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Abstract 

Trophic relationships are central in ecology and play a crucial role in species survival, 

as availability of food resources varies over time and space. The spatio-temporal 

variation in food sources at sea has many ecological implications on marine top 

predators such as seabirds. However, most ecological studies of resource use and 

population dynamics treat conspecific individuals as ecologically equivalent, but intra-

specific variation in individual foraging strategies can be large and many apparently 

generalized populations are in fact composed of specialized individuals that use a small 

subset of the available resources over time (individual consistency). Studies on the 

incidence of individual specialization suggest that it may vary among species and 

among populations, but they are scarce, particularly for seabirds, and the mechanisms 

that generate inter-individual variation are not well understood. The main goal of this 

study is to corroborate the existence of individual specialization over time in three 

different species from four seabirds’ populations exploiting different marine 

environments. Furthermore, it investigates whether individual specialization is 

associated with the environment and resources exploited and assesses its ecological 

implications at the population and individual levels. 

The hypothesis of this thesis was tested using wandering albatross Diomedea exulans, 

Cory’s shearwater Calonectris diomedea and yellow-legged gull Larus michahellis as 

model seabird species, and fieldwork was conducted respectively in Bird Island (South 

Georgia, Antarctica), Corvo Island (Azores archipelago, Portugal) and Berlenga Island 

(Portugal). Two populations of Cory’s shearwater were studied, one from an oceanic 

environment (Corvo Island) and other from a neritic environment (Berlenga Island). A 

total of 199 birds were sampled during the breeding season of each species, from 2009 

to 2012. Together with conventional dietary methods a combination of intrinsic and 

extrinsic markers were used, such as stable isotope analyses (from tissues with different 

turnover rates) and electronic devices (GPS loggers), to corroborate the existence of 

individual specialization and examine its relative incidence. Using three environmental 

parameters (bathymetry, sea-surface temperature and chlorophyll a concentration) to 

characterize marine habitats and recent developments based in a Bayesian framework, 

namely stable isotope mixing models (Stable Isotope Analysis in R: SIAR) to estimate 

individual prey consumption, and recent metrics to estimate populations’ niche width 

(Stable Isotope Bayesian Ellipses in R: SIBER), data were analysed to investigate 
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ecological implications of individual specialization and its relationships with the 

environment and resources exploited. 

Patterns of individual consistency in habitat use and/or prey consumption were found in 

all studied species. However, these patterns varied spatio-temporally according to the 

population, evidencing the role of individual specialization in the foraging dynamic of 

these species. Inter-annual differences in the feeding ecology and foraging behaviour of 

birds during the breeding season were associated with the availability of food resources 

around the colonies, which influenced the patterns of individual consistency in Cory’s 

shearwater, but not in yellow-legged gulls. Results also suggest that these differences 

could have an impact on the reproductive performance of Cory’s shearwater and on the 

body condition of the yellow-legged gulls, but evidences of relationships between these 

ecological consequences and individual specialization at the individual level were not 

found. 

Overall, this study corroborates the existence of individual specialization over time 

within studied seabird populations. Therefore, such trait may be potentially widespread 

across several related seabird species. Such consistency, however, varied among species 

and populations and results showed that it was more stable in yellow-legged gulls than 

in Cory’s shearwaters. Fluctuations on individual consistency were related to temporal 

changes in the availability and predictability of resources, which means that the more 

specialized species may be more sensitive to that. It also corroborates that individual 

variability within a seabirds’ population may be regulated by small differences in 

breeding location (< 2km), suggesting that studies assuming a colony or sub-colonies as 

ecologically homogeneous in terms of foraging ecology can be biased. This study 

supports the hypothesis that individual specialization may have important ecological 

implications, such as the reduction of intra-specific competition and, consequently, a 

high impact on ecological processes and foraging dynamics. Further investigation is 

required to identify the mechanisms that generate individual specialization and its 

ecological implications at both population and individual level. 

Key-words: foraging ecology, individual consistency, intra-specific competition, niche 

width, predator-prey interactions, stable isotopes, tracking devices. 
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Resumo 

O papel das relações tróficas em ecologia é crucial, e fundamental para a sobrevivência 

das espécies, uma vez que a disponibilidade de recursos alimentares varia espacial e 

temporalmente. Esta variação espácio-temporal das fontes de alimento no mar tem 

numerosas implicações ecológicas nos predadores de topo, tais como as aves marinhas. 

A maioria dos estudos ecológicos que focam a exploração de recursos e dinâmica 

populacional assumem que os indivíduos de uma mesma população são ecologicamente 

semelhantes, no entanto, a variação intra-específica na ecologia alimentar pode ser 

grande e muitas populações aparentemente generalistas serem de facto compostas por 

indivíduos especializados que exploram subconjuntos dos recursos disponíveis ao longo 

do tempo (consistência individual). A ocorrência de especialização individual pode 

variar entre espécies e entre populações, mas os estudos que a corroboram são 

atualmente escassos, especialmente para aves marinhas, e os mecanismos que motivam 

a variação inter-individual não são ainda bem compreendidos. O principal objectivo 

desta tese foi estudar a existência de especialização individual ao longo do tempo em 

três espécies de aves marinhas, de quatro populações diferentes, que exploram 

ambientes marinhos distintos. Especificamente, foram analisadas associações entre a 

especialização individual com o ambiente marinho e os recursos explorados e avaliadas 

as suas implicações ecológicas ao nível populacional e individual.  

A hipótese desta tese foi testada no albatroz-viageiro Diomedea exulans, na cagarra 

Calonectris diomedea e na gaivota-de-patas-amarelas Larus michahellis, 

respectivamente em Bird Island (Geórgia do Sul, Antártida), Ilha do Corvo (Açores, 

Portugal) e Ilha da Berlenga (Portugal). Entre 2009 e 2012, foi amostrado um total de 

199 aves durante o período reprodutor. Para validar a existência de especialização 

individual e avaliar a sua ocorrência relativa utilizou-se uma combinação de marcadores 

intrínsecos e extrínsecos, tais como análises de isótopos estáveis (de tecidos com 

diferentes períodos de síntese) e dispositivos GPS, juntamente com amostragens 

convencionais de dieta. Adicionalmente, foram usadas três variáveis ambientais 

(profundidade, temperatura da superfície do mar e concentração de clorofila a) para 

caracterizar os habitats marinhos, assim como modelos recentes suportados por uma 

inferência bayesiana, nomeadamente modelos mistos de isótopos estáveis (SIAR) para 

estimar a proporção de presas consumidas por cada indivíduo e métricas recentemente 

desenvolvidas para estimar o tamanho de nicho das populações (SIBER). Estes dados 
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foram analisados para investigar as implicações ecológicas da especialização individual 

e as suas relações com o meio ambiente e os recursos explorados. 

Foram encontrados padrões de consistência individual no uso de habitat e/ou no 

consumo de presas em todas as espécies estudadas. No entanto, a sua ocorrência variou 

espácio-temporalmente de acordo com a população estudada, evidenciando o papel da 

especialização individual na dinâmica de ecologia alimentar destas espécies. Diferenças 

inter-anuais no comportamento e ecologia alimentar das aves durante o período 

reprodutor estiveram associadas com a disponibilidade de recursos alimentares perto das 

colónias, que influenciaram os padrões anuais de consistência individual na cagarra, 

mas não na gaivota-de-patas-amarelas. Os resultados sugerem que tais diferenças na 

disponibilidade de recursos podem ter um impacto no sucesso reprodutor da cagarra e 

na condição corporal da gaivota-de-patas-amarelas, mas não foram encontradas 

evidências ao nível individual de relações entre essas consequências ecológicas e a 

especialização individual. Este estudo confirma também que a variabilidade intra-

populacional na ecologia alimentar de aves marinhas pode ser regulada por pequenas 

distâncias na localização dos ninhos (< 2km). 

No geral, este estudo valida a existência de especialização individual ao longo do tempo 

nas diferentes populações de aves marinhas estudadas, o que sugere  uma potencial 

generalização em outras espécies de aves marinhas de características análogas. No 

entanto, os resultados mostram que a consistência variou entre espécies e entre 

populações, sendo mais estável na gaivota-de-patas-amarelas e mais sujeita a flutuações 

na cagarra. As flutuações na consistência individual relacionaram-se com variações 

temporais na disponibilidade dos recursos alimentares, o que sugere que as espécies 

mais especializadas possam ser mais sensíveis a tais variações. Este estudo suporta a 

hipótese de que a especialização individual pode ter implicações ecológicas relevantes, 

tais como a redução da competição intra-específica e, consequentemente, um grande 

impacto na dinâmica da ecologia alimentar das aves marinhas. No entanto, são 

necessários estudos complementares para identificar os mecanismos que determinam a 

especialização individual e as suas implicações ecológicas, tanto a nível populacional 

como a nível individual. 

Palavras-chave: aves marinhas, áreas de distribuição, competição intra-específica, 

ecologia alimentar, especialização individual,  isótopos estáveis, relações tróficas.  
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Seabirds as marine organisms and modern tools to study trophic ecology  

Information on the trophic relationships between key-species and top predators, and 

their distribution, is required to understand the structure and function of marine 

ecosystems (Paine 1988). Key-species of primary consumers include zooplankton and 

several species of epipelagic fish, which are then consumed by secondary predators, 

including different species of marine birds, in all habitats from coastal to pelagic 

(Furness & Monaghan 1987). Seabirds are integral components of marine ecosystems as 

they spend up to 90% of their life-time at sea and have a widespread geographic 

distribution exploiting marine habitats, from polar to tropical regions and from coastal 

to pelagic environments. They are the most conspicuous of large marine predators and 

may be used as sentinel organisms, providing a valuable approach into ecosystem 

conditions and processes (Furness & Camphuysen 1997; Montevecchi et al. 2006). As 

marine top predators, seabirds are closely dependent on the food resources they can find 

at sea, but food sources are patchy and unpredictably distributed (Weimerskirch 2007). 

To cope with this difficulty, seabirds developed specific morphological characteristics 

and foraging strategies that enable them to conserve the maximum energy possible 

while foraging at sea. Thus, most of these species’ adaptations are strongly related to 

their foraging and feeding methods to succeed in their own exploited environments (Fig. 

1).  

Seabirds are the most threatened group of all birds worldwide and face unprecedented 

challenges and uncertain futures (Butchart et al. 2004). In particular, the pelagic group 

of the Procellariiformes (e.g. albatrosses, shearwaters and petrels), are the least known, 

due to the technical difficulties associated to their study, and the most representative of 

pelagic ocean ecosystems. They can be highly sensitive to changes in food availability 

during the breeding season and show important interactions with fisheries. Thus, they 

can provide early indications of fluctuations in fish stocks and marine environmental 

health (Parsons et al. 2008). On the other hand, some seabird species, such as many gull 

species, have become problematic due to its opportunistic behaviour associated with 

human-altered environments that caused a dramatic increase in their numbers 

throughout Europe and other regions in recent decades, with several ecological and 

social impacts (Pedro et al. 2013). Their inter-annual fluctuations, reproductive 

performance and foraging behaviour are assumed to be a reliable indicator of natural 
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and local resource availability from both natural and anthropogenic sources (Ramos et 

al. 2011, Ramírez et al. 2012, Christel et al. 2012). 

 

Figure 1. Foraging strategies used by different seabird species (from Nelson 1980). 

The fact that seabirds are most often colonial and long-lived species has several benefits 

as bioindicators of food supplies and pollution across large temporal and spatial scales 

(Furness & Camphuysen 1997). Nevertheless, to be functional, a bioindicator must act 

in a sensitive response to alterations in the variable for which it is a proxy measure 

(Furness & Greenwood 1993). Therefore, we should select as a bioindicator tool such 

rapid and sensitive responses as state variables of breeding population size, reproductive 

success, adult condition status, and diet composition or even include further ecological 

traits such as foraging ecology or trophic niche width to assess challenging and crucial 

purposes. For instance, given their general wide foraging range, seabirds are ideal 
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indicator species to define resource hotspots, which could be incorporated into networks 

of marine protected areas (Louzao et al. 2010).  

Many seabird species are good model species to test several ecological theories that still 

need validation and support but only recently, with the development of new technology, 

it became possible to investigate accurately their foraging ecology (e.g. Masello et al. 

2010; Wanless & Harris 1993). For instance, stable isotope analyses (SIA) of carbon 

and nitrogen have been used to evaluate seabird trophic relationships (e.g. Cherel 2008; 

Hobson 2009; Phillips et al. 2011), and tracking devices to study seabird foraging 

behaviour at sea and spatial distribution (e.g. Christel et al. 2012; Masello et al. 2010; 

Navarro & González-Solís 2009). These techniques are particularly useful in the study 

of ecological niche mutually in space, time and trophic dimensions, especially when 

their use is combined. The development of these new approaches to the study of trophic 

and ecological interactions provides a complementary approach to investigate the 

structure of marine trophic relationships in general, and the long-term monitoring of 

seabird diet and behaviour in particular at both population and individual levels. 

Understanding these interactions at the individual level becomes a challenge that should 

highlight some traits that appeared masked when considering the community and 

population levels. 

The foraging niches of seabirds 

“Natural systems are dynamic and continually changing, with distance from equilibrium 

being an important unknown” (Paine 1988). In this context, trophic relationships are 

central in ecology and play a crucial role in species survival, as the availability of food 

resources varies over time and space. This balance is mostly driven by two general 

types of processes that regulate marine ecosystems and ecosystem dynamics: top-down 

and bottom-up interactions (more rarely by ‘wasp-waist’ interactions, Cury et al. 2000). 

Top-down effects imply control through predation, including fisheries, while bottom-up 

effects imply control through food abundance, often assumed to be driven by 

oceanographic features (e.g. oceanic fronts and upwelling areas) and marine 

productivity (Frederiksen et al. 2006).  

All seabirds are central-place foragers during the breeding season. Therefore, according 

to the principle of competitive exclusion (Pianka 2011), ecologically-similar species 

breeding in sympatry are expected to partition their use of available resources, leading 
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to niche divergence. The ecological niche of a population or species is a fundamental 

concept in ecology, but there are many niche concepts, each of which emphasizes a 

different aspect of a species’ ecological characteristics (Newsome et al. 2007). In the 

foraging niche point of view, ecological segregation could arise via differences in space, 

time and trophic niche (Navarro et al. 2013). Under conditions where competition for 

resources is likely to be particularly intense, the coexistence of ecologically-similar 

species should be possible only if there is a degree of ecological segregation presumably 

to reduce inter-specific competition for food (Phillips et al. 2004, Masello et al. 2010, 

Navarro et al. 2013). However, when the relative strengths of competition change, niche 

width should change accordingly and there are evidences that ecological release from 

inter-specific competition can lead to increases in niche width (Bolnick et al. 2010). 

Therefore, high overlap in the ecological niche within seabird communities and the non-

partitioning of resources among species could be a consequence of a superabundance of 

food resources and low inter-specific competition (Forero et al. 2004). 

The role of individual specialization and temporal consistency 

Traditionally, ecologists have long used niche theory to define the ecological niche of a 

species or population as a whole, assuming that all individuals are similarly affected and 

ecologically equivalent. However, many apparently generalized species and natural 

populations are in fact composed of ecologically heterogeneous individuals that use 

different subsets of the available resources (Bolnick et al. 2002, Svanbäck & Bolnick 

2007, Araújo et al. 2007). Such intra-specific variation in individual foraging strategies 

can be large and vary according to factors such as sex, age, morphology and individual 

specialization (Bolnick et al. 2003). Individual specialization refers to the use of a 

relatively limited fraction of the possible range of available resources, resulting in inter-

individual niche variation, and temporal consistency conveys the timescale over which 

the niche variation was observed; therefore, some degree of individual specialization 

exists if niche variation among individuals within a population is greater than within 

individuals. For instance, although bull sharks Carcharhinus leucas are known as a 

‘generalist’ species showing a broad isotopic niche width at the population level, they 

differ considerably at the individual level showing a small isotopic niche variance over 

time, indicating individual consistency in their diets (Matich et al. 2010). Typically, a 

given population or species could be considered as ‘specialist’ or ‘generalist’ according 

to the feeding habits of its conspecific individuals. A specialist population assumes that 
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all its individuals are preying on the same food resources and have similar ecological 

niches resulting in an overall small dietary niche width. On the other hand, generalist 

populations that show a large dietary niche width might be composed by generalist 

individuals all taking a wide range of food types (Type A generalization), or individuals 

each specializing on a different but narrow range of food types (Type B generalization) 

(Bearhop et al. 2004, Fig. 2). 

 

Figure 2. Regimes of predator-prey systems representing extremes of the specialist, 
Type A generalist and Type B generalist populations. Species pictures are merely 
representative of consumers and prey type (adapted from Bearhop et al. 2004).  

Although individual specialization is known to be widespread across a diverse set of 

taxa (Bolnick et al. 2003), including several seabird species (e.g. Bearhop et al. 2006; 

Votier et al. 2010; Woo et al. 2008), the ecological implications of such trait are poorly 

known. Some studies addressed this issue at the individual level throughout time within 

the same population (e.g. Matich et al. 2010; Vander Zanden et al. 2010; Woo et al. 

2008), and there are evidences that such consistency in foraging niches may reduce 

intra-specific competition among individuals promoting their ecological segregation 

(see Bolnick et al. 2003 for a review). However, as seabirds are presumably not 

territorial at sea it is difficult to take any specific conclusions and hence intra-specific 

competition for food in pelagic seabirds is difficult to demonstrate (Furness & Birkhead 

1984, Lewis et al. 2001). The fact that individuals of the same species or population 

may use different resources across time is crucial for constructing models of intra-

specific competition, predator-prey interactions and food web structure. However, 

understanding this issue using conventional approaches (e.g. pellets, regurgitates or 

stomach contents) requires laborious sampling of individuals over extended time 

periods, which is often difficult to achieve, especially when working with seabirds as 

they spend most of their time at sea. Here, the use of SIA to infer diet and habitat 

selection is a powerful approach as stable isotope ratios can integrate dietary 

information over different temporal scales depending on the tissue analyzed (Inger & 
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Bearhop 2008). Tracking devices can be used simultaneously to obtain information on 

successive foraging trips, foraging locations and long-range movements of individual 

birds in the wild (Weimerskirch et al. 2002). These characteristics of SIA and tracking 

devices make them appealing to examine isotopic variance and differences in feeding 

behaviour within and among individuals, and thus can be an effective way to investigate 

specialization, temporal consistency and the ecological niche (Newsome et al. 2007; but 

see Matthews & Mazumder 2004). Using these classic and recent tools, this study 

assesses trophic relationships of different seabird species in relation to their marine 

environment in general, and evaluates population and individual foraging specialization 

over time in particular. 

Objectives 

The main goal of this PhD thesis was to study the influence of environmental variation 

on the individual specialization of seabirds from different species and populations. 

Particularly, in the case of providing evidence of individual specialization, this study 

determines whether intra-specific relationships among seabirds within the same 

population are associated with the environment and the resources exploited, and 

investigates the ecological implications of individual foraging specialization in these 

relationships. Three different seabird species with different characteristics, from four 

different populations exploiting specific marine environments, were chosen to examine 

the relative incidence of individual specialization and its ecological implications, 

focusing particularly in less known aspects such as foraging ecology and behaviour 

(Table 1). To achieve the proposed goal, the following specific objectives were pursued: 

1. Test for short- and long-term consistency in the foraging niche (habitat use and 

trophic level) of wandering albatrosses, within and among individuals, of a 

breeding population from Bird Island, South Georgia, Antarctica. Determine the 

degree of such consistency within the population and investigate whether it is 

associated with sex, age and body condition of birds.  

2. Measure differences in the patterns associated with spatial distribution at sea, 

habitat use and diet between two sub-colonies of Cory’s shearwater, separated 

by only 2 km, from the same population breeding in Corvo Island. Determine 

whether small-scale differences in breeding location (and thus at the individual 
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level) could potentially be related to intra-specific differences in foraging 

ecology at sea. 

3. Use Cory’s shearwater as a model species of a wide-ranging top predator 

breeding in Berlenga Island along three years (2010-2012), during both the pre-

laying and chick-rearing periods, to determine whether variations in spatial 

distribution at sea, trophic niche and short-term consistency in foraging niche 

are associated.  

4. Test for short- and long-term consistency in feeding ecology of yellow-legged 

gull breeding adults from Berlenga Island in two consecutive years (2011 and 

2012), with markedly different baseline diet and oceanographic conditions. 

Investigate the extent to which the plasticity of this generalist and opportunistic 

species allow individuals to vary its feeding ecology and foraging behaviour at 

the population and individual level.  

The inter-individual variation in resource use may have a strong impact on ecological 

processes and population dynamics (Bolnick et al. 2003). To document its incidence 

and to investigate its implications is crucial to understand trophic relationships between 

seabirds and the marine environment in order to support theoretical ecological 

hypotheses and develop conservation strategies.  

Table 1. Study species/populations and their general marine environment. 

Study Species Marine Environment 

Wandering Albatross (Diomedea exulans) 

Cory’s Shearwater (Calonectris diomedea) 

Oceanic (Polar region) 

  Berlenga Island  

  Corvo Island 

Neritic (Temperate region) 

Oceanic (Temperate region) 

Yellow-legged Gull (Larus michahellis) Coastal (Temperate region) 
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Abstract 

The wandering albatross (Diomedea exulans) is regarded as a generalist predator, but 

can it be consistent in its foraging niche at an individual level? This study tested short- 

and long-term consistency in the foraging niche in terms of habitat use, trophic level 

and, by inference, prey selection. Fieldwork was carried out at Bird Island, South 

Georgia, in May-October 2009, during the chick-rearing period. Blood (plasma and 

cells) and feathers for stable isotope analyses (δ
13C and δ15N) were sampled from 35 

adults on their return from a foraging trip during which they carried stomach 

temperature, activity and Global Positioning System loggers. Results suggest short-term 

consistency in foraging niche in relation to both oceanic water mass and trophic level, 

and long-term consistency in use of habitat. Consistent differences among individuals 

partly reflected sex-specific habitat preferences. The proportion of consistent 

individuals (i.e. with a narrow foraging niche) was estimated at c. 40% for short-term 

habitat and trophic level (prey) preferences, and 29% for longer-term habitat preference, 

suggesting this is an important characteristic of this population and potentially of 

pelagic seabirds in general. Foraging consistency was not related to body condition or 

level of breeding experience, instead it may reduce intra-specific competition. 

Key-words: albatross ecology, foraging strategies, habitat choice, individual 

specialization, prey selection, stable isotopes 

 

Introduction 

According to optimal foraging theory, animals should distribute themselves to 

maximize their foraging efficiency, which, during breeding is dependent upon the 

ability to find food within the range of accessible habitat (MacArthur & Pianka 1966; 

Schoener 1971). Foraging strategies of individual birds can differ substantially (Fritz et 

al. 2003, Weimerskirch 2007) and vary according to factors such as sex, age, 

morphology and individual specialization (Bolnick et al. 2003), resulting in the 

exploitation of different niches by individuals, which could be consistent over time. The 

degree of variation among individuals in these characteristics has implications for 

susceptibility to anthropogenic threats, for example from fisheries, and other 
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environmental changes, and hence for the persistence of populations and species 

(Phillips, Bearhop, et al. 2009, Dias et al. 2010). 

Many populations of generalist predators are now known to include individual 

specialists, reflecting the often extensive intra-population variation in foraging niche 

(Bolnick et al. 2003; Woo et al. 2008; Matich et al. 2010). However, few studies have 

quantified the proportion of specialists in a population and whether this is constant over 

time. Typically, individual specialization is calculated from a “snapshot” analysis of 

diet or gut contents, and suffers from stochastic sampling effects. This reflects the 

logistical and other constraints involved in obtaining repeated diet samples, especially 

when working with seabirds. However, with the development of new approaches, 

including the use of data logging devices and stable isotope analysis (SIA), there has 

been a recent increase in studies of consistency in habitat use and diet (Bearhop et al. 

