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Abstract 

Structural analysis and design have evolved, in the last decades, with the objective of a more 

accurate consideration of the material and geometrical nonlinearities, increasing the security 

of the structures, improving their behaviour and reducing their cost. The simplicity of the 

linear models and analysis methods, particularly the one dimensional models for skeletal 

structures, has determined their dissemination by the technical community, which often 

regards nonlinear models and methods as a last resort because of their complexity. 

Moreover, because of the remarkable performance reached nowadays by current personal 

computers, the choice of the more appropriate numerical analysis tool is not exclusively 

determined by its numerical efficiency – other characteristics, such as being user-friendly, 

must also be considered. Hence, the survival of the linear 1D model, even for nonlinear 

structural problems, appears to be determined not by its less demanding computational 

requirements but by its intrinsic simplicity. 

The P-delta method, which is based on a linear 1D model, is the most popular geometrically 

nonlinear analysis method of skeletal structures. This iterative method uses an additional 

system of equivalent forces to indirectly simulate the reduction of the linear stiffness of the 

structure. The large success of this method was the starting idea for creating a similar 

structural method for nonlinear material analysis. 

The Fictitious Force Method, presented in this thesis, is an iterative method for the quasi-static 

nonlinear elastic analysis of plane skeletal structures. In order to model the nonlinear material 

behaviour this method replaces the original constitutive relations by auxiliary linear relations 

and considers an additional fictitious force system. This fictitious force system models the 

“nonlinear” component of the deformations according to one of two alternative approaches: 

initial stresses or the initial deformations. 

These two possibilities correspond to the Fictitious Force Method by deformations, which is an 

application of the Initial Stress Method of Zienkiewicz and co-authors and to the Fictitious 

Force Method by stresses which is an application of the Initial Strain Method of Argyris and co-

authors. From a numerical point of view, these methods are applications of the Fixed Point 

Iteration Method. 
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The thesis includes the study of three common elemental bar models, the determination of 

the corresponding fictitious force systems, the fully description of the iterative procedures of 

the Fictitious Force Method (FFM), the explanation of these procedures from both physical and 

mathematical points of view, the development of their convergence conditions, and it 

thoroughly investigates the influence of the auxiliary stiffness field on the numerical efficiency 

of FFM. 

Several examples are presented to illustrate the application of FFM and to discuss its 

convergence and other general issues. These examples are complemented with the flowcharts 

required for the implementation of FFM in current linear elastic structural analysis programs. 

In fact, FFM was implemented in one program of that type, EvalS, and this implementation was 

successfully used by other authors. 
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Resumo 

A análise estrutural evoluiu, nas últimas décadas, no sentido de modelar de forma mais 

rigorosa as não linearidades material e geométrica, o que permite aumentar a segurança das 

estruturas, melhorar o seu desempenho e reduzir o seu custo. A simplicidade dos modelos e 

métodos de análise lineares, particularmente dos modelos unidimensionais para estruturas 

reticuladas, determinou a sua disseminação na comunidade técnica, que muitas vezes encara 

os modelos e métodos não lineares como um último recurso, em virtude da sua complexidade. 

Por outro lado, o desempenho dos computadores pessoais atingiu tal patamar, que a selecção 

dos programas numéricos de análise estrutural deixou de ser determinada exclusivamente 

pela sua eficiência numérica, devendo ser também consideradas outras características tais 

como a simplicidade de utilização. Deste modo, a sobrevivência do modelo linear 1D, 

inclusivamente em problemas não lineares, aparenta ser determinada não só pelos seus 

menores requisitos computacionais mas sobretudo pela sua simplicidade intrínseca, que o 

torna mais facilmente compreensível. 

O método P-delta, baseado no modelo linear 1D, é o método de análise geometricamente não 

linear de estruturas reticuladas mais popular. Este método iterativo usa um sistema adicional 

de forças equivalentes que simula indirectamente a redução da rigidez linear da estrutura. A 

grande popularidade deste método levou a que se pensasse em criar um método semelhante 

para a análise materialmente não linear de estruturas reticuladas. 

O Método das Forças Fictícias, apresentado nesta tese, é um método iterativo para a análise 

elástica não linear quase-estática de estruturas reticuladas planas. Para modelar o 

comportamento material não linear este método substitui as relações constitutivas originais 

por relações lineares auxiliares e considera um sistema adicional de forças fictícias. Este 

sistema de forças fictícias modela a componente “não linear” das deformações por meio de 

uma de duas abordagens alternativas: tensões iniciais ou deformações iniciais. 

Estas duas possibilidades correspondem, respectivamente, ao Método das Forças Fictícias por 

Deformações e ao Método das Forças Fictícias por Tensões, as quais podem ser interpretadas 

como aplicações do Método das Tensões Iniciais de Zienkiewicz e colaboradores e do Método 
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das Deformações Iniciais de Argyris e colaboradores. De um ponto de vista numérico, estes 

métodos são aplicações do Método do Ponto Fixo. 

A tese inclui o estudo de três modelos elementares correntes de barra, a determinação dos 

correspondentes sistemas de forças fictícias, a descrição detalhada dos procedimentos 

iterativos do Método das Forças Fictícias (MFF), a explicação destes procedimentos dos pontos 

de vista físico e matemático, a determinação de condições de convergência e investiga a 

influência do campo auxiliar de rigidez na eficiência numérica do método. 

Os vários exemplos apresentados na tese permitem ilustrar a aplicação do MFF e discutir a sua 

convergência e outros aspectos mais gerais. Estes métodos são complementados com 

fluxogramas que possibilitam a implementação do MFF em programas correntes de análise 

elástica linear de estruturas reticuladas. Efectivamente, o MFF já foi implementado na última 

versão do programa EvalS, a qual já foi utilizada com sucesso por outros autores. 
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Chapter 1 
Introduction 

1.1. Motivation 

Structural analysis and design have evolved, in the last decades, with the objective of a more 

accurate consideration of the material and geometrical nonlinearities, increasing the security 

of the structures, improving their behaviour and reducing their cost. The simplicity of the 

linear models and analysis methods, particularly the one dimensional models suitable for the 

analysis of skeletal structures, determined their dissemination by the technical community, 

which often regards nonlinear models as a last resort because of their complexity. 

On the other hand, the major advances in computer science and technology achieved over the 

same period motivated the developing of more advanced software tools for structural analysis, 

many of them far beyond the understanding of the common analyst and designer, more used 

to the linear 1D model. Moreover, today’s computational capabilities of common personal 

computers are such that, very often, the choice of the numerical analysis tools is not 

determined by the numerical efficiency of the software itself. 

In this context, the survival of the linear 1D model, even for nonlinear problems, appears to be 

determined not by its less demanding computational requirements but by its intrinsic 

simplicity, making it easily intelligible by the analyst. 
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The P-delta method, or Equivalent Force Method (Reis and Camotim, 2001), is perhaps the 

more popular method for the nonlinear geometrical analysis of skeletal structures, which is 

based on a linear 1D model. Its popularity may explain why so many variants and designations 

for this method can be found in the literature. 

Two of the best descriptions of the Equivalent Force Method are those of Adams (1974), who 

uses the designation Fictitious Lateral Load Method, and Lui (1988), who calls it the Pseudo 

Load Approach, see also Chen and Lui (1991). The description of these methods presented by 

Gala (2007) proves that they are variants of the same general method. Actually, they only 

differ in the format of the system of equivalent forces: the fictitious force system of Adams is a 

discretization of the pseudo-forces of Lui. 

The Equivalent Force Method consists in establishing an additional force system that, when 

applied to the structure together with the effective force system, simulates the equilibrium in 

the deformed configuration. In other words, the linear equilibrium equation written for the 

initial configuration with the effective plus equivalent forces is equal to the equilibrium 

equation written for the deformed configuration with the effective forces only. This is the 

same to say that the additional system of equivalent forces simulates the stiffness reduction of 

the structure, corresponding to the replacement of its linear stiffness by the geometric 

stiffness. 

These equivalent forces are also problem unknowns because the deformed configuration is 

not known in advance. They can be determined in a simple iteration procedure, using the 

linear solution as the initial guess. For the analyst, the method presents a simple 

interpretation: it is as if the structure is being progressively pushed towards the exact 

configuration, or as if small configuration corrections are successively added. Mathematically, 

in the case of the differential 1D model, the procedure reflects an application of Picard’s 

method (Bailey et al. (1968), Simmons (1991) and Shampine (1968)), while in the case of the 

discrete 1D model it is an application of the fixed point iteration method (Atkinson and Han 

(2001), Pina (2010) and Ortega and Rheinboldt (1970)). 

The high efficiency of the Equivalent Force Method, which gives accurate results after just a 

few iterations, appears as an additional advantage, allowing it to be applicable even by hand. 

However, the method is also easily implemented in automated routines, because it only 

requires common linear analysis operations. Moreover, such an automated implementation in 
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the context of the finite element method (FEM), benefits from the fact that the stiffness matrix 

needs to be computed and inverted only once. 

The large success of the Equivalent Force Method justifies the following question: is it possible 

to generalize or adapt this method in order to model nonlinear material behaviour? If the 

answer is affirmative, a second question immediately emerges: what requirements should 

such nonlinear material analysis method satisfy? In our view, these requirements are the 

following: 

(i) The method should consist of simple operations, similar to those of a linear analysis 

method, repeating several times the same procedure; 

(ii) This repeated procedure should use a constant stiffness on every iteration, because 

the calculation and inversion of stiffness matrices require large amounts of time; 

(iii) The application of the method should be versatile enough; 

(iv) The primary version of the method should be based on a small number of simplifying 

assumptions. 

Actually, some methods aiming to extend the Equivalent Force Method to the nonlinear 

material analysis can be found in the literature. For example, the inelastic analysis method 

proposed by Lui and Zhang (1990) is an extension of the pseudo load approach (Lui 1988) to 

the nonlinear material analysis. However, this method does not fulfil the second requirement 

given above since the stiffness must be re-evaluated in every iteration. Blaauwendraad (1972) 

presents a method which considers the nonlinear material behaviour of the linear elements of 

skeletal structures directly in the stiffness matrix used in the routines for nonlinear geometric 

analysis. However, this method also violates the second requirement given above. 

In order to operate with a constant stiffness, for instance, the initial tangent stiffness, an 

additional force system can be used to emulate the nonlinear material behaviour. These 

additional forces shift the structure from the “linear” configuration to the effective 

configuration corresponding to the nonlinear constitutive relation. The analogy with the 

Equivalent Force Method is obvious. The additional forces can also be seen as modelling the 

nonlinear material behaviour by means of initial deformations or initial stresses. The problem 

of determining the effect of a given field of initial deformations, like that due to a thermal 

action, in a structure with linear behaviour, is easily solved by Duhamel’s Method (Arantes e 
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Oliveira 1999). Note that it is also possible to use initial deformations to model the geometrical 

nonlinearity, see for instance Mari et al. (1982). 

Because of the nonlinear character of the problem these additional forces are not known in 

advance. This is the same to say that the corresponding initial deformations or initial stresses 

are not known in advance, just like the effective deformed configuration is an unknown of the 

geometrically nonlinear problem tackled by the Equivalent Force Method. Hence, the 

calculation of these additional forces, named fictitious forces in opposition to the effective 

loads, requires appropriate numerical procedures. The adoption of a fictitious force system, 

modelling the nonlinear material behaviour, together with a simple iteration procedure and 

appropriate simplifying assumptions, are all that is required for a nonlinear material analysis 

method, fulfilling the four requirements given before. This is the basic idea of the Fictitious 

Force Method (FFM), established in Gala (2007), further developed since then and presented 

in this thesis, which is an iterative method for the quasi-static nonlinear analysis of plane 

skeletal structures. 

Gala (2007) established two simple iteration procedures, which are now designated the 

Fictitious Force Method by deformations (FFMDef) and the Fictitious Force Method by stresses 

(FFMS). These two iterative versions of the Fictitious Force Method can be seen as applications 

of the Initial Stress Method of Ziewnkiewicz et al. (1969) and of the Initial Strain Method of 

Argyris and Scharpf (1972), originally proposed in the context of the Finite Element Method 

(FEM). On the other hand, the format of the fictitious forces employed in FFM has also a close 

relation to the Equivalent System of Fertis (2006). 

The constant stiffness used in FFM can be the initial tangent stiffness; actually, this is a rather 

intuitive option. However, the constant stiffness which can be used is to some extent arbitrary. 

Moreover, the choice of an adequate constant stiffness is crucial not only to assure the 

convergence of the numerical procedure but also to decrease the required number of 

iterations. 

FFM was originally formulated for flexure behaviour only, corresponding to beam model M. In 

this thesis, it is extended to the truss model N and to the general beam-column model MN, 

which combines the previous two. The formulation accomplished with model MN fulfils the 

requirements of the methodology proposed by Blaauwendraad (1972). 
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1.2. Objectives of the thesis 

The central objective of this thesis is to present the 1D Fictitious Force Method. This main 

objective can be divided in the following sub-objectives: 

(i) Establish the fictitious force system for three 1D bar models: M, N and MN; 

(ii) Establish the FFM iterative procedures and clarify their meaning from both the 

physical and mathematical points of view; 

(iii) Determine the convergence conditions of the FFM and, based on these conditions, 

define the admissible choices for the auxiliary stiffness; 

(iv) Determine the influence of the auxiliary stiffness on the numerical efficiency of the 

FFM; 

(v) Illustrate and discuss the application of FFM. 

1.3. Structure of the thesis 

This thesis contains seven chapters, including this introductory one. In the second chapter one 

reviews several methods, presented in the literature, that use either fictitious force systems or 

initial deformations to model nonlinear material behaviour or other structural phenomena. 

Duhamel’s method for the solution of the initial deformations linear problem is presented in 

this context. The Fixed Point Iteration Method is also presented, from the functional analysis 

viewpoint, and FFM is shown to belong to this category of methods. 

In the third chapter, the simplifying hypotheses which support the 1D flexural Euler-Bernoulli 

model are first clarified and subsequently FFM is formulated for this model, the so-called beam 

model M. The convergence conditions for FFM are then derived in the context of model M with 

all the required generality. A simple example is then presented as a first illustration of the 

method. The chapter closes with more advanced aspects of the application of FFM in the 

context of model M, including the development of the exact expressions of the fictitious force 

format. 

The fourth chapter presents the application of FFM in the context of the truss model N, 

including once again the development of the fictitious force format exact expressions. The 

discretization procedure commonly adopted for linear material behaviour is not valid in the 
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nonlinear case. An example is given which illustrates the application of FFM in the context of 

model N. 

The fifth chapter presents the application of FFM in the context of the beam-column model 

MN, with a special focus on the specific convergence conditions. An example is presented 

which illustrates the method in the context of model MN. The examples presented in chapters 

3 to 5 were analysed with the help of the algebra package Mathematica (Wolfram, 2008). 

The sixth chapter presents some applications of FFM, via EvalS, to the nonlinear analysis of 

reinforced concrete skeletal structures. EvalS (Ferreira, 2011) is a software for the analysis of 

plane skeletal structures that uses the Equivalent Force Method to model geometrically 

nonlinear behaviour and the Fictitious Force Method to perform nonlinear material analyses. 

The last chapter summarizes the main conclusions of this work and indicates topics requiring 

further investigation. 
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Chapter 2 
Fictitious Forces in Structural Analysis 

2.1. Introduction 

This chapter presents a review of the literature on the use of fictitious forces and initial 

deformations in structural analysis problems and, particularly, in nonlinear material problems. 

It begins with an historical perspective on the use of initial deformations in structural analysis. 

Then, the Initial Stress Method of Zienkiewicz et al. (1969) and the Initial Strain Method of 

Argyris and Scharpf (1972) are described. In the sequel to these methods, a brief but general 

description of the Fixed Point Iteration Method is presented. 

In the remaining sections other methods are reviewed, beginning with the method proposed 

by Lin (1968) for the nonlinear elastic-plastic analysis of beams, which is a direct application of 

Duhamel’s method. Next comes the Imposed Deformations Method of Aguado (1980) which, 

in spite of not using fictitious forces, employs initial deformations to model nonlinear material 

behaviour in an iterative procedure that approximates the strain fields like the Initial Strain 

Method. 

The chapter is concluded with the description of three additional methods which also employ 

fictitious forces and/or initial deformations: the Method of Equivalent Systems of Fertis (2006), 

which employs a system of auxiliary forces similar to the FFM fictitious force system, and two 

reanalysis methods. 
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2.2. The use of initial deformations in structural analysis 

The state of deformation and stress caused by a given field of initial deformations was first 

analysed by Duhamel in 1838 (Arantes e Oliveira, 1999). Duhamel did not consider an arbitrary 

field of initial deformations; instead, he supposed that the structure was subjected to a given 

thermal action, which is a particular case of an initial deformations field. Duhamel’s method 

can be described in various ways, all sharing the same basic idea (Arantes e Oliveira, 1999). 

The problem considers a structure subjected to an action formed by (i) a thermal action, or any 

other initial deformation, and (ii) a system of exterior forces. To this action corresponds a 

general solution in terms of displacement, strain and stress fields. If the problem is linear, the 

effect of the initial deformations can be calculated subtracting the effects of the exterior 

forces to the general solution (superposition principle). In chapter 3, Duhamel’s method is 

presented in detail in the context of Euler-Bernoulli beam element and FFM. 

Initial deformations can be used to disguise the nonlinear character of nonlinear material 

problems, i.e. to replace their nonlinear governing equations by an iteratively solved series of 

linear equations. This corresponds to the substitution of the nonlinear material problem by a 

simpler linear elastic problem. However, the intrinsic nonlinear character of the former 

problem does obviously not vanish: even though it is not present in each iteration of the latter 

problem, it modifies its linear equations from one iteration to the next one. 

The use of initial deformations in the analysis of nonlinear material problems results from the 

conjunction of: 

(i) a linear solver capable of determining the structural response to an arbitrary initial 

deformations field; 

(ii) an iterative procedure which updates the initial deformations field in every iteration. 

This methodology is used by FFM for the quasi-static analysis of structures made of materials 

presenting nonlinear elastic constitutive laws. 

This procedure is not restricted to nonlinear material problems; it can also be applied to other 

types of structural problems. In fact, the Method of Cut-Outs of Argyris (1960) (see also Argyris 

and Kelsey (1957)) and its variations, were probably the first to use initial deformations to 

model generic actions rather than thermal actions and, particularly, to model structural 

modifications in the reanalysis procedures of optimization, reliability and redesign problems. 
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This method appears in the context of matrix structural analysis, developed about the same 

time, see Argyris and Kelsey (1957)1 – this method became the basis for several reanalysis 

methods, some of which are reviewed in § 2.8. 

Some years later, Argyris (1965) created the Initial Strain Method, employing initial strains 

again, this time to model plasticity in structures and, later on, Zienkiewicz et al. (1969) 

presented the closely related Initial Stress Method. Together with Maier (1970 and 1972), 

these were the first authors to use initial strains with this purpose. Teixeira de Freitas (1990) 

presents the work of Argyris and Scharpf (1972) and Zienkiewicz et al. (1969) as the backbone 

for elastic-plastic methods of analysis which can be divided in two main categories: those 

employing iterative procedures and those based on the application of mathematical 

programming theory. 

The relation between the Initial Strain Method and the Initial Stress Method was proven by 

Argyris and Scharpf (1972), who treated them as particular instances of the Initial Load 

Technique, which is the appropriate framework to model initial deformations and initial 

stresses in the context of the Finite Element Method (FEM). Argyris and Scharpf (1972) 

systematization of the initial stress and initial strain methods also clarifies their iterative 

nature: they result from the combination of the Initial Load Technique with numerical iterative 

procedures of the simplest kind – e.g. fixed point iteration methods, see Atkinson and Han 

(2001) and Pina (2010). Argyris and Scharpf (1972) presented also an exhaustive convergence 

study of both initial strain and stress methods, in the context of a specific 3D FEM problem. 

The next section presents these methods with some detail. 

2.3. The Initial Stress and Initial Strain Methods 

2.3.1. Initial Stress Method 

As mentioned before, the Initial Stress Method was firstly proposed by Zienkiewicz et al. 

(1969), in the context of the Finite Element Analysis, as an iterative method to determine the 

elastic-plastic solution of general structural problems. Zienkiewicz et al. (1969) describe the 

application of the method to the calculation of the structural response to a given load 

                                                             
1 See also Felippa (2001). 
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increment F, supposing there are pre-existing states of stress or deformation. The method 

starts with the calculation, with a linear elastic analysis based on a constant stiffness matrix, of 

the increments of stress R
L
 and strain 

L
 occurring when the load increment F is applied 

to the structure. Thence, the linear solution (
L
,R

L
) is the first estimative of the iterative 

procedure, i.e. (1)
L     and (1)

A L  R R , where the subscript “A” in ( )
A
iR  means that 

these stresses correspond to a constant stiffness, the so-called auxiliary stiffness. The true 

increment of stress (1)R  corresponding to (1)  is also calculated using the effective 

nonlinear constitutive law. 

A set of forces equilibrating the initial or fictitious stress (1) (1) (1)
F A   R R R  is then 

introduced. This defines the fictitious force system of the second iteration. Subsequently, with 

these fictitious forces, a new linear elastic analysis is performed with the same constant 

stiffness matrix, causing the additional strain increment (2)  and the linear stress increment 

(2)
AR . In each iteration, the value ( )

F
iR  is calculated. The procedure is iteratively repeated 

until the difference between two successive values of ( )
F
iR  gets smaller than the predefined 

numerical tolerance, ( 1) ( )
F F
i i tol   R R . This concludes the analysis of the first load 

increment F; the analysis is then repeated for each of the remaining load increments. 

2.3.2. Initial Load Technique 

Argyris and Scharpf (1972) established the Initial Load Technique, in the context of FEM, for 

the analysis of the structural response to the action of a generic field of initial strains or the 

corresponding initial stresses. If the vectors 
I
 and R

I 
correspond to the discrete 

representation of these fields of initial strains and stresses, respectively, they satisfy the 

following linear relationship 

 *
I A I R K   (2.1) 

The global vectors 
I
 and R

I
 collect the elemental vectors containing the initial strains and 

stresses at given interpolation points; the initial strains and stresses at any other point of the 

structure can be calculated by interpolation. The matrix *
AK  is block diagonal and collects the 

linear elastic stiffness matrices at the interpolation points. The displacement response to these 

actions is given by the solution of the finite element equation 

 A IF K d + F  (2.2) 
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where K
A
 is the assembled stiffness matrix, d the displacement vector, F the effective force 

vector and F
I
 the initial force vector corresponding to the initial strains 

  I II
F F   (2.3) 

The effective strains  are compatible with the displacement vector d, i.e. 

   d   (2.4) 

and the elastic strains are given by 

 
E I    (2.5) 

and satisfy the linear constitutive relationship 

 A ER K *  (2.6) 

where R is the effective stress vector. Hence, substituting (2.5) and (2.1) into (2.6), gives, 

 *
A IR K R  (2.7) 

It is possible, with these relations, to establish a linear matrix operator T
a
 which transforms 

the effective force vector F and the initial deformation vector 
I
 into the effective stress 

vector, 

  a I,R T F   (2.8) 

Similarly, it is possible to establish a linear matrix operator T
b
 which transforms the effective 

force vector F and the initial stresses R
I
 into the effective strains, 

 b I,   T F R  (2.9) 

These two relations are used in the Initial Strain Method and Initial Stress Method, 

respectively. 

2.3.2.1. Initial Strain Method 

Within the general framework of the Initial Load Technique, Argyris and Scharpf (1972) 

presented the Initial Strain Method for the calculation of the response to a load increment F 

of a structure with an elastic-plastic constitutive relation satisfying Von-Mises yield criterion. 
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The solution to this problem is characterized by the global vectors of strain  and stress R 

increments. 

Based on an auxiliary elastic stiffness *
AK  corresponding to the initial tangent stiffness, Argyris 

and Scharpf (1972) additively decompose the effective increment of strain of the elastic-plastic 

problem  into an elastic component 
E
 and a plastic component 

P
, i.e. 

 E P        (2.10) 

Next, the authors assume that the effective stress increment R is known in advance, and 

write the plastic deformations 
P
 in terms of the stresses in a constitutive relation of the type 

  P P   R   (2.11) 

where  P R  aggregates a collection of nonlinear constitutive relations defined for each 

interpolation point of the discretized continuum. Each of these relations depends on both the 

auxiliary elastic stiffness *
AK , and the effective nonlinear constitutive relation. 

The authors treat the plastic strain component 
P
 as an initial deformation, in the framework 

of Initial Load Technique. Thence, substituting 
P
 on the right-hand side of the incremental 

form of (2.8) and substituting the resulting expression on the right-hand side of (2.11) gives 

 P P a P,        T F    (2.12) 

or 

 P p P,     T F   (2.13) 

in which pT  is the nonlinear operator resulting from the composition of the linear operator T
a
 

defined in (2.8) with the nonlinear constitutive relations at the points of the discretised 

continuum gathered in (2.11). For a fixed vector F, this operator pT  transforms the plastic 

deformation 
P
 into itself. Thence, 

P
 is a fixed point of pT  (Atkinson and Han, 2001). 

However, the presence of 
P
 in both members of (2.12) and (2.13) is a direct consequence of 

the hypothesis, formulated by the authors, that the effective stress R is known in advance. 

Since, in general, this is not true, the expression (2.13) determines the following simple 

iteration procedure 

 ( 1) ( )
P p P,i i

     T F   (2.14) 
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This means that in a generic iteration the plastic deformations ( )
P
i , corresponding to the 

effective stresses ( )iR , are considered to be initial strains applied to the structure. The matrix 

operator pT  in (2.14), based on the Initial Load Technique, then transforms ( )
P
i  into the 

next estimative ( 1)
P
i . This iterative procedure stops when the difference between the plastic 

deformations determined in successive iterations satisfies the convergence criterion. 

2.3.2.2. Initial Stress Method revisited by Argyris and Scharpf 

The Initial Stress Method is also revisited by Argyris and Scharpf (1972), as a particular case of 

the Initial Load Technique, when they investigate the elastic-plastic problem previously 

described. They start by establishing the incremental elastic-plastic constitutive relations 

 *  R K   (2.15) 

where *K  is a block diagonal matrix gathering the material elastic-plastic tangent stiffness 

matrices at the points of the discretized continuum. They next replace this constitutive 

equation by the affine relation (2.7), written now in the incremental form, 

 *
A I   R K R  (2.16) 

This substitution is possible for the following initial stresses 

  * *
I A    R K K   (2.17) 

This global relation gathers a collection of analogous relations defined at the points of the 

discretized continuum. This matrix relation is symbolically represented by 

  I I   R R   (2.18) 

which is dual of (2.11). It is useful to admit, as Zienkiewicz et al. (1969) did, that the correct 

effective strain increment , and therefore R
I
, are known in advance. Thence, substituting 

the incremental form of (2.9) on the right-hand side of (2.18), gives 

 I I b I,        R R T F R  (2.19) 

or 

 I RI I,     R T F R  (2.20) 
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where T
RI

 is the nonlinear operator resulting from the composition of the linear operator T
b
 

defined in (2.9) with the nonlinear constitutive relations at the points of the discretised 

continuum gathered in (2.18). For a fixed force vector increment F, the operator T
RI

 

transforms the initial stress R
I
 into itself. Thence, R

I
 is a fixed point of T

RI
. Recall that the 

presence of R
I
 in both members of (2.20) is a direct consequence of the hypothesis, 

formulated by Argyris and Scharpf (1972) and Zienkiewicz et al. (1969), that the effective 

strains  are known in advance. Since, in general, this is not true, the expression (2.20) 

determines the following simple iteration procedure 

 ( 1) ( )
I RI I,i i     R T F R  (2.21) 

This means that a generic iteration of the method consists in considering the initial stresses 

( )
I
iR , corresponding to the effective strains ( )i , that are transformed into the next 

estimative ( 1)
I
iR  by the matrix operator T

RI
 in (2.21). This iterative procedure stops when 

the difference between the initial stresses of successive iterations verifies the convergence 

criterion. 

Finally, it is worth noting that the iterative procedure expressed by (2.21) can be used even if 

the effective problem to be solved is linear; in that case, the auxiliary stiffness matrix *
AK  is 

different from the now also linear *K . A similar conclusion can be drawn for the Initial Strain 

Method. In that case, 
P
 are no longer plastic deformations; instead, they are components of 

the decomposition E P        determined by the auxiliary stiffness *
AK  and, therefore, 

the relation  P P   R   becomes linear. It is this possibility that makes these methods 

suitable for reanalysis procedures. 

Sometimes, the Initial Strain Method and Initial Stress Method are referred to as applications 

of the modified Newton-Rhapson method, because of the relation between these two general 

iterative methods. 

2.3.2.3. Alternative iteration formulas for Initial Strain and Initial Stress 
Methods 

The close relation between the Initial Strain Method and FFMDef and between the Initial Stress 

Method and FFMS is proven in chapter 3. Such relation is best understood if other iteration 

formulas, equivalent to (2.14) and (2.21), are considered. 
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In the context of the Initial Strain Method, let us consider again (2.8) and (2.11). Note that, 

apart from its iterative character, the iteration formula (2.14) results from substituting (2.8) 

into (2.11). If, alternatively, (2.11) is substituted into the incremental form of (2.8), one gets 

  a P,      R T F R  (2.22) 

or 

  R ,   R T F R  (2.23) 

This equation can then be converted into the iterative form, giving 

 ( 1) ( )
R ,i i     R T F R  (2.24) 

which is equivalent to (2.14) and related to FFM by Stresses presented in the next chapter. 

In the context of the Initial Stress Method, let us consider again (2.9) and (2.18). Apart from its 

iterative character, the iteration formula (2.21) results from substituting (2.9) into (2.18). Once 

again, consider instead the substitution of (2.18) into the incremental form of (2.9) 

  b I,      T F R   (2.25) 

or 

  ,   T F   (2.26) 

This equation can then be converted into the iterative form, giving 

 ( 1) ( ),i i
     T F   (2.27) 

which is equivalent to (2.21) and is related to FFM by Deformations presented in the next 

chapter. 

The operators T
a
 and T

b
 are related to the operators IG and IG  introduced in § 3.2.5 in the 

context of the FFM. 

Iteration formulas (2.14) and (2.21) (and therefore also (2.24) and (2.27)) correspond to the 

application of the Fixed Point Iteration Method which is described next. 



The fictitious force method and its application to the nonlinear material analysis of skeletal structures 

16 

2.4. The Fixed-Point Iteration Method 

The Fixed Point Iteration Method2 is now presented from the viewpoint of functional analysis 

(Atkinson and Han, 2001). Generically, the Fixed Point Iteration Method is used to solve 

nonlinear functional equations of the type 

  v T u  (2.28) 

where T: KK stands for a nonlinear operator in a complete space K with a norm 

represented by ., see (Atkinson and Han, 2001). A fixed-point of T is an element of K which 

satisfies the expression 

  u T u  (2.29) 

The operator T is classified as Lipschitzian if 

     , , 0T u T v L u v u v K L       (2.30) 

as non-expansive if L = 1 in the above expression, i.e. 

     ,T u T v u v u v K      (2.31) 

and as contractive if 0 1L   in the above expression, i.e. 

      , 0,1T u T v u v u v K      and  (2.32) 

where  is the contractivity constant. It can be concluded that a non-expansive operator is also 

Lipschitzian and a contractive operator is also non-expansive and, therefore, Lipschitzian. 

Suppose that T: KK is a nonlinear contractive operator. According to the Fixed Point 

Theorem (Atkinson and Han, 2001): 

i) There is a unique fixed point  u T u  in K; 

ii) Whatever the initial element (1)u  of K, the sequence  ( )iu  defined by 

 ( 1) ( )i iu T u      (2.33) 

converges to the fixed point u, i.e. ( 1) 0iu u    when i  ; 

                                                             
2 Other designations are also used, such as the Principle of Contraction Mappings 
(Bailey et al., 1968). 



Chapter 2. Fictitious Forces in Structural Analysis 

17 

iii) The error of the ith iteration is limited by the following bound, 

 ( ) ( 1)i iu u u u     (2.34) 

From this bound a second bound for that error can be immediately deduced using Schwarz 

inequality 

 ( ) ( 1) ( )

1

i i iu u u u



  


 (2.35) 

and from this one and the contractive operator condition (2.32) a third error bound is also 

easily established 

 
1

( ) (1) (2)

1

i
iu u u u







  


 (2.36) 

This theorem suggests a numerical method for solving nonlinear functional equations of the 

type (2.28), which is known by Fixed Point Iteration Method. The simplest application of the 

Fixed Point Iteration Method is to determine the solution of a nonlinear equation with domain 

1D  , which can be written as (Pina, 2010, Chapra and Canale, 2010) 

   1,f x a a D   (2.37) 

This equation can be converted to the fixed-point equation format 

  x t x  (2.38) 

with 

    t x f x x a    (2.39) 

The application of the Fixed Point Iteration Method to solve (2.38) gives 

 ( 1) ( )i ix t x      (2.40) 

Let M be the maximum absolute value of the first derivative of  t x  in the domain D
1
, i.e., 

  
1

max
x D

M t x


  (2.41) 

Then, the iteration formula (2.40) converges if M < 1. In this case, M is the contractivity 

constant , i.e., 

  
1

max 1
x D

M t x


    (2.42) 
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In this one-dimensional case, the convergence of the iterative procedure has a clear graphical 

representation, as illustrated by the example presented in § 3.3. 

Another application of the Fixed Point Iteration Method is the calculation of the solution of a 

system of nonlinear equations of the type (Pina, 2010) 

   F x a  (2.43) 

where F: D
n D

n
 with n

nD   is a map between elements of D
n
, that can be written as 

 

 

 

 

1 1 2 1

2 1 2 2

1 2

, ,...,

, ,...,

, ,...,

n

n

n n n

f x x x a

f x x x a

f x x x a

 





 

 (2.44) 

where x
j
 and a

j
 are the components of x and a. The system of equations (2.43) can be 

converted into the fixed-point system 

  x T x  (2.45) 

with 

      T x F x x a  (2.46) 

The application of the Fixed Point Iteration Method to solve (2.45) gives 

 ( 1) ( )i i    x T x  (2.47) 

Let  J x  be the Jacobian matrix of  T x  and let S be the supreme norm of  J x  in D
n
, i.e., 

  sup
Dn

S



x

J x  (2.48) 

Then, the iteration formula (2.47) is convergent if S < 1. In this case, S is the contractivity 

constant , i.e., 

  sup 1
Dn

S


  
x

J x  (2.49) 

As demonstrated in chapter 3, the discrete descriptions of FFM are applications of the Fixed 

Point Iteration Method that satisfy conditions of this type. 
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2.5. Lin’s nonlinear material method 

This section presents a method proposed by Lin (1968) employing fictitious forces to perform a 

nonlinear material analysis of one dimensional beams, assuming Euler-Bernoulli kinematic 

hypothesis. The following exposition presents the fictitious force form adopted by this author 

and the related system of governing equations. 

Lin analyses a built-in beam made of a material with a nonlinear constitutive stress-strain 

relation  e , see Figure 2.1, which is subjected to a system of exterior forces. The 

constitutive relation has an initial linear branch, characterized by stiffness E
0
, which is followed 

by a generic nonlinear branch, so that plastic strains eP develop when the strain reaches this 

second branch3. The transition point between these two branches is defined by the 

proportionality limit stress 
lim

 see Figure 2.1. To this non-holonomic elastic-plastic problem 

corresponds a similar holonomic nonlinear elastic problem if no load reversal is considered. 

The solution to the beam problem is given by the effective nonlinear bending moment field 

 M x , the effective curvature field  x  and the corresponding deflections field, where x is a 

coordinate along the beam longitudinal axis. Suppose that  LM x  represents the bending 

moment field calculated with a linear elastic analysis using the initial elastic bending stiffness 

EI
0
, determined by E

0
 and by the cross-sectional geometry. The increment of the bending 

moment field  incrM x  can now be defined as 

      incr LM x M x M x   (2.50) 

e
EePe




 e

lim

0E

1

P

E

 

Figure 2.1. Lin’s problem: nonlinear constitutive relation. 

                                                             
3 The constitutive relation is symmetric with respect to the origin, which means that there are 
three branches, one linear and two nonlinear. But the generality of the exposition is not lost if 
one keeps imagining positive stresses and strains. 
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If the stress at all points of every cross section is below the proportionality limit stress lim, the 

solution is linear elastic and  incr 0M x  . For the general case, Lin determines the bending 

moment field  incrM x  by means of a physical model employing fictitious forces, described 

next, which corresponds to the application of Duhamel’s method. 

2.5.1. Lin’s fictitious force system 

Let us consider a generic segment of the beam with length x, see Figure 2.2a, and suppose 

that the fields of curvatures  and bending moments M, caused by a system of forces, are 

approximated by seccionally constant fields with a constant value in this segment. Imagine 

that this segment is cut out of the original beam so that its bending moments are relieved. The 

segment then gets the deformed configuration corresponding to the plastic curvatures 
P
, see 

Figure 2.2b. The initial configuration of the beam will be restored if the restoring moments 
R
 

corresponding to the bending moments 
P 0 PM EI    , represented in Figure 2.2c, are 

applied to the segment ends. The sign conventions are represented in Figure 2.3, for positive 

internal forces and positive applied point forces and moments at a generic cross section, and in 

Figure 2.4, for a positive curvature. 

Suppose that the beam has been partitioned into several elements of length x all cut out as 

described before. In general, due to the residual plastic strains the deformed configurations of 

the cut out contiguous segments are not compatible with the hyperstatic beam boundary 

conditions. Compatibility is restored if each segment is straightened by means of the 

application of the restoring moments 
R
. The pairs of plastic moments M

P
, and, therefore, the 

restoring moments 
R
, will generally have different values in adjacent segments. Hence, at 

the generic jth section, connecting two adjacent segments, the sum of their plastic moments 

defines the resultant restoring moment R, R, R, -1 P, P, -1j j j j jM M      , see Figure 2.5 

and Figure 2.6. At this stage, the conditions of Duhamel’s method are established: the 

combined effect of the residual curvature 
P
 and of a system of exterior forces, defined by the 

restoring moments R, j , corresponds to a known solution, which is determined by the 

initial configuration and the plastic bending moments -M
P
. 

Hence, Lin considers 
P
 and -M

P
 as initial curvatures and initial bending moments, respectively, 

acting on the beam that is now considered to have the linear auxiliary constitutive relation 

determined by the auxiliary bending stiffness EI
0
. A beam equal to the original beam except 

that the effective constitutive relation is replaced by the auxiliary constitutive relation will be 



Chapter 2. Fictitious Forces in Structural Analysis 

21 

called auxiliary beam. The difference between this nonlinear material problem and the linear 

problem of Duhamel is that the initial curvatures and initial bending moments are unknowns  

R PM 
R PM 

P

x

a)

b)

c)
 

Figure 2.2. Lin’s problem: residual plastic deformation and straightening of a beam segment. 

V

M

N

V M

N

Q

P

 

Figure 2.3. Sign conventions: positive internal forces and positive point forces and moments. 



 

Figure 2.4. Sign convention: initially straight beam under positive curvature. 

R, P,j jM R, 1 P, 1j jM  

R, R, R, 1 P, P, 1j j j j jM M      

 

Figure 2.5. Lin’s problem: restoring moments in two adjacent elements. 
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 PM x



R,1 R,1 R,2

R, 1j R, j R, j R, 1j R, 1j

R, 1m

R,m R,m

R,1

R,2 R, jR, 1j R, 2jR, 1j R,m

R,m

R, 1j

R,2 R, 1m

R,3
R, 1m

 

Figure 2.6. Lin’s problem: elemental restoring moments and their resultant moments. 

