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Abstract 

The symptoms associated with menopause, which result from hormonal changes observed 

during this period, are most of the times disquieting for women. These hormonal variations 

lead to an increased incidence of different medical conditions such as hot flashes, 

cardiovascular diseases and osteoporosis, among others. Hormone replacement therapy 

(HRT), based in 17β-estradiol (E2), is conventionally administered to menopausal women in 

order to overcome the symptoms associated with menopause. However, HRT has some side 

effects, such as increased risk of breast cancer. Phytoestrogens (PE), plant-derived 

compounds that structurally mimic E2, have been suggested as alternatives to HRT. Due to 

their molecular resemblance with E2, PE can have estrogenic and/or antiestrogenic activity. 

Nevertheless, the risk and benefits of PE in women’s health are not yet well established. The 

main purpose of this project was to identify PE with low toxicity but able to attenuate some 

symptoms associtated to menopause, with a special focus on hot flashes. 

An initial screening of all selected PE (enterolactone, enterodiol, resveratrol and coumestrol) 

was performed by using isolated mitochondrial fractions from brain and liver and cells in 

culture. We observed that coumestrol and resveratrol reduced mitochondrial lipid 

peroxidation and that the latter decreased ATP synthase activity and competitively inhibited 

complex I of the mitochondrial respiratory chain. The antioxidant effects of coumestrol were 

also observed on the HepG2 cell line, reducing mitochondrial superoxide anion generation in 

the presence of the complex I inhibitor rotenone.  

Following the “impaired glucose delivery” hypothesis for hot flashes, we then investigated the 

role of E2 and PE in GLUT-1 expression at the blood-brain barrier (BBB). The GLUT-1 

content increased in brain microvessels after six hours of incubation with E2. We observed 

that this modulation of GLUT-1 expression occurred through ERα signaling. From the PEs 

tested, only coumestrol increased GLUT-1 expression similarily to E2.  

We then evaluated the effects of coumestrol in vivo by using two menopausal rodent models: 

ovariectomy and 4-Vinylcyclohexene diepoxide (VCD) treatment. Our data showed that 

coumestrol, as E2, increased mitochondrial function by increasing complex I activity, state 3 

and respiratory control ratio (RCR) in brain. Furthermore, coumestrol administration in 

ovariectomized (OVX) rats reduced oxidative stress and temperature variations in OVX rats 

measured in a 6 hours span, an approach to indirectly evaluate hot flashes.  

In conclusion, the results obtained from this thesis showed that although some of the PE had 

benefits in menopausal models, they also showed mitochondrial toxicity, while others had no 

effects for the parameters analyzed. On the other hand, coumestrol demonstrated the lowest 

toxicity in vitro and in vivo, especially regarding mitochondrial function. Also, coumestrol 

modulated GLUT-1 expression similarly to E2 and decreased the temperature variation in 
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ovariectomized rats.  

The data highlight the need to identify PE-mediated toxicity in several target organs, namely 

regarding mitochondrial alterations. This should be important when proposing a widespread 

use of PEs in HRT. 

 

Key Words: Phytoestrogens, Menopause, Mitochondria, Blood-Brain Barrier, Toxicology 
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Resumo 

Os sintomas associados à menopausa são na maioria dos casos desconfortáveis para as 

mulheres. As alterações hormonais observadas neste período podem aumentar a incidência 

de condições patológicas tais como doenças cardiovasculares, osteoporose, afrontamentos, 

entre outros. A terapia de substituição hormonal (TSH), baseada em 17β-estradiol (E2), é 

normalmente administrada às mulheres na menopausa para ultrapassar os sintomas 

associados a este período. Contudo, a TSH tem alguns efeitos secundários, nomeadamente 

o risco aumentado de cancro da mama. Fitoestrogénios (FE), compostos naturais que são 

estruturalmente semelhantes a E2, têm sido sugeridos como alternativa à TSH. Devido à 

sua semelhança com E2, os FE podem ter actividade estrogénica ou anti-estrogénica. Não 

obstante, os riscos e benefícios dos FE na saúde da mulher não estão ainda bem 

estabelecidos. O principal objectivo deste projecto foi identificar FE com baixa toxicidade 

mas, simultaneamente, capaz (es) de atenuar alguns sintomas conhecidos da menopausa, 

com especial ênfase para os afrontamentos.  

Um screening inicial foi efectuado com os FE seleccionados (enterolactona, enterodiol, 

resveratrol e coumestrol) usando fracções mitocondriais de cérebro e fígado, assim como 

células em cultura. Observámos que o coumestrol e o resveratrol reduziram a peroxidação 

lipídica mitocondrial. Adicionalmente, verificou-se que o resveratrol diminuiu a actividade da 

ATP sintase e inibiu competitivamente o complexo I da cadeia respiratória mitocondrial. Os 

efeitos antioxidantes do coumestrol foram também verificados na linha celular HepG2, 

reduzindo a geração do anião superóxido mitocondrial na presença de rotenona, um inibidor 

do complexo I. 

Tendo por base a hipótese de “transporte deficiente de glucose”, que pretende explicar os 

mecanismos moleculares dos afrontamentos, investigámos em seguida a função do E2 e  

dos FE na expressão de GLUT-1 na barreira hematoencefálica (BHC). Com efeito, foi 

possível verificar que o conteúdo em GLUT-1 aumentou nos capilares do cérebro seis horas 

após a incubação com E2. Nós verificámos que esta modulação da expressão de GLUT-1 

ocorre a via sinalização ao nível do receptor de estrogénio alfa. Dos FE testados, apenas o 

coumestrol aumentou a expressão de GLUT-1 de maneira semelhante a E2. 

Seguidamente, avaliámos os efeitos do coumestrol in vivo, através do recurso a dois 

modelos de rato para a menopausa: a ovariectomia e o tratamento com diepóxido 4-

Vinilciclohexeno. Os nossos resultados mostraram que, tanto o coumestrol como o E2, 

melhoram a função mitocondrial, aumentando a actividade do complexo I, a respiração ao 

nível do estado 3 e o índice de controlo respiratório no cérebro. Além disso, a administração 

de coumestrol em ratos fêmea ovariectomizados reduziu o stress oxidativo e as variações 

de temperatura medidas durante 6h, sendo este último um processo de avaliação de 
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afrontamentos. 

Em conclusão, os resultados obtidos nesta tese mostram que, apesar de alguns FE terem 

apresentado benefícios em vários indicadores relacionados com a menopausa, mostraram 

também toxicidade mitocondrial, enquanto outros dos FE testados não mostraram qualquer 

efeito nos parâmetros analisados. Por outro lado, o coumestrol demonstrou possuir a menor 

toxicidade in vitro e in vivo, com especial enfoque para a função mitochondrial. O coumestrol 

modulou a expressão de GLUT-1 de forma similar ao E2, reduzindo a variação de 

temperatura em ratos fêmea ovariectomizados. 

Os resultados destacam a necessidade de identificar a toxicidade mediada por FE em 

diferentes órgãos alvo, nomeadamente ao nível da mitocondria. Neste âmbito, o estudo 

toxicológico é importante quando se propõe o uso indiscriminado de FE na TSH.  

 

Palavras-Chave: Fitoestrogénios, Menopausa, Mitocôndria, Barreira Hematoencefálica, 

Toxicologia 
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The women’s reproductive stage is tightly controlled by autocrine, paracrine and endocrine 

factors, which regulate female development, especially the maturation of the ovarian follicle, 

ovulation, luteinisation and endometrium remodelling. Healthy women are expected to spend 

in average 36 years in a reproductive life span. However, with the increase of life 

expectancy, women spend one-third of their lifetime under menopause, which represents an 

infertile stage in their lives. The hormonal alterations that occur during menopause, such as 

the decrease in 17β-estradiol (E2) and the increase in follicle-stimulating hormone (FSH), 

trigger several alterations in the body, illustrated by the increased risk for the development of 

several pathologies.  

Although being a natural process, the transition to menopause is a challenge for the majority 

of the women and an estradiol/progesterone (P4)-based therapy (hormone replacement 

therapy, HRT) is normally used to overcome or to avoid physiological alterations associated 

with menopause. However, several problems are associated with HRT, justifying the need for 

possible therapeutic replacement. In this scenario, phytoestrogens (PEs) gain great 

importance due to their chemical resemblance to E2. Even though, their use is not free of 

debate. This is a clearly relevant topic in medicinal research since the use of these 

compounds is increasing. 

 

1.1 The role of estrogens during a woman’s life span 

Estrogens are a class of steroid hormones, which generate and regulate the oestrous and 

menstrual cycle. Estrogens are mainly produced in the theca interna cells of ovaries resulting 

from the conversion of cholesterol to androstenedione or testosterone, being subsequently 

aromatized to estrone and estradiol in granulosa cells [1] (Fig.1). Estrogens can also be 

produced in the corpus luteum and placenta [2] or in non-traditional sources including 

adrenal glands, adipose tissue, brain and breast [3]. Estrogens promote the development 

and maintenance of the female reproductive system and of the secondary sexual 

characteristics. The latter include breast development, typical female body proportions, 

distribution of subcutaneous adipose tissue and the characteristic estrogen-dependent 

alterations in the female genital tract [4].  
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Figure 1: Estradiol production in the ovary.  
Although sources of E2 include fat, adrenal glands, and breast, ovaries are the main source of this 
hormone for women. Estradiol is produced in the granulosa cells through the aromatization of 
androstenedione that is produced in theca cells from cholesterol. The figure also shows the enzymes 
that partipate in the process (in square brackets). 

Estradiol is the main estrogen in the human body and is primarily produced in the ovarian 

follicle, sustaining a production of E2 as high as 700 µg daily, depending on the phase of the 

menstrual cycle [5, 6]. The intracellular effects of estrogens are mainly mediated by estrogen 

receptors (ER) that regulate the transcription of target genes through binding to specific DNA 

target sequences called ER-responsive elements [7]. Estrogen receptors play both genomic 

and non-genomic functions [8], with the magnitude and tissue-specific effects being mediated 

by two distinct ER subtypes: α and β, as well as by multiple co-regulators.  

The activities of an extensive number of ER-interacting proteins converge to grant several 

functionalities to ERs, including the activation and repression of transcription, the integration 

of intracellular signalling pathways and the control of cell cycle [8]. Both ERs subtypes are 

widely expressed in both genders, with ERα being predominant in the mammary gland and in 

the uterus and ERβ having an augmented role in the central nervous system, heart, immune 

system, urogenital tract, bones, kidneys and lungs. At the sub-cellular level, both ERα and β 

are present in the cytoplasm and nucleus, with 2% of the ER pool being associated with the 

cellular membrane [9]. E2 induces the transcription of its own receptors and stimulates the 
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biosynthesis of progesterone receptors, which are required for progesterone effects. In 

opposition, progesterone and progestin, a synthetic compound with similar functions as 

progesterone, inhibit the transcription of ER when bound to the respective receptors, 

inducing an anti-estrogenic effect [10, 11]. 

The genomic activity of estrogens is mediated by the ERs, while their non-genomic activity is 

mediated only by ERs present in the plasma membrane. After the activation by E2 or 

estrogen-like compounds, ERs form ERα/ERβ homodimers or heterodimers and bind with 

high affinity to estrogen response elements in promoters, introns, or 3’ untranslated regions 

of target genes. A G protein-coupled receptor (GPR), GPR30, has been proposed to mediate 

ER-α and ERβ-independent signalling pathways induced by E2 [12, 13], responding to E2 in 

the plasma membrane or in the endoplasmastic reticulum [14]. Also, E2 interacts with G-

proteins, the p85 subunit of phophoinositol-3-kinase (PI3K), with the tyrosine-protein kinase 

Src and caveolin-1, contributing to regulate PI3K/AKT and MAP kinases [15]. The amplitude 

of the estrogen actions is vast and committed with several cellular functions, thus the 

menopausal-related decrease of estrogens is a challenge at the cellular, tissue and whole 

body level. 

 

1.2 Menopause 

The symptoms associated with menopause are mostly uncomfortable for women and affect 

their emotional and social lives. Most of the symptoms originate from hormonal changes 

resulting from the decline in estrogens [16]. The menopausal transition is initiated by 

fluctuations in the menstrual cycle, comprising a rise in FSH following a decrease in both 

estrogen and progesterone. The final menstrual period, medically confirmed after twelve 

months of amenorrhea [17, 18], sets the initial stages of menopause. The transition to 

menopause is a complex but physiological process usually synergizing with the effects of 

aging and other social adjustments, all contributing to a decrease in life quality [17]. 

On average, menopause occurs when women are about 51.4 years old [19]. Women that 

smoke may have an accelerated ovarian aging which can anticipate the menopausal 

transition by two years [20]; this may be also observed in women with low social and 

economic status [21] resulting in lower life quality. Other conditions may affect the age at 

which women have their final menstrual period: the age of menarche, ethnic origin, body 

mass index and family health history [22]. Menopause can also be induced by chemotherapy 

[23] and radiation [24], which increase follicular atresia and apoptosis or result from surgery, 

through the mechanical removal of ovaries, the main estradiol source [25].  

Circulating hormones during the menopausal transition were initially thought to decrease in a 

linear fashion, but in fact, circulating FSH concentrations increase progressively during the 
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menopausal transition [26]. This does not occur due to decreased estradiol production, which 

usually occurs during late menopausal transition [27], but instead due to decreased ovarian 

inhibin secretion [28]. Inhibin and activin, produced by the granulosa cells in the antral and 

dominant follicles, are proteins that have a role in the menopausal transition [28, 29]. Inhibin 

A increases during the luteal phase while inhibin B increases during the follicular phase, with 

both events inhibiting pituitary FSH secretion. In opposition, activins are a class of proteins 

that stimulate pituitary FSH release [30].  By the late reproductive stage, inhibin B decreases 

while FSH increases.  

During the menopause transition, inhibin A concentrations decline, while increasing in 

perimenopausal women. This hormone variation may promote an increase of FSH secretion 

and a simultaneous decrease in estradiol production. Similarly to estradiol and FSH, activin 

and inhibin regulate the menstrual cycle and the menopausal transition [28] (Table 1).  

Table 1: Women’s reproductive life span  

 
 

Time frame representative of Women’s reproductive life span, beginning with menarche and ending 
with menopausal transition. The table shows the influence of endocrine hormones on the menstrual 
cycle (adapted from [16, 17, 31])  

 
Although the main characteristics of menopause are related with the hormonal changes 

occurring in women, a single hormone end-point measurement is not useful for predicting the 

menopausal phase due to the large hormone fluctuation during this period [30]. Thus, the 

symptoms that appear during this period are an important tool in the characterization of the 

menopausal transition. 

1.2.1 Menopausal symptoms 
Body weight gain, fatigue and hot flashes are some of the symptoms that appear during the 

menopausal transition [17]. Hot flashes, a vasomotor symptom, are manifested as 

spontaneous sensations of warmth on the chest, neck and face, usually associated with 

palpitations, resulting from estrogen withdrawal [32]. By persisting for several years, hot 

flashes interfere with daily activities or regular sleep and are considered a classical 

menopausal symptom. Hot flashes are often accompanied by skin flushing and sweating 

followed by a sensation of cold as the core body temperature drops [33].  
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Vasomotor symptoms clearly compromise the quality of life and health status since most of 

these episodes are associated with anxiety, irritation, panic, decreased work efficacy and 

disturbances of regular activities performed by women, sometimes leading these to seek 

medical help [34]. Hot flashes vary in length and intensity, although the mechanisms 

responsible are not entirely known. It is possible that reduced estrogen levels induce a 

decrease in endorphin concentrations in the hypothalamus, which augments the release of 

norepinephrine and serotonin. Those neurotransmitters lower the set point in the 

thermoregulatory nucleus, and trigger an inappropriate heat loss [35]. Another hypothesis 

considers that hot flashes result from a decrease of Glucose Transporter-1 (GLUT-1) 

expression in the blood-brain barrier (BBB), a consequence of diminishing estradiol levels. 

The lower expression of GLUT-1 in the BBB results in decreased delivery of glucose to the 

brain. The lower neurobarrier response to metabolic stimulation during estrogen reduction 

and a consequent vascular reaction is then observed [36]. Besides hot flashes, other 

menopausal symptoms such as vaginal dryness, itching and dyspareunia resulting from low 

levels of estrogen and androgen can also be experienced by women [37]. Reduced vaginal 

blood flow and vaginal secretions, alterations in vaginal fluid pH from acid to neutral can also 

alter women sexual behaviour [38]. This mainly occurs due to the fact that the vaginal 

epithelium becomes thinner and friable, shortening the vagina, which becomes narrower and 

less elastic [39]. Along with these symptoms, several others are associated with the 

menopause transition including head and back aches and stress [17]. Several clinical 

conditions also have an increased incidence with menopause, such as cardiovascular 

diseases [40] and osteoporosis [41, 42]. The risk of cardiovascular disease markedly 

increases after women enter menopause [31]. Before that period, women have a lower risk 

than men of the same age due to higher circulating levels of high density proteins (HDL), 

occurring when estrogen levels are elevated in the woman’s body [43, 44]. Increased 

osteoporosis is often associated with menopausal estrogen deficiency, since this induces a 

deregulation of bone remodelling, with bone reabsorption being accelerated and bone 

formation being decreased [45].  In order to overcome the menopausal symptoms, HRT 

therapy has been administered to menopausal and perimenopausal women. 

1.3. Hormone replacement therapy 

It is estimated that from 2030, 47 million women will be undergoing menopause each year 

[46, 47]. Bearing in mind the burden of menopause-associated symptoms, a combination of 

estrogens with synthetic progesterone had been used and is known as the classic hormone 

replacement therapy (HRT), available and administered since the 1940’s [48]. 
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1.3.1 Estradiol-based therapy 
Physiologically, follicles are lost due to follicular atresia. Even if some remain in 

postmenopausal women, those are less sensitive to gonadotropin stimulation. 

Postmenopausal decline in ovarian E2 induces a decrease in the negative feedback in the 

pituitary glands, resulting in the secretion of FSH and luteinizing hormone (LH). Most of the 

symptoms present during menopause result from estrogen deficiency, simultaneous with 

high levels of LH or gonadotropin releasing hormone [30]. As previously referred, the most 

common therapy administered to women in menopause is a combined therapy of E2 and P4, 

constituting the classical HRT [30, 49, 50]. Both P4, produced in the corpus luteum, and 

progestins act on the uterus endometrium, converting it from a proliferative to a secretory 

tissue [51]. These hormones are effective in the attenuation of hot flashes [51, 52]. 

Hormone replacement therapy inhibits the aging-related bone loss that occurs during 

menopause. Women under HRT have a lower risk of vertebral and hip fracture [53], a lower 

incidence of cardiovascular diseases [54, 55], as well as a reduction of vasomotor symptoms 

and a delay in the onset of Alzheimer’s disease [56]. The vasoprotective and anti-oxidative 

effects are also responsible for some beneficial effects of estrogens in the brain. In fact, 

estrogens have been shown to be potentially preventive against neurodegenerative diseases 

through multiple mechanisms including reactive oxygen species (ROS) scavenging, up-

regulation of antioxidant systems, as well as by preventing degeneration of the mitochondrial 

electron transport chain (ETC) [57].  

However, some controversies regarding the administration of HRT to menopausal women 

exist. For years, it was almost a dogma that cardiovascular disease was prevented in women 

undergoing HRT, which was supported by the beneficial effects of estrogen on metabolic risk 

factors [58, 59]. However, the Women’s Health Initiative (WHI) showed that HRT resulted in 

an increased incidence of stroke [60] and venous thromboembolism [61]. The results from 

the previous 2002 WHI study also showed that estrogen-based HRTs have negative effects 

on post-menopausal women [62], including a significant increase in the incidence of breast 

cancer, heart diseases, pulmonary embolism and vascular dementia in a group of 

postmenopausal women aged over 65 years old. In agreement, HRT was shown to increase 

the incidence of endometrial cancer and breast cancer [63], as well as gallbladder [64] and 

ovarian disease [65]. 

Results from different sources indicate that the use of HRT needs to be carefully assessed 

and an analysis of risks and benefits of the therapy should be done by the clinician for each 

individual woman, specially to those who have higher risk of breast cancer. Clearly, the 

possible problems associated with HRT in a sub-population in women may expedite the 

replacement of estrogens by other safer molecules. 
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1.4 Phytoestrogens 

Phytoestrogens (PE), a group of plant-derived chemicals, are a popular alternative to 

estrogens/progesterone therapy [66]. Due to their similar chemical structure to the principal 

mammalian estrogen, E2, it is thought that PE can replace estrogens during HRT. Several 

studies have focused on their potential clinical use and influence on the regulation of cellular 

pathways [67]. The interest in the use of PE stems from epidemiologic studies that suggest a 

decreased risk of breast cancer, lower incidence of menopausal symptoms and osteoporosis 

in women from countries with high PEs consumption, namely through soy-based diets [68, 

69].  Several PE have antioxidant properties through hydrogen/electron donation via hydroxyl 

groups, acting as free radical scavengers and inhibiting the development of coronary heart 

disease and some types of cancer [70].  

1.4.1 Phytoestrogens: structure, origin and metabolism 
Phytoestrogens are classified in four main distinct classes: isoflavones, lignans, coumestans 

and stilbenes (Fig. 2). Isoflavones, originated from soy and soy derivatives are the most 

common PEs with genistein and daidzein being the most abundant and studied [71]. This 

class of PEs may also be found in clover and alfalfa [72]. Lignans are the most prevalent PEs 

in nature, comprising a large variety of individual structures in plants. Many non-toxic lignans 

are constituents of human diet, being present in high levels in oilseeds, in flaxseed, in grains 

such as wheat, rye, and oat and in various types of berries. Both isoflavonoids and lignans 

are stored in plants predominantly as glycosides in vacuoles [73]. Lignans yield metabolites 

with estrogen activity such as enterodiol and enterolactone through the metabolism of 

intestinal bacteria (Fig. 2) like Peptostreptococcus productus, Eggerthella lenta or 

Atopobium, among others [74, 75] from secoisolariciresinol and matairesinol, respectively. 

Non-metabolized plant lignans can also be found in human urine indicating that they can be 

absorbed from the intestine as aglycones [76]. Coumestans and stilbenes are less abundant 

in the diet and thus have also been less studied [71]. Coumestrol is a coumestan found in 

clover and alfalfa sprouts and in lower concentrations in lima bean and sunflower seeds, 

among other sources [77, 78]. Resveratrol is the most studied stilbene, being present in 

grapes, peanuts and cranberries. Resveratrol is metabolized in the intestine and liver by 

enzymes as β-glucuronidase and sulfatase, however, its non-metabolized form is also active 

[79]. Although there are some authors that do not consider resveratrol as a phytoestrogen, 

the finding that resveratrol has estrogenic activity expanded the spectrum of known dietary 

phytoestrogens [80]. 
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Figure 2: Different classes of phytoestrogens. 
Isoflavones, lignans, coumestans and stilbenes are the different classes of PEs presenting a chemical 
structure similar to the main female estrogen, estradiol. These compounds are metabolically active, 
with the exception of secoisolariciresinol and matairesinol that are first converted to enterodiol and 
enterolactone by the intestinal flora.  

1.4.2 Estrogenic activity  
Phytoestrogens have a phenolic ring that is a prerequisite for binding to estrogen receptors 

and a molecular weight similar to E2, acting as agonists or antagonists of ERs. The effects of 

PEs at the cellular and molecular levels are influenced by many factors, including 

concentration, receptor status, presence or absence of endogenous estrogens and the target 

tissue [81].  

Phytoestrogens’ dual performance of estrogenic/anti-estrogenic activity may influence their 

direct effects on cells. The most popular PE, study- and consumption-wise, genistein, is 

effective as an agonist of both ER for concentrations lower than 10 µM, with anti-estrogenic 

properties being observed for higher concentrations [82, 83]. 

Phytoestrogens can bind either to ERα or ERβ, although these compounds appear to have a 

higher affinity for ERβ [84]. However, the estrogenic potency of PEs varies within the 

particular group and the tissue in study [85]. The presence of a correctly positioned phenolic 

ring and also the distance between the two opposing phenolic oxygens in isoflavone 

structure is similar to that of E2. This similitude allows isoflavones to bind to the ER, 

effectively displacing E2 [86], which may help to explain how PEs protect against breast 

cancer, since ERβ signalling inhibits mammary cell growth [87]. Nevertheless, it is still not 
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defined whether isoflavones competitively displace estradiol by binding to the primary site in 

the ER, or whether isoflavones bind to a secondary site in the receptor, altering the binding 

pocket for E2 [85, 86].  

The recruitment of co-regulatory molecules may be important in determining the biological 

function of PEs. Particularly, isoflavones appear to selectively trigger ERβ transcriptional 

pathways, especially leading to gene expression repression. This affinity for the ERβ results 

in the exposure of activation function-2 (AF-2) on the surface of ERβ, which has greater 

affinity for certain co-regulators [86]. Phytoestrogens also have differential activity on several 

ER associated-signalling pathways. For example, Akt phosphorylation is normally secondary 

to ERα activation, being upregulated by genistein and daidzein in ER-positive breast cancer 

cell lines, while resveratrol has an inhibitory effect on the phosphorylation of Akt [88]. 

