
 
 

DEPARTAMENTO DE 

ENGENHARIA MECÂNICA 

 

 

 

 

 

 

DDeevveellooppmmeenntt  aanndd  IImmpplleemmeennttaattiioonn  ooff  NNaaggaattaa  

PPaattcchheess  IInntteerrppoollaattiioonn  AAllggoorriitthhmmss  
Dissertação apresentada para a obtenção do grau de Mestre em Engenharia 

Mecânica na Especialidade de Sistemas de Produção 

 

 

Autor 

Diogo Mariano Simões Neto 

 

Orientadores 

Marta Cristina Cardoso de Oliveira 

Luís Filipe Martins Menezes 

 

Júri 

Presidente 
Professora Doutora Maria Augusta Neto 

Professora Auxiliar da Universidade de Coimbra 

Vogais 

Professor Doutor Luís Filipe Martins Menezes 

Professor Associado da Universidade de Coimbra 

Professor Doutor José Luís de Carvalho Martins Alves 

Professor Auxiliar da Universidade do Minho 

Professora Doutora Marta Cristina Cardoso de Oliveira 

Professora Auxiliar da Universidade de Coimbra 

 

 

 

 

 

Coimbra, Julho, 2010





 

Development and Implementation of 

Nagata Patches Interpolation Algorithms  Acknowledgements 

 

 

Diogo Mariano Simões Neto  i 

 

 

Acknowledgements 

My work on this thesis has benefitted from the support and guidance of several 

people in the Experimental and Computer Aided Technology Group whom I wish to 

acknowledge. First and foremost, I would like to express my deepest gratitude to my 

excellent advisor Professor Marta Cristina Cardoso de Oliveira, for her guidance, support 

and endless patience during the course of my M.Sc. degree at the Department of 

Mechanical Engineering, University of Coimbra. 

I am also grateful to my co-supervisor, Professor Luís Filipe Martins Menezes, for 

his insightful comments on my thesis and research, and also for the opportunity that was 

given to me to develop my research work at the Center of Mechanical Engineering of the 

University of Coimbra (CEMUC). His drive for scientific rigor and excellence in all 

aspects of research has been a great source of inspiration for me. 

I also wish to thank my former and current colleagues for creating such an easy-

going atmosphere over the years, for a great many coffee breaks and laughs in our 

everyday strive to become “better human beings”, and for keeping up that special work 

atmosphere. Thank you all for being the persons you are! 

Finally, I would like to thank my family and friends for their encouragement and 

understanding through all the years. 

 

 

 

 

 

 

 

 

 

“Genius is one percent inspiration and ninety nine percent perspiration.” 

Thomas A. Edison, Harper's Monthly, 1932. 



 

Development and Implementation of 

Resumo  Nagata Patches Interpolation Algorithms 

 

 

ii  Diogo Mariano Simões Neto 

 

 

Resumo 

O principal objectivo deste trabalho é o desenvolvimento e implementação de 

algoritmos de interpolação com superfícies Nagata para aplicar na descrição de 

ferramentas de simulação numérica do processo de estampagem. 

A descrição da superfície tem uma importância fundamental na modelação de 

problemas de contacto. No entanto, a maioria dos investigadores continua a recorrer a 

modelos poliédricos no MEF, que contribuem para uma simplificação excessiva do 

modelo, desprezando a curvatura, o que pode introduzir erros significativos de análise. 

Recentemente, Nagata (2005) propôs um algoritmo simples para proceder à interpolação 

de superfícies e recuperar a sua geometria inicial. A ideia central desta descrição por 

superfícies paramétricas consiste na interpolação quadrática de segmentos curvos, com 

base nas posições e nos vectores normais nos pontos da fronteira. 

Neste trabalho, aplicam-se os algoritmos de interpolação com superfícies Nagata a 

modelos poliédricos. Numa primeira etapa, os algoritmos são aplicados à descrição de 

superfícies simples (cilindro, esfera e toróide), para os quais é possível determinar a 

normal em cada nó com base na função analítica. Procede-se à comparação entre as 

superfícies Nagata triangulares e quadrangulares, em termos de eficiência e robustez dos 

algoritmos de interpolação local. Na fase seguinte, aplicam-se os algoritmos de 

interpolação com superfícies Nagata utilizando diferentes algoritmos de cálculo do vector 

normal, em cada ponto, de modo a analisar a influência da precisão deste parâmetro na 

qualidade da interpolação Nagata. São propostos diferentes métodos de cálculo do vector 

normal, em cada ponto, com base apenas na interpolação disponível no modelo poliédrico, 

e a sua eficiência é analisada recorrendo às mesmas geometrias simples. Por último, é 

proposto um algoritmo de interpolação com superfícies Nagata que utiliza a informação 

disponível no CAD para estimar o vector normal em cada ponto. Este algoritmo permite 

aproximar os modelos CAD e CAE, uma vez que possibilita recuperar a geometria original 

na interpolação de superfícies discretizadas. 

São apresentadas as ferramentas desenvolvidas para a visualização e análise, 

qualitativa e quantitativa, das superfícies Nagata. Finalmente, são propostas algumas 
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orientações para a geração dos modelos poliédricos, de modo a garantir a precisão da 

interpolação com superfícies Nagata. 

 

 

Palavras-chave: Superfícies Nagata, Interpolação local, Aproximação 

de vectores normais, Modelação de ferramentas, 

Visualização. 
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Abstract 

The main objective of this work is the development and implementation of Nagata 

patches interpolation algorithms to be used in the description of tools for the numerical 

simulation of sheet metal forming. 

Surface description accuracy is of paramount importance when modelling contact 

problems. However, most FEM researchers still resort to polyhedral models to describe 

contact surfaces, which can oversimplify the original system by neglecting the curvature. A 

simple algorithm for interpolating discretized surfaces and recover the original geometry 

was recently proposed by Nagata (2005). The main idea behind this parametric surface 

description is the quadratic interpolation of a curved segment, from the position and 

normal vectors at the end points. 

In this work, Nagata patches algorithms are first applied to interpolate polyhedral 

meshes of simple geometries (cylinder, sphere and torus) where the normal vectors in each 

node are provided by analytical functions. The use of triangular or quadrilateral Nagata 

patches is compared, both in terms of efficiency and robustness of the local interpolation 

algorithm. Afterwards, the interpolation algorithms are applied using different normal 

vectors approximations, to analyse the influence of the normal vector accuracy in the 

Nagata interpolation accuracy. Several methods for estimating the normal vector from 

polyhedral models are analyzed and their efficiency is studied, using the same simple 

geometries. Finally, the Nagata patch algorithms are applied to interpolate polyhedral 

meshes, using the interpolation available in the original CAD geometry to estimate the 

normal vectors. This algorithm allows bridging the gap between CAD and CAE models, 

since it allows the interpolation of discretized surfaces recovering the original CAD 

geometry. 

Tools for Nagata patch visualization and qualitative and quantitative analysis were 

also developed and presented. Finally, some guidelines for polyhedral mesh generation, in 

order to guarantee accurate Nagata patch interpolation, are proposed. 

 

Keywords: Nagata patches, Local interpolation, Normal vector 

approximation, Tools modeling, Visualization. 
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SYMBOLOGY AND ACRONYMS 

Symbology 

Cn
 – n -order continuity 

Gn
 – n -order geometric continuity 

( )ξx  – Nagata curve 

ξ  – Nagata curve parametric coordinate  

ξx  – Nagata curve derivative 

c  – Vector adding curvature to the Nagata curve 

( , )η ζx  – Nagata patch 

 and η ζ  – Nagata patch parametric coordinates 

 and η ζx x  – Nagata patch first order partial derivatives 

rδ  – Radial error 

nδ  – Normal vector error 

analyticaln  – Unit normal vector evaluated using the analytical function  

Nagatan  – Unit normal vector of the Nagata curve or patch 

in  – Unit normal vector of the thi  plane (element) 

ie  – Edge vector  

iα  – Angle between the two edge vectors 
ie  and 

1i+e  

� – Two parallel vectors 

⊗  – Cross product of two vectors 

θ  – Normal vector approximation error 

( )uC  – NURBS curve 

 and u v  – Parametric coordinates of a NURBS curve or surface 

 and p q  – B-Spline basic function degree in the u  and v  directions 

, ( )i pR u  – Rational basic functions of degree p  
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, ( )i pN u  – Normalized B-Spline basic functions of degree p  

iP  – NURBS curve control points 

iw  – Weight of each control point 
iP  

 and U V  – Knot vectors 

( , )u vS  – NURBS surface 

, ( , )i jR u v  – NURBS surface rational basic functions 

,i jP  – NURBS surface control points 

,i jw  – Weight of each control point ,i jP  

 and u vS S  – NURBS surface first order partial derivatives 

,   and uu vv uvS S S  – NURBS surface second order partial derivatives 

 

 

Acronyms 

2D – Two Dimensional 

3D – Three Dimensional 

CAD – Computer Aided Design 

CAE – Computer Aided Engineering 

FEA – Finite Element Analysis 

FEM – Finite Element Method 

IGES – Initial Graphics Exchange Specification 

MWA – Mean Weighted by Angle 

MWAAT – Mean Weighted by Areas of Adjacent Triangles 

MWE – Mean Weighted Equal 

MWELR – Mean Weighted by Edge Length Reciprocals 

MWRELR – Mean Weighted by Square Root of Edge Length Reciprocals 

MWSELR – Mean Weighted by Sine and Edge Length Reciprocals 

NURBS – Non Uniform Rational B-Spline 
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1. INTRODUCTION 

1.1. Background 

Deep drawing is one of the most important processes for forming sheets metal parts. 

It is frequently used in the automotive industry to manufacture car parts such as fenders, 

doors and hoods. The process usually uses three different types of tools: punch, die and 

blank holder (see Figure 1). An initially flat sheet material, named blank, is clamped 

between a die and a blank holder. The blank holder is loaded with a force, which is 

necessary to control the material flow into the die cavity, preventing wrinkling and tearing. 

Afterwards, the punch moves downward into the die cavity, transferring the punch and die 

specific shape to the blank [Department of CTW, 2010]. 

 

 

Figure 1. Schematic representation of the deep drawing process. 

 

An incorrect design of the tools, initial blank shape or choice of material and process 

parameters can yield a product with a different shape or with failures. An inaccurate shape 

is also caused by the elastic recovery after forming and tools retraction (springback 

phenomenon). The most frequent types of failure in the stamping components are 

wrinkling, necking (and subsequently tearing), scratching and orange peel [Nilsson, 2009]. 

Die

Blank holder

Blank

Punch

Punch Force

Blank holder Force
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Without the proper knowledge about the influence of process and material variables 

on the deep drawing process, it is hardly possible to design the tools adequately and make 

a correct choice concerning the blank material and lubrication conditions, to manufacture a 

product with the desired shape and performance. As a result, after the first tool design and 

choice of blank material and lubricant, an extensive and time consuming trial and error 

process is started, to determine the proper tool design and all other variables, which can 

lead to the desired product. However, this trial and error process can yield an unnecessary 

and expensive number of experimental tests, or may even require the redesign of the 

expensive tools. To reduce this waste of time and cost, computer simulation process 

modeling can be used to replace the experimental trial and error process by a virtual trial 

and error one [Nilsson, 2009]. 

Nowadays, the Finite Element Method (FEM) is used worldwide to simulate deep 

drawing processes. Nevertheless, it is important to mention that, in order to correctly 

simulate the physical deep drawing process, it is necessary to accurately describe the tools 

geometry, the material behavior, the contact with friction behavior, as well as the other 

process variables. 

The numerical simulation of sheet metal forming processes is still a complex task. 

One of the main reasons for this complexity is the fact that this type of processes is highly 

non-linear due to three main reasons. The first is the non-linear kinematic behavior 

resulting from large displacements, large rotations and large strains. The second is the non-

linear constitutive behavior of the material, due to the inelastic characteristic of 

deformations. The third is the non-linear characteristic of boundary conditions, due to the 

interaction between bodies (sheet and tools) along a contact surface that is constantly 

changing during the process. All these difficulties make the numerical simulation of sheet 

metal forming processes a complex task [Santos, 1993]. The finite element method allows 

reproducing reasonably well sheet metal forming process. However, for detailed complex 

models the computational cost is high [Skordos et al., 2005]. 

Presently, the numerical simulation accuracy and consistency does not always satisfy 

the industrial necessities, which are always more demanding in terms of time and 

complexity of the products. Therefore, an extensive research in this field is still necessary 

to decrease the existing gap between the real deep drawing process and the numerical 

predictions. The geometric description of the tools surface is one of the fundamental 
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aspects for treating the non-linear contact with friction problem, always present in the 

numerical simulation of deep drawing processes. 

1.2. Present Status of Tool Descriptions 

Different strategies for tools description in Finite Element Analysis (FEA) were 

surveyed and compared by Santos and Makinouchi (1995): 

� Analytical functions, in which the surface is modeled using an assembly of 

simple geometries (planes, cylinders, spheres and tori); 

� Parametric patches, in which the surface is described by an assembly of patches, 

e.g., by Bézier, NURBS or B-Spline parametric functions (Figure 2 (a)); 

� Mesh, in which the surface is descritized by finite element meshes (Figure 2 (b)); 

� Point data, in which the surface is defined by a collection of points regularly 

distributed in xy plane (Figure 2 (c)). 

 

  

     
(a) (b) (c) 

Figure 2. Surface descriptions used in FEA: (a) parametric description; (b) finite element mesh description; 

(c) point data description. 

 

Each of the previously mentioned methods has its own advantages (☺) and 

disadvantages (�) [Santos and Makinouchi, 1995]. 

� Analytical functions: 

☺ Fast contact search algorithms; 

� Does not allow describing tools with complex geometry. 
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� Parametric patches: 

☺ Direct and efficient data transfer between Computer Aided Design (CAD) and 

FEA; 

☺ Efficient contact search algorithms; 

� Geometry not free of gaps or C
0
 discontinuity; 

� Existence of several kinds of surface entities like Bézier, NURBS and B-Spline. It 

is important to define a standard in order to assure easy tool data compatibility. 

� Mesh: 

☺ Capable of describing any complex tool without limitations; 

� Although ensuring the C
0
 continuity of the surface, C

1
 continuity is impossible to 

reach. 

� Point data: 

☺ High speed of contact analysis; 

☺ Easy data generation for complex geometries; 

� Impossibility or difficulty in describing vertical surfaces, because points are 

generated in the xy plane in regular distribution; 

� Complex formulation to obtain tool-curvature terms. 

 

Tool surfaces described with C
0
 and C

1
 continuities are desirable and essential 

conditions for guaranteeing the efficiency of the contact algorithms, numerical stability and 

convergence speed of the simulations [Alves, 2003]. However, most FEM researchers still 

resort to polyhedral models, particularly with low order finite elements, to describe contact 

surfaces. Sometimes this can lead to large errors in curvature definition, which in turn 

affect the accuracy of the numerical simulations results. Thus, over the last years much 

research has focused on smooth local interpolations. In 1992, S. Mann et al. concluded that 

none of the triangular interpolators’ methods available at that time were satisfactory. After 

that, Loop (1994) proposed a sextic triangular Bézier patch to define a G
1
 spline surface. 

