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RESUMO 

 

A construção metálica é uma tecnologia cada vez mais corrente na construção civil que se 

baseia essencialmente na utilização de perfis pré-fabricados de aço estrutural. Estes, por sua 

vez, encontram-se em três formas distintas, nomeadamente, em perfis laminados a quente, em 

perfis soldados ou em perfis enformados a frio. Estes últimos, relativamente aos outros, têm 

fundamentalmente a vantagem de facilidade de produção, montagem e transporte, devido ao 

baixo peso dos perfis, conferido pelas espessuras reduzidas dos mesmos. No entanto, o facto 

de estes apresentarem estas espessuras pode originar a ocorrência de fenómenos de 

instabilidade local e distorcional. Neste sentido, diversos autores estudam experimental e 

numericamente estes fenómenos à temperatura ambiente. 

 

Outro fenómeno também problemático é quando os elementos de aço enformados a frio estão 

sujeitos ao fogo, existindo neste caso muito poucos estudos. Deste modo, este trabalho de 

investigação teve como objectivo estudar o comportamento de vigas em aço galvanizado 

enformadas a frio em situação de incêndio, com base num vasto programa de ensaios 

experimentais. Ensaios de flexão de quatro pontos foram assim realizados com o intuito de 

avaliar a influência (i) do tipo de secção transversal das vigas (secções C, I-enrijecido, R e 

2R), (ii) da restrição axial à elongação térmica (0 e 15 kN/mm) e (iii) da restrição rotacional 

nos apoios (0 e 150 kN.m/rad). Por outro lado, como referência, ainda foram efectuados 

ensaios à temperatura ambiente para a determinação da carga de instabilidade das respectivas 

vigas, assim como, dos seus modos de instabilidade que foram responsáveis pela perda de 

capacidade de carga da mesma, a fim de comparar com os ensaios a altas temperaturas. Estas 

vigas, normalmente utilizadas nos edifícios com perfis aço enformados a frio, tinham 3000 

mm de vão e eram compostas por um ou mais perfis de aço enformados (perfis C e U) 

aparafusados entre si, os quais tinham 2.5 mm de espessura, 43 mm de banzo e 250 mm de 

altura para os perfis C e 255 mm para os perfis U. 

 

O estudo experimental foi também complementado por uma intensiva análise numérica 

através do programa de elementos finitos ABAQUS. Neste domínio foi realizado um estudo 

paramétrico de modo a avaliar ainda o efeito da altura (entre 200 e 300 mm) e da espessura 

(entre 1,5 e 2,5 mm) das secções transversais das vigas, do comprimento do vão das mesmas 

(entre 2000 e 5000 mm) e, ainda, de outros valores de rigidezes de restrição axial (entre 0 e 

infinita) e rotacional (entre 0 e 1200 kN.m/rad) no desempenho estrutural deste tipo de vigas 

quando submetidas ao fogo. 
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Finalmente, com recurso a esta base de dados procurou-se comparar os resultados com as 

disposições estabelecidas no Eurocódigo 3, para o aço laminado a quente, e propor possíveis 

novas equações simplificadas de cálculo para o dimensionamento de vigas em aço 

enformadas a frio, em situação de incêndio. 

 

As principais conclusões deste trabalho de investigação foram essencialmente que as vigas de 

aço enformadas a frio correntemente utilizadas neste tipo de edifícios apresentam uma 

resistência ao fogo baixa (inferior que 30 minutos), mas temperaturas críticas elevadas 

(maiores que 350 ºC, isto é, temperaturas superiores ao limite recomendado pelo Eurocódigo 

3, Parte 1.2, para elementos de classe 4), na maioria das situações. Por outro lado, verificou-se 

que as temperaturas críticas das vigas podem reduzir substancialmente (30% em alguns casos) 

quando são restringidas à elongação térmica. Contudo, esta diminuição pode ser atenuada 

quando a restrição à rotação dos apoios da viga é significativa, comparativamente com a 

restrição rotacional da respectiva viga. 

 

Palavras chave: Fogo, Vigas, Aço, Perfis enformado a frio, Capacidade de carga, 

Encurvadura, Experimental, Numérico, Equações simplificadas de cálculo. 
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ABSTRACT 

 

The steel construction is increasingly an important technology for civil building. Actually, the 

steel industry is constantly in search of more and better uses for steel. The uses of hot-rolled, 

welded and cold-formed steel elements in the construction of buildings are ones of the 

solutions that can easily replace the traditional technology of construction. Indeed, cold-

formed steel is one of which are becoming a very popular material in construction because 

they provide a high strength to weight ratio, are easy to produce, transport and assembly when 

compared to thicker hot-rolled steel members. Another advantage is the great variety of 

profiles available on the market which allow the building of different member cross-sections. 

 

However, they may behave poorly under fire conditions, especially when they are unprotected 

in fire case, due to the combination of the high thermal conductivity of steel and section factor 

of these structural members (small wall thickness), both of which lead to a rapid rise of 

temperature in steel in fire situation. In addition, cold-formed steel members usually have 

complex buckling behaviour, involving local, distortional, global buckling and their 

interactions. 

 

Studies on fire performance of cold-formed steel members are still fairly rare, are mostly of a 

numerical nature and are based on the structural behaviour of single and short elements at 

elevated temperatures. Hence, this research work intended to study the behaviour of cold-

formed galvanized steel beams under fire conditions, basing on the results of a large 

programme of experimental tests. Four-point bending tests on cold-formed steel C-, lipped I-, 

R- and 2R-section beams were performed, both under fire conditions, under flexural loading 

conditions and under simply supported boundary conditions (roller and pinned supports) with 

different restraining conditions, including no restraints, partial axial restraint to the thermal 

elongation of the beam (15 kN/mm) and partial rotational restraint at the beam supports (150 

kN.m/rad). In other words, it was investigated the influence of the cross-sections, the axial 

restraining to the thermal elongation of the beam and the rotational stiffness of the beam 

supports. These beams, commonly used in CFS buildings, had a span of 3000 mm and were 

made of one or more cold-formed steel profiles (channel, U, and lipped channel, C, profiles), 

which were 2.5 mm thick, 43 mm wide and 250 mm tall for C sections and 255 mm for the U 

sections. On the other hand, as reference, four-point bending tests on the same type of beams 

at room temperature and under simply supported boundary conditions were also carried out to 

assess their ultimate bending strength and to compare with the failure modes. 
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A numerical study was still performed by the finite element program ABAQUS. So a great 

number of numerical simulations aimed to carry out a parametric study outside the bounds of 

the original experimental tests, in other words, to find out the effect of thickness (from 1.5mm 

to 3.5mm) and height (from 200mm to 300mm) of the beam cross-sections, of the beam spans 

(from 2000mm to 5000mm) and of other values of axial (from zero to infinite) and rotational 

stiffness (from zero to 1200kN.m/rad) of the surrounding structure to the beam. 

 

Finally, the results of the experimental tests and the numerical simulations were the basis of 

an analytical study for the development of simplified calculation equations for fire design of 

cold-formed steel beams. 

 

The main conclusions of this research study were that the cold-formed steel beams commonly 

used in this kind of buildings may have a quite low fire resistance (less than 30 minutes), but 

high critical temperatures (higher than 350 ºC - limitation enforced by Eurocode 3, Part 1.2) 

in most of the cases. On the other hand, the critical temperature may drop significantly (30% 

in some cases) with the axial restraint to thermal elongation of the beam. This decreasing is 

however minimized when the rotational restraint at beam supports is relevant comparing with 

rotational stiffness of the beam. 

 

Keywords: Fire, Cold-formed steel, Beam, Load-bearing capacity, Buckling, Experimental, 

Numerical, Simplified calculation equations. 
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NOTATION 

 

Roman upper case letters 

 

A cross-sectional area 

Aeff effective cross-sectional area 

As effective cross-sectional area of the edge stiffener 

As,red reduced effective cross-sectional area of the edge stiffener 

Cb buckling factor depending on the moment distribution 

D coiling diameter 

E , Enormal , E20 modulus of elasticity at ambient temperature 

ET modulus of elasticity at temperature T 

Fy yield stress 

G shear modulus 

I second moment about the strong axis of a cross-section 

Is second moment of effective area of the edge stiffener 

IT torsional constant 

IW warping constant 

Ieff,x second moment of effective area with respect to x-axis 

Ix second moment of area with respect to x-axis 

Ieff,xy product moment of effective area with respect to x- and y-axis 

Ixy product moment of area with respect to x- and y-axis 

K spring stiffness of the edge stiffener per unit length 

L beam span 

Le effective length 

M bending moment 

Ma flexural allowable strength 

Mb nominal member moment capacity 

Mb,fi,θ,Rd design buckling resistance moment at elevated temperature θ 

Mb,Rd design buckling resistance moment 

Mcr , Mcre , Mo critical elastic moment for lateral-torsional buckling 

Mcrd critical elastic distortional buckling moment 

Mcrl critical elastic local buckling moment 

Md flexural design strength 

Mn nominal flexural strength 
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Mnd nominal flexural strength for distortional buckling 

Mne nominal flexural strength for lateral-torsional buckling 

Mnl nominal flexural strength for local buckling 

�� restraining moment at beam support 

MRd resistant moment of the gross or effective cross-section 

Msx section moment capacity about the strong axis 

Mu ultimate failure moment 

M xx’ - S.M. measured bending moment about the xx’ axis  

M xx’ - C.B.T. calculated bending moment about the xx’ axis 

My yield moment 

M yy’ - S.M. measured bending moment about the yy’ axis 

M yy’ - C.B.T. calculated bending moment about the yy’ axis 

�� axial restraining forces generated in the beam 

P applied load on the beams 

PFEA maximum numerical load-carrying capacity of the beam 

Pmax maximum load-carrying capacity of the beam 

PTEST maximum experimental load-carrying capacity of the beam 

P0 initial applied load on the beam 

PW maximum load-bearing capacity of the beam including its self-weight 

Sf gross section modulus referenced to the extreme fibre in the first yield 

SW self-weight of the beam 

Sx first moment of area with respect to x-axis 

T mean furnace temperature 

USC shear centre co-ordinate with respect to u-axis 

Weff effective section modulus of the beam 

Wy section modulus of a cross-section 

Xeff,GC effective gravity centre co-ordinate with respect to x-axis 

XGC gravity centre co-ordinate with respect to x-axis 

 

 

Roman lower case letters 

 

b width of the flange 

or 

width of the plate 

b1 distance from the web-to-flange junction to the centre of the effective 

area of the edge stiffener (including effective part beff of the flange) 
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beff effective flange width 

bp width of the flange taken into account the influence of rounded corners 

c width of the edge stiffener 

ceff effective width of the edge stiffener 

cp width of the edge stiffener taken into account the influence of rounded 

corners 

d vertical displacement of the specimen 

d1 maximum local imperfection in a stiffened element 

d2 maximum deviation from straightness for a lip stiffened or unstiffened 

flange 

d S1 vertical displacement of the specimen at mid-span (section S1) 

f0.2p , f0.2,20ºC 0.2% yield strength at ambient temperature 

f0.2,θ 0.2% yield strength at temperature θ 

f0.5 0.5% yield strength 

fp proportional stress limit 

fu ultimate strength 

fy , fy,normal , fy,20 yield strength at ambient temperature 

fy ,T yield strength at temperature T 

fyb nominal yield strength 

h height of the section 

heff effective web width 

hp width of the web taken into account the influence of rounded corners 

iu radius of gyration with respect to u-axis 

i0 polar radius of gyration about shear centre 

ka axial restraint to the thermal elongation of the beam 

ka,b axial stiffness of the beam 

kE,θ reduction factor for the slope of the linear elastic range of steel at the 

steel temperature θa reached at time t 

kr rotational stiffness of the beam supports 

kr,b  rotational stiffness of the beam 

kv , ky effective length factor 

kW warping effective length factor 

ky,θ reduction factor for the yield strength of steel at the steel temperature θa 

reached at time t 

kσ plate local buckling factor 

r0 outer radius of a bend 

t thickness 
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tcr critical time of the beam 

tn nominal thickness 

t N_max time when the maximum restraining force in the beam is reached 

treq reduced thickness 

vi maximum co-ordinate of the plate with respect to v-axis 

vj minimum co-ordinate of the plate with respect to v-axis 

vmax maximum co-ordinate of the section with respect to v-axis 

vmin minimum co-ordinate of the section with respect to v-axis 

 

 

Greek upper case letters 

 

∆XGC Distance in x-direction from gravity centre to effective gravity centre of 

the cross-sectional area 

Φ�� capacity reduction factor for bending 

Ω safety factor 

 

 

Greek lower case letters 

 

α�� imperfection factor of the beam 

β angle between x-axis (local axis) and u-axis (principal axis) 

βS1 lateral rotation of the beam at mid-span (section S1) 

γM0 partial factor for resistance of cross-sections 

γM1 partial factor for resistance of members 

γ S1 lateral rotation of the specimen at mid-span (section S1) 

ε longitudinal strain 

or 

elastic strain 

ε eng engineering (nominal) strain 

ε f,T total elongation at temperature T ºC 

ε S1 measured strain in the beam at mid-span (section S1) 

ε true true (logarithmic) strain 

η rotation of the beam supports 

η PS rotation of the pinned support 

η RS rotation of the roller support 
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θ rotation of the beam supports 

θ�� mean outer beam temperature 

θ	
 critical temperature of the beam 

θ N_max beam temperature when the maximum restraining force is reached 

θ� steel temperature 

θ�� mean outer steel temperature 

λ�� edge stiffener slenderness for the distortional buckling 

λ��� non-dimensional beam slenderness for lateral-torsional buckling at 

ambient temperature 

λ�
 plate slenderness 

λ�
,
�� reduced plate slenderness 

µ mean value 

ν poisson ratio 

ρ reduction factor for plate buckling 

σ stress 

or 

standard deviation 

σcom,Ed maximum design compressive stress in the plate 

or 

reduced compression stress 

σcr,s elastic critical buckling stress of the edge stiffener 

σeng engineering (nominal) stress 

σmax maximum stress in the plate 

σmin minimum stress in the plate 

σtrue true stress 

σx normal stress in X direction 

φ resistance factor 

χ
�

 reduction factor for the distortional buckling resistance of the edge 

stiffener 

χ
��

 reduction factor for lateral-torsional buckling 

ψ stress ratio in the plate 
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ABREVIATIONS 

 

ASD Allowable Stress Design 

CBT Classical Beam Theory 

CFS Cold-Formed Steel 

cFSM constrained Finite Strip Method 

CV Coefficient of Variation 

DEC Department of Civil Engineering 

DOF Degrees of Freedom 

DSM Direct Strength Method 

EAM Effective Area Method 

EC3 Eurocode 3 

ECBL Erosion of Critical Bifurcation Load 

ECCS European Convention for Constructional Steelwork 

ESM Effective Section Method 

EWM Effective Width Method 

FCT Portuguese Foundation for Science and Technology 

FCTUC Faculty of Sciences and Technology of the University of Coimbra 

FEA Finite Element Analyses 

FEM Finite Element Method 

FSM Finite Strip Method 

GBT Generalized Beam Theory 

GMNIA Geometrically and Materially Nonlinear Analysis with Imperfections Included 

LEME Laboratory of Testing Materials and Structures 

LL Load Level 

LRFD Load and Resistance Factor Design 

LVDT Linear Variable Displacement Transducer 

SM Strain Measurements 

UC University of Coimbra 
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1 INTRODUCTION 

 

1.1 Overview 

 

The use of cold-formed steel profiles in construction started in the 19th century, in the USA 

and England, where it was used to a limited extent and without appropriate technical 

information about the structural behaviour of these elements. Given the population growth in 

the USA, it was necessary to use faster and more productive methods to build houses, using 

readily available local materials, like wood. At the end of World War II, however, steel was 

an abundant resource and the metallurgical companies had gained great experience in the use 

of this metal during the war. Hot-rolled steel was used first, in large buildings like sky-

scrapers, and later cold-formed steel (CFS) members came to be used in residential buildings, 

replacing wood (fig. 1.1). 

 

 

 

 

 

 

 

 

a) 

 

 

 

 

 

 

 

 

b) 

Figure 1.1 – General construction of wood (a) and CFS (b) buildings (Steel Framing 

Alliance@, 2009) 
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Concerning the Europe, its construction mainly uses concrete elements associated with brick 

walls, since Europe was partially destroyed after the Second World War, and the buildings 

were restored using these materials. Building had to be quick and cheap, without taking into 

account any requirements of comfort or well-being. So in the past few decades new solutions 

have been sought to replace the traditional technology of construction, and the steel industry 

has prompted the finding of those solutions. Cold-formed steel elements are one example, 

since this type of steel elements present several advantages, particularly ease of production, 

transport and assembly, when compared to thicker hot-rolled steel members. Another benefit 

is the great variety of profiles available on the market which allow the building of different 

member cross-sections, involving single open sections, open built-up sections and closed 

built-up sections (fig. 1.2). They are manufactured from sheet steel (fig. 1.3) essentially by 

cold rolling or brake pressing and have normally a thickness between 0.8 and 3 mm. Roll 

forming is a process in which a strip or sheet of metal, such as steel, is passed through a 

continual set of stands (rolls), until a desired cross-section profile is achieved. The sheet or 

strip is plastically deformed along a linear axis in a room temperature environment. Each 

stand in the roll forming process has a specific job in the fabrication of the piece, and every 

stage involves minor changes in the configuration of the metal, shown in Figure 1.4. In this 

example, a Ω section is formed. The size of the stands used depends on the metal’s type, 

thickness, formability. Roll forming is usually used to produce sections where very large 

quantities of a given shape are required. The initial tooling costs are high but the subsequent 

labour content is low. Brake pressing is normally used for low volume production where a 

variety of shapes are required and the roll forming tooling costs cannot be justified. Here a 

section is formed from a length of strip by pressing the strip between shaped dies to form the 

profile shape (fig. 1.5). 

 

Structures with this kind of steel elements are also known as light steel framing because of the 

fact that these elements are light (high strength to weight ratio) and so fewer foundations are 

needed and, as well as the thicker hot-rolled steel elements they still allow to provide flexible 

structures, less material wastage and an significant reduction in dead loads. On the other hand, 

since in most cases beams and columns are not necessary, all the external walls can be 

considered as the building structure, which thus increases the seismic resistance of these 

buildings. In addition, thanks to the flexibility of the construction solutions and the materials 

used, such as expanded polystyrene panels, OSB, rock wool and plaster boards, the thermal 

and acoustic parameters can be easily controlled. Given these great advantages CFS sections 

began to be used in a lot of countries and this emergent use made the knowledge of its 

structural behaviour vital. 
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Figure 1.2 – Typical forms of sections for cold-formed steel structural members: a) U 

(channel) section; b) C (lipped channel) section; c) Z (zed) section; d) Σ (sigma) section; e) Ω 

(omega) section; f) built-up I (double-U) section; g) built-up R section; h) built-up 2R section; 

i) built-up lipped I (double-C) section; j) double lipped U (channel) section (Tichelmann et 

al., 2005; EN 1993-1-3, 2004) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 – Galvanized steel coils (Perfisa@, 2008) 

 

 

 

 

 

a) b) c) d) e) f) 

 g) h) i) j)  
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Figure 1.4 – Stages in roll forming a single section (Rezende, 2005, and Rhodes, 1991) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 – Forming steps in press braking process (Futureng@, 2010, and Veríssimo, 2008) 

 

CFS structures are a versatile and fast building system manufactured from lightweight cold-

formed pre-galvanised steel sections with a standard (Z275) zinc coating thickness of 0.04 

mm (275 g/m
2
), at least in Europe and North of America. It is well known that steel rusts 

when left unprotected in almost any environment. Applying a thin coating of zinc to steel is 

an effective and economical way to protect steel from corrosion. Zinc coatings protect steel by 

providing a physical barrier as well as cathodic protection to the underlying steel. So, in the 

end, the construction time, cost and zinc coating are the main reasons why CFS sections are 

screwed on site and not welded. These connections are generally materialized by means of 

carbon steel self-drilling screws and usually an extensive number of them is used in CFS 

structures (fig. 1.6). 
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Figure 1.6 – A view of the amount of screws used in connections of CFS structures (Steel 

Framing Alliance@, 2009) 

 

In 1939, on the initiative of and funded by the American Iron and Steel Institute (AISI), a 

series of research programs started, that lead to the publication, in 1946, of the first technical 

specification for the design of structural elements of cold-formed steel sections. In 1984 the 

Canadian Standards Association (CSA), published the CAN3-S136-1984 standard (cold-

formed steel structural members), and this was replaced in 2001 by the North American Cold-

Formed Steel Specification (2001) from the AISI, which was developed by the partnership of 

the United States and Mexico. Australia and New Zealand also researched into the use of 

cold-formed steel elements, and in 1996, they published the AS/NZS4600:1996 standard 

(cold-formed steel structures). In Brazil the use of these profiles started in the late 1960s, and 

NB 143 (calculation of steel structures constituted by lightweight profiles) was published. It 

has recently been replaced by NBR 14762 (design of cold-formed steel structures) published 

by ABNT (Brazilian Association of Technical Standards). Lastly, the technical document that 

currently guides the design of CFS structures in Europe is the EN 1993-1-3 (2004) (Eurocode 

3 - Design of steel structures: part 1.3 – general rules: supplementary rules for cold-formed 

members and sheeting). But there are still no regulations for the fire design of these elements, 

and so the designer is left at the mercy of his/her experience and good sense. The design of 

this type of structures is not always on the safe side, and all too often the solutions are not 

economical. The structures are sometimes under-designed and sometimes over-designed, due 

to the fact that there are no fire design methods that are straightforward enough to be used by 

designers. The design of CFS elements is even more complex than hot rolled steel elements, 

because of the high slenderness of the cross-sections. In addition to the phenomena of overall 

instability by torsion and bending-torsion, commonly observed in the hot-rolled steel 

elements, the local and distortional buckling also have to be considered in the design of CFS 

members. 
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Finally, given the lack of regulations in the area of fire design of CFS elements and the small 

number of scientific works in this area, and the emerging use of this type of construction in 

Europe, this research intends to contribute to the development of knowledge in the area as a 

way to create conditions for the better use of structures of this type. 

 

1.2 Motivation 

 

During the last several decades an important tendency of the civil engineering industry is the 

application of more slender elements and structures. A characteristic of this tendency is the 

wider application of cold-formed steel members, which is supported by developments in the 

production technology as well as improvements in design methods, design standards, and, in 

general, computational techniques. In addition, CFS members have a major advantage over 

hot-rolled steel shapes. The former can be easily shaped and sized to meet any particular 

design requirement. As such, they provide a much larger variety of choices for steel designers. 

The result often is a lighter and more economical section compared with hot-rolled steel 

beams for low-rise building structures when the beam spans are not long. The price to be paid 

for this versatility is however the complicated iterative design process. And finding the 

optimum or minimum weight beam is a challenging problem considering the complex and 

highly nonlinear constraints that govern their design. It is hereby important to stress that the 

application of slender elements requires first of all an appropriate handling of buckling 

phenomena.  

 

Cold-formed steel members are very different from hot-rolled steel members, since the latter 

are mostly found in class 1 or 2 cross-sections, while in general the former are class 4, 

according to Eurocode 3, part 1-1. In thin-walled members usually three basic types of 

instability phenomena are distinguished: global buckling (for example flexural, flexural-

torsional or lateral-torsional buckling), distortional buckling, local (or local plate) buckling 

and interactive buckling between or among the above buckling modes, due to their plate 

width-to-thickness ratio. These buckling modes are mostly responsible for the ultimate 

strength of the compression members and nevertheless these ones may occur even before 

parts of the cross-section yield. Local buckling is characterized by the relatively short 

wavelength buckling of individual plate elements. Distortional buckling involves both 

translation and rotation at the compression flange/lip fold line of the member. And the global 

buckling is a buckling mode where the member deforms with no deformation in its cross-

sectional shape, consistent with classical beam theory. Another factor which causes 

complexity in CFS members arises from the fact that these members are in most cases open 

and/or asymmetric sections leading to low levels of torsional stiffness, since there is generally 
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no coincidence between the shear centre and the centroid of the section and its thickness is too 

low as well. This means that they also may be extremely flexible and weak in resistance to 

torsion. It is also important to stress that the geometric imperfections of this kind of members 

are normally of the same order or higher than the thickness of the respective cross-sections. 

 

In addition, the fire resistance of this kind of elements is quite compromised due to the 

combination of the high thermal conductivity of steel and the high section factor of these 

structural members (small wall thickness) both of which lead to a rapid rise in steel 

temperature in a fire. Another important issue is that the deterioration of steel mechanical 

properties with increasing the temperature can induce serious deformation of structural 

members or even the premature failure of a building. It is noticed that this deterioration is still 

more severe for CFS profiles than for hot-rolled steel profiles. 

 

The parts of Eurocodes related to fire design does not have consistent methods for fire design 

of cold-formed steel elements. Only Eurocode 3 part 1.2 (EN1993-1.2, 2004) states that “The 

methods given are also applicable to cold-formed steel members and sheeting within the 

scope of EN 1993-1-3”. The Eurocode 3 part 1.3, relates to the design at room temperature, 

nothing presents in case of fire. The proposal of EN1993-1.2 is away from the reality of the 

behaviour of cold formed steel elements in fire which may be absolutely different from hot-

rolled ones. So there is an urgent and absolute need of finding new design methods for cold 

formed steel elements, beams, columns and joints subjected to fire. Furthermore, it appears 

that more research has been conducted into the structural behaviour of compression members 

than of flexural members, as well as on the structural performance of joints. From the author’s 

point of view, it is however better to design overly the joints than the structural members, due 

to economic reasons. Hence, it is quite important to study the flexural behaviour of CFS 

beams under many and different conditions, including loading, boundary and fire conditions. 

 

The advantages which can be gained by the use of CFS structural applications are bought at 

the expense of the requirement to use increased sophistication in the design analysis. This 

thesis attempts therefore to address a special and detail study in depth on the structural 

behaviour of CFS beams under fire conditions so that a good and accurate fire design of CFS 

structures are made for the scientific and engineering communities. It is the hope of the author 

that this document contributes toward some standardization of educational and technical 

material and to expand and disseminate existing and new knowledge within the area of fire 

safety engineering in buildings based on scientific and practical research. 
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1.3 Research Objectives and Scope 

 

The overall purpose of this research was to investigate the structural behaviour of cold-formed 

steel beams under fire conditions so as to develop adequate simplified calculation methods for 

the safe and economical fire design rules of CFS beams, similar to those that exist for hot-

rolled steel. This goal is intended to achieve with the aid of both experimental tests and 

advanced numerical analyses. Therefore, the research plan was implemented in two great 

phases which were accomplished in the Department of Civil Engineering (DEC) of the 

University of Coimbra (UC). The main objectives of the experimental research were 

obviously to assess the true fire behaviour (critical time and temperature) of the beams, 

characterize their failure modes and to provide reliable experimental data for the numerical 

studies, in order to develop and validate a suitable finite element model capable of obtaining 

reliable results from a parametric study outside the bounds of the original experimental tests. 

It is noticed that after the numerical models are calibrated, they may be very useful for 

extrapolations, saving time and money. So, at the end, basing on the experimental and 

numerical results, it was intended to undertake an analytical study for the development of 

simplified calculation methods for fire design of CFS beams. 

 

In the experimental phase, a great number of tests on CFS beams were performed in the 

Laboratory of Testing Materials and Structures (LEME) of UC, intending to study several 

parameters that have influence on the structural response of these members in fire, such as, 

the axial and rotational restraint to the thermal elongation of the beam. The LEME was very 

well equipped with fire furnaces for vertical and horizontal elements. These furnaces were 

acquired in the extent of the research project of re-equipment of the laboratories 

REEQ/499/2001, financed by the Portuguese Foundation for Science and Technology (FCT).  

Instead of this equipment, the laboratory was equipped with dozens of load cells, ranging 

between 10kN and 3 MN, displacement transducers ranging between 5 and 200 mm, wire 

displacement transducers for displacement measurements up to 1000 mm, a lot of static 

hydraulic actuators with load capacity between 10 kN and 3 MN, central hydraulic units, 

restraining frames of different stiffness, heat blankets and data acquisition systems. The 

experimental models were thereby instrumented and mounted in the LEME, however the CFS 

profiles were fabricated by the company PERFISA S.A. – Portugal, which it was its specialty.  

 

This experimental phase was followed by a numerical phase that included a huge amount of 

numerical simulations using a commercially available finite element software package, in 

other words, the program ABAQUS/CAE 6.10-1 (Abaqus Analysis – User’s Manual, 2010). 

These analyses made possible to verify the results of the experimental tests and to enlarge the 



Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

1 INTRODUCTION 

 

 

Luís Miguel dos Santos Laím 9 

 

research to other situations not tested experimentally. A lot of different parameters that have 

influence on the behaviour of CFS members in case of fire were simulated. 

 

Thus, the specific objectives of this study are: 

 

- To explore the instability phenomena of cold-formed steel beams (local, distortional, 

lateral-torsional buckling and their interactions) both at ambient temperature and under fire 

conditions. 

- To investigate the failure loads and the failure modes of industry standard CFS beams 

(namely C, lipped I, R and 2R beams) commonly used in any CFS buildings, but especially in 

warehouses and industrial buildings where the fire risk may be higher; performing several 

flexural member tests at ambient temperature. 

- To study the influence of the stiffness of the surrounding structure to the beams, when just 

these ones are subject to fire. So, a large number of fire tests on bare CFS beams with and 

without axial restraint to the thermal elongation of the beam and with combined axial and 

rotational restraint were undertaken. These restraints intended to reproduce as faithful as 

possible the actual boundary conditions of a beam when is inserted in a real CFS building 

structure, making it possible to understand how the surrounding structure effects a CFS beam 

when is subjected to fire. Stiffness values as realistic as possible were considered on these 

tests. 

- To compare experimentally the structural response of different kinds of beams (beams with 

a single profile and built-up beams with two and four profiles) both at ambient temperature 

and under fire conditions. 

- To develop accurate finite element models that are capable of simulating the local, the 

distortional and the global buckling behaviour of CFS flexural members and above all their 

interactions both at ambient temperature and under fire conditions. 

- To validate the developed finite element models by comparison with experimental results. 

- To carry out an extensive parametric study, trying to find out the effect of the initial 

geometric imperfections, of the initial load level applied on the beams, of the finite element 

mesh size, of the thickness and height of the beam cross-sections, of the beam spans and of 

other values of axial and rotational stiffness which were not used in the experimental tests, on 

the structural performance of the respective CFS beams. 

- To compare the obtained results with the predictions from the currently available design 

rules both at ambient temperature and under fire conditions. 

- To develop new simplified calculation methods for fire design of CFS members under both 

pure bending and composed bending (pure bending plus axial load). 
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- To contribute to a future revision of EN1993-1-2 document (Eurocode 3 - part 1-2), 

relative to the fire design of these members. 

- To develop new shapes of CFS profiles or of built-up CFS structural members with 

enhanced fire behaviour. 

- To propose issues for good practice for the CFS building construction looking for a better 

way to improve its fire performance. 

      

1.4 Contents of the Thesis 

 

This dissertation consists of a total of six chapters and the contents of each chapter except for 

this chapter are briefly described as follows. 

 

Chapter 2, Literature Review, presents the state-of-the-art describing the findings pertinent to 

this research project based on experimental, numerical and analytical investigations conducted 

by previous researchers. It describes the different design methods of CFS members made 

available by international standards and past research both at ambient and elevated 

temperatures. It also focuses particularly on the buckling behaviour of CFS flexural members 

at ambient and elevated temperatures as well as under fire situations, including the local, 

distortional, lateral-torsional buckling and their interactions. Fire test methods (for example, 

steady-state and transient-state tests), advanced methods (such as, finite element and finite 

strip analyses) and also the effects of temperature increase on the mechanical properties of the 

flat and corner parts of CFS profiles are reported in this chapter. 

 

Chapter 3, Experimental Analysis of Cold-Formed Steel Flexural Members, presents a series 

of flexural tests at ambient temperature and under fire conditions focused on simply supported 

CFS beams made of one and more CFS profiles, namely, channel and lipped channel profiles 

also known as U and C profiles, respectively. These profiles were combined in different 

manner in order to build lipped I-, R- and 2R-shaped cross-sections. The built-up lipped I 

beams consisted of two C profiles connected back to back, the built-up R beams consisted of 

one C profile inside one U profile, generating a closed built-up beam, and finally the built-up 

2R beams consisted of two C profiles connected back to back which were then connected over 

by two U profiles (fig. 2). It is described in detail the experimental programme, the testing 

procedures and the test set-up for bending tests performed in the DEC of UC. The load 

applied on the beams, the bending moments, the vertical and horizontal displacements of the 

beams, as well as, their lateral rotation, the rotation of their supports and still some 

longitudinal strains are shown as results of these experimental tests at ambient temperature so 

as to characterize the structural behaviour of the CFS beams at ambient temperature in the 
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best possible way. The main purpose of these tests was to assess the failure loads and the 

failure modes of the studied beams and also to compare the structural response of these 

different kinds of beams at ambient temperature. It is noticed that these tests were carried out 

to provide a reference for the fire tests. 

 

When it comes to fire, three sets of experimental tests were conducted in order to evaluate the 

influence of the stiffness of the surrounding structure to the beams, in other words, the first set 

of the experimental tests was carried out on simply supported CFS beams without any kind of 

restraining to the thermal elongation of the beam, whereas the second and third sets were 

undertaken on the same type of beams, but with axial restraint and with combined axial and 

rotational restraint at the beam supports, respectively. The load applied on the beams, the 

bending moments, the restraining forces, the vertical and horizontal displacements of the 

beams, as well as, the temperatures in the furnace and at several points of the beams are 

shown as results of these experimental tests so as to characterize the structural behaviour of 

the CFS beams subjected to fire in the best possible way. The main goal of these tests was to 

assess the critical time and the critical temperature of the studied beams with the different 

boundary conditions mentioned before. This means that the fire tests conducted at DEC of UC 

tried to reproduce as faithful as possible standard fire resistance tests, i.e. fire curves identical 

to the standard fire curve and thermal action given by flame action. It is noticed that the 

standard fire exposure curve is defined by a temperature-time relationship and increases 

monotonically during the rating period and is the same for almost all building occupancies. 

Before the heating rate starts the structural member to be tested is firstly loaded. This loading 

is normally a percentage (30, 50 or 70%) of the design value of buckling load of the member 

at ambient temperature, calculated in accordance with the methods proposed in the currently 

available design rules (EN 1993-1-1, EN 1993-1-3, EN 1993-1-5). So, the load intended to 

simulate the serviceability load of the member when this one is inserted in a real building 

structure. During the period of heating, the load is kept constant until member reaches its 

failure (transient-state tests). This period, in other words, the time between the beginning of 

the heating and the failure of the member, corresponds to the fire resistance of the member 

and its temperature at the ending of the test to the critical temperature (for cross-sections with 

uniform temperatures). Most fire design formulas for members (beams, columns, slabs) are 

derived from both experimental and numerical results of standard fire resistance tests 

(transient-state tests), whereas fire design formulas for joints (such as connectors that assures 

the shear transfer between the steel profile and the concrete deck, and connections between 

other members) are derived from steady-state tests, since the design resistance of these last 

ones should only be verified for the critical temperature of the respective member, that is, if 

failure occurs, this one should be responsible for the loss of strength of the members. 
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Therefore, this research work of this thesis was based as faithful as possible on fire resistance 

tests. 

 

Chapter 4, Finite Element Modelling of Cold-Formed Steel Flexural Members, reports on a 

numerical investigation concerning the distortional and lateral-torsional buckling behaviour of 

simply supported CFS beams subjected to major axis bending at ambient temperature and 

subjected to combined bending and fire. A suitable finite element model was first developed 

to compare with the experimental results. The numerical results presented and discussed were 

obtained through shell finite element analyses performed using the ABAQUS program, as it 

has already been stated. It was intended to describe in detail all parameters, considerations 

and assumptions took into account in a three-dimensional nonlinear finite element model to 

predict the behaviour of CFS beams in fire, such as, the beams previously tested in 

Laboratory by the author. The numerical results were thereby compared with those given by 

the experimental tests in order to validate the developed finite element model. The effect of 

some parameters such as mesh density, eccentricity of the applied load on the beams and 

diameter of the screws used in the connection of the profiles in order to obtain the built-up 

CFS beams were also taken into account in this numerical research work of this thesis. This 

made it possible to understand which parameters or assumptions have more influence on the 

analysis of this kind of numerical models. 

 

Chapter 5, Parametric Studies and Development of Simplified Design Rules, reports on a 

numerical investigation regarding the structural behaviour of CFS beams outside the bounds 

of the original experimental tests. After validating the developed finite element model, it was 

performed a parametric study concentrating on variation in thickness, height and length of the 

respective beams and influence of the bending moments on failure at ambient temperature and 

under fire conditions. Furthermore, the effect of some parameters such as the level of initial 

applied load on the beam, the initial geometric imperfections of the beams and the stiffness of 

the surrounding structure, including the axial stiffness, rotational stiffness and their 

interactions were also target of this numerical study. 

 

Finally, the results of the experimental tests and the numerical simulations were thereby the 

basis of an analytical study for the elaboration of simplified calculation equations for fire 

design of cold formed steel beams. Firstly, the results presented in the previous chapters of 

this thesis are compared with those given by the predictions from the currently available 

design rules both at ambient temperature and under fire conditions, involving the EN1993-

1.1, -1.2 and -1.3, for instance. Then, simplified calculation equations are described in this 
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chapter. Finally, these methods are expected to be a useful tool for the designers and 

constitute a first step for a future part for Eurocode 3 related to fire design of CFS beams. 

 

Chapter 6, Conclusions and Recommendations, provides an overview of the developed work 

and a summary of the most significant findings of this research and also presents 

recommendations for possible future research on the buckling behaviour and fire design of 

cold-formed steel structures. Some considerations related to the use of CFS beams and rules 

of conduct and good practice for the CFS building construction are still addressed in this 

chapter, looking for a better way to improve the fire performance of this type of structures. 
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2 LITERATURE REVIEW 

 

2.1 Mechanical Properties of Cold-Formed Steel 

 

2.1.1 Behaviour at ambient temperature 

 

There are two general types of stress–strain curves of steel (Figures 2.1 and 2.2). One is of 

sharp-yielding type (fig. 2.1) and the other is of gradual yielding type (fig. 2.2). Steels 

produced by hot rolling are usually sharp yielding. For this type of steel, the yield point is 

defined by the level at which the stress–strain curve becomes horizontal. Steels that are cold-

worked, such as the ones produced by cold rolling or brake pressing, often show gradual 

yielding. For gradual-yielding steel, the stress–strain curve is rounded out between the 

proportional stress limit and the strain-hardening of steel. It can be seen in this figure that the 

yield strength is not well-defined comparing with steels produced by hot rolling. Therefore, in 

these cases, the yield strength widely accepted is the stress at strain levels of 0.2% or 0.5%. 

The 0.2% yield strength is the intersection point of stress-strain curve and the proportional 

line offset by 0.2% strain (offset method), whereas the 0.5% yield strength is the intersection 

point of the same curve and the non-proportional vertical line specified at 0.5% strain (strain-

underload method). In this method, the yield strength is the stress corresponding to a specified 

elongation or extension under load and other strain levels can be used, namely 1.5% and 2%. 

In many cases, the yield point determined by these two methods is similar. The ultimate 

tensile strength of steel sheets or strip used for cold-formed steel (CFS) sections has little 

direct relationship to the design of such members. The load-carrying capacities of CFS 

flexural and compression members are usually limited by yield point or buckling stresses that 

are less than the yield point of steel, particularly for those compression elements having 

relatively large width-thickness ratios and for compression members having relatively large 

slenderness ratios. The exceptions are screwed, bolted and welded connections, where the 

strength of which depends not only on the yield point but also on the ultimate tensile strength 

of the material (Yu, 2000 and Hancock et al., 2001). 