2006, Weimerskirch 2007, Votier et al. 2010). This represents an important 

development, as an improved understanding of variation in foraging patterns within and 

among individuals is crucial for determining the major factors contributing to 

population change (see Bolnick et al. 2003 for a review). Niche variation among 

individuals, and hence the degree of intra-specific competition, has major ecological 

and evolutionary implications (Araújo et al. 2007). For example, Weimerskirch et al. 

(1997) and Jaeger et al. (2009) found differences in habitat use between sexes of 

wandering albatrosses Diomedea exulans (Linnaeus, 1758) during the chick-rearing 

period and the non-breeding season, respectively. Differences in behaviour between age 

classes were also found for the wandering albatross (Weimerskirch et al. 2007; Lecomte 

et al. 2010), suggesting that sex, age and body mass are important factors to take into 

account when evaluating niche consistency. 

During the breeding season, wandering albatrosses are central-place foragers, travelling 

great distances (up to 15 000 km) in a single foraging trip (Xavier et al. 2004, 

Weimerskirch et al. 2007). Given their wide foraging range, they are ideal indicator 

species for defining resource hotspots, which could be incorporated into networks of 

marine protected areas (Louzao et al. 2010). Wandering albatrosses are top marine 

predators, feeding mainly on fish and cephalopods and, to a lesser extent, on carrion 

(Xavier et al. 2004; Weimerskirch et al. 2005). However, nothing is known about short- 

or long-term consistency in the foraging niche of individuals. Here, we evaluate 

individual consistency in feeding habitat and diet during the breeding season in a wild 
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population of wandering albatrosses of known sex and age. Specifically, we used SIA of 

multiple tissues with different turnover rates, together with the deployment of logger 

devices and conventional diet samples, to test for short- and long-term consistency in 

habitat use (δ13C) and trophic level (δ15N) within and among individuals. Using this 

combination of methods, we addressed the following questions; (i) Are individuals 

consistent in trophic level and foraging habitat over short- and long-term periods? (ii) 

What is the degree of individual foraging consistency within the population? (iii) Can 

foraging consistency be related to age or body mass index? (iv) Is there sexual variation 

in the consistency of the foraging niche? 

Materials and methods 

Fieldwork was carried out on wandering albatrosses rearing chicks at Bird Island, South 

Georgia (54ºS 38ºW) in May-October 2009, during the austral winter. A total of 35 

breeding adults (18 males and 17 females) were sampled in May (six), June (six), July 

(six), August (eight), September (six) and October (three). The age was known for 28 

individuals ringed as chicks, and birds were sexed from plumage and morphology 

(Tickell 1968). Three types of device - GPS and activity recorders and, when possible, a 

stomach temperature probe - were deployed on birds attending chicks, and removed at 

the end of the subsequent foraging trip (details of the devices below). Blood samples (1 

ml blood from the tarsal vein) and 6-8 randomly selected breast feathers were collected 

from each bird on recapture, for later SIA. Stomach contents were also sampled by 

water-offloading, following Xavier et al. (2004). Bill length and width were measured, 

and birds weighed before the foraging trip. The procedure of capture, deployment or 

retrieval of devices, collection of samples and release took 10-15 min. No birds were 

sampled more than once, nor a sample taken from the partner of a previously sampled 

bird. The blood samples were separated into plasma and red blood cells (RBC) using a 

centrifuge (15 min at 3000 rpm), stored frozen, and later freeze-dried and homogenized 

prior to SIA. 

Diet sampling and analysis 

Food samples collected from each individual reflected recent prey ingestions. Following 

Xavier et al. (2004), regurgitates were separated into oil and solid mass. Each 

component (cephalopod, fish, crustacean and carrion) was weighed separately, and 

individual prey items identified to species where possible. The identification of 
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cephalopod beaks followed Xavier and Cherel (2009) and of fish otoliths followed 

Hecht (1987), Williams and McEldowney (1990), and Smale et al. (1995). Fresh squid 

and fish (with beaks and otoliths attached, respectively) were stored frozen for SIA. 

Stable isotope analysis (SIA) 

Stable isotopes analyses of carbon and nitrogen can provide useful insights into seabird 

diet and they are a natural and crucial tool in contemporary studies of the ecological 

niche (Newsome et al. 2007). Carbon stable isotope value (δ13C) mainly reflects the 

consumers’ foraging habitat while nitrogen stable isotope value (δ15N) is mainly used to 

define consumers’ trophic position. Moreover, different tissues have different turnover 

rates, and therefore can reflect temporal changes in trophic position and foraging habitat 

(i.e. a change in isotopic niche) (reviewed in Rubenstein and Hobson 2004; Bond and 

Jones 2009). We analysed δ
13C (‰) and δ15N (‰) in plasma, RBC and breast feathers 

from each adult, and in prey items obtained from stomach contents. Plasma and RBC 

retain information on diet (carbon source and trophic level) from a few days prior to 

sample collection, to the previous 3-4 weeks, respectively (Hobson and Clark 1993; 

Votier et al. 2010). Hence, the isotopic signature of plasma is representative of the food 

and feeding ecology of the birds during their single tracking trip (Jaeger et al. 2010b). 

Breast feathers represent diet during the moult, since feather keratin is metabolically 

inert after synthesis, which in wandering albatrosses occurs during the non-breeding 

period (Jaeger et al. 2009). Therefore, based on SIA of different tissues from the same 

bird we are able to test for short- and long-term consistency in individual foraging 

niche. 

Lipids are depleted in 13C relative to whole tissues and were removed from plasma 

using successive rinses in a 2:1 chloroform-methanol solution (Cherel et al. 2005b). The 

low lipid content of whole blood (or RBC) does not typically require lipid extraction 

(Cherel et al. 2005a). Prior to SIA, feathers were cleaned of surface contaminants using 

successive rinses in a 2:1 chloroform-ether solution, air-dried and then ground to a fine 

powder in a freezer mill operating at liquid nitrogen temperature. Flesh samples from 

regurgitates were stored frozen, and then freeze-dried and ground to a fine powder 

before SIA. Lipids were extracted from flesh using a 2:1 chloroform-methanol solution. 

Nitrogen and carbon isotope ratios were determined by a continuous-flow isotope ratio 

mass spectrometer (Delta V Advantage, Thermo Scientific) coupled to an elemental 
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analyser (Flash EA1112, Thermo Scientific). Approximately 0.3 mg of each sample was 

combusted in a tin cup for the simultaneous determination of nitrogen and carbon 

isotope ratios. Results are presented in the usual δ notation based on the PeeDee 

Belemnite (PDB) for carbon and atmospheric N2 (AIR) for nitrogen. Replicate 

measurements of internal laboratory standards (acetanilide) indicate measurement errors 

<0.1‰ both for δ13C and δ15N. 

Tracking data collection and analysis 

In total, 35 breeding adults of both sexes were fitted concurrently with a GPS  (19.5 g, 

46.5 x 32 x 18.5 mm, Earth & Ocean, Kiel, Germany) and activity recorder (MK 7, 3.6 

g, 18x18x6.5 mm, British Antarctic Survey, Cambridge) before they departed for a 

single foraging trip at sea. The GPS loggers have an accuracy of 10 m; they were 

attached to feathers in the mantle region with Tesa tape and recorded the position of the 

albatross every 20 min. GPS data were obtained from 30 of the 35 loggers deployed, 

and were used to determine latitude and longitude at the point of inflection, which was 

the location furthest from the colony and assumed to represent the point at which the 

bird began its return, maximum distance from colony (km), and trip duration (days). 

The activity recorders check for saltwater immersion every 3 s, record every change of 

state from ‘wet’ (indicating sitting on the sea surface) to ‘dry’ (indicating flying or on 

land) that lasts ≥ 6 s, and were used to determine the percentage of time spent flying in 

each trip, and by daylight and darkness (civil twilight). Additionally, 26 of these birds 

were also equipped with a stomach temperature logger (51.5 g in total including the 

spring, Earth & Ocean, Kiel, Germany), of which 22 were retrieved and downloaded 

successfully. These incorporated a temperature sensor with a relative resolution of 

0.1°C, inside a cylindrical titanium housing of 150 mm x 19 mm in diameter. The 

anchoring spring hinders the regurgitation of the probe while the bird is at sea. Loggers 

record temperature changes in the proventriculus, with sudden drops in temperature 

indicating ingestion of cold prey (Wilson et al. 1992). Housings were specifically 

designed to be large enough to sample temperature for most of the stomach volume and 

not become covered by food after ingestion of only a few prey items (Wilson et al. 

1995). Temperature was logged every 20 s and was used to estimate the number of prey 

ingestions. Changes in temperature were bimodal; those of the first peak (< 4ºC) usually 

reflect ingestion of water or very small prey (Weimerskirch et al. 2007) and were 
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excluded from the analyses. The total mass of the three devices was below 3% of adult 

mass (0.6-1.0%), as recommended by Phillips et al. (2003) (but see Passos et al. 2010). 

Data analysis 

We regressed stable isotope ratios in plasma on those in RBC to obtain an index of 

consistency in carbon source (water mass) and trophic level. Since δ13C has a trophic 

component, we used the residuals of the relationship with δ15N in the same tissue 

(Plasma: F1,33 = 15.2, P < 0.001, r = 0.562; RBC: F1,33 = 14.8, P < 0.001, r = 0.556) to 

determine the degree of short-term repeatability in δ13C (between RBC and plasma), 

independently of trophic effects (Bearhop et al. 2006, Votier et al. 2010). Each tissue 

has a different turnover rate and therefore represents different timescales. However, 

integration of prey isotopes into body tissues is a continuous, dynamic process, and the 

analyses of short-term consistency were performed using the same blood sample, 

separated into plasma and RBC, which could lead to a temporal overlap in the synthesis 

of these tissues. Longer-term foraging consistency was estimated by regressing stable 

isotope values in RBC with those in feathers. We used again the residuals to correct the 

trophic component associated with δ
13C by regressing these values upon δ

15N signatures 

in feathers (F1,33 = 27.2, P < 0.001, r = 0.672). Overlap between samples in this 

comparison will be negligible as wandering albatrosses do not replace breast feathers 

during breeding. Residuals from the significant relationships were used as a measure of 

consistency of each individual. We used the absolute value of the residuals for statistical 

analyses and assumed that values greater or less than the median represented, 

respectively, more or less consistent individuals. However, to establish the degree of 

foraging consistency within the population, we cautiously assumed residual values 

below 0.2 as consistent individuals. This is a conservative estimation, as 0.2 was always 

lower than the median of the residuals for all individuals. One outlier which had a 

significant influence on the results for δ13C (1.0 in Fig. 4b) even after data 

transformation was excluded from further analyses. Although birds were sampled from 

May to October, month had no influence in the stable isotope and consistency values. 

This was expected because this study was carried out only during the chick-rearing 

period. Therefore, data for the six months period was pooled to analyse foraging 

consistency patterns.  
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Mixing models can be used to estimate the relative proportion of different dietary 

sources. We adopted a Bayesian multi-source stable isotope mixing model (SIAR: 

Stable Isotope Analyses in R; Parnell et al. 2010) to estimate ranges of probable 

contributions of each prey to the diet of each individual, and hence its specialization on 

particular prey items. All possible combinations of each source contribution were 

examined using the isotope values from plasma and RBC for each bird, and the mean 

and standard deviation of each of the four main prey sources. There are no diet-blood 

fractionation factors available for wandering albatrosses; hence, we used the average 

values generally accepted for birds: 1‰ and 3‰ enrichment for carbon and nitrogen, 

respectively (Kelly 2000; Caut et al. 2009), as adopted in studies of other seabirds 

(Hobson and Clark 1992; Bearhop et al. 2002; Cherel et al. 2005a). A standard 

deviation of ±0.5‰ was taken into account, considering potential differences in 

fractionation factors among species. 

We used the standard residuals of the relationship between body mass (at initial capture) 

and bill length (F1,33 = 42.3, P < 0.001, r = 0.749) to estimate the body mass index 

(BMI) of all sampled birds, an index primarily reflecting body lipid reserves (Zwarts et 

al. 1996). 

All data were tested for departures from a normal distribution; trip duration was log10 

transformed, maximum distance to colony and number of prey ingestions overall were 

square root transformed and all proportions were arcsine transformed. If no 

transformation normalised the data, non-parametric tests were used. The proportion of 

consumed prey types was compared between males and females, and between the more 

and the less consistent individuals, using ANOVA (for data obtained with the SIAR 

mixing model) and Mann-Whitney U Test (for data from the stomach contents). All 

statistical tests were performed with Statistica 7.0. 

Results 

General diet and stable isotope analysis 

The diet of the 35 wandering albatrosses sampled was composed mainly of fish (59.4% 

by mass) and cephalopods (38.4%), a small amount of carrion (2.2%) and trace 

crustaceans (0.02%). No significant differences were found between sexes in the 

proportion of each of these components. Similarly, mean δ13C and δ15N of plasma, 
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which provides an indication of recent meals, did not differ significantly between sexes 

(Table 2). However, there were significant differences between sexes in δ
13C, but not 

δ
15N, in RBC and feathers; females showed enrichment in 13C, suggesting some sexual 

segregation of foraging habitat. 

Table 2. Comparison in stable isotope ratios of carbon (δ
13C) and nitrogen (δ15N) in 

plasma, red blood cells (RBC) and feathers of male and female wandering albatrosses. 
Values are mean ± SD. Significant results in bold. 

Tissue type All birds (n=35) Males (n=18) Females (n=17) T-value P 

δ
13C (‰)      

Plasma -20.0 ± 0.6 -20.2 ± 0.5 -19.9 ± 0.5 1.9 0.070 

RBC -20.1 ± 0.5 -20.3 ± 0.3 -19.9 ± 0.6 2.1 0.042 

Feathers -17.5 ± 0.8 -17.8 ± 0.8 -17.1 ± 0.6 3.3 0.002 

δ
15N (‰)      

Plasma 14.3 ± 0.4 14.3 ± 0.5 14.4 ± 0.4 0.4 0.673 

RBC 14.1 ± 0.3 14.1 ± 0.2 14.2 ± 0.4 0.9 0.385 

Feathers 16.0 ± 0.3 16.0 ± 0.7 16.0 ± 0.6 0.3 0.774 

 

The most frequent fresh prey found in stomach samples from wandering albatrosses 

were Patagonian toothfish Dissostichus eleginoides (Smitt, 1898), blue antimora 

Antimora rostrata (Günther, 1878), giant warty squid Kondakovia longimana 

(Filippova, 1972) and glass squid Taonius sp. B (Voss) (Steenstrup, 1861). Mean δ
15N 

was much higher in the two fish species, D. eleginoides and A. rostrata than in the 

squid, reflecting their higher trophic position (Table 3). As expected, δ15N in the blood 

of wandering albatrosses was higher than in their prey. 
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Table 3. Stable isotopic signature of carbon and nitrogen and C/N mass ratio (means ± 
SD) of the four main prey species recorded in regurgitates collected from wandering 
albatrosses breeding in Bird Island. 

Prey species n δ13C (‰) δ
15N (‰) C/N 

Dissostichus eleginoides 5 -19.9 ± 0.4 13.8 ± 0.9 3.17 ± 0.06 

Antimora rostrata 4 -20.7 ± 0.3 12.2 ± 0.8 3.13 ± 0.02 

Taonius sp. B (Voss) 2 -21.4 ± 0.3 11.3 ± 0.8 3.14 ± 0.02 

Kondakovia longimana 4 -22.5 ± 0.8 8.7 ± 1.2 3.12 ± 0.07 

 

SIAR mixing model indicated that based on blood and prey isotope values, fish was the 

largest component (56.4%) in the diet of the sampled birds, followed by cephalopods 

(43.6%); proportions which were similar to those from analysis of regurgitates. 

According to the model, some individuals obtained a much greater proportion of their 

diet from cephalopods than others (Fig. 3). Although the credibility intervals 

overlapped, the model revealed a high degree of heterogeneity in the proportion of the 

four main prey types in the diet of different individuals, with the exception of A. 

rostrata that was relatively constant for all individuals. Several individuals (e.g. 2, 12, 

28, 31 and 34 in Fig. 3) appeared to have specialized on particular types of prey. This 

was unrelated to sex, as there were no significant differences in the proportions of the 

four prey items in the diet estimated by the model between males and females. 

Short- and long-term consistency in foraging niche 

Strong significant positive relationships were found in residual δ13C (hereafter δ13C), 

and in δ15N between RBC and plasma of individual adults (F1,33 = 35.0, P < 0.001, r = 

0.718, and F1,33 = 18.7, P < 0.001, r = 0.601, respectively; Fig. 4). These results suggest 

short-term foraging consistency within individuals in relation to both the use of 

particular water masses and trophic level (≈ relative proportion of fish and squid). Males 

and females showed similarly significant correlations between RBC and plasma in δ
13C 

(Males: n = 18, P = 0.001, r = 0.710; Females: n = 17, P = 0.003, r = 0.674), and in δ
15N 

(Males: n = 18, P = 0.007, r = 0.614; Females: n = 17, P = 0.006, r = 0.641). 
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Figure 3. Range of possible proportions of (a) Dissostichus eleginoides, (b) Antimora 
rostrata, (c) Taonius sp. B (Voss) and (d) Kondakovia longimana in the diet of 
individual wandering albatrosses during chick-rearing. Decreasing bar widths represent 
5, 50, 75 and 95% Bayesian credibility intervals computed by Stable Isotope Analysis in 
R (SIAR; Parnell et al. 2010). 

A significant positive relationship was found between feathers and RBC in δ
13C (F1,33 = 

8.6, P = 0.006, r = 0.454), which suggest consistent longer-term use of specific water 

masses (Fig. 4e). However, when split by sex, this relationship was not significant, 

although stronger in males (Males: n = 18, P = 0.089, r = 0.413; Females: n = 17, P = 

0.223, r = 0.312). No relationship was found between δ15N in feathers and RBC in the 

pooled sample (F1,33 = 0.7, P = 0.405, r = 0.145), or in separate analyses for each sex 
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(Males: n = 18, P = 0.940, r = 0.019; Females: n = 17, P = 0.274, r = 0.281). Hence 

birds apparently did not show long-term consistency in trophic level. 

 

Figure 4. Relationships between (a) residual δ
13C values in red blood cells (RBC) and 

plasma, (c) δ15N values in RBC and plasma and (e) residual δ
13C values in feathers and 

RBC of wandering albatrosses. Histograms indicate the number of males and females 
showing varying degrees of consistency in residual δ

13C, and δ15N values (b) short-term 
consistency in residual δ13C, (d) short-term consistency in δ15N and (f) long-term 
consistency in residual δ13C. (n = 35). Individual wandering albatrosses with 
consistency values below 0.2 were considered as consistent. 
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Individual foraging consistency 

Absolute value of residuals for the level of consistency in tissue isotope values within 

individuals ranged from 0 to 1 for short- and long-term (Fig. 4bdf). The median values 

were 0.22 for short-term (plasma vs. RBC) in δ13C, 0.31 for short-term (plasma vs. 

RBC) in δ15N, and 0.31 for long-term (RBC vs. feathers) in δ13C, and the percentage of 

individuals that were consistent (based on the absolute value of residual of < 0.2; see 

methods) was 42.9, 37.1 and 28.6%, respectively. These results suggest that around 

40% of the individuals in this population show short-term consistency in both prey 

carbon source (foraging habitat) and trophic level, and 29% of individuals showed long-

term consistency in foraging habitat. Despite a slight tendency for greater short-term 

consistency in foraging habitat use of males (δ
13C), and in trophic level of females 

(δ15N), no differences were found between sexes for the absolute values of residuals for 

short-term (plasma vs. RBC; Fig. 4bd). However, significant differences were found 

between sexes for the absolute values of residuals for long-term in δ13C (RBC vs. 

feathers; t-test: df = 33, T-value = 2.6, P = 0.014), with males showing higher 

consistency in the longer-term than females (Fig. 4f). 

Linking foraging niche consistency with diet, foraging behaviour, age and body mass 

index 

The proportion of fish and cephalopods found in the diet of wandering albatrosses 

collected using conventional sampling, and the proportion of the four main prey items 

estimated by the SIAR mixing model applied to prey and blood values, did not differ 

significantly between the more and the less consistent individuals in δ15N (Table 4). 

From the 35 individuals, 14 consumed more than 80% fish (“fish specialists”), 13 

consumed more than 80% cephalopods (“squid specialists”), and eight combined the 

consumption of both these prey groups (generalists) during their last trip, which 

suggests that individuals specialized in specific prey items during trips. However, 

results from SIA of plasma and RBC suggest that the less consistent individuals 

changed the proportion of prey items consumed during preceding weeks. 
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Table 4. Proportion of fish and cephalopods (based on the stomach contents), and the 
four main prey species (based on the SIAR mixing model) recorded in regurgitates 
collected from wandering albatrosses showing high or low levels of consistency in δ15N 
(diet and distribution), and for all birds. Values are mean ± SD (minimum – maximum). 

 All birds (n=35) More consistent (short-
term in δ15N; n=17) 

Less consistent (short-term 
in δ15N; n=18) 

Fish (%) 50.9 ± 43.2 (0 – 100) 55.5 ± 40.2 (0 – 100) 46.6 ± 46.6 (0 – 100) 

Cephalopods (%) 44.9 ± 43.2 (0 – 100) 43.2 ± 41.3 (0 – 100) 46.5 ± 46.1 (0 – 100) 

Dissostichus 
eleginoides (%) 

26.8 ± 5.8 (16 – 39) 27.7 ± 6.4 (18 – 39) 26.0 ± 5.2 (16 – 35) 

Antimora rostrata 
(%) 

29.5 ± 4.3 (22 – 36) 29.6 ± 4.3 (23 – 36) 29.5 ± 4.5 (22 – 36) 

Taonius sp. B 
(Voss) (%) 

11.9 ± 12.5 (0 – 27) 12.6 ± 12.4 (0 – 27) 11.2 ± 13.0 (0 – 27) 

Kondakovia 
longimana (%) 

31.7 ± 9.3 (14 – 50) 30.1 ± 9.6 (14 – 48) 33.3 ± 9.0 (19 – 50) 

 

Trip duration in the last foraging trip was significantly greater in individuals that 

showed greater consistency in δ
13C in RBC and plasma (Table 5). No differences in trip 

characteristics were found between sexes. Absolute value of residuals for short-term in 

δ
13C was negatively correlated with trip duration (F1,32 = 5.0, P = 0.032, r = -0.368; Fig. 

5). However, when split by sex, this relationship was significant only in males (Males: n 

= 18, P < 0.001, r = -0.592; Females: n = 16, P = 0.525, r = -0.172). No relationships 

were found between foraging consistency in trophic level and any foraging behaviour 

parameters recorded during the previous trip. 
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Table 5. Comparison of foraging parameters of wandering albatrosses showing high or 
low levels of short-term consistency in residual δ

13C (foraging habitat), and for all birds. 
Some data transformed before analysis. Civil twilight (cut-off between daylight and 
darkness). Values are mean ± SD (sample size). Significant results in bold. 

