermino, 2009) focussing the attention to the importance in 

exploiting this relationships.  

The purpose of this study was to determine the effects of long-term, chronic 

eucalyptus leaf leachates and copper sub-lethal exposures on two shredders 

(Schizopelex festiva and Echinogammarus meridionalis). Survival, growth, and 

feeding rates of E. meridionalis and S. festiva were determined at two common 

temperatures, 10 and 20°C, usually reported in South Europe streams in autumn 
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and summer, respectively. The impacts of these stressors on the biological state of 

the individuals assessed through their elemental body composition (Carbon (C), 

Nitrogen (N) and Phosphorus (P)) and three selected biomarkers were also 

determined for S. festiva. Biomarkers determined where: Cholinesterases (ChE), 

which are involved in neurotransmission in vertebrates and invertebrates 

(Guilhermino et al., 1998); the activity of glutathione S-transferases (GST) involved 

in biotransformation and prevention of lipid peroxidation; and lipid peroxidation 

levels (LPO) to assess the extent of oxidative damage. 

 

2. MATERIAL AND METHODS 

2.1 - Collection and acclimation of organisms 

Schizopelex festiva Rambur (Trichoptera) and Echinogammarus meridionalis 

Pinkster (Amphipoda) individuals were collected in the wild in Ribeira de Múceres 

(Caramulo, central Portugal; 40°32’01’’N, 8°09’15’’W) and Ribeira da Redinha 

(Pombal, central Portugal; 39°58.726’N, 8°34.393’W), respectively. Both shredder 

specimens were handpicked and brought back to the laboratory in containers filled 

with stream’s water. In the laboratory, invertebrates were transferred to 5L 

aquariums filled with reconstituted hard water (alkalinity 110 to 120 mg/L as 

CaCO3 and hardness 160 to 180 mg/L as CaCO3; ASTM 1980), in order to minimize 

potential stress to invertebrates. During acclimation to assay conditions (12h light: 

12h dark photoperiod; 10 or 20°C) organisms were maintained in continuous 

aeration, with a layer of 5cm of ashed sediment (550°C for 8h) and fed ad libitum 

with alder leaves conditioned for 3 weeks in Ribeira de S. João (Lousã, central 

Portugal; 40°11’N; 8° 25’E) in order to assure optimal fungal colonization.  
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2.2 - Preparation of stock and test solutions 

Eucalyptus leaf leachates were obtained from senescent eucalyptus leaves 

collected from the same stand of trees in late summer of 2009, dried and stored in 

the dark until needed. To prepare leaf extracts, a mass of 28g of dried eucalyptus 

leaves were used per liter of ASTM (Canhoto and Laranjeira, 2007); the water was 

continuously aerated for 7 days under laboratory conditions. The leachate solution 

was then decanted and stored at 4°C in closed bottles, in the dark. Dissolved 

organic carbon (DOC) (Elementar Analysensysteme Gmbh LiquiTOC, Hanau, 

Germany), tannic acid equivalents (Graça et al., 2005), dissolved oxygen (WTW OXI 

92 oxygen meter), pH (Wissenschaftlich Technische Werkstätten 537 pH meter, 

WTW, Weilheim, Germany), and conductivity (WTW LF 92 conductivity meter) of 

the leachates were determined prior to the beginning of the bioassays. Test 

solutions of eucalyptus leachates were further prepared by serial dilutions of the 

leachates stock solution with ASTM. 

To obtain copper solutions a stock solution of copper sulfate pentahydrate 

(CAS no. 7758-99-8 purchased from Merck KGaA , Darmstadt, Germany) was 

prepared in nano pure water (conductivity <5 μS/cm; Seralpur PRO 90 CN, Seral, 

Ransbach-Baumbach, Germany) with a concentration of 25.5 mg/L (ionic Cu). Test 

solutions of copper were prepared by serial dilutions of the stock solution in 

ASTM. Mixture test solutions of eucalyptus leachates and copper were also 

prepared by adding the correspondent copper stock solution to the respective 

leachates stock solution adjusted for final intended volume with ASTM. 
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 2.3 - Experimental design and exposure conditions 

In chronic tests, eucalyptus leaf leachates and copper concentrations used 

are reported in Table 6 and were determined based on LC10 values previously 

determined for individual substances (chapter II). Invertebrates of each species 

were exposed to 2 distinct concentrations of single copper or eucalyptus leachates 

(with concentrations equivalent to previously determined LC10 concentrations, 

and half of that concentration), one treatment with both toxics in mixture (with 

half the concentration of each toxic) and one treatment with only ASTM which 

acted as a control. Hereafter these treatments are designated as control; ½Cu; Cu; 

½EL, EL and MIX (½EL+½Cu). Tests were run at 10 and 20°C simultaneously. 

Treatments with EL were not corrected for pH in order to mimic natural 

conditions. 

A total of 180 invertebrates with the exact same size (S. festiva and E. 

meridionalis mean dry weight±S.E.M.: 3.54mg±0.000 and 0.14mg±0.000, 

respectively), randomly distributed into 6 groups (control; ½Cu; Cu; ½EL, EL and 

MIX) of 30 animals were exposed individually in test chambers (plastic cups) filled 

with 200 ml of each solution at 10 and 20°C. Each individual was provided with 2 

leaf disks (∅=14mm) of conditioned alder. Leaf disks were pre-weighed (105°C; 

24h) to the nearest 0.01mg and rehydrated with distilled water before being 

offered to the invertebrates. Food, water and sediment were changed weekly, 

when animals were measured. Survivorship was evaluated on a daily basis and 

registered once a week. S. festiva dry mass (DM, mg) was obtained by measuring 

the anterior case opening (CO, mm) and calculated from the expression: DM= 

0.5177℮ (0.0961* CO) previously obtained (r2=0.95; n=50).The maximum body length 



Chapter IV | 82 

 

of E. meridionalis live individuals (BL; mm) was used to determine the dry mass 

(DM; mg) according to the expression previously obtained: DM=0.1633BL – 

0.02606 (r2=0.95; n=18). The experiment ended when the first S. festiva in each 

temperature was found in a pupal stage and when E. meridionalis individuals 

reached the final size class (size class 7, from 12 to 14 mm total body length).  

Growth rate of individual larvae was taken as the slope of exponential 

regressions of size (dry mass) against time (k). No values after maximum growth 

rate were used for this purpose. Individual consumption (mg) was estimated as the 

difference between the initial and final dry mass of the leaves (105°C; 24h), 

corrected from controls. Consumption was evaluated during week 7 and expressed 

per mg dry mass of individual, per day. At the end of the growth experiments one 

third of the 30 speciments of S. festiva were preserved at -80°C and another third 

(10 specimens) dried (at 60°C for 48h) and stored, in order to further determine 

selected biomarkers and stoichiometrical composition. Specimens of E. 

meridionalis were excluded from these determinations because, as each replicate 

had only one invertebrate, this did not allow the enough protein content or animal 

content (after desiccation) necessary to further analyses (biomarkers and 

stoichiometry).  
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Table 6 - Eucalyptus leachates (EL) and copper (Cu) concentrations used in the chronic toxicity 
experiments with Schizopelex festiva and Echinogammarus meridionalis at 10°C or 20°C. 
Concentrations expressed in mg /L.  

Temperature 
Stressor 

concentration (mg/L) 
S. festiva E. meridionalis 

10°C 

½ EL 174.24 6.45 

EL 348.48 12.91 

½ Cu 1.15 0.02 

Cu 2.30 0.05 

MIX 174.24 +1.15 6.45 +0.02 

20°C 

½ EL 136.92 3.97 

EL 273.84 7.93 

½ Cu 0.92 0.003 

Cu 1.84 0.005 

MIX 136.92 +0.92 3.97 +0.003 

 

 

2.3 - Elemental composition and biomarker determination 

2.3.1 - Elemental composition 

At the end of the growth experiments organisms were dried (24h at 105°C), 

milled and further analysed for total N and C (Flash EA 1112 for IRMS Delta V 

Advantage ThermoIRMS). Total P was evaluated according to Graça et al. (2005). 

Results were expressed as percentage and mass ratios (C:N; C:P and N:P) 

calculated for each combination temperature/treatment.  
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2.3.2 - Biomarker determination 

In order to determine ChE activity, invertebrate’s heads were used; the 

remaining bodies were used for the evaluation of GST activity and LPO levels. For 

ChE, samples were placed in 0.5 ml of ice cold phosphate buffer (0.1 M, pH 7.4), 

homogenized for 30s (Ystral GmbH d-7801 Dottingen homogeniser) on ice, and 

centrifuged at 3300×g for 3min at 4°C (SIGMA 3 K 30). The supernatants were 

collected and ChE activity was determined after standardization of protein content 

(1 mg/mL) following the methodology of Ellman’s (Ellman et al., 1961) adapted to 

microplate (Guilhermino et al., 1996). Therefore to each 0.050ml of the 

supernatant homogenate, 0.250 ml of the reaction solution was added (30ml of 

phosphate buffer (pH=7.2, 0.1M), 1 ml of a dithiobisnitrobenzoate 10 mM solution 

(20 mM of acid dithiobisnitrobenzoate and 18 mM of sodium hydrogen carbonate 

in 0.1 M K-phosphate buffer, pH 7.2), and 0.2 mL of acetylcholine iodide in u.p. 

water (75 mM)). Increased absorbance was measured at 412 nm in a microplate 

reader (Bio Tek Power Wave 340) at 25°C. Acetyltiocholine was used in all 

determinations and the activity determined corresponds to the substrate 

hydrolysis made by all the ChE enzymes.  