 

A large proportion of the steel used for CFS structures is thereby of this type. These steels are 

high tensile and often have limited ductility as a result of the manufacturing processes. The 

induced deformations at flat parts of the section may be elastic deformations; however, the 

deformations expected at corners of the section are essentially plastic deformations. The 

changes in the mechanical properties due to cold work are caused mainly by three 
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phenomena: strain hardening, strain aging and the Bauschinger effect (Chajes et al., 1963). As 

a mild steel specimen is strained beyond the yield plateau, an increasing stress is required to 

produce further deformation. The region of the stress-strain curve representative of this type 

of yielding, that is, increasing stress with increasing plastic deformation, lies between the 

yield plateau and the ultimate strength and is known as the strain hardening range. 

Additionally, if a mild steel specimen is plastically stretched and a period of time is allowed 

to elapse before reloading, a further increase in the tensile yield strength occurs, beyond that 

which results from strain hardening. This is known as strain aging. Finally, the phenomenon 

that results in an increase in the proportional limit and yield strength by reloading a plastically 

deformed specimen in the same direction, (tension after pre-stretching), or in a decrease by 

reloading it in the opposite direction (compression after pre-stretching), is known as the 

Bauschinger effect. As illustrated in Figure 2.3, curve C represents the stress-strain curve of a 

coupon specimen taken from a CFS profile, in other words, the stress-strain curve of a coupon 

specimen taken from a steel sheet after coiling, uncoiling and flattening. If this curve is 

compared with curve A for the virgin material, it is evident that both strain hardening and 

strain aging increase the proportional limit and decrease the ductility of the material. As it can 

be noticed a bit further ahead on this thesis, the effects of cold work on the mechanical 

properties of CFS profiles, especially at corners, also depend on the type of steel, the inside-

radius-to-thickness ratio, the thickness of the steel sheet, the coil radius, among other 

parameters. It is important to stress that both residual stresses and increase of yield strength 

are results of manufacturing process and tend to compensate one another (Dubina and 

Ungureanu, 2002). This way, the increase of yield strength might not be much relevant and, 

therefore, when this is taken in account in numerical simulations the residual stresses should 

be considered as well. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Stress-strain curve of steel elements usually produced by hot rolling (Yu, 2000) 
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Figure 2.2 – Stress-strain curve of steel elements usually produced by cold-worked (Yu, 

2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 – Effects of strain hardening and strain aging on stress-strain characteristics of 

structural steel (Chajes et al., 1963; Rondal e Dubina, 2005; Moen et al., 2008) 
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2.1.2 Behaviour at elevated temperature 

 

In 2000, Outinen et al. (Outinen et al., 2000) published some results of an extensive 

experimental research programme carried out in the Laboratory of Steel Structures at Helsinki 

University of Technology for investigating the mechanical properties of various structural 

steels at elevated temperatures. Among these steels, the structural sheet steel with yield 

strength of 350 N/mm
2
 was of particular interest (S350GD+Z). So, the test pieces were cut 

from a CFS sheet with nominal thickness of 2 mm, longitudinally to rolling direction. The 

purpose of this research was to study the behaviour of this material for fire temperatures using 

both transient state and steady state tensile test methods. It is noticed that the transient state 

tests are more reliable because they may also take into account the creep effects. These 

authors compared their results with the EN 1993-1-2 (2004) material model for the hot-rolled 

steel members and concluded that there were significant differences (figs. 2.4 and 2.5). For 

instance, in the EN 1993-1-2 (2004) the nominal yield strength is assumed to be constant until 

400 ºC, whereas actually the behaviour of the studied steel started to decrease earlier. It is also 

showed that the difference between steady state and transient state test results was negligible, 

except for the modulus of elasticity at 400 and 500 ºC (fig. 2.5). However, some authors draw 

attention to the fact that both the steady state and transient state tests are usually completed 

within an hour, and thus they include only a limited amount of creep behaviour (Ranawaka 

and Mahendran, 2009). This means that there may be little difference between the two types 

of tests in relation to creep effects. 

 

Continuing with these studies, Outinen (Outinen, 2006 and 2007) observed that the yield 

strength of coupon specimens taken from steel compression members that was in fire (until 

950 ºC) decreased almost back to the nominal yield strength level of the material (fig. 2.6). As 

the author stated, this finding supports the advice given in BS5950 (1990), that for cold 

finished steel the strength can be assumed to be 90 % of the original strength if the distortions 

are within the shape and the straightness tolerances of the structure. 
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Figure 2.4 – Yield strength of structural steel S350GD+Z determined from test results 

compared with yield strength given in different design codes (Outinen et al., 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 – Modulus of elasticity of structural steel S350GD+Z determined from test results 

compared with those given in different design codes (Outinen et al., 2000) 
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Figure 2.6 – Tensile test results for structural steel S350GD+Z obtained before and after high-

temperature compression tests (Outinen and Mäkeläinen, 2002) 

 

Cheng and Young also conducted both steady and transient tensile coupon tests at different 

temperatures ranged approximately from 20 to 1000 ºC for obtaining essentially the 

deterioration of the mechanical properties of yield strength (0.2% proof stress) and modulus 

of elasticity (Cheng and Young, 2007a). This study included CFS grades G550 and G450 with 

plate thickness of 1.0 and 1.9 mm, respectively. The reduction factor of 0.2% yield strength 

obtained from the tests were compared with the EN 1993-1-2 (2004) prediction and also 

compared with the test results conducted by Lee et al. (2003), as shown in Figure 2.7. The 

comparison showed that the EN 1993-1-2 (2004) provided conservative predictions for G450, 

1.9mm, from 20 to 550 ºC and for G550, 1.0mm, from 20 to 400 ºC. The test results obtained 

in this study were far below than the EN 1993-1-2 (2004) prediction for G450, 1.9mm at 660 

ºC and for G550, 1.0mm from 450 to 800 ºC. It is interesting to note that the test results 

obtained in this study were significant different from the ones conducted by Lee et al. (2003) 

for temperatures ranged from 450 to 700 ºC. 

 

The reduction factor of modulus of elasticity determined from the transient state tests was 

compared with the steady state test results for G450 1.9mm specimens, as shown in Figure 

2.8. The transient state test results were also compared with the AS 4100 (1998) and EN 

1993-1-2 (2001) prediction as well as compared with the transient state tests conducted by 

Outinen et al. (2001). It can been seen that the reduction factor of modulus of elasticity 

obtained from the transient state tests in this study agree well with the EN 1993-1-2 (2001) 

prediction and the test results obtained by Outinen et al. (2001) for temperatures ranged from 
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320 to 450 ºC. For temperatures ranged from 80 to 320 ºC and from 550 to 660 ºC, the values 

of the reduction factor of modulus of elasticity obtained from the transient state tests were 

smaller than those predicted by EN 1993-1-2 (2001) and the tests conducted by Outinen et al. 

(2001). The AS 4100 (1998) predictions of the modulus of elasticity were un-conservative 

compared with the transient state test results. It should be noted that the reduction factor of 

modulus of elasticity obtained from the transient state tests was quite different from the steady 

state tests. 

 

Cheng and Young (Cheng and Young, 2007a) still assessed the thermal elongation of the 

specimens at a tensile stress level of 2MPa that is close to free thermal expansion and 

compared with the thermal elongation calculated according to BS 5950-8 (1998), EN 1993-1-

2 (2001) and Outinen (1999). The comparison indicated that the thermal elongation of G450 

1.9mm steel was generally less than the values predicted by  BS 5950-8 (1998) and EN 1993-

1-2 (2001) for temperatures ranged from 140 to 550 ºC and  by Outinen (1999) for 

temperatures ranged from 320 to 550 ºC (fig. 2.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 – Comparison of reduction factor of 0.2% strength predicted by EN 1993-1-2 

(2004) with test results obtained by Cheng and Young (2007a), Lee et al. (2003) and Outinen 

(2006) 
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Figure 2.8 – Comparison of modulus of elasticity predicted by AS 4100 (1998), EN 1993-1-2 

(2001) and proposed equation by Cheng and Young (2007a) with test results for transient and 

steady state tests 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 – Comparison of thermal elongation predicted by BS 5950-8 (1998), EN 1993-1-2 

(2001) and Outinen (1999) with test results obtained by Cheng and Young (2007a) 

 

Cheng and Young (Cheng and Young, 2006) also presented a test program on the material 

properties of the corner parts of CFS profiles at elevated temperatures. This test program 

included the inner and outer corner coupon specimens (fig. 2.10) of grade G500 with the 

nominal plate thickness of 1.9 mm. The yield strength, modulus of elasticity, ultimate 

strength, ultimate strain and total elongation obtained from their tests were compared with 
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those of the flat coupon specimens of the cold-formed steel. A yield strength of 524 MPa for 

the flat coupon specimens, of 545 MPa for the inner corner coupon specimens and of 573 

MPa for the outer coupon specimens were obtained from those tests at ambient temperature. It 

can clearly be seen the great influence of the cold-work due to forming on the mechanical 

properties of the steel. Summarizing, the yield strength of the outer corner coupon specimens 

(a 90º bend) increased by 9 % comparing to the yield strength of the flat coupon specimens. 

On the other hand, the main experimental results of this research work showed that generally 

the reduction factors of yield strength, modulus of elasticity and ultimate strength of the 

corner coupon specimens were similar to those of the flat coupon specimens (figs. 2.11 and 

2.12). It could still be seen from that comparison and Figure 2.13 that the effect of the cold-

forming operation on the ductility of corner parts of CFS profiles was obvious for 

temperatures below 180 ºC and less obvious for temperatures greater than or equal to 180 ºC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 – Coupon specimens (Cheng and Young, 2006) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 – Reduction factors of yield strength of the different coupon specimens (Cheng 

and Young, 2006) 
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Figure 2.12 – Reduction factors of modulus of elasticity of the different coupon specimens 

(Cheng and Young, 2006) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 – Comparison of test results of total elongation (Cheng and Young, 2006) 

 

Ranawaka and Mahendran (Ranawaka and Mahendran, 2009) described a detailed 

experimental study into the mechanical properties of light gauge cold-formed steels made of 

low- (G250) and high-strength (G550) steels with thickness in the range of 0.6-1 mm at 

elevated temperatures. Their results showed that the steel grade had an influence on the yield 

strength of steel. As seen in Figure 2.14, low-strength steels lost their strength more rapidly at 

lower temperatures than high-strength steels. There was a considerable difference in the 

degradation of yield strength between low- and high-strength steels in the range of 200-500 

ºC. However, when the temperature increased beyond 400 ºC, high-strength steels lost their 

strength more rapidly than low-strength steels. This may mean that higher level of cold-

working used in high-strength steels is the reason for the difference in the rates of strength 

degradation between these steels. The steel thickness did not appear to have a significant 

influence on the reduction factors. On the other hand, there was also no clear relationship 
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between the modulus of elasticity and the steel grade or the thickness of steel (fig. 2.15). 

Unlike for yield strength, the reduction factors were similar for low- and high-strength steels, 

with the difference being less than 10 %. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 – Yield strength reduction factors based on 0.2% proof stress (Ranawaka and 

Mahendran, 2009) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15 – Reduction factors of modulus of elasticity (Ranawaka and Mahendran, 2009) 

 

Kankanamge and Mahendran (Kankanamge and Mahendran, 2011) also performed an 

experimental study of the mechanical properties of cold-formed steels with different 

thicknesses and steel grades at elevated temperatures. Their conclusions were similar to the 

ones of Ranawaka and Mahendran (Ranawaka and Mahendran, 2009). Nevertheless, 

Kankanamge and Mahendran (Kankanamge and Mahendran, 2011) highlighted the lack of 

reliable predictive equations for the mechanical properties of cold-formed steels. For instance, 

Figures 2.16 and 2.17 present respectively a comparison of the reduction factors of yield 

strength and modulus of elasticity predicted by them with those given by other researchers. 
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They concluded that there is a great difference between these results, which may introduce 

considerable doubts about the viability of these reduction factors for the mechanical 

properties of cold-formed steels, especially the reduction factors established in EN 1993-1-2 

(2004), because these are very close to the ones obtained by Outinen (Outinen , 1999) (Figs. 

2.7 and 2.17), who was the first one to present some results. Kankanamge and Mahendran 

(Kankanamge and Mahendran, 2011) stated that the differences in results may result from the 

variation between cold-formed steels and the test methods used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 – Comparison of yield strength reduction factors with those obtained by other 

researchers (Kankanamge and Mahendran, 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 – Comparison of the reduction factors of modulus of elasticity with those 

obtained by other researchers (Kankanamge and Mahendran, 2011) 
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2.2 Residual Stresses in Cold-Formed Steel Members 

 

The stresses in structural steels in their unload state are known as residual stresses. For 

example, in hot-rolled steel members the residual stresses are the result of cooling of the 

member after hot-rolling. These stresses are mostly of membrane type and depend on the 

shape of the cross-sections (Almeida, 2006). On the other hand, residual stresses in CFS 

sections are in general due to both the cold-forming process (press-braking or cold rolling) 

and the prior coiling-uncoiling process. In both processes, residual stressses are induced as a 

result of plastic bending. Shafer and Pekoz (Shafer and Pekoz, 1998) were the first 

researchers to recommend a flexural residual stress distribution for CFS channel sections (fig. 

2.18). From their experimental results, it could be concluded that membrane residual stresses 

are reasonably small when compared with the flexural residual stresses and can be ignored, 

especially in press-braked sections, since membrane residual stresses are still more prevalent 

in rolled-formed members than in press-braked ones (Tables 2.1 and 2.2). It can be also seen 

in Table 2.2 that the residual stresses in the corners of rolled-formed sections are lower than in 

the corners of press-braked sections, in contrast to the residual stresses in the flat portions. 

 

 

 

 

 

 

 

 

Figure 2.18 – Definition of flexural and membrane residual stress (Shafer and Pekoz, 1998) 

 

Table 2.1 – Membrane residual stress as % fy (Shafer and Pekoz, 1998) 

 

 

 

 

 

 

 

 

 

 



2 LITERATURE REVIEW Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

28 Luís Miguel dos Santos Laím 

 

Table 2.2 – Flexural residual stress as % fy (Shafer and Pekoz, 1998) 

 

 

 

 

 

 

 

 

 

 

In spite of this, as Shafer and Pekoz (Shafer and Pekoz, 1998) stated, the experimental 

measurements of residual stresses through thickness is very difficult or infeasible and so 

usually only surface residual stresses are measured, with the variations across the plate 

thickness being assumed to be linear. Analytical and numerical models (Quach et al., 2004) 

and also residual stresses measured on thicker plates (Weng and White, 1990) have shown 

more complex variation through the thickness.  

 

In 2006, Quach et al. (Quach et al., 2006) developed a finite element method for the 

prediction of residual stresses in CFS sections produced by press-brake operations. In order to 

validate the numerical model, two sets of existing experiments (Weng and Peköz, 1990; Weng 

and White, 1990) were shown to agree closely with the finite element results. Then, the finite 

element code ABAQUS was employed to simulate cold bending in press-brake operations 

from a CFS sheet with nominal thickness of 1.8 mm. At the end, the authors stated very 

clearly in this work that the maximum residual stresses in a press-braked section generally 

occur in the corner region and away from the surfaces (fig. 2.19). This means that the 

conventional method of measuring the surface residual stresses in the laboratory and 

assuming a linear variation across the plate thickness may greatly underestimate the real 

residual stresses. They also showed that the distributions of residual stresses in the flat 

portions are highly dependent on the initial coil diameter (fig. 2.20). It is noticed that different 

residual stresses can arise in the flat portions of otherwise identical cold-formed sections as a 

result of different initial coil diameters, which are unknown to designers and users of these 

sections. So, the authors considered that this may be responsible for the significant scatter in 

the test load capacity of CFS members. 
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Concerning the above, Quach (Quach, 2005) also studied the cold work effect of the 

manufacturing process on the structural behaviour of the press-braked members. A commonly 

used mono-symmetric lipped channel section was selected for this study. Section dimensions 

of 76.23 mm web depth, 41.45 mm flange width and 15.37 mm lip were used. This section 

was 1.8 mm thick and the yield stress of the steel was 250 MPa. The numerical simulations 

showed that the column strength was more sensitive to the cold work in the flat portions than 

the cold work in the corner regions (fig. 2.21). The enhancement of the column strength due 

to cold work in the corners decreased as the column length increased and become negligible 

for longer columns (Le ≥ 1500 mm). Like Ranawaka and Mahendran said (Ranawaka and 

Mahendran, 2010), the cold work in the corner regions may be ignored because the corners 

are usually just a small proportion of the overall cross-sectional area. In addition, it was 

observed that the cold work in the flat portions enhanced the strength of short columns, but 

reduced the column strength when the column was long enough (Le ≥ 1000 mm). Hence, it is 

clear that while the cold work in the corner regions may cause positive effect, the cold work 

in the flat portions might not always induce positive effect on the column strength. 

Furthermore, Quach’s results (Quach , 2005) also show that cold work in the corner regions 

may have a negligible effect on the member stiffness, but in the flat portions may reduce the 

member stiffness (fig. 2.22). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 – Through-thickness variations of residual stresses in the corner region (Quach et 

al., 2006) 
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Figure 2.20 – Through-thickness variations of residual stresses at the mid-web section (Quach 

et al., 2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 – Cold work effect on the strength of pin-ended press-braked columns (Quach, 

2005) 

 

In 2008, Moen et al. (Moen et al., 2008) provided a general mechanics-based prediction 

method for residual stresses and effective plastic strains in CFS members produced by cold-

rolling processes. It was also shown that both transverse and longitudinal residual stress 

distributions and the shapes of these distributions are nonlinear through the thickness. Taking 

advantage of this method, Figure 2.23 presents, for instance, the predicted longitudinal 

residual stress distribution from coiling, uncoiling and flattening of a steel sheet with nominal 

thickness of 2.5 mm, a steel grade of S280GD+Z and with a mean coil radius of 400 mm; and, 

Figure 2.24, the predicted longitudinal residual stress distribution from cold-rolling in the 

corner regions and at the flat parts of the sections. It can be seen that the residual stresses are 
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nonlinear through the thickness and have different shapes for flats and corners. Furthermore, 

the stress magnitudes at the inner fibres in the corners of rolled-formed sections are thereby 

lower than in the corners of press-braked sections. On the other hand, the stress magnitudes at 

the outer fibres increase for thicker sheets and lower yield stresses (fig. 2.25). However, 

additional work is needed to experimentally and numerically evaluate the residual stresses of 

rolled-formed sections, especially their interaction between the corners and flats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 – Cold work effect on the stiffness of a pin-ended press-braked column (Quach, 

2005) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23 – Predicted longitudinal residual stress distribution from coiling, uncoiling, and 

flattening of a steel sheet 
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Figure 2.24 – Predicted longitudinal residual stress distribution from cold-rolling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.25 – Influence of sheet thickness and yield stress on through-thickness longitudinal 

residual stresses (Moen et al., 2008) 

 

Other parameters that may influence the residual stress magnitude, especially in press-braked 

sections, are the outer radius of bend to thickness of plate ratio (r0/t) and the bent angles. 

Regarding to this matter, Anis et al. (Anis et al., 2012) published a study on the effect of 

residual stress in cold formed corners of S355 and S650 structural steels. During the analyses, 

ro/t ratio of 4, 5, 6 and 7 for 5 mm plate thickness and ro/t ratio of 6, 7 and 8 for 10 mm plate 
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thickness with bent angle of 110º, 100º, 90º, 80º and 70º have been evaluated using two-

dimensional nonlinear finite element analyses (FEA), in order to achieve magnitude of 

residual stresses inside corners of cold bent sections. The authors concluded that the tension 

residual stresses obtained in the middle of the thickness of the bend ranged from 60% to 92% 

of the yield strength of the material. It is clear from Figure 2.26 that smaller corners have 

higher values of residual stress than larger corners. Similarly, corners with small bent angles 

have higher magnitudes of residual stress than the ones with larger bent angles but this 

variation is not much significant. 

 

 

 

 

 

 

 

 

 

 

Figure 2.26 – Comparison of residual stress magnitudes between different ro/t ratios and bent 

angles for (a) S355 and (b) S650 steels (Anis et al., 2012) 

 

Keeping in mind Ranawaka and Mahendran’ s work again (Ranawaka and Mahendran, 2010), 

their brief analysis of the influence of flexural residual stress in a press-braked C-section 

allowed to conclude that these residual stresses are also irrelevant (< 1%). This may have 

occurred because the members may buckle at a stress level lower than the yield point of steel, 

as it has already been stated here. Hence, members with high values of steel yield strength and 

/ or low values of the steel sheet thickness are little susceptible to residual stresses and, on the 

other hand, in those cases, the residual stresses also have the tendency to be low (Moen et al., 

2008). Lastly, the residual stresses are not often considered at elevated temperatures since 

they decrease with increasing temperatures (Vila Real et al., 2004). 

 

2.3 Imperfections in Cold-Formed Steel Members 

 

The thickness of CFS sections is usually thin and the ultimate strength and post-buckling 

mechanisms of them are both sensitive to their initial geometric imperfections (Schafer and 

Peköz, 1999; Dubina and Ungureanu, 2002 and Dinis and Camotim, 2010). None member has 

a perfect geometry. Bowing, warping, twisting and local deviations are some examples of 
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geometric imperfections of a member. In order to provide information about the above, 

Schafer and Peköz (Schafer and Peköz, 1998a) analysed the amplitude of two types of 

sectional geometrical imperfections: type 1 (d1), maximum local imperfection in a stiffened 

element (as representative of local buckling) and type 2 (d2), maximum deviation from 

straightness for a lip stiffened or unstiffened flange (as representative of distortional buckling) 

(fig. 2.27). These ones were based on probabilistic analysis of measured imperfections from 

actual cross-sections. From their statistical results, it can be observed that a 0.95% value of 

the cumulative distribution function corresponds to a d1/t of 1.35 and a d2/t of 3.44. As 

alternative, they suggested codified values for the maximum amplitude of geometrical 

imperfections: d1=6te
-2t

 or d1=0.006h for the local buckling mode and d2=0.014b+0.5t or 

d2=t for the distortional buckling mode. These values should be applied for height to 

thickness ratios less than 200, width to thickness ratios less than 100 and the thickness less 

than 3 mm. Concerning to overall sinusoidal imperfection, the magnitude of 1/1000 times 

member length (L) can be used, as proposed by Eurocode 3, Part 1.1 (EN 1993-1-1, 2004). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.27 – Sectional geometrical imperfections (Schafer and Peköz, 1998a) 

 

In 2002, Kaitila (Kaitila, 2002a) carried out an imperfection sensitivity analysis on CFS 

lipped channel columns. It was concluded that the increase of the magnitude of the local 

imperfections may lead to a relatively straightforward decrease of initial stiffness of the 

member and that, on the other hand, the magnitude of global imperfections may have more 

influence on the ultimate load of the member. For instance, it was observed that the 

compressive ultimate load of a C column may be reduced by 5.1% when the global 

imperfection magnitude increases from L/1000 to L/500 and may also be reduced by 3.9% 

when the local imperfection magnitude increases from h/200 to h/100 at 600 ºC. Kaitila still 

suggested that L/500 and h/200 are suitable values for global and local imperfections, 

respectively. Nevertheless, the failure by distortional buckling may still be further affected by 
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the initial geometric imperfections. Ranawaka and Mahendran (Ranawaka and Mahendran, 

2010) noted that the maximum load capacity of a C column may be reduced by 20 and 30% 

when the distortional imperfection magnitude increases from zero to 2tn at 20ºC and 500ºC, 

respectively. Moreover, it was noted that the effect of imperfection direction on the ultimate 

load was very small, less than 3% (fig. 2.28). Another important thing is that the peak load is 

in general sensitive to the imperfection magnitude in contrast to the failure mechanism, in 

other words, the response in the post-peak range seems to be nearly identical (Yu and Schafer, 

2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28 – Effect of initial geometric imperfections on failure loads (Ranawaka and 

Mahendran, 2010) 

 

2.4 Research on Cold-Formed Steel Structural Beams 

 

2.4.1 Behaviour at ambient temperature 

 

Investigations on the structural behaviour of cold-formed steel beams extend over the last 

decades. These studies were generally concentrated on the instability of CFS beams of 

individual sections, including channel (U) sections (Ren et al., 2006), lipped channel (C) 

sections (Wang and Zhang, 2009), channel sections with double-box flanges (fig. 2.29) 

(Magnucka-Blandzi, 2011), channel sections with drop flanges (fig. 2.30) (Magnucki and 

Paczos, 2009), zed sections (Chu et al., 2006), omega sections (Karim and Adeli, 1999) and 

sigma sections (Li, 2009). It is noticed that these cross-sections are opened and/or asymmetric 

where the centroid and shear centre do not coincide. If a transverse load is applied away from 

the shear centre it causes torque. To make matters worse, in general, this torque is non-
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uniform, that is, torsion combined with warping. The magnitude of the warping stresses can 

be as high as the bending stresses in some cases. However, depending on the type of the 

section the serviceability limit state may be more critical than the strength limit state (Gotluru 

et al., 2000). Some beams, like U and C beams, may undergo large rotation before failure. 

 

 

 

 

 

 

 

 

 

 

Figure 2.29 – Cross-section of a beam with double-box flanges (Magnucka-Blandzi, 2011) 

 

 

 

 

 

 

 

 

 

Figure 2.30 – Cross-section of a beam with drop flanges (Magnucki and Paczos, 2009) 

 

Among other parameters, the low torsional stiffness (low torsional constant, IT), the high 

slenderness (high width-to-thickness ratio, b/t) and the geometric imperfections (normally of 

the same order of magnitude or higher than the thickness of the steel plates) are some of the 

main causes for their high susceptibility to buckling phenomena (Yu, 2000). It is well known 

that beams made of CFS sections and subjected to bending moment may exhibit local (wall 

transverse bending only), distortional (both wall transverse bending and cross-section 

distortion) and global (lateral-torsional) buckling (fig. 2.31). Local buckling is particularly 

prevalent and is characterized by the relatively short wavelength buckling of individual plate 

elements. Distortional buckling involves both translation and rotation at the compression 

flange/lip fold line of the member (Yu and Schafer, 2002). These special buckling modes are 

the most interesting and complex subjects within this research field. Beyond them, interactive 
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buckling modes between or among the above ones are the most frequently in the CFS flexural 

members. Buckling modes without this kind of interaction are referred to as pure buckling 

modes. Thus, the terms global, distortional and local buckling have the exact meaning of pure 

global, pure distortional and pure local buckling mode, respectively (Ádány and Schafer, 

2006a).Understanding and dealing with these phenomena has been the central focus of recent 

research efforts (Wang and Zhang, 2009; Dinis and Camotim, 2010). These buckling modes 

are mostly responsible for the ultimate strength of the compression members as they may 

occur even before parts of the cross-section yield. There are also other types of bucking which 

may still occur in beams. Shear buckling and web crushing are some examples of that. 

Whereas the primary function of the top and bottom flange plates of the beam is to resist the 

axial compressive and tensile forces arising from the applied bending moment, the primary 

function of the web plate is to resist the applied shear force. So, when the web is very thin and 

deep, the web may therefore be prone to shear buckling at relatively low values of applied 

shear. Web crushing is other problem which often arises with CFS beams under the action of 

concentrated loads, which can arise at points of load transfer from other parts of the structure 

or at support points. This type of behaviour is also called web buckling or web crippling 

(Macdonald et al., 2008).  

 

 

 

 

 

 

 

 

 

Figure 2.31 – Buckling modes of a cold-formed steel C-section flexural member: (a) Local 

buckling, (b) Distortional buckling and (c) Lateral-torsional buckling (Wang and Zhang, 

2009) 

 

The strength calculations of CFS members are carried out at several levels of complexity 

depending on the purpose of its use. For the standardised design of flexural members the 

Effective Width Method (EWM) and the recently developed Direct Strength Method (DSM) 

(Schafer, 2008) may be applied. The EWM is formally available in the Eurocode 3, Parts 1.3 

and 1.5 (EN 1993-1-3, 2004 and EN 1993-1-5, 2006) and in the North American 

Specification (AISI S100-1996), whereas the DSM is available in the Appendix 1 of the 

North American Specification (AISI S100-2004 - Appendix 1). The EWM, introduced by 
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Von Kármán et al. in 1932 (Von Karman et al., 1932), performs a reduction of the plates that 

comprise a cross-section based on the stability of the individual plates for the prediction of the 

local buckling strength. It is noticed that this method is a semi-empirical calibrated 

formulation which takes into account the local buckling effects for thin-walled sections, but 

does not have sufficient procedures for predicting the distortional buckling failure. However, 

the Eurocode 3, Part 1.3 (EN 1993-1-3, 2004) provides specific provisions for the distortional 

buckling strength of CFS flexural members. This method adopted in the Eurocode considers 

the distortional buckling by using a reduced thickness in the calculation of the effective area 

of the edge stiffener and the distorted part of the compression flange. The reduction factor of 

thickness for distortional buckling depends, among other parameters, on the elastic buckling 

stress of the edge stiffener and the material yield strength. In the end, the beam strength can 

still be calculated in an optional iteration procedure, both for the calculation of the effective 

area of the edge stiffener and the distorted part of the compression flange and for the 

calculation of the effective area of the cross-section since the stress distribution over the new 

effective cross-section may be different from the effective cross-section previously calculated, 

especially for flexural members. To sum up, a great amount of time and labour involved in 

carrying out subsequent effective width calculations for multiple plate elements is always 

associated to the EWM. 

 

On the other hand, the direct strength method was initially proposed by Schafer and Peköz in 

1998 (Schafer and Peköz, 1998b) and it is based on the member elastic stability in contrast to 

the EWM. The essential difference between these two methods is therefore the replacement of 

plate stability with member stability. First, all elastic instability loads (or moments) for the 

gross cross-section should be determined (local, distortional and global buckling mode) as 

well as the load (or moment) that causes the section to yield. Then the member strength can 

be directly determined by predicting the load (or moment) capacities separately for global, 

local, and distortional buckling, in the same way of Eurocode 3, Part 1.1 (EN 1993-1-1, 2004) 

predicts the design buckling resistance of a hot-rolled steel column (or beam), in other words, 

basing on reduction factors for the corresponding buckling curves and taking also into account 

the post-buckling reserve and the interaction between these modes. Here, the designers should 

have computational tools for the calculation of the elastic buckling loads (or moments) of the 

members, which can be determined either by a FEA software such as ABAQUS or, in a 

speedier way, using CUFSM program, developed by Schafer (Schafer, 1997). As numerical 

techniques for finding approximate solutions to partial differential equations and their 

systems, as well as integral equations, the programs ABAQUS and CUFSM use respectively 

the finite element method (FEM) (Schafer et al., 2010) and the semi-analytical finite strip 

method (FSM) (Ádány and Schafer, 2006b). In CFS members design the FSM and the 
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recently developed constrained finite strip method (cFSM) (Schafer and Ádány, 2006) are the 

most commonly used tool for elastic buckling prediction. Other design approaches include: 

the generalized beam theory (GBT) (Silvestre and Camotim, 2002a,b), the effective area 

method (EAM) (Batista, 2009), the effective section method (ESM) (Batista, 2010) and the 

erosion of critical bifurcation load (ECBL) approach championed by Dubina (Ungureanu and 

Dubina, 2004 and Szabo et al., 2004). It is noticed that the GBT solution can be obtained with 

GBTUL program, developed by the research group of the IST – Instituto Superior Técnico 

from Lisbon (Bebiano et al., 2008), and that the EWM and the DSM are the design methods 

commonly used by designers, although their application is not so easy. As well as the EWM, 

the EAM is a direct method, which was originally proposed to cover local-global buckling 

interaction for CFS columns (Batista, 1989) and did not contemplate distortional buckling and 

flexural behaviour of beams. The ESM is an extension of the EAM for the design of CFS 

members (columns and beams) under local-global buckling interaction. In this field, this 

method represents an advantage over the traditional EWM, because it is much more 

understandable, accurate and simpler to be applied.  

 

The conventional FSM provides the most widely used approach to examining instabilities in a 

thin-walled member under longitudinal stress (axial, bending, and/or warping torsion), in 

terms of buckling half-wavelength vs. buckling load (or moment) (fig. 2.32), as popularized 

by Hancock (Hancock, 1978). Figure 2.32 shows a typical buckling load - half-wavelength 

curve for a lipped channel section with a straight-line model and under axial compression. 

Traditionally, the first minimum is local buckling, the second distortional buckling, and 

global buckling is identified in the descending branch of the curve at a longer half-wavelength 

equal to the global unbraced length of the member (Li and Schafer, 2010). In particular, the 

FSM is used in members with pinned boundary conditions and in members that have regular 

geometry along their length. The GBT method on the other hand is able to perform buckling 

analysis with any kind of end conditions by combining free and fixed supports for global and 

local plate buckling modes (Batista, 2010). Basically, the semi-analytical FSM is a variant of 

the common finite element method. A thin-walled cross-section is discretized into a series of 

longitudinal strips (or elements) opposite to finite element discretization, as shown in Figure 

2.33. Each strip is based on the plane stress assumption and Kirchhoff thin plate theory (Li 

and Schafer, 2010). 

 

While determination of the elastic buckling loads (or moments) is more straightforward than 

traditional effective width calculation, it is not always trivial. Even for common member 

geometry elastic buckling calculations can sometimes lead to ambiguous predictions, which is 

particularly true for distortional buckling (Beregszászi and Ádány, 2011). The cFSM is 
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presented as a potential solution to this problem, as it provides methods for definitively 

separating the buckling modes from one another (fig. 2.34). Alternatively, the GBT can also 

be used for the same purpose, since cFSM and GBT lead to very similar results (Ádány et al., 

2009), as shown in Figure 2.35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.32 – Buckling load as a function of the buckling half-wavelength from an FSM 

solution (Li and Schafer, 2010) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.33 – Mesh configuration using the FEM (a) and the FSM (b) (Li and Schafer, 2010) 
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Figure 2.34 – Buckling moment as a function of the buckling half-wavelength from an FSM 

and a cFSM solution (Li and Schafer, 2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.35 – Comparison of member stability analysis by GBT and cFSM (Ádány et al., 

2009) 
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After all, the most complete analysis, however at the same time also the most computer time 

consuming and deep involvement requiring, is the use of analysis by the FEM. Particularly, 

this relates to the geometrically and materially non-linear FEM analysis of the strength of 

CFS members with imperfections (GMNIA). As a consequence, its application is mainly 

aimed at strength calculations of important structural members or parts (Sadovský et al., 

2012). In addition, the finite element approach provides many advantages over physical 

experiments, especially when a parametric study of cross-section geometry is involved. 

However, the FEM should always be verified against experimental results to ensure an 

accurate and reliable model. The FEA should therefore be capable to directly predict the 

ultimate loads and failure modes of steel structural members (Zhu and Young, 2012). FEM is 

not typically used because of the overhead in initiating the model and the fact that it cannot 

uniquely identify the buckling modes. The elastic buckling loads (or moments) of the 

members can also be obtained by the FEM using the ABAQUS program for instance. 

However, the buckling curves given by ABAQUS and CUFSM are not totally identical, 

because the ABAQUS buckling curve exhibits the local (or distortional) critical loads (or 

moments) associated with one (two, three, and so on) half-wave buckling modes, as shown in 

Figure 2.36. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.36 – Comparison of buckling curves of a member provided by ABAQUS and 

CUFSM (Dinis and Camotim, 2011) 

 

It is worth pointing out, for example, that simulations, previously verified against 

experimental tests, performed with ABAQUS program allowed to conclude that the DSM 

yields overly conservative predictions if the moment gradient effect on CFS beams under 
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moment gradient is ignored in distortional buckling (Yu and Schafer, 2007). On the other 

hand, with the goal of maximizing the load capacity of CFS members, many research works 

have been dealing with the problems of optimal design of CFS beams. For instance, 

Magnucki and Magnucka-Blandzi (Magnucki and Magnucka-Blandzi, 1999) formulated and 

solved the variational and parametric optimization of arbitrary mono-symmetrical open cross 

sections of thin-walled beams in pure bending, Karim and Adeli (Karim and Adeli, 1999) 

reported the use of the neural network model to global optimum design of CFS thin-walled 

beams with omega sections, Tian and Lu (Tian and Lu, 2004) optimized the steel C-channel 

with or without lipped flanges, and Lee et al. (Lee et al., 2005) described the micro Genetic 

Algorithm and calculate the optimization problem of the CFS channel beam section.  

 

Additionally, an important parameter normally to take into account in the numerical analysis 

is the mesh density. For example, an approximately 40 mm mesh size may yield a 9% higher 

load capacity than an approximately 10 mm mesh size in case of the S4 element. Note that 

this element is double-curved, a four-node (4), quadrilateral and stress/displacement shell (S) 

element. It is also essential to stress that, for distortional buckling, the lip itself of C sections 

undergoes bending and at least four linear elements or two quadratic elements are required to 

provide reasonable accuracy (Schafer et al., 2010). The lips are thereby small additional 

elements provided to a section to improve its efficiency to stiffen outstands under 

compressive loads. 

 

Finally, it is clear that the majority of studies in this field emphasize further the structural 

behaviour of these members by means of analytical approximations and numerical methods. 

Hence, it is intended to publish in this thesis good experimental data on the structural 

response of CFS beams which is at the same time the hot point of this thesis. 

 

2.4.1.1 Design of cold-formed steel beams according the DSM established in the Appendix 1 of 

AISI S100 (2004) 

 

According to DSM, if all the elastic instabilities for the gross section, including local, 

distortional, and global buckling moments, have been determined (by CUFSM, for instance) 

and also the yield moment, then the strength can be directly determined by predicting the 

moment capacities separately for global, local, and distortional buckling. The relevant DSM 

formulae for beams are presented here in condensed form. A practical example is also shown 

in Appendix D of this thesis. 

 

Prior to 1996, the American Iron and Steel Institute issued two separate specifications for the 

design of CFS structural members, connections, and structural assemblies. One was for the 



2 LITERATURE REVIEW Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

44 Luís Miguel dos Santos Laím 

 

allowable stress design (ASD) method, and the other was for the load and resistance factor 

design (LRFD). These two design specifications were combined into a single standard in 

1996. Both methods are now equally acceptable for the design of CFS structures, even though 

they may or may not produce identical designs. However, the two methods should not be 

mixed in designing the various CFS components of a structure. To sum up, when the strength 

is calculated according the ASD method, the load combinations have to be calculated 

according the ASD method as well. Hence, for the ASD method, the flexural allowable 

strength, Ma, is determined by: 

 �� = ��
Ω

 (2.1) 

 

where, Mn is the nominal flexural strength and Ω is the safety factor. For the LRFD method, 

the flexural design strength, Md, is calculated by: 

 �� = φ ∙ �� (2.2) 

 

where, φ is the resistance factor. For beams meeting the geometrical and material criteria of 

Section 1.1.1.2 of the AISI Specification (AISI S100-1996), Ω and φ are equal to 1.67 and 

0.90, respectively. The nominal flexural strength, Mn, is the minimum of the nominal flexural 

strength for global buckling (lateral-torsional buckling), Mne, for local buckling, Mnl, and for 

distortional buckling, Mnd, as given below. 

 

��� =
�	

	� ��
�	��� �� �1 − � ������������	��

  

if Mcre < 0.56My 

if 2.78My ≥ Mcre ≥ 0.56My 

if Mcre > 2.78My 

(2.3) 

 

�� = ! ���	"1 − 0.15 ����&�'���.() ����&�'���.( ���  

if λl ≤ 0.776 

if λl > 0.776 

(2.4) 
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��� = ! ��	�1 − 0.22 "���+�� )�.,� "���+�� )�., ��  

if λd ≤ 0.673 

if λd > 0.673 

(2.5) 

 

where, 

 

λ = -��� ��
 ⁄  (2.6) 

 

λ� = /�� ��
�⁄  (2.7) 

 �� = 01 ∙ 2� (2.8) 

 

Mcre is the critical elastic lateral-torsional buckling moment, Mcrl is the critical elastic local 

buckling moment, Mcrd is the critical elastic distortional buckling moment, My is the yield 

moment, Fy is the yield stress, and Sf is the gross section modulus referenced to the extreme 

fibre in the first yield. It is noticed that these critical elastic moments can be provided by 

CUFSM program, for instance. 