Furthermore, in ER-negative cell lines, resveratrol and daidzein activate Akt while genistein 

inhibits its activation [89]. As already described, PEs generally have a lower affinity to ER 

than E2. The affinity to estrogen receptors depends on the tissue in study although must be 

stressed that the estrogenic affinity of several PEs is still unknown.  

In brain, the affinity of the majority of PEs to the ER is not yet defined. Genistein has an 

affinity of 4% and 87% for the ERα and ERβ, respectively, while daidzein has an affinity of 

0.1% and 0.5% to the same receptors, when compared with E2. On the other hand, the 

binding affinity of coumestrol is 20% and 140% of E2, respectively to ERα and ERβ [90]. 

Although coumestrol is one of the PEs with a higher affinity for the ER, thus presenting a 

high estrogenic activity [91], its effects as a hormone-like compound are far from being 

understood. In ovarian cells, the binding affinity of resveratrol to estrogen receptors is 7,000 

times lower than E2 [92] (Table 2). 

The interaction of PEs with the most recently described ER, GPR30, and their consequent 

binding affinity have not been described thus far. Novel insights into this new binding partner 

may help in understanding the different signalling pathways and the cell fates arising 

downstream from the ER. 

1.4.3 Biologic effects during menopause 
The use of PEs as an alternative to HRT resulted from observations that several symptoms 

or pathologies associated with menopause and with low estrogen content [93] were partly 

prevented.  

Moreover, in an epidemiologic study of dietary lignan intake and breast cancer, a higher 

lignan intake was associated with lower risks of that type of cancer [94]. Relatively to 

menopause-associated symptoms, PEs have shown satisfactory results regarding a 

decreased incidence of hot flashes and night sweats [95]. In this section, the effects of PEs 
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in menopause-related conditions are discussed. On the other hand, epidemiological studies 

show that Asian populations have a lower incidence of prostate cancer in comparison with 

the Western World, which has been suggested to result from higher consumption of PEs in 

Asia, and the importance that diet is believed to play in cancer [96]. 

Table 2: Estrogenic affinity of some phytoestrogens as compared with E2 

	  
The estrogenic affinity of PEs for each estrogen receptor is dependent on the tissue and agonist 
concentration. Despite the fact that there are clear voids in the current knowledge, it is generally 
accepted that PEs have lower estrogenic affinity than E2. Adapted from [90, 92].	  

1.4.4 Menopausal classic symptoms and phytoestrogens 
The effect of PEs in the attenuation of hot flashes is still far from being fully determined. 

However, some studies suggest that isoflavones can relieve vasomotor symptoms. Episodes 

of hot flashes and night sweats were demonstrated to be less frequent and weaker in women 

with higher consumption of isoflavones [97-100]. Isoflavones attenuate bone loss in 

premenopausal women, increasing bone density and decreasing the bone turnover 

resorption markers [101]. The role of many PEs on other previously reported menopausal 

symptoms is still untested. 

1.4.5 Cancer 
Increased incidence of breast and endometrial cancer is associated with menopause, mainly 

due to HRT [63]. This said, the effects of PEs on cancer incidence and progression are of 

critical importance when investigating the potential use of those compounds as a safe and 

viable alternative to HRT.  

The effect of PEs on cell cycle regulators and transcription factors is relevant since many 

novel synthetic agents aimed at inhibiting pathways and proteins up-regulated by ER 

activation are under development [85]. It is important to emphasise that, despite the fact that 

there have been numerous and extensive studies on the mechanisms of PEs, there is no 

clear evidence whether PEs are chemopreventive or actually contribute to increased cell 

transformation and proliferation. 
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Several isoflavones have potential anti-tumor effects by modulating genes controlling cell-

cycle progression. Genistein inhibits the activation of the nuclear factor kappa-light 

polypeptide gene enhancer in B-cells (NF-κB), regulating a signaling pathway that is 

implicated in the balance between cell survival and programmed cell death (apoptosis). 

Antioxidant and antiangiogenic properties of genistein have also been demonstrated [102-

104]. Genistein treatment inhibits human mammary epithelial cell growth, increases the 

expression of tumor suppressor genes and decreases the expression of two tumor promoting 

genes: p21 and p16 [105]. In accordance, genistein and daidzein inhibited the proliferation of 

three different breast cancer cell lines [106]. Genistein promotes mobilization of copper 

leading to pro-oxidant signalling and consequent cell death; this is particularly relevant for an 

anticancer therapy since tumour cells have increased copper content [107]. Controversially, it 

has also been suggested that soy-based supplements may decrease the efficacy of breast 

cancer treatment with aromatase inhibitors [108]. A clinical study showed that a 6-month 

intervention of mixed soy isoflavones in healthy, high-risk adult Western women did not 

reduce breast epithelial proliferation, suggesting a lack of efficacy for breast cancer 

prevention and a possible adverse effect in premenopausal women [109]. On the other hand, 

daidzein and its metabolite equol induced apoptosis in MCF-7 breast cancer xenografts in 

rodents, suggesting its use as a core structure for the design of new drugs for cancer therapy 

[110]. Although isoflavones have agonistic and antagonistic estrogenic effects, these PEs, 

similarly to lignans, also induce differentiation and inhibit angiogenesis, cell proliferation, 

tyrosine kinase, and topoisomerase II, thus preventing tumor growth [111].  High serum 

enterolactone levels were previously associated with a reduced incidence of breast cancer in 

healthy women [112]. Enterodiol and enterolactone showed a higher inhibition of MCF-7 

breast cancer cells growth than their precursors, secoisolariciresinol and matairesinol [113], 

suggesting  that the parent compounds are less active in terms of cancer cell cytotoxicity. 

Resveratrol inhibits cell proliferation, reduces reactive oxygen species and induces 

apopotosis through cycle arrest in hepatocellular carcinoma cells [114]. Resveratrol also 

suppresses human metastatic lung and cervical cancer through the inhibition of NF-kB 

transactivation [115]. Regarding the anti-cancer therapy of PEs, the type of tumor and host 

determine the final effect of each specific PE on cancer cells.  

1.4.6 Cardiovascular diseases 
The decrease of E2 levels during menopause has been associated with the development of 

cardiovascular diseases [31, 116]. Several PEs have been demonstrated to be 

cardioprotective during the transition to menopause, by reducing the levels of cholesterol in 

plasma [117]. Genistein shows pharmacological cardioprotection after ischemic post-

conditioning, involving the activation of the estrogen receptor, of PI3K/Akt and preservation 

of mitochondrial function, showing to be as cardioprotective as E2 at lower concentrations 
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[118]. The consumption of soy also decreases the arterial pressure in postmenopausal 

women, which is accepted to be preventive towards the development of heart disease [119]. 

Genistein also inhibits the activity of inducible nitric oxide sythase (iNOS) and increases the 

endothelial form activities in an isoproterenol-induced cardiac hypertrophy model in male 

Wistar rats of 10-12 weeks old [120], resulting in a protective cardiac phenotype in this 

animal model. This PE has been also shown to increase the cAMP/PKA pathway in a db/db 

diabetic mouse model, reducing the vascular inflammation related with diabetes [121]. The 

consumption of soy may also have a role in delaying atherosclerosis and the risk of 

cardiovascular diseases that is associated with the loss of ovarian function and consequent 

estrogen deficiency in menopause [122]. Due to its antioxidant proprieties, resveratrol has 

been studied in the context of cardiovascular diseases. Accordingly to that, resveratrol 

prevented the development of insulin resistance, increased mitochondrial biogenesis and 

improved vascular function in mice at a dose of 4g/kg of food consumed [123, 124].  

1.4.7 Neurodegenerative diseases 
Due to estrogen withdrawal, women are more prone to develop neurodegenerative disorders 

such as Alzheimer’s disease [125, 126] and the possible benefits of PEs are also extensive 

to the Central Nervous System (CNS). The PE alpha-zearalanol was previously shown to 

effectively antagonize beta-amyloid-induced oxidative damage in cultured rat hippocampal 

neurons [127]. Daidzein treatment resulted in decreased apoptosis in the brains of D-

galactose-treated mice, characterized by an increase in Bcl-2 mRNA and a decrease in the 

expression of the caspase-3, making it a potential candidate for neuropharmaceutical 

therapy [128]. By increasing the expression of the anti-apoptotic protein Bcl-xL, a high soy 

diet reduced cell death induced by an experimental stroke in adult ovariectomized female 

Sprague-Dawley rats [129]. The therapeutic effects of PEs were also observed on 

Parkinson’s and Alzheimer’s disease. In a Parkinson’s disease mouse model, genistein 

prevented the loss of neurons through the increase of Bcl-2 gene expression [130]. In a 

model of Alzheimer’s disease, genistein prevented the effects of beta amyloid (Aβ) plaques, 

including the increase of inflammatory mediators such as cyclooxygenase 2 (COX2), iNOS 

and interleukin 1 beta (IL1β), as well as the tumor necrosis factor alpha (TNFα) [131]. 

Furthermore, acute genistein treatment has been suggested to be useful in improving 

memory deficits associated with the loss of ovarian function [132]. 

1.4.8 Other therapeutic applications 
Phytoestrogens have also been shown to prevent hepatic alterations, which may also have a 

role in menopause-associated complications. Coumestrol was described to have beneficial 

effects on lipid and glucose metabolism of HepG2 cells, independently of its estrogenic 

activity as well as in ovariectomized rats [133, 134]. Daidzein was demonstrated to afford 
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hepatic protection against oxidative damage in a d-galactosamine rat model, being this effect 

mediated by an increased superoxide dismutase activity [135]. An anti-diabetic effect in type-

2 diabetes in C57BL/KsJ db/db mice was previously observed by using genistein and 

daidzein, with both compounds increasing glucose and lipid metabolism [136]. 

1.5 Aging, menopause and mitochondrial function 

1.5.1 Mitochondrial physiology 
Mitochondria are the metabolic center of the cell. Besides energy production, mitochondria 

are responsible for several other functions including steroid synthesis, calcium homeostasis, 

regulation of apoptosis signaling and regulation of the redox potential. Within a cell, the 

distribution of the mitochondria is unequal depending on the cellular energetic or metabolic 

demand [137]. The overall shape of the mitochondrial network results from an equilibrium 

between fusion and fission events [138], which allow the exchange of organelle contents 

such as membrane lipids, proteins, ions, metabolites and even mitochondrial DNA (mtDNA) 

[139], as well as to provide a steady-state for the electrochemical gradient [140]. 

In the present section, some important roles of the mitochondria that are critical for the 

experimental context of this thesis are revised. 

1.5.1.1 ATP and metabolites 

Most of the metabolic reactions in cells are powered by the hydrolysis of adenosine 

triphosphate (ATP) to adenosine diphosphate (ADP). In order to maintain the bioenergetic 

homeostasis and consequently cellular integrity and regular function, ATP must be constantly 

produced from the conversion of dietary fats and carbohydrates to reducing equivalents in 

the living cell [141]. Mitochondria are considered the powerhouses of the cell, due to a 

variety of important energy-producing metabolic pathways in their interior. Pyruvate is formed 

in the cytosol as an end product of glucose metabolism (glycolysis) and can be converted to 

lactic acid under anaerobic conditions. Under aerobic conditions, pyruvate is converted to 

acetyl coenzyme A (acetyl-CoA) by pyruvate dehydrogenase (PDH) in the mitochondrial 

matrix [142]. Acetyl-CoA enters the Krebs cycle, being oxidized to generate several 

intermediates, including NADH and succinate. Other intermediates of the Krebs cycle are 

also important in several metabolic pathways, such as in the biosynthesis of heme groups 

and amino acids [143]. Mitochondria can also be involved in the β-oxidation of fatty acids 

[144]. The end product of this pathway is, once again, acetyl-CoA, which is then used in the 

Krebs cycle. NADH and succinate, are both oxidized by the ETC, ultimately leading to ATP 

synthesis, in a process known as oxidative phosphorylation (OXPHOS) [145, 146]. The 

electrons derived from reduced substrates are transferred through several multi-protein 

complexes (mitochondrial complexes I to IV), downward their redox potentials. The energy 
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derived from electron transfer is used to pump protons across the inner mitochondrial 

membrane (IMM) at complexes I, III and IV, creating an electrochemical gradient between 

both sides of the IMM. This electrochemical gradient is a proton-motive force driving the re-

entry of protons towards the matrix through complex V (ATP synthase), coupled to ATP 

synthesis [142, 147, 148]. The ATP produced is then exported from mitochondria by the 

ADP/ATP translocator (ANT). The final electron acceptor in the mitochondrial respiratory 

chain is molecular oxygen, which is reduced via a sequential four-electron transfer to water in 

complex IV (cytochrome c oxidase, COX). However, some of the electrons transferred 

across the mitochondrial ETC can perform a single electron reduction of molecular oxygen. 

This phenomenon occurs continuously even under physiological conditions leading to 

formation of superoxide anion (O2
●-) that will be discussed in the next section. 

1.5.1.2 Reactive oxygen species 

Among the reactive molecules produced within a living cell, reactive oxygen species (ROS) 

are a widely studied example. There are several components in mitochondria which have the 

capacity to produce ROS [149], including ubiquinone-binding sites in complex I (site IQ) and 

complex III (site IIIQo), glycerol 3-phosphate dehydrogenase, the flavin moiety in complex I 

(site IF), the electron transferring flavoprotein:Q oxidoreductase which participates in fatty 

acid beta-oxidation, and pyruvate and 2-oxoglutarate dehydrogenases [150], as well as 

monoamine oxidase in the outer membrane [151]. Mitochondrial complexes I and III account 

for a significant proportion of intracellular ROS formation due to the CoQ cycle that occurs in 

those sites, although complex I is considered the major contributor [152]. The mitochondrial 

ETC contains several redox centers, which can react with molecular oxygen. As a result, a 

small amount of electrons leaks from complex I and complex III, performing a one-electron 

reduction of molecular oxygen that gives rise to superoxide anion (O2
●-). Approximately 1-2% 

of the oxygen consumed during OXPHOS under physiological conditions is converted into 

this byproduct [153].  

Superoxide anion produced by the respiratory complex I is released in the mitochondrial 

matrix being spontaneously or via the manganese superoxide dismutase (MnSOD) 

transformed into hydrogen peroxide (H2O2). In turn, O2
●- generated by complex III can be 

released in both sides of the IMM, although in the inter membrane space (IMS), the 

dismutation into H2O2 is achieved via a Cu/Zn-dependent SOD (Cu/ZnSOD). Hydrogen 

peroxide can be converted to water in the mitochondrial matrix by catalase (CAT) or 

glutathione peroxidase (GSH). The H2O2 produced can also diffuse in the cytosol and trigger 

the activation of some transcription factors and various enzymatic cascades [154]. 

Mitochondrial thioredoxin, glutaredoxin and even cytochrome c are other relevant ROS 

scavengers (as reviewed elsewhere [155]).  



Aging, Menopause and Mitochondrial Function 

 
PhD Biosciences – Specialization in Toxicology 17 

General oxidative stress arises when an imbalance in the redox steady-state occurs and the 

ROS production exceeds the capacity of the cell for detoxification. Moreover, some new 

theories have described the notion of localized oxidative stress. These observations suggest 

that disruption of redox-dependent coordination in organelles results in cellular toxicity. The 

improved understanding of the compartmentalized nature of oxidative stress may help on the 

compression of the oxidative redox signaling modulation [156]. If H2O2 reacts with a reduced 

transition metal (Fe2+ or Cu2+) or O2
●-, it can be further reduced to a highly reactive and toxic 

hydroxyl radical (●OH) by a Fenton or Haber-Weiss reaction [157]. Although very short-lived, 
-●OH can damage cellular macromolecules including proteins, lipids and nucleic acids. The 

oxidation of proteins can inactivate and target them for degradation; oxidative damage of 

DNA causes single and double strand-breaks, crosslink with other molecules and base 

modifications, while lipid oxidation can generate membrane alterations. As described above, 

mtDNA represents a critical target of oxidative damage since it does not contain any 

protective histones and it is located in proximity to the production site of ROS [145]. Once 

damaged, mtDNA can indirectly amplify oxidative stress since transcription of critical 

mitochondrial proteins is defective, leading to a vicious cycle of ROS production and 

eventually triggering cell death. Oxidative stress has been related with aging [158] and with 

some disorders such as cancer and diabetes [159]. 

Reactive nitrogen species (RNS), including nitric oxide (●NO) and peroxynitrite (ONOO-), can 

also contribute for a regulation of mitochondrial function [160] as well as for increased 

mitochondrial damage during pathological conditions [161]. Although elevated ROS 

production can promote cell damage, lower amounts of ROS may act as signaling molecules, 

leading cell adaptation to stress. [150]. A large number of reports have suggested that 

mitochondrial ROS are of great importance and critical for cellular homeostasis [162-165]. 

1.5.1.3 Calcium and mitochondrial physiology 

Calcium ions (Ca2+) control different cellular processes, including muscle contraction, gene 

expression, energy metabolism and the balance between cell death/survival [166]. If 

cytosolic calcium concentration reaches over basal values, the regulation of cellular 

processes is hindered.  Several are the cellular mechanisms of Ca2+ regulation, with 

mitochondria having an important role [167].  Calcium handling by mitochondria is 

considered a physiological process of extreme importance. Mitochondrial Ca2+ uptake (either 

through the calcium uniporter or through the alternative RAM pathway – rapid uptake mode) 

was demonstrated to control cell metabolism, cell survival and intracellular Ca2+ signaling 

[166]. The accumulation of Ca2+ within mitochondria allows the regulation or activation of 

matrix Krebs cycle dehydrogenases and increases the electron flow along the ETC, adjusting 

the ATP production to follow the requirements of the cell [168-170]. On the other hand, 
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mitochondrial Ca2+ overload associated with an increase in the generation of ROS promotes 

the sustained opening of the called mitochondrial permeability transition pore (MPTP) [171].  

The term mitochondrial permeability transition (MPT) was first described in 1976 by Hunter 

and colleagues [172], and it results in alterations on the permeability of the inner 

mitochondrial membrane. Since its discovery, several were the attempts to define the 

structure of the MPTP, but this subject is still controversial [173-176]. The role of VDAC 

(voltage dependent anion channel) and ANT as pore components was not confirmed 

although they can be regulators of the MPTP [174, 177]. Recently, by identifying that 

cyclophilin D, a regulator of MPTP, binds to FoF1 ATP synthase, it was suggested that ATP 

synthase dimers form channels with electrophysiological properties similar to the MPTP 

[178]. The MPTP is described as an abrupt increase of the mitochondrial inner membrane 

permeability to solutes with a molecular mass inferior to 1.5 kDa. In the low conductance 

mode, the MPTP is permeable to small ions such as Ca2+, and can promote Ca2+ release 

transmitting calcium signaling from one mitochondrion to another. The high conductance 

form may lead ultimately to cellular death [179],  since the opening of the MPTP may result in 

the release of cytochrome c and other pro-apoptotic factors (such as the AIF and 

SMAC/Diablo), [180] from mitochondria, leading to activation of the apoptotic signaling 

pathway [181]. 

1.5.1.4 Tissue-specific differences in mitochondrial function 

Mitochondrial function tightly controls the cellular adaptation to environmental and 

physiological cues, responding to alterations in energy demand and substrate delivery. In this 

regard, several studies reported tissue-dependent differences in the OXPHOS machinery 

[182-184]. Mitochondrial morphology is irregular and less compacted by tissue architecture in 

the liver and kidney, while in heart and skeletal muscle, mitochondria have a regular shape 

with well-defined cristae. In neurons, mitochondria are preferentially distributed along the 

axons, with few mitochondria concentrated around the nucleus. Similarly, kidney 

mitochondria concentrate on the tubules. By measuring endpoints of mitochondrial function 

(respiratory chain complexes activity, respiratory state 3, citrate synthase and protein 

content) in distinct tissues, three groups can be distinguished considering the similarities in 

mitochondrial morphology: (1) skeletal muscle and heart, (2) brain, (3) liver and kidney [182]. 

The parameters ADP/O (or P/O) and RCR are of importance in mitochondrial studies and 

also to cluster different tissues. The ADP/O is a ratio between the nmoles of ADP 

phosphorylated per natoms of oxygen consumed during that process – this parameter 

measures the phosphorylation efficiency of the mitochondrial preparation. The RCR 

(respiratory control ratio) measures the coupling between substrate oxidation and ADP 

phosphorylation. Regarding the phosphorylative system, the ADP/O ratio is slightly different 
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in each tissue in the presence of complex I substrates. However, when mitochondrial 

function is sustained with the complex II substrate succinate, no tissue dependent 

differences are observed [183]. The authors suggest that complex I is the energy 

conservation site, in charge of the rate dependent regulation of the mitochondrial energy 

conservation efficiency, excluding the dependence of the catalytic efficiency of the ATP 

synthase on the respiratory fluxes. Brain mitochondria show the lowest OXPHOS efficiency 

[183], which might be explained by limited antioxidant defense [185, 186]. The tissue-specific 

differences found with complex I substrates can explain the tissue specific effects of different 

compounds on mitochondrial function [187, 188]. For instance, the organ with the highest 

COX activity found per cell is the heart, which is justified the high energy demand of that 

tissue [189].  

The differences observed regarding the mitochondrial function result from the requirements 

of each tissue ranging from a primarily biosynthetic role in liver to an energy metabolism 

oriented tissue in heart. 

1.5.1.5 Mitochondrial liability, safety assessment and drug development 

Mitochondria are indeed, the crossroad for many cellular pathways, which explains the 

growing number of publications dealing with the mitochondrial role in cell life and death [142]. 

As a result of the increased efforts focusing on the role of mitochondria in a variety of human 

disorders such as cancer, neurodegenerative and cardiovascular diseases, obesity and 

diabetes, “mitochondrial medicine” emerged as a whole new field of biomedical research. 

Based on the recent developments in this field, a large effort is underway to understand how 

different molecules regulate or damage mitochondrial function, with the ultimate goal to 

improve human health.  

Two distinct and important mechanisms/endpoints by which drugs may inhibit mitochondrial 

function can be considered: a) direct interference with mitochondrial respiration/ATP 

synthesis (inhibition of respiratory complex activity, damage by ROS production, uncoupling 

activity, MPT induction) and b) inhibition of mtDNA synthesis. Regardless of the initial trigger, 

inhibition of ATP synthesis and bioenergetic failure of the tissue are severe manifestations of 

mitochondrial impairment. Some xenobiotics can lead mitochondria to an irreversible 

bioenergetic collapse via formation of the MPTP leading to the release of pro-apoptotic 

factors such as cytochrome c, AIF and Smac/Diablo [180]. Drugs that alter the normal 

balance between pro-apoptotic and anti-apoptotic proteins can also induce mitochondrial 

failure and eventually cell death [190]. Additional information for drug safety, as well as for 

toxicity assessment, may be achieved by the use of targeted approaches, affinity for 

overexpressed/subexpressed mitochondrial proteins during different pathologies, or selective 

mitochondrial accumulation of delocalized lipophilic molecules with positive charge and with 
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different redox actions [142, 191].  

Nevertheless, further investigation in these endpoints or guidelines for molecular 

mechanisms of mitochondria-drug interaction will be needed for a better understanding of the 

mechanism of action involved in mitochondrial toxicity, allowing an improvement in the safety 

assessment of xenobiotics with relevant human exposure. Resulting from this concern, 

several high-throughput techniques have been used to test and screen drug candidate safety 

on mitochondrial function [192] and are used to improve basic knowledge in compounds-

associated toxicity. 

1.5.1.6 Toxicity of phytoestrogens 

Despite the general positive effects of PEs, it is important to be aware that excessive PEs 

consumption may lead to adverse health effects. Furthermore, not all PEs are able to 

improve women’s quality of life after menopause. For this reason, future studies with PEs 

must help define the safest dietary levels and clarify the mechanism of health risks and/or 

therapeutic action involved. Interestingly, prenatal exposure to genistein resulted in 

transgerational effects on the progeny. This particular study showed that fetus exposure to 

genistein affects fetal erythropoiesis and gene expression as well as DNA methylation of 

hematopoietic cells. Pregnant mice, consuming doses of soy below the range of human 

consumption normalized per weight, showed genistein accumulation in the fetus [193]. In 

agreement with this study, genistein inhibited testosterone secretion in fetal Leydig cells 

during early fetal development, suggesting that for concentrations comparable with human 

consumption, genistein can affect the development and function of the male reproductive 

system [194, 195]. Furthermore, resveratrol concentrations, which were previously shown to 

have potential anticancer activity and afford cardiac and antioxidant protection, caused a 

decrease in the final body weight, increased the levels of creatinine, alkaline phosphatase, 

alanine aminotransferase and albumin, and reduced hematocrit and red cell counts. In 

addition, resveratrol increased white cell counts and induced significant renal lesions, 

including severe nephropathy, when administered by gavage to male and female rats [196]. 