F,1 F,1 F,2

F, 1j F, j F, j F, 1j F, 1j

F, 1m

F,m F,m

F,1

F,2 F, jF, 1j F, 2jF, 1j F,m

F,m

F, 1j

F,2 F, 1m

F,3
F, 1m

 

Figure 2.7. Lin’s problem: system of fictitious moments. 

of the problem in the former case, since they depend on the solution itself. This is the source 

of nonlinearity of the problem. 

The effect of the residual curvatures 
P
 can be calculated subtracting the linear elastic effect of 

the exterior forces to this solution. In the physical model of Lin, a system of fictitious forces 

formed by the fictitious moments 
F R  , i.e. formed by moments symmetric to 

R
, 

must be applied to the beam, as represented in Figure 2.7.Thence, the intuitive physical model 

proposed by Lin defines a fictitious “force” system which simulates the residual curvatures 
P
 

on the auxiliary beam. 

The combination of this fictitious system of (generalized) forces with the effective force 

system, when applied to the auxiliary beam, corresponds to the auxiliary bending moment 

field  A .M x  The increment of the bending moments field corresponding solely to the 

fictitious system of moments is therefore 

      A,incr A LM x M x M x   (2.51) 
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which, when added to the plastic bending moment field  PM x , gives the effective 

increment of the bending moment field 

      incr A,incr PM x M x M x   (2.52) 

In order to determine the bending moments  A,incrM x  introduced by the fictitious force 

system, Lin uses the influence function  ,g x x  which gives the bending moment at section x 

caused by a unit moment applied at section x , i.e.  ,g x x  is the influence line of the bending 

moment at a fixed section x for a unit moment moving along the beam. Note that for the 

adopted sign conventions, represented in Figure 2.3, 

 , , 1g x x g x x          (2.53) 

where x  and x  are the sections just before and just after section x. 

In the case of hyperstatic beams this function  ,g x x  depends on the bending stiffness 

distribution. Recall that the use of influence lines assumes that structural behaviour is linear, 

which is the case of the auxiliary beam. 

The variation of the bending moment at section x caused by the fictitious moment 

F PM   , see Figure 2.8, applied at section x , is given by 

        A,incr F P, ,M x g x x g x x M x        (2.54) 

If this moment has an elementary magnitude then 

      A,incr P,dM x g x x dM x    (2.55) 

or 

    
 P

A,incr ,
dM x

dM x g x x dx
dx


  


 (2.56) 

F, P,j jMF, 1 P, 1j jM 

F, F, F, 1 P, P, 1j j j j jM M     

 

Figure 2.8. Lin’s problem: fictitious moments in two adjacent elements. 
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 F,1 P 0M  F,2 PM L

L

F Pm dM dx

 

Figure 2.9. Lin’s problem: differential description of the system of fictitious forces. 

Hence, the field  A,incrM x  is given by the integration of the differential increments  A,incrdM x  

    
 P

A,incr

0

,

L dM x
M x g x x dx

dx


  

  (2.57) 

The influence function  ,g x x  is in fact a Green’s function of the governing differential 

equation of the beam problem (Veiskarami and Pourzeynali, 2012). 

The derivative 
PdM dx  in the expression above is a distributed fictitious moment 

F Pm dM dx  which is obtained when the partition norm 0x  . Thence, a self-

equilibrated fictitious force system is established by Lin, which is formed by this fictitious 

distributed moment and the two fictitious moments  F,1 P 0M  and  F,2 PM L   at the 

element end sections, see Figure 2.9. 

2.5.2. Governing nonlinear integral equation 

The fictitious force system of Lin leads to expression (2.57) that is now converted into the 

governing integral equation of the method. Assuming that M
P
 is continuous and integrating by 

parts the integral in this expression 

 
 

 
 

 
 

     
 

     
 

           

 
 

P P P

0 0

P P0
0

P P

P P P

P P

0

, , ,

,
,

,
,

, ,0 0 , ,

,

L x L

x

x
x

L
L

x
x

x

dM x dM x dM x
g x x dx g x x dx g x x dx

dx dx dx

g x x
M x g x x M x dx

x

g x x
M x g x x M x dx

x

g x L M L g x M g x x g x x M x

g x x
M x dx M

x





 

  
        

  


        


       

          


   



  





  
 ,L

x

g x x
x dx

x






 (2.58) 

Substituting (2.53) into this expression and introducing the result in expression (2.57) gives 
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     

 
 

 

       

A,incr P P P

0

P P

, ,

, ,0 0

x L

x

g x x g x x
M x M x M x dx M x dx

x x

g x L M L g x M
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 

   (2.59) 

Since the beam end sections are built-in4,    ,0 , 0g x g x L  , 

      
 

 
 

A,incr P P P

0

, ,x L

x

g x x g x x
M x M x M x dx M x dx

x x

  
     

     (2.60) 

Thence, the effective increments of bending moments (2.52) are given by 

    
 

 
 

incr P P

0

, ,x L

x

g x x g x x
M x M x dx M x dx

x x

  
    

     (2.61) 

and the nonlinear bending moments are given by, see (2.50), 

      
 

 
 

L P P

0

, ,x L

x

g x x g x x
M x M x M x dx M x dx

x x

  
     

     (2.62) 

where the integral expression on the second member is nonlinear because the plastic bending 

moments  PM x  depend on the effective bending moments  M x . 

2.6. The Imposed Deformations Method 

Another method for the nonlinear material analysis of skeletal structures is the Imposed 

Deformations Method proposed by Aguado (1980) and Aguado et al. (1981). This method is an 

iterative nonlinear material analysis method that considers the nonlinear behaviour by means 

of initial deformations. The application of this method requires the previous computation of 

the nonlinear constitutive bending moment-curvature relations  M . Aguado and his co-

authors used the method for the analysis of reinforced concrete beams, but the method can 

also be applied to general skeletal structures. The method was extended to model also 

geometrically nonlinear behaviour by means of initial deformations (Mari et al., 1982). The 

method fulfils the requirements established in the framework of the General Method of CEB 

Buckling Manual (CEB,1974). Other authors, like Ferry Borges and Arantes e Oliveira (1964) 

and Macchi (1973), also developed related methodologies fulfilling these requirements. 

                                                             
4 If any of them was free, the corresponding bending moment would be zero, therefore 

P 0M  , and the expression (2.60) would be obtained once more. 
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Actually, the Imposed Deformations Method can be seen as a direct extension of the Imposed 

Rotations Method of Macchi (1973), cited by Aguado (1980). The Imposed Deformations 

Method is also similar to the method proposed by Morisset (1976) for the nonlinear 

geometrical and material analysis of reinforced concrete beam-columns. 

The Imposed Deformations Method considers an auxiliary linear constitutive relation between 

bending moment and curvature, see Figure 2.10, characterized by EI
0
, the initial bending 

stiffness of the effective constitutive relation. With this auxiliary linear relation a first solution 

is determined, defined by the fields of bending moments (1)M  and curvatures (1) ; this is the 

initial guess of the iterative procedure. 

With (i) this initial guess and (ii) the effective nonlinear constitutive relation  M , the initial 

curvature (1)
I  is defined by, see Figure 2.10, 

 (1) (1) (1)
I M       (2.63) 

These initial curvatures, considered at specific cross sections, are then treated as initial 

deformations acting on the skeletal structure that is now considered to have the linear 

auxiliary constitutive relation determined by the bending stiffness EI
0
, being therefore 

designated auxiliary skeletal structure. In isostatic structures the method ends here, since the 

initial curvature (1)
I  produces a variation of the displacement field of the structure, and 

therefore of the curvature field, but does not change the bending moments (1)M . In that case, 

these bending moments do not obviously depend on the bending stiffness EI
0
. In the general 

case, to the initial curvatures (1)
I  corresponds the variation of the bending moments 

(2) (2) (1)M M M   , i.e. to the initial deformations (1)
I  corresponds a new solution 

characterized by the fields of curvatures (2)  and bending moments (2)M . This new solution  

(1)

(1)

I(1)M

1
0EI

M



 M 

 

Figure 2.10. Imposed Deformations Method: Effective nonlinear and auxiliary linear 

constitutive relations and initial curvature. 
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Figure 2.11. Imposed Deformations Method: schematic representation of iterative procedure. 

satisfies equilibrium and compatibility but not the nonlinear constitutive relation. Based on 

this new solution a new initial curvature (2)
I  is defined by 

 (2) (2) (2)
I M       (2.64) 

This initial curvature is treated again as an initial deformation acting on the auxiliary skeletal 

structure, to which corresponds the new solution  (3) (3),M  . The iterative procedure 

proceeds as described above and, in the generic ith iteration, the initial curvature is given by 

 ( ) ( ) ( )
I
i i iM       (2.65) 

to which corresponds the next solution  ( 1) ( 1),i iM   , see Figure 2.11. 

The iterative procedure ends when the solution converges, i.e. the norm of the initial 

curvatures becomes less than the specified tolerance. An equivalent criterion may be 

established for the variation of bending moments 

 ( ) ( ) ( 1)i i iM M M     (2.66) 

which is the one apparently chosen by Aguado. Whatever the used convergence criterion, it 

must indicate that, at a generic section, the convergent solution  ( ) ( ),j jM   is close enough 

to the effective nonlinear constitutive relation. In other words, this solution satisfies the 

constitutive relation within a specified tolerance. 

To sum up, starting from a given initial guess, the Imposed Deformations Method proceeds by 

iterations. Supposing that the ith approximation  ( ) ( ),i iM   was already calculated, the next 

iteration consists of two basic steps: 



The fictitious force method and its application to the nonlinear material analysis of skeletal structures 

28 

(i) Evaluate,  at  all  cross  sections,  the  initial  deformations  determined  by  the  auxiliary 

linear and effective nonlinear constitutive relations; 

(ii) Determine the linear structural response to these initial deformations. 

Aguado (1980) proposes a methodology  to determine  the  structural  response  referred  to  in 

item (ii) above. Generically speaking, influence lines can be used as an operator to determine 

the structural response. This operator is mathematically represented by the function   I ,g x x  

which gives the bending moment at section x caused by a unit relative rotational deformation 

at section  x , see Figure 2.12. Thence, when a relative rotational deformation I  is applied at 

section  x , the bending moment at section x is given by 

     I I ,M x g x x    (2.67) 

In the case of a beam of length L, the bending moment variation (2.66) at a specific section x in 

the ith iteration, is given by 

           ( ) ( ) ( 1) ( 1)
I I

0

,
L

i i i iM x M x M x g x x x dx          (2.68) 

because  I Id dx  .  If  the  constitutive  relation   M    has  an  initial  branch with  bending 

stiffness EI0, as represented in Figure 2.13, expression (2.68) is replaced by 

       
,2

( ) ( 1)
I I

1 ,1

,
x jn

i i

j x j

M x g x x x dx 



       (2.69) 

I 1    I 0, 0g x M 

   I ,g L x M L 

 0V

 V L

L

x

x



 I ,g x x

 

Figure 2.12. Imposed Deformations Method: relative rotational deformation applied to beam 

element. 
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Figure 2.13. Imposed Deformations Method: effective nonlinear and auxiliary linear 

constitutive relations. 

where n is the number of beam segments where the bending moment exceeds M
lim

 and ,1jx  

and ,2jx  are the abscissas of the left and right end sections of each segment. Thence, 

according to the initial curvature definition (2.65), 

         
,2

( ) ( 1) ( 1)
I

1
,1

,

x jn
i i i

j
x j

M x g x x M x x dx  



          (2.70) 

The integrand on the right-hand side is nonlinear because the constitutive relation  M  is 

nonlinear. Even though Aguado (1980) does not present expressions (2.68) to (2.70) in this 

particular format, they are implicit in his description. 

Aguado (1980) presents strategies for the automatic analysis of general skeletal structures by 

the Imposed Deformations Method. For the generic element represented in Figure 2.12, the 

internal forces due to a relative rotational deformation 
I
 at cross section x  are given by 

      1 2, 1
x x

M x x M x M x
L L

 
     

 
 (2.71) 

  
   1 2M x M x

V x
L

  
   (2.72) 

where 

      0
1 I2

2
0 2 3

EI
M x M L x

L
      (2.73) 

      0
2 I2

2
3

EI
M x M L x L

L
      (2.74) 

The initial deformations along the beam have to be integrated by an expression similar to 

(2.68). In order to get acceptable results, Aguado integrates these deformations in a simplified 
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way, subdividing each beam or column into three equal length beam elements (of the type 

represented in Figure 2.12). 

Aguado (1980) also proposed an improvement of the method described above where the 

iterative procedure is accelerated by means of suitable guesses of the final solution. 

2.7. The Equivalent Systems Method 

The Equivalent Systems Method of Fertis et al. (1990, 1991, 2006) is a method particularly 

appropriate for the analysis of beams and beam-columns. The method deals with very distinct 

structural problems, but it seems to be particularly useful for the analysis of geometrically 

nonlinear problems and non-prismatic elements such as tapered elements. This method can 

also be used for the analysis of nonlinear material problems under certain particular 

circumstances. The basic idea of the method is to rewrite the structural equations for a given 

effective problem into a simpler form, corresponding to an auxiliary problem defined by (i) a 

regular geometry, in case the original problem had some irregularity, and/or (ii) a linear 

constitutive relation, in case the original problem is nonlinear elastic. This transformation is 

made possible by an auxiliary force system reflecting the difference between the original 

problem and the auxiliary problem. Probably, the best way to present the fundamental 

concepts of the method, and particularly its equivalent force system, is by considering its 

application to the analysis of a tapered beam (Fertis, 2006). 

2.7.1. Equivalent force system 

The analysis of a slender tapered cantilever beam by the Equivalent Systems Method considers 

an auxiliary problem defined by (i) an auxiliary prismatic cantilever beam with constant 

auxiliary bending stiffness EI
A
 and (ii) an equivalent force system, such that the curvature and 

the deflection fields of the effective (tapered) and auxiliary (prismatic) problems coincide. 

Consider the tapered cantilever beam and loading represented in Figure 2.14. According to 

Euler-Bernoulli beam theory, 

        yM x E x I x x  (2.75) 
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Figure 2.14. Equivalent Systems Method: Slender tapered cantilever beam. 

where  E x  is a function giving the modulus of elasticity at each cross section,  yI x  is the 

second moment of area and  x  is the curvature field of this element. 

Suppose that the distributions  E x  and  yI x  are defined by 

    AE x E f x  (2.76) 

    ,Ay yI x I g x  (2.77) 

where E
A
 and ,AyI  are arbitrary constant values of the modulus of elasticity and second 

moment of area and  f x  and  g x  are dimensionless functions of the axial x-coordinate 

along the beam. The substitution of these expressions into (2.75) gives a constitutive relation 

similar to that of a prismatic element 

    A AM x EI x  (2.78) 

where  AM x  is an equivalent or auxiliary bending moment field given by 

  
 

   A

M x
M x

f x g x
  (2.79) 

and A A ,AyEI E I . This equivalent bending moment field is in equilibrium with the equivalent 

shear forces field 

  
 A

A

dM x
V x

dx
  (2.80) 

and the equivalent distributed transverse force 

  
 A

A

dV x
q x

dx
   (2.81) 

as illustrated in Figure 2.15a. 
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Figure 2.15. Equivalent Systems Method: Equivalent force system: a) exact; b) approximated. 

Even though this it is not mentioned by Fertis, sometimes the equivalent force system must 

also include point loads in order to guarantee equilibrium with the equivalent internal forces. 

In order to simplify this equivalent force system, Fertis (2006) proposes the substitution of the 

exact equivalent bending moment field  AM x  by an approximated piecewise linear field 

 A,apM x , like the one represented in Figure 2.15b. In this case, the equivalent force system is 

formed by transverse point loads located at the discontinuity sections of the derivative of 

 A,apM x , see Figure 2.15b. 

2.7.2. Nonlinear material analysis 

The Equivalent Systems Method can be applied to the analysis of nonlinear material problems 

under certain circumstances. Fertis (2006) applies his method to statically determined beams 

by means of the auxiliary system of forces briefly illustrated in the previous section and a 

reduced modulus of elasticity E
r
 (Timoshenko 1976), as described in what follows. 

Let us consider again the symmetric tapered cantilever beam represented in Figure 2.14 with a 

rectangular cross section with constant breadth b and variable depth  h x  and suppose that 

its longitudinal fibres satisfy a symmetric nonlinear stress-strain constitutive relation,  e , 

such as the one represented in Figure 2.16. At each cross section, the bending moment is given 

by 

 
2

2

h

h

M b z dz


   (2.82) 
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Figure 2.16. Equivalent Systems Method: symmetric nonlinear constitutive relation. 

But, according to Euler-Bernoulli hypothesis, 

 
e

z


  (2.83) 

and therefore 

 max2
e

h
   (2.84) 

where e
max

 is the maximum axial strain, at the top and bottom fibres of the cross section, see 

Figure 2.16. Hence, changing the integration variable in expression (2.82) according to (2.83), 

gives 

 
max

2

max

e

e

b
M ede




   (2.85) 

Defining the reduced modulus of elasticity (Timoshenko 1976) 

 
max

r 3 3

max

12
e

e

E ede
h






   (2.86) 

and substituting this definition in (2.85), gives 

 r yM E I   (2.87) 

which is a particularization of (2.75) for a specific cross section. 

Introducing (2.84) into (2.86) gives 

 
max

r 3
max max

3

2

e

e

E ede
e




   (2.88) 
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Figure 2.17. Equivalent Systems Method: trial-and-error iterative procedure for the 

determination of  rE x . 

Therefore, for a given constitutive relation, the value of E
r
 at each cross section depends solely 

on the maximum strain e
max

 at the top and bottom fibres, which are unknown. This strain 

changes from one cross section to another and so does E
r
, corresponding to the fields  maxe x  

and  rE x . For this particular problem  maxe x  depends solely on the curvature field  x . 

These fields can be determined in a discrete manner, i.e. the functions  maxe x ,  x  and 

 rE x  can be determined at a fixed set of cross sections, by means of the trial-and-error 

iterative procedure schematized in Figure 2.17. This procedure determines the deformation 

corresponding to the bending moment produced by the external loads and determined solely 

by the equilibrium relations. 

This iterative procedure is therefore equivalent to determining the nonlinear bending moment-

curvature constitutive relation of the beam cross sections. If there was also an axial force, the 

iterative procedure would have to include the search for both the curvature and the axial strain 

at the beam axis (or the axial strain at top and bottom fibres). 

Once  rE x  has been determined, a reference value can be chosen for E
A
, for instance the 

maximum value of  rE x , to determine the function  f x  in (2.76). The equivalent force 

system established in the previous section can now be calculated and the deformed 

configuration of the beam determined. 

2.8. Reanalysis methods employing fictitious forces 

Several reanalysis methods, used for instance in optimization, reliability and redesign analysis, 

are also suitable for the analysis of nonlinear material problems. The relation between these 

two families of methods is patent in the relation between the method of cut-outs of Argyris 

(1956) and the Initial Stress and Initial Strain Methods of Zienkiewicz et al. (1969) and Argyris 

and Scharpf (1972). Like other methods, these reanalysis methods are based on the repeated 

solution of a simple linear problem, which makes them very versatile. 
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Kolakowski et al. (2008) present an exhaustive review of these reanalysis methods, in a paper 

dedicated to the Virtual Distortion Method of Holnicki-Szulc (1989,1991). The versatility of the 

Virtual Distortion Method reflects itself in its application to different structural problems, see 

Kolakowski et al. (2008), from static analysis to dynamic analysis, and even to some non-

structural problems, due to the analogy between structural mechanical analysis and network 

analysis first observed by Cross (1936). 

Makode et al. (1996, 1999a) presented the so-called Pseudo Distortion Method, which is an 

application of the Virtual Distortion Method to the analysis of skeletal structures. The Virtual 

Distortion Method and the Pseudo Distortion Method are also used for nonlinear material 

analysis. Moreover, Makode et al. (1999b) also use the Pseudo Distortion Method for the 

geometrically nonlinear analysis of skeletal structures. 

Akgun et al. (2001) proved the equivalence between the Virtual Distortion Method and the 

general Sherman-Morrison-Woodbury formulas (Sherman and Morrison 1949 and Woodbury 

1950) used by Deng and Ghosn (2001) in the Pseudo Force Method, which is another 

reanalysis method employing fictitious forces that can be used for nonlinear material analysis. 

In the next two sub-sections we describe the general framework of these two methods and, in 

particular, the linear solver used for both reanalysis and nonlinear material problems. 

2.8.1. The Virtual Distortion Method and the Pseudo Distortion Method 

The starting point of the Virtual Distortion Method and the related Pseudo Distortion Method 

is the modification of the original structure to be analysed establishing the so-called modified 

structure. Subsequently, these methods proceed with the determination of the structural 

response of the modified structure. Eventually, this solution to the modified structure is used 

to establish the solution to the original problem. Note that the problem of analysing a tapered 

beam with the Method of Equivalent Systems follows this kind of methodology. Actually, the 

Virtual Distortion Method operates directly with the original structure: it considers virtual 

distortions, whose magnitude is not known in advance, acting on the original structure and 

producing deformations equal to those occurring in the modified structure. The deformed 

configuration of the original structure caused by the virtual distortions is referred to as the 

distorted structure. 
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The Pseudo Distortion Method is an application of the Virtual Distortion Method to skeletal 

structures, where the pseudo-distortions are applied at the ends of each member. These 

pseudo-distortions can be relative rotations or relative transverse displacements. The term 

“distortion” is due to Nowacki (1970) and was adopted by Holnicki-Szulc (1989,1991): in our 

opinion, it is not a very logical designation, since it is by no means related to distortional 

deformations. Note also that the virtual and pseudo distortions are in fact initial strains as 

recognized by Kolakowski et al. (2008). The determination of the effects of these virtual and 

pseudo distortions clearly corresponds to an application of Duhamel´s method. Be aware that 

none of the two above methods employs fictitious forces in modelling those initial strains. 

Makode et al. (1999a) summarize the procedure for determining the effects of unit pseudo-

distortions in the following four steps: 

(i) Impose a unit pseudo-rotation I, 1i   at the end i of member m and compute the 

corresponding fixed-end moments and shear forces in the member; 

(ii) Apply these fixed-end forces but with opposite direction to member m; 

(iii) Apply to the structure nodal forces with the magnitude and direction of those fixed 

end forces. Calculate the nodal displacements. 

(iv) Superimpose the results of steps (ii) and (iii) to obtain the actual displacements and 

member forces experienced by the skeletal structure. 

These four steps clearly reflect an application of Duhamel’s method for unit initial 

deformations of this type.  

The application of the Pseudo Distortion or Virtual Distortion Methods in the context of 

nonlinear material problems is only possible if the plastic deformations are assumed to occur 

at specified sections, corresponding to the end sections of the elements, i.e. these methods 

adopt the plastic hinge approach (Chen and Powell (1982, 1986)). The plastic deformations at 

each hinge are considered as nonlinear pseudo-distortions. Moreover, the external loads are 

applied incrementally, which means that hinges show up and yield progressively. 

The advantage of the Pseudo Distortion and Virtual Distortion Methods is that they avoid the 

recalculation the stiffness matrix every time a new plastic hinge shows up. Instead, the effect 

of the plastic deformations is modelled by means of pseudo-distortions. 
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2.8.2. The Pseudo Force Method 

Like the Pseudo Distortion Method, the Pseudo Force Method (Deng and Ghosn, 2001) 

considers an auxiliary structure which results from the modification of the original structure. 

The finite element stiffness equations of the original and modified structures are, respectively, 

 Kd F  (2.89) 

 Kd F  (2.90) 

where F is the effective force vector, K and d are the stiffness matrix and the displacement 

vector of the original structure, and K  and d  are the stiffness matrix and the displacement 

vector of the modified structure (a symbol with a bar on top refers to the modified structure). 

Like the Pseudo Distortion Method, the Pseudo Force Method avoids the direct analysis of the 

modified structure. Instead, the structure modifications are considered by means of a fictitious 

force system, the so-called pseudo-load system (Deng and Ghosn 2001). Instead of solving 

(2.90), the displacement d  is determined from 

  F Kd F F  (2.91) 

where F
F
 is a fictitious or pseudo-force vector which allows to operate with K instead of K . In 

fact, this force vector is directly derived from the additive decomposition of the modified 

stiffness matrix, 

 K K + K  (2.92) 

Substituting this decomposition into (2.90) gives 

   K + K d F  (2.93) 

Supposing that the stiffness matrix K has dimension n and that K has 2d  nonzero entries, 

then this K matrix can be decomposed as 

 T K UV UWU  (2.94) 

where TV WU , W is a symmetric square “compressed” stiffness matrix, with dimension d, 

containing the nonzero entries of K and U is a n d  boolean matrix. For example, if 
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51 55

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

K

  
 
 
 
 
 
  
 
 
 
 
  

k k

k k
 (2.95) 

then K can be decomposed according to (2.94) with 

 T
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0
U

 
  
 

 (2.96) 

 11 15

51 55

W
k k

k k

  
  

  
 (2.97) 

Substituting the decomposition (2.94) into equation (2.93) gives 

  T K + UWU d F  (2.98) 

Next, Sherman-Morrison-Woodbury formula (Sherman and Morrison 1949, Woodbury 1950, 

Golub and Van Loan 1996), can be used to invert the stiffness matrix in the left-hand member, 

giving 

     1 1
T 1 T 1 T 1

 
    K + UWU K I U I UW K U UW K  (2.99) 

Substituting this inverse matrix into equation (2.93) gives 

   1
1 T 1 T 1


    d K F U I UW K U UW K F  (2.100) 

Comparing this equation with (2.91) it can be concluded that the pseudo-force vector is given 

by 

  
1

T 1 T 1
P


  F U I UW K U UW K F  (2.101) 

or, introducing the finite element equation (2.89), 

  
1

T 1 T
P


 F U I UW K U UW d  (2.102) 

Comparing this expression with the decomposition (2.94), we see that the boolean matrix U 

can also be used to decompose the pseudo-force vector according to 
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P PF UR  (2.103) 

where 

  
1

T 1 T
P


 R I UW K U UW d  (2.104) 

is the rank d vector containing the local pseudo-forces acting on the modified members, 

corresponding to the degrees of freedom identified by U. Using this vector and equation (2.89) 

the nodal displacements (2.100) can be written as 

 1
P P

 d d K UR d ΖR   (2.105) 

where 

 1Z K U  (2.106) 

is the influence matrix which gives the response of the original structure to virtual unit loads 

placed at the degrees of freedom identified by U. 

Hence, the reanalysis procedure expressed by equation (2.105) is analogous to the Virtual 

Distortion Method, because the variation of the structural response caused by the 

modification of the structure is evaluated by means of an influence matrix corresponding to 

unit actions, which are in fact virtual distortions or pseudo-forces. Deng and Ghosn (2001) 

apply this framework to the incremental iterative nonlinear material analysis of structures, but 

the details of such application are omitted in this brief description. 

Note that the original stiffness K of Deng and Ghosn (2001) is similar to the auxiliary stiffness 

of Fertis (2006). Moreover, the stiffness decomposition K K + K  (2.92), leading to the 

pseudo forces Fp (and to the internal forces Rp), is similar to the difference between the 

auxiliary and effective cross-sectional stiffness associated with the FFM fictitious force system 

presented in § 5.2.2. 

2.9. Concluding remarks 

The most important results presented in this chapter are now summarised and highlighted. 

Firstly, it was clarified that the fictitious forces or initial deformations support the substitution 

of a nonlinear material analysis by an iterative application of linear analyses. This linear 

framework does not remove the intrinsic nonlinear character of the problem, but it creates the 
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conditions for application of the Fixed Point Iteration Method. The Initial Stress and Strain 

Methods, and therefore the Fictitious Force Method by Deformations and by Stresses, can be 

seen as applications of the Fixed Point Iteration Method. It is worth noting that the Imposed 

Deformations Method of Aguado adopts an iterative procedure similar to that of the Initial 

Stress Method and FFMDef. 

Methods employing fictitious forces or initial deformations to solve nonlinear material 

problems, or other problems, with the aid of different numerical strategies were also 

described. In this context, the fictitious forces of Lin, the equivalent force system of Fertis and 

the linear solvers of the Virtual Distortion Method, which uses initial deformations, and of the 

Pseudo-Force Method are presented. All these methods are based, like FFM, in the iterative 

application of linear analyses. 
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Chapter 3 
The Fictitious Force Method 

3.1. Problem description, simplifying assumptions and 1D models 

This thesis considers the quasi-static nonlinear elastic analysis of skeletal structures, i.e. 

structures defined by a system of one-dimensional bars made of nonlinear elastic materials. 

The governing equations for such problems are established by a combination of linear 

kinematic relations, linear equilibrium relations and nonlinear elastic relations. The nonlinear 

character of these problems is therefore due to the third group of relations. As a preliminary 

presentation of these problems, the corresponding one-dimensional beam model is first 

described. 

The bars composing the structure are three-dimensional prismatic straight beams, whose 

straight longitudinal axes are defined by the geometric centres of their cross sections. Only 

plane problems are considered: this means that the structure has a plane of symmetry which 

coincides with the loading plane and that all sections are symmetric with respect to this plane. 

A local Cartesian system of coordinates oxyz is associated with each three dimensional beam in 

such a way that, see Figure 3.1: 

 the x-axis coincides with the beam axis and the origin is contained in the beam left end 

section; 
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 the z-axis is contained in the loading plane and is parallel to a cross-sectional axis of 

symmetry and 

 the y-axis is orthogonal to the xz-coordinate plane. 

Due to symmetry w.r.t. the xz-coordinte plane, the states of strain and stress at each point of a 

given three-dimensional beam are approximated by simple functions of x and z. In the 

corresponding one-dimensional beam model, the cross-sectional strains are functions of the 

generalized strains referred to the beam axis; the cross-sectional stress resultants relative to 

this axis are designated internal forces. The term “beam” will be used for designating both the 

one-dimensional beam model and the three-dimensional solid. 

To reduce the physical space of the problem two basic hypotheses concerning the beam 

kinematics (Borkowsky,1988) are assumed: the plane problem hypothesis referred above and 

Euler-Bernoulli hypothesis – plane cross sections perpendicular to the undeformed beam axis, 

remain plane and perpendicular to the beam axis during deformation. According to these 

hypotheses, only two generalized strains are required to characterize the cross-sectional 

deformation state: the curvature  and the axial strain , linearly related to the beam 

transverse (w) and axial (u) displacements, along z and x, respectively, 

 
2

2

d w

dx
    (3.1) 

 
du

dx
   (3.2) 

These generalized strains form a canonical basis of the cross-sectional deformation:  

determines the rotation increment and  determines the longitudinal displacement increment 

of an element of length dx, see Figure 3.1. 
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Figure 3.1. Beam segment with unit length and Euler-Bernoulli hypothesis. 
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The active internal forces, dual of  and , are the bending moment M and the axial force N. 

These internal forces are linearly related by equilibrium to the generalized loads q and p, which 

are distributed forces acting along z and x, respectively, 

 
2

2

d M
q

dx
   (3.3) 

 
dN

p
dx

   (3.4) 

The loads p and q are the resultant forces in the 1D model, statically equivalent to the body 

and surface forces acting on the original three-dimensional beam5. 

This one-dimensional model, whose constitutive relation is expressed by generalized 

constitutive relations between the generalized strains (, ) and internal forces (M , N), is 

designated as model MN (Borkowsky,1988). 

In the 1D model all variables are referred to the cross-sectional geometric centre. Thence, the 

linear constitutive relations between generalized strains and internal forces are uncoupled, 

i.e., they are given by two independent equations relating the corresponding internal forces 

and generalized strains. In that particular case, model MN can be separated into two simpler 

ones: model M and model N. These models consider cross-sectional deformations determined 

solely by the curvature  in the case of model M and solely by the axial strain  in the case of 

model N. 

The linear beam model M is therefore characterized by the compatibility relation (3.1), the 

equilibrium relation (3.3) and the linear constitutive relation 

    ˆ ˆor
M

M M EI M
EI

        (3.5) 

where the circumflex accent stands for a cross-sectional function and EI is the constant 

bending stiffness. Hence, at the element level, this model is independent of the axial 

displacement u, axial force N and axial distributed load p. 

On the other hand, the linear rod model N is characterized by the compatibility relation (3.2), 

the equilibrium relation (3.4) and the linear constitutive relation 

                                                             
5 If a distributed moment m about y had also been considered, the first of the above 

expressions would read 
2

2

dm d M
q

dx dx
   . 
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    ˆ ˆor
N

N N EA N
EA

        (3.6) 

where EA is the constant axial stiffness. Hence, this rod model is not affected by the 

transverse displacements w, bending moment M and transverse distributed load q. 

If a Cartesian system whose x-axis no longer contains the cross-sectional geometric centre is 

used or if the constitutive relation is nonlinear, model M and model N obtained by 

decomposition of the general model MN are no longer independent or uncoupled. In fact, as 

shown in chapter 5, the nonlinear cross-sectional constitutive relation between generalized 

strains (curvature and axial strain) and internal forces is coupled by the equivalent cross-

sectional static moment which is non null and variable. Physically, this coupling means that a 

variation of the curvature, at a specific cross section, corresponds to the variation of both 

internal forces (M and N), the same happening with a variation of the axial strain. 

However, these simpler models may still be used for material nonlinear analysis in some 

particular contexts. For instance, model N can obviously be used for the nonlinear analysis of 

trusses and model M can be used for the nonlinear analysis of axially unrestrained beams. 

Model M can also be used for the analysis of plane skeletal structures if some simplifying 

assumptions consistent with the representation of the nonlinear constitutive relation in the 

uncoupled format are added - commonly, the consideration of (i) a linear relation N EA  

simultaneously with (ii) a nonlinear constitutive relation between bending moment and 

curvature, for a specific value, or range of values, of the axial force N, which may be known in 

advance. These simplifying assumptions are often adopted for the nonlinear analysis of frame 

structures. 

This thesis considers an adequately supported generic skeletal structure which is made of 

nonlinear elastic materials, the so-called effective structure. The effective problem is 

determined by the application of a quasi-static effective loading system F, which excludes any 

imposed deformations, to this effective structure. It is admitted that the effective problem has 

got one and only one solution, which will be referred to as the effective solution. 

In this chapter, the effective structure is a beam whose constitutive law is described, at each 

cross section, by 
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(i) a continuous nonlinear elastic relation between bending moment and curvature, 

denoted  M̂   or  ˆ M 6, 

(ii) a linear relation between axial force N and axial strain . 

As explained before, this corresponds to a simplification of a more general relation between 

generalized strains (, ) and internal forces (M , N). 

The cross-sectional tangent bending stiffness is defined by  

 
ˆdM

EI
d

  (3.7) 

This function of  (or M) is discontinuous at every point where the right and left derivatives are 

different. Its inverse, a cross-sectional bending flexibility, is denoted 
1

EI


. In this thesis, this 

tangent stiffness is admitted to be positive everywhere 

 0EI   (3.8) 

i.e., effective constitutive relations with either horizontal or softening branches are not 

considered. 

3.2. Introduction to FFM 

The particularization of FFM to model MN, model M and model N is denoted FFM(MN), 

FFM(M) and FFM(N), respectively, unless it is obvious which specific model is in use. Due to its 

simplicity, FFM(M) will be used in this section to present the fundamental concepts of the 

FFM, which will not be repeated for FFM(N) in chapter 4 and FFM(MN) in chapter 5. The more 

specific aspects of FFM(M) will then be addressed in the remaining sections of this chapter. 

3.2.1. The auxiliary problem of FFM for the beam model M 

FFM considers an auxiliary structure similar to the effective structure but whose cross sections 

follow a linear auxiliary constitutive relation 

                                                             
6 Recall that a circumflex accent mark placed above a symbol denotes a cross-sectional 
function. 
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    A A A A A

A

ˆ ˆor
M

M M EI M
EI

        (3.9) 

instead of the effective nonlinear elastic relation. This auxiliary constitutive relation is a 

particular case of (3.5) and is determined by the cross-sectional bending stiffness field EI
A

, 

whose values can be almost arbitrary; however, for reasons that will become clear later 

(§ 3.6.4), only positive values are considered, i.e. 
A 0EI  . This field may vary along the 

structure. 

In order to circumvent, or correct, the use of this “fake” constitutive relation, the auxiliary 

problem requires an additional contribution, the fictitious force system F
F
, which is added to 

the effective applied force system: their combination forms the auxiliary force system F
A
. To 

this auxiliary force system corresponds, in the auxiliary structure, the deformation field 

observed in the effective problem. This auxiliary force system is conceptually similar to the 

auxiliary system established by Fertis (2006). 

Figure 3.2 illustrates this procedure for a simple built-in beam where the chosen constant 

auxiliary constitutive relation is everywhere stiffer than the effective one, as shown for a 

specific, but arbitrary, section of the beam. As the figure illustrates, to the effective force 

system F correspond, in the auxiliary structure, the linear curvature field 
L
 and the linear 

bending moment field M
L
, with 

 
L A LM EI   (3.10) 

1
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Figure 3.2. Illustrative example of the auxiliary problem of FFM, including fictitious forces. 
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at every section. This approximated solution (
L
,M

L
), associated to the chosen field EI

A
, is 

called a linear solution to the effective problem. 

If the fictitious force system F
F
 is now added, the auxiliary structure moves into the deformed 

configuration corresponding to the effective nonlinear constitutive relation and the effective 

loading system, i.e., the fictitious forces F
F
 produce the curvature increment 

 incr L     (3.11) 

To F
F
 corresponds also the additional fictitious bending moment field M

F
, that, together with 

the effective bending moment field, define the auxiliary bending moments M
A
, see Figure 3.2, 

which are thus in equilibrium with 
A FF F F  . The fictitious bending moment field M

F
 is 

therefore given by the difference between the auxiliary and effective bending moment fields, 

 
F AM M M   (3.12) 

This relation expresses the auxiliary decomposition of the bending moment. In short, the 

auxiliary problem is defined by 

(i) the auxiliary structure, 

(ii) the auxiliary linear constitutive relation, characterized by a nowhere negative bending 

stiffness field, with EI
A
 constant at every section although it may vary from section to 

section, and 

(iii) an auxiliary applied force system F
A
, given by the effective force system F of the 

original problem plus a fictitious force system F
F
. 

This problem is called auxiliary owing to its assisting role in establishing the structural 

equations in FFM format. The solution to this auxiliary problem – the auxiliary solution – is 

defined by the effective curvature field  and the auxiliary bending moment field M
A
 – the 

former coincides, by definition, with the solution to the effective problem but the latter does 

not. Table 3.1 represents the effective problem and the auxiliary problem side by side, showing 

that the fictitious force system allows FFM to operate with the auxiliary linear constitutive 

relation instead of the effective one. 

Table 3.1 – Effective problem versus auxiliary problem of FFM. 

problem constitutive relation load system bending moment curvature 

effective nonlinear F M  

auxiliary linear A F F F F  A F M M M   
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3.2.2. FFM by deformations and FFM by stresses 

Replacing the effective constitutive law by the auxiliary linear constitutive law does not, 

obviously, eliminate the intrinsic nonlinear character of the problem. The auxiliary problem is 

still nonlinear, because the fictitious forces depend on the solution itself, which is not known a 

priori. The reason why the auxiliary problem is so valuable is that it is particularly prone for 

iterative solution procedures. In fact, substituting into the fictitious bending moment definition 

(3.12) the linear auxiliary constitutive relation (3.9) gives either 

    F A
ˆM EI M     (3.13) 

or 

    F A
ˆM M EI M M   (3.14) 

Since  and M are usually not known a priori, neither of these expressions can be directly used. 