The remaining body (i.e. without the heads) samples were homogeneized 

for 30s on ice (Ystral GmbH d-7801 Dottingen homogeniser) in 1ml of ice cold 

phosphate buffer (0.1 M, pH 7.4) and further centrifuged (0.8 ml) (SIGMA 3 K 30) 

at 10000× g for 20 min at 4 °C. GST activity was quantified by the method of Habig 

et al. (1974) with adaptations (Frasco and Guilhermino, 2002) by the conjugation 

of reduced glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB). To 0.250 

mL of the reaction solution (75 mL of phosphate buffer 0.2 M pH 6.5, 2.34 mL of 1-
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chloro-2,4 dinitrobenzene in ethanol and 13.5 mL of a 10 mM GSH solution in 

ultra-pure water) was added 0.05ml of whole body PMS previously diluted in 

homogenization buffer in order to have a final protein concentration of 1 mg/mL. 

Absorbance was measured in a microplate reader (Bio Tek Power Wave 340) at 

340 nm for 5min at 25°C.   

Enzimatic activities (ChE and GST) were expressed per Units (U) per 

concentration of protein, one U corresponding to 1 nano mole of substrate 

hydrolised per min per mg of protein determined according Bradford et al. (1976) 

adapted to microplate (Frasco et al., 2002) using bovine γ-globulin as protein 

standard.  

The remaining body homogenate (0.2ml) was used to determine the extent 

of endogenous LPO by measuring the thiobarbituric acid reactive species (TBARS) 

following the method described by Ohkawa et al. (1979) and Bird and Draper 

(1984), with some modifications proposed by Torres et al. (2002). Artifactual lipid 

oxidation was prevented by adding 0.2 mM butylhydroxytoluene (BHT) to the 

homogenate. To each sample (0.2ml), 1 mL of 12% trichloroacetic acid, 0.8 mL of 

60 mM Tris–HCl solution (pH 7.4) with 0.1 mM diethylenetriaminepentaacetic acid 

(DTPA) and 1 mL of 0.73% thiobarbituric acid (TBA) were added. Samples were 

incubated in a water bath at 100°C for 60 min. Then, centrifuged at 12000×g for 5 

min at 4°C and the resultant supernatant was used to determine LPO levels at 535 

nm (Jasco V-630 spectrophotometer) and expressed in nmol TBARS per gram of 

wet weight. 
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2.4 - Data analysis 

All data was previously checked for normality, using the Kolmogorov–

Smirnov test, and for homoscedasticity, using the Levene’s test, and appropriated 

data transformations (log x+1) were made whenever necessary (Zar, 1999). Data 

was always corrected for mortality. Larval growth, consumption rates, 

stoichiometrical composition and biomarkers among treatments were compared 

by one-way analysis of variance (ANOVA) and the Tukey’s test was used to identify 

significantly different treatments. When the ANOVA assumptions could not be 

achieved, the Kruskal-Wallis analysis was peformed and the multiple comparisons 

test was used to identify significantly different treatments. Survivorship of the sets 

of individuals was compared using ANCOVA with temperature and treatment as 

categorical factors and time as covariable. Invertebrates in treatment control were 

compared between temperatures using t-tests. StatSoft\Statistica 8® software 

package was used for all the analysis. In all cases, the significance level was 0.05.  
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3. RESULTS AND DISCUSSION 

3.1 - Chronic toxicity of eucalyptus leaf leachates and copper to S. festiva 

and E. meridionalis 

At 10°C S. festiva growth rates (Figure 13) were significantly different 

between treatments (ANOVA, F(5,174)=6.48, p<0.05). The presence of the toxicants 

determined lower growth rates when compared to control (Tukey’s test p<0.05). 

At 20°C there were also significant differences between treatments (ANOVA, 

F(5,174)=10.97, p<0.05). Invertebrates in control had significantly higher growth 

rates than in treatments ½Cu, Cu and ½EL (Tukey’s test p<0.05), growth rates of 

invertebrates in treatment Cu were also significantly different from EL (Tukey’s 

test p<0.05) that had higher growth rates. Treatment ½EL was significantly 

different from EL and MIX (Tukey’s test <0.05). Daily growth rates were, at 10°C, 

(mean±Se) in each treatment (control, ½Cu, Cu, ½EL, EL and MIX): 0.240±0.009, 

0.194±0.013, 0.210±0.014, 0.177±0.010, 0.191±0.007, 0.194±0.010 mgDM 

gained/day. Corresponding values at 20°C where: 0.347±0.023, 0.247±0.006, 

0.279±0.008, 0.245±0.007, 0.308±0.009 and 0.357±0.018 mgDM gained/day.  

The increase in temperature significantly affected growth rates of 

invertebrates in control treatment (t-test p<0.05) with fastest growth rates at 20°C 

probably as a consequence of increased metabolic rates due to increased rearing 

temperature (Brown et al., 2004b). At low temperatures the presence of toxics 

seems to decrease intrinsic growth rates as all treatments have lower growth rates 

than control. Invertebrate’s final size at 10°C was significantly different between 

treatments (Kruskal-Wallis test H=18.81, p<0.05). 
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Fig. 13 - Mean dry mass of Schizopelex festiva (n=180; corrected for mortality) at two different 
temperatures 10 and 20°C, for a maximum period of 126 days. Values are means±S.E.M. Legend for 
the different treatments is displayed in the graphics..  

 

Final dry mass in invertebrates in control treatment was significantly 

higher than in treatments ½Cu, ½EL, EL and MIX (p<0.05) which suggest that 

invertebrates besides growing at lower rates in the presence of the toxics achieve a 

final smaller size. At 20°C significant differences were also observed (Kruskal-

Wallis test H=77.67, p<0.05) with invertebrates in treatments ½Cu, Cu and ½EL 

having significantly lower final mass than shredders in control (p<0.05) although, 

when both stressors were combined, these differences were not significant. The 
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different patterns of coping with the presence of the tested stressors, at high or 

low temperatures, may have lead to differences in growth rates and final 

invertebrate sizes with potential consequences at community level. Such effect is 

probably due to the distinct consumption observed in the presence of the toxicants 

alone or in mixtures. Significant differences occur both at 10°C (Kruskal-Wallis test 

H=31.78, p<0.05) and 20°C (Kruskal-Wallis test H=16.67, p<0.05) in consumption 

rates (Figure 14). At 10°C consumption rates in control and MIX were significantly 

higher than in ½EL (p<0.05); invertebrates maintained in Cu also had significantly 

lower consumption rates than the ones maintained in ½Cu and MIX (p<0.05). At 

20°C consumption rates in MIX were significantly lower than ½Cu (p<0.05). When 

different temperatures are compared differences occur in invertebrates exposed to 

control (t-test p<0.05) with a decrease in consumption rates at 20°C. In fact, it was 

surprising to notice that an increase in temperature determined a general decrease 

in the consumption rates of the Trichoptera. This may be due to the fact that at 

both temperatures consumption was measured at week 7 when invertebrates at 

20°C had twice the dry mass as the correspondent shredders at 10°C (Figure 13) 

therefore being more close to the last instar and pupal stage (that was observed for 

the first time at 20°C 21 days after the measurement of consumption rates) where 

a decrease in consumption is normally detected (Wagner, 1990).  
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Fig. 14 - Consumption rates of Schizopelex festiva expressed as mg 
leafconsumed/mgAnimalDW/day at two different temperatures - 10°C (white bars)  and 20°C 
(patterned bars). Values are means±S.E.M. Legend for the different treatments is displayed in the 
graphics. Different letters indicate statistically significant differences at 0.05 (ANOVA and Tukey’s 
test or non-parametric equivalent) at 10°C (lowercase letters) and 20°C (uppercase letters).  

 

The first invertebrate to reach a pupa stage belonged to treatment MIX (2 

invertebrates at once) in day 77 at 20°C and at 10°C in treatment Cu in day 126. 

Invertebrates exposed to the highest tested temperature reached pupal stage 49 

days before invertebrates reared at 10°C. This result is in accordance with those of 

Wagner (1990) in which larval instar duration decreased with increasing 

temperature for C. villosa (Trichoptera). Several studies suggest that increases in 

temperature are able to modify growth patterns in shredders, altering emergence 

patterns and egg hatching (Imholt et al., 2009; Li et al., 2011) as the water 

temperature threshold, contributing to the conclusion of a certain developmental 

stage or generational time, may be achieved earlier with consequences for 

community composition as suggested by Haiddeker and Hering (2008) and Li et al. 

(2009). Results in this study suggest that the fact that invertebrates reach pupal 
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stage earlier in treatments with stressors presence maybe due to an “earlier 

escape” strategy accelerated by increased temperature. 

No mortality occurred in any of the treatments at 10°C. At 20°C no 

differences between treatments were observed (ANCOVA F(5,59)=1.93, p>0.05). In 

this case, mortality occurred only after day 63 in treatments ½EL and EL and after 

day 70 for MIX treatments. Survival rates in these treatments were 87%, 70% and 

97%, respectively. Trichopthera is a very widespread group (Cummins, 1973; 

Vieira Lanero, 2000) which can in part explain the resistance to increased toxics 

and temperature. Despite the fact that at 10°C mortality has not occurred and at 

20°C no significant differences occur between treatments an increase in mortality 

in the highest toxics treatments is detectable in the presence of eucalyptus 

leachates after 63 days. Our personal observations indicate that the continuous 

exposure to eucalyptus leachates may determine the formation of a mucilaneous 

and greasy matrix that gradualy obstructs the invertebrate’s case opening 

eventually preventing the invertebrates of actively getting out probably inhibiting 

consumption and O2 acquisition (eventually contributing to their death, namely at 

higher temperatures). Previous studies indicate that in the presence of high 

leachates concentrations, Sericostoma vittatum growth rates and survival was 

negatively affected especially in unaerated conditions (Canhoto and Laranjeira, 

2007; Canhoto et al., 2013). Although the presence of essencial oils or derivatives 

have been frequently pointed out as one of the reasons for waterborne toxicity, 

promoted by exposition of the invertebrates to the eucalyptus leachates (Canhoto 

and Laranjeira, 2007), the present mortality results do not support this point of 
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view. It seems likely that, under the used concentrations here this effect was 

negligible. 