The scheme has free parameters which can be used to enforce the surface to interpolate 

given mesh vertices, but this often gives rise to undulations of the result. The degenerate 

polynomial patches by Neamtu and Pfluger (1994) attain completely local smooth 

interpolation from a triangular mesh with normal vectors given at its vertices. The 

algorithm involves free parameters also. The triangular G
1
 interpolation suggested by 
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Hahmann and Bonneau (2000) is valid for meshes of arbitrary topological type. Their 

algorithm was modified to allow completely free tangent directions of the mesh boundary 

curves (Hahmann and Bonneau, 2003). The use of polyhedral models also contributes with 

difficulties for developing efficient algorithms to solve contact problems, since they need 

to accommodate sudden changes in the surface normal field. 

The use of parametric surfaces seems the best solution to avoid problems in 

curvature definition. However, their use requires solving the information problems related 

with the communications between CAD and FEM programs [Alves, 2003]. A simple 

algorithm for interpolating discretized surfaces and recover the original geometry was 

recently proposed by Nagata (2005, 2010). This new type of surface, subsequently named 

Nagata patch, was originally developed to bridge the technical gap between CAD and 

numerical simulation. 

1.3. Aims of the Work 

The main objective of this thesis is the development and implementation of Nagata 

patches interpolation algorithms for the representation of surface geometry, either 

described by CAD or polyhedral models. In order to evaluate the Nagata interpolation it is 

also necessary to develop algorithms for error evaluation. 

Two strategies for surface interpolation will be explored: 

(1) Based only on the information available from a general polyhedral mesh 

description. This implies the exploitation of different approaches to determine 

the average normal of each vertex; 

(2) Adding to the general polyhedral mesh description the normal of each vertex, 

evaluated from CAD geometry. 

The comparison of both strategies will help to identify the best approach to determine the 

average normal of each vertex, when using only information regarding the nodes position. 

Also, strategies for evaluated the error associated to the Nagata patch interpolated 

geometry must be developed, considering the two more important errors: the shape and 

normal vector errors. Moreover, it is important to develop a procedure for Nagata patch 

visualization, allowing a qualitative error analysis. 
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1.4. Thesis Structure 

In order help the reader through the consultation of this dissertation, this section 

presents the structure of the work, as well as a brief summary of the topics covered in each 

chapter. 

Chapter 1 – Discusses the present status of the numerical simulation of sheet metal 

forming processes, with particular emphasis for the tool descriptions. Defines and 

justifies the objectives for the present work. 

Chapter 2 – Describes the distinctive features of the Nagata patch formulation as well as 

the formulations for both triangular and quadrilateral patches. 

Chapter 3 – The Nagata patch algorithms are applied to interpolate polyhedral meshes, 

used to discretize models defined by analytical functions. Thus, this section validates 

and evaluates the efficiency of the implemented algorithms. 

Chapter 4 – Presents various algorithms to approximate the normal vector at each node of 

the polyhedral mesh. These algorithms are applied to geometries with known normal 

vectors, in order to evaluate its efficiency. Afterwards, the Nagata interpolation is 

applied to the same geometries, to evaluate the influence of the accuracy of the 

normal vector in the overall Nagata patch interpolation performance. 

Chapter 5 – Describes a method to calculate the normal vector from CAD geometry. The 

CAD format file used in this work is the IGES Standard format, which allows 

retrieving the interpolation concerning NURBS surfaces. The algorithm is applied to 

deep drawing tool geometry and its efficiency is analyzed. 

Chapter 6 – Presents the proposed strategies to perform the Nagata patch visualization and 

qualitative and quantitative analysis of the interpolation. Some details concerning the 

polyhedral models generation are discussed. Base on this analysis, the chapter 

presents some guidelines for polyhedral mesh generation in order to improve the 

Nagata patch interpolation.  

Chapter 7 – Presents the summary of the main conclusions withdrawn from the work 

presented in the previous chapters. 
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2. NAGATA PATCH FORMULATION 

Nagata patch is a simple algorithm for surface interpolation recently proposed by 

Nagata (2005), using as central idea the quadratic interpolation of a curved segment, from 

the position and normal vectors at the end points. The methodology has the following 

distinctive features: 

(1) Uses the minimum degree (two) of interpolation, necessary for the surface 

curvature representation. 

(2) The approach is simple, computationally inexpensive, and hence amenable to 

various physical evaluations. The low degree is desirable especially for implicit 

contact algorithms, since closed-form solutions may be obtained. 

(3) Since the formulation accounts for discontinuity (multiplicity) of normals, sharp 

edges and singular points, as well as non-manifolds, can be treated quite easily. 

(4) The C
0
 continuity is always attained, and converges to the original surface 

rapidly with the increase in the number of patches. Hence error in the normals 

can be sufficiently small using rather few patches. 

(5) The algorithm is completely local, requiring only the position vectors and 

normals given at the vertices of each patch, hence it is suitable for parallel 

processing. 

The algorithm may be applied to either smooth or surfaces with discontinuous 

normals. However, this work will focus on its application to smooth surfaces, since 

surfaces with discontinuous normals are uncommon in tool design. 

The Nagata patch interpolation method has already been applied successfully to 

engineering problems, including: (i) high-precision machining data generation for an 

aspherical lens; and (ii) simulation of elastoplastic 3D continuum dynamics. For both types 

of problems the usage of traditional sophisticated surface descriptions is prohibited, due to 

severe tolerance as well as geometrical and physical complexity of the systems [Nagata, 

2005]. 
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The following sections describe the Nagata patch interpolation method for both 

triangular and quadrilateral patches. 

2.1. Interpolation of an Edge 

Consider a curve on a surface, as shown in Figure 3, defined by its end points 
0P  and 

1P , with position vectors 
0x , 

1x  and unit normal vectors 
0n , 

1n , respectively, given as input 

data. The interpolation of the 
0P , 

1P  edge is replaced by a curve in the form: 

 2

0 1 0( ) ( ) ,ξ ξ ξ= + − − +x x x x c c  (1) 

where ξ  is a parameter satisfying the condition 0 1ξ≤ ≤ . The derivative of the Nagata 

curve given in equation (1) is: 

 
1 0

d
( ) (2 1) ,

d

x
x x x cξ ξ

ξ
≡ = − + −  (2) 

which should be orthogonal to the normal vectors 
0n  and 

1n  at the end points 
0  ( 0)P ξ =  

and 
1  ( 1)P ξ= , i.e. satisfies the boundary conditions. The derivative of the curve gives the 

tangential direction, necessary to calculate the normal direction at each point on the Nagata 

curve. 

The coefficient c , present in equations (1) and (2), adds the curvature to the edge. 

Assuming that the curve given by equation (1) is orthogonal to the unit normal vectors 
0n  

and 
1n , the vector c  can be determined, minimizing its norm, as follows: 

 

0 1 00 1

2

1 1 0

0 1 0 1

0 1 00 0

0 1 0

( )1[ , ]
( 1)

( )11
( , , , ) ,

( )[ , ]
( 1)

( )2

a
a

aa

a

n x xn n

n x x
c x x n n

n x xn n
0

n x x

    ⋅ − −      ≠±      − ⋅ −−−     =
  ⋅ − ±   = =±   ⋅ −    ∓

 (3) 

where 
0 1a n n= ⋅ , is the cosine of the angle between the normal vectors and [ , ]a b  

represents a matrix with the first column equal to vector a  and the second equal to vector 

b . The above solution rigorously satisfies the boundary conditions for 1a ≠± . All the 

other situations are treated as singular cases ( 1)a =± . For a linear edge the interpolation is 

exact, since c  is the null vector. For the other singular cases, the interpolated curve may 
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not be perpendicular to the normal vectors 
0n  and 

1n  specified at the end points, unless 

0 1 1 0( )= ⊥ −n n x x  happens to hold.  

 

Figure 3. Edge interpolation. 

 

Polygonal patches can be interpolated through recovering the curvature of its 

boundary applying this algorithm to each edge, and then filling its interior. Thus, for each 

element, all the edges are replaced by curves, given by equation (1). In the following 

sections the process is described for triangular and quadrilateral patches, which are the 

simplest and most important examples. 

2.2. Interpolation of a Triangular Patch 

Consider the triangular patch presented in Figure 4 (a). The curvature of an element 

can be recovered by interpolating each edge with the polynomial given by equation (1). In 

case of a triangular patch, whose vertices 
1v , 

2v  and 
3v  have the position vectors 

00x , 
10x  

and 
11x , the interpolated surface is approximated by the following quadratic polynomial: 

 2 2

00 10 01 11 20 02( , ) ,η ζ η ζ ηζ η ζ= + + + + +x c c c c c c  (4) 

where x  denotes the position vector of any point on the patch, and the parameters η  and 

ζ  are defined on the surface element region, and satisfies the condition 0 1ζ η≤ ≤ ≤  (see 

Figure 4 (b)). The coefficient vectors of equation (4) are given by: 

x0

x1

O

n0

n1

P0

P1

ξ
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00 00

10 10 00 1

01 11 10 1 3

11 3 1 2

20 1

02 2

,

,

,

,

,

,

=

= − −

= − + −

= − −

=

=

c x

c x x c

c x x c c

c c c c

c c

c c

 (5) 

where 1c , 2c  and 3c  are the vectors defined by equation (3) for edges 00 10( , )x x , 10 11( , )x x  

and 00 11( , )x x  , respectively. Thus, each one of these vectors can be determined by applying 

equation (3) considering: 

 
1 00 10 00 10

2 10 11 10 11

3 00 11 00 11

( , , , ),

( , , , ),

( , , , ).

≡

≡

≡

c c x x n n

c c x x n n

c c x x n n

 (6) 

It should be mentioned that replacing 1c , 2c  and 3c  in equation (5) by zero vectors leads to 

a linear interpolation. 

Partial differentiation of equation (4) is given by the following expressions: 

 
10 11 202 ,η ζ η

η

∂
≡ = + +

∂

x
x c c c  (7) 

 
01 11 022 ,ζ η ζ

ζ

∂
≡ = + +

∂

x
x c c c  (8) 

which are required for evaluating the normal vector at any arbitrary location on the patch. 

x00

x11

x10

n11

n10

n00

O

v1

v3

v2

 

v3

v1

1

1

ζ

η

v2

0
 

(a) (b) 

Figure 4. Triangular patch interpolation: (a) sketch; (b) parameters domain. 
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2.3. Interpolation of a Quadrilateral Patch 

The quadrilateral patch represented in Figure 5 (a) is interpolated in a similar way as 

for the triangular patch. The necessary input data for the vertices 1v , 2v , 3v  and 4v  are the 

position vectors 00x , 10x , 11x  and 01x , and the unit normal vectors 00n , 10n , 11n  and 01n , 

respectively. The vertices do not need to be coplanar. The surface equation for 

quadrilateral patches is given by: 

 2 2 2 2

00 10 01 11 20 02 21 12( , ) ,η ζ η ζ ηζ η ζ η ζ ηζ= + + + + + + +x c c c c c c c c  (9) 

where the domain of the parameters η  and ζ  is defined as 0 , 1η ζ≤ ≤  (see Figure 5 (b)). 

 

x00

x11

x10

n11

n10

n00

O

v1

v3

v2
x01

n01

v4

 

v3

v1

1

1

ζ

η

v2

0

v4

 

(a) (b) 

Figure 5. Quadrilateral patch interpolation: (a) sketch; (b) parameters domain. 

 

The coefficient vectors in equation (9) are given by: 

 

00 00

10 10 00 1

01 01 00 4

11 11 10 01 00 1 2 3 4

20 1

02 4

21 3 1

12 2 4

,

,

,

,

,

,

,

,

=

= − −

= − −

= − − + + − − +

=

=

= −

= −

c x

c x x c

c x x c

c x x x x c c c c

c c

c c

c c c

c c c

 (10) 

where 1c , 2c , 3c  and 4c  are the vectors defined by equation (3) for edges 00 10( , )x x , 

10 11( , )x x , 01 11( , )x x  and 00 01( , )x x  , respectively, such as: 
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1 00 10 00 10

2 10 11 10 11

3 01 11 01 11

4 00 01 00 01

( , , , ),

( , , , ),

( , , , ),

( , , , ).

≡

≡

≡

≡

c c x x n n

c c x x n n

c c x x n n

c c x x n n

 (11) 

 

Partial differentiation of equation (9) is given by the following expressions: 

 2

10 11 20 21 122 2 ,η ζ η ηζ ζ
η

∂
≡ = + + + +

∂

x
x c c c c c  (12) 

 2

01 11 02 21 122 2 .ζ η ζ η ηζ
ζ

∂
≡ = + + + +

∂

x
x c c c c c  (13) 

It should be mentioned that the above formulation can also be extended to general 

polygonal patches. However, it is know that triangular models are the easiest to use since 

they avoid the constraints related to quadrilateral models. Also, the representation of a 

triangular patch is simpler, presenting less terms than the quadrilateral patch 

representation. Therefore, the triangular patch, with quadratic description according to 

equation (4), is regarded as the best choice to take advantage of simple interpolation 

[Nagata, 2005]. 
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3. NAGATA PATCHES APPLIED TO SIMPLE GEOMETRIES 

The algorithms for the Nagata interpolation described in the previous chapter were 

implemented in Fortran 90/95. In order to validate and analyze the developed algorithms, 

the program was tested using simple geometries with known analytical definition. 

The information required for the Nagata patch interpolation algorithm is only the 

position vector and the normal vector of each vertex. The position vectors can be 

determined creating a polyhedral model of the geometry under study, which can be 

composed by triangular or quadrilateral elements. The information needed to define the 

nodes belonging to each patch is given by the coordinates of each node and the 

connectivity of each element. It is important to mention that the surface orientation dictates 

the elements connectivity and, consequently, the normal vector orientation. In this work all 

polyhedral models were generated using GID
®

 (version 9.0.4) pre and post processor. The 

polyhedral models used in this chapter were always generated considering structured mesh 

description of the surfaces. 

In this section only geometries defined with analytical functions will be analyzed, 

since the normal vector in each node of the polyhedral model can be calculated, by 

manipulating the analytical functions defining the geometry. This allows the validation of 

the Nagata patch algorithms implemented. First, the Nagata interpolation algorithm is 

applied to describe an arc of a circle, in order to examine the error distributions in the 

approximated curve. After analyzing this geometry, in a two-dimensional space, the 

Nagata interpolation algorithm is applied to geometries in the three-dimensional space, 

namely a plane, a cylinder, a sphere and a torus. 

3.1. Geometries in 2D Space 

The only 2D geometry analyzed is the arc of a circle because, although it is a simple 

geometry, it is widely used. This type of curve is always present in the 3D surfaces that 

define the most common tools for deep drawing processes. 

The accuracy of the Nagata interpolation is evaluated based on the radial and normal 

vector errors. The Cartesian coordinates of the Nagata interpolation for the quarter-circle 
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with radius R  are given by the position vector ( )ξx , obtained applying equations (1) and 

(3) to the selected discretization. The Nagata curve approximates the quarter-circle with a 

radial error defined by: 

 analytical( ( ) )
( ) 100 [%],

r

R

R

ξ
δ ξ

− ⋅ −
= ×

x o n
 (14) 

where ξ  satisfies the condition 0 1ξ≤ ≤ , o  is the position vector of the circle center and 

analyticaln  is the unit normal vector to the quarter-circle, evaluated using the analytical 

function. This error corresponds to the dimensionless distance between the Nagata curve 

and the arc of the circle defined by the analytical function, in the radial direction. 

The Nagata curve approximates the arc of the circle with a normal vector error 

defined by: 

 1

Nagata analytical( ) cos ( ( ) ) [º ],nδ ξ ξ−= ⋅n n  (15) 

where ξ  satisfies the condition 0 1ξ≤ ≤  and Nagata ( )ξn  is the unit normal vector to the 

Nagata interpolation, perpendicular to the direction calculated using equation (2). This 

error corresponds to the angular difference between the analytical and the approximated 

normal vector (Nagata), expressed in degrees. 