 

2.4.1.2 Design of cold-formed steel beams according the EWM established in EN 1993-1-3 

(2004) 

 

The Eurocode 3 (EN 1993-1-1, 2004; EN 1993-1-3, 2004 and EN 1993-1-5, 2006) provides 

also specific provisions against local, distortional and lateral-torsional buckling strength for 

CFS beams. The method adopted in EN 1993-1-3 (2004) is essentially based on effective 

width concept. The methodology established in EN 1993-1-3 (2004) for the design of CFS 

beams is presented here in condensed form and practical examples are still shown in the 

Appendix C of this thesis. 

 

If the cross-section class of a beam is Class 4 means that the local buckling limits the moment 

resistance. It is worth mentioning that for members with Class 4 sections the effect of local 

buckling on global behaviour at the ultimate limit state is such that the elastic resistance, 

calculated on the assumption of yielding of the extreme fibres of the gross section (criteria for 

Class 3 sections), cannot be achieved (EN 1993-1-1, 2004). The reason for the reduction in 

strength is that local buckling occurs at an early stage in parts of the compression elements of 

the member; the stiffness of these parts in compression is thereby reduced and the stresses are 
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distributed to the stiffer edges. So, the actual nonlinear distribution of stress is taken into 

account by a linear distribution of stress only acting on a reduced effective plate width leaving 

the remaining plate with no stress, where the buckle occurs (fig. 2.37). In other words, the 

local buckling strength is considered by using a reduced (effective) width in all compressed 

walls of the member. These effective widths of compression elements are calculated by using 

a reduction factor, ρ, which depends on the plate slenderness, λ34 (which in turn depends on 

the stress distribution, kσ (Tables 2.3 and 2.4), the material yield strength, ε, the plate width, b, 

and the thickness, t, of the steel plate) and it is different between outstand and internal 

elements, as follows: 

  

- For internal compression elements: 

ρ = ! 1.0	
λ356�.�,,(�8ψ)

λ35: ≤ 1.0  

if λ34 ≤ 0.5 + -0.085 − 0.055ψ 

if λ34 > 0.5 + -0.085 − 0.055ψ 
(2.9) 

 

- For outstand compression elements: 

ρ = ! 1.0	
λ356�.�>>

λ35: ≤ 1.0  

if λ34 ≤ 0.748 

if λ34 > 0.748 
(2.10) 

 

where, ψ is the stress ratio determined in accordance with Tables 2.3 and 2.4, and λ34 is taken 

as: 

 

λ34 = ? @⁄28.4 ε-Bσ

 (2.11) 

 

However, when the maximum stress in a plate, σcom,Ed, is lower than the yield strength, fy, the 

above equations can be replaced by the followings: 

 

- For internal compression elements: 

ρ = ! 1.0	�6�.�,,(�8ψ)/λ35,��+
λ35,��+ + 0.18 Eλ356λ35,��+FEλ356�.�F ≤ 1.0  

if λ34 ≤ 0.5 + -0.085 − 0.055ψ 

if λ34 > 0.5 + -0.085 − 0.055ψ 
(2.12) 
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- For outstand compression elements: 

ρ = ! 1.0	�6�.�>>/λ35,��+
λ35,��+ + 0.18 Eλ356λ35,��+FEλ356�.�F ≤ 1.0  

if λ34 ≤ 0.748 

if λ34 > 0.748 
(2.13) 

 

where, 

 

λ34,
�� =	λ34Gσ�HI,J�K�L γ��⁄  (2.14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.37 – An effective C beam determined as a composition of effective plates (Schafer, 

2008) 

 

On the other hand, for an edge stiffener the buckling factor, kσ, must not be obtained from 

Table 2.4, but from the following: 

 

Bσ = ! 0.5	0.5 + 0.83/E?4,� ?4 − 0.35⁄ FNO   

if ?4,� ?4⁄  ≤ 0.35 

if 0.35 < ?4,� ?4⁄  ≤ 0.6 

(2.15) 

 

where, bp,c is the width of the edge stiffener and bp is the flange width for a C section, as 

indicated in Figure 2.38. It is noticed that this procedure requires an iterative calculation in 



2 LITERATURE REVIEW Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

48 Luís Miguel dos Santos Laím 

 

which the stress ratio, ψ, is determined at each step from the stresses calculated on the 

effective cross-section defined at the end of the previous step. In order to account the 

influence of distortional buckling, EN 1993-1-3 (2004) stipulates a reduced thickness in the 

calculation of the effective area of the edge stiffener and the distorted part of the compression 

flange. The reduction factor of thickness for distortional buckling depends on the elastic 

buckling stress, σcr,s, of the edge stiffener and the material yield strength, fy; the factor can be 

refined by an optional iteration procedure. The equations to calculate the reduction factor, χd, 

are as follows: 

 

χ� =
�	

	� 1.0	1.47 − 0.723λ3�	0.66 λ3�⁄

 

if λ3� ≤ 0.65 

if 0.65 < λ3� < 1.38 

if λ3� ≥ 1.38 

(2.16) 

 

where, 

 

λ3� = /K�L σ�
,T⁄  (2.17) 

 

EN 1993-1-3 (2004) assumes that the edge stiffener behaves as a compression member with 

continuous partial restraint, with a spring stiffness that depends on the boundary conditions 

and the flexural stiffness of the adjacent plane elements. Figure 2.38 shows the analysis model 

in EN 1993-1-3 (2004) to determine the rotational spring stiffness of the stiffener C sections. 

In the case of the edge stiffeners of a C beam in bending about the strong axis, the spring 

stiffness, K, and the elastic buckling stress, σcr,s, can be obtained from: 

 

U =	 V@�4(1 − νN) ∙ 1?�Nℎ4 + ?�� (2.18) 

 

σ�
,T = 2-U ∙ V ∙ XTYT  (2.19) 

 

where, As is the effective cross-sectional area of the edge stiffener, Is is the second moment 

about a-axis (fig. 2.38) of effective area of the edge stiffener, E is the modulus of elasticity, ν 

is the poisson ratio, hp is the web width, and b1 is the distance from the web-to-flange junction 
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to the centre of the effective area of the edge stiffener (including effective part be2 of the 

flange). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.38 – Edge stiffener of a C section (EN 1993-1-3, 2004) 

 

Table 2.3 – Effective widths of internal compression elements (EN 1993-1-5, 2003) 
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Table 2.4 – Effective widths of outstand compression elements (EN 1993-1-5, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, global buckling is considered by replacing the cross-sections with class 4 elements by 

an effective cross-section and then designed in a similar manner to class 3 sections using 

elastic cross-sectional resistance limited by yielding in the extreme fibres. Thus, according the 

EN1993-1.1 (2004), the design buckling resistance moment of a member susceptible to 

lateral-torsional buckling is given as follows: 

 �L,Z� = χ[\ ∙ ]� ∙ K�
γ�� (2.20) 

 

in which LTχ
 is defined as follows: 
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0.1=LTχ  

χ[\ = 1
Φ[\ + /Φ[\N − λ3[\N  

if LTλ  ≤ 0.4 

if LTλ  > 0.4 
(2.21) 

 

where, 

 

Φ[\ = 0.5 ^1 + α[\Eλ3[\ − 0.2F + λ3[\N _ (2.22) 

 

λ3[\ =	G]�K���
  (2.23) 

 

Wy in Equations 2.20 and 2.23 are the appropriate section modulus of the cross-section 

depending on its class (for example, elastic section modulus, Wel, for class 3, and effective 

section modulus, Weff, for class 4 cross-sections), fy is the yield strength of steel, and 	
α[\ is the imperfection factor of the beam. The elastic critical moment for lateral-torsional 

buckling, Mcr, can be calculated (for doubly symmetric sections or mono-symmetric sections 

which are subjected to bending about the symmetry axis (AS/NZS 4600, 1996)) by: 

 

��
 = `LG πNVXEB�aFN bcX\ + πNVXd(Bda)Ne (2.24) 

 

in which EI, EIw and GIT are the minor axis flexural rigidity, warping rigidity and torsional 

rigidity, respectively. ky represents the effective lateral buckling length factor and kw the factor 

which accounts for the beam end warping. Lastly, Cb is a coefficient depending on the 

moment distribution along the length of the beams (Trahair, 1993). 

 

2.4.2 Behaviour at elevated temperatures or under fire conditions 

 

As can be seen from the foregoing, studies in this area at ambient temperature are not too 

much, and are mostly of a numerical nature or give importance to the numerical analysis more 

than the experimental analysis. However, they address the most important phenomena related 

to these elements, including post-buckling resistance (local and distortional buckling) 

(Camotim and Dinis, 2011), global flexural, torsional and flexural-torsional buckling 

(Narayanan and Mahendran, 2003), shear resistance of stud walls (Pan and Shan, 2011), 
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bending resistance (Wang and Zhang, 2009) and resistance of some type of screwed 

connections (Zaharia and Dubina, 2006). 

 

But when it comes to fire, there are even fewer studies related to the behaviour of CFS 

elements subjected to high temperatures. Fire is still other phenomenon which deteriorates its 

structural behave. The high thermal conductivity of steel and the high section factor of these 

structural members (small wall thickness) can lead to a rapid rise in steel temperature in a fire 

and together with the deterioration of its mechanical properties as a function of temperature 

can cause serious deformation of structural elements and the premature failure of the building. 

As it is an emerging technology and as a great variety of profiles with different geometric 

shapes can be easily produced, it is of the utmost importance that studies within this area of 

research should be undertaken. 

 

There are only a few studies related to numerical studies on the behaviour of CFS beams 

subjected to elevated temperatures. From the view of the author of this thesis, the best study 

on CFS beams is the research work performed by Kankanamge and Mahendran. For instance, 

it seems from their results that the design method given in EN 1993-1-2 (2004) is over-

conservative for all the temperatures excepted for CFS beams with very high slenderness 

values (fig. 2.39) (Kankanamge and Mahendran, 2012). These authors also concluded from a 

parametric study that the EN 1993-1-3 (2004) design methods with buckling curve b are 

unsafe or over-conservative for some temperatures, especially in the intermediate slenderness 

region. Therefore, they proposed the use of other buckling curves for different temperature 

ranges for the fire design of CFS lipped channel beams. It is noticed that the methods 

established in EN 1993-1-2 (2004) were investigated by the authors in fire design by using the 

CFS mechanical properties at elevated temperatures. With regard to the maximum 

temperature in CFS members, EN 1993-1-2 (2004) has enforced a limit of 350 ºC, which 

seems to be overly conservative for some researchers (Kankanamge, 2010), especially, on the 

fire behaviour of beams. For example, it was also found out by Laím and Rodrigues (Laím 

and Rodrigues, 2011) and Lu et al. (Lu et al., 2008) that CFS beams under certain boundary 

conditions can have load-carrying capacity until 700 ºC. Hence, it is clear evidence that 

experimental tests on CFS beams are needed, especially on beams consisting on compound 

CFS profiles, as well as more numerical simulations based obviously on experimental tests so 

that simplified calculation methods for fire design of CFS beams can be developed. This 

thesis therefore intends to fill the knowledge gap in this almost unexplored area and bring a 

better understanding about these issues. 
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Figure 2.39 – Comparison of FEA results with Eurocode 3 Part 1.2 (Kankanamge and 

Mahendran, 2012) 
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3 EXPERIMENTAL ANALYSIS OF COLD-FORMED STEEL BEAMS 

 

3.1 Introduction 

 

This chapter presents a series of flexural tests at ambient temperature and under fire 

conditions focused on simply supported cold-formed steel (CFS) beams made of one and 

more CFS profiles. It is described in detail the experimental programme, the testing 

procedures and the test set-up for bending tests performed in the Department of Civil 

Engineering (DEC) of the University of Coimbra (UC). The main purpose of the tests at 

ambient temperature was to assess the failure loads and the failure modes of the studied 

beams and also to compare the structural response of the different kinds of beams. These tests 

were carried out to provide a reference for the fire tests. On the other hand, three sets of fire 

tests were conducted in order to evaluate the influence of the stiffness of the surrounding 

structure to the beams, in other words, the first set of the experimental tests was carried out on 

simply supported CFS beams without any kind of restraining to the thermal elongation of the 

beam, whereas the second and third sets were undertaken on the same type of beams, but with 

axial restraint and with combined axial and rotational restraint at the beam supports, 

respectively. Other important goal of this research was to provide experimental data for 

numerical studies, in order to carry out a parametric study outside the bounds of the original 

experimental tests. To sum up, the experimental and numerical results was the basis of an 

analytical study for the development of simplified calculation methods for fire design of CFS 

beams. 

 

3.2 Test Specimens 

 

The specimens consisted of beams made of one or more CFS profiles, namely, channel and 

lipped channel profiles, also known as U and C profiles, respectively (fig. 3.1). All these 

cross-sections were 2.5 mm thick and 43 mm wide. The inside bend radius and the length of 

the edge stiffeners of the C profiles measured respectively 2 and 15 mm. The C sections were 

250 mm tall, whereas the U sections were 255 mm tall, so that the C profiles could be placed 

between the flanges of the U profiles (R beams), as illustrated in Figure 3.1. Therefore, as it 

can also be seen in this figure, the compound lipped I beams consisted of two C connected in 

the web, whereas the compound R beams consisted of one C profile and one U profile 

connected in the flanges. The compound 2R beams were made of two R beams connected 

together by the C profiles’ web. The total beam length was 3.6 m for all specimens, but the 
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span, L, was only 3 m in such a way that the beams and their supports could be 

accommodated by the horizontal electric furnace available in the laboratory. 

 

In addition, the profiles were screwed together as indicated in Figure 3.1 by means of Hilti S-

MD03Z 6.3x19 carbon steel self-drilling screws in S235 steel, at sections 0.05 m and 1.15 m 

away from the ends of the beams so that the spacing of the screws along the beam was about 1 

m (L/3) (fig. 3.2). All the profiles were made of S280GD+Z structural steel, which is a 

continuous carbon steel sheet with a zinc coating thickness of 0.04 mm (275 g/m2) and with a 

yield strength of 280 MPa and an ultimate tensile strength of 360 MPa, according to NP-EN 

10147 (2002). These profiles were manufactured by the company PERFISA S.A., which is 

specialized in the fabrication of CFS profiles in Portugal, and the choice of the cross-sections 

and the distance between the screws was based on the observation of CFS structures and 

design projects for this kind of buildings, representing commonly used details in several 

countries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – Scheme of the cross-sections of the tested beams 

 

3.3 Test Set-up 

 

Schematic and overall views of the experimental system used in the fire tests of the beams are 

shown in Figures 3.2, 3.3, 3.4, 3.5 and 3.6. Figure 3.3 shows many views of the test set-up 

which essentially consisted of a reaction frame (no. 1 in fig. 3.3), a hydraulic jack (no. 2 in 

fig. 3.3) to impose loading, a modular electric furnace (no. 3 in fig. 3.3) to simulate fire 

conditions, a roller and pinned support (no. 4 in fig. 3.3) to provide a simply supported beam. 

As it can be seen in Figure 3.2, the test specimens (no. 5 in fig. 3.3) were loaded at two points 
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1.0 m (one-third of the beam span) away from the beam supports in such a way that between 

the two loading points the beam was under pure bending state (four point bending test). The 

loading was applied by an ENERPAC hydraulic jack, model RR 3014 (no. 2 in fig. 3.3), 

which was hung on a two-dimensional reaction frame (no. 1 in fig. 3.3) that consisted of two 

HEB300 columns and a HEB300 beam of class S355 steel. This hydraulic jack had a 

maximum loading capacity in compression of 295 kN and a maximum stroke length of 360 

mm and was controlled by a servo hydraulic central unit W+B NSPA700/DIG2000. 

Additionally, beneath the hydraulic jack a Novatech F204 load cell of 250 kN capacity (no. 6 

in fig. 3.3) was mounted in order to monitor the applied load during the fire tests. This loading 

was transferred from the hydraulic jack to the specimen by a HEA160 column (no. 7 in fig. 

3.3) and applied at two points on the specimen by means of a HEB140 beam (no. 8 in fig. 

3.3), both filled up with fire-protection mortar between the profile flanges to prevent their 

destruction by the high temperatures developed during the fire tests. It can be seen in this 

figure that the whole test specimen and the HEB140 beam and consequently a piece of the 

HEA160 column were inside the furnace. 

 

The specimens were heated with a horizontal modular electric furnace (no. 3 in fig. 3.3). This 

furnace was 4500 mm x 1000 mm x 1000 mm in internal dimensions and capable to heat up 

to 1200 ºC and to follow fire curves with different heating rates. Only about 2.5 m in length of 

the specimens were directly heated, because the beams supports were protected by 50 mm 

layer of ceramic wool to prevent its destruction during all tests as well. A spherical plain 

bearing and a spherical hinge (respectively no. 9 and 10 in fig. 3.3) were also assembled in the 

loading system in such a way that the load applied on the beams could easily follow the local, 

distortional and global deformations of the beams during the tests, especially, the lateral 

buckling. Although the spherical hinge was not completely free to rotate due to the threaded 

rods which allowed to make the connection between the HEA160 column and HEB140 beam, 

the spherical plain bearing could rotate 90º to both sides about an axis passing through its own 

centre and it was perpendicular to a plane formed by the longitudinal axes of the HEA160 

column and the HEB140 beam. In addition, the spherical plain bearing could still rotate about 

10º to both sides around an axis that passed through its own centre and it was perpendicular to 

a plane composed of the reaction frame. 

 

The tested beams were statically determinate over a roller and pinned support as also shown 

respectively in Figures 3.4a and 3.4b. These supports were made of refractory stainless steel, 

typically used for elevated temperature applications. They prevented the vertical 

displacement, the lateral displacement and the lateral rotation of the beams. In addition, the 
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roller support allowed the horizontal displacement of the beams in contrast to the pinned 

support as it can clearly be seen in this figure. 

 

Furthermore, the experimental system still comprised four restraining steel beams, two of 

them to simulate the axial restraint to the thermal elongation of the beam (fig. 3.5) and the 

other two with the purpose of simulating the rotational stiffness of the beam supports (fig. 

3.6). Hence, the axial restraining system was composed of two simply supported beams, one 

with high flexural rigidity (near the pinned support) (no. 1 in fig. 3.5) and the other with low 

flexural rigidity (near the roller support) (no. 2 in fig. 3.5). On the other hand, the rotational 

restraining system was composed of two cantilever beams (no. 1 in fig. 3.6), both with 

identical flexural rigidity. It is noticed that these beams were placed in the basement floor of 

the Laboratory, below the testing floor (fig. 3.6). Also note that the specimen was connected 

to the rotational restraining beams by means of pin-ended steel smooth rods (they passed 

through the holes of the slab) (no. 2 in fig. 3.6), whereas the specimen was connected to the 

axial restraining beams by means of a HEB220 profile (near the pinned support) (no. 3 in fig. 

3.5) and a threaded rod system (near the roller support) (no. 4 in fig. 3.5) which allowed to 

eliminate the clearances between the specimen and those beams. At the end of this HEB220 

profile and this threaded rod system, a steel semi-sphere was placed (no. 5 in fig. 3.5), 

covered with a thin layer of Teflon (PTFE) sheet, so that the vertical displacement was 

possible without friction. 

 

It is worth mentioning that this kind of test set-up allowed studying separately the effects of 

axial and rotational restraint on the failure times and temperatures of CFS beams. Also, a 

Novatech F204 load cell of 500 kN capacity was mounted in order to monitor the axial 

restraining forces generated in the test specimen (no. 6 in fig. 3.5) during the fire tests, as well 

as two Novatech F202 load cells of 100 kN capacity (no. 3 in fig. 3.6) so as to measure the 

restraining forces due to the rotational restraint imposed by the cantilever beams. The actual 

axial, ka, and rotational, kr, stiffnesses were, respectively, about 15 kN/mm and 150 kN.m/rad, 

which were taken indirectly from the experimental results. These restraining systems intended 

to reproduce as faithful as possible the actual boundary conditions of a beam when is inserted 

in a real CFS building structure, making it possible to understand how the surrounding 

structure effects a CFS beam when is subject to fire. Stiffness values as realistic as possible 

were considered in this type of tests. It is worth mentioning that it was built a 3D model of a 

general CFS building (two floors with nine identical rooms on each floor) using beam 

elements in ABAQUS program, in order to predict realistic values of axial and rotational 

stiffness (Appendix I). 
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Figure 3.2 – Schematic view of the experimental set-up for flexural tests of beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – Test set-up for structural fire tests of CFS beams 
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Figure 3.4 – Detail of the beam support system: (a) roller and (b) pinned supports 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 – Detail of the axial restraining beams with low (a) and high (b) flexural stiffness 
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Figure 3.6 – Detail of the rotational restraining system 

 

3.4 Test Plan 

 

3.4.1 Ambient temperature tests 

 

The experimental tests on CFS beams at ambient temperature were conducted in the 

Laboratory of Testing Materials and Structures (LEME) of the University of Coimbra (UC), 

in Portugal. The experimental programme consisted of 12 quasi-static bending tests, allowing 

the study of the flexural behaviour of 4 type of beams with different cross-sections. For each 

type of beam-specimen, 3 tests were carried out (B-C_i, B-I_i, B-R_i and B-2R_i, where i 

stands for the test number, i = 1-3), in order to obtain a better correlation of the results. The 

main objective of this series of tests was to investigate the effects of the section shape (open, 

closed, single and compound section) on the failure moments and the failure modes of the 

different beams. 

 

3.4.2 Fire tests 

 

The experimental tests on CFS beams under fire conditions were also conducted in the LEME 

of the UC, in Portugal. The experimental programme consisted of 36 fire tests, 12 of which 
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were just simply supported beams, 12 others were the same beams but with restrained thermal 

elongation, and the others were beams with axial and rotational restraint. So, for each series of 

12 fire tests, 3 tests for each type of beam were carried out, in order to obtain a better 

correlation of the results, as well as at ambient temperature. Note that it was intended to test 

the same type of specimens that were used for ambient temperature tests, but under high 

temperatures. This experimental programme is summarized in Table 3.1. For example, the 

reference B_ka+kr-C_3 indicates the third test (3) of the C (C) beam (B) with axial (ka) and 

rotational (kr) restraint. The main goal of these series of tests was also to investigate the 

effects of the section shape and still the influence of the axial and rotational restraint of the 

surrounding structure to the beam on the critical temperature of the different beams. 

 

Table 3.1 – Test plan for the fire tests 

Test reference λλλλ��� 
��� 

(kN.m) 

��� 

(kN.m) 

�	,�� 

(kN.m) 

ka,b 

(kN/mm) 

kr,b 

(kN.m/rad) 

�� 

(kN) 


� 

(kN/mm) 


� 

(kN.m/rad) 

B-C_1 

B-C_2 

B-C_3 

1.61 15.87 6.09 3.93 61 1984 3.93 0 0 

B-I_1 

B-I_2 

B-I_3 

1.22 32.15 21.71 11.88 124 4018 11.88 0 0 

B-R_1 

B-R_2 

B-R_3 

0.81 28.93 43.63 16.52 120 3888 16.52 0 0 

B-2R_1 

B-2R_2 

B-2R_3 

0.58 57.89 173.10 41.96 241 7814 41.96 0 0 

B_ka-C_1 

B_ka-C_2 

B_ka-C_3 

1.61 15.87 6.09 3.93 61 1984 3.93 15 0 

B_ka-I_1 

B_ka-I_2 

B_ka-I_3 

1.22 32.15 21.71 11.88 124 4018 11.88 15 0 

B_ka-R_1 

B_ka-R_2 

B_ka-R_3 

0.81 28.93 43.63 16.52 120 3888 16.52 15 0 

B_ka-2R_1 

B_ka-2R_2 

B_ka-2R_3 

0.58 57.89 173.10 41.96 241 7814 41.96 15 0 
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B_ka+kr-C_1 

B_ka+kr-C_2 

B_ka+kr-C_3 

1.61 15.87 6.09 3.93 61 1984 3.93 15 150 

B_ ka+kr-I_1 

B_ ka+kr-I_2 

B_ ka+kr-I_3 

1.22 32.15 21.71 11.88 124 4018 11.88 15 150 

B_ ka+kr-R_1 

B_ ka+kr-R_2 

B_ ka+kr-R_3 

0.81 28.93 43.63 16.52 120 3888 16.52 15 150 

B_ ka+kr-2R_1 

B_ ka+kr-2R_2 

B_ ka+kr-2R_3 

0.58 57.89 173.10 41.96 241 7814 41.96 15 150 

 

3.5 Test Procedure 

 

3.5.1 Ambient temperature tests 

 

Four-point bending tests were used to assess the ultimate bending strength of the CFS beams 

at ambient temperature as well as to check the failure modes responsible for their failure, 

including local, distortional, global and their interactions. These experiments provided useful 

results for detailed numerical studies. The load was applied under displacement control, 

which was controlled by a TML SDP-200D linear variable displacement transducer (LVDT) 

at a rate of 0.01 mm/s until the specimen failed and reached its unloading stage, where the 

beam deformation or the lateral rotation of the beam was too large, or the maximum stroke of 

hydraulic jack was reached. During these tests, the load applied on the beams, the 

displacements of the beams and supports, as well as, some strains in the beams were 

measured. Therefore, the instrumentation of the beams included LVDTs for displacement 

measurements (fig. 3.7) and also TML FLA-6-11 strain gauges for strain measurements (fig. 

3.8). Three LVDTs were used to measure the vertical displacements of the beams (no. 2 in 

fig. 3.7) at three sections (S1, S2 and S3 – fig. 3.2) and two LVDTs to evaluate the lateral 

rotation of the beam at section S1 (mid-span), as shown in Figure 3.8. A number of strains 

gauges were also placed around sections S1 and S2 (figs. 3.8 and 3.9) to measure the 

longitudinal strains and consequently to assess the bending moment in the beams. Lastly, two 

LVDTs were positioned in each beam support to allow the determination of their rotations 

(no. 1 in fig. 3.7). The data acquisition was done by a TML data logger, model TDS-530. 
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Figure 3.7 – Detail of the beam instrumentation for the displacement measurements at 

ambient temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 – Detail of the beam instrumentation for the strain and displacement measurements 

at mid-span and at ambient temperature 
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Figure 3.9 – Strain gauge locations in the CFS beams for flexural tests at ambient temperature 

 

3.5.2 Fire tests 

 

To achieve the goals of this investigation, these experimental tests were performed in two 

stages: loading and heating stage. First, the specimens were loaded up to the target force 

under load control at a rate of 0.1 kN/s. The load level applied on the beams, P0, was 50 % of 

the design value of the load-bearing capacity of the beams at ambient temperature (Table 3.1), 

and calculated in accordance with the methods proposed in EN 1993-1-1 (2004), EN 1993-1-3 

(2004) and EN 1993-1-5 (2006). The reason for the use of this load level lay in the fact that 

the load level on the structural members of most buildings in accidental situations ranged 

from approximately 20 to 50 %, and it is supposed that a 50 % load level is on safe side. 

Hence, the loading intended to simulate the serviceability load of a beam inserted in a real 

building structure. Finally, the heating stage was started after the desired load was reached. 

Thus, the specimens were heated up according to a fire curve as near as possible to the 

standard fire curve ISO 834 (1999), since an electric furnace was used and the initial heating 

rate of this curve is very difficult for this type of furnace to reproduce. During the heating 

period, the load was kept constant until the specimen buckled, where the beam deformation 

was too large or the maximum stroke of hydraulic jack was reached. Although these fire tests 

did not follow exactly a standard fire resistance test, the failure criteria specified in ISO 834-1 

(1999) were adopted, but only for the fire tests of beams without axial restraint to the thermal 

elongation. This standard says that the resistance of elements subjected to flexural loading 

depends on the amount of deformation and the rate of deformation (failure criteria in terms of 

deformation). According to this standard, a flexural member is considered to have failed if the 

beam deflection is greater than L
2
/(400h) mm or the rate of deflection reaches L

2
/(9000h) 

mm/min when the maximum deflection exceeds L/30 mm (L and h in mm). Regarding the fire 
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tests of beams with restrained thermal elongation, the member was considered to have failed 

when the restraining forces on it returned to the value of the initial applied axial load (which 

corresponds approximately to zero), in other words, when the deterioration of mechanical 

properties of steel is so high that the member no longer has any load carrying capacity against 

the restraining forces (failure criteria in terms of strength). Thus the load applied on the 

beams, the axial restraining forces, the restraining moments at beam supports, the horizontal 

and vertical displacements of the beams, as well as, the temperatures in the furnace and at 

several points of the beams were measured during the tests. The instrumentation of the beams 

thereby included LVDTs for vertical displacement measurements at sections S1 (mid-span), 

S2 and S3 (no. 4 in fig. 3.6), and thermocouples for thermal measurements in the furnace and 

at different points of the specimen’s cross-section (fig. 3.10) and at sections S1, S2 and S3 as 

well. It is noticed that the LVDTs were placed in the basement floor of the Laboratory, below 

the testing floor, in order to protect them from the high temperatures. The data acquisition was 

also done by a TML data logger, model TDS-530. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 – Location of thermocouples in the different cross-sections 

 

3.6 Results and Discussion 

 

3.6.1 Ambient temperature tests 

 

Figure 3.11 shows the load-displacement curves for the tested CFS beams as a function of the 

vertical displacement at section S1, dS1. It shows the results of the three tests carried out for 

each type of beam. The quasi-static structural behaviour of the beams (i.e., loading stage, 

failure load and unloading stage) was identical for all tests of each type of beam. The small 

differences detected between the load-displacement curves for the same type of beams were 
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essentially due to the eccentricity of the load applied on the beams and, but slightly less 

significant, to the geometric and material imperfections in the specimens. An important 

conclusion to be drawn was that the 2R beams presented a mean ultimate load capacity of 

132.32 kN (fig. 3.11d) that is much higher than for the other types of beams tested.  In 

contrast, the mean ultimate load capacity of the C beams was only 11.72 kN (fig. 3.11a). 

Finally, the lipped I and R beams showed a mean ultimate load capacity of 41.68 and 60.14 

kN (figs. 3.11b and 3.11c), respectively. Hence, the maximum load capacity of the lipped I, R 

and 2R beams was over 3.5, 5 and 10 times higher than the one of the C beam, respectively. 

From these results it may also be concluded that the use of closed built-up sections (R beams) 

can increase by 1.45 times the load-carrying capacity of beams comparing to the open 

sections (lipped I beams). On the other hand, at failure a sharp decay in the load was observed 

in all compound beams (there was no plastic plateau). One reason for that may be the local or 

distortional buckling in one profile close to the peak load. Beyond that, the resistance of the 

beams depended essentially on the remaining resistance of the other beams’ profiles. 

Furthermore but not so relevant in this case, during the unloading stage, some screws in the 

compressed part of the beams failed in shear, as it can be seen by the discontinuities in some 

curves in Figures 3.11b and 3.11c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 – Load-displacement diagrams for the four-point bending tests for the C (a), 

lipped I (b), R (c) and 2R (d) beams 
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In what concerns the lateral buckling behaviour of the beams, it can be seen in Figure 3.12 

that this one depended on the shape of the beam cross-sections as expected. The relative load 

(P / P max) applied on the beams is plotted in the vertical axis of the graph and the horizontal 

axis is plotted against different values of lateral rotation of the respective beam at mid-span. It 

can be observed that from the beginning of the tests, all the beams except the 2R beams 

showed immediately lateral rotation at mid-span of the beams (section S1), the C beams being 

the most affected. For instance, when the load on the beam B-C_2 reached its maximum 

capacity the lateral rotation at section S1 was already about 12º, whereas for beams B-I_2 and 

B-R_2 was only 2.5 and 1º (fig. 3.12), respectively. This improved behaviour resulted from 

the coincidence of the shear centre with the centroid, secondly, from the torsional stiffness of 

the compound cross-sections and lastly from of the increased thickness of the beam cross-

section. It is also important to emphasize that the 2R beams exhibited lateral-torsional 

buckling, but only after one of their U profiles failed by distortional buckling, as it will be 

seen later in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 – Evolution of the relative loads (P / P max) applied on the beams as a function of 

the lateral rotation of the beam at mid-span 

 

Figure 3.13 presents, as an example, the rotations of the beam supports during the tests for the 

B-C_2 and B-R_2 beams (figs. 3.13a and 3.13b, respectively). The rotations of the roller 

support for test B-C_2 coincided with the rotations of the pinned support, whereas for test B-

R_2 the rotations of the two supports only coincided until its maximum load-carrying 

capacity was reached. This was due to the fact that there has been neither local nor 

distortional buckling in Beam B-C_2 up to its maximum load-carrying capacity in contrast to 

the Beam B-R_2 that exhibited local and distortional buckling near the mid-span, closer to the 

roller support than the pinned support. So, the rotations of the roller support were higher than 
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the rotations of the pinned support beyond its ultimate capacity (fig. 3.13b). The same 

conclusions were observed for all lipped I, R and 2R beams (Appendix A) since they all had a 

complex buckling behaviour, including local, distortional, global buckling and their 

interactions. Finally, it can also be seen in Figure 3.13 that the rotations of both beam 

supports were about 0.5º for the beam B-C_2 and 0.6º for the beam B-R_2 at the level of the 

maximum load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 – Rotation of the beam supports throughout the tests B-C_2 (a) and B-R_2 (b) 

 

Another important parameter taken into account in this study was the strain evolution in the 

different cross-sections of the tested beams as a function of the loading applied on them (figs. 

3.14 – 3.17). The main conclusion to be drawn was that the compressive and tensile behaviour 

of the flanges of the closed built-up beams (R and 2 R beams, Figures 3.16 and 3.17) was 

similar up to the maximum load, in contrast to the open section beams (C and lipped I beams, 

figs. 3.14 and 3.15). All the readings of the strain gauges placed in the tensile flanges of all 

beams followed nearly the same tendency during the loading stage, whereas the strain gauges 

placed in the compressive flanges of the C and lipped I beams showed a non-uniform increase 

in the strains (figs. 3.14a and 3.15a). While the lateral rotation of the beam at mid-span 

increased, the compressive strains recorded by the stain gauges placed further apart from the 
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vertical plane that passed through the geometric centre of the cross-section increased less than 

the ones recorded by the strain gauges nearer to that plane. Moreover, during the unloading 

stage some of the strain gauges located further apart from that plane inverted the sign of the 

strains. Figures 3.14b, 3.15b, 3.16b and 3.17b show that the maximum measured value of 

tensile strain was 0.067 (ε_5), 0.106 (ε_11), 0.159 (ε_8) and 0.237 % (ε_14) for, respectively, 

the C, lipped I, R and 2R beams at mid-span and at the maximum load level. On the other 

hand, the maximum measured value of compressive strain in the same conditions was 

respectively of -0.113 (ε_1), -0.152 (ε_1), -0.179 (ε_1) and -0.323 % (ε_2) (figs. 3.14a, 3.15a, 

3.16a and 3.17a). From these results, it can be observed that the maximum strains varied a lot 

between the different cross-sections and the respective flanges of the beams. Furthermore, 

those maximum compressive strains occurred in the flanges for the closed built-up section 

beams and near the end of the web and in the lip for the C and lipped I beams (open section 

beams), respectively. On the other hand, all the tensile strains occurred in the flanges of the 

beams, as expected. It can still be seen clearly by Figure 3.17a that the top surface of one 

flange of the 2R beam (ε_2) exhibited an elastic-plastic behaviour with a corresponding 

elastic strain limit of 0.3 %. All this confirms that CFS profiles can be used in a better way, in 

other words, compound sections can lead to a better use of the material’s structural properties 

and to a delay of the failure modes including local and / or distortional buckling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 – Load-strain curves obtained from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of the beam B-C_2 at section S1 
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Figure 3.15 – Load-strain curves obtained from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of the beam B-I_2 at section S1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 – Load-strain curves obtained from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of the beam B-R_2 at section S1 
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Figure 3.17 – Load-strain curves obtained from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of the beam B-2R_2 at section S1 

 

From these strain measurements (S.M.) and assuming that the cold-formed steel of the tested 

beams reached the yield plateau (fig. 3.18), the bending moments about both the xx’ axis and 

the yy’ axis could be calculated. Thus similar moments were also calculated based on 

classical beam theory (C.B.T.) for comparison (fig. 3.19). Good agreement is noted for both 

calculations (i.e. between M xx’ -S.M. and M xx’ - C.B.T. and also between M yy’ - S.M. and M 

yy’ - C.B.T.). The C beam was subject to biaxial bending around xx’ axis and bending around 

yy’ axis throughout the test while the other beams (I, R and 2R) were approximately under 

pure bending until their ultimate load-carrying capacity was reached. The reason was that the 

C beam was the only one in which there was no coincidence between the shear and geometric 

centres of the cross-section. It is still noticed that the signal change relative to strains (from 

compression to tension and vice-versa) recorded by some strain gauges (figs. 3.14, 3.15, 3.16 

and 3.17) was due to the appearance of this bending moment around the yy’ axis (“weak” 

axis). 

 

All other load-displacement diagrams, load-rotation diagrams, rotations of beam supports and 

load-strain curves, not presented here but which are also in agreement with the above results, 

can be seen in Appendix A. 
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Figure 3.18 – Load-strain and stress-strain curves obtained from the strain gauge ε_2 which 

was placed in the beam B-I_2 at mid-span 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 – Moment-displacement diagrams recorded during the four-point bending tests 

for the C (a), lipped I (b), R (c) and 2R (d) beams at ambient temperature 
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3.6.2 Fire tests 

 

3.6.2.1 Temperature distribution 

 

Figure 3.20 presents the furnace temperatures as a function of time of some fire tests of 

simply supported beams (fig. 3.20a), of axially restrained beams (fig. 3.20b), of axially and 

rotationally restrained beams (fig. 3.20c), and of both these cases (fig. 3.20d). The 

temperatures exhibited a small delay in the initial minutes in relation to the ISO 834 fire curve 

because this part of the curve is very difficult for an electric furnace to reproduce and this 

becomes worse for larger furnaces (high initial thermal inertia). However, nine minutes after 

the beginning of the heating, the furnace temperatures followed the programmed ISO 834 fire 

curve quite well. Also, the evolution of temperatures inside the furnace over time was very 

uniform in all fire tests, meaning that the tests are comparable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 – Furnace temperatures in tests on (a) simply supported beams, (b) axially 

restrained beams, (c) axially and rotationally restrained beams and on lipped I beams with 

different boundary conditions 
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Figures 3.21, 3.22, 3.23 and 3.24 show, as an example, the evolution of the temperatures in a 

cross-section of each type of test beam as well as the furnace temperature and the standard 

fire curve ISO 834. Each measuring point in the cross-sections was used for assessing an 

average temperature (θ��), taking into account the influence areas defined by the 

thermocouples welded to the steel. The temperature in the flanges was considered uniform 

and in the web it was assumed a linear variation from the centre to the flanges. As a result of 

this average temperature in each studied cross-section, it was possible to establish the 

temperature distribution along the beams for different time instants (fig. 3.25) and, 

consequently, to calculate the mean temperature of the steel beam, θ��, which is the integral of 

the mean temperatures calculated in each cross-section (fig. 3.26). 

 

The thermocouples seem to show good results: thermocouples θ	�
	����

, θ	�
	����

 (which were 

welded to the flange), θ	�
	����

 and θ	�
	����

 (which were welded to the web) recorded in general 

similar temperatures (figs. 3.21, 3.23 and 3.24), as well as the thermocouples θ	�
	����

 and θ	�
	����

 

(which were welded to the inner web) (fig. 3.24). Only small differences were noted, for 

example, thermocouples θ	�
	����

 and θ	�
	����

 in the test beam B_ka+kr-I_1 at section S3 

measured temperatures higher than thermocouples θ	�
	����

 and θ	�
	����

 (fig. 3.22), since the web 

was thicker than the flanges. In addition, the temperatures in the upper flanges of the beams 

were slightly higher than the ones in the lower flanges (figs. 3.22 and 3.24), because the 

temperatures inside the furnace slightly increased along the height of the furnace, as it was 

expected. Note that this was only observed at sections S2 and S3, at section S1 (mid-span) the 

temperatures in the upper flanges of the beams were slightly lower (fig. 3.23) than it was 

supposed to be, as a result of the shadow projected by the HEB140 beam (which was above 

the test beam and allowed to apply the load at two points) onto the upper flanges of the tested 

beams. 