 All birds More consistent 
(short-term in 
residual δ13C) 

Less consistent 
(short-term in 
residual δ13C) 

T-value P 

Trip duration (days) 6.4 ± 5.0 (35) 7.6 ± 4.4 (17) 5.1 ± 5.3 (18) -2.4 0.020 

Latitude (point of 
inflection) 

-47.3 ± 7.2 (30) -46.2 ± 7.2 (13) -48.1 ± 7.3 (17)   

Longitude (point of 
inflection) 

-44.0 ± 8.1 (30) -48.1 ± 9.6 (13) -42.6 ± 6.1 (17)   

Maximum distance 
from colony (km) 

1071 ± 793 (30) 1338 ± 738 (13) 867 ± 794 (17) -1.8 0.087 

Percentage of time spent 
flying overall 

62.4 ± 14.1 (35) 58.3 ± 12.1 (17) 66.3 ± 15.2 (18) 1.8 0.080 

Percentage of time spent 
flying during daylight 

69.3 ± 14.6 (35) 64.6 ± 15.3 (17) 73.7 ± 12.9 (18) 2.0 0.059 

Percentage of time spent 
flying during darkness 

57.6 ± 17.4 (35) 53.5 ± 14.2 (17) 61.4 ± 19.7 (18) 1.5 0.142 

Number of prey 
ingestions overall 

16.3 ± 14.1 (22) 25.9 ± 14.6 (10) 8.3 ± 7.0 (12) -3.5 0.003 

Number of prey 
ingestions per day 

3.3 ± 1.6 (22) 3.2 ± 1.4 (10) 3.3 ± 1.8 (12) 0.2 0.856 

 

No relationships were found between the age or body mass index (BMI) and their level 

of short- and long-term consistency in δ
13C (age: F1,25 = 0.0, P = 0.835, r = 0.042 and 

F1,26 = 2.7, P = 0.115, r = 0.305, respectively; BMI: F1,32 = 0.8, P = 0.382, r = 0.158 and 

F1,33 = 0.0, P = 0.946, r = 0.012, respectively) or short-term consistency in δ15N (age: 

F1,26 = 0.6, P = 0.436, r = 0.153; BMI: F1,33 = 0.1, P = 0.817, r = 0.041). 
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Figure 5. Relationship between Log10 (trip duration) and short-term consistency in 
residual δ13C of wandering albatrosses (estimated from the absolute value of the 
residuals between red blood cells (RBC) and plasma in residual δ13C values; n = 34). 

 

Discussion 

Our results suggest that there is a high level of short-term consistency within individuals 

in the use of particular water masses and in trophic level (proportion of fish vs 

cephalopods) in wandering albatrosses during chick-rearing at South Georgia. The 

correlations in stable isotope ratios between different tissues (RBC and plasma for 

short-term, and feathers and RBC for long-term) can highlight particular details of 

seabird ecology, such as the degree of foraging specialization. Previous work has shown 

foraging specialization in a large range of species, mainly reflecting high site fidelity or 

a consistent pattern in foraging behaviour (data loggers: Weimerskirch et al. 2005; Cook 

et al. 2006; Elliott et al. 2009; stable isotopes: Cherel et al. 2007; Anderson et al. 2009; 

Jaeger et al. 2010a; or in combination: Phillips et al. 2009; Weimerskirch et al. 2009; 

Votier et al. 2010). However, as far as we are aware, ours is the first study to estimate 

the proportion of consistent individuals within a population. 
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Wandering albatrosses are top predator species consuming varying proportions of prey 

according to local or regional resource availability (Review in Cherel and Klages 1998; 

Xavier et al. 2004; Weimerskirch et al. 2005). However, focusing at an individual level, 

perceptible preferences in diet were found within the study population at South Georgia. 

Analyses of regurgitates showed that several birds fed mainly (> 80% of prey items by 

mass) on fish or on cephalopods in their last trip (42.9 and 34.3%, respectively), 

whereas others (22.8%) consumed both prey in different proportions. SIAR mixing 

model estimated that fish were the most consumed resource in the short-term based on 

analysis of stable isotope ratios in blood (Fig. 3). However, the relative contribution to 

the diet from different prey species varied considerably among individuals. For some 

individuals the proportion of cephalopods was higher. According to Bolnick et al. 

(2007) the use of a narrow range of resources by each individual (specialization) might 

minimize intra-specific competition. Specialization in particular prey items does not 

seem to be related to sex in wandering albatrosses from South Georgia, because no 

differences were found between males and females in ratio of the components found in 

regurgitates or in the diet predicted by the SIAR mixing model, although Weimerskirch 

et al. (1997) showed that males deliver fish more often than females at Crozet Islands. 

A high, positive correlation in δ13C (corrected for trophic fractionation) between RBC 

and plasma (Fig. 4a) indicates that individual wandering albatrosses foraged in 

isotopically similar areas in the short-term. However, it does not mean necessarily that 

individuals show fine-scale site fidelity, but that they consistently use the same water 

mass. δ15N values were also strongly correlated in RBC and plasma (Fig. 4c), 

suggesting short-term consistency in trophic level. Such relationships, however, are 

partly attributable to temporal overlap in the synthesis of plasma and RBC  (Votier et al. 

2010). Nevertheless, the correlation in δ
13C between feathers and RBC indicates that 

individuals exhibit longer-term consistency in habitat use that persists over many 

months, since δ13C in RBC represents the breeding period (at least a few weeks before 

sampling), and in body feathers represents the previous non-breeding season. This 

relationship was stronger in males than females (corroborated by the relative proportion 

of consistent individuals; Fig. 4f). These results are in accordance with differences in 

δ
13C values in feathers, which suggest sexual segregation in habitat during the non-

breeding season (Weimerskirch and Wilson 2000; Jaeger et al. 2009; Phillips et al. 

2009). Presumably males are more likely to forage consistently in isotopically similar 
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water masses throughout the year, whereas females may shift their distribution further 

to the north, to exploit warmer waters during the nonbreeding season, which may reduce 

competition for resources (Weimerskirch and Wilson 2000; Phillips et al. 2011). 

A significant degree of foraging consistency within a population does not necessarily 

mean that all individuals are consistent. Our estimation of the proportion of individuals 

that were consistent was conservative, by selecting only those with very small residuals 

(absolute value < 0.2) from the fitted regression line. Still, there were high proportions 

of individuals that showed short-term consistency in habitat use (43%) and trophic level 

(37%), and longer-term consistency in habitat use (29%). Therefore, this characteristic 

may be widespread in this population and related species. In this context, we explored 

relationships between short-term foraging consistency and several other characteristics, 

including diet and foraging behaviour recorded using data loggers in order to clarify this 

phenomenon. In terms of diet, our results shows that of the more consistent individuals, 

around 42% were specialists on fish, 29% on cephalopods, and 29% were generalists. 

Consistent generalists must consume similar proportions of all prey items over time in 

order to show similar isotope values. On the other hand, the great majority (78%) of 

individuals classified as generalists nevertheless seemed to have specialised on a 

particular prey category during the last trip, based on the single conventional diet 

sample collected on their return. However, these individuals must, in fact, be generalists 

that fed on different prey during previous weeks. This underlines the problem in 

determining the ratio of specialists to generalists from a “snapshot” diet analysis, 

particularly as a generalist predator might have ingested one prey species immediately 

prior to capture and collection of stomach contents (Warburton et al. 1998). In contrast, 

stable isotopes are much more suitable for analysing temporal diet consistency from 

days to weeks or months, depending on the tissue sampled (Araújo et al. 2007). 

Similar to other studies of marine predators, we found differences in foraging behaviour 

at an individual level (see Weimerskirch 2007 for review), in this case, linked to 

foraging consistency. Presumably the significant correlation of trip duration with short-

term consistency in δ13C (plasma vs. RBC; Fig. 5) simply reflects a greater proportion 

of RBC that was synthesized during the trip in birds that have been at sea (feeding on 

the same carbon source/in the same water mass) for longer. On the other hand, birds that 

made short trips would have produced more of their RBC during previous trips where 

they could have been feeding somewhere different. Nevertheless, it is equally possible 
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that differences in trip duration could indicate foraging behaviour segregation between 

the more and the less consistent individuals in foraging habitat (mainly males), 

corroborated by the significant correlation of trip duration with short-term consistency 

in δ13C, as a result of more targeted specialization. At least around 43% of birds were 

consistent and selective in foraging habitat during longer trips. Performing shorter trips 

at smaller spatial scales, the immediate prey encounter rate is expected to play a major 

role and prey predictability is assumed to be smaller in contrast with longer trips 

(Weimerskirch 2007), as birds travelling longer distances to find food may consistently 

seek specific water masses, in order to refill their condition and compensate for 

travelling longer distances. Consistency in foraging behaviour during the chick-rearing 

period has rarely been investigated in the past, but previously reported for other species 

(Quillfeldt et al. 2008; Woo et al. 2008; Jaeger et al. 2010a). Thus, short-term 

consistency in foraging habitat of wandering albatrosses, particularly males, during the 

chick-rearing period could be related to the regularity that many birds perform longer 

trips to specific water masses. This suggestion is in accordance with the fact that many 

seabird species concentrate their efforts on persistent and predictable food sources 

(Weimerskirch et al. 2005; Woo et al. 2008; Votier et al. 2010).  

The adaptive significance of the foraging specialisations observed in wandering 

albatrosses remains unclear. Some studies clearly demonstrate that intra-population 

variation is due to age or sex, while others attribute it to individual preference (Bolnick 

et al. 2003). Despite no significant differences in absolute value of residuals in the 

short-term between sexes, the slight tendency of higher short-term consistency in 

habitat use by males, as well as significant differences in δ13C values in RBC could 

reflect sexual segregation in habitat use during chick-rearing (Weimerskirch et al. 1997; 

this study). This has also been inferred for the non-breeding season from differences in 

stable isotope ratios in feathers (Jaeger et al. 2009; this study), and considered to reflect 

habitat specialisation, possibly driven by competitive exclusion of females by males 

(Phillips et al. 2011). However, the variation in short-term consistency in the foraging 

niche was unrelated to sex, indicating that other factors were responsible. We found no 

evidence that foraging niche consistency was related with age and hence probably not 

with experience. However, we only sampled breeding adults (11-33 years), and not 

immature birds. Weimerskirch et al. (2005, 2007) and Lecomte et al. (2010) found 

differences in behaviour between age classes, and suggested that younger birds may 
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have different foraging strategies, perhaps resulting from a poorer knowledge of the 

foraging habitat. However, there was apparently no difference in foraging success of 

young compared with older birds. Moreover, in the present work, there was no 

relationship between foraging consistency and body mass index, suggesting that the 

specialists and generalist have similar levels of body condition. 

Foraging consistency in wandering albatrosses is not a consequence of experience in 

adult breeders and does not appear to confer an advantage in terms of body condition, so 

it remains unclear why there are such a high number of consistent individuals within the 

population. The advantages may relate to improvements in several traits such as 

reproductive success, chick food delivery rates or chick condition which requires further 

investigation. It may also contribute to reduce intra-specific competition among 

individuals. 

In summary, we observed that: (i) wandering albatrosses from South Georgia showed 

high short-term consistency at both habitat use and trophic level, and long-term 

consistency in habitat use; (ii) the degree of individual consistency in both habitat use 

and trophic level within the population was around 40% in the short-term, and 29% in 

the long-term habitat use; (iii) foraging consistency was not related to age or body mass 

index and so is not a consequence of experience nor does it affect body condition; and 

(iv) consistency in habitat use tended to be greater over long time periods in males than 

females. As well as documenting the existence of individual specialization, further 

studies should explore the relative incidence in different populations, species and 

communities, and the implications for fecundity and survival. 
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Abstract 

Breeding seabirds are central-place foragers and therefore exploit food resources most 

intensively around their colonies. When nesting aggregations are close to one another 

density-dependent competition is likely to be high, potentially promoting foraging 

segregation. However, little is known about dietary and spatial foraging difference 

between closely adjacent colonies, particularly for wide-ranging foraging species. The 

extent of foraging segregation between two sub-colonies in a wide-ranging seabird, the 

Cory’s shearwaters (Calonectris diomedea), separated by only 2 km, was assessed on a 

small Island in the North Atlantic in order to evaluate the effects of at-sea intra-specific 

competition for food resources. During the 2010 chick-rearing period a total of 43 

breeding adults of both sexes were sampled at both sub-colonies. A GPS logger was 

deployed on each individual and removed after several foraging trips at sea. Blood 

samples (plasma and red blood cells) were collected from each tracked individual for 

stable isotope analysis (SIA) and breeding parameters were monitored during the whole 

season (from May to October). Results suggested that spatial segregation was apparent 

in short (= 1 day) but not in long (≥ 2 days) foraging trips. Birds from different sub-

colonies did not only forage at different locations, exploring areas with different 

oceanographic conditions in the short trips during the chick-rearing period, but also 

showed significant differences in δ13C of red blood cells, suggesting foraging 

segregation in habitat use during the incubation period. Interestingly, no differences 

were found in the exploited habitat between birds from both sub-colonies during the 

chick-rearing period, suggesting that birds concentrated their feeding activity in small 

concentrated patches of similar habitat. We provide evidence that widely-ranging 

seabirds from two sub-colonies exhibited colony-specific foraging areas during short 

trips, most likely to reduce intra-specific competition.  

Key-words: feeding ecology, GPS tracking, individual specialization, intra-specific 

competition, stable isotopes  

 

Introduction 

Competition between conspecifics, which is frequently density-dependent, may result in 

the partitioning of resources between individuals or groups (Wakefield et al. 2009). As 
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seabirds are presumably not territorial at sea, intra-specific competition for food in 

pelagic seabirds is difficult to demonstrate (Furness & Birkhead 1984, Lewis et al. 

2001), but there is evidence that it may drive foraging segregation among neighbouring 

colonies in several seabird species (e.g. Masello et al. 2010; Wiley et al. 2012). High 

intra-specific competition is mainly attributed to large colonies during the breeding 

season, which could result in prey depletion in their vicinity and longer foraging ranges 

to obtain food (Furness & Birkhead 1984, Lewis et al. 2001, Garthe et al. 2011). 

Breeding seabirds are central-place foragers, leading populations to exploit resources 

around their colonies under the influence of distribution of prey (Phillips et al. 2009), 

for which may be drivers or proxies local oceanographic conditions (e.g. bathymetry, 

sea-surface temperature, chlorophyll a concentration; Masello et al. 2010). Therefore, 

we can expect segregation both in foraging areas and prey between geographically 

distant breeding populations, which may lead to diversification of foraging tactics 

among populations. To minimize intra-specific competition, Cairns (1989) predicted 

that seabird colonies should be spaced so that their closer foraging areas do not overlap. 

In this study we tested the hypothesis that due to density-dependent competition for 

food, foraging segregation occurs between geographically proximate seabird sub-

colonies. In accordance to Cairns (1989) prediction, several studies (e.g. Grémillet et al. 

2004; Yamamoto et al. 2011; Wiley et al. 2012) demonstrated foraging segregation 

between colonies in pelagic seabirds, but these were separated by tens or hundreds of 

kilometres. Studies demonstrating spatial foraging segregation among seabirds of the 

same species, breeding in colonies as close as 2 – 2.5 km from each other, are very 

scarce (Wanless and Harris 1993; Masello et al. 2010). Those authors studied Blue-eyed 

Shags Phalacrocorax atriceps and three different penguin species which generally have 

smaller foraging ranges at sea. To our knowledge no studies have examined segregation 

between closely spaces colonies of more wide-ranging species. 

Large populations of Cory’s shearwaters Calonectris diomedea borealis breed in the 

Azores, a chain of nine islands aggregated in three groups (western, central and eastern) 

straddling the mid-Atlantic ridge over a distance of about 600 km. Corvo Island is the 

smallest (ca. 17 km2, Fig. 6) and it holds greater densities of Cory’s shearwater than any 

other in the archipelago (mean = 2732 birds km-1, Furness et al. 2000). Given the high 

density of birds nesting on Corvo, it is an appropriate site to test for between-sub-colony 

foraging segregation. The most appropriate period to address this issue is during the 
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early chick-rearing period, when birds’ foraging effort is highest and most intensively 

concentrated in the vicinity of the colony (Granadeiro et al. 2000, Paiva, Geraldes, 

Ramírez, Meirinho, et al. 2010a). We expected that density-dependent competition is 

likely to be more intense close to Corvo, therefore segregation is more likely to occur 

during short than during long foraging trips. 

Specifically, we hypothesized that: (1) central-place foragers reduce competition by 

partitioning available space (i.e. geographical location) and habitats (i.e. a set of 

environmental conditions) during the early chick-rearing period; and (2) individuals 

(according to sub-colony and sex) display dietary segregation throughout the breeding 

period (incubation and chick-rearing). Our goal is to measure differences and patterns 

associated with spatial distribution at sea, habitat use and diet to determine whether 

small-scale differences in breeding location could potentially be related to intra-specific 

differences in foraging ecology at sea. In order to test our hypotheses we tested for 

foraging segregation using conventional dietary sampling, stable isotope analysis (SIA) 

and individual movement data. We used these techniques to evaluate the effects of at-

sea intra-specific competition for food resources between two sub-colonies of Cory’s 

shearwater from the same population separated by only 2 km. Cory’s shearwater is 

dimorphic in size and bill dimensions (Granadeiro 1993, Ramos, Granadeiro, et al. 

2009) suggesting possible at-sea foraging differences between sexes that could 

confound the sub-colony differences. We therefore controlled for potential differences 

between males and females. We used a combination of GPS loggers, SIA of multiple 

tissues with different turnover rates, conventional diet samples, environmental 

covariates and breeding success, to address spatial, habitat and dietary segregation 

between sub-colonies.  

Materials and methods 

Fieldwork was conducted in Corvo Island (39°40’N, 31°06’W; Fig. 6) in the Azores 

archipelago, Portugal, during the 2010 chick-rearing period. The islands of the Azores 

have relatively narrow peri-insular shelves and are surrounded by deep, oceanic waters. 
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Figure 6. Location of the Cory’s shearwater Calonectris diomedea sub-colonies (A and 
B) studied at Corvo Island, Azores, Portugal (39º40’N, 31º06’W). 

A total of 43 breeding adults of two sub-colonies of Cory’s shearwaters separated by 2 

km on Corvo Island (sub-colony A (Fajã): 14 males and 9 females, sub-colony B (Pão 

de Açucar): 10 males and 10 females; Fig. 6) were sampled during a period of 35 days, 

from 30 July to 2 September. The time between capture and recapture ranged from 2 to 

30 days (14.9 ± 5.5 days). Captured birds were ringed, weighed both on capture and 

recapture, and wing and tarsus length were measured. Sex was already known for the 

majority of  birds; however, the bill was also measured (culmen, bill height at the gonys 

and at the base) to determine the sex of remaining birds (using a discriminant function 

established by Granadeiro 1993). A GPS logger was deployed on birds attending chicks, 

and removed after several foraging trips (details of the devices below). Birds from the 

two sub-colonies were tracked simultaneously (Fig. 7). Blood samples (0.5-1 ml from 

the tarsal vein) were collected from each bird on capture and recapture using 25 gauge 

needles and, within 2-3 h, separated into plasma and red blood cells (RBC) using a 

centrifuge (15 min at 3000 rpm). Hematocrit was recorded and samples were then stored 

frozen until preparation for SIA. Stomach contents were sampled from 20 tracked 

individuals of both sub-colonies by water-offloading, following Wilson (1984). We 

weighed chicks (age between 6-40 days) reared by tracked adults every two days to 

estimate linear chick growth. In addition, all sampled birds were monitored every day 
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from May 26 until hatching to determine laying and hatching date using a burrow-scope 

(elongated remote camera). Afterwards, the presence of adult and/or chick was 

monitored every week until October 21 to determine fledging success. Deployment or 

retrieval of devices, collection of samples and release took 10-15 min and birds were 

returned immediately to their nests. 

 

Figure 7. Number of Cory’s shearwaters Calonectris diomedea tracked per day from 
each sub-colony during the early chick-rearing period of 2010 in Corvo Island. 

Tracking data collection 

Each bird was fitted with a GPS logger (CatTraq GT-120, Perthold Engineering LLC). 

The plastic case was removed and replaced by a 7 cm long thermo-retractile rubber 

sleeve reducing the total weight to 17 g. This corresponded to 1.6-2.6% of studied 

individuals’ mass, which is below the 3% of adult mass reported to have no deleterious 

effects on seabird species during short-term deployments (Phillips et al. 2003; but see 

Vandenabeele et al. 2012), including Cory’s shearwaters (Igual et al. 2005). The GPS 

loggers were attached to feathers in the mantle region with Tesa® tape and set to record 

the birds’ position (median error of < 10m) every 5 min. We tracked birds continuously 

from 2 to 17 days (12.7 ± 3.7 days) 
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Environmental data 

We characterized Cory’s shearwater habitat use using three environmental indices: 

bathymetry (m), August 2010 mean chlorophyll-a concentration (Chl a, mg m-3) and sea 

surface temperature (SST, ºC) (Paiva et al. 2010b). Bathymetry data were extracted 

from a grid of 0.01º (approx. 1 km) from 

http://www.ngdc.noaa.gov/mgg/global/global.html (we selected the ETOPO1 blended 

product). Chl a and SST data were downloaded for a spatial resolution of 0.04º (approx. 

4 km) of Aqua-MODIS mapped products from http://oceancolor.gsfc.nasa.gov/cgi/13.  

Diet sampling and identification 

All regurgitates came from breeding individuals; birds with empty stomachs were not 

considered in the analysis. Following Xavier et al. (2004), regurgitates were separated 

into oil and solid fractions. Each solid component (fish and cephalopod) was sorted, 

counted and weighed separately, and individual prey items identified to species-level 

whenever possible. Fresh squid and fish (with beaks and otoliths attached, respectively) 

were stored frozen for SIA. 

Stable isotope analyses 

Stable isotope ratios (δ13C and δ15N) of plasma and RBC retain information on diet 

(carbon source and trophic level) from a few days prior to sample collection, up to the 

previous 3-4 weeks, respectively (Hobson and Clark 1993, Votier et al. 2010). In each 

individual, we analysed δ13C (‰) and δ15N (‰) in RBC from initial capture and plasma 

from recapture (between 2 and 30 days difference) in order to minimize overlap 

between the samples (Votier et al. 2010). δ
13C (‰) and δ15N (‰) of fresh prey items 

obtained from stomach contents were also analysed to create a basis for the 

interpretation of the tissues’ isotopic signatures and construction of mixing models (see 

data analysis below).  

Samples were freeze-dried and homogenized prior to SIA. Because high lipid 

concentrations in plasma and in flesh from prey items can lead to depleted δ
13C values, 

lipids were removed using successive rinses in a 2:1 chloroform-methanol solution 

(Cherel et al. 2005). Nitrogen and carbon isotope ratios were determined via Finningan 

conflo II interface to a Thermo Delta V S mass spectrometer coupled to a Flash EA1112 

Series elemental analyser. Approximately 0.3 mg of each sample was combusted in a tin 
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cup for the simultaneous determination of nitrogen and carbon isotope ratios. Isotope 

ratios are presented in the usual δ notation based on the PeeDee Belemnite (PDB) for 

carbon and atmospheric N2 (AIR) for nitrogen, and expressed as ‰. δ
13C or δ15N = 

[(Rsample/ Rstandard) − 1] × 1000, where R = 13C/12C or 15N/14N, respectively. Replicate 

measurements of internal laboratory standards (acetanilide) indicate precision < 0.2‰ 

for both δ13C and δ15N. 

Data analysis 

As Cory’s shearwaters typically use a dual foraging strategy to exploit the environment 

(Magalhães et al. 2008; Paiva et al. 2010b; but see Phillips et al. 2009), we expected 

differences in the habitats explored by individuals between short and long foraging 

trips. Although birds did not exhibit bimodality in this study either in trip duration or 

maximum distance from colony (see Fig. 8), all analysis were performed separately for 

long (≥ 2 days) and short (= 1 day) foraging trips, since density-dependent competition 

is likely to be more intense during shorter trips than longer trips. 