 

 

Growth, consumption and mortality rates were also assessed for E. 

meridionalis specimens exposed at 10 and 20°C. At 10°C E. meridionalis growth 

rates (Figure 15), were significantly different between treatments (Kruskal-Wallis 

test H=22.70, p<0.05): treatments ½Cu, ½EL and MIX had significantly higher 

growth rates when compared to control (p<0.05). At 20°C there were no 

significant differences between treatments (Kruskal-Wallis test H=8.29, p>0.05). 

Daily growth rates were (mean±se) in each treatment (control, ½ Cu, Cu, ½EL, EL 

and MIX) at 10°C: 0.023±0.000, 0.025±0.001, 0.025±0.000, 0.025±0.000, 

0.024±0.000 and 0.025±0.000. Corresponding values at 20°C where: 0.028±0.000, 

0.027±0.000, 0.029±0.000, 0.029±0.000, 0.029±0.000 and 0.029±0.000.  

At 10°C treatments with low concentrations of toxics seem to lead to 

increased growth rates while at 20°C the presence of toxics did not influence 

growth rates. This may represent also an “escape strategy” used by the 

invertebrates in the presence of lower stressors concentrations, nonetheless that 

approach does not occur with increasing temperature or chemical concentration. 

When both temperatures are compared growth rates of invertebrates in control 

are significantly different between 10 and 20°C with higher growth rates at the 

highest temperature. Invertebrates reared at 20°C reached the final size class 14 

days before invertebrates reared at 10°C which may be the result of high metabolic 

rates in the presence of high temperatures. 
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Fig. 15 - Growth of  Echinogammarus meridionalis (n=180; corrected for mortality) at two different 
temperatures - 10 and 20°C, for a maximum period of 77 days. Values are means±S.E.M. Legend for the 
different treatments is displayed in the graphics. 
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When consumption rates (Figure 16) are compared at 10°C significant 

differences occur (Kruskal-Wallis test H=15.931, p<0.05) with decreased 

consumption rates in MIX treatment (≈-32%) compared to ½Cu and ½EL (p<0.05). 

In this case, the presence of both chemicals in combination, lead to decreased 

growth rates when compared with single exposures. At 20°C significant differences 

between treatments occurred (Kruskal-Wallis test H=18.49, p<0.05). Consumption 

rates in control (0.0015 mgleafconsumed/mgAnimalDW/day±0.0001; 

mean±S.E.M) were significantly lower than ½EL (0.0022 

mgleafconsumed/mgAnimalDW/day±0.0001; mean±S.E.M) (p<0.05). Considering 

the global results, it seems possible that a physiological stress promoted by the 

contaminants may determine an erratic foraging behaviour rather than a 

consistent change in consumption rates.  

 

 

 

 

 

 

 

 

Fig. 16 - Consumption rates of Echinogammarus meridionalis expressed in mg 
leafconsumed/mgAnimalDW/day at 2 different temperatures 10°C (white bars)  and 20°C 
(patterned bars). Values are means±S.E.M. Legend for the different treatments is displayed in the 
graphics. Different letters indicate statistically significant differences at 0.05 (ANOVA and Tukey 
test or non-parametric equivalent) at 10°C (lowercase letters) and 20°C (uppercase letters).  
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At both 10 and 20°C survival rates (Figure 17) were affected by stressor 

presence (ANCOVA F(5,59)=6.103, p<0.05 and F(5,47)=4.578, p<0.05, respectively). 

Invertebrates in treatments ½Cu, EL and MIX had significantly lower survival rates 

than control at 10°C (Tukey’s test, p<0.05). At 20°C invertebrates reared in 

treatments Cu, EL and MIX had significantly lower survival rates than control 

(Tukey’s test p<0.05). Results suggest that the presence of eucalyptus leachates (in 

the highest concentration tested) may be responsible for increased mortality. 

Known the fact that eucalyptus plantations supply an almost continuous amount of 

leaves to the river channel (as opposite to deciduous forests) and in situations of 

low flow or leachates pools formation (e.g. in summer) invertebrates may not be 

able to cope with an elongated presence of these leachates even in lower 

concentrations. At 10°C high mortality was detected at low copper concentrations 

while at 20°C, on the contrary, it was observed for treatments with high copper. It 

is well known that copper is an oxidative stress inducer in invertebrates namely in 

shredders (Bouskill et al., 2006; Sroda and Cassu-Leguiller, 2011) that may 

interfere with survival (Brinkman and Johnston, 2008; Tollet et al., 2009). Survival 

data suggest that increased mortality occurs after 4 weeks – (28 days) at 20°C and 

5 weeks (35 days) at 10°C even when invertebrates were continuously fed with 

alder leaves, a high quality food suggesting that no additional nutritional stress 

was present. This may suggest that invertebrates up to that date may be able to 

cope with small amounts of both toxics single or in mixture even when well fed, 

but prolonged exposure may have deterrent consequences in community 

composition and population dynamics may be affected in these ecosystems.  
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Fig. 17 - Survival (%) of Echinogammarus meridionalis (n=180), at 2 different temperatures (10 
and 20°C), for a maximum period of 126 days. Legend for the different treatments is displayed in 
the graphics. 
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three selected biomarkers were assessed to search for sub lethal effects in 

response to chronic exposure to the selected toxics.  

At 10°C, both C:N and N:P ratios (Figure 18) did not differ between 

treatments (ANOVA, F(5,54)=2.326, p>0.05  and F(5,54)=1.849, p>0.05  respectively) 

in opposition to C:P ratios (ANOVA, F(5,54)=3.409, p<0.05);  treatments Cu and EL 

presented significantly lower ratios than control (Tukey’s test, p<0.05). At 20°C, 

ratios were significantly different between treatments (ANOVA, F(5,54)=2.49, 

p<0.05, F(5,54)=5.979, p<0.05 and F(5,54)=5.076, p<0.05 for C:N, C:P and N:P, 

respectively). However, Tukey’s test did not detect which treatments were 

different for C:N. For both C:P and NP treatment Cu had significantly higher ratio 

than treatments control, ½Cu, ½ EL and EL (Tukey’s test p<0.05). When both 

temperatures are compared C:P ratios are significantly different in control (t-test 

p<0.05). In our experiment shredders were fed with a continuous supply of 

conditioned alder leaves, which are known to have high N content (Canhoto and 

Graça, 1995), being a high quality food source for invertebrates (Azevedo-Pereira 

et al., 2006) and this increased N composition may have aided in the maintenance 

of homeostasis in what concerns N balances. Our results suggest that in terms of 

C:N and N:P ratios, S. festiva is homeostatic at 10°C with their stoichiometrical 

composition remaining constant and this did not happen with C:P. This may sugest 

that these invertebrates are not strictly homeostatic in what concerns P.  
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Fig. 18 - C:N, C:P and N:P body elemental  ratios of Schizopelex festiva exposed to 10°C (white bars) 
and 20°C (patterned bars). Values are means±S.E.M. Different letters indicate statistically 
significant differences at 0.05 (ANOVA and Tukey’s test or non-parametric equivalent) at 10°C 
(lowercase letters) and at 20°C (uppercase letters). 
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Rheosthasis, as suggested by Liess and Hillebrand (2005), states that a 

species can exhibit a non strictly homeostatic status, and may show slightly 

changes in elemental composition when submitted to different stressors, in this 

case, copper, leachates and temperature. In fact with increasing temperature all 

ratios (C:N, C:P and N:P) are significantly different between treatments and despite 

the fact that further statistical analysis was not able to detect differences in C:N 

ratios, results suggest that the increase in temperature accentuates the difficulty of 

the invertebrates to maintain homeostasis. A reduction of P retention in streams 

exposed to copper contamination is expected with increasing temperature, as C:P 

ratios of invertebrates exposed to treatments Cu at 20°C were significantly higher 

suggesting the presence of lower amounts of P in the invertebrate’s body.  

C:P ratios were below the values published for other benthic invertebrates 

including insects (between 60 and 263 , Bowman et al., 2005; Evans-White et al., 

2005; Ferreira et al., 2010). Invertebrates exposed to the highest copper 

concentration had significantly lower %P and lower growth rates than 

invertebrates in control suggesting that higher temperatures (20°C) may result in 

lower phosphorus retention and, consequently, lower growth rates. According to 

the growth rate-hypothesis (Sterner and Elser, 2002), a positive relationship is 

observed between P body contents (and rRNA) and growth (Sterner and Elser, 

2002; Vrede et al., 2004, Persson et al., 2011). Rapid growth rates should depend of 

whole-body increased P concentrations due to RNA dependent protein synthesis 

demands (Elser et al., 2000; 2003) with results suggesting that increased 

temperature may have a determinant effect on the process (Wojewodzic et al., 

2011).  
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Table 7 - Chemical composition and body elemental ratios of Schizopelex festiva bodies (n=10) exposed at 10 and 20°C to copper (Cu) and 
eucalyptus leachates (EL). Values are mean±S.E.M.. Note that C, N and P, are expressed as elemental mass ratios. P, phosphorus; N, nitrogen; C, 

carbon. 