  

On the other hand, a large thermal gradient was observed from the inner web to the outer 

webs of the test beam B_ka+kr-2R_3, where the difference between the thermocouples θ	�
	����

, 

θ	�
	����

 and the thermocouples θ	�
	����

, θ	�
	����

 was about 250 ºC at the ending of test (fig. 3.24).  

 

It is also important to emphasize that the evolution of temperature depended on the cross-

section shape. It is clear that the rate of temperature rise was higher in the open beams than in 

the closed built-up beams, due to the confined air in the beams which has quite low thermal 

conductivity and to the fact that only the external sections (U sections in the 2R cross-

sections) were directly exposed to radiation. For instance, it took the beams B_ka+kr-C_3, 

B_ka+kr-I_1, B_ka+kr-R_1 and B_ka+kr-2R_3, 15 minutes to reach about 740, 590, 520 and 
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450 ºC, respectively (fig. 3.25). When the temperatures in the beams were higher than 150 ºC, 

the rates of temperature rise in the C, lipped I, R and 2R beams were respectively about 67, 

48, 43 and 33 ºC/min (fig. 3.26). 

 

When analysing the graphs in Figure 3.25 it should be pointed out that the temperatures of the 

steel profile at beam supports was considered uniform and equal to 20 ºC and also that the 

specimen temperature along its length was assumed to vary linearly between the chosen cross-

sections. It is worth remembering that the beams supports were protected by 50 mm layer of 

ceramic wool to prevent its destruction during all fire tests. However, the temperature of the 

steel profile between the beam supports and section S2 or S3 may have a minor influence on 

the beam behaviour at high temperatures since the buckling modes responsible for the 

collapse of the beams occurred in their central part, including local, distortional and lateral-

torsional buckling, as discussed further ahead in this thesis. This led to the fact that the 

structural performance of the studied beams has been characterized as a function of the mean 

beam temperature between the sections S2 and S3. For this reason and due to the fact that the 

thermocouples θ	�
	����

 and θ	�
	����

 have not been placed in all identical 2R beams, the 

temperatures recorded by these thermocouples were not taken into account neither in the 

mean steel temperature, θ��, nor in the mean beam temperature, θ��, also called mean outer 

steel temperature and mean outer beam temperature, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21 – Evolution of temperature in cross-section S2 of the test beam B_ka+kr-C_3 as a 

function of time 
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Figure 3.22 – Evolution of temperature in cross-section S3 of the test beam B_ka+kr-I_1 as a 

function of time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23 – Evolution of temperature in cross-section S1 of the test beam B_ka+kr-R_1 as a 

function of time 
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Figure 3.24 – Evolution of temperature in cross-section S2 of the test beam B_ka+kr-2R_3 as 

a function of time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 – Evolution of temperature in steel along the length of the test beams: (a) 

B_ka+kr-C_3, (b) B_ka+kr-I_1, (c) B_ka+kr-R_1 and (d) B_ka+kr-2R_3 at different time 

instants of the fire test 
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Figure 3.26 – Evolution of temperature in axially restrained beam as a function of time 

 

3.6.2.2 Vertical deflections 

 

Figure 3.27 provides a general idea of how the different kind of beams with different 

boundary conditions (simply supported, axially restrained and rotationally restrained) might 

behave as a function of its temperature and in terms of deformation, under fire conditions. It 

seems that all these simply supported beams under a load level of 50 % of the design value of 

buckling load of the respective beams at ambient temperature (black dotted line in the graphs) 

present a critical temperature of about 700 ºC. However, when the beams were axially 

restrained, the critical temperature of the beams already depended on the cross-section shape. 

It is obvious that the critical temperature of a beam increases with increasing axial stiffness of 

the respective beam, ka,b, for the same axial stiffness of the surrounding structure, ka. This can 

be confirmed in this figure, where it can be seen that the structural resistance of the C, lipped 

I, R and 2R beams reached its limit for temperatures of about 300, 400, 500 and 650 ºC, 

respectively (blue dashed line in the graphs). Finally, as it was expected, the rotational 

restraint (green continuous line in the graphs) slightly improved the fire behaviour of the 

beams comparing to the beams with just restrained thermal elongation, except for the 2R 

beams. Once again, similarly to the axial stiffness, the benefits of the rotational restraint to the 

fire performance of beams are a question of balance between the rotational stiffness of the 

beam supports, kr, and the rotational stiffness of the beam, kr,b. So, it is interesting to observe 

that, when a CFS beam is engulfed by a fire (under high uniform temperatures), the axial 

restraint to the thermal elongation of the beam may significantly reduce its critical 

temperature, whereas the rotational restraint may be beneficial to the fire resistance of beams. 

This is further discussed below. 
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Figure 3.27 – Evolution of vertical deflections at mid-span of the (a) C, (b) lipped I, (c) R and 

(d) 2R beams as a function of temperature 

 

3.6.2.3 Restraining forces 

 

The evolution of the axial restraining forces generated in beams as a function of temperature 

for the different cross-sections is depicted in Figure 3.28. These graphs represent the typical 

behaviour of a real beam under high uniform temperatures and inserted in a building structure, 

in which it is submitted to restraint to thermal elongation. Due to the effect of the thermal 

action, the axial force on the beam begins to increase until it reaches a maximum value. After 

this maximum it begins to decrease due to deterioration of mechanical properties of steel with 

temperature. The critical temperature is defined in these tests as that at the time when the 

restraining forces on it returned to the value of the initial applied axial load (failure criteria in 

terms of strength), as mentioned before. From this figure, it can be again concluded that the 

critical temperature is affected by the rotational restraint, i.e. it increases with increasing 

rotational restraint. For instance, a stiffness of the beam supports of 150 kN.m/rad induced an 

increase in the critical temperature from 513 ºC to 646 ºC for the C beam (fig. 3.28a), from 

443 ºC to 567 ºC for the lipped I beam (fig. 3.28b), from 516 ºC to 628 ºC for the R beam (fig. 
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3.28c) and from 676 ºC to 677 ºC for the 2R beam (fig. 3.28d). It is also important to stress 

that those differences between the mean temperatures of the respective beams, θ��, were not so 

high when the maximum restraining force in the beams was reached (i.e., when the maximum 

flexural and compressive loading was reached). In this particular case, the mean beam 

temperature, θ��, just increase from 304 ºC to 363 ºC for the C beam (fig. 3.28a), from 411 ºC 

to 428 ºC for the lipped I beam (fig. 3.28b), from 414 ºC to 446 ºC for the R beam (fig. 3.28c) 

and from 573 ºC to 597 ºC for the 2R beam (fig. 3.28d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28 – Evolution of axial restraining forces in the (a) C, (b) lipped I, (c) R and (d) 2R 

beams as a function of temperature 

 

Tables 3.2, 3.3, 3.4 and 3.5 summarize the main results obtained from all fire tests especially 

the critical time and temperature in terms of deformation and strength. These results can also 

be seen in Appendix E. First of all, it is worth mentioning that there is an acceptable 

agreement between the mean temperatures of identical beams with the same boundary 

conditions, since in most of the cases the coefficient of variation (CV) was less than 10%, 

except for the lipped I beams with rotational restraint at the beam supports, but only regarding 

to the temperature in the beam at the time when the maximum restraining force was reached. 
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One reason for that may be due to the fact that these beams are probably the most sensitive to 

geometric imperfections, from the universe of tested beams, as it can be seen further ahead in 

this thesis. Secondly, it is clear that CFS beams exhibited low critical times, less than 30 

minutes. However, the simply supported beams showed the best results, as expected, 13.7 

minutes for the C beams, 15.9 minutes for the lipped I beams, 20.5 minutes for the R beams 

and 23.2 minutes for the 2R beams, corresponding to the following critical temperatures of 

718, 691, 735 and 731 ºC. Hence, closed built-up beams presented enhanced fire behaviour in 

relation to the open beams, with no restraint. On the other hand, when 15 kN/mm of axial 

restraint to the thermal elongation was imposed on beams, their critical temperature dropped 

significantly in some cases, for instance, from 718 ºC to 529 ºC for the C beams (Table 3.2), 

from 691 ºC to 443 ºC for the lipped I beams (Table 3.3), from 735 ºC to 504 ºC for the R 

beams (Table 3.4) and from 731 ºC to 664ºC (Table 3.5), corresponding to a decrease of 26%, 

36%, 31% and 9%, respectively. However, when compared with the mean beam temperature 

corresponding to its maximum restraining force, the temperatures dropped drastically, from 

718 ºC to 302 ºC for the C beams (Table 3.2), from 691 ºC to 411 ºC for the lipped I beams 

(Table 3.3), from 735 ºC to 413 ºC for the R beams (Table 3.4) and from 731 ºC to 595 ºC for 

the 2R beams (Table 3.5), corresponding to a decrease of 58%, 41%, 44% and 19%, 

respectively. 

 

In practice, most civil engineering projects using CFS structures do not take into account the 

rotational stiffness at the ends of beams. However, the findings of this study show that even a 

small value of rotational stiffness (150 kNm/rad) could increase the critical temperature of the 

beams, from 529 ºC to 641 ºC for the C beams (Table 3.2), from 433 ºC to 567 ºC for the 

lipped I beams (Table 3.3), from 504 ºC to 626 ºC for the R beams (Table 3.4), and from 664 

ºC to 670 ºC for the 2R beams (Table 3.5) corresponding to an increase of 21%, 28%, 24% 

and 1%, respectively. Only the critical temperature of the 2R beams seemed not to be affected 

by the rotational restraining (Table 3.5). One reason for that may be due to the low value of 

the rotational restraining used for the case of the 2R beams. Another interesting point to note 

when comparing the critical temperature between all beams in terms of deformations is that 

the difference between the critical temperatures of the beams with axial and rotational 

restraining and the simply supported beams would be small; in other words, the critical 

temperature of the C beams increased just by 7% whereas the critical temperature of the 

lipped I, R and 2R beams decreased just by 14%, 10% and 7%, respectively. It is worth 

mentioning that these differences might have been higher if the effect of catenary action had 

been considered in the test set-up (Liu et al., 2002). It is noticed that the test beams were not 

connected to the restraining beams, only in contact. Finally, other important thing to conclude 

from Table 3.3 is that the critical temperature of a beam might be strongly affected by the 
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axial restraint to the thermal elongation of that beam, even when the axial restraint is very 

low. For instance, the critical temperature of the lipped I beams dropped from 691 ºC to 544 

ºC (21 %) and from 544 ºC to 443 ºC (19 %) when the axial restraining increased respectively 

from 0 to 3 kN/mm and from 3 kN/mm to 15 kN/mm (Table 3.3). 

 

Figure 3.29 shows the evolution of the axial restraining forces (fig. 3.29a) and the restraining 

moments (fig. 3.29b) in the test beam B_ka+kr-I_1, for instance. So, it can be confirmed that 

the axial restraining was about 15 kN/mm and the rotational restraining about 150 kNm/rad. 

The difference in the axial restraining forces during the increasing and the decreasing of its 

axial displacement may have been due to the hysteresis phenomenon of the restraining beams, 

as it was expected. 

 

All other furnace temperatures, mean temperatures in beams, vertical displacements and axial 

restraining forces in beams as a function of both time and mean temperature of the respective 

beams, not presented here but which are also in agreement with the above results, can be seen 

in Appendix E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29 – Evolution of the axial restraining forces (a) and the restraining moments (b) in 

the test beam B_ka+kr-I_1 
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Table 3.2 – Critical times and temperatures of the C beams 

 

Test 

reference 

Failure criteria in terms of strength 
Failure criteria in terms 

of deformation 

t N_max (min) θθθθ N_max (ºC) tcr (min) θθθθcr (ºC) tcr (min) θθθθcr (ºC) 

B-C_1 - - - - - - - - - - - - 13.9 710 

B-C_2 - - - - - - - - - - - - 13.8 729 

B-C_3 - - - - - - - - - - - - 13.5 716 

µµµµ - - - - - - - - - - - - 13.7 718 

σσσσ - - - - - - - - - - - - 0.21 9.7 

CV (%) - - - - - - - - - - - - 1.54 1.34 

B_ka-C_1 7.6 304 10.7 513 12.6 656 

B_ka-C_2 7.1 281 10.6 519 12.4 661 

B_ka-C_3 7.8 323 11.0 554 11.9 604 

µµµµ 7.5 302 10.8 529 12.3 640 

σσσσ 0.33 20.6 0.17 22.2 0.36 31.6 

CV (%) 4.38 6.81 1.61 4.21 2.92 4.94 

B_ka+kr-C_1 8.6 365 12.2 629 16.0 763 

B_ka+kr-C_2 7.9 324 12.3 647 16.7 775 

B_ka+kr-C_3 8.2 363 12.4 646 16.5 766 

µµµµ 8.2 351 12.3 641 16.4 768 

σσσσ 0.34 23.5 0.06 10.2 0.35 6.4 

CV (%) 4.16 6.69 0.49 1.59 2.16 0.83 
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Table 3.3 – Critical times and temperatures of the lipped I beams 

 

Test 

reference 

Failure criteria in terms of strength 
Failure criteria in terms 

of deformation 

t N_max (min) θθθθ N_max (ºC) tcr (min) θθθθcr (ºC) tcr (min) θθθθcr (ºC) 

B-I_1 - - - - - - - - - - - - 15.9 693 

B-I_2 - - - - - - - - - - - - 16.3 709 

B-I_3 - - - - - - - - - - - - 15.5 672 

µµµµ - - - - - - - - - - - - 15.9 691 

σσσσ - - - - - - - - - - - - 0.40 18.5 

CV (%) - - - - - - - - - - - - 2.51 2.67 

B_ka-I_1* 13.2 458 14.9 544 15.2 559 

B_ka-I_2* 11.3 487 12.2 544 12.4 556 

µµµµ 12.3 473 13.6 544 13.8 557 

σσσσ 1.38 20.6 1.94 0.5 1.98 2.0 

CV (%) 11.25 4.35 14.34 0.09 14.35 0.36 

B_ka-I_3 12.0 411 12.7 443 12.7 443 

B_ka+kr-I_1 12.0 428 14.7 567 15.1 597 

B_ka+kr-I_2 11.1 365 15.1 567 15.4 590 

µµµµ 11.5 396 14.9 567 15.3 594 

σσσσ 0.70 44.0 0.24 0.2 0.20 5.2 

CV (%) 6.02 11.10 1.58 0.04 1.31 0.88 

* Tests where the actual axial stiffness was of about 3 kN/mm, instead of 15 kN/mm 
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Table 3.4 – Critical times and temperatures of the R beams 

 

Test 

reference 

Failure criteria in terms of strength 
Failure criteria in terms 

of deformation 

t N_max (min) θθθθ N_max (ºC) tcr (min) θθθθcr (ºC) tcr (min) θθθθcr (ºC) 

B-R_1 - - - - - - - - - - - - 20.4 728 

B-R_2 - - - - - - - - - - - - 21.2 732 

B-R_3 - - - - - - - - - - - - 19.8 745 

µµµµ - - - - - - - - - - - - 20.5 735 

σσσσ - - - - - - - - - - - - 0.71 8.5 

CV (%) - - - - - - - - - - - - 3.48 1.16 

B_ka-R_1 12.8 414 15.2 516 14.7 498 

B_ka-R_2 13.5 411 15.4 489 15.0 472 

B_ka-R_3 12.3 414 13.9 506 13.9 510 

µµµµ 12.9 413 14.8 504 14.5 493 

σσσσ 0.61 1.9 0.83 13.7 0.54 19.5 

CV (%) 4.75 0.46 5.60 2.71 3.69 3.95 

B_ka+kr-R_1 13.5 459 16.4 595 17.1 630 

B_ka+kr-R_2 13.6 446 17.5 628 18.6 673 

B_ka+kr-R_3 13.3 450 17.5 656 18.2 690 

µµµµ 13.5 452 17.1 626 18.0 664 

σσσσ 0.19 6.8 0.61 30.5 0.78 31.0 

CV (%) 1.39 1.51 3.55 4.86 4.33 4.66 
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Table 3.5 – Critical times and temperatures of the 2R beams 

 

Test reference 
Failure criteria in terms of strength 

Failure criteria in terms 

of deformation 

t N_max (min) θθθθ N_max (ºC) tcr (min) θθθθcr (ºC) tcr (min) θθθθcr (ºC) 

B-2R_1 - - - - - - - - - - - - 22.4 715 

B-2R_2 - - - - - - - - - - - - 22.7 732 

B-2R_3 - - - - - - - - - - - - 24.3 744 

µµµµ - - - - - - - - - - - - 23.2 731 

σσσσ - - - - - - - - - - - - 1.02 14.6 

CV (%) - - - - - - - - - - - - 4.41 2.00 

B_ka-2R_1 21.1 622 23.0 696 23.1 699 

B_ka-2R_2 20.0 573 22.1 676 22.3 681 

B_ka-2R_3 17.6 591 18.5 620 18.6 622 

µµµµ 19.6 595 21.2 664 21.3 667 

σσσσ 1.80 24.5 2.38 39.1 2.42 40.2 

CV (%) 9.20 4.11 11.21 5.89 11.35 6.02 

B_ka+kr-2R_1 19.3 615 20.7 675 20.9 682 

B_ka+kr-2R_2 19.4 597 21.0 677 21.3 684 

B_ka+kr-2R_3 18.8 579 20.5 659 21.0 674 

µµµµ 19.2 597 20.7 670 21.1 680 

σσσσ 0.35 18.3 0.29 9.8 0.23 5.2 

CV (%) 1.81 3.06 1.42 1.46 1.11 0.77 
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3.7 Failure Mode Analysis 

 

3.7.1 Ambient temperature tests 

 

Figures 3.30, 3.31, 3.32 and 3.33 illustrate respectively the experimental failure modes of the 

test beams B-C_3, B-I_3, B-R_2 and B-2R_1 under flexural loading conditions. Figures of 

identical failure modes of the other tested beams are presented in Appendix B. The local, 

distortional and lateral-torsional buckling modes that were responsible for collapse of the 

beams are clearly identified. 

 

It was possible to observe that distortional buckling was the main failure mode responsible for 

the collapse of the compound beams. It was noticed that the 2R beams started to slightly 

rotate laterally in one direction, reversing its rotation as distortional buckling occurred on the 

most affected U profile (fig. 3.33). In addition, failure of the web of the R beam only occurred 

after the distortional buckling of the U profile, as well as in the 2R beams (Appendix B). 

Increase of the lateral rotation of the beam further increased the local buckling of the web (fig. 

3.32). It cannot be forgotten that the maximum load of the R beams was about half load of the 

2R beams and if the local buckling was the main failure mode responsible for the collapse of 

the beam, that difference would be higher. The distortional buckling always occurred nearer 

to the roller support of the beams rather than in mid-length of the specimens since the other 

beam support (pinned support) could not move. Finally, the lateral-torsional buckling was the 

main failure mode responsible for the collapse of the C and lipped I beams (figs. 3.30 and 

3.31). The distortional buckling of the compression flange of the lipped I beams occurred due 

to the loading conditions which avoided the free rotation of the flanges during the tests. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30 – Failure modes of the test beam B-C_3 at ambient temperature 
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Figure 3.31 – Failure modes of the test beam B-I_3 at ambient temperature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32 – Failure modes of the test beam B-R_2 at ambient temperature 
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Figure 3.33 – Failure modes of the test beam B-2R_1 at ambient temperature 

 

3.7.2 Fire tests 

 

The main observation made after the fire tests of simply supported beams was that their 

failure modes (figs. 3.34, 3.35, 3.36 and 3.37) were similar to the ones observed in the 

identical test series at ambient temperature. As example, Figures 3.34, 3.35, 3.36 and 3.37 

illustrate respectively the failure modes of the test beams B-C_3, B-I_1, B-R_3 and B-2R_2 

under fire conditions. Figures of identical failure modes of the other tested beams are 

presented in Appendix F. 

 

As well as at ambient temperature, it is understandable that lateral-torsional buckling was the 

main failure mode responsible for the collapse of the open sections (C and lipped I beams) 

and the distortional buckling for the collapse of the closed built-up sections (R and 2R 

beams). It can still be seen that after the lateral-torsional buckling on the test beam B-C_3 

(fig. 3.34), in other words, when the deformation of the beam was too high, a local buckling 

half-wave began to emerge at mid-span and a distortional buckling half-wave appeared on the 

upper flange of the beam near both beam supports. Regarding the lipped I beam, a distortional 

buckling half-wave also appeared on the compression flange of the beam and in the middle of 

its length (fig. 3.35) during the lateral-distortional buckling of the respective beam, since the 

loading conditions avoided the free rotation of the flange during the lateral rotation of the 

beam. A local buckling half-wave also occurred on the C section of the R beam in the middle 

of its length (fig. 3.36) after the distortional buckling on the U section and consequently after 

the lateral-torsional buckling of the R beam. It is quite interesting to observe that one or two 

distortional buckling half-waves may appear on the U section of the 2R beam (fig. 3.37). 
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Afterwards, multiple local buckling half-waves along the beam length occurred on the 

opposite U section as well as a distortional buckling half-wave near both beam supports, like 

it happened to the C beam (fig. 3.34). Note that this can be better seen in Figure 3.41. 

Although only the final shape of the beam could be observed since the fire tests were 

performed inside the horizontal modular electric furnace, the authors think that the 2R beams 

started to slightly rotate laterally in one direction, reversing its rotation as distortional 

buckling occurred on the most affected U profile like it happened at ambient temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34 – Failure modes of the test beam B-C_3 under fire conditions 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35 – Failure modes of the test beam B-I_1 under fire conditions 
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Figure 3.36 – Failure modes of the test beam B-R_3 under fire conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37 – Failure modes of the test beam B-2R_2 under fire conditions 

 

The failure modes of the beams with just axial restraint were similar to the simply supported 

beams, except the R beam which it was similar to the R beam with rotational restraint (fig. 

3.40). This is why their final configuration is not presented here, but in Appendix F. On the 

other hand, in what concerns to the final configuration of the deformed C, lipped I, R and 2R 

beams with rotational restraint, some differences were observed comparing with the simply 

supported beams. The effect of the torsion was clearly higher than the effect of the lateral 

buckling on the beams with rotational restraint at their supports, as expected. This was the 

reason for the appearance of further local and distortional buckling modes on some beams; 
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especially on the open section beams (figs. 3.38 and 3.39). Firstly, it is worth pointing out that 

the C and R beams underwent lateral-torsional buckling, but they rotated on the opposite 

direction of the same kind of tested beams with no restraint to thermal elongation. This may 

be due to the axial restraining force generated in beams. As a result, the final shape of the 

failed C beam displayed a distortional buckling half-wave near the mid-span on the upper 

flange and near the beam supports on the lower flange with different directions, i.e., with 

inward and outward flange (fig. 3.38). The same was confirmed in the lipped I beams, but the 

distortional buckling modes on the lower flanges presented the same direction (outward) (fig. 

3.39). Concerning the R beams, after the lateral-torsional buckling, a distortional buckling 

half-wave began to emerge near the beam supports on both flanges (lower and upper flanges), 

as it can be seen in Figure 3.40. Finally, there was no difference between the test beams 

B_ka+kr-2R_2 and B-2R_2 (figs. 3.37 and 3.41), because the rotational restraint of the beam 

supports may have been too low in relation to the rotational restraint of the beam. To sum up, 

CFS beams can fail in a variety of buckling modes including local, distortional and global 

(lateral-torsional) buckling both at ambient temperature and at high temperatures. However, in 

general it seems that the failure modes become more complicate in CFS members with 

complex boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38 – Failure modes of the test beam B_ka+kr-C_3 under fire conditions 
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Figure 3.39 – Failure modes of the test beam B_ka+kr-I_2 under fire conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.40 – Failure modes of the test beam B_ka+kr-R_2 under fire conditions 
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Figure 3.41 – Failure modes of the test beam B_ka+kr-2R_2 under fire conditions 

 

3.8 Final Remarks 

 

This chapter dealt with the experimental modelling of CFS beams at ambient temperature and 

in case of fire. The experimental research was performed with the main goal of studying the 

influence of section shape, axial restraint to the thermal elongation of beam and of rotational 

restraint of beam supports on the fire performance of CFS beams. The buckling modes 

responsible for the collapse of the beams were also investigated. 

 

The main conclusions of this research study were that the CFS beams commonly used in this 

kind of buildings may have a quite low fire resistance (less than 30 minutes). However, the 

built-up hollow sections (R and 2R beams) showed a significantly enhanced fire behaviour 

than the open sections (C and lipped-I beams). The hollow section beams may have an 

increase about 50% in the fire resistance, comparing with the open section beams. The use of 

two or more profiles in a beam can increase its strength-to-weight ratio at ambient 

temperature, as well. 

 

On the other hand, the critical temperature of beam may drop significantly (30% in some 

cases) with the axial restraint to thermal elongation of the beam. This decreasing is however 



3 EXPERIMENTAL ANALYSIS OF 

COLD-FORMED STEEL BEAMS 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

96 Luís Miguel dos Santos Laím 

 

minimized when the rotational restraint at beam supports is relevant comparing with 

rotational stiffness of the beam (the critical temperature may increase around 20%, comparing 

with the same beams, but just axially restrained). 

 

It was also possible to observe that the lateral-torsional buckling was also the main failure 

mode responsible for the collapse of the open beams and the distortional buckling the main 

failure mode responsible for the collapse of the closed built-up beams. However, in general it 

seems that the failure modes become more complicate in CFS beams with complex boundary 

conditions. 
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4 NUMERICAL MODELLING OF COLD-FORMED STEEL BEAMS 

 

4.1 Introduction 

 

ABAQUS (ABAQUS Analysis – User’s Manual, 2010) was developed by “Hibbitt, Karlsson 

& Sorensen, Inc” of Providence, Rhode Island, USA, founded in 1978, due to its strong 

capabilities in dealing with nonlinear problems. It seems to be the most widely used software 

in the academic research of material and geometric nonlinear analysis due to the flexibility 

that it provides for the users with numerous options for materials models, analysis and 

solutions techniques. ABAQUS is a suite of powerful engineering simulation programs, based 

on the finite element method that can solve problems ranging from relatively simple linear 

analyses to the most challenging nonlinear simulations. ABAQUS contains an extensive 

library of elements that can model virtually any geometry. It has an equally extensive list of 

material models that can simulate the behaviour of most typical engineering materials 

including metals, rubber, polymers, composites, reinforced concrete, crushable and resilient 

foams, and geotechnical materials such as soils and rock. Designed as a general-purpose 

simulation tool, ABAQUS can be used to study more than just structural (stress/displacement) 

problems. It can simulate problems in such diverse areas as heat transfer, mass diffusion, 

thermal management of electrical components (coupled thermal-electrical analyses), 

acoustics, soil mechanics (coupled pore fluid-stress analyses), and piezoelectric analysis. 

ABAQUS offers a wide range of capabilities for simulation of linear and nonlinear 

applications. In a nonlinear analysis ABAQUS automatically chooses appropriate load 

increments and convergence tolerances and continually adjusts them during the analysis to 

ensure that an accurate solution is obtained efficiently. ABAQUS/CAE (Complete ABAQUS 

Environment) is an interactive, graphical environment for ABAQUS. It allows models to be 

created quickly and easily by producing or importing the geometry of the structure to be 

analysed and decomposing the geometry into meshable regions. Physical and material 

properties can be assigned to the geometry, together with loads and boundary conditions. 

ABAQUS/CAE contains very powerful options to mesh the geometry and to verify the 

resulting analysis model. Once the model is complete, ABAQUS/CAE can submit, monitor, 

and control the analysis jobs. Finally, the Visualization module can then be used to interpret 

the results. 

 

To sum up, the finite element program ABAQUS is a powerful computational tool for 

modelling structures with material and geometric nonlinear behaviour. Hence, ABAQUS 
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version 6.10-1 (ABAQUS Analysis – User’s Manual, 2010) was used extensively by the 

author to simulate the behaviour and strength of cold-formed steel (CFS) beams under 

flexural loading conditions and under combined bending and fire conditions. The numerical 

results were thereby compared with those given by the experimental tests in order to validate 

the developed finite element model and consequently to use it for a parametric study outside 

the bounds of the original experimental tests. All parameters, considerations and assumptions 

took into account in the developed three-dimensional nonlinear finite element model to 

predict the behaviour of CFS beams at ambient temperature and in fire are also described 

here. 

 

4.2 Finite Element Type 

 

All CFS beams were modelled by using shell elements (S4R) for the profiles and solid 

elements (C3D8R) for the screws. The S4R element (fig. 4.1) was chosen because it is one of 

the general-purposes from the ABAQUS program library for elements of type shell, which 

also take transverse shear deformation into account as well as the thick shell elements. Thick 

shell elements use a theory similar to the one of Mindlin (1951), whereas the formulation of 

thin shell elements is similar to the one of the discrete Kirchhoff-Love theory (1888). 

However, S4R element uses a mixed finite element formulation as it can be seen in detail in 

the ABAQUS Theory Manual (2010). Moreover many researchers in this area often use this 

type of element in their numerical analyses (Yu and Schafer, 2007; Narayanan and 

Mahendran, 2003; Dinis and Camotim, 2011; Feng et al., 2003b).  

 

The S4R element is a four-node (4), quadrilateral and stress/displacement shell element (S) 

with reduced integration (R), a large-strain formulation, hourglass control and a first-order 

(linear) interpolation. The selected element type uses a reduced (lower-order) integration to 

form the element stiffness with only one integration location per element. The reduced 

integration reduces the amount of CPU time necessary for analysis of the model and avoids 

shear locking. Shear locking may occur in elements under pure bending and without reduced 

integration, because the element edges must remain straight and the angle between the 

deformed isoparametric lines is not equal to 90º which means that the strain in the thickness 

direction is not zero (fig. 4.2). So, this can lead to overestimation of the load capacity in 

bending dominated problems. These elements can be used in parts of the structure where local 

stress concentration is high but no large bending is expected.  

 

The only disadvantage of using S4R is its susceptibility to hourglass distortions. Reduced 

integration elements tend to be too flexible and create a zero-energy mode distortion with no 
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strain energy related to the distortions (fig. 4.3), so they may introduce non-physical 

deformation. Fully integrated elements are not affected by this behaviour. To avoid 

hourglassing ABAQUS implements an artificial controlling force on the element which can 

lead to over stiff response of the structure if the control coefficients are set too high. The 

default value for these control coefficients, as advised by ABAQUS, is 1.0 and eliminates the 

hourglassing modes completely, but influences the deformation behaviour excessively, with 

the artificial work done exceeding 10 % of the overall internal energy. However, hourglassing 

is not a problem if multiple elements across the thickness are used, allowing to capture either 

compressive or tensile axial strains but not both (fig. 4.3). Each node has three displacement 

and three rotation degrees of freedom. Lastly, each of the six degrees of freedom uses an 

independent bilinear interpolation function.  

 

The C3D8R element (fig. 4.4) is defined as a three-dimensional (3D), continuum (C), 

hexahedral and an eight-node brick element with reduced integration (R), hourglass control 

and first-order (linear) interpolation. These finite elements have three degrees of freedom per 

node, referring to translations in the three directions X, Y and Z (global coordinates). 

 

 

 

 

 

 

 

Figure 4.1 – Scheme of the S4R element (ABAQUS Analysis – User’s Manual, 2010) 

 

 

 

 

 

 

 

 

Figure 4.2 – Shear locking in elements without reduced integration points (ABAQUS 

Analysis – User’s Manual, 2010) 
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Figure 4.3 – Hourglassing in elements with reduced integration points (ABAQUS Analysis – 

User’s Manual, 2010) 

 

 

 

 

 

 

 

 

Figure 4.4 – Scheme of the C3D8R element (ABAQUS Analysis – User’s Manual, 2010) 

 

4.3 Material Modelling 

 

Material non-linearity in the specimens was modelled with von Mises criteria and isotropic 

hardening. The material behaviour provided by ABAQUS allows for a multi-linear stress–

strain curve to be used. Stress-strain relationship of CFS profiles was described by a gradual 

yielding behaviour followed by a considerable period of strain hardening, whereas an elastic-

perfectly plastic behaviour was assumed for the steel screws. Figure 4.5 shows the stress-

strain curve used in the finite element analysis (FEA) for the CFS profiles based on tensile 

coupon test results and at the same time on other studies of literature (Feng et al., 2003b). So, 

it was tried to reproduce as faithful as possible the stress-strain relationship of the steel 

coupon specimens taken from the web of the tested beams. A yield strength of 295 MPa, a 

tensile strength of 412 MPa and a modulus of elasticity of 208 GPa were obtained from those 

tests at ambient temperature, as it can be seen in Table 4.1 and Appendix G. The initial slope 

of the stress-strain curve was taken as the elastic modulus, E, of the material. The second, 

third and fourth slope (E1, E2 and E3) of the curve were defined by tangent modulus which 

were respectively 38, 10 and 0.5 % of the elastic modulus. Therefore, a gradual yielding 

behaviour was idealized by using a bilinear representation with tangent modulus E1 and E2 
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between 70 and 100 % of the yield strength, fy, with an intermediate point at a stress of 0.875 

fy. All other components were modelled as elastic, i.e. the elastic modulus was equal to 210 

GPa and the Poisson’s ratio to 0.3 at ambient temperature. However, this last value was 

assumed to remain unchanged with increasing temperature (Kaitila, 2002b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 – Stress-strain relationship of the beam’s and screw’s steel 

 

The cold work of manufacturing process may cause a positive effect (i.e. the strength 

enhancement) and a negative effect (i.e. the reduction of the load-carrying capacity) on a 

cold-formed member, as a result of the combined effect of the residual stresses and equivalent 

plastic strains in the member. These (longitudinal and transverse) residual stresses caused by 

cold forming do not exist alone and are always accompanied by corresponding equivalent 

plastic strains which are responsible for the definition of the work hardened state. Also, as 

described in Chapter 2 of this thesis, they depend on many parameters, which make it difficult 

to predict these stresses properly. So, residual stresses and cold-work of forming (where the 

apparent yield stress in the corners is increased) were ignored in these analyses. 

 

Table 4.1 – Mechanical properties of structural steel S280GD at ambient temperature 

Specimen E (GPa) fp (MPa) f0.2p (MPa) f0.5 (MPa) fy (MPa) fu (MPa) 

A 202 187 284 290 290 411 

B 213 199 295 297 298 414 

C 209 189 294 297 297 411 

µµµµ 208 192 291 295 295 412 

σσσσ 5.5 6.7 6.1 4.3 4.4 1.8 

CV 2.66 3.47 2.09 1.47 1.49 0.44 
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The thermal properties of the CFS sections at elevated temperatures considered in the model 

(mass density, thermal conductivity and specific heat) were those given in EN 1993-1-2 

(2004), whereas the expansion was taken from Cheng and Young (2007) (fig. 2.9). The 

reduction factors for the yield strength of steel at elevated temperatures were still obtained 

from the EN 1993-1-2, annex E (2004), whereas the reduction factors for the modulus of 

elasticity were taken from Ranawaka (2006) (fig. 4.6). Since the analysis of post-buckling 

may involve large in-elastic strains, the nominal (engineering) static stress–strain curve was 

converted to a true stress and logarithmic plastic strain curve (Chen and Young, 2007b). EN 

1993-1-2 (2004) steel properties are given as engineering stress-strain input, which should be 

converted to true stress and true (logarithmic) strain using Equations 4.1 and 4.2 where εeng 

and σeng are the engineering (nominal) strain and stress, respectively whereas εtrue and σtrue are 

the true strain and stress, respectively. Further information about the true stress and plastic 

true strain is available in ABAQUS User’s Manual (2010). 

 

ε���� = ln		1 + ε��
� (4.1) 

 

σ���� = σ��
	1 + ε��
� (4.2) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 – Reduction factors for the stress-strain relationship of CFS sections at elevated 

temperatures 

 

4.4 Finite Element Mesh 

 

The influence of the finite element size on the behaviour of CFS beams was first studied. To 

demonstrate the mesh sensitivity three mesh densities for the closed built-up sections (fig. 

4.7) and four for the open sections (fig. 4.8) were examined. The mesh density has a 
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significant impact on the peak load, especially in closed built-up sections (fig. 4.7). For 

example, the fine mesh yielded a 13% higher capacity than the coarse mesh in the case of the 

S4R element. It was also observed that the increase of the mesh size led to a relatively 

straightforward decrease of initial stiffness of the beam. Finally, it was found that good 

simulation results could be obtained by using finite element meshes of 5 x 5 mm, 10 x 10 mm 

or 20 x 20 mm. To save computational time, finite element meshes of 10 x 10 mm for C, 

lipped I and R beams and of 15 x 15 mm for 2R beams (fig. 4.9) were generated automatically 

by the ABAQUS program and used in all simulations. In relation to the screws, an 

approximately 2 mm mesh size was used (fig. 4.10). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 – Predicted load for the R beam using FEA at ambient temperature 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 – Predicted load for the C beam using FEA at ambient temperature 
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Figure 4.9 – Finite element mesh used for the C (a), lipped I (b), R (c) and 2R (d) beams 

 

 

 

 

 

 

 

 

 

Figure 4.10 – Finite element mesh used for the screws 
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4.5 Boundary, Loading and Contact Conditions 

 

A three-dimensional numerical model was used to describe all buckling modes observed in 

the experimental tests. The cross-sections of the different beams, the screws, the beam support 

system, the axial and rotational restraining system and the beam loading system were tried to 

reproduce with great accuracy in the numerical simulations. As it can be seen in Figure 4.11, 

the axis system of the model is such that Z axis lies in the longitudinal direction of the beam 

while X and Y axes lie in the major and minor axes of the beam’s cross-section, respectively. 

Such as observed in the real test set-up, the beam supports and the loading were also applied 

on rigid plates attached to beams so as to distribute possible concentrated forces on them. 

Therefore, with regard to the loading on the beams, concentrated forces with the direction -Y 

were applied at the centre of those plates and each one was at a distance of 1 m from the 

nearest beam support, i.e., the forces were applied at one-third of the beam span. 

 

On other hand, to simulate the pinned support all degrees of freedom of the nodes located on 

the bottom surface and at the middle of the respective rigid plate were constrained, whereas 

for the roller support only the translations in the directions X and Y were constrained. Finally, 

the translations in the direction X of all nodes located at each end of both supports were 

constrained in order to prevent their lateral deformation. All simulated beams were still 

modelled using the centre line dimensions, as it can be seen in Figure 4.11b. Furthermore, two 

assumptions were introduced in these analyses for modelling the contact behaviour between 

the profiles and also between these ones and the screws. Thus, it was assumed a tangential 

friction coefficient of 0.2 for the contact behaviour in tangential direction and a hard contact 

(full transmission of compressive forces and no transmission of tensile forces) for the contact 

behaviour in normal direction between the profile surfaces.  

 

The surface-to-surface contact method was used, because this one gives a good convergence 

rate and it is much less sensitive to the choice of master and slave surfaces. For surface-to-

surface contact, contact conditions are enforced in an average sense, rather than at discrete 

points such as node-to-node discretization. Such averaging technique provides more accurate 

and smooth contact state transition (Selamet and Garlock, 2010). As well as that the penalty 

method was defined as the contact property (both tangential and normal contact) between the 

steel profile surfaces. Finite sliding was also used in the contact tracking algorithm, which 

takes account for large relative movements between contact pairs compared to their element 

sizes and updates their contact tracking state for each contact iteration. So, it is well suited for 

models under fire conditions with large plastic deformations. A rough and hard contact 

between the profiles and the screws was also employed. 
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For the modelling of the axial and rotational restraining system, a linear spring model was 

used (fig. 4.12). ABAQUS allows the user to define axial spring elements, connected to a 

node of the member and a support that have the appropriate stiffness coefficients. The springs 

were connected to the beams at the centre of the cross-section by means of the *Coupling 

Constraints option in ABAQUS.  The kinematic coupling constraint was employed in order to 

constrain the motion of the end surfaces of the beams to the motion of a single point, in this 

case the centre point of the beam cross-section. This method can also be used (i) to apply 

loads or boundary conditions to a model, (ii) to model end conditions and (iii) to model 

interactions with other constraints, such as connector elements (like it happens in this 

particular model). 

