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A B S T R A C T

Local image feature detection (or extraction, if we want to use a more
semantically correct term) is a central and extremely active research
topic in the fields of computer vision and image analysis. Local fea-
tures have been used as the basis for solutions to prominent problems
such as matching, content-based image retrieval, object recognition,
and symmetry detection.

It is widely accepted that a good local feature detector is the one
that efficiently retrieves distinctive, accurate, and repeatable features
in the presence of a wide variety of photometric and geometric trans-
formations. However, these requirements are not always the most im-
portant. In fact, not all the applications require the same properties
from a local feature detector. We can distinguish three broad cate-
gories of applications according to the required properties. The first
category includes applications in which the semantic meaning of a
particular type of features is exploited. For instance, edge or even
ridge detection can be used to identify blood vessels in medical im-
ages or watercourses in aerial images. Another example in this cate-
gory is the use of blob extraction to identify blob-like organisms in
microscopic images. A second category includes tasks such as match-
ing, tracking, and registration, which mainly require distinctive, re-
peatable, and accurate features. Finally, a third category comprises
applications such as object (class) recognition, image retrieval, scene
classification, and image compression. For this category, it is crucial
that features preserve the most informative image content (robust im-
age representation), while requirements such as repeatability and ac-
curacy are of less importance.

Our research work is mainly focused on the problem of providing
a robust image representation through the use of local features. The
limited number of types of features that a local feature extractor re-
sponds to might be insufficient to provide the so-called robust image
representation. It is fundamental to analyze the completeness of lo-
cal features, i. e., the amount of image information preserved by local
features, as well as the often neglected complementarity between sets
of features.

The major contributions of this work come in the form of two sub-
stantially different local feature detectors aimed at providing consid-
erably robust image representations. The first algorithm is an informa-
tion theoretic-based feature extraction that responds to complemen-
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tary local structures that are salient (highly informative) within the
image context. This method represents a new paradigm in local fea-
ture extraction, as it introduces context-awareness principles. The sec-
ond algorithm extracts Stable Salient Shapes, a novel type of regions,
which are obtained through a feature-driven detection of Maximally
Stable Extremal Regions (MSER). This method provides compact and
robust image representations and overcomes some of the major short-
comings of MSER detection.

We empirically validate the methods by investigating the repeata-
bility, accuracy, completeness, and complementarity of the proposed
features on standard benchmarks. Under these results, we discuss the
applicability of both methods.
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R E S U M O

A detecção de características locais (local features) de uma imagem
é um tema central nas áreas de visão por computador e análise de
imagem. Soluções eficazes para a resolução de problemas como a
correspondência de imagens, recuperação de imagens baseada no
conteúdo, reconhecimento de objectos e detecção de simetria são fre-
quentemente suportadas pela detecção de características locais.

É comum considerar-se como um bom detector de características
locais aquele que apresenta resultados repetíveis e exactos na pre-
sença de diversas transformações geométricas e fotométricas. Além
disso, o detector deverá ser capaz de detectar estruturas relativa-
mente distintas entre si. Contudo, estas propriedades não são sem-
pre as mais desejadas; nem todas as aplicações exigem as mesmas
propriedades a um detector. É possível identificar três grandes cate-
gorias de domínios de aplicação de acordo com as propriedades que
estas requerem aos detectores. A primeira inclui aplicações onde o
significado semântico de um dado tipo de característica local é explo-
rado. A título de exemplo, a detecção de arestas e linhas pode ser
utilizada na identificação de vasos sanguíneos em imagens médicas,
assim como na identificação de cursos de água em imagens aéreas.
Um outro exemplo pertencente a esta categoria é a extracção de blobs
em imagens microscópicas com o objectivo de identificar organismos
com a mesma forma. Uma segunda categoria integra tarefas como
a correspondência de imagens, o seguimento e o co-registo, que re-
querem sobretudo características locais que sejam repetíveis, exactas
e distintas entre si. A terceira categoria compreende aplicações como
o reconhecimento de objectos (ou de categorias de objectos), a recu-
peração de imagens e a compressão. Nesta categoria é crucial que
as características locais preservem o conteúdo mais relevante da ima-
gem de forma a constituírem uma representação robusta da imagem.
Neste caso, propriedades como a repetição e a exactidão tendem a
tornar-se requisitos secundários.

O trabalho de investigação aqui apresentado centra-se maioritaria-
mente no problema de representar robustamente uma imagem através
de características locais. O número limitado de tipos de estruturas a
que um detector habitualmente responde poderá ser insuficiente para
obter uma representação robusta. Torna-se relevante estudar a com-
pletude das características locais, i. e., a quantidade de informação da
imagem que é preservada por estes elementos, assim como a comple-
mentaridade entre diferentes tipos de características locais. A nossa
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investigação desenvolve-se em torno destas métricas, tendo como re-
sultado a apresentação de dois algoritmos para a extracção de carac-
terísticas locais que conseguem assegurar uma representação robusta
da imagem, sem descurar outros requisitos relevantes.

O primeiro algoritmo, baseado em teoria de informação, extrai
partes da imagem que são salientes (altamente informativas) segundo
o contexto da imagem. O método em questão representa um novo
paradigma na extracção de características locais, uma vez que recorre
ao contexto da imagem. O segundo algoritmo extrai regiões denom-
inadas de Stable Salient Shapes que resultam da extracção de Regiões
Extremas Maximamente Estáveis (ou MSER) em mapas de saliên-
cia onde as características semi-locais presentes definem a forma e
o tamanho das primeiras. Este método assegura uma representação
compacta e robusta da imagem e reduz algumas das maiores limi-
tações do detector de Regiões Extremas Maximamente Estáveis.

Validamos experimentalmente ambos os métodos através da análise
de critérios como a repetição, exactidão, completude e complemen-
taridade em vários benchmarks padrão. Sob estes resultados, discuti-
mos a aplicabilidade dos algoritmos.
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1
I N T R O D U C T I O N

1.1 motivation and problem formulation

“There is no such thing as generic keypoints. They should
be selected specifically for the use to which they will be
put, using a purpose-designed detector and parameters.”
(Triggs, 2004, p. 102)

“Even though a lot of progress has been made in the do-
main of feature extraction – especially with respect to the
level of invariance –, and even though impressive applica-
tions have been built using local features, they still have
a number of shortcomings.” (Tuytelaars & Mikolajczyk,
2008, p. 83)

“Overcomplete representations, which result from the si-
multaneous use of multiple detectors provide a temporary
solution only in spite of efficient multi-type feature detec-
tors. However, an efficient combination of complementary
detectors or a multi-type detector providing complemen-
tary features for compact representation would be much
more useful given the increasing amounts of data to pro-
cess.” (Tuytelaars & Mikolajczyk, 2008, p. 84)

Local image feature detection has been successfully used to solve
a wide range of problems, including wide-baseline stereo matching
(Baumberg, 2000; Matas et al., 2002; Tuytelaars & Gool, 2004), content-
based image retrieval (Schmid & Mohr, 1997; Tuytelaars & Gool, 1999;
Mirmehdi & Periasamy, 2001), object recognition (Dorkó & Schmid,
2003; Mikolajczyk et al., 2006; Schnitzspan et al., 2010), camera calibra-
tion (Förstner et al., 2009a), and symmetry detection (Loy & Eklundh,
2006; Deng et al., 2007).

Using sparse sets of locally salient image patches (the so-called
local image features) is usually an efficient and robust solution to
various problems. Efficiency is a natural consequence of discarding
a major part of the image. Robustness is gained through the exis-
tence of redundant elements. Furthermore, local features can provide
a compact representation of the image content.

Local feature detection is a mature research topic, which has seen
an increasing popularity and prominence through its existence. Early
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algorithms were for the most part relatively simple solutions aimed
at detecting keypoints, such as corner points (e. g., Moravec, 1977;
Beaudet, 1978). Matching, i. e., the task of establishing correspondences
between images, was one of the earliest applications to take advan-
tage of local features (e. g., Förstner, 1986). The use of local features
provided an efficient mechanism for matching tasks. However, local
feature detectors were required to find “the same” keypoints in dif-
ferent images, regardless of the image transformation (Triggs, 2004).
In other words, detectors were required to find keypoints in a repeat-
able and accurate manner.

There has been a significant research effort to develop algorithms
that retrieve repeatable and accurate features. Current state-of-the-
art solutions detect features with a relatively high repeatability rate.
This is mainly achieved by using techniques that provide robustness
against small image deformations and invariance/covariance with re-
spect to larger image deformations, such as illumination changes or
viewpoint changes.

The maturity that characterizes local feature detection is not syn-
onym of a research without major open issues. Algorithms have been
often presented as a generic tool, without taking into account the
conflicting properties required by different applications. Performance
evaluation has been mainly based on the repeatability criterion, which
is not fully sufficient to reflect the usefulness of the algorithms. It is
crucial to consider other criteria in the evaluation in order to define
the proper application domain(s) for a given algorithm.

There was also a paradigm shift in local feature detection with the
introduction of robust local descriptors (e. g., Lowe, 1999). Descrip-
tors computed on local features are not just a robust and compact
characterization of image content, they are also a powerful tool to
classify scenes and recognize objects without the need for semantic-
level segmentation (Tuytelaars & Mikolajczyk, 2008).

With the change in paradigm, aspects such as completeness, i. e.,
the amount of image information preserved by the local features,
and complementarity between features became more relevant. De-
spite their importance, these two properties are often neglected in
the design of feature detection algorithms (Dickscheid et al., 2011).

1.2 contributions and relevance

This dissertation focuses on the study and on the design of local fea-
ture extractors, where aspects such as the completeness and the com-
plementarity of features are taken into consideration. Our fundamen-
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tal purpose is to study ways of ensuring a robust and compact image
representation through the use of local features, without neglecting
other fundamental aspects such as repeatability and distinctiveness.
As a result, we propose two different algorithms for feature extrac-
tion. The first one, named Contex-Aware Keypoint Extractor (CAKE),
represents a new paradigm in local feature extraction. The idea is
to retrieve salient locations within the image context, which means
no assumption is made on the type of structure to be detected. This
scheme is designed to provide a robust image representation, with or
without the contribution of other local features. The second algorithm
detects a novel type of features, coined as Stable Salient Shapes (SSS).
The new features are obtained through a feature-driven Maximally
Stable Extremal Regions (MSER) detection (Matas et al., 2002). The
feature-driven approach provides suitable domains for MSER detec-
tion. Such domains can be viewed as saliency maps in which features
related to semantically meaningful structures, e. g., boundaries and
symmetry axes, are highlighted and simultaneously delineated under
smooth transitions. In comparison with MSER, SSS are more robust
to blur and show substantially higher completeness values.

While both algorithms can achieve robust image representations,
they represent two different ways of accomplishing such goal. The
context-aware extractor is a tool explicitly designed to optimize the
coverage of salient image parts, either at a local level or at a global
level. As for the SSS detector, it is a computationally efficient method
that simultaneously retains the noteworthy properties of the MSER
detector and provides robust image representations. The major ad-
vantage of the second method over the first one is the computational
complexity. On the other hand, the SSS detector makes assumptions
on the image content, namely the existence of a well-structured scene.
Since structural information is used to delineate the features, one can
expect a less robust representation when structural information is less
present in the image.

The performance of both methods was evaluated in a comparative
study where state-of-the-art algorithms were included and different
criteria were taken into consideration in order to derive more sustain-
able conclusions on the usefulness of features.

1.3 a note on terminology : detect(or) vs . extract(or)

The term detector has been widely used as the term to refer to an al-
gorithm that extracts local features. As noted by Tuytelaars & Mikola-
jczyk (2008), the term detector only makes sense if one clearly knows
what the features are so one can infer about misdetections or false
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detections. In fact, the term extractor would be semantically more
appropriate. Throughout this dissertation, we will use both terms in-
terchangeably, although a preference will be given to the former.

1.4 more notes on notation

Throughout this dissertation, we adopt the following notation: bold-
face lowercase letters indicate (column) vectors (e. g., x = [x y]T );
I stands for a single-channel image, while L denotes an image re-
sulting from the convolution of I with a Gaussian kernel G, i. e.,

L(x,σ) = G(x,σ) ∗ I(x), with G(x,σ) = 1
2πσ2

exp(−‖x‖
2

σ2
). To simplify

the notation, the dependence of G on x will be left implicit. The gra-
dient of a function f is represented by the row vector ∇f. Sometimes,
the gradient of L(x,σ) is alternatively represented by∇σL(x). The first
order partial derivative of fwith respect to u is denoted by fu. Second
order partial derivatives of f with respect to u and v are denoted by
fuv. Unless otherwise stated, matrices are represented by uppercase
letters. λ1(A) and λ2(A) denote the minimum and maximum eigen-
values of a given matrix A, respectively. The dependence of λ1 and
λ2 on A will be sometimes omitted.

1.5 outline

The remainder of this dissertation is organized as follows:

chapter 2 – local feature detection : a review.

cha This chapter introduces the basic concepts and definitions sur-
rounding local feature detection and provides a review of lo-
cal feature detectors. Given the number of methods available
in the literature, our review is mainly focused on seminal al-
gorithms and state-of-the-art-algorithms. We complement this
information with an analysis of the main challenges and limita-
tions of current local feature detection.

chapter 3 – evaluation of local features .

cha In this chapter, we describe and discuss the different criteria,
datasets, and benchmarks used in the evaluation of local feature
detectors.

chapter 4 – context-aware features for robust

image representation.

cha Chapter 4 introduces the Context-Aware Keypoints Extractor, a
context-aware local feature detector aimed at providing a robust
image representation. This chapter also includes an experimen-
tal validation of the proposed algorithm.
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chapter 5 – stable (salient) shapes : feature-driven

maximally stable extremal regions .

cha In this chapter, we introduce the Stable Salient Shapes detector.
This work is aimed at simultaneously overcoming significant
shortcomings of the Maximally Stable Extremal Regions detec-
tor and providing robust image representations. The chapter is
complemented with an experimental validation of the method.

chapter 6 – conclusions and perspectives .

cha Chapter 6 finalizes the dissertation by summarizing the main
findings and analyzing further lines of research.
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2
L O C A L F E AT U R E D E T E C T I O N : A R E V I E W

The purpose of this chapter is to introduce fundamental concepts
and definitions surrounding local feature detection and to provide a
review of local feature detectors. Given the relevance and the maturity
of the topic, we mainly focus our review on seminal algorithms and
on established state-of-the art algorithms.

2.1 local features : preliminairies

A number of computer vision and image analysis tasks are based on
the detection of local features, i. e., parts of an image that are more
visually salient than their immediate surroundings. The key idea un-
derlying the use of local features is to provide a representation of the
image content by using a sparse set of locally salient parts. By discard-
ing most of the image content, one saves computation and improves
robustness, as there are redundant local image patches rather than a
limited number of global cues (Triggs, 2004).

Depending on the application domain, local feature detectors are
required to present different properties. For instance, in some cases,
it is fundamental to perform a stable detection when geometric and
photometric perturbations occur in order to provide repeatable and
accurate features. In other cases, it is more critical to provide a fast
detection to fulfill the time constraints imposed by the application.

The different requirements imposed by diverse applications have
made local feature detection a very active and prolific research topic
both in the area of computer vision and image analysis. In this chap-
ter, we overview local feature detection, giving a special emphasis to
seminal algorithms and current state-of-the-art solutions. For a more
comprehensive review, we refer the reader to the works of Tuytelaars
& Mikolajczyk (2008) and Szeliski (2010).

2.1.1 Local features: a few examples

In the context of human vision, visual perception is a multistage pro-
cess comprehending several visual representations presented with an
increasing degree of complexity (Marr, 1982). The early representa-
tion, known as the primal sketch, mainly consists of information
about low-level features, such as edges, ridges, blobs, corners, and
junctions. Low-level image features may either have a strictly local or
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a semi-local structure. Edges and ridges are examples of semi-local
features due to their segmental structure. The remaining ones are
classified as strictly local features.1

Corners are image locations that have significant intensity changes
in more than one direction. Besides being perceptually relevant, cor-
ners have a well-defined location, which suggests a stable and robust
detection.

Blobs are regions that are darker or brighter than the immediate
surroundings. Their perceptual relevance is also high but in a differ-
ent manner from corners: while corners represent fine details on the
image, blobs convey most of the image information (Dickscheid et al.,
2011).

Figure 2.1 depicts some examples of primal-sketch priors (Kokki-
nos et al., 2006), including corners and blobs.

(a) (b)

(c) (d)

Figure 2.1: Examples of local and semi-local features: (a) edges; (b) ridges;
(c) blobs; (d) corners.

1 This classification is not consensual. Usually, a blob is considered as a local structure.
However, some authors consider it as semi-local one (e. g., Lindeberg, 1993).
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2.1.2 Ideal properties of a detector

Local feature detectors are often presented as generic ones, i. e., as a
multipurpose tool. However, the idea of a generic detector entails a
certain impracticability (Triggs, 2004), as different applications might
require different and sometimes conflicting properties from the detec-
tor. We enumerate the desirable properties of the generic local feature
detector, which are supposed to fulfill the requirements of the major-
ity of applications. We also illustrate the unfeasibility of a generic
detector by presenting some conflicting requirements.

repeatable

Features should be repeatable, that is, a detector should be able to
detect “the same” features on two different images of the same scene,
regardless of the underlying image transformation. A repeatable out-
put is dependent on the robustness and on the invariance/covariance
properties shown by the detector.

1. A local feature detector is considered to be robust against a
minor image deformation – typically, a relatively small photo-
metric distortion such as blur and compression artifacts – when
detection is only slightly affected by the deformation, i. e., there
is only a negligible loss of accuracy.

2. To achieve a repeatable detection when large deformations oc-
cur, one should design a method that shows an invariant/co-
variant response with respect to these deformations. A covari-
ant response is required when feature detection has to change
according to the transformation (e. g., a geometric transforma-
tion). An invariant response occurs when the detection is not
affected by the transformation. For instance, invariance to illu-
mination changes only occurs if we detect the same features
under various lighting conditions. In other words, we can view
invariance as optimal robustness.

accurate

It is desirable to accurately retrieve the location as well as the scale
and the shape of local features (Tuytelaars & Mikolajczyk, 2008).

distinctive

The patterns or the structures in the immediate surroundings of
the detected features should show a considerable degree of variation
among themselves. Such property is fundamental for matching tasks,
where features have to be easily distinguished (through description)
in order to be matched.

complete

A detector should not only provide distinctive features, it should
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also provide a complete set of features, that is, the amount of image
information preserved by a set of features should be maximized, with-
out sacrificing the inherent sparseness of the set (Dickscheid et al.,
2011). In other words, it is desirable that the cardinality of the set of
features reflects the image information.

efficient

A local feature detector should be computationally efficient. This
property becomes crucial in applications where local feature extrac-
tion appears as one of a series of tasks to be sequentially performed
and a large amount of data is used.

2.1.2.1 Conflicting requirements

We can assume an ideal local feature detector, with no particular ap-
plication in mind, as a computationally efficient algorithm that yields
the highest repeatability rate under a large class of image transfor-
mations, provides an accurate location of the features, and efficiently
covers the most informative content (without a biased preference for
a given type of structures). However, these requirements tend to be
conflicting.

Achieving invariance/covariance with respect to a given transfor-
mation may mean sacrificing the distinctiveness or even the complete-
ness of the features. Invariant descriptors with respect to a certain
transformation can only be effectively used if they are computed on
features showing invariance (or covariance) with respect to the same
transformation. However, such invariance is sometimes achieved by a
less distinctive description. In addition, invariant/covariant features
with respect to severe image transformations are sometimes the re-
sult of a convergence process in which various candidate features are
discarded. As a result, completeness is reduced. Similar observations
hold if we replace invariance/covariance with robustness.

Efficiency and completeness may also be conflicting requirements.
Providing a denser set of features may substantially increase the com-
putation time. Similarly, a denser set of features means less distinctive
features, as there are repeated structures in the set.

Different applications require different properties from a local fea-
ture detector. It is fundamental to design a feature detector with an
application domain in mind. In this way, the performance of the de-
tector is optimized for a specific range of tasks.
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2.1.3 Applications

Local features have been successfully used in a wide range of appli-
cations. In most cases, local features play an extremely crucial role,
as their detection serves as a basis for subsequent tasks. Given the
multitude of tasks in which local feature detection is used, we only
describe a few typical applications which are known for their promi-
nence.

2.1.3.1 Matching

(Feature) matching is a typical computer vision task based on the de-
tection of local features. It can be performed either as an isolated task
or it can be part of a more complex task. As the name suggests, its
purpose is to find corresponding features in two or more images. The
process is usually divided into three steps. Feature detection is the
first one. The second step is called description, which involves the
computation of descriptors for each feature previously extracted. De-
scriptors are summarized (geometric or photometric) representations
of a given image patch. The third and final stage is known as match-
ing and it consists of comparing descriptors by means of a given
distance in order to determine matches.