 

%C %N %P C:N C:P N:P 
10°C 20°C 10°C 20°C 10°C 20°C 10°C 20°C 10°C 20°C 10°C 20°C 

Control 51.36 47.79 8.66 11.17 3.37 3.75 6.13 4.30 21.80 13.36 3.69 3.12 
±1.64 ±0.28 ±0.47 ±0.27 ±0.66 ±0.28 ±0.45 ±0.10 ±4.12 ±0.95 ±0.76 ±0.23 

½ Cu  49.06 44.11 9.38 9.96 3.78 4.44 5.27 4.47 16.76 12.86 3.25 2.83 
±0.54 ±2.59 ±0.29 ±0.67 ±0.37 ±0.66 ±0.16 ±0.17 ±4.63 ±2.33 ±0.95 ±0.47 

Cu  45.53 41.10 9.14 8.33 4.86 1.57 5.04 4.98 9.65 32.03 1.92 10.00 
±1.06 ±1.77 ±0.36 ±0.34 ±0.28 ±0.34 ±0.20 ±0.23 ±0.59 ±6.04 ±0.09 ±3.67 

½ EL  45.30 45.58 9.91 10.49 4.38 3.39 4.61 4.38 14.16 13.52 3.25 3.10 
±1.80 ±0.59 ±0.49 ±0.30 ±0.59 ±0.10 ±0.14 ±0.13 ±3.63 ±0.34 ±0.95 ±0.09 

EL  48.42 52.15 9.77 12.11 5.82 3.36 5.69 4.29 9.08 18.03 1.82 4.20 
±4.15 ±3.98 ±1.25 ±0.84 ±0.72 ±0.37 ±0.92 ±0.07 ±0.88 ±3.39 ±0.25 ±0.80 

MIX 34.33 66.64 7.50 13.63 3.44 3.35 4.57 4.89 10.33 22.97 2.24 4.75 
±3.27 ±7.09 ±0.65 ±1.26 ±0.18 ±0.48 ±0.17 ±0.26 ±1.22 ±3.40 0.23 ±0.75 



Chapter IV | 101 

 

3.3.2- Biomarkers. 

No significant differences were observed between treatments (ANOVA 

F(5,54)= 0.717, p>0.05) on S. festiva ChE activity (Figure 19) at 10°C. At 20°C, 

differences between treatments were significant (1-ANOVA F(5,54)=7.265, p<0.05) 

with treatments control, ½Cu and Cu having significantly higher enzymatic activity 

than EL and MIX (Tukey’s test p<0.05). MIX was also significantly different from 

½EL (Tukey’s test p<0.05). Values reported in this study are lower than the ones 

previous found in acute exposure (Chapter III). Nonetheless at the lowest 

temperature results are similar to acute exposure bioassays (where treatments at 

both 10 and 20°C were similar); however, at 20°C, an inhibition in ChE happens 

after exposure to the highest leachate concentration or in the MIX treatment. These 

were two of the treatments were mortality occurred and the lower ChE activity 

observed may have contributed to this. Our results seem to suggest that 

continuous exposure to eucalyptus leachates may inhibit ChE activity with possibly 

deleterious effects on neurological mechanisms, eventually promoted by cineole or 

derivatives that may act on the nervous systems (Klaassen, 2008) and may have 

contributed to increased mortality. 
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Fig. 19 - Values of head cholinesterase (ChE), and total body homogenates glutathione S transferase (GST) 
and lipid peroxidation levels (LPO) in Schizopelex festiva  at 10°C (white bars) and 20°C (patterned bars) in 

the selected treatments. Values represent the mean of 10 samples (one organism per sample) and the 
correspondent standard error bars. Significant differences between treatments (Tukey’s test) at 10°C 
(lowercase letters) and 20°C (uppercase letters) and are displayed in the graphic. 
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At 10°C, GST activity (Figure 19) in invertebrates was significant different 

between treatments (ANOVA F(5,54)=4.926, p<0.05). Invertebrates in treatment Cu 

had significantly lower enzymatic activity than treatments control, ½EL, EL and 

MIX (Tukey’s test p<0.05). At 20°C differences between treatments were also 

significant (ANOVA F(5,54)=54.505, p<0.05) with invertebrates in treatments 

control, EL and MIX having significantly higher enzymatic activity than Cu ½ 

(Tukey’s test p<0.05). Also GST activity in this study was slightly lower than 

previous acute toxicity results (Chapter III). At 10°C, a clear inhibition occured for 

the highest copper treatment a result similar to those found for acute exposure 

where, at this temperature, increased copper concentrations were also responsible 

for GST inhibition (Chapter III). At the highest temperature apparently only ½Cu 

showed a clear inhibition. GST multifunctional enzyme system serves to conjugate 

endogenous glutathione with electrophiles, forming more polar compounds that 

are further easily excreted/metabolized and, also conjugates breakdown products 

of lipid peroxides to glutathione (Ketterer et al., 1983) preventing lipid 

peroxidation. The inhibition of this system may increase lipid peroxidation values 

and may compromise invertebrate’s mechanism of defense against xenobiotics. 

GST inhibition as a response to Cu has been reported in invertebrates (Mosleh et 

al., 2005, Cunha et al., 2007).  

Lipid peroxidation levels (Figure 19) were significant different for 

invertebrates exposed to different treatments at both 10 and 20°C (ANOVA 

F(5,54)=2.603, p<0.05 and F(5,54)=6.538, p<0.05, respectively), but following Tukey’s 

test was not able to detect where these differences occurred at 10°C. At 20°C 

invertebrates in treatments Cu and EL had significantly higher LPO levels than 
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control (Tukey’s test p<0.05) suggesting increased lipid oxidative damage in these 

treatments that may explain the higher mortality observed in EL treatments at 

20°C. Treatment EL is also significantly different from ½EL (Tukey’s test p<0.05). 

On the contrary (compared to ChE and GST levels), here an increase in LPO values 

were observed, when compared to those of previous acute exposure (Chapter III) 

which may suggest that chronic exposure to toxics may lead to elevated lipid 

oxidative damage per se. Results are in accordance with previous GST 

quantification where in increased temperature and copper treatments GST 

inhibition was observed being this enzymatic system unable to prevent lipid 

damage. LPO may disrupt cell membranes, affecting their structure and function 

possibly leading to an increase in citotoxicity and this may in part contribute to the 

higher mortality observed at 20°C in treatments with high LPO levels (EL and MIX). 
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Conclusions 

Despite the fact that S. festiva survival rates seem to be less affected by the 

stressor presence (which is in accordance with previous acute toxicity results) 

further analysis suggest that these chemical agents influence their elemental 

composition. At higher temperatures (20°C), the invertebrates presented an 

increased difficulty in retaining P when exposed to higher copper concentrations. 

This may justify the observed lower growth rates with potential important 

ecological consequences in invertebrate’s fitness. Also the exposure to both 

stressors lead to changes in biomarker activity in S. festiva, with an increase in lipid 

oxidative damage. E. meridionalis is very sensitive to both the presence of toxics 

and increased temperature as increased mortality suggests. Distinct sensitivity of 

both invertebrates to chronic copper and eucalypt leachates exposure may 

contribute to distinct community composition in streams impacted by these 

stressors and temperature may contribute to modulate the extent of these 

relationships. 
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Effects of food quality on the stoichiometrical composition and 

selected biomarkers of Echinogammarus meridionalis assessed at 

two temperatures 

 

Abstract 

  

In this study, the effects of food quality on the stoichiometrical composition 

and selected biomarkers of the shredder Echinogammarus meridionalis were 

investigated at two distinct temperatures (10 and 20°C). In 14-day bioassays 

carried out at both temperatures, E. meridionalis specimens were feed with alder 

(Alnus glutinosa) or eucalyptus (Eucalyptus globulus) leaves, considered high and 

low quality food, respectively, to this species. After 14-days, the stoichiometrical 

composition (C, N and P) and selected biomarkers, namely the activity of 

cholinesterase (ChE) and glutathione S-transferases (GST) enzymes, and the lipid 

peroxidation (LPO) levels were determined. No significant differences in the 

elemental composition of E. meridionalis fed with different food types were found 

at any temperature. No significant differences in ChE and GST activities between 

alder and eucalyptus fed organisms were found at any temperature, or in LPO 

levels at 10°C. However, at 20°C, higher LPO levels were found in organisms fed 

with eucalyptus leaves, suggesting increased oxidative damage relatively to those 

fed with alder leaves. These results indicate that feeding on eucalyptus leaves 

under high temperatures increases the oxidative stress and lipid oxidative damage 

in this species, an effect that may decrease the individual fitness. Thus, 

consumption of low quality food as eucalyptus leaves combined with high 
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temperatures may have adverse effects on stream invertebrate’s ecophysiology, 

with possible effects for higher levels of biological organization.   

 

 

Keywords: Echinogammarus meridionalis, temperature, stoichiometry, biomarkers, 

eucalyptus, alder. 
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1.  INTRODUCTION 

Stream water temperature and available resources are key interacting 

factors (Sweeney and Vannote, 1986) able to affect invertebrate’s life history 

parameters (Braune et al., 2008; Moline and Poff, 2008), the structure and also the 

functioning of low order streams (Abelho and Graça, 1996; Mckee and Atkinson, 

2000, Alexander and Palmer, 2002, Perkins et al., 2010). Both factors, acting per se 

or simultaneously, are known to have a crucial influence on shredders rates of 

ingestion (Motomori et al., 2001, Leberfinger and Bohman, 2010), growth 

dynamics (Fenoglio et al, 2005, Moline and Poff, 2008, Graça and Cressa, 2010, ), 

survivorship (Durance and Ormerod, 2007), and/or abundance (Burgmer et al., 

2007; Larrañaga et al., 2009). Considering the critical role of this functional feeding 

role in leaves decomposition, any changes in food quality or in the thermal regime 

of the aquatic system may affect stream’s secondary production and the transfer of 

energy to higher trophic levels. Changes in riparian areas composition, as the ones 

promoted by reforestations or riparian harvesting practices, may change 

dramatically the phenology and quality of litter inputs (Gessner et al., 2010; Lecerf 

and Richardson, 2010) to streams as well as light incidence contributing to 

changes in water temperature (Imholt et al., 2009). Plantations of the exotic 

evergreen Eucalyptus globulus Labill are now common in the Iberian Peninsula 

replacing the native forest (IEFN6, 2013) and determining the impoverishment of 

the invertebrate communities (Canhoto and Graça, 1996; Graça et al., 2002) due to 

changes in the hydrology (Molinero and Pozo, 2004), seasonality, quantity, quality 

(Molinero et and Pozo, 2003) of the monospecific allochthonous inputs. A number 

of field (Pozo et al., 1998; Sampaio et al., 2001) and laboratorial (Canhoto and 
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Graça, 1999) studies even argue the unimportance of invertebrates, mainly 

shredders, in eucalyptus leaves decomposition (Sampaio et al., 2004; Gama et al., 

2007). Whether or why this is true is still not completely clarified as shredders are 

not completely lacking in most streams lined by eucalyptus (Larrañaga et al., 

2009); some apparently cope with the high contents of phenols, oils and a the thick 

cuticle of the eucalyptus leaves (Canhoto and Graça, 1999). The permanent supply 

of eucalyptus leaves to the ground and water is enhanced in summer (Abelho and 

Graça, 1996) when the stream water temperature is higher, flows is reduced and 

water quality may be deteriorated (Chatzinikolaou et al., 2006; Lillebö et al., 2007). 