Both errors can be evaluated for any ξ  value of the Nagata interpolation. Thus, in 

order to evaluate the error distribution, the domain of validity of the ξ  parameter is 

divided in 100 equal parts and the error values are evaluated in each of these points. 

3.1.1. Arc of a Circle Described by Nagata 

An arc of a unitary circle is used to analyze the error associated with the use of the 

Nagata interpolation for its description. To perform this analysis the quarter of the unitary 

circle is discretized with 1 and 2 elements. Figure 6 (a) and (b) compares the Nagata 

interpolation with the analytical function, for the case of 1 and 2 elements, respectively. 

The radial and normal vector errors distributions were also determined for the 

polynomial models. The equations used in this analysis are omitted here due to the fact that 

polyhedral models present a simple well known geometry, i.e. linear between nodes. 
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(a) (b) 

Figure 6. Interpolation of a unitary arc of a circle: (a) discretized by 1 element; (b) discretized by 2 elements. 

 

Figure 7 (a) compares the distribution of the radial error in polyhedral models 

describing a quarter of a unitary circle, with 1 and 2 elements, as shown in Figure 6. The 

evolution is presented as a function of the normalized arc length, where this parameter is 

the division of the element size by the radius of the arc of the circle. For both models, the 

maximum (negative) radial error occurs in the middle of the elements and the geometry is 

always inside the arc of a circle. The normal vector error distribution is also analyzed along 

the dimensionless arc length. Figure 7 (b) compares the distribution of the normal vector 

error obtained with the quarter of a unitary circle described by 1 and 2 elements. 

Comparing the distributions presented in Figure 7 (a) and (b) it seems that the normal 

vector error is zero at points where the radial error attains its maximum value (negative) 

and maximum at the nodes. Both errors decrease with the increasing of the number of 

elements used to describe the quarter of a unitary circle, i.e., with the decrease of the 

element size. 

Besides the nodes coordinates, it is necessary to know the normal vector in each node 

in order to apply the Nagata interpolation algorithm. The exact normal vector at each node 

can be obtained from the analytical function, as schematically shown in Figure 6. As the 

Nagata curve cannot represent accurately the arc of a circle, it is interesting to evaluate the 

interpolation error. 
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(a) (b) 

Figure 7. Errors in polyhedral models of a unitary arc of a circle: (a) radial error; (b) normal vector error. 

 

  
(a) (b) 

Figure 8. Radial error: (a) distribution at the arc of a circle for 1 and 2 elements; (b) maximum as a function 

of the edge length. 

 

The radial error for the Nagata interpolation is also studied in terms of its distribution 

along the dimensionless arc length. Figure 8 (a) compares the distribution of the radial 

error in Nagata curves for the approximation obtained with 1 and 2 elements. For both 

models, the maximum radial error occurs in the middle of the element ( 0.5ξ= ) and the 

resulting curve is always outside the circle. The maximum error attained for the model 

with 2 elements is an order of magnitude lower than the one obtained with only 1 element. 

Comparing the distributions presented in Figure 7 (a) and Figure 8 (a), for the polyhedral 

and Nagata models, respectively, it is possible to observe that the maximum error of the 
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Nagata interpolation with 1 element is similar to the one obtained with 2 elements in the 

polyhedral model. 

Figure 8 (b) shows the evolution of maximum radial error of the Nagata interpolation 

as a function of normalized edge length. It is possible to observe that the radial error 

decreases with the decrease of the normalized edge length, thus converging to the original 

geometry. This shows that the maximum radial error attained along the arc length 

decreases with the increase of the number of elements used to describe the arc, i.e., with 

the decrease of element size. Figure 8 (b) also presents the trend line between the 

maximum radial error and the normalized edge length, which shows that the order of 

convergence of the radial error for the Nagata algorithm is quartic. 

As for the radial error, the normal vector error distribution is also analyzed along the 

dimensionless arc length, according with the number of elements used to describe the 

quarter-circle. Figure 9 (a) compares the distribution of the normal vector error by the 

Nagata approximations of a quarter of a unitary circle, described by 1 and 2 elements. 

Comparing the distributions presented in Figure 8 (a) and Figure 9 (a) it seems that the 

normal vector error is zero at points where the radial error attains its maximum value, and 

of course, also at the nodes. This is related to the fact that the derivative is null for ξ  

values where the function attains a maximum (or minimum). The comparison between 

normal vector error obtained with the Nagata interpolation and the polyhedral, presented in 

Figure 7 (b) and Figure 9 (a), indicates that the maximum value for this error is always 

much smaller for the Nagata interpolation. Notice that this error is 22.5º for 2 polyhedral 

elements and 6.6º for 1 element with Nagata interpolation.  

Figure 9 (b) shows the evolution of the maximum error in the normal vector of the 

Nagata interpolation as a function of normalized edge length. The maximum error in the 

normal vector decreases with the decrease of the element size, similarly to the radial error. 

By analyzing the figure, it is possible to observe that the order of convergence of the 

normal vector error with the normalized edge length is cubic. 

The fact that each Nagata interpolation was divided in a fixed number of parts, to 

evaluate the radial and normal vector error, may explain why the correlation coefficient of 

the trend lines presented in Figure 8 (b) and Figure 9 (b) is not equal one.  
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(a) (b) 

Figure 9. Normal vector error: (a) distribution at the arc of the circle for 1 and 2 elements; (b) maximum as a 

function of the edge length. 

3.2. Geometries in 3D Space 

The 3D geometries used to study the Nagata patch interpolation are a plane, a 

cylinder, a sphere and a torus. The methodology used to analyze the interpolation of three-

dimensional geometries is to build a finite element mesh, and then apply the Nagata patch 

algorithm to each element. Thus, each element of the polyhedral model matches with a 

Nagata patch.  

The normal vector at each node of the mesh is determined from the analytical 

function of the surface under study. To evaluate the accuracy of the Nagata patch 

interpolation applied to several geometries, two types of errors are analyzed. The radial 

error is evaluated as follows: 

 Nagata analytical( ( , ) )
( , ) 100 [%],

r

r

r

η ζ
δ η ζ

− ⋅ −
= ×

x o n
 (16) 

where Nagata ( , )η ζx is the position vector of each point where the error is evaluated and o  is 

the center of the cylinder or sphere. In the case of the torus o  is the center of the minor 

radius cross section that contains the Nagata ( , )η ζx  point. The unit normal vector, calculated 

using the analytical function of the geometry, is denoted by analyticaln  and r  is the radius of 

the cylinder or sphere, or the minor radius, in case of the torus. This error corresponds to 
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the dimensionless distance between a point of the Nagata patch and the analytical surface, 

in radial direction. The other type of error considered is the normal vector error, given by: 

 1

Nagata analytical( , ) cos ( ( , ) ) [º ],nδ η ζ η ζ−= ⋅n n  (17) 

where Nagata ( , )η ζn  is the unit normal vector of the Nagata patch, for each point of the 

patch where the error is evaluated. This error corresponds to the angle between the exact 

normal, obtained from the analytical function, and the normal vector of the Nagata patch, 

expressed in degrees. In the next subsections, these errors are analyzed for the selected 3D 

geometries, described by either triangular or quadrilateral patches. 

In order to aid the analysis of the results, error distributions are plotted on the 

surfaces defined by analytical functions. This analysis is done by building a very fine mesh 

on the analytical surface under study and assigning the Nagata patch errors determined, to 

each node. The Nagata patch errors are determined for a very fine grid of points, which is 

build over the patch considering a uniform distribution in the parametric space. At each 

grid point the radial and normal vector errors are calculated using the equations (16) and 

(17), respectively. The correspondence between the grid points and the nodes of the 

polyhedral fine mesh defined for the analytical surface is made through the minimum 

distance between the point and the node. Although, this strategy may not lead to a one to 

one correspondence, between the Nagata grid points and the mesh, it allows visualizing the 

errors distributions. 

3.2.1. Interpolation Applied to a Plane 

The first geometry studied in the three-dimensional space is the plane, since this is 

simplest geometry. The study was performed for both triangular and quadrilateral patches. 

The plane considered for the analysis has a unitary length and width, i.e. it is a unit square. 

3.2.1.1. Triangular and Quadrilateral Patches 

Figure 10 presents the triangular and quadrilateral polyhedral models used to 

describe the plane. The quadrilateral mesh considers a uniform division of the each side of 

the square in three elements, while the triangular mesh is obtained from the quadrilateral 

mesh by replacing each quadrilateral element with four triangular elements. 
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(a) (b) 

Figure 10. Plane described by: (a) triangular elements; (b) quadrilateral elements. 

 

The normal vectors at each node are determined using the analytical function of the 

plane. For this geometry, all normal vectors have the same direction, which leads to the 

singular case ( 1a = ± ) for vector c  in equation (3). Thus, coefficients 20c  and 02c  in 

equations (5) and (10), as well as, 11c  in equation (5), 21c  and 12c  in equation (10) are null. 

This means that the equations for the case of triangular and quadrilateral patches applied to 

the plane, obtained from the equations (4) and (9), simplify to: 

 
00 10 00 11 10( , ) ( ) ( ) ,η ζ η ζ= + − + −x x x x x x  (18) 

 
00 10 00 01 00 11 10 01 00( , ) ( ) ( ) ( ) ,η ζ η ζ ηζ= + − + − + − − +x x x x x x x x x x  (19) 

where it is visible that the application of Nagata patch algorithms leads to a linear 

interpolation, which for this geometry leads to the exact geometry. Therefore, the Nagata 

patches describes the plane accurately, regardless of the type and number of elements used 

in the approach. 

The implemented Nagata patch algorithms were applied to the polyhedral models 

present in Figure 10 and the geometrical error distribution is shown in Figure 11. As 

expected, the distance between the Nagata patch interpolation and the plane (geometrical 

error) is always zero. 

 

Geometrical error 

   
Triangular patches Quadrilateral patches 

Figure 11. Geometrical error on the plane. 
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3.2.2. Interpolation Applied to a Cylinder 

A cylindrical geometry corresponds to a circle extruded along the normal direction to 

the circle plane. Thus, it presents curvature only in one direction. The cylinder used to 

evaluate the accuracy of the Nagata patch algorithm has a unitary base radius and a height 

of two. Figure 12 presents the triangular and quadrilateral polyhedral models used to 

describe the lateral surface of the cylinder, the one that is analyzed in this study. The 

quadrilateral meshes consider a uniform division of the circle in 8 and 12 elements, for 

meshes 1 and 2, respectively, and 3 elements in the longitudinal direction. The triangular 

meshes are obtained from the quadrilateral meshes by replacing each quadrilateral element 

with four triangular elements. The main features of the polyhedral models are show in the 

Table 1. 

 

    
Mesh 1 Mesh 2 Mesh 1 Mesh 2 

(a) (b) 

Figure 12. Cylinder described by: (a) triangular elements; (b) quadrilateral elements. 

 

Table 1. Main characteristics of the meshes used to describe the cylinder. 

Mesh characteristic 
Triangular mesh Quadrilateral mesh 

Mesh 1 Mesh 2 Mesh 1 Mesh 2 

Number of elements 96 144 24 36 

Number of nodes 56 84 32 48 

Maximum edge length 0.765 0.667 0.765 0.667 

Maximum element area 0.135 0.090 0.510 0.345 
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3.2.2.1. Triangular Patches 

In this section the analysis is perform for the polyhedral models of Figure 12 (a). 

Meshes 1 and 2 are compared in terms of radial and normal vector errors, in order to study 

the influence of the mesh size in the interpolation error. Figure 13 presents the error 

distributions obtained for both Nagata patch interpolations. 

 

Radial error (δr) [%] 

   
Mesh 1 Mesh 2 

Normal vector error (δn) [º] 

   
Mesh 1 Mesh 2 

Figure 13. Radial and normal vector errors on the triangular patches for the cylindrical surface. 

 

One of the characteristics observed for both models is that the radial error is always 

positive, i.e. Nagata patches are always outside the cylindrical analytical surface. This was 

also observed in the Nagata interpolation of the quarter-circle. The maximum radial error 

always occurs in the middle of the edges perpendicular to the axial direction of the 

cylinder, thus showing the same trend as the case of the circle interpolation. The maximum 

error for mesh 1 is 0.314% while for the mesh 2 is only 0.060% (see Figure 13). The radial 

error decreases with mesh refinement, i.e. by increasing the number of elements in the 

curve direction of the cylinder. Note that the maximum radial error is independent of the 

number of elements in the axial direction, since it occurs at the edges perpendicular to the 

axial direction of the cylinder. 
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Figure 13 also presents the normal vector error distribution for both discretizations. 

Here also the normal vector error attains its maximum at the element edges, perpendicular 

to the axial direction of the cylinder, showing a similar trend to the circle interpolation, 

with two maximum values for each patch (see Figure 9 (a)). The maximum error for the 

mesh 1 is 1.10º while for the mesh 2 is 70% lower (0.25º) (see Figure 13). 

To understand the influence of the number of elements in the axial direction, the 

distribution of both errors is also analyzed along the cross section A-A, in mesh 1, shown 

in Figure 14 (a). Figure 14 (b) shows both radial error and normal vector error along the 

axial direction of the cylinder with height two. In this cross section the radial error is 

described by a parabola, with a minimum null value for each node and a maximum value 

(0.314%) in the middle of the edge intersected by the cross section. The normal vector 

error presents a linear evolution in each patch. This is because the normal vector is related 

to the partial derivatives of the surface (see equations (7) and (8)). As the derivative of a 

parabola is a straight line then the normal vector error presents a linear behavior in each 

patch. 

 

  
(a) (b) 

Figure 14. Errors in the cylindrical surface described by triangular patches: (a) localization of the cross 

section A-A; (b) radial and normal vector errors in the cross section A-A. 

 

Since the analytical normal vector is constant for cross section A-A, the normal 

vector error presents a linear distribution. Figure 14 (b) also allows to estimate the 

influence of the number of elements used to describe the cylinder in the axial direction. 

The maximum radial error is not influenced by this number, since it is determined only by 

the number of elements in the circumferential direction. When the number of elements in 
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the axial direction decreases, the parabolic function describing the radial error widens 

along the height of the cylinder (maintaining the maximum and minimum values). Since 

the parabola widens, the maximum derivative decreases and, therefore, the maximum 

normal vector error also decreases. This is shown in Figure 15, where the results for the 

cross section A-A, with only 2 elements in the axial direction, are shown. These are the 

reasons why, in this case, it was conclude that with the decrease in the number of elements 

in the axial direction, the normal vector error decreases. 

 

  
(a) (b) 

Figure 15. Errors in the cylindrical surface described by 2 elements in axial direction: (a) localization of the 

cross section A-A; (b) radial and normal vector errors in the cross section A-A. 

3.2.2.2. Quadrilateral Patches 

In this section, the error of the Nagata patch interpolation with quadrilateral elements 

is analyzed. Both quadrilateral element meshes shown in Figure 12 (b) are studied. Figure 

17 presents the error distributions obtained for both Nagata patch interpolations. Due to the 

mesh symmetry in the axial direction, both the radial and the normal vector error present 

the same distribution in any cross section to the cylinder axis. Therefore, only a cross 

section is analyzed, since all other cross sections present the same behavior. This cross 

section corresponds to the arc of circle, already analyzed in section 3.1.1. Notice that mesh 

1 corresponds to the division of the arc of the circle studied in section 3.1.1 with 2 

elements (normalized edge length of 0.78) and mesh 2 with 3 (normalized edge length of 

0.52).  