The nonparametric fixed kernel density (FKD) estimator was used to calculate the 25, 

50 and 75% density contour areas, and respective areas (km2), of each trip using 

functions (“kernelUD”, “ getvolumeUD”, “ getverticeshr” and “kernel.area”) of the 

adehabitat package (h = 0.03 for short trips, h = 0.13 for long trips, grid = 500; Calenge 

2006) under R 2.14.0 (R Development Core Team 2011). GPS locations at the colony 

were excluded from analyses and we only used foraging-point kernels, which 

exclusively represented the areas where birds were presumed to be foraging (determined 

by trip sinuosity index ≥ 3; adapted from Grémillet et al. 2004). The intra-specific 

overlap in the estimated foraging range among individuals within each sub-colony and 

among individuals between sub-colonies was assessed following Fieberg and Kochanny 

(2005). The 25, 50 and 75% FKD overlap were calculated for each bird (within and 

between sub-colonies) using the function “kerneloverlap” of the adehabitat package 

(meth = “VI”; Calenge 2006)  under R 2.14.0. Spatial segregation was assessed by 

determining that FKD (25, 50 and 75%) overlap among individuals between sub-colony 

A and B was smaller than the FKD (25, 50 and 75%) overlap among individuals within 

each sub-colony. 

Zones of area-restricted search (ARS) were estimated for each trip applying first-

passage time (FPT) analysis (see Fauchald and Tveraa 2003 for more details) and using 



Chapter 2 | 56 
 

functions (“as.ltraj” , “ fpt” , “varlogfpt”  and “meanfpt” ) of the adehabitat package 

(Calenge 2006) under R 2.14.0 and some custom-built functions. Usually, positions 

which corresponded to when the bird was sitting on the water result in very small-scale 

ARS zones (< 100 m diameter), increasing the variance in FPT and reducing the ability 

to detect larger-scale ARS zones (Weimerskirch et al. 2007). To address this problem, 

we removed bouts on the water (speed < 9 km h-1) and interpolated locations to obtain a 

distance interval of 1 km for FPT analysis (Pinaud 2008). Following the 

recommendations of Pinaud (2008), FPT analysis was performed in two steps: (1) to 

detect large-scale ARS we run the analysis on the whole path, estimating the FPT every 

25 km for a radius r from 1 to 300 km; (2) to detect small spatial scale events we run 

again FPT analysis every 1 km for an r varying between 1 and 50 km. The plot 

representing variance in log (FPT) as a function of r allowed us to identify the ARS 

scales by peaks in the variance. In this calculation, FPT was log transformed to make 

the variance independent of the magnitude of the mean FPT (Fauchald & Tveraa 2003). 

The mean scale at which variance in FPT peaked at the individual level was 3.2 ± 2.6 

km during short trips and 17.5 ± 11.3 km during long trips; there was no significant 

differences between the two sub-colonies (short trips: sub-colony A = 3.2 ± 2.9, sub-

colony B = 3.1 ± 1.7, ANOVA: F1,40 = 0.0, P = 0.86;  long trips: sub-colony A = 16.1 ± 

11.9, sub-colony B = 19.5 ± 10.5 ANOVA: F1,30 = 0.7, P = 0.41). The centroid of 

geographic position at each ARS zone (latitude and longitude) was calculated for each 

trip and used to assess differences between sub-colonies in the exploited zones. 

Given the geometry of the two colonies within Corvo Island (sub-colony A, east side; 

sub-colony B, west side), we tested whether the breeding site had an effect on direction 

adopted by birds for each foraging trip. Following Robson et al. (2004), the bearing 

(degrees) of the most distant location recorded during each trip from each sub-colony 

was calculated to evaluate the probability that the observed distribution of trip 

directions would occur under the null hypothesis of no difference in the direction of 

foraging trips between sub-colonies. Foraging trip direction was compared between sub-

colonies with a Watson-Williams test for circular data using functions (“graus.rad” , 

“graus.circ” , “plot.circular”  and “watson.williams.test” ) of the circular package 

(Agostinelli and Lund 2011) under R 2.14.0. To avoid pseudoreplication, one trip was 

randomly selected from each bird.  
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Mean values of environmental variables inside the kernel contours and ARS zones of 

each trip were extracted using ArcGIS 9.2. With the exception of circular variables, 

behavioural indices were modelled using mixed-effects ANOVA, with sex, colony and 

environmental variables treated as fixed effects and individual as a random effect.  

Mixing models were used to estimate the relative proportion of different dietary 

sources. We adopted a Bayesian multi-source stable isotope mixing model (stable 

isotope analyses in R: SIAR, function “siarsolomcmcv4”; Parnell et al. 2010) to 

estimate contributions for each prey to the diet of each individual. All possible 

combinations of each source contribution were examined using both isotope values 

from RBC on capture and plasma from recapture (corresponded to incubation and 

chick-rearing periods, respectively) for each bird, and the mean and standard deviation 

of each of the three prey sources. There are no diet-blood fractionation factors available 

for Cory’s shearwaters; hence, we used the average values of four seabird species 

available in literature: 0.30 and 2.85‰ enrichment for carbon and nitrogen, respectively 

(Hobson & Clark 1992, Bearhop et al. 2002, Cherel, Hobson, & Hassani 2005). Due to 

potential differences in fractionation factors among species, a standard deviation of ± 

1.0‰ was assumed.  

We used the standard residuals of the relationship between body mass (mean between 

capture and recapture) and wing length (F1,39 = 11.5, P = 0.002, r = 0.478) to estimate 

the body mass index (BMI) of 41 sampled birds, which we assume primarily reflects 

body lipid reserves (Sánchez-Guzmán et al. 2004), to assess whether adults from the 

two colonies were in a similar health state. In addition, the variation in the hematocrit 

between the blood sampling on initial capture and recapture was calculated as a proxy 

of the individuals’ current health condition status (see Fair et al. 2007 for a review). The 

linear growth rate for each chick was represented as the coefficient of the regression line 

between chick body mass and age (i.e. the daily increase in body mass), expressed in g 

day-1 (Ramos et al. 2003). 

All data were tested for normality and homoscedasticity; foraging area (25, 50 and 75% 

FKD) and Chl a were log10 transformed, bearing (degrees) was transformed into radians, 

linear chick growth was square root transformed and proportions were arcsine 

transformed, with exception of those obtained from SIAR mixing model. If no 

transformation normalized data, non-parametric tests were used. Values are means ± SD 



Chapter 2 | 58 
 

unless otherwise stated. Circular data analyses were performed under R 2.14.0. All 

other statistical tests were performed with Statistica 7.0 (StatSoft. Inc. 2004). 

Results 

We obtained a total of 368 foraging trips from 43 individuals. The frequencies of trip 

duration for the entire data set showed a clear unimodal distribution during the study 

period, during which 310 (84.2%) were one day trips made by 42 individuals and 58 

(15.8%) were ≥ 2 day trips made by 32 individuals (Fig. 8). 

 

Figure 8. (a) Frequency distribution of trip duration (days) and (b) maximum distance 
from colony (km) for all 368 Cory’s shearwaters Calonectris diomedea foraging trips 
recorded in August 2010 during the chick-rearing period in Corvo Island. 

Spatial segregation 

During long trips, birds from Corvo headed exclusively north to forage in areas such as 

the mid-Atlantic ridge and surrounding seamounts (e.g. Altair and Chaucer), with a 

maximum distance of 1265 km (347 ± 244 km) and a maximum trip duration of 9 days. 

Short trips were mostly confined to the colony surroundings, within a maximum 

distance of 216 km (62 ± 39 km). 

Birds from the two sub-colonies demonstrated intra-specific spatial segregation at sea 

during short trips; a significant greater overlap was detected among individuals within 

each sub-colony (75, 50 and 75% FKD: 19.5 ± 4.0%, 13.2 ± 3.1% and 8.2 ± 2.2%, 

respectively) than among individuals between the two sub-colonies (75, 50 and 75% 

FKD: 16.2 ± 4.2%, 10.5 ± 3.0% and 6.0 ± 2.1%, respectively) at 75, 50 and 25% FKD 

(ANOVA: all P < 0.001). In addition, FPT analyses indicated that the individuals from 

the two sub-colonies foraged at significantly different longitudes (hence distinct ARS 
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zones) during short trips (sub-colony A: -30.8 ± 0.4ºW, n = 143; sub-colony B: -31.0 ± 

0.4ºW, n = 142; F1,40 = 6.5, P = 0.015), while no differences were found in latitude 

(sub-colony A: 39.8 ± 0.4ºN, n = 143; sub-colony B: 39.8 ± 0.4ºN, n = 142; F1,40 = 0.0, 

P = 0.91). On the other hand, neither spatial nor foraging segregation were detected 

during long trips; the overlap among individuals within each sub-colony (75, 50 and 

25% FKD: 10.6 ± 4.3%, 4.3 ± 2.3% and 0.7 ± 0.6%, respectively) did not differ 

significantly with the overlap among individuals between the two sub-colonies (75, 50 

and 25% FKD: 11.2 ± 5.0%, 4.6 ± 2.5% and 0.7 ± 0.6%) at 75, 50 and 25% FKD 

(ANOVA: all P > 0.05); moreover, no significant differences were found in the ARS 

zones (latitude and longitude) determined by FPT analyses during long trips (ANOVA: 

all P > 0.05). No spatial segregation was detected between males and females within 

each sub-colony during either short or long trips (ANOVA: all P > 0.05). Overall, the 

spatial segregation was high in short trips, where birds largely foraged on their 

respective sides of Corvo (sub-colony A, east side; sub-colony B, west side), in contrast 

to long trips where spatial segregation was not detected (Fig. 9). Furthermore, we found 

that birds from the two sub-colonies travelled in different directions to forage during 

short trips (Fig. 10); the bearing from the colony to the most distant location recorded 

differed significantly between both sub-colonies (sub-colony A: mean 84.4º (circular 

variance = 38.0º); sub-colony B: mean 251.2º (circular variance = 52.5º); Watson-

William test: F1,40 = 8.5, P = 0.006), suggesting a difference in colony-specific foraging 

areas between breeding sites during short trips. Conversely, no significant differences 

were found in the direction of long trips (sub-colony A: mean 16.1º (circular variance = 

16.7º); sub-colony B: mean 4.2º (circular variance = 16.5º); Watson-William test: F1,30 

= 0.5, P = 0.50; Fig. 10). 
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Figure 9. Spatial distribution of Cory’s shearwaters Calonectris diomedea breeding in 
two sub-colonies of Corvo Island during the chick-rearing period (sub-colony A: upper 
panel; sub-colony B: lower panel) in long (≥ 2 days) and short (= 1 day) foraging trips. 
Dark, medium and light shades represent 25, 50 and 75% kernel utilization, 
respectively, i.e., the areas where the birds spent most of their foraging time. 

Differences were also found in the foraging areas during short trips, where birds from 

sub-colony A apparently foraged over larger areas that those from sub-colony B at 50% 

FKD (sub-colony A: 61 ± 32 km2, n = 156; sub-colony B: 53 ± 25 km2, n = 149; F1,40 = 

5.1, P = 0.031) and 25% FKD (sub-colony A: 23 ± 14 km2, n = 156; sub-colony B: 19 ± 

8 km2, n = 149; F1,40 = 7.8, P = 0.009), but not at 75% FKD (sub-colony A: 158 ± 63 

km2, n = 156; sub-colony B: 153 ± 204 km2, n = 149; F1,40 = 0.1, P = 0.72). On the 

other hand, no differences were detected at 75, 50 and 25% FKD between sub-colonies 

in the foraging areas during long trips (ANOVA: all P > 0.05), and between males and 

females during both short and long foraging trips (ANOVA: all P > 0.05). 
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Figure 10. Bearing showing the direction from the breeding site to the most distant 
location recorded of Cory’s shearwaters Calonectris diomedea breeding in two sub-
colonies of Corvo Island and tracked during the chick-rearing period for long and short 
foraging trips. 

Oceanographic habitat 

FKD (75, 50 and 25%) showed that oceanographic parameters (SST, Chl a and 

bathymetry) diverged significantly between the areas visited by the individuals of the 

two sub-colonies during short trips (ANOVA: all P < 0.05; Fig. 11). Overall, birds from 

sub-colony B utilised shallower and warmer areas with greater Chl a during short trips. 

Interestingly, there were no significant differences in the oceanographic parameters at 

ARS zones estimated by FPT analyses (ANOVA: all P > 0.05) during short trips, 

suggesting that although individuals from the two sub-colonies passed through areas 

with different oceanographic conditions they foraged in patches of similar habitat. No 

differences were found in oceanographic parameters estimated by FKD (75, 50 and 

25%) between sub-colonies during long trips (ANOVA: all P > 0.05). However, FPT 

analyses indicated that birds from sub-colony B foraged in areas with greater Chl a that 

those from sub-colony A (sub-colony A: 0.129 ± 0.054 mg/m3, n = 34; sub-colony B: 

0.167 ± 0.064 mg/m3, n = 24; F1,30 = 5.6; P = 0.031, Fig. 11) during long trips. There 

were no significant between-sex differences in the oceanographic conditions 

experienced during either short or long trips, estimated by FKD (75, 50 and 25%) and 

FPT analyses (ANOVA: all P > 0.05). 
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Figure 11. Differences between sub-colonies (A and B) of Cory’s shearwaters 
Calonectris diomedea breeding in Corvo Island for the oceanographic conditions (SST, 
Chl a concentration and bathymetry) of foraging areas during the chick-rearing period 
in short and long foraging trips, calculated using 25, 50 and 75% fixed kernel density 
(FKD) and zones of area-restricted search (ARS). Points represent means, bars and lines 
represent ± 0.95 and ± 0.99 confidence intervals, respectively. Significant differences 
between the sub-colonies are presented with * (P < 0.05) and ** (P < 0.01). 

Diet and stable isotope analysis 

Complete or partial diet samples were obtained by stomach irrigation from 18 birds. 

These mainly comprised fish (98.5% by mass and 90.7% by numerical frequency) and a 

small amount of cephalopods (1.5% by mass and 9.3% by numerical frequency). No 



Chapter 2 | 63 
 

significant differences were found between sub-colonies or sexes in the mass proportion 

or numerical frequency of each of these components (Mann-Whitney U Test: all P > 

0.05). The three prey species identified in regurgitates collected from Cory’s 

shearwaters were boarfish Capros aper, blue jack mackerel Trachurus picturatus and 

cock-eyed squid Histioteuthis sp.. 

Mean δ13C and δ15N were greater in the cephalopod species Histioteuthis sp. followed 

by the two fish species, T. picturatus and C. aper, respectively. δ13C and δ15N in the 

plasma and RBC from 43 individual Cory’s shearwaters were greater than in their prey 

(Fig. 12). The mean δ13C and δ15N of Cory’s shearwaters plasma did not differ 

significantly between sub-colonies, sex and sub-colony*sex (factorial ANOVA: all P > 

0.05). However, there were significant differences between sub-colonies in δ
13C, but not 

in δ15N for RBC (δ13C: F1,39 = 5.0, P = 0.032; δ15N: F1,39 = 1.9, P = 0.174); birds from 

sub-colony B showed enrichment in δ
13C, suggesting some segregation of foraging 

habitat during the incubation period. There were also significant differences between 

males and females in both δ
13C and δ15N for RBC (δ13C: F1,39 = 4.2, P = 0.042; δ15N: 

F1,39 = 7.1, P = 0.011); females showed enrichment in both δ
13C and δ15N which 

suggests some sexual segregation in isotopic niche. No sub-colony*sex interaction was 

found in either δ13C or δ15N for RBC. 

The SIAR mixing model based on plasma, RBC and prey isotope values indicated that 

C. aper was the largest component in the diet of Cory’s shearwaters during the chick-

rearing and the incubation periods (40.3 and 41.9%, respectively) followed by T. 

picturatus (31.7 and 31.1%, respectively) and Histioteuthis sp. (28.0 and 27.0%, 

respectively). No significant differences were found in the proportions of the three prey 

items in the diet of Cory’s shearwaters estimated by the model based in plasma isotope 

values (hence representing the chick-rearing period) between sub-colonies, sexes and 

sub-colony*sex (factorial ANOVA: all P > 0.05). Moreover, there were no significant 

differences in the proportions of the three prey items in the diet estimated by the model 

based in RBC isotope values (which reflect the  incubation period) between sub-

colonies (F2,38 = 1.9, P = 0.166), and sub-colony*sex (F2,38 = 2.1, P = 0.140). However, 

significant differences were found in the proportions based in RBC isotope values 

between males and females for all prey items combined (F2,38 = 4.3, P = 0.020) or 
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independently (factorial ANOVA: all P < 0.01); females ingested more T. picturatus 

and Histioteuthis sp., and less C. aper than males. 

 

Figure 12. Stable isotope ratios of carbon (δ
13C) and nitrogen (δ15N) (means ± SD) in 

plasma and red blood cells (RBC) of Cory’s shearwaters Calonectris diomedea breeding 
in Corvo Island during the chick-rearing period, and prey species recorded in 
regurgitates. 

Body mass index, condition status and breeding success 

No significant differences were found in BMI between the individuals from the two 

sub-colonies (F1,37 = 3.5, P = 0.068) and there was no interaction of sub-colony*sex 

(F1,37 = 1.5, P = 0.222). However, males showed significantly greater BMI than females 

(F1,37 = 8.4, P = 0.006). There was no effect of sub-colony (F1,39 = 1.5, P = 0.221), sex 

(F1,39 = 3.2, P = 0.080) and no interaction of sub-colony*sex (F1,39 = 0.4, P = 0.543) on 

the haematocrit variation.  

Breeding parameters of tracked birds did not differ significantly between the two sub-

colonies at Corvo Island (Table 6). No significant differences were found in laying and 

hatching dates (Z = 0.5, P = 0.60; Z = -1.3, P = 0.19, respectively), although chicks 

from sub-colony A hatched on average two days before those from sub-colony B. The 
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linear chick growth rate did not differ between the two sub-colonies (T = -0.5, P = 0.60; 

Table 6). 

Table 6. Breeding parameters of Cory’s shearwaters Calonectris diomedea in the two 
studied sub-colonies from Corvo Island during the breeding period of 2010. Sample 
size, corresponding to the nests of GPS logged individuals, is shown in parenthesis. 

 Sub-colony A Sub-colony B 

Laying date 1 Jun ± 4.6 d (12) 1 Jun ± 6.8 d (10) 

Hatching date 22 Jul ± 3.7 d (13) 24 Jul ± 4.4 d (10) 

Fledging success (%) 71.4 (14) 80.0 (10) 

Chick growth (g day-1) 20.4 ± 3.4 (14) 21.3 ± 5.2 (10) 

 

Discussion 

We used Cory’s shearwater as a model wide-ranging higher predator to compare 

foraging distribution and trophic ecology between two sub-colonies during the breeding 

season on a North Atlantic island. The studied sub-colonies are much closer to each 

other (2 km) than the mean foraging range of the species (in this study 62 and 347 km 

for short and long foraging trips, respectively). We therefore expected a large overlap in 

foraging areas and in feeding ecology. Although no differences were found during long 

trips, our results show a marked spatial foraging segregation among birds from the two 

sub-colonies for short trips during the chick-rearing period. We found that geographic 

breeding location influenced the travelling direction of birds during short foraging trips 

resulting in colony-specific foraging areas, probably in an attempt to reduce intra-

specific competition as predicted by Cairns (1989). Although differences were found in 

the habitat visited by birds from both sub-colonies during short trips, no differences 

were found in the habitat exploited, suggesting that birds were feeding in patches of 

similar habitat. Consequently, no apparent differences were detected in the feeding 

ecology of birds during the chick-rearing period, but we observed differences in δ
13C of 

RBC indicating a potential dietary segregation during the incubation period. However, 

these differences apparently had no effect on the breeding success and on the health 

condition status of birds from both sub-colonies. Some sex-related differences were also 

found, mainly in regards to the feeding ecology. 
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Although birds from Corvo typically use a dual foraging strategy, the prevalent 

unimodal foraging strategy during the present study contrasted with the bimodal 

strategy observed for this population during the chick-rearing period in 2004 and 2007 

(Magalhães et al. 2008, Paiva, Geraldes, Ramírez, Meirinho, et al. 2010a). As many 

other seabird species, Cory’s shearwaters use a dual foraging strategy when local 

resources are poor such as oceanic environments (but see Phillips et al. 2009), although 

they increase the number of short trips during the early chick-rearing period. Unimodal 

or bimodal distributions in the length and duration of the foraging trips may be 

determined by distance from the breeding colony to productive areas (Granadeiro et al. 

1998, Navarro & González-Solís 2009, Paiva, Geraldes, Ramírez, Garthe, et al. 2010), 

but an unimodal strategy may also reflect a higher diversity of foraging areas available 

in waters surrounding the colony simply because of prey patchiness (Phillips, 

Wakefield, et al. 2009). Thus, the unimodal strategy observed suggests that the 2010 

chick-rearing period was a profitable year to rely on local food resources at Corvo. 

Moreover, growth rates of chicks during this study (mean 20.8 g day-1) were greater 

than those previously recorded in Corvo during the early chick-rearing period (14.2 g 

day-1; Magalhães et al. 2008). 

Kernel and FPT analyses showed that birds from both sub-colonies clearly selected 

distinct areas to forage during short trips, but not during long trips. This was somehow 

expected because if segregation arises due to density-dependent competition as 

predicted by Cairns (1989), spatial segregation would be more likely close to the 

colonies (i.e. at a smaller scale) than further afield (i.e. at a larger scale). Recently, some 

studies demonstrated partial or complete segregation in foraging ecology for seabird 

apex predator species, such as black-browed albatrosses Thalassarche melanophris 

(Huin 2002, Granadeiro et al. 2011), cape gannets Morus capensis (Grémillet et al. 

2004), hawaiian petrels Pterodroma sandwichensis (Wiley et al. 2012) and streaked 

shearwaters Calonectris leucomelas (Yamamoto et al. 2011). However, the potential 

overlap in foraging areas of such studies is small, particularly during short trips, because 

the colonies are separated by tens or hundreds of kilometres. Consequently, there would 

be little gain for birds to travel further and forage in areas already occupied by a more 

efficient group of conspecifics from closer colonies (Huin 2002). Navarro et al. (2009) 

detected partial foraging segregation between the two subspecies of Cory’s shearwater, 

C. d. diomedea and C. d. borealis sympatrically breeding in a Mediterranean colony 
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(however see Gómez-Díaz et al. 2009). To our knowledge, only Wanless and Harris 

(1993) and Masello et al. (2010) addressed our main question and, in accordance to 

Cairns (1989) prediction, found partial and/or complete spatial segregation in birds from 

very close colonies (only 2 – 2.5 km apart). However, these authors studied Blue-eyed 

Shags (Wanless & Harris 1993) and three different penguin species (Masello et al. 