In order to survive, shredders must possess inherent mechanisms to total or 

partially cope with these stressors low food quality and waterborne toxicity, 

originated by the compounds released by the leaves, and high temperatures.  

According to the Ecological stoichiometry (ES) theory, shredders maintain 

their stoichiometrical composition (C, N and P content) constant (homeostasis) 

independently on resource composition. But decomposing leaves and other 

detritus usually present lower N and P content and higher C amount (Sterner and 

Elser, 2002; Cross et al., 2005; Evans-White et al., 2005). Therefore invertebrates 

in order to cope with changes in riparian vegetation should use different 

physiological strategies to compensate for low quality food (Frost et al., 2005). The 

type and intensity of this response has been refered to be influenced by 

temperature (Villanueva et al., 2008; Wojewodzic et al., 2011).  

In the last decades, biomarkers have been widely used as early warning 

tools to assess the adverse effects of chemical environmental contaminants and 

other stressors, in invertebrates, including in gammarids (e.g Timofeyev et al., 
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2006 a,b; Xuereb et al., 2007, 2009). The activity of cholinesterase (ChE), 

glutathione S-transferases (GST) enzymes as well has the lipid peroxidation (LPO) 

levels have been used to assess the extent of oxidative stress parameters and 

neurological impairment. Combined with other ecological approaches, such as 

stoichiometrical composition determination, these tools may provide most 

important insides on the mechanisms leading to changes observed at individual 

and population levels in low order streams. This seems particularly useful in 

streams lined by eucalyptus afforestations where the biota has been extensively 

referred as impoverished (Pozo et al., 1998; Sampaio et al., 2001) and with 

physiological limitations (Larrañaga et al., 2009) that may lead to difficultion in the 

digestion (Canhoto and Graça 2006) of the available recalcitrant food itens. 

In this study, the effects of food quality on the stoichiometrical composition 

and selected biomarkers of the shredder Echinogammarus meridionalis were 

investigated at two temperatures (10 and 20°C) common in autumn and summer 

in streams draining eucalyptus plantations. The individual and combined effects of 

leaf litter quality and temperature were addressed by evaluating the elemental 

composition and biomarker activities of Echinogammarus meridionalis specimens 

fed Alnus glutinosa or Eucalyptus globulus during a 14-day bioassay. Considering 

that eucalyptus is a low quality leaf, with the presence of chemical compounds that 

can be negative to the invertebrates (Canhoto and Laranjeira, 2007) it will be 

interesting to assess if consumption of these particular leaves may lead to changes 

in stoichiometrical composition of the invertebrates or if any negative effects in 

biomarker activity are observed. 
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2.  MATERIAL AND METHODS 

2.1 - Collection and acclimation of organisms and leaf litter 

Test organisms were Echinogammarus meridonalis Pinkster (Crustacea: 

Amphipoda). Organisms and water were collected in the spring 2009 in Ribeira da 

Redinha, Pombal, central Portugal (39°58.726’ N, 8°34.393’W) brought to the 

laboratory and acclimatized to laboratory conditions (12h light: 12h dark 

photoperiod). They were maintained at 10±1°C or 20±1°C, one week before the 

beginning of the experiments, and fed ad libitum according to the leaf/temperature 

treatments they would have been assigned.  

Leaves of Alnus glutinosa L. and Eucalyptus globulus Labill. were collected just 

after abscission, in autumn and summer, respectively. All leaves were air dried at 

room temperature and stored until needed. Prior to being used as food, the leaves of 

both species were individually assembled into groups of ±4g, enclosed in 0.5mm 

mesh bags (10 x 14 cm) and conditioned, for 3 weeks, at Ribeira de S. João, in the 

Lousã mountain (40°05’59”N, 8°14’02”W), a reference stream in central Portugal to 

ensure optimal fungal colonization.  

 

2.2 - Experimental design and exposure conditions 

A total of 240 individuals were used in the experiments: 120 for stoichiometry 

determinations (60 for each temperature), and 120 for biomarker analysis (60 for 

each temperature). For both stoichiometry and biomarkers analysis, the experimental 

design was: 2 groups of animals (30), one feed with eucalyptus leaves (3 replicates 

with 10 invertebrates each) and the other fed with alder leaves (3 replicates with 10 

invertebrates each), at 10 or 20°C. In all tests, organisms were maintained in 500 ml 
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erlenmeyers filled with filtered aerated stream water (Glass fibber filters; Millipore 

APFF) in photoperiod (12h light : 12h dark) and temperature controlled rooms (one 

at 10°C and the other at 20°C). 

 

2.2.1 – Stoichiometry 

Two groups of 60 similar size E. meridionalis (1.27mg±0.076; mean±SE), 

acclimatized to 10 or 20 °C, were distributed in groups of 10 by 500 ml sterile 

Erlenmeyer flasks filled with aerated filtered stream water. Specimens of each 

treatment (A, E) were assigned based on the leaf species they had been fed during the 

previous days. In each group of 6 replicates (with 10 invertebrates each) the 

invertebrates were fed ad libitum for 14 days with conditioned alder (A) – 3 

replicates - or eucalyptus (E) – 3 replicates. At the end of the experiment leaves were 

dried (60°C; 48h) and a mixed sample (n=3) analysed for total N and C using a Flash 

EA 1112 for IRMS Delta V Advantage ThermoIRMS mass spectrometer for the 

simultaneous analysis of the isotope ratios and for total P. Determinations were done 

according to Graça et al. (2005). 

  

2.2.2 - Biomarker determination 

The second group of 120 (60 for each temperature) intermediate size E. 

meridionalis (1.27mg±0.076, mean±SE), was randomly distributed in  groups of 10 by 

500 ml Erlenmeyer flasks filled with aerated filtered stream water at 10 or 20 °C. 

Each group of 3 replicates was fed conditioned alder (A) or eucalyptus (E) (at 10°C or 

20°C). Specimens of each treatment (A, E) at each temperature were assigned as 
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above in stoichiometrical composition determinations during the same time period 

(14 days).  

At the end of the test, invertebrates from each replicate (10 organisms) were 

sacrificed, their heads separated from the remaining body and stored in eppendorfs 

at -80°C for posterior biomarker determination. Heads and the remaining body were 

homogenized (Ystral GmbH d-7801 Dottingen homogeniser) in cold phosphate buffer 

(0.1 M, pH 7.4) for 30s on ice. Animal heads were centrifuged at 3300×g for 3min at 

4°C (SIGMA 3 K 30), and resulting brain supernatants were used to measure ChE by 

the Ellman’s technique (Ellman et al.,1961) adapted to microplate (Guilhermino et al., 

1996). To 0.250 mL of the reaction buffer prepared with 30 mL of K-phosphate buffer 

(pH 7.2, 0.1 M), 1 mL of dithiobisnitrobenzoate (DTNB) 10 mM (20 mM acid 

dithiobisnitrobenzoate and 18 mM sodium hydrogen carbonate in 0.1 M K-phosphate 

buffer, pH 7.2) and 0.2 mL of acetylcholine iodide 75 mM, was added 0.05 mL of the 

supernatant (invertebrate’s head homogenate), previously diluted in homogenization 

buffer to standardize protein content at 1 mg/mL, in a 96 well microplate (four 

replicates per sample). The increase in absorbance was determined at 412 nm in a 

microplate reader (Bio Tek Power Wave 340) for 5 min at 25 °C. Acetylthiocholine 

was used as substrate in all the assays and no distinction was made between different 

forms of ChE that might be present.  

A part of the remaining body homogenate (0.800ml) was centrifuged at 

10000×g for 20 min at 4°C  to isolate the post mitochondrial supernatant (PMS). PMS 

was used for determination of GST activity which was quantified by the conjugation 

of reduced glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB) at 340 nm 

(Habig et al., 1974) with some adaptations (Frasco and Guilhermino, 2002). In brief, 
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0.250 mL of the reaction solution (75 mL of phosphate buffer 0.2 M pH 6.5, 2.34 mL of 

1-chloro-2,4 dinitrobenzene in ethanol and 13.5 mL of a 10 mM GSH solution in ultra-

pure water) was added to 0.05 mL of sample previously diluted in homogenization 

buffer in order to have a final protein concentration of 1 mg/mL (four replicates per 

sample). The optical density was measured at 340 nm in a microplate reader (Bio Tek 

Power Wave 340) for 5 min at 25 °C.  