For the lateral cylindrical surface described by quadrilateral patches, the maximum 

radial error in the mesh 1 and 2 is 0.314% and 0.060%, respectively, as show in Figure 16. 

The maximum normal vector error is 0.703º and 0.202º for the meshes 1 and 2, 
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respectively. Figure 8 and Figure 9 with Figure 16 indicates that the radial error and the 

normal vector error distributions are the same in the arc of a circle and any cross section to 

the cylinder axis, when this is described by quadrilateral elements. Thus, as expected, 

when using quadrilateral patches to describe the cylinder the number of elements along the 

axial direction presents no influence in the approximation. The order of convergence to the 

analytical cylindrical surface is dictated only by the mesh description in the circumferential 

direction and is the same of the arc of a circle. As shown in Nagata (2005, 2010) the order 

of convergence is quartic. 

 

Radial error (δr) [%] 

   
Mesh 1 Mesh 2 

Normal vector error (δn) [º] 

   
Mesh 1 Mesh 2 

Figure 16. Radial and normal vector error on the quadrilateral patches for the cylindrical surface. 

3.2.2.3. Comparison between Triangular and Quadrilateral Patches 

In order to compare the triangular and quadrilateral Nagata patch interpolation, error 

histograms were calculated for mesh 1, using the error values determined at each grid 

point. The radial error histogram obtained for the triangular and quadrilateral patches is 

presented in Figure 17 (a). It is clear that, although the maximum radial error is the same, 

the distribution is different for the two types of patches. While the cylinder described by 

triangular patches has about 80% of their points with a radial error of less than 0.01%, the 

model described by quadrilateral patches has only 34% of their points with this range of 
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error. This difference is due to the higher number of nodes present in the triangular mesh 

compared with the quadrilateral mesh (see Table 1), which leads to more information for 

the Nagata patch algorithm. Thus, it seems that a parameter like the maximum element 

area would be more appropriate for comparing the discretizations. 

The normal vector error presents a different behavior. Although the maximum value 

of the normal vector error is higher for the triangular patches, the average value is lower. 

While the cylinder described by triangular patches has about 50% of its points with a 

normal vector error less than 0.1º, the model described by quadrilateral patches has only 

9% of its points within this error range (see Figure 17 (b)). 

 

  
(a) (b) 

Figure 17. Comparison between triangular and quadrilateral patches for the mesh 1 of the cylinder: (a) 

radial error; (b) normal vector error. 

3.2.3. Interpolation Applied to a Sphere 

The first closed surface analyzed is the spherical geometry, where the sphere used to 

evaluate the accuracy of the Nagata patch algorithm has unit radius. The construction of 

structured quadrilateral meshes on the sphere geometry requires the division of the 

triangular surfaces, which define each eighth, in three surfaces, each one with four sides. 

This adds additional constrains to the mesh generation. Thus, mesh 1 is characterized, in 

both polyhedral models, by presenting 2 elements along each quarter arc circle. Mesh 2 

presents 3 elements along this arc, when using triangular elements. However, when using 

quadrilateral elements an even number is mandatory. Thus, in that case, mesh 2 presents 4 

elements. Although, these results in different maximum edge length, for mesh 1 and 2, the 

maximum element area is similar for triangular and quadrilateral models. 
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 Figure 18 presents the triangular and quadrilateral polyhedral models used to 

describe the spherical surface. Both meshes are symmetrical relatively to the three 

orthogonal cross sections of the sphere. The main features of the polyhedral models are 

show in the Table 2. 

 

    
Mesh 1 Mesh 2 Mesh 1 Mesh 2 

(a) (b) 

Figure 18. Sphere described by: (a) triangular elements; (b) quadrilateral elements. 

 

Table 2. Main characteristics of the meshes used to describe the sphere. 

Mesh characteristic 
Triangular mesh Quadrilateral mesh 

Mesh 1 Mesh 2 Mesh 1 Mesh 2 

Number of elements 32 72 24 96 

Number of nodes 18 38 26 98 

Maximum edge length 1.00 0.707 0.765 0.390 

Maximum element area 0.433 0.194 0.461 0.145 

 

3.2.3.1. Triangular Patches 

To study the influence of the mesh size in the Nagata patch algorithm, the radial and 

normal vector errors distributions, obtained for the models presented in Figure 18 (a) are 

shown in Figure 19. 

The maximum value of both errors (radial and normal vector) always occurs in the 

middle of the edge with highest length, regardless of its orientation, since the sphere 

presents the same curvature in all points. The analysis of Figure 19 indicates that the 

normal vector error presents the same distribution as the radial error, reaching the 

maximum value in the same locations.  

Mesh 1 has a maximum radial error of 1.03% and a minimum of -0.21%, while the 

range of the radial error for mesh 2 is only from -0.01% to 0.22%. These radial error 

ranges can be observed in Figure 20 (a), which presents the error histogram, calculated 
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using the error values determined for each grid point. It is possible to observe that, 

although the error range diminishes, both meshes present a similar distribution. Figure 20 

(b) presents the normal vector error histogram, where it is possible to observe that the 

maximum error value obtained for the mesh 1 and 2 are 5.1º and 1.5º, respectively. Both 

the radial and normal vector errors decrease with the increase of the number of elements, 

i.e. with the decrease of the maximum edge length. 

 

Radial error (δr) [%] 

  
 Mesh 1 Mesh 2 

Normal vector error (δn) [º] 

  
 Mesh 1 Mesh 2 

Figure 19. Nagata patch error distributions for the sphere described by triangular elements. 

 

  
(a) (b) 

Figure 20. Error distribution in the sphere described by triangular elements: (a) radial error; (b) normal 

vector error. 
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Triangular Nagata patches can also be applied to describe the quadrilateral meshes 

presented in Figure 18 (b), applying two patches to describe each quadrilateral element of 

the mesh. The division of the quadrilateral element into two triangular elements was 

performed always with the goal of minimizing the maximum edge length. Thus, the 

division was made using the smallest diagonal of the quadrilateral element. Applying this 

strategy to the quadrilateral models, mesh 1 is represented by 48 triangular patches and 

mesh 2 by 192, which corresponds to the double of the quadrilateral elements indicated in 

Table 2. The maximum edge length increases when compared with the one of the 

quadrilateral model. However, the maximum element area is half the value indicated in 

Table 2 for the quadrilateral models. 

The errors distributions are shown in Figure 21, for mesh 1 and 2, respectively. The 

maximum value of both errors always occurs on the “virtual” edge, which is the one with 

higher length and the radial error is mostly positive. These results are consistent with the 

ones obtained using triangular patches to describe triangular polynomial models. The 

results indicate that the order of convergence to the analytical surface is dictated by the 

maximum edge length, whatever the type of polynomial model used to interpolate 

triangular Nagata patches. 

 

[%] Radial error (δr) [%] 

 
  

 Mesh 1 Mesh 2 

[º] Normal vector error (δn) [º] 

 
  

 Mesh 1 Mesh 2 

Figure 21. Nagata patch error distributions on the triangular patch for the sphere discretized by 

quadrilateral elements. 
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3.2.3.2. Quadrilateral Patches 

In this section the analysis is performed for the polyhedral models of Figure 18 (b), 

using quadrilateral Nagata patches to make the surface interpolation. The error 

distributions obtained for the quadrilateral patches are shown in Figure 22, for the mesh 1 

and 2. 

 

[%] Radial error (δr) [%] 

 
  

 Mesh 1 Mesh 2 

[º] Normal vector error (δn) [º] 

 
  

 Mesh 1 Mesh 2 

Figure 22. Radial and normal vector errors on the quadrilateral patches when the sphere is described by 

quadrilateral elements. 

 

The analysis of Figure 22 indicates that the radial error, when applying quadrilateral 

patches, always presents higher negative values than positive. The areas with negative 

error are located in the central area of the patches, as shown in the same figure. In the same 

figure it is observed that the positive radial error is located near the edges of the elements, 

taking the maximum value in the middle of the edge with highest length. The normal 

vector error has its maximum value in the region where the maximum radial error is 

positive, showing the same type of distribution as the sphere described with triangular 

elements. In fact, the normal vector error distribution presents a similar range for the 

models described with triangular or quadrilateral patches. This seems to indicate that this 

error is mainly dictated by the maximum edge length, or the number of nodes. However, 
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unlike triangular patches, quadrilateral patches present a zone with a greater negative radial 

error. 

In order to better understand the difference between the two types of patches, the 

following section presents a direct comparison between triangular and quadrilateral Nagata 

patches. 

3.2.3.3. Comparison between Triangular and Quadrilateral Patches 

A direct comparison between triangular and quadrilateral patches was perform using 

the quadrilateral models, mesh 1 and mesh 2, presented in Figure 18 (b). Figure 23 presents 

the radial error distribution for mesh 1 (Figure 23 (a)) and mesh 2 (Figure 23 (b)). For both 

polyhedral models, the modulus of the maximum radial error tends to be slightly higher for 

the triangular interpolation. For quadrilateral interpolations the radial error tends to be 

negative, while for triangular interpolations this error tends to be positive. This means that 

triangular interpolations tend to describe a surface exterior to the sphere while quadrilateral 

interpolations describe a more interior surface. For both polyhedral models, the radial error 

distribution is narrower for triangular interpolations than for quadrilateral interpolations, 

since for quadrilateral interpolations the radial error distribution is more uniform over the 

Nagata patches [Neto et al., 2010a]. 

 

  
(a) (b) 

Figure 23. Radial error distribution for the spherical surface discretized with quadrilateral elements: (a) 

mesh 1; (b) mesh 2. 

 

The comparison of Figure 21 and Figure 22 indicates that the normal vector error 

distributions are different for both approaches. To analyze these differences, Figure 24 

presents the normal vector error distribution for mesh 1 (Figure 24 (a)) and mesh 2 (Figure 
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24 (b)). For both polyhedral models, the distribution presents a lower average value for 

triangular interpolations. Thus, the normal vector error distribution is more uniform over 

the quadrilateral Nagata patches. 

This comparison seems to indicate that the normal vector error is mainly dictated by 

the number of nodes, whatever the type of Nagata patches used. The geometrical error, 

evaluated using the radial error, depends on the type of Nagata patch used. In case of this 

closed surface with constant curvature, quadrilateral patches interpolation is closer to the 

polynomial model, presenting a radial error that tends to be negative, while triangular 

patches interpolations presents a more positive trend. 

 

  
(a) (b) 

Figure 24. Normal vector error distribution for the spherical surface discretized with quadrilateral elements: 

(a) mesh 1; (b) mesh 2. 

3.2.4. Interpolation Applied to a Torus 

The second closed surface used to evaluate the accuracy of the Nagata patch 

algorithm is a torus, with major and minor radii of 2R =  and 1r = , respectively. The ring 

torus ( R r> ) is characterized by having regions of elliptic, parabolic, and hyperbolic 

points, which make it more complex than the sphere. Figure 25 presents the triangular and 

quadrilateral polyhedral models used to describe the torus surface. Both quadrilateral 

meshes consider a uniform division of the circle entered in the minor and major radius 

cross section of the torus in 8 and 12 elements, for the meshes 1 and 2, respectively. The 

triangular meshes are obtained from the quadrilateral meshes by replacing each 

quadrilateral element with four triangular elements. The main features of the polyhedral 

models are show in Table 3. 
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Mesh 1 Mesh 2 Mesh 1 Mesh 2 

(a) (b) 

Figure 25. Torus described by: (a) triangular elements; (b) quadrilateral elements. 

 

Table 3. Main characteristics of the meshes used to describe the torus. 

Mesh characteristic 
Triangular mesh Quadrilateral mesh 

Mesh 1 Mesh 2 Mesh 1 Mesh 2 

Number of elements 256 576 64 144 

Number of nodes 128 288 64 144 

Maximum edge length 2.3 1.55 2.3 1.55 

Maximum element area 0.566 0.238 1.65 0.784 

3.2.4.1. Triangular Patches 

In this section the analysis is performed for the polyhedral models of Figure 25 (a). 

Meshes 1 and 2 are compared in terms of radial and normal vector errors, in order to study 

the influence of the mesh on the interpolation error. Figure 26 presents the error 

distribution for both models. 

The maximum radial error always occurs in the middle of the edges aligned with the 

major radius direction of the torus, while the minimum negative value of the error is 

located in the center of the element with largest area, defined by these edges. The 

maximum and minimum errors for the mesh 1 are 1.228% and -0.664%, respectively, 

while for the mesh 2 the range is from -0.215% to 0.318%, as shown in Figure 26. For both 

the cylinder and the sphere it was observed that the use of triangular patches to describe the 

geometry, always led to a radial error with a higher positive trend than negative. For the 

torus, although the absolute positive value of the radial error is higher than the negative, 

the trend of the negative error is higher than in the previously studied geometries. This 

increase in the range of the radial error seems to be related with the changes in curvature in 

the geometry. The analysis of Figure 26 indicates that, in order to reduce the maximum 

radial error it is necessary to increase the number of elements in the major radius direction, 
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i.e. larger number of divisions of the circle corresponding to the major radius cross section 

of the torus. 

Also, the normal vector error attains its maximum in the elements that contain edges 

aligned with the major radius direction, as shown in Figure 26. The maximum error for 

mesh 1 is 9.6º while for mesh 2 is 3.9º. However, it is important to mention that 50% of the 

elements have an error below 1º and 0.3º for mesh 1 and 2, respectively. The analysis of 

the radial and normal vector error distributions indicates that, in order to reduce the 

extreme values of error, the mesh must have more elements in the major radius direction. 

This will distribute the error more uniformly over the Nagata patches. 

 

[%] Radial error (δr) [%] 

 
  

 Mesh 1 Mesh 2 

 [º] Normal vector error (δn) [º] 

 
  

 Mesh 1 Mesh 2 

Figure 26. Radial and normal vector errors on the triangular patches used to describe the torus. 

3.2.4.2. Quadrilateral Patches 

In this section, the error associated to Nagata patch interpolation of the torus 

discretized with quadrilateral elements is analyzed. Both quadrilateral element meshes, 

shown in Figure 25 (b), are studied. Figure 27 shows the radial and normal vector error 

distributions on the quadrilateral patches, for mesh 1 and 2, respectively. 

For mesh 1 the radial error range is from -2.42% to 2.36% while for the mesh 2 the 

range is only from -0.547% to 0.522%, as shown in Figure 27. For both meshes, the 

patches with negative error are located in the region far from the axis of the torus, where 
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the geometry is concave in all directions. These results are consistent with the ones 

obtained for the sphere, which is also concave in all directions. The maximum (positive) 

radial error is located in the region where the principal curvatures have opposite signs, i.e. 

at hyperbolic points. 

The normal vector error reaches its maximum value at the edges with higher length, 

of elements with negative radial error, as observed in Figure 27. The maximum value is 

9.1º and 3.1º for meshes 1 and 2, respectively. Mesh 1 presents an error less than 4.55º and 

mesh 2 of 1.55º, in all hyperbolic points of the torus surface, i.e. half the maximum value. 

The analysis of the figure indicates that the normal vector error attains its maximum value 

in the region where the radial error alters from positive to negative, where the surface is 

elliptic and the edge length is higher. It is interesting to notice that, for the torus, the 

normal vector error range for triangular and quadrilateral patches is similar, being slightly 

higher for the triangular patches. However, its distribution is quite different. Thus, in order 

to analyze the distributions, in the following section a comparison between all meshes, 

used to represent the torus surface with Nagata patches, is performed. 