Instead, two alternative iterative procedures can be established: the fictitious bending 

moment is determined, in the first procedure, as a function of the approximation ( )i  to , 

        
F F A

ˆi i i iM M EI M            (3.15) 

and, in the second, as a function of the approximation ( )iM  to M, 

        
F F A

ˆi i i iM M M EI M M          (3.16) 

These two alternative ways of computing  
F

iM , schematised in Figure 3.3, lead to FFM by 

deformations (FFMDef) and FFM by stresses (FFMS). In FFMS, the ith approximation to the 

effective bending moment is given by an iterative version of the auxiliary decomposition (3.12) 

      1

A F

i i iM M M    (3.17) 

non-iterative form

AM̂ AM̂

AEI

AM̂

AM

M

M
FM

( )

A

iM

M

( )

F

iM

( )i 

( )iM

( )

A

iM

M



( )

F

iM
( 1)

F

 iM

SFFMDefFFM

- th solution of the auxiliary problemi

1
AEI

1

AEI
1

 

Figure 3.3. Fictitious bending moment. 
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see Figure 3.3c. 

A null fictitious force system is used to compute the initial guess required to start either of the 

two iterative procedures. This means that  

 
 

 

1

L

1

LM M

  




 (3.18) 

i.e., the first iteration of FFM gives a linear solution to the effective problem, as defined by 

expression (3.9). 

The flowcharts in Figure 3.4 summarise these iterative procedures. FFMDef, broadly described 

in this section, is an application of the Initial Stress Method proposed by 

Zienkiewicz et al. (1969) and developed by Argyris and Scharpf (1972) in the context of the 

Initial Force Method for the Finite Element Method (FEM). FFMS, also generically described in 

this section, is an application of the Initial Strain Method presented also in Argyris and 

Scharpf (1972). 

3.2.3. Fictitious forces and initial deformations 

In § 3.2.1, it was explained that the application of the fictitious force system F
F
 to the auxiliary 

structure causes the curvature increment incr L    , i.e., F
F
 shifts the structure from the 

“linear” configuration to the effective configuration corresponding to the effective nonlinear 

constitutive relation. It can also be said that the additional forces F
F
 model the nonlinear 

material behaviour by means of initial deformations (imposed deformations) or the 

corresponding initial stresses. Recall that, as explained in § 2.2, the use of initial strains (or 

initial stresses) to emulate the material nonlinear behaviour is the basis of the initial force 

concept of Argyris and Scharpf (1972). This explains the designations Initial Strain Method and 

Initial Stress Method. The relation between the fictitious forces of FFM and initial deformations 

is discussed in this section and in the next one. 

The effective curvature at a given section can be formally decomposed into its auxiliary 
A

 

component, given by (3.9.2), and its “nonlinear” component 
NL

, 

 NL A     (3.19) 

see Figure 3.5. This relation expresses the auxiliary decomposition of the curvature. Similarly,  
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Figure 3.4. FFM(M) iterative procedures (differences identified with shaded boxes). 
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the effective bending moment can be decomposed into M
A

, given by (3.9.1), and M
F
. The 

dual character of these two decompositions is clearer if (3.12) is rewritten as 

 
F AM M M    (3.20) 

and this relation is compared to (3.19). Note that the decompositions of the effective bending 

moment 
A FM M M   and effective curvature 

A NL     are merely formal, not physical, 

since they are determined exclusively by the arbitrary value of EI
A
 – actually, even bending 

moments and curvatures associated by linear constitutive relations can be arbitrarily 

decomposed into such “linear” and “nonlinear” components. If one chooses for EI
A
 the initial 

tangent bending stiffness of the effective nonlinear constitutive relation it is quite natural to 

call the associated deformation component linear and the remaining deformation nonlinear. 

This particular case explains the adoption of the designations linear and nonlinear even when 

an arbitrary value is chosen for EI
A
. 

Substituting the two relations (3.9) in (3.20) and recalling (3.19), gives 

 
F A NLM EI   (3.21) 

see Figure 3.5. This expression shows that, for each value of EI
A
, the curvature 

NL
, the 

fictitious bending moments M
F
 and the fictitious force system F

F
, which is in equilibrium with 

M
F
, are three equivalent and alternative forms of describing a given state. The curvature 

NL
 

(resp. bending moment M
F
) can be regarded as an initial curvature (resp. initial bending 

moment) which, when applied to the auxiliary structure, produces the increments of curvature 

incr L     and bending moment 
incr LM M M  , see Figure 3.6. 

The identification of the curvature 
NL

 as an initial curvature transforms the auxiliary problem 

into the one treated by Duhamel’s method, see Arantes e Oliveira (1999). This identification 



ANL

M

AM

1
AEI

FM

M



 

Figure 3.5. Fictitious bending moment and nonlinear component of curvature. 
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Figure 3.6. Representation of the fictitious bending moment, nonlinear component of 

curvature and increments of curvature 
incr  and bending moment 

incrM . 

was also employed by Lin (1968) in the analysis of the bending of a linear elastic beam, which 

was described in § 2.5. Thence, the plastic curvature 
P
 of Lin is the nonlinear component of 

the curvature 
NL

 defined for the initial tangent bending stiffness, treated as initial 

deformations in the context of Duhamel’s method. 

3.2.4. Links between FFM and Duhamel’s method 

Let us now describe in detail the application of Duhamel’s method to determine the effective 

state of strain and stress caused by a thermal action (initial deformation), in order to better 

grasp its affinities with the nonlinear material problem tackled by FFM. 

Consider a straight built-in beam, with the linear constitutive relation with stiffness EI
A
 (3.9), 

i.e., with the constitutive relation of the auxiliary problem of FFM, subjected to a differential 

variation of temperature corresponding to the initial curvature field 
I
, see Figure 3.7a. 

How can the corresponding curvature  and bending moment M fields be determined? Well, 

the main purpose of Duhamel’s method is to define the system of forces F
R
 to be applied to 

the effective structure to simulate the kinematic effect of the thermal action. 

Imagine that the beam is cut out from its supports (at least from one), becoming to deform 

under the thermal action, and acquires the curvature 
I
, represented in Figure 3.7b for the 

generic cross section S with a positive curvature. The unconstrained beam displacement field  
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Figure 3.7. Duhamel’s method applied to the analysis of a beam subjected to a thermal action. 

is not compatible with the boundary conditions initially imposed by the supports, since the end 

sections are rotated w.r.t. the initial configuration. In order to restore compatibility, a self-

equilibrated system of restoring forces F
R
 is introduced which reshapes the beam into its 

straight initial configuration, i.e. which adds the curvature field 
I
 and the corresponding 

initial bending moments  I A IM EI   , see Figure 3.7c. In the released beam, the combined 

action of the temperature variation, i.e. of the initial curvature 
I
, with F

R
 produces 

everywhere null total deformation and displacement fields, see Figure 3.7d. 

The kinematic boundary constraints can now be reintroduced. In order to remove the fictitious 

force system F
R
 its symmetric F

R
 is added to the previous state. To the system of forces F

R
 

corresponds the effective curvature  and the resulting bending moments R AM EI  , see 

Figure 3.7e. The effective bending moments are given by the sum of M
R
 with M

I
, i.e. 

R IM M M  , see Figure 3.7f. These bending moment fields are proportional to the elastic 

curvatures E I    , i.e. A EM EI  , and they are obviously linear since there are no 

direct actions (i.e. forces) applied. 
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If the beam was isostatic, the above procedure would give M = 0, 
E 0   and 

I  , i.e., the 

beam would deform freely under the action of the initial curvatures 
I
, since in this case they 

were compatible with the boundary conditions. Thence, the development of elastic 

deformations would not be required and no bending moments would occur. 

Suppose now that, simultaneously with the thermal action, i.e. with the initial curvatures 
I
, 

the beam above is also subjected to an effective force system F corresponding to curvatures 


L
 and bending moments M

L
. Since the problem is linear, the superposition principle can be 

invoked and Duhamel’s method can still be used to determine the increments of curvatures 

and bending moments 

 
incr L     (3.22) 

 
incr LM M M   (3.23) 

caused by the thermal action, i.e. the initial curvatures 
I
. In order to illustrate the application 

of Duhamel’s method to this case, Figure 3.8 represents the successive states on the 

constitutive relation, corresponding to the stages of application of the two actions. 

Figure 3.8a represents the linear solution  L L,M  corresponding to the applied forces. Next, 

this state is “frozen”, the beam released and the variation of the deformation field of the 

beam, corresponding to the curvature 
I
, is considered, Figure 3.8b. Only then is the self-

equilibrated system of restoring forces F
R
 defined; it introduces in the released beam the 

curvature 
I
 and the initial bending moments  I A IM EI   , see Figure 3.8c. The combined 

action of the applied forces, the thermal action and F
R
 is represented by point d in Figure 3.8d 

and corresponds to the deformation field 
L
. 

The kinematic boundary constraints can now be replaced. In order to remove the fictitious 

forces F
R
 the corresponding symmetrical system F

R
 is added to the current state. The 

combined action of F and F
R
 corresponds to the effective curvatures  and the bending 

moments R AM EI  , i.e., F
R
 corresponds to the increments of curvature incr  and bending 

moments R LM M , see Figure 3.8e. Finally, the effective bending moments are obtained by 

adding together M
R
 and M

I
, i.e. R IM M M  , see Figure 3.8f. The increment of bending 

moment due to the thermal action incr LM M M   is proportional to the elastic curvature 

 E incr I     (3.24) 

i.e. 

 incr A EM EI   (3.25) 
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Yet again, if the beam was isostatic, then 
incr 0M  , 

E 0   and 
incr I  . 

Figure 3.9 is a clearer replica of Figure 3.8f. The path defined by the oriented line segments ab  

and bf  representing the state of cross section S, reflects Duhamel’s method: segment ab  

corresponds to the response of the freed structure (isostatic) to the application of the initial 

deformation 
I
 and segment bf  is the correction due to the kinematic constraints of the 

effectively hyperstatic structure. Thence, bf  is null in the isostatic case. 
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Figure 3.8. Duhamel’s method applied to a problem which combines direct and indirect 

actions. 
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Let us consider again the nonlinear elastic problem analysed by FFM. The identification of the 

curvature 
NL

 as an initial curvature makes this problem equivalent to the linear thermal 

problem analysed by Duhamel’s method. Figure 3.10, whose top row replicates Figure 3.9, for 

both cases of 
LM M  and 

LM M , and whose bottom row replicates Figure 3.6, adding the 

points a, b and f, illustrates the equivalence between these two problems, depicting the 

successive states of the generic cross section S. 

Considering this analogy between 
I
 and 

NL
 and comparing the top and bottom rows of 

Figure 3.10, it can be concluded that: 

(i) the initial bending moment M
I
 and the fictitious bending moment M

F
 are symmetric; 

(ii) the restoring force system F
R
 and the fictitious force system F

F
 are symmetric; 

(iii) the resulting bending moment M
R
 is equivalent to the auxiliary bending moment M

A
; 

(iv) the elastic curvature 
E
 is equivalent to the difference between auxiliary curvature 

A
 

and linear curvature 
L
. 

These results are gathered in Table 3.2. 

3.2.5. FFM iteration formulas 

In the last two sections it was shown that the analysis of nonlinear material problems by FFM 

is somewhat analogous to the analysis of the linear elastic problem of a structure subjected to 

initial deformations (or initial stresses) by Duhamel’s method. However, in the first problem, 

the field 
NL

, and thus the field M
F
, are not known a priori. This is what determines the need 

for FFMDef and FFMS iterative procedures. The former uses expression (3.15) and the latter 

(3.16) to estimate the fictitious bending moment M
F
 and the nonlinear curvature is afterwards 

estimated according to (3.19) by ( ) ( )
NL F A
i iM EI  . 

Let us define the operator T, relative to the auxiliary structure, which represents the 

transformation of a generic action, formed by an arbitrary initial curvature field, e.g. 
NL

, and 

an arbitrary force system F, into the effective curvature field  

  NL ,T F   (3.26) 

Note that the use of a fictitious force system, i.e. the fictitious forces F
F
, to emulate the initial 

deformations, corresponds to the identity .    NL F, 0,T F T F F   
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Figure 3.9. Summary of the application of Duhamel’s method to a problem combining direct 

and indirect actions. 
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Figure 3.10. Equivalence of FFM and Duhamel’s approaches. 

Table 3.2 – Duhamel’s vs. FFM approaches. 

Duhamel I  IM  RF  RM  E  

FFM NL  FM  FF  AM  A L 
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Even though the operator T is not bilinear it is linear in the pair  NL , F , i.e. the total action, 

because 

 
   NL NL

NL,1 NL,2 1 2 NL,1 1 NL,2 2

, ,

, , ,

T F T F

T F F T F T F

    

   

 


              

 (3.27) 

Considering the second of these proprieties, expression (3.26) can be written as 

        NL NL NL L, ,0 0,T F T T F T          (3.28) 

where 

  L 0,T F   (3.29) 

which is linear in F and represents the effect of the applied loads, and 

    NL NL ,0T T    (3.30) 

which is linear in 
NL

. Hence, the operator IG  which transforms (initial) curvatures 
NL

 into 

effective curvatures is given by 

 I
NL L NLG T              (3.31) 

Subtracting 
NL

 to both members of (3.31) and recalling that A NL    , (3.19), gives 

 A L NL NLT         (3.32) 

Multiplying both members by EI
A

 and recalling (3.9) and (3.10), gives 

 L A M NLM M EI T       (3.33) 

where 

    M NL NL NLT T     (3.34) 

is a linear operator of 
NL

. Introducing (3.21) into (3.33) gives the operator IG  which 

transforms fictitious bending moments M
F
 into effective bending moments 

 I
M F L M FM G M M T M          (3.35) 

Expressions (3.31) and (3.35), which convert (initial) curvatures 
NL

 into effective curvatures 

and (initial) fictitious bending moments M
F
 into effective bending moments M, are the 

backbone of FFMDef and FFMS iteration formulas. 
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Since 
NL

 and M
F
 are usually not known in advance, it is necessary to estimate them. 

Substitution of (3.15) into (3.21) gives an approximation of the curvature filed 
NL

 

 
( )

F( ) II ( )
NL

A

i

i i
M

G
EI


 

  
     (3.36) 

and of (3.16) into (3.21) gives an approximation to the bending moment field M
F
 

 ( ) II ( ) ( )
F M F

i i iM G M M M         (3.37) 

Next, recalling that a null fictitious force system is used to compute the initial guess of the 

iterative procedures of FFM, i.e.  1

L   and  1

LM M , (3.18), and substituting the 

approximation (3.36) into (3.31) gives FFMDef fixed point iteration formula, see Atkinson and 

Han (2001) or Pina (2010), 

 ( 1) ( ) I II ( ) (1) ( )
NL

i i i iG G G T     
   

                     (3.38) 

On the other hand, substitution of approximation (3.37) into (3.35) gives FFMS fixed point 

iteration formula 

 ( 1) ( ) I II ( ) (1) ( )
M M M M F

i i i iM G M G G M M T M M                      (3.39) 

The compositions I IIG G G  
     and I II

M M MG G G     in (3.38) and (3.39) show that the 

nonlinear character of these iteration formulas is only caused by the operators IIG
 and II

MG , 

which depend on the nonlinear effective constitutive relation (through (3.15) and (3.16)). This 

result simplifies the determination of sectional sufficient convergence conditions of FFMDef and 

FFMS iterative procedures. 

Finally, it can be noted that in isostatic structures the iterative procedure of FFMS gets reduced 

to a unique “iteration” after the initialization, since in those cases, unless geometric 

nonlinearities are relevant, the internal forces are independent of the material nonlinearities 

and do not change after the initial iteration of FFM, i.e. (1)M M . 

3.2.6. FFM convergence conditions 

The convergence of the iteration formulas (3.38) and (3.39), corresponding to FFMDef and FFMS 

is now discussed. As explained in § 2.4, these iteration formulas will converge if the operators 

G

 and G

M
 are contractive. According to the definition of contraction presented in that section 
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and recalling expression (3.38) (resp. (3.39)), if IG
 and IIG

 (resp. IG  and IIG ) are non-

expansive operators and at least one of them is contractive then G

 (resp. G

M
) is also 

contractive. Introducing the expressions (3.13) and (3.14) into (3.21), and deriving w.r.t.  and 

M, gives 

 
   NL A

A A

ˆ1
1

d EI EIdM

d EI d EI

  

 


    (3.40) 

 
 

 
1

F

A 1
dM M

EI EI M
dM



   (3.41) 

Defining the relative differences of bending stiffness 

 A

A

EI EI

EI



  (3.42) 

and 

 A
M

1

EI EI

EI











 


 (3.43) 

the above derivatives can be rewritten for a specific point of the constitutive law as 

 
 NLd

d

 



  (3.44) 

and 

 
 F

M

dM M

dM
  (3.45) 

Hence, the derivatives of IIG  and IIG , see (3.36) and (3.37), are 

 

 

 

II i

i

dG

d










 
 

  (3.46) 

 

 

 

II

M

i

i

dG M

dM



 
 

  (3.47) 

Thence, for a continuous nonlinear constitutive law (§ 3.1),  II iG 
 
   is contractive if the 

absolute value of the derivative (3.46) is bounded by a constant that is less than one, i.e., if the 

linear auxiliary constitutive relation is everywhere such that 

 1   (3.48) 
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and similarly  II iG M
 
   is contractive if the linear auxiliary constitutive relation is such that 

 
M 1   (3.49) 

These are sufficient conditions for convergence of FFM iteration formulas only if IG
 and IG  

are non-expansive operators. As a matter of fact, in § 3.6.2 and § 3.6.3 it is proved that, in the 

context of the discrete FFM methods, the operators IG
 and IG  correspond to non-expansive 

transformations. In that case, expressions (3.48) and (3.49) represent sufficient conditions for 

convergence of FFM iterative procedures, which are proposed, tested and used in this work. 

These conditions are established at the cross-sectional level, i.e., they must be satisfied at all 

sections of the structure. 

3.3. First illustrative example 

The application of FFM is now illustrated with the problem represented in Figure 3.11, with a 

beam of length 2L. 

The constitutive relation is constant in each half of the beam. In the left half, denoted by 

subscript 1, this relation is linear 

    1 1 1

1

ˆ ˆor
M

M EI M
EI

     (3.50) 

The right half, denoted by subscript 2, has the following nonlinear constitutive law, adapted 

from Richard and Abbott (1975) 

    2,0 2,0

2 2
2 2

2,0

ref ref

ˆ ˆ

1 1

or

M

EI EI
M M

EI M

M M


 


 

   
    
   

 (3.51) 

which is fully defined by two parameters: the bending stiffness at the origin  22,0 0EI EI  and 

a reference value of the bending moment M
ref

 which bounds the constitutive law, i.e. 

refM M   are horizontal asymptotes. This relationship has continuous first and second 

derivatives and is symmetric w.r.t. the origin. 

The problem was solved for ref 1M   and 2,0 14 1EI EI  , see Figure 3.12, reducing the above 

expressions to 
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Figure 3.11. Example 3.1: (Left) Beam geometry and loading; (center) fictitious force system; 

(right) primary structure. The bending moment fields are represented below. 
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Figure 3.12. Example 3.1: Nonlinear constitutive relation and corresponding tangent stiffness. 

    2 2
2 2

ˆ ˆ
1 1

or
M

M M
M


 


 

 
 (3.52) 

The effective force system F comprises a unique moment with magnitude 1  applied at 

midspan. The bending moment and curvature fields are constant in each half of the beam. 

Hence, this structure is equivalent to two springs (point elements) in series with the 

constitutive laws (3.50) and (3.51). 

Since this structure has a single degree of static indeterminacy, a primary structure can be 

defined by releasing the bending moment, for instance, at the beam right end section. 

Figure 3.11 represents this primary structure and the self-equilibrated constant bending 

moment distribution b = 1. The principle of virtual forces establishes the compatibility 

condition 

 
2 2

1 2

0 0

0

L L

b dx dx L L         (3.53) 

i.e. 
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  1 2 0     (3.54) 

where 
1
 and 

2
 are the values of the constant curvature fields  in the  left and right halves of 

the  beam.  The  bending  moment  is  also  constant  in  each  beam  half  and  satisfies  the 

equilibrium condition 

  2 1 1M M    (3.55) 

Introducing  first  the  constitutive  functions  (3.50) and  (3.51)  into  the  compatibility  condition 

(3.54) and then the equilibrium condition (3.55), gives the nonlinear governing equation 

   2

2
2

1 1
1 1 0

4
M

M

 
    

 
  (3.56) 

The solution to this equation  is  2 0.732M  , corresponding to  2 1.073  . In the right half of 

the beam, the tangent bending stiffness is given by 

               
3 312 22 22 22 2

ˆ ˆ
1 ; 1

M d M
EI EI M M

d M

 
 



 
        (3.57) 

and  therefore  the above  solution  corresponds  to EI2  . These  three values define  the 

exact solution of this problem. 

The application of FFM begins with the definition of the auxiliary constitutive relation, which is 

chosen to be constant in each half of the beam, 

   A,1 A,1M̂ EI    (3.58) 

   A,2 A,2M̂ EI    (3.59) 

Replacing these expressions into the compatibility condition (3.54), gives 

  A,1 A,2

A,1 A,2

0
M M

EI EI
    (3.60) 

In the left half of the beam the constant auxiliary stiffness value  A,1 1 1 4EI EI   was chosen, 

which means  that  the auxiliary constitutive  relation  in  this part of  the beam  is equal  to  the 

effective constitutive relation; thence, the fictitious bending moment  is null  in the  left half of 

the beam. In the right half of the beam the constant auxiliary stiffness value EIA,2 was varied, 

but always positive, in order to investigate its influence in the convergence of the method. 
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The fictitious force system F
F
 is formed by the two fictitious moments F F,2M  represented 

in Figure 3.11b. Hence, the auxiliary force system F
A

 is given by the auxiliary moment 

 A F F,21 1 M     (3.61) 

applied at the beam midsection and by the fictitious moment at the beam right end, which 

affects the support reaction and has no other effect on the beam. This system of forces and 

the auxiliary bending moments satisfy an equilibrium equation similar to (3.55) 

 A,2 A,1 AM M   (3.62) 

Solving the linear system of equations (3.60) and (3.62) gives the auxiliary bending moments 

 A,1

A,1 A

A,1 A,2

EI
M

EI EI
 


 (3.63) 

 A,2

A,2 A

A,1 A,2

EI
M

EI EI



 (3.64) 

Introducing (3.63) into (3.58) and recalling (3.54), gives the curvatures 

 A
2 1

A,1 A,2EI EI
   


 (3.65) 

Making M
F,2

   in (3.61) and substituting the result into the three last expressions gives the 

linear solution of the auxiliary problem 

 A,1

L,1

A,1 A,2

EI
M

EI EI
 


 (3.66) 

 A,2

L,2

A,1 A,2

EI
M

EI EI



 (3.67) 

 L,2 L,1

A,1 A,2

1

EI EI
   


 (3.68) 

Substituting (3.61) and (3.68) into (3.65) gives the curvature in the right half of the beam 

 F,2

2 L,2

A,1 A,2

M

EI EI
  


 (3.69) 

or, substituting (3.21), 

 A,2

2 L,2 NL,2

A,1 A,2

EI

EI EI
   


 (3.70) 
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Comparing this expression with (3.31), gives the general operator IG
 

 A,2I

2 NL,2 L,2 NL,2

A,1 A,2

with
EI

G T T
EI EI

     
      

 (3.71) 

This expression corresponds to the iterative formula of FFMDef 

 ( 1) ( ) (1) ( )

2 2 2 NL,2 2

i i iG T    

 
          (3.72) 

which is a particular case of (3.38). 

Let us now use (3.19) to rewrite (3.71), 

  A,2 L,2 NL,21T      (3.73) 

Multiplying both members of this expression by EI
A,2

, gives 

 A,1I

2 M,2 F,2 L,2 F,2

A,1 A,2

1with
EI

M G M M T M T T
EI EI

  
         

 (3.74) 

This expression corresponds to the iterative formula of FFMS 

 ( 1) ( ) (1) ( )

2 2 L,2 F,2 2

i i iM G M M T M M

 
          (3.75) 

Hence, the general operator T
M

 in (3.39) is given in this example by the scalar 

 A,1 A,1 A,2EI EI EI  . 

Consider now the iteration formulas (3.72) and (3.75) and, specifically, the role played by the 

auxiliary constant bending stiffness EI
A,2

 in the performance of these iterative procedures. 

These formulas can be seen as the composition of the operators IG  (3.71) with IIG  (3.36) and 

IG  (3.74) with IIG  (3.37). 

Let us analyse the convergence of the iteration formula of FFMDef (3.72). This fixed point 

iteration formula is convergent if it is contractive, i.e. if 

 

( )

2

( )

2

1

i

i

dG

d






  

  (3.76) 

The derivative in this expression is given by 

 

( ) I ( ) II ( ) ( )

2 NL,2 2 NL,2 2

( ) ( ) ( ) ( )

2 NL,2 2 2

i i i i

i i i i

dG dG G d
T

d d d d

    

   

  



              
   (3.77) 
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Thence, recalling (3.44) and (3.42), 

 

( )

2 A,2 2

( )

2 A,2

with

i

i

dG EI EI
T

d EI


 





  

   
   (3.78) 

and finally, introducing the expressions for T


 (3.71.2) and for EI

 (3.57.1), 

 
  

3
2 2( )

( )( 1) A,2 2
22

( ) ( )

2 2
A,2

1

1

4

i
ii

i i

EIdGd

d d
EI



 






   
 



 (3.79) 

Figure 3.13 represents this derivative for positive values of the curvature and for several values 

of EI
A,2

 in the interval  0, . This figure shows that if A,2 0.375EI  , condition (3.76) is 

satisfied whatever the value of the curvature ( )

2

i ; thence, A,2 0.375EI   is a sufficient 

condition for convergence of the iteration formula (3.72). However, this is not a necessary 

condition for convergence. Actually, formula (3.72) happened to converge numerically for 

A,2 0.0334EI  . Figure 3.14 illustrates the beginning of the iterative procedure for 

A,2 0.0334EI  . The sufficient convergence condition of FFMDef (3.48) applied to this structure 

gives ,2 1  , i.e. A,2 2max 2 0.5EI EI  . However, condition (3.76) is also satisfied in the 

interval A,20.375 0.5EI  , because in this interval 1T  . 
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Figure 3.13. Example 3.1: Derivatives  and  for  A,2 0,0.1, ,EI   . ( 1) ( )

2 2

i id d  ( 1) ( )
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i idM dM
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Figure 3.14. Example 3.1: Initial iterations of FFMDef for A,2 0.0334EI . 

As a numerical criterion for FFMDef to converge, the maximum relative error of the curvature 

value, when compared to the exact solution 2,ex , must be less than a given tolerance, i.e. 

 ( )

2 2,ex 2,ex

j tol    . Let us define a tolerance of tol = 0.001. Figure 3.15 shows the 

number of iterations required for FFMDef to converge for values of EI
A,2

 in the interval [0.1,2.0]. 

Note that the fastest convergence corresponds approximately to A,2 0.3EI  . Figure 3.13  
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Figure 3.15. Example 3.1: Number of iterations required by FFM to converge. 

representing the derivative (3.79) also represents the solution points of the iterative 

procedure for this value of EI
A,2

 and also for 0.1 and 2.0. Figure 3.13 and Figure 3.15 show 

that, as expected, the number of iterations needed for FFMDef to converge is minimum when 

( 1) ( )

2 2

i id d   is minimum. 

Let us now analyse FFMS iteration formula (3.75). This fixed point iteration formula is 

convergent if it is contractive, i.e. 

 

( )

2

( )

2

1

i

i

dG M

dM


  

  (3.80) 

The derivative in the above condition is given by 

 

( ) I ( ) II ( ) ( )

2 M,2 F,2 M,2 2 F,2 2

( ) ( ) ( ) ( )

2 F,2 2 2

i i i i

i i i i

dG M dG M dG M dM M
T

dM dM dM dM





              
   (3.81) 

or, according to expressions (3.45) and (3.43) 

 

( )
22 A,2

M,2 M,2( )
22

with

i

i

dG M EI EI
T

dM EI
 





   
   (3.82) 

and finally, recalling (3.74.2) and (3.57.2), 

 
  

3
2 2( )

( )( 1) A,2 2
Μ,2 22

( ) ( )

2 2 A,2

1 1

1 4

i
ii

i i

EI MdG MdM

dM dM EI



    
 


 (3.83) 

Figure 3.13 represents this derivative for positive values of the bending moment and for 

several positive values of EI
A,2

. In this case, there is not an interval of values of EI
A,2

 for which 
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condition (3.80) is satisfied for arbitrary values of ( 1) ( )
2 2
i idM dM , see Figure 3.13, i.e. there is 

no sufficient condition for convergence of iteration formula (3.75). This result is coherent with 

the sufficient convergence condition of FFMS (3.49), which, when applied to this structure, 

gives Μ,2 1  . This condition cannot be satisfied since 
2min 0EI   and therefore 

 A,2 2max

Μ,2

2

min

min

EI EI

EI



   (3.84) 

In spite of this result, iteration formula (3.75) happened to converge numerically for 

A,2 8.582EI  . For A,2 8.582EI   the iterative procedure is interrupted as soon as ( )

2 1jM  , 

because the constitutive relation (3.51.1) is defined only for 1M  . For instance, for A,2 9EI   

the iterative procedure is interrupted at the fifth iteration because (5)

2 1.0069 1M   , see 

Figure 3.16. 

The numerical criterion for FFMS to converge is similar to that adopted for FFMDef. Thence, the 

maximum relative error of the bending moment value, when compared to the exact solution 

2,exM , must be less than the fixed tolerance of tol = 0.001, i.e.  ( )

2 2,ex 2,ex

jM M M tol  . 

Figure 3.15 also shows the number of iterations required for FFMS to converge for several EI
A,2 

values in the range [0.1,2]. Figure 3.13 and Figure 3.15 show that number of iterations 

required for FFMS to converge is also a minimum when the derivative ( 1) ( )

2 2

i idM dM  is a 

minimum. Figure 3.15 also shows that, in this example FFMS converges faster than FFMDef. 
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Figure 3.16. Example 3.1: Divergence of FFMS for . A,2 9EI 
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3.4. Elemental fictitious force system 

This section presents the fictitious force system of FFM(M) for a beam element. The definition 

of a mesh of beam elements (domain partition) and the description of the beam element are 

presented in § 3.4.1. The differential description of the fictitious force system is then 

presented in § 3.4.2. A decomposition of the elemental fields is presented in § 3.4.3. Finally, 

two discrete descriptions of the fictitious force system are presented in § 3.4.4. 

3.4.1. Domain partition 

Figure 3.17a illustrates part of a beam under a generic loading, composed of transverse 

distributed loads q, transverse point loads Q and moments . The bending moment and 

curvature fields in the beam are linked by the equivalent function compositions 

  ˆ ˆorM M M         (3.85) 

The tilde over a symbol denotes a field, i.e. a function of x. For example, the function q  

represents a transverse distributed load and M  and V  are the bending moment and shear 

force fields in the element. The jump discontinuity of the generic function of x,  g x , at a 

given point, x = x
0
, is defined by 

x

, , ,z w q Qy

q
Q Q

 0V

 0M

 V L

 M L

q
Q

L

F F
 q M

*
F FQ V x    

 F,1 F 0Q V   F,2 FQ V L

 F,1 F 0 M  F,2 F M L

a)

b)

c)  

Figure 3.17. a) Beam partition b) effective and c) fictitious elemental force systems and 

corresponding internal forces at beam ends. 
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   0 0 0g x g x g x              (3.86) 

For example, if a transverse load Q is applied at section x0, this is a point of discontinuity of V  

and   0V x Q  . 

Figure 3.17a  shows  a  partition  of  the  beam  into  elements,  according  to  its  geometry  (each 

element  is  prismatic),  supports  and  loading.  The  partition  or  mesh  has  a  mandatory  (or 

natural)  node  next  to  every  support  and,  for  the  differential  description  presented  in  the 

following  section,  also  at each  section with  an  applied moment.  Thence,  the  field  M   is 

continuous in each element. Since   ˆ M  is also continuous (§ 3.1) then, according to (3.85.2), 

  is continuous in each element as well. The bending stiffness field is given by 

       orEI EI EI EI M     
   (3.87) 

A new system of coordinates is established for each element, obtained by a simple coordinate 

translation so that the element end sections correspond now to x = 0 and x = L, where L is the 

element length. For simplicity reasons the new system will also be denoted oxyz. 

3.4.2. Differential description of the elemental fictitious force system 

Until this point the auxiliary bending stiffness was allowed to vary from section to section. An 

important hypothesis, which will be adopted from now on, is the choice of a constant value for 

the auxiliary bending stiffness field in each element, i.e. 

    A A constEI x EI    (3.88) 

Recalling the definition (3.9), the auxiliary bending moment field is given by 

   A A
ˆM M     (3.89) 

Thence,  according  to  expressions  (3.12),  (3.89)  and  (3.85.1),  the  fictitious  bending moment 

field can be written in terms of the curvature field, as required by FFMDef, 

     F A A
ˆ ˆM M M M M           (3.90) 

Alternatively,  according  to  expression  (3.14),  the  fictitious  bending  moment  field  can  be 

written in terms of the effective bending moment field, as required by FFMS, 

  F A ˆM EI M M    
     (3.91) 
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Similarly, recalling again (3.9), the auxiliary component of the curvature field is given by 

 A A
ˆ M       (3.92) 

and, recalling (3.19), the nonlinear components of the curvature field is given by 

 
NL A     (3.93) 

The elemental fictitious force system F
F
 is in equilibrium with the fictitious internal forces FM  

and FV . It is therefore composed of: 

(i) a transverse distributed force, 

 F Fq M    (3.94) 

(ii) transverse point forces at sections x
i
, 

  F, Fi iQ V x   (3.95) 

(iii) in-plane moments at sections x
i
, 

  F, Fi iM x   (3.96) 

The point forces and moments are located at the sections where the shear force FV  and 

bending moment FM  fields (i  2), respectively, are discontinuous or at the ends of the 

element (i  1, 2). Essentially, since FM  and FV  can have a non null value at the element 

boundaries, the corresponding elemental fictitious moments and point forces are given by 

 
 
 

F,1 F

F,1 F

0

0

Q V

M

  


 

 (3.97) 

at the beam left end and 

 
 
 

F,2 F

F,2 F

Q V L

M L

 




 (3.98) 

at the beam right end. These boundary forces assure self-equilibrated nature of the elemental 

fictitious force system. 

It was shown in § 3.4.1 that, because of the hypotheses assumed so far, M  and   are 

continuous in each element. Then, according to the expressions (3.90) and (3.91), the field FM  

is also continuous in each element. Hence, according to (3.96), there are no fictitious moments 


F
 inside any element. On the other hand, there may exist fictitious point forces Q

F
 inside an 

element, since FV  can be discontinuous at two types of sections: (i) sections where point loads 
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Q  are  applied  and  (ii)  sections  associated  with  discontinuity  points  of  the  cross‐sectional 

bending stiffness    EI  , see § 3.1. Figure 3.17c shows  the  fictitious  force system  for a beam 

element. 

3.4.3. Decomposition of the elemental fields 

A generic elemental field   g x  can always be decomposed according to 

  g g g       (3.99) 

where the field 

  Tg  n g   (3.100) 

is the linear interpolation of  g  between its values at the element ends collected in the vector 

      T
0g g L   g     (3.101) 

and 

   T
1 2n nn     (3.102) 

is the vector of linear interpolation shape functions 

 
1

2

1
x

n
L

x
n

L

  

 





  (3.103) 

In  this  thesis, bold symbols denote matrices  (upper case) or vectors  (lower case, with a  few 

exceptions) and a bar over a bold symbol denotes an elemental matrix or vector. 

The corrective field  g   is given by the deviation of  g  w.r.t. the  linear  interpolation field  g

and thus     0 0g g L    . For example, the elemental decomposition of the curvature field 

and of its nonlinear component is given by 

           (3.104) 

  NL NL, NL,         (3.105) 

Since the curvature field    is linear, it is well characterized by two parameters, which are the 

rotations at the end sections w.r.t. the element chord (§ 3.5.1). 
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Similarly, the decomposition of the fields of effective bending moments is given by 

  M M M       (3.106) 

Moreover, according to the constitutive relation (3.9), 

  A A,M EI      (3.107) 

The corrective field  M
  equilibrates the part of the force system applied between the element 

end sections and, because of its null value at the end sections, it can be viewed as the bending 

moment field  in a simply supported element. Thence,  in the case of a structure subjected to 

direct actions only,  like those studied  in this thesis (§ 3.1), the effective and the  linear (3.10)

corrective fields are one and the same, 

  L,M M     (3.108) 

Dividing both members of this expression by EIA and introducing (3.107) and (3.10) it can also 

be concluded that 

  L, A,      (3.109) 

3.4.4. Discrete descriptions of the elemental fictitious force system 

A  discrete  description  of  the  1D  beam  element  represents  the  fields  of  displacements, 

generalized strains and internal forces by an interpolation of these fields at a finite number of 

sections  of  the  element,  the  so‐called  interpolation  sections.  This  process  reduces  the 

governing equilibrium, compatibility and constitutive field equations to a matrix form involving 

quantities defined at these sections. 

In  order  to  write  in  the  discrete  form  the  corrective  terms  M
   (resp.  A,  )  and  F,M 

  

(resp.   NL,  ), the part of the elemental force system applied between nodes should be known 

in advance. This means that even though the discrete description of  M
  and  A,    is a trivial 

task, as shown above, the same cannot be said of  F,M 
  and  NL,  , because the fictitious force 

system is not known in advance. This difficulty can be overcome by imposing the form of the 

part  of  the  force  system  between  end  nodes,  i.e.,  the  shape  of  the  elemental  nonlinear 

component of the curvature  NL,  , or the effective bending stiffness EI , which is emulated by 

NL,    in the auxiliary problem, see § 3.2.1. Of course, these constraints are  in fact additional 

simplifying  discretization  assumptions  at  the  element  level.  In  what  follows,  two  discrete 
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descriptions of the elemental fictitious force system of FFM are introduced, which emerge 

from two distinct simplifying assumptions for NL,   and, therefore, 
F,M 

. 

3.4.4.1. Basic discrete description of the elemental fictitious force system 

In the basic discrete description of the elemental fictitious force system, the corrective field 

NL,   and, therefore, 
F,M 

, are ignored, 

 NL, NL2, F, F2,0 0and M M         (3.110) 

Hence, the nonlinear component of the curvature and the fictitious bending moment fields 

become linear (affine) functions of x, i.e. it is assumed that NL NL,    and F F,M M  . This 

discretization is therefore based on the value of the structural fields at the elements end 

sections only. This explains the subscript 2, e.g. NL2 and F2 in the expression above, for this 

approximate description, indicating the number of interpolation sections used. 

Since the basic discrete fictitious force system must equilibrate the bending moments 

F F,M M  , it is exclusively formed by moments and point forces at the element boundary 

sections, which are the moments of the differential description (3.97) and (3.98) plus the 

couple 

       F2,2 F2,1 F F F2,1 F2,2

1 1
0Q Q M L M

L L
       (3.111) 

in equilibrium with them. This elemental system of forces is statically equivalent to that of the 

differential description, as proved in the following lines. 