Moreover, relevant alterations on hepatic gene expression (down-regulation of the hepatic 

markers CaBP9K and IGFBP1 mRNA) were caused by genistein, again raising a cautionary 

note on the possible toxic effects of that class of compounds [197]. 

Phytoestrogens can also alter mitochondrial function, even at doses observed in vivo in the 

plasma [198]. Genistein induces the MPT through an increase in ROS production by the 

mitochondrial complex III [199].  Resveratrol, genistein and quercetin inhibit the enzymatic 

activity of mitochondrial FoF1-ATPase/ATP synthase, compromising ATP synthesis in 

isolated preparations of brain and liver mitochondria [200] (Fig. 3). 
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Figure 3: Mitochondrial effects of phytoestrogens. 
Genistein induces the mitochondrial permeability transition possibly by augmenting ROS production by 
mitochondrial complex III. Resveratrol, genistein and quercetin inhibit the enzymatic activity of 
mitochondrial FoF1-ATPase/ATP synthase. Legend: I, II, III, and IV - mitochondrial electron transport 
complexes; V - FoF1-ATPase/ATP synthase; ANT – adenine nucleotide translocator; Cyp D – 
cyclophilin D; MPTP – mitochondrial permeability transition pore; mtDNA – mitochondrial DNA.  

The previously described studies showing the benefits of PEs, their effectiveness and safety 

are still under debate, especially regarding their effects during pregnancy. Since several side 

effects were already described above, the transgenerational impact of PEs [193-195] is 

something that should be taken into account for the consumption of those compounds during 

pregnancy. 

1.6 Aging and mitochondrial (dys) function 
Life span is regulated by complex interactions of genetic and metabolic factors. The role of 

mitochondrial function as a determinant in aging has been extensively explored. 

Mitochondrial function decline plays a role in the aging process [201]. Several lines of study 

suggest that certain molecular and cellular changes lead to progressive disruption of 

mitochondrial energy metabolism [202]. The free radical theory of aging postulates that 

oxidative stress is a determinant factor that limits longevity [203, 204]. Increased oxidative 

stress promoted by higher production of ROS is considered an important factor linking 

mitochondrial dysfunction with aging. Aged mammalian mitochondria have decreased ability 

to produce ATP through OXPHOS, thereby altering cellular homeostasis. In the brain, the 

impaired mitochondrial function during aging results from lower rates of electron transfer from 

complex I to complex IV [205]. An impairment on complex I function was also observed and 

suggested to be due to oxidation of cardiolipin [206]. Also, cytochrome c oxidase activity, 
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mitochondrial transmembrane electric potential and state 3 respiration are decreased in brain 

mitochondria of aged animals [207]. During aging, the increase in the production of H2O2 is 

one of the most ubiquitous occurring events [208, 209]. The increased oxidative stress 

damages mitochondrial components, such as lipids and proteins, and induce accumulation of 

mutations on mtDNA, turning into a vicious cycle that induces a larger ROS production, ATP 

depletion and cell death [210]. If a mutated mtDNA molecule is replicated, the error 

propagates and may cause a deficit in cell respiration and OXPHOS. The unbalance in cell 

homeostasis may result in tissue dysfunction and consequently, aging. In terms of 

mitochondrial morphology, some alterations have been observed with aging, including 

increased size of mitochondria and decrease in the number of mitochondrial cristae [211]. 

1.6.1 Aging and menopause: animal models and alterations in 
mitochondrial function 
Regardless the profound impact of menopause on women’s health, animal models that 

mimic the natural progression through perimenopause and into the postmenopausal stages 

are currently absent. Ovariectomy (OVX), or surgical removal of the ovaries, is the most 

common animal model for studying the mechanisms that underlie menopause. Although 

widely used, the OVX model is problematic with regard to reproducing the effects of natural 

menopause. OVX produces a rapid cessation of ovarian function, dissimilar from the gradual 

decline that occurs in perimenopause. Moreover, the postmenopausal ovary continues to 

produce low levels of androstenedione [212], which is not produced in rodents after surgical 

removal of the ovaries. A chemically induced mouse model for peri- and postmenopause has 

been developed using the chemical 4-vinylcyclohexene diepoxide (VCD). This chemical is 

used in the manufacture of flame-retardants, insecticides and rubber tires [213] and 

selectively destroys ovarian small preantral follicles after repeated daily dosing in mice and 

rats [214]. The mechanism of VCD is apparently caused by the acceleration of the natural 

process of atresia (apoptosis) through follicle-specific pathways. No necrotic changes in 

ovarian tissue or changes in gene expression that cannot be attributed to ovarian failure 

were observed [212, 215-217].  Due to the selectivity of its effects, VCD has been used to 

cause premature ovarian failure after repeated daily dosing in rodents [214, 218]. After the 

destruction of preantral follicles, the estrous cycle length in VCD-treated animals increases 

as well as FSH levels [219]. This rodent model successfully reproduces human 

perimenopause and postmenopause, based in estrous acyclity and fluctuating, followed by 

low levels of estrogen [214, 220, 221].  

Previous studies demonstrated that VCD causes a 40% and 81% destruction of primordial 

follicles in rats in comparison with control after 15 and 30 day of treatment [213, 216], 

respectively. A VCD model was also associated with increased oxidative stress, which also 

occurs in this period of women’s life [222, 223]. For the past years, VCD has been used to 
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model menopausal transition in rodents and minimal toxicological effects have been 

observed. However, some literature reports the emergence of tumours [224, 225].  

Table 3: Comparison between OVX and VCD models  

	  
Ovariectomy is the classical model to study menopause in animals. However, it only occurs in 13% of 
women and excludes the menopausal transition since it is based in the removal of the ovaries. VCD 
appears to be a closer model to what actually occurs in women [214, 226, 227].	  

Additionally, unlike OVX animals, the VCD-treated animal retains residual ovarian tissue, 

mimicking natural menopause. Besides, less of 13% of women undergo surgical 

ovariectomy. The great majority of women undergo a transitional hormone variation and 

estradiol withdrawal [226] (Table 3).  

The alteration of mitochondrial function in low-estrogen models is far from being understood, 

with only some reports available. In OVX rats, an increase in the expression of VDAC, 

adenine nucleotide transporter (ANT) and cytochrome c was observed, suggesting an age-

dependent alteration in mitochondrial energetics [228]. It has been shown that E2 

supplementation can revert the observed alterations including increased TNF-alpha, Fas 

ligand, Fas death receptor and Fas associated domain (FADD), as well as increased intrinsic 

pathway-linked caspase 9 and with extrinsic pathway-linked caspase 8, besides augmented 

caspase 3 activity [229]. Beyond the increase of the pro-apoptotic proteins t-Bid and Bax, 

Liou and collaborators suggested that E2 can prevent cell death signaling in heart from OVX 

rats [229]. The myocardial architecture in an OVX rat model was altered with the appearance 

of large interstitial spaces, increased number of cardiac fibrosis and apoptotic cells [230]. In 

accordance, a decreased content of cytochrome c in mitochondria, simultaneously with 

increased cytosol levels, were observed in the liver of OVX rats [231]. In addition, increased 

nitric oxide (NO) levels were also detected. Livers from OVX rats showed a higher content in 

malondialdehyde (MDA) and a decrease in mitochondrial superoxide dismutase (MnSOD) 

and catalase (CAT) expression [232], (Fig. 4), suggesting alterations of mitochondrial 

function resulting from increased ROS. The consequent decrease in ATP levels may affect 

plasma membrane ATPases and disturb ionic and redox homeostasis, possibly resulting in 

cell death [231, 233, 234]. Alterations in the expression of antioxidant defenses was also 

demonstrated in brain endothelial cells from OVX rats as shown by a decreased MnSOD 

transcripts and glutamate-cystein ligase modulatory subunit [235].  
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A link between mitochondrial dysfunction and menopause has been described in a 

perspective of estrogen impact on Alzheimer’s disease. This is relevant since surgically 

induced early menopause may increase cognitive vulnerability. In agreement, estrogen 

replacement may decrease cognitive deficits even though the link between age at 

menopause and Alzheimer risk has still to be defined [236]. The role of ovarian hormones E2 

and P4 on cerebral endothelium has also been demonstrated. Kemper and colleagues 

showed that ovariectomy decreases mitochondrial biogenesis and alters mitochondrial 

function, as observed by decreasing mtDNA/nuDNA ratio and ATPase 1α subunit [235]. 

Moreover, a decrease in PGC-1β, NRF1 and TFAM, transcription factors related with 

replication of mtDNA and expression of mitochondrial genes was also observed [235].  

The role of depressed mitochondrial function during menopause is far from being completely 

understood and some of the conclusions presented so far are based on aging-related 

alterations of mitochondrial function and are also based on the effects of E2 replacement on 

OVX rats.  

Our group suggested that menopause leads to cardiac mitochondrial dysfunction and 

decreased in fatty acid β-oxidation. It was proposed that this leads to fatty acid accumulation 

in the cytosol, promoting lipotoxicity, which may justify the higher risk of cardiovascular 

disease in menopausal women [31]. Nevertheless, this remains to be determined in OVX or 

VCD models. 

 

 

Figure 4: Mitochondrial alterations during menopause.  
In animal models for menopause, a decrease in superoxide dismutase and catalase and an increase 
in ROS formation and on MDA content, are observed. A pro-oxidant environment activates caspase-
signaling pathways. The link between circulating E2 and the decrease in mitochondrial function is not 
clear but decreased gene expression or ER-signaling on mitochondria may be explanations for this 
deficit. Legend: CAT- catalase, ER- estrogen receptor, MDA- malondialdehyde, ROS- reactive oxygen 
species, SOD – superoxide dismutase,  



 

 
 

 
 
 
 
 
 
 
 

 
 

 
2. Aims of the present thesis 



 

 

 
 



Aims of the present thesis 

 
PhD Biosciences – Specialization in Toxicology 27 

Phytoestrogens are natural compounds found in several edible plants [71, 237]. The 

evaluation of risks and benefits of PE is crucial to determine if those compounds can be used 

by menopausal women in the context of a safe and effective HRT. One particular aspect of 

drug-induced toxicity is the degeneration of the mitochondrial fraction, which can limit the 

clinical use of several new molecules or lead to the withdrawn from the market of currently 

used drugs [238]. Thus, the main objective of this thesis was to identify PEs with antioxidant 

properties and low toxicological effects (namely on mitochondria) and with the capacity to 

improve several end-points of estrogen deficiency in biological models. We hypothesize that 

one or more PEs with low mitochondrial toxicity can mimic E2 in improving the investigated 

phenotypes resulting from estrogen deficiency in several in vitro and in vivo models (Fig. 5). 

For this purpose, the following experimental aims were pursued in this thesis: 

1. Evaluate the possible in vitro mitochondrial toxicity of selected PE in isolated 

mitochondrial fractions from brain and liver. The purpose of this aim is to identify 

mitochondrial toxicity and/or antioxidant capacity of the tested PEs. Isolated mitochondria 

from brain and liver were used as biological models. The effects of PEs on mitochondrial 

bioenergetic parameters as well as on lipid peroxidation were evaluated. 

2. Moreover, the use of cell lines was intended to increase the complexity of the systems in 

study and to exclude the highest resistance to the use of the classical HRT, the increased 

risk of breast cancer development. In order to test antioxidant protection in a more complex 

system, we used the HepG2 cell line that exhibits many of the features of normal liver cells, 

such as polarity based on the existence of several basolateral and apical poles [239, 240]. 

This cell line is widely used to screen the toxicity of new chemicals [241]. These cells have a 

similar phenotype to human hepatocytes and can activate or detoxify xenobiotics, reflecting 

the metabolism of xenobiotics in the human body better than other conventional in vitro 

assays [242, 243]. With this cell line we compared the proliferation rate and the antioxidant 

effects of one selected PE, using E2 as a control.  

The most discussed side effect of HRT is the increased risk of developing breast cancer. 

MCF-7 and MDA-MB-231, estrogen-dependent and estrogen-independent human breast 

carcinoma cells, respectively, as well as human immortalized normal breast MCF-12A cells 

were used as models for breast cancer and normal cells. In these cell lines, the role of PE 

and E2 on cell proliferation was evaluated. The aim for this specific part is the selection of a 

PE presenting low toxicity on normal cells and not increasing (or inhibiting) the proliferation of 

breast cells. 
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3. Hot flashes may result from a decrease of GLUT-1 expression in BBB, being a probable 

link between decreased E2 and women sense of warmth [36]. The third goal of this work was 

to investigate whether selected PEs increase GLUT-1 expression at the BBB, following the 

“impaired glucose delivery hypothesis of menopausal hot flashes” previously described on 

the introductory chapter of this thesis [36, 244].  With this in mind, the role of E2 on GLUT-1 

expression and the signalling mechanism behind its modulation were studied ex-vivo with ER 

agonists and in vivo with E2 administration in ER knockout mice for each receptor α and β 

(C57BL/6 background). Our hypothesis is that PE (s), similarly to E2, modulate GLUT-1 

expression at the BBB. Brain microvessels were also isolated and exposed to E2 or PE (s) 

and capillaries membranes were isolated to evaluate GLUT-1 content.  

4. The last goal was to determine if E2 and a selected PE would be beneficial for liver and 

brain mitochondrial function in two menopause rodent models: OVX and the VCD-chemical 

induced models. As female rats do not experience menopause, ovariectomy is generally 

considered as a model for menopause in animals. The temperature of these animals was 

also recorded as an approach to evaluate hot flashes in OVX rats. At this point, the 

hypothesis postulated was that the similarity to E2, was able to reduce temperature 

variations in OVX rats. Additionally to this menopausal surgical model, and after evaluating 

the eventual mitochondrial toxicity of 4-venylcyclohexene diepoxide – VCD (an 

environmental toxicant that progressively induces ovarian atresia resulting in a reduction of 

E2 production) administration in Wistar female rats, an additional in vivo study was 

performed based in this same chemically-induced model for menopause. Again, E2 was 

compared with selected PE in terms of mitochondrial function.  

With these lines of study, we proposed a deeper understanding of the eventual risks / 

benefits of PE consumption, highlighting the PE effects. Some end-points can be measured 

in menopausal models, including based in alteration of mitochondrial function. 
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Figure 5: Scheme of the proposed work for this thesis.  
After an initial screening in vitro on the toxicity of phytoestrogens, the role of these compounds on 
GLUT-1 expression was evaluated. The selected compound was further used in in vivo studies to 
verify its toxicity and to evaluate its effect in temperature variations in OVX rats. 
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3.1 Chemicals 
All chemicals used in this work of the highest analytical grade are from Sigma Aldrich Co (St. 

Louis, MO), unless specified in each section. Resveratrol, enterodiol, enterolactone, 

coumestrol and E2 were prepared in DMSO, with the final volume used being lower than 

0.1% (v/v). Aqueous solutions were prepared in ultrapure water (Milli-Q Biocel A10 with pre-

treatment via Elix 5, Millipore, Billerica, MA, USA). Non-aqueous solutions were prepared in 

ethanol. In this case, the final volume used was always lower than 0.1% (v/v). For in vivo 

experiments, 4- venycyclohexene diepoxide was prepared in sesame oil and E2 and 

coumestrol were prepared in ethanol dissolved in corn oil tocopherol stripped (MP 

Biomedicals, Santa Ana, CA, USA).  

3.2 In vitro mitochondrial studies (Chapter 4.1) 

3.2.1 Animals 
Male and female Wistar rats (8-12 week old) from our animal colony (Center for 

Neuroscience and Cell Biology, University of Coimbra) were housed in type III-H cages 

(Tecniplast, Italy) with irradiated corn cob grit bedding (Scobis Due, Mucedola, Italy), 

following environmental requirements with ad libitum access to food (4RF21, Mucedola, Italy) 

and water and maintained at constant temperature (22 ºC) and humidity with a 12h light/dark 

cycle.  Animal handling and sacrifice followed the procedures approved by the Federation of 

European Laboratory Animal Science Associations (FELASA). The author of this PhD thesis 

is credited by FELASA (category C) for animal experimentation. 

3.2.2 Mitochondrial fraction preparation  
Mitochondria were isolated through standard methods performed in our laboratory [245-247]. 

The liver was quickly removed and the tissue was homogenized in ice-cold homogenization 

buffer containing 250 mM sucrose, 5 mM Hepes (pH 7.2), 0.5 mM EGTA and 0.1% defatted 

bovine serum albumin. Cellular suspension is centrifuged at 746 x g in a Sorvall Evolution 

RC, SS-34 rotor (Thermo Scientific Inc., Rockford, IL, USA) and the supernatant is used for 

further centrifugations. The mitochondrial pellet was obtained by gradient centrifugation at 

11,950 x g in a Sorvall Evolution RC, SS-34 rotor (Thermo Scientific Inc., Rockford, IL, USA) 

washed twice and suspended in washing buffer (250 mM sucrose, 10 mM HEPES pH 7.4) 

[248]. Brain mitochondria were isolated using a previously published method [249], through 

the use of 0.02% digitonin to release mitochondria from the synaptosomal fraction. The 

whole brain, except the cerebellum, was immediately removed, washed and homogenized at 

4ºC in 10mL of isolation medium (225 mM mannitol, 75 mM sucrose, 5 mM Hepes, 1 mM 

EGTA, 1mg/ml defatted BSA, pH 7.4) containing 5 mg of the bacterial protease, Subtilisin A, 

type VIII from Baccilus licheniformis, (Sigma, St Louis, MO). Single brain homogenates were 
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brought to 30 ml and then centrifuged at 746 x g (Sorvall RC-5B Refrigerated Superspeed 

Centrifuge) for 5 min. The pellet was resuspended in 10 ml of the isolation medium 

containing 0.02% digitonin and centrifuged at 11,950 x g for 10 min. The pellet was then 

resuspended in 10ml of resuspension medium (225 mM mannitol, 75 mM sucrose, 5 mM 

Hepes, pH 7.4) and centrifuged again at 11,950 x g for 5 min. Finally, the mitochondrial pellet 

was resuspended in about 200 µl of resuspension medium. The mitochondrial suspensions 

were incubated with the compounds in study for three minutes previous the experiments’ 

begin. 

3.2.3 Mitochondrial protein quantification  
Mitochondrial protein was determined by the Biuret method [250]. This method is based in 

the chemical reaction of an alkaline solution of cooper with the polypeptide chain followed by 

a reduction of Cu2+ to Cu+. The reaction was initiated by the addition of 2 mL of biuret reagent 

to 20 µl (for liver fractions) or 10 µl (for brain fractions) of sample and 10% of deoxycholic 

acid (DOC). After 15 min of incubation at room temperature the resulting color was read at 

540 nm in a Spectronic 21 spectrophotometer (Bausch & Lomb, NY, USA). A calibration 

curve with BSA standards ranging from 0.5 to 2.0 mg/ml was performed. 

3.2.4 Mitochondrial respiration 
Oxygen consumption was measured polarographically with a Clark-type oxygen electrode, 

connected to a recorder in a thermostated water-jacketed closed chamber with magnetic 

stirring.  The reactions were performed at 30 ºC in 1 ml of standard respiratory medium with 

1 mg of liver or 0.5 mg of brain mitochondrial protein. For liver mitochondria, the reaction 

medium used was composed by 130 mM sucrose, 50 mM KCl, 2.5 mM KH2PO4, 5 mM 

Hepes and 2 mM MgCl2; for brain mitochondria, the reaction medium was composed of 100 

mM sucrose, 100 mM KCl, 2 mM KH2PO4, 5 mM Hepes and 0.01 mM EGTA (pH 7.4). State 

2 respiration was initiated with 5 mM glutamate/2.5 mM malate (mitochondrial complex I 

substrates) and state 3 respiration by adding 125 nmol ADP to the mitochondrial fractions. 

Respiration rates were obtained assuming an oxygen concentration of 236 nmol O2/ ml in the 

experimental medium at 30 ºC [251]. The respiratory state 2 (oxygen consumption before 

ADP addition – v2), state 3 (oxygen consumption in the presence of ADP – v3), state 4 

(oxygen consumption after ADP phosphorylation- v4) and the respiratory control ratio (RCR = 

state 3/state 4) were calculated according to Chance and Williams [252]. The ADP/O ratio is 

expressed as the ratio between the amount of ADP added and the oxygen consumed during 

v3.  

For the assessment of direct effects of resveratrol and estradiol over complex I or II, 

mitochondrial preparations were frozen in liquid nitrogen and kept at -80 ºC. At the day of the 

experiments, the preparations were frozen-thawed and sonicated on ice. Oxygen 
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consumption was measured by using a Clark-type oxygen electrode in 1ml of reaction 

medium, using 0.8 or 1.0 mg protein for brain and liver preparations, respectively. The direct 

effects of E2 and resveratrol on complex I-sustained respiration were obtained by using 

NADH as a substrate, while direct effects on complex II-sustained respiration were assessed 

in the presence of 5 mM of succinate plus 2 µM rotenone. KCN was added at the end of the 

experiments to confirm oxygen consumption through complex IV. KM was determined using 

the initial rate of oxygen consumption versus the concentration of NADH in the presence of 

the compounds, according to Lineweaver-Burk plots. 

3.2.5 Mitochondrial transmembrane electric potential 
The mitochondrial transmembrane electric potential (ΔΨm) was indirectly measured, 

evaluating the transmembrane distribution of the lipophilic cation tetraphenylphosphonium 

(TPP+) by using a selective electrode prepared as previously described by Kamo et al. [253], 

having a Ag/AgCl2 — saturated electrode as reference. TPP+ uptake was measured from the 

decrease in its concentration in the medium as sensed by the electrode [254]. Mitochondria 

(1 or 0.5 mg protein/ml, for liver or brain, respectively) were incubated in the standard 

reaction medium supplemented with 3 µM TPP+ at 30 ºC, before energization with 5 mM 

glutamate/2.5 mM malate. After a steady-state distribution of TPP+ was reached (after about 

1 min of recording), 125 nmol ADP was added and ΔΨm fluctuations recorded. Each tested 

compound was pre-incubated with the mitochondrial fractions for 3 minutes before ADP 

addition. Several parameters were obtained, including the maximum ΔΨm, the ADP-induced 

depolarization (corresponding to the depolarization induced by the addition of ADP) and lag 

phase (the time needed for complete ADP phosphorylation to ATP). No correction was made 

to the passive binding of TPP+ to the mitochondrial membranes because the objective of our 

experiments was to show changes in potential rather than absolute values. 

3.2.6 Lipid peroxidation evaluation  
Lipid peroxidation was evaluated following oxygen consumption using a Clark-type electrode 

(Yellow springs instruments model 5371, OH, USA) in a glass chamber with magnetic 

stirring, at 30 ºC. Mitochondria (1 mg and 0.8 mg for liver and brain, respectively) were pre-

incubated for three minutes with the test-compounds or vehicle in 1 ml of medium containing 

175 mM KCl and 10 mM Tris-Cl (pH 7.4), supplemented with 2 µM rotenone to avoid 

mitochondrial respiration induced by endogenous respiratory substrates. The alterations in 

O2 tension were recorded in a potentiometric chart and oxygen consumption estimated 

assuming an oxygen concentration of 236 nmol O2/ml at 30 ºC. Membrane lipid peroxidation 

was initiated by adding 1 mM adenosine diphosphate (ADP)/0.1 mM Fe2+ as oxidizing 

agents. Controls (basal levels) in the absence of ADP/ Fe2+ were performed under the same 

conditions. Lipid peroxidation was also evaluated by measuring thiobarbituric acid reactive 
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species (TBARS) generation according to a modified procedure [255, 256]. Aliquots of 

mitochondrial suspension were obtained 10 min after the addition of ADP/ Fe2+ and added to 

0.5ml of ice-cold 40% trichloroacetic acid. Two ml of aqueous thiobarbituric acid (0.67%) was 

then added to samples. The mixtures were heated at 90 ºC for 10 min, cooled in ice and 

centrifuged at 850 x g for 10 min. The supernatant fractions were collected and the 

absorbance read at 530 nm in a Spectronic 21 spectrophotometer (Bausch & Lomb, NY, 

USA). The amount of TBARS formed was calculated using a molar extinction coefficient of 

1.56 x 10−5 mol−1 cm−1 and expressed as nmol TBARS/mg protein [247, 255]. 

3.2.7 Hydrogen peroxide generation  
Hydrogen peroxide (H2O2) generated by the respiratory chain was measured fluorimetrically 

using a modification of a previously described method [257]. Briefly, mitochondria (0.5 mg 

protein for brain and 1.0 mg protein for liver) were incubated in 1.5 ml of phosphate buffer, 

pH 7.4, containing 0.1 mM EGTA, 5 mM KH2PO4, 145 mM KCl, 30 mM Hepes, 0.1 mM 

homovalinic acid and 6 U/ml horseradish peroxidase. After 15 min, the reaction was stopped 

with 0.5 ml cold stop solution (0.1 mM gycine, 25 mM EDTA, pH 12) The compound in test 

was incubated for three minutes with the mitochondrial fractions. The reactions were initiated 

by adding 5 mM glutamate / 2.5 mM malate or 5 mM succinate as substrates. Rotenone and 

antimycin were used as complex I and complex III inhibitors. The fluorescence was 

measured at 312 nm as excitation and 420 nm as emission wavelengths in a Victor X3 

Multilabel reader (Perkin Elmer, Waltham, USA). Hydrogen peroxide levels were calculated 

using a standard curve of H2O2, freshly prepared. The standards and the samples were 

incubated under the same conditions. 