 

[%] Radial error (δr) [%] 

 
  

 Mesh 1 Mesh 2 

 [º] Normal vector error (δn) [º] 

 
  

 Mesh 1 Mesh 2 

Figure 27. Radial and normal vector errors on the quadrilateral patches used to describe the torus. 
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3.2.4.3. Comparison between Triangular and Quadrilateral Patches 

All the polyhedral models shown in Figure 25, applied to describe the torus, were 

used to perform a comparison between triangular and quadrilateral patches. Figure 28 

presents the radial error distribution in all meshes used to describe the torus surface, 

calculated using the error values determined at each grid point. It is observed that mesh 1, 

with the application of quadrilateral Nagata patches, is clearly the worst approximation due 

to the smaller number of nodes used in the discretization of the model (cf. Table 3), and 

therefore less information is available for the Nagata interpolation algorithm. Except for 

this model, the remaining interpolations present more than 90% of their grid points with an 

error range of less than 1%. 

 

 

Figure 28. Radial error distribution on the Nagata patches used to describe the torus surface. 

 

The maximum normal vector error tends to be slightly higher for triangular meshes 

in comparison with quadrilateral meshes, as observed in Figure 27. In order to highlight the 

differences, Figure 29 presents the normal vector error, cumulative distribution, for all 

meshes used to describe the torus surface. It is observed that, although the triangular 

meshes have two times more nodes than the quadrilateral meshes, the maximum error is 

approximately the same. The worst approximations are always obtained with mesh 1, for 

which the quadrilateral Nagata patches present a more uniform error distribution. The 

increase in the number of nodes clearly increases the amount of grid points with a lower 

normal vector error. Both mesh 2 models, present more than 90% of their grid points with 

an error less than 1%. However, for triangular patches, approximately 50% of the grid 
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points have an error inferior to 0.2% while, for quadrilateral patches, only 7.5% of the grid 

points present that error range. 

 

 

Figure 29. Normal vector error distribution on the Nagata patches used to describe the torus surface. 
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4. VERTEX NORMAL VECTOR ESTIMATIVE 

Typically, when a surface is approximated by a polyhedral mesh, only the vertex 

positions are known. However, the Nagata interpolation algorithm requires the knowledge 

of the normal vector for each vertex (node), as highlighted in equation (3). Thus, it is 

important to develop a strategy that allows for vertex normal vector estimative, based on 

the information available in the polyhedral model. In this section some algorithms for 

approximation of vertex normal vector are presented and analyzed. 

4.1. Vertex Normal Algorithms 

The vertex normal vector is typically taken as a weighted sum of the normal vectors 

of the planes defined by the reciprocal edges of the vertex. If n  edges of the polyhedral 

mesh are defined with vertex j , the estimative of the normal vector of vertex j  involves 

the determination of the normal vector, n , for each of the n  planes. Figure 30 presents the 

notation used to define the reciprocal edges as well as the normal vectors of each plane, 

when evaluating the normal vector of vertex j . 

The methods presented in this section differ substantially from each other, but they 

all share the notion of weighting adjacent elements normal vectors [Jin et al., 2005]. 

 

  
Figure 30. Notation used to calculate the normal vector at vertex j . 
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4.1.1. Mean Weighted Equally  

The algorithm to estimate the vertex normal vector presented in this subsection was 

introduced by H. Gouraud, in 1971. This algorithm will be referred to as the mean 

weighted equally (MWE) algorithm, since the normal vector is determined as [Gouraud, 

1971]: 

 
MWE

1

,
n

i

i=

∑n n�  (20) 

where 
in  is the normal vector of the plane (element) i  and the summation is over all the n  

planes (elements) defined by vertex j  (cf. Figure 30). The symbol � indicates that the 

calculated vector is parallel to the vertex normal vector, since the normal vector is always 

unitary. 

4.1.2. Mean Weighted by Angle 

While Gouraud (1971) suggested equal weights, in 1998 G. Thürmer and C. 

Wüthrich proposed as weights the planes (elements) angles at the vertex. Defining as 
iα  

the angle between the two edge vectors 
ie  and 1i+e  of plane (element) i  sharing the vertex 

(see Figure 30), the normal vector of the vertex is determined as [Thürmer and Wüthrich, 

1998]: 

 
MWA

1

.
n

i i

i

α
=

∑n n�  (21) 

This will be referred as the mean weighted by angle (MWA) algorithm. 

4.1.3. Mean Weighted by Sine and Edge Length Reciprocals 

The next four algorithms were introduced by N. Max, in 1999. The first algorithm, 

referred as the mean weighted by sine and edge length reciprocals (MWSELR), takes into 

account the differences in size of the adjacent edges to the vertex, assigning larger weights 

to smaller edges and higher angles between the two edge vectors. The normal vector to the 

vertex is determined as [Max, 1999]: 

 
MWSELR

1 1

sin( )
,

n

i i

i i i

α

= +

∑
n

n
e e

�  (22) 
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where 
in , 

ie , 1i+e  and 
iα  as defined in the previous section. 

4.1.4. Mean Weighted by Areas of Adjacent Triangles 

The second algorithm, proposed by Max (1999), incorporates the area of the triangle 

formed by the two edges of each plane (whether the element is triangular or not) incident 

on the vertex. Thus, this algorithm assigns larger weights to elements with larger area. The 

vertex normal vector is estimated using the following expression: 

 
MWAAT 1 1

1 1

sin( ) ,
n n

i i i i i i i

i i

α+ +
= =

= ⊗∑ ∑n n e e n e e�  (23) 

where 
in , 

ie , 1i+e  and 
iα  were defined in section 4.1.2 and ⊗  represents the cross product 

of two vectors. This algorithm will be referred as the mean weighted by areas of adjacent 

triangles (MWAAT). 

4.1.5. Mean Weighted by Edge Length Reciprocals 

Max (1999) also proposes to remove the sine factor in equation (22), which leads to 

an estimate of the vertex normal vector given as: 

 
MWELR

1 1

,
n

i

i i i= +

∑
n

n
e e

�  (24) 

where 
in , 

ie , 1i+e  are defined as in equation (21). This algorithm will be referred as the 

mean weighted by edge length reciprocals (MWELR) and assigns larger weights to smaller 

edges. 

4.1.6. Mean Weighted by Square Root of Edge Length Reciprocals 

The last algorithm proposed by Max (1999) is similar to the MWELR, with the 

addition of a square root: 

 
MWRELR

1 1

,
n

i

i
i i

= +

∑
n

n
e e

�  (25) 

where 
in , 

ie , 1i+e  are defined as in equation (21). This will be referred as the mean 

weighted by square root of edge length reciprocals (MWRELR) algorithm. 
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4.2. Algorithms Applied to Simple Geometries  

In order to evaluate the efficiency of the vertex normal vector estimate algorithms 

presented in the previous section, they were applied to the simple geometries used in the 

previous chapter. The geometries chosen are the cylinder, as an open surface, and the 

sphere and the torus, as closed surfaces. Both triangular and quadrilateral polyhedral 

descriptions are used and compared in this analysis. For both models, the normal vector 

approximation algorithms are applied for each node, and the error in the normal vector 

approximation is evaluated. This error is determined, for each node of the mesh, using the 

following definition: 

 1

analytical algorithmiccos ( ) [º ],θ −= ⋅n n  (26) 

where algorithmicn  is the unit normal vector, evaluated using the different algorithms 

previously presented, and analyticaln  is the unit normal vector to the surface, evaluated using 

the analytical function. Thus, this error calculated only in the nodes of the mesh, 

corresponds to the angular difference between the analytical and the approximated normal 

vectors, expressed in degrees. 

4.2.1. Algorithms Applied to the Cylinder  

Both polyhedral models shown in Figure 12 are used to evaluate the efficiency of the 

algorithms. The models with quadrilateral elements, shown in Figure 12 (b), present the 

same characteristic of having elements that share the same node arranged symmetrically 

and all of them with the same dimensions and shape. Therefore, all the algorithms will lead 

to the same normal vector estimative, at each node, which is equal to the analytical normal 

vector value. For these reasons this results are not presented here.  

The triangular meshes presented in Figure 12 (a) have elements with different shapes 

and areas. The nodes are shared by a different number of elements, depending on their 

position in the mesh. The error in the normal vector approximation, obtained using the 

various algorithms applied to mesh 2, is shown in Figure 31. For all approaches, the 

maximum error is always located on the boundaries of the cylinder geometry, where the 

nodes are shared by fewer elements. Except for the boundary nodes, the normal vector 

approximation error is less that 0.6º. 
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Figure 31. Normal vector approximation error attained for each algorithm applied to mesh 2 of the cylinder. 

 

Figure 32 presents the maximum normal vector approximation error for both 

triangular meshes (mesh 1 and mesh 2) of the cylinder. In both meshes the maximum error 

occurs in the boundary nodes such as show in Figure 31. 

 

 

Figure 32. Maximum normal vector approximation error for the various algorithms applied to the cylinder 

described with triangular elements. 

 

The analysis of Figure 32 indicates that all algorithms give, approximately, the same 

maximum normal vector error in the nodes of the boundary and that the error is higher 
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surface (lateral surface of the cylinder) highlights the difficulty to obtain good 

approximations for nodes located on the boundaries. 

4.2.2. Algorithms Applied to the Sphere  

All polyhedral models of the sphere, shown in Figure 18, are used to compare the 

normal vector approximation algorithms. For both triangular and quadrilateral polyhedral 

models, mesh 1 presents complete symmetry of elements arrangement, as shown in Figure 

18. Each node of these meshes is shared by a set of elements symmetrically distributed 

and, consequently, all the algorithms give a normal vector approximation equal to the 

analytical normal vector value. Therefore, these two meshes correspond to a particular 

case, and their results are not shown here. 

The normal vector algorithms were applied to mesh 2 polyhedral models and the 

normal vector approximation error was determined, for each node. The results are shown 

in Figure 33 and Figure 34, for triangular and quadrilateral meshes, respectively. 

Figure 33 shows that, for the triangular mesh, the maximum error always occurs on 

the same nodes, regardless of the algorithm used. Except for the MWA algorithm, the 

quadrilateral mesh has the maximum error located always in the same nodes of the mesh, 

as shown in Figure 34. The different results obtained with the MWA for triangular and 

quadrilateral meshes can be related to the fact that, for the quadrilateral mesh the 
iα  angle 

is higher than for the triangular mesh and can be higher or lower than 90º. Therefore this 

method seems to be more suitable for polyhedral descriptions with smaller angles (always 

less than 90º). In both polyhedral models there are nodes with zero or very low error 

values, corresponding to nodes that are shared by elements that have a symmetrical 

distribution. 

Figure 35 shows the maximum angular error between the analytical and the 

approximated normal vector, attained for each algorithm. Globally, the triangular mesh 

description leads to higher error values, except for the MWA. The MWSELR algorithm 

leads a zero error for both types of polyhedral descriptions, which is probably due to the 

fact that the edges size and angle present inverse weights in equation (22) [Neto et al., 

2010b]. In fact, since both models were built using a structured mesh generation algorithm 

the MWAAT, MWELR and MWRELR present similar results to the MWE.  

 



 

Development and Implementation of 

Vertex Normal Vector Estimative  Nagata Patches Interpolation Algorithms 

 

 

44  Diogo Mariano Simões Neto 

 

 

 

 

   

θ [º] 

 

MWE MWA MWSELR 

   

MWAAT MWELR MWRELR 

Figure 33. Normal vector approximation error attained for each algorithm applied to triangular mesh 2 of 

the sphere. 
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Figure 34. Normal vector approximation error attained for each algorithm applied to quadrilateral mesh 2 

of the sphere. 

 



 

Development and Implementation of 

Nagata Patches Interpolation Algorithms  Vertex Normal Vector Estimative 

 

 

Diogo Mariano Simões Neto  45 

 

 

Figure 35. Maximum normal vector approximation error for the various algorithms applied to the sphere. 

4.2.3. Algorithms Applied to the Torus  

All the polyhedral models of the torus, presented in Figure 25, are used to analyze 

the normal vector approximation algorithms. The normal vector approximation error 

distributions, obtained with each algorithm are shown in Figure 36 and Figure 37, for mesh 

1 of triangular and quadrilateral polyhedral models, respectively. 

For the triangular mesh, all algorithms present a similar normal vector error 

distribution, except the MWA and MWSELR. The maximum error values are located near 

the place where the change of concave to convex curvature occurs, as shown in Figure 36. 

When the MWSELR algorithm is applied, the maximum error value occurs for a small 

number of nodes located inside the torus. Also, it rapidly decreases for the remainder 

nodes. 
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Figure 36. Normal vector approximation error attained for each algorithm applied to triangular mesh of the 

torus (mesh 1). 
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Figure 37. Normal vector approximation error attained for each algorithm applied to quadrilateral mesh of 

the torus (mesh 1). 

For quadrilateral elements all algorithms give a small value of error (less that 0.7º), 

except the MWA algorithm, which attains a maximum of about 5.5º, as shown in Figure 

37. As already mentioned, this algorithm is not adequate for meshes that contain elements 

with angles both higher and lower that 90º (quadrilateral elements). This result is more 

perceptible for nodes shared by elements with a higher difference in their angle values. 

 

  
(a) (b) 

Figure 38. Maximum normal vector approximation error for the various algorithms applied to the torus: (a) 

triangular mesh; (b) quadrilateral mesh. 

 

Figure 38 presents the maximum normal vector approximation error, for the different 

algorithms, applied to the polyhedral descriptions presented in Figure 25. Although, the 
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maximum error in the normal vector approximation is always higher for the triangular 

mesh. This can be related to the elements orientation in the case of the quadrilateral mesh. 

In fact, all edges of the quadrilateral elements are oriented along the principal curvature 

directions. This is not true for the triangular elements what seems to contribute to an 

increase of the error in the normal vector estimative. In this case, for both triangular and 

quadrilateral polyhedral descriptions, the worst strategy for the normal vector 

approximation is clearly the MWA algorithm and the better is the MWSELR algorithm 

[Neto et al., 2010b]. 

4.3. Influence of the Normal Vector Estimative in the Nagata 

Patch Description  

The Nagata interpolation algorithm requires the knowledge of the normal vector for 

each node. When these normal vectors are approximated, using one of the algorithms 

presented in the previous section, the Nagata patches will adapt to new boundary 

conditions, and consequently, they will present a different shape. In this section, the 

comparison between the Nagata patch obtained with analytical normal vectors and with 

normal vectors estimative is performed. The geometries analyzed are the same discussed in 

the previous section and the errors studied are both the radial and the normal vector error 

on the Nagata patch. 

In this section results are presented for triangular and quadrilateral patches. However, 

no direct comparison between them should be performed, since the interpolations were 

applied to different polyhedral models. 

4.3.1. Cylinder Approximated with Normal Vectors Estimative  

The cylinder is used mainly to highlight the local support of Nagata patch 

interpolations. As shown in Figure 31, all the algorithms implemented for normal vector 

approximation provide a much worst solution for the boundary nodes than for the interior 

nodes. Figure 39 presents the Nagata patch interpolation errors, when the MWE algorithm 

is used to approximate the normal vectors in each node of mesh 2. It is visible the increase 

of both the radial and normal vector errors for the boundary patches. All the other patches 

present a small error range, similar to the one obtained when the normal vectors in each 

node are determined from the analytical function of the cylinder (cf. Figure 13). All the 
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other implemented algorithms for normal vector estimative produce a similar distribution 

for the other Nagata interpolation error values. Thus, the Nagata patches follow the same 

behavior as the normal vector approximation, i.e. a good approximation at the interior 

patches and a solution not so good at the boundary patches. 