For the sake of simplicity, and as Figure 3.17c illustrates, let us consider that the fictitious force 

system has a single point force applied at the arbitrary section *x  inside the element, besides 

those at the boundaries. If the couple (3.111) is statically equivalent to the distributed load Fq  

and the point forces F
F
 then its forces are given by 

 

    *
F2, F,1 F,2 * FF,

0

*

*
F, * F FF,

*0

0

, 1,2

L

i i i i ix

x L

i i i ix

x

Q Q n Q n L Q n x q n dx

Q Q n x V n dx V n dx i

     

       



 

 (3.112) 



The fictitious force method and its application to the nonlinear material analysis of skeletal structures 

76 

Due to the transverse point force at *x , the field FV  is not differentiable at this section and the 

integral 
F

0

L

iV n dx  does not make sense: this explains the need to decompose the domain of 

integration at *x  in the above expression. Integrating by parts the last terms in the second 

member, and noting that  1
i

in L   , see (3.103), gives 

    
 

   
 

  

* *
*

F F F
0

0 0

*

* *
F F F

0

* * *
F F F F

1
0 0

1
0 0 0

x x
x

i i i

i x

i i

i

i i

V n dx V n V n dx

V x n x V n V dx
L

V x n x V n M x M
L



 

 

      


         


              

 

  (3.113) 

and similarly 

    
 

  * * *
F F F F F

*

1
iL

i i i

x

V n dx V x n x V L n L M L M x
L

 


                (3.114) 

Adding (3.113) to (3.114), recalling the jump discontinuity definition (3.86) and (3.95), (3.97), 

(3.98) and noting that * * *
i i in x n x n x             , gives 

 

       
 

    

   
 

    

 
    

* *
F F F F F F

0

*
* F,1 F,2 F FF,

*
* F, F FF,

1
0 0 0

1
0 0

1
0

iL

i i i i

i

i i ix

i

i ix

q n dx V x n x V n V L n L M L M
L

Q n x Q n Q n L M L M
L

Q n x Q M L M
L


           


       


      



 (3.115) 

Finally, substituting this result into (3.112), gives 

 
 

    F2, F F

1
0

i

iQ M L M
L


    (3.116) 

which proves (3.111). This force system is represented in Figure 3.18, which also illustrates 

how the error associated with the basic discrete fictitious force system decreases by 

progressive mesh refinement. The example presented in § 3.7 illustrates this issue. 



Chapter 3. The Fictitious Force Method 

77 

F F
 q M

*
F FQ V x    

 F,1 F 0Q V   F,2 FQ V L

 F,1 F 0 M  F, 2 F M L

 F2,1 F 0M   F2,2 FM L

F2,1Q F2,2Q

FM

FM

FM

FM

mesh refinement

mesh refinement

mesh refinement

 

Figure 3.18. Differential and discrete components (basic description) of the elemental fictitious 

force system and error decrease with mesh refinement for the latter. 

NL ,   NL,

NL

NL
2


 
 
 

L

 
NL 0

 
NL L

F3 F2

8
q M

L


F3
F 1

2

q L
Q  ,

F3
F 2

2

q L
Q  ,

F3, 3 FM n M 

a) b)


FM

 

Figure 3.19. FFM3 a) discretization and b) corresponding additional fictitious forces. 

3.4.4.2. Improved discrete description of the elemental fictitious force 
system 

In the improved discrete description of the elemental fictitious force system the corrective 

fields NL,   and, therefore, F,M   are approximated by quadratic functions. This requires a 

third interpolation section which is the element midsection, see Figure 3.19a. 
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Thence, introducing the quadratic shape function with unit value at midspan and zero value at 

the element end sections, 

 
3 1 24n n n  (3.117) 

the corrective nonlinear component of the curvatures NL,   is approximated by 

 NL3, 3 NLn    (3.118) 

where the corrective nonlinear component of curvature at midspan is given by 

 
NL NL NL,

2 2

L L
   

   
    

   
 (3.119) 

Similarly, the corrective fictitious bending moments F,M   are approximated by 

 F3, 3 FM n M   (3.120) 

with 

 
F A NLM EI   (3.121) 

This approximate corrective fictitious bending moment field is in equilibrium with an 

approximate transverse uniformly distributed force 

 F3 F2

8
q M

L
  (3.122) 

and two approximate transverse point forces, see Figure 3.19b, 

 F3
F ,1 F ,2

2

q L
Q Q     (3.123) 

This improved description is denoted by the subscript 3 because three interpolation sections 

are used. Its fictitious force system results from adding the components (3.122) and (3.123) to 

the basic discrete fictitious force system, i.e. 

 F , F , F ,i i iQ Q Q     (3.124) 

It is easily proved that the substitution of the approximation NL3, 3 NLn    (3.118) into the 

decomposition NL NL, NL,      (3.105) gives the quadratic approximation of the nonlinear 

component of the curvatures 

 *,T *

NL NL  n χ  (3.125) 
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where the vector 

    
T

*

NL NL NL NL0
2

L
L  

  
   

  
χ  (3.126) 

collects the values of the field 
NL  at the nodal points and the vector 

 
T

* * * *

1 2 3n n n   n  (3.127) 

contains the quadratic Lagrange polynomials, 

 

 

 

*

1 1 2

*

2 3 1 2

*

3 2 1

1 2

4

1 2

n n n

n n n n

n n n

  


 
  

 (3.128) 

The error associated with the improved discrete fictitious force system can be decreased by 

progressive mesh refinement. However, in order to achieve a given accuracy, the required 

mesh refinement is obviously lesser than for the basic discrete fictitious force system. The 

example presented in § 3.7 illustrates this issue. 

3.5. FFM discrete descriptions: matrix methods of structural analysis 

This and the next sections present the application of FFM(M) in the context of matrix methods 

of structural analysis. Each one of the discrete descriptions of the fictitious force systems 

introduced in §§ 3.4.4.1 and 3.4.4.2 conducts to a particular discrete description of FFM(M). 

These discrete descriptions are therefore denoted accordingly: the basic discrete description is 

denoted FFM(M)2, or simply FFM2 while the improved discrete description is denoted 

FFM(M)3, or simply FFM3. 

3.5.1. Elemental kinematics (end sections rotations-curvature) 

The elemental kinematic relations will now be established in a generic format valid for both 

FFM2 and FFM3. According to the virtual force principle, the rotations at the end sections w.r.t. 

the element chord are given by 

 
0

, 1,2

L

i i i j j i j j

j j

n dx n x w x n x w x i                         (3.129) 
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where jw x     is a transverse jump discontinuity and jw x      a rotational jump 

discontinuity, at section x
j
. One of the hypotheses assumed in § 3.1 is that there are no such 

discontinuities, i.e.,  w x  and its derivative are continuous in the element. Thence, the above 

expression becomes simply 

 
0

, 1,2

L

i in dx i    (3.130) 

These two values are gathered in the elemental vector 

  
T

1 2   (3.131) 

Inserting the elemental decomposition (3.104) into the above integral gives 

 , 1,2i i i i       (3.132) 

where the components of the end section rotations w.r.t. the element chord are given by 

 
0

, 1,2

L

i in dx i     (3.133) 

 ,

0

, 1,2

L

i in dx i     (3.134) 

which are represented in Figure 3.20. Collecting these rotations in vectors, gives 

       (3.135) 

 
T

,1 2   
     (3.136) 

 
T

,1 2   
     (3.137) 


  

 2

 
element chord

  

 

Figure 3.20. Decomposition of the end rotations w.r.t. element chord. 
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The expression (3.100) defines the linear component of the elemental curvature field, 

 T  n χ  (3.138) 

Substituting this into (3.133), gives 

 0 F χ  (3.139) 

with 

 

2

1 1 2

0 0

0

2

2 1 2

0 0

2 1

1 26

L L

L L

n dx n n dx
L

n n dx n dx

 
 

      
 

 
  

 

 

F  (3.140) 

and substituting the previous expression into (3.135), gives 

 0  F χ   (3.141) 

According to (3.134), the rotations i  are determined by the field 
, i.e., they are 

determined solely by the actions applied between nodes7. However, there are many other 

curvature fields corresponding to the end sections rotations i , some of them not null at the 

end sections, contrary to what happens with 
. The elemental equivalent curvature field 

eq  is defined as the linear curvature field whose end sections rotations are equal to those of 


, see Figure 3.21, i.e., 

 eq ,

0 0

, 1,2

L L

i i in dx n dx i         (3.142) 

Since this equivalent curvature field is linear, it can be written as 

 T

eq eq  n χ  (3.143) 

 



 

eq



 

Figure 3.21. Kinematic equivalence of fields  and . 

                                                             

7 But the converse is not true, i.e. the actions applied between nodes influence both i  

and i . 

 eq
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where 

    
T

eq eq eq0 L   
   χ  (3.144) 

gathers the values of eq  at the end sections. 

Left-multiplying both members of (3.139) by the inverse of (3.140), 

 1

0 0

2 12

1 2L


 

   
 

K F  (3.145) 

gives 

 0  χ χ K   (3.146) 

Replacing (3.143) into the left-hand side of (3.142), recalling the definition (3.140) and left-

multiplying both members by 0K , gives 

 
eq 0 χ K   (3.147) 

Adding these two expressions together and substituting the decomposition (3.135), gives 

 eq 0  χ χ K   (3.148) 

It can also be noticed that, replacing expression (3.146) into (3.138), gives 

 T

0  n K   (3.149) 

which shows that the curvature field   is well characterized by the end sections rotations. 

Consider now the curvature decomposition NL A     (3.93). If it is inserted into (3.130), a 

similar decomposition of the end sections rotations is obtained 

 NL , 1,2i i i i       (3.150) 

i.e., 

 A NL     (3.151) 

Similarly, introducing into (3.134) the decomposition of   into its linear and nonlinear 

components and using the equivalence (3.109), gives  

 Α NL L NL , 1,2i i i i i i              (3.152) 

i.e., 

 A, NL, L, NL,             (3.153) 
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where NL i   (resp. L Ai i   ) are the end sections rotations due to the part of the fictitious 

(resp. effective) force system applied between nodes.  

Writing the kinematic relation (3.146) for the nonlinear component of the curvature and 

introducing the linear plus corrective term decomposition, gives 

 NL NL, 0 NL, 0 NL 0 NL,     χ χ K K K    (3.154) 

It can also be defined a linear curvature field NL, eq   kinematically equivalent to NL,  , i.e., 

which corresponds to equal end sections rotations,  

 
NL, eq 0 NL, χ K   (3.155) 

which is similar to (3.147). Substituting this expression into (3.154) gives 

 
NL, NL, eq 0 NL  χ χ K   (3.156) 

In order to calculate NL, eqχ  the end sections rotations NL,  are required. Their calculation 

depends on the chosen discrete description of the fictitious force system. If the basic discrete 

description is adopted the approximation  is assumed and therefore  

 NL2, , NL2,

0

0, 1,2

L

i in dx i      (3.157) 

i.e., 

 NL ,   0  (3.158) 

and 

 NL , eq 0 NL ,    χ K 0  (3.159) 

Alternatively, if the improved discrete description, i.e. the symmetric parabolic approximation 

NL3,   (3.118) to NL,   is adopted instead, expression (3.134) can be exactly evaluated by 

Simpson’s rule 

 NL3, , NL3, NL 3 NL NL

0 0

1 1
4 , 1,2

6 2 3

L L

i i i

L
n dx n n dx L i              (3.160) 

i.e., 

 NL , NL 2
3

L
   1  (3.161) 

NL, 0  
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NL , 3 NLn   

NL

NL3, ,eq NL

2

3
  


 

Figure 3.22. FFM3: kinematic equivalence between the curvature fields NL ,    and NL , eq   . 

where  
T

2 1 11 . Introducing this expression into (3.155), gives the approximation to NL, eqχ , 

 NL , eq 0 NL , NL 2

2

3
    χ K 1  (3.162) 

The left end and right end nodal values are equal because a symmetric approximation was 

used for NL,  . Hence, the approximated equivalent linear field of curvatures is constant, 

 NL , eq NL

2
const

3
      (3.163) 

i.e., it is given by the average value of the parabola (3.118) over the element domain, see 

Figure 3.22. 

Yet again, let L, eq   be the linear curvature field kinematically equivalent to L,  , i.e. 

corresponding to the same end sections rotations. Thence, similarly to (3.147), 

 L, eq 0 L, χ K   (3.164) 

Adding (3.155) to (3.164) and recalling (3.153) gives 

 eq L, eq NL, eq 0     χ χ χ K   (3.165) 

Writing (3.146) for the auxiliary component, introducing the linear plus corrective term 

decomposition, and recalling that A, L,   , gives 

 A A, 0 A, 0 A 0 A, 0 A 0 L,        χ χ K K K K K      (3.166) 

Finally, introducing (3.164) into this expression, gives 

 A, L, eq 0 A  χ χ K   (3.167) 

3.5.2. Auxiliary elemental constitutive relations 

Since it was admitted (§ 3.4.2) that the auxiliary bending stiffness field is constant in each 

element, the cross-sectional constitutive relationship (3.9) can now be expressed at the 

element level by 
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 AA, AEI   M M EI χ χ  (3.168) 

with 

 A A 2EIEI I  (3.169) 

where I
i
 is the i  i unit matrix. Introducing the compatibility relation (3.146), gives 

 A A, A  M M K   (3.170) 

where 

 AA 0 A 0EI K EI K K  (3.171) 

is the non-singular elemental stiffness matrix for the independent variables. 

Similarly, the elemental constitutive relationships (3.21) and (3.154), give 

 AF F, NL A NL A NL,EI    M M EI χ χ K   (3.172) 

The bending moments field corresponding to  is given by 

 Α, eq A eqM EI    (3.173) 

The values of this field at the end sections are given by 

 AΑ, eq eq A   M EI χ K   (3.174) 

where the last equality is due to (3.165). Similarly, 

 AF eq NL eq A NL,   M EI χ K   (3.175) 

 Aeq L eq A L,   M EI χ K   (3.176) 

Adding together the expressions (3.170) and (3.172) with, respectively, (3.174) and (3.175), 

and substituting the decomposition (3.135), gives 

 Α, eq A  M M K   (3.177) 

 F, F eq A NL  M M K   (3.178) 

eq
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3.5.3. Elemental structural relations 

Consider the system of nodal coordinates represented in Figure 3.23. According to Euler-

Bernoulli hypothesis, the corresponding nodal displacements are 

        
T Tel el el el el

1 2 3 4 0 0d d d d w w w L w L         d  (3.179) 

This vector and the vector of rotations at the end sections w.r.t. the element chord   satisfy 

the compatibility relation, see Figure 3.24a, 

 el elC d  (3.180) 

where el
C  is the elemental compatibility matrix associated to these local directions 

 el

1 1
1 0

1 1
0 1

L L

L L

 
  

  
 
  

C  (3.181) 

The vector of nodal forces along these directions is 

 
T

el el el el el
1 2 3 4f f f f   f  (3.182) 

 2

 1

 4

 3

L

 

Figure 3.23. Elemental system of nodal coordinates. 

el
1 1d el

3 1d

1 1  2 0

1 0
2 1

el
2 1f L el

4 1f L 

el
3 0f 

 0 1M

el
1 1f  

el
4 1d

2 1 L

1

1 1  L

el
2 1d

1 1 L

2 1  L

b)

el
2 1f L  el

4 1f L

el
3 1f 

  1M L

el
1 0f 

L

a)

1

 

Figure 3.24. Elemental a) compatibility and b) equilibrium relations. 
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The dual equilibrium relation between the nodal force vector elf  and the vector M  which 

gathers the values of the bending moment field M  at the element end sections, is given by 

 el el,Tf C M  (3.183) 

where el,T
C  is the equilibrium matrix, see Figure 3.24b. 

Left-multiplying both members of the constitutive relation (3.177) by el,T
C , the equilibrium 

relation (3.183) gives 

  el el el,T el,T

A A, A, Α, eq A    f f C M +M C K   (3.184) 

Substituting (3.180) into the last expression gives 

 el el el el

A A, A f f K d  (3.185) 

where el

AK  is the elemental stiffness matrix in local directions, 

 

2 2

2 3 2 3
el el,T el

A A A

2 2

2 3 2 3

4 6 2 6

6 12 6 12

2 6 4 6

6 12 6 12

L L L L

L L L L
EI

L L L L

L L L L

 
 

 
   
 

   
 
 
 
 
 

K C K C  (3.186) 

Since (3.183) is a generic equilibrium relation, the nodal force vector equivalent to the forces 

applied between nodes is given by 

 el el,T

eq f C M  (3.187) 

In the improved discrete description, multiplying both members of (3.163) by EI
A
, gives 

 F , eq F F A NL

2

3
withM M M EI       (3.188) 

i.e., 

 F eq F 2

2

3
M M 1  (3.189) 

Thence, the corresponding nodal force vector is given by 

  
Tel

F, F

2
1 0 1 0

3
M  f  (3.190) 
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b)a)


FM

F3, 3 FM n M 

F3 F2

8
q M

L


F3
F3, ,1

2

q L
Q   F3

F3, ,2
2

q L
Q  

el

1 F

2

3
f M 

el

3 F

2

3
f M

el

2 0f  el

4 0f 

F3, eq F

2

3
M M 

 

Figure 3.25. FFM3 a) approximation of the fictitious forces applied between nodes and 

b) equivalent nodal fictitious forces. 

This force vector, represented in Figure 3.25b, is kinematically equivalent to the approximation 

of the fictitious forces applied between nodes of FFM3, Figure 3.25a. 

3.5.4. Governing system of equations 

3.5.4.1. Kinematics 

Let us consider a decomposition of the beam in a mesh of m linear beam elements linked 

together at their nodes. Some displacements of these nodes are restrained by the beam 

supports. The remaining n nodal displacements, or generalized displacements, define a global 

system of coordinates. These displacements are grouped in the global vector d. 

The non-assembled global 4m vector el
d  groups the m elemental vectors el

d , 

 
T

el el,T el,T el,T

1 2 m
   d d d d  (3.191) 

This vector and the vector of assembled displacements d are related by  

 el d D d  (3.192) 

where D is a Boolean connectivity matrix (all its elements are 1 or 0), whose structure reflects 

(i) the connectivity of the beam elements and (ii) the supports kinematic constraints. This 

matrix groups the 4  n elemental connectivity matrices iD , which link the four nodal 

displacements el

id  of element i to the n global displacements d, i.e. el

i id D d . Thus, 
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1

2

m

 
 
 
 
 
  

D

D
D

D

 (3.193) 

Grouping the elemental compatibility relations (3.180), gives 

 el elC d  (3.194) 

where the 2m  4m block diagonal compatibility matrix el
C  collects the elemental matrices el

C  

 

el

1

el

el 2

el

m

 
 
 
 
 
  

C

C
C

C

 (3.195) 

and the global 2m vector of rotations  is given by 

 
T

T T T

1 2 ... m
        (3.196) 

Substitution of (3.192) into (3.194) gives the global compatibility relation 

 Cd  (3.197) 

where the 2m  n global compatibility matrix C is given by 

 elC C D  (3.198) 

or 

 

1

el2 with i i i

m

 
 
  
 
 
  

C

C
C C C D

C

 (3.199) 

3.5.4.2. Statics 

The non-assembled global force vector el
f  groups the m elemental vectors el

f , 

 
T

el el,T el,T el,T

1 2 ... m
   f f f f  (3.200) 

The static dual of (3.192) gives the assembled global force vector f 
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 T elf D f  (3.201) 

The equilibrium relation grouping the elemental relations (3.183) is given by 

 el el,Tf C M  (3.202) 

where the global 2m vector of bending moments M is 

 
T

T T T

1 2 ... m
   M M M M  (3.203) 

Substitution of (3.202) into (3.201) gives the global equilibrium relation 

 Tf C M  (3.204) 

3.5.4.3. Auxiliary stiffness matrix 

The non-assembled block diagonal 2m  2m global stiffness matrix is 

 

A,1

A,2M

A A 0

A,m

 
 
  
 
 
  

K

K
K EI K

K

 (3.205) 

which aggregates the elemental stiffness matrices (3.171) and where the elasticity matrix is 

given by 

 

A,1

A,2

A

A,m

 
 
 

  
 
 
 

EI

EI
EI

EI

 (3.206) 

and 

 

0,1

0,2

0

0,m

 
 
 
 
 
  

K

K
K

K

 (3.207) 
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3.5.4.4. Assemblage of equations 

Collecting the m systems of equations (3.185), left-multiplying both members by T
D , 

substituting the connectivity relations (3.201) on the left-hand side and (3.192) on the right-

hand side, gives the governing equation of FFM 

 A A, A f f K d  (3.208) 

where the n  n linear assembled stiffness matrix is given by 

 T el

A AK D K D  (3.209) 

and 

 

el

A,1

el

A,2el

A

el

A,m

 
 
 
 
 
  

K

K
K

K

 (3.210) 

is the block diagonal stiffness matrix which aggregates the elemental matrices (3.186). This 

stiffness matrix can also be written 

 el el,T M el

A AK C K C  (3.211) 

that substituted into (3.209), and considering (3.198), allows rewriting K
A
 as 

 T M

A AK C K C  (3.212) 

The solution of equation (3.208) gives the displacement vector 

  1

A A A,



 d K f f  (3.213) 

Using the usual auxiliary force decomposition and the equilibrium relation (3.204), gives 

 A F f f f  (3.214) 

 A, F,   f f f  (3.215) 

Moreover, the displacement vector of the linear problem of the auxiliary structure is given by 

  1

L A



 d K f f  (3.216) 

Thence, subtracting the last expression from (3.213), the displacement increment due to the 

fictitious forces is given by 
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  1

incr L A F F,



   d d d K f f  (3.217) 

which, in the iterative format, reads 

  ( 1) (1) 1 ( ) ( )

A F F,

i i i 

  d d K f f  (3.218) 

with 

 (1)

Ld d  (3.219) 

According to the previous expression in FFM discrete descriptions the fictitious force vectors 

( )

F

i
f  and ( )

F,

i

f  are required to calculate the subsequent approximation of the displacement 

vector ( 1)i
d . 

3.5.5. Implementation of FFM basic discrete description 

In the basic discrete description of FFM the curvature NL,   is assumed to be zero ( NL2, 0   ) 

and thus, according to (3.175), the equivalent fictitious bending moments are also null 

F2 eq 0 M . Thence, according to  (3.204), ( )

F,

i

 f 0  and equation (3.218) gets reduced to 

 ( 1) (1) 1 ( )

A F

i i  d d K f  (3.220) 

On the other hand, according again to the equilibrium relation (3.204), the fictitious force 

vector ( )

F

i
f  is determined by the fictitious bending moments at the end sections of the 

elements ( )

F

i
M . As seen in § 3.2.2, there are two alternative ways to establish these fictitious 

bending moments, corresponding to FFMDef and FFMS. 

Once the displacements ( )i
d  have been determined, the auxiliary solution, i.e. the curvatures 

( )i
χ  and the auxiliary bending moments ( )

A

i
M , can be calculated as follows. Firstly, 

decomposing the corrective term in (3.148), noting that  χ χ  and collecting the elemental 

relations gives 

 L, eq NL, eq 0   χ χ χ K   (3.221) 

Then, since NL, 0   , substituting the compatibility relation (3.197) on the right-hand side of 

the last expression and writing the result in the iterative format, gives 

 ( ) ( )

0 L, eq

i i

χ K Cd χ  (3.222) 

and, left-multiplying both members by EIA, 
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 ( ) M ( )

A A eq

i i

M K C d M  (3.223) 

Note that eqM  and, therefore, L, eqχ  are easily determined because the linear solution is 

known. 

The flowcharts in Figure 3.4 are adapted in Figure 3.26 to the basic discrete description of FFM. 

The vectors j j
  M χ  and j j

  χ M  are formed by the effective nonlinear constitutive 

relations at the end sections of element j, i.e. 

    
T

ˆ ˆ0j j j jM M L              
M χ  (3.224) 

    
T

ˆ ˆ0j j j jM M L             
χ M  (3.225) 

3.5.6. Implementation of FFM improved discrete description 

In the improved discrete description of FFM the equivalent curvatures NL, eqχ  are 

approximated in each element by   NL 22 3  1  (3.162). This means that the fictitious force 

vector ( )

F,

i

f  is determined by the equivalent fictitious bending moments approximated in each 

element by  ( ) ( )

F3 eq F 22 3i iM M 1  (3.189) with 

 ( ) ( ) ( ) ( ) ( ),T

F F F, F F 2

1

2 2 2 2

i i i i iL L L
M M M M 

     
        

     
M 1  (3.226) 

Since the fictitious bending moments depend on the effective nonlinear constitutive relations 

and on the auxiliary solution, see Figure 3.3, it is necessary to determine the curvatures and 

the auxiliary bending moments at the end sections and midsection. Thence, substituting 

expressions (3.162), (3.197) and (3.199) into (3.221) gives, in the iterative format, 

 ( ) ( ) ( ) ( ) ( 1)

0 L, eq NL 2 0 L, eq NL 2

2 2

3 3

i i i i i  

   χ K Cd χ 1 K Cd χ 1   (3.227) 

Left-multiplying both members of this expression by AEI  and introducing (3.168), (3.176) and 

(3.121), gives 

 ( ) ( ) ( ) ( ) ( 1)

A A eq F 2 A eq F 2

2 2

3 3

i i i i iM M 

    M K C d M 1 K C d M 1   (3.228) 
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Figure 3.26. FFM2: Basic discrete description of FFM(M) (shaded boxes identify the 

differences). 
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Figure 3.27. FFM3: Curvature and bending moment deviations at the additional interpolation 

section. 

The approximation ( ) ( 1)

F F

i iM M    (resp. ( ) ( 1)

NL NL

i i   ) used in (3.228) (resp. (3.227)) is 

needed because ( )

F

iM  (resp. ( )

NL

i ) depends on the values of the curvature field ( )i  (resp. 

bending moment field ( )iM ) which is not yet known. 

The auxiliary solution at midsection, is given by 

 
( ),T ( ),T

( ) ( ) ( 1)
A AA 2 A 2 F

1 1

2 2 2

i ii i iL
M M M M    

    
 

M 1 M 1  (3.229) 

 
( 1)

( )T ( )T
( ) ( ) F

2 2

A

1 1

2 2 2

i
i i

i i M ML

EI

 
 

 
   

 
χ 1 χ 1  (3.230) 

where the deviation of the auxiliary bending moment at midsection is written 

 ( ) ( ) ( 1)

A F F

i i iM M M M M         (3.231) 

with M remaining constant during the iterative procedure. Finally, note that the effective 

bending moment at the midsection can also be written 

 
( )T

( ) ( )

2

1

2 2 2

ii iL L
M M M M 

   
      

   
M 1  (3.232) 

Figure 3.27 illustrates expressions (3.230) and (3.232). The flowcharts in Figure 3.4 are adapted 

in Figure 3.28 to the improved discrete description of FFM. 

3.6. Analysis of FFM basic discrete description 

In this section the iteration formulas of FFMDef and FFMS are presented in the context of FFM 

basic discrete description. Their convergence conditions are then investigated, with a spectral 

analysis of the iteration matrices. Finally, sufficient convergence conditions of the basic 

discrete description are determined. 

 



 2 L 0

  L

M
M

M

 2M L 0M

 M L
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Figure 3.28. FFM3: Improved discrete description of FFM(M) (differences identified by shaded 

boxes; expressions in grey are specific of FFM3). 
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3.6.1. Iteration formulas of the basic discrete description 

Substitution of (3.217) into the compatibility condition (3.197) gives the increment of rotations 

  1

incr incr A F F,



  C d C K f f  (3.233) 

Introducing the equilibrium condition (3.204) gives 

  1 T

incr A F F eq



 CK C M M  (3.234) 

Finally, using also (3.178) gives 

 1 T M

incr A A NL

CK C K   (3.235) 

or 

 
incr NLT   (3.236) 

with 

 1 T M

A A



 T CK C K  (3.237) 

Substituting the global version of (3.141) in both members of (3.236) gives 

  0 incr incr, 0 NL NL,    F χ T F χ   (3.238) 

Left-multiplying both members by K
0
 and recalling that incr, NL,    (3.153) gives 

  incr NL 2 0 NL,m    χ T χ T Ι K   (3.239) 

with 

 0 0 T K T F  (3.240) 

Introducing (3.155), the previous expression becomes 

  incr NL 2 NL, eqm    χ T χ T Ι χ  (3.241) 

and finally, the hypothesis NL, eq χ 0  of the basic discrete description of FFM, gives 

  I

NL L NL   χ G χ χ T χ  (3.242) 

which is similar to (3.31). Introducing the decomposition A NL χ χ χ , see (3.93), gives 

  A L 2 NLm  χ χ T Ι χ  (3.243) 
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or 

 
AA L χ NL χ χ T χ  (3.244) 

with 

 
Aχ 2m T T Ι  (3.245) 

Left-multiplying both members by EI
A
 gives 

  
A

I*

Μ NL L A χ NL  M G χ M EI T χ  (3.246) 

which is similar to (3.33). Introducing the relation 1

NL A F

χ EI M  into the last expression, gives 

  I

Μ F L F  M G M M T M  (3.247) 

with 

 
A

1

A χ A



 T EI T EI  (3.248) 

Expressions (3.242) and (3.247) correspond to the more general expressions (3.31) and (3.35), 

in the context of FFM2. In particular, to the operator T

 (resp. T

M
) in (3.31) (resp. (3.35)) 

corresponds matrix T

 (resp. T

M
) in (3.242) (resp. (3.247)).  

The matrix form of the iterative relation (3.16) is given by 

 ( ) II ( ) ( ) ( )

F Μ A

i i i i            M M G M EI χ M M  (3.249) 

Similarly, substituting (3.15) into (3.21) gives, in the matrix format, 

 ( ) II ( ) ( ) 1 ( )

NL A

i i i i


            χ χ G χ χ EI M χ  (3.250) 

where the global vectors  M χ  and  χ M  collect the elemental constitutive relations (3.224) 

and (3.225). 

Inserting these expressions into (3.242) and (3.247), respectively, and recalling (3.18), the 

iteration formulas of FFMDef and FFMS can be defined as 

 ( 1) ( ) I II ( ) (1) ( )

NL

i i i i

   
               

χ G χ G G χ χ T χ χ  (3.251) 

 ( 1) ( ) I II ( ) (1) ( )

Μ Μ F

i i i i

 
               

M G M G G M M T M M  (3.252) 

These two expressions represent the more general expressions (3.38) and (3.39) in the discrete 

format, expressing the fixed point iteration method, see § 2.4. 
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FFM2 can be implemented with these expressions instead of the procedures summarised in the 

flowchart in Figure 3.26. Similarly, the expression (3.241) can also be used to implement FFM3 

instead of the procedures summarised in the flowchart in Figure 3.28. 

3.6.2. Convergence conditions of the basic discrete description 

In § 3.2.6, it was explained that the iteration formulas (3.251) and (3.252) are convergent if the 

operators G and GM are  contractive. Moreover, G  is  contractive  if both 
I
G  and  II

G  are 

non‐expansive and at least one of them is contractive. The same happens with  I
ΜG ,  II

ΜG  and 

GM. The Jacobian matrices of  I
G  and  I

ΜG , are, respectively, 

  I
 J T   (3.253) 

  I
 J T   (3.254) 

In  the context of matrix methods of structural analysis,  the non‐expansiveness of  I
G   (resp. 

I
ΜG ) depends solely on the spectral proprieties of matrix T  (resp. TM). More precisely,  I

G  

(resp.  I
ΜG ) is non‐expansive if the spectral radius     T  (resp.     T ) is less than or equal 

to one. 

It was also proved  in § 3.2.6 that  II
G  and  II

ΜG  are contractive  if conditions (3.48) and (3.49) 

are  satisfied  at every  section.  In  fact,  the  Jacobian matrices  II
J  of  II

G  and  II
ΜJ  of  II

ΜG  are 

2m  2m diagonal matrices containing the relative differences of bending stiffness at the two 

end sections of each element, which are written as 

 

,1

,2II

,m




 



 
 
    
 
  

β

β
J β

β


  (3.255) 

with 

 
,1

,
,2

0

0j









 
  
 

β   (3.256) 

where, according to (3.42),  ,1  and  ,2  are given by 

 
  A

,1
A

0EI EI

EI



   (3.257) 
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  A

,2
A

EI EI L

EI



   (3.258) 

and 

 

,1

,2II

,m




 



 
 
    
 
  

β

β
J β

β


  (3.259) 

with 

  ,1
,

,2

0

0j









 
  
 

β   (3.260) 

where, according to (3.43),  ,1  and  ,2  are given by 

 
  

  
A

,1

0

0

EI EI

EI



   (3.261) 

 
  

  
A

,2

EI EI L

EI L



   (3.262) 

Thence, the Jacobian matrices of the transformations (3.251) and (3.252), can be written as 

  I II
     J J J T β   (3.263) 

  I II
     J J J T β   (3.264) 

3.6.3. Spectral analysis of the iteration matrices 

In this section it is proved that the eigenvalues of the iteration matrix T (resp. TM) belong to 

the set  0,1  (resp.  1,0 ), which means that 

    1      T T   (3.265) 

Firstly,  according  to  (3.248), TM  and  Aχ
T   are  similar matrices  and  therefore have  the  same 

eigenvalues, i.e. 

   
Aχ

     T T   (3.266) 

Similarly, according to (3.240), T and T are similar matrices and therefore 
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   
      T T  (3.267) 

Secondly, since (1) (1)

A  , then 

 (1) (1)

A,incr A A NL incr NL               (3.268) 

Hence, according to (3.236), the matrix 

 
A 2m  T T Ι  (3.269) 

transforms the rotations 
NL  into the increment A,incr , i.e. 

 
AA,incr NLT   (3.270) 

Note that 
A

T  and 
Aχ

T  (and therefore T
M

) are similar matrices since, see (3.269) and (3.240), 

  
A A0 0 0 2 0 0 0 0 0 2 χm m         K T F K T Ι F K T F K F T Ι T  (3.271) 

Hence, according to (3.266), 

  
A Aχ   

       T T T  (3.272) 

The spectral analysis of matrices T

 and 

A
T  is now addressed. Let (

A


T

, NL ) be an eigenpair 

of 
A

T , i.e. 

  
A A

NL 2 NL NLm 
    TT T Ι    (3.273) 

This means that 

  
A A

NL NL NL NL1 
     T TT      (3.274) 

which proves that every eigenvector of 
A

T  is also an eigenvector of T

 and that the 

corresponding eigenvalues are connected by the relation 

 
A

1 
 
 T T  (3.275) 

Consider now an arbitrary vector of nodal displacements d
C
 and the corresponding 

kinematically admissible vector of rotations 

 C CCd  (3.276) 

The matrix T

 (3.237) transforms 

C
 into itself, 

 1 T M 1

C A A C A A C C C

 

    T CK C K Cd CK K d Cd   (3.277) 
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and, according to (3.269), 

 
A C T 0  (3.278) 

Hence, any vector 
C
 is an eigenvector of T


, with a unit eigenvalue, and of 

A
T , with a null 

eigenvalue. 

For a beam partition with m elements and n degrees of freedom, the degree of static 

indeterminacy is 2m  n and there are, according to definition (3.276), n linearly independent 

vectors 
C
. 

If the beam is isostatic (2m = n), since 
A

T  (resp. T

) is a 2m  2m matrix, all its eigenvalues are 

zero (resp. one). This means that, in the isostatic case, the n linearly independent eigenvectors 

defined by (3.276) span the eigenspace of the matrices 
A

T  and T

. 

However, in the hyperstatic case (2m  n), the remaining 2m  n eigenvalues of the matrices 

A
T  and T


 still have to be determined. Having this objective in view the principle of virtual 

work is applied to the spectral analysis of 
A

T  and T

. 

Consider an arbitrary self-equilibrating statically admissible virtual bending moment field M , 

which exists since the beam is hyperstatic, to which corresponds the vector  M 0 . Consider 

also the rotations vectors  and (1)  which correspond to compatible curvature fields. Then, 

according to the principle of virtual work 

  M 0  (3.279) 

 (1) M 0  (3.280) 

Substituting (1)

A,incr NL      , see (3.268), in (3.279) gives 

 (1)

A,incr NL    M M M    (3.281) 

and summing (3.280) gives 

 A,incr NL  M M   (3.282) 

Consider again the eigenpair (
A


T , NL ) of 

A
T . Introducing (3.273) into (3.270), gives 

 
A A

A,incr NL NL
  TT    (3.283) 

and substituting this expression into condition (3.282), gives 

 
A

NL NL  


 TM M   (3.284) 
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Since eigenvectors are non-null by definition and  M 0 , the equation above can be satisfied 

only for 
A

1

 T

. 

In conclusion, the eigenvalues of 
A

T  are 0, with multiplicity n, and 1 with multiplicity 2m  n 

and the corresponding eigenvalues of T

 are 0  1  1, with multiplicity n, and 1  1  0, with 

multiplicity 2m  n. Hence, 

 
A

1  
       T T  (3.285) 

This result, together with (3.267) and (3.272) proves (3.265). 

3.6.4. Sufficient convergence conditions of the basic discrete description 

In the previous section it was proved that   1  
    T T . Hence, according to the 

Jacobian expressions (3.263) and (3.264), the iteration formulas of the basic discrete 

description of FFM are convergent if, respectively, II

G  and II

ΜG  are contractive, i.e. if 

conditions (3.48) and (3.49) are satisfied at every cross section. According to (3.42), the 

condition , 1i   is equivalent to 

 
A,

0 2i

i

EI

EI
   (3.286) 

at every end section, i.e. for i  1,2,…,2m. This condition implies that 0iEI   and that the 

algebraic sign of the auxiliary bending stiffness is equal to that of the effective bending 

stiffness. Since it is admitted that EI
i
  0 (3.8), the above conditions reduce to 

 A,

1
0

2
i iEI EI   (3.287) 

Hence, FFMDef converges if the auxiliary constitutive law verifies this condition at the end 

sections of the elements of the beam partition. 

On the other hand, according to (3.43), the condition M, 1i   is equivalent to 

 
A,

0 2
i

i

EI

EI
   (3.288) 

at every end section. This condition is similar to (3.286). Once again, the auxiliary bending 

stiffness must have the algebraic sign of the effective bending stiffness. Hence, since it was 

admitted that EI
i
  0, the condition for convergence is 
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 A,0 2i iEI EI   (3.289) 

at the end section of every element. 

Expressions (3.264) and (3.263) shows that the closest the values of EI
A,i

 are to the values of 

EI
i
 the closer is the Jacobian to zero and the fastest the convergence rate of FFMS and FFMDef. 

However, since EI
i
 is nonlinear, the choice of these optimal values for the EI

A
 field may not be 

a trivial task. Finally, note that the numerical convergence of FFMDef and FFMS iterative 

procedures is achieved when the relative error of a certain norm, e.g. the Euclidian norm, of 

the curvatures or bending moments, is less than a given tolerance. When this condition gets 

satisfied, the relative error of other relevant variables, such as the deflections, is also less than 

a corresponding tolerance. Hence, in practical applications of FFM other convergence criteria 

may be used. 

3.7. Second illustrative example 

The next example illustrates the role played in FFMDef and FFMS iterative procedures by the 

chosen (i) mesh refinement and (ii) auxiliary bending stiffness field EI
A
. 

Consider the prismatic continuous beam with two spans of length L  1, see Figure 3.29. The 

elastic bending constitutive relation is given by (3.52), which is bounded by ref 1M  , see 

Figure 3.12. The beam carries a point load8 with magnitude 4Q   at midspan of its right span. 

This structure has one degree of static indeterminacy. Hence, the bending moment field can be 

expressed in terms of Q and the bending moment at a single section, for instance M
S2

 at the  

Q

S1

S2

x

L 2L 2L
 

Figure 3.29. Example 3.2. Continuous beam: geometry, boundary conditions and loading. 