Robust wide-baseline stereo matching (Pritchett & Zisserman, 1998)
is a well-known example of a matching problem. Its purpose is to find
corresponding features in pairs of overlapping images taken from sig-
nificantly different viewpoints (Dickscheid, 2011). This problem has
been one of the motivations to devise affine covariant methods (Baum-
berg, 2000; Matas et al., 2002; Tuytelaars & Gool, 2000). An affine in-
variant description would be ineffective if the detection was not affine
covariant. For this kind of task, it is crucial to provide repeatable, ac-
curate, and distinctive features.

2.1.3.2 Camera calibration

Camera calibration is the process of determining parameters such
as focal length and lens distortion, which are responsible for defin-
ing the relationship between 3D world coordinates and 2D image co-
ordinates. A feature-based camera calibration usually occurs in two
stages. First, local features are extracted from a calibration object (e. g.,
a checkerboard calibration grid). Then, the camera model parameters
are estimated from the extracted features. This task requires local fea-
tures to be extracted from the different images in a repeatable and ac-
curate manner (Mühlich & Aach, 2007). There is no need to describe
features, only their location is relevant. As a result, keypoints (e. g.,
corner points and centers of mass of blobs) are the most suited type
of features for camera calibration, as long as they are repeatable and
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accurate. For a reliable parameter estimation, it is also important not
to have a reduced number of features. SFOP features (Förstner et al.,
2009a) are an example of features proposed for camera calibration.

2.1.3.3 Object recognition

Object recognition is a complex and challenging computer vision task.
In general terms, the goal of object recognition is to recognize an ob-
ject in an image or video collection, regardless of the geometric or
photometric transformations that objects may suffer. The problem of
object recognition can be presented in several forms (Szeliski, 2010).
If the object is known, the problem is called object detection and the
task of recognition is to determine where a match may occur. In other
words, recognition is mainly a matching problem. If the object to be
recognized is a rigid object, local features can be used to verify the
alignment. Sometimes, the goal is to recognize instances of different
classes of objects (object class recognition). A common solution to the
problem of object class recognition is to use bags of words (Lazeb-
nik et al., 2006). Given an image, the algorithm determines the distri-
bution of the visual words (descriptors) computed on local features
and compares this distribution to others computed in the training im-
ages. Object class recognition is an example of a task that requires
sets of features with a good coverage of informative image parts. Fea-
tures are not supposed to be matched on an individual basis, the
goal is to analyze and compare their statistics (Tuytelaars & Mikola-
jczyk, 2008). In this case, local features are used to provide a robust
image representation. Repeatability and accuracy become secondary
requirements.

2.2 a review of local feature detectors

It is commonly accepted that if we trace back local feature detection to
its roots, neglecting preliminary works that have mainly established
the theoretical foundation of local feature detection (Attneave, 1954;
Fend & Pavlidis, 1973; Rosenfeld & Thurston, 1971), it will lead us
to Moravec’s detector (Moravec, 1977, 1980), which was aimed at pro-
viding the core for a navigation system of a mobile robot through
a clustered environment. In his solution, the local saliency measure
relied on the minimum intensity variation value computed over uni-
tary shifts of a window centered at a location x, performed across the
four principal directions. This detector exhibited a higher response to
corners and isolated pixels. Additionally, Moravec coined these loca-
tions as points of interest, which has been the terminology adopted
by the vision community and used interchangeably with others such
as keypoints, interest points, or even corner points.
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From Moravec’s solution to what we can regard as today’s state-
of-the-art detectors, there are considerably relevant differences along
with a strong correlation among them concerning the basic steps
of detection. These differences started being partially delineated by
the seminal studies on scale-space theory (Witkin, 1983; Lindeberg,
1994), which had a major impact on local feature detection. They
were the inspiration to develop scale covariant methods and to fur-
ther study scale-space or affine-space representations (e. g., Baum-
berg, 2000). The scale-space representation, i. e., the representation of
an image as a collection of (Gaussian) smoothed images parametrized
by the size of the kernel, allowed detectors to define a size (scale) and
a shape for features, which ensured scale covariance. Current state-of-
the-art algorithms are even more effective. They are able to provide
a covariant detection when in the presence of large image deforma-
tions, such as viewpoint changes.

We provide a review of local feature detection. Our intent is to give
to the reader an explanatory overview on the topic by describing and
classifying the fundamental algorithms for feature detection.

We adopt the more generic term keypoint instead of corner point.
Although many algorithms were introduced as corner detectors, these
detectors also respond to other conspicuous locations, namely iso-
lated pixels of extremum intensity values and pixels in highly tex-
tured areas.

We consider three broad categories of local feature detectors us-
ing the type of detected feature as the criterion: (i) keyoint detec-
tors, (ii) keypoint-based region detectors, and (iii) region detectors.
We overview keypoint detectors and keypoint-based region detectors
in the same subsection since the latter is an extension of the former
that usually takes into account the scale of the keypoint to delineate
a region.

2.2.1 Keypoint detectors and keypoint-based region detectors

A keypoint is a well-defined representative of a locally salient image
part. Hence, a keypoint can be described as the most salient location
of a locally salient region. Given its conspicuity, a keypoint is a local
feature itself.

Despite the variety of solutions, a common framework for keypoint
extraction can be encountered. In a generic and simplistic manner,
we can view the kernel of a keypoint detector as a function (oper-
ator) that takes image locations as arguments and maps them into
something that measures the saliency of the given locations taking
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into consideration their surroundings. From this measure, keypoints
are commonly retrieved by a local maxima search and by defining a
threshold for the minimum saliency measure value. The latter opera-
tion is aimed at preserving “the most interesting” keypoints, which
are also expected to be the most robust in the presence of deforma-
tions. Algorithm 1 outlines the main steps of the majority of keypoint
detectors. We can argue that the main differences between two arbi-
trary keypoint extractors lie on the way we represent the surround-
ings of a given location, i. e., how we describe the surroundings and
how we measure the saliency of patterns from such representation.

Algorithm 1 Keypoint detector (generic framework)

1: for each pixel location x do
2: Compute the local saliency measure f at x.
3: end for
4: Select keypoints (locations at which f attains a local maximum).
5: Select keypoints x? with f(x?) > T (T is the threshold).

2.2.1.1 Moravec keypoint detector

In Moravec’s seminal algorithm (Moravec, 1977), the local saliency
measure corresponds to the minimum intensity variation value com-
puted over unitary shifts of a local window of size k× l centered at
a given pixel location x = [x y]T , performed across the four principal
directions. The sum of squared differences is used to determine the
variation:

vV =
1

p(q− 1)

k∑
i=−k

l−1∑
j=−l

(I([x+ i y+ j]T ) − I([x+ i y+ j+ 1]T ))2

vH =
1

(p− 1)q

k−1∑
i=−k

l∑
j=−l

(I([x+ i y+ j]T ) − I([x+ i+ 1 y+ j]T ))2

vD1 =
1

(p− 1)(q− 1)

k−1∑
i=−k

l−1∑
j=−l

(I([x+ i y+ j]T ) − I([x+ i+ 1 y+ j+ 1]T ))2

vD2 =
1

(p− 1)(q− 1)

k−1∑
i=−k

l−1∑
j=−l

(I([x+ i+ 1 y+ j]T ) − I([x+ i y+ j+ 1]T ))2,

(2.1)

with p = 2k+ 1 and q = 2l+ 1. The local saliency measure coincides
with the minimum variation:

vmin = min{vV , vH, vD1 , vD2}. (2.2)

Since keypoints are the pixel positions where Vmin attains a local
maximum, these locations correspond to corners or isolated pixels.
This detector provides an anisotropic response, which is result of us-
ing a fixed number of directions. By considering the minimum inten-
sity variation, this detector becomes particularly sensitive to noise.
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2.2.1.2 Beaudet keypoint detector

Beaudet (1978) proposes a second order differential operator for key-
point extraction. The basis of Beaudet’s operator is the Hessian matrix
of the image, i. e., a symmetric matrix of second-order derivatives of
a given image I:

H(x) =

[
Ixx(x) Ixy(x)

Iyx(x) Iyy(x)

]
. (2.3)

The saliency measure is the determinant of H,

det(H) = IxxIyy − I
2
xy, (2.4)

which has a local maxima near corner points. This operator is quite
sensitive to image noise, as it includes the computation of second or-
der derivatives.

This operator is also used in more complex detectors, such as the
Hessian-Laplace (Mikolajczyk & Schmid, 2001), and in the KAZE de-
scriptor (Alcantarilla et al., 2012).

2.2.1.3 Harris-Stephens keypoint detector

Förstner (1986) and Harris & Stephens (1988) were the first authors to
propose operators based on the structure tensor matrix. The Harris-
Stephens detector was presented as an improvement over Moravec’s
algorithm. Instead of using a fixed number of shifted patches, it uses
the structure tensor matrix to detect responses at any shift, which
allows corners to be more accurately detected. The structure tensor
matrix of an image I at x is given by

µ(x,σI,σD) = G(σI) ∗
[

L2x(x,σD) LxLy(x,σD)

LyLx(x,σD) L2y(x,σD)

]
, (2.5)

where the parameters σI > 0 and σD > 0 denote the differentiation
and derivation scales, respectively. µ represents the averaged outer
product of the image gradients and its spectral structure captures
the local signal changes along the principal directions: the order of
magnitude of the eigenvalues is proportional to the gradient variation
along the principal directions. By analyzing the spectrum of µ, three
cases can be considered:

Proposition 2.1 (Harris & Stephens, 1988). Let λ1 and λ2 be the eigen-
values of the structure tensor matrix µ at x, with λ1 6 λ2 (λ1, λ2 > 0, as µ
is positive semi-definite).

1. if λ1 ≈ 0 and λ2 ≈ 0, then x lies on a region of approximately constant
intensity.
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2. if λ2 � λ1 and λ1 ≈ 0, then x lies on an edge.

3. if λ1 and λ2 are both large values, then x lies on a corner.

The inferences made in Proposition 2.1 are the support for the
Harris-Stephens saliency measure, which is given by

fHS(x) =
n∏
i=1

λi − κ(

2∑
i=1

λi)
2 = det(µ) − κ trace2(µ), (2.6)

where κ > 0 is an adjustable parameter for tuning the sensitivity of
the detector. Keypoints are found at locations at which fHS attains
a local maximum. Note that the Harris-Stephens algorithm does not
have to compute the spectral decomposition of µ; it suffices to evalu-
ate the determinant and the trace of µ.

The features shown in Fig. 2.1 (d) correspond to Harris-Stephens
keypoints, which are mainly corner points.

2.2.1.4 Förstner keypoint detector

Förstner (1986) proposes a keypoint detector based on the structure
tensor matrix, which is the kernel of a feature-based matching algo-
rithm. The purpose of the detection stage is to select points with a
“promising matching accuracy”. The local saliency measure is solely
based on trace of the inverse of µ, the image structure tensor matrix:

fF(x) =
1

trace(µ−1) + ε
=

1∑2
i=1

1
λi

+ ε
, (2.7)

where ε is an arbitrary small positive constant.

2.2.1.5 Noble keypoint detector

Noble (1989) suggests a modified version of the Harris-Stephens de-
tector that does not contain the original tuning parameter, overcom-
ing the need of manually tuning it:

fN(x) =
det(µ)

ε+ trace(µ)
=

∏2
i=1 λi

ε+
∑2
i=1 λi

, (2.8)

where ε denotes an arbitrary small positive constant.

2.2.1.6 Shi-Tomasi keypoint detector

The Shi-Tomasi algorithm (Shi & Tomasi, 1994) is another algorithm
based on the structure tensor matrix. It detects keypoints via Eq. (2.9).
By imposing fST (x) > λ, where λ > 0 is a sufficiently large threshold,
we are selecting points whose corresponding structure tensor matrix
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exhibits eigenvalues that do not differ by several orders of magnitude,
which in terms of visual patterns, corresponds to selecting those that
show high intensity variations in several directions:

fST (x) = min{λ1, λ2} = λ1. (2.9)

2.2.1.7 Rohr keypoint detector

By neglecting the trace of the structure tensor matrix, Rohr (1997) pro-
poses an alternative operator relying exclusively on the determinant
of this matrix:

fR(x) = det(µ) =
2∏
i=1

λi. (2.10)

The aforementioned measure implies the exclusion of points that con-
vey a less discriminant information: those exhibiting a large differ-
ence between the eigenvalues. The deletion of those points is the re-
sult of applying the following threshold:

det(µ)
(12 trace(µ))2

=

∏2
i=1 λi

(12
∑2
i=1 λi)

2
. (2.11)

2.2.1.8 Kenney et al. keypoint detector

The Kenney et al. detector (Kenney et al., 2003) for the Schatten p-
norm, with p ∈ [1,∞), identifies keypoints using the following func-
tion:

fK,p(x) =
1

‖µ−1‖p
=

1

p

√∑2
i=1

1
λ
p
i

. (2.12)

The latter detector arises as an explicit attempt to select locations
that convey a better repeatability in the presence of image rotations
and translations. The method selects points that have a small condi-
tion number with respect to translations, and consequently, to rota-
tions (Zuliani et al., 2004).

It is worth mentioning that fF,
√
fR, fST , and fk are equivalent

modulo the choice of a convenient matrix norm (Kenney et al., 2005):

Lemma 2.1 (Kenney et al., 2005). The Förstner, Shi-Tomasi, and Kenney
et al. operators are equivalent modulo the choice of a suitable matrix norm.√
fR (modified Rohr operator) is equivalent to Kenney et al. detector in a

limit sense (via a normalization constant).

fF = fK,1(with ε = 0);

fST = lim
p→∞ fK,p;√

fR = lim
p→0

1
p
√
2
fK,p.
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Figure 2.2 depicts keypoints extracted by the aforementioned algo-
rithms. The operators produce very similar results.

(a) (b)

(c) (d)

Figure 2.2: Keypoint extraction: (a) Förstner; (b) Shi-Tomasi; (c) Rhor; (d)
Kenney (p=3).

2.2.1.9 Triggs keypoint detector

A generalization of the Harris-Stephens detector is the one suggested
by Triggs (2004). It employs a multi-scale detection which responds
to maximally stable locations with respect to affine deformations and
slight illumination changes. This detector is based on the operator

fT = λ1 −αλ2, (2.13)

where the parameter α is usually set to 0.06.

2.2.1.10 SFOP detector

The Scale Invariant Feature Operator (SFOP) (Förstner et al., 2009a)
responds to corners, junctions, and circular features in a scale covari-
ant manner. The explicitly interpretable and complementary detec-
tion results from a unified framework that extends a gradient-based
detection (Förstner, 1994; Parida et al., 1998) to a scale-space repre-
sentation. In this algorithm, the general spiral feature model (Bigün,
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1990) allows the fusion of the different detectors into one.

An image patch around a given point x has a spiral structure when
the edge direction at a neighboring point y has a constant angle
with the radius vector. The algorithm measures the consistency of

(a) (b) (c)

Figure 2.3: Measuring distances in a spiral feature. d corresponds to the dis-
tance from x to an edge line. The constant angle α is measured be-
tween the tangential and radial directions. (a) Junction (α = 0°);
(b) circle (α = 90°); (c) logarithmic spiral feature (arbitrary α).
Adapted from Förstner et al. (2009a).

the neighborhood of a point x with the feature model by computing
the distances dn to the edge line through a point yn having angle α
with respect to the gradient direction at yn. Such distance is given by

dn(x, yn,α,σD) =
(yn − x)TRα∇σDL(yn)

|∇σDL(yn)|
, (2.14)

where ∇σDL(yn) is the gradient of a Gaussian smoothed version of
the image using σD as the differentiation scale and Rα is a rotation
matrix of angle α. The SFOP algorithm searches for different spiral
structures whose location is determined with highest precision. The
basis for detection is the following structure tensor matrix:

µ(x,α,σI,σD) = G(σI) ∗ (Rα∇σDL(x)∇σDL(x)TRTα). (2.15)

The smallest eigenvalue of µ is used to define the precision

w(x,α,σI,σD) = (N(σD) − 2)
λ1(µ(x,α,σI,σD))
Ω(x,α,σI,σD)

, (2.16)

where N(σD) represents the number of pixels in the neighborhood of
x defined by the Gaussian G(σD) andΩ is the negative log-likelihood
function to be minimized:

Ω(x,α,σI,σD) = N(σ) trace(Rα∇σI∇TσIR
T
α ∗ xxTG(σD)). (2.17)
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To avoid keypoints caused by noise, a threshold is defined for λ1:

Tλ(s
2,σD,σI,S) =

N(σD)

16πσ4I
s2χ22,S, (2.18)

where s2 represents the noise variance and S the significance level.

The main steps of the algorithm are outlined in Algorithm 2.

Algorithm 2 SFOP detector.

1: for each integration scale σI do
2: for each pixel location x do
3: Compute gradient ∇σI

3
L(x).

4: Compute λ1, the smallest eigenvalue of the following struc-
ture tensor matrix

µ(x,α,σI,σD) = G(σI) ∗ (Rα∇σDL(x)∇σDL(x)TRTα).

5: for each angle α ∈ {0°, 30°, 60°} do
6: Compute Ω(x,α,σI).
7: end for
8: Determine α0 = argmin

α∈{0°,30°,60°}
Ω(x,α,σI).

9: Compute precision w(x,α,σI).
10: end for
11: end for
12: Detect local maxima in a 26-neighborhood of w.
13: Select keypoints x with λ1 > Tλ.
14: Perform non-maxima suppression.
15: Interpolate w.

SFOP features are displayed in Fig. 2.4. Sets of SFOP features usu-
ally exhibit a low density, yet they tend to provide a good coverage of
the most informative content. Besides retrieving complementary and
interpretable features, SFOP detector has also an accurate response.

2.2.1.11 SUSAN

SUSAN (Smith, 1992, 1996; Smith & Brady, 1997), which stands for
Smallest Univalue Segment Assimilating Nucleus, is a morphologi-
cal operator suggested for edge detection as well as corner detection.

For each pixel x in the image, a circular mask M – whose nucleus is
x – is computed. Then, for every pixel y ∈M \ {x}, its intensity value
is compared to the one of x using the following function:

c(y, x) = exp(−(
I(x) − I(y)

t
)6), (2.19)
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Figure 2.4: SFOP features.

where t determines the radius. The intensity comparison allows us to
obtain the Univalue Segment Assimilating Nucleus (USAN) area for
x, which is given by

n(x) =
∑

y∈M
c(y, x). (2.20)

The USAN area succinctly describes the structure in the neighbor-
hood of n(x): n is maximum when x lies in a flat region; in case of
edges, the area is half of its maximum; for corners, n(x) is even lower.
The corner measure used by the SUSAN algorithm is based on the
previous inferences:

c(x) =

nmax2 if n(x) < nmax
2

0 otherwise
, (2.21)

where nmax is the maximum area of the USAN.

Figure 2.5 depicts examples of SUSAN feature points.

2.2.1.12 FAST

FAST, which stands for Features from Accelerated Segment Test (Ros-
ten & Drummond, 2006), is an algorithm based on the SUSAN crite-
rion which uses machine learning to provide an extremely efficient
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Figure 2.5: SUSAN keypoints.

feature extraction. Pixels are compared on a Bresenham circle of 16

pixels around the keypoint/corner candidate. The idea is to classify
groups of adjacent pixel into three categories: brighter, darker, and
similar. A given pixel is a corner if there are 12 adjacent pixels that
are either brighter or darker than the center. The ID3 (Iterative Di-
chotomizer 3) algorithm (Quinlan, 1986) is utilized to build a deci-
sion tree with the goal of selecting the pixel which yields the most
information about whether the candidate pixel is a keypoint/corner,
measured by the entropy of the corner classification responses. The
resulting decision tree is converted into a long sequence of nested
conditional statements written in C language. This source code corre-
sponds to the final detector.

Examples of keypoints extracted by the FAST algorithm are dis-
played in Fig. 2.6.

FAST-ER (Features from Accelerated Segment Test - Enhanced Re-
peatability) (Rosten et al., 2010) is an improved version of FAST which
takes into account the repeatability of features in order to retrieve
points with a high repeatability rate.
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Figure 2.6: FAST keypoints.

2.2.1.13 Laplacian of Gaussian (LoG) detector

Keypoints are representatives of visually salient image parts. In some
cases, these conspicuous regions around keypoints correspond to blobs.
As mentioned earlier, a blob is an image part that is brighter or darker
than the surroundings. Blob detection is usually performed in an im-
age scale-space representation in order to determine its scale. Linde-
berg (1998) proposes a scale covariant blob detector which is the re-
sult of searching for scale-space extrema of (scale) normalized Lapla-
cian of Gaussian (LoG):

σ2∇2L(x,σ) = σ2(Lxx(x,σ) + Lyy(x,σ)). (2.22)

This operator has a maximal response at the center of circular blob
structures (see Fig. 2.7).