3.2.8 Glutathione peroxidase (GPx) activity measurement 
GPx activity was determined spectrophotometrically at 340 nm according to the method of 

Flohe and Gunzler [258]. Briefly, the activity of GPx was measured after 5 min incubation of 

200 µL from each sample in the dark with 0.5 mM phosphate buffer (0.25 M KH2PO4, 0.25 M 

K2HPO4 and 0.5 mM EDTA, pH 7.0), 0.5 mM EDTA, 1 mM GSH, and 2.4 U/mL glutathione 

reductase. The quantification occurred after the addition of 0.2 mM NADPH and 1.2 mM tert-

butyl hydroperoxide and was measured at 30 ºC with continuous magnetic stirring, for 5 min, 

in a Jasco V560 UV/VIS spectrophotometer (Jasco Corp., Japan). The measurements were 

made against blanks prepared in the absence of NADPH. GPx activity was determined using 

the molar extinction coefficient 6220/M/cm [259] and expressed as nmol/min/mg protein. 

3.2.9 Glutathione levels measurement  
Mitochondria (0.2 mg protein for brain or liver mitochondria/assay) were deproteinized in 1.5 

mL phosphate buffer (100 mM NaH2PO4/5 mM EDTA, pH 8) and 0.5 mL H3PO4 2.5%, 
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sonicated and centrifuged at 4º C and 108,726 x g, during 30 min. Supernatants were stored 

at -80 º C until glutathione determination.  GSH and GSSG levels were determined with 

fluorescence detection (350 nm excitation, 420 nm emission) measured in Perkin Elmer LS 

55 - Luminescence Spectrometer after the reaction of the supernatants from deproteinized 

mitochondria with o-phthaldehyde (OPT). GSH was determined after incubation of 100 µL 

supernatant with 1.8 mL phosphate buffer and 100 µL OPT, during 15 min. For GSSG 

content, 500 µL supernatant was incubated during 15 min, with 200 µL N-ethylmaleimide 

(NEM) before measurement. Finally 140 µL of the mixture was incubated with 1.76 mL NaOH 

(100 mM) and 100 µL OPT, during 15 min [260]. The GSG and GSSG contents were 

determined from comparisons with a linear GSG and GSSG standard curves, respectively. 

3.2.10 Monitoring of phosphorylation rate  
To investigate the effects of E2 and resveratrol on phosphorylation rates, external pH was 

measured. Mitochondria (1.5 mg protein) were suspended in 1.5 ml of the medium containing 

of 125 mM sucrose, 65 mM KCl, 2.5 mM MgCl2, 2 mM KH2PO4, 0.5 mM Hepes, pH 7.2, 5 

mM glutamate, 2.5 mM malate (pH 7.2). Phosphorylation was indirectely monitored using a 

pH electrode by measuring the pH increase associated with ATP synthesis by mitochondria, 

as previously described [248]. The phosphorylation was initiated by adding ADP 375 nmol to 

a mitochondrial suspension containing complex I substrate. 

3.2.11 Complex I activity 
The maximal activity of mitochondrial complex I [261] was assessed in disrupted 

mitochondrial preparations after three cycles of freezing/thawing. One hundred and ninety 

microlitres of reaction medium (25 mM KH2PO4, 5 mM MgCl2, pH 7.5, 300 µM KCN), 

supplemented with 4 µM antimycin A, 3 mg/ml BSA, 60 µM coenzyme Q1, 160 µM DCPIP 

and 10 µg protein/ml of brain or liver mitochondria were transferred to a 96-well plate. One 

µM of Complex I inhibitor rotenone or 5 µl EtOH (vehicle) was added to the respective wells. 

Enzymatic activity of brain and liver preparations was measured through a decrease in 

absorbance of DCPIP after the addition of 100 µM fresh-prepared NADH in a Victor X3 plate 

reader (Perkin Elmer, Waltham, USA) at 600nm. Enzyme activity was calculated by using the 

slope during the linear phase (15 cycles). Specific complex I activity was calculated through 

the difference with the basal activity in the presence of rotenone. 

3.3 Cell culture studies (Chapter 4.1.4) 

3.3.1 Cell culture 
Four distinct cell lines were used in this study. Two human breast cancer cell lines: MDA-MB-

231 and MCF-7 (ATCC, Barcelona, Spain), one immortalized normal-like human breast cell 

line, MCF-12A (ATCC, Barcelona, Spain) and the human hepatoma HepG2 cell line (gently 
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supplied by Dr. Carlos Palmeira, CNC, Coimbra) The cell lines were cultured as monolayer, 

at 37 ºC in a humidified incubator with 5% CO2, in the following culture media (Table 4). 

Table 4: Culture media for the cell lines used in the present thesis 

	  
Low estrogen media was obtained by the use of charcoal stripped FBS instead of regular FBS and by 
the use of phenol red free DMEM. The removal of those two components is essential due to their 
estrogenic activity [262, 263]. 

3.3.2 Cell density assay evaluation 
For analysis of cell density in the presence of regular FBS-medium or FBS-charcoal stripped-

medium, we used the previously described sulforhodamine B (SRB) assay [264]. Cells in 

regular media were plated at 5,000 cells/ml in 48-well plates. Twelve hours later, the media 

was replaced by regular or low estrogen media and, every 24h, the cell media was removed. 

Cells were washed in PBS and ice-cold methanol supplemented with 1% acetic acid was 

added to each well. The same protocol was performed in the presence of different 

concentrations of E2 and coumestrol. Cells were fixed for at least one hour at -20 ºC and 

allowed to dry. After that, 250 µL of 0.05% SRB in 1% acetic acid solution was added to each 

well and incubated for 1h at 37 ºC. The wells were then washed with 1% acetic acid solution 

and allowed to dry. The amount of SRB attached to the cells protein was read after 

solubilization in 10 mM Tris pH 10 solution, at 545 nm in a Victor X3 plate reader (Perkin 

Elmer, Waltham, USA). 

3.3.3 Evaluation of oxidative stress by MitoSox and 5-(and-6)-
chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate (CMH2DCFDA) 
HepG2 cells were seeded at 40,000 cells/ml and treated with the test compounds for 24h. 

Cells in PBS containing 5 mM glucose were incubated with 2.7 µM Mitosox (Invitrogen, 

Madrid, Spain) for 15 min at 37 ºC in the dark and fluorescence read at 510/580 nm 

emission/excitation wavelengths, respectively. In order to evaluate the global oxidative stress 

in the cells, HepG2 were incubated with 13 µM CMH2DCFDA in PBS containing 5 mM 

glucose and the kinetic of fluorescence emission was read during 30 minutes at 495/520 nm 
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emission/excitation wavelengths, respectively, in a Victor X3 plate reader (Perkin Elmer, 

Waltham, USA). 

3.3.4 Protein analysis by Western blotting 
Cells were collected after treatment with cell lysis buffer (Cell Signaling, Danvers, MA, USA) 

supplemented with 1 mM DTT, 100 µM PMSF and protease inhibitor cocktail (containing 1 

g/ml of leupeptin, antipain, chymostatin and pepstatin). After denaturation at 95 ºC for 5 min 

in Laemmli buffer (from BioRad, CA, USA), equivalent amount of proteins (20 or 30 µg) were 

separated by electrophoresis on 8% or 12% SDS-polyacrylamide (Bio-Rad, CA, USA) (SDS-

PAGE) gels during 1 hour at 30 mA/gel at room temperature and electrophoretically 

transferred to a polyvinylidene difluoride (PVDF) membrane at 100 V during 90 min at 4 ºC. 

Membranes were blocked in 5% non-fat milk or 2% BSA in Tris Buffered Saline with Tween 

20 (TBST) for one hour at room temperature, depending on the antibodies used, and 

incubated with primary antibodies overnight (Table 5). Membranes were then washed three 

times with TBST and incubated with secondary antibodies for one hour at room temperature. 

After 3 washes with TBST for 5 minutes each, membranes were incubated with the ECF 

detection system (from Amersham, GE Helthcare, Carnaxide, Portugal) and imaged with a 

Versa Doc device (Bio-Rad, CA, USA) or with an UVP, Biospectrum 500 Imaging System 

(UVP, Upland, CA, USA). Densities of each band were calculated with Quantity One 

Software (Bio-Rad, CA, USA). Membranes were also stained with Ponceau reagent to 

confirm equal amount of protein loading in each lane. 

Table 5: List of primary antibodies used in this part of this work 

	  
Antibodies were prepared in 1% milk in TBST.	  

3.3.5 Mitochondrial transmembrane polarization and morphology by vital 
epifluorescence microscopy  
MDA-MB-231, MCF-7 and MCF-12A cell lines were plated on glass-bottom dishes and 

cultured in regular or low estrogen media. Twenty-four hours after cells were incubated with 

100 nM tetramethylrhodaminemethylester (TMRM) during 30min at 37 ºC in the dark. After 

the incubation period, media was replaced by Krebs solution (1 mM CaCl2, 132 mM NaCl, 4 

mM KCl, 1.2 mM Na2HPO4, 1.4 mM MgCl2, 6 mM glucose, 10 mM HEPES, pH 7.4).  
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Epifluorescence images were obtained using the Metamorph software on Nikon Eclipse 

TE2000U microscope (Nikon, Melville, USA). 

3.4 Ex-vivo studies in a blood-brain barrier model (Chapter 4.2)  

3.4.1 Animals 
Animal procedures were carried out by trained personnel and performed in accordance with 

Association for Assessment and Accreditation of Laboratory Animals (AAALAC) regulations 

and the US Department of Agriculture Animal Welfare Act. Animal protocols were approved 

by the Institutional Animal Care and Use Committees of the University of Minnesota, USA 

(Protocol #1007A86652). Male Wistar rats (8-10 weeks of age, average weight 250g) were 

also purchased from Charles River Laboratories (Portage, MI, USA). Male and female 

ERKO-α (estrogen receptor α-deficient, B6.129-Esr1tm1Ksk N10), ERKO-β (estrogen 

receptor β-deficient, B6.129-Esr2tm1Unc N9), and wild-type mice (C57BL/6 background) 

were a generous gift from Dr. Kenneth Korach (National Institute of Environmental Health 

Sciences (NIEHS), NC, USA). Mice were 10 weeks old with an average body weight of 20 g 

for females and 25 g for males.  

3.4.2 Brain capillary isolation  
Brain capillaries were isolated from rats and mice according to a previously published 

protocol [265]. . Briefly, for each preparation, 10 rats or 20 mice were sacrificed by CO2 

inhalation and decapitated. Brains were harvested, dissected and homogenized in ice-cold 

PBS buffer (2.7 mmol/L KCl, 1.46 mmol/L KH2PO4, 136.9 mmol/L NaCl, 8.1 mmol/L 

Na2HPO4, 0.9 mmol/L CaCl2, and 0.5 mmol/L MgCl2 supplemented with 5 mmol/L D-glucose, 

1 mmol/L sodium pyruvate, pH 7.4). The homogenate was mixed with Ficoll (final 

concentration 15%) and centrifuged at 5,800 x g for 20 min at 4 ºC. After resuspending the 

pellet in 1% BSA, the capillary suspension was passed over a glass bead column. Capillaries 

adhering to the glass beads were collected by gentle agitation in 1% BSA. Capillaries were 

then washed with PBS and used for experiments. 

3.4.3 Immunofluorescence  
Freshly isolated rat brain capillaries adhering to glass cover slips were fixed for 15 min with 

3% paraformaldehyde 0.2% glutaraldehyde at room temperature. After washing with PBS, 

samples were permeabilized for 30 min with 0.1% (v/v) Triton X-100 in PBS and blocked with 

1% BSA in PBS. Capillaries were incubated for 1 h at 37 ºC with the primary antibody to 

GLUT-1. After washing with 1% BSA, capillaries were incubated for 1h at 37ºC with the 

corresponding Alexa Fluor® 488-conjugated secondary IgG (1:1000, 2 mg/mL; Invitrogen, 

Eugene, OR, USA). Negative controls were incubated with secondary antibody alone. Nuclei 

were counterstained with 5 mg/mL propidium iodide for 15 min. GLUT-1 staining was 
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visualized using a Nikon C1 confocal laser scanning microscope (Nikon C1, Nikon TE2000 

inverted microscope, 40x/1.3 NA oil objective, 488 nm (Argon laser), 543 nm (HeNe laser; 

Nikon Instruments, Melville, NY, USA).  

3.4.4 Protein expression semi-quantification by Western blot 
Brains were homogenized in lysis buffer (Sigma) containing complete protease inhibitor 

(Roche, Mannheim, Germany). Homogenized samples were centrifuged at 10,000 x g for 15 

min; denucleated supernatants were used as brain and capillary lysates. Crude membrane 

fractions from capillaries were obtained by the centrifugation of denucleated supernatants at 

100,000 x g for 90 min. Pellets of crude plasma membranes were resuspended in buffer and 

protein concentrations were determined. Western blots were performed using the Invitrogen 

NuPage Bis-Tris electrophoresis and blotting system (Invitrogen, Carlsbad, CA, USA). After 

protein transfer, blotting PVDF membranes were blocked and incubated with primary 

antibody to GLUT-1 (1:1,000, 1 µg/mL) or β-actin (1:1,000, 1 µg /mL). Membranes were 

washed and incubated with horseradish peroxidase-conjugated ImmunoPure secondary IgG 

(1:15,000; Pierce, Rockford, IL, USA) for one hour. Proteins were detected using 

SuperSignal West Pico Chemoluminescent Substrate (Pierce). Bands were visualized and 

recorded using a BioRad Gel Doc 2000 gel documentation system (BioRad, Hercules, CA, 

USA). Densitometric analysis of GLUT-1 band intensity and digital analysis of the molecular 

weight were performed with QuantityOne 1-D v4.6.5 software (BioRad). Data were 

normalized to β-actin loading controls. Molecular weight marker RPN800 used in the same 

run was from GE Healthcare (Piscataway, NJ, USA).  

3.5 In-vivo studies (Chapter 4.3) 

3.5.1 Experimental design 

 For the present thesis two distinct, in vivo protocols were performed:	  

I. Mitochondrial effects of E2 and coumestrol on ovariectomized (OVX) female rats.  

II. Mitochondrial effects resulting from a chemical-induced model of menopause – 4-

vinylcyclohexene diepoxide, VCD and mitochondrial effects of E2 and coumestrol in a 

chemical induced model of menopause.  
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Figure 6: Experimental design of the in vivo studies performed. 
In study I, 20 OVX rats purchased from Charles River, Laboratories were allowed to acclimate in the 
CNC animal facility for three weeks. Experiments were performed when animals were 16-weeks old. 
Animals were injected intraperitoneally with 30 µg/kg of E2, coumestrol or injected with vehicle. 
Twenty-four hours after the treatment animals were sacrificed. For the second study, animals received 
daily injections, during 5 days, for 3 weeks with 80 mg/kg of VCD. Animals were allowed to recover for 
one week, treated with 30 µg/kg of E2, coumestrol or vehicle and sacrificed 24h later. 

In our animal facility at the CNC, University of Coimbra, Portugal, animals for each study 

were housed in type III-H cages (Tecniplast, Italy) with irradiated corn cob grit bedding 

(Scobis Due, Mucedola, Italy), following environmental requirements, with ad libitum access 

to food (2014, Harlan, Barcelona, Spain) and water (acidified at pH 2.6 with HCl) and 

maintained at constant temperature (22 ºC) and humidity with a 12h light/dark cycle. In study 

I, one week prior the experiments, a wireless temperature transponder (IPTT-200; 14 mm in 

length, 2 mm in diameter; BMD, Einsteinberg, The Netherlands, gently supplied by Doctor 

Felix Carvalho, University of Porto) was implanted in isoflurane-anesthetized animals. During 

the experiments animal temperature was obtained at different time points. Animal handling 

and sacrifice followed the procedures from the Federation of European Laboratory Animal 

Science Associations (FELASA).  

3.5.3 Blood analysis  
Blood was collected in sterile tubes. After blood clot formation, serum was obtained through 

centrifugation at 1,600 x g at 4 ºC, for 10 min. The obtained supernatant was transferred to 

microtubes and centrifuged again at 16,000 x g at 4 ºC, for 5 min (in a Eppendorf 5415 R 

centrifuge, Hamburg Germany). Serum was then analyzed by a certified laboratory (Faculty 

of Pharmacy, University of Coimbra, Laboratory of Clinical Analysis). The operators were 

blinded to each sample. Plasma was obtained after blood collection in proper EDTA-

containing tubes (Aquisel, Spain) followed by 3,500 x g centrifugation during 10 min at 4 ºC. 

The supernatant was collected and frozen at -80 ºC for later measurement of E2 content in 

each sample with Estradiol EIA kit from Cayman (Item No 582251, Ann Harbor, MC, USA). 
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3.5.4 Electron microscopy  
After collecting and washing, a small slice (~3mm) of brain and liver tissue were cut with a 

scalpel and fixed in 3% glutaraldeyde in phosphate buffer (100 mM NaH2PO4, pH 7.3). 

Samples were then post-fixed with 1% osmium tetroxide, dehydrated in alcohol-containing 

solutions and embedded in Spurr’s resin. Ultrathin sections were obtained on a LKB 

ultramicrotome Utrotome III (GE, Healthcare, Buckinghamshire, UK), stained with methanolic 

solution of uranyl acetate plus lead citrate. Electron micrographs were obtained usinga JEOL 

Jem_100SX electron microscope (JEOL, Tokyo, Japan), operated at 80 kV. The operator 

was blinded to each treatment group. 

3.5.5 Mitochondria isolation 
Brain and liver mitochondria were isolated as described in section 3.2.2. 

3.5.6 Mitochondrial respiration, ΔΨ and complex I activity	  were measured as 

described in sections 3.2.4, 3.2.5 and 3.2.11 respectively.	   

3.5.7 Evaluation of oxidative stress   
Aconitase, a Krebs cycle enzyme which contains ROS-susceptible Fe-S clusters, is often 

used as an indirect measurement of oxidative stress [266]. Two hundred micrograms of 

mitochondrial protein was diluted in 600 µl of buffer containing 50 mM Tris (pH 7.4) and 0.6 

mM of MnCl2, sonicated for 10 s and centrifuged at 16,000 xg for 5 min at 4 ºC (in a 

Eppendorf 5415 R centrifuge, Hamburg Germany). After the acquisition of a 30 s baseline, 

the assay began with the addition of 20 mM isocitrate to 200 µL of obtained supernatant plus 

800 µL 50 mM Tris pH 7.4, 0.6mM MnCl2. Absorbance was read in a Jasco V-560 

spectophotometer (Jasco Inc., Easton, MD, USA). The temperature was set at 30ºC during 

the experiment. The enzyme activity was calculated through the mean of the slopes from 

both duplicates, using the extinction coefficient of ε240=3.6 mM-1cm-1, values were normalized 

to the protein amount and expressed as U/mg protein/min. One unit (U) is defined as the 

amount of enzyme necessary to produce 1 µM cis-aconitate per minute. 

Other parameters measured as end-points for oxidative stress included hydrogen peroxide 

generation and TBARS, which were measured as described in the sections 3.2.7 and 3.2.6, 

respectively. Mitochondrial preparations (1mg/mg) were collected in PBS and MDA and Vit E 

were also quantified by HPLC using a Gilson device with modular components: Pump 306, 

Manometric module 805 and Autoinjector 234, Lewis Center, OH, USA, and with an 

appropriate fluorescence detector (FP-2020/2025, Jasco, Tokyo, Japan). 
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3.5.8 Tissue harvesting  
Once the animals were decapitated, liver and brain were quickly washed in PBS in order to 

exclude the blood excess, weighted and frozen in liquid nitrogen and stored at -80 ºC prior to 

tissue sample analysis. 

3.5.9 Tissue extraction for protein content evaluation  
Frozen tissue was thawed and homogenized in a glass pestle hand-held homogenizer in 

20% (w/v) Ripa buffer (Sigma, St Louis, MO), supplemented with 5 µg/100 mg (tissue) of 

protease inhibitors cocktail. The suspension was kept in ice for 20 minutes and then 

centrifuged at 14,000 x g for 5min at 4º in order to remove cellular debris. The protein 

concentration of the supernatant was measured by Bradford assay [267] using BSA as 

standard. This method is based on the shift in maximum absorption of Coomassie Brilliant 

Blue dye from 465 to 595 nm upon binding to protein. 

3.5.10 Protein analysis by Western Blotting  
This protocol was performed as described in section 3.3.4, using the antibody cocktail shown 

in table 6. 

Table 6: List of primary antibodies used in this part of the work 

	  

The cocktail contained antibodies against Complex I subunit NDUFB8, 20kD, Complex II subunit 
30kDa, Complex III subunit Core 2, ATP synthase subunit alpha. The antibody cocktail was prepared 
in 1 % milk in TBST.  

3.6 Statistical analysis (Chapter 4) 
Data obtained for this thesis was analyzed using the software Graph Pad Prism version 5.0c 

for Macintosh. All data were accessed for normality with Kolmogorov-Smirnov and Shapiro-

Wilk tests. Data are expressed as mean ± SEM for the number of experiments/animals 

indicated in the legends of the figures. Multiple comparisons were performed using one-way 

analysis of variance (ANOVA) followed by Bonferroni multiple comparison posthoc test. T-

test was used when only two conditions were compared. Significance was accepted when p 

value < 0.05 was obtained. 
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4.1 In vitro effects of selected PE in comparison with E2 in isolated 
rat brain and liver mitochondria and in cell lines 

4.1.1 Background and objective 
The use of mitochondrial preparations of different organs to access the toxicity associated 

with different xenobiotics is widely recognized [191]. We restricted this work to four 

phytoestrogens to be studied in comparison with E2. Since one of the objectives of this 

thesis is to overcome hot flashes based in the hypothesis of the impaired glucose delivery, 

we excluded the widely studied PEs: genistein and daidzein, because those compounds 

inhibit the glucose transport [268, 269]. In addition, these compounds have been largely 

study in terms of mitochondrial function either in isolated fractions or in cell culture [199, 270-

272]. From a larger list of available PE, resveratrol, coumestrol, enterodiol and enterolactone 

were selected. 

This section is divided in 3 main subsections: in the first one, all the PEs were compared in 

terms of mitochondrial effects and protection against lipid peroxidation. For this objective, 

brain and liver mitochondrial fractions were isolated from male rats to exclude variability 

resulting from the estrus cycle in females. From this set of a data, a second section involved 

the use of the cell line HepG2 as a more complex model to investigate antioxidant protection 

by a selected PE vs. E2. Finally, in the third section, the same selected PE was compared 

with E2 in terms of proliferation of breast cancer cell lines.  

4.1.2 Effects of PE on mitochondrial bioenergetics and lipid peroxidation 

Several reports demonstrated that estrogens regulate mitochondrial function [273-275]. 

Mitochondria can be relevant targets of estrogens and PE not only due to the high 

lipophilicity of these compounds, but also due to the presence of ER in these organelles 

[276, 277].  

Two parameters were used to access the quality of the mitochondrial fraction in the presence 

of PEs: the RCR and ADP/O. The RCR is a measure of coupling between substrate 

oxidation and phosphorylation. The ADP/O is a measure of the efficiency of the mitochondrial 

phosphorylative apparatus. The ADP/O is obtained through the ratio of nmol of ADP added 

to the mitochondrial suspension and the natoms of oxygen consumed during state 3 [278]. In 

terms of RCR, no difference was observed. However, coumestrol improved the 

phosphorylation efficiency of brain mitochondria shown by an increase in the ADP/O 

parameter from 3.6 ± 0.5 to 4.8 ± 0.6 nmol ADP/natm O (Table 7). The ADP-induced 

depolarization in liver mitochondria was also increased by coumestrol (Table 8).  
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Table 7: Phytoestrogens on mitochondrial respiratory parameters 

	  
Mitochondrial fractions were incubated with PE and several respiratory parameters were evaluated. 
State 3 and 4 values are in nmol O2/min/mg protein. Data represent mean ± SEM of 5 to 6 different 
experiments. * p<0.05 with control values.	  

Table 8: Phytoestrogens on mitochondrial transmembrane potential 

	  
Mitochondrial fractions were incubated with PEs and mitochondrial transmembrane electric potential 
was evaluated. Data represent mean± SEM of 5 to 6 different experiments. *p<0.05 with control 
values.	  

The PE in test did not cause any significant mitochondrial toxicity, in opposition to estradiol 

which induced in isolated liver mitochondria a decrease in state 3, RCR and ADP/O for the 

same concentration (25 µM) [248].  

On the other hand, the antioxidant effects of PEs on lipid peroxidation were also tested. 