                                                             
8 This load value has to be such that the maximum absolute bending moment in the beam is 

less than . For instance, when applying MFFS, if this condition is not fulfilled the 

curvature  becomes undefined during the iterative procedure. A simple plastic analysis 

gives , i.e. . 

ref 1M 

 ˆ M

ref4 1.5QL M ref6 6Q M 
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loaded section. The equilibrium condition gives the bending moment at the middle support 

section 
S1 S22 2M M QL  . The exact solution can be calculated by the force method, with 

the primary structure defined by releasing the bending moment at the section over the middle 

support. The corresponding compatibility condition is given by 

  
2

0

ˆ 0

L

b M x dx      (3.290) 

where b  is a self-equilibrated bending moment distribution. This equation has a single real 

solution defined by 
S1 0.416M   , 

S2 0.792M   and 
S2 1.29   which was computed with the 

computer algebra system Mathematica (Wolfram, 2008). To the maximum bending moment at 

S2 corresponds a minimum of the tangent bending stiffness 
S2 0.228EI  . 

A constant auxiliary bending stiffness field EI
A
 along the beam was chosen. The corresponding 

linear solution is given by (1)

L,S2 S2 0.8125M M  . 

A first uniform mesh with four elements, was consecutively refined by bisection, establishing a 

family of six uniform meshes with 2
i+1

  4, 8,…, 128 elements. Figure 3.30 and Table 3.3  

 

Figure 3.30. Example 3.2: Mesh-convergence of FFM2 and FFM3. 

Table 3.3 – Example 3.2: MFF solutions and exact solution. 

  number of elements (FFM) exact 
solution 

 
 

4 8 16 32 64 128 

 
FFM(M)2 1.166 1.243 1.279 1.292 1.295 1.296 

1.296 
FFM(M)3 1.267 1.293 1.296 1.296 1.296 1.296 

 
FFM(M)2 0.759 0.779 0.788 0.791 0.792 0.792 

0.792 
FFM(M)3 0.785 0.791 0.792 0.792 0.792 0.792 

 

1.15

1.17

1.19

1.21

1.23

1.25

1.27

1.29

1.31

1 2 3 4 5 6

FFM (M)

FFM (M)

S2

elements

2

3

0.75

0.76

0.77

0.78

0.79

0.80

1 2 3 4 5 6

FFM (M)

FFM (M)

MS2

elements

2

3

elements

2

3

4 8 16 32 64 128 4 8 16 32 64 128

S2

S2M
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present the values of the maxima curvature 
S2

 and bending moment M
S2

 computed with 

FFM(M)2 and FFM(M)3. 

A convergence analysis was performed with respect to (i) the mesh refinement (mesh-

convergence) and (ii) FFM iterative procedure itself (FFM-convergence). 

The convergence analyses are based on two measures of the relative errors of a given 

variable x. Relative error I compares the results of successive iterations 

 
( ) ( 1)

( )

I ( 1)

i i
i

i

x x
err

x






  (3.291) 

or successive meshes 

 
1

I,

1

j j

j

j

x x
err

x






  (3.292) 

while relative error II compares the exact solution x
ex

 with the result of a given iteration 

 
( )

( ) ex
II

ex

i
i x x

err
x


  (3.293) 

or mesh 

 
ex

II,

ex

j

j

x x
err

x


  (3.294) 

For a given mesh, the ith approximation of variable x is FFM-convergent if its relative error I is 

less than a fixed tolerance tol
FFM

, 

 ( )

I FFM

ierr tol  (3.295) 

or its relative error II is inferior to tol
FFM

, 

 ( )

II FFM

ierr tol  (3.296) 

Consider the set of meshes established above by successive bisection. Let x
j
 be the FFM-

convergent approximation of x for the jth mesh and tolerance tol
FFM

, i.e. satisfying (3.295). The 

value x
j
 is also mesh-convergent if its relative error I is inferior to tol

mesh
, 

 I, meshjerr tol  (3.297) 

or its relative error II is inferior to tol
mesh

, 
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II, meshjerr tol  (3.298) 

Thence, any mesh-convergent solution is also FFM-convergent, but the converse is not 

necessarily true. 

Figure 3.31 presents the results of a mesh-convergence analysis with 
FFM 0.001tol   and

mesh 0.01tol  , i.e., each solution in these graphics represents a FFM-convergent solution. 

Figure 3.32 presents the same results in a semi-log plot (or log-log if we think in terms of 

element length): the logarithm of the errors is seen to decrease almost linearly with the mesh 

refinement. Moreover, the higher slope of the curves defined by FFM3 solutions reveals their 

faster convergence. These patterns are typical of the Finite Element Method, (Reddy, 1984, 

Becker et al., 1981). 
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Figure 3.31. Example 3.2: Mesh-convergence of FFM2 and FFM3 (linear scale). 
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Figure 3.32. Example 3.2: Mesh-convergence of FFM2 and FFM3 (logarithmic scale). 
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Figure 3.33. Example 3.2: Number of iterations required for FFM2 to converge. 

For  the  tolerance values given above, Figure 3.32 shows  that mesh‐convergence  required 32 

elements in the FFM2 case while 16 elements sufficed for FFM3. 

In  order  to  illustrate  how  the  performance  of  FFM  iterative  procedures  depends  on  the 

selected EIA field, the FFM‐convergence was investigated. For a mesh of 128 elements and EIA 

fields of constant magnitude chosen in the interval [0.1,2], Figure 3.33 represents the number 

of iterations required for convergence in terms of S2, MS2,  and M, where . represents 
the Euclidean norm. 

There was no numerical convergence of FFMDef for  A 0.5EI   and of FFMS for  A 1.6EI  . 

Considering the cross‐sectional constitutive relation (3.52), the sufficient condition for FFMDef 

to converge (3.287) gives 

  
A 0

1 1
max 0.5

2 2
EI EI EI     (3.299) 

and the sufficient condition for FFMS to converge (3.289) gives 

  
A S2 00 2min 2 0.456 0.456EI EI EI EI       (3.300) 

The results plotted in Figure 3.33 show that FFMDef and FFMS sufficient convergence conditions 

are satisfied. Actually, FFMS converges  for values of EIA up  to 1.6, well above  the maximum 

defined by (3.300). Moreover, it can be observed that the convergence rate depends strongly 

on the value of EIA and that the optimal interval is   A 0.6 , 0.8EI  . In § 3.6.4, it was proved 

that the convergence rate increases when the value of EIA is similar, at every cross section, to 

the tangent bending stiffness EI. This conclusion can be used to improve the convergence rate, 

for example,  selecting a different value of EIA  for each element of  the mesh, based on  the 
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linear solution. The results in Figure 3.33 show also that the number of iterations needed to 

achieve convergence in terms of the value at S
2
 of a specific variable is larger than with the 

Euclidian norm of the values of that variable along the beam. 

3.8. Concluding remarks 

The main results presented in this chapter are now summarised. The chapter covers all the 

fundamental aspects of FFM. Model M was chosen for this purpose because FFM was originally 

created with this model, see Gala (2007). The general ideas of FFM were presented in § 3.2. 

FFM was shown to use the linear operator IG
 to treat nonlinear deformations as initial 

deformations and I
MG  to treat fictitious stresses as initial stresses. These operators are similar to: 

 the matrix operators T
a
 and T

b
 of Argyris’s Initial Load Technique; 

 the influence function  ,g x x  of Lin; 

 the influence function  I ,g x x  of Aguado’s Imposed Deformations Method. 

The operators IG  and I
MG  are also related to the linear solver used in the Virtual Distortion 

Method, the Pseudo Distortion Method and the Pseudo Force Method of Deng and Ghosn (see 

chapter 2 for details and references). 

FFM considers the nonlinear material behaviour by means of the cross-sectional operators IIG  

and II
MG  that also have correspondence in the Initial Strain and Initial Stress Methods 

presented in chapter 2. Hence, FFM general operators G

 and G

M
 result of the composition of 

two operators, i.e. I IIG G G  
     and I II

M M MG G G    ; an analogous composition was 

identified in chapter 2 for the Initial Strain and Initial Stress Methods. 

Sufficient conditions for the convergence of FFMDef and FFMS were derived, in a procedure 

similar to that followed by Argyris and Scharpf (1972), by taking advantage of the fact that IG  

and I
MG  are non-expansive operators. These sufficient conditions are condensed in the 

expression 1   for FFMDef and M 1   for FFMS. Since it is admitted that EI  0, these 

conditions are equivalent to EI
A
  EI

 
 and   EI

A
  EI, respectively. 

A comment must be made with respect to the practical application of these conditions. The 

FFMDef seems to be more interesting, because it is easier to fulfil the convergence requirement 

EI
A

  EI
 
. In fact, for constitutive laws without strain hardening branches, the choice of 
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values for EI
A
 corresponding to the initial tangent stiffness (or a larger value) guarantees the 

convergence of the iterative procedure. Moreover, FFMS can have problems in dealing with 

constitutive laws with horizontal branches, or horizontal asymptotes, as seen in the first 

illustrative example presented in § 3.3. 

However, FFM iterative procedures may converge even when the above sufficient conditions 

are not verified. This is clearly illustrated in the examples presented in this chapter and also in 

the examples presented in chapters 4 and 5. These examples show that the range of EI
A
 fields 

leading to convergent iterative procedures, but not fulfilling the convergence conditions, is 

very wide. It is therefore important to investigate what other factors affect the convergence of 

FFM. 

It is worth noting that effective constitutive relations with horizontal branches or softening 

branches are not considered in this thesis. This is a severe limitation of FFM that might be 

surpassed, but requires further investigation. 

Finally, let us present four important observations: 

(i) One of the objectives of this work was to clarify the meaning of FFM iterative 

procedures from both physical and mathematical points of view. In this context, the 

explanation of the meaning of the operators IG  which transform initial deformations 

(resp. initial stresses) into effective generalized deformations (resp. effective 

generalized stresses) is a relevant achievement. However, two issues should still be 

investigated: (i) from the more general functional viewpoint, the operators IG  appear 

to be projection operators (Arantes e Oliveira, 1975); (ii) in the discrete case, there 

appears to be a close relation between matrices T and similar matrices established by 

Fellipa (1997, 2001). 

(ii) The framework presented in § 3.2 and § 3.3 can be easily extended to cover nonlinear 

point elements; such an extension was used by Costa (2013). 

(iii) Instead of following the flowcharts presented in § 3.6 to program FFM procedure, the 

implementation of the method can be based on the given discrete iteration formulas 

(3.251) and (3.252) for FFM2 and (3.241) for FFM3. 

(iv) One of the initial reasons for the creation of FFM was the need for an analysis method 

of skeletal structures able to model the material nonlinearity like the Equivalent Force 

Method models the geometric nonlinearity. Now that this project revealed to be 
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feasible, the possible combination of the two methods might be able to tackle 

nonlinear geometrical and material problems. In practical terms, the combination of 

FFM with the equivalent force method is easy to implement, see Gala (2007) and Costa 

(2013). However the convergence of this combined method still has to be studied, and 

particularly, it should be investigated if the convergence criterion of each of these two 

methods is still valid when they are combined. 

The last observation raises another question: what are the convergence conditions of the 

Equivalent Force Method? It appears that this question was never formulated or investigated, 

not to say solved. Our study of this topic appears to show that the equivalent force method 

always converges when an admissible solution exists, i.e. whenever at least one equilibrium 

configuration exists. A possible explanation for this result is that the equivalent force method 

is an application of Picard method, whose convergence bounds correspond to the cases were 

the equilibrium of the skeletal structure is possible (Bailey et al. 1968). 
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Chapter 4 
The Fictitious Force Method – model N 

In  this chapter,  the application of FFM with  the  rod model N,  i.e. FFM(N),  is presented. This 

model may  be  used  in  the  analysis  of  trusses  whose  elements  satisfy  a  nonlinear  elastic 

constitutive relationship. 

The fundamental concepts of FFM, previously presented in § 3.2, are first reviewed in the light 

of model N. Next, a discrete description of the elemental fictitious force system of FFM(N)  is 

presented, which has the features needed for its combination with the fictitious force system 

of FFM(M)2 to form the fictitious force system of FFM(MN) presented in the next chapter. In a 

third  stage,  the  application  of  FFM(N)  in  the  context  of  the matrix methods  of  structural 

analysis is presented and the convergence of FFM iterative procedure is reviewed. The chapter 

is concluded with an illustrative example. 

In  this  chapter,  the effective  structure  is a  rod whose  constitutive  law  is described, at each 

cross section, by 

     ˆ ˆorN N N      (4.1) 

The cross‐sectional axial stiffness is given by 

   ˆdN
EA

d
   (4.2) 

This function of  (or N) is discontinuous at every point with different right and left derivatives. 

Its inverse, the cross‐sectional axial flexibility, is denoted 
1

EA

. 
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4.1. FFM with rod model N 

4.1.1. The auxiliary problem 

FFM(N) considers an auxiliary structure similar to the effective rod but whose cross sections 

follow a linear elastic auxiliary constitutive relation, given by 

    A A A A A

A

ˆ ˆor
N

N N EA N
EA

        (4.3) 

In the auxiliary rod, the combination of the fictitious loading system F
F
 with the effective 

loading system F defines the auxiliary loading system F
A
, which originates a deformation field 

that is equal to the deformation field produced in the effective rod by F only. To the loading 

system F
F
 corresponds now the fictitious axial force N

F
 that, together with the effective axial 

force N, defines the auxiliary axial force N
A

 

 
A FN N N   (4.4) 

which expresses the auxiliary decomposition of the axial force. This is illustrated in Figure 4.1, 

where S denotes a generic section and S  and S  its displaced configurations: 

(i) Due to the action of loading system F on the auxiliary rod, section S moves to 

position S . The displacement SS  corresponds to the axial strain 
L
, point 2 in the 

figure; 

(ii) When the loading system F
A
 acts on the auxiliary rod, section S moves to position S . 

The displacement SS  corresponds to the axial strain , represented by point 3 in the 

figure. 

4.1.2. FFM(N) by deformations and FFM(N) by stresses 

Introducing the auxiliary (4.3) and the effective (4.1) constitutive relations into the fictitious 

axial force definition (4.4), gives 

    F A
ˆN EA N     (4.5) 

and 

  (4.6)    F A
ˆN N EA N N 
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Figure 4.1. Illustration of the auxiliary problem of FFM(N). 

  

Figure 4.2. Calculation of fictitious axial force: a) non-iterative format, b) FFMDef and c) FFMS. 

If neither  nor N are known a priori, it may be helpful to write both these expressions in the 

iterative format 

 ( ) ( ) ( )
F A

ˆi i iN EA N       (4.7) 

 ( ) ( ) ( )
F A

ˆi i iN EA N N     (4.8) 

which Figure 4.2 depicts schematically. 

a)

AEA
AN̂

AEA
AN̂

AEA
AN̂

AN

N

N
FN

( )
A

iN

N

( )
F

iN

( )i 

( )iN

( )
A

iN

N



( )
F

iN
( 1)
F
 iN

Sc) FFMDefb)FFM

i  solution of the auxiliary problemth

http://www.merriam-webster.com/dictionary/schematically
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The iterative version of the auxiliary decomposition of the axial force (4.4), reads  

      1

A F

i i iN N N    (4.9) 

This expression is used in both FFM(N)S and FFM(N)Def. Expressions (4.8) and (4.9) are both 

deduced from (4.4) but they present a slight difference: in a given iteration N
F
 is calculated 

with the current value of N, but N is calculated with the previous value of N
F
. 

The initial guess required to start the iterative procedure is calculated for a null fictitious 

loading system and therefore 

 
 

 

1

L

1

LN N

  




 (4.10) 

where the pair  L L, N  represents a linear solution to the effective problem, i.e. the solution 

associated with the effective loading system F in the auxiliary rod. The flowchart in Figure 4.3, 

illustrates the application of the iterative procedures of FFM in the context of model N. 

4.1.3. Fictitious forces and initial deformations 

From the viewpoint of kinematics the effective axial strain can be decomposed in the auxiliary 

component 
A

 and the remaining component 

 NL A     (4.11) 

This relation, which expresses the auxiliary decomposition of the axial strain, is dual of (4.4) 

and corresponds to (3.19). Substituting in expression (4.4) the auxiliary constitutive relation 

(4.3) and, afterwards, the nonlinear component of the axial strain defined above, gives 

 F A NLN EA   (4.12) 

The axial strain field 
NL

 can be regarded as an initial generalized strain field whose effect on 

the auxiliary rod, combined with that of the effective loading system, gives the auxiliary 

solution  A, N , see Figure 4.4. Alternatively, this auxiliary solution can be obtained 

combining the effect on the auxiliary rod of the axial force N
F
, which can be regarded as an 

initial generalized stress field, with that of the effective loading system. 

Actually, besides its iterative character, the auxiliary problem tackled by FFM(N) is similar to 

the problem of a rod with a linear constitutive law of the type (4.3) subjected to a uniform 
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Figure 4.3. FFM(N) iterative procedures (differences identified with shaded boxes). 
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(in the cross section) temperature variation corresponding to the initial axial strain 
I
. Hence, 

Duhamel’s method can be used to analyse this problem and to determine the fields of elastic 

axial strain 
E
 and axial force N, as illustrated in Figure 4.5. In this case, the elastic strain 

E
 in 

the thermal problem corresponds to 
A L   in the auxiliary problem, as represented in 

Table 4.1. 

4.1.4. Iteration formulas of FFM(N) 

An operator T can now be defined for the auxiliary rod which transforms the generic action 

 NL ,F  into the effective axial strain field , 

  NL ,T F   (4.13) 

Moreover, since, as shown in chapter 3, this operator T is linear in the pair  NL ,F , 

        NL NL NL L, ,0 0,T F T T F T          (4.14) 

where    NL NL ,0T T    is a linear operator and  L 0,T F  . Hence, (4.14) defines the 

operator IG  transforming (initial) axial strains 
NL

 into the effective strains, 

 I
NL L NLG T              (4.15) 

Subtracting 
NL

 to both members of this expression and recalling that A NL    , gives 

  A L NL NLT       (4.16) 

Multiplying both members by EA
A
 and recalling that A AN EA   and L A LN EA  , gives 

  L A N NLN N EA T    (4.17) 

where one more linear operator, NT T I  , was introduced. Since F A NLN EA  , the right 

hand member of the above expression is an operator I
NG  which transforms fictitious axial 

forces into the effective axial forces, 

 I
N F L N FN G N N T N          (4.18) 

The operators IG  and I
NG  defined in (4.15) and (4.18), correspond to the operators IG  and 

I
MG  presented for model M in chapter 3. 

Since 
NL

 and N
F
 are usually not known in advance, they can be defined in terms of an 

estimative of (i) the effective axial strains , using (4.12) and (4.7),  
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Figure 4.4. Fictitious axial force and nonlinear component of axial strain. 

Table 4.1 – FFM(N): Duhamel’s vs. FFM approaches. 
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Figure 4.5. FFM(N): Duhamel’s method applied to the analysis of a rod subjected to a thermal 

action. 
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   
 

F( ) II
NL

A

i

ii
N

G
EA


 

        (4.19) 

or (ii) the effective axial forces N, using (4.8),  

     ( ) II
F N F

i iiN G N N N          (4.20) 

Introducing  the  last  but  one  expression  into  (4.15),  and  recalling  that  (1)
L  ,  gives  the 

iterative formula of FFMDef  

   ( 1) ( ) I II (1) ( )
NL

ii i iG G G T     
   

                   (4.21) 

Similarly, introducing the last but one expression in the iterative version of (4.18), and recalling 

that  (1)
LN N , gives the iterative formula of FFMS, 

     ( 1) ( ) I II (1)
N N N N F

i ii iN G N G G N N T N N                      (4.22) 

Recall  that  in  axially  isostatic  structures  the  iterative  procedure  of  FFMS  gets  reduced  to  a 

unique “iteration”, after  the  initialization, since  in  this case  the axial  force  is  independent of 

the material nonlinearities, i.e.  . 

4.1.5. Convergence conditions of FFM(N) 

According to the composition  I IIG G G       in (4.21) (resp. 
I II

N N NG G G     in (4.22)), FFM(N)Def 

(resp. FFM(N)S)  iteration formula converges  if (i) both operators  in this composition are non‐

expansive and (ii) at least one of them  is contractive. On the other hand, deriving (4.19) with 

respect to  and recalling (4.5) gives 

 
  

NL A

A

d EA EA

d EA

 


 


    (4.23) 

Deriving (4.20), which repeats (4.6), with respect to N gives 

 
  


F A

N 1

dN N EA EA

dN EA










  


  (4.24) 

Thence,  IIG  is contractive if 

  1    (4.25) 

and  II
NG  is contractive if 

(1) N N
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N 1   (4.26) 

In §§ 4.4.1 and 4.4.2, it is explained that the operators IG  and IG , when established in the 

context of the discrete description of FFM(N), are non-expansive. Therefore, the two last 

expressions are sufficient convergence conditions for FFM(N). 

4.2. Elemental fictitious force system for rod model N 

This section presents the fictitious force system of FFM(N) for a rod element. The definition of 

a mesh of rod elements (domain partition) and the description of the rod element are 

presented in § 4.2.1. The differential description of the fictitious force system is then 

presented in § 4.2.2. A decomposition of the elemental fields is presented in § 4.2.3 and, 

finally, the discrete description of the fictitious force system is presented in § 4.2.4 

4.2.1. Domain partition 

Figure 4.6 illustrates part of a rod under a generic loading composed of (i) a distributed axial 

load p  and (ii) one axial point load P9. The axial force and axial strain fields in the element are  

, , ,x u p P

zy



F F
 p N

*
F FP N x    

 F,1 F 0P N   F,2 FP N L

 0N  N L

p

L

P

p
P

 

Figure 4.6. Rod partition (top), effective (middle) and fictitious (bottom) elemental force 

systems and corresponding internal forces at rod ends. 

                                                             
9 One load for illustrative matters but any number would do. 
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linked together by the relationship 

   ˆ ˆorN N N       
     (4.27) 

An eligible partition of the rod must comply with  its geometry – each element  is prismatic – 

and supports – there is a mandatory or natural node next to each support. The axial stiffness 

field is given by 

       orEA EA EA EA N     
   (4.28) 

According  to  the  elemental  system  of  coordinates  introduced  in  § 3.4.1,  the  element  end 

sections correspond to x = 0 and x = L. 

4.2.2. Differential description of the elemental fictitious force system 

The simplifying assumption of a constant auxiliary stiffness  in each element, will be adopted 

once more (see § 3.4.2), 

    A A constEA x EA    (4.29) 

Since expression  (4.5)  is valid  for each elemental cross section,  the  fictitious axial  force  field 

can be established in terms of the axial strains, as required by FFM(N)Def, 

    (4.30) 

Alternatively, according to (4.6) the fictitious axial force can be written in terms of the effective 

axial forces, as required by FFM(N)S, 

  F A ˆN EA N N    
     (4.31) 

Similarly,  recalling  the  second  expression  (4.3)  and  (4.11),  the  auxiliary  and  nonlinear 

components of the axial strain field are given by 

  A
A

N

EA
 


   (4.32) 

  NL A        (4.33) 

The elemental fictitious force system FF is in equilibrium with the fictitious axial force field  FN  

in the rod element. Thence, it has two types of forces acting along the axial direction: 

   F A
ˆ ˆN N N    
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(i) a distributed force, 

 F Fp N    (4.34) 

(ii) axial point forces at the fictitious axial force discontinuity sections, 

  F, Fi iP N x   (4.35) 

The latter sections include those with applied effective point loads P and the element 

boundaries where 

  F,1 F 0P N   (4.36) 

  F,2 FP N L  (4.37) 

4.2.3. Decomposition of the elemental fields 

Let us consider again the decomposition of the generic elemental field  g x  introduced in 

chapter 3, and which shall be called the elemental fields decomposition, 

 g g g    (4.38) 

In that chapter, g  was defined as a linear function because the curvature   is well 

characterized by the two elemental end sections rotations, which are the independent 

parameters characterizing the bending deformation of model M. However, since the 

deformation of the rod model N element is well characterized by a single parameter, the 

elemental elongation, g  in the expression above can now be defined as a constant function. 

Thence, the element right end section was chosen to be the unique interpolation section of 

the discretized field g , i.e. 

    g x g L   (4.39) 

The boundary values of the corrective term g  are now, see Figure 4.7, 

 

Figure 4.7. Decomposition of the elemental field . 

g  g L

 0g

 g L
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   0g L   (4.40) 

      0 0g g g L    (4.41) 

This decomposition can be applied to the axial strain field and its auxiliary and nonlinear 

components 

          x x x L x           (4.42) 

          A A, A, A A,x x x L x           (4.43) 

          NL NL, NL, NL NL,x x x L x           (4.44) 

and to the auxiliary, fictitious and effective axial force fields 

          A A, A, A A,N x N x N x N L N x       (4.45) 

          F F, F, F F,N x N x N x N L N x       (4.46) 

          N x N x N x N L N x       (4.47) 

The last but one expression shows that the fictitious axial force field  FN x  can be 

decomposed in a constant term    F, FN x N L   plus a corrective term  F,N x . These axial 

force fields are in equilibrium with the element fictitious force system represented in 

Figure 4.8, i.e. the constant field    F, FN x N L   is in equilibrium with two axial point forces 

  a a
F,2 F,1 FP P N L    (4.48) 

and the corrective field  F,N x  is in equilibrium with a distributed axial force Fp , 

 F F,p N 
   (4.49) 

and an axial point force at x = 0, 

     F, F F0 0N N N L  

F F,p N 
 

b

F,1 F

0

L

P p dx  

F,N
 FN L

 a

F,1 FP N L   a

F,2 FP N L

 

Figure 4.8. Elemental fictitious forces of FFM(N). 
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 b
F,1 F

0

L

P p dx   (4.50) 

Multiplying both members of (4.42) by EA
A
 it is easily concluded, according to (4.3), that there 

is a direct correspondence between each term of the resulting expression and (4.45). For 

instance, the corrective fields  x  and  A,N x  are proportional to each other 

    A, AN x EA x   (4.51) 

Similarly,  

 A, AN EA    (4.52) 

    A A,N x EA x   (4.53) 

(Note that we have to consider both the auxiliary decomposition and the elemental fields 

decomposition.) The corrective field  N x  equilibrates the part of the loading applied 

between the end sections in an isostatic element supported on the left side only, i.e. this field 

is fully defined by equilibrium considerations and is independent of the constitutive law. 

Hence, it is equal to the corresponding field in the linear solution,  

    L,N x N x   (4.54) 

and, therefore, the auxiliary decomposition (4.4) of the corrective fields is given by 

          A, F, L, F,N x N x N x N x N x         (4.55) 

Dividing both members of (4.54) by EA
A

 and recalling (4.53), gives the corresponding 

kinematical relation, 

    A, L,x x    (4.56) 

4.2.4. Discrete description of the elemental fictitious force system 

As already mentioned in § 3.4.4 for FFM(M) discrete descriptions, in order to write the 

corrective terms F,N   (resp. NL,  ) and N  (resp. A,  ) in a discrete form, the part of the force 

system which is applied between nodes should be known in advance. This means that the 

discrete description of N  and A,   is a trivial task, but the same cannot be said of F,N   and 

NL,  , since the fictitious force system is not known in advance. This difficulty is overcome by 

imposing the form of that force system, i.e., the shape of the nonlinear component of the axial 



The fictitious force method and its application to the nonlinear material analysis of skeletal structures 

126 

strains  NL,   or of  the effective axial stiffness  EA , since  NL,   emulates  EA ,  in  the auxiliary 

problem. 

Before presenting the simplifying assumption which lays the basis of the discrete description of 

the  fictitious  force system proposed  for FFM(N),  let us clarify  the option  taken. This discrete 

description  will  be  combined  with  that  of  FFM(M)2  to  form  a  discrete  description  of  the 

fictitious  force  system  of  FFM(MN),  presented  in  next  chapter.  To  combine  the  discrete 

descriptions of FFM(N) and FFM(M) and, therefore, the discrete descriptions of their fictitious 

force systems, they should share the same interpolation sections,  i.e. the fields  NL  and  NL  

must be approximated by functions of the same degree. The justification to this requirement is 

presented next chapter in § 5.3.1.1. 

Thence, in the proposed discrete description of the fictitious force system of FFM(N), the fields 

NL,   and  F,N 
  are admitted to be linear in x. This means that a second interpolation section is 

required, which was  chosen  to be  the element  left end  section. Thence,  see Figure 4.9,  the 

approximation of the fictitious axial force field   F,N x
  is given by 

          F2, 1 F F0N x n x N N L       (4.57) 

Dividing both members by EAA gives the corresponding approximation of   NL, x  , 

          NL2, 1 NL NL0x n x L         (4.58) 

The components of the fictitious force system (4.49) and (4.50) become 

      F2 F2, F F

1
0p N N N L

L        (4.59) 

     b
F2,1 F2 F F

0

0
L

P p dx N L N        (4.60) 
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Note that the fictitious distributed force is approximated by a uniform load. The fictitious force 

system of the discrete description of FFM(N) is therefore given by the sum of forces (4.59) and 

(4.60) with forces (4.48), i.e. it is composed of the two concentrated axial forces (4.36) at the 

element end sections and the uniformly distributed force (4.59), see Figure 4.10. 

Note that the error introduced by the adoption of this discrete fictitious force system 

decreases when the element mesh is refined. The example presented in § 4.5 illustrates this 

issue. 

Finally, substituting (4.58) into (4.44), and recalling (3.101) and (3.102), yields the 

approximation for 
NL , 

 T

NL2 NL  n   (4.61) 

with 

    
T

NL NL NL0 L      (4.62) 

   F F0 N N L

   b

F2 1 F F0P N N L  ,

   F F

F2

0N N L
p

L




 FN L

 F 0N
 FN L

F2,N 

 a

F,1 FP N L   a

F,2 FP N L

 F2 F 0P N   F2 FP N L 

   F F

F2

0N N L
p

L




F,N 





 

Figure 4.10. Discrete components of the fictitious force system. 
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4.3. FFM(N) discrete description: matrix methods of structural analysis 

This and the next sections present the application of the discrete description of FFM(N) in the 

context of matrix methods of structural analysis. This discrete description is hereinafter 

denoted FFM(N)2 or simply FFM2 if it is obvious that the model N is being employed. This 

exposition follows as close as possible the discrete description of FFM(M) presented in § 3.5, 

which explains why some expressions are alike. 

4.3.1. Elemental kinematics 

The elemental kinematic relations are established in this section. Assuming that the 

displacement field  u x  is continuous in the element, the elemental elongation is given by 

    
0

0

L

u L u dx      (4.63) 

Substituting the strain decomposition (4.42) into the last expression, yields, see Figure 4.11, 

       (4.64) 

with (recall that  L    (4.39)) 

 N
0

0 0

L L

dx dx F           (4.65) 

 

 0

 L

   
0

0   
L

u L u dx 

 0u  u L

A B
A B

 L

N

0F  

0

   
L

dx


   0  L





 

Figure 4.11. Element elongation and its decomposition. 
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where 

 N
0F L  (4.66) 

and 

 
0

L

dx     (4.67) 

Thence 

  N
0K      (4.68) 

with 

 N
0 N

0

1 1
K

F L
   (4.69) 

The equivalent axial strain field eq  is defined as the constant strain field to which 

corresponds an elemental elongation equal to that for   , see Figure 4.12,  

 N
eq eq eq 0 eq

0 0

L L

dx dx L F              (4.70) 

Introducing this expression into (4.68) gives 

 N
eq 0K      (4.71) 

Introducing the auxiliary strain decomposition (4.33) into (4.63), gives a similar decomposition 

of the elongations 

 A NL     (4.72) 

Similarly, the element elongations 

 are decomposed according to 

 Α NL L NL             (4.73) 

where the equivalence (4.56) was used. 

 

Figure 4.12. Equivalence between the fields    and eq . 


,eq

L


 
 


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According to the kinematic relation (4.68),  

  N
NL, 0 NL NL,K      (4.74) 

with 

 NL NL

0

L

dx     (4.75) 

A constant axial strain field NL, eq   kinematically equivalent to NL,   can be defined, i.e. which 

corresponds to the same elongation 
NL,

 by an expression similar to (4.70), 

 N
NL NL eq 0 NL eq

0

L

dx F       (4.76) 

Substituting this expression in (4.74) gives 

 N
NL, NL eq 0 NLK      (4.77) 

and it can be concluded that (4.71) is a generic result valid not only for the effective strains but 

also for their nonlinear and auxiliary components. In the case of the approximation (4.58) to 

NL,  , 

            
N

0
NL2 1 NL NL NL NL

0

0 0
2

L
F

n x L dx L          (4.78) 

Thence, equating this to (4.76), gives this equivalent strain field for the basic discrete 

description, 

     NL2 eq NL NL

1
0

2
L      (4.79) 

see Figure 4.13. 

 

Figure 4.13. Equivalence between the fields    and eq  in the context of the approximation of 

FFM(N) discrete description. 

 

     NL eq NL NL

1
0

2
L    

   NL NL0 L 
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Substituting   by A,   in (4.68), and recalling that Α L   , see (4.73), gives 

  N
A, 0 A L,K      (4.80) 

Let L eq   be the constant field kinematically equivalent to L  , i.e. corresponding to the same 

elongation. Thence, similarly to (4.70), 

 N
L L eq 0 L eq

0

L

dx F       (4.81) 

Introducing this relation into (4.80) gives 

 N
A, L eq 0 AK      (4.82) 

Note that it is also possible to write 

 N
eq L eq NL eq 0K          (4.83) 

4.3.2. Auxiliary elemental constitutive relations 

Substituting (4.68) on the right-hand side of (4.52), gives 

 N
A, AN K    (4.84) 

with 

 N N A
A A 0

EA
K EA K

L
   (4.85) 

Similarly, 

 N
F, A NL, A NL,N EA K      (4.86) 

 N
A A, A A,N EA K      (4.87) 

The axial force field corresponding to eq  (4.83) is given by 

 N
A, eq A eq AN EA K      (4.88) 

and similarly, 

 N
F, eq A NL eq A NLN EA K      (4.89) 

 N
eq A A eq A AN EA K      (4.90) 
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In the discrete description of FFM(N), introducing (4.79) into (4.89), gives the approximation of 

F eqN 
, 

          A
F2 eq NL NL F F

1
0 0

2 2

EA
N L N N L       (4.91) 

Finally, adding together the expressions (4.84), (4.86) and (4.87) with, respectively, (4.88) to 

(4.90), and substituting the decomposition (4.71), gives 

 N
A, A, eq AN N K     (4.92) 

 N
F, F, eq A NLN N K     (4.93) 

 N
eq A AN N K     (4.94) 

4.3.3. Elemental structural relations 

Consider the elemental local coordinates (i.e. along the element axis direction) represented in 

Figure 4.14, to which correspond the nodal displacements 

    
T Tel el el

1 2 0d d u u L       d  (4.95) 

The elongation  is given by the compatibility relation, see Figure 4.15, 

 el el C d  (4.96) 

where el
C  is the elemental local compatibility matrix 

  el 1 1 C  (4.97) 

 

Figure 4.14. Local nodal coordinates of rod element. 

 el
1f N L   el

2f N L

 N L

el
1d el

2d

el el

2 1  d d

L



 

Figure 4.15. Illustration of elemental compatibility and equilibrium relations. 

 1  2

L
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The elemental vector of nodal forces along these local directions is 

 
T

el el el
1 2f f   f  (4.98) 

The elemental equilibrium relation, dual of (4.96), is given by 

 el el,T Nf C  (4.99) 

where el,T
C  is the elemental equilibrium matrix. This means that, as represented in the right 

hand side of Figure 4.15, 

 el el

1 2f f N     (4.100) 

According to the equilibrium relation (4.99), the elemental force vector equivalent to the 

forces applied between nodes is given by 

 el el,T

eqN f C  (4.101) 

Left-multiplying both members of (4.92) by el,T
C  and considering the equilibrium relation 

(4.99), gives 

  el el el,T el,T N

A, A, eq AN N K       f f C C  (4.102) 

Substituting (4.96) into the last expression, gives 

 el el el el

A A f f K d  (4.103) 

where 

 el N el,T el A
A A

1 1

1 1

EA
K

L

 
   

 
K C C  (4.104) 

is the auxiliary element local axial stiffness matrix. 

4.3.4. Governing system of equations 

4.3.4.1. Kinematics 

Let us consider a decomposition of the rod into a mesh of m linear rod elements linked 

together at their nodes. Some displacements of these nodes are restrained by the rod 
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supports. The remaining n generalized displacements of these nodes define a global system of 

coordinates. These displacements are grouped in the global vectors d. The global vector el
d , 

grouping the elemental vectors el
d , is related to d by 

 el d D d  (4.105) 

where D is a Boolean matrix, whose structure reflects the connectivity of the elements and the 

kinematic constraints due to supports. 

Grouping the elemental compatibility relations (4.96), gives 

 el elφ C d  (4.106) 

where the m  2m  block diagonal matrix collects the elemental compatibility 

matrices (4.97) and  is the global vector of axial elongations 

  (4.107) 

Substitution of (4.105) into (4.106) gives the global compatibility relation 

 Cd  (4.108) 

where C is the m  n compatibility matrix 

  (4.109) 

with 

 

el

1

el

el 2

el

m

 
 
 
 
 
  

C

C
C

C

 (4.110) 

or 

 

1

2

m

 
 
 
 
 
  

C

C
C

C

 (4.111) 

with 

 el

i i iC C D  (4.112) 

el
C

 
T

1 2φ m  

elC C D
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4.3.4.2. Statics 

The static dual of (4.105) gives the assembled global force vector f, 

 T elf D f  (4.113) 

where el
f  is the non-assembled global force vector, dual of el

d , grouping the elemental 

vectors el
f . The equilibrium relation grouping the elemental relations (4.99) is 

 el el,T

f C N  (4.114) 

where the global vector of axial forces N

 is 

      
T

1 2 mN L N L N L
   N  (4.115) 

Substitution of (4.114) into (4.113) gives the equilibrium relation, dual of (4.108), 

 T

f C N  (4.116) 

According to the equilibrium relations (4.116), 

 T

eq f C N  (4.117) 

where the global vector of axial forces eqN  is 

 
T

eq eq,1 eq,2 eq,mN N N   
  N  (4.118) 

4.3.4.3. Auxiliary constitutive relationship 

The collection of the elemental constitutive relations (4.92), is given by 

 N
A, A, eq A  N N K   (4.119) 

where the non-assembled block diagonal m  m global stiffness matrix, which groups the 

elemental matrices (4.85), is given by 

 

A,1

1N

A,1

A,2N

A,2N N

A A 0 2

N

A,

A,

m

m

m

EA

L
K

EA
K

L

K
EA

L

 
 
  
  
       
  
   
 
 
 

K EA K  (4.120) 
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the elasticity matrix is given by 

 

A,1

A,2

A

A,m

EA

EA

EA

 
 
 
 
 
  

EA  (4.121) 

and 

 

1N

0,1

N

0,2N

20

N

0,

1

1

1
m

m

L
K

K
L

K

L

 
 
  
  
      
  
   
 
  

K  (4.122) 

The elemental constitutive relations (4.52) are collected in the global constitutive relation 

 A, A N EA ε  (4.123) 

where the global vector gathering the axial strains at x = 0 is 

      
T

1 2 mL L L  
   ε  (4.124) 

Considering the vector N
0
 which collects the axial forces at the elements left end section 

      
T

0 1 20 0 0mN N N   N  (4.125) 

and the dual global vector gathering the axial strains at that section, 

      
T

0 1 20 0 0m     ε  (4.126) 

it is possible to write, similarly to (4.123), the global constitutive relation 

 A,0 A 0N EA ε  (4.127) 

Let N be the generic global axial force vector collecting N
0
 and N


, i.e. 