2.2.1.14 Difference of Gaussians (DoG) detector

The Difference of Gaussians (DoG) operator is an approximation of
the Laplacian operator. In a scale-space, the difference between im-
ages at different scales is an approximation of the derivative with
respect to scale and the Laplacian corresponds to the image deriva-
tive in the scale direction. Therefore, the Laplacian of the Gaussian
operator can be approximated by the difference between two Gaus-
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Figure 2.7: Feature extraction using the Laplacian of Gaussian.

sian smoothed images whose scales are separated by a factor of k
(Grauman & Leibe, 2011) :

D(x,σ) = (G(kσ) −G(σ)) ∗ I(x). (2.23)

The DoG operator is the basis of the popular Scale-Invariant Feature
Transform (SIFT) descriptor (Lowe, 1999, 2004). To construct the de-
scriptors, keypoints are firstly detected in a scale-space. A keypoint
is a location at which the DoG attains a local extremum. To charac-
terize the neighborhood of each one of the keypoints, a descriptor is
constructed. It consists of 16 gradient orientation histograms with 8

bins each, producing a vector with 128 elements. This descriptor is
rotation and scale invariant.

2.2.1.15 Harris-Laplace

The Harris-Laplace (Mikolajczyk & Schmid, 2001, 2002, 2004) is a
scale covariant detector that results from the combination of the popu-
lar Harris-Stephens keypoint detector (Harris & Stephens, 1988) with
a Gaussian scale-space representation. It starts with a multi-scale
Harris-Stephens keypoint extraction followed by an automatic scale
selection (Lindeberg, 1998) defined by a normalized Laplacian oper-
ator. In this case, the characteristic scale for a given structure corre-
sponds to the scale where the Laplacian attains a maximum, which is
independent of the image resolution, yielding, thereby, a scale covari-
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ant response. The algorithm starts by building a scale-space represen-
tation for the Harris-Stephens measure using n pre-selected scales
σi = ξi−1σ0, with σ0 ∈ R+, ξ > 1, and i = 1, . . . ,n. At each level
(scale) σi, keypoints are found by computing the local maxima that
are above a given positive threshold THS: x? = argmaxlocal

x
fHS(x,σI)

fHS(x?,σI) > THS
. (2.24)

The next step in the algorithm is to determine the scale of the key-
points, which is done by finding a local normalized Laplacian (of
Gaussian) extrema in a range of scales above a given positive thresh-
old TLoG: σ? = argmaxlocal

σ

σ2(Lxx(x?,σ) + Lyy(x?,σ))

σ?
2
(Lxx(x?,σ?) + Lyy(x?,σ?)) > TLoG

. (2.25)

Algorithm 3 outlines the main steps for the detection of Harris-Laplace
regions.

Algorithm 3 Harris-Laplace (HARLAP)

1: for each integration scale σI do
2: for each pixel location x do
3: Compute Harris-Stephens response (fHS) at x with the struc-

ture tensor matrix µ(x,σI, 0.7× σI).
4: end for
5: Detect local maxima in a 8-neighborhood of fHS.
6: Select keypoints x? with fHS > THS.
7: end for
8: for each integration scale σI do
9: for each keypoint x? detected at scale σI do

10: Let x(0) = x? and σ(0) = σI.
11: repeat
12: Find the local extremum over scale of the LoG for x? in

the range σ(k+1) = tσ(k), with t ∈ [0.7, 1.4]. Reject x? if
the LoG response attains no extremum or if the response
is below the threshold TLoG.

13: At scale σ(k+1), detect the location x(k+1) nearest to x(k)

for which the Harris-Stephens response is a maximum.
14: until σ(k+1) = σ(k) and x(k+1) = x(k)

15: end for
16: end for

An example of Harris-Laplace regions is depicted in Fig. 2.8. Harris-
Laplace regions are usually blob-like features due to the use of the
Laplacian as a saliency measure. Sets of Harris-Laplace regions usu-
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ally show a moderate density accompanied with a good coverage of
informative image content.

Figure 2.8: Harris-Laplace regions.

2.2.1.16 Hessian-Laplace

As the name suggests, the Hessian-Laplace (Mikolajczyk & Schmid,
2001, 2004) is a scale covariant detector that shares a common frame-
work with the Harris-Laplace detector. Instead of using the Harris-
Stephens corner measure, it uses the determinant of the Hessian ma-
trix. Figure 2.9 depicts Hessian-Laplace regions, which are mainly
blobs.

2.2.1.17 Harris-Affine

The Harris-Affine scheme (Mikolajczyk & Schmid, 2002, 2004) is an
extension of the Harris-Laplace, which relies on the combination of
the Harris-Laplace operator with an affine shape adaptation stage (Lin-
deberg & Gårding, 1997; Baumberg, 2000). From initial estimates of
keypoints detected at their characteristic scales, a convergence to affine
covariant keypoints is performed by using the iterative estimation of
elliptical affine regions whose shape is determined by the structure
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Figure 2.9: Hessian-Laplace regions.

tensor matrix of the image. In the affine scale-space, the structure
tensor matrix is given by

µ(x,ΣI,ΣD) = det(ΣD)G(ΣI) ∗
[

L2x(x,ΣD) LxLy(x,ΣD)

LyLx(x,ΣD) L2y(x,ΣD)

]
,

(2.26)
where ΣI and ΣD are covariance matrices responsible for determining
the integration and differentiation kernels, respectively. The eigenval-
ues of µ are used to measure the affine shape of a region around a
keypoint. The shape is determined by finding the transformation that
projects the affine pattern to one with equal eigenvalues. The trans-
formation corresponds to the square root of the affine scale-space
structure tensor matrix. If the neighborhood of two points xL and xR
are normalized by transformations x

′
L = µ

1
2

LxL and x
′
R = µ

1
2

RxR, respec-
tively, then the normalized regions are related by a rotation: x

′
L = Rx

′
R.

The adaption stage is outlined in Algorithm 4.

Examples of Harris-Affine regions are given in Fig.2.10. The num-
ber of extracted regions is slightly lower than the one of Harris-Laplace
(see Figs. 2.8 and 2.10 for comparison), as initial regions retrieved by
the latter may not converge to affine covariant ones.
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Algorithm 4 Harris-Affine: Affine shape adaptation

1: Perform a scale covariant detection with the Harris-Laplace detec-
tor.

2: repeat
3: Estimate the affine shape using the structure tensor matrix.
4: Normalize the affine region.
5: Re-detect the new location and scale in the normalized patch.
6: until λ1 = λ2

Figure 2.10: Harris-Affine regions.
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2.2.1.18 Hessian-Affine

The Hessian-Affine (Mikolajczyk & Schmid, 2002, 2004) is the affine-
covariant version of the Hessian-Laplace. It follows the affine shape
adaptation scheme described in 2.2.1.17. Examples of Hessian-Affine
regions are given in Fig. 2.11.

Figure 2.11: Hessian-Affine regions.

2.2.2 Region detectors

More recent detectors, especially affine covariant ones, extract regions
without relying on a prior keypoint extraction. These regions usually
have a irregular shape, which are often replaced by a fitted ellipse.

2.2.2.1 Salient Regions

The Salient Regions detector (Kadir & Brady, 2001; Kadir et al., 2004)
can be seen as a refinement over the keypoint detector proposed
by Gilles (1998). In both cases, saliency is defined in terms of lo-
cal signal complexity, i. e., Shannon entropy (Shannon, 1948). While
Gilles work is mainly an algorithm aimed at matching and register-
ing aerial reconnaissance images by using locally salient patches de-
rived from keypoints, the Salient Regions detector is introduced as
a more generic tool and it also addresses the problem of scale selec-
tion. Salient Regions are not derived from keypoints, as salient points
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taken from the estimated entropy maps tend to be sensitive to noise
and small deformations in the image.

There are two versions of the algorithm: the scale covariant ver-
sion (Kadir & Brady, 2001) and the affine covariant one (Kadir et al.,
2004). The latter is an extension of the former: it increases the search
space required to extract Salient Regions.

scale covariant salient regions detector For each pixel
position, the salient region detector selects the scales at which the
entropy of the local intensity histogram is peaked. Entropy is given
by

H(x, s) = −
∑
i∈D

P(i, x, s) log(P(i, x, s)), (2.27)

where D is the set of intensity values and P(i, x, s) denotes the proba-
bility of intensity i at pixel x and scale s. Salient Regions also exhibit
self-dissimilarity in the scale-space. The degree of self-dissimilarity is
estimated by analyzing the change of the intensity’s probability den-
sity function in a range of scales around the scale where entropy is at
its peak. The measure of self-dissimilarity, which is given by

w(x, s) =
s2

2s− 1

∣∣∣∣∣∑
i∈D

P(i, x, s) −
∑
i∈D

P(i, x, s− 1)

∣∣∣∣∣ , (2.28)

is a weight for the entropy values. The saliency measure is the prod-
uct of factors w and H:

y(x, s) = w(x, s)H(x, s) (2.29)

The whole detection process is summarized in Algorithm 5.

Algorithm 5 Salient Regions detector (scale covariant version)

1: for each pixel location x do
2: for each scale s ∈ {s0, s2, . . . , sn} do
3: Compute a local descriptor within a window of scale s.
4: Estimate the local probability function using local intensity

histograms.
5: end for
6: Select scales for which the entropy is a local maximum.
7: Weight the entropy values at the select scales using w.
8: end for

Examples of Salient Regions are depicted in Fig. 2.12. Due to the
explicit use of local entropy to define the saliency measure, Salient
Regions provide an even coverage of informative parts of the image.
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Figure 2.12: Salient Regions (scale covariant version).

affine covariant salient regions detector In the affine
covariant version, a given region R is parameterized by three param-
eters: s, ρ, and θ, where ρ is the axis ratio and θ is the orientation,
i. e., the circular window parametrized by scale s is replaced with an
ellipse. The algorithm starts with scale covariant regions which are it-
eratively deformed into ellipses by searching for the optimal (s, ρ, θ)
that maximizes the saliency measure.

2.2.2.2 Edge-based Regions (EBR)

The affine covariant Edge-based Regions (EBR) (Tuytelaars et al., 1999;
Tuytelaars & Gool, 2004) are drawn from a geometry-based method,
which uses a combined multi-scale detection of Harris-Stephens key-
points (Harris & Stephens, 1988) and nearby edges given by the Canny
filter (Canny, 1986). The edge information is utilized to define the de-
tected features, whose shape corresponds to a parallelogram.

The motivation for such strategy comes from two observations: (i)
edges are stable features that can still be detected under the presence
of significant geometric transformations or illumination changes; (ii)
corner points are found at edges.
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When two points, x1 and x2, move away from a corner point x in
both directions along a edge (see Fig. 2.13), their relative speed is
coupled through the equality of l1 and l2:

li =

∫ ∣∣∣det
[

x(1)i (si) x − xi(si)
]∣∣∣d si, i = 1, 2, (2.30)

where si is an arbitrary curve parameter and x(1)i (si) is the first order
derivative of xi(si) with respect to si.

Let l = l1 = l2. For each value l, x1(l), x2(l), and x define a paral-
lelogram Ω(l): the one spanned by the vectors x1(l) − x and x2(l) − x.
The next step in the algorithm is to select a few parallelograms for
which the following invariants, i1(Ω) and i2(Ω), are an extremum:

i1(Ω) =

∣∣∣∣∣∣
det
[

x1 − xg x2 − xg
]

det
[

x − x1 x − x2
]
∣∣∣∣∣∣ M1

0,0√
M2
0,0M

0
0,0 − (M1

0,0)
2

(2.31)

i2(Ω) =

∣∣∣∣∣∣
det
[

x − xg y − xg
]

det
[

x − x1 x − x2
]
∣∣∣∣∣∣ M1

0,0√
M2
0,0M

0
0,0 − (M1

0,0)
2

, (2.32)

where Mn
p,q is the n-th order, (p+ q)-th degree moment computed

over Ω(l), i. e.,

Mn
p,q =

∫
Ω

In(x,y)xpyq d xdy, (2.33)

y is the vertex of the parallelogram opposite to the corner point x (see
Fig. 2.13), and xg is the center of gravity of Ω(l):

xg = (
M1
1,0

M1
0,0

,
M1
0,1

M1
0,0

). (2.34)

EBR features are shown in Fig. 2.14. Usually, the EBR algorithm
produces a dense set of features, with high redundancy and very few
semantically interpretable features.

2.2.2.3 Intensity Extrema-based Regions (IBR)

Intensity Extrema-based Regions (IBR) (Tuytelaars & Gool, 2000, 2004)
are affine covariant patches whose construction comprehends a multi-
scale detection of points at which intensity attains a local extremum
and a subsequent definition of feature regions via the search of max-
ima of an intensity function fI along the rays emanating from the
previously detected locations. In the end, an ellipse is fitted to the
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Figure 2.13: Construction of Edge-based Regions: Adapted from Tuytelaars
& Gool (2004).

Figure 2.14: Affine covariant features extracted by the EBR algorithm.
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delineated salient region.

The first step of the algorithm consists of a multi-scale detection
of pixels for which the intensity is a local extremum (maximum or
minimum). Given a local intensity extremum I?, the function fI is
evaluated along each ray:

fI(t) =
|I(t) − I?|

max(
∫t
0|I(t)−I

?|d t
t ,d)

, (2.35)

where t is an arbitrary parameter representing the Euclidean arc-
length along the ray and d is a small positive number to prevent
a division by zero. This analysis is depicted in Fig. 2.15. Next, an
affine covariant region is defined by linking the locations correspond-
ing to maxima of fI along the rays originating from the same anchor
point. The resulting irregularly-shaped region is replaced by an el-
lipse, which has the same shape moments up to second order. In the
end, the area of the fitted ellipse is doubled to cover more distinctive
patches, which facilitates the matching process. The construction of
IBR features is summarized in Fig. 2.16. The output of an IBR detec-
tion is depicted in Fig 2.17. In the given example, one can see that
IBR features are characterized by some redundancy and they cannot
be straightforwardly interpreted.

→t t

I (t)

t

fI(t)

Figure 2.15: The IBR algorithm analyzes the intensity pattern along rays em-
anating from a point where intensity reaches an extremum.
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Figure 2.16: Construction of Intensity Extrema-based Regions. Adapted
from Tuytelaars & Gool (2004).

Figure 2.17: Affine covariant features extracted by the IBR algorithm.
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2.2.2.4 Maximally Stable Extremal Regions (MSER)

Affine covariant regions can be derived from extremal regions. In the
image domain, an extremal region corresponds to a connected com-
ponent whose corresponding pixels have either higher or lower inten-
sity than all the pixels on its boundary. Extremal regions hold two
important properties: the set of extremal regions is closed under con-
tinuous transformations of image coordinates as well as monotonic
transformations of image intensities. The Maximally Stable Extremal
Regions (MSER) detector (Matas et al., 2002) responds to extremal
regions that are stable with respect to intensity perturbations. For a
better understanding of the MSER detector, we introduce the formal
definitions of connected component and extremal regions.

A connected component (or region) Q in D is a subset of D for
which each pair of pixels (p, q) ∈ Q2 is connected by a path in Q,
i. e., there is a sequence p, a1, a2, . . . , am, q ∈ Q such that p ∼ a1, a1 ∼

a2, . . . , am ∼ q, where ∼ denotes the equivalence relation defined by
(p ∼ q) ⇐⇒ max{|p1 − q1| , |p2 − q2|} 6 1 (8-neighborhood).

We define the boundary of a region Q as the set ∂Q = {p ∈ D\Q :

∃q ∈ Q : p ∼ q}. A connected component Q in D is an extremal region
if ∀p ∈ Q, q ∈ ∂Q : I(p) < I(q) or I(p) > I(q).

Let Q1,Q2, . . . ,Qi−1,Qi, . . . be a sequence of extremal regions such
that Qk ⊂ Qk+1,k = 1, 2, . . . . We say that Qi is a maximally stable
extremal region if and only if the stability criterion

ρ(k,∆) =
|Qk+∆ \ Qk|

|Qk|
, (2.36)

attains a local minimum at i, where ∆ is a positive integer denoting
the stability threshold. As area ratios are preserved under affine trans-
formations, ρ is an affine invariant measure. Consequently, MSER fea-
tures are covariant with these geometric transformations.

Note that MSER detection is related to image thresholding, since
every extremal region is a connected component of a thresholded
image (Tuytelaars & Mikolajczyk, 2008). In fact, we can alternatively
describe MSER detection as a process that considers all the possible
thresholdings of an intensity image (see Fig. 2.18), yielding different
binary images Bt:

Bt(x) =

{
1 if I(x) > t

0 otherwise
. (2.37)

An extremal region in Bt is considered maximally stable if it shows
a small area change across several thresholdings (Forssén, 2007). By
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t = 0 t = 46 t = 93

t = 139 t = 186 t = 255

Figure 2.18: Sequence of binary images produced by different thresholdings
of the same image.

increasing the threshold, we detect MSER+, which correspond to
dark regions with brighter boundaries. MSER−, which are brighter
regions with dark boundaries, can be obtained through the same pro-
cess by inverting the input intensity image.2

In the original implementation, the MSER detector enumerates ex-
tremal regions using a union-find algorithm, whose complexity is
O(n log logn), where n denotes the number of pixels. The low com-
putational complexity of the algorithm along with the high repeata-
bility rates shown by the MSER detector in structured images and
the suitability of MSERs to be described either by photometric or by
shape descriptors (Moreels & Perona, 2007; Forssén & Lowe, 2007)
have made the MSER detector a prominent reference in the literature.
MSER features are more present in well-structured scenes with ho-
mogeneous regions (such as the example depicted in Fig.2.19), while
textured scenes provide a reduced number of these features. In addi-
tion, MSER detection is sensitive to image blur, as it severely affects
the stability criterion.

The MSER detector has known several extensions and refinements.
It has been extended to deal with color images (Forssén, 2007) as well
as video sequences (Donoser & Bischof, 2006). Forssén & Lowe (2007)
proposes an alternative MSER detector that makes use of a multi-
scale pyramid representation with one octave between scales. This
multi-resolution approach detects MSER at each resolution and du-
plicated regions at consecutive scales are removed by discarding fine

2 Our definition of MSER+ and MSER− features differs from the original one. Matas
et al. (2002) define MSER+ features as brighter regions with dark boundaries. How-
ever, several other authors adopted the definitions given herein.
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Figure 2.19: Maximally Stable Extremal Regions.

scale features with similar locations and sizes as regions detected at
the next coarser scale. The multi-resolution MSER detector produces
a higher number of regions and is more robust to image blur and
scale changes. On the downside, it requires a detection at each scale,
which increases the computational complexity of the algorithm. The
algorithm for the detection of Stable Affine Frames (SAF) (Perdóch
et al., 2007) can be regarded as a refinement of the MSER detector.
SAF features lie on the boundary of extremal regions. Unlike MSER,
the stability of SAF with respect to intensity perturbations is mea-
sured locally, i. e., we do not require the whole boundary to be stable
to intensity changes. This algorithm produces a higher number of fea-
tures and covers more evenly the image content. Moreover, SAF are
more repeatable in the presence of image blur. On the downside, the
method requires a considerably higher computational effort. Kimmel
et al. (2011) free the MSER detector from the preference towards regu-
lar shapes by presenting several redefinitions of the stability criterion,
which prefer irregular shapes and are still affine invariant. The main
goal of these reinterpretations is to define more distinctive shape de-
scriptors.

2.2.2.5 Principal Curvature-Based Regions (PCBR)

The Principal Curvature-Based Regions (PCBR) detector (Deng et al.,
2007) uses structural information to detect affine covariant features.
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The idea is to use edges and lines to construct structure-based regions.
The structural information is obtained from the principal curvature
image, which is given by either

P(x) = max(λ2(H(x)), 0) (2.38)

or
P(x) = min(λ1(H(x)), 0), (2.39)

where λ1(H(x)) and λ2(H(x)) denote, respectively, the minimum and
maximum eigenvalues of the image Hessian matrix at x. The principal
curvature images are calculated in a scale-space. The first image in the
scale space, I1,1, has double the size of the input image, while the sub-
sequent images, I1,j, correspond to increasingly Gaussian smoothed
images with scales σ = (21/3)j−1, with j = 2, . . . , 6. Then, image I1,4

is down-sampled to half of its size to yield a new image, I2,1, which is
the first image in the second octave. The process is repeated until the
creation of log2(min(n,m))− 3 octaves, where n and m are the width
and height of the doubled image, respectively. The maximum curva-
ture over each set of three consecutive principal curvature images in
the scale-space is computed, which will produce four new images
for each one of the octaves. Stable regions will be defined from these
regions, using a watershed algorithm. Since watershed segmentation
is sensitive to noise, the authors precede the segmentation with a
grayscale morphological closing and a eigenvector-flow guided hys-
teresis thresholding to provide cleaner maps. Finally, stable regions
are selected across local scale changes. The selection is based on the
computation of the regions overlap error computed across each triplet
of consecutive scales. When the overlap error is greater than 90%, one
region is kept (the one at the smaller scale). If the error is less than
70%, all regions are discarded. Otherwise, all regions are kept.