 

[%] Radial error (δr) Normal vector error (δn) [º] 

    

Figure 39. Radial and normal vector errors on the triangular patches used to describe the cylinder (mesh 2) 

when the MWE algorithm is used to estimate the normal vectors. 

4.3.2. Sphere Approximated with Normal Vectors Estimative  

In this section, only mesh 2 for both triangular and quadrilateral polyhedral 

descriptions (see Figure 18) will be used to analyze the influence of the normal vectors in 

the Nagata interpolation algorithm, since the other correspond to a particular case. The 

Nagata patch interpolation was applied using the normal vectors estimative, obtained with 

the different algorithms, and the results are compared with the ones obtained for the 

Nagata patch interpolation using the analytically determined normal vectors (labeled 

EXACT). Figure 40 presents both the radial and normal vector errors in the Nagata patch 

interpolation, obtained when applying the MWA algorithm to approximate the normal 

vectors in each node of the triangular mesh. The error distributions are similar to the ones 

obtained with the analytical normal vector, previously presented in Figure 19. 

 

[%] Radial error (δr) Normal vector error (δn) [º] 

    
Figure 40. Radial and normal vector errors on the triangular patches used to describe the sphere (mesh 2) 

when the MWA algorithm is used to estimate the normal vectors. 
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Figure 41 (a) and (b) shows the maximum and minimum radial error of the Nagata 

patches interpolation, respectively, for both types of patches using analytical and 

approximated normal vectors. The comparison of Figure 35 and Figure 41 indicates that 

there is a direct relationship between both errors. However, the relationship between the 

normal vector estimative error and the radial error is no linear. 

Nonetheless, usually the increase in the normal vector approximation error implies 

an increase in the radial error range. Only when the MWA algorithm is applied to estimate 

the normal vectors, the Nagata triangular patch algorithm presents a smaller radial error 

range than with the normal vectors provided by the analytical function, as shown in Figure 

41. However, this corresponds to a particular case of interpolation, for which the radial 

error diminishes due to the error introduced in the normal vector boundary conditions. It is 

important to mention that all algorithms lead to a radial error range always inferior to 0.9% 

in the triangular patches and 0.25% in the quadrilateral patches, although the polyhedral 

meshes description used can be considered coarse. 

 

  
(a) (b) 

Figure 41. Nagata patch radial error in the sphere description (mesh 2) using different algorithms to 

estimate the normal vector: (a) maximum; (b) minimum. 

 

Figure 42 presents the maximum normal vector error at the Nagata patches using 

different algorithms to estimate the normal vector in each node. The analysis of the figure 

indicates that, when the normal vectors at the nodes of the mesh are approximate, the 

normal vector error in the Nagata patch increases, presenting the same behavior of the 

radial error. Thus, the increase in the normal vector approximation error (at the nodes) 

implies an increase in the range of normal vector error. It is important to mention that, 
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although the polyhedral models studied are coarse, the increase in the normal vector error 

range is less than 1º. In this case, for both triangular and quadrilateral polyhedral 

description, the best strategy for normal vector estimative is the MWSELR algorithm. 

 

 

Figure 42. Maximum normal vector error at the Nagata patches of the sphere using different algorithms to 

estimate the normal vector in each node (mesh 2). 

4.3.3. Torus Approximated with Normal Vectors Estimative  

The influence of the normal vectors estimative in the Nagata interpolation algorithms 

apply to the torus is performed considering the two coarser meshes presented in Figure 25 

(triangular and quadrilateral meshes). 

 

[%] Radial error (δr) Normal vector error (δn) [º] 

    
Figure 43. Radial and normal vector errors on the triangular patches used to describe the torus (mesh 1) 

when the MWSELR algorithm is used to estimate the normal vectors. 

 

Figure 43 presents both the radial and normal vector error in the Nagata patch 

interpolation, when applying the MWSELR algorithm to approximate the normal vectors 

in each node of the triangular mesh. This figure presents the same scale range of Figure 26, 

in order to facilitate the direct comparison (zones outside the range are presented in gray). 

It is visible that both the maximum and minimum radial error is located in the same 

0

0.5

1

1.5

2

2.5

M
ax

im
u
m

 δ
n

[º
]

Triangular Patches

Quadrilateral Patches



 

Development and Implementation of 

Nagata Patches Interpolation Algorithms  Vertex Normal Vector Estimative 

 

 

Diogo Mariano Simões Neto  51 

 

regions, when using the MWSELR algorithm and when the normal vectors are determined 

using the analytical function. It is important to notice that, when the MWSELR algorithm 

is used, the extreme values of radial error are located near the nodes where the error in the 

normal vectors approximation is higher (see Figure 36). The normal vector error presents 

also a similar distribution when using the analytical normal vector or the estimative 

calculated with the MWSELR algorithm. 

Figure 44 shows the maximum and minimum radial errors obtained for the Nagata 

patches interpolation of the polyhedral description of the torus, for both triangular and 

quadrilateral patches, using analytical (labeled EXACT) and approximated normal vectors. 

The analysis of Figure 38 and Figure 44 indicates the increase of the normal vector 

approximation error does not necessarily result in an increase of the radial error range, on 

the contrary it may even decrease (see Figure 44). This effect is clear in case of the 

MWELR and MWRELR algorithms, applied to triangular elements. In both cases, the 

normal vector approximation error introduces changes in the boundary conditions, which 

lead to a distribution of the radial error by several neighboring patches.  

 

  
(a) (b) 

Figure 44. Nagata patch radial error in the torus description (mesh 1) using different algorithms to estimate 

the normal vector: (a) maximum; (b) minimum. 

 

Figure 45 presents the maximum normal vector error at the Nagata patches 

interpolation of the torus, for both triangular and quadrilateral patches, using different 

algorithms to estimate the normal vector in each node. For triangular patches, the MWA 

algorithm leads to the worst interpolation, due to the large error values in the normal 
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vectors and also to the fact that this error is highly concentrated in specific nodes (see 

Figure 36). 

 

 

Figure 45. Maximum normal vector error at the Nagata patches of the torus using different algorithms to 

estimate the normal vector in each node (mesh 1). 

 

For the torus geometry, the MWA algorithm leads to the worst Nagata patch 

interpolation results, for both triangular and quadrilateral polyhedral descriptions, due to 

the large error in the normal vectors approximation. All others algorithms give 

approximately the same radial error range, for the case of quadrilateral patches. For 

triangular patches this also occurs, exception made for the MWAAT. 

The results presented in this section highlight the importance of analyzing the overall 

distribution of the geometrical error of the Nagata patch interpolation. In fact, the analysis 

of the normal vector error approximation is not sufficient to select the best approximation 

algorithm. This selection is dictated also by the surface geometry and the polyhedral model 

adopted. 
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5. NORMAL VECTOR EVALUATED FROM CAD GEOMETRY 

When a surface is approximated by a polyhedral mesh, only the vertex positions are 

known. However, the Nagata interpolation algorithm requires the knowledge of the normal 

vector for each node. Typically, tools models are provided to Computer Aided Engineering 

(CAE) in CAD formats. Thus, the information available in CAD can be used to determine 

the normal vector in each node of the polyhedral mesh. The strategy proposed consists on 

obtaining the nodes positions and connectivity from the polyhedral mesh and the normal 

vectors, at each node, from the information available in the CAD file. The algorithm 

developed to evaluate the normal vector from CAD geometry is described in detail below. 

Afterwards, it is applied to a real tool geometry, in order to validate the algorithm. 

5.1. Vertex Normal Algorithm Evaluated using NURBS 

The algorithm proposed to evaluate the normal vectors, uses as inputs an IGES 

(Initial Graphics Exchange Specification) and a polyhedral mesh file. The algorithm is 

based on the tools definition using NURBS (Non Uniform Rational B-Spline), which is 

another type of parametric surfaces, commonly used by CAD programs. The parametric 

definition of the NURBS surface can be extracted from the standard IGES format.  

To better understand the proposed algorithm it is necessary to understand the main 

properties and characteristics of these surfaces. Thus, in the following section this type of 

parametric surfaces is briefly described. 

5.1.1. Definition and Properties of NURBS Surfaces 

The general form of a parametric curve ( )uC in three-dimensional (3D) space can be 

expressed, in terms of a free parameter 0 1u≤ ≤ , as: 

 ˆˆ ˆ( ) ( ) ( ) ( ) .u x u i y u j z u k= + +C  (27) 

A NURBS curve is a vector-valued piecewise rational polynomial function of the 

form, represented parametrically by [Piegl, 1991]: 
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(29) 

which are called the rational basis functions, 
iP  represents the ( 1)n+  3D control points, 

iw  are the corresponding weights and , ( )i pN u  are the normalized B-Spline basic functions 

of degree p . 

Recursive formulas for computing , ( )i pN u  can be found in Cox-deBoor algorithm as 

[Cox, 1972 and deBoor, 1972]: 
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 (30) 

where { }0,..., mu u=U  represents the knot vector and u  is the interpolation parameter. If a 

knot is repeated r  times it is said to be of multiplicity r . The relationship 1m n p= + +  

must hold between the number of elements ( 1)m+  of the knot vector, the number of 

control points ( 1)n+  and the mathematical degree of the curve p . 

A NURBS surface is the rational generalization of the tensor-product non-rational B-

Spline surface and is defined as follows [Piegl, 1991]: 
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 (31) 

where ,i j
w  are the weights, ,i j

P  form a control net, and , ( )
i p

N u  and , ( )
j q

N v  are the 

normalized B-Splines of degree p  and q  in the u  and v  directions, respectively. For each 
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parametric direction a knot vector { }0 ,...,
um

u u=U for u  direction and { }0 ,...,
vm

u u=V  for 

v  direction are defined. Figure 46 show an example of a NURBS surface and an example 

of an IGES file is presented in Appendix A. 

 

 

Figure 46. Example of a NURBS surface and its bidirectional control net. 

5.1.2. Algorithm Description 

Figure 47 presents schematically the proposed algorithm to evaluate the normal 

vector, based on NURBS, which can be divided in three steps. In order to determine the 

vertex normal vector, it is necessary to know the parametric coordinates ( , )u v  of each 

node of the polyhedral mesh on the NURBS surface. Since the tools can be described with 

a large number of NURBS surfaces, as show in Figure 47, a first global search of the 

NURBS surfaces associated to each node is performed, in order to improve the projection 

of the node on the correct surface. The method used to perform the global search is based 

in the global contact search algorithm proposed by Oliveira (2005). Once the candidate 

surfaces are preselected, the parametric coordinates ( , )u v , of each node, are evaluated by 

node projection on the surfaces. 

 

Figure 47. Algorithm used to evaluate the normal vector from CAD geometry. 

ALGORITHM

NURBS 

Surfaces

Nodes 

Position
NORMAL VECTORS

Identify the 

NURBS surface 

associated to each 

node

Projection of the 

node on the surface

Calculate the 

normal vector

S3
S2

S1

S4



 

Development and Implementation of 

Normal Vector Evaluated from CAD Geometry  Nagata Patches Interpolation Algorithms 

 

 

56  Diogo Mariano Simões Neto 

 

The mathematical formulation of the projection algorithm adopted is shown in 

Appendix B. Once the parametric coordinates of the node in the surface, ( , )u v  are know, 

the first-order partial derivatives of the NURBS surface are calculated using the 

expressions presents in Appendix C. The normal vector, in each node of the polyhedral 

mesh, is calculated by the cross product of the two derivatives. 

5.2. Algorithm Applied to the U-shape Tool 

The geometry selected to validate the proposed algorithm is the tool of the U-shape 

benchmark problem of NUMISHEET’93 [Numisheet, 1993]. Since both the punch and the 

die present the same corner radius, only the die tool is represented by Nagata patches the 

polyhedral model adopted considers only half width, i.e. 20.5 mm of width, due to 

geometrical and material symmetry conditions. The tool is discretized with quadrilateral 

elements, considering a uniform division of the radius in three elements and one element in 

the longitudinal direction. Figure 48 present the dimensions of the polyhedral model used 

in Nagata interpolation. 

 

  
(a) (b) 

Figure 48. Discretized die model in mm: (a) without planes; (b) with planes. 

The Nagata patch interpolation algorithm that uses de information available from 

CAD geometry is compared with based only in the polyhedral model, previously presented 

in Chapter 4. Using those methods the normal vector estimative can be determined using 

two distinct strategies. The first uses only the information associated to the elements used 
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to describe the corner radius, since the plane Nagata patch can be easily determined (see 

Figure 48 (a)). The other considers the complete polyhedral model, including the planes, as 

shown in Figure 48 (b). The results obtained following the first approach are labeled 

without planes and the second with planes. 

The normal vector estimative algorithms selected for this comparison are 

representative of the global behavior of the all the implemented algorithms, presented in 

Chapter 4. In order to evaluate the shape error associated to the Nagata patch 

interpolations, the radial error is analyzed along the cross section A-A (see Figure 48). 

Figure 49 presents the radial error distribution along the selected cross section, obtained 

with the normal vector evaluated from CAD or by one of the three methods selected to 

approximate the normal vectors. It is possible to observe that the algorithm with normal 

vectors determined using the CAD geometry, presents the same radial error distribution 

along the cross section, attaining a maximum value of 0.06% (compare with Figure 8, for a 

normalized edge length of 0.52). This means that the error is the same for the three 

elements and leads to the best results. However, for some of the other algorithms studied, 

based only in the polyhedral mesh, the radial error strongly increases along the cross 

section. This strong increase in the radial error occurs only in the arc length corresponding 

to the transition elements. Thus, it is related with higher normal vector estimative errors for 

open surfaces (see section 4.2.1). 

 

 

Figure 49. Radial error along the cross section A-A, using several methods to calculate the normal vectors. 

 

Both the MWAAT and MWELR algorithms are only applied in the model with 

planes (Figure 48 (b)), while the MWE algorithm is applied for both polyhedral models 
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shown in Figure 48. The nodes with the larger normal vector approximation error are 

located in the transition between flat and curved zones. The MWAAT algorithm applied to 

the model with planes results in a small error in the normal vectors approximation and, 

consequently, leads to a small radial error in the Nagata interpolation along the cross 

section. This algorithm incorporates the area of the elements, thus the larger the area of the 

plane in relation to the curve zone, the lower will be the error in the normal vectors 

approximation. This is the reason why the MWAAT algorithm is the best of the normal 

vector estimative based on polyhedral information algorithms, for the model with the 

planes (Figure 48 (b)). The worst result, are obtained with the MWELR algorithm due to 

the fact that it uses the inverse of the edges length for the weighted mean (see equation 

(24)). Thus, the larger the area of the plane in relation to the curve zone, the large will be 

error in the normal vectors approximation. 

The MWE algorithm is applied for both polyhedral models of Figure 48. As 

previously noted, this algorithm gives equal weights to all elements (see equation (20)). 

Therefore, as it can be observed in Figure 49, this algorithm presents a significant 

difference in the radial error range when the normal vectors are approximate with or 

without the support planes. In the model without the support planes, the two extreme 

elements present an interpolation with a radial error distribution equal to the one obtained 

with the polyhedral mesh, i.e. these elements have a linear interpolation. This happens not 

only with the MWE algorithm, but with all normal vector estimative based on polyhedral 

information algorithms, due to the poor approximation of the normal vectors at the 

boundary nodes. 