2010), which are species potentially more limited in foraging range than Cory’s 

shearwaters. Wanless and Harris (1993) attributed inter-colony differences in foraging 

and diet during the breeding season to highly localized differences in feeding 

conditions, given the extremely limited foraging range of most individuals (ca. 1 km 

from the colony). On the other hand, Masello et al. (2010) attributed foraging 

segregation to intra-specific competition, but also to an effort to reduce predation risk 

by fur seals Arctocephalus australis that were present in the island. Our observations 

that birds from the two colonies travelled in different directions to forage during short 

trips suggest colony-specific foraging areas determined by breeding locations. However, 

this was not verified during longer trips, as no significant differences were found in the 

direction of foraging trips adopted by birds from both sub-colonies. According to 

Robson et al. (2004), a simple explanation for the directional persistence within 

breeding sites might be that individuals constantly initiate a foraging trip on a bearing 

consistent with the general orientation of the site. Although Robson et al. (2004) studied 

fur seals Callorhinus ursinus, our results corroborated this hypothesis in a wide-ranging 

seabird species during short foraging trips, despite the small area of Corvo Island and 

the low altitude of the two studied breeding sites. However, there are scattered birds 

breeding along the cliffs of Corvo Island, increasing density-dependent competition for 

food around the colony, which could increase spatial segregation during short foraging 

trips among individuals according to their geographic breeding location. Although the 

potential foraging areas fully overlapped, our results demonstrated that birds preferred 

adjacent areas to their own sub-colony rather than the neighbouring sub-colony during 

short trips resulting in colony-specific foraging areas, possibly in an attempt to reduce 

intra-specific competition as predicted by Cairns (1989). 

The oceanographic habitat used by study birds was significantly different between birds 

from the two sub-colonies during short trips. Surprisingly, however, differences 

detected by kernel analysis (explored areas) were not detected by FPT analysis (ARS 

zones), which corresponds to an environment where the probability of prey capture 
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should be higher. Therefore, these results suggest that birds from both sub-colonies 

explored various wide areas for food but concentrated their feeding activity in small 

concentrated patches with similar oceanographic characteristics. Top predators appear 

to forage at locations that usually congregate potential prey due to specific physical 

processes, such as oceanographic fronts, currents, eddies, seamounts or upwelling zones 

(Bost et al. 2009), which ultimately could have similar characteristics, especially at a 

smaller scale where short trips occur (Wakefield et al. 2009). During long trips no 

differences were found either in the habitat of visited areas or ARS zones (although 

differences were found in Chl a at ARS zones). Cory’s shearwaters exploited vast 

offshore environments, apparently within frontal and seamount areas (Paiva, Geraldes, 

Ramírez, Meirinho, et al. 2010a), but constantly headed north on their long foraging 

trips. This pattern seems to show little inter-annual variation, as it was also reported by 

other studies in 2004 and 2007 for the same island (Magalhães et al. 2008, Paiva, 

Geraldes, Ramírez, Meirinho, et al. 2010b). 

No differences were detected in the diet and stable isotopes ratios of plasma between the 

two sub-colonies. These results therefore corroborated the lack of differences in the 

exploited habitat type at ARS zones during both short and long foraging trips. On the 

other hand, differences in δ
13C between sub-colonies were found in RBC, suggesting a 

potential segregation of foraging habitats during the incubation period. Interestingly, the 

apparent lower energy requirement during the incubation period suggests that this should be the 

period with a minimal potential for interference competition, in opposition to the early chick-

rearing period. Differences were also detected in feeding ecology between males and 

females during the incubation period. Females showed enrichment in both δ13C and 

δ
15N and ingested significantly more T. picturatus and Histioteuthis sp. and less C. aper 

(estimated by SIAR) than males. Preference by prey from a higher trophic level during 

incubation may be related with specific nutrient requirements to compensate egg-laying 

that could potentially create temporary sex differences in feeding ecology (Lewis et al. 

2002, Phillips et al. 2004) and might not be driven by intra-specific competition. 

We found no evidence that foraging segregation between birds from both sub-colonies 

affected BMI, health condition status of individual birds, breeding success and chick 

growth. Shearwaters present a fixed investment, and adults may increase foraging effort 

and/or reduce parental investment at the expense of chick condition to maintain their 

body condition (Navarro & González-Solís 2007). In a food shortage scenario, 
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differences in foraging segregation and higher intra-specific competition for food could 

potentially lead to differences in the breeding success between birds from the two sub-

colonies. 

In summary, we observed that Cory’s shearwaters breeding in very close sub-colonies 

in Corvo showed a high spatial foraging segregation during the chick-rearing period for 

short trips, but not for long excursions; and no differences were found between males 

and females. Interestingly, our results suggest that birds from both sub-colonies visited 

areas with different oceanographic conditions during short trips, but concentrated their 

feeding activity in patches of similar habitat. Consequently, individuals from both sub-

colonies did not display dietary segregation during the early chick-rearing period. 

However, our results suggest a potential segregation of foraging habitats between sub-

colonies during the incubation period, but further studies should be conducted to 

validate this hypothesis. 
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Abstract 

The Van Valen (1965) ‘niche variation hypothesis’ postulates that populations with 

wider niches are more variable than populations with narrower niches. We determine 

whether variations in foraging spatial distribution at sea, trophic niche and consistency 

in foraging niche of a pelagic seabird species are associated in order to test this 

hypothesis and identify patterns of consistency in the foraging niche. The extent of such 

relationships was assessed using a wide-ranging apex predator, the Cory’s shearwaters 

Calonectris diomedea, as a model marine species, along a three year study (2010-2012), 

during both the pre-laying and chick-rearing periods. We used individual movement 

data and stable isotope data, analysed using recent metrics based in a Bayesian 

framework, of 69 adults breeding on a small neritic island in the North Atlantic. Results 

confirm that trophic niche expansion arise via increased variation in spatial distribution 

at sea among individuals, providing support for ‘niche variation hypothesis’ in the 

context of foraging ecology. Moreover, we found that short-term consistency in the 

foraging niche was higher and persistent during periods when the population showed an 

intermediate trophic niche width, and absent when trophic niche was both extremely 

small and extremely large. These results suggest that foraging consistency is an 

important characteristic of this population and potentially of pelagic seabirds in general, 

and should be important to understand the dynamics of foraging ecology and may 

reduce intra-specific competition during periods with typical average availability in 

food resources.  

Key-words: foraging ecology, GPS tracking, individual specialization, niche variation, 

stable isotopes 

 

Introduction 

The ecological niche of a population is a fundamental concept in ecology, but there are 

many niche concepts, each of which emphasizes a different aspect of a species’ 

ecological characteristics (see Newsome et al. 2007 for a review). Concurrently, 

foraging niche of a population is still poorly understudied, particularly concerning 

pelagic seabirds. Classical tools (e.g. conventional dietary analyses and census at sea) 

have been widely used to describe the ecological niche of pelagic seabirds but an 
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accurate assessment of spatial distribution at sea and foraging ecology of seabirds only 

recently was possible through the use of recent technology such as tracking devices and 

stable isotope analyses (SIA). According to the ‘niche variation hypothesis’ (Van Valen 

1965) populations with wider niches are more variable than populations with narrower 

niches. Some studies focusing on morphology or size have failed to support the above 

theory because they did not found any positive correlation between intra-specific trait 

variation and population niche width (e.g. Soulé and Stewart 1970; Meiri et al. 2005). 

However, focusing on foraging ecology, there is a repeated tendency for more generalist 

populations to exhibit higher niche variation than more specialized populations due to a 

higher degree of diet variation (Bolnick et al. 2007). Moreover, diet variation within a 

single population can arise via foraging plasticity among its individuals, resulting in 

resource use diversity (Svanbäck & Bolnick 2007). Therefore, in accordance with the 

classic ‘niche variation hypothesis’ we should expect that a higher variation in the 

foraging spatial distribution among individuals from the same population would lead to 

a wider trophic niche of such population. This assumption must be validated and to our 

knowledge no studies have shown relationships between the areas explored by seabird 

populations and trophic niche width in the marine environment. Recent studies 

demonstrated relationships between geographic locations and stable isotope signatures 

for marine predators (e.g. Cherel and Hobson 2007, Phillips et al. 2009, Jaeger et al. 

2010), thus we expect to evaluate whether this assumption is true. Moreover, foraging 

strategies of individual birds can differ substantially and individuals of the same species 

may use different resources, resulting in the exploitation of different niches, which 

could be consistent over time (see Bolnick et al. 2003 for a review). Accordingly, there 

has been a recent increase in studies of individual consistency in the foraging niche 

within populations (e.g. Bearhop et al. 2006; Votier et al. 2010), suggesting that some 

individuals have a narrow foraging niche, helping to reduce intra-specific competition 

(Svanbäck & Bolnick 2007, Matich et al. 2010, Ceia et al. 2012). However, to our 

knowledge inter-annual and seasonal variation in the consistency of foraging niche was 

not previously evaluated, and mechanisms that could drive such trait are not well 

understood. 

During the breeding season, Cory’s shearwaters Calonectris diomedea borealis are 

central-place foragers capable of traveling distances up to 5500 km (Magalhães et al. 

2008) in a single foraging trip. Such long trips, however, are more expected in oceanic 
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(i.e. lower productive regions) than in neritic (i.e. higher productive regions) areas, 

because of prey patchiness and prey distribution along the neritic-oceanic marine 

productivity gradient (Paiva, Geraldes, Ramírez, Meirinho, et al. 2010a). Similarly, 

longer trips are relatively more frequent during the early stages of the breeding season, 

pre-laying and incubation periods, than during later stages, the chick-rearing period, 

when birds must forage within a shorter range in order to provide food for their chicks 

(Paiva, Geraldes, Ramírez, Meirinho, et al. 2010a). Given their wide range in foraging 

patterns according to the breeding stage, prey abundances and oceanographic conditions 

(Paiva et al. 2013), Cory’s shearwaters are a good model species to study spatial 

variations at sea and their relationships with trophic niche width. Moreover, Cory’s 

shearwaters are pelagic species feeding mainly on fish and cephalopods (Xavier et al. 

2011, Neves et al. 2012), which enable to evaluate variation in feeding ecology of 

individual birds according to spatial or temporal changes in the abundance of these main 

food sources (Rutz & Bijlsma 2006, Neves et al. 2012), and, consequently, investigate 

variation on consistency in the foraging niche within and among individuals. 

In this study, we used individual movement data (GPS tracking) and isotopic signature 

(δ13C and δ15N) from blood of Cory’s shearwaters, separated in plasma and cells, to 

detect spatio-temporal variations in the foraging niche of individuals among years and 

between periods with markedly different foraging patterns. We test for relationships 

among spatial distribution at sea, trophic niche width and short-term consistency in the 

foraging niche along three years (2010-2012), during both the pre-laying and chick-

rearing periods, thus totalizing six sampling periods. Specifically, we hypothesized that 

variability in the foraging ecology within a population of a pelagic marine species drive 

(1) spatial distribution at sea, (2) trophic niche width, and (3) short-term consistency in 

the foraging niche of individuals. Our goal was to measure differences and patterns 

associated with foraging ecology and population dynamics to determine whether 

variations in spatial distribution at sea, trophic niche and short-term consistency in 

foraging niche are associated.  

Materials and methods  

Fieldwork was conducted in Berlenga Island, Portugal (39°24’N, 009°30’W), during the 

pre-laying (April-May) and chick-rearing (August-September) periods of Cory’s 

shearwaters along 2010, 2011 and 2012. A population of about 800 breeding pairs of 
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Cory’s shearwaters is estimated to breed in Berlenga Island (Lecoq et al. 2011), a small 

neritic island with ca. 78.8 ha and 11 km in the western coast of Portugal. This island is 

situated within a large continental shelf characterized by shallow waters and high 

marine productivity due to the coastal upwelling that lasts from April to September 

(Sousa et al. 2008). 

Sample collection 

A total of 69 breeding adults were sampled along 2010, 2011 and 2012 (pre-laying 

period: 10, 8 and 12, respectively; chick-rearing period: 19, 11 and 9, respectively). A 

GPS logger was deployed on each bird and removed after 1 to 18 foraging trips at sea 

(details of the devices below). In order to examine the relationship between foraging 

trips and trophic ecology, blood samples (~0.5-1 ml from the tarsal vein) were collected 

from each bird on recapture (and on capture and recapture during the 2010 chick-rearing 

period) and, within 2-3 h, separated into plasma and red blood cells (RBC) using a 

centrifuge (15 min at 3000 rpm). Hematocrit was recorded as the proportion of RBC in 

total blood volume and samples were then stored frozen until preparation for SIA. 

Captured birds were ringed, wing and tarsus length were measured, and weighed both 

on capture and recapture. In addition, a total of 65 nests including the nests of all 

sampled birds were monitored twice, in May and late September, to determine laying 

and fledging success, respectively. Deployment or retrieval of devices and collection of 

samples took 10-15 min and birds were returned immediately to their nest.  

Tracking data collection 

Each individual bird was fitted with a GPS logger (CatTraq GT-120, Perthold 

Engineering LLC). The plastic case was removed and replaced by a 7 cm long thermo-

retractile rubber sleeve reducing the total weight to 17 g. This corresponded to 1.7-2.6% 

of studied individuals’ mass, which is below the recommended 3% threshold reported to 

have no deleterious effects on seabird species during short-term (Phillips et al. 2003; but 

see Vandenabeele et al. 2012), including Cory’s shearwaters (Igual et al. 2005). The 

GPS loggers were attached to feathers in the mantle region with Tesa® tape and set to 

record position (median error of < 10m) every 5 min. Birds were tracked continuously 

from 1 to 19 days (10.3 ± 4.7 days). 
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Stable isotope analyses (SIA) 

Stable isotope analyses of carbon and nitrogen were performed to estimate and compare 

trophic niche width among years and between periods (Bearhop et al. 2004, Newsome 

et al. 2007, Jackson et al. 2011). Carbon stable isotope value (δ13C) mainly reflects the 

foraging habitat of consumers, while nitrogen stable isotope value (δ15N) is mainly used 

to define trophic position of consumers. Plasma and RBC retain information on diet 

from a few days prior to sample collection (hence plasma reflects choices made during 

tracking), up to the previous 3-4 weeks, respectively. Because of the differing turnover 

rates of plasma and RBC we were able to investigate the effect of short-term 

consistency in the foraging ecology (Votier et al. 2010, Ceia et al. 2012). We analysed 

δ
13C (‰) and δ15N (‰) in plasma and RBC from each breeding adult sampled and 

tracked. For specifications how the samples were prepared for SIA and nitrogen and 

carbon isotope ratios were determined see Chapter 2. 

Breeding success and bird condition status 

We determined laying success (number of eggs laid / number of nests) and breeding 

success (number of fledged birds / number of eggs laid) of Cory’s shearwaters, as it 

should be a good proxy of breeding conditions among years including the accessibility 

of main food resources. The standard residuals of the relationship between body mass 

(mean between capture and recapture) and tarsus length (F1,67 = 104.1, P < 0.001, r = 

0.598) were used to estimate the body mass index (BMI) of all sampled birds, an index 

primarily reflecting body lipid reserves (Sánchez-Guzmán et al. 2004), to evaluate 

whether breeding adults were in a similar health state. In addition, the haematocrit was 

calculated, which in conjunction with other physiological indicators such as body mass 

index, can be a useful indicator of the current health condition status of the individuals 

(see Fair et al. 2007 for a review).  

Data analysis 

GPS data were separated into individual foraging trips by calculating the time from 

when the birds departed the colony until their return. GPS locations at the colony were 

excluded from analyses. Then, the relocations (between consecutive tracking points) 

were filtered on running flight speed; according with Louzao et al. (2009) we only used 

GPS relocations which exclusively represented the areas where Cory’s shearwaters were 
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searching for food (10 – 15 km h-1) and active feeding (2 - 10 km h-1). Finally, a 

distance-to-colony filter of 2 km was applied, to remove relocations while flying over 

the colony before landing.  

The nonparametric fixed kernel density (FKD) estimator was used to calculate the 25, 

50 and 75% density contour areas (km2), of each bird using functions (“kernelUD”, 

“getvolumeUD”, “ getverticeshr” and “kernel.area”) of the adehabitat package (h = 

0.18, grid = 500; Calenge 2006) under R 2.15.2 (R Development Core Team 2011). The 

intra-specific overlap in the estimated foraging range among individuals within each 

period was assessed following Fieberg and Kochanny (2005). The 25, 50 and 75% FKD 

overlap were calculated for each bird using the function “kerneloverlap” of the 

adehabitat package (meth = “VI”; Calenge 2006) under R 2.15.2. We also determined 

the maximum distance from colony (km) and geographic position at maximum distance 

from the colony (latitude and longitude) of each bird to investigate the effect of latitude, 

longitude and foraging range on foraging niche.  

To analyse stable isotope data in the context of isotopic niche (i.e. trophic niche) among 

the periods, we adopted the recent metrics based in a Bayesian framework that allows 

robust comparison to be made among data sets comprising different sample sizes 

(Stable Isotope Bayesian Ellipses in R: SIBER; Jackson et al. 2011; but see Syvaranta et 

al. 2013). The standard ellipse area corrected for small sample sizes (SEAc, an ellipse 

that has 95% probability of containing a subsequently sampled datum) was adopted to 

compare among years and between periods (see Jackson et al. 2011 for more details). 

We used the computational code to calculate the metrics from SIBER using functions 

(“standard.ellipse” and “convexhull”) implemented in the package SIAR (stable isotope 

analyses in R: SIAR; Parnell et al. 2010) under R 2.15.2. 

All foraging variables and SIA results were compared among periods using a Kruskal-

Wallis test. To test for homogeneity of variances in both δ13C and δ15N, which provides 

a measure of trophic niche width (see Bearhop et al. 2004 for more datails), we used a 

Levene’s Test. Similarly, a Levene’s Test was used to test for the assumption of equal 

variances in foraging variables as a measure of variation in foraging patterns. We only 

used individuals wherein we have collected the essential information (tracking data and 

SIA simultaneously) to achieve our goals focusing on the variability at individual level 

and not at the population level. Thus, although the relatively small sample size in each 
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sampling period could not provide reliable estimates of total home-range area and 

trophic niche width of the whole population in each period (see Syvaranta et al. 2013; 

Soanes et al. 2013), it should have a minor influence on the assessment of variability in 

trophic niche and spatial distribution at sea on the studied individuals in different 

periods (see Layman et al. 2007), and test whether they are associated. 

To obtain an estimate of short-term (within about one month) consistency in carbon 

source and trophic level, we regressed stable isotope ratios in plasma on those in RBC 

(Votier et al. 2010, Ceia et al. 2012). Integration of prey isotopes into blood components 

is a continuous, dynamic process, and the analyses of short-term consistency were 

performed using the same blood sample, separated into plasma and RBC, which could 

lead to a temporal overlap in the synthesis of these tissues. To evaluate how the same 

blood sample could affect short-term consistency (i.e. due to possible high overlap) we 

collected samples in capture and recapture during the 2010 chick-rearing period and 

then we regressed stable isotope ratios in plasma from recapture on those in RBC from 

capture, in an attempt to reduce overlap between the two blood components. Because 

the results did not show apparent differences, we only took blood samples once at each 

period to reduce stress on birds. Based on these results we were able to compare short-

term consistency in foraging niche (i.e. shifts in trophic level and carbon source) among 

periods and its relationship with foraging patterns at sea and trophic niche width. 

All data were tested for normality and homoscedasticity; foraging area (25, 50 and 75 

FKD) and maximum distance from the colony were log10 transformed to assess 

relationships among the six studied periods, and proportions were arcsine transformed. 

When transformation did not normalize the data, non-parametric tests were used. Values 

are presented as means ± SD.  

Results 

Spatial distribution at sea 

From 2010 to 2012 we obtained a total of 394 foraging trips from 69 individuals. The 

longest trip recorded in terms of duration was 19 days during the 2012 pre-laying period 

and the farthest trip distanced 3236 km from the colony (trip length = 7135 km) during 

the 2011 pre-laying period (Fig. 13).  
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Figure 13. GPS locations showing spatial distribution during foraging trips of Cory’s 
shearwaters (Calonectris diomedea) breeding in Berlenga Island during the pre-laying 
and chick-rearing periods in 2010, 2011 and 2012. The dashed lines connecting the mid-
Atlantic Ocean to Berlenga represents part of long foraging trips that were lost due to 
battery loss. 

Although birds explored a larger area (25, 50 and 75% FKD) during the pre-laying 

period than during the chick-rearing period in both 2011 and 2012 (Table 7), differences 

among all periods were only significant at 75% FKD (Kruskal-Wallis test: H5,69 = 12.2, 

P = 0.033). However, highly significant differences in the homogeneity of variance for 

areas explored among all periods at 25, 50 and 75% FKD (Levene's test: all P < 0.01) 

indicates wide range of variances in the foraging area among the six periods, with a 

particularly high variance for the 2011 pre-laying period (Table 7). Differences were 

also found in the overlap in the estimated foraging areas at 25, 50 and 75% FKD among 
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all periods (Kruskal-Wallis test: all P < 0.01); the overlap among birds within each 

period was greater during the chick-rearing than in the pre-laying period, especially in 

2012. Overall, these differences were related with the type of habitat explored (i.e. 

neritic vs. oceanic), as revealed by highly significant differences in foraging trips at 

maximum distance from the colony among all periods in longitude, but not in latitude 

(Table 7). 

Trophic niche width 

The δ13C and δ15N of Cory’s shearwaters’ plasma, which provides an indication of 

recent meals (i.e. during the tracking period), differed significantly among all periods 

(Kruskal-Wallis test: all P < 0.01; Table 8). However, we highlight that Cory’s 

shearwaters exhibited substantial differences among all periods in the homogeneity of 

variances for both δ13C and δ15N of plasma (Levene's Test: all P < 0.001), which 

provides a measure of trophic niche width (see Bearhop et al. 2004). A wide range of 

variances in both δ13C and δ15N of plasma and RBC suggest a variable trophic niche 

width among periods. Specifically, SEAc index indicates a greater isotopic niche area 

during the 2011 pre-laying period and a lower isotopic niche area in the 2012 chick-

rearing period (Fig. 14). 

Overall, SIA results matched those of foraging parameters: along the six studied periods 

we found significant relationships between the trophic niche width and spatial 

distribution of birds; specifically, SEAc index based on plasma was positive correlated 

with 50% FKD area (F1,4 = 21.9, P = 0.009, r2 = 0.846), 75% FKD area (F1,4 = 20.6, P = 

0.010, r2 = 0.838) and maximum distance from colony (F1,4 = 25.7, P = 0.007, r2 = 

0.866). Moreover, positive correlations were found between SEAc and 25, 50 and 75% 

FKD standard deviations (all P < 0.05) with relevance to 50% FKD (F1,4 = 144.7, P < 

0.001, r2 = 0.973, Fig. 15), indicating that a higher variation in the area explored among 

individuals led to trophic niche expansion of the population. 



