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Abstract

This thesis addresses the matching of deformable human face models into 2D images.

Two different approaches are detailed: generative and discriminative methods. Gener-

ative or holistic methods model the appearance/texture of all image pixels describing

the face by synthesizing the expected appearance (it builds synthetic versions of the tar-

get face). Discriminative or patch-based methods model the local correlations between

pixel values. Such approach uses an ensemble of local feature detectors all connected

by a shape regularization model. Typically, generative approaches can achieve higher

fitting accuracy, but discriminative methods perform a lot better in unseen images.

The Active Appearance Models (AAMs) are probably the most widely used gener-

ative technique. AAMs match parametric models of shape and appearance into new

images by solving a nonlinear optimization that minimizes the difference between a

synthetic template and the real appearance. The first part of this thesis describes the

2.5D AAM, an extension of the original 2D AAM that deals with a full perspective

projection model. The 2.5D AAM uses a 3D Point Distribution Model (PDM) and a

2D appearance model whose control points are defined by a perspective projection of

the PDM. Two model fitting algorithms and their computational efficient approxima-

tions are proposed: the Simultaneous Forwards Additive (SFA) and the Normalization

Forwards Additive (NFA). Robust solutions for the SFA and NFA are also proposed in

order to take into account the self-occlusion and/or partial occlusion of the face. Ex-

tensive results, involving the fitting convergence, fitting performance in unseen data,

robustness to occlusion, tracking performance and pose estimation are shown.

The second main part of this thesis concerns to discriminative methods such as

the Constrained Local Models (CLM) or the Active Shape Models (ASM), where an
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ensemble of local feature detectors are constrained to lie within the subspace spanned

by a PDM. Fitting such a model to an image typically involves two steps: (1) a local

search using a detector, obtaining response maps for each landmark and (2) a global

optimization that finds the shape parameters that jointly maximize all the detection re-

sponses. This work proposes: Discriminative Bayesian Active Shape Models (DBASM)

a new global optimization strategy, using a Bayesian approach, where the posterior dis-

tribution of the shape parameters are inferred in a maximum a posteriori (MAP) sense

by means of a Linear Dynamical System (LDS). The DBASM approach models the co-

variance of the latent variables i.e. it uses 2nd order statistics of the shape (and pose)

parameters. Later, Bayesian Active Shape Models (BASM) is presented. BASM is an

extension of the previous DBASM formulation where the prior distribution is explicitly

modeled by means of recursive Bayesian estimation. Extensive results are presented,

evaluating DBASM and BASM global optimization strategies, local face parts detec-

tors and tracking performance in several standard datasets. Qualitative results taken

from the challenging Labeled Faces in the Wild (LFW) dataset are also shown.

Finally, the last part of this thesis, addresses the identity and facial expression

recognition. Face geometry is extracted from input images using the AAM and low

dimensional manifolds were then derived using Laplacian EigenMaps (LE) resulting in

two types of manifolds, one for representing identity and the other for person-specific

facial expression. The identity and facial expression recognition system uses a two

stage approach: First, a Support Vector Machines (SVM) is used to establish identity

across expression changes, then the second stage deals with person-specific expression

recognition with a network of Hidden Markov Models (HMMs). Results taken from

people exhibiting the six basic expressions (happiness, sadness, anger, fear, surprise

and disgust) plus the neutral emotion are shown.

Keywords:

Generative Methods; Discriminative Methods; Non-Rigid Face Registration; Image

Alignment; Active Appearance Models (AAM); Active Shape Models (ASM); Identity

Recognition; Facial Expression Recognition.
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Resumo

Esta tese aborda a correspondência de modelos humanos de faces deformáveis em

imagens 2D. São apresentadas duas abordagens diferentes: métodos generativos e dis-

criminativos. Os modelos generativos ou hoĺısticos modelam a aparência/textura de

todos os pixeis que descrevem a face, sintetizando a aparência esperada (são criadas

versões sintéticas da face alvo). Os modelos discriminativos ou baseados em partes

modelam correlações locais entre valores de pixeis. Esta abordagem utiliza um con-

junto de detectores locais de caracteŕısticas, conectados por um modelo de regularização

geométrico. Normalmente, as abordagens generativas permitem obter uma maior pre-

cisão de ajuste do modelo, mas os métodos discriminativos funcionam bastante melhor

em imagens nunca antes vistas.