ChE and GST activities were expressed in Units (U) per concentration of 

protein, one U corresponding to 1 nano mole of substrate hydrolised per min per mg 

of protein. The concentration of protein in the samples was determined according to 

Bradford et al. (1976) adapted to microplate (Frasco and Guilhermino, 2002) using 

bovine γ -globulins as protein standard.  

LPO was determined by measuring the thiobarbituric acid reactive species 

(TBARS) (Ohkawa et al., 1979; Bird and Draper, 1984). To 0.200 mL of the remaining 

whole body homogenates, 0.2 mM butylhydroxytoluene (BHT) (Torres et al., 2002) 

was added to prevent artificial lipid oxidation. To each sample 1 mL of 12% 

trichloroacetic acid, 0.8 mL of 60 mM Tris–HCl solution (pH 7.4) with 0.1 mM 

diethylenetriaminepentaacetic acid (DTPA) and 1 mL of 0.73% thiobarbituric acid 

(TBA) were added. After an incubation bath for 60 min at 100°C, the solution was 

centrifuged at 12000×g for 5 min at 4°C  and LPO levels were determined in the 

resultant supernatant at 535 nm in a Jasco V-630 spectrophotometer and expressed 

in nmol TBARS per g of wet weight. 
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2.4 - Data Analysis  

Data were previously tested for normality (Kolmogorov–Smirnov normality 

test) and homogeneity of variance (Levene’s test) (Zar, 1999). Departures from 

normality and homoscedasticity were corrected (log (x + 1) transformation) 

whenever necessary. Leaves chemical composition was compared using 1-way 

Analysis of Variance (ANOVA). Elemental ratios (C:N, C:P, N:P) of the body and 

biomarker determination were compared by 2 way Analysis of Variance (2-ANOVA) 

using leaf type and temperature as categorical factors. Leaf elemental composition 

was compared with body ratios with 1-way Analysis of Variance (ANOVA). The 

Tukey’s test for post-hoc multicomparisons was used when significant differences 

were found. Analyses were performed with STATISTICA 8 ® software. 

 

3.  RESULTS AND DISCUSSION 

3.1 – Stoichiometry. 

 The results of the statistical analysis to the ratios of different elements in alder, 

eucalyptus leaves and E. meridionalis body, at both 10 and 20°C are shown in Table 8 

while the ratios composition is shown in Table 9. Alder leaves had significantly lower 

C:N  and C:P ratios than those of eucalyptus (ANOVA F(1,4)=354.94 p<0.05 and 

F(1,4)=27.144 p<0.05, respectively) while no significant differences in the N:P ratio 

(ANOVA F(1,4)=6.41 p>0.05) between both leaf species were found (Table 8). Our 

results suggest that alder leaves are comparatively richer in N and P than eucalyptus. 

In our case the conditioning process appeared to have favoured alder leaves probably 

due to differential fungal colonization patterns (Haapala et al., 2001; Sampaio et al., 

2001) increasing their nutrient content when compared with eucalypt leaves 
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(Bärlocher and Graça, 2002). The presence of oil vesicules and leaf intrinsic 

characteristics is known to influence the fungal communities present during 

decomposition.  

In E. meridionalis body composition, no significant effects of food quality nor of 

temperature were found for C:N, C:P and N:P ratios (2-ANOVA F(1,20)= 0.28, p>0.05 

and F(1,20)= 1.62, p>0.05  for C:N; F(1,20)=0.04, p>0.05 and F(1,20)= 0.50, p>0.05 for C:P 

and F(1,20)= 0.01, p>0.05 and F(1,20)= 1.13, p>0.05  for N:P, respectively) and no 

interactions between factors were found (2-ANOVA F(1,20)= 0.00, p>0.05 for C:N; 

F(1,20)=1.17, p>0.05 for C:P and F(1,20)=1.26, p>0.05 for N:P). These results suggest that 

invertebrates are homeostatic regardless of the food type present or the rearing 

temperature. Both N and P are limiting elements in lotic systems, but structural and 

functionally important to detritivore’s growth (Woods et al., 2003; Vrede et al., 2004). 

When leaves elemental composition and invertebrates body composition is 

compared it is observed that alder leaves have higher C:N ratios (ANOVA F(2,12)= 

380.85, p<0.05) than animal´s body at both temperatures (Tukey’s test p>0.05) and 

that C:P and N:P ratios were significantly lower (ANOVA F(2,12)= 39.46, p<0.05 and 

F(2,12)= 16.77, p<0.05 respectively) at both 10 and 20°C (Tukey’s test p>0.05).  This 

may indicate that conditioned alder is a high quality food source for these 

invertebrates (not just per se; Cross et al., 2003). 
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Table 8 - ANOVA results (F and p values) of leaves and body ratios of Echinogammarus meridionalis 
analysis. Leaves ratios were compared by 1-way Analysis of variance (ANOVA) and body or faecal 
ratios with 2-way Analysis of variance (2-ANOVA) using leaf type and temperature as categorical 
factors. 

 

Eucalyptus leaves had significantly higher C:N and C:P ratios (ANOVA F(2,12)= 

279.66 p<0.05 for C:N and F(2,12)= 97.12 p<0.05 for C:P) than invertebrate’s bodies at 

10°C or 20°C (Tukey’s test p<0.05) while N:P ratios were significantly lower in 

eucalyptus leaves (ANOVA F(1,20)= 194.01, p<0.05) at both temperatures (Tukey’s test 

p<0.05) suggesting that elemental imbalances between resources and consumers 

occur and that this leaf type is of poor quality for the invertebrates. 

 

 

  
 

C:N C:P N:P 

Leaves 

(ANOVA) 
 

F value 5.67 8.73 5.84 

p value <0.05 <0.05 >0.05 

Body 

(2-ANOVA) 

temperature F value 1.62 0.50 1.12 

 p value >0.05 >0.05 >0.05 

leaf type F value 0.28 0.04 0.01 

 p value >0.05 >0.05 >0.05 

interaction F value 0.00 1.17 1.26 

 p value >0.05 >0.05 >0.05 
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Table 9 - Chemical composition of leaves (n=3) and consumers (n=30). Values are mean±S.E.M. Note 
that C, N and P, are expressed as elemental mass ratios. E- Eucalyptus, A- Alder. Elemental imbalance is 
calculated as the elemental difference between the food resource and its consumer. 

 
 

 
%C %N %P  C/N C/P N/P 

Leaf  

 
E 

57.06 1.74 4.24  32.77 14.40 0.44 

 ±0.54 ±0.07 ±0.83  ±0.94 ±2.40 ±0.07 

 
A 

49.74 3.06 15.26  16.25 3.54 0.22 

 0.01 ±0.07 ±3.03  ±0.38 ±0.73 ±0.05 

Body 

10°C 

E 
37.26 7.29 3.93  5.13 9.69 1.88 

±0.97 ±0.27 ±0.26  ±0.19 ±0.71 ±0.08 

A 
38.36 7.69 3.61  5.04 10.70 2.16 

±0.43 ±0.42 ±0.13  ±0.22 ±0.48 ±0.19 

20°C 

E 
39.84 7.47 4.08  5.38 10.35 1.93 

±1.60 ±0.47 ±0.45  ±0.19 ±1.12 ±0.22 

A 
36.84 7.01 4.86  5.27 9.18 1.74 

±0.99 ±0.23 ±1.27  ±0.17 ±1.26 ±0.23 

 
 

   
 Elemental imbalance 

 
 

   
 C/N C/P N/P 

 
 

  10°C 
Eucalyptus 27.64 4.71 -1.44 

 
 

  
Alder 11.21 -7.16 -1.94 

    
20°C 

Eucalyptus 27.39 4.06 -1.49 

    Alder 10.98 -5.63 -1.52 

 

Invertebrates are usually assumed to have higher nutrient contents than 

detritus (Sterner et al., 1998) and here leaf C:N ratios were significantly higher when 

compared with invertebrate´s body composition. Despite this fact, alder leaves 

present a relatively higher % N when compared with eucalyptus leaves therefore 

being a more nutritive resource for the invertebrates. In fact, alder leaves (even 

unconditioned) are generally considered a nutritious food source for most 
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invertebrates allowing the best performances in comparison with other native and 

exotic leaves (e.g. Canhoto and Graça, 1995, 1999; Graça and Cressa, 2010). 

It is also possible that the eucalyptus conditioning process may compensate 

low N leaf contents and that a preferential consumption of fungal hyphae may smooth 

the differences in the N contents of these leaf detritus and the shredder bodies. This 

exotic leaf has high phenolic compounds and oils that may affect, along with a tough 

cuticle, not only leaves consumption, but also N assimilation through leaf chemical or 

body physiological constraints (see Canhoto and Graça, 1999) and this can be 

potentiated with a raise in stream’s temperature. Whether these amphipods have the 

capacity to preferentially acquire (eventually by scraping) or digest the fungal 

mycelium is not known, but likely. If so the leaf conditioning status should be a key 

factor to determine a selective feeding behaviour by the invertebrates in order to 

fulfill their N and P requirements. In fact Graça et al. (1993), in a study with 

crustaceans, also showed the importance of fungi (vs. leaf) in the diet and 

performance of Asellus aquaticus and it has been stated that extreme imbalances in 

C:nutrient ratios may stimulate feeding specialization in insect herbivores (Elser et 

al., 2000).  

The body ratios (C:P) were far below to those published for benthic 

invertebrates (>63; Bowman et al., 2005), stream insects (263±113; mean±SD) or 

crustaceans (898±15) (Evans-White et al., 2005). However, these values seem to 

depend on macroinvertebrate species and environmental conditions as nutrients (e.g. 