Chapter 3 | 82 
 

Table 7. Comparison of foraging parameters of Cory’s shearwaters (Calonectris diomedea) breeding in Berlenga Island during the pre-laying 
and chick-rearing periods in 2010, 2011 and 2012. Values are means ± SD. PL = Pre-laying period, CR = chick rearing period. Significant results 
are in bold. 

h=0.18 2010 2011 2012 Kruskal-Wallis test Levene's test 

 PL (n=10) CR (n=19) PL (n=8) CR (n=11) PL (n=12) CR (n=9) H(5,69) P F(5,63) P 

Mean 25% FKD (km2) 2189 ± 

2275 

2414 ± 

1450 

2424 ± 

2136 

1759 ± 716 1914 ± 

2161 

1379 ± 

685 

7.4 0.19 3.6 0.007 

Mean 50% FKD (km2)  6331 ± 

6565 

6898 ± 

4536 

11062 ± 

10652 

4650 ± 

1905 

6031 ± 

7653 

3981 ± 

2877 

9.7 0.08 5.4 <0.001 

Mean 75% FKD (km2)  15830 ± 

16722 

15724 ± 

11331 

39882 ± 

46963 

9898 ± 

4080 

13433 ± 

18554 

8708 ± 

6754 

12.2 0.033 4.6 0.001 

25% FKD overlap (%) 4.5 ± 3.2 5.3 ± 2.3 3.2 ± 2.5 3.7 ± 2.2 3.7 ± 2.8 9.7 ± 3.3 18.8 0.002 1.2 0.34 

50% FKD overlap (%) 13.3 ± 7.5 13.3 ± 3.7 9.8 ± 6.1 12.4 ± 5.8 11.7 ± 7.6 24.7 ± 4.8 22.2 <0.001 3.5 0.008 

75% FKD overlap (%) 22.2 ± 11.5 22.2 ± 5.2 15.5 ± 9.0 26.2 ± 10.5 22.0 ± 13.3 41.8 ± 6.3 27.2 <0.001 3.7 0.006 

Mean max distance 

from colony (km) 

341.4 ± 

380.7 

455.9 ± 

478.8 

1510.2 ± 

1233.7 

202.4 ± 

136.0 

423.2 ± 

836.4 

147.2 ± 

86.2 

16.0 0.007 10.2 <0.001 

Latitude (º at max 

distance) 

38.3 ± 1.5 40.0 ± 2.4 39.9 ± 2.3 40.3 ± 2.0 39.8 ± 4.0 38.3 ± 1.1 8.9 0.11 0.9 0.47 

Longitude (º at max 

distance) 

-12.4 ± 4.6 -13.7 ± 5.9 -26.8 ± 

15.3 

-9.1 ± 0.6 -13.6 ± 9.7 -9.4 ± 0.3 22.1 <0.001 10.8 <0.001 
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Table 8. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in plasma and red 
blood cells (RBC) of Cory’s shearwaters (Calonectris diomedea) breeding in Berlenga 
Island during the pre-laying (PL) and chick-rearing (CR) periods in 2010, 2011 and 
2012 . The area of the standard ellipse (SEAc) and the layman metric of convex hull 
area (TA) are also shown (see Jackson et al. 2011 for more details on these metrics of 
isotopic niche width). Values are means ± SD. Significant results are in bold. 

 2010 2011 2012 Kruskal-Wallis test Levene's test 
 PL 

(n=10) 
CR 

(n=19) 
PL 

(n=8) 
CR 

(n=11) 
PL 

(n=12) 
CR 

(n=9) 
H(5,69) P F(5,63) P 

Plasma           
  δ13C (‰) -19.5 ± 

1.2 
-18.1 ± 
0.6 

-18.9 
± 0.8 

-18.2 ± 
0.3 

-19.2 ± 
0.4 

-18.4 
± 0.2 

30.3 <0.001 13.3 <0.001 

  δ15N (‰) 13.8 ± 
0.8 

13.4 ± 
0.6 

13.6 
± 1.4 

14.3 ± 
0.4 

13.6 ± 
1.1 

12.8 
± 0.2 

17.3 0.004 8.1 <0.001 

  SEAc 1.37 0.85 2.34 0.26 1.50 0.12     
  TA 1.95 2.25 3.44 0.41 2.57 0.20     

RBC           
  δ13C (‰) -18.3 ± 

0.7 
-18.8 ± 
0.5 

-18.5 
± 0.6 

-18.5 ± 
0.2 

-18.5 ± 
0.4 

-18.6 
± 0.2 

5.7 0.34 5.3 <0.001 

  δ15N (‰) 12.6 ± 
0.8 

12.8 ± 
0.5 

12.5 
± 0.9 

13.5 ± 
0.2 

13.0 ± 
0.8 

12.4 
± 0.2 

20.5 0.001 4.1 0.003 

  SEAc 1.11 0.46 1.48 0.13 0.71 0.16     
  TA 1.88 0.46 2.25 0.26 1.59 0.23     

 

 

Figure 14. Isotopic niche area based on stable isotope ratios (δ13C and δ15N) in plasma 
of Cory’s shearwaters (Calonectris diomedea) breeding in Berlenga Island during the 
pre-laying and chick-rearing periods in 2010 (black), 2011(red) and 2012 (green). The 
area of the standard ellipses (SEAc, 95% credible interval) were represented by the solid 
bold lines (ellipses) and the layman metric of convex hull area (TA) by black dotted 
lines (see Jackson et al. 2011 for more details on these metrics of isotopic niche width). 
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Figure 15. Relationship between 50% FKD (fixed kernel density, km2) standard 
deviation and area of the standard ellipse (SEAc) based on plasma for the six sampling 
periods of Cory’s shearwaters (Calonectris diomedea) breeding in Berlenga Island. 

Short-term consistency in the foraging niche 

Dissimilar patterns in short-term consistency in the foraging niche of Cory’s 

shearwaters were detected among years and between periods. Although, significant 

positive relationships were found in δ15N and in δ13C between RBC and plasma of 

individual adults during both the pre-laying and chick-rearing periods (Fig. 16), 

indicating short-term foraging consistency during specific periods where relationships 

were detected, some differences were detected among the six sampling periods. 

Specifically, significant positive relationships were found in δ15N and in δ13C during the 

pre-laying period in 2010 and 2012 (except for δ
13C), but not in 2011. On the other 

hand, during the chick-rearing period these relationships were not detected in 2012 for 

both δ15N and δ13C.  
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Figure 16. Relationships in δ15N (upper panel) and δ13C (lower panel) between red 
blood cells (RBC) and plasma of Cory’s shearwaters (Calonectris diomedea) breeding 
in Berlenga Island during the pre-laying (left panel) and chick-rearing (right panel) 
periods in 2010, 2011 and 2012. 

Overall, these results suggest a principally high short-term consistency in the foraging 

niche within the population, but with exceptions such as those during the 2011 pre-

laying and 2012 chick-rearing periods. Interestingly, the lack of consistency in these 

two periods matched the highest and lowest values of isotopic niche area, spatial 

distribution at sea and overlap in the estimated foraging range. 

Body mass index, condition status and breeding success 

No significant differences were detected in BMI and haematocrit values of Cory’s 

shearwaters among the six periods (Table 9). However, laying success and breeding 

success of Cory’s shearwaters on Berlenga showed significant differences among years 

(Table 9), which were mostly attributed to a higher laying and breeding success in 2012 

than in the other two years.  
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Table 9. Comparison of body mass index (BMI) and haematocrit of Cory’s shearwaters 
(Calonectris diomedea) breeding in Berlenga Island during the pre-laying and chick-
rearing periods in 2010, 2011 and 2012 and inter-annual comparison of laying success 
and breeding success. Values are means ± SD (sample size). 

 2010 2011 2012 Statistical 

comparison  PL CR PL CR PL CR 

BMI  -0.25 ± 

1.03 (10) 

-0.08 ± 

1.12 (19) 

0.36 ± 

0.82 (8) 

-0.61 ± 

0.91 (11) 

0.46 ± 

0.45 (12) 

0.26 ± 

1.15 (9) 

F(5,63) = 2.0 

P = 0.10 

Hematocrit 0.45 ± 

0.16 (10) 

0.49 ± 

0.11 (19) 

0.49 ± 

0.07 (8) 

0.49 ± 

0.05 (11) 

0.50 ± 

0.09 (12) 

0.48 ± 

0.04 (9) 

F(5,63) = 0.3 

P = 0.91 

Laying 

success (%) 

47.7 (65) 49.2 (65) 80.0 (65) X2
(2) = 17.9 

P < 0.001 

Breeding 

success (%) 

77.4 (31) 50.0 (32) 96.2 (52) X2
(2)

 = 33.1 

P < 0.001 

 

Discussion 

Our results provide evidence that an increased variation in the foraging patterns of 

pelagic seabird species, namely in the spatial distribution at sea, can lead to trophic 

niche expansion (Fig. 15) supporting the ‘niche variation hypothesis’ (Van Valen 1965). 

Moreover, our findings suggest that short-term consistency in the foraging niche of 

Cory’s shearwaters, and possibly related pelagic species, is an intrinsic trait affecting 

the foraging ecology of the population that could disappear due to sporadic and 

extraordinary extrinsic factors (e.g. variability in available food resources). 

During the present study, Cory’s shearwaters presented a great foraging plasticity 

among periods, particularly between pre-laying and chick-rearing periods, as expected 

and demonstrated before in other studies (Navarro et al. 2007, Paiva, Geraldes, 

Ramírez, Meirinho, et al. 2010a). However, the variability in foraging patterns also 

varied within periods and was greater in the 2011 pre-laying period and minor in the 

2012 chick-rearing period. Interestingly, among other very long trips, we recorded an 

extraordinary trip that distanced 3236 km from the colony in the 2011 pre-laying period. 

Such long trips are expected from populations breeding in oceanic islands (e.g. 

Magalhães et al. (2008) documented a mean maximum distance from the colony of 

1570 km during long trips of birds breeding in the eastern Azores, North Atlantic), but 
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to our knowledge this was the Cory’s shearwaters’ farthest trip ever recorded during the 

breeding season, and particularly relevant because this is a neritic environment. The 

dramatic variation in the distribution and foraging behaviour of Cory’s shearwaters 

during the 2011 pre-laying period (in relation to the other studied periods) could be 

derived to low abundance of their pelagic fish prey along the Portuguese neritic system 

(Paiva et al. 2013). 

According to our expectations, our results showed that a wide-ranging foraging area led 

to a wider trophic niche of this pelagic seabird population. Accordingly, when birds 

foraged farther from the colony the trophic niche also tended to expand as suggested by 

the positive significant relationship between maximum distance from colony and SEAc. 

However, we highlight the strong relationship of variation in the foraging area among 

individuals with their trophic niche along the six periods, which is less influenced than 

previous parameters by sample size; low standard deviations values in the area explored 

(25, 50 and 75% FKD) strongly suggest more even distribution of trophic niches (SEAc 

values). These results are in line with community-wide metrics of trophic structure 

described by Layman et al. (2007), that relate wider trophic niche occupied to a greater 

amount of trophic diversity among individuals. For instance, Bolnick et al. (2007) 

confirmed across a diverse set of taxa, that more generalized populations also tend to be 

more ecologically heterogeneous due to higher diet variation than more specialized 

populations, in accordance to Van Valen (1965) hypothesis. However, our study 

suggests that a given population with more variability in spatial distribution at sea 

among its members show wider trophic niche than the same population with less 

variability in foraging areas, corroborating that foraging niche variation apparently is a 

widespread phenomenon within the same population, which is related with their diet, 

and ultimately with variation in foraging areas among individuals, supporting Van 

Valen (1965) hypothesis. 

Niche variation among individuals may have several implications affecting whole 

population dynamics (Bolnick et al. 2011), including the individual specialization in the 

specific resources used (Svanbäck and Bolnick 2007, this study). Our results showed 

that short-term consistency in the foraging niche of Cory’s shearwaters was relatively 

high along the study, highlighting individual preferences among birds (Fig. 16); 

interestingly, however, in two periods short-term consistency in the foraging niche was 

not verified. During the 2011 pre-laying period and the 2012 chick-rearing period, no 
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relationships were detected either in δ
15N and δ13C between RBC and plasma of 

individual adults, indicating greater variation within individuals than among individuals. 

Bolnick et al. (2010) found that individual and population niche widths are decoupled; 

in fact, our results suggested that variation within individuals was greater than variation 

among individuals when population niche was highest (2011 pre-laying period) and 

smallest (2012 chick-rearing period). Most probably, in the 2011 pre-laying period birds 

that performed very long trips did not show short-term consistency because previous 

trips were presumably not in the same area due to anomalies at very large scales. On the 

other hand, in the 2012 chick-rearing period birds performed shorter trips with high 

overlap in foraging areas among birds, resulting in less variance among individuals. 

Because they probably preyed on the same presumably few but superabundant resources 

during the 2012 chick-rearing period, the population niche tended to be narrower than if 

they preyed on a broad spectrum of items (Bearhop et al. 2004). Therefore, when all 

individuals use similar resources, typical from low-competition environments 

(Svanbäck & Bolnick 2007), the variances in SIA may be too small or hidden from the 

effects of selection on resource use required to detect consistency and, thus, variation 

within individuals may be higher than variation among individuals. 

To our knowledge, this is the first study to address consistency in the foraging niche 

across several years in a seabird population. Our results suggest that birds varied their 

individual foraging strategies according to extrinsic factors, particularly between the 

2011 pre-laying period and the 2012 chick-rearing period. In fact, our data showed a 

small breeding participation in 2011, in opposition to 2012, suggesting contrasting 

breeding conditions that could be derived by food availability. We found no evidence 

that condition status of birds was affected among years and periods; however, it is 

believed that shearwaters present a fixed investment maintained body condition by 

reducing parental investment and consequently reducing breeding success (Navarro & 

González-Solís 2007). Apparently birds preferred to forage farther in the 2011 pre-

laying period because of lack of resources around the colony in contrast with the 2012 

chick-rearing period, when birds preferred to forage in adjacent areas to colony. Intra-

specific competition should favour niche width expansion of a single population via 

greater between-individual variation (Svanbäck & Bolnick 2007, Bolnick et al. 2010). 

Our results matched with this hypothesis because the Cory’s shearwater  niche width 

was smaller in the 2012 chick-rearing period where supposedly intra-specific 
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competition was smaller (corroborated with a higher overlap in the foraging area) 

possibly attributed to high abundance of food resources, in contrast with the 2011 pre-

laying period. Interestingly, foraging niche consistency (i.e. greater variation among 

individuals than within individuals) in Cory’s shearwaters was relatively high and 

persistent along all other periods, suggesting that this trait may play an important role 

among members of a pelagic seabird population by reducing intra-specific competition 

during periods of typical average food resource conditions. In this case, birds may have 

a narrow foraging niche (i.e. individuals use a subset of their population’s niche) 

helping to reduce intra-specific competition as demonstrated in other seabird species 

such as northern gannets Morus bassanus (Votier et al. 2010) and wandering albatrosses 

Diomedea exulans (Ceia et al. 2012).  

Conclusions 

Our results confirm a strong positive relationship between spatial distribution at sea and 

trophic niche width of a pelagic seabird population. This relationship is particularly 

relevant considering variation in spatial distribution at sea among individuals, i.e. low 

standard deviations values correspond to a more even distribution of trophic niches and 

vice-versa. Therefore, our results support the ‘niche variation hypothesis’ (Van Valen 

1965) in the foraging ecology point of view. We also found that short-term consistency 

in the foraging niche is an intrinsic trait of Cory’s shearwaters; apparently, the 

advantages of such trait may relate with an attempt to reduce intra-specific competition 

among individuals. However, our results showed that consistency was not verified in 

circumstances of very small variation in the spatial distributions and small trophic niche 

width. Interestingly, consistency was also not verified in the opposite extreme patterns. 

Thus, consistency in foraging niche (i.e. individual preferences) appears to be an 

individual’s trait that should drive the dynamics of Cory’s shearwater foraging ecology, 

and possibly related pelagic species; it seems to occur only under determined 

environmental conditions that we defined as typical food availability conditions, but 

further studies must be conducted to validate this hypothesis. 

Acknowledgments 

This research was co-sponsored by the Foundation for Science and Technology 

(Portugal) and the European Social Found (POPH, EU) through a Ph.D grant attributed 

to Filipe R. Ceia (SFRH/BD/64558/2009) and a post-doc grant attributed to Vitor H. 



Chapter 3 | 90 
 

Paiva (SFRH/BDP/63825/2009), and by the project FAME (Future of the Atlantic 

Marine Environment; Proj. nº 2009-1/089 – Atlantic Area) funded by the EU. We are 

grateful to the support given by the Berlengas Nature Reserve for permission to work on 

the island and for providing accommodation. Special thanks to wardens P. Crisóstomo 

and E. Mourato. We thank A. Werner, F. Haug, V. Fidalgo and M. Soares for help in 

the field and C. Docal and A. Baeta for running stable isotope samples. 

  



 
 

Chapter 4 

 

Annual and seasonal consistency in the feeding ecology of an 

opportunistic species, the yellow-legged gull Larus michahellis 

 

Filipe R. Ceia, Vitor H. Paiva, Vera Fidalgo, Lurdes Morais, Alexandra Baeta, Paulo 

Crisóstomo, Eduardo Mourato, Stefan Garthe, João C. Marques & Jaime A. Ramos 

 

 

 

  



 
 

  



Chapter 4 | 93 
 

Abstract 

This study investigated the extent to which the plasticity of a generalist and 

opportunistic species allows individuals to shift their feeding ecology and foraging 

behaviour throughout the annual cycle and between two years of contrasting food 

availability during the breeding season. The spatio-temporal variations in the foraging 

niche of an overpopulated and problematic gull species at Berlenga Island (Portugal), 

the yellow-legged gull Larus michahellis, were assessed using blood (plasma and cells) 

and different feathers for stable isotope analyses (δ13C and δ15N) from 52 breeding 

adults in two consecutive years (2011 and 2012). In addition, Global Positioning 

System (GPS) loggers were deployed on 11 individuals and removed after several 

foraging trips, to infer the foraging behaviour of the species. Results suggest inter-

annual differences in the feeding ecology and foraging behaviour of birds during the 

breeding season that were associated with the availability of food resources around the 

colony. These differences in food availability apparently had an impact on the body 

condition. Despite the high feeding plasticity and opportunistic behaviour of yellow-

legged gulls, individual birds exhibited short- and long-term consistency in the feeding 

ecology, with exception of the period between the winter and pre-laying. Therefore, our 

results support the hypothesis that individual feeding preferences throughout most of the 

annual cycle are an intrinsic characteristic of this population and potentially of related 

opportunistic and generalist species. 

Key-words: activity patterns, generalist seabirds, foraging specialization, habitat use, 

GPS tracking, stable isotopes 

 

Introduction 

The distribution and size of colonies and the distribution of seabirds at sea is typically 

correlated with hydrographic features (e.g. oceanic fronts and upwelling areas) and 

marine productivity, but also with the activity of fishing vessels. However, foraging 

strategies of species can differ substantially and vary according to factors such as 

foraging behaviour, morphology, and bioenergetics, resulting in the exploitation of 

different niches. Among all seabird species, gulls (Larus spp.) are some of the most 

plastic, exploiting different habitats/resources (e.g. marine, coastal and terrestrial) and 
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combining diet items of different origins (e.g. natural and anthropogenic sources) as 

demonstrated by several studies (e.g. Schwemmer & Garthe 2008; Moreno et al. 2009; 

Ramos et al. 2011). The generalist and opportunistic behaviour of most gull species 

allow individuals to modify relatively easily their foraging strategies (i.e. exploited 

habitat/resource, diet and spatial or temporal distribution) according, for instance, to the 

reproductive role or to the competition for food (Ramos et al. 2011, Ramírez et al. 

2012). Some research into how inter-annual and seasonal variation of resources 

influence foraging and fitness of generalist and opportunistic species, such as gulls and 

skuas, have been performed, but particular incidence on individual specialization over 

time (individual consistency) is currently scarce (but see Watanuki 1992, Votier et al. 

2004, Sanz-Aguilar et al. 2009).  

To determine the major factors contributing to population change, one needs to 

understand the variation in foraging patterns within and among individuals (see Bolnick 

et al. 2003 for a review) as well as the foods used. Techniques such as data-loggers and 

stable isotope analysis (SIA) are very useful to detect spatio-temporal variations in the 

ecological niche of target populations likely associated with changes in the availability 

of resources. Opportunistic species may owe their success to the fact that diet can 

change very quickly according to resource availability or to their nutrient requirements 

(Rutz & Bijlsma 2006; Ramírez et al. 2012), and therefore may have implications for 

the consistency of their diet and exploited habitat, among seasons or contrasting years.  

Flexibility in foraging is particularly relevant for populations of yellow-legged gull 

Larus michahellis, which have increased dramatically throughout Europe in recent 

decades, with several ecological and social impacts. This increase has been mainly 

attributed to the great ability of gulls to adapt to human-altered environments by 

opportunistically exploiting both terrestrial (e.g. refuse dumps) and marine (e.g. fishery 

discards) resources (Ramos, Ramírez, et al. 2009a, Moreno et al. 2009). Previous 

studies used diet (e.g. Munilla 1997; Ramos et al. 2009b; Matias & Catry 2010) and 

SIA (e.g. Ramos et al. 2009a, 2011; Moreno et al. 2009) to infer the feeding ecology of 

this species. However, to our knowledge this is the first study to address individual 

foraging consistency and to provide tracking data for the yellow-legged gull. 

Here, we tested for foraging consistency and investigated the foraging behaviour of 

yellow-legged gull breeding adults from Berlenga (the largest breeding colony of this 
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species in Portugal), in two consecutive years (2011 and 2012) with markedly different 

baseline diet and oceanographic conditions. Together with conventional dietary 

sampling and individual movement data, multiple tissues with different turnover rates 

were sampled for SIA to test for spatio-temporal variation of resource exploitation 

along seasons and between years. By determining the isotopic composition (δ13C and 

δ
15N) of blood, separated into plasma and cells, and feathers formerly grown during the 

summer and wintering seasons, we characterized feeding ecology during different 

periods of the annual cycle of the yellow-legged gull (Quillfeldt et al. 2010, Ramos et 

al. 2011). We evaluated short- (during breeding) and long-term (along seasons) 

consistency in the feeding ecology (trophic level and habitat/resource use) of yellow-

legged gull individuals (Bearhop et al. 2006, Votier et al. 2010, Ceia et al. 2012). We 

expected low consistency in their feeding ecology, since they are very plastic and able 

to rapidly switch diet and habitat/resource use. Specifically, we predict that seasonal and 

inter-annual variation in resources drive (1) the foraging niche and feeding ecology of 

population, (2) short- and long-term consistency in the feeding ecology of individuals, 

(3) foraging behaviour and effort, and (4) condition status of birds. Our goal was to 

investigate the extent to which the extreme plasticity of yellow-legged gulls allows 

individuals to react to seasonal and, eventually, inter-annual variations during breeding 

and non-breeding periods. 

Materials and methods 

Study area and study species 

Fieldwork was carried out during the incubation period of yellow-legged gulls during 

2011 and 2012 at Berlenga Island, Portugal (39°24’N, 009°30’W). A large population 

of about 8500 pairs of yellow-legged gull is estimated to breed in Berlenga Island, a 

small neritic island of ca. 78.8 ha about 11 km off the western Portugal coast. This 

island is situated within a large continental shelf characterized by shallow waters and 

high marine productivity due to coastal upwelling (Sousa et al. 2008). We selected 

Chlorophyll a concentration (Chl a, mg m-3) and Sea Surface Temperature (SST, ºC) 

variables to characterize marine environment used by yellow-legged gulls between 

years. Both environmental predictors were downloaded for a spatial resolution of 0.04º 

(approx. 4 km) of Aqua-MODIS mapped products from 

http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowserWW180.jsp. Mean composites 
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of remote sensing data up to 100 km around the colony, from January to June in 2011 

and 2012 (spatial and temporal scale that have been found to relevant to characterize 

marine habitats based on the longest trip recorded and the temporal dynamism of these 

variables), were used to detect differences between years in the marine environment 

used by the individuals during pre-laying and incubation periods. Chl a was log10 

transformed to better fit a normal distribution. Both variables were compared by month 

between years using a t-test followed by a Bonferroni correction. 

Sample collection 

In May-June, 52 breeding adults (26 each year) with three egg clutches were caught on 

the nest and sampled. Blood samples (0.5-1 ml from the tarsal vein) were collected from 

each bird using 27G needles and, within 2-3 h, separated into plasma and red blood cells 

(RBC) using a centrifuge (15 min at 3000 rpm). Haematocrit was recorded and samples 

were stored frozen until preparation for SIA. The sampling scheme involved collecting 

4-5 randomly selected breast feathers and the tips of the 1st primary (P1) and 8th 

secondary (S8), which were stored in sealed plastic bags for later SIA. Additionally, a 

GPS logger was deployed on 11 birds (four in 2011 and seven in 2012) and removed 

after 3 to 25 foraging trips at sea (details of the devices below). Stomach contents were 

collected from 19 sampled individuals (five in 2011 and 14 in 2012) by water-

offloading, following Wilson (1984). Captured birds were weighed and wing length was 

measured. Deployment or retrieval of devices and collection of samples took 10-15 min. 

per bird. 