PCBR features are shown in Fig. 2.20. The use of structural informa-
tion makes this algorithm more suitable to deal with well-structured
scenes, which reflects the initial purpose of the algorithm: to support
object recognition an symmetry detection tasks. Further, the detec-
tion of overlapping regions at different scales induces some variation,
which helps object recognition since it provides several descriptions
of the same pattern.

2.3 discussion and concluding remarks

Despite the maturity that local feature detection deservedly claims, it
is equally valid to consider it as a subject with crucial open issues,
demanding the definition of new research directions. The evolution
of the topic has been partially dictated by the applications. Early algo-
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Figure 2.20: Principal Curvature-Based Regions.

rithms were used in matching as well as in tracking, and camera cali-
bration problems. Initially, the levels of invariance/covariance and ro-
bustness were more relaxed. As solutions were found to the different
problems, more complex tasks were proposed. Robust wide-baseline
stereo matching is a clear example of a problem which has only been
successfully solved with the introduction of affine covariant features.
The studies on scale-space theory have set a milestone in local feature
detection. The use of scale-space representations has contributed to
increase the level of covariance: various methods have gained covari-
ance with respect to similarity transformations or even affine trans-
formations. Scale-space representation has equally contributed to set
another milestone: the introduction of invariant feature descriptors,
namely the SIFT descriptor. The combination of local features and lo-
cal descriptors has opened a new and promising direction for local
features. Robust and compact image representations were now possi-
ble, which allowed local features to be used in an even wider range of
applications. Local feature detection became a reliable basis for solv-
ing problems in which a semantical interpretation was involved, such
as the tasks of recognizing objects, classifying scenes, and retrieving
semantically equivalent images. Furthermore, the use of local features
in real-time applications has required the design of extremely efficient
algorithms. The FAST algorithm provides a clear example of an effi-
cient algorithm which has been successful in real-time applications.
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Regardless of such evolution, there are open issues that need to be
addressed in the future.

biased performance evaluation

The evaluation of local features is mainly based on the repeata-
bility criterion. Repeatability is an important requirement for most
applications. However, it is insufficient to evaluate a local feature de-
tector solely based on repeatability. An evaluation should take into
consideration other criteria in order to assess the suitability of algo-
rithms for a category of applications or even for a type of images.
In order to provide more reliable validations, it is crucial to include
other criteria in the evaluation process.

reduced repeatability

The repeatability scores achieved by state-of-the-art algorithms are
usually high. However, there is still some room for improvement,
namely in terms of affine covariance or invariance with respect to
illumination changes.

low completeness and neglected complementarity

Using a dense sampling grid of photometric descriptors (Bosch
et al., 2007; Liu et al., 2011) is a common and successful strategy in
object class recognition. A more interesting solution would be to ef-
ficiently extract local features representing the most informative con-
tent. Detectors are usually designed to extract one or two types of
features. Although local features are, by definition, informative parts
of an image, the extraction of a reduced number of types of struc-
tures does not ensure a robust image representation. The complete-
ness of sets of features can be easily increased by using a combined
feature extraction, where different detectors retrieve complementary
features. The major downside of this approach is its computational
complexity. Additionally, the different detectors do not provide fully
complementary features. The existence of redundant features is not
necessarily a downside if they present a slight variation, which is ad-
vantageous to perform recognition tasks. While a substantial effort
has been put to improve repeatability, only a few authors have fo-
cused on the problem of retrieving complete sets of features. Given
the current application domains of local features, it is imperative to
study the completeness of features as well as their complementarity.
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3
E VA L U AT I O N O F L O C A L F E AT U R E S

We give an overview of some of the main benchmarks and datasets
used in the evaluation of local feature detectors. Although it is not
a comprehensive review, it covers commonly used protocols, namely
the ones that are seen as standard benchmarks. The main purpose
of this analysis is to highlight the advantages and disadvantages of
current evaluation protocols.

3.1 introduction

How to evaluate the performance of local feature detectors? Which
criteria should we use? Regardless of the relevance of such questions,
one cannot provide simple and straightforward answers. A review
of the literature shows us that repeatability is indubitably the pre-
ferred criterion to evaluate local feature detectors. The tendency is to
regard a detector as a generic tool and measure a property that ap-
pears relevant in most cases. Repeatability is indeed one of the most
important properties, but it neither reflects the usefulness of features
nor guarantees full effectiveness in a given application domain (Tuyte-
laars & Mikolajczyk, 2008; Rosten et al., 2010). Furthermore, there are
no generic detectors (Triggs, 2004) and the evaluation of repeatabil-
ity will only provide an upper bound on performance (Rosten et al.,
2010). On the other hand, the evaluation of a given algorithm in a spe-
cific application is reductive in the sense that such analysis does not
consider a wider range of applications. It is therefore crucial to con-
sider other properties or criteria rather than repeatability. By taking
into consideration other properties, a more comprehensive evaluation
could be achieved, which would help us to assess the suitability of
the detectors in several application domains. For example, for recog-
nition tasks, it is more crucial to analyze the reconstruction capability
of features rather than repeatability (Tuytelaars & Mikolajczyk, 2008).

3.2 benchmarks and datasets

3.2.1 The Oxford benchmark

The repeatability evaluation protocol proposed by Mikolajczyk et al.
(2005) has become the de facto benchmark. It is mainly a tool to evalu-
ate the repeatability of affine covariant features. However, other prop-
erties can be easily assessed, namely the accuracy and the distinctive-
ness of features. The benchmark is supported by the Oxford image
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dataset, which comprises 8 sequences with 6 images each, showing
5 different changes in imaging conditions: viewpoint changes, scale
changes (with rotation), blurring, illumination changes, and JPEG
compression. The images are of medium resolution (≈ 800×640 pix-
els) and the sequences depict either different views of a planar scene
or fixed-camera scenes. The dataset contains two different scene types:
structured and textured. The former contains homogeneous regions
delineated by well-defined boundaries; the latter consists of several
repeated textures. Most of the above-mentioned changes in imaging
conditions are applied to both scene types, which means that such
changes can be analyzed for each scene type. Figure 3.1 depicts some
images of the different sequences in the Oxford dataset. In Fig. 3.2, we
depict all the images from one of the sequences: the Graffiti sequence.
In the presented sequence, a viewpoint change occurs, starting from
a fronto-parallel view.

Graffiti Wall Boat Bark

(viewpoint change, viewpoint change, (scale change, (scale change,

structured scene) textured scene) mainly structured textured scene)

scene)

Bikes Trees Leuven UBC

(de-focus blur, (de-focus blur, (illumination change, (JPEG compression,

structured scene) textured scene) structured scene) mainly structured

scene)

Figure 3.1: First (reference) and third images from each sequence of the Ox-
ford dataset.

The core of the evaluation is a repeatability test that assigns a score
to a given detector. The score is computed for each pair of images
(I1,s, Ik,s), where k ∈ {2, 3, . . . , 6} denotes the image position in the
sequence and s ∈ {1, 2, . . . , 8} denotes the sequence. The repeatabil-
ity score is based on an overlap error, which requires the features
to be replaced by approximating ellipses. In the case of affine co-
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Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Figure 3.2: Graffiti sequence.

variant features, some features already correspond to ellipses (e. g.,
Hessian-Affine), while others, such as MSER, have arbitrary shapes
which have to be approximated by ellipses.

To compute the repeatability score between regions detected on
two image pairs, 2D homographies are used as a ground truth. The
idea is to map the features detected on an image to the reference
image (first image in the sequence). A homography is a projective
transformation that will provide such mapping. Figure 3.3 shows two
views of a scene (images I1 and I2) acquired with cameras C1 and C2.
A point x in I1 can be associated with its corresponding point x ′ in I2
through one of the homography matrices HI1I2 ,HI2I1 ∈ R3×3, using
homogeneous coordinates:[

wx ′

w

]
= HI1I2

[
x

1

]
; (3.1)

[
wx

w

]
= HI2I1

[
x ′

1

]
, (3.2)

with w ∈ R \ {0} and HI2I1 = H
−1
I1I2

.

Two features (regions) are deemed as corresponding and, therefore,
repeated, with an overlap error of ε0 × 100% if

1−

∣∣∣Rµ1 ∩R(HTµ2H)

∣∣∣∣∣∣Rµ1 ∪R(HTµ2H)

∣∣∣ < ε0, (3.3)
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Figure 3.3: Projection of an ellipse around the point X to the images I1
and I2 acquired with the respective cameras C1 and C2. x and
x’ are corresponding points. Adapted from Schmid et al. (2000)
and Cordes et al. (2011).

where Rµ denotes the set of image points in the elliptical region ver-
ifying xTµx 6 1 and H is the homography that relates the two input
images. For a given pair of images and a given overlap error, the
repeatability score corresponds to the ratio between the number of
correspondences between regions and the smaller of the number of
regions in the pair of images. Only regions that are located in parts of
the scene that are common to the two images are considered. In fact,
this procedure can give us two repeatability measures: a relative one
(the repeatability score) and the absolute repeatability (the number of
correspondences). These results are usually reported for an overlap
error of 40%.

To get an idea of the accuracy of the detectors, one can analyze
the repeatability rates for different overlap error thresholds (the eval-
uation protocol computes the repeatability for overlap errors of 10%,
20%, . . . , 60%). A less accurate detector will show higher variations
in the repeatability score as we change the overlap error.

An important feature of the Oxford benchmark is the ability to
perform a matching test, which is similar to the one defined for re-
peatability. This matching test gives an idea of how distinctive fea-
tures are. The detected regions provide the image patches that will
be described and matched. The matching score between the reference
image and the other images in a sequence is computed as the ratio
between the number of correct matches and the smaller number of de-
tected regions in the pair of images. The Euclidean distance is used to
compare descriptors. A match corresponds to the nearest neighbor in
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the descriptor space. A maximum overlap error of 40% is allowed for
matched regions. A comparison of repeatability and matching scores
allows us to infer about the distinctiveness of features: a matching
score that significantly differs from the repeatability score for a given
feature detector suggests less distinctive features. As the authors note,
these results are mainly indicative rather than quantitative.

3.2.2 The TNT dataset (an extension to the Oxford dataset)

The TNT (acronym for Institut für Theoretische Nachrichtentechnik
und Informationsverarbeitung) dataset (Cordes et al., 2011) is an ex-
tension to the Oxford dataset. It contains sequences of 6 high resolu-
tion images (1534×1024 pixels) in which the main transformation is
a viewpoint change. The first and third images from each sequence
in the dataset are depicted in Fig. 3.4. To illustrate the image transfor-
mations, we show the whole Colors sequence in Fig. 3.5.

Colors Grace Underground

Posters There

Figure 3.4: First (reference) and third images from each sequence of the TNT
dataset.

The authors who proposed the TNT dataset have also improved
the accuracy of the ground truth homographies provided for both
sets. The updated homographies have shown to provide higher re-
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Image 1 Image 2 Image 3

Image 4 Image 5 Image 6

Figure 3.5: Colors sequence.

peatability scores. In some cases, the authors reported an increase of
20%.

3.2.3 The Robot benchmark

The Robot dataset was created by Aanæs et al. (2012) at the Depart-
ment of Informatics and Mathematical Modeling of the Technical Uni-
versity of Denmark. The large-scale dataset was proposed as a precise
ground truth for benchmarking local feature detection. It contains
135.660 high resolution color images (1200×1600 pixels), depicting 60

different scenes. For each scene, images were acquired from 119 po-
sitions, and for each position, the scene was illuminated by 19 white
LEDs. Figure 3.6 shows two scenes from the dataset, taken from two
different viewpoints and with two different lighting conditions. To
provide a very accurate camera positioning, the acquisition was per-
formed with a camera mounted on a 6-axis robot. For each scene, the
sequence of camera positions follows a predefined path, which was
chosen relative to a central image position (key frame).

The Robot dataset makes the evaluation of the performance of local
features possible to a very high degree of accuracy. The authors pre-
sented a comprehensive study that evaluates the performance of dif-
ferent methods in terms of repeatability and accuracy, reflecting the
covariance of features with respect to scale and viewpoint changes,
as well as the invariance with respect to light changes.

The ground truth for the evaluation is provided by the geometry of
the 3D scene surfaces and the camera positions. To obtain a 3D sur-
face reconstruction, the different scenes were surface scanned using
structured light. Both the surface information and the camera posi-
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Figure 3.6: Scenes 1 (first and second row) and 6 (third and fourth row)
from the Robot dataset. Each row shows a scene acquired from
a different viewpoint. For each viewpoint, a pair of images with
different lighting conditions is shown.
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tions form the basis of the evaluation, which is essentially a matching
test performed for each keypoint in the key frame. Figure 3.7 schema-
tizes the three criteria which have to be fulfilled to accept the corre-
spondence between points as a potential match.

The authors use a recall rate as a performance measure, which cor-
responds to the ratio

recall =
#potentialMatches

#keypoints
, (3.4)

where #potentialMatches indicates the number of keypoints from
the key frame fulfilling the three criteria illustrated in Fig. 3.7 and
#keypoints represents the number of keypoints in the key frame.

The authors also propose a complementarity measure. The com-
plementarity between two sets of keypoints X and Y is measured by
computing the distance from each point in the structured light scan
S to the nearest point in X, Y, and X ∪ Y. Then, an average of the
distributions is constructed:

DX =
1

n

n∑
i=1

min
j

∥∥xj − si
∥∥ , (3.5)

DY =
1

n

n∑
i=1

min
j

∥∥yj − si
∥∥ , (3.6)

DX∪Y =
1

n

n∑
i=1

min(min
j

∥∥xj − si
∥∥ , min

j

∥∥yj − si
∥∥), (3.7)

where n denotes the number points in S and xi, yi, and si represent
points in X, Y, and S, respectively. These distance distributions pro-
vide the following complementarity measure:

comp(X,Y) =
2 DX∪Y√
nX+nY

DY√
nX

+ DY√
nY

, (3.8)

where nX and nY indicate the number of keypoints in X and Y, re-
spectively.

If there is a high complementarity between X and Y, the average
distance from X∪ Y to the structured light scan will be low.

3.2.4 The completeness (and complementarity) benchmark

A measure of completeness becomes particularly useful if we want to
assess the suitability of local features in efficiently summarizing the
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(a)

(b)

(c)

Figure 3.7: Criteria for repeatability/matching evaluation. (a) Criterion 1:
corresponding descriptors should be within 2.5 pixels from the
epipolar line. (b) Criterion 2: window of interest with a radius
of 5 pixels corresponding descriptors should be within the win-
dow; (b) Criterion 3: corresponding descriptors are within a scale
range factor of 2 from each other. Source: Aanæs et al. (2012).
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relevant image content. Despite the need and importance of quantify-
ing completeness, the recent work of Dickscheid et al. (2011) can be
seen as the first attempt to tackle this problem. The authors proposed
metrics for completeness and complementarity which were used in a
large-scale test comprising different types of features. The goal was
not only to find the most complete type of features but also to study
the complementarity among different types of features.

The dataset used in the evaluation (Fig. 3.8) comprised four cate-
gories of natural scenes (Li & Perona, 2005; Lazebnik et al., 2006), the
Brodatz texture collection (Brodatz, 1966), a set of aerial images, and
a collection of cartoon images (not depicted in Fig. 3.8).

Brodatz Aerial Forest

(30 images) (28 images) (328 images)

Mountain Tall building Kitchen

(374 images) (356 images) (210 images)

Figure 3.8: Example images from the categories in the dataset for complete-
ness and complementarity evaluation.

To measure completeness, Dickscheid et al. (2011) compute an en-
tropy density pH(x) based on local image statistics and a feature cod-
ing density pc(x) derived from a given set of features. The (in)com-
pleteness measure corresponds to the Hellinger distance between the
two densities:

dH(pH,pc) =

√
1

2

∑
x∈Φ

(
√
pH(x) −

√
pc(x))2, (3.9)
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where Φ is the image domain.

The entropy density pH is computed from local image patches with
different sizes (scales). The authors assume that these patches repre-
sent a larger image, i. e., an N×N patch is part of a periodic image
with period N in both directions. In addition, an image is considered
to be a noisy version of a Gaussian process. From these assumptions,
the entropy of an image patch g can be derived as follows:

H(g) =
1

2
log2(2π exp(

detΣgg
σ2n

)), (3.10)

where Σgg represents the covariance matrix of the intensity values
in g and σ2n is the noise variance. The determinant of Σgg is de-
rived from the power spectrum P(u) = |DCT(g(x))|2, i. e., detΣgg =∏

u\{0} P(u), where 0 is the DC coefficient. By assuming that the power
spectrum is additively composed of the power spectra of the signal
and the noise, the following estimate of the power spectrum can be
used:

P̂(u) = max(P(u) − σ2n, 0), (3.11)

and (3.10) becomes

H(g) =
1

2N2

∑
u\{0}

max(log2(2π exp(
P̂(u)
σ2n

)), 0). (3.12)

The entropy at a pixel x will be obtained from the patches entropy.
If H(x,N) is the entropy of a pixel x based on a patch of size N, the
entropy at pixel x is

H(x) =
S∑
s=1

H(x, 1+ 2s), (3.13)

where s ∈ {1, . . . ,S} denotes the scale. Finally, the density pH is com-
puted through normalization:

pH(x) =
H(x)∑

y∈ΦH(y)
. (3.14)

The feature coding density pc is computed for a given set of fea-
tures F. It is assumed that a feature f ∈ F can be characterized by
its location mf and its scale σf (or Σf in the case of affine covariant
features). A Gaussian distribution spreading over the image domain
is used to represent a region covered by a local feature. It is equally
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assumed that c(f) bits are required to represent a feature f. Such as-
sumptions lead to the coding map

c(x) =
∑
f∈F

c(f)G(x, mf,Σf), (3.15)

where G denotes an anisotropic Gaussian kernel. The final coding
density pC is the result of a normalization:

pc(x) =
c(x)∑
y∈Φ c(y)

, (3.16)

which allows us to compare both densities (Fig. 3.9).

When pH and pc are very close, the distance dH will be small,
which means the set of features with a coding density pc effectively
covers the image content (the set of features has a high completeness).
Such metric penalizes the use of large scales (a straightforward solu-
tion to achieve a full coverage) as well as the presence of features
in pure homogeneous regions. On the other hand, it will reward the
“fine capturing” of local structures or superimposed features appear-
ing at different scales.

Complementarity can be measured by considering coding densities
of sets which are the result of a combined feature detection, i. e., F =⋃
i=1,...,N Fi, where Fi is a set of features of a given type. A high

level of complementarity is achieved when F produces a significantly
lower distance dH(pH,pc) than the ones provided by the subsets Fi,
i = 1, . . . ,N.

3.3 concluding remarks

Evaluating local feature detectors is a complex task, requiring a de-
tailed analysis of different properties. An assessment relying on the
analysis of diverse properties helps us to understand which problems
are going to benefit from a local feature-based solution and which
are not. Thus far, evaluation protocols have been mainly based on the
analysis of a few characteristics of the algorithms, namely repeatabil-
ity and accuracy. Measuring such properties is important, but it will
only provide a superficial idea regarding the suitability of features.

The benchmarks reviewed herein represent a valuable contribution
to local feature detection. Perhaps the best example that illustrates
such contribution comes from the Oxford benchmark: it became the
standard protocol to evaluate detectors that claim covariance with
respect to rigid and affine transformations. The majority of recent
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pH(x)

pc(x)

Figure 3.9: Entropy density pH(x) of the “Leaf” image and feature coding
density pc(x) of SFOP features (Förstner et al., 2009a) detected
on the same image.
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state-of-the-art detectors was validated in the Oxford benchmark.

The Robot benchmark represents an improvement over the one pro-
posed by the Oxford Vision Group. It considers a considerably larger
dataset (60 scenes vs. 8 scenes, 135.600 images vs. 48 images). In addi-
tion, the ground truth describing the geometry of the scenes is more
precise. However, the evaluation is still mainly focused on the repeata-
bility and accuracy of features, exposing the performance of feature
detectors in more extreme conditions.

While there is not a unified framework that provides the aforemen-
tioned desired evaluation, the combination of several standard bench-
marking tools aimed at measuring different properties provides a rel-
atively thorough analysis.