Although being an important source of ROS, mitochondria are protected from oxidative 

stress by several mitochondrial antioxidant systems such as superoxide dismutase (MnSOD) 

or glutathione peroxidase [279, 280]. In order to evaluate the role of the tested compounds 

as potential antioxidants, the mitochondrial fractions were incubated with each PE in study 

prior to the addition of a pro-oxidant pair (ADP/Fe2+), which caused mitochondrial membrane 

lipid peroxidation and TBARS production. 

The effects of PEs were compared with those of E2, known to have antioxidant proprieties 

[281]. At this point, we also introduced another polyphenol with estrogenic activity: 

resveratrol. Considering resveratrol as a phytoestrogen is still controversial, but its 

characteristics such as being a natural compound, with a molecular mass close to E2 and 

possessing estrogenic activity in different tissues, provided support to this inclusion [80, 282, 

283]. Several reports indicate resveratrol as a support to a healthier aging [284-286], 

justifying its use in this work as well.  

As observed (Fig. 7), the pro-oxidant pair ADP/Fe2+ induced an increase in TBARS 

generation. Mitochondria pre-incubation with coumestrol and resveratrol and E2 (only for 

liver preparations) reduced the formation of these lipid peroxidation byproducts. Coumestrol 
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and resveratrol reduced TBARS content in brain from 6.2 ± 0.9 to 3.2 ± 0.6 and 2.6 ± 0.2 

nmol/mg protein/10min, respectively. In liver, the decrease in TBARS was from 6.9 ± 0.9 to 

1.2 ± 0.7 and 0.6 ± 0.4, nmol/mg protein/10min for coumestrol and resveratrol, respectively.  

	  
Figure 7: Effects of 25 µM PE and E2 on TBARS formation induced by the pro-oxidant pair 
ADP/Fe2+ in brain and liver mitochondria.  
Lipid peroxidation and TBARS formation were induced by the pro-oxidant pair ADP/Fe2+, as described 
in the material and methods section. The data represent the mean ± SEM of four to six experiments. 
Statistical significance: ### p<0.001 compared with the respective basal levels, * p<0.05, **p<0.01, 
***p<0.001 compared with mitochondrial preparations in the presence of the ADP/Fe2+. Legend: E2 - 
estradiol, Coum - coumestrol, Elact - enterolactone, Ediol - enterodiol and Resv - resveratrol. 

Based on the higher antioxidant activity, we focused our study on coumestrol and resveratrol 

for the next tasks. Coumestrol choice is also justified by the low mitochondrial toxicity.  

4.1.3 Resveratrol effects on mitochondrial bioenergetics and on oxidative 
stress: Investigation of the role of gender 
In the first part of this task, we aimed to evaluate the effects of resveratrol on liver and brain 

mitochondria of male and female rats in order to study the role of gender in its potential 

toxicity.  

The redox active polyphenol compound resveratrol (3,5,4’–trihydroxy-trans stilbene) was 

firstly identified in roots from white hellebore (Veratrum album) and later in roots from 

japanese knotweed (Polygonum cuspidatum) [287]. Resveratrol is also found in grapes (Vitis 

vinifera), grape juice, wine berries (Vaccinium macropon) and peanuts (Archis hypogaea) 

[288, 289]. Resveratrol has been shown to trigger several physiological effects in animal 

models of disease, resulting in cancer prevention, microvascular and neuroprotection, as well 

as in antidiabetic effects [290]. Resveratrol is one of the main components of red wine, the 

consumption of which is associated with a lower incidence of heart failure in France [291]. 

The protective effects are associated with antioxidant proprieties that were confirmed in the 

heart in different models [292], including lipopolysaccharide (LPS)-induced oxidative stress 

[293] and doxorubicin (DOX)-induced cardiotoxicity [294].  
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Resveratrol crosses the blood brain barrier (BBB) [295], demonstrating  neuroprotective 

effects in several disorders such as cerebral ischemia and Alzheimer’s disease [290]. 

Resveratrol also increases spatial memory performances in the circular platform tasks in 

primates [296], thus demonstrating cognitive and neuroprotective effects [297, 298]. Fukiu et 

al. showed that resveratrol induces the expression of mitochondrial superoxide dismutase 

(SOD2) consequently reducing mitochondrial oxidative stress and damage in neurons [299]. 

Specifically in the liver, resveratrol up-regulates the expression of glucogenic genes by 

attenuating insulin signalling and by deacetylating FOXO1 [300]. Resveratrol also decreases 

fibrosis and promotes hepatocyte regeneration, which increased the survival of mice during 

cholestatic liver injury [301]. 

Although the protective effects of resveratrol on heart mitochondria have been described 

[302], mitochondrial-specific studies are lacking in liver and brain mitochondria. To support 

the evidence that resveratrol presents direct effects on mitochondria, we have isolated 

fractions from rat liver and brain and investigated whether resveratrol alters mitochondrial 

bioenergetics and prevents induced oxidative damage. A second important question was 

whether resveratrol-induced mitochondrial effects were gender-dependent. To answer this 

latter question, mitochondrial fractions were isolated from female and male rats. Although 

isolated mitochondrial fractions are a recognized model to measure compound toxicity [191], 

the large majority of experiments is performed with mitochondrial fractions from male 

animals.  Differences between mitochondrial fractions from male and female animal models 

may influence the final outcome of chemical-biological interactions at the mitochondrial level, 

which is the rationale for using mitochondria from both genders in this study. The 

concentrations of resveratrol used are within the concentration range used by others [303-

306]. We finally compared resveratrol and E2 regarding the inhibition of mitochondrial 

complexes I and V. 

4.1.3.1 Resveratrol decreases lipid peroxidation in brain and liver mitochondria 

The effects of resveratrol on oxidative damage were assessed by mitochondrial membrane 

peroxidation induced by the pro-oxidant pair ADP/Fe2+ (Fig. 8). This effect was evaluated by 

following oxygen consumption (Fig. 8A) and TBARS formation (Fig. 8B). In the absence of 

resveratrol and after the addition of ADP/Fe2+, a two-phase kinetic in oxygen consumption 

was observed: an initial phase with a slower oxygen consumption that was followed by a 

rapid oxygen consumption phase [256]. The initial phase was likely due to the time needed to 

generate the perferryl ion complex that has been suggested to be the responsible for the 

initiation of lipid peroxidation. The faster oxygen consumption probably resulted from the 

oxidation of polyunsaturated fatty acid acyl chains in the membrane phospholipids by ROS, 

leading to the propagation of lipid peroxidation [256].  
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As observed in figure 8A, in both genders and for both organs, the pro-oxidant pair ADP/Fe2+ 

induced an increase in oxygen consumption that is decreased in the presence of resveratrol 

to nearly basal levels. The data are in accordance with the results obtained by measuring 

TBARS formation.  

 

Figure 8: Effects of resveratrol on membrane lipid peroxidation of brain and liver mitochondria 
induced by the pro-oxidant pair ADP/Fe2+.  
ADP/Fe2+-induced lipid peroxidation was evaluated following oxygen consumption resulting from 
membrane lipid peroxidation (A) and TBARS colorimetric assay (B). Panel (A) represents a typical 
recording of mitochondrial preparations from brain and liver of male and female rats. The data in (B) 
represent the mean ± SEM of four to six independent experiments. Statistical significance: ### 
p<0.001 compared with the respective basal levels, * p<0.05, *** p<0.001 compared with mitochondria 
in the presence of the pair ADP/Fe2+.  

Pre-incubation with 25 µM resveratrol led to a decrease in TBARS formation in both organs 

and genders (brain mitochondria, males: 12.5 ± 2.5 vs. 3.0 ± 0.7, brain mitochondria from 

female rats: 10.5 ± 1.1 vs. 4.4 ± 1.6; liver mitochondria from male rats: 9.7 ± 0.7 vs. 0.6 ± 0.2, 

liver mitochondria from females: 11.4 ± 0.9 to 0.6 ± 0.2 nmol TBARS /mg protein, absence 

vs. presence of resveratrol, Fig. 9B). For the lowest concentration used (10µM), resveratrol 

had no effect on brain mitochondrial fractions, as opposed to liver mitochondria, where 
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protection against lipid peroxidation-induced TBARS generation was observed for both 

genders. 

4.1.3.2 Resveratrol increases mitochondrial H2O2 production in liver 

Liver and brain mitochondria from male and female rats were incubated with resveratrol in 

order to investigate its effects on hydrogen peroxide generation by the respiratory chain. In 

both genders, treatment of mitochondria with rotenone (a complex I inhibitor) or antimycin A 

(a complex III inhibitor) maximally induced H2O2 generation, as expected [307, 308] (Fig. 9). 

When analyzing H2O2 production in basal conditions (Fig. 9), liver mitochondria from female 

rats have generally a lower basal H2O2 generation when compared with preparations from 

male rats. The same effect was not observed in brain mitochondrial fractions.  

When resveratrol was added to the different experimental groups, some interesting effects 

were observed. Once added to liver mitochondria, resveratrol increased H2O2 generation 

when glutamate-malate was used alone (Fig. 9B) in preparations from both male and female 

rats. In brain mitochondrial fractions (males only), resveratrol amplified the effect of antimycin 

A, increasing H2O2 generation (Fig. 9A). We also compared directly liver and brain 

mitochondrial fractions from both genders in terms of basal activity of glutathione peroxidase 

(GPx) and glutathione content. In general, liver mitochondria have increased GPx activity, 

with fractions from females having the highest activity (345.80 ± 46.01 vs 216.40 ± 17.71 

U/mg protein in mitochondrial fractions from males, Fig. 10).  

No differences were observed in terms of GSH, GSSG or GSH/GSSG ratio (Table 9). The 

total glutathione content was also similar in liver mitochondria from males (0.88 ± 0.04 

nmol/mg protein) vs. females (0.83 ± 0.03 nmol/ mg protein). 

4.1.3.3 Resveratrol decreases state 3 respiration in brain mitochondria 

We next investigated direct effects of resveratrol on liver and brain mitochondrial respiration 

in fractions isolated for both genders.  In the absence of resveratrol, no differences between 

genders were observed. 

The addition of resveratrol [10 or 25µM] to freshly isolated brain mitochondria induced a 

decrease in state 3 respiration from 44.0 ± 1.8 to 33.5 ± 3.5 nmol O2/min/mg protein 

(preparation from males) and from 44.1 ± 3.0 to 32.8 ± 3.7 nmol O2/min/mg protein 

(preparations from female animals, Fig. 11A). The alterations in respiration state 3 in brain 

mitochondria were not reflected in the RCR (Fig. 12C), which may be due to the fact that the 

oxygen consumption during state 4 shows a trend for a decrease induced by resveratrol 

(p=0.059, Fig. 11B). No alterations were observed for liver mitochondria (Fig. 11). The 

ADP/O was not altered by resveratrol in any of the groups studied (Fig. 11D). 
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Figure 9: Effect of resveratrol on mitochondrial hydrogen peroxide (H2O2) production.  
The production of hydrogen peroxide by the mitochondrial respiratory chain was evaluated as 
described in the materials and methods section. Mitochondrial fractions from brain (0.5 mg) and liver 
(1 mg) of male and female Wistar-Han rats were incubated with standard respiratory medium in the 
presence or absence of resveratrol. Basal levels of H2O2 production were determined in the absence 
of mitochondrial substrates. Glutamate/malate (5 mM/2.5 mM) was used as substrate. Rotenone (1.0 
µM) and antimycin A (0.5 µM) were used to increase H2O2 production. Data represent mean ± SEM 
from five independent experiments. Statistical significance: * p< 0.05, when compared with the other 
gender counterpart, # p<0.05 or ## p< 0.01 when compared with respective control, a p<0.05 or  aaa 
<0.001 when compared with the absence of inhibitors. Legend: AA – antimycin A, Glu/Mal – 
glutamate/malate, Resv- resveratrol, ROT- rotenone.  
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Figure 10: Gender-related differences on glutathione peroxidase (GPx) activity in brain and 
liver mitochondria.  
Glutathione peroxidase activity was evaluated as described in the materials and methods section. 
Data represent mean ± SEM of 3 to 6 different experiments. Statistical significance: ** p<0.01 when 
compared with GPx activity in liver mitochondria from male rats. 

Table 9: Gender-related differences in glutathione content in liver mitochondria.  

	  

The values represent mean ± SEM of 6 different experiments. GSG and GSSG levels were obtained 
as described in the material and methods section. Legend: GSH – reduced glutathione, GSSG – 
oxidized glutathione. 

4.1.3.4 Mitochondrial membrane potential during ADP phosphorylation is 
affected by resveratrol 

Gender did not influence the different end-points regarding mitochondrial transmembrane 

electric potential, ΔΨ (Fig. 12). Likewise, resveratrol did not affect the maximum 

transmembrane electric potential developed by mitochondria for both genders and organs 

(Fig. 12A). However, the depolarization induced by ADP was decreased by 25 µM resveratrol 

in brain and liver mitochondria (Fig. 12B). In brain mitochondria, the decrease observed was 

from 15.3 ± 1.0 to 10.3 ± 2.7 (preparations from males) and 14.2 ± 1.0 to 9.3 ± 1.5 

(preparations from females), values in (-mV). When using liver mitochondria, the decrease 

was from 20.4 ± 2.1 to 15.7 ± 0.8 (preparations from male) and from 19.5 ± 0.4 to 16.2 ± 0.4 

(preparations from females), with values in (-mV). Although there is not a statistical 

difference, the lag phase showed a tendency to be increased in brain mitochondria from 

male rats when incubated with 25 µM resveratrol (p=0.059).  



In vitro studies 

PhD in Biosciences – Specialization in Toxicology 55 

4.1.3.5 Resveratrol has a direct effect on mitochondrial complex I 

By using disrupted mitochondrial membranes and in the presence of specific substrates, we 

can evaluate distinct sites of drug-induced toxicity. Resveratrol decreases oxygen 

consumption in frozen/thawed mitochondrial preparations from liver and brain when using 

NADH as substrate (Fig. 13 A and E).  

Preparations from brains of male rats showed a resveratrol-induced decrease in oxygen 

consumption from 56.3 ± 4.4 to 48.81 ± 3.6 nmol O2/min/mg protein; while a decrease from 

44.8 ± 5.2 to 36.2 ± 3.4 nmol O2/min/mg protein was observed in brain preparations from 

female rats. When investigating liver mitochondrial preparations, resveratrol also inhibited 

NADH-sustained respiration in male  (24.7 ± 1.7 to 21.0 ± 1.4 nmol O2 consumed/min/mg) 

and female rats (19.9 ± 0.9 to 16.4 ± 0.9 nmol O2 consumed/min/mg). Interestingly, NADH-

sustained oxygen consumption in both tissues was higher in preparations from males when 

compared with preparations from female animals.  

The same experiments were performed by using the complex II substrate succinate (in the 

presence of complex I inhibitor rotenone). In this case, resveratrol had no effect on 

succinate-induced mitochondrial respiration. 

4.1.3.6 Differences on the effects of resveratrol and estradiol on mitochondrial 
bioenergetics 

Based on the data obtained for resveratrol on mitochondrial respiration (Fig.11) and previous 

published data from our lab on E2 effects on isolated mitochondria [248], the two molecules 

were compared in terms of effects on mitochondrial complex I and V. It was previously 

described that E2 decreases ADP-induced depolarization in liver mitochondria [309], 

suggesting that E2 may interact with the phosphorylative system. Later, it was shown that E2 

decreases the phosphorylation rate of isolated liver mitochondria in an ATP-dependent 

mechanism, inhibiting ATP synthase [310]. Similarly, resveratrol also inhibits complex V both 

in liver and heart mitochondria [200, 311]. The antioxidant effects of resveratrol were already 

described in isolated mitochondria through increasing the manganese superoxidase 

dismutase activity in liver mitochondria [303] and by the reduction of TBARS both in liver and 

brain mitochondrial fractions as previously shown in this thesis (Fig. 8). However, a 

comparative study of resveratrol and estradiol on mitochondrial function was not performed 

so far. We then compared the effects of both molecules on complex I and ATP synthase. We 

initially followed respiration in disrupted mitochondria in order to obtain the maximal electron 

flux. NADH (complex I) and succinate (complex II) were used as substrates to determine 

whether resveratrol inhibits any of the two segments of the respiratory chain. The results 

(Fig. 13) show that, regardless of the gender, resveratrol inhibited NADH- but not succinate -

sustained maximal respiration. 
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Figure 11: Resveratrol effects on mitochondrial respiration.  
(A) Mitochondrial state 3 respiration; (B) Mitochondrial state 4 respiration; (C) Respiratory control ratio 
(RCR); (D) ADP/O.  Brain (0.5 mg) and liver (1 mg) mitochondria were incubated with 10 or 25 µM of 
resveratrol for 3 min in 1 mL of respiration media supplemented with 5 mM glutamate and 2.5 ml 
malate. ADP (75 nmol for brain mitochondria and 125 nmol for liver mitochondria) was added to 
induce state 3 respiration. The RCR was calculated as the ratio between state 3 and state 4 
respiration. The ADP/O was calculated as the number of nmol ADP phosphorylated per natom oxygen 
consumed during state 3. Data represent mean ± SEM from four to six independent experiments. 
Statistical significance: * p<0.05, when compared with the respective control.  
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Figure 12: Resveratrol effects on mitochondrial ΔΨ  fluctuations.  
(A) Maximum mitochondrial membrane potential developed (ΔΨ) after mitochondrial energization; (B) 
Depolarization induced by ADP addition (C) Time elapsed during complete ADP phosphorylation (lag 
phase). Brain (0.5 mg) and liver (1 mg) mitochondria were incubated with 10 or 25 µM of resveratrol 
for 3 min in 1 ml of standard respiratory medium. Mitochondria were energized with 5 mM glutamate 
and 2.5 mM malate and the phosphorylation cycle was initiated with ADP (75 nmol for brain 
mitochondria and 125 nmol for liver mitochondria). Data represent mean ± SEM from four to six 
independent experiments. Statistical significance * p<0.05 and ** p<0.01 when compared with the 
respective control. 

In parallel, the maximum activity of complex I was investigated using a colorimetric method. 

For both organs and genders, resveratrol decreased complex I specific activity. In brain 
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mitochondria, a decrease of 22% and 11% was observed in preparations from male and 

female preparations, respectively. No effects were observed when succinate was used, thus 

excluding downstream effects from complex I (Fig.13 C, G, D, H). 

A higher magnitude effect was observed in liver mitochondria, where the activity in the 

presence of resveratrol decreased 73% for male preparations and practically 100% for 

preparations from female rats. The maximal activity of complex I did not differ between 

genders (Table 10). 

4.1.3.6.1 Complex I inhibition is higher for estradiol than for resveratrol 

In order to compare the magnitude of complex I inhibition by resveratrol and E2, both 

compounds were incubated with disrupted mitochondrial membranes and oxygen 

consumption was measured by using NADH or succinate (+rotenone) substrate, similarly to 

Fig.13. No effects were observed for succinate (+rotenone)–stimulated respiration, although 

both compounds decreased respiration when NADH was used as substrate (Fig.15). 

Moreover the inhibition of complex I by E2 was observed at an earlier time point comparing 

with the effect of resveratrol (Fig. 14). Oxygen consumption in the presence of E2 was much 

lower than in the presence of resveratrol, when the respiration was stimulated by NADH. A 

concentration-response curve was made for both compounds and again the results were 

confirmed: a) E2 is a more potent inhibitor of complex I than resveratrol and b) the effects 

occurs on complex I, since succinate-dependent respiration was not affected. To further 

investigate the type of complex I inhibition of each compound, Michaelis Menten constant 

(KM) was calculated following Lineweaver–Burk plots based in the rate oxygen consumption 

versus the concentration of NADH (Fig. 16). From our analysis of the curve crossing points, 

E2 is suggested to behave as a non-competitive inhibitor with a KM of 30.2 ± 3.0 µM in 

comparison with a KM 31.5 ± 7.3 µM in the absence of inhibitor. Resveratrol behaves as a 

competitive inhibitor with a KM of 46.1 ± 10.8, corresponding to the lower affinity binding of 

resveratrol to the active center of the complex, which may explain the lower effects of 

resveratrol on complex I function. 

4.1.3.6.3 Resveratrol, but not E2, decrease ATP synthase activity 

Data from literature showed that resveratrol inhibits ATP synthase in cardiac mitochondria 

[200, 312]. Thus, we measured ATP synthase activity and the phosphorylative lag phase, in 

order to determine the magnitude of effects of both compounds on the mitochondrial 

phosphorylative system. We observed a decrease in ATP synthase activity and an increase 

in lag phase when mitochondrial respiration is supported by complex I substrate (71.0 ± 8.6 

and 62.6 ± 9.6 for E2 and resveratrol, respectively, in percentage to the control). When 

respiration was sustained by succinate, the effect was only observed for resveratrol (98.3 ± 

1.1 and 73.3 ± 9.1 in percentage of control for E2 and resveratrol, respectively). 
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(legend next page) 
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Figure 13: Resveratrol inhibition of mitochondrial Complex I.  
Resveratrol (25 µM) effects on mitochondrial oxygen consumption in disrupted mitochondrial 
membranes was measured in a Clark-type electrode during 4 min after NADH (Complex I, A, B, E, F) 
or succinate plus rotenone addition (Complex II, C, D, G, H) in preparations from male and female 
Wistar rats. Data represent mean ± SEM from five to eight independent experiments. Statistical 
significance: for male populations * p<0.05, ** p<0.01, *** p<0.001 when compared with the respective 
control and for female preparations #<0.05 when compared with respective control, $ p<0.05, 
compared with male preparations. Legend: Ctrl - control, Resv - resveratrol 

Table 10: Effect of Resveratrol on brain and liver mitochondrial respiratory complex I maximal 
activity  

 
Activity expressed as nmol DCPIP/min/mg protein. Data are the mean ± SEM of 4 independent 
experiments. Statistical significance: *p<0.05 when compared with the respective control. Ctrl- control, 
Resv-resveratrol 
 

	  
Figure 14: Resveratrol and E2 inhibit mitochondrial Complex I.  
The effects of both compounds at 25 µM on mitochondrial oxygen consumption in disrupted 
mitochondrial membranes was measured in a Clark-type electrode during 5 min after NADH (Complex 
I, A) or succinate plus rotenone addition (Complex II, B) in liver preparations from male rats. Data 
represent mean ± SEM from four independent experiments. Statistical significance: resv * p<0.05, ** 
p<0.01, *** p<0.001 when compared to control, # p<0.05, ## p<0.01, Resv ### p<0.001 when 
compared with control. Legend: Ctrl - control, E2 – estradiol, Resv - resveratrol. 
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Figure 15: Resveratrol and E2 inhibit mitochondrial Complex I at different concentrations.  
Dose-dependent effects on mitochondrial oxygen consumption in disrupted mitochondrial membrane 
were measured with a Clark-type electrode during 5 min after NADH (Complex I, A) or succinate plus 
rotenone addition (Complex II, B) in liver preparations from male rats. Data represent mean ± SEM 
from four to seven independent experiments. Statistical significance: E2 * p<0.05, ** p<0.01, *** 
p<0.001 when compared to resveratrol.  Legend: E2 – estradiol, Resv- resveratrol. 
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Figure 16: Resveratrol and E2 differently inhibit complex I.  
The type of inhibition of complex I was calculated based on the Lineawer-Burk plots. (A) Vmax of 
oxygen consumption dependent of [NADH] (µM). (B) KM of E2 does not differ from control. Control KM 

= 31.5 ± 7.3 µM; E2 KM = 30.2 ± 3.0 µM; Resveratrol KM = 46.1 ± 10.8µM. Data are mean ± SEM of 
4 independent experiments. ** p<0.01, *** p<0.001 E2 compared with control, # p<0.05 E2 compared 
with resveratrol. Legend: E2 – estradiol, Resv - resveratrol 

 

Figure 17: Resveratrol inhibits ATP synthase. 
Dose-dependent effects of E2 and resveratrol on ATP synthase activity sustained by glutamate/malate 
(A) or succinate (B) in freshly isolated mitochondrial liver preparations and the respective 
phosphorylative lag phases (C, D, respectively) from liver preparations of male rats. Activity of ATP 
synthase was obtained by measuring external pH variation during oxidative phosphorylation. 
Mitochondria (1.0 mg) were suspended in 1 ml of the medium composed of 125 mM sucrose, 65 mM 
KCl, 2.5 mM MgCl2, 2 mM KH2PO4, 0.5 mM Hepes, pH 7.2, 5 mM glutamate, 2.5 mM malate. The 
phosphorylation was initiated by adding ADP 375 nmol to the mitochondrial suspension containing 
glutamate plus malate. The system was calibrated by adding known amounts of HCl at the end of the 
experiments. Data represent mean ± SEM from three to six independent experiments. Statistical 
significance: * p<0.05, ** p<0.01, *** p<0.001 when E2 is compared to Resveratrol. Legend: E2 – 
estradiol, Resv - resveratrol  

Although both compounds inhibited complex I activity, the differences on oxygen 

consumption may have reflected resveratrol inhibition of ATP synthase in a process 

independent of the presence of ATP. While the antioxidant proprieties of resveratrol were 

demonstrated by the decrease in TBARS generation (Fig. 8), this compound presented some 

toxicity, in isolated mitochondria, inhibiting complex I and ATP synthase. For this reason, it 

was excluded from further in vivo testing. 
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4.1.4 In vitro coumestrol activity on HepG2 cells 
Besides resveratrol, coumestrol also decreased mitochondrial lipid peroxidation through a 

decrease in the generation of TBARS in the presence of a peroxidizing agent (Fig. 7). As 

opposed to resveratrol, coumestrol did not present mitochondrial toxicity. 