 0



 
  
 

N
N

N
 (4.128) 

and the global axial strain vector, dual of N, collecting 
0
 and 


, 
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 0



 
  
 

ε
ε

ε
 (4.129) 

Thence, the constitutive relations (4.123) and (4.127) can be gathered into 

 *

A AN EA ε  (4.130) 

where the elasticity matrix *

AEA  is 

 A*

A

A

m

m

 
  
 

EA 0
EA

0 EA
 (4.131) 

The constitutive relations (4.127) and (4.130) are used in § 4.3.5. 

4.3.4.4. Assembling the equations 

Collecting the m equations (4.103), left-multiplying both members by T
D , substituting the 

connectivity relations (4.113) on the left-hand side and (4.105) on the right-hand side, gives 

FFM governing equation 

 A A, A f f K d  (4.132) 

where the m  m assembled linear stiffness matrix is given by 

 T el

A AK D K D  (4.133) 

and 

 

el

A,1

el

A,2el

A

el

A,m

 
 
 
 
 
  

K

K
K

K

 (4.134) 

is the block diagonal stiffness matrix which aggregates the elemental stiffness matrices (4.104). 

Note that el

AK  can also be written 

 el el,T N el

A AK C K C  (4.135) 

Thence, substituting (4.135) into (4.133) and considering (4.109) gives 

 T N

A AK C K C  (4.136) 

Solution of equation (4.132) gives 
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  1

A A A,



 d K f f  (4.137) 

The auxiliary forces in this expression are given by the superposition of their effective and 

fictitious components 

 
A F f f f  (4.138) 

 A, F,   f f f  (4.139) 

Substituting these expressions in the last expression and noting that 

  1

L A



 d K f f  (4.140) 

gives 

  1

L A F F,



  d d K f f  (4.141) 

Recalling that (1)

Ld d , this expression can be written in the iterative form 

  ( 1) ( ) 1 ( ) ( )

A F F,

i i i i 

  d d K f f  (4.142) 

4.3.5. Implementation of FFM(N) discrete description 

As seen in chapter 3, the implementation of FFM discrete description consists in determining 

the fictitious force vectors  and  which, according to (4.142), are required to calculate 

the next approximation of the displacement vector . In FFM(N), the force vector  is 

determined by the fictitious axial force at the right end section of the elements, 

 T

F F,f C N  (4.143) 

On the other hand, according to (4.91) and (4.117), F,f  is approximated by the difference 

between the fictitious axial forces at the end sections 

 T

F, F eq f C N  (4.144) 

In the case of FFMDef (resp. FFMS) these fictitious axial forces are written in terms of the axial 

strains (4.5) (resp. axial forces (4.6)). 

Once  is known, and bearing in mind that the linear solution is also known, particularly 

 and 
L, eqN 

, it is possible to establish the auxiliary axial forces at the element end sections, 

as explained next. 

( )

F

i
f

( )

F,

i

f

( 1)i
d

( )

F

i
f

( 1)i
d

LN
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Let us start by establishing the vector ( )
A,
i
N  gathering the auxiliary forces at x = L. Thence, let 

us write the field 
A eqN 

, according to (4.9), (4.91) and (4.54), as 

 
   ( 1) ( 1)

F F( ) ( 1)

A eq eq F eq L eq

0

2

i i

i i
N N L

N N N N
 



   


    (4.145) 

Collecting these elemental relations gives in the global format 

 ( ) ( 1) ( 1) ( 1)
F,0 F,A eq eq F eq L eq

1 1

2 2

i i i i  
   

   N N N N N N  (4.146) 

Substituting (4.108) and (4.146) into the global constitutive relation (4.119) gives 

  ( ) N ( ) ( 1) ( 1)
A, A F, F,0L eq

1

2

i i i i 
 
   N K Cd N N N  (4.147) 

Let us now establish the axial force vector ( )
A,0
iN  gathering the auxiliary axial forces at x = 0. 

Firstly, take (4.55) at x = 0. Since (1)
LN N , this expression can be written in the iterative 

format, according to (4.9), as 

      ( ) (1) ( 1)
A, F,0 0 0i iN N N 
     (4.148) 

According to (4.41), the terms on the right-hand side of this expression can be written as 

      (1) (1)(1) 0 0N N N L    (4.149) 

      ( 1) ( 1) ( 1)
F, F F0 0i i iN N N L  
    (4.150) 

and according to (4.41), 

      ( ) ( ) ( )
A A A,0 0i i iN N L N    (4.151) 

Substituting (4.149) and (4.150) into (4.148) and the result into the last expression gives 

            (1) (1)( ) ( ) ( 1) ( 1)
A A F F0 0 0i i i iN N L N N L N N L       (4.152) 

Collecting these elemental axial forces gives in the global format 

 ( ) ( ) (1) (1) ( 1) ( 1)
A,0 A, 0 F,0 F,
i i i i 

      N N N N N N  (4.153) 

Finally, substituting (4.147) into the last expression, gives 

  ( ) N ( ) (1) (1) ( 1) ( 1)
A,0 A 0 F, F,0L eq

1

2

i i i i 
 

     N K Cd N N N N N  (4.154) 

It is then possible to group (4.147) and (4.154) as 
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  
(1) (1)
0( ) N ( ) ( 1)

A A FL eq
1

1

2

m m mi i i

m m mm

 




     
       

    

I I IN N
N K Cd N N

I I I0
 (4.155) 

This expression and the constitutive relation (4.130) give the axial strains  
1

( ) * ( )

A A

i i


ε EA N . 

Defining the vectors  N ε  and  ε N  which gather the effective constitutive relations at the 

element end sections, 

  
 
 

 

 

 

 

 

 

1 1

2 2

0 0

1 1

2 2

ˆ 0

ˆ 0

ˆ 0

ˆ

ˆ

ˆ

m m

m

m

m m m

N

N

N

N L

N L

N L













 

   
 
   
 
 
 

     
    

     
 

   
 
 
    

N ε
N ε

N ε
 (4.156) 

  
 
 

 

 

 

 

 

 

1 1

2 2

0 0

1 1 1

2 2 2

ˆ 0

ˆ 0

ˆ 0

ˆ

ˆ

ˆ

m m

m m m

N

N

N

N L

N L

N L













 

  
  

  
  

 
 

     
    

     
 

   
 
 
 

    

ε N
ε N

ε N
 (4.157) 

it is finally possible to produce the flowchart in Figure 4.16, which updates the flowchart in 

Figure 4.3, describing the implementation of the discrete description of FFM(N). 

4.4. Iteration formulas of FFM(N) discrete description 

The iteration formulas for the discrete description of FFM(N) will now be developed. 

Substituting the global displacements (4.141) into the compatibility relation (4.108) gives 

  1

L A F F,



  CK f f   (4.158) 

with 

 L LCd  (4.159) 
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auxiliary axial forces auxiliary axial forces

auxiliary axial forcesauxiliary axial forces

start

1i 

convergence?

yes

end

no

1i i 

system of fictitious forces

( ) T ( ) ( ) T ( )

F F, F, F, eq;i i i i

   f C N f C N

effective axial forces

nodal displacements

 ( 1) (1) 1 ( ) ( )

A F F,

i i i 

  d d K f f

fictitious axial forces

 

( ) * ( ) ( )

F A

( ) ( ) ( )

F2 eq F,0 F,

1

2

i i i

i i i

 

 

 

N EA N

N N N



 ( 1) N ( 1)
A A L eq

(1) (1)
0 ( )

F

1

1

2

mi i

m

m m i

m mm

 







 
  
 

   
    

  

I
N K Cd N

I

I IN N
N

I I0

effective axial strains
( ) * 1 ( )

A A

i iEA N

start

1i 

convergence?

yes

end

no

1i i 

system of fictitious forces

( ) T ( ) ( ) T ( )

F F, F, F, eq;i i i i

   f C N f C N

( ) ( )i i   ε ε N

nodal displacements

 ( 1) (1) 1 ( ) ( )

A F F,

i i i 

  d d K f f

effective axial forces
( ) ( ) ( 1)

A F

i i i N N N

DefFFM( )N SFFM( )N

fictitious axial forces

 

( ) * ( ) ( )

F A

( ) ( ) ( )

F2 eq F,0 F,

1

2

i i i

i i i

 

 

 

N EA N

N N N



 ( 1) N ( 1)
A A L eq

(1) (1)
0 ( )

F

1

1

2

mi i

m

m m i

m mm

 







 
  
 

   
    

  

I
N K Cd N

I

I IN N
N

I I0

AEAdefine

(0)

FN 0

compute

 

1

A L eq

T (1) 1

L eq A

; ;

;







    

,

,

K N

f C N d K f f

 
(1) (1)
0( ) N ( )

A A L eq
1

mi i

m m






  
     
   

I N N
N K Cd N

I 0

AEAdefine

compute

 

1

A L eq

T (1) 1

L eq A

; ;

;







    

,

,

K N

f C N d K f f

 
(1) (1)
0( ) N ( )

A A L eq
1

mi i

m m






  
     
   

I N N
N K Cd N

I 0

( ) ( )i i   N N 

effective axial strains

 

Figure 4.16. Discrete description of FFM(N). 
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Introducing (4.143) and (4.144) into (4.158) gives 

  1 T

L A F, F, eq



   CK C N N   (4.160) 

Grouping the elemental relations (4.93) gives, similarly to (4.119), 

 N
F, F, eq A NL  N N K   (4.161) 

Substituting this expression into (4.160) gives 

 1 T N

L A A NL

 CK C K    (4.162) 

or 

 incr L NL  T     (4.163) 

with 

 1 T N

A A



 T CK C K  (4.164) 

In order to convert the previous expression into a similar relation between axial strains 
NL

 and 


incr

, let us start by collecting the generic elemental kinematic relations (4.68), 

  N
0  K    (4.165) 

that can be inverted to give 

 N
0   F    (4.166) 

where  
1

N N
0 0



F K . Since this kinematic relation is generic one also has 

 N
L 0 L, L,  F    (4.167) 

 N
NL 0 NL, NL,  F    (4.168) 

Subtracting (4.167) from (4.166) and recalling that, according to (4.73), L NL      , gives 

  N
incr L 0 L, NL,      F       (4.169) 

According to (4.78), 

  N
NL NL2 0 NL,0 NL,

1

2
   F     (4.170) 

and introducing this relation into (4.169) and (4.168) gives, respectively, 
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 N
incr 0 L, NL,0 NL,

1 1

2 2
  

 
    

 
F      (4.171) 

  N
NL 0 NL,0 NL,

1

2
 F    (4.172) 

Substituting these two relations into (4.163) gives, 

    N N

incr, L, NL,0 NL, 0 0 NL,0 NL,

1 1

2 2
           K T F        (4.173) 

or 

    incr, NL,0 NL,

1 1

2 2
m m      T I T I    (4.174) 

with 

 N N

0 0 T K T F  (4.175) 

To derive an expression for incr,0  similar to (4.174), let us start by noting that according to 

(4.42) and (4.56), 

            L, NL,0 0 0 0L L             (4.176) 

and recalling the definition (4.41), 

            L L NL NL0 0 0L L L           (4.177) 

Grouping these elemental relations, gives 

 incr,0 0 L,0 incr, NL,0 NL,            (4.178) 

Substituting (4.174) into this relation gives 

    incr,0 NL,0 NL,

1 1

2 2
m m     T I T I    (4.179) 

Finally, collecting (4.174) and (4.179) gives 

  I *
NL L NL   G T     (4.180) 

with 

 * 1

2

m m m m

m m m m

 

   
       

I I I I
T T

I I I I
 (4.181) 
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Since 
A NL    , the above expression gives 

 
A L NLA
 T    (4.182) 

with 

 *
2A

1
2

2

m m m m

m

m m m m

  

   
      

   

I I 0 I
T T I T

I I I 0
 (4.183) 

and, similarly to (4.130), *

A AN EA ε , 

 
A

*

L A NL N N EA T   (4.184) 

Substituting  
1

*

NL A F



 EA N  in the last expression yields 

  I

N F L N F  N G N N T N  (4.185) 

with 

  
A

1
* *

N A A



T EA T EA  (4.186) 

(i.e., T
N

 and 
A

T  are similar matrices). Expressions (4.180) and (4.185) are the discrete versions 

of the general expressions (4.15) and (4.18). For example, the operator T

 in (4.15) 

corresponds to matrix *

T  in (4.180) and T
N

 in (4.18) to matrix T
N

 in (4.185).  

The matrix format of (4.20) is given by 

 ( ) II ( ) * ( ) ( )

F N A

i i i i        N G N EA ε N N  (4.187) 

and the matrix format of (4.19) is given by 

  
1

( ) II ( ) ( ) * ( )

NL A

i i i i



        G EA N ε    (4.188) 

Inserting these expressions into (4.180) and (4.185), and bearing in mind that  and 

, gives the iteration formulas of FFM(N)Def 

 ( 1) ( ) I II ( ) (1) * ( )

NL

i i i i

   
               

G G G T       (4.189) 

and FFM(N)S 

 ( 1) ( ) I II ( ) (1) ( )

N N N N F

i i i i                
N G N G G N N T N N  (4.190) 

which are discrete versions of the more general (4.21) and (4.22). 

(1)

L 

(1)

LN N
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4.4.1. Convergence conditions of FFM(N) discrete description 

As  already  explained  in  § 4.1.5,  the  iteration  formulas  (4.189)  and  (4.190)  converge  if  the 

operators G and GN are contractive. On the other hand, G is contractive if both   and   

are non‐expansive and at  least one of them  is contractive. A similar reasoning applies to GN, 

 and  . The Jacobian matrices of   and   are 

  I *
 J T   (4.191) 

  I
 J T   (4.192) 

Hence,    (resp.  )  is non‐expansive  if  *   T   (resp.     T ),  the spectral  radius of  *
T  

(resp. TN), is less than or equal to 1. In § 4.1.5, it was proved that 
II
G  (resp.  II

NG ) is contractive 

if the relative auxiliary axial stiffness field satisfies condition (4.25) (resp. (4.26)) at every cross 

section of  the structure. The 2m  2m diagonal  Jacobian matrices   of   and   of   

contain the relative differences of axial stiffness at the end cross sections of each element and 

are written as 

 

,1

,2II

,m




 



 
 
    
 
  

β

β
J

β


   (4.193) 

with 

 
,1

,
,2

0

0j









 
  
 

β   (4.194) 

where, according to (4.23),  ,1  and  ,2  are given by 

 
  A

,1
A

0EA EA

EA



   (4.195) 

 
  A

,2
A

EA EA L

EA



   (4.196) 

and 

 

Ν,1

Ν,2II
Ν Ν

Ν,m

 
 
    
 
  

β

β
J

β


   (4.197) 

IG
IIG

I
NG II

NG IG
I
NG

IG
I
NG

IIJ
IIG

IIJ
II
NG
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with 

 
Ν,1

Ν,
Ν,2

0

0j




 
  
 

β   (4.198) 

where, according to (4.24),  Ν,1  and  Ν,2  are given by 

 
  

  
A

Ν,1

0

0

EA EA

EA



   (4.199) 

 
  

  
A

Ν,2

EA EA L

EA L



   (4.200) 

Hence, the Jacobian matrices of G and GN can be written as 

    (4.201) 

  I II
     J J J T β   (4.202) 

The first (resp. second) of these expressions shows that G (resp. GN) is contractive if both   

and   (resp.   and  ) are non‐expansive and at least one of them is contractive. 

4.4.2. Sufficient convergence conditions of FFM(N) discrete description 

In order to derive the sufficient convergence conditions, let us start by noting that 

   *
N 1     T T   (4.203) 

The  demonstration  of  this  identity  is  omitted  in  this  thesis.  Such  proof  is  similar  to  that 

performed in chapter 3 to demonstrate that   Μ 1     T T . 

Hence, the iteration formulas of FFM(N), in the context of the discrete description, converge if 

  and    are  contractive,  i.e.  if  (4.25)  and  (4.26)  are  verified  at  every  cross  section. 

According  to  (4.195),  the  condition  1    is  verified  if  the  following  relation  is  verified  at 

every cross section 

 


A,

0 2, 1,2, ,
i

i

EA
i m

EA
      (4.204) 

This condition implies that  0iEA   and that the auxiliary constant axial stiffness has the same 

sign as the effective axial stiffness. If  0iEA   the above conditions reduce to 

I IIJ J J T β     

IG

IIG
I
NG II

NG

IIG
II
NG
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  
A,

1
, 1,2, ,

2
iiEA EA i m     (4.205) 

Thence,  in  the  context  of  the  discrete  description  with   0iEA  ,  FFMDef  converges  if  the 

auxiliary constitutive law satisfies condition (4.205). 

On the other hand, according to (4.199), the condition  N 1   is equivalent to 

  
A,0 2, 1,2, ,i

i

EA
i m

EA
      (4.206) 

Note  the  similarity  between  conditions  (4.206)  and  (4.204).  Once  again,  the  sign  of  the 

auxiliary  constant  axial  stiffness must  be  equal  to  the  sign  of  the  effective  axial  stiffness. 

Hence, if  0iEA   everywhere, the convergence condition is 

  
A,0 2 , 1,2, ,iiEA EA i m      (4.207) 

Conditions  (4.204)  to  (4.207)  correspond  to  the  conditions  developed  in  chapter  3  in  the 

context of FFM(M). Expression (4.202) also shows that the closest the values of  A,iEA  and  iEA  

the fastest the convergence rate of FFMS, a conclusion shared with FFMDef. 

4.5. Illustrative example 

This example illustrates the role of the mesh refinement in FFM(N) discrete description. It also 

illustrates  the  role played by  the chosen auxiliary axial stiffness  in FFMDef and FFMS  iterative 

procedures. Let us consider the rod represented in Figure 4.17a, formed by two prismatic parts 

of equal length L  1/2 and constant constitutive relations. The left hand half of the rod has a 

linear constitutive relation 

    (4.208) 

2L1L


S1 S2 S3
S3

1

a) b)

p

1b 

 

Figure 4.17. Example 4: a) Rod and axial loading; b) primary structure. 

  1N̂ EA   
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with EA1=1. The right hand rod half has the nonlinear constitutive relation already used in the 

examples presented in chapter 3 (Richard and Abbott, 1975) 

    (4.209) 

where   and  . The rod carries an axial uniformly distributed load p = 1, 

see Figure 4.17a. 

This structure has one degree of static  indeterminacy and, therefore, the axial force field can 

be expressed  in terms of the axial force at a single section, for  instance, NS3 at the right end 

section  S3.  In  order  to  establish  the  exact  solution,  the  problem  is  analysed  by  the  force 

method,  considering  the primary  structure defined by  releasing  the normal  force at S3. The 

corresponding compatibility condition is given by 

    (4.210) 

where  1b    is  the  self‐equilibrated  axial  force  field  represented  in  Figure 4.17b.  Equation 

(4.210)  has  a  single  solution  defined  by  NS3 = -0.492.  The  corresponding  axial  strain  is 

S3 = -0.565. 

In the FFM analysis of the problem, the auxiliary constant axial stiffness EAA was chosen to be 

constant along the rod with value 1, which means that the effective and auxiliary constitutive 

relations are the same in left half of the rod, corresponding to null fictitious normal forces. 

At  first,  a  uniform  mesh  with  two  elements  corresponding  to  the  two  rod  halves  was 

considered. Other meshes were defined by consecutive bisection of the nonlinear second half 

establishing a family of non‐uniform meshes with m  1  2i-1  2,3,5,9,17, 33 and 65 elements, 

2i-1 of which  have  equal  length.  There  is  no  point  in  refining  the  linear  left  half  of  the  rod 

because the corresponding fictitious normal force is zero due to the choice of EAA. 

A  convergence  analysis  was  performed  (i)  with  respect  to  the  mesh  refinement  (mesh‐

convergence) and (ii) with respect to FFM  iterative procedure  itself (FFM‐convergence). Both 

convergence analyses are based on relative error I (errI) and relative error  II (errII) defined  in 

§ 3.7. For a given mesh, the ith approximation of x is FFM‐convergent if  ( )
FFMI 0.001 ierr tol  

   0 0

2 2 2 2

0

ref ref

ˆ ˆ
1 1

1 1

N

EA EA N
N N

NEA N
N N

  


   
    

    
   

or

  20 0 1 EA EA ref 1N

   
2 2

0 0

ˆ ˆ 0
L L

b N x dx N x dx           
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while  the  FFM‐convergent  approximation  of  x,  for  the  jth  mesh,  is  mesh‐convergent  if 

 I, II, mesh, 0.01 j jerr err tol . 

Figure 4.18 and Table 4.2 present the results of the mesh‐convergence analysis. Each solution 

in  this  plot  represents  an  FFM‐convergent  solution.  For  the  tolerance  values  given  above, 

Figure 4.18 shows that mesh‐convergence requires 33 elements. 

In  order  to  illustrate  that  the  performance  of  FFM(N)  iterative  procedures  depends  on  the 

selected EAA field, the number of iterations needed for FFM‐convergence with 33 elements in 

terms of S3, NS3,  and N (. is the Euclidean norm) for constant fields   was 

investigated, see Figure 4.19. 

Considering  the  cross‐sectional  constitutive  relation  (4.209),  the  sufficient  condition  for 

convergence of FFM(N)Def (4.205) gives 

  
A 0

1 1
max 0.5

2 2
EA EA EA     (4.211) 

and the sufficient condition for convergence of FFM(N)S (4.207) gives 

  
A S3 00 2min 2 1.33 1.33EA EA EA EA       (4.212) 

3 5 9 17 33 65

310

210

110

010

110

510

410

elements

errors

 S3

 S3N

relative error I

relative error II

 

Figure 4.18. Example 4: Mesh‐convergence (logarithmic scale). 

Table 4.2 – Example 4: Numerical FFM solutions vs. exact solution. 

  number of elements (FFM)  exact 
solution 

  1+1  1+2  1+4  1+8  1+16  1+32 

  ‐0.551  ‐0.561 ‐0.564 ‐0.564 ‐0.565 ‐0.565 ‐0.565 

  ‐0.483  ‐0.489 ‐0.491 ‐0.491 ‐0.492 ‐0.492 ‐0.492 

 A 0.1,2EA 

S3

S3N
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Figure 4.19. Example 4: FFM(N) – number of iterations required by for convergence. 

The results in Figure 4.19 show that the above sufficient convergence conditions are satisfied. 

Actually, there was no numerical convergence of FFM(N)Def for  and of FFM(N)S for 

A 10.8EA  . In the latter case, the normal force becomes larger than N
ref

 during the iterative 

procedure, but the upper limit of the convergence domain, 10.8, is well above the maximum 

defined by (4.212). It can also be observed that the convergence rate depends strongly on the 

value of EA
A
 and that the optimal interval is  A 0.7 ,1.0EA  . 

Figure 4.19 shows that the number of iterations required by FFM(N)Def for convergence in 

terms of N
S3

 or 
S3

 is almost always larger than in terms of the Euclidian norm of the axial force 

or strain. The same figure shows, however, that FFM(N)S requires almost the same number of 

iterations for convergence in terms of N
S3

 or 
S3

 or in terms of the Euclidian norm. 

 

A 0.5EA 
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Chapter 5 
The Fictitious Force Method – model MN 

In this chapter, the particularization of FFM to the beam model MN is presented and applied to 

the analysis of generic skeletal structures. The chapter starts with an improved description of 

the considered effective nonlinear constitutive relationships. Then, FFM is reviewed in the light 

of model MN and the sufficient convergence conditions of FFM(MN)Def are derived. Next, the 

discrete description of the elemental fictitious force system of FFM(MN) is presented. In a 

fourth stage, the application of FFM(MN) in the context of the matrix methods of structural 

analysis is presented and the convergence of the FFM iterative procedure is reviewed. The 

chapter concludes with an example which illustrates the application of FFM(MN)Def.  

5.1. Effective nonlinear constitutive relationship 

The formulation presented in this chapter applies to skeletal structures whose cross-sectional 

nonlinear constitutive relations between internal forces (M,N) and generalized strains (,) are 

elastic and continuous. These relations are generically denoted10 

  ˆ ,M M    (5.1) 

  ˆ ,N N    (5.2) 

                                                             

10 Recall that the circumflex accent stands for a cross-sectional function. 
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or 

   ˆ ,M N    (5.3) 

    (5.4) 

The cross‐sectional tangent properties are given by 

    (5.5) 

    (5.6) 

    (5.7) 

e.g.,    is the bending stiffness and   the axial stiffness. These properties may 

be discontinuous. Thence, the constitutive relation incremental format is given by 

    (5.8) 

In  this general case of Euler‐Bernoulli beam, each  internal  force  (bending moment and axial 

force)  depends  on  both  generalized  strains  (curvature  and  axial  strain).  In  other words,  a 

variation of the curvature changes both internal forces, the same happening with a variation of 

the axial strain. This coupling is due to the third stiffness coefficient ES , which is a generalized 

static moment. 

In order  to determine  the  cross‐sectional proprieties  (5.5)  to  (5.7),  the original 3D problem 

must be recalled, i.e. the local nonlinear elastic constitutive relationship 

   e   (5.9) 

or 

   e    (5.10) 

between  the  longitudinal normal strain e and stress   for each material of  the cross section 

must  be  considered.  The  symbol    on  top  of  a  variable  stands  for  a  constitutive  relation 

established at  the point or  local  level. The  longitudinal stiffness at a given point of  the cross 

section is given by 

 ˆ ,M N 

    ˆ ,
,

M
EI EI

 
 




 


    ˆ ,
,

N
EA EA

 
 




 


      ˆ ˆ, ,
,

M N
ES ES

   
 

 
 

  
 

  ,EI     ,EA  

 

 
    

     
     
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  (5.11) 

and obviously depends on the material at that location. The hypothesis presented in § 3.1 will 

now be extended so that only materials with E > 0 are considered in this chapter. This 

excludes stress-strain curves with either horizontal or post-peak descending branches11. In 

practise, the nonlinear constitutive relations are only known at the point level, i.e. defined by 

relations (5.9) or (5.10). The cross-sectional relations (5.1) to (5.4) are computed with these 

local constitutive relations and the cross-sectional geometry. 

Let D be the region of the surface corresponding to the cross section and dD a differential 

element of that region. The bending moment and axial force are given by 

  (5.12) 

  (5.13) 

According to Euler-Bernoulli hypothesis, the longitudinal normal strain at each point of a cross 

section with generalized stresses  and  is given by 

  (5.14) 

Thence, 

  ˆ

D

M M z z dD      (5.15) 

  ˆ

D

N N z dD      (5.16) 

and 

  (5.17) 

  (5.18) 

                                                             
11 However, note that even though there are no theoretical results for these possibilities (E = 0 
or E < 0), FFM has already been applied with success to RC problems where some points in the 
section do not present a positive stiffness, see (Costa,2013). 
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  (5.19) 

  (5.20) 

and, therefore, 

  (5.21) 

This means that a differential variation of the axial strain  causes a differential variation of the 

bending moment M which is equal to the differential variation of the normal force N caused by 

a differential variation of the curvature . 

In general, for nonlinear materials or non-prismatic elements there is no elemental coordinate 

system for which ES is null at every section. 

5.2. FFM with beam model MN 

5.2.1. Auxiliary linear constitutive relationship 

The auxiliary linear constitutive relation for this general case combines the axial component 

established for the rod model N and the flexural component established for the beam model 

M. It can be written in the following matrix form 

  (5.22) 

or 

  (5.23) 

This is a particular case of (5.8) for the case where (i) every point in the cross section has the 

same linear constitutive relation determined by Young modulus E
A

 

  (5.24) 

 


   

    
    

    
   
D D D D

M d e
z dD z dD z dD E z dD

de

 


    

     
     

     
   
D D D D

N d e M
dD dD dD E z dD

de

 

 
  
  

D

N M
ES E z dD

A A

A A

0

0

M EI

N EA





     
     

    

A A

A A

1 0

0 1

EI M

EA N





     
     

    

 AA Ae E e  



Chapter 5. The Fictitious Force Method – Model MN 

155 

and (ii) the cross-sectional coordinate system is barycentric. If these two simplifying 

assumptions are satisfied, the bending and axial stiffnesses are given by 

  (5.25) 

  (5.26) 

while the auxiliary generalized static moment is 

  (5.27) 

The geometric proprieties in the above expressions are 

  (5.28) 

which is the second moment of area of the cross section with respect to the barycentric y-axis, 

  (5.29) 

which is the cross-sectional area, and 

  (5.30) 

which is the first moment of area of the cross section with respect to the y-axis, which is null 

because the coordinate system is barycentric, see § 3.1. This is why ES
A
 is also null. This 

auxiliary constitutive relation replaces the effective relation in the auxiliary structure. 

5.2.2. FFM(MN) by deformations and FFM(MN) by stresses 

The fictitious internal forces, given by the difference between auxiliary and effective internal 

forces, i.e.,  and , can be written in terms of the pair of 

generalized strains 

  (5.31) 

  (5.32) 

i.e., 

A A yEI E I

A AEA E A

A A 0ES E S 

2 y

D

I z dD

 
D

A dD

0
D

S z dD 

F A M M M F A N N N

   F F A
ˆ, ,M M EI M      

   F F A
ˆ, ,N N EA N      
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Figure 5.1. Computation of the fictitious bending moment in FFM(MN). 

  (5.33) 

Since, usually, the generalized strains (, ) (and the internal forces (M , N)) are not known a 

priori, it is necessary to establish iteration formulas. FFMDef estimates the fictitious internal 

forces in terms of the estimative of the effective generalized strains, 

  (5.34) 

  (5.35) 

see Figure 5.1, and recalling (5.15) and (5.16), 

  (5.36) 

  (5.37) 

Recalling (5.8), the incremental form of expression (5.33) is given by 

  (5.38) 

Hence, the increment of the fictitious internal forces is a function of the difference between 

the uncoupled auxiliary cross-sectional stiffness and the coupled effective cross-sectional 

stiffness.  

The fictitious internal forces can also be established in terms of the pair of internal forces 

  (5.39) 

  (5.40) 
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corresponding to FFMS which estimates the fictitious internal forces in terms of the estimative 

of the effective internal forces, 

  (5.41) 

  (5.42) 

Since a null fictitious force system is used to compute the initial guess, , , 

 and . The flowcharts represented in Figure 5.2 illustrate the application 

of FFM in the context of the beam model MN. These flowcharts can be seen as a generalization 

of the flowcharts in Figure 3.4 and Figure 4.3. 

5.2.3. Iteration formula of FFM(MN) by deformations 

Let us define the vectors of cross-sectional generalized strains 

 




 
  
 

  (5.43) 

and generalized stresses 

 
M

N

 
  
 

R  (5.44) 

The auxiliary generalized stresses are decomposed according to 

 Α F R R R  (5.45) 

and the generalized strains are decomposed according to 

 Α NL η η η  (5.46) 

The nonlinear components 
NL

 and 
NL

 (resp. M
F
 and N

F
) gathered in 

NL
 (resp. R

F
) can still be 

regarded as initial generalized deformations (resp. initial internal forces), whose effect on the 

auxiliary structure, combined with that of the effective force system, gives the auxiliary 

solution, now characterized by the pair of vectors (, R
A
). 

For a given structure subjected to an arbitrary force system F, let the linear operator T, 

associated to the corresponding auxiliary problem, represent the transformation of the generic 

action formed by F and an arbitrary initial deformation field 
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Figure 5.2. FMM(MN) iterative procedures. 
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 NL

NL

NL





 
  
 

  (5.47) 

into the effective deformation fields grouped in , 

  NL , FT   (5.48) 

Since T is linear, 

    NL NL L, 0 0 , F      T T T     (5.49) 

where 

  L 0 , FT  (5.50) 

is the linear solution to the effective problem and 

  NL NL , 0   T T   (5.51) 

is a linear operator in 
NL . Hence, the operator I

G  which maps (initial) deformations NL  

into the effective deformations is given by 

 I
NL L NL         G T     (5.52) 

Since NL  is not known in advance, it must be approximated in terms of the (approximation of 

the) effective generalized strains. Thence, for a given cross section, 
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i i i i
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( ) ( ) ( ) ( )
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NL

A A
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,

i i i i

i i i i
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G
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      
       (5.54) 

and, thence 

 

( ) ( )( ) ( ) 1( )
NL A( ) II ( )

NL 1( )( ) ( ) ( ) ( )
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ˆ0, ,

i ii i i

i i
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EA N

    
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

 

                       
              

G   (5.55) 

Substituting this expression into (5.52) gives the FFM(MN)Def fixed point iteration formula 

 ( 1) I II ( ) ( )i i i
  
         G G G    (5.56) 

with (1)

L  , because a null fictitious force system is used to compute the initial guess of the 

iterative procedures of FFM. 
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5.2.4. Convergence conditions of FFM(MN) by deformations 

5.2.4.1. Jacobian matrix 

According to the composition (5.56), FFM(MN)Def iteration formula converges if (i) both 

operators I
G  and II

G  are non-expansive and (ii) at least one of them is contractive. Similarly 

to what happens with  and , see § 3.2.6 and § 4.1.5, I
G  is a non-expansive operator. In 

these conditions, the operator G

 is contractive if II

G  is also contractive. Furthermore, II
G  

will be contractive if the Jacobian matrix II
J  of the transformation (5.55) has spectral radius 

less than one, i.e. II 1 
   J . Thence, this condition is a sufficient convergence condition of 

FFM(MN)Def. For a given cross section, this Jacobian matrix is written 

 

NL NL

II

II

NL NL

 

 

 

 





  
   
  
   
   

G
J


 (5.57) 

Recalling that , , NL A    , NL A     and also (5.23) and 

(5.21), gives 

  (5.58) 

  (5.59) 

where 
EI

 and 
EA

 are different measures of the cross-sectional static moment. Thence, the 

above Jacobian matrix is non-symmetric, 

 EIII

EA

 

 







 
  

 
J  (5.60) 

In order to derive the convergence condition, let us first establish a symmetric matrix II
PJ  

similar to II
J , i.e. with the same eigenvalues, II II

P  
      J J . The advantage of the 

symmetry will be seen in § 5.2.4.2. Two square similar matrices are related by a generic 

transformation of the type 

 II II 1
P


 J PJ P  (5.61) 
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where the square matrix P is non-singular. Choosing a real diagonal matrix with non-null 

entries P
11

 and P
22

, the above expression gives 

 

11
EI

22II
P

22
EA

11

P

P

P

P

 

 







 
 

 
 
 
 

J  (5.62) 

Thence, the symmetry condition is 

 11 22
EI EA

22 11

P P

P P
   (5.63) 

i.e., recalling the definitions (5.58) of 
EI

 and (5.59) of 
EA

, 

 11 EA A
A

22 EI A

P EI
i

P EA




    (5.64) 

Introducing the expressions (5.25) and (5.26) into the above definition gives 

  (5.65) 

where  is the usual cross-sectional radius of gyration with respect to the barycentric axis y. 

Finally, substituting (5.64) into expression (5.62), gives 

 
A AEI EAII

P

EI EA

A A

ES

EI EA

ES

EI EA


  

   










 
      

     
  

J  (5.66) 

where all the entries are now dimensionless. 

5.2.4.2. Minimum value of EA 

In this section sufficient convergence conditions for FFM(MN)Def are derived by imposing that 

II
P 1 

   J . These conditions will be established at the cross-sectional level. This means that 

a range of values of the auxiliary stiffness E
A
 should be determined at each section of the 

structure which guarantees the convergence of the iterative procedure.  

Substituting the auxiliary cross-sectional stiffness (5.25) into (3.41), gives 

A

y

y

I
i i

A
 

yi
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  (5.67) 

with the mean Young’s modulus weighted by the cross-sectional second moment of area 

distribution 

  (5.68) 

Similarly, substituting (5.26) into the axial stiffness relative difference 

, gives 

  (5.69) 

with the mean Young’s modulus weighted by cross-sectional area distribution 

  (5.70) 

In the same way, 

  (5.71) 

where 

  (5.72) 

which, perhaps abusively, may be considered yet another weighted mean of the Young’s 

modulus, that can be negative even if E is positive at every fibre. Substituting the above 

expressions into the Jacobian matrix II
PJ  (5.66) gives 

 II
P 2

A

1

E
  J I E  (5.73) 

with 

 
EI ES

ES EA

E E

E E

 
  
 

E  (5.74) 

The result (5.73) could only be obtained because the symmetric Jacobian II
PJ  was used 

instead of II
J . 
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Let  denote a generic eigenvalue of E and let  denote the corresponding eigenvalue of 

II
PJ . According to (5.73), these two eigenvalues are related by 

  (5.75) 

The condition II
P 1 

   J  is satisfied if , i.e. 

  (5.76) 

The simplifying hypothesis E > 0 introduced in § 5.1 determines that , as it will be 

proven in § 5.2.4.4. This result and (5.76) determine the sufficient convergence condition 

  (5.77) 

According to Gershgorin’s circle theorem (Jennings and McKeown, 1992), the absolute value of 

the eigenvalues  is bounded by 

  (5.78) 

Note that E
EI

 and E
EA

 are positive. Let E
max

 be the maximum value of the cross-sectional 

effective tangent Young moduli of the nonlinear constitutive relations 

  (5.79) 

Since E
EI

, E
EA

 and  are weighed by means of E, it is fairly evident that 

  (5.80) 

Nevertheless these bounding relations are formally proven in the next section. Thence, 

according to (5.78) a new bound for  can be established 

  (5.81) 

This means that if E
A
 is chosen so that 

  (5.82) 

then, according to (5.81), 
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and the sufficient convergence condition (5.77) is also satisfied. Hence, (5.83) is a sufficient 

convergence condition of FFM(MN)Def. 

5.2.4.3. Bounds of the average stiffness coefficients 

In this section, the upper bounding inequalities (5.80) are proven. Recall that if f and g are 

integrable functions in a domain , and if  at every point of , i.e. if g is a 

majorant of f, then  (Lang, 2010). Hence, recalling definitions (5.17) and 

(5.18), the following upper bounds of EI and EA can be established 

  (5.84) 

  (5.85) 

Introducing these expressions into the definitions of E
EI

 (5.68) and E
EA

 (5.70), gives 

  (5.86) 

Next, it is proved that . Consider the subdivision of the cross section D into the 

regions D+ and D-, according to the sign of the z-coordinate of their points, Figure 5.3. To these 

regions correspond the areas 

  (5.87) 

  (5.88) 

Thence, ES (5.21) can be expressed as 

 

Figure 5.3. Cross section subdivision into the regions D+ and D-. 
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  (5.89) 

Since E is always positive, the first (resp. second) term on the right-hand side of this expression 

is negative (resp. positive), and therefore 

  (5.90) 

According to (5.79), E
max

 is a majorant of E and, therefore, since  for every point in 

, 

  (5.91) 

where 

  (5.92) 

Note that, since the system of coordinates is barycentric, 

  (5.93) 

Hence, since  for every point in , 

  (5.94) 

Substituting this expression and (5.91) into (5.90) gives 

  (5.95) 

or 

  (5.96) 

with 

  (5.97) 

Recalling the definition of E
ES

 (5.72), 

  (5.98) 

 

  
D D

ES E z dD E z dD

 

  
D D

E z dD ES E z dD

maxE z E z

D

max max max

D D D

E z dD E z dD E z dD E S 

  

    

D

S z dD



 

0
D D D

S z dD z dD z dD S 

 

        

maxE z E z D

max max max

D D D

E z dD E z dD E z dD E S 

  

     

max maxE S ES E S   

max ES max
  E E E

ES

ES
E

S






ES ES ES

y y

SES ES
E E f

SI A I A





  



The fictitious force method and its application to the nonlinear material analysis of skeletal structures 

166 

with 

  (5.99) 

and thence, substituting (5.98) into (5.96), 

  (5.100) 

Let  and  denote the z-coordinate of the barycentre of  and , respectively 

(Figure 5.3), i.e. 