The analysis provided by the completeness (and complementar-
ity) benchmark discloses important properties of local features that
tend to be neglected. We argue that a more comprehensive analy-
sis should give metrics for both completeness and complementarity,
namely when recognition tasks are a potential application. While an
isolated completeness test may not be sufficient to conclude on the
usefulness of the features, an evaluation that disregards such prop-
erty is not going to inform us on the reconstruction capabilities of
local features.
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4
C O N T E X T- AWA R E F E AT U R E S F O R R O B U S T I M A G E
R E P R E S E N TAT I O N

Tasks such as image retrieval and object recognition often make use of
local image features, which are mainly intended to provide a reliable
and efficient image representation. However, local feature detectors
are designed to respond to a limited set of structures (e. g., corners
and junctions), which might not be sufficient to capture the most rel-
evant image content.

In this chapter, we discuss the lack of coverage of relevant image
information by local features as well as the often neglected comple-
mentarity between sets of features. As a result, we propose an infor-
mation theoretic-based keypoint extraction that responds to locations
which are salient within the image context. We empirically assess and
discuss the validity of the method by analyzing the completeness,
complementarity, and repeatability of our context-aware features on
different datasets.

4.1 introduction and motivation

As evidenced by Chapter 2, the desired properties of a local feature
detector are dictated by its application. For instance, matching and
tracking tasks mainly require a repeatable and accurate feature detec-
tion, as the fundamental objective is to accurately identify the same
features across a sequence of images, regardless of the degree of de-
formation. It does not become relevant if the set of features fails to
cover the most informative image content. On the other hand, tasks
such as object (class) recognition, image retrieval, and image compres-
sion require a robust image representation (Tuytelaars & Mikolajczyk,
2008). In these particular cases, the idea is to analyze the image statis-
tics and use local features to capture informative image content. Here,
repeatability and accuracy, despite their relative importance, are not
primary requirements.

Local feature detectors tend to be based on strong assumptions
on the image content. For example, Harris-Stephens keypoint detec-
tor (Harris & Stephens, 1988) and Laplacian-based algorithms (e. g.,
Mikolajczyk & Schmid, 2002; Lowe, 2004) assume that there exist, re-
spectively, corners and blobs in the image. The MSER detector (Matas
et al., 2002) assumes the existence of image regions characterized by
stable isophotes with respect to intensity perturbations. All of the
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aforementioned structures are expected to be related to semantically
meaningful parts of an image, such as the boundaries, the vertices of
objects, or even the objects themselves. However, we cannot ensure
that the detection of a particular feature will cover the most informa-
tive parts of the depicted scene. Therefore, if our goal is to provide
a robust image representation via local feature detection, a plausible
and straightforward strategy will be a combined and complementary
feature detection, using two or more detectors. In Fig. 4.1, we depict
an example of a combined feature detection utilizing SFOP (Först-
ner et al., 2009a) and Hesssian-Laplace (Mikolajczyk & Schmid, 2002)
features. The SFOP algorithm provides an explicit, interpretable, and
already complementary detection. Despite the reasonable degree of
complementary among SFOP features, we can achieve a more com-
plete detection by combining SFOP features with Hessian-Laplace re-
gions, i. e., blobs.

Figure 4.1: Combined feature detection: cyan circumferences enclose SFOP
features when α = 90°; red circumferences enclose SFOP features
when α = 0°; yellow circumferences denote the boundaries of
Hessian-Laplace regions (blobs). Best viewed in color.

A combined feature detection may not be the ideal solution. In fact,
it entails two major shortcomings: first, it implies a higher computa-
tional cost due to the use of several detectors instead of one; second,
it is not always straightforward to ensure the absence of redundant
features, i. e., we cannot guarantee a fully complementary detection.
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There are a few attempts in designing a single detector aimed at re-
sponding to complementary features (e. g., Förstner et al., 2009a).
However, these complementary detections still make strong assump-
tions on the image content.

In this chapter, we introduce a novel feature algorithm aimed at pro-
viding a robust image representation by responding to complemen-
tary features while not making any a priori assumption on the image
content. The proposed algorithm, coined as Context-Aware Keypoint
Extraction (CAKE), represents a new paradigm in local feature detec-
tion: it considers the image context to define salient parts. Figure 4.2
provides an illustrative comparison between our context-aware detec-
tion and a strictly local one (Shi & Tomasi, 1994). In the given example,
the closed contour, which appears as a relevant object within the im-
age context, is neglected by the Shi-Tomasi algorithm when retrieving
the most salient locations (Fig. 4.2 (b)). On the other hand, the pro-
posed context-aware keypoint extraction depicted in the same figure
provides a better coverage of relevant content by considering a key-
point inside the closed contour as one of the most salient locations
(Fig. 4.2 (c) and (d)).

4.2 cake : a context-aware keypoint extractor

4.2.1 More on motivation

Our contribution is the CAKE algorithm, a keypoint extractor aimed
at covering the most informative image content. The proposed algo-
rithm responds to complementary local structures and is aware of
the image composition. We follow an information-theoretic approach
by assuming that the so-called salient locations correspond to points
within structures with a low probability of occurrence, which is in ac-
cordance with a plausible characterization of visual saliency (Bruce,
2005). As we have noted earlier, the majority of local feature detectors
tends to make strong assumptions on the image content, which can
lead to an ineffectual coverage of the content (Förstner et al., 2009b;
Dickscheid et al., 2011). Here, the idea is not to formulate any a pri-
ori assumption on the structures that might be salient. Furthermore,
our scheme is designed to take advantage of different local represen-
tations (descriptors) and the use of information to measure saliency
allows us to establish a well-defined hierarchy among features.

Our context-aware extraction can respond to features with a reason-
able degree of complementarity as long as they are informative. For
images with many types of structures and patterns, one can expect
a high complementarity among the features retrieved by a context-
aware algorithm. Conversely, images with repetitive patterns inhibit
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(a) (b)

(c) (d)

Figure 4.2: Keypoints on a psychological pattern: (a) pattern (Julész &
Bergen, 1983); (b) 60 most salient Shi-Tomasi keypoints; (c) 5

most salient context-aware keypoints; (d) 60 most salient context-
aware keypoints.
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context-aware methods from retrieving a clear summarized represen-
tation of the content. Nevertheless, in the latter case, the extracted
set of features can be complemented with a counterpart that retrieves
the repetitive elements in the image. To illustrate the aforementioned
advantages, we depict these two considerably different cases in Fig.
4.3.

The image in the top row of Fig. 4.3 shows a context-aware keypoint
extraction on a well-structured scene, retrieving the 100 most informa-
tive locations. This small number of features is sufficient to provide
a reasonable coverage of the content, which includes several types of
structures. The image in the bottom depicts the benefits of combining
context-aware keypoints with strictly local ones (SFOP keypoints) to
obtain a better coverage of textured images. In the latter image, it is
important to note the absence of redundant features.

4.2.2 The algorithm

Shannon’s measure of information (Shannon, 1948) forms the basis of
our measure of saliency. If we consider a symbol s, its information is
given by

IS(s) = − log(P(s)), (4.1)

where P(·) denotes the probability of a symbol. In the particular case
of images, defining symbols is not a straightforward task and using
solely the content of a pixel x is not applicable, whereas the content
of a region around x will be more appropriate. We will therefore con-
sider any local description w(x) ∈ RD that represents the neighbor-
hood of x as a viable codeword.1 This codeword can be seen as the
symbol, so that, with a conceptual shift, we can denote the symbol
corresponding to a pixel x with its codeword w(x), which allows us
to rewrite (4.1):

IS(x) = − log(P(w(x))). (4.2)

In this way, we define the information for each pixel x using the def-
inition of codeword. However, in Shannon’s perspective, a symbol
should be a case of a discrete set of possibilities, while we have de-
fined the codeword in RD. As a consequence, to estimate the prob-
ability of a certain symbol, a frequentists approach might be used.
In this case, one should be able to quantize codewords into symbols.
It is clear that the frequentists approach is inappropriate, and the
quantization is a dangerous process applied to a codeword, since the
quantization error can induce strong artifacts in the I(x) map, gener-
ating spurious local maxima.

1 For the sake of generality, we are assuming that a codeword is a D-dimensional real
vector. However, one can consider other arbitrary domains, including discrete ones.
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Figure 4.3: Proposed keypoint extraction. Top row: context-aware keypoints
on a well-structured scene (100 most informative locations);
bottom row: a combination of context-aware keypoints (green
squares) with SFOP keypoints (red squares) on a highly textured
image (Brodatz, 1966). Best viewed in color.
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We abandon the frequentist approach in favor of a Parzen Density
Estimation (Parzen, 1962), also known as Kernel Density Estimation
(KDE). The Parzen estimation is suitable for our method as it is non-
parametric, which will allow us to estimate any probability density
function (PDF), as long as there is a reasonable number of samples.
Using the KDE, we estimate the probability of a codeword w(y) as
follows:

P̂(w(y)) =
1

Nh

∑
x∈Φ

K(
d(w(y), w(x))

h
), (4.3)

where K denotes a kernel, d is a distance measure, h is a smoothing
parameter called bandwidth and N = |Φ| is the cardinality of the
image domain Φ. The key idea behind the KDE method is to smooth
out the contribution of each sample x by spreading it to a certain area
in RD and with a certain shape as defined by the kernel K. There is
a number of choices for the kernel. Nonetheless, the most commonly
used and the most suitable is a multidimensional Gaussian function
with zero mean and standard deviation σk. Using a Gaussian kernel,
(4.3) can be rewritten as

P̃(w(y)) =
1

NΓ

∑
x∈Φ

exp(−
d2(w(y), w(x))

2σ2k
), (4.4)

where h has been replaced by the standard deviation σk and Γ is a
proper constant such that the estimated probabilities are taken from
an actual PDF. Having defined the probability of a codeword, we can
define the saliency measure as follows:

fCAKE(y) = − log(
1

NΓ

∑
x∈Φ

exp(−
d2(w(y), w(x))

2σ2k
)). (4.5)

In this case, context-aware keypoints will correspond to local maxima
of fCAKE that are above a given threshold T .

To complete the description of the proposed method, we have to
define the distance measure d and set a proper value to σk. Due to
the relevance of these two parameters in the process of estimating the
PDF, we have decided to discuss them in two separate subsections
(4.2.3 and 4.2.4). Nonetheless, the KDE has an inherent and signifi-
cant drawback: its computational cost. To estimate the probability of
a pixel, we have to compute (4.4), which means N distances between
codewords, giving a computational cost of O(N2) for the whole im-
age. The computational complexity of the KDE is prohibitive for im-
ages, where N is of the order of millions. Different methods have
been proposed to reduce the computation of a KDE-based PDF. Many
methods rely on the hypothesis that the sample distribution forms
separated clusters, so that it is feasible to approximate the probabil-
ity in a certain location of the multivariate space using a reduced
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set of samples. Other methods have been devised for the purpose of
a Parzen classifier, so that the cardinality of the training sample is
reduced, without changing significantly the performance of the re-
duced Parzen classifier. In our case, none of the two aforementioned
strategies can be straightforwardly used since (i) we cannot assume
that the multivariate distribution forms different clusters, and (ii) we
do not have ground truth labels to use the same strategy as the one
defined for Parzen classifiers. We propose an efficient method that
reduces the number of samples by approximating the full O(N2) PDF
in (4.4) with a O(N logN) algorithm. A detailed explanation of the
speed-up method can be found in 4.2.5.

4.2.3 The distance d

To completely define a KDE-based approach, we have to define (i) the
distance d, (ii) the kernel K, and (iii) the bandwidth h. These three pa-
rameters are interrelated since they will form the final “shape” of the
kernel. As for the distance function d, we consider the Mahalanobis
distance:

d(w(x), w(y)) =

√
(w(x) − w(y))TΣ−1

W (w(x) − w(y)), (4.6)

where W =
⋃

x∈Φw(x) and ΣW is the covariance matrix of W. By
using this distance, any affine covariant codeword will provide an
affine invariant behavior to the extractor. In other words, any affine
transformation will preserve the order of P. This result is summarized
in the following theorem:

Theorem 4.1. Let w(1) and w(2) be codewords such that w(2)(x) =

T(w(1)(x))), where T is an affine transformation. Let P(1) and P(2) be the
probability maps of w(1) and w(2), i. e., P(i)(·) = P(w(i)(·)), i = 1, 2. In
this case,

P(2)(xl) 6 P(2)(xm) ⇐⇒ P(1)(xl) 6 P(1)(xm),∀xl, xm ∈ Φ.

Proof. Let us suppose that P(2)(xl) 6 P(2)(xm) (the reasoning will be
analogous if we consider the other inequality). From the definition of
probability, we have

N∑
j=1

exp (−
(w(2)(xl)− w(2)(xj))TΣ−1

W(2)(w(2)(xj)− w(2)(xl))

2σ2k
) 6

6
N∑
j=1

exp (−
(w(2)(xm)− w(2)(xj))TΣ−1

W(2)(w(2)(xj)− w(2)(xm))

2σ2k
).

Let A be the matrix that represents the transformation T (we assume
no translation). Since ΣW(2) = AΣW(1)AT , the numerators from the
exponents in the first and second members of the inequality can be
rewritten as

(A(w(1)(xl)− w(1)(xj)))T (AΣW(1)A
T )−1(A(w(1)(xj)− w(1)(xl)))
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and

(A(w(1)(xm)− w(1)(xj)))T (AΣW(1)A
T )−1(A(w(1)(xj)− w(1)(xm)),

respectively. By simplifying the previous expressions, we have

((w(1)(xl)− w(1)(xj)))TΣ−1
W(1)(w(1)(xj)− w(1)(xl)))

and
((w(1)(xm)− w(1)(xj)))TΣ−1

W(1)(w(1)(xj)− w(1)(xm))).

Thus,

P(2)(x) =
1

|detA|
P(1)(x), ∀x ∈ Φ.

From the hypothesis, we have P(1)(xl) 6 P(1)(xm).

4.2.4 The smoothing parameter σk

A Parzen estimation can be seen as an interpolation method, which
provides an estimate of the continuous implicit PDF. It has been
shown that, forN→∞, the KDE converges to the actual PDF (Parzen,
1962). However, whenN is finite, the bandwidth h plays an important
role in the approximation. In the case of a Gaussian kernel, σk is the
parameter that accounts for the smoothing strength.

The free parameter σk can potentially vanish the ability of the pro-
posed method to adapt to the image context. When σk is too large, an
over-smoothing of the estimated PDF occurs, canceling the inherent
PDF structure due to the image content. If σk is too small, the interpo-
lated values between different samples could be low, such that there
is no interpolation anymore. We propose a method, in the case of
univariate distribution, to determine an optimal sigma σ?k, aiming at
sufficient blurring while having the highest sharpen PDF between sam-
ples. We use univariate distributions, since we approximate the KDE
computations of a D-dimensional multivariate PDF by estimating D
separate univariate PDFs (see subsection 4.2.5). From N samples w,
we define the optimal σk for the given distribution as

σ?
k = argmax

σ>0

∫ wi+1
wi

1√
2πσ

∣∣∣∣∣∣∣∣
d

(
exp(

−(w−wi)
2

2σ2
)+exp(

−(w−wi+1)
2

2σ2
)

)
dw

∣∣∣∣∣∣∣∣dw, (4.7)

where wi and wi+1 is the farthest pair of consecutive samples in the
distribution. It can be shown that, by solving (4.7), we have σ?k =

|wi −wi+1|. It can be also demonstrated that for σ < |wi −wi+1| /2,
the estimated PDF between the two samples is concave, which pro-
vides insufficient smoothing. Using σ?k as defined above, we assure
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that we have sufficient blurring between the two farthest samples, while,
at the same time, providing the highest sharpen PDF.

4.2.5 Reduced KDE

As shown by Theorem 4.1, applying an affine transformation to the
codewords does not change the result of the extractor. We take advan-
tage of this, and perform a principal component analysis (PCA) to
obtain a new codeword distribution WP, where elements are denoted
by wP(x). In this case, the inverse of the covariance matrix Σ−1

WP
is

a diagonal matrix, where the elements on the diagonal contain the
inverse of the variance of every variable of WP. Consequently, we can
rewrite the Gaussian KDE in (4.4), using the Mahalanobis distance
d(·, ·), as another Gaussian KDE with Euclidean distance:

p̃(wP(y)) =
1

NΓ

∑
x∈Φ

exp(−
∑D
i=1 ai(wP,i(y)−wP,i(x))2

2σ2k
), (4.8)

where ai =
√
Σ−1
WP

(i, i), i. e.., the square root of the ith diagonal
element of the inverse of covariance matrix. Equation (4.8) can be
rewritten as

p̃(wP(y)) =
1

NΓ

∑
x∈Φ

D∏
i=1

exp(−
ai(wP,i(y)−wP,i(x))2

2σ2k
). (4.9)

By assuming that each dimension i provides a PDF that is indepen-
dent of other dimensions, (4.9) can be approximated as follows:

p̃(wP(y)) ' 1

NΓ

D∏
i=1

∑
x∈Φ

exp(−
ai(wP,i(y)−wP,i(x))2

2σ2k
) ' 1

NΓ

D∏
i=1

p̃i(wP,i(y)). (4.10)

Note that this approximation is only valid if PCA is able to sepa-
rate the multivariate distribution into independent univariate distri-
butions. This is not always verified. However, the proposed approxi-
mation works sufficiently well for convex multivariate distributions,
which is the case in all the experiments we have conducted in this
chapter. Therefore, we have to compute D one-dimensional KDEs
p̃i(wP,i(y)), using the Euclidean distance, which reduces a multivari-
ate KDE to D univariate problems. This step simplifies the compu-
tation of distances between codewords, but still does not reduce the
number of basic product-sum computations. Nevertheless, we can ap-
proximate the D one dimensional KDEs to speed-up the process. The
fact that we have univariate distributions will be profitably used. For
the sake of compactness and clarity, in the next part of the section,
we will refer to p̃i(wP,i(y)) as p(w(y)). We will also omit the constant
1/NΓ and the constants ai.

66



We can extend the concept of KDE, by giving a weight v(x) > 0 to
each sample, so that the univariate KDE can be rewritten as a reduced
KDE:

pR(w(y)) =
∑

x∈ΦR

v(x) exp(−
(w(y) −w(x))2

2σ2k
), (4.11)

where ΦR ⊂ Φ. This formulation can be seen as a hybrid between
a Gaussian KDE and a Gaussian Mixture Model. The former has a
large number of samples, all of them with unitary weight and fixed
σk, while the latter has a few number of Gaussian functions, each one
with a specific weight and standard deviation.

The goal of our speed-up method is to obtain a set ΦR with |ΦR| =

Nr � N samples that approximate the O(N2) KDE. The idea is to fuse
samples that are close to each other into a new sample that “summa-
rizes” them. Given a desired number of samples NR, the algorithm
progressively fuses pairs of samples that have a minimum distance
(see Algorithm 6).

Algorithm 6 Speed-up method

1: ΦR ← Φ

2: v(x)← 1, ∀x ∈ Φ
3: while |ΦR| > NR do
4: {x̃0, x̃1}← argmin

x0,x1∈ΦR, x0 6=x1
|w(x0) −w(x1)|

5: v(x01)← v(x̃0) + v(x̃1)
6: w(x01)← v(x̃0)w(x̃0)+v(x̃1)w(x̃1)

v(x̃0)+v(x̃1)
7: ΦR ← (ΦR \ {x̃0, x̃1})∪ {x01}

8: end while

The algorithm uses as input the N samples of the univariate dis-
tribution (line 1), giving constant weight 1 to all the samples (line 2).
While the number of points is greater than the desired number NR
(line 3 to 8), the algorithm selects the pair of samples that have the
minimum distance in the set ΦR (line 4), and a new sample is created
(lines 5 and 6), whose weight v is the sum of the pair’s weights and
the value w is a weighted convex linear combination of the previous
samples. The two selected samples are then removed by the set ΦR
and replaced by the new one (line 7).

At first sight, the reduction algorithm may appear computation-
ally expensive (∼ O(N3)), since a minimum distance over N2R pairs
of points has to be found. However, w ∈ R, so that w(x) can be or-
dered at the beginning of the algorithm (with cost O(dN logNe)), and
the pairs of minimum distance can be computed in N subtractions.
Consequently, for each sample x, we have the respective sample at
minimal distance xm and their distance dm(x) = |w(x)−w(xm)|. This
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data can be represented using a self-balancing tree (Koffman & Wolf-
gang, 2007), allowing us to perform deletion and insertions (line 7), in
logN time. Since the samples are ordered both in terms of w(x) and
dm(x), updating the distances after deletions and insertions can be
done in O(1). Summarizing, we need to perform 2(N−Nr) deletions
andN−Nr insertions, so that the total cost of the reduction algorithm
is proportional to dN logNe+ 3(N−Nr) logN, which is O(N logN).
The total cost to compute pR(w(y)) linearly depends on the desired
NR and the number of dimensions D.

To further speed-up the approximation, we can use a reduced num-
ber of dimensions D̃ < D such that the first D̃ dimensions of the
multivariate distribution WP cover 95% of the total distribution vari-
ance. This is a classical strategy for dimensionality reduction that has
provided, in our tests, an average of 3× further speed-up.