The coumestan coumestrol was firstly identified in alfafa in 1957 [313], but it can also be 

found in spinach or soy based products. Since this PE is not very explored, we investigated 

antioxidant/toxicologic proprieties of this compound in a more complex system. With this 

purpose, we used the cell line HepG2, which has been widely used to study the cytotoxicity 

of different compounds [242, 243]. This cell line exhibits many of the features of normal liver 

cells [239] and is highly differentiated, therefore it can be used to screen the toxicity of new 

chemicals [241]. These cells are highly polarized, based on cell asymmetry resulting from the 

presence of basolateral and apical poles, similarly to human hepatocytes. They can activate 

and detoxify xenobiotics, reflecting the metabolism of xenobiotics in the human body better 

than other metabolically incompetent cells used in conventional in vitro assays [242, 243]. 

The objective of this section was to investigate coumestrol in comparison with E2 in the 

antioxidant protection of HepG2 cells. 

4.1.4.1 Coumestrol, similarly to E2 and NAC, prevents the cytotoxicity induced 
by H2O2 and rotenone. 

Initially, coumestrol was compared with E2 and N-acetylcystein (NAC), a glutathione 

precursor [314], in terms of antioxidant potential in HepG2 cells. Cells were pre-incubated 

with these three compounds 2 h prior to treatment with H2O2 and rotenone, two well know 

oxidizers, with the latter acting through increasing O2
－ release from complex I [315, 316]. In 

fact, the higher mitochondrial ROS production by rotenone results from increased 

ubisemiquinone at complex I, one of the sites of ROS production by mitochondria [317]. N-

acetylcysteine (NAC), the acetylated variant of the amino acid L-cysteine, is a source of 

sulfhydryl (SH) groups, and serves as a precursor of GSH synthesis, promoting detoxification 

and antioxidant effects [318]. Our data indicate that coumestrol prevents the reduction of cell 

mass after H2O2 and rotenone treatment (Fig. 18). The measure of cell mass is possible 

since SRB binds to the basic amino acids of proteins. This means that the total amount of 

cells is indirectly given by the dye bound to proteins. On the other hand, NAC and E2 were 

also effective in preventing toxicity resulting from H2O2. The compounds per se did no show 

noticeable toxicity. 
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Figure 18: Coumestrol, E2 and NAC avoid the cellular death induced by H2O2 and Rotenone.  
Twelve hours after seeding (40,000 cells/ml – 20,000 cells/cm2) HepG2 cells were pre-incubated with 
E2 or Coum, or 100 µM of NAC for 2 h before treatment with 100 µM H2O2 or 2 µM rotenone for 24 h. 
Data were obtained through SRB assay as described in the methods section. Data represent mean ± 
SEM from 4 experiments. * p<0.05 compared with control HepG2 cells, # p<0.05 compared with cells 
only treated with H2O2, @ p<0.05 compared with cells only treated  with rotenone. Legend: Ctrl - 
control, Coum - coumestrol, E2 - estradiol, H2O2 - hydrogen peroxide, NAC - N-acetylcysteine, Rot – 
rotenone. 

In order to confirm the antioxidant protection from ROS generation in HepG2, these cells 

were labeled with MitoSox Red or 2', 7'-dichlorodihydrofluorescein diacetate (H2DCFDA) to 

measure mitochondria superoxide anion and global oxidative stress, respectively.  

	  
Figure 19: Coumestrol decreases superoxide anion after incubation with rotenone and global 
oxidative stress caused by H2O2.  
Twelve hours after seeding (20,000 cells/cm2) HepG2 cells were pre-incubated with E2 or Coum, or 
100 µM of NAC for 2 h before treatment with 100 µM H2O2 or 2 µM rotenone for 24 h. For plates 
incubated with MitoSox red (A), 15 min prior the end of the treatment cells were incubated with the 
probe and fluorescence was read in a multiplate reader. In another experimental set-up, cells were 
incubated with H2DCFDA (B) and the kinetics of fluorescence was read in a multiplate reader. Data 
represent mean ± SEM from 3 experiments. * p<0.05 compared with cells treated only with H2O2, or 
rotenone; # p<0.05 compared with control. Legend: Ctrl - control, Coum - coumestrol, E2 - estradiol, 
H2O2 - hydrogen peroxide, NAC - N-acetylcysteine, Rot – rotenone. 

MitoSox (Fig. 19A) or H2DCFDA (Fig. 19B) fluorescence was not altered by the protective 

compounds, showing that these did not increase oxidative stress per se at tested 

concentrations. Hydrogen peroxide treatment resulted in an increased fluorescence of both 

probes, which was inhibited by NAC (MitoSox) and coumestrol (H2DCFDA). Although 

rotenone also led to an increased fluorescence of both probes, the increase was not 
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statistically significant due to the large variability observed. Nevertheless, both E2 and 

coumestrol decreased MitoSox fluorescence after rotenone treatment (Fig. 19A). Although 

not statistically significant, both compounds also reduced H2DCFDA fluorescence after 

rotenone treatment (Fig. 19B).	  

4.1.4.2 Coumestrol increases SOD2 and HSP90 levels after treatment with pro-
oxidant agents 

We next investigated the protein content regarding the antioxidant enzymes mitochondrial 

superoxide dismutase (SOD2) and glutathione peroxidase (GPx). In addition, we also 

analyzed the expression of the heat-shock protein 90 (Hsp90). This latter protein assists in 

protein folding and stabilizes proteins required for cell growth [319, 320]. Although its role in 

oxidative stress is not fully understood, it has been suggested that under oxidative stress 

conditions [321, 322], Hsp90 is cleaved, leading to loss of functions.  

Hydrogen peroxide and rotenone decreased Hsp90 content, which is prevented by 

incubation with coumestrol for 2 h prior to the stress inducer. No differences regarding GPx 

content were observed. However, coumestrol increased the expression of mitochondrial 

SOD, after rotenone treatment (Fig. 20B) and E2 mimicked the same effect, which may help 

to explain the lower levels of mitochondrial superoxide anion in cells treated with rotenone 

(Fig. 19A). The results from this and from the previous sections consolidate the idea that 

coumestrol presents a cytoprotective function based on antioxidant activity. 

4.1.5 The proliferation rate of breast cancer and normal cells in the 
presence of coumestrol is lower than in the presence of estradiol 
As the main side effect of HRT is the widely recognized increased risk of breast cancer [63], 

we intended, in a pilot study, to test whether the selected PE, coumestrol, alters the 

proliferation of breast cancer cells and compare the results with those with E2.  

To perform this small study, two endothelial breast cancer (MDA-MB-231 and MCF-7) and 

one immortalized breast-derived normal (MCF-12A) breast cells lines were used. MCF-7 and 

MDA-MB-231 are, respectively, estrogen-dependent and estrogen-independent human 

breast carcinoma cells while the human immortalized MCF-12A is routinely used for normal 

breast cells [323, 324]. 

Charcoal-stripped FBS has been used in studies regarding estrogen effects on cell behavior. 

Cells were grown in regular and charcoal FBS medium and difference in the cellular growth 

was evaluated by using SRB dye-binding assay. As expected, all the three cell lines showed 

lower proliferation rates in the presence of charcoal stripped FBS than in the presence of 

regular FBS (Fig. 21). In addition to charcoal-stripped FBS that has little estrogen content, 

we used phenol red free media since phenol red has estrogenic activity [262, 263]. 
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Figure 20: Coumestrol avoids the loss in Hsp 90 expression and promotes an increase in SOD2 
expression in cells exposed to oxidizers.  
Cells were treated as previously described in the material and methods section and harvested for 
protein expression analysis through Western blotting for Hsp 90 (A), SOD2 (B) and GPx (C). Data 
represent mean ± SEM of three to five independent experiments. *p<0.05 compared with the 
respective control (no protective agent). 

The differences in the MDA-MB-231 cell line were only observed after 6 days in culture (Fig. 

21B), which may be explained by the reduced content of estrogen receptors in this cell line 

(Fig. 21D), making it  less responsive to estrogenic fluctuations in the medium (Fig. 21).  

The presence of estrogen receptors in cells is a helpful indication of their potential regulation 

by estrogenic stimuli. ERs are expressed in the epithelial cells of the mammary gland as in 

other tissues, a classic target tissue in which estrogens play a key role during development 

and growth [325]. 

We evaluated the morphology of these three cell lines cultured in a regular vs. low estrogen 

medium. Those cells were observed by phase contrast as well as by epifluorescence, 

following cell incubation with the mitochondrial probe TMRM, which labels polarized 

mitochondria. It is apparent from the images obtained that cells in low estrogen medium 

present a more apoptotic phenotype, with a decrease in volume (shrinkage) and loss of 

mitochondrial TMRM accumulation (Fig. 22). 
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Figure 21: Alterations in breast normal (MCF-12A) and cancer (MDA-MB-231 and MCF-7) cell 
lines proliferation in charcoal stripped FBS and phenol red free medium vs regular medium.  
Charcoal removes hormones from the medium, decreasing estrogen content in (A) MCF-7 cell line, (B) 
MDA-MB-231 cell line, (C) MCF-12A cell line. Cells were seeded at 5,000 cells/ml in a 48-well plate. 
(D) Estrogen receptor in the three cell lines MCF-7, MDA-MB231 and MCF-12A cell lines. Data 
represent mean ± SEM of three to four independent experiments. *** p<0.001 cells grown in charcoal 
stripped FBS compared with regular FBS.  

In parallel and based on the previous results shown in this thesis (chapter 4.1.1 and 4.1.4), 

we compared the proliferation of these cell lines in the presence of coumestrol and E2, in 

order to evaluate the risk of coumestrol in increasing the proliferation of breast cancer cells 

which would limit its use in HRT (Fig. 23). Of note, the following experiments were done in 

regular medium, because charchoal-stripped FBS also removes aminoacids and vitamins 
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that are required for cell regular cell growth [326]. The effects of E2 and coumestrol at 

different concentrations (10 nM, 100 nM) on cell proliferation in regular media were evaluated 

by the SRB technique. The proliferation is lower in the presence of coumestrol than in the 

presence of known doses of E2. 

Since one of the main risks of the HRT, already described in this thesis, is the development 

of breast cancer [63], these data might have some relevance in the context of finding 

alternatives to E2 for HRT. We observed cell lower proliferation rates in coumestrol vs. E2-

treated cells.  

4.1.6 Discussion 
There are a growing number of studies focusing on natural compounds and their possible 

benefits in terms of human health. Although the antioxidant, anti-inflammatory and anti-

tumoral effects of PEs [327, 328] have been widely described, the cellular toxicity was not yet 

completely evaluated, especially regarding mitochondrial bioenergetics, which is of critical 

importance, since alterations in mitochondrial function are indicative of toxicity of 

compounds. 

The first objective of this chapter was to identify PE with low mitochondrial toxicity and 

elevated potential as antioxidants.  

From our data, coumestrol and resveratrol showed a good antioxidant potential (Figs. 7, 8). 

After selecting resveratrol and coumestrol, we next investigated their mitochondrial effects in 

more detail. 

Following previous works showing protective effects of resveratrol on brain and liver [300, 

328, 329], its toxicity on isolated mitochondria was studied at concentrations that decrease 

oxidative stress. The use of brain and liver mitochondria in this specific aim is due to the fact 

that PE are able to cross the BBB [295] and are highly metabolized in the liver [330], 

respectively, being important targets for the effects of the PE. The present work also 

highlights the relevance of using mitochondrial-isolated fractions from male and female rats, 

which is rarely seen in the literature. 

Although we did not observe basal differences in mitochondrial preparations from both 

genders in most of the parameters investigated, except when measuring maximal respiration 

in permeabilized mitochondria, it is known that estrogens have protective effects, enhancing 

antioxidant defenses and decreasing mitochondrial dysfunction [331-333]. For instance, H2O2 

production by liver mitochondria is lower in females than in males (Fig. 9). This can be due to 

the activity of GPx, which is augmented in liver preparations from females (Fig. 9), although 

no differences were measured in brain GPx or in reduced and oxidized glutathione (Table 9). 

Female rats have better mitochondrial capacity showing less oxidative stress generation 
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based in estrogen levels [334, 335]. Sex hormones have neuroprotective effects, which have 

also been shown to increase mitochondrial efficiency [273]. 

 

Figure 22: Effects of low estrogen medium on MDA-MB-231, MCF-7 and MCF-7 cell morphology 
and mitochondrial polarization.  
Morphologic images by phase contrast (A, B, E, F, H, I) and mitochondrial alterations were observed 
by using the mitochondrial-selective fluorescent probe TMRM (C, D, F, G, K, L). The three cell lines 
were culture in regular or low estrogen medium. Epifluorescent microscopy images are representative 
of 3 different cell preparations. Scale bar corresponds to 20 µm. The images were obtained using a 
Nikon Eclipse TE2000U microscope.  

 

Besides identifying gender-related effects, we aimed to investigate the nature of the 

interaction between resveratrol and mitochondria for concentrations known to be antioxidant. 

Our results confirm previous studies [336-339] regarding the antioxidant properties of 

resveratrol (Fig. 8). Our data show that resveratrol acts as an antioxidant, inhibiting lipid 

peroxidation, regardless of the gender origin of the mitochondrial preparation (Fig. 8). 

Interestingly, resveratrol increases H2O2 generation in liver mitochondria from males and 

females in the presence of the substrate (glutamate-malate) alone.  
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Figure 23: Breast cell proliferation in the presence of coumestrol and E2.  
Cells were plated at a density of 20,000 cells/cm2 and treated for 24 h with coumestrol and E2. 
Coumestrol and E2 were compared in terms of inhibition of cell proliferation by using the SRB assay. 
Data represent mean ± SEM of five independent experiments when compared with E2 condition. # 
p<0.05 when compared with the respective E2 condition, * p<0.05 when compared with control. 
Legend: E2-estradiol, Coum-coumestrol. 

Resveratrol effects on liver mitochondria in terms of H2O2 generation can be explained by a 

direct action on Complex III, or instead, as previously reported, by the modulation of 

mitochondrial manganese-superoxide dismutase [340], increasing the flux of hydrogen 

peroxide production. The effect was not observed with brain mitochondria (Fig. 9), except 

when mitochondria were incubated with complex III inhibitor, antimycin A (Fig. 9A).  

Concerning the effects of resveratrol on mitochondrial bioenergetics, Zini et al., showed that 

resveratrol inhibits brain mitochondrial respiratory chain at the complexes I to III span [341]. 

In this work, the enzymatic activity of ubiquinol cytochrome c reductase in the presence of 

resveratrol was decreased by 20% [341]. The authors suggested that resveratrol can 

preserve mitochondrial functions by three different mechanisms: antioxidant-mediated effect, 

complex III direct effect and membrane stabilizing effects [342]. A decrease of state 3 

respiration in brain mitochondria of female and male rats was observed in the presence of 

resveratrol (Fig. 11). Since the maximal ΔΨ developed was not affected by resveratrol (Fig. 

12), this suggests that the respiratory chain was not greatly inhibited. Although we cannot 

exclude that increased H2O2 generation results from inhibition of complex I and/or III. 

Instead, the results from both respiration (Fig. 11) and ΔΨ (Fig. 12) suggest an effect on the 

phosphorylative system, namely in the adenine nucleotide transporter, the phosphate 

transporter or even in ATP synthase [311].  

We further described that resveratrol inhibits mitochondrial respiration induced by NADH, but 

not succinate, in freeze/thawed preparations, which allows to study maximal respiration rate 

(Fig. 13). In accordance, resveratrol also reduced complex I specific activity as followed by 

the reduction of DCPIP (Table 10). These data confirms that resveratrol acts as a complex I 

inhibitor in mitochondrial preparations from both organs and genders. Interestingly, although 
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resveratrol induced a larger inhibition of complex I activity in hepatic permeabilized 

preparations, the same type of effect was not visible when using intact mitochondria (Fig. 

13). This may imply that the site of resveratrol inhibition on complex I faces the matrix side, 

being more accessible when mitochondrial membranes are disrupted. The data also supply 

evidence that resveratrol may also target complex I besides the already described complex 

III [341], thus contributing to increase the generation of hydrogen peroxide by the respiratory 

chain (Fig. 9). 

The results may also suggest that increased generation of H2O2 by resveratrol in liver and, 

under some conditions, in brain mitochondria can act to stimulate several signaling 

pathways, including those related with the up-regulation of antioxidant enzymes. The effects 

of resveratrol in the metabolism of different organs and gender-mediated effects should be 

explored in further detail to determine potential toxic effects and mechanisms by which 

resveratrol is described to cell fitness.  

We further compared the effects of E2 and resveratrol on liver mitochondrial complex I. Our 

data suggest that both compounds act in complex I, decreasing its activity, with a 

consequent decrease in oxygen consumption sustained by substrates for this complex. From 

a Lineweaver-Burk plot analysis, resveratrol acts as competitive inhibitor of complex I 

whether E2 acts as noncompetitive inhibitor, reducing the Vmax of complex I (Fig. 16). 

Inhibition of ATP synthase activity by resveratrol was also observed, as described previously 

[311]. A decrease of ATP synthase activity was observed with resveratrol whereas we did not 

observe effects promoted by E2 in the absence of ATP in the medium at the beginning of the 

experiment (Fig.19). Previously, it was shown that E2 inhibits ATP synthase but only when 

ATP was present in the medium in the beginning of the experiment [248].  

Initial results of this thesis (section 4.1.2), showed that coumestrol reduced lipid peroxidation 

induced by the pro-oxidant pair ADP/Fe2+. We increased the complexity of the system by 

investigating its effects in the human HepG2 cell line, regularly used as model for liver cells 

[343-345]. This cell line expresses numerous enzymes involved in liver metabolism and is 

used in toxicological studies [240]. Coumestrol and E2, as well as the positive control NAC, 

inhibited cellular death induced by H2O2 and rotenone (Fig. 18), showing an antioxidant effect 

(Fig. 19). The protection afforded by coumestrol and E2 was similar to that of NAC, a 

precursor of glutathione, previously shown to prevent oxidative stress in various models [346, 

347]. Further work is clearly necessary to determine the mechanisms of action of both 

compounds in decreasing oxidative stress. We further observed that the chaperone Hsp90, a 

protein that assists on protein folding and responds to heat stress and protein degradation 

[348], is augmented in cells under the treatment with rotenone upon a treatment with E2 or 

coumestrol (Fig. 20).  
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Interestingly, E2 and coumestrol also increased SOD2 content after rotenone treatment. In 

this case, it may be that both compounds act by increasing the expression of that stress 

response as a first-responder to O2
− caused by rotenone-mediated complex I inhibition.  

After obtaining the results regarding coumestrol, we next confirmed that coumestrol induces 

a lower proliferation of breast cancer cells than E2. We need more assays to determine the 

mechanism but at this point, we cannot exclude that in cancer cells, coumestrol may inhibit 

the cell cycle. Our data are in accordance with Lee et al., that have shown that coumestrol 

induces cellular senescence through p53-p21 pathway, inducing ROS generation in MCF-7 

and HCT116 cell lines. As senescence is important in the context of cancer, and we 

observed a reduction on cell proliferation when compared with E2 incubated cells, these data 

are relevant to support this previous study [349]. 

Highlights of the present chapter: 

- Coumestrol and resveratrol, similarly to E2, reduced lipid peroxidation of isolated 

mitochondria. 

- Resveratrol inhibit complex I and complex V activities. 

- Resveratrol behaved as a competitive inhibitor of complex I whereas E2 acted as a 

non-competitive inhibitor. 

- Coumestrol, similarly to E2 and NAC, protects HepG2 cells from pro-oxidant agents. 

- Coumestrol had a higher anti-proliferative effect on breast cancer cells when 

comparing with E2. 
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4.2. Modulation of GLUT-1 expression by estradiol and coumestrol 
at the blood brain barrier 

4.2.1 Background and objectives 
More than 75% of women worldwide experience hot flashes during menopause [35, 350]. 

Hot flashes are sudden heat sensations that are most intense over the face, neck and chest 

area and are accompanied by sweating [351]. Other symptoms include rapid heartbeat, 

nausea, dizziness, anxiety, headache, weakness, or a feeling of suffocation. The cause of 

hot flashes is currently unknown, but Dormire proposed the “impaired glucose delivery 

hypothesis of menopausal hot flashes” [36, 244]. This hypothesis states that glucose 

transport across the blood-brain barrier into the brain decreases during menopause, which is 

compensated by the sympathetic nervous system through the increase of blood flow to the 

brain, thus causing hot flashes [36]. This is supported by studies showing that ovariectomy in 

female rats lowers blood glucose levels and leads to temperature variation in those animals 

[352, 353]. Overall, these studies suggest that inadequate glucose transport into the brain is 

one cause of hot flashes in women [353, 354].  

The mammalian brain requires 20-25% of total body glucose and since the brain has limited 

capacity to store energy, a continuous glucose supply is critical for normal brain function. 

This high glucose demand is met by glucose transporter 1 (GLUT-1; SLC2A1), which the 

brain almost exclusively depends on, providing GLUT-1 with a critical role in proper brain 

function [355]. This transporter is a highly specific uniporter facilitating glucose transport 

across the blood-brain barrier from the blood into the brain [356, 357]. Within the brain, 

GLUT-1 is predominantly expressed in the brain capillaries of the blood-brain barrier, where 

it is located in the abluminal and luminal capillary membranes [358]. 

One hypothesis postulates that hot flashes in menopausal women are associated with 

transient deficiencies in brain glucose levels as a consequence of decreased blood-brain 

barrier GLUT-1 levels due to ovarian E2 decline [359]. This is supported by several studies. 

Shi and Simpkins suggest that GLUT-1 expression is modulated by E2 [353]. Reports also 

showed that decreased E2 levels in female rats correlate with reduced GLUT-1 mRNA levels 

in the cerebral cortex and that E2 deficiency in ovariectomized rats decreases GLUT-1 

protein expression and diminishes glucose availability in brain endothelial cells [353, 354]. 

Thus, E2 has the potential to increase GLUT-1 expression and function at the blood-brain 

barrier, which is able to restore full GLUT-1 activity, ensuring proper glucose supply, and 

reducing menopausal hot flashes. Therefore, insights into the mechanism through which E2 

regulates GLUT-1 could provide new strategies for the therapy of hot flashes in menopausal 

women. 

Here, the focus was on the regulation of blood-brain barrier GLUT-1 by 17β-estradiol and 

selected PEs. In this study, we determined the effect of E2 on blood-brain barrier GLUT-1 
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protein expression levels and assessed several PEs for their potential to mimic the E2 effect.  

4.2.2 GLUT-1 expression at the blood-brain barrier 
To determine GLUT-1 protein expression levels at the blood-brain barrier, we performed 

immunofluorescence and western blotting of isolated rat brain capillaries. The western blot in 

figure 24 shows a weak band for GLUT-1 in brain capillary membranes when 0.1 or 0.5 µg of 

protein was loaded, but a strong GLUT-1 band with 1 µg protein. Consistent with GLUT-1 

being a membrane protein, the signal in capillary membranes is substantially stronger 

compared to that in brain capillaries and brain capillary lysate, where the GLUT-1 protein 

signal is weak even with 10 µg protein loading. Digital molecular weight analysis revealed 

that the GLUT-1 signal is at 55 kDa, which is consistent with literature values [353, 360]. 

Immunofluorecence experiments of isolated rat brain capillaries localized GLUT-1 at both 

luminal and abluminal membranes (Fig. 24).  

 

Figure 24: GLUT-1 expression in isolated brain capillaries.  
(A) Western blot of total brain lysate, brain capillary lysate and brain capillary membranes showing 
GLUT-1 expression. GLUT-1 protein is enriched in brain capillary membranes. (B) Representative 
image of an isolated brain capillary immunostained for GLUT-1 (green) and counterstained with 
propidium iodide for nuclei (red). Consistent with the Western blot, GLUT-1 is localized in the luminal 
and abluminal membranes (arrows). Legend: Caps- capillaries, MF – membrane fraction.  
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Together, these data demonstrating high GLUT-1 expression levels in isolated rat brain 

capillaries are consistent with previously published studies [357, 361].  

4.2.3 Estradiol increases GLUT-1 expression levels at the blood-brain 
barrier 
To test our hypothesis that E2 regulates GLUT-1 expression at the blood-brain barrier, we 

exposed freshly isolated brain capillaries to 10 nM E2 for 1, 3 and 6 hours. Capillary 

membranes were isolated and analyzed by Western blotting. GLUT-1 expression increased 

in a time-dependent manner and was maximal after 6 hours of exposure to 10 nM E2 (Fig. 