Diet sampling and stable isotope analysis  

All regurgitates came from breeding individuals. Each component (fish, crustaceans, 

refuse and terrestrial invertebrates) was sorted and individual prey items identified to 

species-level whenever possible. The prey species identified in regurgitates collected 

from gulls were the fish species Atlantic horse mackerel Trachurus trachurus and blue 

whiting Micromesistius poutassou, and the pelagic crab species Henslow’s swimming 

crab Polybius henslowii. Refuse was represented to a large extent by meat (chicken, 

beef scraps and organs from unknown species). We also found occasional terrestrial 

prey (terrestrial invertebrates) namely insects (bees and ants), spiders and snails. Fresh 

crustaceans (P. henslowii), fish (T. trachurus, with otoliths attached; we were not able 
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to collect fresh M. poutassou), refuse and terrestrial invertebrates were stored frozen for 

SIA. 

Different tissues have different turnover rates and therefore can reflect temporal 

changes in trophic position and habitat/resource use (i.e., a change in isotopic niche; 

reviewed in Newsome et al. 2007). Carbon stable isotope value (δ13C) mainly reflects 

the habitat/resource use of consumers, while nitrogen stable isotope value (δ
15N) is 

mainly used to define trophic position of consumers. Specifically, we analysed δ13C 

(‰) and δ15N (‰) in plasma, RBC, S8, P1 and breast feathers from each breeding adult 

sampled. Plasma and RBC retain information on diet from a few days prior to sample 

collection, up to the previous 3-4 weeks, as representative tissues of incubation and pre-

laying period, respectively (Hobson & Clark 1993, Votier et al. 2010). On the other 

hand, analyses on specific feathers provide unique isotopic information of a 

spatiotemporal period, unrelated with the sampling period (Quillfeldt et al. 2010, Ramos 

et al. 2011). We collected P1 and S8 to represent the preceding summer and wintering 

seasons, respectively (Ramos et al. 2011). We assumed that breast feathers represented 

the overall diet during the non-breeding season, because body feathers moult throughout 

the non-breeding season (Arcos et al. 2002). In addition, we analysed δ13C (‰) and 

δ
15N (‰) of fresh prey items obtained from stomach contents to create a basis for the 

interpretation of the isotopic signatures of tissues and further construction of mixing 

models. 

Samples (plasma, RBC and prey items) were freeze-dried and homogenized prior to 

SIA. Because high lipid concentrations in plasma and in flesh from prey items can lead 

to depleted δ13C values, lipids were removed using successive rinses in a 2:1 

chloroform-methanol solution (Cherel et al. 2005). Prior to SIA, feathers were cleaned 

of surface contaminants using successive rinses in a 2:1 chloroform-methanol solution, 

dried at 60°C for 24 h and then homogenized. For specifications how nitrogen and 

carbon isotope ratios were determined see Chapter 2. 

GPS tracking 

During the two years study, 11 breeding adults were fitted with a GPS logger (CatTraq 

GT-120, Perthold Engineering LLC). The plastic case was removed and replaced by a 7 

cm long thermo-retractile rubber sleeve reducing the total weight to 17 g. The total mass 

of the device was below 3% of adult mass (1.6–2.3%), as recommended by Phillips et 



Chapter 4 | 98 
 

al. (2003). The GPS loggers were attached to feathers in the mantle region with Tesa® 

tape and set to record position (median error of < 10m) every 2 min, to have a detailed 

report of the behaviour of gulls. We tracked birds continuously from 2 to 8 days 

(median = 5 days), the data from which were used to determine seven foraging 

behaviour and effort parameters (see data analysis below). 

Bird condition status  

We used the standard residuals of the relationship between body mass and wing length 

(F1,50 = 104.1, P < 0.001, r = 0.822) to estimate the body mass index (BMI) of all 

sampled birds, an index primarily reflecting body lipid reserves (Sánchez-Guzmán et al. 

2004). We used the haematocrit value that in conjunction with other physiological 

indicators, such as BMI, can be a useful indicator of the current health condition status 

or energy expenditure of individuals (see Fair et al. 2007 for a review). 

Data analysis 

To estimate contributions for each dietary source to the diet of each individual, we 

adopted a Bayesian multi-source stable isotope mixing model (stable isotope analyses in 

R: SIAR; Parnell et al. 2010) under R 2.15.2 (R Development Core Team 2011). All 

possible combinations of each source contribution were examined using both isotope 

values (δ13C and δ15N) from plasma (corresponded to the incubation period, when birds 

were tracked) for each bird, and the mean and standard deviation of each of the four 

food sources collected from regurgitates (T. trachurus, P. henslowii, refuse and 

terrestrial invertebrates). Isotopic data of T. trachurus were pooled, since no differences 

were found between 2011 and 2012 (δ
13C: F1,3 = 2.5, P = 0.21; δ15N: F1,3 = 0.8, P = 

0.43). For P. henslowii we used the values from samples collected in 2012, because no 

crustaceans were found in the diet of gulls in 2011 (see results). Finally, we combined 

all items composed by refuse in a single category and the terrestrial invertebrates in a 

distinct food source. There are no diet-blood fractionation factors available for yellow-

legged gulls; hence, we used the average values of fractionation between prey and 

whole blood of four seabird species, from controlled experiments, available in the 

literature: 0.30 and 2.85‰ enrichment for carbon and nitrogen, respectively (Hobson & 

Clark 1992, Bearhop et al. 2002, Cherel, Hobson, & Hassani 2005). A standard 

deviation of ± 1.0‰ was adopted, considering potential differences in fractionation 

factors among species. SIA results were compared between years using an ANOVA or a 
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Mann-Whitney U Test. To test the homogeneity of variances in both δ13C and δ15N, 

which provides a measure of niche width (see Bearhop et al. 2004 for more details), we 

used a Levene’s Test. However, to analyse stable isotope data in the context of isotopic 

niche width between years and among seasons and periods, we adopted the recent 

metrics based in a Bayesian framework (Stable Isotope Bayesian Ellipses in R: SIBER; 

Jackson et al. 2011), which allows for robust statistical comparisons. The area of the 

standard ellipse (SEAc, an ellipse that has 95% probability of containing a subsequently 

sampled datum) was adopted to compare between years and their overlap in relation to 

the total niche width (both years combined), and a Bayesian estimate of the standard 

ellipse and its area (SEAB) to test whether group 1 is smaller than group 2 (i.e. p, the 

proportion of ellipses in 2011 that were lower than 2012; see Jackson et al. 2011 for 

more details). We used the computational code to calculate the metrics from SIBER 

using functions (“standard.ellipse”, “ convexhull” and “siber.ellipses”) implemented in 

the package SIAR (Parnell et al. 2010) under R 2.15.2. 

To obtain an estimate of short-term consistency (between pre-laying and incubation 

periods) in carbon source and trophic level, we regressed stable isotope ratios in plasma 

on those in RBC. For long-term consistency, we regressed stable isotope ratios in RBC 

on those in S8 (between wintering season and pre-laying period), RBC in P1 (between 

summer season and pre-laying period) and S8 in P1 (between summer and wintering 

seasons). Since δ
13C has a trophic component, we used the residuals of the relationships 

with δ15N in the same tissue categorised by year (2011 and 2012: plasma, RBC, S8 and 

P1; P all < 0.05) to determine the degree of repeatability in δ13C, independently of 

trophic effects (Bearhop et al. 2006, Votier et al. 2010, Ceia et al. 2012). The analyses 

of short-term consistency were performed using plasma and RBC, which could lead to a 

temporal overlap in the synthesis of these tissues as integration of prey isotopes into 

body tissues is a continuous, dynamic process. On the other hand, overlap between 

samples in the analyses of longer-term (i.e. with feathers) will be negligible as the 

selected feathers for this analysis were synthesized in different seasons. Two outliers 

that had a significant influence on the results for residual δ13C in S8 and P1 in 2011 (-

1.7 and -2.6, respectively) were excluded from these analyses. Based on these results we 

were able to compare the consistency in foraging tactics of yellow-legged gulls between 

years and among seasons and periods. 
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The nonparametric fixed kernel density (FKD) estimator was used to calculate the 25, 

50, 75 and 95% density contour areas of each trip using functions (“kernelUD”, 

“getvolumeUD”, “ getverticeshr” and “kernel.area”) of the adehabitat package (h = 

0.05, grid = 500; Calenge 2006) under R 2.15.2. GPS data-points at the colony were 

excluded from analyses and we defined foraging trips from the time when the birds 

departed from the colony until their return. The overlap with land in the estimated 

foraging range was calculated based on the FKD. 

Our measurements of foraging behaviour and effort comprised: (1) geographic position 

at maximum distance from the colony (latitude and longitude); (2) trip duration (days); 

(3) maximum distance from colony (km); (4) trip length (km); (5) area covered (95% 

FKD; km2); (6) number of trips per day; and (7) proportion of trips where birds 

exclusively foraged at sea. Variables (1) to (5) were calculated for each trip and 

compared between years creating variance components for ANOVA designs with 

random effects (mixed-ANOVA). The year was included as a fixed factor and bird 

identity as a random effect to control for pseudoreplication, because more than one 

foraging trip per individual was recorded. Variables (6) and (7) were calculated per 

individual and compared between years with a Mann-Whitney U Test. All data were 

tested for normality and homoscedasticity; trip duration was log10 transformed, 

maximum distance, trip length and area covered were square root transformed and 

proportions were arcsine transformed. 

Results 

Diet and stable isotope analysis 

In 2011 and 2012 combined, we obtained four food sources collected in regurgitates 

from gulls: fish, crustaceans, refuse and terrestrial invertebrates. The crustaceans 

(represented by P. henslowii) were not found in regurgitates of yellow-legged gulls in 

2011, but occurred in 58.3% of the gulls sampled that contained food in 2012. 

Moreover, in 2011 we did not observe P. henslowii in gull pellets present in the colony, 

nor during several boat trips around the island, suggesting that P. henslowii was not 

available during the incubation period of 2011. In contrast, during 2012 this species was 

extremely common in the pellets and in the sea around the colony during the same 

period. This pattern matched with monthly differences in the patterns in Chl a and SST, 

between 2011 and 2012, up to 100 km around the colony (t-test, Bonferroni correction: 
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all P < 0.01; Fig. 17). The significantly lower value of Chl a in May 2011 and its abrupt 

decline in 2011 contrasted to 2012 (Fig. 17b) when the P. henslowii were abundant. 

 

Figure 17. Mean mensal composites of (a) Sea Surface Temperature (SST) and (b) log10 
Chlorophyll a concentration (Chl a) up to 100 km around the Berlenga Island, from 
January to June in 2011 and 2012. 

The δ13C and δ15N values of the four food sources differed significantly (Kruskal-Wallis 

Test; δ13C: H3,18 = 9.6, P = 0.022; δ15N: H3,18 =13.0, P = 0.005) in at least one of the 

isotopes, with exception of P. henslowii and refuse (Table 10). However, differences 

were found in the homogeneity of their variances in both δ13C and δ15N (Levene's Test; 

δ
13C: F1,7 = 6.1, P = 0.042; δ15N: F1,7 = 52.4, P < 0.001); the high variances in refuse 

indicated the wide isotopic spectrum of items ingested. 

Table 10. Stable isotopic signature of carbon and nitrogen (mean ± SD) of the four food 
sources recorded in regurgitates collected from yellow-legged gulls (Larus michahellis) 
breeding in Berlenga Island during the incubation period. Terrestrial invertebrates were 
included insects, spiders and snails. 

Prey source n δ
13C (‰) δ

15N (‰) 

T. trachurus 5 -18.6 ± 0.6 11.9 ± 0.6 

P. henslowii 4 -17.8 ± 0.6 6.2 ± 0.2 

Refuse 5 -17.1 ± 1.1 6.9 ± 4.3 

Terrestrial invertebrates 4 -23.7 ± 4.0 15.2 ± 3.2 

 

SIAR mixing model outputs revealed significant differences between 2011 and 2012 in 

the relative proportion of food sources ingested (F3,48 = 4.6, P = 0.007), particularly in 

the consumption of P. henslowii (F1,50 = 8.0, P = 0.007), which was the most consumed 

item in 2012 (Fig. 18). T. trachurus was ingested in similar proportions in both years 
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(33.9% in 2011 and 34.4% in 2012), but there was a strong difference in the ingestion of 

P. henslowii (28.5 and 39.9%), refuse (19.2 and 12.3%) and terrestrial invertebrates 

(18.4 and 13.4%). These differences are based on a conservative estimation, i.e. 

considering P. henslowii similarly available during both years. Assuming that P. 

henslowii was not consumed by birds during the incubation period of 2011 (as our data 

indicates), the estimated percentages of T. trachurus, refuse and terrestrial invertebrates 

for 2011 were 45.1, 38.2 and 16.7%, respectively. 

 

Figure 18. Range of possible proportions of the four main food sources in the diet of 
yellow-legged gulls (Larus michahellis) breeding in Berlenga Island during the 
incubation period (based on C and N isotopic signatures of plasma) in 2011 and 2012. 
Terrestrial invertebrates were composed of insects, spiders and snails. Decreasing bar 
widths represent 50, 75 and 95% Bayesian credibility intervals computed by Stable 
Isotope Analysis in R (SIAR; Parnell et al. 2010). 

Inter-annual consistency in feeding ecology at the population level  

The δ13C and δ15N of yellow-legged gulls’ plasma, which provides an indication of 

recent meals (i.e. during the incubation period), did not differ significantly between 

2011 and 2012 (Mann-Whitney U Test; δ13C: Z = -0.4, P = 0.65; δ15N: Z = 1.6, P = 

0.11). However, gulls exhibited substantial inter-annual differences in the homogeneity 

of variances in both δ13C and δ15N (Levene's Test; δ13C: F1,50 = 5.0, P = 0.030; δ15N: 

F1,50 = 7.8, P = 0.007), which provides a measure of niche width (see Bearhop et al. 

2004). In fact, SIBER analysis revealed that yellow-legged gulls occupied an isotopic 

niche area two times higher in 2011 than in 2012 (SEAB; p = 0.014; Fig. 19a; Table 11), 

with a 28.6% overlap in niche width between the two years.  



Chapter 4 | 103 
 

Significant differences were found for RBC (i.e. representing the pre-laying period) 

between years in δ15N (F1,50 = 14.6, P < 0.001), but not in δ13C (F1,50 = 1.0, P = 0.33); in 

2011 birds showed enrichment in δ
15N, suggesting inter-annual differences in the 

consumption of food sources from different trophic levels. These differences were 

revealed in the occupancy of the isotopic niche area, in which the inter-annual overlap 

was only 1.3% during the pre-laying period, although no differences were found in the 

area (SEAB; p = 0.093; Fig. 19b; Table 11). 

No differences were found for S8 (i.e. winter diet) between years in both δ
13C (F1,50 = 

0.2, P = 0.63) and δ15N (F1,50 = 3.1, P = 0.08). The isotopic niche area was similar 

between years (SEAB; p = 0.547; Fig. 19c; Table 11), with an overlap of 44.9%. These 

results suggest inter-annual consistency in the feeding ecology of this population during 

winter. 

On the other hand, there were significant differences for P1 (i.e. summer diet) between 

years in δ13C (F1,50 = 9.1, P = 0.004), but not in δ15N (F1,50 = 0.1, P = 0.81); birds 

showed depleted δ13C values in the summer season of 2010, suggesting inter-annual 

differences (between 2010 and 2011) in habitat/resource use. In fact, the summer 

isotopic niche overlap between these two years was only 16.7%, although the area was 

similar (SEAB; p = 0.746; Fig. 19d; Table 11). 

Table 11. Stable isotope ratios of carbon (δ
13C) and nitrogen (δ15N) in plasma, red 

blood cells (RBC), 8th secondary (S8), 1st primary (P1) and breast feathers of yellow-
legged gulls (Larus michahellis) breeding in Berlenga Island in 2011 (n = 26) and 2012 
(n = 26). The area of the standard ellipse (SEAc) and the layman metric of convex hull 
area (TA) are also shown (see Jackson et al. 2011 for more details on these metrics of 
isotopic niche width). Values are means ± SD. 

 δ
13C (‰) δ

15N (‰) SEAc TA 

Tissue type 2011 2012 2011 2012 2011 2012 2011 2012 

Plasma -18.9 ± 0.8 -18.7 ± 0.5 12.9 ± 1.5 12.2 ± 1.0 3.03 1.51 8.09 4.60 

RBC -19.3 ± 0.7 -19.2 ± 0.6 12.7 ± 1.4 11.4 ± 1.1 2.18 1.39 7.28 4.69 

8th secondary -17.2 ± 0.5 -17.1 ± 0.7 13.2 ± 1.6 14.0 ± 1.7 2.43 2.41 8.06 10.75 

1st primary -17.7 ± 0.9 -17.0 ± 0.8 14.0 ± 1.1 13.9 ± 1.8 2.59 2.99 8.25 11.91 

Breast feathers -17.4 ± 0.4 -17.2 ± 0.6 13.0 ± 1.2 13.3 ± 1.0 1.52 1.45 4.51 4.44 
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No differences were found between years in δ
13C (Mann-Whitney U Test; Z = -1.8, P = 

0.08) and δ15N (F1,50 = 1.1, P = 0.29) of yellow-legged gulls’ breast feathers, which 

provides an average picture of the diet along the non-breeding season. SIBER indicated 

that the isotopic niche area was similar between years (SEAB; p = 0.461; Fig. 19e; Table 

11). Moreover, the overlap between the two years (2010/2011 and 2011/2012) was 

47.8%, which suggests inter-annual consistency in the feeding ecology of this 

population during the non-breeding season. 

Short- and long-term consistency in feeding ecology within a year 

Similar patterns in short- and long-term consistency in feeding ecology of yellow-

legged gulls were detected in both years. Strong significant positive relationships were 

found in δ15N and in residual δ13C (hereafter δ13C) between RBC and plasma of 

individual breeding adults in both years (Fig. 20ab). These results suggest short-term 

foraging consistency (along the pre-laying and incubation periods) within individuals in 

relation to both the use of the same habitat/resource and trophic level. In relation to 

longer-term consistency, significant relationships were found between P1 and RBC in 

δ
15N in both years (Fig. 20c), but not in δ

13C, which suggests consistency in trophic 

level between the summer season and the pre-laying period. On the other hand, 

significant relationships were found between P1 and S8 in δ13C in both years (Fig. 20d), 

but not in δ15N, which suggests consistency in habitat/resource use between the summer 

and the wintering seasons. Interestingly, no significant relationships were found in 

either δ15N or δ13C between S8 and RBC, for any of the two years, which means greater 

variation within individuals than among individuals. Hence, birds apparently became 

less consistent between the winter season and the pre-laying period, where they 

probably begin to exploit different food sources and habitats. 
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Figure 19. Stable isotope ratios (δ13C and δ15N) in (a) plasma, (b) red blood cells 
(RBC), (c) 8th secondary (S8), (d) 1st primary (P1) and (e) breast feathers of yellow-
legged gulls (Larus michahellis) breeding in Berlenga Island in 2011 (black) and 2012 
(red). The area of the standard ellipses (SEAc, 95% credible interval) were represented 
by the solid bold lines (ellipses) and the layman metric of convex hull area (TA) by 
black dotted lines (see Jackson et al. 2011 for more details on these metrics of isotopic 
niche width). (n = 26 in each year). 
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Figure 20. Relationships between (a) δ15N values in red blood cells (RBC) and plasma, 
(b) residual δ13C values in RBC and plasma, (c) δ15N values in 1st primary (P1) and 
RBC and (d) residual δ13C values in P1 and 8th secondary (S8) of yellow-legged gulls 
(Larus michahellis) breeding in Berlenga Island in 2011 (blue) and 2012 (red). 

Habitat selection and foraging behaviour 

We obtained 103 foraging trips from 11 individuals (2011: 25 trips from four 

individuals; 2012: 78 trips from seven individuals). In both years, birds showed a 

unimodal distribution in trip duration; although the mode class (< 0.2 days for both 

years) was much higher in 2012 (86%) than in 2011 (48%). However, in terms of 

maximum distance from the colony (= 98 km), birds showed a dual foraging strategy in 

both years with modal classes of 0-10 (83%) and 40-50 km (9%) in 2012 and 0-10 

(36%) and 60-70 km (12%) in 2011, which means that foraging effort was higher in 

2011.  

The spatial patterns of foraging habitat selection differed markedly between 2011 and 

2012. In 2012 birds preferred to forage at sea whereas in 2011 they preferred to forage 

inland. In fact, the maximum longitude during trips was significantly different between 

years, but not latitude (see Table 12), denoting inter-annual spatial segregation based on 

the type of habitat explored (marine vs. terrestrial). Although birds used terrestrial and 
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coastal habitats to forage in both years, such as refuse dumps (e.g. Leiria, Vilar, 

Azambuja and Rio Maior) and fisheries leftovers (e.g. Peniche harbour and Costa da 

Caparica seashore), they did it more frequently in 2011 than in 2012; 25% FKD showed 

that the overlap with terrestrial habitat was 35.3% in 2011 and only 0.8% in 2012 (i.e. 

the overlap with Berlenga Island), which corresponded to the two feeding areas 

identified based on 25% FKD: (1) the area adjacent to the city of Peniche in 2011 (14 

km from the colony; Fig. 21a), and (2) the marine area adjacent to the colony in 2012 

(Fig. 21b).  

 

Figure 21. Foraging distributions of yellow-legged gulls (Larus michahellis) breeding 
in Berlenga Island during the incubation period in (a) 2011 and (b) 2012. Decreasing 
kernel polygon shades represent 25, 50, 75 and 95% foraging home ranges. 

Differences in the foraging behaviour and foraging effort of birds between 2011 and 

2012 (Table 12) were even more obvious than differences in the spatial patterns. 

Specifically, the foraging trips were shorter (spatially and temporally), and the area 

covered by birds during foraging trips was significantly smaller in 2012 than in 2011. 

Differences were also found in the mean number of trips per day and in trips where 

individuals forage exclusively at sea; both were significantly greater in 2012 than in 

2011. 
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Table 12. Comparison of foraging trip parameters performed by yellow-legged gulls 
(Larus michahellis) breeding in Berlenga Island during the incubation period in 2011 
(25 foraging trips from four birds) and 2012 (78 foraging trips from seven birds). 
Values are means ± SD per individual, but statistical comparison was performed per trip 
(with year as a fixed effect and bird identity as a random effect), with the exception of 
trips per day and trips to the sea, in which values per individual were compared between 
years with a Mann-Whitney U-test. Significant results are in bold. 

 2011 2012 Statistical comparison 

Maximum latitude 39.35 ± 0.13 39.38 ± 0.03 F1,9 = 0.2, P = 0.704 

Maximum longitude -9.33 ± 0.06 -9.47 ± 0.11 F1,9 = 8.8, P = 0.016 

Trip duration (days) 0.29 ± 0.06 0.15 ± 0.11 F1,9 = 6.7, P = 0.030 

Maximum distance (km) 22.1 ± 7.2 11.7 ± 9.4 F1,9 = 8.4, P = 0.019 

Trip length (km) 67.5 ± 17.9 37.0 ± 31.9 F1,9 = 6.9, P = 0.029 

95% FKD area (km2) 751 ± 119 337 ± 314 F1,9 = 9.6, P = 0.013 

Trips per day 1.1 ± 0.2 2.6 ± 2.3 Z = -2.3, P = 0.023 

Trips to the sea (%) 22.9 ± 20.8 75.2 ± 35.7 Z = -2.0, P = 0.047 

 

Bird condition status 

BMI and haematocrit values of yellow-legged gulls differed significantly between 2011 

and 2012: individuals presented greater BMI and lower haematocrit (lower proportion 

of RBC) in 2012 than in 2011 (Table 13). Positive significant relationships were found 

between the consumption of P. henslowii estimated with the SIAR model and BMI 

(F1,50 = 5.2, P = 0.027, r = 0.307), and between trip duration and haematocrit (F1,9 = 7.5, 

P = 0.023, r = 0.675). These relationships suggest a higher BMI in birds that consume 

more P. henslowii and lower haematocrit values in birds that performed shorter trips. 