4.3 instances of the context-aware keypoint extractor

Different CAKE instances are constructed by considering different
codewords. As observed by Gilles (1998) and Kadir & Brady (2001),
the notion of saliency is related to rarity. What is salient is rare. How-
ever, the reciprocal is not necessarily valid. A highly discriminating
codeword will turn every location into a rare structure; nothing will
be seen as salient. On the other hand, with a less discriminating code-
word, rarity will be harder to find. We present two differential-based
instances, which are provided by sufficiently discriminating code-
words. The strong link between image derivatives and the geometry
of local structures is the main motivation to present two examples of
instances based on local differential information.

4.3.1 [eigSTM]-CAKE

As seen in Chapter 2, local feature detection based on differential and
(implicitly) geometrical information often makes use of the structure
tensor matrix, whose spectrum summarily describes the local signal
variations along the principal directions. We introduce a plausible
CAKE instance, coined as [eigSTM]-CAKE, based on the codeword
w(x) = [λ1(µ(x)) λ2(µ(x))]

T , which solely conveys information about
the spectral structure of µ, the structure tensor matrix. Under this in-
stance, keypoints will be the locations that show the most improbable
local signal changes in orthogonal directions of the image plane. The
[eigSTM]-CAKE serves as an introductory example, which, despite
its simplicity, can provide a rotation covariant response and a good
coverage of relevant image information. Note that a similar instance
could have been constructed using the three different components of
the structure tensor matrix.
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Figure 4.4 depicts the “Needle in a Haystack” image with the over-
laid maps representing Shi-Tomasi and [eigSTM]-CAKE saliency mea-
sures, as well as the information map provided by the proposed code-
word. It is readily seen that our instance provides a better coverage
of the most relevant object.

(a) (b)

(c) (d)

Figure 4.4: Saliency measures as overlaid maps on the “Needle in a
Haystack” image: (a) Input image; (b) Shi-Tomasi saliency mea-
sure; (c) [eigSTM]-CAKE saliency measure; (d) [eigSTM]-CAKE
information map. Best viewed in color.

In Fig. 4.5, we extend the comparison to the other detectors sum-
marized in Table 4.1 by giving a geometrical interpretation of the pro-
cess of detection. Gray dots show the distribution of the eigenvalues
λ1 and λ2, while squares and circles indicate respectively the 10 and
60 most salient keypoints. For the CAKE instance, the geometry of
the most salient keypoints depends on the data distribution (Fig. 4.5
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(a)), while for other methods the geometry of relevant points strictly
depends on the respective saliency measure (Fig. 4.5 (b), (c), and (d)).

Table 4.1: Saliency measures for Noble, Rhor, and Shi-Tomasi detectors.

Noble Rohr Shi-Tomasi

f
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Figure 4.5: Visualizing keypoint detection in the spectrum of µ (without
non-maxima suppression): (a) [eigSTM]-CAKE; (b) Noble; (c)
Rohr; (c) Shi-Tomasi. Legend: circles – 60 most salient keypoints;
squares – 10 most salient keypoints.

4.3.2 [HES]-CAKE

Our second instance, which we will refer to as [HES]-CAKE, is based
on the Hessian matrix. The idea is to efficiently describe local shape
characteristics by means of second order derivatives, which will be
computed at multiple scales to produce robustness to scale changes.
The use of second order derivatives will allow us to capture struc-
tures that carry most image information, such as blobs, as well as
structures where the fine details of image can be found, i. e., lines
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and edges (Lillholm et al., 2003; Dickscheid et al., 2011).

The codeword for the multiscale Hessian-based instance is

w(x) =
[
σ
2
1Lxx(x;σ1) σ

2
1Lxy(x;σ1) σ

2
1Lyy(x;σ1)

σ
2
2Lxx(x;σ2) σ

2
2Lxy(x;σ2) σ

2
2Lyy(x;σ2)

· · ·

σ
2
MLxx(x;σM) σ

2
MLxy(x;σM) σ

2
MLyy(x;σM)

]T
,

(4.12)

where Lxx, Lxy, and Lyy are the second order partial derivatives of L,
a Gaussian smoothed version of the image, and σi, with i = 1, . . . ,M,
represents the scale.

In Fig. 4.6, we show [HES]-CAKE detection (200 keypoints) on the
first and third images of the Boat sequence (Oxford dataset). These
relatively few features are mainly concentrated in the foreground ob-
ject, and they are either part of blobs or edges.

4.4 experimental validation and discussion

We evaluated and compared the performance of the proposed CAKE
instances using three criteria: completeness, complementarity, and re-
peatability. In the context of feature-based robust image representa-
tion, completeness and complementarity appear as crucial criteria.
Although the presence of repeatable features is not a fundamental
requirement for robust image representation, their existence is advan-
tageous: a robust image representation without repeatable features
provides an unpredictable coverage of the image content when in the
presence of image deformations. Furthermore, a repeatable set of fea-
tures allows the detector to be used in a wider range of application
domains.

[HES]-CAKE is designed to provide a better coverage of informa-
tive content. Furthermore, [eigSTM]-CAKE is an instance which has
a covariant response to rotations, while the Hessian-based one com-
bines such covariance with robustness to scale changes. Given these
differences in terms of robustness and completeness, a special em-
phasis was given to the Hessian-based instance in our experimental
validation.

We followed the evaluation protocol proposed by Dickscheid et al.
(2011) to measure the completeness and the complementarity of fea-
tures. The metric for completeness is based on local statistics, which
totally excludes the bias in favor of our context-aware features, as
our algorithm is based on the analysis of the codeword distribution
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: [HES]-CAKE information maps for the first and third images
of the Boat sequence: (a) first image; (b) third image; (c) and
(d) [HES]-CAKE features (200 most salient keypoints); (e) and (f)
information maps.
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over the whole image. In fact, this evaluation gives a hint on the
quality of the trade-off between the context-awareness and the local-
ity of context-aware features. However, it does not provide a hint on
how features cover informative content within the image context. If
we take the “Needle in a Haystack” image depicted in Fig. 4.2 as an
example, we can claim that strictly local features can show high com-
pleteness scores without properly covering the most interesting object
in the scene. Note that such image representation, despite its con-
siderable robustness, might be ineffectual if the goal is to recognize
the salient object. Therefore, for a better understanding of the perfor-
mance of our method, we complemented the completeness analysis
with a qualitative evaluation of context-awareness.

4.4.1 Repeatability evaluation

4.4.1.1 [eigSTM]-CAKE repeatability evaluation

We evaluated the repeatability of [eigSTM]-CAKE features on a dataset
containing 5 axial slices of synthetic T1 MRI of the human brain2 with
a size of 181×217 pixels and other images that are the result of ap-
plying different levels of Gaussian noise (5% and 7%) or rotation (2°
and 5°) to the original slices. To provide an acceptable coverage of
the brain anatomy, we selected slices #25, #50, #100, and #150 from
the original database. Figure 4.7 depicts some of the test images. For

(a) (b) (c)

Figure 4.7: BrainWeb test Images: (a) normal slice; (b) a region of interest in
(a); (c) noisy slice (7%).

comparison, implementations of the keypoint extractors mentioned
in Table 4.1 were included in the evaluation. The derivation and in-
tegrations scales were set to 1.5 and 3, respectively. To estimate the
information maps, we used 200 samples.

2 Available at http://www.bic.mni.mcgill.ca/brainweb/.
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The repeatability rates for the first 20 and 100 keypoints within a
1.5-neighborhood were conjointly computed with the mean localiza-
tion error. These results are outlined in Tables 4.2–4.5. The asterisk de-
notes that the difference between the indicated result and the result of
the proposed method is statistically significant (Wilcoxon rank-sum
test). Figure 4.8 contains specific plots of repeatability and mean local-
ization error as a function of the number of detected points for slice
#100 with 7% of noise.

Table 4.2: Repeatability rate results in a 1.5 neighborhood for the 20 most
salient keypoints.

Noise Rotation

5% 7% 2° 5°

[eigSTM]-CAKE 90%±7% 86.3%±12.5% 78.8%±4.8% 15%±9.1%

Noble * 68.8%± 7.5% 72.5%± 9.6% * 55%± 11.6% 13.8%± 6.3%

Rohr 85%±9.1% 80%±7% 82.5%±9.6% 28.8%±7.5%

Shi-Tomasi 92.5%±8.7% 83.8%±6.3% 77.5%±6.5% 18.8%± 8.5%

Table 4.3: Repeatability rate results in a 1.5 neighborhood for the 100 most
salient keypoints.

Noise Rotation

5% 7% 2° 5°

[eigSTM]-CAKE 83.5%± 7.9% 76.5%± 11.2% 77.8%± 12% 18.3%±6.4%

Noble * 63.5%± 5% 61.3%± 6.7% * 51.5%± 5% 14.3%± 4.2%

Rohr 83.8%±%3.8 76% ± 5% 88.3% ± 2.8% 23.3%± 8.2

Shi-Tomasi 86.8%±4.1% 80.3%±1% 82.5%± 3.7% 24.3%±7.5%

For this particular type of images, these detectors show a similar
performance, although the Shi-Tomasi algorithm shows a higher re-
peatability when dealing with noisy images, whereas the Rhor ex-
tractor has the preferred performance when in the presence of mi-
nor rotations. Our proposed instance shows repeatability rates and
localization errors slightly inferior to the Shi-Tomasi algorithm. The
differences become more discrepant when more points are consid-
ered, which is explained by the existence of repeating structures along
the images. The accuracy of our context-aware keypoints is worth of
note, as it shows that the proposed method alleviates the sensitiv-
ity to noise that characterizes information theoretic-based algorithms,
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Table 4.4: Mean localization error results in a 1.5 neighborhood for the 20

most salient keypoints.

Noise Rotation

5% 7% 2° 5°

[eigSTM]-CAKE 0.2 ± 0.1 0.4±0.0 0.9±0.0 1.1± 0.2

Noble * 0.6 ± 0.2 * 0.6 ± 0.3 0.9 ± 0.1 1.0±0.2

Rohr 0.2 ±0.1 0.3±0.1 0.9±0.0 1.0±0.2

Shi-Tomasi 0.2 ± 0.0 0.4 ± 0.0 0.9 ± 0.0 1.0 ±0.3

Table 4.5: Mean localization error results in a 1.5 neighborhood for the 100

most salient keypoints.

Noise Rotation

5% 7% 2° 5°

[eigSTM]-CAKE 0.3 ± 0.1 0.5 ± 0.1 0.9 ± 0.0 1.1 ± 0.0

Noble * 0.6±0.1 * 0.7±0.1 0.9± 0.0 1.0 ± 0.0

Rohr 0.4±0.1 0.5±0.1 0.9±0.0 1.1 ± 0.1

Shi-Tomasi 0.3±0.0 0.5 ± 0.0 0.9 ± 0.0 1.1±0.0

namely when keypoints are used instead of regions (Kadir & Brady,
2001).

4.4.1.2 [HES]-CAKE repeatability evaluation

We followed the evaluation protocol proposed by Mikolajczyk et al.
(2005) to evaluate the repeatability of [HES]-CAKE features. Since
the Hessian-based CAKE instance is mainly a keypoint extractor, we
make use of the normalized Laplacian operator, ∇2Ln = σ2(Lxx +

Lyy), to determine the characteristic scale for each extracted keypoint,
which, in this case, corresponds to the one at which the normalized
Laplacian attains an extremum. This scale defines the radius of a cir-
cular region centered about the keypoint (Fig. 4.9). The repeatability
of regions is computed within an overlap error of 40% (εR = 0.4).

The Hessian-based CAKE instance does not solely respond to blob-
like keypoints. In fact, this instance can capture other structures where
scale selection can be less reliable, i. e., edges. Nevertheless, the com-
bination of [HES]-CAKE with the normalized Laplacian operator can
provide robustness to scale changes, despite the resulting method not
being entirely scale covariant.
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Figure 4.8: Repeatability rate and mean localization error as a function of
the number of extracted points for a noisy slice.

(a) (b)

(c) (d)

Figure 4.9: [HES]-CAKE regions extracted from the first and third images
from the Graffiti sequence: (a) and (b): extracted regions (from
the 1500 most informative keypoints); (c) and (d): information
maps.

76



We compared the repeatability of keypoints retrieved by [HES]-
CAKE and the ones given by some of the leading algorithms on
scale covariant feature extraction: Hessian-Laplace (HESLAP), Harris-
Laplace (HARLAP), the Scale Invariant Feature Operator (SFOP), and
the Salient Regions detector (scale covariant version). We also ana-
lyzed the repeatability of Maximally Stable Extremal Regions (MSER),
a type of affine covariant features that are not derived from keypoints.
In all cases, the implementations are the ones given and maintained
by the authors and default parameters were used.

A few important remarks should be made about the choice of the al-
gorithms in the comparative study. First, affine covariant region detec-
tors are more appealing than the scale covariant ones. However, since
[HES]-CAKE is designed to have a quasi-scale-covariant response,
our decision was to compare it directly to detectors showing a similar
level of covariance. Moreover, as reported by Mikolajczyk & Schmid
(2004), scale covariant methods such as HARLAP and HESLAP yield
better repeatability results in the presence of scale change than its
affine covariant derivations.

Table 4.6 outlines the parameter settings for [HES]-CAKE. We note
that our algorithm retrieves more features than its counterparts. For
a fair evaluation of repeatability, we defined a threshold to avoid a
considerable discrepancy in the number of features.

Table 4.6: Parameter settings for [HES]-CAKE.

[HES]-CAKE

Number of scales 12

ti+1/ti (ratio between successive scale levels) 1.19

t0 (initial scale) 1.4

Non-maximal suppression window 3×3

T (threshold) 12 (or 3000 keypoints)

σk optimal

NR (number of samples) 200

Figures 4.10 to 4.17 depict the relative and absolute repeatability
of regions for the different sequences, and Figure 4.18 gives a sum-
marized version of these results. Figures 4.10 to 4.17 also include
the repeatability score for the third image with respect to the first
one as a function of the overlap error, which will give us an idea
of the accuracy of the detectors. The computation of repeatability
only takes into account the regions in common parts between the
images. Among scale covariant features, HESLAP regions exhibit a
slightly better overall repeatability score, namely in well-structured
scenes (e. g., Bikes) where blob-like features are more present and
well-defined. HARLAP has a similar performance, yielding the most
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repeatable results in textured scenes. The repeatability scores of SFOP
and [HES]-CAKE are similar, yet the latter responds to a higher num-
ber of features. Aside from viewpoint changes, the repeatability of
MSER tends to be lower than its counterparts. In a direct compari-
son of information theoretic-based methods, we observe that [HES]-
CAKE features are more repeatable than Salient Regions. The only
two exceptions to this observation are the results for Trees and Wall
sequences. Such results are explained by the fact that both sequences
depict highly textured scenes, providing denser sets of Salient Re-
gions. As for scale changes (Boat and Bark sequences), [HES]-CAKE
regions show a sufficiently robust behavior. In the case of the Bark
sequence, only HESLAP features are more repeatable than the pro-
posed regions.

In terms of accuracy, we observe a similar performance among
all methods, although Salient Regions are less accurate in sequences
such as Wall, Trees, or UBC. This is explained by the presence of a
higher number of Salient Regions in these sequences, which yields
a higher number of correspondences for larger overlap errors. Note
that in the original evaluation performed by Mikolajczyk et al. (2005),
the authors decided to use a reduced number of Salient Regions. As
a result, these features showed a lower repeatability for the default
overlap error as well as lower repeatability variations as the overlap
error was changed, i. e., they showed a higher accuracy. Here, we con-
sidered a higher number of Salient Regions in order to make this
cardinality comparable to the one of [HES]-CAKE features.

4.4.2 Completeness and complementarity evaluation

Six of the seven image categories used by Dickscheid et al. (2011) in
the original evaluation were also used in our evaluation. The cate-
gories are the ones depicted in Fig. 3.8. The seventh category, which
is comprised of different cartoon images, was not made publicly avail-
able and, therefore, it was not included in our dataset.

The cardinality of the sets influences the completeness scores, as
sparser sets tend to be less complete. While it is interesting to ana-
lyze the completeness of sets with comparable sparseness, one can-
not expect similar cardinalities when dealing with different features
types. We took such facts into consideration and, as a result, we per-
formed two different tests. The first one corresponds to the main
completeness test, which does not restrict the number of features.
The second one allows us to make a direct comparison between our
method and the Salient Regions algorithm by using the same num-
ber of features. Let F[HES]−CAKE(I) and FSalient(I) be the respective
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Figure 4.10: Repeatability results for the Graffiti sequence (viewpoint
change). Top row: repeatability (overlap error of 40%); middle
row: number of corresponding regions (overlap error of 40%);
bottom row: repeatability for the third image w.r.t. to the first
one.
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Figure 4.11: Repeatability results for the Wall sequence (viewpoint change).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 4.12: Repeatability results for the Boat sequence (scale change). Top
row: repeatability (overlap error of 40%); middle row: number
of corresponding regions (overlap error of 40%); bottom row:
repeatability for the third image w.r.t. to the first one.
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Figure 4.13: Repeatability results for the Bark sequence (scale change). Top
row: repeatability (overlap error of 40%); middle row: number
of corresponding regions (overlap error of 40%); bottom row:
repeatability for the third image w.r.t. to the first one.
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Figure 4.14: Repeatability results for the Bikes sequence (increasing blur).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 4.15: Repeatability results for the Trees sequence (increasing blur).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 4.16: Repeatability results for the Leuven sequence (decreasing light).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.

85



60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

JPEG compression

R
e
p
e
a
ta

b
ili

ty
 (

%
)

 

 

[HES]−CAKE
HESLAP
HARLAP
SFOP
MSER
Salient

60 65 70 75 80 85 90 95 100
0

1000

2000

3000

4000

5000

6000

JPEG compression

N
u
m

b
e
r 

o
f 
c
o
rr

e
s
p
o
n
d
e
n
c
e
s

 

 

[HES]−CAKE
HESLAP
HARLAP
SFOP
MSER
Salient

10 20 30 40 50 60
0

20

40

60

80

100

Overlap error (%)

R
e
p
e
a
ta

b
ili

ty
(%

)

 

 

[HES]−CAKE
HESLAP
HARLAP
SFOP
MSER
Salient

Figure 4.17: Repeatability results for the UBC sequence (JPEG compression).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 4.18: Repeatability score and number of correspondences with an
overlap error of 40% for the Oxford dataset. Top row: average re-
peatability (error bars indicate the standard deviation). Bottom
row: average number of correspondences (error bars indicate
the standard deviation).
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sets of [HES]-CAKE regions and Salient Regions extracted from an im-
age I. From each set, we extract the n highest ranked features (both
methods provide a well-defined hierarchy among features), where
n = min{

∣∣F[HES]−CAKE(I)
∣∣ , |FSalient(I)|}.

The parameter settings for [HES]-CAKE are outlined in Table 4.7.
We used only 3 scales to reduce the difference between the number of
[HES]-CAKE features and the number of regions retrieved by its coun-
terparts. Note that [HES]-CAKE already responds to complementary
features, yielding feature sets with a higher cardinality. However,
for a more insightful study of the complementarity between [HES]-
CAKE features and the remaining ones, it is fundamental that the
completeness of [HES]-CAKE features is not maximal. By using this
reduced number of scales, we achieve such trade-off. For the same
reason, we only considered 50 % of the regions detected by [eigSTM]-
CAKE, whose parameter settings are outlined in Table 4.8.

Table 4.7: Parameter settings for [HES]-CAKE.

[HES]-CAKE

Number of scales 3

ti+1/ti (ratio between successive scale levels) 1.19

t0 (initial scale) 1.4

Non-maximal suppression window 3×3

T (threshold) none

σk optimal

NR (number of samples) 200

Table 4.8: Parameter settings for [eigSTM]-CAKE.

[eigSTM]-CAKE

σD (derivation scale) 1.5

σI (integration scale) 3

Non-maximal suppression window 3×3

T (threshold) (50% of points)

σk optimal

NR (number of samples) 200

Figure 4.19 is a summary of the main completeness evaluation. Re-
sults are shown for each image category, in terms of the distance

dH(pH,pc). The plot includes the line y =
√
1
2 , which corresponds

to an angle of 90 degrees between
√
pH and

√
pc. For a better inter-

pretation, the average number of features per category is also shown.
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Regardless of the image collection, [HES]-CAKE retrieves more fea-
tures than the other algorithms, which contributes to achieve the best
completeness scores. The exception is the Brodatz category, which es-
sentially contains highly textured images. For this category, Salient
Regions achieve a better completeness score despite the lower num-
ber of regions. We also observe that the performance of [eigSTM]-
CAKE is comparable to other methods with higher sparseness. This
is mainly due to the fact that this instance performs a single-scale ex-
traction.
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Figure 4.19: Completeness results. Top row: average dissimilarity measure
dH(pH,pc) for the different sets of features extracted over the
categories of the dataset (error bars indicate the standard devi-
ation). Bottom row: average number of extracted features per
image category (error bars indicate the standard deviation).