25). We observed a similar increase with 100 nM E2, which increased GLUT-1 expression 

levels by 22 ± 4% compared to control GLUT-1 expression levels (Fig. 25).  

To determine the effect of E2 on GLUT-1 expression at the blood-brain barrier in vivo, we 

dosed mice with 0.1 mg/kg E2 by i.p. injection and isolated brain capillaries 1, 6, and 24 

hours after E2 dosing. The Western blots of brain capillary membranes showed a change in 

GLUT-1 expression levels 1 hour after E2 dosing (Fig. 25), but a substantial increase in 

GLUT-1 levels was observed 6 hours after E2 administration. 24 hours after E2 dosing, 

GLUT-1 expression was back to control levels (note that the difference in control GLUT-1 

levels at time points 1 and 24 hours vs. 6 hours is not due to actual differences in GLUT-1 

expression levels, but due to different exposure times of the Western blots).  

This GLUT-1 expression pattern follows E2 plasma concentrations after administration of 0.1 

mg/kg E2 by ip injection, where E2 levels increase rapidly within one hour after dosing and 

then fall over the course of 24 hours [265]. Together, these data demonstrate that E2 

increases GLUT-1 protein expression levels in isolated rat brain capillaries and at the rat 

blood-brain barrier in vivo. 

4.2.4 Estradiol increases GLUT-1 expression levels in brain capillaries 
through estrogen receptor-α 
To determine the mechanism through which E2 modulates GLUT-1 at the blood-brain barrier, 

we exposed freshly isolated brain capillaries to 10 nM propylpyrazoletriol (PPT), an estrogen 

receptor α (ERα) specific agonist, or to 10 nM diarylpropionitrile (DPN), an estrogen receptor 

β (ERβ) specific agonist [362]. Figure 26 shows that specific activation of ERα with PPT 

mimicked the E2 effect and increased GLUT-1 expression, whereas specific activation of 

ERβ with DPN (Fig. 26) had no effect. Note that we refrained from using ER inhibitors since 

commercially available inhibitors are receptor-unspecific.  
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Figure 25: E2 increases GLUT-1 protein levels in brain capillaries.  
(A) Western blot showing the time-dependent effect of 10 nM E2 on GLUT-1 protein expression levels 
in isolated brain capillaries ex vivo. The GLUT-1 signal is stronger when brain capillaries were 
exposed to E2 for 6 hours. Western blot showing the effect of 6 hours exposure of 100 nM E2 on 
GLUT-1 protein levels in isolated brain capillaries ex vivo. Data are mean ± SEM of three independent 
experiments. * p<0.05 when compared with control. (B) Western blot showing the in vivo effect of 0.1 
mg/kg E2 on GLUT-1 protein levels in brain capillaries from mice 1, 6, and 24 hours after treatment. β-
Actin was used as loading control. Images are representative of three different experiments of a pool 
of 10 animals. 

To confirm involvement of ERα, rather than ERβ, in E2 signaling to induce GLUT-1 

expression, we exposed isolated brain capillaries from ERα and ERβ knock out (KO) male 

and female mice to 10 nM E2. Figure 28 shows that in brain capillaries from both male and 

female wild type (WT) mice, 10nM E2 increased GLUT-1 expression levels, which is 

consistent with our data in rat (Fig. 26). We observed the same E2-effect on GLUT-1 in brain 

capillaries from ERβ KO mice, but not in brain capillaries from ERα KO mice. Thus, these 

data indicate that E2 induces increase of GLUT-1 expression at the blood-brain barrier 

through ERα. 

4.2.5 Coumestrol increases GLUT-1 expression levels in brain capillaries 
Given the side effects of E2 administration in post-menopausal women [63], we tested the 

effect of four PEs (resveratrol, enterolactone, enterodiol, coumestrol) on GLUT-1 expression 

levels in isolated rat brain capillaries as an alternative strategy to hormone replacement 

therapy. At the concentrations tested (100 and 1000 nM), resveratrol, enterolactone and 

enterodiol had no effect. However, we observed an increase in GLUT-1 protein levels in 

isolated rat brain capillaries that were exposed to 10 and 100 nM coumestrol, the same 
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concentrations we used for E2 (Fig. 27). Thus, these findings imply that the phytoestrogen 

coumestrol has the potential to modulate GLUT-1 at the blood-brain barrier. 

4.2.5 Discussion 
Based on the impaired glucose delivery hypothesis by Dormire [36, 363], hot flashes are an 

exaggerated response of the neurovascular coupling system to decreased glucose delivery 

into the brain via GLUT-1 in menopausal women. That is, when estrogen levels decrease in 

menopause, blood-brain barrier GLUT-1 levels are impaired and do not meet the brain’s 

demand for glucose. Hot flashes are considered a compensatory neurovascular response 

initiating sympathetic nervous system-mediated vasodilation, which leads to increased blood 

flow to the head, and thus, resulting in increased delivery of glucose and oxygen to meet the 

needs of the brain.  

In our study, we addressed this clinically important topic and investigated the effect of E2 and 

PE on blood-brain barrier GLUT-1. We show here that GLUT-1 is highly expressed in plasma 

membranes of isolated brain capillaries and located on both the luminal and the abluminal 

membranes of capillary endothelial cells (Fig. 24). These findings are consistent with 

previously published literature [354, 360]. Our study also provides new insights into the 

regulation of GLUT-1 by estrogens. We show that exposing isolated brain capillaries to 

nanomolar concentrations of E2 increases GLUT-1 protein expression within 6 hours (Fig. 

25). Consistent with this, we found increased GLUT-1 levels 6 hours after treating mice with 

0.1 mg/kg E2 (Fig. 25). Experiments with capillaries from ERα and ERβ agonists and with 

ERα KO and ERβ KO mice revealed that E2 signals through ERα to increase GLUT-1 

expression in brain capillaries (Fig. 26).  We further assessed the effect of PE on GLUT-1 

expression in isolated brain capillaries. Resveratrol, enterolactone, and enterodiol had no 

effect on GLUT-1 levels (Fig. 27) whereas coumestrol increased GLUT-1 expression to a 

similar extent as E2 did. Thus, coumestrol can potentially be one option in estrogen 

replacement therapy to improve hot flashes in menopausal women with less side effects than 

E2 [364, 365].  
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Figure 26: E2 signals GLUT-1 induction in brain capillaries through ERα.  
Western blots showing the effect on GLUT-1 expression after 6 hours exposure of isolated brain 
capillaries to the ERα agonist propylpyrazoletriol (PPT) and the ERβ agonist diarylpropionitrile (DPN). 
Only PPT exerted an effect on GLUT-1 protein levels indicating that E2 signals GLUT-1 induction via 
ERα in isolated brain capillaries. Western blots showing the effect of 6 hour exposure of brain 
capillaries from female and male wild type mice, ERα knockout mice, and ERβ knockout mice to 10 
nM E2. E2 had no effect on GLUT-1 protein levels in brain capillaries from ERα knockout mice, 
confirming that E2 signals GLUT-1 induction via ERα. β-Actin was used as loading control. These 
images are representative of 3 different experiments, each one of a pool of capillaries from 10 
animals. 
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(figure continues next page) 
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Figure 27: Effect of phytoestrogens on GLUT-1 protein levels in brain capillaries.  
(A, B) Western blots showing that resveratrol, enterolactone, or enterodiol had an effect on GLUT-1 
expression levels in isolated brain capillaries. (C) Western blots showing the effect of 6 hours 
exposure of isolated brain capillaries to 10 and 100 nM coumestrol on GLUT-1 protein expression 
levels. β-Actin was used as loading control. These images are representative of 3 different 
experiments, each one of a pool of capillaries from 10 animals. Data shows mean ± SEM of three 
independent experiments. * p<0.05 when compared with control 
 

With regard to E2 effects on blood-brain barrier GLUT-1, the only available study on this 

topic is the one by Shi and Simpkins [354]. These authors reported that treating 

ovariectomized rats with E2 increased GLUT-1 protein expression and 2-deoxy-[14C] glucose 

uptake in isolated brain capillaries in a dose- and time-dependent manner [354]. Four hours 

after administration of 10 µg/kg E2, a 30% increase of GLUT-1 expression was observed. E2 

also transiently increased GLUT-1 mRNA with a peak (55% increase) at 15 min after dosing 

that normalized to basal levels within 2 hours after E2 administration [353]. Similar to the 

data by Shi and Simpkins [353], our data demonstrate that E2 effect on GLUT-1 expression 

was small (~22%), confirming the previously published findings. These results suggest that 

estrogens play a role in modulating the brain glucose transport, which is different from 

peripheral tissue, where glucose transport is regulated by insulin and can be increased by up 

to 20-fold [366, 367].  

Second, previous work showed that both ERα and ERβ are expressed in rat brain capillaries 

[265, 368]. The present study demonstrates that E2 signals through ERα to increase GLUT-1 

protein expression at the blood-brain barrier. Although estrogen receptors activate 

transcription of their target genes by binding to the corresponding estrogen response 
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element (ERE), previous studies found no consensus about the ERE sequence in the gene 

for rat GLUT-1 [369, 370]. One possibility of how ERα could signal GLUT-1 transcription is by 

binding to a variation of the consensus ERE or to ERE half-sites to increase GLUT-1 

transcription. While this mechanism has been verified for the progesterone receptor, more 

studies are needed to confirm this for E2 modulation of GLUT-1 [370]. The present 

experiments with ER agonists and KO mice for ERα and ERβ, clearly show for the first time 

that E2 signalling through ERα increased GLUT-1 protein levels at the blood-brain barrier. 

Third, PEs are plant-derived compounds with estrogenic activity that could potentially be 

used as alternatives to E2 [237, 371]. In a set of experiments we tested the effect of several 

PE on GLUT-1 expression in isolated rat brain capillaries, specifically resveratrol, 

enterolactone, enterodiol and coumestrol (Fig. 27). Although the isoflavones genistein and 

daidzein are well-known PE, they are also inhibitors of glucose transport, and therefore, were 

not tested [268, 269]. Our experiments showed that resveratrol had no effect on GLUT-1 

expression. Although resveratrol binds to ERα and ERβ with comparable affinities, they are 

about 7,000 - fold lower than those of E2 [92]. This might explain why no effect of resveratrol 

on GLUT-1 expression was detected. The lignans enterolactone and enterodiol, for which the 

binding affinities to ERα and ERβ are unknown, also had no effect on GLUT-1 expression. In 

contrast, 10 - 100 nM coumestrol increased GLUT-1 expression in isolated rat brain 

capillaries. Coumestrol is derived from sprouting plants such as alfalfa and is present in 

clover and soy beans as well. It is the most potent coumestan with binding affinities to human 

ERα (20%) and ERβ (140%) and the transactivation activity is about 102% for ERα and 98% 

for ERβ which is comparable to that of E2 [90]. Thus, compared to other PE, higher 

coumestrol binding affinities to ERα and ERβ likely explain its effect on GLUT-1 expression 

and why other phytoestrogens we tested lacked this effect.  

Lastly, during menopause, E2 production is reduced, decreasing circulating E2 levels which 

is thought to cause hot flashes. It is thought that absence of E2 decreases GLUT1-

expression leading to neuroglycopenia (low glucose brain levels). Neuroglycopenia is 

considered to initiate a reactive, sympathetic nervous system-driven increase in blood flow to 

counteract glucose shortage in the brain, thus causing hot flashes [36]. Our study shows that 

E2 and coumestrol upregulate GLUT-1 expression in brain capillaries, which suggests that 

coumestrol could be used as a potential alternative to E2 in hormonal replacement therapy 

for menopausal women regarding hot flashes symptoms. Nonetheless, investigations about 

the role of coumestrol and E2 on the GLUT-1 function must be performed to see if the 

positive modulation on its expression results in increased glucose delivery to the brain. 

 

 

 



Results 

PhD in Biosciences – Specialization in Toxicology 82 

Highlights of the present chapter: 

- GLUT-1 was highly expressed in the membranes of brain microvessels 

- E2 increased the expression of GLUT-1 in the BBB at physiological concentrations, in 

both ex vivo and in vivo models 

- GLUT-1 expression was modulated by ERα, as found in ex vivo and in vivo studies 

- From the several PEs in study, coumestrol was the only one able to increase GLUT-1 

expression in a similar fashion as E2 
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4.3. Coumestrol effects in two different menopause in vivo models 

4.3.1 Background and objectives 
As described elsewhere in this thesis, the control of mitochondrial functionality coupled with 

cytosolic signaling and energy demand is essential for cell survival. Some of the 

mitochondrial components are regulated by ovarian hormones and suggest sex differences 

in mitochondrial fitness [335]. The role of estradiol replacement on ovariectomized animals 

was associated to bioenergetic changes in brain mitochondrial proteome, shifted to an 

increase in oxidative phosphorylation and ATP synthase corroborated by an increased brain 

mitochondrial efficiency [372]. 

From data obtained in the previous chapters of this thesis, the compound with best results 

was coumestrol, showing low mitochondrial toxicity and high antioxidant proprieties, reducing 

proliferation of breast cancer cells and positively modulating GLUT-1 expression at the BBB. 

Others published that it also increases the expression of SOD and reduces the proliferative 

growth, showing its cytoprotective effects [373]. Coumestrol is one of the PE with highest 

estrogenic activity when compared to E2, which argues for its use as a potential alternative 

to HRT during menopause [90].  

However, we are far from understanding if coumestrol has the same mitochondrial effects in 

vivo. Thus, a comparison of the effects of coumestrol and E2 in mitochondrial bioenergetics 

and oxidative stress in brain and liver fractions of two distinct menopausal models was 

performed.  

For the present experimental aim, young adult Wistar rats were previously ovariectomized at 

Charles River’s laboratories (L'Arbresle, France) in order to eliminate the main endogenous 

source of estradiol. The animals were allowed to recover from surgery during one week prior 

to be shipped into our animal facility, where they were allowed to acclimate three weeks prior 

the treatment with the tested compounds. Sixteen-weeks old ovariectomized (OVX) animals 

were then intraperitoneally injected with 30 µg/kg of E2 or coumestrol or equivalent volume of 

vehicle oil (stripped corn oil). The same experimental design was also used in VCD-treated 

animals, a second menopause in vivo model. 

4.3.2 Models used 
Although the pathophysiology of menopause has been widely studied, there is still a 

controversy regarding the best model to investigate menopause in rats. The use of OVX 

animals has positively contributed for the understanding of menopausal hormone effects. 

Nevertheless, this model has clear limitations as the lack of the initial phase of menopausal 

transition, the perimenopause; the process results in the absence of any ovarian tissue 

instead of a selective loss of follicular estrogens as in regular menopause and it does not 

allow the manipulation of the hypothalamic-pituitary-ovarian axis [218]. Thus a new model 
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based on the injection of VCD to animals has been used recently. This model involves an 

apoptotic mechanism of follicular atresia similar to what occurs in women [374]. 

4.3.3 Ovariectomy model of menopause 
4.3.3.1 Animal mass and serum biochemistry 

Twenty-four hours after E2 or coumestrol administration, animals were sacrificed and blood 

samples collected for analysis: no substantial alterations were observed in blood biochemical 

analysis (Table 11), indicating that the treatment with E2 or coumestrol did not increase 

markers of hepatic and renal damage. However, we observed a slightly but significant, 

increase in the E2 values in the blood from 0.30 ± 0.06 (OVX) to 0.40 ± 0.08 pg/ml (OVX + 

E2), (p=0.038, n = 4). 

Table 11: Estradiol and coumestrol do not alter serum markers  

 

Blood biochemical analysis from OVX rats treated with vehicle, E2 and coumestrol. Legend and units: 
Urea (mg/dl), GOT- glutamic oxaloacetic transaminase (U/l), GPT - glutamic-pyruvic transaminase 
(U/l), Creatinine (mg/dl), Cholesterol (mg/dl), Protein (U/l), Triglycerides (mg/dl), CK- creatine kinase 
(U/l) Data represent mean ± SEM of 6 to 8 animals. 

4.3.3.2 Coumestrol increases the respiratory control ratio in glutamate-malate 
energized brain mitochondria  

We first measured mitochondrial respiration of freshly isolated brain and liver mitochondria 

using either glutamate/malate or succinate as substrates. In vivo treatment of OVX rats with 

E2 and coumestrol causes increased the respiratory control ratio in brain mitochondria, 

although only coumestrol reached a statistical difference (Table 12). No differences were 

observed when using succinate as substrate, however in liver the lag phase has a tendency 

to decrease (p=0.058), (Table 12). 

4.3.3.3 Coumestrol increased mitochondrial complex I maximal activity in liver 

So far, the effects of E2 or coumestrol (especially the latter) on mitochondrial bioenergetics 

were only observed in glutamate/malate - linked respiration. Hence, we next aimed to 
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investigate if both compounds would act directly by increasing complex I maximal activity. 

Therefore, after the isolation of these mitochondrial fractions, a small tissue sample was 

frozen for further experiments.  

Table 12: Coumestrol increases the RCR of brain mitochondrial fraction in ovariectomized rats  

 

Mitochondria function was evaluated as previous described in the material and methods section. Data 
represent mean ± SEM of 6 to 8 animals. **p<0.01 when compared with OVX non-treated rats. 
FCCP/O ratio indicated the elasticity of mitochondrial respiratory chain. Units: state 3, 4, FCCP and 
oligomycin – nmol O2/min/mg protein. 
 
Table 13: Absence of treatment-related effects on mitochondrial transmembrane electric 
potential (ΔΨ) 

 
Data represent mean ± SEM of 6 to 8 animals. Legend and units: Max ΔΨ – maximal developed ΔΨ, 
Depolarizarion - ADP-induced depolarization – (-) mV, lag phase  - seconds 
 

The maximal activity of complex I was accessed in disrupted mitochondrial membranes 

through the reduction of 2,6-dichlorophenolindophenol (DCPIP), as a substitute. Our data 

suggest that the maximal activity of complex I is augmented through the treatment with 

coumestrol in liver and brain preparations of about 20% (Fig. 28). 
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Figure 28: Coumestrol increases complex I maximal activity in liver mitochondrial fraction.   
Mitochondrial membranes were disrupted and the maximal activity of complex I was indirectly 
obtained by the reduction of DCPIP. A) data from brain mitochondria, B) data from liver mitochondria. 
Activity expressed as nmol DCPIP/min/mg protein Data are the mean ± SEM of 4 to 6 animals. 
Statistical significance: *p<0.05 when compared with the respective control. Legend: OVX - 
ovariectomized animals, E2 – estradiol, Coum – coumestrol.  

4.3.3.4 Coumestrol and estradiol do not alter the mitochondrial ultrastructure 
or the content of mitochondrial complex  

After observing the differences in terms of mitochondrial bioenergetics, we next explored the 

brain and liver tissue ultra-structure, especially looking at mitochondrial morphology. We 

were interested in evaluating whether E2 or coumestrol would alter mitochondrial 

ultrastructure and morphology. We did not observe any tissue-related difference regarding 

mitochondrial morphology for each tissue (Fig. 29).  

 

Figure 29: Cellular ultrastructure remains intact after E2 or coumestrol treatment. No 
differences were observed in terms of mitochondrial structure (arrow) in both tissues after 
each treatment.  
Electronic microscopy of brain and liver tissue was performed as described in the material and 
methods section. Panel A, B, C, brain mitochondria of OVX, OVX + E2, OVX + Coum, respectively. D, 
E, F, liver mitochondria of OVX, OVX +E2, OVX + Coum, respectively.  
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In order to determine the effects of E2 and coumestrol in the content of protein subunits of 

oxidative phosphorylation apparatus, we extracted protein from the brain and liver tissue and 

used a cocktail of antibodies target to selected subunits of the respiratory mitochondrial 

chain. These results show that complex I NFUDB8 in brain has a tendency (p = 0.057) to 

increase in coumestrol-treated OVX rats (Fig. 30). 

 

	  
Figure 30: Evaluation of respiratory chain complexes subunits by western blotting after E2 and 
coumestrol treatment.  
Mitochondrial oxidative phosphorylation content was identified by western blotting in brain (A) and liver 
(B) tissues after E2 and coumestrol administration. Ponceau staining was used as gel loading control, 
with C, D, E, F graphs showing the densitometry analysis of bands of each protein normalized to the 
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ponceau intensity. The results are representative of 4 to 8 separated samples. 1) OVX, 2) OVX + E2, 
3) OVX + Coum, 4) OVX + Coum, 5) OVX + E2, 6) OVX. Legend: OVX - ovariectomized animals, E2 – 
estradiol, Coum - coumestrol 

4.3.3.5 Coumestrol antioxidant proprieties in brain and liver mitochondria 

Although we did not observe differences on hydrogen peroxide generation (Fig. 31) in the 

mitochondrial respiratory chain with glutamate/malate or succinate as substrates, we 

evaluated lipid peroxidation in the same sample. Brain mitochondria from E2 or coumestrol 

treated animals have a lower content of malondialdehyde (MDA), a marker of lipid 

peroxidation, decreasing from 0.94 ± 0.12 in OVX animals, to 0.7 ± 0.04 (OVX + E2) or 0.61 

± 0.05 µM (OVX + coumestrol). An increase in vitamin E levels from 1.6 ± 0.2 to 2.4 ± 0.3 µM 

was found in coumestrol-treated OVX animals (Fig. 32). 

 

Figure 31: Effect of E2 or coumestrol administration on mitochondrial hydrogen peroxide 
(H2O2) production.  
The production of hydrogen peroxide by the mitochondrial respiratory chain was evaluated as 
described in the materials and methods section. Mitochondrial fractions from brain and liver of female 
ovariectomized Wistar-Han rats were incubated with standard respiratory medium. Glutamate/malate 
(5 mM/2.5 mM) or succinate (5 mM) were used as substrates. Rotenone (1.0 µM) and antimycin A (0.5 
µM) were used to increase H2O2 production. Mitochondrial hydrogen peroxide generated in (A) brain 
and (B) liver in the presence of glutamate/malate; (C) brain and (D) liver in the presence of succinate. 
Data represent mean ± SEM from three to four independent experiments. Legend: OVX - 
ovariectomized animals, E2 – estradiol, Coum - coumestrol 
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Figure 32: Coumestrol treatment decreases the lipid peroxidation marker MDA and increases 
vitamin E content in brain mitochondria.  
Oxidative markers were measured as described in the material and methods section. A, C) Vit E 
content in brain and liver mitochondria, respectively, B, D) MDA content in brain and liver mitochondria 
respectively. Data represent mean ± SEM of 6 to eight independent preparations. *p<0.05 compared 
to OVX animals. Legend: OVX - ovariectomized animals, E2 – estradiol, Coum - coumestrol 
 

  

4.3.3.6 Coumestrol and E2 decrease temperature variations in OVX rats 

Under constant ambient temperatures, the measurement of rat temperature is considered to 

be proportional to blood flow [375]. Although the difficulty to obtain a reproducible model for 

hot flashes in rats similar to what women experience, cutaneous vasodilation of the rat tail 

can be an indirect telltale of temperature changes [376]. During the estrous cycle, the 

vasomotor state of the rat tail varies [376], depending on the levels of estrogens. In 

accordance, tail skin vasodilatation is increased by ovariectomy [90] and decreased by 

treatment with estrogens [375-379]. In our model, the temperature variation in OVX rats was 

decreased in the presence of E2 or coumestrol (Fig. 33). 
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Figure 33: Coumestrol and estradiol decrease temperature variation in ovariectomized rats.  
Temperature transponder was implanted in OVX rats one week prior the experiments. Temperature 
was recorded at different time points after coumestrol (Coum) or E2 administration and compared with 
the core temperature before injection. Coumestrol and E2 decrease the temperature at 6 h, and the 
effects of coumestrol lasts for 24h. Data represent mean ± SEM of 4 animals *p<0.05 when compared 
with respective control. Legend: E2 – estradiol, Coum – coumestrol.  
 

4.3.3.7 Discussion 

Finding alternatives to HRT is critical to overcome menopausal symptoms, minimizing at the 

same time potencial negative side effects in a susceptible population. The effects of 

coumestrol and E2 were compared in OVX rats, regarding temperature changes, 

mitochondrial bioenergetics and oxidative stress markers. Estradiol regulates mitochondrial 

function, regulating ATP, calcium homeostasis and cell redox status [142]. The role of E2 on 

mitochondrial function is especially important to menopausal women that do not have ovarian 

E2 production. 

It was previously shown that E2 treatment in OVX rats induces an increase in mitochondrial 

respiratory function [380], by increasing complex I activity or by decreasing oxidative stress. 

Our results were not as obvious as previously shown [362, 380], which might be explained by 

the different rat strain used in each study. In the present work, coumestrol, which has also 

been shown to cross the BBB, similarly to E2, was studied [78, 126]. In terms of 

mitochondrial oxidative stress prevention, coumestrol mimics E2 by preventing lipid 

peroxidation, explaining in part the lower levels of MDA (Fig. 32) when compared to OVX 

untreated rats. Also, the higher content of Vit E in brain mitochondria from coumestrol-treated 

rats, and the increased activity of superoxide dismutase similarly to what occurs with E2, 

[381] may indicate that coumestrol can be as effective as E2 regarding antioxidant protection 

of mitochondrial function. The strength of coumestrol effects in comparison to E2 regarding 

mitochondrial function may be justified by the estrogenic affinity to each estrogen receptor 

(ER). It is suggested that coumestrol has a higher affinity to ERβ than to ERα [90] Not only 

both receptors are present in mitochondria [277, 382], but also most of estrogen-mediated 
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effects on mitochondrial function occur through both receptors but depending in a larger 

extension on ERβ [362].  