When the information available from CAD is used to calculate the normal vectors, 

Nagata patch interpolation is not sensitive to boundary elements in the polyhedral mesh, 

and results in an accurate interpolation. If the approximation of normal vectors is based 

only on the information available from a general polyhedral mesh, the support elements are 

important to achieve an accurate interpolation. Some of the implemented algorithms are 

also sensitive to the support elements dimensions. For the arc length corresponding to the 

interior element, the radial error is the same for all methods proposed. These results 

highlight the local support of Nagata patch interpolations [Neto et al., 2010a]. 
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6. GUIDELINES TO MESH GENERATION AND PATCH 

VISUALIZATION 

In this study the polyhedral mesh was chosen as the basis for the Nagata 

interpolation algorithm. The results presented in the previous chapters show that he mesh 

size and the element type are important in the Nagata interpolation as well as the vertex 

normal vectors used in the algorithm. Thus, a good polyhedral mesh is essential for an 

accurate interpolation. In fact, less advised selection of the polyhedral mesh can never 

provide a good interpolation. In this chapter, some guidelines for mesh generation are 

presented and discussed, in order to help the users. 

Other important aspect, which can help and improve the analysis, is to be able to 

visualize the Nagata patch, in order to see their behavior. Two distinct methods are 

proposed to visualize the Nagata patches, which allow performing a qualitative error 

analysis. 

6.1. Nagata Patch Visualization 

The Nagata patch visualization can be an important step in error analysis and also for 

checking the behavior of the interpolation algorithms. Before starting a quantitative 

analysis, which can be an expensive task, a qualitative analysis of the Nagata patch should 

be performed. Through a simple visualization it is possible to gain some insight about the 

Nagata patches configuration. 

In this work two methods are used to visualize the Nagata patches. The first uses the 

MS Excel
®

 to plot points over the patches, while the second represents the parametric 

surfaces in GID
®

 pre processor. 

6.1.1. Visualization with Excel® 

In this visualization method, a grid of points uniformly distributed in the parametric 

space is built on each Nagata patch. Using this set of points in 3D space, a scatter for the 

three orthogonal planes (xOy, xOz and yOz) can be constructed, allowing the visualization 

of the interpolated geometry. Figure 50 presents both xOy and xOz orthogonal planes for 
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three geometries (cylinder, sphere and torus) as represented using Excel
®

 visualization 

strategy. This methodology can be applied for both triangular and quadrilateral Nagata 

patches, as shown in this figure. Note that the results shown in figure were obtained when 

the normal vectors are provided by the analytical functions. 
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Figure 50. Visualization of Nagata patches using MS Excel®. 

6.1.2. Visualization with GID® Software 

The second method uses GID
®

 pre processor to visualize the Nagata patches. As seen 

previously in Chapter 2, concerning the Nagata patch formulation, both the triangular and 

the quadrilateral patches are parametric surfaces. GID
®

 allows to create and represent 

parametric surfaces using its mathematical formulas. The surface created is a NURBS that 

approximates the real geometry. Figure 51 shows the same geometries presented in Figure 

50, using GID
®

 to perform the Nagata patch visualization. 
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Figure 51. Visualization of Nagata patches using the GID® software. 

6.2. Guidelines to Mesh Generation 

The mesh generation can be the more time consuming task of the Nagata patch 

interpolation methodology proposed. In the fact, when the normal vectors are provided 

from CAD geometry, the accuracy of Nagata patch interpolation is only dependent of this 

task. Its importance, in the overall behavior of the interpolation increases, when the normal 

vectors are approximate based on the polyhedral model information. Therefore, for a good 

Nagata interpolation it is necessary to spend some time in the mesh generation. 

6.2.1. Structured and Unstructured Meshes 

In this subsection a brief comparison between structured and unstructured polyhedral 

meshes is performed to highlight some details. The comparison is performed considering 

the unitary sphere, discretized by both triangular and quadrilateral elements. Figure 52 

present both unstructured meshes considered, which will be the basis of the Nagata 

interpolation. The maximum edge length of the mesh presented in Figure 52 (a) is 0.80 and 
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of the mesh in Figure 52 (b) is 0.53. The normal vectors in each node of the polyhedral 

meshes were determined using the analytical function. 

 

  
(a) (b) 

Figure 52. Unstructured mesh of a sphere composed by: (a) triangular elements; (b) quadrilateral elements.  

 

Figure 53 present both radial and normal vector error distributions in the Nagata 

patches interpolation for the polyhedral model presented in Figure 52 (a). It can be 

observed that both maximum error values are localized near the edge with highest length, 

as for structured meshes (see, for instance Figure 19 ). However, for unstructured meshes 

the length edge dispersion is greater, leading to higher and more localized errors. Ideally, 

the triangular elements should all have the same shape to produce an interpolation error 

with a distribution as uniform as possible. The ideal form of the triangular element is to 

have equal sides and angles. 

The second model used, shown in Figure 52 (b), is composed by quadrilateral 

elements. The error distributions in the quadrilateral Nagata patches interpolation are 

shown in Figure 54. It can be observed that the patches present distinct radial error ranges, 

due to the presence of distorted elements. To create a mesh interpolation with a uniform 

error distribution, the quadrilateral elements must be rectangular or square, with all four 

right angles. 

 

[%] Radial error (δr) Normal vector error (δn) [º] 

    
Figure 53. Radial and normal vector errors on the triangular patches used to describe the sphere. 
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 [%] Radial error (δr) Normal vector error (δn) [º] 

    
Figure 54. Radial and normal vector errors on the quadrilateral patches used to describe the sphere. 

6.2.1.1. Mesh Size 

Besides the mesh typology and topology, the mesh size directly influences the 

accuracy of the Nagata interpolation, as already highlighted in the previous chapters. These 

previous results shows that more refined mesh result in lower error distributions for the 

Nagata patch interpolations. However, those results also show that the element size must 

be sensitive to the surface geometry. Thus, the element size must change in order to obtain 

smaller error dispersion. Figure 55 presents an example using three different element sizes 

to describe three arcs of circle with different radii. The use of different sizes leads to an 

interpolation of all edges (6 elements) with the same error distribution, where the radial 

error attains the maximum value (0.32%) in the middle of the edges (see Figure 8). 

 

 

Figure 55. Elements with different sizes to describe a 2D geometry with curvature variation. 

 

The nodes location dictates the Nagata patch position, which should be such that the 

interpolation error is minimized. The central idea is to generate a higher density of nodes in 

the zones with higher curvature change, in order to improve the surface description with 

Nagata patches. If possible, all flat surfaces (zero mean curvature) must be discretized with 



 

Development and Implementation of 

Guidelines to Mesh Generation and Patch Visualization Nagata Patches Interpolation Algorithms 

 

 

64  Diogo Mariano Simões Neto 

 

only one element. This allows improving the error distribution and also reduces the total 

number of elements needed to describe the geometry. When the surface has null curvature 

in one direction, such as the cylinder, is recommended to use only one element in that 

direction for the same reasons. 

6.2.2. Geometry with Inflection Points  

A single Nagata patch has no ability to describe a curve or surface with inflection 

points due to its quadratic formulation. Therefore, ideally all inflection points should 

correspond to a node, in order to define a boundary for the Nagata patches. The search for 

inflection points on a surface is not an easy task, as well as the generation of a mesh with 

nodes in all inflection points. 

According with the study performed, there is an area near an inflection where the 

nodes can be located without compromising too much the approximation error. The size of 

this zone depends on the curvature value of the surface and the position of the nodes with 

connectivity with it. If a node is located on this area, the inflection point of the geometry 

described by the Nagata patches will be located on the node, which may have a different 

location from the inflection point of the original geometry. 

 

 

Figure 56. Localization for the node near of inflection point. 

 

Figure 56 present an example of the admissible area for the node corresponding to 

the inflection point. The admissible region for the node is divided in two sets, one on each 

side of the inflection point, where the limits of each set is denoted by hollow symbols 

(square and triangle). These limits are dependent on the position of the neighboring nodes, 

denoted by solid symbols, and also by the curve curvature. When the node corresponding 

to an inflection point is positioned in a limit of the admissible region, the result is a linear 

interpolation between the opposite nodes, as shown in Figure 56 by the dashed lines. If the 
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node corresponding to the inflection point is outside the region, the Nagata curve presents 

a very sharp bend near the node, because the algorithm will always try to ensure the 

boundary conditions. 

To better understand the importance of inflection points in the Nagata interpolation 

an example in which the nodes corresponding to the inflection points are poorly located is 

shown. The aim is analyze a Nagata patch interpolation using a mesh that causes problems, 

due to the points of inflection. The geometry chosen to make the interpolation is shown in 

Figure 57 (a), where the inflection zone is visible. Figure 57 (b) presents the quadrilateral 

mesh produced from NURBS surface, considering a uniform division into three elements 

in one direction and five elements in the other direction.  

 

  
(a) (b) 

Figure 57. Geometry used to analyze the presence of inflection points: (a) NURBS surface; (b) quadrilateral 

mesh. 

 

The Nagata interpolation algorithm was applied to the polyhedral mesh using the 

normal vectors provided by CAD geometry. Figure 58 (a) presents the interpolation 

qualitative analysis, using the GID
®

 to visualize the Nagata patch, while Figure 58 (b) plots 

the grid of points in the xOy plane. It can be observed, that the three patches in the centre 

of the geometry have an irregular behavior, due to the fact that the nodes of the mesh 

associated to inflection points are outside the admissible region. Thus, this leads to patches 

with strange behavior, which can be observed and detected using both visualization 

methods. In GID
®

 a dark zone in the patch identifies this behavior, while in Excel
®

 there is 

a concentration of points. 
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(a) (b) 

Figure 58. Representation of the interpolation using: (a) GID® software; (b) the Excel® for the xOy plane. 

 

Having identified the problem, it is necessary to develop a methodology to overcome 

it, i.e. a method to indentify the inflection points. One possible method for determining the 

inflection point is by calculating the surface curvatures, since the inflection point 

corresponds to a point of discontinuity in the curvature (minor and major signed 

curvature). However, the inflection point calculation through curvature is a difficult task to 

perform numerically. Another way to identify these points on the NURBS surfaces is 

through the position of control points. This method has not been well explored but seems 

like a reasonable approach to solve the problem. Figure 59 presents an example of a 

NURBS curve with an inflection point indicate by a hollow circle. This point can be 

calculated determining the intersection of the straight line joining the two control points 

and the NURBS curve, since by definition, the interpolated curve is always located in the 

interior of the grid defined by the control points (see Figure 59). To validate this idea, 

further testing for curves with various degrees and number of control points should be 

performed. 

 

 

Figure 59. Strategy to identify inflection points on a NURBS curve. 
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6.3. Output Files Description 

Output files are important to visualize, analyze and apply the Nagata patch 

interpolations. In fact, once the Nagata patch interpolations are checked, it will be used as 

input files to describe contact surfaces in FEA. 

In the adopted strategy, three types of files are generated: 

1 - File for analysis with MS Excel
®

: This file is produced considering a grid of 

points uniformly distributed over the Nagata patches. For each Nagata patch, 

the number of grid point, its coordinates, normal vector components, 

geometrical and normal vector error, are presented. Thus, these file allows 

plotting points of the patches, as shown in Figure 50, or performing 

quantitative analysis of error distributions, as shown, for instance, in Figure 20. 

Appendix D shows an example of this file. 

2 - File for analysis in GID
®

 post processor: In order to visualize the error 

distributions over the Nagata patches, the information presented in previous 

file can be combined with a very fine mesh built on the CAD surface, using the 

same strategy already described in section 3.2. This strategy allows to produce 

a file of results (*.res), which can be associated to the very fine polyhedral 

model (*.msh). This allows the qualitative and quantitative analysis of the 

results with GID
®

 post processor, as shown, for instance, in Figure 13. 

3 - File for analysis in GID
®

 pre processor: This file contains the information 

concerning the interpolation coefficients of equations (4) and (9). Thus, for 

triangular Nagata patch six coefficients are presented, while for quadrilateral 

patch eight coefficients are necessary. All these coefficients are vectors with 

three components. Appendix D shows an example of this type of file, which 

can be used as input for subsequent applications. 
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7. CONCLUSIONS 

The work presented had as starting point the algorithm for interpolating discretized 

surfaces proposed by Nagata (2005). Both the triangular and quadrilateral Nagata patches 

interpolation algorithms were implemented, in Fortran 90/95. 

The first step of the work was the validation of the implemented algorithms using 

simple geometries, with known normal vector, in each vertex. The validation was 

performed considering one geometry in the 2D space (arc of a unitary circle) and four 

geometries in the 3D space (plane, cylinder, sphere and torus). The error analysis 

performed with the 2D geometry indicates that both the radial and the normal vector error 

decrease with the decrease of the normalized edge length. Thus, the geometry converges to 

the original geometry. The same occurs with the polyhedral model, which presents a 

quadratic order of convergence for the radial error and linear for the normal vector error. 

For the Nagata algorithm, the order of convergence of the radial error is quartic while it is 

cubic for the normal vector error. These results highlight the enormous advantage of using 

the Nagata interpolation, since it allows to recover the curve geometry and curvature with a 

fewer number of elements. The error analysis performed with the 3D geometries indicates 

that: 

� In case of the cylindrical geometry, the maximum radial error is independent of the 

number of elements in the axial direction and it is only dictated by the number of 

elements in the circumferential direction. The order of convergence to the 

analytical cylindrical surface is dictated only by the mesh description in the 

circumferential direction and is the same of the arc of a circle, with quartic order of 

convergence. These results are in agreement with the one presented in Nagata 

(2005). For quadrilateral patches, also the normal vector error is independent of the 

number of elements along the axial direction. However, for triangular Nagata 

patches, the normal vector error decreases with the decrease of the number of 

elements in the axial direction. Thus, triangular and quadrilateral Nagata patches 

interpolations of polyhedral models, with the same normalized edge length along 

the circumferential direction and only one element in the axial direction, will 
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present the same radial error range. However, the distributions will be more 

favorable for the triangular interpolations, since they always present more nodes 

and, consequently, more information for the Nagata patch interpolation algorithm. 

� In the case of the sphere it is shown that the interpolations performed with 

triangular interpolations tend to describe a surface exterior to the sphere while 

quadrilateral interpolations describe a more interior surface. The maximum positive 

value of radial error and the maximum normal vector error always occurs in the 

middle of the edge with highest length, regardless of its orientation, since the 

sphere presents the same curvature in all points. When applying the two types of 

Nagata interpolations to the same polyhedral model of the sphere, the radial error 

average value is lower and the distribution is narrower for triangular interpolations 

than for quadrilateral interpolations and also the normal vector error distributions 

presents a lower average value for triangular interpolations. Thus, the error 

distribution is more favorable for triangular Nagata patch interpolations. 

� In the case of the torus, triangular and quadrilateral Nagata patch interpolations 

lead to different error distributions. For triangular patches, both errors attain their 

maximum values in the middle of the edges aligned with the major radius direction 

of the torus. For quadrilateral patches the maximum (positive) radial error is 

located at hyperbolic points and patches with negative error are located in the 

region far from the axis of the torus, where the geometry is concave in all 

directions. The normal vector error attains its maximum value in the region where 

the radial error alters from positive to negative. Although the error distributions are 

different, in order to reduce the maximum radial error it is necessary to increase the 

number of elements in the major radius direction, for both triangular and 

quadrilateral Nagata patches. It is observed that, although the triangular meshes 

have two times more nodes than the quadrilateral meshes, the maximum error is 

approximately the same. However, also for this geometry, both errors distributions 

are more favorable for the triangular Nagata patch interpolation. 