 

Finally, the beam temperatures registered in the experimental tests were considered as an 

input in the numerical simulations, since the temperature distribution along the beam 

presented some irregularities, in other words the distribution was not perfect, as mentioned in 

chapter 3. Hence, it was assumed that the temperatures in the web and flanges were uniform 

and equal to the respective thermocouples (fig. 4.13), meaning that the temperatures recorded 

by the thermocouples welded in section S1 were uniform in the longitudinal direction of the 

beam between the sections S7 and S8, that the temperatures recorded by the thermocouples 

welded in section S2 were uniform in the longitudinal direction of the beam between the 

sections S5 and S6 and that the temperatures recorded by the thermocouples welded in section 

S3 were uniform in the longitudinal direction of the beam between the sections S9 and S10. 

Between these sections a linear variation was assumed and that the temperature was uniform 

and equal to 20 ºC at beam supports. On the other hand, the ISO 834 standard fire curve and 

an uniform temperature distribution (in the longitudinal direction) along all beam were 

considered for the parametric study. Therefore, in these simulations the fire action was 

defined in ABAQUS program by two types of surface, namely, “film condition” and 

“radiation to ambient”, corresponding respectively to heat transfer by convection and 

radiation. It is worth mentioning that before using the ISO 834 standard fire curve the 

numerical heat transfer analyses were performed with the furnace temperatures registered in 

the experimental tests in order to validate the model. In these simulations, a 4-node linear heat 

transfer quadrilateral element (DC2D4) was chosen and a two-dimensional numerical model 

was developed to estimate the temperature distribution in the cross-sections of the beams. The 

resultant emissivity was taken as 0.2 (considering the emissivity of the furnace’s electric 

resistance and the profiles equal to 0.7 and 0.3, respectively), due to the mirror surface of the 

zinc coating on the profiles used. In addition, a coefficient of heat transfer by convection 

equal to 15 W/(m
2
K) was adopted when the furnace temperatures were an input data and 25 

W/(m
2
K) when the ISO 834 standard fire curve was an input data. 
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Figure 4.11 – Numerical model used in the finite element analysis: (a) perspective and (b) 

cross-sectional view 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 – Axial and rotational restraining system introduced in the numerical model using 

linear axial springs 
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Figure 4.13 – Temperature distribution introduced in ABAQUS of test beam B-2R_1 at 580 

seconds of test run 

 

4.6 Analysis Method 

 

Two types of analysis were employed by using the developed finite element model: elastic 

buckling and nonlinear static analyses. Elastic buckling (eingenvalue) analysis was performed 

to establish the buckling modes which were observed in the experimental tests, thus using 

them to input the geometric imperfections in the nonlinear analysis. In contrast to the adopted 

procedure, only the lowest buckling mode predicted from the eigenvalue analysis is used for 

practical applications. It is worth noting that the magnitude of the imperfections was the main 

parameter used to calibrate the models. After knowing their effects on structural response of 

this kind of beams and comparing with the results of the experimental tests, it was observed 

that a suitable maximum value for global imperfections was found to be approximately 

L/1000, for distortional imperfections t and for local imperfections h/200. Finally, a structural 

analysis was undertaken with the purpose of simulating the performance of CFS beams under 
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fire conditions until failure. The nonlinear geometric parameter (*NLGEOM=ON) was set to 

deal with the geometric nonlinear analysis, namely, with the large displacement analysis. 

 

4.7 Validation of Finite Element Model 

 

4.7.1 Structural performance at ambient temperature 

 

Figure 4.14 shows a comparison of the load-vertical displacement curves of CFS beams 

obtained from the experimental tests and FEA used for the calibration of the model. All 

curves from FEA fit closely with the experimental curves, especially with the ones that 

presented the lowest maximum load. Also note that the maximum numerical load of the C, 

lipped I, R and 2R beams was, respectively, 10.58, 39.86, 54.97 and 120.78 kN, i.e., the mean 

values of the FEA-to-experimental loading capacity ratios (PFEA / PTEST) for these beams were 

0.90, 0.96, 0.91 and 0.91, respectively. However, concerning the minimum value of the 

maximum load-carrying capacity of beam obtained from the three experimental tests for each 

type of beam, those ratios were already 0.92 for the C beam and 0.99 for the other beams 

(Table 4.2). This good agreement and accuracy between the experimental and numerical 

results ensures a strong validity of the developed finite element model and may also ensure 

reliable and safe results obtained from the parametric study. 

 

The developed numerical model reproduced both the loading stage and the failure load of all 

types of beams with great accuracy so that the numerical results were always on the safe side. 

The differences were higher in the failure load of the C beams than in the other beams 

because of the change of the action line of the force during the tests. The numerical post-

collapse response of the R and 2R beams were less accurate with regard to the C and lipped I 

beams, but the same happened in the experimental tests, in other words, the unloading stage 

of the three R and 2R beams was not so identical in what concerns to the C and lipped I 

beams. The reason for the differences between the numerical and experimental results and 

between the experimental results of identical test series (figs. 18c and 18d) may result from 

differences in the residual stresses of the members, the straightness of the plates, the yield 

strength on the member cross-section due to cold-forming and the assembly process of these 

beams. The discontinuities in some curves corresponding to the failure of screws were not 

observed in the FEA due to the elastic-plastic behaviour modelled for the mechanical 

properties of these screws. 
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Figure 4.14 – Comparison of the FEA and experimental load-displacement curves for the C 

(a), lipped I (b), R (c) and 2R (d) beams 

 

Table 4.2 – Experimental and numerical load-carrying capacity of the CFS beams 

Test reference 
Experimental 

PTEST (kN) 

Numerical 

PFEA (kN) 
PFEA / PTEST 

B-C_1 11.48 

10.58 

0.92 

B-C_2 11.84 0.89 

B-C_3 11.84 0.89 

µµµµ 11.72 10.58 0.90 

B-I_1 41.95 

39.86 

0.95 

B-I_2 42.68 0.93 

B-I_3 40.42 0.99 

µµµµ 41.68 39.86 0.96 
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B-R_1 64.68 

54.97 

0.85 

B-R_2 60.38 0.91 

B-R_3 55.36 0.99 

µµµµ 60.14 54.97 0.91 

B-2R_1 138.09 

120.78 

0.87 

B-2R_2 136.70 0.88 

B-2R_3 122.32 0.99 

µµµµ 132.19 120.78 0.91 

 

4.7.2 Structural performance under fire conditions 

 

Figure 4.15 shows respectively the comparison of the displacement-temperature curves of the 

simply supported beams obtained from the experimental tests and FEA used for the 

calibration of the model, whereas Figures 4.16 and 4.17 present the comparison of the axial 

restraining force-temperature curves of the axially and rotationally restrained beams, 

respectively. All curves from FEA fit closely with the experimental curves, especially in what 

concerns to the critical temperature of the respective beams, as it can be seen in Tables 4.3, 

4.4 4.5 and 4.6. The results show that the mean differences between experimental and 

numerical critical temperatures were less than 10 %, except for the rotationally restrained C 

beams. Although this difference has been higher than 10 %, the numerical temperature was 

higher than the experimental one, indicating that the respective estimated data is unsafe. The 

highly complex post-buckling reserve of the rotationally restrained C beam and the change of 

the action line of the force during these tests may be two of the main reasons for that 

difference. However, concerning the maximum axial restraining force, the difference was 

almost zero (fig. 4.17a).  

 

From the tables below, it can be seen that the critical temperatures predicted by the numerical 

model was respectively of 666, 647, 652 and 706 ºC for the simply supported C, lipped I, R 

and 2R beams, of 522, 401, 436 and 596 ºC for the axially restrained C, lipped I, R and 2R 

beams and of 768, 558, 586 and 687 ºC for the axially and rotationally restrained C, lipped I, 

R and 2R beams. It is noticed that those values for the simply supported beams were 

respectively 7.3, 6.4, 11.3 and 3.3 % lower than the experimentally measured results by an 

average and 6.2, 3.7, 10.5 and 1.2 % regarding to the best and safe prediction. The numerical 

critical temperatures for the axially restrained C, lipped I, R and 2R beams were respectively 

1.4, 9.5, 13.4 and 10.2 % lower than the experimentally measured results by an average and 

5.9, 9.5, 10.7 and 3.9 % regarding to the best and safe prediction. Finally, the numerical 



4 NUMERICAL MODELLING OF  
COLD-FORMED STEEL BEAMS 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

112 Luís Miguel dos Santos Laím 

 

critical temperatures for the axially and rotationally restrained lipped I and R beams were 

respectively 1.7 and 6.5 % lower than the experimentally measured results by an average. On 

the other hand, the numerical critical temperatures for the axially and rotationally restrained C 

and 2R beams were respectively 19.9 and 2.5 % higher than the experimentally measured 

results by an average. All these results indicate that the estimated data are generally on the 

safe side but not too conservative either. The general good agreement and accuracy between 

the experimental and numerical results ensures a strong validity of the developed finite 

element model and may also ensure reliable results obtained from the parametric study, 

especially the results needed for the development of simplified calculation methods for fire 

design of simply supported and of axially restrained CFS beams. It is clear that predicting the 

structural behaviour of the CFS beams at ambient temperature is easier than under fire 

conditions. The number of variables which affect the structural response of the beams at high 

temperatures is much higher than at ambient temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 – Comparison of the FEA and experimental displacement-temperature curves for 

the simply supported C (a), lipped I (b), R (c) and 2R (d) beams 
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Figure 4.16 – Comparison of the FEA and experimental axial restraining forces in the axially 

restrained C (a), lipped I (b), R (c) and 2R (d) beams 
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Figure 4.17 – Comparison of the FEA and experimental axial restraining forces in the axially 

and rotationally restrained C (a), lipped I (b), R(c) and 2R (d) beams 

 

Table 4.3 – Experimental and numerical critical temperatures of the C beams 

Test reference 
Experimental 

θθθθcr (ºC) 

Numerical 

θθθθcr (ºC) 

Difference 
(%) 

B-C_1 710 

666 

-6.2 

B-C_2 729 -8.6 

B-C_3 716 -7.0 

µµµµ 718 666 -7.3 

B_ka-C_1 513 

522 

1.7 

B_ka-C_2 519 0.5 

B_ka-C_3 554 -5.9 

µµµµ 529 522 -1.4 

B_ka+kr-C_1 629 

768 

22.1 

B_ka+kr-C_2 647 18.7 

B_ka+kr-C_3 646 18.9 

µµµµ 641 768 19.9 
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Table 4.4 – Experimental and numerical critical temperatures of the lipped I beams 

Test reference Experimental θθθθcr (ºC) Numerical θθθθcr (ºC) Difference (%) 

B-I_1 693 

647 

-6.6 

B-I_2 709 -8.7 

B-I_3 672 -3.7 

µµµµ 691 647 -6.4 

B_ka-I_1* 544 

504 

-7.3 

B_ka-I_2* 544 -7.4 

µµµµ 544 504 -7.3 

B_ka-I_3 443 401 -9.5 

B_ka+kr-I_1 567 

558 

-1.7 

B_ka+kr-I_2 567 -1.7 

µµµµ 567 558 -1.7 

* Tests where the actual axial stiffness was of about 3 kN/mm, instead of 15 kN/mm 

 

Table 4.5 – Experimental and numerical critical temperatures of the R beams 

Test reference 
Experimental 

θθθθcr (ºC) 

Numerical 

θθθθcr (ºC) 

Difference 
(%) 

B-R_1 728 

652 

-10.5 

B-R_2 732 -11.0 

B-R_3 745 -12.4 

µµµµ 735 652 -11.3 

B_ka-R_1 516 

436 

-15.4 

B_ka-R_2 489 -10.7 

B_ka-R_3 506 -13.8 

µµµµ 504 436 -13.4 
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B_ka+kr-R_1 595 

586 

-1.6 

B_ka+kr-R_2 628 -6.7 

B_ka+kr-R_3 656 -10.7 

µµµµ 626 586 -6.5 

 

Table 4.6 – Experimental and numerical critical temperatures of the 2R beams 

Test reference 
Experimental 

θθθθcr (ºC) 

Numerical 

θθθθcr (ºC) 

Difference 
(%) 

B-2R_1 715 

706 

-1.2 

B-2R_2 732 -3.6 

B-2R_3 744 -5.1 

µµµµ 731 706 -3.3 

B_ka-2R_1 696 

596 

-14.3 

B_ka-2R_2 676 -11.8 

B_ka-2R_3 620 -3.9 

µµµµ 664 596 -10.2 

B_ka+kr-2R_1 675 

687 

1.8 

B_ka+kr-2R_2 677 1.5 

B_ka+kr-2R_3 659 4.3 

µµµµ 670 687 2.5 

 

4.7.3 Failure mode analysis at ambient temperature 

 

Figures 4.18a, 4.19a, 4.20a and 4.21a illustrate the numerical failure modes of the tested 

specimens under bending and they can be compared to the experimental failure modes as 

shown in Figures 4.18b, 4.19b, 4.20b and 4.21b. The local, distortional and lateral-torsional 

buckling modes that were responsible for collapse of the beams were also clearly identified in 

the numerical modes. This confirms that the finite element model predicted the failure modes 
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of CFS beams with an acceptable precision. The figures also present the finite element results 

in the form of von Mises or minimum principal stresses to help understanding the behaviour 

of the beams. It was also confirmed that distortional buckling was the main failure mode 

responsible for the collapse of the closed built-up beams (R and 2R beams) (figs. 4.20a and 

4.21a), and the lateral-torsional buckling the main failure mode responsible for the collapse of 

the open beams (C and lipped I beams) (figs. 4.18a and 4.19a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 – Numerical (a) and experimental (b) failure modes for the C beam 
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Figure 4.19 – Numerical (a) and experimental (b) failure modes for the lipped I beam 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 – Numerical (a) and experimental (b) failure modes for the R beam 
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Figure 4.21 – Numerical (a) and experimental (b) failure modes for the 2R beam 

 

4.7.4 Failure mode analysis under fire conditions 

 

The figures below present the main features of the failure modes of the tested beams under 

fire conditions, in order to validate the performance of developed finite element model for fire 

tests in terms of deformations, especially the final configuration of the beams. Figures 4.22b, 

4.23b, 4.24b and 4.25b illustrate the FEA failure modes of the simply supported C, lipped I, R 

and 2R beams under fire conditions and they can be contrasted to the experimental failure 

modes, as shown in Figures 4.22a, 4.23a, 4.24a and 4.25a, as well as the Figures 4.26, 4.27 

and 4.28 which show different buckling modes and more complex (interaction of buckling 

modes). It can be seen clearly by both kinds of figures that the distortional and lateral-

torsional buckling modes were respectively responsible for collapse of the closed built-up 

beams (figs. 4.24 and 4.25) (except for the axially restrained R beam, as shown Figure 4.28) 

and open beams (figs. 4.22 and 4.23), similarly to the tested beams at ambient temperature. 

To sum up, it was still noticed that the web collapse of the simply supported R beams only 

occurred after the distortional buckling of the U profile. The effect of the rotational restraint at 

beam supports on the buckling modes of the open beams was also evident in the numerical 

failure modes (figs. 4.26b and 4.27b). Once again, it can be conclude that the developed finite 

element model predicted the behaviour of CFS beams with an acceptable precision. However, 

some little differences between the experimental and numerical modes can be seen, such as: 

(i) the numerical distortional buckling appeared nearer either the mid-span (figs. 4.23, 4.26 

and 4.27) or the beam support (figs. 4.25 and 4.28) than the experimental one, (ii) no 

distortional buckling in the numerical failure mode was observed on the lower flange of the 

rotationally restrained R beam (fig. 4.28), (iii) distortional buckling modes with opposite 

directions (fig. 4.26) and (iv) only one distortional buckling half-wave in the numerical failure 

mode emerged on the U section of the 2R beam near the mid-span (fig. 4.25). 
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Figure 4.22 – Experimental (a) and numerical (b) configuration of the deformed C beam with 

no restraints after fire test 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 – Experimental (a) and numerical (b) configuration of the deformed lipped I beam 

with no restraints after fire test 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 – Experimental (a) and numerical (b) configuration of the deformed R beam with 

no restraints after fire test 
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Figure 4.25 – Experimental (a) and numerical (b) configuration of the deformed 2R beam 

with no restraints after fire test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 – Experimental (a) and numerical (b) configuration of the deformed C beam with 

axial and rotational restraint after fire test 
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Figure 4.27 – Experimental (a) and numerical (b) configuration of the deformed lipped I beam 

with axial and rotational restraint after fire test 
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Figure 4.28 – Experimental (a) and numerical (b) configuration of the deformed R beam with 

axial and rotational restraint after fire test 

 

4.7.5 Heat transfer analysis 

 

The purpose of this section is to check the suitability of a thermal model using the heat 

transfer option available in ABAQUS, and to determine the appropriate modelling parameters, 

in particular, the input thermal boundary conditions and material thermal properties, so that 

standard fire resistances tests of CFS beams can be simulated. It is also worth remembering 

again that an uniform temperature distribution along all beam length was intended for the 

parametric study, in contrast to the tested beams in the Laboratory. In addition, in order to 

provide data for the development of simplified calculation methods for fire design of CFS 

beam, the ISO 834 standard fire curve must be used.  

 

To achieve this goal, the temperatures used in the numerical simulations for calibration of the 

numerical model were the gas temperatures registered in the experimental tests. As mentioned 

before, the thermal action was defined by two types of surface, namely, “film condition” and 

“radiation to ambient”, corresponding respectively to heat transfer by convection and 

radiation. The radiative heat flux was calculated using a steel emissivity value of 0.3 and 0.7 
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for fire, and the Stefan-Boltzmann constant was 5.67x10
-8

 W/m
2
K

4
. On the other hand, 

convection was considered with heat transfer coefficient equal to 15 W/(m
2
K) for the fire test 

curves and 25 W/(m
2
K) for the ISO 834 fire curve, as recommended by EN 1991-1-2 (2002). 

 

The heat transfer analysis of the R and 2R beams has an additional challenge because of the 

voids between the profiles. This problem can be solved in a simplified way by three different 

technical approaches. One is to simply neglect the cavity, the other is to use the assumption of 

isothermal and iso-emissive cavity facets (Feng et al., 2003a) and the last one is to consider 

the air as a solid material, i.e., the heat transfer by convection in the cavity is neglected. As 

the beams are generally horizontal elements in the buildings and the cavities were very small, 

the last technique was chosen. Therefore, a two-dimensional model was developed on the 

basis of the CFS cross-sections (figs. 4.30, 4.31, 4.32 and 4.33) and the thermal resistances to 

heat conduction developed at steel-steel and steel-fresh air interfaces were respectively 

considered with thermal contact conductance coefficients equals to 200 and 10 W/(m
2
K). 

Note that the emissivity coefficients, the heat transfer coefficients and the thermal contact 

conductance coefficients remained unchanged with increasing temperature. 

 

The thermal properties (thermal conductivity and specific heat) of the air inside the closed 

built-up sections at high temperatures were those presented in Figure 4.29 (taken from tables 

of technical properties). The specific weight was assumed constant and equal to 1.16 Kg/m
3
. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29 – Thermal properties (a – thermal conductivity, b – specific heat) of air at one 

atmospheric pressure as a function of temperature 
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Figures 4.30, 4.31, 4.32 and 4.33 show respectively the temperature distribution in the C, 

lipped I, R and 2R sections at 9 minutes of test run. Once again, it can be seen that the 

temperature gradients were very small (the temperature was almost uniform in the cross-

sections), especially for the C and R sections and except for the 2R section. Nine minutes 

after the beginning of the tests, the temperature gradient was of 7 ºC in the C section (fig. 

4.30), 112 ºC in the lipped I section (fig. 4.31), 60 ºC in the R section (fig. 4.32) and 195 ºC in 

the 2R section (fig. 4.33). Although some sections can present significant temperature 

gradients, the temperatures in the flanges were almost uniform. Another important thing to 

point out is that symmetric temperature distributions were obtained from ABAQUS, since the 

thermal action was assumed constant with height of the cross-section. Hence, the numerical 

results were also compared with the experimental temperatures recorded by the 

thermocouples which presented the best correlation, as it can be seen in Figures 4.34, 4.35, 

4.36 and 4.37.  

 

A good agreement was generally observed between the experimental and numerical 

temperatures. The agreement in the C and R sections was almost perfect (figs. 4.34 and 4.36), 

where the differences were around 5 %. The numerical temperatures in the web of the lipped I 

beams were slightly higher (about 10%) than the experimental temperatures (fig. 4.35), 

especially between the 12 and 15 minutes of test run. Although this difference is a bit high, 

between other identical tests the difference is smaller. In contrast to these sections, the 

differences in the 2R sections were not so good, especially in the inner web (fig. 4.37). In the 

middle of the test period, the experimental and numerical temperatures started to diverge. This 

may be due to the fact that the spacing between the flanges of both profiles (C and U) starts to 

increase in some places (even though too small) and so allowing the hot air to enter the voids 

between the profiles. This may introduce some differences in the numerical deformations 

comparing to the experimental ones of the beams but not in their strength, because they failed 

in distortional buckling. However, the differences between the other numerical temperatures 

(outer web and flange) and the respective experimental ones were about 10 %. To sum up, the 

tools of ABAQUS program for the application of thermal actions allow simulating the 

phenomenon of heat transfer between hot air and structural CFS elements with satisfactory 

results. 
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Figure 4.30 – Numerical analysis of the temperature distribution in the C section 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 – Numerical analysis of the temperature distribution in the lipped I section 

 

 

 

 

 

 

 

 

 

 

Figure 4.32 – Numerical analysis of the temperature distribution in the R section 
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Figure 4.33 – Numerical analysis of the temperature distribution in the 2R section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34 – Comparison of the FEA and experimental temperature distribution in the cross-

section S2 of the test beam B_ka+kr-C_3 
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Figure 4.35 – Comparison of the FEA and experimental temperature distribution in the cross-

section S3 of the test beam B_ka+kr-I_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.36 – Comparison of the FEA and experimental temperature distribution in the cross-

section S1 of the test beam B_ka+kr-R_1 
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Figure 4.37 – Comparison of the FEA and experimental temperature distribution in the cross-

section S2 of the test beam B_ka+kr-2R_3 

 

4.8 Final Remarks 

 

This chapter has described the finite element models developed for the investigation into the 

structural behaviour of CFS beams subjected to major axis bending at ambient temperature 

and subjected to combined bending and fire. The numerical modelling was mainly intended to 

simulate as faithful as possible the structural response (maximum load-carrying capacity and 

critical time and temperature of the beams) and the buckling modes of these type of beams 

such as the ones observed in the beams previously tested in Laboratory by the author. 

 

The good agreement between the experimental and numerical results and between the 

respective failure buckling modes, presented in this chapter, proved that the developed finite 

element models may be a reliable tool to get quite accurate results. Therefore, the model 

developed in this study has the potential to be used in parametric studies to obtain simplified 

calculation methods for fire design of CFS beams under both bending and composed bending 

(bending plus axial load). 

 

The tools of ABAQUS program for the application of thermal actions also allow simulating 

the phenomenon of heat transfer between air and structural elements with satisfactory results. 
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It is also understandable that the use of material and geometric nonlinear finite element 

analysis is required for solving such highly nonlinear problems involving thin-walled 

structures, high temperatures and contact. The behaviour of such members or structures may 

be very complex, especially in case of fire and under particular boundary conditions. The 

computational modelling has thereby a strong role to play in the research and design of such 

structures. 

 

Finally, a suitable maximum value for global imperfections was found to be approximately 

L/1000, for distortional imperfections t and for local imperfections h/200. The use of shell 

elements with finite element mesh of 10 x 10 mm seems to give very accurate results, as well. 
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5 PARAMETRIC STUDY AND PROPOSAL OF SIMPLIFIED DESIGN 

EQUATIONS 

 

5.1 Cold-Formed Steel Beams at Ambient Temperature 

 

5.1.1 Parametric study 

 

After validating the finite element model at ambient temperature a parametric study has been 

performed, with about fifty numerical simulations, considering several combinations of 

thickness, height and length of the beams so that the influence of these parameters on the 

flexural structural response of beams at ambient temperature could be identified, as well as 

the evolution of strength-to-weight ratio (PW / SW) as a function of those parameters (fig. 

5.1). 

 

It is noticed that the first, second, third and last letter of the reference C-h-t-L corresponds 

respectively to the type of simulated beam (for this case corresponds to the C beam), the 

height (h), the thickness (t) and the length (L) of the beam in millimetres. Therefore, five 

different thicknesses (1.5, 2.0, 2.5, 3.0 and 3.5 mm), heights (200, 225, 250, 275 and 300 mm) 

and lengths (3000, 3500, 4000, 4500 and 5000 mm) for each kind of beam (C, lipped I, R and 

2R) were used in this particular parametric study. 

 

Figure 5.1 summarizes all numerical results showing that an increase of the number of 

profiles per compound cross-section leads to an increase in the PW / SW ratio. However, it is 

expected that this ratio stops to increase since the difference between the R and 2R beams was 

already small. The same tendency was found for this ratio in what concerns to the increase of 

thickness and height of beams. Finally, the average PW/ SW ratio of the lipped I, R and 2R 

beams was 1.80, 2.59 and 2.91 times higher than the one of the C beams, respectively. From 

the studied beams, the maximum ratio obtained was of 55.6 for the C beams, 99.3 for the 

lipped I beams, 140.0 for the R beams and 152.6 for the 2R beams, corresponding 

respectively to the beams C-250-3.5-3000, I-250-3.5-3000, R-300-2.5-3000 and 2R-300-2.5-

3000. It should also be pointed out that the PW / SW ratio had a strong reduction when the 

span of the beams changed from 3000 to 4000 mm, especially for the R and 2R beams. 
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Figure 5.1 – Evolution of strength-to-weight ratio of beams as a function of their thickness, 

height and length 

 

5.1.2 Proposal of simplified calculation equations 

 

According to EN1993-1.1 (2004) the design buckling resistance moment of a member 

susceptible to lateral-torsional buckling is given as follows: 

 

��,�� = χ�����
 γ	
 =	χ�� ∙ 
� ∙ ��γ	
 (5.1) 

 

in which χ�� is defined as follows: 

 

0.1=LTχ  

χ�� = 1
Φ�� +�Φ��� − λ����

 

if LTλ  ≤ 0.4 

if LTλ  > 0.4 

(5.2) 

 

where, 

 

Φ�� = 0.5 �1 + α���λ��� − 0.2� + λ���� � (5.3) 
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λ��� =	�
�����  (5.4) 

 
� in Equations 5.1 and 5.4 are the appropriate section modulus of the cross-section 

depending on its class (elastic section modulus, Wel, for class 3 and effective section modulus, 

Weff, for class 4 cross-sections) and fy is the yield strength of steel. It is noticed that α�� in 

Equation 5.3 was equal to 0.76 (buckling curve d) for calculating the resistant moment of 

these beams according to EN1993-1.1 (2004) (Tables 5.1, 5.2, 5.3 and 5.4), since the beam 

profiles were connected to each other by screws (Tables 6.3 and 6.4 of the EN1993-1.1, 

2004). In addition, the effective section modulus was calculated considering the individual 

contribution of each profile and, consequently, the effective geometrical properties of class 4 

cross-sections were still determined based on the Clause 5.5 of EN1993-1.3 (2004) and 

Clause 4.4 of EN1993-1.5 (2006). Finally, the elastic critical moment for lateral-torsional 

buckling, Mcr, can be calculated (for doubly symmetric sections or mono-symmetric sections 

which are subjected to bending about the symmetry axis (AS/NZS 4600, 1996)) by: 

 

�� = !�� π�"#
�$�%�� &'#� +

π�"#()$(%*�+ (5.5) 

 

in which EIy, EIw and GJ are the minor axis flexural rigidity, warping rigidity and torsional 

rigidity, respectively. ky represents the effective lateral buckling length factor and kw the factor 

which accounts for the beam end warping. Regarding the lateral deformed shape of the beams 

obtained from the FEA, the value of ky = 0.8 has been used and the value of kw = 1.0 

representing the free end warping condition. On the other hand, Cb is a coefficient depending 

on the moment distribution along the length of the beams (Trahair, 1993). In this specific 

study, Cb was equal to 1.0. 

 

Tables 5.1, 5.2, 5.3 and 5.4 summarise the results obtained from all numerical simulations 

carried out respectively for C, lipped I, R and 2R beams and the corresponding results given 

by the currently available design rules. It should be pointed out that most of the numerical 

results were higher than the corresponding design results. The opposite was only valid for the 

I-250-2.5-5000, 2R-250-2.5-4500 and 2R-250-2.5-5000 beams, which means that the design 

methods, as presented here, may be on the safe side for CFS beams in the same conditions as 

the ones studied in this work and at least for spans lower than 4500 mm. It is thereby noticed 

that, when the values of non-dimensional slenderness are low, they do not have to correspond 

exactly to safe design values. 



5 PARAMETRIC STUDY AND PROPOSAL 

OF SIMPLIFIED DESIGN EQUATIONS 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

134 Luís Miguel dos Santos Laím 

 

Another important conclusion to be drawn was that EN1993-1.1 (2004) predicted the 

buckling moment capacity accurately for the simulated C beams (fig. 5.2). However, 

EN1993-1.3 (2004) suggests using the lateral buckling curve a (with α�� = 0.21) instead of 

the lateral buckling curve d for this kind of beams. If it had been shown the difference 

between the FEA results and the design results using the lateral buckling curve a, it would 

have been seen that some numerical results would be lower than the respective design results. 

Nevertheless, it is very important do not forget that the loading applied on the C beams was 

made at the middle of the flange and not at the centroid of the section, which means that the 

FEA results for the C-beams could still be a little bit higher. This is not presented in this paper 

since it was intended to model the worst structural response of the beams which were 

observed in the experimental tests as already mentioned. 

 

From Figure 5.2, it appears that different buckling curves could be adopted for each kind of 

beam in such a way that more accurate and safe predictions can be made, as the ones 

presented in Figure 5.3. So, the author recommends the use of Equations 5.2 and 5.3 with α�� 

= 0.76 for the design of cold-formed steel C beams at ambient temperature and, instead of 

these equations, Equations 5.6 and 5.7 should be used for the design of cold-formed steel 

lipped I beams, Equations 5.8 and 5.9 for the R beams and Equations 5.10 and 5.11 for the 2R 

beams. However, further experimental tests on cold-formed steel beams should still be 

performed, especially on compound beams, in order to validate experimentally these 

equations for different section geometries, loading types and boundary conditions. 

 

New equations for the design of cold-formed steel lipped I beams at ambient temperature: 

0.1=LTχ  

χ�� = 1
Φ��_- +�Φ��_-� − λ����

 

if LTλ  ≤ 0.6 

if LTλ  > 0.6 

(5.6) 

 

Φ��_- = 0.59 �1 + 0.80�λ��� − 0.85� + λ���� � (5.7) 

 

New equations for the design of cold-formed steel R beams at ambient temperature: 

0.1=LTχ  

χ�� = 1
Φ��_� +�Φ��_�� − λ����

 

if LTλ  ≤ 0.5 

if LTλ  > 0.5 

(5.8) 
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Φ��_� = 0.70 �1 + 0.70�λ��� − 1.00� + λ���� � (5.9) 

 

New equations for the design of cold-formed steel 2R beams at ambient temperature: 

0.1=LTχ  

χ�� = 1
Φ��_�� +�Φ��_��� − λ����

 

if LTλ  ≤ 0.5 

if LTλ  > 0.5 

(5.10) 

 

Φ��_�� = 0.70 �1 + 1.00�λ��� − 0.73� + λ���� � (5.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 – Comparison of FEA results with EN1993-1.1 (2004) formulation 

 

 

 

Table 5.1 – Comparison of FEA results with EN1993-1.1 (2004) for C-section beams 

Beam reference LTλ  
RdM  

crM  RdbM ,  
FEAM  

(kN.m) (kN.m) (kN.m) (kN.m) 

C-250-1.5-3000 1.34 6.41 3.59 2.09 2.61 

C-250-2.0-3000 1.40 9.46 4.81 2.88 3.99 

C-250-2.5-3000 1.61 15.87 6.09 3.93 5.40 

C-250-3.0-3000 1.59 18.86 7.45 4.78 6.87 

C-250-3.5-3000 1.75 27.14 8.90 5.96 8.39 
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C-200-2.5-3000 1.54 11.47 4.84 3.05 4.41 

C-225-2.5-3000 1.58 13.60 5.46 3.49 4.92 

C-250-2.5-3000 1.61 15.87 6.09 3.93 5.40 

C-275-2.5-3000 1.65 18.29 6.74 4.40 5.82 

C-300-2.5-3000 1.44 15.32 7.41 4.50 6.19 

C-250-2.5-3000 1.61 15.87 6.09 3.93 5.40 

C-250-2.5-3500 1.85 15.87 4.66 3.19 4.09 

C-250-2.5-4000 2.06 15.87 3.72 2.66 3.19 

C-250-2.5-4500 2.27 15.87 3.08 2.27 2.55 

C-250-2.5-5000 2.47 15.87 2.61 1.97 2.10 

 

 

 

Table 5.2 – Comparison of FEA results with EN1993-1.1 (2004) for lipped I-section beams 

Beam reference LTλ  
RdM  crM  RdbM ,  

FEAM  

(kN.m) (kN.m) (kN.m) (kN.m) 

I-250-1.5-3000 1.04 12.91 11.96 5.78 10.03 

I-250-2.0-3000 1.07 19.10 16.59 8.24 15.05 

I-250-2.5-3000 1.22 32.15 21.71 11.88 20.15 

I-250-3.0-3000 1.18 38.30 27.41 14.69 25.08 

I-250-3.5-3000 1.27 54.42 33.75 19.01 29.97 

I-200-2.5-3000 1.13 23.25 18.13 9.40 16.37 

I-225-2.5-3000 1.18 27.55 19.93 10.64 18.33 

I-250-2.5-3000 1.22 32.15 21.71 11.88 20.15 

I-275-2.5-3000 1.26 37.03 23.50 13.14 21.81 

I-300-2.5-3000 1.11 30.93 25.27 12.87 23.15 

I-250-2.5-3000 1.22 32.15 21.71 11.88 20.15 

I-250-2.5-3500 1.38 32.15 16.80 9.99 14.66 

I-250-2.5-4000 1.54 32.15 13.57 8.56 10.60 

I-250-2.5-4500 1.68 32.15 11.32 7.46 8.12 

I-250-2.5-5000 1.82 32.15 9.69 6.60 6.44 
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Table 5.3 – Comparison of FEA results with EN1993-1.1 (2004) for R-section beams 

Beam reference LTλ  
RdM  crM  RdbM ,  

FEAM  

(kN.m) (kN.m) (kN.m) (kN.m) 

R-250-1.5-3000 0.65 10.75 25.36 7.26 12.24 

R-250-2.0-3000 0.69 16.57 34.36 10.72 19.31 

R-250-2.5-3000 0.81 28.93 43.63 16.52 27.69 

R-250-3.0-3000 0.81 35.17 53.25 20.12 33.85 

R-250-3.5-3000 0.82 42.38 63.26 24.09 40.15 

R-200-2.5-3000 0.84 20.71 29.40 11.51 21.31 

R-225-2.5-3000 0.83 24.68 36.13 13.91 24.12 

R-250-2.5-3000 0.81 28.93 43.63 16.52 27.69 

R-275-2.5-3000 0.80 33.48 51.91 19.35 30.80 

R-300-2.5-3000 0.68 28.00 60.95 18.42 33.26 

R-250-2.5-3000 0.81 28.93 43.63 16.52 27.69 

R-250-2.5-3500 0.94 28.93 32.45 14.36 21.14 

R-250-2.5-4000 1.07 28.93 25.19 12.50 15.92 

R-250-2.5-4500 1.20 28.93 20.20 10.92 12.59 

R-250-2.5-5000 1.32 28.93 16.64 9.61 10.20 

 

Table 5.4 – Comparison of FEA results with EN1993-1.1 (2004) for 2R-section beams 

Beam reference LTλ  
RdM  crM  RdbM ,  

FEAM  

(kN.m) (kN.m) (kN.m) (kN.m) 

2R-250-1.5-3000 0.47 21.53 98.06 17.25 27.93 

2R-250-2.0-3000 0.50 33.17 134.65 25.94 44.12 

2R-250-2.5-3000 0.58 57.89 173.10 41.96 60.15 

2R-250-3.0-3000 0.57 70.36 213.59 51.21 75.54 

2R-250-3.5-3000 0.58 85.38 256.29 61.96 88.31 

2R-200-2.5-3000 0.59 41.46 117.97 29.64 44.72 

2R-225-2.5-3000 0.59 49.38 144.18 35.56 51.77 

2R-250-2.5-3000 0.58 57.89 173.10 41.96 60.15 

2R-275-2.5-3000 0.57 66.98 204.73 48.85 66.97 

2R-300-2.5-3000 0.48 56.02 239.06 44.28 72.52 
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2R-250-2.5-3000 0.58 57.89 173.10 41.96 60.15 

2R-250-2.5-3500 0.67 57.89 128.08 38.29 46.11 

2R-250-2.5-4000 0.77 57.89 98.85 34.81 38.15 

2R-250-2.5-4500 0.86 57.89 78.80 31.58 31.45 

2R-250-2.5-5000 0.95 57.89 64.46 28.63 26.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 – Comparison of FEA results with the alternative approach proposed by the author 

for the design of cold-formed steel C (a), lipped I (b), R (c) and 2R (d) beams 
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5.2 Cold-Formed Steel Beams at High Temperatures 

 

5.2.1 Parametric study 

 

After validating the finite element model at high temperatures a parametric study has also 

been performed, with about one hundred and fifty numerical simulations, so as to investigate 

the thermal performance of different CFS beams (C, lipped I, R and 2R beams) with different 

initial load levels (LL = Mb,fi,θ,Rd / Mb,Rd), span lengths (slenderness, λ���), initial geometric 

imperfections, axial restraint to the thermal elongation of the beam and rotational stiffness of 

the beam supports. The C-250-43-15-2.5, I-250-43-15-2.5, R-250-43-15-2.5 and 2R-250-43-

15-2.5 sections were chosen for this study. It is noticed that the first, second, third and fourth 

value in the name of these sections correspond to the geometric dimensions of the cross-

section of a C profile which makes part the respective section. Hence, the C profile cross-

section used in these numerical simulations was 250 mm tall, 43 mm wide and 2.5 mm thick, 

and finally its edge stiffener was 15 mm long. 

 

Therefore, the load levels selected in this study were 30, 50 and 70% of the design value of 

buckling load of the beams at ambient temperature, the span lengths selected ranged from 

2000 to 5000 mm at the interval of 1000 mm, the axial restraints selected were 0, 7.5 kN/mm, 

15 kN/mm, 30 kN/mm and ∞ and finally the rotational restraints were 0, 150, 300 and 1200 

kN.m/rad for a constant axial restraint equal to 15 kN/mm.  

 

These load levels were chosen, because the tabular methods established in available design 

rules define, in general, the critical time and/or temperature of a structural member as a 

function of these values of identical ones. These beam lengths were also selected since the 

residential and office buildings usually have spans of this order of magnitude. On the other 

hand, it was investigated the effect of the axial and rotational restraint on the beams, 

obviously with different values of the ones tested in Laboratory, namely, half, double and 

their minimum and maximum limits. However, the maximum rotational restraint chosen for 

the simulations was only equal to 1200 kN.m/rad (eight times the value used in the 

experimental tests) since the rotational restraint at beam supports is often affected by fire. 

Note that the beam supports are normally exposed directly to fire, whereas the structural 

members which comprise the axial restraint to thermal elongation of beams may not be 

exposed to fire (high temperatures).  