Although, few studies reported the alterations of mitochondrial function during menopause, 

although an increase in the expression of the voltage-dependent anion channel 1 (VDAC), 

adenine nucleotide transporter (ANT) and cytochome c, were previously shown, suggesting 

alterations in mitochondrial signaling [228]. Previously, a link between brain mitochondrial 

dysfunction, menopause and Alzheimer’s disease was suggested, focusing the role of 

decreased estrogen content. In fact, surgically induced early menopause may increase 

cognitive vulnerability and estrogen re-introduction may promote a better outcome. However, 

there is still a missing link between age at menopause and Alzheimer risk [236]. Kemper and 

colleagues [235] have shown that ovariectomy decreases mitochondrial biogenesis and alter 

mitochondrial function in cerebral endothelium, reducing mtDNA/nuDNA ratio and ATPase 1α 

subunit. Although we did not measure ATP synthase activity, we were able to verify that 

coumestrol improves mitochondrial function, by increasing complex I maximal activity and 

RCR. However, we did not observe changes in state 3 respiration.  

Mitochondrial function decline plays a role in the aging process and menopause is a critical 

period among women [201]. Several lines of study suggest that certain molecular and cellular 

changes are involved in the development of alterations that lead to impaired mitochondrial 

energy metabolism [202]. The free radical theory of aging postulates that oxidative stress is a 

determinant factor that limits longevity [203, 204]. The increased oxidative stress promoted 

by elevated production of reactive oxygen species is considered a determinant factor in 

mitochondrial dysfunction associated with aging. Here we show that coumestrol 

administration increases brain mitochondrial function in ovariectomized rats, which may be 

important in the context of neuroprotective effects of coumestrol. 

Our data suggests that coumestrol, similarly to E2, has a protective vasomotor effect, by 

reducing temperature variations in OVX rats. Although the increase in the average changes 

in temperature after ovariectomy does not reflect an episodic event such as a flash, the 

changes on temperature by a pharmacological agent has been widely used to evaluate its 

efficacy in reducing flashes in women [383]. This important finding is another positive sign 

regarding the use of that compound on hormone replacement therapy. We also showed with 

the present study that coumestrol administration in vivo does not affect brain and liver 

mitochondria, mimicking what occurred in vitro (section 4.1). Nevertheless, it remains to be 

determined if animal age would impact the observed data since the present study was 

performed with young female rats. 
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4.3.4 Venylcyclohexene diepoxide (VCD) model of menopause 
4.3.4.1 Animal mass and serum biochemistry 

In order to measure morphometric and blood data, animals were individually analysed and 

the intrinsic weight variation of each animal was calculated for each week. Only in the third 

week of treatment a reduction on weight gain was observed. The weekly weight gain 

represents the variation between the weight in a certain day and the weight measured in the 

previous week. However, during the injection-free week the animals recovered the weight 

gain similarly to the control group (Fig. 34A). When we compared the initial and final weights 

of the two groups, no differences were observed (Fig. 34 B).  

 

Figure 34: VCD-animal model characterization.  
Twelve-weeks female Wistar rats were injected i.p. for 15 days with 80mg/kg of VCD in sesame oil or 
vehicle. Animals were weighted before each injection and blood was collected after sacrifice with 
several parameters being measured. (A) animal weight variation during the treatment; (B) animal body 
mass gain during the treatment, bM-brain mass, BM-body mass; (C) Estradiol levels variation with the 
treatment. Data represent mean ± SEM of 5 independent samples, * p<0.05 when compared to 
control. (D) Blood marker analysis, Urea (mg/dl), GOT- glutamic oxaloacetic transaminase (U/l), GPT-
glutamic-pyruvic transaminase (U/l), Creatinine (mg/dl), Cholesterol (mg/dl), Protein (U/l), Triglycerides 
(mg/dl), CK- creatine kinase (U/l) Data represent mean ± SEM of 4 to 6 different samples. Legend 
Ctrl- control animals, VCD-VCD injected animals 
 

Moreover, VCD treatment did not result in decreased brain mass/body mass (Fig. 34B). In 

terms of blood analysis, we did not observe any significant difference between control and 

VCD-treated rats (Fig. 34D). In order to validate the model, circulating E2 levels were 
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measured. A decrease in E2 plasma was observed in VCD-treated animals (Fig. 34C), 

suggesting the eventual atresia in the follicles and a lower production of E2 by the ovaries. 

4.4.4.2 Mitochondrial bioenergetics is not altered by VCD 

The role of extra-ovarian mitochondria in this model was never evaluated so far. The 

literature only reported two studies of follicle atresia and the involvement of mitochondria in 

this process. VCD-induced atresia is mediated by the activation of caspase-3 in ovarian 

follicles, suggesting that the loss of ovarian follicles occurs through caspase-mediated 

apoptosis [217]. In accordance, the same group showed an increased expression of the pro 

apoptotic protein Bad, translocation of Bcl-xL, augmented Bax: Bcl-xL ratio in mitochondria 

and increased cytochrome c translocation from mitochondria to cytosol [215], confirming 

activation of the mitochondrial pathway for apoptosis.  

The administration of VCD did not result in any alteration of mitochondrial respiration or ΔΨ 

parameters in glutamate-malate energized mitochondria, as well as in complex I maximal 

activity (Table 14, 15 and 16), which indicates that for the time-point studied no extra-ovarian 

mitochondrial damage was found. 

Table 14: Mitochondrial oxygen consumption and maximal complex I activity in control and 
VCD-treated animals  

 
Brain (0.5 mg) and liver (1 mg) mitochondrial oxygen consumption was measured in the presence of 5 
mM glutamate and 2.5 mM malate. ADP (75 nmol for brain mitochondria and 125 nmol for liver 
mitochondria) was added to induce state 3 respiration. The RCR was calculated as the ratio between 



Results 

PhD in Biosciences – Specialization in Toxicology 94 

state 3 and state 4 respiration. The ADP/O was calculated as the number of nmol ADP 
phosphorylated per natom oxygen consumed during state 3. FCCP/O was calculated as the ratio 
between state FCCP and oligomycin respiration. Data are the mean ± SEM of 6 independent 
experiments. Legend: Ctrl - control animals, VCD - VCD injected animals 

Table 15: Complex I maximal activity in isolated mitochondria from control and VCD-treated 
animals  

 
The activity of complex I was obtained in disrupted mitochondria through the reduction of DCPIP. 
Activity is expressed as nmol DCPIP/min/mg protein. Data are the mean ± SEM of 6 independent 
experiments.  

 
Table 16: ΔΨ measurements in control and VCD-treated animals  

 
Brain (0.8mg) and liver (1mg) mitochondria were energized with 5 mM glutamate and 2.5 mM malate 
and the phosphorylation cycle was initiated with ADP (75 nmol for brain mitochondria and 100 nmol for 
liver mitochondria). Data represent mean ± SEM from six independent experiments. 

 

4.4.4.3 An increase in brain mitochondrial hydrogen peroxide generation is 
observed after VCD administration 

We next examined hydrogen peroxide generation by the mitochondrial respiratory chain as 

well as the susceptibility of brain and liver mitochondria from vehicle and VCD-treated 

animals to lipid peroxidation induced by ADP/Fe2+. Finally, we evaluated the activity of 

aconitase, since its activity is decreased by the oxidative stress [266]. In this latter case, no 

differences within groups were observed (Fig. 35 A). Regarding ADP/Fe2+-induced lipid 

peroxidation, no differences were found between the two groups when measuring TBARS 

(Fig. 35D). However hydrogen peroxide generated in brain mitochondria were significantly 

higher in VCD-treated animals than in control animals (from 812.7 ± 164.1 to 1,394.0 ± 209.0 

in glutamate/malate-sustained respiration, from 4,668.0 ± 447.4 to 5,730.0 ± 624.2 in the 

presence of rotenone and from 1,4610.0 ± 2 038.0 to 2,1025.0 ± 1,900.0 pmol H2O2/mg 

protein/15min, Fig 35 B and C).  
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Figure 35: Effect of VCD administrations on oxidative stress.  
(A) Aconitase activity was evaluated by the conversion of citrate to isocitrate through cis-aconitate. (B, 
C) The production of hydrogen peroxide by the mitochondrial respiratory chain was evaluated as 
described in the materials and methods section, (B)-brain mitochondrial preparation, (C)-liver 
mitochondrial fraction. (D) ADP/Fe2+-induced lipid peroxidation was evaluated by TBARS colorimetric 
assay, as described in the material and methods section.  Data represent the mean ± SEM of four to 
six independent experiments. Statistical significance:  # p<0.05, ## p<0.01, ### p<0.001 compared 
with the respective basal levels, * p<0.05 compared with control animals. Legend: AA - antimycin; GM 
– glutamate/malate, ROT – rotenone. 
 

After testing the toxicity of the VCD treatment in Wistar rats, a comparison of coumestrol and 

E2 administration on mitochondrial bioenergetics was our next experimental aim. Animals 

were treated with VCD as in the previous section and one week of recovery, animals were 

treated with vehicle or 30 µg/kg E2 or coumestrol for 24h and mitochondrial parameters were 

analyzed. We hypothesized that the treatment with E2 or coumestrol may increase 

mitochondrial bioenergetics as in the OVX model, or eventually cause some toxicity in this 

VCD model.  

4.4.4.4 Coumestrol and E2 effects on mitochondrial bioenergetics in the VCD 
model 

An increase in some of the mitochondrial parameters was observed. In glutamate/malate - 

energized mitochondria, E2 resulted in an increase in state 3 respiration in both liver and 

brain mitochondria. E2 also resulted in an increase in brain mitochondria state 4 respiration 

while an increase in the RCR from 4.9 ± 0.6 to 6.2 ± 0.7 was observed in brain mitochondria 
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from coumestrol-treated animals (Fig. 36). No other parameters were affected by E2 or 

coumestrol treatment. 

 

Figure 36: E2 and coumestrol effects on complex I-sustained mitochondrial oxygen 
consumption.  
Brain (0.8 mg) and liver (1 mg) mitochondria were energized with 5mM glutamate and 2.5 mM malate 
and the phosphorylation cycle was initiated with ADP (75 nmol for brain mitochondria and 100 nmol for 
liver mitochondria). Data represent mean ± SEM from three to six independent experiments. * p<0.05, 
** p<0.01 when compared with Ctrl. Legend: Ctrl - VCD-treated animals injected with vehicle only for 
24h, E2 - VCD-treated animals injected with E2 for 24 h; Coum - VCD-treated animals injected with 
coumestrol for 24h. 
 

These results were complemented with an observed increase caused by E2 in brain 

mitochondrial ΔΨ from 186.5 ± 6.3 to 198.5 ± 3.6 (-) mV (Fig. 37B). In liver mitochondria, the 

phosphorylative lag phase is lower in E2 animals (Fig. 37C) compared to the respective 

control (from 43.0 ± 3.6 to 38.3 ± 3.8 s), which is in accordance with the increase in state 3 

respiration (Fig. 36C). Both of these effects were observed in complex I-sustained respiration 

(Fig. 36 and 37). When brain mitochondria were energized at complex II with succinate, E2 

or coumestrol increased the ADP-induced depolarization from 15.4 ± 1.2 to 21.2 ± 0.7 and 

19.6 ± 1.5 (-) mV, respectively. Also, the brain mitochondria RCR increased after coumestrol 

treatment 3.2 ± 0.2 to 3.9 ± 0.2 (Fig. 38). In liver mitochondria, the lag phase was reduced in 



In vivo studies 

PhD in Biosciences – Specialization in Toxicology 97 

E2-treated animals from 23.7 ± 2.6 to 27.8 ± 2.0 seconds (Fig. 39). The results suggest that 

coumestrol and E2 promoted an improvement in mitochondrial function of brain and liver 

mitochondria from VCD-treated animals, as observed in OVX animals. 

Regarding oxidative stress markers, no alterations on hydrogen peroxide generation by the 

respiratory chain were observed, except when generated by complex I in animals treated 

with VCD + E2. In terms of TBARS levels, although as we expected ADP-Fe2+ induced lipid 

peroxidation in rat brain mitochondria, E2 and coumestrol showed no protective effect (Fig. 

41). 

4.4.4.5 Discussion  

An usual model rodent for menopause involves ovariectomy. However, this is a mechanical 

procedure that usually does not occur in women. The transition to menopause involves a 

continuous fluctuation in hormones, instead of an abrupt loss of circulating estrogens. Due to 

this, the use of VCD as a model of chemical induction of menopause is getting a wider 

acceptance. Although ovariectomy is still used in the majority of studies [214]. 

	  
Figure 37: E2 and coumestrol effects on complex I-sustained mitochondrial ΔΨ  fluctuations.  
(A) Maximal mitochondrial membrane potential developed (ΔΨ) after mitochondrial energization; (B) 
Depolarization induced by ADP addition; (C) Time elapsed during complete ADP phosphorylation (lag 
phase). Brain (0.8 mg) and liver (1 mg) mitochondria were energized with 5mM glutamate and 2.5ml 
malate and the phosphorylation cycle was initiated with ADP (75 nmol for brain mitochondria and 100 
nmol for liver mitochondria). Data represent mean ± SEM from three to four independent experiments. 
* p<0.05, ** p<0.01 when compared with Ctrl. Legend: Ctrl- VCD-treated animals injected with vehicle 
for 24h, E2, VCD-treated animals injected with E2 for 24 h, Coum-VCD-treated animals injected with 
coumestrol for 24h. 
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VCD is a chemical by-product of rubber manufacturing which has been demonstrated to 

selectively destroy ovaries of rats and mice without producing effects in large follicles or 

other tissues. Unlike ovariectomy, VCD treatment preserves the period of irregular cycling 

and fluctuating hormone levels that precedes ovarian failure, usually diagnosed as 

perimenopause. Although the levels of other hormones should have been measured, we 

showed that E2 levels were lower in treated animals in this model (Fig. 34C).  

 
Figure 38: E2 and coumestrol effects on complex II-sustained mitochondrial oxygen 
consumption. 
Oxygen consumption in complex II sustained mitochondrial respiration; Brain (0.8 mg) and liver (1 mg) 
mitochondria were energized with 5 mM succinate and the phosphorylation cycle was initiated with 
ADP (75 nmol for brain mitochondria and 100 nmol for liver mitochondria). Data represent mean ± 
SEM from three to four independent experiments. ** p<0.01 when compared with Ctrl. Legend: Ctrl - 
VCD-treated animals injected with vehicle for 24 h; E2 - VCD-treated animals injected with E2 for 24 h; 
Coum - VCD-treated animals injected with coumestrol for 24 h.  
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Figure 39: E2 and coumestrol effects on mitochondrial ΔΨ  fluctuations.  
(A) Maximal mitochondrial membrane potential developed (ΔΨ) after mitochondrial energization; (B) 
Depolarization induced by ADP addition, (C) Time elapsed during complete ADP phosphorylation (lag 
phase). Brain (0.8 mg) and liver (1 mg) mitochondria were energized with 5mM succinate and the 
phosphorylation cycle was initiated with ADP (75 nmol for brain mitochondria and 100 nmol for liver 
mitochondria). Data represent mean ± SEM from three to four independent experiments. * p<0.05 
when compared with control. Legend: Ctrl - VCD-treated animals injected with vehicle for 24 h, E2, 
VCD-treated animals injected with E2 for 24 h; Coum - VCD-treated animals injected with coumestrol 
for 24 h. 

When the experiments were performed, the kits for the measurement of FSH, LH, activins 

and inhibins were not available for rats. This model is particularly interesting since it is 

possible to choose the age of the animal for the onset of hormonal variations [218]. 

We initially evaluated the eventual toxicity associated with the administration of VCD in terms 

of blood biochemistry followed by the impact of the selected compound on hepatic and brain 

mitochondrial bioenergetics, something never explored before. In terms of animal mass, we 

did not observe any effects, except for the weight gain during the third week (Fig. 34).  
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Figure 40: Effect of E2 or Coumestrol administration on mitochondrial hydrogen peroxide 
(H2O2) production.  
The production of hydrogen peroxide by the mitochondrial respiratory chain was evaluated as 
described in the materials and methods section. Mitochondrial fractions from brain and liver of female 
VCD-treated rats were incubated with standard respiratory medium. Glutamate/malate (5 mM/2.5 mM) 
was used as substrate. Rotenone (1.0 µM) and antimycin A (0.5 µM) were used to increase H2O2 
production. (A) Brain and (B) liver mitochondrial hydroperoxide generation in the presence of 
glutamate/malate, respectively. Data represent mean ± SEM from three to four independent 
experiments. # p<0.05, ## p<0.01 when compared with the respective basal levels, * p<0.05 when 
compared with control. Legend: Ctrl - VCD-treated animals injected with vehicle for 24h; E2 - VCD-
treated animals injected with E2 for 24 h; Coum - VCD-treated animals injected with coumestrol for 24 
h. 
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Figure 41: Effects of Coumestrol and E2 on membrane lipid peroxidation of brain and liver 
mitochondria induced by the pro-oxidant pair ADP/Fe2+.  
ADP/Fe2+-induced lipid peroxidation was evaluated by the TBARS colorimetric assay as previously 
described in the material and methods section. The data represent the mean ± SEM of three to four 
independent experiments. Legend: Ctrl - VCD-treated animals injected with vehicle for 24 h; E2 - 
VCD-treated animals injected with E2 for 24 h; Coum - VCD-treated animals injected with coumestrol 
for 24 h. 

Also, no VCD-induced alterations on mitochondrial bioenergetics parameters were observed. 

Although being a good point favouring the model, it was a suprising fact because in general, 

environmental pollutants as VCD, affect mitochondrial function at multiple levels [384, 385]. 

However, an increase in hydrogen peroxide generation by the respiratory chain was 

observed, which may resemble the increase in oxidative stress seen with aging and 

menopause [203, 204, 232]. Further experiments are needed to find the cause of this small 

but significant increase. Additional studies are still needed to get more insights of the VCD 

model. This could have been done by the measurement of other hormones that vary in 

perimenopause [214]. Although this was not done due to the reasons expressed before. VCD 

dosing can be used to modulate the magnitude of elevations in key reproductive hormones, 

such as FSH and dose-dependent effects of these hormones can now be investigated in 

animals whose hypothalamic–pituitary–ovarian axis remains essentially intact [218]. 

Although, we did not observe significant changes in isolated brain and liver mitochondria 

parameters in VCD-treated animals, it is also necessary to explore the role of aging in the 

moments of VCD treatment as well as the role of estrogens and how their decrease in 

menopause affects central and peripheral systems. One of our objectives in this section was 

to identify in vivo effects of both coumestrol and E2 that would mimic the ones found in OVX 

rats and previous shown by others in the ovariectomy model. 

When animals were treated with coumestrol or with E2, an increase in RCR, when 

mitochondria respiration was supported by complex I substrate, was found. These data are in 

accordance with Brinton and colleagues [362], where steroid hormones were found to 

improve mitochondrial function, contributing to cell and tissue fitness. Steroid hormones are 
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molecules that control several physiological processes in the body, as different as 

reproductive signalling and responsive to oxidative stress [125]. Here we did not observe the 

antioxidant effects of E2 and coumestrol as observed by others in OVX rats for E2. For 

example, both E2 and P4 decreased oxidative stress generation by increasing the 

expression of mitochondrial antioxidant enzymes superoxide dismutase and peroxiredoxin V 

[380]. Moreover, in terms of respiratory chain complexes in brain mitochondria, 24 h E2 

treatment resulted in increased expression of complexes I, III, and IV subunits in OVX rats 

[362]. In the present study, only an increase in mitochondrial RCR and state 3 were 

observed, which are already an indication of an improvement of mitochondrial function, a fact 

that was not observed in vitro (section 4.1.3.6).  

Despite the small number of animals used in this work, we think the data obtained here have 

some relevance as a support to further studies using coumestrol as a safe and effective 

alternative to the HRT.  

Concluding, the VCD model in rodents rats appears to provide an important tool, either used 

alone or in comparison to the well-studied OVX rat model, in order to expand our knowledge 

of the interaction of hormones, aging and disease risk in women across the menopausal 

transition. 

 

Highlights of the present chapter: 

- VCD treatment decreased E2 levels in female wistar rats. 

- VCD treatment did not affect liver or brain mitochondrial bioenergetics. 

- Coumestrol and E2 increased brain and liver mitochondrial bioenergetics in VCD-

treated animals. 
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In the context of menopause, HRT allows the delay or the prevention of several symptoms 

associated with this period of women’s life [30, 50]. The importance of steroid hormones as 

modulators of mitochondrial function is well characterized. In this thesis, we aimed to select a 

PE which could work as a valid alternative to the conventional HRT. The ideal PE should 

decrease the main symptom occurring in menopausal women’s, hot flashes, without further 

complications as an increase of breast cancer risk. 

In this thesis, we aimed at selecting a PE with low toxicological effects, namely at the 

mitochondrial level and with good antioxidant profile. 

Our initial data resulted in the selection of resveratrol and coumestrol based on their capacity 

to reduce mitochondrial lipid peroxidation. Resveratrol has showed later to have 

mitochondrial toxicity at antioxidant-relevant concentrations. Moreover, we did not observe 

any modulation of GLUT-1 expression at the BBB by this compound. Thus our data do not 

support the potential use of resveratrol as an alternative to the HRT.  

The data presented in this work show that coumestrol lacks in vitro or in vivo mitochondrial 

toxicity. On the other hand, coumestrol increased GLUT-1 expression at the BBB, which is a 

potential link with the decrease of temperature variations in OVX rats. An explanation for the 

similarly effects in terms of GLUT-1 expression may be the resemblance of the structure of 

E2 and coumestrol. However, from the data obtained coumestrol appears to present several 

advantages over E2. Besides the lack of mitochondrial toxicity and the modulation of GLUT-1 

expression at the BBB, coumestrol induces a reduced proliferation rate in comparison with 

E2 in breast cancer cells. 

As previously said, coumestrol is not widely studied in the literature. However, recent studies 

have shown that coumestrol inhibits casein kinase 2 (CK2), a pro-proliferative protein that is 

overexpressed in several types of tumor, including breast cancer [386]. Thus, coumestrol 

promotes senescence in tumor cells [387]. This again shows that one of the main arguments 

against HRT, the increased risk of breast cancer, may be avoided through the use of 

coumestrol as the basis for that therapy. 

 

In the opinion of the author, these are the two main technical contributions resulting from this 

thesis: 

• A screening of selected PEs in various menopause-relevant biological models 

including one resulting from VCD administration. 

• Isolation and characterization of BBB capillaries and the modulatory role of E2 and 

PEs. 
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Certainly that more studies need to be performed to confirm coumestrol as a valid alternative 

to HRT, following the results obtained, we believe that this work in complement with recent 

publications, points out several interesting features of this compound that make it suitable, 

either in treatment, or in the prevention of several pathologies and menopause associated-

symptoms.  

 

Figure 42: Summary of the main findings of this thesis.  
The main conclusions of this thesis and the approaches to answer the main question of the project: 
Are Phytoestrogens the alternatives to the conventional HRT? The answer is that not all of the PE 
tested are suitable replacer, except for coumestrol which showed a large potential.



 

 

 
 
 
 
 
 
 
 
 
 
 

6. Future Perspectives 
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In the opinion of the author, this PhD thesis has clarified some cellular and mitochondrial 

interactions of PEs, especially in terms of their direct toxicity in brain and liver mitochondria 

and suggested some clues in terms of their use in HRT during menopause. However, there 

are still many unanswered questions.  

Thus, future lines of study are proposed without any particular order: 

1.  Investigate the effects of coumestrol on breast cancer progression in a rat model of breast 

cancer following the loss of ovarian function.  Even though in this thesis we showed lower 

proliferation of breast cells in vitro incubated with coumestrol in comparison with E2, its 

effects in breast cancer progression in vivo were not performed. Thus, we propose to follow 

the recent study of Giles et al. [388], although instead of studying the role of obesity, we 

would investigate the role of PEs in the size and characteristics of tumor in OVX rats.  

2. Investigate the role of PE in the prevention of menopausal symptoms. It is generally 

accepted that Asian women, who consume a PE enriched diet, in comparison with Western 

women, have less menopausal symptoms [389]. However, these conclusions come from 

epidemiologic studies and several questions can be generated on these conclusions, such 

as: Which are the signaling pathways modified by these diets? How delayed is the 

menopausal symptoms onset?  

3. Further analysis of the hormone levels has to be done in the VCD model, not only by 

measuring E2 content, but also by evaluating the levels of inibins, FSH, LH and activins. This 

evaluation was not performed during the experiments of this thesis due to the lack of 

commercially available kits. 
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