In brief, to improve Nagata patch interpolations it is necessary to decrease the 

maximum edge length for non linear directions. These results are consistent with the ones 

obtained with the 2D geometry, which can be used as guidelines for maximum edge 

selection. The comparison between triangular and quadrilateral patches indicates that the 
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first can lead to more favorable error distributions, even when applied to the same 

quadrilateral model. This conclusion is also in agreement with the one presented in Nagata, 

(2005). 

The second step of the work involved the selection of algorithms for normal vector 

approximation, for each vertex of the polyhedral model. Six different algorithms were 

implemented and tested with the three simple geometries, cylinder, sphere and torus. Their 

performance was compared taking into account the error in the normal error approximation 

as well as the radial and normal vector error of the Nagata patches interpolation, generated 

with the approximated normal vector. The analysis of the cylinder open surface shows that 

all algorithms are sensitive to boundaries, which results in much larger normal vector 

approximation errors for nodes located in these areas. The polyhedral models of the sphere, 

considered in this analysis, are characterized by a larger number of nodes for the 

quadrilateral. Thus, the results obtained indicate that the normal vector approximation error 

is always higher for triangular models, except with the MWA algorithm. In fact, the 

analysis of the MWA algorithm indicates that this method seems to be more suitable for 

polyhedral descriptions with smaller angles (always less than 90º). The MWSELR 

algorithm leads a zero error for both types of polyhedral descriptions, applied to the sphere. 

These results obtained for the MWA algorithm are confirmed in the analysis of the torus 

geometry. In this case, the maximum error in the normal vector approximation is always 

higher for the triangular mesh. This is related to the fact that all edges of the quadrilateral 

elements are oriented along the principal curvature directions. Unfortunately, the analysis 

of the normal vector approximation errors is important but not sufficient to evaluate the 

Nagata patches interpolation. In fact, the analysis of the sphere indicates that there is a 

direct (non linear) relationship between the normal vector approximation error and the 

radial error. However, in case of torus geometry the increase of the normal vector 

approximation error does not necessarily result in an increase of the radial error range, on 

the contrary it may even decrease. This results from the fact that the normal vector 

approximation error introduces changes in the boundary conditions, which can lead to 

different Nagata patch interpolation errors. Thus, although the MWSELR algorithm seems 

to present the best behavior, the selection of the algorithm is always dependent of the 

surface geometry and the polyhedral model adopted. For a complex geometry, for which 

the normal vector is unknown, it is always possible to compare the normal vector 
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approximation between the different algorithms, in order to help in the selection of the 

algorithm. 

Finally, the Nagata patches interpolation algorithm using normal vector determined 

from CAD geometry was developed, implemented and validated using a real deep drawing 

tool example. The results show that the normal vector estimative is accurate, which leads 

to accurate interpolations in the entire domain of the polyhedral model, since the algorithm 

is not sensitive to boundary elements. Thus, this algorithm allows bridging the gap 

between CAD and CAE models, since it allows the interpolation of discretized surfaces 

recovering the original CAD geometry. 

Based on the results presented in this work and in Neto et al., (2010a) and Neto et 

al., (2010b) some guidelines for polyhedral mesh generation, in order to guarantee accurate 

Nagata patches interpolations, were detailed. In order to support the developments 

presented in this work and further applications of Nagata patches interpolations, tools for 

visualization and analysis (qualitative and quantitative) were developed and were also 

presented. The combination of the implemented numerical tools with the GID
®

 pre 

processor allows generating Nagata patches interpolations for any simple or complex 

surface geometry. 
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9. APPENDIX A – IGES FORMAT FILE 

IGES (Initial Graphics Exchange Specification) was developed in the early 80s, as a 

part of a project with the National Bureau of Standards [Iglesias, 2001]. 

 

Translator GID - IGES S0000001 

1H,,1H;,3HGID,33H C:/CEMUC/FA/60s.igs,,,26,,,,,,0,,0,,0,,1, G0000001 

0,,5HCIMNE,9,,; G0000002 

     128       1                       1 D0000001 

     128                       9                      NURBSURF 1D0000002 

128,7,1,3,1,0,0,1,0,0,0,0,0,0,0.2696129,0.50025292,0.69102833, 1P0000001 

0.81038681,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1P0000002 

-2.804053,-5.16892,0,-3.0315653,-4.0968669,0,-3.0830998, 1P0000003 

-2.6158131,0,-2.450814,-0.24658376,0,-1.5993302,1.3546726,0, 1P0000004 

-1.2423752,3.0707054,0,-1.1892867,3.9613801,0,-1.250001, 1P0000005 

4.729729,0,-2.804053,-5.16892,10,-3.0315653,-4.0968669,10, 1P0000006 

-3.0830998,-2.6158131,10,-2.450814,-0.24658376,10,-1.5993302, 1P0000007 

1.3546726,10,-1.2423752,3.0707054,10,-1.1892867,3.9613801,10, 1P0000008 

-1.250001,4.729729,10,0,1,0,1; 1P0000009 

S0000001G0000002D0000002P0000009 T0000001 
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10. APPENDIX B – PROJECTION OF A POINT ON A NURBS 

SURFACE 

Consider a generic point P  in the Euclidean space, which is orthogonally projected 

on the surface ( , )u vS , in order to determine point P'  (see Figure 60) [Baptista, 2006 and 

Stadler et al., 2003]. 

 

Figure 60. Projection of a point on a NURBS surface. 

 

The distance vector ( , )u vr , which connects the point P  to an arbitrary point ( , )u vS  

of the surface, is defined as: 

 ( , ) ( , ) .u v u v= −r S P  (32) 

Thus, the position of point P'  can be obtained by two orthogonality conditions, 

through dot product ( , ) ( , )u u v u v⋅S r  and ( , ) ( , )v u v u v⋅S r , such that: 

 ( , ) ( , ) ( , ) 0
( ) ( )    ,

( , ) ( , ) ( , ) 0

u

u v

v

f u v u v u v

g u v u v u v

 = ⋅ =⊥ ∧ ⊥ ⇒ 
 = ⋅ =

S r
S r S r

S r
 (33) 

where 
uS  and 

vS  are the first order partial derivatives of the NURBS surface. Thus, the 

problem reduces to determining the solutions of the system of nonlinear equation in the 

( , )u v  variables, presented in equation (33), which can be performed using, for example, 

the Newton–Raphson method, which for the thi  iteration can be presented as: 

 ( )
1

( ) ( 1) ( 1) ( 1)
,

i i i i
−− − − = −   X X J F X  (34) 
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with: 

 ( )
( )

( )

( 1)
( 1)

( 1) ( 1)

( 1)( 1)
,   

i
i

i i

ii

f u

vg

− −
− −

−−

      = =       

X
F X X

X
 (35) 

and 
( 1)i−J , the Jacobian of ( )F X  calculated at ( 1)i−X , given by: 

 

( 1)

( 1)
2

( 1)

2
.

i

i

u uu u v uvi

u v uv v vv

f f

u v

g g

u v

−

−

−

 ∂ ∂
   + ⋅ ⋅ + ⋅ ∂ ∂  = =   
∂ ∂   ⋅ + ⋅ + ⋅  
 ∂ ∂ 

S r S S S r S
J

S S r S S r S
 (36) 

The partial derivatives of the NURBS surface ( , )u vS  can be found in Appendix C. It 

is know that the Newton-Raphson algorithm presents quadratic convergence order only in 

the vicinity of the solution. In fact, a good initial value is important to guarantee 

convergence. In the implemented algorithm, the distance between point P  and a set of 

points of the surface, equally spaced in the parametric domain is evaluated. The initial 

solution (0) (0) (0)( , )u v=X  is the value that yields the closest surface point to P . 
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11. APPENDIX C – DERIVATIVES OF A NURBS SURFACE 

In this appendix, the necessary expressions to evaluate the first- and second-order 

derivatives in a point ( , )u vP  of a NURBS surface ( , )u vS  (see Figure 61) are described. 

The formulation presented is based in [Baptista, 2006; Tsai et al., 2003 and Wang et al., 

2004]. 

 

S(u,v)

u

v

P

Su

Sv

 

Figure 61. First order derivatives in a point of a NURBS surface. 

 

For the u  parametric direction, the first and second order partial derivatives are 

given by: 

 ,

,

0 0

( , )( , )
( , )  ,

n m
i j

u i j

i j

R u vu v
u v

u u= =

 ∂∂  = =   ∂ ∂ 
∑ ∑

S
S P  (37) 

 
22

,

,2 2
0 0

( , )( , )
( , )  .

n m
i j

uu i j

i j

R u vu v
u v

u u= =

 ∂∂  = =  ∂ ∂ 
∑ ∑

S
S P  (38) 

The derivates ( , )v u vS  and ( , )vv u vS  are analog to the u  direction thus, there are 

omitted. The derivate ( , )uv u vS  is given by: 

 
22

,

,

0 0

( , )( , )
( , )  .

n m
i j

uv i j

i j

R u vu v
u v

v u v u= =

 ∂∂  = =  ∂ ∂ ∂ ∂ 
∑ ∑

S
S P  (39) 

Assuming that ( , )A u v  represent the numerator and ( , )B u v  the denominator of the 

, ( , )
i p

R u v  functions, such as: 
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, , ,( , ) ( ) ( ) ,

i p j q i j
A u v N u N v w=  (40) 

 
, , ,

0 0

( , )  ( ) ( ) .
n m

k p l q k l

k l

B u v N u N v w
= =

=∑ ∑  (41) 

One can obtain more compact expressions, applying the rules for functions 

derivatives and after some simplification, one obtains: 

 
2

( , ) ( , ) ( , )( , )
( , ) ,

( , ) ( , )

u u
u

A u v B u v A u vR u v
R u v

u B u v B u v

∂
= = −

∂
 (42) 

 

2

2 2

2

3

( , ) ( , ) ( , ) 2 ( , ) ( , )( , )
( , )

( , ) ( , )

2 ( , ) ( , )
,

( , )

uu uu u u
uu

u

A u v A u v B u v B u v A u vR u v
R u v

u B u v B u v

A u v B u v

B u v

+∂
= = −

∂

+

 (43) 

 

2

2

3

( , ) ( , ) ( , ) ( , ) ( , )( , )
( , )

( , ) ( , )

2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
,

( , )

uv v u v u
uv

v u uv

A u v B u v A u v A u v B u vR u v
R u v

v u B u v B u v

A u v B u v B u v A u v B u v B u v

B u v

+∂
= = −

∂ ∂

−
+

 (44) 

where, 

 

(1)

, , ,

0 0(1)

, , ,

(2) (2)

, , , , , ,

0 0(1) (1)

, , ,

(1)

,

( , )  ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )   and  ( , )  ( ) ( )
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u k p l q k l

k l
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uu i p j q i j uu k p l q k l
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A u v N u N v w

A u v N u N v w B u v N u N v w

A u v N u N v w

B u v N u
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= =

=
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= =

=

=

∑ ∑

∑ ∑

(1)

, ,

0 0

.

( )
n m

l q k l

k l

N v w
= =

∑ ∑

 (45) 

In the above equations, 
( )

, ( )k

i pN u  denotes the thk  order derivative of , ( )
i p

N u . The 

functions 
( )

, ( )k

i pN u  can be calculated by: 

 
( 1) ( 1)

, 1 1, 1( )

,

1 1

( ) ( )
( ) .

k k

i p i pk

i p

i p i i p i

N u N u
N u p

u u u u

− −
− + −

+ + + +

 
 = − − −  

 (46) 
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12. APPENDIX D – OUTPUT FILES 

� File with the coordinates and normal vectors of the grid points for each patch. 

 

Patch Point      Coord_x      Coord_y      Coord_z     Normal_x     Normal_y     Normal_z 

    1     1   0.1442E+01   0.6899E+01   0.0000E+00   0.5998E+00  -0.8001E+00  -0.8856E-16 

    1     2   0.1192E+01   0.6699E+01  -0.9742E-08   0.6503E+00  -0.7596E+00   0.1625E-02 

    1     3   0.9440E+00   0.6473E+01  -0.1732E-07   0.6940E+00  -0.7200E+00   0.2896E-02 

    1     4   0.6976E+00   0.6222E+01  -0.2273E-07   0.7316E+00  -0.6817E+00   0.3828E-02 

    1     5   0.4528E+00   0.5946E+01  -0.2598E-07   0.7640E+00  -0.6452E+00   0.4430E-02 

    1     6   0.2096E+00   0.5644E+01  -0.2706E-07   0.7918E+00  -0.6108E+00   0.4704E-02 

    1     7  -0.3189E-01   0.5317E+01  -0.2598E-07   0.8157E+00  -0.5785E+00   0.4641E-02 

    1     8  -0.2718E+00   0.4965E+01  -0.2273E-07   0.8363E+00  -0.5483E+00   0.4214E-02 

 

 

 

� File with the interpolation coefficients of equation (4) for each triangular patch, to use 

in GID
®

. 

 

-TRIANGULAR NAGATA PATCHES- 

        c00        c10        c01        c11        c20        c02 

Patch:  1 

 -0.100E+01 -0.117E-07  0.234E-07 -0.471E+00  0.293E+00  0.471E+00 

 -0.612E-16 -0.828E+00  0.828E+00 -0.357E+00  0.121E+00  0.236E+00 

  0.000E+00  0.250E-08  0.828E+00  0.114E+00 -0.250E-08 -0.236E+00 

Patch:  2 

 -0.707E+00  0.471E+00  0.114E+00 -0.114E+00  0.236E+00  0.262E-08 

 -0.156E-08 -0.943E+00  0.943E+00 -0.357E+00  0.236E+00  0.121E+00 

  0.707E+00  0.471E+00  0.114E+00  0.471E+00 -0.471E+00 -0.293E+00 

Patch:  3 

 -0.707E+00 -0.471E+00  0.943E+00 -0.471E+00  0.471E+00  0.236E+00 

 -0.156E-08 -0.943E+00 -0.279E-08 -0.471E+00  0.236E+00  0.471E+00 

  0.707E+00 -0.471E+00  0.943E+00 -0.367E-08 -0.236E+00 -0.236E+00 

 

 

 

� File with the interpolation coefficients of equation (9) for each quadrilateral patch, to 

use in GID
®

. 

 

-QUADRILATERAL NAGATA PATCHES- 

        c00        c10        c01        c11        c20        c02        c21        c12 

Patch:  1 

  0.144E+01 -0.463E+00 -0.250E+01  0.252E+00  0.463E+00  0.814E-01 -0.252E+00 -0.722E-06 

  0.690E+01 -0.347E+00 -0.188E+01 -0.220E+00 -0.577E+00 -0.126E+01  0.472E+00  0.169E+00 

  0.000E+00  0.360E+01 -0.108E-06 -0.107E+01 -0.155E+00  0.108E-06  0.126E+00 -0.632E+00 

Patch:  2 

  0.515E+01  0.416E+00 -0.431E+01 -0.880E+00 -0.416E+00  0.602E+00  0.880E+00 -0.151E-05 

  0.682E+01 -0.240E+00  0.248E+01 -0.430E+00 -0.675E+00 -0.241E+01  0.977E-01  0.322E+00 

  0.000E+00  0.359E+01  0.000E+00  0.122E+01 -0.181E+00  0.000E+00  0.262E-01 -0.120E+01 

Patch:  3 

  0.856E+01  0.252E+00  0.184E+01  0.164E+00 -0.252E+00 -0.525E+01 -0.164E+00 -0.113E-04 

  0.474E+01 -0.114E+00 -0.833E+00  0.264E+00 -0.522E+00  0.291E+01 -0.153E+00 -0.390E+00 

  0.000E+00  0.251E+01  0.000E+00 -0.375E+00 -0.140E+00  0.000E+00 -0.409E-01  0.146E+01 

 