 

Furthermore, the values L/5000, L/1000 and L/200 were employed as the maximum 

magnitudes of global geometric imperfections for the open sections (C and lipped I beams) 
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and the values 0.25tn, tn and 2tn as the maximum magnitudes of distortional geometric 

imperfections for the closed built-up sections (R and 2R beams), with the purpose to evaluate 

their influence on the fire behaviour of these beams, in other words, to understand how the 

critical temperature of the CFS beams is affected by varying those parameters. Note that the 

effect of the geometric imperfections was studied considering that the beams were 4000 mm 

in length and could deform with no restraints to the thermal action (ka=kr=0). 

 

5.2.1.1 Effect of slenderness 

 

Figure 5.4 presents the critical temperature of the C (a), lipped I (b), R (c) and 2R (d) beams 

with no restraints to thermal elongation as a function of their slenderness for different load 

levels. It can be seen for all beams that as the slenderness of the beams increases the critical 

temperature decreases. As expected, the higher the load level, the lower the critical 

temperature. When the span of the C beam increased from 2000 mm (1.11 of slenderness) to 

5000 mm (2.47 of slenderness), the critical temperature decreased by 10% (from 745 ºC to 

670 ºC) for 30% of load level and 43% (from 617 ºC to 352 ºC) for 70% of load level (fig. 

5.4a). Regarding the lipped I, R and 2R beams, the critical temperature decreased respectively 

by 20% (from 751 ºC to 601 ºC), 11% (from 711 ºC to 630 ºC) and 39% (from 811 ºC to 491 

ºC) for 30% of load level and by 67% (from 618 ºC to 204 ºC), 70% (from 585 ºC to 176 ºC) 

and 71% (from 672 ºC to 192 ºC) for 70% of load level. An interesting point to note is that the 

critical temperature was always higher than 350ºC, only for 30% and 50% of load level and 

except for the 2R beam with 5000 mm in length. 
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Figure 5.4 – Effects of slenderness on the critical temperature of the C (a), lipped I (b), R (c) 

and 2R (d) beams 

 

5.2.1.2 Effect of initial geometric imperfections 

 

Figure 5.5 shows the relative flexural strength (Mb,fi,θ,Rd / Mb,Rd) of the C (a), lipped I (b), R (c) 

and 2R (d) beams with no restraints to thermal elongation as a function of the critical 

temperature and for different magnitudes of geometric imperfections. It is observed a 

reduction on the critical temperatures with the increasing of imperfections. However, as 

before, the reduction was more relevant for beams with higher load level (Mb,fi,θ,Rd / Mb,Rd = 

0.70). When the maximum global geometric imperfection increased from L/5000 to L/200, 

the critical temperature of the C beam decreased by 5% (from 690ºC to 656ºC) for 30% of 

load level and 20% (from 445ºC to 358ºC) for 70% of load level (fig. 5.5a). On the other 

hand, the critical temperature of the lipped I beam decreased respectively by 20% (from 

705ºC to 562ºC) and 59% (from 463ºC to 192ºC) for the same conditions of the C beam (fig. 

5.5b). Still in this context, the critical temperature of the R and 2R beams decreased 

respectively by 4% (from 668ºC to 639ºC) and 1% (from 627ºC to 619ºC) for 30% of load 

level and by 23% (from 348ºC to 267ºC) and 4% (from 299ºC to 288ºC) for 70% of load 

level, when the maximum distortional geometric imperfection increased from 0.25 tn to 2 tn 

(figs. 5.5c and 5.5d). It is quite interesting to observe that the lipped I beams may be very 

sensitive to the initial global geometric imperfections and by contrast the 2R beams may just 

be a little sensitive to the initial distortional geometric imperfections. The critical temperature 

of the 2R beam only decreased by 12% (from 327ºC to 288ºC) for 70% of load level, when 

the maximum distortional geometric imperfection increased from 0 to 2 tn (fig. 5.5d). 

 

 

 



5 PARAMETRIC STUDY AND PROPOSAL 

OF SIMPLIFIED DESIGN EQUATIONS 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

142 Luís Miguel dos Santos Laím 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 – Effects of initial geometric imperfections on the critical temperature of the C (a), 

lipped I (b), R (c) and 2R (d) beams 

 

5.2.1.3 Effect of axial restraint 

 

Figure 5.6 presents the critical temperature of the C (a), lipped I (b), R (c) and 2R (d) beams 

as a function of their slenderness for 50% of load level and for different axial restraints. Once 

again, it can be seen for all beams that as the slenderness of the beams increases the critical 

temperature decreases and it is clear that the critical temperature of the beams is affected by 

the axial restraint level, i.e. it decreases with increasing axial restraint. It is worth pointing out 

that the effect of axial restraint depended strongly on the shape of the beam cross-section. The 

R section showed a much better behaviour against the axial restraint to the thermal elongation 

than the open sections. In addition, the critical temperature of the open beams dropped 

drastically even for low values of axial restraint. Beyond 7.5 kN/mm of axial restraint the 

critical temperature of the C beams is almost the same for any value of non-dimensional 

slenderness between 1.11 and 2.47. When the axial restraint level increased from 0 to infinite, 
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the critical temperature of the C beam decreased by 38% (from 675ºC to 420ºC) for 2000 mm 

of span (1.11 of non-dimensional slenderness) and 15% (from 526ºC to 448ºC) for 5000 mm 

of span (2.47 of non-dimensional slenderness) (fig. 5.6a). Regarding the lipped I, R and 2R 

beams, the critical temperature decreased respectively by 52% (from 677 ºC to 328 ºC), 6% 

(from 648 ºC to 608 ºC) and 20% (from 724 ºC to 319 ºC) for 2000 mm of span and by 58% 

(from 357 ºC to 151 ºC), 5% (from 392 ºC to 374 ºC) and 43% (from 319 ºC to 182 ºC) for 

5000 mm of span. It is also important to emphasize that the critical temperature of the C and 

R beams was always higher than 350ºC for load level below 50% and for any value of axial 

restraint and of span between 2000 and 5000 mm (figs. 5.6a and 5.6c). From Figures 5.4 and 

5.7, it can be concluded that the effect of load level is slightly worse for higher axial 

restraints, except for the 2R beams. The critical temperatures of the C, lipped I and R beams 

decreased respectively by an average 47%, 52% and 47% for 15 kN/mm of axial restraint and 

by 31%, 41% and 40% for zero of axial restraint, when the load level increased from 30% to 

70%. Anyway, the critical temperature was always higher than 350ºC for 30% of load level 

and 15 kN/mm of axial restraint to the thermal elongation (fig. 5.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 – Effects of axial restraint on the critical temperature of the C (a), lipped I (b), R 

(c) and 2R (d) beams 



5 PARAMETRIC STUDY AND PROPOSAL 

OF SIMPLIFIED DESIGN EQUATIONS 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

144 Luís Miguel dos Santos Laím 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 – Effects of slenderness on the critical temperature of the C (a), lipped I (b), R (c) 

and 2R (d) beams when the axial restraint to thermal elongation is equal to 15 kN/mm 

 

5.2.1.4 Effect of rotational restraint 

 

In what concerns to the effects of rotational restraint at beam supports on the critical 

temperature of the beams, only the results relative to the C beams are here presented. In 

contrast to the axial restraint, the rotational restraint improved the fire behaviour of the beam. 

Form Figure 5.8, it can be observed that the critical temperature of the C beam with 15 

kN/mm of axial restraint increased from about 450 ºC to 700 ºC for any value of non-

dimensional slenderness between 1.11 and 2.47, when the rotational restraint increased from 0 

to 150 kN.m/rad or to higher values. However, it seems that the critical temperature depended 

on the rotational restraint for non-dimensional slenderness below 1.11, as it can be clearly 

seen in Figure 5.9. This figure also shows that the critical temperature of the C beam may 

reach 800 ºC, when the load level is equal to 30% and the axial and rotational restraints are 

respectively of 15 kN/mm and 300 kN.m/rad.  
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Figure 5.8 – Effects of rotational restraint on the critical temperature of the C beam 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 – Effects of slenderness on the critical temperature of the C beam when the axial 

and rotational restraints are respectively of 15 kN/mm and 300 kN.m/rad 

 

5.2.2 Proposal of simplified calculation equations 

 

The analysis of some graphs presented above allowed the derivation of analytical formulae for 

the assessment of the critical temperatures and times of CFS beams for a wide range of 

slenderness (changing the beam length between 2000 mm and 5000 mm) and axial restraint 

levels, depending obviously on the shape of its cross-sections. However, it is worth 

mentioning that the following equations (Equations 5.12 - 5.23) are still useful for cross-

sections identical to the ones studied experimentally and for a load level equal to 50%. 

Critical temperatures corresponding to 30% and 70% of load level can also be obtained 

conservatively, in most cases, by multiplying the critical temperature obtained for 50% of 

load level by 1.15 and 0.60, respectively. For example, from Equation 5.12 it can be obtained 

critical temperatures of 580 and 448 ºC for the C-250-43-2.5-15-4000 beam (λ��� = 2.06) 
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with 50 % of load level, when the axial restrains to the thermal elongation of the beam were 

respectively zero and 15 kN/mm. So, the critical temperatures corresponding to 30% and 70% 

of load level would be respectively of 667 (580 x 1.15) and 348 ºC (580 x 0.60) for that C 

beam without axial restraint and of 515 (448 x 1.15) and 269 ºC (448 x 0.60) for that C beam 

with an axial restraint equal to 15 kN/mm. Comparing these temperatures with the ones 

obtained from the numerical study (figs. 5.4a and 5.7a), differences between 3 % and 22 % 

can be observed. Therefore, critical temperatures for 30% and 70% of load levels can be 

predicted in a trivial way, but sometimes they can be far away of the reality. 

 

On the other hand, it is noticed that these equations did not take the effect of the rotational 

restraint into account in the critical temperature and time of this kind of beams, i.e., the 

rotational restraint effect was ignored in these equations. Further numerical simulations must 

still be done. 

 

Finally, the proposed formulae were obtained for the best fit of the numerical data (Appendix 

H), using just linear or quadratic functions (Equations 5.12 - 5.23). The author also 

recommends that the critical times and temperatures of CFS beams with axial restraints 

between the values used in the parametric study should be determined by a linear 

interpolation between those values. It is also clear that these equations can be used in 

rotationally restrained beams, but the results might be over-conservative. However, a 

maximum difference of approximately 8% was observed between the critical temperatures 

given by the Equations 5.12, 5.14, 5.18 and 5.20 and the ones presented in Figure 5.6, i.e. a 

strong correlation between the numerical results and the ones obtained from the new proposed 

simplified design equations was achieved.  

  

� New equations for the fire design of cold-formed steel C-250-43-15-2.5 beams with 50% 

of load level: 

 

θ� =	−0.0492 ∙ % + 776.88	 
θ� = 	8.24 × 1056 ∙ % + 415 

if ka = 0 

if ka ≥ 7.5 
(5.12) 

 7� =	−1.89 × 1056 ∙ % + 16	 
7� = 	1.34 × 1058 ∙ % + 4.62 

if ka = 0 

if ka ≥ 7.5 
(5.13) 

 

where, θcr is the critical temperature of the beam in Celsius degree, tcr is the critical time of 

the beam in minutes, L is the beam span in millimetres and ka is the axial restraint to the 
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thermal elongation of the beam in kN/mm. These last equations (Equations 5.12 and 5.13) 

shall not be applied to non-dimensional slenderness, λ���, outside the range of 1.11 to 2.47, as 

well. 

 

� New equations for the fire design of cold-formed steel I-250-43-15-2.5 beams with 50% 

of load level: 

 

θ� =	β1-)$9* ∙ %� + β2-)$9* ∙ % + β3-)$9*	 
θ� = 	1.2 × 105: ∙ %� − 1.44 × 105
 ∙ % + 570 

if ka ≤ 15 

if ka ≥ 30 
(5.14) 

 

β1-)$9* = 	−1.71 × 105; ∙ $9� + 5.19 × 105< ∙ $9 − 2.17 × 105: 

β2-)$9* = 	1.44 × 1056 ∙ $9� − 3.86 × 105� ∙ $9 + 4.57 × 105� 

β3-)$9* = 	−1.51 ∙ $9� + 2.87 × 10
 ∙ $9 + 6.72 × 10� 

(5.15) 

 7� =	  υ1-)$9* ∙ %� + υ2-)$9* ∙ % + υ3-)$9*	 
7� = 	1.97 × 105; ∙ %� − 2.26 × 1056 ∙ % + 8.58 

if ka ≤ 15 

if ka ≥ 30 
(5.16) 

 

υ1-)$9* = 	−2.63 × 105= ∙ $9� + 6.20 × 105> ∙ $9 

υ2-)$9* = 	1.13 × 105: ∙ $9� − 1.98 × 1058 ∙ $9 − 3.29 × 1056 

υ3-)$9* = 	2.93 × 105� ∙ $9� − 1.06 ∙ $9 + 21.7 

(5.17) 

 

where, θcr is the critical temperature of the beam in Celsius degree, tcr is the critical time of 

the beam in minutes, L is the beam span in millimetres and ka is the axial restraint to the 

thermal elongation of the beam in kN/mm. These last equations (Equations 5.14 and 5.16) 

shall not be applied to non-dimensional slenderness, λ���, outside the range of 0.85 to 1.82, as 

well. 

 

� New equations for the fire design of cold-formed steel R-250-43-15-2.5 beams with 50% 

of load level: 

 

θ� =	−2.80 × 105: ∙ %� + 1.12 × 105
 ∙ % + 534	 
θ� =	−0.0793 ∙ % + 766.66 

if ka = 0 

if ka ≥ 7.5 
(5.18) 
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7� =	−5.08 × 105; ∙ %� + 8.73 × 1058 ∙ % + 15.1	 
7� =	−2.21 × 1056 ∙ % + 17.1 

if ka = 0 

if ka ≥ 7.5 
(5.19) 

 

where, θcr is the critical temperature of the beam in Celsius degree, tcr is the critical time of 

the beam in minutes, L is the beam span in millimetres and ka is the axial restraint to the 

thermal elongation of the beam in kN/mm. These last equations (Equations 5.18 and 5.19) 

shall not be applied to non-dimensional slenderness, λ���, outside the range of 0.55 to 1.32, as 

well. 

 

� New equations for the fire design of cold-formed steel 2R-250-43-15-2.5 beams with 50% 

of load level: 

 

θ� =	β1��)$9* ∙ %� + β2��)$9* ∙ % + β3��)$9* 
θ� = 	1.21 × 105: ∙ %� − 2.18 × 105
 ∙ % + 968 

if ka ≤ 15 

if ka ≥ 30 
(5.20) 

 

β1��)$9* = 	−1.42 × 105; ∙ $9� + 3.77 × 105< ∙ $9 

β2��)$9* = 	9.16 × 1058 ∙ $9� − 2.45 × 105� ∙ $9 − 1.39 × 105
 

β3��)$9* = 	−1.24 ∙ $9� + 2.93 × 10
 ∙ $9 + 1000 

(5.21) 

 7� =	  υ1��)$9* ∙ %� + υ2��)$9* ∙ % + υ3��)$9*	 
7� = 	7.54 × 105; ∙ %� − 8.53 × 1056 ∙ % + 26.8 

if ka ≤ 15 

if ka ≥ 30 
(5.22) 

 

υ1��)$9* = 	3.47 × 105= ∙ $9� − 9.13 × 105> ∙ $9 + 1.93 × 105< 

υ2��)$9* = 	−3.20 × 105: ∙ $9� + 8.93 × 1058 ∙ $9 − 1.95 × 105� 

υ3��)$9* = 	7.64 × 105� ∙ $9� − 2.31 ∙ $9 + 55 

(5.23) 

 

where, θcr is the critical temperature of the beam in Celsius degree, tcr is the critical time of 

the beam in minutes, L is the beam span in millimetres and ka is the axial restraint to the 

thermal elongation of the beam in kN/mm. These last equations (Equations 5.20 and 5.22) 

shall not be applied to non-dimensional slenderness, λ���, outside the range of 0.39 to 0.95, as 

well. 
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5.3 Final Remarks 

 

This chapter was based on a detailed parametric study of CFS beams at ambient temperature 

and both under fire conditions, under flexural loading conditions and under simply supported 

boundary conditions (roller and pinned supports) with different restraining conditions, 

including no restraints, partial axial restraint to the thermal elongation of the beam and partial 

rotational restraint at the beam supports. Hence, extensive parametric studies were undertaken 

using an advanced finite element tool ABAQUS by changing various factors: slenderness, 

level of initial applied load on the beam, initial geometric imperfections of the beam and 

stiffness of the surrounding structure, including the axial and rotational stiffness. The obtained 

results from the FEA at ambient temperature were also compared with the available design 

rules (EN1993-1.1, 2004; EN1993-1.3, 2004 and EN1993-1.5, 2006). 

 

The results at ambient temperatures show mainly that EN1993-1.3 predictions may be 

conservative for beams comprised of two or more CFS profiles or even over-conservative as it 

was observed in some studied cases. However, these design guidelines may give unsafe 

results for beams with spans longer than 4.5 m. 

 

Regarding the numerical simulations on beam under fire conditions, the results demonstrated 

the importance of using initial geometric imperfections and serviceability loads as close to the 

reality as possible, because the imperfections may affect the critical temperature of the 

flexural members by 20%, or even 60% depending on the shape of the cross-section, and the 

serviceability load by 70 % when the load level increased from 30% to 70%.  

 

Results from these investigations also indicated that the critical temperature decreases with 

increasing slenderness (span length), load level, axial restraint or geometric imperfections, as 

it was expected. However, it was possible to see that the load level was by far the parameter 

which most affected the fire behaviour of the studied beams. In contrast to this, the rotational 

restraint may increase the fire behaviour of the beams. 

 

Finally, comparisons with the numerical results demonstrated that the new developed 

equations might be accurate and even useful for designers due to the lack of simplified 

calculation methods for fire design of CFS structures. However, this method depends just on 

the shape of the cross-section, the beam length and the axial restraint. Further numerical 

simulations should still be done so that the new simplified design methods could also be taken 

into account the beam slenderness (length, thickness and height of the cross-section), the load 

level and the rotational restraint at the beam supports. 
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6 CONCLUSIONS AND FUTURE WORK 

 

6.1 Experimental Analysis on Cold-Formed Steel Beams 

 

6.1.1 Ambient temperature 

 

An experimental investigation into the behaviour of cold-formed steel C-, lipped I-, R- and 

2R-section beams under flexural conditions at ambient temperature have been presented in 

this thesis. A total of twelve four-point bending tests at ambient temperature were carried out. 

As it was expected, cold-formed steel beams are very sensitive to local, distortional and 

global buckling and also their interactions. It was observed that the failure loads of the beams 

with C- and lipped I-shaped cross-sections (open beams) corresponded to the lateral-torsional 

buckling modes, whereas the distortional buckling was the responsible buckling mode for the 

failure loads of the R and 2R beams (closed built-up beams). In order to improve the 

structural behaviour of these two types of beams, the author suggested, for instance, that (i) 

the U profiles of these beams are replaced by lipped U profiles like the C profiles, but with the 

lips towards the exterior side of the profile. In other words, the U profiles should be replaced 

by hat (omega) profiles, or that (ii) the C profiles are placed over the U profiles, as presented 

respectively in Figures 6.1 and 6.2. The advantage of the first one over the second one is that 

is easier to assembly, but its application in buildings is more complicate. As well as that, the 

use of sigma profiles (fig. 1.2d) instead of C profiles might improve the behaviour of cold-

formed steel beams against the lateral-torsional buckling. All beams should also be reinforced 

with extra screws, maybe of a larger diameter or improved steel class. Another important 

conclusion to be drawn was that the use of two or more profiles in a beam can increase its 

strength-to-weight ratio. From the tested beams, the 2R beams showed the best ratio. 

However, it seems that this ratio tends to be constant for beams comprised of more than four 

profiles. 

 

 

 

 

 

 

 

Figure 6.1 – New 2R section with omega profiles 
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Figure 6.2 – New 2R section with the C profiles over the U profiles 

 

6.1.2 Fire situation 

 

This thesis also reported and discussed in detail the results of an experimental investigation 

into the behaviour of CFS C-, lipped I-, R- and 2R-section beams both under fire conditions, 

under flexural loading conditions and under simply supported boundary conditions (roller and 

pinned supports) with different restraining conditions, including no restraints, partial axial 

restraint to the thermal elongation of the beam and partial rotational restraint at the beam 

supports. A total of thirty-six fire tests were made. 

 

The main conclusion of this research work was that critical temperature of a CFS beam might 

be strongly affected by the axial restraint to the thermal elongation of the beam, even for low 

values of axial restraint. This study showed that the critical temperature of all studied simply 

supported beams was about 700 ºC, whereas the critical temperature of these beams with 

restrained thermal elongation depended on the cross-section shape. In some cases, the critical 

temperature decreased approximately by 30 % for 15 kN/mm of axial restraining and by 20 % 

for 3 kN/mm of axial restraining, comparing with the critical temperature of the respective 

beams without restraints. As it was expected, all these members had low critical times (less 

than 30 minutes). However, it was observed that the closed built-up sections (R and 2R 

beams) presented an enhanced fire behaviour (higher failure times) than the open sections (C 

and lipped I beams). The closed built-up section beams may have an increase of about 50% in 

the critical time, comparing with the open section beams. 

 

On the other hand, in relation to beams with just axial restraint, the results of this 

experimental research still allowed concluding that when the rotation is also partially 

restrained at the beam supports, the critical temperature of the studied CFS beams might 

significantly increase, depending on the relation between the rotational stiffness of the beam 

supports and the rotational stiffness of the beam. In this particular case of study, there was an 

increase of around 20 % in the critical temperature, when the rotational restraint increased 

from zero to 150 kNm/rad, with the 2R beams being the only exception. 
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Finally, CFS beams can also fail in a variety of buckling modes including local, distortional 

and global (lateral-torsional) buckling at high temperatures. It was possible to observe that the 

lateral-torsional buckling was also the main failure mode responsible for the collapse of the 

open beams and the distortional buckling the main failure mode responsible for the collapse 

of the closed built-up beams. However, in general it seems that the failure modes become 

more complicate in CFS beams with complex boundary conditions.  

 

The new sections, mentioned above, should also improve the fire performance of CFS 

structures in relation to the studied beams.   

 

6.2 Parametric Study and Development of Simplified Design Equations 

 

6.2.1 Ambient temperature 

 

A numerical investigation into the behaviour of cold-formed steel C-, lipped I-, R- and 2R-

section beams under bending conditions at ambient temperature have still been presented 

here. About fifty numerical simulations performed with the finite element program ABAQUS 

were made. Lastly, the suitability of design methods established by EN1993-1.1 (2004) for 

the buckling moment capacity was also investigated using the developed finite element 

model. 

 

The good agreement between the experimental and numerical results and between the 

respective failure buckling modes proves that the finite element analysis is a reliable tool to 

get quite accurate results. The finite element results showed that the strength-to-weight ratio 

of the simulated beams decreases a lot when their span increases, especially, from 3.0 to 4.0 

m. It is also shown that EN1993-1.3 (2004) predictions may be conservative for beams 

comprised of two or more CFS profiles or even over-conservative as it was observed in some 

studied cases. However, these design guidelines may give unsafe results for these beams with 

spans longer than 4.5 m. 

 

In an attempt to improve the EN1993-1.1 (2004) predictions, new different buckling curves 

have been provided taking into account the shape of the cross-section. It was also clear to 

observe that the use of the buckling curve ‘a’ proposed in EN1993-1.3 (2004) for the design 

buckling resistance moment of a CFS member that is susceptible to lateral-torsional buckling 

may be unsafe. However, it is recommended that further experimental and numerical research 

is needed to confirm the proposed design equations or developed new design guidelines for 



6 CONCLUSIONS AND 

FUTURE WORK 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

154 Luís Miguel dos Santos Laím 

 

lateral-torsional buckling of cold-formed steel beams comprised of more than one profile and 

connected by screws. 

 

6.2.2 Fire situation 

 

Finally, this thesis has described the development of a finite element model capable of 

simulating the distortional buckling and lateral-torsional buckling behaviour of CFS flexural 

members both under fire conditions and under simply supported boundary conditions with 

different restraining conditions, including no restraints, axial and rotational restraint and also 

their interactions. About one hundred and fifty numerical simulations were performed with 

the program ABAQUS. 

 

The good agreement between the experimental and numerical results and between the 

respective failure buckling modes proved that the finite element analysis is a reliable tool to 

get quite accurate results. As expected, it was observed that the hollow sections (R and 2R 

beams) show an enhanced fire behaviour than the open sections (C and lipped-I beams), but, 

in some cases, the former may present critical temperatures rather lower than the latter. 

 

The results also demonstrated the importance of using initial geometric imperfections and 

serviceability loads as close to the reality as possible, because the imperfections may affect 

the critical temperature of the flexural members by 20%, or even 60% depending on the shape 

of the cross-section, and the serviceability load by 70 %, i.e, the critical temperature of some 

studied beams decreased by 70% when the load level increased from 30% to 70%. So, results 

from these investigations indicate that the critical temperature decreases with increasing 

slenderness (span length), load level, axial restraint or geometric imperfections, as it was 

expected. However, it was possible to see that the load level was by far the parameter which 

most affected the fire behaviour of the studied beams. In contrast to this, the rotational 

restraint may increase the fire behaviour of the beams. For instance, the fire resistance of the 

studied C beam with 15 kN/mm of axial restraint increased 3 times and the critical 

temperature 1.5 times (at least), when the rotational restraint increased from 0 to 150 

kN.m/rad. 

 

An important consequence resulting from this research work was that the limitation enforced 

by EN1993-1-2 (2004), on the maximum temperatures to 350ºC for cold-formed steel beams 

may be over-conservative, especially when the serviceability load of the beams is too low, 

less than 30% of the design value of buckling load of the respective beam at ambient 

temperature. Otherwise, when the load level is higher than 70% the critical temperature may 
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be lower than 350 ºC. In addition, the author recommends that the critical temperature method 

presented in this Eurocode for hot rolled steel members should not be used for CFS members 

since in this method the critical temperature almost does not change when the non-

dimensional slenderness changes and that is far away from the truth as it could be observed in 

this thesis. So, it is understandable that design methods for critical temperature and fire 

resistance of CFS beams as a function of their slenderness and the load level are established in 

a future revision of EN1993-1-2 document. In this thesis a set of simplified equations for 

assessing the critical temperature and the fire resistance of CFS beams with C-, I-, R- and 2R-

shaped cross-sections has been proposed. The new equations also show that they depend on 

the section shape in contrast to the design methods established in EN1993-1-2 (2004). 

Another important point to be emphasized in relation to the EN1993-1-2 (2004) is that there is 

nothing concerning the effect of rotational restraint on the fire performance of beams. Finally, 

it can still be stated that this research has developed accurate strength equations for axially 

restrained CFS beams that can be used to provide safe structural designs and economical CFS 

structures in fire situations. 

 

6.3 Future Work 

 

Compound cross-section profiles more and more complex, the interaction between buckling 

and yielding, and the strength sensitivity to imperfections make the full understating of 

buckling behaviour of cold-formed steel structures a great challenge to researchers. However, 

many problems remain unaddressed, especially in the field of fire design of cold-formed steel 

structures. This thesis is a step in the right direction but there is still too much to be done and 

discover. Regarding the CFS beam under fire conditions, further experimental and numerical 

studies are needed. So, extensive numerical simulations have been carrying out by the author 

of this thesis with the goal of achieving such new simplified calculation methods for CFS 

beam, especially for beams with C-, I-, R- and 2R-shaped cross-sections. Further 

experimental and numerical research is also needed to investigate the behaviour of other 

section geometries (with sigma and zed profiles, for instance) and other loading types 

(concentrated load at mid-span of the beam, uniform distributed load along the beam and 

uniform bending along the beam, for example). 

 

It is still worth remembering that this work research was limited to CFS beams subjected to a 

uniform temperature distribution throughout the beam. But in practice the beams may be 

subjected to non-uniform temperature distribution in a fire situation. Hence, studies of 

structural behaviour of CFS floors under fire conditions are recommended. It is also important 

not to forget that in real structures the effect of catenary action is very relevant. With the 
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presence of axial constraints, the beam will behave in catenary action at large deflection stage. 

The catenary action is a load carrying mechanism where the bending moment capacity of the 

beam may be negligible but the beam would still be able to resist the applied transversal load 

with the tension force developed in the beam via further deflection even with reduced material 

strength. If large deflection may be acceptable in a fire situation, the fire protection might be 

unnecessary. So, further research is recommended in this area. However, before this it should 

still be looked into the fire performance of CFS connections subjected to fire. The fire 

behaviour of beam-to-column connections is almost unknown and there are a lot of fastening 

types in CFS structures, with the screw attachment, the welding and the bolting being the 

most common fastening types. 

 

As well as that an experimental and numerical investigation into the structural behaviour of 

CFS slender columns with different types of compound cross-sections, end-support conditions 

(pin-ended and semi-rigid support conditions), load levels and axial restraints to the thermal 

elongation of the column should be undertaken, as it has already started at the Laboratory of 

the University of Coimbra. In addition, similarly to the beams, CFS stud walls under both 

compression and fire conditions should be analysed. And, therefore, these experimental and 

numerical results would be the basis of an analytical study for the development of simplified 

calculation methods for fire design of cold-formed steel columns. Fire resistance tests on 

composite steel and concrete columns, made with CFS profiles (R and 2R sections, for 

instance) and micro-concrete, should also be carried out, in order to compare the behaviour 

with the bare steel columns. 

 

Finally, all these studies might contribute to a future revision of EN1993-1-2 document, 

relative to the fire design of these members, or to a new document associated with Eurocode 3 

and/or with the technical notes of the European Convention for Constructional Steelwork 

(ECCS), fulfilling a gap in the structural steel engineering. 
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Figure A.1 – Load-displacement diagram at different sections of beam B-C_1 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2 – Load-displacement diagram at different sections of beam B-C_2 
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Figure A.3 – Load-displacement diagram at different sections of beam B-C_3 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 – Load-rotation diagram at mid-span of beam B-C_1 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5 – Load-rotation diagram at mid-span of beam B-C_2 
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Figure A.6 – Load-rotation diagram at mid-span of beam B-C_3 

 

 

 

 

 

 

 

 

 

 

 

Figure A.7 – Rotation of beam supports in test B-C_1 

 

 

 

 

 

 

 

 

 

 

 

Figure A.8 – Rotation of beam supports in test B-C_2 
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Figure A.9 – Rotation of beam supports in test B-C_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.10 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-C_2 at section S1 
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Figure A.11 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-C_2 at section S2 
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Figure A.12 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-C_3 at section S1 

 

A2 Lipped-I beams 

 

 

 

 

 

 

 

 

 

 

Figure A.13 – Load-displacement diagram at different sections of beam B-I_2 

 

 

 

 

 

 

 

 

 

 

 

Figure A.14 – Load-displacement diagram at different sections of beam B-I_3 
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Figure A.15 – Load-rotation diagram at mid-span of beam B-I_2 

 

 

 

 

 

 

 

 

 

 

 

Figure A.16 – Load-rotation diagram at mid-span of beam B-I_3 

 

 

 

 

 

 

 

 

 

 

 

Figure A.17 – Rotation of beam supports in test B-I_2 
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Figure A.18 – Rotation of beam supports in test B-I_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.19 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-I_2 at section S1 
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Figure A.20 – Load-strain curves  from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-I_2 at section S2 
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Figure A.21 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-I_3 at section S1 

 

A3 R beams 

 

 

 

 

 

 

 

 

 

 

Figure A.22 – Load-displacement diagram at different sections of beam B-R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure A.23 – Load-displacement diagram at different sections of beam B-R_2 
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Figure A.24 – Load-displacement diagram at different sections of beam B-R_3 

 

 

 

 

 

 

 

 

 

 

 

Figure A.25 – Load-rotation diagram at mid-span of beam B-R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure A.26 – Load-rotation diagram at mid-span of beam B-R_2 

 

 



APPENDIX A Experimental Data from Tests on Cold-

Formed Steel Beams at Ambient Temperature 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

A-12 Luís Miguel dos Santos Laím 

 

0

7

14

21

28

35

42

49

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

γγ γγ
S

1
(º

)

P
(k

N
)

d S1 (mm)

load

rotation

P

γγγγ S1

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

ηη ηη
(º

)

P
(k

N
)

d S1 (mm)

load

simple

double

P

ηηηη RS

ηηηη PS

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

ηη ηη
(º

)

P
(k

N
)

d S1 (mm)

load

simple

double

P

ηηηη RS

ηηηη PS

 

 

 

 

 

 

 

 

 

 

Figure A.27 – Load-rotation diagram at mid-span of beam B-R_3 

 

 

 

 

 

 

 

 

 

 

 

Figure A.28 – Rotation of beam supports in test B-R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure A.29 – Rotation of beam supports in test B-R_2 
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Figure A.30 – Rotation of beam supports in test B-R_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.31 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-R_2 at section S1 
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Figure A.32 – Load-strain curves  from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-R_2 at section S2 
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Figure A.33 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-R_3 at section S1 

 

A4 2R beams 

 

 

 

 

 

 

 

 

 

 

Figure A.34 – Load-displacement diagram at different sections of beam B-2R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure A.35 – Load-displacement diagram at different sections of beam B-2R_2 
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Figure A.36 – Load-displacement diagram at different sections of beam B-2R_3 

 

 

 

 

 

 

 

 

 

 

 

Figure A.37 – Load-rotation diagram at mid-span of beam B-2R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure A.38 – Load-rotation diagram at mid-span of beam B-2R_2 
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Figure A.39 – Load-rotation diagram at mid-span of beam B-2R_3 

 

 

 

 

 

 

 

 

 

 

 

Figure A.40 – Rotation of beam supports in test B-2R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure A.41 – Rotation of beam supports in test B-2R_2 
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Figure A.42 – Rotation of beam supports in test B-2R_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.43 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-2R_2 at section S1 
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Figure A.44 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-2R_2 at section S2 
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Figure A.45 – Load-strain curves from the strain gauges which were placed in the 

compressive (a) and tensile (b) flange of beam B-2R_3 at section S1 
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Figure B.1 – Front view of the failure mode of specimen B-C_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2 – Back view of the failure mode of specimen B-C_1 
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Figure B.3 – Detail view of the failure mode of specimen B-C_1 

 

 

 

 

 

 

 

 

 

 

 

Figure B.4 – Front view of the failure mode of specimen B-C_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.5 – Back view of the failure mode of specimen B-C_2 
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Figure B.6 – Detail view of the failure mode of specimen B-C_2 

 

 

 

 

 

 

 

 

 

 

 

Figure B.7 – Front view of the failure mode of specimen B-C_3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.8 – Back view of the failure mode of specimen B-C_3 
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Figure B.9 – Detail view of the failure mode of specimen B-C_3 

 

B2 Lipped-I beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.10 – Front view of the failure mode of specimen B-I_1 
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Figure B.11 – Detail view of the failure mode of specimen B-I_1 

 

 

 

 

 

 

 

 

 

 

 

Figure B.12 – Front view of the failure mode of specimen B-I_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.13 – Back view of the failure mode of specimen B-I_2 
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Figure B.14 – Detail view of the failure mode of specimen B-I_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.15 – Front view of the failure mode of specimen B-I_3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.16 – Back view of the failure mode of specimen B-I_3 
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Figure B.17 – Detail view of the failure mode of specimen B-I_3 

 

B3 R beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.18 – Front view of the failure mode of specimen B-R_1 
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Figure B.19 – Back view of the failure mode of specimen B-R_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.20 – Detail view of the failure mode of specimen B-R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure B.21 – Front view of the failure mode of specimen B-R_2 
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Figure B.22 – Back view of the failure mode of specimen B-R_2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.23 – Detail view of the failure mode of specimen B-R_2 

 

 

 

 

 

 

 

 

 

 

 

Figure B.24 – Front view of the failure mode of specimen B-R_3 
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Figure B.25 – Back view of the failure mode of specimen B-R_3 

 

 

 

 

 

 

 

 

 

 

 

Figure B.26 – Detail view of the failure mode of specimen B-R_3 

 

B4 2R beams 

 

 

 

 

 

 

 

 

 

 

 

Figure B.27 – Front view of the failure mode of specimen B-2R_1 
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Figure B.28 – Back view of the failure mode of specimen B-2R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure B.29 – Detail views of the failure mode of specimen B-2R_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.30 – Front view of the failure mode of specimen B-2R_2 
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Figure B.31 – Back view of the failure mode of specimen B-2R_2 

 

 

 

 

 

 

 

 

 

 

 

Figure B.32 – Detail view of the failure mode of specimen B-2R_2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.33 – Front view of the failure mode of specimen B-2R_3 
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Figure B.34 – Back view of the failure mode of specimen B-2R_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.35 – Detail view of the failure mode of specimen B-2R_3 
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APPENDIX C Calculation of the Design Value of Resistant 

Buckling Moment According the EN 1993-1-3 (2004)  

 

C1 Cold-formed steel U_4000_203_80_1.5 beam 

 

This example shows how was determined the design buckling resistance moment Mb,Rd of a 

U-shaped section using EN 1993-1-1 (2004), EN 1993-1-3 (2004) and EN 1993-1-5 (2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1 – Scheme of a U-shaped 

idealized gross cross-section 

 Figure C.2 – Loading system 

 

 

 

� Boundary conditions at beam supports: 

- no rotation about the longitudinal z-z axis; 

- no displacements in the plane; 

- no warping restraint. 
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� Cross-sectional dimensions: 

 

 

Height of the section (overall 

dimension): 

  

h = 203 mm 

Width of the flange (overall 

dimension): 

  

b = 80 mm 

Nominal material thickness:  tn = 1.5 mm 

Material core thickness (clause 

3.2.4 of EN 1993-1-3, 2004): 

tcor = tn - tzinc 

tzinc = 0.04 (Z275) 

 

tcor = t = 1.46 mm 

Height of the section 

(centreline dimension): 

  

hc = 201.50 mm 

Width of the flange (centreline 

dimension): 

  

bc = 78.50 mm 

Beam span  L = 4000 mm 

 

 

� Material properties: 

 

 

Modulus of elasticity:  E = 210000 N/mm
2
 

Poisson ratio:  ν = 0.3 

Shear modulus: G = E [2 (1 + ν)]
-1

 G = 80769 N/mm
2
 

Nominal yield strength (S280GD + 

Z275): 

  

fyb = 280 N/mm
2
 

Partial factor for resistance of cross-

sections (clause 2 of EN 1993-1-3, 

2004): 

  

 

γM0 = 1.00 

Partial factor for resistance of 

members (clause 2 of EN 1993-1-3, 

2004): 

 

 

 

 

 

γM1 = 1.00 

Elastic strain: ε = (235 / fyb)
1/2

 ε = 0.9161 
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� Gross cross sectional properties: 

 

 

Cross-sectional area:  A = 525.60 mm
2
 

First moment of area with respect 

to x-axis: 

  

Sx = 52954 mm
3
 

First moment of area with respect 

to y-axis: 

  

Sy = 9170 mm
3
 

Gravity centre co-ordinate with 

respect to x-axis: 

 

XGC = Sy / A 

 

XGC = 17.446 mm 

Gravity centre co-ordinate with 

respect to y-axis: 

 

YGC = Sx / A 

 

YGC = 100.75 mm 

Second moment of area with 

respect to x-axis: 

  

Ix = 8679516 mm
4
 

Second moment of area with 

respect to y-axis: 

  

Iy = 484514 mm
4
 

Product moment of area with 

respect to x- and y-axis: 

  

Ixy = 923839 mm
4
 

Second moment of area with 

respect to x’-axis: 

 

Ix’ = Ix – A.YCG 
2
 

 

Ix’ = 3344381 mm
4
 

Second moment of area with 

respect to y’-axis: 

 

Iy’ = Iy – A.XCG 
2
 

 

Iy’ = 324541 mm
4
 

Product moment of area with 

respect to x’- and y’-axis: 

 

Ixy’ = Ixy – (Sx . Sy)/A 

 

Ixy’ = 0 

Angle between x’-axis and u-axis 

(principal axis): 

  

β = 0 

Second moment of area with 

respect to u-axis: 

Iu = 0.5[Ix’ + Iy’ + √((Iy’ – 

Ix’)
2
 + 4Ixy’

2
)] 

 

Iu = 3344381 mm
4
 

Second moment of area with 

respect to v-axis: 

Iv = 0.5[Ix’ + Iy’ – √((Iy’ – 

Ix’)
2
 + 4Ixy’

2
)] 

 

Iv = 324541 mm
4
 

Radius of gyration with respect to 

u-axis: 

 

iu = √(Iu / A) 

 

iu = 79.77 mm 
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Radius of gyration with respect to 

v-axis: 

 

iv = √(Iv / A) 

 

iv = 24.85 mm 

Shear centre co-ordinate with 

respect to u-axis: 

  

USC = -45.277 mm 

Shear centre co-ordinate with 

respect to v-axis: 

  

VSC = 0 

Polar radius of gyration about 

shear centre: 

i0 =√( iu
2
 + iv

2
 + USC

2
 + 

VSC
2
) 

 

i0 = 95.03 mm 

Torsional constant:  IT = 373.46 mm
4 

Warping constant:  IW = 2327123702 mm
6 

Maximum co-ordinate with 

respect to u-axis: 

  

umax = 61.804 mm 

Minimum co-ordinate with 

respect to u-axis: 

  

umin = -18.176 mm 

Maximum co-ordinate with 

respect to v-axis: 

  

vmax = 101.480 mm 

Minimum co-ordinate with 

respect to v-axis: 

  

vmin = -101.480 mm 
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� Effective cross sectional properties: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.3 – Scheme of a U-shaped idealized effective cross-section 

 

1
st
 Iteration: 

 

Flange – outstand compression element: 

 

 

Maximum stress in the plate 

(compression positive): 
σ��� =	��� 	
��
�|	���|, |	�
�|�  

σmax = 278 N/mm
2
 

Minimum stress in the plate 

(compression positive): 
σ�
� =	��� 	���
�|	���|, |	�
�|�  

σmin = 278 N/mm
2
 

Stress ratio in the plate:  ψ = σmin / σmax  ψ = 1 

Plate local buckling factor 

(Table 4.2 of EN 1993-1-5, 

2006): 

  

 

kσ = 0.43 
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Plate slenderness (clause 4.4 of 

EN 1993-1-5, 2006): 
λ�� =	 �� �⁄28.4	ε	��σ

 
 

λ�� = 3.065 > 0.748 

Maximum design compressive 

stress in the plate: 

  

σcom,Ed = 280 N/mm
2
 

Reduced plate slenderness 

(clause 4.4 of EN 1993-1-5, 

2006): 

λ��,� ! =	λ��"σ#$�,%!��� γ&'⁄  
 

 

λ��,� ! = 3.065 

Reduction factor (annex E of 

EN 1993-1-5, 2006): 
 ρ	 = 	 1 − 0.188 λ��,� !⁄

λ��,� ! + 

+0.18 ,λ�� − λ��,� !-,λ�� − 0.6-  

 

 

 

 

ρ = 0.306 

Effective flange width (Table 

4.2 of EN 1993-1-5, 2006): 

beff = ρ . bp b1,eff = 24.022 mm 

b2,eff = 78.50 mm 

 

 

Initial effective sectional properties: 

 

 

Cross-sectional area:  A = 453.54 mm
2
 

Gravity centre co-ordinate with respect to x-axis:  XGC = 11.404 mm 

Gravity centre co-ordinate with respect to y-axis:  YGC = 82.617 mm 

Distance in x-direction from gravity centre to effective 

gravity centre 

  

∆XGC = 6.042 mm 

Distance in y-direction from gravity centre to effective 

gravity centre 

  

∆YGC = 18.133 mm 

Second moment of area with respect to u-axis:  Iu = 2409435 mm
4
 

Second moment of area with respect to v-axis:  Iv = 197610 mm
4
 

Product moment of area with respect to u- and v-axis:  Iuv = -334184 mm
4
 

Angle between u-axis and u’-axis (principal axis):  β = 8.407º 

Second moment of area with respect to u’-axis:  Iu’ = 2458824 mm
4
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Second moment of area with respect to v’-axis:  Iv’ = 148221 mm
4
 

Maximum co-ordinate with respect to u’-axis:  u'max = 79.306 mm 

Minimum co-ordinate with respect to u’-axis:  u'min = -29.286 mm 

Maximum co-ordinate with respect to v’-axis:  v'max = 120.310 mm 

Minimum co-ordinate with respect to v’-axis:  v'min = -84.021 mm 

 

 

Web – internal compression element: 

 

 

Maximum stress in the plate 

(compression positive): 
σ��� =	��� 	′
��
�|	′���|, |	′�
�|�  

σmax = 268.0 N/mm
2
 

Minimum stress in the plate 

(compression positive): 
σ�
� =	��� 	′���
�|	′���|, |	′�
�|�  

σmin = -192.2 N/mm
2
 

Stress ratio in the plate:  ψ = σmin / σmax  ψ = -0.72 

Plate local buckling factor 

(Table 4.1 of EN 1993-1-5, 

2006): 

  

 

kσ = 17.355 

Plate slenderness (clause 4.4 of 

EN 1993-1-5, 2006): 
λ�� =	 ℎ� �⁄28.4	ε	��σ

 
 

λ�� = 1.229 > 0.673 

Maximum design compressive 

stress in the plate: 

  

σcom,Ed = 268 N/mm
2
 

Reduced plate slenderness 

(clause 4.4 of EN 1993-1-5, 

2006): 

λ��,� ! =	λ��"σ#$�,%!��� γ&'⁄  
 

 

λ��,� ! = 1.203 

Reduction factor (annex E of 

EN 1993-1-5, 2006): 
 ρ	 = 	 1 − 0.055�3 + ψ� λ��,� !⁄

λ��,� !  