The additional test computes the completeness scores of context-
aware regions and Salient Regions for the first 20 images in each cate-
gory using the same number of features. The results are summarized
in Fig. 4.20. Here, Salient Regions achieve better results. However, the
difference between scores is not significant. Aerial and Kitchen are
the categories where context-aware features exhibit the lowest scores.
This is explained by the strong presence of homogeneous regions,
which might be part of salient objects within the image context, such
as roads, rooftops (Aerial category), home appliances, and furniture
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(Kitchen category).
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Figure 4.20: Average dissimilarity measure dH(pH,pc) for the different sets
of features extracted over the categories of the dataset (20 im-
ages per category).

Complementarity was also evaluated on the first 20 images of each
category by considering combinations of two different feature types.
The results are summarized in Table 4.9. As expected, any combina-
tion that includes [HES]-CAKE regions achieves the best complete-
ness scores. We give particular emphasis to the complementarity be-
tween HESLAP and [HES]-CAKE: both methods are Hessian-based
and yet they produce complementary regions. The combination of
[HES]-CAKE and Salient Regions is also advantageous: the latter pro-
vides a good coverage of “busy” parts composed of repetitive pat-
terns.

4.4.3 Context-awareness evaluation

For a qualitative evaluation of the context-awareness of [HES]-CAKE
regions, we used three images typically used in the validation of al-
gorithms for visual saliency detection (e. g., Goferman et al., 2012).
Each one of the test images shows a salient object over a background
containing partially salient elements. Figures 4.21 and 4.22 depict the
test images, the corresponding information maps given by the CAKE
instance, as well as the coverage provided by context-aware regions
when 100 and 250 points are used. These results were obtained using
the parameter settings outlined in Tables 4.7 and 4.8. In all cases, our
algorithm succeeds in covering distinctive elements of the salient ob-
jects. However, [eigSTM]-CAKE regions cover the fine details of these
elements, while [HES]-CAKE features not only cover these elements.
In fact, with 250 [HES]-CAKE regions, the coverage becomes a rela-
tively robust image representation for all cases.
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Table 4.9: Average dissimilarity measure dH(pH,pc) for different sets of
complementary features (20 images per category).
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Brodatz Aerial Forest Mountain building Kitchen Overall

0.078 0.123 0.11 0.189 0.161 0.17 0.138

� �

0.062 0.113 0.085 0.127 0.116 0.114 0.103

� �

0.078 0.122 0.106 0.156 0.145 0.139 0.124

� �

0.074 0.12 0.105 0.157 0.147 0.145 0.125

� �

0.068 0.122 0.102 0.164 0.149 0.147 0.125

� �

0.063 0.123 0.101 0.15 0.142 0.149 0.121

� �

0.096 0.181 0.169 0.23 0.196 0.19 0.177

� �

0.116 0.22 0.228 0.29 0.26 0.263 0.229

� �

0.124 0.189 0.172 0.259 0.248 0.255 0.208

� �

0.102 0.222 0.213 0.309 0.262 0.276 0.231

� �

0.078 0.168 0.137 0.224 0.183 0.21 0.167

� �

0.117 0.245 0.209 0.252 0.259 0.23 0.219

� �

0.113 0.194 0.147 0.187 0.202 0.193 0.173

� �

0.093 0.239 0.185 0.24 0.223 0.21 0.198

� �

0.062 0.168 0.115 0.168 0.155 0.158 0.138

� �

0.134 0.251 0.195 0.247 0.275 0.263 0.227

� �

0.113 0.348 0.278 0.357 0.323 0.317 0.29

� �

0.077 0.214 0.147 0.215 0.195 0.211 0.177

� �

0.105 0.232 0.17 0.235 0.24 0.249 0.205

� �

0.076 0.174 0.13 0.187 0.181 0.181 0.16

� �

0.069 0.208 0.148 0.219 0.209 0.22 0.179

� �
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Figure 4.21: [HES]-CAKE information maps and extraction results in terms
of coverage.

4.5 object classification : a plausible application

Context-aware features represent a viable solution to the problem of
providing a robust image representation through the use of local fea-
tures. As shown in §4.4, our context-aware method provides complete
sets of features. In addition, the repeatability and accuracy of these
features is comparable with the ones retrieved by state-of-the art al-
gorithms. Hence, these results corroborate the suitability of context-
aware features for tasks mainly requiring the robust and compact
image representation, such as recognition/classification tasks.

We illustrate the application of context-aware features with an ob-
ject classification problem. The goal is to classify objects (or scenes)
into one of the different categories by training and testing on a fixed
number of images from each category of a given dataset. In our prob-
lem, we opted for the widely-used Caltech-101 dataset (Fei-Fei et al.,
2004). It contains 101 image categories of objects and a background
category. Each one has 40 to 800 images with a resolution of approx-
imately 300× 200 pixels. Each category shows variations in appear-
ance, shape, scale, and color. In our experiments, only 10 categories
were used. Figure 4.23 depicts examples of images of the categories
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Figure 4.22: [eigSTM]-CAKE information maps and extraction results in
terms of coverage.

used in the experiments.

To perform the required object classification, a bag of words model
was used (Lazebnik et al., 2006). Bag of words models are a widely-
used and popular technique for object recognition/classification. The
concept of bag of words is borrowed from natural language process-
ing: the idea is to treat local features as (visual) words. The vector (or
histogram) that stores the occurrences of the different visual words
corresponds to the bag of words. In this approach, the spatial layout
of features is explicitly neglected, whereas the frequency of features
is the most relevant factor.

The first step in the construction of a bag of words is feature de-
tection. The subsequent step is to compute feature descriptors over
the previously detected image patches. The collection of descriptors
that represents the image is then clustered into an image vocabulary.
In the following step, the histograms are fed to a Support Vector Ma-
chine (SVM) for classification. In the final step, the trained SVM is
used to classify the test images.

In our classification, the number of randomly selected images per
category was 15. The number of test images was also 15. As for fea-
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ture detectors and descriptors, we combined a [HES]-CAKE feature
detection with a standard SIFT description. The use of a descriptor
(namely SIFT) densely sampled on a regular grid has been shown
to outperform the classification based on sparsely located local fea-
tures. As a consequence, we directly compare the performance of
our [HES]-CAKE-based classification with one based on densely sam-
pled descriptors. Our choice was the Pyramid of Histograms of Visual
Words (PHOW) descriptor (Bosch et al., 2007), which succinctly cor-
responds to dense SIFT descriptors computed at multiple scales. The
reason for this choice was based on the excellent results yielded by
this kind of approach (Lazebnik et al., 2006).

To create the two versions of the bag of words model, we used
and adapted the model implemented by Vedaldi & Fulkerson (2008).
In the original version, this implementation uses PHOW descriptors,
Elkan’s k-means (Elkan, 2003) for a fast clustering, and a homoge-
neous kernel map that transforms a χ2 SVM into a linear one. To cre-
ate a second version, we replaced PHOW description with a standard
SIFT description computed over [HES]-CAKE features. Important pa-
rameter settings of the model are summarized in Table 4.10.

Table 4.10: Parameter settings for the bag of words model

Bag of words model (versions 1 and 2)

Vocabulary size (number of words) 300

Number of training images 15

Number of test images 15

PHOW scales (version 1) {4,6,8,10}

PHOW grid step (version 1) 3

PHOW window size (version 1) 1.5

[HES]-CAKE settings (version 2) see Table 4.6

We use the confusion matrix as an evaluation metric. Figure 4.24

shows the resulting confusion matrix for each version of the model.
For these categories and parameter settings, both versions produce
similar results either in terms of accuracy or in terms of misclassifica-
tions. Due to the heterogeneity of objects in Background_Google cat-
egory, several objects from this category were misclassified by both
versions of the model. Nevertheless, the second version performs a
more accurate classification. In fact, [HES]-CAKE features combined
with SIFT descriptors provide a slightly more accurate classification
for most categories, with the exception of Faces_easy and Faces cate-
gories, which are redundant and prone to misclassifications.

94



Despite the fewer number of features, the second version of the
model produced comparable results with a version based on dense
description. Although dense descriptors have been shown to be an
improvement over the traditional local feature detection combined
with description, these results support the idea that context-aware
features can provide the so-called robust image representation and
compete with dense descriptors.

4.6 concluding remarks

In this chapter, we presented a context-aware feature extractor, which
represents a new paradigm in local feature extraction. The idea is to
retrieve salient locations within the image context, which means no
assumption is made on the type of structure to be extracted. Such
scheme was designed to provide a robust image representation, with
or without the contribution of other local features. The algorithm fol-
lows an information theoretic approach to extract salient locations.
The possible shortcomings of such approach were analyzed, namely
the difficulties in defining sufficiently discriminating descriptors and
estimating the information of the inherent distributions in an efficient
way.

The experimental evaluation showed that relying on image statis-
tics to extract keypoints is a winning strategy. A robust image rep-
resentation can be easily achieved with context-aware features. Fur-
thermore, the complementarity between context-aware features and
strictly local ones can be exploited to produce an even more robust
representation.

The use of different descriptors (codewords) allows us to construct
different instances of the keypoint extractor. Two instances were sug-
gested: [eigSTM]-CAKE, which is based on the eigenvalues of the
structure tensor matrix, and [HES]-CAKE, which is based on the com-
ponents of the Hessian matrix computed at multiple scales. The for-
mer represents a straightforward instance based on a codeword with
a reduced number of dimensions. Despite its simplicity, [eigSTM]-
CAKE features showed an efficient capture of informative content,
namely in terms of the image details. The latter was designed to pro-
vide a more complete coverage of informative content; the use of sec-
ond order derivatives promoted the capture of structures that carry
most image information, such as blobs, and structures where the fine
details of image can be found.

As for the applicability of the method, we believe that most of the
tasks requiring a robust image representation will benefit from the
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use of context-aware features. In this category, we include tasks such
as image retrieval, object (class) recognition, and image compression.
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Figure 4.23: Example of images from the 10 categories used in the experi-
ments.
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Figure 4.24: Confusion matrices for the 10 categories used in the experi-
ments. Top row: version 1 (PHOW descriptor); bottom row: ver-
sion 2 ([HES]-CAKE regions + standard SIFT descriptor).
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5
S TA B L E ( S A L I E N T ) S H A P E S : F E AT U R E - D R I V E N
M A X I M A L LY S TA B L E E X T R E M A L R E G I O N S

In this chapter, we introduce Stable Salient Shapes, a novel type of
features, which are the result of performing a specific feature-driven
detection of Maximally Stable Extremal Regions. The main motiva-
tion for our contribution comes mainly from the well-known advan-
tages in obtaining affine covariant features from extremal regions as
well as the shortcomings that such strategy entails. In comparison
with MSER, the new features appear in higher number and are more
robust to blur. In addition, Stable Salient Shapes are designed to pro-
vide a better coverage of informative image parts.

5.1 motivation

Compared with keypoints, semi-local structures, such as edges as
well as curvilinear shapes, tend to be more robust to intensity, color,
and pose variations (Deng et al., 2007). There are only a few local fea-
ture detectors that explicitly or implicitly take advantage of this ro-
bustness by detecting stable regions from semi-local structures. Two
well-known examples are the algorithm for the detection of Principal
Curvature-Based Regions (PCBR) (Deng et al., 2007) and the Maxi-
mally Stable Extremal Regions (MSER) detector (Matas et al., 2002),
which were described in Chapter 2. In a direct comparison of both
methods, the latter shows several advantages over its counterpart,
namely in terms of computational efficiency and the accuracy of re-
gions. On the other hand, PCBR features tend to produce a better
coverage of relevant objects within the scene, which is due to the
exclusive use of robust structural information to construct stable re-
gions.

The MSER detector does not always show the desired performance.
In the large-scale comparative study on affine covariant regions per-
formed by Mikolajczyk et al. (2005), MSER and Hessian-Affine fea-
tures showed higher repeatability scores. However, the MSER detec-
tor showed an inconsistent performance: blurred sequences of images
as well as textured sequences produced less repeatable features (see
Figs. 5.1 and 5.2 as introductory examples). The low repeatability
scores in the above-mentioned conditions is a well known downside
of MSER detection. The sensitiveness to image blur can be explained
by the undermining effect that blur has on the stability criterion,
which is illustrated in Fig. 5.3: by applying different levels of blur,
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we change the area of extremal regions. Additionally, as the blurring
effect increases, the number of extremal regions decreases. As for tex-
tured scenes, they are a not a suitable domain for MSER detection
since intensity perturbations cause an irregular area variation of ex-
tremal regions in busy parts of the image.

Another downside of MSER detection is related to the number of
regions that the detector retrieves. The number of MSER tends to be
lower than the number of regions retrieved by detectors such as the
Hessian-Affine or the Harris-Affine. A reduced number of features
may not provide the best coverage of the content, which impairs the
robustness of the method against object occlusions and the suitability
for tasks requiring a robust image representation (e.g., object class
recognition). Furthermore, the detector prefers homogeneous regions
over heterogeneous ones, which might discard relevant image con-
tent.

Kimmel et al. (2011) observe that the affine covariance of MSER
is verified if and only if objects possess smooth boundaries. As the
affine covariance of these features is an immediate consequence of
the covariance of the image level sets with affine transformations of
the coordinates, it is required that the point-spread function of cam-
era lenses is small compared to the natural blurring of objects. The
authors also note that the stability criterion as defined in Eq. (2.36)
prefers regular (round) shapes to irregular ones. This bias for regular
shapes was demonstrated by showing that if two regions have the
same area and the same intensity along the boundaries, the one with
a shorter boundary will yield a lower value of ρ. We emphasize the
importance of such property as most scenes contain irregular shapes
and we surely cannot claim that regular shapes are always more dis-
tinctive than irregular ones.

5.2 stable (salient) shapes

At a first glance, the ideal image for the MSER detector is the one
that is well structured, with uniform regions separated by strong in-
tensity changes (Tuytelaars & Mikolajczyk, 2008). However, the affine
covariance holds for MSER if and only if the boundaries of the objects
in the scene are smooth. These are the principles in which our detec-
tor is based on. We can succinctly describe the construction of our
features, which we will refer to as Stable Salient Shapes, as a feature-
driven MSER detection, where such features correspond to structures
related to objects boundaries or even symmetry axes.

The first step of the proposed algorithm, coined as feature high-
lighting, consists in building a saliency map for each one of the fea-
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Figure 5.1: MSER detection on the first three images of the Bikes sequence.
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Figure 5.2: MSER detection on the first three images of the Bark sequence.
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Images Isocontours

Original

Blurred (σ=3)

Blurred (σ=10)

Figure 5.3: Isocontours and blur: the application of different levels of (Gaus-
sian) blur produces different extremal regions.
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tures to be highlighted. These maps are intended to be suitable do-
mains for MSER detection. Note that the boundaries of MSER often
correspond to objects boundaries (see Fig. 5.4 as an example). As
the stability of an extremal region with respect to intensity changes
is measured at its boundary, objects boundaries will be reshaped to
yield more stable extremal regions.

Figure 5.4: An example of MSER detection where most regions are anchored
at objects boundaries. Left: input image; right: MSER detection

The subsequent step of the algorithm consists in detecting MSER on
the saliency maps. If we use more than one map, we cannot expect a
full complementarity among the extremal regions detected along the
different maps, since they are related to the same structures. In this
case, there is a third step of the algorithm that takes into considera-
tion the potential overlapping or even the duplication of regions and
performs a region pruning. Figure 5.5 depicts the main steps of SSS
detection.

We can see our method as a hybrid between the MSER algorithm
and the PCBR detector, since we use structural information (shapes)
to define suitable domains for MSER detection. The idea is to com-
bine the advantages of PCBR detection (good coverage) with the ad-
vantages of MSER detection (computational efficiency, repeatability,
and accuracy) and simultaneously overcome some of the major limi-
tations of the latter, namely the lack of robustness to blurring and the
biased preference for round shapes.

5.2.1 Feature highlighting

We propose to highlight edges and ridges by means of two differential-
based measures, which will produce two different saliency maps.
Edges reflect the presence and the shape of objects in a scene. Ridges
are related to symmetry axes as they often correspond to the major
axis of symmetry of elongated objects.
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Figure 5.5: Algorithm for the detection of Stable Salient Shapes (feature-
driven MSER). The first step of the algorithm produces saliency
maps that will be used in the next step as input images for MSER
detection. The maps emphasize features that are related to se-
mantically meaningful structures, such as boundaries and sym-
metry axes.

5.2.1.1 Edge highlighting

Our first measure highlights edges and simultaneously delineates
smooth transitions at the boundaries. The detection of structures at
different scales will help us to define smooth transitions. The process
of averaging information over scales is the key component to obtain
the desired smoothness. We start by computing the gradient magni-
tude by means of Gaussian derivatives at several scales. Let L(:,σ) be
a smoothed version of image I by means of a Gaussian kernel G at
the scale σ, i. e., L(x,σ) = G(σ) ∗ I(x). The edge strength can be found
by measuring the gradient magnitude,

|∇L(x,σ)| =
√
L2x(x,σ) + L2y(x,σ), (5.1)

where Lx and Ly denote the first order partial derivatives of L in the
x and y directions, respectively. From (5.1), we obtain our measure
for edge highlighting:

F1(x) =
N∑
i=1

σi |∇L(x,σi)| , (5.2)

where the standard deviation σi varies in a geometric sequence σi =
σ0ξ

i−1, with σ0 ∈ R+, ξ > 1, and N denotes the number of scales.
The final image is, therefore, the result of averaging gradient magni-
tude computed at different scales. By doing this, with a reasonable
number of scales, smooth transitions at the edges will be obtained.
Note that a larger number of scales leads to smoother boundaries
and an increasing loss of image details. To illustrate this observation,
we depict the proposed edge highlighting in Fig. 5.6, using 4 and 12

scales.
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(a) (b)

(c) (d)

Figure 5.6: Proposed edge highlighting: (a) input image; (b) edge strength
(gradient magnitude); (c) edge highlighting (4 scales); (d) edge
highlighting (12 scales). Darker structures in the saliency maps
are the most salient ones. The parameters σ0 and ξ were set to 1
and 4

√
2, respectively.

5.2.1.2 Ridge highlighting

The measure for ridge highlighting derives from the Hessian matrix,

H(x,σ) =

[
Lxx(x,σ) Lxy(x,σ)

Lyx(x,σ) Lyy(x,σ)

]
, (5.3)

where Lxx, Lxy and Lyy are the second order partial derivatives of
L, a Gaussian smoothed version of image I. The principal curvature
(Deng et al., 2007), which highlights curvilinear structures is either
given by

Pmax(x,σ) = max(0, λ2(H(x,σ))), (5.4)

or
Pmin(x,σ) = min(0, λ1(H(x,σ))), (5.5)

where λ1 and λ2 denote the minimum and maximum eigenvalues, re-
spectively. Note that (5.4) and (5.5) respond to complementary struc-
tures: the former responds to dark lines on a brighter background,
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whereas the latter detects brighter lines on a dark background. From
the principal curvature, we obtain the measure for ridge highlighting:

F2(x) =
N∑
i=1

σ2iPmax(x,σi), (5.6)

where σi = σ0ξi−1, with σ0 ∈ R+, ξ > 1, and N denotes the number
of scales.

Our ridge highlighting measure uses the principal curvature mea-
sure to detect darker lines on a bright background. However, the mea-
sures defined in (5.4) and (5.5) can be used interchangeably. In Fig. 5.7,
we depict the proposed ridge highlighting, using 4 and 12 scales.
To further illustrate our feature highlighting, we depict in Fig. 5.8
both saliency maps, using a license plate as the input image. It is
readily seen that both saliency maps preserve the structural informa-
tion of the image and add some smoothness to the scene. While the
edge highlighting mainly captures and accentuates the objects bound-
aries, the ridge highlighting provides a clearer structural sketch of the
scene (Deng et al., 2007). For the purpose of MSER detection, we can
regard the map that emphasizes edges as a more suitable domain,
as it generates more uniform regions separated by heavy intensity
changes and is less sensitive to noise. However, the second map pro-
vides us complementary regions, whose detection is important to im-
prove the coverage of the content.

At a glance, our proposed strategy for feature highlighting en-
tails two major shortcomings, which may impair the validity of the
method. Integrating either the edge strength or the principal curva-
ture over an isotropic scale-space will hinder the affine covariance of
the resulting features. Further, the use of a fixed number of scales
does not ensure a full scale covariance. However, it is important to
note that these drawbacks become relatively minor if our method
detects a substantially higher number of features than the MSER al-
gorithm without a significant drop in the repeatability score when
scale changes or affine transformations occur.