James et al., 2007) and temperature (Kyle et al., 2006; this study).   
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3.2 – Biomarkers  

The results of the biomarkers determined in E. meridionalis and the 

corresponding statistical analysis are shown in Table 10. In a previous study with 

similar sized E. meridionalis (Chapter III) means of 2.78 U/mg protein±0.251 and 3.44 

U/mg protein±0.315 for ChE at 10 and 20°C, respectively, and corresponding values 

of 1.89 U/mg protein±0.177 and 2.94 U/mg protein±0.447 for GST activity, and 

114.72 nmol/g. w.w.±15.818 and 222.14 nmol/g. w.w.±12.350 for LPO levels were 

found for the different treatments (Chapter III). These values are in the same range 

than the ones determined here. No significant effects of food quality and temperature 

on ChE and GST activities were found and the interaction between the two factors 

was also not significant for both biomarkers. These results indicate the robustness of 

E. meridionalis ChE and GST in relation to chronic exposure to low food quality at 

both 10 and 20°C, and suggest that these are suitable biomarkers for use in real 

scenarios. In a previous study (Chapter III) with E. meridionalis submitted to 96h of 

fasting, no significant differences in ChE activity were found between organisms 

maintained at 10 and 20°C, thus in good agreement with the present findings. These 

results are consistent with those from Xuereb et al. (2009) witch observed that no 

water temperature effect was observed on the Gammarus fossarum AChE basal 

enzymatic levels when exposed to temperatures ranging from 6°C to 24°C. The mean 

AChE activity values in that study are similar to the ones observed here (from 8.7±0.4 

to 9.5±0.9 nmolmin−1).  
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Table 10 - Biomarkers in Echinogammarus meridionalis fed with eucalyptus or alder leaves at 10°C 

and 20°C after a 14-day bioassay (+1 week for acclimation). ChE - head cholinesterase activity; GST 
– body without head glutathione S transferases activity; LPO - body (without head) lipid 
peroxidation levels. ChE and GST activity are expressed in Units (U) per concentration of protein, 

one U corresponding to 1 nano mole of substrate hydrolised per min per mg of protein. Lipid 
peroxidation values are expressed in TBARS (nmol/ g. w.w). Values are the means±S.E.M.; n=30. 

ANOVA results (F and p values) for the effects of temperature and leaf type are also shown. 
Different letters indicate statistically significant differences at 0.05 (Tukey’s test).  

 

However, in the previous study (Chapter III), a significant reduction of GST 

activity was found in organisms maintained at 20°C relatively to those maintained at 

10°C, thus in contrast to the results shown in Table 10. These differences may be due 

to the fact that invertebrates where here exposed to eucalypt toxins via ingestion and 

not by direct contact with the eucalypt leachates as in the previous experiments and 

this difference may be due to specific feeding effects or the duration of the bioassay 

among other factors. Significant differences in LPO levels were found between 

organisms fed with alder and eucalyptus leaves in E. meridionalis maintained at 20°C 

(Table 10). These results indicate that low quality food increases oxidative stress and 

  ChE GST LPO 

10°C Eucalyptus 4.47 ±0.446 1.19 ±0.209 191.57 a ±14.673 

Alder 4.31 ±0.734 0.94 ±0.231 138.62 a,b ±11.730 

20°C 
Eucalyptus 5.52 ±0.702 1.12 ±0.145 229.56 a ±19.845 

Alder 4.13 ±0.217 1.52 ±0.304 119.85 b ±13.190 

Temperature 
F value 0.59 0.004 0.24 

p value >0.05 >0.05 >0.05 

Leaf type 
F value 1.87 1.37 17.61 

p value >0.05 >0.05 <0.05 

Interaction 
F value 1.16 1.91 3.24 

p value >0.05 >0.05 >0.05 
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damage in this species at elevated temperatures. This effect of temperature and food 

on LPO should be taken into consideration when using LPO determined in this species 

as a biomarker in the wild. 

 

Conclusions 

In summary, our results tend to support the validity of the stoichiometric theory 

for stream macroinvertebrates in a detritus-based ecosystem – that invertebrates are 

homeostatic independently of the leaf species elemental composition they fed on. The 

influence of temperature in this feeding process should not be discarded as for E. 

meridionalis the combination of low quality food/elevated temperature was 

responsible for increased oxidative stress. Results suggest that both stoichiometry 

and biomarker determination are good tools to assess the effects of low quality food 

or increased temperature in the case of E. meridionalis and may be usefull to help 

explaining the differences on invertebrates’ biodiversity and community’s structure 

observed on native vs exotic streams. 

 

 

 

Acknowledgments:  

We thank to C. Docal all the technical support provided to M. Gama during C. and N. 

determinations. 



 

 

 

 

 

 

 

 

 



124 

 

 

     Chapter VI 
 

General Discussion 



 

 

 

 

 



Chapter VI |125 

 

Relative sensitivity of the three shredders species 

Shredders are a key component in small stream’s communities.  With their 

feeding and egestion/excretion activities they transfer the energy from the leaves 

and logs that reach the stream to higher trophic levels and to downstream 

ecosystems (Graça, 2006; Wipfly et al., 2007; Eggert and Wallace, 2007). As 

shredder communities may be composed by invertebrates with distinct 

sensitivities to toxics these communities may suffer significant changes in their 

composition depending on the type and the intensity of stressor pressure as well 

as different temperature regimes (e.g. Forrow and Maltby, 2000). Consequently it 

is very important to study detritivorous communities in order to understand what 

may be the effects at ecosystem level of increasing stressor pressure by evaluating 

effects on different single species.  

Results of the present Thesis suggest that S. festiva is the most resistant 

species of the three shredders studied to both the influence of chemical stress as a 

result of the exposure to eucalyptus leaf leachates and copper, and the combined 

exposure to increased temperature. This apparent increased tolerance of the 

Trichoptera may be due to the presence of a protective case that prevents the 

continuous exposure to the toxics especially in acute bioassays where the duration 

of the tests is relatively short. Despite being deprived of food in short acute toxicity 

tests the starvation pressure may not be enough to force the invertebrates to 

abandon the protective environment of the case in order to search for food. 

Nonetheless in chronic exposures mortality for these invertebrates remained still 

very low which may suggest that they also have mechanisms to avoid toxicant 

exposure or are able to decrease toxicant uptake or to increase the rate of toxic 
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elimination or storage (e.g. Cain et al., 2004). Mechanisms of tolerance to metals 

are present in other Trichopteran larvae (Darlington and Gower, 1990). Similar 

results are in good agreement with previous findings in the caddisfly Sericostoma 

vittatum exposed to aerated eucalyptus leachates (Canhoto and Laranjeira, 2007; 

Canhoto et al., 2013). Nonetheless if good oxygenation conditions are not verified, 

the presence of these leachates may be responsible for increased mortality, being 

this a very important issue in streams running trough eucalyptus plantations 

especially in low flow conditions, usually associated with the formation of small 

pools were oxygen availability is lower. 

Despite the very low mortality observed in acute and chronic toxicity tests 

one must pay attention to further results that may suggest that this species may be 

affected by the exposure to several toxics concentrations in long and short 

exposure periods with deterrent consequences other than mortality. Oxidative 

damage as a result of increased lipid peroxidation values was detected in short and 

long therm exposure to the stressors especially in the highest temperature.  LPO 

may disrupt cell membranes, affecting their structure and function, possibly 

leading to an increase in citotoxicity. In fact when exposed to stressors these 

invertebrates were not able to remain completely homeostatic especially in what 

concerns phosphorus balances. At the lower temperature a increase in the 

presence of P in invertebrate’s body composition is detected for  treatments with 

high toxic agents concentration while at 20°C invertebrates exposed to the highest 

copper concentrations had significantly less P amount than control. This inability 

to remain completely homeostatic at different temperatures in the presence of 

stressors may influence the presence or absence of this particular species for 



Chapter VI |127 

 

example when stream temperature is higher (due to seasonal variations or to 

different canopy cover as observed for example in streams running through 

eucalyptus plantantions). Results suggest that the increase in temperature 

accentuated the difficulty in retaining phosphorus, which may suggest that the 

interaction between toxic and increased temperature which result in lower 

phosphorus retention capacity may influence nutrient cycling patterns in small 

streams.  Little attention has been paid to the importance of resource 

stoichiometry and consumer driven nutrient recycling patterns as a structural 

function able to modulate community responses (e.g. Danger et al., 2008) but the 

extent of these relationships and the ability of these communities to adjust should 

be taken into consideration, especially in the presence of stressors, such as 

increased contaminantion by chemical agents (e.g. copper) or alterations in 

riparian land use or environmental factors such as temperature (Mehler et al., 

2013).   

The decapod Atyaephyra desmarestii (Millet, 1831) and the amphipod 

Echinogammarus meridionalis (Pinkster, 1973) are two benthic freshwater 

crustaceans that occupy an important position in the food chain, since they are 

important food items for several species of fish. Moreover, they both feed on 

coarse particulate organic matter, playing an important role in detritus processing 

and nutrient cycling in Portuguese streams. Relative toxicity for these two 

invertebrates is both chemical and temperature dependent. As a consequence of 

acute exposure, results indicate that at 10°C both species have similar relative 

sensitivity to both stressors and a temperature raise from 10 to 20°C has found to 

significantly increase the toxicity of copper. At 20°C an increase in the toxicity of 
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eucalyptus leachates to A. desmarestii and of copper for both species with more 

strong effects on E. meridionalis is observed. These results suggest that exposure to 

these two stressors may be the result of different mechanisms of toxicity and 

biotransformation. In fact simultaneous exposure of A. desmarestii and E. 

meridionalis to copper and eucalyptus leachates resulted in toxicological 

interactions, synergism in E. meridionalis and antagonism in A. desmarestii. One 

possible explanation is, in the case of A. desmarestii,  that eucalyptus extracts may 

have anti-oxidant properties (Sacchetti et al., 2005; Singh et al., 2012), probably 

counteracting deterrent effects of copper exposure as an oxidative stress inducer 

(Bouskill et al., 2006; Sroda and Cossu-Leguille, 2011) explaining the antagonism 

found. On the contrary synergistic effects were observed in E. meridionalis, which 

suggested that the combination of both stressors resulted in a more negative 

output. A few studies suggest that amphipods may be extremely sensitive to low 

pH values affecting osmoregulation (Felten et al., 2008) and also respond 

negatively to the presence of metals (Dédourge-Geffard, 2009), therefore the 

combination of both stressors (as eucalyptus leachates solution is characterized by 

low ph values) may be responsible for the increased mortality observed here. 