+0.18 ,λ�� − λ��,� !-,λ�� − 0.6-  

 

 

 

 

ρ = 0.752 

Effective flange width (Table 

4.1 of EN 1993-1-5, 2006): 

heff = ρ . hp heff_1 = 20.394 mm 

heff_2 = 114.09 mm 
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2
nd

 and 3
rd

 Iterations: 

 

 

Plate Parameter Unit 2
nd

 Iteration 3
rd

 Iteration 

Flange 

σmax N/mm
2
 278.49 278.50 

σmin N/mm
2
 271.61 271.88 

 ψ - - - 0.98 0.98 

kσ - - - 0.43 0.43 

λ�� - - - 3.059 3.059 

σcom,Ed N/mm
2
 280 280 

λ��,� ! - - - 3.059 3.059 

ρ - - - 0.307 0.307 

b1,eff mm 24.068 24.066 

b2,eff mm 78.500 78.500 

Web 

σmax N/mm
2
 269.75 270.04 

σmin N/mm
2
 -132.88 -130.59 

 ψ - - - -0.49 -0.48 

kσ - - - 13.282 13.139 

λ�� - - - 1.405 1.413 

σcom,Ed N/mm
2
 269.75 270.04 

λ��,� ! - - - 1.379 1.388 

ρ - - - 0.658 0.654 

heff_1 mm 23.624 23.771 

heff_2 mm 101.40 100.81 
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Final effective sectional properties: 

 

 

Effective cross-sectional area:  Aeff = 340.66 mm
2
 

Effective gravity centre co-ordinate with respect to x-axis:  Xeff,GC = 15.187 mm 

Effective gravity centre co-ordinate with respect to y-axis:  Yeff,GC = 63.856 mm 

Distance in x-direction from gravity centre to effective 

gravity centre 

  

∆XGC = 2.259 mm 

Distance in y-direction from gravity centre to effective 

gravity centre 

  

∆YGC = 36.894 mm 

Second moment of effective area with respect to u-axis:  Ieff,u = 1874560 mm
4
 

Second moment of effective area with respect to v-axis:  Ieff,v = 178036 mm
4
 

Product moment of effective area with respect to u- and v-

axis: 

  

Ieff,uv = -236922 mm
4
 

Angle between u-axis and u’-axis (principal axis):  β = 7.803º 

Second moment of effective area with respect to u’-axis:  Ieff,u’ = 1907025 mm
4
 

Second moment of effective area with respect to v’-axis:  Ieff,v’ = 145570 mm
4
 

Maximum co-ordinate with respect to u’-axis:  u'max = 72.240 mm 

Minimum co-ordinate with respect to u’-axis:  u'min = -34.367 mm 

Maximum co-ordinate with respect to v’-axis:  v'max = 138.428 mm 

Minimum co-ordinate with respect to v’-axis:  v'min = -65.960 mm 
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� Design buckling resistance moment: 

 

 

Effective length factor:  kv = 1.0 

Warping effective length factor:  kw = 1.0 

Buckling factor:  Cb = 1.0 

Critical elastic moment for 

lateral-torsional buckling: 3#� = 4�" π5678��89�5 :;7< + π567=��=9�5> 
 

Mcr = 3.73 kN.m 

Effective section modulus: ? @@,AB =	 7 @@,AC	′���  
 

Weff,u’ = 13776 mm
3
 

Non-dimensional slenderness 

for lateral-torsional buckling 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

 

λ�D< =	"? @@,AC���3#�  

 

 

 

λ�D< = 1.02 

Imperfection factor (Clause 

6.2.4 of EN 1993-1-3, 2004): 

  

αD< = 0.21 

Capacity reduction factor 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

ΦD< = 0.5 E1 + αD<,λ�D< − 0.2-
+ λ�D<5 F 

 

 

ΦD< = 1.10 

Reduction factor for lateral-

torsional buckling (clause 

6.3.2.2 of EN 1993-1-1, 2004): 

χD< = 1
ΦD< +GΦD<5 − λ�D<5  

 

 

χD< = 0.65  

Design value of the buckling 

resistance moment: 
3�,H! = χD< ∙ ? @@,AC ∙ ���γ&J 

 

Mb,Rd = 2.52 kN.m 
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C2 Cold-formed steel C_4000_200_80_20_1.5 beam 

 

This example shows how was determined the design buckling resistance moment Mb,Rd of a 

C-shaped section using EN 1993-1-1 (2004), EN 1993-1-3 (2004) and EN 1993-1-5 (2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.4 – Scheme of a C-shaped 

idealized gross cross-section 

 Figure C.5 – Loading system 

 

 

 

� Boundary conditions at beam supports: 

- no rotation about the longitudinal z-z axis; 

- no displacements in the plane; 

- no warping restraint. 

 

 

� Cross-sectional dimensions: 

 

 

Height of the section (overall dimension):  h = 200 mm 

Width of the flange (overall dimension):  b = 80 mm 
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Width of the edge stiffener (overall 

dimension): 

  

c = 20 mm 

Nominal material thickness:  tn = 1.5 mm 

Material core thickness (clause 3.2.4 of 

EN 1993-1-3, 2004): 

tcor = tn - tzinc 

tzinc = 0.04 (Z275) 

 

tcor = t = 1.46 mm 

Height of the section (centreline 

dimension): 

  

hc = 198.50 mm 

Width of the flange (centreline 

dimension): 

  

bc = 78.50 mm 

Width of the edge stiffener (centreline 

dimension): 

  

cc = 19.25 mm 

Beam span  L = 4000 mm 

 

 

� Material properties: 

 

 

Modulus of elasticity:  E = 210000 N/mm
2
 

Poisson ratio:  ν = 0.3 

Shear modulus: G = E [2 (1 + ν)]
-1

 G = 80769 N/mm
2
 

Nominal yield strength (S280GD + 

Z275): 

  

fyb = 280 N/mm
2
 

Partial factor for resistance of cross-

sections (clause 2 of EN 1993-1-3, 

2004): 

  

 

γM0 = 1.00 

Partial factor for resistance of 

members (clause 2 of EN 1993-1-3, 

2004): 

  

 

γM1 = 1.00 

Elastic strain: ε = (235 / fyb)
1/2

 ε = 0.9161 
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� Gross cross sectional properties: 

 

 

Cross-sectional area:  A = 575.24 mm
2
 

First moment of area with respect 

to x-axis: 

  

Sx = 57093 mm
3
 

First moment of area with respect 

to y-axis: 

  

Sy = 13409 mm
3
 

Gravity centre co-ordinate with 

respect to x-axis: 

 

XGC = Sy / A 

 

XGC = 23.311 mm 

Gravity centre co-ordinate with 

respect to y-axis: 

 

YGC = Sx / A 

 

YGC = 99.25 mm 

Second moment of area with 

respect to x-axis: 

  

Ix = 9329272 mm
4
 

Second moment of area with 

respect to y-axis: 

  

Iy = 817279 mm
4
 

Product moment of area with 

respect to x- and y-axis: 

  

Ixy = 1330880 mm
4
 

Second moment of area with 

respect to x’-axis: 

 

Ix’ = Ix – A.YCG 
2
 

 

Ix’ = 3662834 mm
4
 

Second moment of area with 

respect to y’-axis: 

 

Iy’ = Iy – A.XCG 
2
 

 

Iy’ = 504694 mm
4
 

Product moment of area with 

respect to x’- and y’-axis: 

 

Ixy’ = Ixy – (Sx . Sy)/A 

 

Ixy’ = 0 

Angle between x’-axis and u-axis 

(principal axis): 

  

β = 0 

Second moment of area with 

respect to u-axis: 

Iu = 0.5[Ix’ + Iy’ + √((Iy’ – 

Ix’)
2
 + 4Ixy’

2
)] 

 

Iu = 3662834 mm
4
 

Second moment of area with 

respect to v-axis: 

Iv = 0.5[Ix’ + Iy’ – √((Iy’ – 

Ix’)
2
 + 4Ixy’

2
)] 

 

Iv = 504694 mm
4
 

Radius of gyration with respect to 

u-axis: 

 

iu = √(Iu / A) 

 

iu = 79.80 mm 
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Radius of gyration with respect to 

v-axis: 

 

iv = √(Iv / A) 

 

iv = 29.62 mm 

Shear centre co-ordinate with 

respect to u-axis: 

  

USC = -59.225 mm 

Shear centre co-ordinate with 

respect to v-axis: 

  

VSC = 0 

Polar radius of gyration about 

shear centre: 

i0 =√( iu
2
 + iv

2
 + USC

2
 + 

VSC
2
) 

 

i0 = 103.69 mm 

Torsional constant:  IT = 408.73 mm
4 

Warping constant:  IW = 4030341055 mm
6 

Maximum co-ordinate with 

respect to u-axis: 

  

umax = 55.919 mm 

Minimum co-ordinate with 

respect to u-axis: 

  

umin = -24.041 mm 

Maximum co-ordinate with 

respect to v-axis: 

  

vmax = 99.980 mm 

Minimum co-ordinate with 

respect to v-axis: 

  

vmin = -99.980 mm 
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� Effective cross sectional properties: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.6 – Scheme of a C-shaped idealized effective cross-section 

 

1
st
 Iteration: 

 

Flange – internal compression element: 

 

 

Maximum stress in the plate 

(compression positive): 
σ��� =	��� 	
��
�|	���|, |	�
�|�  

σmax = 278 N/mm
2
 

Minimum stress in the plate 

(compression positive): 
σ�
� =	��� 	���
�|	���|, |	�
�|�  

σmin = 278 N/mm
2
 

Stress ratio in the plate:  ψ = σmin / σmax  ψ = 1 

Plate local buckling factor 

(Table 4.1 of EN 1993-1-5, 

2006): 

  

 

kσ = 4.0 
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Plate slenderness (clause 4.4 of 

EN 1993-1-5, 2006): 
λ�� =	 �� �⁄28.4	ε	��σ

 
 

λ�� = 0.985 > 0.673 

Maximum design compressive 

stress in the plate: 

  

σcom,Ed = 280 N/mm
2
 

Reduced plate slenderness 

(clause 4.4 of EN 1993-1-5, 

2006): 

λ��,� ! =	λ��"σ#$�,%!��� γ&'⁄  
 

λ��,� ! = 0.985 

Reduction factor (annex E of 

EN 1993-1-5, 2006): 
 ρ	 = 	 1 − 0.188 λ��,� !⁄

λ��,� ! + 

+0.18 ,λ�� − λ��,� !-,λ�� − 0.6-  

 

 

 

 

ρ = 0.788 

Effective flange width (Table 

4.1 of EN 1993-1-5, 2006): 

beff = ρ . bp b1,eff_1 = 30.311 mm 

b1,eff_2 = 30.311 mm 

b2,eff = 76.889 mm 

 

 

Edge stiffener – outstand compression element: 

 

 

Maximum stress in the plate 

(compression positive): 
σ��� =	��� 	
��
�|	���|, |	�
�|�  

σmax = 276 N/mm
2
 

Minimum stress in the plate 

(compression positive): 
σ�
� =	��� 	���
�|	���|, |	�
�|�  

σmin = 224 N/mm
2
 

Stress ratio in the plate:  ψ = σmin / σmax  ψ = 0.8 

Plate local buckling factor 

(clause 5.5.3.2 of EN 1993-1-3, 

2004): 

�σ = 0.5	, K� �� ≤ 0.35⁄  �σ = 0.5 + 

+0.83G,K� �� − 0.35⁄ -5M 	, 
0.35< K� �� ≤ 0.6⁄  

 

 

 

 

kσ = 0.500 

Plate slenderness (clause 4.4 of 

EN 1993-1-5, 2006): 
λ�� =	 �� �⁄28.4	ε	��σ

 
 

λ�� = 0.668 < 0.748 

Maximum design compressive   
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stress in the plate: σcom,Ed = 280 N/mm
2
 

Reduced plate slenderness 

(clause 4.4 of EN 1993-1-5, 

2006): 

λ��,� ! =	λ��"σ#$�,%!��� γ&'⁄  
 

λ��,� ! = 0.668 

Reduction factor (annex E of 

EN 1993-1-5, 2006): 
 ρ	 = 	 1 − 0.188 λ��,� !⁄

λ��,� ! + 

+0.18 ,λ�� − λ��,� !-,λ�� − 0.6-  

 

 

 

 

ρ = 1.0 

Effective flange width (Table 

4.2 of EN 1993-1-5, 2006): 

 

ceff = ρ . cp 

 

c1,eff = 18.445 mm 

 

 

Reduction factor χd for the distortional buckling resistance of the edge stiffener: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.7 – Edge stiffener (EN 1993-1-3, 2004) 
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Distance from the web-to-flange 

junction to the centre of the effective 

area of the edge stiffener (including 

effective part b1,eff_2 of the flange): 

  

 

b1 = 68.577 

mm 

Spring stiffness of the edge stiffener 

per unit length (clause 5.5.3.1 of EN 

1993-1-3, 2004): 

O = 	 6�P4�1 − ν5� ∙ 1�J5ℎ� + �JP 

(beam in bending about u-axis) 

 

K = 0.1560 

N/mm
2
 

Second moment of effective area of 

the edge stiffener with respect to a-

axis: 

  

Is = 2522 

mm
4
 

Effective cross-sectional area of the 

edge stiffener: 

 As = 73.133 

mm
2
 

Elastic critical buckling stress of the 

edge stiffener (clause 5.5.3.2 of EN 

1993-1-3, 2004): 

 

σ#�,Q = 2�O ∙ 6 ∙ 7QRQ  

 

σcr,s = 248.57 

MPa 

Edge stiffener slenderness (clause 

5.5.3.1 of EN 1993-1-3, 2004): 
λ�! = G��� σ#�,Q⁄  

 

λ�! = 1.061 

Reduction factor for the distortional 

buckling resistance of the edge 

stiffener (clause 5.5.3.1 of EN 1993-

1-3, 2004): 

χ! = 

= S 1.0	, λ�! ≤ 0.651.47 − 0.723λ�!, 0.65 < λ�! < 1.380.66 λ�!⁄ , λ�! ≥ 1.38  

 

 

 

χ! = 0.7027 

Reduced thickness:  tred = 1.054 

mm 

Reduced effective cross-sectional 

area of the edge stiffener: 

 As,red =  

51.387 mm 

Reduced compression stress:  

σ#$�,%! =	χ! ∙ ��� γ&'⁄  

σcom,Ed = 

196.74 MPa 

 

 

 

 

 

 



Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

APPENDIX C Calculation of the Design  

Value of Resistant Buckling Moment  

According the EN 1993-1-3 (2004) 

 

 

Luís Miguel dos Santos Laím C-19 

 

Iteration to calculate the reduced effective area of the edge stiffener: 

 

 

Parameter Unit 
Initial 

calculation 

1
st
 

Iteration 

2
nd

 

Iteration 

4
th

 

Iteration 

Edge 

Stiffener 
χd,n-1 - - - 1.000 0.7027 0.6816 0.6800 

Flange 

λ�� - - - 0.985 0.985 0.985 0.985 

σcom,Ed N/mm
2
 280.00 196.74 190.86 190.39 

λ��,� ! - - - 0.985 0.826 0.813 0.812 

ρ - - - 0.788 0.963 .977 0.978 

b1,eff_2 mm 30.311 37.017 37.571 37.615 

Lip 

λ�� - - - 0.668 0.668 0.668 0.668 

σcom,Ed N/mm
2
 280.00 196.74 190.86 190.39 

λ��,� ! - - - 0.668 0.560 0.552 0.551 

ρ - - - 1.000 1.000 1.000 1.000 

c1,eff mm 18.455 18.445 18.445 18.445 

Edge 

Stiffener 

As mm
2
 73.133 83.192 84.023 84.089 

b1 mm 68.577 65.609 65.360 65.340 

Is mm
4
 2522 2652 2661 2662 

K N/mm
2
 0.1560 0.1723 0.1738 0.1739 

σcr,s N/mm
2
 248.57 235.49 234.58 234.50 

χ!,�  0.7027 0.6816 0.6801 0.6800 

As,red mm
2
 51.387 56.707 57.143 57.178 
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Initial effective sectional properties: 

 

 

Cross-sectional area:  A = 540.98 mm
2
 

Gravity centre co-ordinate with respect to x-axis:  XGC = 20.630 mm 

Gravity centre co-ordinate with respect to y-axis:  YGC = 92.010 mm 

Distance in x-direction from gravity centre to effective 

gravity centre 

  

∆XGC = 2.681 mm 

Distance in y-direction from gravity centre to effective 

gravity centre 

  

∆YGC = 7.240 mm 

Second moment of area with respect to u-axis:  Iu = 3258962 mm
4
 

Second moment of area with respect to v-axis:  Iv = 443367 mm
4
 

Product moment of area with respect to u- and v-axis:  Iuv = -134250 mm
4
 

Angle between u-axis and u’-axis (principal axis):  β = 2.724º 

Second moment of area with respect to u’-axis:  Iu’ = 3265348 mm
4
 

Second moment of area with respect to v’-axis:  Iv’ = 436981 mm
4
 

Maximum co-ordinate with respect to u’-axis:  u'max = 62.888 mm 

Minimum co-ordinate with respect to u’-axis:  u'min = -26.378 mm 

Maximum co-ordinate with respect to v’-axis:  v'max = 109.590 mm 

Minimum co-ordinate with respect to v’-axis:  v'min = -93.598 mm 
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Web – internal compression element: 

 

 

Maximum stress in the plate 

(compression positive): 
σ��� =	��� 	′
��
�|	′���|, |	′�
�|�  

σmax = 267.2 N/mm
2
 

Minimum stress in the plate 

(compression positive): 
σ�
� =	��� 	′���
�|	′���|, |	′�
�|�  

σmin = -235.3 N/mm
2
 

Stress ratio in the plate:  ψ = σmin / σmax  ψ = -0.88 

Plate local buckling factor 

(Table 4.1 of EN 1993-1-5, 

2006): 

  

 

kσ = 20.930 

Plate slenderness (clause 4.4 of 

EN 1993-1-5, 2006): 
λ�� =	 ℎ� �⁄28.4	ε	��σ

 
 

λ�� = 1.103 > 0.673 

Maximum design compressive 

stress in the plate: 

  

σcom,Ed = 267 N/mm
2
 

Reduced plate slenderness 

(clause 4.4 of EN 1993-1-5, 

2006): 

λ��,� ! =	λ��"σ#$�,%!��� γ&'⁄  
 

 

λ��,� ! = 1.077 

Reduction factor (annex E of 

EN 1993-1-5, 2006): 
 ρ	 = 	 1 − 0.055�3 + ψ� λ��,� !⁄

λ��,� !  

+0.18 ,λ�� − λ��,� !-,λ�� − 0.6-  

 

 

 

 

ρ = 0.837 

Effective flange width (Table 

4.1 of EN 1993-1-5, 2006): 

heff = ρ . hp heff_1 = 18.640 mm 

heff_2 = 120.15 mm 

 

 

 

 

 

 

 

 

 



APPENDIX C Calculation of the Design  

Value of Resistant Buckling Moment  

According the EN 1993-1-3 (2004) 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

C-22 Luís Miguel dos Santos Laím 

 

2
nd

 and 3
rd

 Iterations: 

 

 

Plate Parameter Unit 2
nd

 Iteration 3
rd

 Iteration 

Flange 

σmax N/mm
2
 278.67 278.39 

σmin N/mm
2
 277.94 278.13 

 ψ - - - 0.997 0.999 

kσ - - - 4.006 4.002 

λ�� - - - 0.984 0.985 

σcom,Ed N/mm
2
 280 280 

λ��,� ! - - - 0.984 0.985 

ρ - - - 0.789 0.789 

b1,eff_1 mm 30.311 30.311 

Edge Stiffener 

(4
th

 Iteration) 

χ!,�  0.6800 0.6800 

As,red mm
2
 57.178 57.178 

b1,eff_2 mm 37.615 37.615 

c1,eff mm 18.445 18.445 

tred mm 1.020 1.020 

Web 

σmax N/mm
2
 276.03 276.24 

σmin N/mm
2
 -189.58 -187.18 

 ψ - - - -0.687 -0.678 

kσ - - - 16.744 16.562 

λ�� - - - 1.233 1.240 

σcom,Ed N/mm
2
 276.03 276.24 

λ��,� ! - - - 1.224 1.231 

ρ - - - 0.734 0.730 

heff_1 mm 20.330 20.436 

heff_2 mm 110.66 110.18 
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Final effective sectional properties: 

 

 

Effective cross-sectional area:  Aeff = 441.57 mm
2
 

Effective gravity centre co-ordinate with respect to x-axis:  Xeff,GC = 25.274 mm 

Effective gravity centre co-ordinate with respect to y-axis:  Yeff,GC = 80.279 mm 

Distance in x-direction from gravity centre to effective 

gravity centre 

  

∆XGC = 1.963 mm 

Distance in y-direction from gravity centre to effective 

gravity centre 

  

∆YGC = 18.971 mm 

Second moment of effective area with respect to u-axis:  Ieff,u = 2891862 mm
4
 

Second moment of effective area with respect to v-axis:  Ieff,v = 391518 mm
4
 

Product moment of effective area with respect to u- and v-

axis: 

  

Ieff,uv = -3326 mm
4
 

Angle between x-axis and u’-axis (principal axis):  β = 0.076º 

Second moment of effective area with respect to u’-axis:  Ieff,u’ = 2891866 mm
4
 

Second moment of effective area with respect to v’-axis:  Ieff,v’ = 391513 mm
4
 

Maximum co-ordinate with respect to u’-axis:  u'max = 54.081 mm 

Minimum co-ordinate with respect to u’-axis:  u'min = -26.180 mm 

Maximum co-ordinate with respect to v’-axis:  v'max = 118.978 mm 

Minimum co-ordinate with respect to v’-axis:  v'min = -81.062 mm 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX C Calculation of the Design  

Value of Resistant Buckling Moment  

According the EN 1993-1-3 (2004) 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

C-24 Luís Miguel dos Santos Laím 

 

� Design buckling resistance moment: 

 

 

Effective length factor:  kv = 1.0 

Warping effective length factor:  kw = 1.0 

Buckling factor:  Cb = 1.0 

Critical elastic moment for 

lateral-torsional buckling: 3#� = 4�" π5678��89�5 :;7< + π567=��=9�5> 
 

Mcr = 6.02 kN.m 

Effective section modulus: ? @@,AB =	 7 @@,AC	′���  
 

Weff,u’ = 24306 mm
3
 

Non-dimensional slenderness 

for lateral-torsional buckling 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

 

λ�D< =	"? @@,AC���3#�  

 

 

 

λ�D< = 1.06 

Imperfection factor (Clause 

6.2.4 of EN 1993-1-3, 2004): 

  

αD< = 0.21 

Capacity reduction factor 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

ΦD< = 0.5 E1 + αD<,λ�D< − 0.2-
+ λ�D<5 F 

 

 

ΦD< = 1.16 

Reduction factor for lateral-

torsional buckling (clause 

6.3.2.2 of EN 1993-1-1, 2004): 

χD< = 1
ΦD< +GΦD<5 − λ�D<5  

 

 

χD< = 0.62  

Design value of the buckling 

resistance moment: 
3�,H! = χD< ∙ ? @@,AC ∙ ���γ&J 

 

Mb,Rd = 4.23 kN.m 
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C3 Cold-formed steel lipped I_4000_200_160_20_1.5 beam 

 

This example shows how was determined the design buckling resistance moment Mb,Rd of a 

lipped I-shaped section using EN 1993-1-1 (2004), EN 1993-1-3 (2004) and EN 1993-1-5 

(2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.8 – Scheme of a lipped I-shaped 

idealized gross cross-section 

 Figure C.9 – Loading system 

 

 

 

� Boundary conditions at beam supports: 

- no rotation about the longitudinal z-z axis; 

- no displacements in the plane; 

- no warping restraint. 

 

 

� Cross-sectional dimensions: 

 

Height of the section (overall dimension):  h = 200 mm 

Width of the flange (overall dimension):  b = 80 mm 



APPENDIX C Calculation of the Design  

Value of Resistant Buckling Moment  

According the EN 1993-1-3 (2004) 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

C-26 Luís Miguel dos Santos Laím 

 

b’ = 160 mm 

Width of the edge stiffener (overall 

dimension): 

  

c = 20 mm 

Nominal material thickness:  tn = 1.5 mm 

Material core thickness (clause 3.2.4 of 

EN 1993-1-3, 2004): 

tcor = tn - tzinc 

tzinc = 0.04 (Z275) 

 

tcor = t = 1.46 mm 

Height of the section (centreline 

dimension): 

  

hc = 198.50 mm 

Width of the flange (centreline 

dimension): 

 bc = 78.50 mm 

bc’ = 158.50 mm 

Width of the edge stiffener (centreline 

dimension): 

  

cc = 19.25 mm 

Beam span  L = 4000 mm 

 

 

� Material properties: 

 

 

Modulus of elasticity:  E = 210000 N/mm
2
 

Poisson ratio:  ν = 0.3 

Shear modulus: G = E [2 (1 + ν)]
-1

 G = 80769 N/mm
2
 

Nominal yield strength (S280GD + 

Z275): 

  

fyb = 280 N/mm
2
 

Partial factor for resistance of cross-

sections (clause 2 of EN 1993-1-3, 

2004): 

  

 

γM0 = 1.00 

Partial factor for resistance of 

members (clause 2 of EN 1993-1-3, 

2004): 

  

 

γM1 = 1.00 

Elastic strain: ε = (235 / fyb)
1/2

 ε = 0.9161 
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� Gross cross sectional properties: 

 

 

Cross-sectional area:  A = 1155.21 mm
2
 

First moment of area with respect 

to x-axis: 

  

Sx = 114678 mm
3
 

First moment of area with respect 

to y-axis: 

  

Sy = 91574 mm
3
 

Gravity centre co-ordinate with 

respect to x-axis: 

 

XGC = Sy / A 

 

XGC = 79.270 mm 

Gravity centre co-ordinate with 

respect to y-axis: 

 

YGC = Sx / A 

 

YGC = 99.270 mm 

Second moment of area with 

respect to x-axis: 

  

Ix = 18751109 mm
4
 

Second moment of area with 

respect to y-axis: 

  

Iy = 8949852 mm
4
 

Product moment of area with 

respect to x- and y-axis: 

  

Ixy = 9090504 mm
4
 

Second moment of area with 

respect to x’-axis: 

 

Ix’ = Ix – A.YCG 
2
 

 

Ix’ = 7367030 mm
4
 

Second moment of area with 

respect to y’-axis: 

 

Iy’ = Iy – A.XCG 
2
 

 

Iy’ = 1690403 mm
4
 

Product moment of area with 

respect to x’- and y’-axis: 

 

Ixy’ = Ixy – (Sx . Sy)/A 

 

Ixy’ = 0 

Angle between x’-axis and u-axis 

(principal axis): 

  

β = 0 

Second moment of area with 

respect to u-axis: 

Iu = 0.5[Ix’ + Iy’ + √((Iy’ – 

Ix’)
2
 + 4Ixy’

2
)] 

 

Iu = 7367030 mm
4
 

Second moment of area with 

respect to v-axis: 

Iv = 0.5[Ix’ + Iy’ – √((Iy’ – 

Ix’)
2
 + 4Ixy’

2
)] 

 

Iv = 1690403 mm
4
 

Radius of gyration with respect to 

u-axis: 

 

iu = √(Iu / A) 

 

iu = 79.86 mm 
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Radius of gyration with respect to 

v-axis: 

 

iv = √(Iv / A) 

 

iv = 38.25 mm 

Shear centre co-ordinate with 

respect to u-axis: 

  

USC = 0 mm 

Shear centre co-ordinate with 

respect to v-axis: 

  

VSC = 0 

Polar radius of gyration about 

shear centre: 

i0 =√( iu
2
 + iv

2
 + USC

2
 + 

VSC
2
) 

 

i0 = 88.55 mm 

Torsional constant:  IT = 1744.23 mm
4 

Warping constant:  IW =18567895467 mm
6 

Maximum co-ordinate with 

respect to u-axis: 

  

umax = 80.000 mm 

Minimum co-ordinate with 

respect to u-axis: 

  

umin = -80.000 mm 

Maximum co-ordinate with 

respect to v-axis: 

  

vmax = 100.00 mm 

Minimum co-ordinate with 

respect to v-axis: 

  

vmin = -100.00 mm 
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� Effective cross sectional properties: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.10 – Scheme of a lipped I-shaped idealized effective cross-section 

 

Considering the individual contribution of each profile, in other words, the effective 

geometrical properties of each C section as calculated above, the final effective geometrical 

properties of the lipped-I section are as follows:  

 

Effective cross-sectional area:  Aeff = 883.16 mm
2
 

Effective gravity centre co-ordinate with respect to x-axis:  Xeff,GC = 79.270 mm 

Effective gravity centre co-ordinate with respect to y-axis:  Yeff,GC = 80.279 mm 

Distance in x-direction from gravity centre to effective 

gravity centre 

  

∆XGC = 0 mm 

Distance in y-direction from gravity centre to effective 

gravity centre 

  

∆YGC = 18.991 mm 

Second moment of effective area with respect to u-axis:  Ieff,u = 5783779 mm
4
 

Second moment of effective area with respect to v-axis:  Ieff,v = 1380886 mm
4
 

Product moment of effective area with respect to u- and v-

axis: 

  

Ieff,uv = 0 mm
4
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Angle between u-axis and u’-axis (principal axis):  β = 0º 

Second moment of effective area with respect to u’-axis:  Ieff,u’ = 5783779 mm
4
 

Second moment of effective area with respect to v’-axis:  Ieff,v’ = 1380886 mm
4
 

Maximum co-ordinate with respect to u’-axis:  u'max = 80.000 mm 

Minimum co-ordinate with respect to u’-axis:  u'min = -80.000 mm 

Maximum co-ordinate with respect to v’-axis:  v'max = 118.971 mm 

Minimum co-ordinate with respect to v’-axis:  v'min = -81.029 mm 

 

� Design buckling resistance moment: 

 

Effective length factor:  kv = 1.0 

Warping effective length factor:  kw = 1.0 

Buckling factor:  Cb = 1.0 

Critical elastic moment for 

lateral-torsional buckling: 3#� = 4�" π5678��89�5 :;7< + π567=��=9�5> 
 

Mcr = 23.61 kN.m 

Effective section modulus: ? @@,AB =	 7 @@,AC	′���  
 

Weff,u’ = 48615 mm
3
 

Non-dimensional slenderness 

for lateral-torsional buckling 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

 

λ�D< =	"? @@,AC���3#�  

 

 

 

λ�D< = 0.76 

Imperfection factor (Clause 

6.3.2 of EN 1993-1-1, 2004): 

  

αD< = 0.76 

Capacity reduction factor 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

ΦD< = 0.5 E1 + αD<,λ�D< − 0.2-
+ λ�D<5 F 

 

 

ΦD< = 1.00 

Reduction factor for lateral-

torsional buckling (clause 

6.3.2.2 of EN 1993-1-1, 2004): 

χD< = 1
ΦD< +GΦD<5 − λ�D<5  

 

 

χD< = 0.61 

Design value of the buckling 

resistance moment: 
3�,H! = χD< ∙ ? @@,AC ∙ ���γ&J 

 

Mb,Rd = 8.24 kN.m 
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C4 Cold-formed steel R_4000_203_81.5_20_1.5 beam 

 

This example shows how was determined the design buckling resistance moment Mb,Rd of a 

R-shaped section using EN 1993-1-1 (2004), EN 1993-1-3 (2004) and EN 1993-1-5 (2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.11 – Scheme of a R-shaped idealized 

gross cross-section 

 Figure C.12 – Loading 

system 

 

 

� Boundary conditions at beam supports: 

- no rotation about the longitudinal z-z axis; 

- no displacements in the plane; 

- no warping restraint. 