5.2.2 MSER detection and region pruning

Apart from the input image, there are no differences between the
feature-driven MSER detection and the original one, i.e., we assess
the stability of extremal regions using the original stability criterion.
However, in our method, the biased preference of the MSER detector
towards regular shapes is not neglected; the Gaussian smoothing has
a regularization effect on the shapes.
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Figure 5.7: Proposed ridge highlighting: (a) input image; (b) principal cur-
vature response; (c) ridge highlighting (4 scales); (d) ridge high-
lighting (12 scales). Darker structures in the saliency maps are
the most salient ones. The parameters σ0 and ξ were set to 1 and
4
√
2, respectively.

Figures 5.9 and 5.10 help to illustrate the advantages of our feature-
driven MSER detection over the standard one. In Fig. 5.9, we depict
two well-structured scenes and the corresponding isophotes on the
luminance channel and on both of the saliency maps. Both maps
show a higher number of extremal regions and due to the Gaussian
smoothing, the irregularity of extremal regions is attenuated, which
will compensate for the preference towards regular shapes.

Figure 5.10 compares standard MSER detection with SSS detection
in the presence of Gaussian blur. As blur increases, both types of
regions decrease in number. However, this reduction is more signif-
icant for MSER. For σ = 3, the number of MSER decreases by 19%,
whereas the number of SSS decreases by 11%. For σ = 10, the number
of MSER decreases 93%, while the number of feature-driven MSER
decreases by 53%. The example also shows that SSS are in higher
number and cover the most informative parts of the scene, regardless
of the amount of blur.

The two saliency maps do not provide fully complementary re-
gions. Thus, we eliminate regions that are duplicated. To find du-
plicates, we compare the centroid distance. If this distance is lower
than 0.1, we compute the overlap error between the corresponding
fitted ellipses. If this error is less than 10%, we discard the region
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Saliency maps
Input image Edges Ridges

I F1 F2

Figure 5.8: An example of the proposed feature highlighting. Darker struc-
tures in the saliency maps are the most salient ones. To obtain
the final saliency maps – F1 and F2 –,12 scales were used. The
parameters σ0 and ξ were set to 1 and 4

√
2, respectively.
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Figure 5.9: Regions delineated by isophotes on the different domains.
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Figure 5.10: MSER and SSS detection on images with increasing Gaussian
blur (original image, σ = 3, σ = 5, and σ = 10). Top row: MSER
detection; bottom row: SSS detection.
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Figure 5.11: An example of the proposed region pruning.

with higher ρ. Figure 5.11 depicts the proposed region pruning. A
previous pruning, which removes regions based on the area or the
stability measure ρ, is performed on each map. We describe it in the
upcoming section.

To conclude the section, we present the results of different detectors
on a Siemens star (see Fig. 5.12). The detection includes the scale co-
variant SFOP regions (Förstner et al., 2009a) and affine covariant fea-
tures, such as MSER, PCBR, SSS, Harris-Affine, and Hessian-Affine
regions. In this example, SSS cover the most relevant image content
without the presence of redundant regions. Moreover, most of the
content covered by other regions, is also covered by the proposed
features.

5.3 experimental results

To validate our method, we performed a comparative evaluation on
the Oxford dataset. Repeatability and completeness were the main
criteria for assessing the performance of the SSS detector. We com-
pared the repeatability scores of our method with the ones of the fol-
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Figure 5.12: Local feature detection on the beams of a “Siemens star” (Först-
ner et al., 2009a). Top left to bottom right: SFOP, Harris-Affine,
Hessian-Affine, MSER, PCBR, and SSS. The proposed detection
responds to most of the structures detected by the remaining
detectors. Only SFOP and SSS detect the center of the star.

lowing affine covariant detectors: MSER, Hessian-Affine (HESAFF),
Harris-Affine (HARAFF), IBR, EBR, and PCBR. The completeness test
provides a detailed comparison between the completeness values of
SSS and MSER. Apart from the MSER detector, all the implementa-
tions correspond to the ones provided and maintained by the authors.
For the SSS and MSER detectors, we made use of the code provided
by Vedaldi & Fulkerson (2008). In the case of the SSS detector, this
code was modified to deal with images whose intensity values vary
in a range different from {0,. . . ,255}, since the saliency maps intensity
values might be greater than 255.

We built the saliency maps with σ0 = 1, ξ = 4
√
2, and N = 12.

The stability threshold ∆ was set to 20. For the MSER detector, this
parameter was set to 10. The minimum and maximum region area
were set to 30 and 1% of the image area, respectively, for both of the
detectors. For repeatability evaluation, we only considered MSER and
SSS whose ρ was lower than 0.7. Figure 5.13 depicts SSS detection
using these parameters. For completeness evaluation, we discarded
the threshold defined for ρ and the maximum allowed region area
was increased up to 50% in order to increase the coverage provided
by these two types of features.
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Figure 5.13: SSS detection. Top: Bikes sequence (third image); bottom: UBC
sequence (third image)
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5.3.1 Repeatability evaluation

Figures 5.14 to 5.21 depict the repeatability scores and the number of
correspondences for the different sequences with an overlap error of
40%. The plot in the bottom row of each figure shows the repeatabil-
ity score as function of the overlap error, which gives us an idea of
the accuracy of the detectors.

The SSS detector yields the highest number of correspondences for
most of the sequences (the exception is the Wall sequence), while its
repeatability score is comparable to those of its counterparts. In com-
parison with MSER, SSS regions are more robust to blur and JPEG
compression. As expected, MSER exhibit a slightly higher repeatabil-
ity score for viewpoint changes in the Graffiti sequence as well as for
the zoom and rotation variations (Boat and Bark sequences). How-
ever, the number of correspondences between MSER is considerably
lower. Note that a substantially higher number of correspondences
accompanied by a slight decrease of the repeatability rate is often
preferable to a minor increase of the repeatability with less regions,
since in the former the absolute number of repeated regions is consid-
erably higher, which might provide a better coverage of the content
with a similar repeatability score.

PCBR and EBR features show the worst performances in terms
of repeatability score, although the PCBR detector provides highly
repeatable and accurate features for the Graffiti sequence. This se-
quence is particularly suitable for this type of detector, as the objects
in the scene are delineated by well defined boundaries.

A higher overlap error yields more correspondences and a higher
repeatability score. We verify that SSS is an accurate detector as well
as MSER, IBR, EBR, and PCBR detectors. HARAFF and HESAFF de-
tectors tend to improve their ranking as the overlap increases, which
means that the regions retrieved by these detectors are the less accu-
rate among the different types of affine covariant regions.

We complemented the main repeatability evaluation with the anal-
ysis of the trade-off between the number of correspondences and
the repeatability score for different stability thresholds as suggested
by Perdóch et al. (2007). We extended this analysis to assess the
trade-off between the matching score and the number of matches us-
ing the SIFT descriptor. For these secondary experiments, we consid-
ered three sequences: Bikes, UBC, and Wall. Results are reported in
Figs. 5.22–5.24. With the SIFT descriptor, SSS and MSER tend to ex-
hibit similar matching scores. However, as one expected, the former
provides a considerably higher number of correct matches.
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Figure 5.14: Repeatability results for the Graffiti sequence (increasing blur).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 5.15: Repeatability results for the Bikes sequence (viewpoint change).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 5.16: Repeatability results for the Boat sequence (scale change). Top
row: repeatability (overlap error of 40%); middle row: number
of corresponding regions (overlap error of 40%); bottom row:
repeatability for the third image w.r.t. to the first one.
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Figure 5.17: Repeatability results for the Bark sequence (scale change). Top
row: repeatability (overlap error of 40%); middle row: number
of corresponding regions (overlap error of 40%); bottom row:
repeatability for the third image w.r.t. to the first one.
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Figure 5.18: Repeatability results for the Bikes sequence (increasing blur).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 5.19: Repeatability results for the Trees sequence (increasing blur).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 5.20: Repeatability results for the Leuven sequence (decreasing light).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 5.21: Repeatability results for the UBC sequence (JPEG compression).
Top row: repeatability (overlap error of 40%); middle row: num-
ber of corresponding regions (overlap error of 40%); bottom
row: repeatability for the third image w.r.t. to the first one.
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Figure 5.22: Repeatability and matching results for the Bikes sequence (third
image), with an overlap error of 20%. Top row: number of corre-
spondences vs. repeatability score for different stability thresh-
olds (10, 15, 20, 25), bottom row: number of matches vs. match-
ing score for different stability thresholds (10, 15, 20, 25).
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Figure 5.23: Repeatability and matching results for the UBC sequence (third
image), with an overlap error of 20%. Top row: number of corre-
spondences vs. repeatability score for different stability thresh-
olds (10, 15, 20, 25), bottom row: number of matches vs. match-
ing score for different stability thresholds (10, 15, 20, 25).
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Figure 5.24: Repeatability and matching results for the Wall sequence (third
image), with an overlap error of 20%. Top row: number of corre-
spondences vs. repeatability score for different stability thresh-
olds (10, 15, 20, 25), bottom row: number of matches vs. match-
ing score for different stability thresholds (10, 15, 20, 25).
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5.3.2 Completeness evaluation

The results reported in the previous subsection suggest that in com-
parison with MSER, SSS regions provide a better coverage of the
content. However, a better coverage of the content does not always
mean a better coverage of relevant image content. We compared the
completeness values of MSER and SSS using the third image of each
sequence of the Oxford dataset as the input. For a more detailed
analysis, we included several subsets of SSS features, namely edge-
SSS (MSER on the edge-map), edge-SSS+ (MSER+ on the edge map),
ridge-SSS (MSER on the ridge map), ridge-SSS+ (MSER+ on the ridge
map). Note that edge-SSS+ features and standard MSER are expected
to coincide in some cases, since the former correspond to darker re-
gions in the edge map. We also computed the completeness values
for the combined SSS+MSER detector to analyze the complementar-
ity between these two types of features.

One important conclusion to be drawn from the results in Table 5.25

is that either edge-SSS detection or ridge-SSS detection will provide
us a more complete set of features than the one comprised of stan-
dard MSER. When the number of regions is similar, edge-SSS and
ridge-SSS are more complete than MSER. The combination of MSER
and SSS features gives us the most complete feature sets for each
sequence. However, the complementary between both feature sets is
practically non-existent; the completeness values for SSS + MSER are
comparable to the ones for SSS sets, i. e., the relevant content pre-
served by standard MSER is also preserved by SSS.

5.4 plausible applications

SSS detection represents an improvement over MSER detection in sev-
eral aspects, namely in terms of robustness against blurring and in
terms of the completeness of features. Despite some differences in
terms of performance, the results presented in §5.3 suggest that both
methods share similar application domains.

Matching tasks are sometimes based in MSER detection (e. g., Matas
et al., 2002; Forssén & Lowe, 2007). SSS could also support this task.
If SSS were used, the main advantage would be a higher number
of correspondences. On the downside, SSS detection would require
a slightly higher computational load. Note that the relatively lower
repeatability rate of the SSS detector in the presence of more severe
geometric distortions would not be a significant shortcoming, as the
number of matches provided by this method tends to be substantially
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Figure 5.25: Completeness results. Top row: Average dissimilarity measure
dH(pH,pc) for the different sets of features extracted over the
categories of the dataset. Bottom row: Average number of ex-
tracted features per image category.
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higher, which compensates for the lower repeatability rate.

For recognition/classification tasks, both methods would also be
suitable. MSER has been successfully used in object recognition (e. g.,
Nistér & Stewénius, 2006). However, as already shown by Mikolajczyk
et al. (2005), MSER detection has a poor performance in object class
recognition. The denser and more complete sets provided by the SSS
detector make it more suitable for object class recognition. A denser
and more complete SSS feature set usually contains overlapping re-
gions exhibiting some variation. This variation provides multiple de-
scriptions of a same pattern, which is particularly useful to deal with
the large intraclass-variations in the same area (Deng et al., 2007).

5.5 concluding remarks

In this chapter, we addressed the major shortcomings of MSER de-
tection as well as the desired properties of an image in order to
provide a reliable MSER detection. As result, we introduced a novel
type of features, Stable Salient Shapes (SSS), which are the result of
performing a feature-driven MSER detection. At the first stage, we
construct saliency maps that will be used as domains for MSER de-
tection. These maps are characterized by the highlighting of features
related to semantically meaningful structures, e. g., boundaries, and
the simultaneous presence of smooth transitions at the boundaries.
Our algorithm overcomes significant limitations of a standard MSER
detection, namely the sensitivity to image blur, the presence of a re-
duced number of regions, and the biased preference towards regular
shapes.

The experimental validation on the Oxford repeatability benchmark
showed that SSS are comparable to the most prominent affine covari-
ant regions in terms of repeatability score. Concerning the absolute
repeatability, our algorithm compares favorably to state-of-the art so-
lutions. Moreover, our solution is efficient; it combines an already
efficient MSER detection with a computationally inexpensive image
filtering.

The new set of features is more complete as it preserves more of
the relevant image content. The high level of completeness shown by
the feature-driven MSER is a major improvement over MSER. In ad-
dition, SSS detection tends to preserve most of the regions retrieved
by the MSER detector as evidenced by the complementarity results
of our evaluation.

As future work, we intend to improve the accuracy and the repeata-
bility of the SSS detector. A possible solution is to replace the linear
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Gaussian scale-space with a non-linear one. The Gaussian scale-space
suffers from the drawback of indiscriminately smoothing the bound-
aries and noise. While our method requires smoothness at the bound-
aries, the blurring effect should not be too excessive. With a non-
linear scale space, we can perform a locally adaptive smoothing that
preserves boundaries (Alcantarilla et al., 2012).
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6
C O N C L U S I O N S A N D P E R S P E C T I V E S

6.1 conclusions

Local feature detection has been a central and extremely active re-
search topic in the fields of computer vision and image analysis. The
role played by local features in a number of tasks is undeniably fun-
damental. Well-known and reliable solutions to prominent problems
such as wide-baseline stereo matching, content-based image retrieval,
object (class) recognition, just to name a few, are based on local fea-
tures.

The more than three decades of research and the indisputable suc-
cess of local features on the resolution of prominent problems explain
the tendency to regard this topic as a mature one with a small room
for improvement. However, we can only draw these conclusions if we
perform a superficial analysis of the subject by disregarding relevant
aspects such as the existence of a reductive and biased evaluation, the
relative covariance of local features with respect to geometric transfor-
mations, or the less-studied and -discussed complementarity between
features. Some of these aspects were the main motivation for this dis-
sertation.

We started by conducting a literature overview on local feature de-
tection. Along with this overview, we brought into discussion fun-
damental open issues in current local feature detection research. A
more careful analysis of local feature detection shows that evolution
of local feature detectors has been mainly based on the improvement
of repeatability, especially by adding new types of covariance or in-
variance. Despite the importance of having repeatable features in the
presence of a large class of image transformations, there are other
requirements that are often overlooked. For example, various appli-
cations make use of local features in order to obtain a robust im-
age representation. The so-called robust image representation is only
achieved if features cover the most informative parts of the image.
Local features are, by definition, informative parts of an image. How-
ever, algorithms are not explicitly designed to extract features that
cover the most informative parts. Combining complementary features
is a relatively viable solution to achieve a better coverage of the infor-
mative parts. Nonetheless, the complementarity between features has
been barely exploited and the studies on complementarity are rare.
To our knowledge, the work of Dickscheid et al. (2011) is the only

129



study that makes a more comprehensive analysis of it.

The evaluation of local features is another topic that we covered
in this dissertation. Thus far, evaluation has been mainly based in
the repeatability criterion. which is not sufficient to reflect the useful-
ness of features. While the goal of our research is not define a viable
benchmark for local feature evaluation, our experimental validation
relies on a wider range of criteria, including completeness and com-
plementarity, in order to formulate more conclusive ideas about the
usefulness of local features. This gives us an idea on the suitability
of a given type of features for different categories of applications. A
more conclusive evaluation would be achieved if the local features
were used in different applications. However, this approach would
be considerably more exhaustive and it would require various pa-
rameter tunings.

Our major contributions came in the form of two algorithms for lo-
cal feature extraction. While being considerably different, both algo-
rithms extract features which are expected to provide a robust image
representation by capturing most image information. Requirements
such as repeatability and accuracy were equally taken into considera-
tion.

The first algorithm, coined as Context-Aware Keypoint Extractor
(or CAKE), represents a new paradigm in local feature extraction. The
algorithm is formulated under an information theoretic framework
and it retrieves salient (highly informative) locations within the image
context, which means no assumption is made on the type of structure
to be detected. This scheme is explicitly designed to provide a robust
image representation, with or without the contribution of other local
features. Various instances of the method can be created, as differ-
ent local representations (local descriptors) can be used to generate
different context-aware feature extractors. In addition, the computa-
tional cost of estimating the probability density function is consid-
erably reduced in our method (information theoretic-based methods
are known for their high computational complexity).

We proposed two initial instances of the context-aware detector:
[eigSTM]-CAKE, an instance based on the eigenvalues of the image
structure tensor matrix, and [HES]-CAKE, which is based on the com-
ponents of the Hessian matrix computed at multiple scales. Both in-
stances retrieve features that cover informative parts, either at a lo-
cal level or at a global level. The former is a simple instance based
on a codeword with only two components. Despite the simplicity,
[eigSTM]-CAKE features can efficiently capture informative image
parts, especially in terms of the image details. The use of second or-
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der derivatives allows the Hessian-based instance to provide a more
complete coverage of informative content. It captures structures that
carry most image information, such as blobs, and also the structures
where the fine details of the image can be found.

We compared the repeatability and accuracy of [eigSTM]-CAKE
against the ones of Shi-Tomasi, Rohr, and Noble keypoint detectors.
For the second instance, the direct counterparts were Hessian-Laplace,
Harris-Laplace, MSER, SFOP, and Salient Regions. [eigSTM]-CAKE
and its counterparts showed a comparable performance. As for [HES]-
CAKE, it showed a similar performance to SFOP. However, the former
provides a substantially higher number of features.

The second algorithm extracts Stable Salient Shapes (or SSS), a
novel type of features which are obtained through a feature-driven
Maximally Stable Extremal Regions detection. The advantages as well
as the disadvantages of MSER detection were the main motivation for
the design of the feature-driven MSER detector. The major advantages
in MSER detection are the efficiency of the method as well as the re-
peatable and accurate features retrieved by the method when dealing
with well-structured scenes. However, MSER detection suffers from
several drawbacks, namely the lack of robustness against blur, the
preference for round shapes, and the reduced number of features. In
the particular case of this type of features, the reduced number of
features does not mean significantly low completeness values. In fact,
the MSER algorithm tends to cover informative image parts, which
explains its moderate completeness values and the success in per-
forming specific object recognition. Our algorithm tries to overcome
the aforementioned shortcomings and simultaneously retain the ad-
vantages for which MSER detection is known for.

The idea behind the feature-driven approach is to provide suit-
able domains for MSER detection. These domains are saliency maps
in which features related to semantically meaningful structures, e.g.,
boundaries and symmetry axes, are highlighted and simultaneously
delineated under smooth transitions. In comparison with MSER, Sta-
ble Salient Shapes are more robust to blur and show substantially
higher completeness values. Another relevant aspect of this feature-
driven MSER detection is the regularization effect that the Gaussian
smoothing has on the shapes, which reduces the preference of MSER
towards round shapes.
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6.2 perspectives

The recent advances in local feature description have strongly sup-
ported the idea of using local feature detection as a tool to provide
robust and compact image representations. Many applications have
benefited from these representations (e. g., object recognition) and cer-
tainly many more will.

Our research work was mainly focused on the problem of pro-
viding robust image representations. With this goal in view, we dis-
cussed the completeness and complementarity of local features and
proposed algorithms aimed at providing a robust image representa-
tion, without neglecting other requirements.

We can see the introduction of context-aware features as our major
contribution. For tasks requiring a robust image representation, the
use of context-aware features is undoubtedly a viable option. In the
particular case of recognition tasks, context-aware features appear as
valid alternative to densely sampled descriptors.

As future work, it is our intention to exploit optimized techniques
based on context-aware feature extraction for object (class) recogni-
tion. We believe that this is an application domain that will strongly
benefit from the use of context-aware local features.

As for the SSS detector, a new version based on a non-linear scale
space will be studied. The idea is to find a computationally efficient
representation that preserves details (the boundaries) and simulta-
neously reduces noise in order to replace the original Gaussian scale-
space representation that indiscriminately smoothes details and noise
at a similar level. The motivation for this approach is to improve the
accuracy and the repeatability of our feature-driven detector.

Symmetry detection is an application domain in which we intend
to exploit the use of our SSS detector. Using structural information
to delineate features is a suitable technique for accurately finding
symmetrical regions. The promising results obtained with the similar
PCBR detector (Deng et al., 2007) are also a motivation.
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