Os Modelos Activos de Aparência (AAMs) são provavelmente a técnica generativa

mais utilizada. Os AAMs ajustam modelos paramétricos de forma e aparência em

imagens, resolvendo uma optimização não linear que minimiza a diferença entre o

modelo sintético e a aparência real. A primeira parte desta tese descreve os AAM

2.5D, uma extensão do AAM original 2D que permite a utilização de um modelo de

projecção em perspectiva. Os AAM 2.5D utilizam um Modelo de Distribuição de

Pointos (PDM) e um modelo de aparência 2D cujos pontos de controlo são definidos

por uma projecção em perspectiva do PDM. Dois algoritmos de ajuste do modelo e as

suas aproximações eficientes são propostas: Simultaneous Forwards Additive (SFA) e

o Normalization Forwards Additive (NFA). Soluções robustas para o SFA e NFA, que

contemplam a oclusão parcial da face, são igualmente propostas. Resultados extensos,

envolvendo a convergência de ajuste, o desempenho em imagens nunca vistas, robustez

à oclusão, desempenho de seguimento e estimativa de pose são apresentados.
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A segunda parte desta da tese diz respeito os métodos discriminativos, tais como

os Modelos Locais com Restrições (CLM) ou os Modelos Activos de Forma (ASM),

onde um conjunto de detectores de caracteristicas locais estão restritos a pertencer ao

subespaço gerado por um PDM. O ajuste de um modelo deste tipo, envolve tipicamente

duas etápas: (1) uma pesquisa local utilizando um detector, obtendo mapas de resposta

para cada ponto de referência e (2) uma estratégia de optimização global que encontra

os parâmetros do PDM que permitem maximizar todas as respostas conjuntamente.

Neste trabalho é proposto o Discriminative Bayesian Active Shape Models (DBASM),

uma nova estratégia de optimização global que utiliza uma abordagem Bayesiana, onde

a distribuição a posteriori dos parâmetros de forma são inferidos por meio de um

sistema dinâmico linear. A abordagem DBASM modela a covariância das variáveis

latentes ou seja, é utilizado estat́ıstica de segunda ordem na modelação dos parâmetros.

Posteriormente é apresentada a formulação Bayesian Active Shape Models (BASM). O

BASM é uma extensão do DBASM, onde a distribuição a priori é explicitamente

modelada por meio de estimação Bayesiana recursiva. São apresentados resultados

extensos, avaliando as estratégias de optimização globais DBASM e BASM, detectores

locais de componentes da face, e desempenho de seguimento em várias bases de dados

padrão. Resultados qualitativos extráıdos da desafiante base de dados Labeled Faces

in the Wild (LFW) são também apresentados.

Finalmente, a última parte desta tese aborda o reconhecimento de idêntidade e

expressões faciais. A geometria da face é extráıda de imagens utilizando o AAM e

variedades de baixa dimensionalidade são derivadas utilizando Laplacian EigenMaps

(LE), obtendo-se dois tipos de variedades, uma para representar a idêntidade e a outra

para expressões faciais espećıficas de cada pessoa. A idêntidade e o sistema de recon-

hecimento de expressões faciais utiliza uma abordagem de duas fases: Num primeiro

estágio é utilizado uma Máquina de Vectores de Suporte (SVM) para determinar a

idêntidade, dedicando-se o segundo estágio ao reconhecimento de expressões. Este

estágio é especifico para cada pessoa e utiliza Modelos de Markov Escondidos (HMM).