  (5.101) 

Introducing this relation in the above definition of f
ES

 gives 

  (5.102) 

Consider now the  factor in this expression. If  and  are the second moment of area 

of  and  with respect to the y-axis, then 

  (5.103) 

and, according to the triangular inequality, easily proved if Pythagoras theorem (Lang, 2010) is 

considered, 

  (5.104) 

where 

  (5.105) 

Let  be the axis parallel to y passing through the barycentre of  and let  denote the 

second moment of area of the sub-region  relatively to . Let us also introduce 

  (5.106) 
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According to Steiner’s theorem (Beer et al., 2005), 

  (5.107) 

Dividing both members of this expression by  and introducing the first expression (5.105) 

and (5.106), gives 

  (5.108) 

and thence 

  (5.109) 

The demonstration that 

  (5.110) 

is similar. Multiplying both members of (5.104) by  gives 

  (5.111) 

According to (5.101) 

  (5.112) 

Substituting this into the second term of the right-hand side of the previous expression and 

recalling (5.109) and (5.110) gives 

  (5.113) 

Finally, replacing this inequality into (5.102) gives 

  (5.114) 

and then, inserting this bounding inequality into (5.100), gives 

  (5.115) 

which concludes this rather long proof.  
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5.2.4.4. Spectral analysis of the cross-sectional stiffness matrix 

In this section, it is proved that the simplifying hypothesis E > 0 stated in § 5.1, is a sufficient 

condition for the positivity of the eigenvalues  of E (5.74), i.e. if E > 0 then 

  (5.116) 

Let us start by noting that the minimum eigenvalue of E is given by 

  (5.117) 

Thence, the two eigenvalues  are positive if, 

  (5.118) 

which is equivalent to 

  (5.119) 

or, according to the definitions (5.68), (5.70) and (5.72) of these parameters, 

  (5.120) 

It is next proven that this condition is true if E > 0. Consider the scalar field representing the 

value of E at any point  in the cross section. According to the definition (5.18) of EA, the 

elemental axial stiffness is given by 

  (5.121) 

where dD is a cross-sectional element in the neighbourhood of . Introducing this expression 

in the cross-sectional stiffnesses (5.17), (5.21) to (5.18) gives 

  (5.122) 

  (5.123) 

  (5.124) 

According to these expressions the cross-sectional stiffnesses EI, ES and EA can be seen as the 

second moment of area, the static moment and the total area of a cross-sectional geometry 
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“deformed” by the distribution of E. Note, however, that this distribution is a function of the 

internal forces at the section. Let us introduce a new cross-sectional Cartesian system of 

coordinates o’y’z’, resulting from the affine transformation of oyz, whose z’-axis is parallel to 

the z-axis and is contained in the plane oxz and whose y’-axis is parallel to the y-axis and its 

location, defined by the z-coordinate , is such that the static moment with respect to it12 is 

null, i.e. 

  (5.125) 

In consequence, the new system of coordinates is said to be E-centric. The moment of inertia 

of the deformed geometry with respect to the y’ axis is 

  (5.126) 

Then, see Figure 5.4 

  (5.127) 

The “radius of gyration” of the E-deformed cross-sectional geometry w.r.t the y-axis is given by 

  (5.128) 

In other words,  is the distance along z from the geometric centre o to a point where EA, 

i.e. the area of the E-deformed geometry, is concentrated in such way that the corresponding  

 

Figure 5.4. Systems of coordinates oyz (barycentric) and o’y’z’ (E-centric). 

                                                             
12 Since the origin o of oxyz is located at the left end section of the element, o’y’z’ refers to that 
cross section. For simplicity, however, this reference system is admitted valid for all cross 
sections. 
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Figure 5.5. Radius of gyration . 

moment of inertia is equal to the moment of inertia EI, see Figure 5.5. Similarly, the radius of 

gyration of the E-deformed cross-sectional geometry, i.e. w.r.t. the y’-axis is given by 

  (5.129) 

Recalling again Steiner’s theorem, 

  (5.130) 

Dividing both members of this equation by EA and substituting (5.128) and (5.129) gives 

  (5.131) 

Multiplying both members by EA
2 and substituting (5.127) and (5.128) gives (5.120). This 

concludes the proof of (5.116). 

5.3. Elemental fictitious force system for beam model MN 

5.3.1. Discrete description of the elemental fictitious force system 

Adding together the terms of FFM(M) and FFM(N) force systems presented in the last two 

chapters gives the fictitious force system of FFM(MN). The discrete description of this system 

is now established for a generic beam element. 
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5.3.1.1. General considerations 

As mentioned in § 4.2.4, two discrete descriptions of FFM(M) and FFM(N) can be combined to 

form a discrete description of FFM(MN) if they share the same interpolation sections. This 

requirement will now be justified. 

Let us start by noting that the fictitious force system simulates the coupled effective nonlinear 

stiffness in the uncoupled auxiliary problem. In other words, if  (resp. FM ) and  (resp. 

FN ) are taken as arbitrary initial deformations (resp. initial forces), the FFM auxiliary problem 

appears to be uncoupled. However, these initial deformations (resp. fictitious internal forces) 

are coupled since, in the case of FFMDef, they are function of the effective generalized strains 

(resp. effective generalized stresses, in the case of FFMS) which are coupled as seen in § 5.1. In 

order to evaluate this coupling accurately the same interpolation sections are required in 

FFM(M) and FFM(N) discrete descriptions. This is next explained. 

Consider the linear element represented in Figure 5.6, having a nonlinear constitutive law of 

the type described in § 5.1 and subjected to the state of stress characterized by the depicted 

internal forces, with  and , i.e. there are no loads applied between 

nodes. 

Suppose that this element is part of a structure that is to be analysed with a discrete 

description of FFM(MN) resulting from the combination of FFM(M)2 (i.e. 2 interpolation points) 

with FFM(N)1 (i.e. 1 interpolation point – basic discrete description), i.e. considering . 

Since there are no loads applied between nodes, , and therefore  or 

  (5.132) 

On the other hand, since the effective constitutive law  is coupled 

 

Figure 5.6. Linear element with constant axial force field. 
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  (5.133) 

  (5.134) 

Thus, since, see Figure 5.6, 

  (5.135) 

  (5.136) 

then, in general, 

  (5.137) 

which contradicts (5.132). This paradox vanishes if a second interpolation point for FFM(N) is 

adopted. 

In what follows, the fictitious force systems of FFM(M)2 and FFM(N)2 are combined to form the 

discrete description of the fictitious force system for the Model MN. 

5.3.1.2. Discrete description of the fictitious force system for model MN 

The discrete description of the elemental fictitious force system of FFM(MN) is formed by the 

following terms, see Figure 5.7: 

(i) a moment and an axial point force at each end section of the elements, corresponding 

to the fictitious internal forces, 

  (5.138) 
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Figure 5.7. Fictitious force system of FFM(MN)2. 
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(ii) a couple of transverse point forces at the end sections of the elements 

    (5.139) 

(iii) a uniformly distributed axial force 

    (5.140) 

This is a self‐equilibrated system of forces which, as mentioned before, combines the systems 

of  fictitious  forces  of  FFM(M)2  and  FFM(N)2  developed  in  chapters  3  and  4. Note  that  the 

auxiliary fields AEI  and AEA  are constant in each element, similarly to what happens with the 

discrete descriptions of FFM(M) and FFM(N). 

5.4. FFM(MN) discrete description: matrix methods of structural analysis 

This section presents the application of FFM(MN) discrete description, denoted FFM(MN)2,  in 

the  context  of  matrix  methods  of  structural  analysis.  Such  presentation  is  general  and 

therefore applicable to a generic skeletal structure. 

Note that FFM(MN)2 fulfils, in the framework of a linear analysis, the requirement identified by 

Blaauwendraad  (1972) of simulating a quadratic axial displacement  field,  i.e.  the component 

related to NL. 

This  exposition  follows  as  close  as  possible  the  implementation  of  FFM(M)2  and  FFM(N)2 

presented in the last two chapters. This explains some repetitions and the omissions. 

5.4.1. Elemental kinematics 

Let  η  be the generic vector containing the independent generalized strains of an element 
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  (5.141) 

and let  be the elemental vector collecting the strain resultants, 
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1
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    

Φ


 (5.142) 

Gathering the kinematic relation 
eq 0  χ χ K   of model M and N

eq 0K      of 

model N gives, for model MN 

 MN

eq 0  η η K Φ  (5.143) 

where 

 MN 0 2 1

0 N

1 2 0

4 2 0
1

2 4 0

0 0 1
LK




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K 0
K

0
 (5.144) 

and 

  (5.145) 

5.4.2. Auxiliary elemental constitutive relations 

The vector, dual of η , containing the generic independent generalized stresses, is given by  
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M
R  (5.146) 

The elemental auxiliary constitutive relations for this model MN results from collecting 

AA, M EI χ  (3.167), with A, AN EA    (4.52), giving 

 A, A R s η  (5.147) 

where 
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A A
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s  (5.148) 

is the elemental auxiliary matrix of cross-sectional stiffnesses. 

Substituting (5.143) into (5.147) gives 
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 MN

A, A, ,eq A  R R K Φ  (5.149) 

where the non-singular elemental auxiliary stiffness matrix for the independent variables is 

 

A A

MN MN A A
A A 0
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EI EI

L L

EI EI

L L

EA

L

 
 

 
   
 
 
 
  
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and 

 MN

A, ,eq A ,eq A   R s η K Φ  (5.151) 

with 

 MN

,eq 0 η K Φ  (5.152) 

Note that (5.151) aggregates AA, ,eq ,eq M EI χ  (3.173) and A, ,eq A ,eqN EA    (4.90). 

5.4.3. Elemental structural relations 

Consider the local system of nodal coordinates represented in Figure 5.8. According to Euler-

Bernoulli hypothesis, the corresponding nodal displacements are 

  (5.153) 

This vector and the vector of strain resultants  verify the compatibility relation 

  (5.154) 

where  is the elemental compatibility matrix associated to these local directions 
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Figure 5.8. Elemental system of local nodal coordinates. 
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 el

1 1
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1 1
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L L
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 
  
 
 

 

C  (5.155) 

This compatibility matrix gathers the entries of the compatibility matrices for models M and N. 

The elemental vector of nodal forces along these local directions is 

 
T

el el el el el el el

1 2 3 4 5 6f f f f f f   f  (5.156) 

The equilibrium relation, dual of (5.154), is given by 

  (5.157) 

Left-multiplying both members of the constitutive relation (5.149) by  and substituting 

(5.154) gives 

 el el el el
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where el

AK  is the elemental stiffness matrix in local directions, 
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2 3 2 3

A A

4 6 2 6
0 0

6 12 6 12
0 0

0 0 0 0

2 6 4 6
0 0

6 12 6 12
0 0

0 0 0 0

EI EI EI EI

L L L L

EI EI EI EI

L L L L

EA EA

L L

EI EI EI EI

L L L L

EI EI EI EI

L L L L

EA EA

L L

 
 

 
   
 
 
 
 

   
 
 
 

 
 
 

 
 

K C K C  (5.159) 

This matrix gathers the entries of the corresponding stiffness matrices for models M and N. 

5.4.4. Transformation to global directions 

The elemental structural relations established for local directions, presented in the last 

section, are now converted to a system of coordinates along global directions, Figure 5.9a. 

Let  denote the vector of elemental nodal displacements along global directions.  

el el,T

f C R

elT
C

gl
d
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Figure 5.9. a) Elemental coordinate systems along global and local directions; b) elements of 

matrix A . 

The relation between  and  is given by, see Figure 5.9b, 

  (5.160) 

where the block diagonal rotation matrix is, 

  (5.161) 

This rotation of coordinates is similarly applied to the nodal forces 

  (5.162) 

b)

 1  1

 4 4

 2
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
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

el

3

1

d
3,2 sinA 
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
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Substitution of the second expression in (5.160) into (5.158), left-multiplication by  and, 

finally, substitution of the first expression in (5.162), gives 

 gl gl gl gl

A A, A f f K d  (5.163) 

where 

 gl T el

A AK A K A  (5.164) 

is the elemental stiffness matrix relative to coordinates along global directions. Substituting 

(5.159) into (5.164), gives 

 gl gl,T MN gl

A AK C K C  (5.165) 

where the elemental compatibility matrix associated to global directions is given by 

  (5.166) 

5.4.5. Governing system of equations 

5.4.5.1. Kinematics 

Let us consider a generic skeletal structure and a corresponding mesh of m linear elements 

linked together at their nodes. Some displacements of these nodes are restrained by the 

structure supports and the remaining n nodal displacements, or generalized displacements, 

define a global system of coordinates grouped in the global displacement vector d. 

The non-assembled global 6m vector gl
d  groups the m elemental vectors gl

d , 

 
T

gl gl,T gl,T gl,T

1 2 ... m
   d d d d  (5.167) 

This vector is related to the vector of assembled displacements d by  

 gl d D d  (5.168) 

where D is a Boolean matrix which reflects the connectivity of the beam elements and the 

supports kinematic constraints. This connectivity matrix D groups the 6  n elemental matrices 

Di  which link the nodal displacements of element i to the n global displacements, gl

i id D d . 

T
A

gl elC C A



Chapter 5. The Fictitious Force Method – Model MN 

179 

Substituting the second elemental relation (5.160) into the compatibility relation (5.154), and 

recalling (5.166) gives gl glC d . Grouping these elemental relations, gives 

 gl glC d  (5.169) 

where the 3m  6m block diagonal compatibility matrix gl
C  collects the elemental 

matrices gl
C , 

 

gl

1

gl

gl 2

gl

m

 
 
 
 
 
  

C

C
C

C

 (5.170) 

and the global 3m vector of strain resultants is given by 

 
T

T T T

1 2 ... m
   Φ Φ Φ Φ  (5.171) 

Finally, substitution of (5.168) into (5.169) gives the global compatibility relation 

 Φ Cd  (5.172) 

where the 3m  n global compatibility matrix C is given by 

 glC C D  (5.173) 

5.4.5.2. Statics 

The static dual of (5.168) gives the assembled force vector f 

 T glf D f  (5.174) 

where gl
f  is the non-assembled global force vector grouping the m elemental vectors gl

f . 

Left-multiplying (5.157) by T
A  and recalling the first relation (5.162) and (5.166) gives 

gl gl,T

f C R . Grouping these elemental relations, gives 

 gl gl,T

f C R  (5.175) 

where the global 3m vector of independent generalized stresses R

 is 

 
T

T T T

,1 ,2 ,... m   
   R R R R  (5.176) 

Substituting (5.175) into (5.174) and recalling (5.173) gives the global equilibrium relation 
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 T

f C R  (5.177) 

5.4.5.3. Auxiliary constitutive relationship 

Grouping of the elemental constitutive equations (5.147) gives 

 A, A R s η  (5.178) 

where the global 3m vector of generalized strains 

 is given by 

 
T

T T T

,1 ,2 ,... m   
   η η η η  (5.179) 

and the global 3m  3m elasticity matrix s
A
 is given by 

 

A,1

A,2

A

A,m

 
 
 
 
 
  

s

s
s

s

 (5.180) 

Grouping of the elemental constitutive equations (5.149) gives 

 MN

A, A, ,eq A  R R K Φ  (5.181) 

where the 3m  3m global stiffness matrix MN

AK  is 

 

MN

A,1

MN

A,2MN MN

A A 0

MN

A,m

 
 
  
 
 
  

K

K
K s K

K

 (5.182) 

where MN

0K  is the block diagonal matrix grouping the elemental matrices MN

0K . The global 

vectors eqη  and eq A eq R s η  collect the elemental vectors eqη  and eq,iR  as usual. 

5.4.5.4. Assemblage of equations 

Collecting the m systems of equations (5.163), left-multiplying both members by T
D , 

substituting the connectivity relations (5.174) on the left-hand side and considering (5.168) on 

the right-hand side, gives the governing equation of FFM 

  (5.183) A A, A f f K d
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where the n  n assembled linear stiffness matrix is given by 

 T gl

A AK D K D  (5.184) 

and gl

AK  is the block diagonal stiffness matrix which aggregates the elemental stiffness 

matrices in global directions (5.164) as usual. Introducing (5.165) and (5.173) into (5.184) gives 

 T MN

A AK C K C  (5.185) 

Introducing the auxiliary force decompositions 

  (5.186) 

  (5.187) 

into (5.183), gives the displacement increment due to the fictitious forces 

  1

incr L A F F,



   d d d K f f  (5.188) 

Finally, since , the iterative format of FFM is obtained,  

  (5.189) 

5.4.6. Implementation of FFM(MN) by deformations discrete description 

5.4.6.1. General considerations 

Similarly to what was seen in chapters 3 and 4, the implementation of FFM(MN)2 by 

deformations consists in determining the fictitious force vectors ( )
F

if  and ( )
F,

i
f  which, according 

to (5.189), determine the displacement vector ( 1)id . According to the generic equilibrium 

relation (5.177), these fictitious force vectors are given by 

 ( ) T ( )
F F,

i i
f C R  (5.190) 

 ( ) T ( )
F, F, eq

i i
 f C R  (5.191) 

where the global vector of fictitious internal forces ( )
F,
i
R  collects m elemental vectors ( )

F,
i
R  

with the structure of R  (5.146) and similarly the global vector of fictitious internal forces 

( )
F, eq
i
R  collects m elemental vectors 

A F f f f

A, F,   f f f

(1)

Ld d

 ( 1) (1) 1 ( ) ( )

A F F,d d K f f
i i i 

  
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    

( )
F, eq

( ) ( )
F, eq F, eq

( )
( ) ( )F, eq
F F

0

0

1
0

2

i

i i

i
i i

M

M

N
N N L



 



 
  
      
     
 

R



  

  (5.192) 

where  the  terms  on  the  right‐hand  side  are  the  approximations  of  FFM(MN)2,  which  are 

common to FFM(M)2 and FFM(N)2. 

Note  that  the  fictitious  internal  forces  in  ( )
F,
i
R   and  ( )

F, eq
i
R   depend  on  the  four  generalized 

strains  at  the  element  end  sections  and,  according  to  FFMDef,  they  are  computed  by 

expressions (5.34) and (5.35) or (5.36) and (5.37). Recall that, as reflected in these expressions, 

the fictitious internal force  ( )
F
iM  (resp.  ( )

F
iN ) depends on both fields of generalized strains  ( )i  

and  ( )i  because the effective nonlinear constitutive law is coupled. 

As mentioned in § 3.1, it is possible to use model M for the analysis of plane skeletal structures 

if  some  simplifying  assumptions  are  considered which  uncouple  the  nonlinear  constitutive 

relation.  In  that section,  it was also mentioned  that such assumptions usually correspond  to 

consider simultaneously (i) a linear axial relation  N EA  and (ii) a nonlinear flexure relation 

 M̂    approximately  valid  for  a  specific  value,  or  range  of  values,  of  the  axial  force N, 

supposedly known  in advance. Consider a mesh of prismatic elements and suppose  that  the 

linear axial stiffness EA  is constant  in each element. Thence,  if  the auxiliary axial stiffness  is 

chosen to be A constEA EA  , the fictitious axial forces are null. Moreover, in this case, the 

fictitious  bending  moments  are  independent  of  axial  strains  ( )i ,  i.e.,  axial  and  bending 

behaviours are uncoupled ( 0ES  ). This simplified model is used for the analysis of reinforced 

concrete structures presented in next chapter. 

In  order  to  compute  the  fictitious  forces,  either  in  the  exact  coupled  format  or  in  the 

approximated uncoupled  format,  it  is necessary to know the auxiliary solution and the exact 

coupled (or approximated uncoupled) effective nonlinear constitutive relation. 

5.4.6.2. FFM(MN) implementation: matrix format 

In order  to present  the  implementation of  FFM(MN)2  in  a  format  close  to  that used  in  the 

FFM(N)2  and  FFM(M)2,  the  global  vectors of  generalized  strains  and  stresses  and  the  global 

governing equations must be reordered. Consider  the  following rearranging Φ  of  the global 

vector  
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1,1

1,2

1
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2
2,2
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1
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  
     
 
  

Φ PΦ





 


 (5.193) 

whose first 2m entries are the end sections rotations of all elements and last m entries the 

elemental elongations and P  is a square permutation matrix13 which, when (left) applied to 

other vectors, will produce the same reordering. Thence, 

(iii) Left-multiplication of the generic stress vector R

 by P  gives 
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                     
   
   
   
    

 
 
 

Μ

Μ

Μ Μ
R P R

Ν
 (5.194) 

and similarly for eqR . 

(iv) Left-multiplication of strain vector 

 by P  gives 

                                                             
13 A bar under a symbol denotes this new ordering. 
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 (5.195) 

and similarly for eqη . 

Left-multiplication of the global compatibility relation (5.172) by P  gives 

 Φ Cd  (5.196) 

where C  is the new compatibility matrix 

 
M

N

 
   

 

C
C PC

C
 (5.197) 

were M
C  and N

C  are the compatibility matrices respectively of model M and model N 

previously introduced in the chapters 3 and 4. Since the matrix P  is orthogonal, i.e. 1 T P P , 

it is possible to write 1 T

   R P PR P R , and thence the generic equilibrium relation 

(5.177) can be rewritten as 

 T

f C R  (5.198) 

Hence, the fictitious force vectors (5.190) and (5.191) can be given by 

 
( )
F( ) T ( ) T

F F, ( )
F,

i

i i

i



 
   

 

M
f C R C

N
 (5.199) 

 
2 2( ) T ( ) T T

F, F, eq ( ) ( ) ( )
F, eq F,0 F,

1

2

m mi i

i i i 

 

   
     

  

0 0
f C R C C

N N N
 (5.200) 

Left-multiplying the global constitutive equation (5.181) by P  gives 

 MN

A, A, ,eq A  R R K Φ  (5.201) 

where the 3m  3m global stiffness matrix MN

AK  is now block diagonal, 
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M

MN A

A N

A

 
  
 

K
K

K
 (5.202) 

Thence, (5.201) can be rewritten as 

 
M

A, ,eqA A

N
A, ,eqA, A




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       
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MM K

NN K




 (5.203) 

which simply gathers the constitutive equation of model M 

 M

A A, ,eq A M M K   (5.204) 

with the constitutive equation of model N 

 N

A, A, ,eq A  N N K   (5.205) 

Let us now compute the auxiliary solution in terms of the displacement vector ( )i
d . 

Substitution of the compatibility relation (3.197), which forms the first 2m lines of (5.196), into 

the constitutive equation (5.204) and, according to FFM(MN)2, recalling that F, ,eq 0 M , i.e. 

A, ,eq ,eq L, ,eq   M M M , gives 

 ( ) M M ( )

A A L, ,eq

i i

M K C d M  (5.206) 

which had already been established in chapter 3 in the context of FFM(M)2. Consider now the 

constitutive equation (5.205). Recalling that  ( ) ( 1) ( 1)
F,0 F,A eq L eq

2i i i 
 

  N N N N  (4.146) and 

substituting this and the compatibility relation (4.108), which forms the last m lines of (5.196) 

into (5.205), gives 

  ( ) N N ( ) ( 1) ( 1)
A, A F, F,0L eq

1

2

i i i i 
 
   N K C d N N N  (5.207) 

Recalling also that ( ) ( ) (1) (1) ( 1) ( 1)
A,0 A, 0 F,0 F,
i i i i 

      N N N N N N  (4.153) and substituting (5.207) into 

this equation gives 

  ( ) N N ( ) (1) (1) ( 1) ( 1)
A,0 A 0 F, F,0L eq

1

2

i i i i 
 

     N K C d N N N N N  (5.208) 

Finally, grouping equations (5.207) and (5.208) gives 

  
(1) (1)
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     
       

    

I I IN N
N K C d N N

I I I0
 (5.209) 



The fictitious force method and its application to the nonlinear material analysis of skeletal structures 

186 

Note that the expressions (5.207), (5.208) and (5.209) had already been established in 

chapter 4 in the context of FFM(N)2. The auxiliary internal forces (5.206) and (5.209), together 

with the global constitutive relations A AM EI χ  (3.168) and *

A AN EA ε  (4.130), determine 

the auxiliary approximation. This auxiliary solution and the nonlinear constitutive relations 

determine the fictitious internal forces and, thus, the fictitious forces (5.190) and (5.191), 

which in turn, according to (5.189), determine the displacement vector ( 1)id . The flowcharts 

in Figure 5.10 summarise this FFM implementation for both the exact coupled format of the 

constitutive law and the approximated uncoupled format. 

5.5. Iteration formula of FFM(MN) 

Substituting the generic equilibrium conditions (5.190) and (5.191) into (5.188) and the 

constitutive relation MN

F, F, ,eq A NL  R R K Φ , see (5.149), into the resulting expression, and 

finally left-multiplying the result by C and considering Φ Cd (5.172) on the left-hand side, 

gives 

 incr NLΦ TΦ  (5.210) 

with 

 1 T MN

A A

T CK C K  (5.211) 

Left-multiplication of (5.210) by P , and consideration of (5.193), gives 

 incr NLΦ TΦ  (5.212) 

with 

 
1,1 1,21

2,1 2,2


 

   
 

T T
T PTP

T T
 (5.213) 

where the submatrices correspond to the partition of (5.212) into 

 incr 1,1 NL 1,2 NL T T    (5.214) 

 incr 2,1 NL 2,2 NL T T    (5.215) 

These relations between strain resultants can now be converted into similar relations between 

generalized strains. First, recall the global kinematic relation for model M 
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Figure 5.10. FMM(MN)2 by deformations (shaded boxes identify differences). 
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 eq 0 χ χ K   (5.216) 

and the global kinematic relation of model N 

 N

eq 0  ε ε K φ  (5.217) 

Second, note that: 

(i) according to the generic kinematic relation (5.216), and recalling that NL, eqχ 0 , 

  
1

NL 0 NL 0 0



 F χ F K with  (5.218) 

(ii) according to the generic kinematic relation (5.217) and recalling that 

  NL eq NL,0 NL,1 2 ε ε ε , 

    
1

N N N

NL 0 NL, NL,0 0 0

1

2
with



  F ε ε F K  (5.219) 

Thence, substituting these two expressions into relations (5.214) and (5.215), gives 

 N N

incr 1,1 0 NL 1,2 0 NL, 1,2 0 NL,0

1 1

2 2
  T F χ T F ε T F ε  (5.220) 

 N N

incr 2,1 0 NL 2,2 0 NL, 2,2 0 NL,0

1 1

2 2
  T F χ T F ε T F ε  (5.221) 

Third, note that 

(i) inverting (5.216), i.e. writing 0  F χ   with 0 eq  F χ , and noting that 

incr, NL 0    , gives 

 incr 0 incrF χ  (5.222) 

(ii) inverting (5.217), i.e. writing N

0   φ F ε φ  with N

0 eq φ F ε , and recalling that

L NL      (4.73) and thence that  N
incr NL 0 NL,0 NL, 2   F    , see (4.170), 

gives 

 N N N

incr 0 incr, 0 NL,0 0 NL,

1 1

2 2
   φ F ε F ε F ε  (5.223) 

Thence, substituting these two expressions into relations (5.220) and (5.221), and left-

multiplying them by 0K  and N

0K  gives 

      N N

incr 0 1,1 0 NL 0 1,2 0 NL, 0 1,2 0 NL,0

1 1

2 2
  χ K T F χ K T F ε K T F ε  (5.224) 
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      N N N N N

incr, 0 2,1 0 NL 0 2,2 0 NL, 0 2,2 0 NL,0

1 1

2 2
m m     ε K T F χ K T F I ε K T F I ε  (5.225) 

Last, recall that            L L NL NL0 0 0L L L           (4.177), or, in the global format, 

 0 L,0 L, NL,0 NL,      ε ε ε ε ε ε  (5.226) 

giving 

 incr,0 incr, NL,0 NL,   ε ε ε ε  (5.227) 

Substituting (5.225) into the last expression, gives 

      N N N N N

incr,0 0 2,1 0 NL 0 2,2 0 NL, 0 2,2 0 NL,0

1 1

2 2
m m    ε K T F χ K T F I ε K T F I ε  (5.228) 

Let us define the generic global strain vector 

 
0

0





 
   

    
    

η
η








 (5.229) 

It is then possible to group the global relations (5.224), (5.225) and (5.228), 

 incr η NLη T η  (5.230) 

with 

 
η1,1 η1,2 η1,3

η η2,1 η2,2 η2,3

η3,1 η3,2 η3,3

 
 

  
 
 

T T T

T T T T

T T T

 (5.231) 

where 

 η1,1 0 1,1 0T K T F  (5.232) 

 N

η2,1 η3,1 0 2,1 0 T T K T F  (5.233) 

 N

η1,2 η1,3 0 1,2 0

1

2
 T T K T F  (5.234) 

  N N

η2,2 η3,3 0 2,2 0

1

2
m  T T K T F I  (5.235) 

  N N

η2,3 η3,2 0 2,2 0

1

2
m  T T K T F I  (5.236) 
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Consider now a new square permutation matrix P reordering the entries of the generic global 

strain vector  according to 

 

1

2

m

 
 
  
 
 
 

η

η
η Pη

η

 (5.237) 

with 

 

 
 

0

0

j

j

j
j j

j j

L

L









 
 
 

     
    

η  (5.238) 

Thence, left-multiplying (5.230) by P gives 

 incr η NLη T η  (5.239) 

or 

  I

NL L NL   η G η η T η  (5.240) 

with 

 1

η η

T PT P  (5.241) 

Hence, (5.240) is a discrete version of the more general expression (5.52). On the other hand, 

the global relation corresponding to (5.53) and (5.54) is given by 

  
1

( ) II ( ) ( ) * ( )

NL A

i i i i



        η G η η s R η  (5.242) 

where *

As  is the block diagonal global 4m  4m stiffness matrix, 

 

*

A,1

*

A,2*

A

*

A,m

 
 
 
 
 
  

s

s
s

s

 (5.243) 

where *

As  is the auxiliary elemental 4  4 matrix which collects cross-sectional stiffnesses 

 

A,

A,*

A

A,

A,

j

j

j

j

EI

EA

EI

EA

 
 
 
 
 
  

s  (5.244) 
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and  

 

( )

1 1

( )

2 2( )

( )

i

i

i

i

m m

    
        
 
 

    

R η

R η
R η

R η

 (5.245) 

is the global vector grouping the elemental constitutive relations at the end sections 

 

   

   

   

   

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

ˆ 0 , 0

ˆ 0 , 0

ˆ ,

ˆ ,

i i

i i

i

i i

i i

M

N

M L L

N L L

 

 

 

 

    
            
    

R η  (5.246) 

Substitution of (5.242) into (5.240) gives the iteration formula of FFM(MN)Def 

 ( 1) ( ) I II ( )i i i

  
         

η G η G G η  (5.247) 

which is a discrete version of the more general iteration formula (5.56). 

5.5.1. Convergence conditions 

As explained in section § 5.2.4, the iteration formula (5.247) is contractive if both operators 

 and  are non-expansive and at least one of them is a contraction. However, it is 

possible to prove that 

     1    
         T T T T  (5.248) 

following the steps presented in chapter 3 to prove that 1 
   T . This means that I

G  is a 

non-expansive operator. 

Next, it will be proved that if the condition  is satisfied by the auxiliary constitutive 

relation at each point of every cross section, then  is a contraction and, therefore, G

 is 

also a contraction. This will prove that FFM(MN)Def discrete description converges when the 

condition A maxE E  is satisfied. 

Let us start by writing the Jacobian matrix of  as 

  
1

II *

4 Am



  J I s s  (5.249) 

I
G

II
G

A maxE E

II
G

II
G
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where  *
As  is the auxiliary stiffness matrix (5.243) and s is the effective stiffness matrix 

 

1

2

m

 
 
 
 
 
 

s

s
s

s


  (5.250) 

with 
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 
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 
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 
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 
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 
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 
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 

 
 

 
 

     
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        
     

   
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s

   

   
   

   
   

   
   

   







  (5.251) 

The block diagonal Jacobian matrix  II
J  is given by 

 

II
,1

II
,2II

II
,m








 
 
   
 
  

J

J
J

J


  (5.252) 

where the generic elemental matrix   is  

 

EI,1

EA,1II

EI,2

EA,2

0 0

0 0

0 0

0 0

 
 

 
 










 
  
 
   

J   (5.253) 

with, see (5.67), (5.69), (5.58) and (5.59) 

 
       A EI

A A A

0 0 0
1 1

EI EI EI E

EI E I E



    


  (5.254) 

 
       A EI

A A A

1 1
EI EI L EI L E L

EI E I E



    


  (5.255) 

 
       A EA

ε
A A A

0 0 0
1 1

EA EA EA E

EA E A E
 


    


  (5.256) 

IIJ
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       A EA

A A A

1 1
EA EA L EA L E L

EA E A E



    


  (5.257) 

 
           

EI,1 EI,2 EA,1 EA,2
A A A A

0 0
; ; ;

ES ES L ES ES L

EI EI EA EA
         (5.258) 

or 

 
II

2II
II

2






 
  
  

J 0
J

0 J
  (5.259) 

with 

 
EI,II

EA,

i i
i

i i

 
 





 
   

J   (5.260) 

Thence, the spectral radius of   is equal to the greatest spectral radius of the cross‐sectional 

matrices  II
J  and  II

J . On the other hand, it was shown in § 5.2.4 that  II 1 J  and  II 1 J  if 

the relation   is satisfied at each fibre of every cross section. This proves, as desired, 

that the FFM(MN)Def discrete description converges when the latter condition is satisfied. 

Finally, note  that  in  the  case of  the  simplified uncoupled  constitutive  relation,   0ES  ,  and 

thence the nonlinear stiffness matrix (5.251) gets reduced to 

 

  
  

  
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0 0 0 0

0 0 0

0 0 0

EI
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 
 
 

  
 
 
 

s   (5.261) 

Recall  that,  as mentioned  in  § 5.4.6.1,  the  auxiliary  axial  stiffness  is  A constEA EA  .  This 

way, the fictitious axial force is null and  0    . In this case, the Jacobian matrix (5.253) 

gets reduced to 

  II

0 0 0

0 0 0 0

0 0 0

0 0 0 0










 
 
 
 
 
 

J   (5.262) 

Thence, it is obvious that the sufficient convergence conditions for this case are those derived 

in chapters 3 for FFM (M). 

IIJ

A maxE E
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5.6. Illustrative example 

The  application  of  FFM(MN)Def  is  now  illustrated  by means  of  the  problem  represented  in 

Figure 5.11. The beam has  length L = 1 and an  idealized  cross  section  formed by  two  single 

fibres kept at a distance h = 0.2L one from the other, see Figure 5.11b. The area of each fibre 

is14 

    (5.263) 

but it is supposed to be lumped at a point, so that each fibre is replaced by its axis. 

The top fibre has a linear constitutive relation with stiffness  , 

    (5.264) 

where eb and et are the cross‐sectional normal strains in the bottom and top fibres. 

The bottom fibre follows the nonlinear constitutive relationship 

  (5.265) 

where    is a  stress bounding value and    is  the  initial  stiffness. This  constitutive 

relationship is similar to that of the examples presented in chapters 3 and 4. 
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Figure 5.11. Example 5: a) Beam, boundary conditions and loading, b) idealized cross section 

and c) primary structure of the force method. 

                                                            
14 The subscripts t and b denoting the top fibre and the bottom fibre, respectively. 
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The beam carries a uniformly distributed axial load p  0.08 and a transverse point load Q  0.1 

at the right end section. Second-order effects are neglected. 

In order to solve this problem, let us first define a system of coordinates whose longitudinal     

x-axis is at mid distance between the initial position of the two fibres and whose z-axis is 

vertical and points downwards, Figure 5.11b. The origin of the axes is contained in the beam 

left end section. 

The cross-sectional compatibility relations are given by 

  (5.266) 

  (5.267) 

or, inverting the above relations,  

  (5.268) 

 b
2

h
e     (5.269) 

The equilibrium cross-sectional relations are given by 

  (5.270) 

  (5.271) 

which can also be inverted, 

  (5.272) 

  (5.273) 

The total cross-sectional area is  and its second moment of area with respect 

to the y-axis is 

  (5.274) 

The stiffness of the bottom fibre is given by 
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  (5.275) 

with . In order to determine the cross-sectional constitutive relations substitute 

successively (5.265.2), (5.264.2), (5.272) and (5.273) into (5.266) and (5.267), giving 
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Similarly, substituting successively (5.265.1), (5.264.1), (5.268) and (5.269) into (5.270) and 

(5.271), gives 

  (5.278) 

  (5.279) 

This structure has a single degree of static indeterminacy. The problem will be solved by the 

force method, considering the primary structure defined by releasing the bending moment at 

the left end section, i.e. the hyperstatic unknown is the bending moment at that section, 

  (5.280) 

Thence, static equilibrium gives the internal force fields 

  (5.281) 
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  (5.282) 

Note that since the beam is axially isostatic the axial force field depends exclusively on the 

equilibrium conditions, e.g. . The compatibility condition corresponding to 

the hyperstatic unknown is given by 

  (5.283) 

where  is the self-equilibrated bending moment distribution represented in 

Figure 5.11c. Thence, 

  (5.284) 

This equation is nonlinear in  and its unique solution is   0.612, i.e. MS1  0.0612. To this 

value corresponds M
S2

  0.0388, 
S2

   and 
S1

  . The linear bending moment 

diagram is not symmetric w.r.t. the midspan section due to the axial-flexural coupling and the 

presence of the axial loading. Figure 5.12 presents the corresponding generalized strain fields 

and Figure 5.13 the normal strain at the top and bottom fibres. Note that, contrary to the axial 

force, the axial strain is not a monotonic (decreasing) function and that  even though 

. Moreover, even though , . These results are justified 

by the interaction between flexural and axial behaviours. 

Consider now the application of FFM(MN)Def to this problem. A constant auxiliary field E
A
 for 

both fibres along the beam was chosen. A first uniform mesh with two elements was 

consecutively refined by bisection, establishing a family of five uniform meshes with  

 

Figure 5.12. Example 5: Exact solution: curvature and axial strain fields. 
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Figure 5.13. Example 5: Exact solution: normal stains at top fibre and bottom fibre. 
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Figure 5.14. Example 5: Relative error I and relative error II for  (logarithmic scale). 

2
i  2,4,8,16 and 32 elements. Similarly to the examples presented in § 3.7 and § 4.5, a 

convergence analysis was performed w.r.t. (i) the mesh refinement (mesh-convergence) and 

(ii) FFM iterative procedure itself (FFM-convergence). Both convergence analyses are based on 

relative error I (err
I
) and relative error II (err

II
) defined in § 3.7. Recall that, for a given mesh, 

the ith approximation of x, is FFM-convergent if  and that the FFM-convergent 

approximation of x, for the jth mesh, denoted , is mesh-convergent if , 

where the tolerance values tol
FFM

 = 0.001 and tol
mesh

 = 0.01 were chosen once again. 