Crustacea are known to be quite tolerant to copper, an essential element used in 

their hemolymph (Gerhardt, 1995) but it has been reported different patterns in 

metal acumulation between decapoda and amphipoda (Rainbow and White, 1989; 

Rainbow, 1998), that may result in different metal sensitivity, as results seem to 

suggest here. Also, it is imperative to highlight the importance of rearing 

temperature in determining the relative toxicity of stressors to these related 

species as results suggest that an increase in temperature may alter the relative 
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sensitivity of these species. Therefore the possible balance between populations of 

A. desmarestii and E. meridionalis coexisting may be altered after exposure to 

copper or eucalyptus leachates depending on the temperature. If this distinct 

sensitivity to stressor’s presence is extendable to other shredder species in the 

benthic community, longitudinal (upstream to downstream) diversity may be 

altered (Clements et al., 2002). Between the two crustacean, A. desmarestii appears 

to be slighty more resistant which is concomitant with its wide geographic range 

(Anastasiadou et al., 2004) nonetheless it may be affected by the presence of both 

stressors with increasing temperature.   

 

Stressors in a changing climate: the importance of temperature. 

Temperature affects all biological processes and is predicted to 

exponentially increase metabolic rates (Brown et al., 2004b), with effects at 

individual, population and community levels (Savage et al., 2004). Temperature 

increase due to seasonal variations may be exacerbated by the projected increase 

in global temperature (IPCC, 2007). As invertebrates aren’t able to regulate 

internal body temperature, increasing temperatures may have negative effects on 

their ecophysiology (Woods et al., 2003). Our results seem to suggest that despite 

its inherent toxicity, the exposure to either eucalyptus leachates or copper and the 

consumption of eucalyptus leaves, may be exacerbated by increased temperature. 

Increased toxicity with increased temperature has been reported in several 

invertebrates exposed to different toxics (Rathore and Khangaroth, 2002; 

Boeckman and Bidwell, 2005; Prato et al., 2009). Several explanations have 

aroused to explain this, for example increased metabolic rates at higher 
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temperature that may lead to increased respiration rates which enhances toxic 

exposure. Increased accumulation rates of metals have also been detected in 

invertebrates with increasing temperature (Serafim et al., 2002; Kopecka-

Pilarczyk, 2010). Also, enzymatic activity is strongly influenced by temperature 

with changes on enzyme’s physical structure, catalytic efficiency or binding 

capacity which can negatively influence by itself invertebrate’s ability to deal with 

toxic presence. In fact increased temperature has significantly increased the 

toxicity of eucalyptus leachates to A. desmarestii and of copper to both A. 

desmarestii and E. meridionalis in acute exposures. Following acute exposure, 

biomarker determination suggest that an increase in temperature is able to 

modulate biomarkers activity for all the three invertebrates which may indicate 

that it is an important stressor factor by itself. The increase in rearing temperature 

is able to significantly modulate survival patterns for the invertebrates (S. festiva 

and E. meridionalis). Stoichiometrical analysis suggest that for S. festiva an increase 

in 10°C in rearing temperature combined with the presence of high copper 

concentrations is responsible for a nutrient deficiency (P) that may affect ribosome 

synthesis, with a possible reduction in protein synthesis and consequently may 

affect somatic growth (Elser et al. 2000). Similar results have been observed for 

other species (Persson et al., 2011; Wojewodzic et al., 2011).  
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Eucalyptus leaf extracts: are we neglecting the importance of 

leachates toxicity? 

The effects of eucalyptus plantations on streams ecosystems have been 

intensively studied, nonetheless attention paid to the effects of eucalyptus leaf 

leachates toxicity on shredders remains scarce.  In this work, results suggest, that 

the presence of these leachates is able to trigger several physiological responses in 

shredders. Increased mortality was observed in E. meridionalis and A. desmarestii 

in acute exposures and in E. meridionalis after chronic exposures and to a lesser 

extent to S. Festiva. As we know, eucalyptus leaves inputs occur throughout the 

year (as opposed to deciduous forests which occur mainly in autumn) so a 

continuous supply of leaves occurs. In autumn/winter, high flows may mitigate 

negative consequences of these leachates but in low flow seasons this can become 

a serious ecological problem. Eucalyptus leachates may present very low pH values 

and high phenolic and tannin content and reduced oxygen is frequently observed 

in leachates pools, which may contribute to their increased toxicity. As observed in 

this study (Chapter IV), even small amounts of these leachates may trigger 

alterations in biomarkers activities as occurred with S. Festiva. When exposed to 

eucalyptus leaf leachates invertebrates weren’t able to remain completely 

homeostatic at the lower temperature. Growth, consumption and survival of 

Sericostoma vittatum larvae were also negatively affected by the presence of 

eucalyptus leachates (Canhoto and Laranjeira, 2007). Eucalyptus leaves possess oil 

vesicules, with cineol and pinene as major components, that are toxic for 

invertebrates (Canhoto and Graça, 1999). Also the presence of phenolic 

compounds in the environment that may adsorb to the surface of other leaves may 
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contribute to overall impacts observed in these communities. Nonetheless, this is a 

subject that is poorly understood and in my opinion deserves further thought, so 

efforts should be made to best understand the impacts of eucalyptus leaf leachates 

on individual shredders. 

 

Final remarks and future research 

Monitoring of freshwaters has been based on physical and chemical 

parameters and through invertebrate community structure measures as 

biomonitoring tools. This approach, focused on benthic macroinvertebrates and 

biotic indices, may have some inconveniences due to the difficulty in applying 

several biotic indices in Mediterranean rivers, with specific hydrological regimes 

(Coimbra and Graca, 1996).  Another methodology may be the use of single species 

responses to stressors in order to complement and enrich macroinvertebrate 

surveys and physico-chemical characterization. The development of toxicity tests 

that take into account the presence of chemical agents (such as eucalyptus toxins 

and copper) are needed to accurately and realistically assess the effects of 

contamination on freshwater ecosystems. In real scenarios toxics agents seldom 

occur isolated thus in order to realistic evaluate environmental contamination one 

must pay attention to the importance of evaluating mixtures of these 

environmental contaminants. The species used in this study allowed the 

comparison of representatives of major aquatic groups (Insecta and Crustacea) 

and also of different microhabitats and the results of this study suggest that the 

three selected species have distinct sensitivities to the stressors studied here.  

Further studies with different shredders, where the traditional ecotoxicological 
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bioassays (with endpoints such as mortality) are used must be combined with 

biochemical approaches (evaluation of distinct biomarkers activity), or the 

determination of organism’s elemental composition and evaluated at different 

levels of biological organization in order to successfully protect stream’s 

communities. Results of this study suggest that the combination of distinct assays 

is useful in order to establish impacts of chemical contamination to shredders 

communities and that distinct invertebrates may have distinct sensitivity to 

stressors although, and especially concerning the effects of eucalyptus leachates 

exposure more research must yet be done. 
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Appendix 1- Mortality (%) of Atyaephyra desmarestii, Echinogammarus meridionalis and Schizopelex festiva recorded in bioassays carried out at 

both 10 and 20°C with single eucalyptus leachates (EL), single copper (Cu) and with both stressors  

  A. desmarestii E. meridionalis S. festiva (c) 

      1st bioassay 2nd bioassay 

 Concentration 10°C 20°C 10°C 20°C 10°C 20°C Conc. 10° 20°C 

EL 

(mg/L) 

0 0% 0% 0% 20% 0% 0% 0 0% 0% 

7 0% 10% 10% 20% 0% 0% 279 - 10% 

15 0% 30% 20% 20% 0% 0% 325 - 20% 

29 10% 40% 20% 30% 0% 0% 349 10% - 

58 10% 50% 30% 30% 0% 0% 412 20% - 

116 40% 90% 30% 40% 0% 0% 434  40% 

233 60% 100% 90% 90% 0% 0% 465 30% - 

465 100% 100% 100% 100% 30% 60%    
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Table 2 cont.  A. desmarestii E. meridionalis S. festiva (c)    

 Concentration 10°C 20°C 10°C 20°C 10°C 20°C    

 (a) (b) (c)          

Cu 

(mg/L) 

0 0 0 0% 0% 0% 20% 0% 0%    

0.03 0.006 0.25 10% 20% - 20% 0% 0%    

0.05 0.01 0.51 30% 30% - 30% 0% 0%    

0.10 0.03 1.02 50% 60% 10% 30% 0% 0%    

0.20 0.05 2.04 70% 80% 10% 40% 10% 20%    

0.41 0.10 4.07 90% 90% 20% 80% 30% 30%    

0.81 0.20 8.14 90% 100% 30% 90% 40% 50%    

3.36 0.41  100% 100% 60% 100%      

 0.81    90% -      
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Table 2 cont.    A. desmarestii E. meridionalis S.  festiva (c)    

 Concentration 10°C 20°C 10°C 20°C 10°C 20°C    

Mixtures 

EL+CU 

EL 0 + CU 0 
(control) 

0% 0% 15% 20% 0% 0%    

EL-LC10 + Cu-LC10 0% 20% 22.5% 67.5% 0% 20%    

EL-LC20 + Cu-LC20 10% 20% 35% 47.5% 10% 40%    

EL-LC50 + Cu-LC50 40% 70% 75% 97.5% 30% 60%    



 

 