Table 13. Comparison of body mass index (BMI) and haematocrit of yellow-legged 
gulls (Larus michahellis) breeding in Berlenga Island during the incubation period in 
2011 and 2012. Values are means ± SD (sample size). 

 2011 2012 Statistical comparison 

BMI  -0.45 ± 0.82 (26) 0.45 ± 0.96 (26) F1,50 = 13.1, P < 0.001 

Haematocrit (%) 0.46 ± 0.05 (26) 0.42 ± 0.05 (26) F1,50 = 10.3, P = 0.002 
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Discussion 

We used yellow-legged gull as a model of a generalist and opportunistic species to infer 

the consistency in feeding ecology at the population and individual levels in a small 

North Atlantic neritic island. Contrary to our expectations, our results show a high level 

of short- and long-term consistency in the feeding ecology of yellow-legged gulls at 

both the individual and population levels, in particular between some stages of their 

annual cycle (see below). The foraging behaviour, effort and niche width of yellow-

legged gulls differed markedly between 2011 and 2012, matching the strong variation in 

oceanographic conditions and in the availability of the main prey species, P. henslowii, 

between years. Such differences between years had no major consequences for the 

overall patterns of short- and long-term consistency in the feeding ecology of 

individuals, but had a significant influence on bird condition status. 

It is well documented that the pelagic crab P. henslowii is an important component of 

the diet of the yellow-legged gull (Moreno et al. 2009), which, despite its spatial and 

temporal unpredictability (Munilla 1997), may be the most important marine prey in 

Iberian Atlantic waters during the breeding season. Signa et al. (2008) suggested that 

the spatial structure of P. henslowii populations during the adult pelagic phase in coastal 

and surface waters in Galicia (Spain), as it gathers in shoals at high densities, is related 

with their feeding behaviour and oceanographic characteristics; the density of P. 

henslowii was positively correlated with Chl a and should be influenced by outwelling, 

upwelling and downwelling regimes. Our results suggest that P. henslowii was not 

commonly available during the 2011 incubation period of the yellow-legged gulls at 

Berlenga, in contrast with 2012, most probably due to the different oceanographic 

conditions recorded between both years (particularly Chl a, which was significantly 

lower in May 2011, i.e. during the incubation period). Even when considering that P. 

henslowii was equally available in both years during the incubation period, the SIAR 

mixing model revealed a higher significant consumption in 2012. Because P. henslowii 

and refuse lacked differences in both δ
13C and δ15N, SIAR could not precisely 

differentiate their relative proportions. We were not able to perform sulphur stable 

isotope analyses, as its inclusion in SIAR could improve this analysis by giving more 

discriminating power to differentiate refuse and P. henslowii  (Moreno et al. 2009, 

Ramos et al. 2011). However, due to its distinct origin and importance to the yellow-



Chapter 4 | 110 
 

legged gulls’ diet, both food sources were considered independently as their 

homogeneity of variances differed significantly in both isotope ratios.  

Yellow-legged gulls showed inter-annual differences in the feeding ecology during both 

the incubation and pre-laying periods. A significant higher isotopic niche area in 2011 

than 2012 (twice higher) during the incubation period and inter-annual differences in the 

homogeneity of variances in both δ
13C and δ15N in plasma were detected. The broad 

spectrum of trophic levels in refuse and the small variances in δ13C and δ15N of P. 

henslowii appeared to be the basis of the differences found, because populations where 

individuals mostly consume prey over a narrow spectrum of trophic levels will tend to 

show less isotopic variance than those which feed on a broad spectrum of items from 

different trophic levels (Bearhop et al. 2004). With P. henslowii largely available in 

2012, birds concentrated their foraging effort around the colony, consuming easily 

obtained crabs, in contrast with 2011 where birds preferred to forage farther inland, 

consuming more refuse, as SIAR and tracking data corroborated. During the pre-laying 

period, inter-annual differences were found in the occupancy of the isotopic niche area, 

mainly driven by greater significant δ15N values in 2011. We have no data to 

corroborate the availability of P. henslowii during this period. However, the trace 

availability of P. henslowii in 2011 during the pre-laying and chick-rearing periods (i.e. 

during the breeding season) in contrast to 2012 was reported by another on-going study 

based on pellets and chick regurgitates in Berlenga Island (Hany Alonso, pers. comm.) 

and by local fishermen (Rui Filipe, pers. comm.). The unavailability of a very accessible 

resource such as P. henslowii apparently motivated the birds to consume items from 

higher trophic levels, in order to satisfy energetic or nutritional demands (Schwemmer 

& Garthe 2008). On the other hand, no differences were found in the feeding ecology of 

yellow-legged gulls during the non-breeding season between years. Inter-annual 

differences in habitat/resource use, but not in trophic level, were detected at the 

population level during the summer season (i.e. in P1; Ramos et al. 2011). However, 

these differences vanished throughout the non-breeding season, and in the winter season 

yellow-legged gulls exhibited a similar foraging niche between years. Since birds are 

confined to a limited foraging area around the colony during the breeding season, 

foraging opportunities should be more limited during the breeding than during the non-

breeding season (Ramos et al. 2011). Thus, the differences in prey availability during 

the breeding season between years, particularly in the consumption of P. henslowii, may 
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be the cause of such inter-annual differences in the isotopic niche of yellow-legged gulls 

during the pre-laying and incubation periods. 

Correlations in stable isotope ratios between different tissues can highlight particular 

details of seabird ecology, such as the degree of foraging specialization (Bearhop et al. 

2006, Votier et al. 2010, Ceia et al. 2012). The yellow-legged gull is widely considered 

to be a generalist top predator species in its respective ecosystem, but our results 

document short- and long-term consistency in feeding ecology within individuals along 

seasons in two consecutive years at Berlenga. Furthermore, a similar pattern in the 

consistency levels was found although both years showed markedly different patterns in 

prey availability and oceanographic conditions during the breeding season. Specifically, 

we detected (1) a high level of short-term consistency within individuals in the feeding 

ecology (i.e. in habitat/resource use and in trophic level) between the pre-laying and the 

incubation periods; (2) long-term consistency in trophic level between the summer 

season and the pre-laying period; and (3) long-term consistency in habitat/resource use 

between the summer and the wintering seasons. These results suggest individual 

preferences in both habitat/resource use and in trophic level of this highly opportunistic 

and generalist species at specific stages of its annual cycle. Therefore, this characteristic 

may be widespread in this population and related species and could be driven mostly by 

traits affecting the individual (e.g. individual specialization, intra-specific competition) 

rather than by traits affecting the whole population (e.g. environmental conditions), as 

demonstrated in other species such as penguins (e.g. Cherel et al. 2007), albatrosses 

(e.g. Ceia et al. 2012), guillemots (e.g. Woo et al. 2008), gannets (e.g. Votier et al. 

2010) and skuas (e.g. Anderson et al. 2009). However, greater variation within 

individuals than among individuals from the winter season to the pre-laying period, as 

no relationships were found between S8 and RBC for any of the two years, strongly 

suggests that the general feeding pattern changed within the population. These results 

are in accordance with Ramos et al. (2011) which reported a change in dietary 

preferences between breeding and non-breeding seasons on the same species in the 

Mediterranean. However, our study suggests that strong changes in feeding ecology of 

the whole breeding population occur from the winter season to the pre-laying period. 

Although the sample size of tracked birds was relatively low in both years, our results 

suggested substantial inter-annual variation in foraging behaviour and effort of yellow-

legged gulls during the incubation period in Berlenga Island. There were differences in 
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both spatial and temporal patterns of the trips and in its frequency. Apparently, this 

variability was strongly related to the availability of P. henslowii, which differed 

markedly between the two years. The unavailability of this food resource in 2011 

induced birds to make longer trips to find food, particularly to the city of Peniche and its 

harbour, most probably to scavenge on fishery leftovers and refuse waste as our SIAR 

model indicates. On the other hand, in 2012 birds made smaller and more frequent at-

sea trips around the colony due to the high densities of P. henslowii. Therefore, our 

results suggest that foraging behaviour of this opportunistic species is influenced to a 

large extent by prey conditions (namely availability of P. henslowii) around the colony. 

Similarly, Schwemmer et al. (2013) found that foraging behaviour of lesser black-

backed gulls Larus fuscus was influenced by the availability of swimming crabs 

Liocarcinus spp. near from their colony in the North Sea; besides, inter-annual variation 

in foraging tactics determined by prey availability was demonstrated by Garthe et al. 

(2011) for a more specialized species, the northern gannet Morus bassanus.  

Although an increase of food availability enhances breeding performance whereas adult 

survival is not normally affected (Pons & Migot 1995, Oro et al. 1999), our results 

suggest that a change in food supply and foraging behaviour, but not in individual food 

preferences, of yellow-legged gulls influenced the condition status and energy demand 

of birds. The greater BMI in 2012 than in 2011 and its positive significant relationship 

with the consumption of P. henslowii estimated by the SIAR model, clearly suggest an 

increase of body condition when this resource was commonly available, highlighting its 

importance in the diet of the yellow legged gull (Munilla 1997; this study). Although 

changes in haematocrit could be caused by a number of different natural factors (see 

Fair et al. 2007 for a review), the significant lower haematocrit value (together with 

greater BMI) in 2012 than in 2011, and its positive relationship with trip duration, 

suggest differences in physiological performance of birds related to foraging effort and 

energy expenditure. Similarly, other studies have reported greater haematocrit values in 

birds when the work load was experimentally increased during reproduction as a 

response to raised oxygen demands due to experimentally induced effort (Hõrak et al. 

1998, Fargallo et al. 2001). 
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Conclusions 

As expected, our study confirms that opportunistic and generalist behaviour of yellow-

legged gulls permits individuals to react to seasonal and inter-annual variations in 

resources, during the breeding and non-breeding seasons, by exploiting different 

foraging niches. Inter-annual changes in prey availability around the colony during the 

breeding season influenced variation in niche width and foraging behaviour on the 

population of yellow-legged gulls. This variability was strongly related with the prey 

crab P. henslowii that, when present around the colony, appears to act as a key-species 

for yellow-legged gulls by improving their condition status and reducing foraging 

effort. Results suggest that birds changed gradually their feeding behaviour throughout 

the year according to extrinsic factors, such as the resources available, and intrinsic 

factors, such as individual preferences and energy requirements. However, they showed 

an abrupt change in the feeding ecology at the population level between winter and the 

pre-laying period, suggesting this last period as the most susceptible in their annual 

cycle. Yellow-legged gulls showed high short-term consistency in the feeding ecology 

during the breeding season and long-term consistency in trophic level and 

habitat/resource use along seasons. Similar patterns of individual consistency were 

found in both years, thus highlighting individual feeding preferences in the ecological 

role of this opportunistic species. 

Acknowledgments 

This research was co-sponsored by the Foundation for Science and Technology 

(Portugal) and the European Social Found (POPH, EU) through a Ph.D grant attributed 

to Filipe R. Ceia (SFRH/BD/64558/2009) and a post-doc grant attributed to Vitor H. 

Paiva (SFRH/BDP/63825/2009), and by the project FAME (Future of the Atlantic 

Marine Environment ; Proj. nº 2009-1/089 – Atlantic Area) funded by the EU. We are 

grateful to the support given by the Berlengas Nature Reserve for permission to work on 

the island and for providing accommodation. We thank C. Docal for running stable 

isotope samples. 

  



 
 

  



 

General Discussion 

 

 

 

 

 

 

 

 

 

“The saddest aspect of life right now is that science gathers knowledge faster than 

society gathers wisdom.” 

 Isaac Asimov 
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The present study focused on understanding the ecology of top predators at the 

individual level, an area in which the knowledge is scarce for the general diversity of 

taxa and particularly for seabirds. Existing studies suggest that individual specialization 

is a widespread phenomenon across a diverse set of taxa that poses many important but 

unanswered questions, and the ecological implications of such trait are not well 

understood (see Bolnick et al. 2003 for a review). In this context, seabirds are good 

model species to test hypotheses concerning trophic interactions and niche variation. 

Here, I used three seabird species with different characteristics, exploiting four different 

marine habitats, to document the existence of individual variation in resource use 

throughout time, and demonstrate the role of individual specialization in such variation. 

In this study, specialization is not limited to a diet consisting of a single prey item, but 

the observed specialization results from a consistent mixture of resource use over time, 

i.e. prey consumption and habitat use. This was the first study to estimate the proportion 

of individuals that are consistent in their foraging niche within a population of 

wandering albatross (chapter 1), evidencing that this characteristic may be widespread 

in other seabird species. In fact, it was shown that individual foraging consistency is 

also an important characteristic of Cory’s shearwater, a pelagic seabird species breeding 

in a neritic temperate region (chapter 3), and, surprisingly, also in a generalist and 

opportunistic species, the yellow-legged gull (chapter 4). This study also demonstrates 

that a wide-ranging species, the Cory’s shearwater, breeding in very close sub-colonies 

in an oceanic temperate region exhibited colony-specific foraging areas and, 

consequently, a high spatial foraging segregation between individuals of the two sub-

colonies during short foraging trips around the colony (chapter 2). Overall, this study 

demonstrates that inter-individual variation in resource use occurs within all the studied 

populations and species, which is necessary for natural selection and hence adaptation. 

By extension, individual specialization may play an important role in the foraging 

dynamic of the populations by reducing intra-specific competition, but further 

investigation is required in order to understand how ecological implications at 

individual level may relate to improvements in several traits such as reproductive 

success, body condition or foraging effort. Such implications could vary according to 

the species and spatio-temporal variation of the populations and respective incidence of 

individual specialization.  
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This study provides an overall picture of three different seabird species exploiting four 

different marine environments. Trophic relationships may differ depending on the 

exploited habitat and its respective food webs, translating into different resources used 

by individuals and, ultimately, in variation of their isotopic niche due to changes in 

trophic levels and baseline nitrogen and carbon signatures owing to an isotopic gradient 

(e.g. oceanic/neritic, pelagic/benthic, latitudinal) (Newsome et al. 2007). Responses of 

the seabird populations to changes in food availability within species with lower ability 

to switch diet (wandering albatross and Cory’s shearwater) compared to more 

opportunistic species (yellow-legged gull) emphasized their higher vulnerability. 

However, vulnerability may also be higher in species with smaller foraging ranges such 

as terns and gulls (Sterna spp. and Larus spp.), when compared with less range-

restricted species (Catry et al. 2013). In fact, the present study highlights that inter-

annual changes in marine prey availability around the colony during the breeding season 

influenced variation in niche width and foraging behaviour of a more range-restricted 

species, the yellow-legged gull, which apparently had an effect on the body condition of 

birds. Notwithstanding, inter-annual differences in prey availability also influenced 

niche width and spatial distribution at sea of Cory’s shearwater with apparent 

consequences in breeding success of birds, but no evidences were found that condition 

status of birds was affected. No relationships were found between foraging variables 

and bird condition status (body mass index and haematocrit values) of either Cory’s 

shearwater or wandering albatross. On the other hand, concerning yellow-legged gulls, 

positive relationships were found between body mass index and the consumption of 

Polybius henslowii (the main prey at Berlenga Island), and between trip duration and 

haematocrit. Therefore, this study supports the idea that Cory’s shearwaters, and 

possibly other procellariiform species such as the wandering albatross, invest on 

maintaining body condition disregarding parental investment and, consequently, 

reducing breeding success (Navarro & González-Solís 2007). 

Our knowledge on the distribution of marine species is normally provided by ship-based 

surveys, which are often logistically constrained, particularly concerning pelagic species 

patchily distributed over vast ocean areas (e.g. Hampton 1992). This study provides 

important clues for the use of each studied species as indicator of changes in marine 

environments. For instance, consistency in habitat use tended to be greater in males than 

in females of wandering albatrosses over long periods (i.e. during breeding and non-
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breeding seasons), thus males can reflect more reliable information on marine 

environment around the colonies along years. However, we must be cautious in the 

selection of breeding locations when using birds as indicators, because small-scale 

differences in breeding location could potentially lead to differences in the spatial 

distribution of birds at sea, even in wide-ranging species such as Cory’s shearwater. The 

strong positive relationship between spatial distribution at sea and niche width of Cory’s 

shearwater found in the present study supports the ‘niche variation hypothesis’ (Van 

Valen 1965) in the context of foraging ecology; this is an important finding as it 

confirmed that trophic niche expansion occurs via increased variation in spatial 

distribution at sea among individuals, and future studies may better assess each of these 

variables. This is the first study (to my knowledge) to provide tracking data for the 

yellow-legged gull, an opportunistic species usually exploiting both terrestrial and 

marine anthropogenic resources; data showed here, demonstrated that foraging 

behaviour of yellow-legged gulls during the breeding season is strongly associated with 

the availability of natural marine resources around the colony and, consequently, this 

species could be used as an indicator of marine changes at a local scale. Along with the 

potential use of studied species as bioindicators of marine environments, the relevance 

of this work for its management and conservation must be also highlighted.  

Some degree of individual foraging specialization was previously documented in a large 

range of marine taxa, such as invertebrates (e.g. Burrows and Hughes 1991), fishes (e.g. 

Matich et al. 2010), sea turtles (Thomson et al. 2012), marine mammals (e.g. Tinker, 

Bentall & Estes 2008) and seabirds. Among the latter, individual specialization over 

time on foraging strategies, locations or niches have been described (e.g. Votier et al. 

2010; Woo et al. 2008; this study), but remains unclear why there are such a high 

number of specialized and consistent individuals within seabird populations. Woo et al. 

(2008) suggest that the answer may be related to temporal changes in the predictability 

of resources and Svanbäck & Persson (2004) showed that individual specialization may 

fluctuate with population density through feedback mechanisms via resource levels. 

This study agrees with the hypothesis that individual variation in resources use may 

fluctuate over time (i.e. among years and periods) in a population of Cory’s shearwaters 

depending on resources availability; individual consistency in Cory’s shearwaters was 

higher during periods with a regular availability of food resources and lower when food 

availability was either abundant or scarce (chapter 3). However, no evidences of such 
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oscillations were found in the patterns of individual consistency of yellow-legged gulls 

between two years of contrasting food availability and oceanographic conditions 

(chapter 4). Fluctuations in individual consistency in resource use may occur depending 

if a seabird species/population is more or less specialized. Opportunist and generalist 

seabird species, like yellow-legged gulls, may present a more stable individual 

consistency due to the high plasticity of individual birds, which allows individual 

feeding preferences and adjustments to seasonal and inter-annual variations in resources 

by exploiting different foraging niches, as an exemplification of a type B generalization 

(see general introduction). On the other hand, in more specialized species like Cory’s 

shearwaters, fluctuations on consistency may be related to temporal changes in the 

availability and predictability of resources and thus, more vulnerable to extrinsic 

factors, as suggested by Woo et al. (2008) and Svanbäck & Persson (2004). Results also 

suggest that birds were more specialized over short periods of time than over long 

periods of time, presumably because prey distributions were more predictable over short 

time-scales (Weimerskirch 2007). Therefore, this study supports the hypothesis that 

many seabirds concentrate their efforts on persistent, predictable food sources and 

habitats, particularly over small temporal scales (Weimerskirch et al. 2005, 

Weimerskirch 2007). This was more evident in wandering albatrosses and less evident 

in yellow-legged gulls; in species such as wandering albatrosses this may have a greater 

impact because they are totally dependent on resources that they can find at sea, 

contrasting with yellow-legged gulls’ individual feeding preferences that may 

perpetuate over longer periods due to the exploitation of stable resources such as refuse 

dumps.  

The ecological implications of individual specialization at individual level remain 

unclear. Similarly to other studies of specialization in seabirds (Votier et al. 2004; Woo 

et al. 2008), no evidences were found that individual specialization over time confers an 

advantage in terms of birds’ condition status and breeding success. However, Votier et 

al. (2004) found some differences in the foraging effort and breeding performance (i.e. 

hatching dates) associated to dietary specialization of great skuas, a generalist species.  

The present study shows that individual consistency was high and stable across two 

years of contrasting food availability in yellow-legged gulls, although birds differed in 

foraging behaviour and body condition status. This suggests that the ecological 

implications of individual specialization at individual level could be more conspicuous 
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in generalist species (type B generalization) than in more specialized species, making 

them more suitable to study this issue. The rational is because inter-individual variance 

is supposedly higher in a generalist population type B than in a generalist population 

type A or a specialist population, leading to possible improvements in several ecological 

traits due to substantial advantages in specialization on certain resources (e.g. higher 

energetic content, lower foraging effort). Nevertheless, whatever are the ecological 

implications at the individual level, it was shown that individual specialization plays an 

important role in the foraging dynamic of seabird populations. Similarly to other studies 

(Svanbäck & Bolnick 2007, Matich et al. 2010, Vander Zanden et al. 2010), this study 

emphasises the increasing evidence that individual specialization may contribute to 

reduce intra-specific competition among individuals, particularly on seabird species.  

Future research 

As one validated hypothesis leads to many other hypotheses to be tested, this study 

raises an important number of specific hypotheses that deserve further investigation 

along with those that were tested and validated but require more support. The most 

prominent result is that many seabird populations may present a high number of 

specialized and consistent individuals that could not be stable across space or time, but 

it remains unclear which are the ecological implications at the individual and population 

level. This study supports the idea that individual specialization within a seabird’s 

population has an important role on its ecology, foraging behaviour and dynamics, 

namely in contributing to reduce intra-specific competition among individuals. 

However, I agree with Furness and Birkhead (1984) and Lewis et al. (2001) that this 

hypothesis is difficult to demonstrate in seabirds, because they are presumably not 

territorial at sea, and hence it requires further investigation. 

Following raised hypothesis is related with the dissimilar inter-annual patterns of 

individual consistency found in Cory’s shearwaters, but not in yellow-legged gulls. As 

previously discussed, individual consistency may fluctuate less in more generalist 

seabird species/populations than in more specialized species, but further studies must be 

conducted to validate this hypothesis. Another key-issue highlighted in this study is 

‘which conjecture is responsible for the fluctuation of individual consistency within a 

population?’ This study agrees that it could be the predictability of resources as 

suggested by Woo et al. (2008) and Svanbäck & Persson (2004), but specifically 
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suggests that individual consistency could be lower or absent when food resources are 

either very abundant or scarce around the colonies of more specialized populations, 

although this hypothesis also needs validation and requires further investigation. 

Together with the hypotheses raised in this study, many other unanswered ecological 

questions require future research as trophic interactions among individual conspecifics 

and their relationships with the marine environment are particularly complex. 

Examining the degree of individual specialization within seabirds’ populations provides 

a better understand of such relationships. As well as documenting the existence of 

individual specialization, further studies should explore the timescale at which an 

individual’s specialization is consistent, investigate the relative incidence in different 

populations, species and communities, and, finally, identify the mechanisms that 

generate inter-individual variation. Given the long history of diet analyses in seabird 

ecology, there are a substantial number of appropriate data sets waiting to be analyzed 

in conjunction with recent powerful techniques such as stable isotope analyses, logger 

devices and software that would permit a wide range of theoretical hypotheses for niche 

variation to be tested and validated.  
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