Figure 5.14 and Figure 5.15 summarise the mesh-convergence analysis results, each point 

representing an FFM-convergent solution. Table 5.1 presents the maximum generalised strains 


S2

 and 
S1

 and also the normalized bending moment  of the FFM-convergent solutions of 

each mesh. The fifth mesh, with 32 elements, gives acceptable results, despite not being mesh-

convergent in terms of 
S2

, see Figure 5.15. 

For the fifth mesh, Figure 5.16 shows the number of iterations required by FFM(MN)Def to 

converge for several values of E
A 
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Figure 5.15. Example 5: Relative errors I and II for generalized strains (logarithmic scale). 

Table 5.1 – Example 5: Exact and numerical solutions. 

 number of elements (FFM) exact 
solution 

 
2 4 8 16 32 

 -0.623  -0.617 -0.614 -0.612 -0.612 -0.612 

 18.801 21.579 23.484 24.402 24. 718 24.839 

 2.025 2.029 2.030 2.031 2.031 2.031 

 

Figure 5.16. Example 5: Number of iterations required for convergence of FFM(MN)Def. 

numerically for A 0.5E  . Recall that . The results show that 

FFM(MN)Def sufficient convergence condition A maxE E  (5.82), is satisfied for this beam. 

The parameter E
A
 is also seen to play an important role in terms of the convergence rate. 

Figure 5.16 shows that the number of iterations needed to achieve convergence in terms of 
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Since no convergence conditions were derived for FFMS, the corresponding iteration formulas 

were not used in this example. 

5.7. Concluding remarks 

In the context of model MN, FFM works with an auxiliary problem, where, differently from the 

effective coupled problem, bending and axial behaviours are uncoupled. As shown in § 5.2.2, 

the fictitious internal forces disguise the coupling of the effective problem and their 

incremental form can be related to the difference between the uncoupled auxiliary linear 

stiffness and the coupled effective nonlinear stiffness. This relationship is similar to the 

stiffness decomposition used in the Pseudo Force Method (Deng and Ghosn, 2001) to define 

the fictitious forces. 

The general frameworks for the implementation of FFM(M) and FFM(MN) are similar, i.e. very 

similar operations are required in the implementation of these two models. Actually, the 

original idea of this particular implementation of FFM(MN), i.e. as a modification of FFM(M), is 

due to M. Ferreira, the author of EvalS. 

Even though FFM(M) and FFM(MN) have a lot in common, the more accurate nature of the 

latter entails differences at the numerical level. This determines the difference in the 

convergence behaviour between the two models. The established sufficient convergence 

conditions for FFM(MN)Def are given by condition , i.e. the auxiliary bending stiffness 

 and axial stiffness  are determined by E
A
 and the cross-sectional 

effective geometry. 

Note that sufficient convergence conditions were derived for FFM(MN)Def only. The 

convergence of FFM(MN)S requires further investigation. 

When applying FFM(MN) to the analysis of composite structural materials, like reinforced 

concrete, it may be possible to derive less restrictive sufficient convergence conditions. In fact, 

the developed sufficient convergence condition for FFM(MN)Def,  , when applied to 

reinforced concrete structures, determines the use of an auxiliary stiffness E
A
 much larger that 

the initial Young’s modulus of reinforced concrete E
c
 and this may lead to a high number of 

iterations. On the other hand, the use of smaller values for E
A
 does not necessarily cause the 

divergence of the iterative procedure. In fact, if the iterative procedure happens to converge 

A maxE E

A AEI E I A AEI E A

A maxE E
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for a value of the auxiliary stiffness close to E
c
, i.e. , that solution might be numerically 

more efficient. Such a less demanding convergence condition could even be justified by a 

simple homogenisation of the cross section. This topic requires further investigation. 

As already mentioned in chapter 3, a severe limitation of FFM, if one thinks of a method 

capable of generic nonlinear elastic analysis, is associated to constitutive relations which 

include horizontal or/and softening branches. Until now, it was not possible to derive any 

convergence condition for those types of behaviour. Even for such a common structural 

material like concrete, this type of behaviour must be considered, particularly, but not only, 

when the behaviour under service conditions of reinforced concrete structures is to be 

investigated. Another situation where the softening branch of a material may be reached is 

when the load-displacement curve approaches the vicinity of a limit point; in those cases, it is 

possible, and even likely for some materials, that the tangent stiffness at some points in the 

section is already negative (i.e. E < 0). It is worth noting that Costa (2013) has already applied 

FFM(MN) with success to RC problems where some points in the section do not present a 

positive stiffness. 

A final comment must be made about the choice of the illustrative example presented in this 

chapter. Its simplicity offers an insight on the iterative procedure that other more complex 

examples would not provide. The main idea was to get rid of everything that might disturb the 

analysis. The example fulfils several objectives: (i) to illustrate the application of FFM(MN) in 

the simplest way possible; (ii) to study the mesh-convergence and (iii) to study the role played 

by the auxiliary stiffness in the efficiency of the iterative procedure. However, this example 

does not require from FFM(MN) as much as this method can give. As an example of more 

ambitious problems, Costa (2013) applied FFM(MN) to the quasi-static analysis of reinforced 

concrete frames with several floors and spans. Ferreira et al. (2011) offers another interesting 

application of FFM(MN) to the practical analysis of reinforced concrete skeletal structures. 
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Chapter 6 
Application of FFM to reinforced 
concrete skeletal structures 

6.1. Introduction 

This chapter illustrates the application of FFM to the nonlinear elastic analysis of reinforced 

concrete skeletal structures. FFM was implemented in EvalS (Ferreira, 2011), a software for 

the analysis of plane skeletal structures which is briefly described in the next section. 

Subsequently, the analysis of two reinforced concrete structures is presented: a portal frame 

(Appleton, 1982) and a built-in beam (CEB, 1985, Favre et al., 1989). These examples can also 

be found in (Gala et al., 2010) and (Gala et al., 2012), respectively. 

The first example illustrates one of the most interesting features of FFM: a smeared approach 

is considered in this method to model the nonlinear deformations along the linear elements, 

instead of the lumped approach (“plastic hinges”). In the second example, the relevance of 

using a nonlinear elastic analysis to calculate deflections and crack width in a beam is 

investigated. 

Reinforced concrete structures were chosen for these two illustrative examples, not because 

FFM is particularly adapted to this structural material, but because the nonlinear behaviour of 

reinforced concrete is as good as others to reveal the capabilities of this method. 
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6.2. Implementation of FFM in EvalS 

EvalS is a software for the quasi-static analysis of plane skeletal structures, developed by 

Ferreira (2011). This program uses the Equivalent Force Method to model geometrically 

nonlinear behaviour and FFMDef to perform nonlinear elastic analyses. From the user’s 

viewpoint the latter analyses require the following steps: 

(i) define the structural model: 

a. geometry; 

b. support conditions; 

c. constitutive relations; 

d. actions. 

(ii) define the parameters required by a FFM analysis: 

a. finite elements mesh; 

b. constant auxiliary stiffnesses for each element; 

c. numerical tolerances and maximum number of iterations. 

(iii) execute the “FFM analysis” option. 

For this model and FFM parameters an iterative procedure is then internally performed, i.e. 

several iterations are made until FFM-convergence is achieved. In EvalS, the FFM-convergence 

is evaluated in terms of the relative error of the Euclidian norm of nodal displacements 

(excluding rotations), 

 

( ) ( 1)

I, ( 1)

i i

i i
err






d d d

d
 (6.1) 

Hence, the ith iteration of EvalS is FFM-convergent if 

 I, FFMierr told  (6.2) 

where tol
FFM

 is a fixed tolerance. Each iteration consists in the following steps:  

(i) compute the elemental fictitious internal forces at the interpolation sections;  

(ii) compute the fictitious forces system; 

(iii) solve the auxiliary problem; 
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(iv) compute relative errors; 

(v) compare errors to tolerances. 

Note that a mesh-convergence analysis should be performed by the user, i.e. the mesh should 

be refined, defining new meshes, until the difference between results for successive meshes 

becomes acceptable. 

The three FFM models described in chapters 3 to 5 of this thesis have been implemented in 

EvalS, e.g., the basic discrete description of FFM(M), the discrete description of FFM(N) and 

the discrete description of FFM(MN). The interpolation sections, i.e. the sections where the 

fictitious internal forces are determined, are the end sections of the linear elements. 

With respect to FFM implementation of each model, the differences lie only in the format of 

the fictitious force system. In FFM(MN), the internal forces at the interpolation sections are 

determined by a discrete integration of the normal stress; each beam element is represented 

by a set of discrete fibers, which may have different nonlinear constitutive relations and which 

satisfy Euler-Bernoulli hypothesis at each cross section. 

In the context of FFM implementation in EvalS, Ferreira extended FFM to point elements with 

nonlinear elastic constitutive relations. Based on these point elements, Costa (2013) 

developed a beam-column joint macro-element which he subsequently applied to the quasi-

static analysis of reinforced concrete frames. The implementation in EvalS of the fibre-wise 

integration procedure and of FFM(MN) was made, tested and used by Costa (2013); see also 

Ferreira et al. (2011). Costa (2013) used FFM(MN) to determine the capacity curves required 

by push-over analyses and to study two specific aspects of the behaviour of reinforced 

concrete skeletal structures: beam growth and tension-stiffening. Other applications of FFM to 

reinforced concrete skeletal structures were presented by Gala et al. (2008) and Ferreira et 

al.(2011). Ferreira is presently expanding FFM(N) having in view the analysis based on adaptive 

stress fields, a generalization of strut and tie models. 

6.3. First application example 

In this section, FFM(M) is applied, via EvalS, to the nonlinear elastic analysis of the reinforced 

concrete portal frame represented in Figure 6.1 (Appleton, 1982). This frame is made up of 
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prismatic beams and columns, each of which is delimited by a pair of solid circles (critical 

sections) in Figure 6.1. 

The effective load system is formed by the constant uniformly distributed load q and the 

incremental horizontal point forces F. The value of the latter suffers successive increments of 

1 kN or, when approaching collapse, 0.01 kN. 

The main objective of this analysis is the determination of the capacity curve, i.e. the force-

displacement (F-) curve, required for a nonlinear static push-over analysis. The force-

displacement curve is defined by the relation between the horizontal displacement of the 

frame upper beam , i.e. its total drift, and the magnitude of the horizontal forces F. The 

structure collapses when the bending moment at section CS
26

 – located at the top of the right 

column – reaches the ultimate bending moment M
3
, see Figure 6.1. This state is characterized 

by the ultimate displacement 
u
 and force F

u
, and its numerical approximation depends on the 

nature, either smeared or lumped, of the nonlinear material formulation. 

The nonlinear material behaviour was modelled in EvalS by elastic piecewise-linear bending 

moment-curvature relationships with five linear branches, as schematized in Figure 6.2. 

Table 6.1 gives the coordinates of the corner points of the constitutive relationship for each of  
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Figure 6.1. First application example: Frame, beam and column elements. 
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Figure 6.2. First application example: RC constitutive relationship. 

Table 6.1 – First application example: corner points of the moment-curvature relationships. 

 

  kNmM    -3 -110 m  

 
-3 -2 -1 1 2 3  -3 -2 -1 1 2 3 

CL1  -72.3 -70.1 -20.7 20.7 70.1 72.3  -60.49 -4.31 -0.41 0.41 4.31 60.49 

CL2  -156.0 -150.1 -45.0 44.2 115.2 118.5  -62.91 -2.77 -0.28 0.27 2.39 76.46 

CL3  -118.5 -115.2 -44.2 45.0 150.1 156.0  -76.46 -2.39 -0.27 0.28 2.77 62.91 

CL4  -234.1 -221.4 -47.5 44.2 115.2 118.5  -52.24 -3.23 -0.28 0.27 2.39 76.46 

CL5  -76.2 -73.4 -42.0 42.0 73.4 76.2  -81.90 -1.68 -0.27 0.27 1.68 81.90 

CL6  -76.2 -73.4 -42.0 43.0 109.7 113.5  -81.90 -1.68 -0.27 0.28 2.38 66.49 

CL7  -191.3 -182.5 -45.5 42.0 73.4 76.2  -51.58 -3.47 -0.28 0.27 1.68 81.90 

these beams and columns. These values are given in Appleton (1982), with the exception of 

the ultimate curvatures 
3
 and 

-3
 which are not necessary for the analysis presented in that 

paper. The first corner point (M
1
,

1
) (resp. (M

-1
,

-1
)) presented by Appleton, corresponds to 

the beginning of cracking in concrete. The second corner point (M
2
,

2
) (resp. (M

-2
,

-2
)) 

presented by Appleton, corresponds to the beginning of yield of the steel reinforcement. 

Apparently, the axial forces are not considered in these constitutive relations. This explains the 

small slope of the last branch of the columns constitutive relation (CL1). 

Appleton also determined a similar force-displacement curve admitting, however, that the 

nonlinear material deformations only can take place at plastic hinges located at specific fixed 

critical sections CS
i
, identified in Figure 6.1 (i) by solid circles, those associated with beam-

column joints and also to beam sections where the cross section of the longitudinal bars 

varies, and (ii) by hollow circles, those associated with sections where the bending moment 
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can have a (positive) maximum in the midspan region, due to the distributed load. The bending 

moment-rotation constitutive relation at those plastic hinges is based on the piecewise-linear 

bending moment-curvature relationships of Figure 6.2. and Table 6.1, admitting that the 

nominal length of the “plastic” hinge is 
P 0.5 mL  . The ultimate rotations 

3
 used by 

Appleton, corresponding to the neutral axis depth at the ultimate limit state, were estimated 

according to the experimental model proposed in CEB Model Code (1990). Hence, the 

following relation was adopted for the ultimate curvatures presented in Table 6.1 and used in 

EvalS/FFM analysis, 

  (6.3) 

and, similarly, . 

Appleton neglected second order effects and the first order axial deformation. The latter 

assumption was also used in the FFM analyses performed with EvalS, corresponding to the 

adoption of FFM(M). Actually, two analyses were performed with EvalS/FFM: in the first one, 

the geometrically nonlinear behaviour was considered using the Equivalent Forces Method; in 

the second one, this behaviour was ignored. The initial tangent stiffness of the nonlinear 

constitutive relations, characterized in Table 6.1, was chosen for the auxiliary bending stiffness 

distribution EI
A
. 

The nonlinear geometrical and material analysis performed with EvalS/FFM is now presented. 

Several meshes were considered, but only some of them were regular, with elements of equal 

length in the beams and elements of equal length in the columns. Regular mesh 1 has three 

elements in every beam and column. Regular mesh 2 results from the subdivision of each 

element of the previous mesh into three equal elements, as illustrated in Figure 6.3. The 

graphical output of EvalS in Figure 6.4 represents, for regular meshes 1 and 2, the distribution 

of the nonlinear component of curvature  for the ultimate load F
u
.  

Figure 6.4 illustrates the localization process of the curvatures  associated to mesh 

refinement, i.e., to the progressive concentration of the higher strains as the mesh refinement 

increases. This result led to the definition of additional meshes, this time irregular meshes. 

Irregular mesh 1 results from subdividing into three elements the elements of regular mesh 2 

where the absolute value of the curvature was maximum, see Figure 6.3. The following 

irregular meshes 2 and 3 result from subdividing into three elements the elements of the 

previous irregular mesh where the absolute value of the curvature was maximum: this  

3
3

PL


 

3 3 PL  

NL

NL



Chapter 6. Application of the FFM to reinforced concrete skeletal structures 

209 

beam

column

regular mesh 1






regular mesh 2













irregular mesh 1

 

Figure 6.3. First application example: regular meshes 1 and 2 and irregular mesh 1. 

-3 1
S26 31.022 10 m    -3 1

S26 52.576 10 m   

1regular mesh 2regular mesh 

 

Figure 6.4. First application example: curvature fields  for ultimate load F
u
 for meshes 1 

and 2 (note different curvature scales). 

corresponds to a decrease of the finite elements dimension (partition norm) in the regions 

where the curvature is largest. It is easily observed that the solution for irregular mesh i is 

identical to the solution for regular mesh i + 2, which presents a larger number of elements. 

Figure 6.5 presents the force-displacement curves for the several meshes considered. Table 6.2 

presents the value of relative error I for  (see § 3.7), 

 
1

I,

1

j j

j

j

err




  



 (6.4) 

for fixed values of the horizontal force F, where 
j
 is the value total drift for irregular mesh j 

( I,1err  compares results for irregular mesh 1 and regular mesh 2). Table 6.3 presents the length 

 of the smallest element of each mesh, the values of F
u
, 

u
 and their relative errors I, 

NL

minL
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Figure 6.5. First application example: force-displacement curves computed with FFM in EvalS. 

Table 6.2 – First application example: relative error I,  I %err , for fixed values of force F. 

mesh 
 kNF  

10 20 30 40 50 60 

irregular 1 2.27 1.87 2.11 0.35 0.50 1.47 

irregular 2 0.11 0.21 0.12 0.44 0.81 2.11 

irregular 3 0.13 0.11 0.18 0.36 0.13 1.17 

Table 6.3 – First application example: FFM solutions for several meshes. 

mesh 
L

min
 F

u
 

u
 u

I

F
err  u

Ierr
  

 cm   kN   mm   %   %  

regular 1 100.00 66.47 34.51   

regular 2 33.33 67.63 31.68 1.75 8.19 

irregular 1 11.11 67.63 20.57 0.00 35.08 

irregular 2 3.70 61.52 13.01 9.03 36.73 

irregular 3 1.23 62.38 13.26 1.40 1.94 

  (6.5) 

  (6.6) 

The results in Table 6.2 and Table 6.3 show that all relative errors ,  and  for 

irregular mesh 3 have values less than 2%. Since this error is small, this solution is considered 

to be mesh-convergent. 
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Figure 6.6 presents the number of iterations needed to achieve FFM-convergence, considering 

geometrically nonlinear behaviour, with the irregular mesh 3 and 6

FFM 10tol  . In a similar 

convergence analysis performed with EvalS/FFM, where the geometrically nonlinear behaviour 

was ignored, the solution for irregular mesh 3 proved again to be mesh-convergent. 

The force-displacement curves calculated with EvalS/FFM will now be compared with those 

calculated by Appleton (1982), represented in Figure 6.7 by the solid circles. Because 

 

Figure 6.6. Number of iterations required to achieve FFM-convergence with 6

FFM 10tol   for 

irregular mesh 3, considering geometrically nonlinear behaviour. 

 

Figure 6.7. First application example: Force-displacement curves for concentrated (CNL) and 

distributed (DNL) material nonlinearity and for linear (GL) and nonlinear (GNL) geometrical 

analysis. The “reference solutions” are used in Table 6.4. 
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Table 6.4 – First application example: relative error of CNL and DNL-GL solutions. 


 

mm
 

1.38 1.79 2.48 4.32 5.64 6.42 10.25 11.37 14.31 17.88 

CNL,GLF  kN 13.98 17.66 22.88 32.81 39.67 43.59 62.64 65.89 68.27 71.00 

DNL,GLF  kN
 11.30 14.39 19.30 30.07 36.17 39.56 54.91 58.84 

 


 
DNL,GNLF  kN

 11.17 14.23 19.06 29.66 35.64 38.96 53.92 57.75 
 


 

CNL,GLerr   25.14 24.13 20.01 10.61 11.31 11.89 16.19 14.09   
DNL,GLerr   1.17 1.16 1.21 1.36 1.49 1.53 1.84 1.89   

Table 6.5 – First application example: values of F
u
 and 

u
 for the three types of analysis. 

model 
F

u 


u 
uF

err
 

uerr


 
kN mm   

CNL-GL 71.00 17.88 13.82 34.79 

DNL-GL 63.57 13.25 1.91 0.14 

DNL-GNL 62.38 13.26 
 


 

Appleton’s model is based on lumped deformations at plastic hinges (CNL) in a geometrically 

linear (GL) analysis, the corresponding solution will be called the CNL-GL solution. 

On the other hand, since EvalS/FFM is based on a distributed deformation model, its solution 

will be labelled DNL solution or, more precisely, DNL-GNL or DNL-GL solution, depending on 

the consideration, or not, of the geometrically nonlinear behaviour (using the Equivalent 

Forces Method). 

Table 6.4 presents, for fixed values of , corresponding to the CNL solutions which are labelled 

“reference solutions” in Figure 6.7, the relative error of the corresponding load F of the CNL 

and DNL-GL solutions when compared to the more accurate DNL-GNL solution, 

 
CNL,GL DNL,GNL

CNL,GL

DNL,GNL

F F
err

F


  (6.7) 

 
DNL,GL DNL,GNL

DNL,GL

DNL,GNL

F F
err

F


  (6.8) 

Table 6.5 lists the values of the ultimate load F
u
 and displacement 

u
 calculated with the three 

types of analysis – CNL-GL, DNL-GL and DNL-GNL – and presents the relative error of the first 

two with respect, once again, to the third one, 

 u

DNL,GNL

u

DNL,GNL

F F F
err

F


  (6.9) 
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 u

DNL,GNL

u

DNL,GNL
err

  



 (6.10) 

These errors are not defined when the displacement reaches 14.31 mm, because the ultimate 

displacement of the DNL-GNL solution is less than this value. 

The following conclusions can be extracted from the above results: 

(i) The DNL-GNL solution is more flexible that the DNL-GL solution, although the 

difference between them is negligible – this means that geometrically nonlinear 

effects can be neglected in this problem, as initially admitted by Appleton (1982); 

(ii) The CNL-GL model is always stiffer than the DNL-GL model, except in its last branch; 

actually, this last branch bestows a larger ductility to the CNL-GL model; 

(iii) The ultimate displacement 
u
 is smaller for the DNL-GL model than for the CNL-GL 

model. 

In brief, this example illustrates the importance of using spread models for nonlinear material 

behaviour instead of lumped models. 

Finally, note that if the last branch of the constitutive relations of the columns was stiffer the 

difference between the CNL-GL and DNL-GL solutions would have been even greater, because 

in that case the nonlinear deformations would spread along the columns. 

6.4. Second application example 

In this second example, FFM(M) is applied to investigate the relevance of using a nonlinear 

material analysis to determine the deflections and crack width of the built-in 9 m long 

reinforced concrete beam represented in Figure 6.8. This problem was presented in the 

Manual on Cracking and Deformations of CEB (1985) and Favre et al. (1989) – note that Favre 

was the chairman of the task group that produced the former manual. 

The concrete has the following properties: secant modulus of elasticity , 

tensile strength  and creep coefficient . The symmetrically 

disposed longitudinal reinforcement is schematically represented in Figure 6.8 (note that the 

concrete “cover” c is measured to center of the bars): four cases (a to d) are considered, 

corresponding to the reinforcement ratios given in Table 6.6. The sum of the reinforcement  

cm 30.5 GPaE 

ct 2.5 MPaf  0.8 2.5  
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Figure 6.8. Second application example: reinforced concrete built-in beam and longitudinal 

reinforcement scheme. 

Table 6.6 – Second application example: longitudinal reinforcement ratios. 

reinforcement 

case 

 

 %  

 

 %  

 

 %  

B

B,E




 

 

 
 2cm   2cm   2cm  

a 0.20 0.80 0.20 1.20 4.00 2.70 10.80 2.70 

b (elastic) 0.33 0.67 0.33 1.00 2.00 4.46 9.05 4.46 

c (uniform) 0.50 0.50 0.33 0.75 1.00 6.75 6.75 4.46 

d 0.67 0.33 0.50 0.50 0.50 9.05 4.46 6.75 

ratios (
A
  A

S
  A

c
) at midspan, 

A
, and at the built-in support, 

B
, remains constant, 


A
  

B
  1. Thence, if the compression reinforcement at the supports is ignored, the 

ultimate plastic flexural load of the beam is the same for all cases. The distribution of steel in 

case b corresponds to a linear elastic bending moment distribution for constant cross sections 

(
A,E

  
B,E

  2  0.33). In the fourth column of Table 6.6 the reinforcement ratio at the 

support is compared with this elastic value. This table shows also that, in the four cases a to d, 

the reinforcement is progressively transferred from the supports to midspan. This transfer is 

complemented with the increase of the compression reinforcement at the supports. In case c 

the tension reinforcement distribution is uniform. 

The nonlinear moment-curvature relationships proposed by CEB (1985) and Eurocode 2 (CEN, 

2004) were considered. Essentially, this model simulates flexure using an intermediate 

behaviour between the uncracked state I and the fully cracked state II. 

Let us describe the methodology for computing this intermediate bending moment-curvature 

relationship. Consider the reinforced concrete linear element of length L with an axis of 

symmetry in the loading plane, top and bottom reinforcement as represented in Figure 6.9 and 

subjected to pure bending. The bending moment-curvature relationship of this element is  

A B B B

A





S,AA S,BA S,B
A
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Figure 6.9. Second application example: reinforced concrete beam subjected to pure bending 

and bending moment-curvature relationship. 

determined by an interpolation between the uncracked state I and the fully-cracked state II. 

Steel behaviour is admitted to be linear in both states I and II (service conditions). Concrete 

behaviour is admitted to be linear in state I. In state II, its tension stiffness is ignored (Ghali et 

al., 2002) and its compressive behaviour is also admitted linear. The latter hypothesis is 

reasonable for the magnitude of the stresses in service conditions. Under these hypotheses, 

this beam can be modelled by a pair of beam segments with lengths L
1
 and L

2
 corresponding 

to sates I and II, see Figure 6.9, with an intermediate curvature given by, 

  (6.11) 

see right hand side of Figure 6.9. In this expression, 
I
 and 

II
 are the curvatures of the 

segments in state I and II and  is the fraction of the beam length in state II. This 

coefficient is given in § 7.4.3(3) of Eurocode 2 (CEN, 2004) 

 
2

cr1
M

M
 

 
   

 
 (6.12) 

where M
cr

 is the cracking bending moment and coefficient  represents the influence of 

loading duration or repetition:  = 1.0 for initial loading and  = 0.5 for loads applied in a 

sustained manner or for a large number of load cycles, see also Ghali et al. (2002). 

This is all that is required for the calculation of the bending moment-curvature relationship, 

according to the following procedure (Ghali et al., 2002): 

(i) Determine the neutral axis positions in states I and II (both fixed, since the axial force is 

null); 

(ii) Integrate over the cross section area the moment about those axes due to the normal 

stresses for a unit curvature, determining the bending stiffnesses EI
I
 and EI

II
, which 

characterize the linear bending moment-curvature relations in states I and II;  

 m I II1      

IIL L 
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(iii) Define a set of values of the bending moment; 

(iv) For each of these bending moment values, determine the curvatures in states I and II, 

  (6.13) 

(v) Calculate the coefficient ; 

(vi) Determine the average curvatures with expression (6.11). 

The influence of concrete creep is considered by modifying its modulus of elasticity, as 

suggested in §7.4.3(5) of Eurocode2 (CEN, 2004). The application of this procedure to the 

beam in analysis led to the bending moment-curvature diagrams represented in Figure 6.10. 

The nonlinear material analysis performed with EvalS/FFM is now presented. Since a uniform 

mesh with less than four elements would not satisfactorily represent the longitudinal 

distribution of the reinforcement, three uniform meshes with 4, 8 and 16 elements were 

considered. The length of the elements of the third mesh is 1.125 h, where h is the cross 

section depth. 

A constant auxiliary bending stiffness 3

A cm 12EI E bh , corresponding to the concrete gross 

cross section, was defined for all models. Table 6.7 present the number of iterations needed to 

achieve FFM-convergence with 6

FFM 10tol  . 

Figure 6.11 represents the bending moment at the beam end sections and midspan, computed 

by EvalS/FFM and including creep, revealing the mesh-convergence of the solutions. For 

comparison purposes, this figure also shows the linear elastic solution for a beam with 

constant cross sections and the nonlinear solution determined in CEB (1985) using the above 

model (revealing that a rather coarse mesh was used in the latter case). In case d the (absolute 

value of the) bending moment decreases at the end sections B, because 
B
 < 

B,E
, while in case 

a the bending moment decreases at midspan, because 
A
 < 

A,E
. 

Table 6.7 – Number of iterations required to achieve FFM-convergence with 6

FFM 10tol . 

reinforcement 

case 
4 el 8 el 16 el 

a 264 97 579 

b 228 319 349 

c 207 249 305 

d 242 330 340 

I II

I II

,
M M

EI EI
  
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Figure 6.10. Second application example: computed RC moment-curvature relationships. 

The values of the midspan deflection computed with EvalS/FFM are now compared to the 

values presented in CEB (1985) and Favre et al. (1989), designated CEB solutions. The latter 

solution is based on the constitutive model described above and the corresponding nonlinear 

bending moments represented in Figure 6.11. In CEB (1985) and Favre et al. (1989) the 
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deflection is also determined by the bilinear method, a simplified method based on the linear 

bending moments. 

These results, presented in Figure 6.12 and in Table 6.8, show once more the mesh-

convergence of the EvalS/FFM solutions. The difference between the results given by the 

nonlinear analyses and by the bilinear method show the relevance of the nonlinear material 

analysis. Actually, the redistribution of bending moments is not considered by the bilinear 

method because it is based on the linear elastic solution. This redistribution, patent in 

Figure 6.11, is coherent with the deflections presented in Figure 6.12. 
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Figure 6.11. Second application example: bending moment at midspan and supports 

(including creep). 
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Figure 6.12. Second application example: midspan deflection (including creep). 
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Table 6.8 – Second application example: deflection and its relative errors w.r.t. the 16 

elements EvalS/FFM solution (including creep). 

reinforcement 
case 

EvalS/FFM  
CEB (1985) 

 bilinear  
model 4 elements  8 elements  16 elements   

[mm] [%]  [mm] [%]  [mm]   [mm] [%]  [mm] [%] 

a 13.06 9.08  12.01 0.32  11.97 –  12.80 6.91  23.00 92.10 

b 12.63 9.05  11.67 0.71  11.58 –  12.20 5.32  16.00 38.12 

c 13.03 9.23  11.93 -0.03  11.93 –  12.60 5.60  12.50 4.76 

d 14.55 13.90  12.56 -1.68  12.77 –  14.00 9.62  10.50 -17.78 

Determination of maximum crack width is considered next. According to Eurocode 2 (CEN, 

2004), the crack width can be estimated by the expression 

  (6.14) 

where  is the maximum crack spacing, calculated according to the dispositions in 

Eurocode 2, and  is the difference between the mean strains of reinforcement, e
sm

, 

and of concrete between cracks, e
cm

, which is determined by 

  (6.15) 

where 
s
 is the stress in the tension reinforcement assuming a cracked section, E

S
 is the 

modulus of elasticity of reinforcement and 

  (6.16) 

where k
t
 is a load duration factor (0.6 for short term and 0.4 for long term loads), E

cm
 is the 

secant modulus of elasticity of concrete, f
ct,eff

 is the mean value of the tensile strength of the 

effective concrete at the time the first cracks are expected to occur, A
S
 is the total cross-

sectional area of the longitudinal tensile reinforcement and A
c,eff

 is the effective area of 

concrete in tension surrounding the reinforcement, which is considered to be given by 

  (6.17) 

with 
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Figure 6.13. Second application example: crack width values. 

Table 6.9 – Second application example: crack with and its relative errors w.r.t. the 16 

elements EvalS/FFM solution (including creep). 

reinforcement 
case 

midspan  end sections 

nonlinear linear error  nonlinear linear error 

[mm] [mm] [%]  [mm] [mm] [%] 

a 0.43 0.57 -24.24  0.22 0.20 12.19 

b 0.22 0.26 -15.11  0.26 0.25 5.92 

c 0.15 0.15 4.48  0.36 0.37 -1.74 

d 0.13 0.10 25.40  0.61 0.68 -10.32 

where x is the distance from the neutral axis to the top edge of the cross section, which is 

under compression. Using this model, the maximum crack width based on the nonlinear 

analysis performed with EvalS/FFM was determined. The normal stress 
s
 in the reinforcement 

in state II, entering in (6.15), corresponds to the nonlinear bending moments computed for the 

mesh with 16 elements. Figure 6.13 and Table 6.9 present the crack width for this value of 
s
 

and also for the linear elastic bending moments, with and without the influence of creep. From 

these results, the following conclusions can be extracted: 

(i) the crack width increases when the effect of creep is considered; 

(ii) the relation between crack widths based on linear elastic bending moments and on a 

nonlinear analysis is not affected by creep;  

(iii) the nonlinear analysis determines smaller crack widths than the linear analysis when 

E  , see Table 6.9. This difference is greater when  is significantly different from 


E
, which may be explained by the larger redistribution of bending moments for such 

cases.  
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In conclusion, these results show the relevance of performing a nonlinear material analysis 

when the crack width is required. 
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Chapter 7 
Conclusions and further developments 

7.1. Conclusions 

The two central objectives of this thesis were the presentation and justification of the 1D 

Fictitious Force Method, in its several forms, and the clarification of the meaning of its iterative 

procedures from both physical and mathematical points of view. Both these objectives were 

fully accomplished: (i) FFM, a method for the quasi-static nonlinear elastic analysis of plane 

skeletal structures, was developed from a rigorous mechanical framework, (ii) a deep insight 

on its historical antecedents and basic fundaments was offered and (iii) the way the method 

operates was portrayed, e.g. including several flowcharts and schematic illustrations. 

The main idea behind FFM, i.e. the solution of a problem with the help of a much simpler 

auxiliary problem, which must be solved iteratively, is shared by other methods of structural 

analysis. However, it appears that, for different reasons, the common points between these 

methods had never been illuminated before. Thence, our bibliographic review, instead of a 

more traditional approach, sought to reveal the common roots of several methods which, at 

first sight, could appear to be completely dissimilar. One important conclusion is that the 

systematisation of similar processes is possible and helpful, because it avoids the need to start 

everything from the very beginning. 
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Two distinct FFM approaches are possible, depending on the chosen control variable: either 

stresses or strains. The first is associated to FFMS and the second to FFMDef. Even though these 

two approaches are conceptually distinct and lead to different convergence conditions and 

different performances, most of the general procedure of FFM is common to both, as the 

shaded areas in the presented flowcharts reveal. In practical terms, this means that the analyst 

can chose the approach that suits him better. According to the presented analysis and 

comparison of results, FFMDef seems to be more interesting for use in practise, since its 

convergence criterion is more easily satisfied. 

When first established (Gala, 2007), FFM was anchored on the beam model M. Actually, a 

structural analysis method should be independent of specific application limitations. 

Moreover, as is well known (Blaauwendraad, 1972), the beam model M, which considers the 

constitutive relation at the cross-sectional level, is not always an acceptable model for the 

nonlinear material analysis of skeletal structures. The truss model N and beam column model 

MN, developed in chapters 4 and 5, demonstrate that the FFM idea is perfectly general. In 

particular, since in model MN the constitutive relation is considered at the fibre level, this 

model provides a much larger versatility than the most familiar beam model M. In the case of 

composite materials, such as reinforced concrete, the gains in terms of accuracy afforded by 

model MN are of course enormous. 

Since FFM is an iterative method, its convergence conditions had to be established. Moreover, 

because the auxiliary stiffness field must be defined by the analyst and because this choice 

strongly affects the convergence conditions, the range of admissible values and the ideal 

values for this stiffness had to be determined. This was clearly achieved in the form of the 

proposed sufficient convergence conditions and associated commentaries. 

FFM should be simple to apply, its implementation in linear analysis programs should be easy 

and, obviously, it should be capable of effectively tackling the quasi-static nonlinear elastic 

analysis of skeletal structures. Having this in mind, two types of application examples were 

presented in the thesis: while the first group of examples has a pedagogical objective, because 

of their simplicity, the second group reveals the potential of the method. Moreover, ever since 

the method was integrated in the structural analysis program EvalS it has also been employed 

by other authors in their studies. 

The examples presented in chapters 3 to 5 are basic illustrations of the application of FFM. 

These examples served also to show the influence of the auxiliary stiffness in terms of the 
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numerical efficiency of the method. This parameter plays a relevant role: the examples confirm 

that its value can and must be chosen in a certain range and that the speed of convergence if 

affected by the analyst choice. 

The development of a new method of structural analysis should not be concluded with the 

presentation of the corresponding governing equations. Even though structural systems are 

recurrently simple, more often than not they are large, which means that appropriate software 

is required for their analysis. The flowcharts included along the thesis have in mind the 

implementation of FFM in any program of linear structural analysis. Actually, these flowcharts 

were used to implement FFM in the program EvalS (2011) by Ferreira, its author, and Costa, 

who investigated the behaviour of beam-column joints in reinforced concrete frames (Costa, 

2013). In fact, those flowcharts and other parts of the thesis also reflect the experience and 

many valuable suggestions by these two authors. 

The practical application of FFM to the analysis of reinforced concrete skeletal structures was 

illustrated with two last examples. FFM or, more precisely, its implementation in EvalS, proved 

to be suitable to tackle these nonlinear problems. An interesting specificity is it capacity to 

consider the material nonlinearity distributed along the linear elements, in alternative to the 

lumped models provided by many structural analysis programs. Reinforce concrete was chosen 

for these examples not because of a special aptitude of FFM for this material but only to 

demonstrate its capabilities: they are better illustrated with the strong nonlinearities of 

reinforced concrete than with other more well-behaved structural materials. 

As a final comment to these conclusions, it must be stressed that it is not consider that this line 

of investigation is ended. The next section presents suggestions of some topics that require 

more research. 

7.2. Further developments 

The origin of the suggestions for further developments of this work is threefold: (i) during the 

present investigation some new problems and questions appeared naturally, (ii) there are also 

some topics that, initially, were ment to be investigated, but which were left behind, and, 

finally, (iii) there is a group of issues whose investigation could not be concluded. 
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The numerical investigation of the role played by the auxiliary stiffness in the efficiency of the 

method should be pursued in order to establish more objective criteria, i.e. criteria which are 

less problem dependent, regarding the characteristics that the auxiliary stiffness field should 

have in order to lead to a small number of iterations for convergence. 

The convergence of FFM(MN)S should be further investigated and convergence conditions 

established. In case the analytical approach reveals to be unfruitful, a numerical investigation 

of the convergence conditions, e.g. the determination of admissible values and also of optimal 

values of the auxiliary stiffness, should be carried out. 

FFM must be extended to consider constitutive laws with softening branches. It is important to 

derived sufficient convergence conditions for such behaviour, for both FFM(M) and FFM(MN). 

The convergence conditions of FFM(MN) should be improved for the particular case of 

composite structural materials, see the concluding remarks of chapter 5. 

The use of higher order interpolation in the discrete descriptions of FFM, should also be 

developed and studied. Particularly, it should be evaluated if more complex systems of 

fictitious forces, with more elemental interpolation sections, is interesting from the numerical 

point of view, because fewer elements will be needed to achieve mesh-convergent solutions. 

This was illustrated with the second example in chapter 3, which compared the performance 

of FFM(M)2 and FFM(M)3, particularly with respect to the mesh-convergence. Ferreira (2013) is 

already investigating this matter, having in mind the application of FFM model N to the analysis 

of adaptative stress field models. 

An important further development is the possibility of the combination of the Equivalent Force 

Method with FFM for the nonlinear material and geometrical analysis of skeletal structures. 

The convergence of the simultaneous application of these two methods should be studied. In 

particular, it should be investigated how the convergence criteria of these two methods 

change when they are combined. 

FFM should be extended to non-holonomic elastic-plastic analysis, which requires the 

development of an incremental description of the method. Ferreira (2013) is also currently 

working on this topic having in view the analysis of adaptative stress field models. 

As a last topic, a deeper investigation of the operators IG  which transform initial 

deformations (resp. initial stresses) into effective generalized deformations (resp. effective 

generalized stresses) can be a relevant development. Moreover, in the discrete case, the close 
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relation between matrices T and the similar matrices established by Fellipa et al. (1997, 2001) 

should be investigated. 
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