 

� Cross-sectional dimensions: 

 

Height of the section (overall dimension):  h = 200 mm 

h’ = 203 mm 

Width of the flange (overall dimension):  b = 80 mm 

b’ = 81.5 mm 
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Width of the edge stiffener (overall 

dimension): 

  

c = 20 mm 

Nominal material thickness:  tn = 1.5 mm 

Material core thickness (clause 3.2.4 of 

EN 1993-1-3, 2004): 

tcor = tn - tzinc 

tzinc = 0.04 (Z275) 

 

tcor = t = 1.46 mm 

Height of the section (centreline 

dimension): 

 hc = 198.50 mm 

hc’ = 201.50 mm 

Width of the flange (centreline 

dimension): 

 bc = 78.50 mm 

bc’ = 80 mm 

Width of the edge stiffener (centreline 

dimension): 

  

cc = 19.25 mm 

Beam span  L = 4000 mm 

 

 

� Material properties: 

 

 

Modulus of elasticity:  E = 210000 N/mm
2
 

Poisson ratio:  ν = 0.3 

Shear modulus: G = E [2 (1 + ν)]
-1

 G = 80769 N/mm
2
 

Nominal yield strength (S280GD + 

Z275): 

  

fyb = 280 N/mm
2
 

Partial factor for resistance of cross-

sections (clause 2 of EN 1993-1-3, 

2004): 

  

 

γM0 = 1.00 

Partial factor for resistance of 

members (clause 2 of EN 1993-1-3, 

2004): 

  

 

γM1 = 1.00 

Elastic strain: ε = (235 / fyb)
1/2

 ε = 0.9161 
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� Gross cross sectional properties: 

 

Considering the steel profiles connected to each other by screws at discrete sections, the 

geometrical properties of the R section were calculated as if it was an open section, as 

follows:  

 

Cross-sectional area:  A = 1105.22 mm
2
 

First moment of area with respect 

to x-axis: 

  

Sx = 111351 mm
3
 

First moment of area with respect 

to y-axis: 

  

Sy = 46370 mm
3
 

Gravity centre co-ordinate with 

respect to x-axis: 

 

XGC = Sy / A 

 

XGC = 41.955 mm 

Gravity centre co-ordinate with 

respect to y-axis: 

 

YGC = Sx / A 

 

YGC = 100.750 mm 

Second moment of area with 

respect to x-axis: 

  

Ix = 18284029 mm
4
 

Second moment of area with 

respect to y-axis: 

  

Iy = 3211392 mm
4
 

Product moment of area with 

respect to x- and y-axis: 

  

Ixy = 4671737 mm
4
 

Second moment of area with 

respect to x’-axis: 

 

Ix’ = Ix – A.YCG 
2
 

 

Ix’ = 7065424 mm
4
 

Second moment of area with 

respect to y’-axis: 

 

Iy’ = Iy – A.XCG 
2
 

 

Iy’ = 1265952 mm
4
 

Product moment of area with 

respect to x’- and y’-axis: 

 

Ixy’ = Ixy – (Sx . Sy)/A 

 

Ixy’ = 0 

Angle between x’-axis and u-axis 

(principal axis): 

  

β = 0 

Second moment of area with 

respect to u-axis: 

Iu = 0.5[Ix’ + Iy’ + √((Iy’ – 

Ix’)
2
 + 4Ixy’

2
)] 

 

Iu = 7065424 mm
4
 

Second moment of area with Iv = 0.5[Ix’ + Iy’ – √((Iy’ –  
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respect to v-axis: Ix’)
2
 + 4Ixy’

2
)] Iv = 1265952 mm

4
 

Radius of gyration with respect to 

u-axis: 

 

iu = √(Iu / A) 

 

iu = 79.95 mm 

Radius of gyration with respect to 

v-axis: 

 

iv = √(Iv / A) 

 

iv = 33.84 mm 

Shear centre co-ordinate with 

respect to u-axis: 

  

USC = -96.496 mm 

Shear centre co-ordinate with 

respect to v-axis: 

  

VSC = 0 

Polar radius of gyration about 

shear centre: 

i0 =√( iu
2
 + iv

2
 + USC

2
 + 

VSC
2
) 

 

i0 = 129.81 mm 

Torsional constant:  IT = 2011.48 mm
4 

Warping constant:  IW =366920006434 mm
6 

Maximum co-ordinate with 

respect to u-axis: 

  

umax = 39.505 mm 

Minimum co-ordinate with 

respect to u-axis: 

  

umin = -42.685 mm 

Maximum co-ordinate with 

respect to v-axis: 

  

vmax = 101.46 mm 

Minimum co-ordinate with 

respect to v-axis: 

  

vmin = -101.46 mm 
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� Effective cross sectional properties: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.13 – Scheme of a R-shaped idealized effective cross-section 

 

Considering the individual contribution of each profile, in other words, the effective 

geometrical properties of each section (U and C) as calculated above, the final effective 

geometrical properties of the R section are as follows:  

 

Effective cross-sectional area:  Aeff = 782.25 mm
2
 

Effective gravity centre co-ordinate with respect to x-axis:  Xeff,GC = 42.493 mm 

Effective gravity centre co-ordinate with respect to y-axis:  Yeff,GC = 73.974 mm 

Distance in x-direction from gravity centre to effective 

gravity centre 

  

∆XGC = 0.538 mm 

Distance in y-direction from gravity centre to effective 

gravity centre 

  

∆YGC = 26.776 mm 

Second moment of effective area with respect to u-axis:  Ieff,u = 4828269 mm
4
 

Second moment of effective area with respect to v-axis:  Ieff,v = 870186 mm
4
 

Product moment of effective area with respect to u- and v-

axis: 

  

Ieff,uv = 97339 mm
4
 



APPENDIX C Calculation of the Design  

Value of Resistant Buckling Moment  

According the EN 1993-1-3 (2004) 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

C-36 Luís Miguel dos Santos Laím 

 

Angle between x-axis and u’-axis (principal axis):  β = 1.408º 

Second moment of effective area with respect to u’-axis:  Ieff,u’ = 4830599 mm
4
 

Second moment of effective area with respect to v’-axis:  Ieff,v’ = 867715 mm
4
 

Maximum co-ordinate with respect to v’-axis:  v'max = 128.39 mm 

Minimum co-ordinate with respect to v’-axis:  v'min = -74.977 mm 

 

 

� Design buckling resistance moment: 

 

Effective length factor:  kv = 1.0 

Warping effective length factor:  kw = 1.0 

Buckling factor:  Cb = 1.0 

Critical elastic moment for 

lateral-torsional buckling: 3#� = 4�" π5678��89�5 :;7< + π567=��=9�5> 
 

Mcr = 28.39 kN.m 

Effective section modulus: ? @@,AB =	 7 @@,AC	′���  
 

Weff,u’ = 37625 mm
3
 

Non-dimensional slenderness 

for lateral-torsional buckling 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

 

λ�D< =	"? @@,AC���3#�  

 

 

 

λ�D< = 0.61 

Imperfection factor (Clause 

6.3.2 of EN 1993-1-1, 2004): 

  

αD< = 0.76 

Capacity reduction factor 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

ΦD< = 0.5 E1 + αD<,λ�D< − 0.2-
+ λ�D<5 F 

 

 

ΦD< = 0.84 

Reduction factor for lateral-

torsional buckling (clause 

6.3.2.2 of EN 1993-1-1, 2004): 

χD< = 1
ΦD< +GΦD<5 − λ�D<5  

 

 

χD< = 0.70 

Design value of the resistant 

buckling moment: 
3�,H! = χD< ∙ ? @@,AC ∙ ���γ&J 

 

Mb,Rd = 7.41 kN.m 
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C5 Cold-formed steel 2R_4000_203_163_20_1.5 beam 

 

This example shows how was determined the design buckling resistance moment Mb,Rd of a 

2R-shaped section using EN 1993-1-1 (2004), EN 1993-1-3 (2004) and EN 1993-1-5 (2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.14 – Scheme of a 2R-shaped idealized gross 

cross-section 

 Figure C.15 – Loading 

system 

 

 

� Boundary conditions at beam supports: 

- no rotation about the longitudinal z-z axis; 

- no displacements in the plane; 

- no warping restraint. 

 

� Cross-sectional dimensions: 

 

Height of the section (overall dimension):  h = 200 mm 

h’ = 203 mm 

Width of the flange (overall dimension):  b = 80 mm 

b’ = 163 mm 
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Width of the edge stiffener (overall 

dimension): 

  

c = 20 mm 

Nominal material thickness:  tn = 1.5 mm 

Material core thickness (clause 3.2.4 of 

EN 1993-1-3, 2004): 

tcor = tn - tzinc 

tzinc = 0.04 (Z275) 

 

tcor = t = 1.46 mm 

Height of the section (centreline 

dimension): 

 hc = 198.50 mm 

hc’ = 201.50 mm 

Width of the flange (centreline 

dimension): 

 bc = 78.50 mm 

bc’ = 161.5 mm 

Width of the edge stiffener (centreline 

dimension): 

  

cc = 19.25 mm 

Beam span  L = 4000 mm 

 

 

� Material properties: 

 

 

Modulus of elasticity:  E = 210000 N/mm
2
 

Poisson ratio:  ν = 0.3 

Shear modulus: G = E [2 (1 + ν)]
-1

 G = 80769 N/mm
2
 

Nominal yield strength (S280GD + 

Z275): 

  

fyb = 280 N/mm
2
 

Partial factor for resistance of cross-

sections (clause 2 of EN 1993-1-3, 

2004): 

  

 

γM0 = 1.00 

Partial factor for resistance of 

members (clause 2 of EN 1993-1-3, 

2004): 

  

 

γM1 = 1.00 

Elastic strain: ε = (235 / fyb)
1/2

 ε = 0.9161 
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� Gross cross sectional properties: 

 

Considering the steel profiles connected to each other by screws at discrete sections, the 

geometrical properties of the R section were calculated as if it was an open section, as 

follows:  

 

Cross-sectional area:  A = 2217.07 mm
2
 

First moment of area with respect 

to x-axis: 

  

Sx = 223325 mm
3
 

First moment of area with respect 

to y-axis: 

  

Sy = 178984 mm
3
 

Gravity centre co-ordinate with 

respect to x-axis: 

 

XGC = Sy / A 

 

XGC = 80.730 mm 

Gravity centre co-ordinate with 

respect to y-axis: 

 

YGC = Sx / A 

 

YGC = 100.730 mm 

Second moment of area with 

respect to x-axis: 

  

Ix = 36644083 mm
4
 

Second moment of area with 

respect to y-axis: 

  

Iy = 20999862 mm
4
 

Product moment of area with 

respect to x- and y-axis: 

  

Ixy = 18029051 mm
4
 

Second moment of area with 

respect to x’-axis: 

 

Ix’ = Ix – A.YCG 
2
 

 

Ix’ = 14148358 mm
4
 

Second moment of area with 

respect to y’-axis: 

 

Iy’ = Iy – A.XCG 
2
 

 

Iy’ = 6550017 mm
4
 

Product moment of area with 

respect to x’- and y’-axis: 

 

Ixy’ = Ixy – (Sx . Sy)/A 

 

Ixy’ = 0 

Angle between x’-axis and u-axis 

(principal axis): 

  

β = 0 

Second moment of area with 

respect to u-axis: 

Iu = 0.5[Ix’ + Iy’ + √((Iy’ – 

Ix’)
2
 + 4Ixy’

2
)] 

 

Iu = 14148358 mm
4
 

Second moment of area with Iv = 0.5[Ix’ + Iy’ – √((Iy’ –  
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respect to v-axis: Ix’)
2
 + 4Ixy’

2
)] Iv = 6550017 mm

4
 

Radius of gyration with respect to 

u-axis: 

 

iu = √(Iu / A) 

 

iu = 79.88 mm 

Radius of gyration with respect to 

v-axis: 

 

iv = √(Iv / A) 

 

iv = 54.35 mm 

Shear centre co-ordinate with 

respect to u-axis: 

  

USC = 0 

Shear centre co-ordinate with 

respect to v-axis: 

  

VSC = 0 

Polar radius of gyration about 

shear centre: 

i0 =√( iu
2
 + iv

2
 + USC

2
 + 

VSC
2
) 

 

i0 = 96.62 mm 

Torsional constant:  IT = 2556.42 mm
4 

Warping constant:  IW =1.22864x10
11

 mm
6 

Maximum co-ordinate with 

respect to u-axis: 

  

umax = 81.460 mm 

Minimum co-ordinate with 

respect to u-axis: 

  

umin = -81.460 mm 

Maximum co-ordinate with 

respect to v-axis: 

  

vmax = 101.46 mm 

Minimum co-ordinate with 

respect to v-axis: 

  

vmin = -101.46 mm 
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� Effective cross sectional properties: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.16 – Scheme of a 2R-shaped idealized effective cross-section 

 

Considering the individual contribution of each profile, in other words, the effective 

geometrical properties of each section (U and C) as calculated above, the final effective 

geometrical properties of the R section are as follows:  

 

Effective cross-sectional area:  Aeff = 1564.52 mm
2
 

Effective gravity centre co-ordinate with respect to x-axis:  Xeff,GC = 80.730 mm 

Effective gravity centre co-ordinate with respect to y-axis:  Yeff,GC = 73.975 mm 

Distance in x-direction from gravity centre to effective 

gravity centre 

  

∆XGC = 0 

Distance in y-direction from gravity centre to effective 

gravity centre 

  

∆YGC = 26.755 mm 

Second moment of effective area with respect to u-axis:  Ieff,u = 9656495 mm
4
 

Second moment of effective area with respect to v-axis:  Ieff,v = 4665780 mm
4
 

Product moment of effective area with respect to u- and v-

axis: 

  

Ieff,uv = -5 mm
4
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Angle between u-axis and u’-axis (principal axis):  β = 0 

Second moment of effective area with respect to u’-axis:  Ieff,u’ = 9656495 mm
4
 

Second moment of effective area with respect to v’-axis:  Ieff,v’ = 4665780 mm
4
 

Maximum co-ordinate with respect to v’-axis:  v'max = 127.525 mm 

Minimum co-ordinate with respect to v’-axis:  v'min = -73.975 mm 

 

 

� Design buckling resistance moment: 

 

Effective length factor:  kv = 1.0 

Warping effective length factor:  kw = 1.0 

Buckling factor:  Cb = 1.0 

Critical elastic moment for 

lateral-torsional buckling: 3#� = 4�" π5678��89�5 :;7< + π567=��=9�5> 
 

Mcr = 116.96 kN.m 

Effective section modulus: ? @@,AB =	 7 @@,AC	′���  
 

Weff,u’ = 75722 mm
3
 

Non-dimensional slenderness 

for lateral-torsional buckling 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

λ�D< =	"? @@,AC���3#�  

 

 

λ�D< = 0.43 

Imperfection factor (Clause 

6.3.2 of EN 1993-1-1, 2004): 

  

αD< = 0.76 

Capacity reduction factor 

(clause 6.3.2.2 of EN 1993-1-1, 

2004): 

ΦD< = 0.5 E1 + αD<,λ�D< − 0.2-
+ λ�D<5 F 

 

 

ΦD< = 0.68 

Reduction factor for lateral-

torsional buckling (clause 

6.3.2.2 of EN 1993-1-1, 2004): 

χD< = 1
ΦD< +GΦD<5 − λ�D<5  

 

 

χD< = 0.83 

Design value of the buckling 

resistance moment: 
3�,H! = χD< ∙ ? @@,AC ∙ ���γ&J 

 

Mb,Rd = 17.6 kN.m 
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APPENDIX D Calculation of the Flexural Strength According the 

DSM Established in the Appendix 1 of AISI S100 (2004) 

 

This example shows how was determined the flexural design strength, Md, and the flexural 

allowable strength, Ma, of a C-shaped section using the Direct Strength Method (DSM) 

established in the Appendix 1 of the AISI Specification (AISI S100-2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1 – Scheme of a C-shaped 

idealized gross cross-section 

 Figure D.2 – Loading system 

 

 

 

 

� Boundary conditions at beam supports: 

- no rotation about the longitudinal z-z axis; 

- no displacements in the plane; 

- no warping restraint. 
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� Cross-sectional dimensions: 

 

Height of the section (overall dimension):  h = 200 mm 

Width of the flange (overall dimension):  b = 80 mm 

Width of the edge stiffener (overall 

dimension): 

  

c = 20 mm 

Nominal material thickness:  tn = 1.5 mm 

Material core thickness (clause 3.2.4 of 

EN 1993-1-3, 2004): 

tcor = tn - tzinc 

tzinc = 0.04 (Z275) 

 

tcor = t = 1.46 mm 

Height of the section (centreline 

dimension): 

  

hc = 198.50 mm 

Width of the flange (centreline 

dimension): 

  

bc = 78.50 mm 

Width of the edge stiffener (centreline 

dimension): 

  

cc = 19.25 mm 

Beam span  L = 4000 mm 

 

 

 

� Material properties: 

 

Modulus of elasticity:  E = 210000 N/mm
2
 

Poisson ratio:  ν = 0.3 

Shear modulus: G = E [2 (1 + ν)]
-1

 G = 80769 N/mm
2
 

Nominal yield strength (S280GD + 

Z275): 

  

fyb = 280 N/mm
2
 

Elastic strain: ε = (235 / fyb)
1/2

 ε = 0.9161 
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� Elastic buckling moments: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.3 – Relative buckling moment as a function of the buckling half-wavelength 

provided by CUFSM and ABAQUS 

 

 

Second moment of area with respect to u-axis:  Iu = 3662834 mm
4
 

Maximum co-ordinate with respect to v-axis:  vmax = 99.980 mm 

Section modulus of the cross-section:  Wy = 36636 mm
3
 

Yield moment about the strong axis:  My = 10.26 kN.m 

Critical elastic local buckling moment:  Mcrl = 10.633 kN.m 

Critical elastic distortional buckling moment:  Mcrd = 9.935 kN.m 

Critical elastic lateral-torsional buckling moment:  Mcre = 5.882 kN.m 
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� Nominal flexural strength: 

 

 

Nominal flexural strength for lateral-torsional buckling: 

��� =
��
�
��

�	
�	109 �� �1 − � 10��36�	
���	��
 

if Mcre < 0.56My 

if 2.78My ≥ Mcre ≥ 

0.56My 

if Mcre > 2.78My 

 

 

 

Mne = 5.88 kN.m 

Nominal flexural strength for local buckling: 

��� = ��
� ���	
�1 − 0.15 ��	
�����

�.����	
�����
�.����

 

if ���� �	
�⁄  ≤ 0.776 

if ���� �	
�⁄  > 0.776 

 

 

Mnl = 5.88 kN.m 

Nominal flexural strength for distortional buckling: 

�� =
���
�� ��	
�1 − 0.22 ��	
 �� �

�."���	
 �� �
�."��

 

if ��� �	
 ⁄  ≤ 0.673 

if ��� �	
 ⁄  > 0.673 

 

 

Mnd = 7.91 kN.m 

Nominal flexural strength: 
 

Mn = 5.88 kN.m 

 

 

 

� Flexural strength: 

 

 

Flexural allowable strength (section 

1.1.1.2 of the AISI S100-2004): 
�# = ��

Ω
 

 

Ma = 3.52 kN.m 

Flexural design strength (section 

1.1.1.2 of the AISI S100-2004): 
� = φ ∙ �� 

 

Md = 5.29 kN.m 
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Figure E.1 – Furnace temperatures in tests on simply supported C beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.2 – Evolution of mean temperature in simply supported C beams as a function of 

time 
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Figure E.3 – Evolution of vertical displacement at mid-span of simply supported C beams as a 

function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.4 – Evolution of vertical displacement at mid-span of simply supported C beams as a 

function of its mean temperature 

 

E1.2 Lipped I beams 

 

 

 

 

 

 

 

 

 

 

Figure E.5 – Furnace temperatures in tests on simply supported lipped I beams 
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Figure E.6 – Evolution of mean temperature in simply supported lipped I beams as a function 

of time 

 

 

 

 

 

 

 

 

 

 

Figure E.7 – Evolution of vertical displacement at mid-span of simply supported lipped I 

beams as a function of time 

 

 

 

 

 

 

 

 

 

 

Figure E.8 – Evolution of vertical displacement at mid-span of simply supported lipped I 

beams as a function of its mean temperature 
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Figure E.9 – Furnace temperatures in tests on simply supported R beams 

 

 

 

 

 

 

 

 

 

 

Figure E.10 – Evolution of mean temperature in simply supported R beams as a function of 

time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.11 – Evolution of vertical displacement at mid-span of simply supported R beams as 

a function of time 
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Figure E.12 – Evolution of vertical displacement at mid-span of simply supported R beams as 

a function of its mean temperature 

 

E1.4 2R beams 

 

 

 

 

 

 

 

 

 

 

Figure E.13 – Furnace temperatures in tests on simply supported 2R beams 

 

 

 

 

 

 

 

 

 

 

Figure E.14 – Evolution of mean temperature in simply supported 2R beams as a function of 

time 
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Figure E.15 – Evolution of vertical displacement at mid-span of simply supported 2R beams 

as a function of time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.16 – Evolution of vertical displacement at mid-span of simply supported 2R beams 

as a function of its mean temperature 
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Figure E.17 – Furnace temperatures in tests of axially restrained C beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.18 – Evolution of mean temperature in axially restrained C beams as a function of 

time 
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Figure E.19 – Evolution of vertical displacement at mid-span of axially restrained C beams as 

a function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.20 – Evolution of vertical displacement at mid-span of axially restrained C beams as 

a function of its mean temperature 

 

 

 

 

 

 

 

 

 

 

 

Figure E.21 – Evolution of axial restraining forces in axially restrained C beams as a function 

of time 
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Figure E.22 – Evolution of axial restraining forces in axially restrained C beams as a function 

of its mean temperature 
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Figure E.23 – Furnace temperatures in tests of axially restrained lipped I beams 
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Figure E.24 – Evolution of mean temperature in axially restrained lipped I beams as a 

function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.25 – Evolution of vertical displacement at mid-span of axially restrained lipped I 

beams as a function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.26 – Evolution of vertical displacement at mid-span of axially restrained lipped I 

beams as a function of its mean temperature 
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Figure E.27 – Evolution of axial restraining forces in axially restrained lipped I beams as a 

function of time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.28 – Evolution of axial restraining forces in axially restrained lipped I beams as a 

function of its mean temperature 
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Figure E.29 – Furnace temperatures in tests of axially restrained R beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.30 – Evolution of mean temperature in axially restrained R beams as a function of 

time 
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Figure E.31 – Evolution of vertical displacement at mid-span of axially restrained R beams as 

a function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.32 – Evolution of vertical displacement at mid-span of axially restrained R beams as 

a function of its mean temperature 

 

 

 

 

 

 

 

 

 

 

 

Figure E.33 – Evolution of axial restraining forces in axially restrained R beams as a function 

of time 
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Figure E.34 – Evolution of axial restraining forces in axially restrained R beams as a function 

of its mean temperature 
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Figure E.35 – Furnace temperatures in tests of axially restrained 2R beams 
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Figure E.36 – Evolution of mean temperature in axially restrained 2R beams as a function of 

time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.37 – Evolution of vertical displacement at mid-span of axially restrained 2R beams 

as a function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.38 – Evolution of vertical displacement at mid-span of axially restrained 2R beams 

as a function of its mean temperature 
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Figure E.39 – Evolution of axial restraining forces in axially restrained 2R beams as a 

function of time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.40 – Evolution of axial restraining forces in axially restrained 2R beams as a 

function of its mean temperature 
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Figure E.41 – Furnace temperatures in tests of axially and rotationally restrained C beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.42 – Evolution of mean temperature in axially and rotationally restrained C beams as 

a function of time 
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Figure E.43 – Evolution of vertical displacement at mid-span of axially and rotationally 

restrained C beams as a function of time 

 

 

Figure E.44 – Evolution of vertical displacement at mid-span of axially and rotationally 

restrained C beams as a function of its mean temperature 

 

 

 

 

 

 

 

 

 

 

 

Figure E.45 – Evolution of axial restraining forces in axially and rotationally restrained C 

beams as a function of time 
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Figure E.46 – Evolution of axial restraining forces in axially and rotationally restrained C 

beams as a function of its mean temperature 
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Figure E.47 – Furnace temperatures in tests of axially and rotationally restrained lipped I 

beams 
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Figure E.48 – Evolution of mean temperature in axially and rotationally restrained lipped I 

beams as a function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.49 – Evolution of vertical displacement at mid-span of axially and rotationally 

restrained lipped I beams as a function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.50 – Evolution of vertical displacement at mid-span of axially and rotationally 

restrained lipped I beams as a function of its mean temperature 
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Figure E.51 – Evolution of axial restraining forces in axially and rotationally restrained lipped 

I beams as a function of time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.52 – Evolution of axial restraining forces in axially and rotationally restrained lipped 

I beams as a function of its mean temperature 
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Figure E.53 – Furnace temperatures in tests of axially and rotationally restrained R beams 

 

 

 

 

 

 

 

 

 

 

 

Figure E.54 – Evolution of mean temperature in axially and rotationally restrained R beams as 

a function of time 

 

 

 

 

 

 

 

 

 

 

Figure E.55 – Evolution of vertical displacement at mid-span of axially and rotationally 

restrained R beams as a function of time 
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Figure E.56 – Evolution of vertical displacement at mid-span of axially and rotationally 

restrained R beams as a function of its mean temperature 

 

 

 

 

 

 

 

 

 

 

 

Figure E.57 – Evolution of axial restraining forces in axially and rotationally restrained R 

beams as a function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.58 – Evolution of axial restraining forces in axially and rotationally restrained R 

beams as a function of its mean temperature 
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Figure E.59 – Furnace temperatures in tests of axially and rotationally restrained 2R beams 

 

 

 

 

 

 

 

 

 

 

Figure E.60 – Evolution of mean temperature in axially and rotationally restrained 2R beams 

as a function of time 

 

 

 

 

 

 

 

 

 

 

Figure E.61 – Evolution of vertical displacement at mid-span of axially and rotationally 

restrained 2R beams as a function of time 
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Figure E.62 – Evolution of vertical displacement at mid-span of axially and rotationally 

restrained 2R beams as a function of its mean temperature 

 

 

 

 

 

 

 

 

 

 

 

Figure E.63 – Evolution of axial restraining forces in axially and rotationally restrained 2R 

beams as a function of time 

 

 

 

 

 

 

 

 

 

 

 

Figure E.64 – Evolution of axial restraining forces in axially and rotationally restrained 2R 

beams as a function of its mean temperature
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Figure F.1 – Front views of the failure mode of the specimen B-C_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.2 – Back views of the failure mode of the specimen B-C_1 
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Figure F.3 – Lateral views of the failure mode of the specimen B-C_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.4 – Detail view of the failure mode of the specimen B-C_1 
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Figure F.5 – Front views of the failure mode of the specimen B-C_2 

 

 

 

 

 

 

 

 

 

 

 

Figure F.6 – Back views of the failure mode of the specimen B-C_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.7 – Lateral views of the failure mode of the specimen B-C_2 
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Figure F.8 – Detail view of the failure mode of the specimen B-C_2 

 

 

 

 

 

 

 

 

 

 

 

Figure F.9 – Front views of the failure mode of the specimen B-C_3 

 

 

 

 

 

 

 

 

 

 

 

Figure F.10 – Back views of the failure mode of the specimen B-C_3 
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Figure F.11 – Lateral views of the failure mode of the specimen B-C_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.12 – Detail view of the failure mode of the specimen B-C_3 
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Figure F.13 – Front views of the failure mode of the specimen B-I_1 

 

 

 

 

 

 

 

 

 

 

 

Figure F.14 – Back views of the failure mode of the specimen B-I_1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.15 – Lateral views of the failure mode of the specimen B-I_1 
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Figure F.16 – Detail view of the failure mode of the specimen B-I_1 

 

 

 

 

 

 

 

 

 

 

 

Figure F.17 – Front views of the failure mode of the specimen B-I_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.18 – Back views of the failure mode of the specimen B-I_2 
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Figure F.19 – Lateral views of the failure mode of the specimen B-I_2 

 

 

 

 

 

 

 

 

 

 

 

Figure F.20 – Detail view of the failure mode of the specimen B-I_2 

 

 

 

 

 

 

 

 

 

 

 

Figure F.21 – Front views of the failure mode of the specimen B-I_3 
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Figure F.22 – Back views of the failure mode of the specimen B-I_3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.23 – Lateral views of the failure mode of the specimen B-I_3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.24 – Detail view of the failure mode of the specimen B-I_3 
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Figure F.25 – Front views of the failure mode of the specimen B-R_1 

 

 

 

 

 

 

 

 

 

Figure F.26 – Back views of the failure mode of the specimen B-R_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.27 – Lateral views of the failure mode of the specimen B-R_1 
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Figure F.28 – Detail view of the failure mode of the specimen B-R_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.29 – Lateral views of the failure mode of the specimen B-R_2 
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Figure F.30 – Detail view of the failure mode of the specimen B-R_2 

 

 

 

 

 

 

 

 

 

 

 

Figure F.31 – Front views of the failure mode of the specimen B-R_3 

 

 

 

 

 

 

 

 

 

 

 

Figure F.32 – Back views of the failure mode of the specimen B-R_3 
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Figure F.33 – Lateral views of the failure mode of the specimen B-R_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.34 – Detail view of the failure mode of the specimen B-R_3 

 

 

 

 

 

 



APPENDIX F Photos of the Experimental Tests on 

Cold-Formed Steel Beams under Fire Conditions 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

F-14 Luís Miguel dos Santos Laím 

 

F1.4 2R beams 

 

 

 

 

 

 

 

 

 

 

 

Figure F.35 – Front views of the failure mode of the specimen B-2R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure F.36 – Back views of the failure mode of the specimen B-2R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure F.37 – Lateral views of the failure mode of the specimen B-2R_1 
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Figure F.38 – Detail view of the failure mode of the specimen B-2R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure F.39 – Front views of the failure mode of the specimen B-2R_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.40 – Back views of the failure mode of the specimen B-2R_2 
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Figure F.41 – Lateral views of the failure mode of the specimen B-2R_2 

 

 

 

 

 

 

 

 

 

 

 

Figure F.42 – Detail view of the failure mode of the specimen B-2R_2 

 

 

 

 

 

 

 

 

 

 

 

Figure F.43 – Front views of the failure mode of the specimen B-2R_3 
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Figure F.44 – Back views of the failure mode of the specimen B-2R_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.45 – Lateral views of the failure mode of the specimen B-2R_3 

 

 

 

 

 

 

 

 

 

 

Figure F.46 – Detail view of the failure mode of the specimen B-2R_3 
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Figure F.47 – Back views of the failure mode of the specimen B_ka-C_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.48 – Front views of the failure mode of the specimen B_ka-C_1 
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Figure F.49 – Lateral views of the failure mode of the specimen B_ka-C_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.50 – Detail view of the failure mode of the specimen B_ka-C_1 
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Figure F.51 – Back views of the failure mode of the specimen B_ka-C_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.52 – Front views of the failure mode of the specimen B_ka-C_2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.53 – Lateral views of the failure mode of the specimen B_ka-C_2 
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Figure F.54 – Detail view of the failure mode of the specimen B_ka-C_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.55 – Front views of the failure mode of the specimen B_ka-C_3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.56 – Lateral views of the failure mode of the specimen B_ka-C_3 
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Figure F.57 – Front views of the failure mode of the specimen B_ka-I_1 

 

 

 

 

 

 

 

 

 

 

 

Figure F.58 – Lateral views of the failure mode of the specimen B_ka-I_1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.59 – Detail view of the failure mode of the specimen B_ka-I_1 
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Figure F.60 – Lateral views of the failure mode of the specimen B_ka-I_2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.61 – Detail view of the failure mode of the specimen B_ka-I_2 
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Figure F.62 – Lateral views of the failure mode of the specimen B_ka-I_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.63 – Detail view of the failure mode of the specimen B_ka-I_3 
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Figure F.64 – Front views of the failure mode of the specimen B_ka-R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure F.65 – Lateral views of the failure mode of the specimen B_ka-R_1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.66 – Lateral views of the failure mode of the specimen B_ka-R_2 
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Figure F.67 – Lateral views of the failure mode of the specimen B_ka-R_3 

 

 

 

 

 

 

 

 

 

 

 

Figure F.68 – Detail view of the failure mode of the specimen B_ka-R_3 

 

F2.4 2R beams 

 

 

 

 

 

 

 

 

 

 

Figure F.69 – Front views of the failure mode of the specimen B_ka-2R_1 
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Figure F.70 – Lateral views of the failure mode of the specimen B_ka-2R_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.71 – Detail view of the failure mode of the specimen B_ka-2R_1 
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Figure F.72 – Lateral views of the failure mode of the specimen B_ka-2R_2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.73 – Detail view of the failure mode of the specimen B_ka-2R_2 
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Figure F.74 – Front views of the failure mode of the specimen B_ka-2R_3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.75 – Lateral views of the failure mode of the specimen B_ka-2R_3 
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F3  Axially and rotationally restrained beams 

 

F3.1 C beams 

 

 

 

 

 

 

 

 

 

 

Figure F.76 – Front views of the failure mode of the specimen B_ka+kr-C_1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.77 – Lateral views of the failure mode of the specimen B_ka+kr-C_1 

 

 

 

 

 

 

 

 

 

Figure F.78 – Detail view of the failure mode of the specimen B_ka+kr-C_1 
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Figure F.79 – Front views of the failure mode of the specimen B_ka+kr-C_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.80 – Lateral views of the failure mode of the specimen B_ka+kr-C_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.81 – Detail view of the failure mode of the specimen B_ka+kr-C_2 
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Figure F.82 – Front views of the failure mode of the specimen B_ka+kr-C_3 

 

 

 

 

 

 

 

 

 

 

 

Figure F.83 – Lateral views of the failure mode of the specimen B_ka+kr-C_3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.84 – Detail view of the failure mode of the specimen B_ka+kr-C_3 
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F3.2 Lipped I beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.85 – Front views of the failure mode of the specimen B_ka+kr-I_1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.86 – Lateral views of the failure mode of the specimen B_ka+kr-I_1 
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Figure F.87 – Front views of the failure mode of the specimen B_ka+kr-I_2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.88 – Lateral views of the failure mode of the specimen B_ka+kr-I_2 
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Figure F.89 – Detail view of the failure mode of the specimen B_ka+kr-I_2 

 

F3.3 R beams 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.90 – Lateral views of the failure mode of the specimen B_ka+kr-R_1 
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Figure F.91 – Detail view of the failure mode of the specimen B_ka+kr-R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure F.92 – Lateral views of the failure mode of the specimen B_ka+kr-R_2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.93 – Front views of the failure mode of the specimen B_ka+kr-R_3 
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Figure F.94 – Lateral views of the failure mode of the specimen B_ka+kr-R_3 

 

F3.4 2R beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.95 – Front views of the failure mode of the specimen B_ka+kr-2R_1 
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Figure F.96 – Lateral views of the failure mode of the specimen B_ka+kr-2R_1 

 

 

 

 

 

 

 

 

 

 

 

Figure F.97 – Detail view of the failure mode of the specimen B_ka+kr-2R_1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.98 – Front views of the failure mode of the specimen B_ka+kr-2R_2 
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Figure F.99 – Lateral views of the failure mode of the specimen B_ka+kr-2R_2 

 

 

 

 

 

 

 

 

 

 

 

Figure F.100 – Detail view of the failure mode of the specimen B_ka+kr-2R_2 

 

 

 

 

 

 

 

 

 

 

Figure F.101 – Front views of the failure mode of the specimen B_ka+kr-2R_3 
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Figure F.102 – Lateral views of the failure mode of the specimen B_ka+kr-2R_3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.103 – Detail view of the failure mode of the specimen B_ka+kr-2R_3 
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Figure G.1 – Tensile testing device 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G.2 – Coupon specimen 
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Figure G.3 – Stress-strain relationship of the specimen A up to rupture 

 

 

 

 

 

 

 

 

 

 

 

Figure G.4 – Stress-strain relationship of the specimen A up to yield plateau 

 

 

 

 

 

 

 

 

 

 

 

Figure G.5 – Stress-strain relationship of the specimen B up to rupture 
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Figure G.6 – Stress-strain relationship of the specimen B up to yield plateau 

 

 

 

 

 

 

 

 

 

 

 

Figure G.7 – Stress-strain relationship of the specimen C up to rupture 

 

 

 

 

 

 

 

 

 

 

 

Figure G.8 – Stress-strain relationship of the specimen C up to yield plateau 
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Figure H.1 – Comparison between FEA results and the proposed Equation 5.12 when the load 

level is 50% and the axial restrained to the thermal elongation of C-250-43-15-2.5 beam is 

zero as well as the rotational restraint of beam supports 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.2 – Comparison between FEA results and the proposed Equation 5.12 when the load 

level is 50%, the axial restrained to the thermal elongation of C-250-43-15-2.5 beam is higher 

than 7.5 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.3 – Comparison between FEA results and the proposed Equation 5.13 when the load 

level is 50% and the axial restrained to the thermal elongation of C-250-43-15-2.5 beam is 

zero as well as the rotational restraint of beam supports 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.4 – Comparison between FEA results and the proposed Equation 5.13 when the load 

level is 50%, the axial restrained to the thermal elongation of C-250-43-15-2.5 beam is higher 

than 7.5 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.5 – Comparison between FEA results and the proposed Equation 5.14 when the load 

level is 50% and the axial restrained to the thermal elongation of I-250-43-15-2.5 beam is 

zero as well as the rotational restraint of beam supports 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.6 – Comparison between FEA results and the proposed Equation 5.14 when the load 

level is 50%, the axial restrained to the thermal elongation of I-250-43-15-2.5 beam is equal 

to 7.5 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.7 – Comparison between FEA results and the proposed Equation 5.14 when the load 

level is 50%, the axial restrained to the thermal elongation of I-250-43-15-2.5 beam is equal 

to 15 kN/mm and the rotational restraint of beam supports is zero 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.8 – Comparison between FEA results and the proposed Equation 5.14 when the load 

level is 50%, the axial restrained to the thermal elongation of I-250-43-15-2.5 beam is higher 

than 30 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.9 – Comparison between FEA results and the proposed Equation 5.16 when the load 

level is 50% and the axial restrained to the thermal elongation of I-250-43-15-2.5 beam is 

zero as well as the rotational restraint of beam supports 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.10 – Comparison between FEA results and the proposed Equation 5.16 when the 

load level is 50%, the axial restrained to the thermal elongation of I-250-43-15-2.5 beam is 

equal to 7.5 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.11 – Comparison between FEA results and the proposed Equation 5.16 when the 

load level is 50%, the axial restrained to the thermal elongation of I-250-43-15-2.5 beam is 

equal to 15 kN/mm and the rotational restraint of beam supports is zero 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.12 – Comparison between FEA results and the proposed Equation 5.16 when the 

load level is 50%, the axial restrained to the thermal elongation of I-250-43-15-2.5 beam is 

higher than 30 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.13 – Comparison between FEA results and the proposed Equation 5.18 when the 

load level is 50% and the axial restrained to the thermal elongation of R-250-43-15-2.5 beam 

is zero as well as the rotational restraint of beam supports 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.14 – Comparison between FEA results and the proposed Equation 5.18 when the 

load level is 50%, the axial restrained to the thermal elongation of R-250-43-15-2.5 beam is 

higher than 7.5 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.15 – Comparison between FEA results and the proposed Equation 5.19 when the 

load level is 50% and the axial restrained to the thermal elongation of R-250-43-15-2.5 beam 

is zero as well as the rotational restraint of beam supports 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.16 – Comparison between FEA results and the proposed Equation 5.19 when the 

load level is 50%, the axial restrained to the thermal elongation of R-250-43-15-2.5 beam is 

higher than 7.5 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.17 – Comparison between FEA results and the proposed Equation 5.20 when the 

load level is 50% and the axial restrained to the thermal elongation of 2R-250-43-15-2.5 beam 

is zero as well as the rotational restraint of beam supports 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.18 – Comparison between FEA results and the proposed Equation 5.20 when the 

load level is 50%, the axial restrained to the thermal elongation of 2R-250-43-15-2.5 beam is 

equal to 7.5 kN/mm and the rotational restraint of beam supports is zero 

 

 

 

 

 



APPENDIX H Comparison of Numerical Results with 

the Proposed Simplified Equations for the Fire 

Design of Cold-Formed Steel Beams 

Experimental and Numerical Analysis on the  

Structural Behaviour of Cold-Formed  

Steel Beams Subjected to Fire 

 

 

H-10 Luís Miguel dos Santos Laím 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.19 – Comparison between FEA results and the proposed Equation 5.20 when the 

load level is 50%, the axial restrained to the thermal elongation of 2R-250-43-15-2.5 beam is 

equal to 15 kN/mm and the rotational restraint of beam supports is zero 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.20 – Comparison between FEA results and the proposed Equation 5.20 when the 

load level is 50%, the axial restrained to the thermal elongation of 2R-250-43-15-2.5 beam is 

higher than 30 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.21 – Comparison between FEA results and the proposed Equation 5.22 when the 

load level is 50% and the axial restrained to the thermal elongation of 2R-250-43-15-2.5 beam 

is zero as well as the rotational restraint of beam supports 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.22 – Comparison between FEA results and the proposed Equation 5.22 when the 

load level is 50%, the axial restrained to the thermal elongation of 2R-250-43-15-2.5 beam is 

equal to 7.5 kN/mm and the rotational restraint of beam supports is zero 
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Figure H.23 – Comparison between FEA results and the proposed Equation 5.22 when the 

load level is 50%, the axial restrained to the thermal elongation of 2R-250-43-15-2.5 beam is 

equal to 15 kN/mm and the rotational restraint of beam supports is zero 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.24 – Comparison between FEA results and the proposed Equation 5.22 when the 

load level is 50%, the axial restrained to the thermal elongation of 2R-250-43-15-2.5 beam is 

higher than 30 kN/mm and the rotational restraint of beam supports is zero 
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I1  Axial restraint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.1 – Building selected for assessing the axial restraint of a beam 

 

� Assumptions: 

- truss elements (T3D2); 

- simply supported boundary conditions; 

- linear static analysis. 
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Figure I.2 – Beams selected for assessing their axial restraint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.3 – Axial forces imposed by the elongation of beam B_1 

 

� Axial restraints obtained from the simulations: 

Beam Stiffness (kN/mm) 

B_1 14.77 

B_2 12.93 

B_3 17.85 
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I2  Rotational restraint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.4 – Views of a connection between a C beam and a 2R beam (connection C_1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.5 – Views of a connection between an R beam and a 2R beam (connection C_2) 
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� Assumptions: 

- shell elements (S4R); 

- simply supported boundary conditions; 

- linear static analysis. 

 

� Rotational restraints obtained from the simulations: 

 

Connection Stiffness (kN.m/rad) 

C_1 188.82 

C_2 232.45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