São mostrados resultados obtidos em pessoas exibindo as seis expressões básicas (ale-

gria, tristeza, raiva, medo, surpresa e nojo), e ainda a emoção neutra.
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Chapter 1

Introduction

Non-rigid face registration or face alignment is the task of matching the shape of an

unseen face with the shape of a canonical model (a reference template). Such a registra-

tion (i.e. correspondence between images) is the key aspect in many modern computer

vision applications, such as advanced human computer interaction, face recognition,

facial expression analysis, tracking, head pose, gaze estimation, image coding or real-

istic graphical animation. Facial registration is a very challenging task because images

of faces present a large variability in shape, texture, pose and lighting conditions.

Furthermore, there is a high degree of complexity needed by a computer system to

understand what is a face. What does it mean? how does a face looks like? How does

it change by expression and pose variation? How can the face structure be extracted?

Nevertheless, the recovered information must be of some manageable size, because to

process raw data is unfeasible or requires a lot of computational effort.

In this thesis, face models were used to entirely describe the face characteristics.

Generally, a face model is a system where a set of input parameters generate a face out-

put. Model based techniques represent a promising approach where a model represent-

ing the phenomenon of interest is matched with unseen data by setting its parameters

accordingly. This kind of models can provide a high registration quality and simultane-

ously are able to represent the relevant facial information using a compact model (i.e.

with only a small set of parameters) which is significant to further recognition tasks.

Both identity and facial expression recognition problems are also discussed later in
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Chapter 1. Introduction 1.1. Motivation

this thesis. In typical applications, once the face model has been constructed, the first

step is to fit it to an input image, i.e. to find the face model parameters that maximize

the match between the model and the input image. Finally, the model parameters can

be passed to additional stages where several purposes are possible (e.g. measurement,

classification/recognition tasks).

1.1 Motivation

Aligning images of faces, using computer vision techniques, is a hard task. The human

face can exhibit large amounts of variability, such as variations of identity, expression,

pose, lighting, non-rigid motion and it can also present possibly incomplete evidence

(i.e. occlusion, that could be partial or self-occlusion due to its 3D structure). Model-

based methods offer possible solutions to these difficulties. Prior knowledge of a face

can be used to understand the confusion caused by its structural complexity, adding

extra tolerance to noisy or missing data. Since human faces are not all alike, we need

do deal with variability, which leads to deformable models.

The Point Distribution Model (PDM) [97] generates shapes that maintain its main

characteristics. It can deform to fit a range of examples and it can be constrained to

generate only plausible shapes, all this using a simple linear parametrization. More

important, given enough training data, the PDM is able to model unseen faces [79]

(i.e. to behave like a generic face model). However, the same can not be said for the

appearance/texture of a face. The variability in appearance, even for a small number

of faces, can reach a huge dimensional representation (e.g. a 10 by 10 sized image can

represent 28×10×10 possible combination of grey values - the world population is less

than 233).

In this context, two main appearance representation paradigms can be considered:

the generative and the discriminative approaches. Briefly, the generative methods

[99][38][100][105] are parametric models of appearance, similar to EigenFaces [59], that

are able to synthesize new instances. In fact, the matching a generative model con-

sists of building synthetic versions of the target face. The discriminative approaches

20



Chapter 1. Introduction 1.2. Generative vs Discriminative Approaches

[98][24][23][115][41], on the other hand, use an ensemble of feature detectors that aim

to search for each of the facial components. See a detailed explanation at section 1.2.

Building on the previous work [65], this thesis studies three important topics related

to deformable face models: (1) enhancement of generative aligning methods; (2) new

discriminative approach(es) and (3) identity and facial expression recognition tasks.

1.2 Generative vs Discriminative Approaches

The goal of parametric deformable fitting is to find the Point Distribution Model

(PDM) [97] parameters that best describe a face in a target image. The PDM, or

the shape model, is a linear parametric statistical technique that explains the geomet-

ric variation of shapes. The shape itself is defined as the quality of the configuration

of points (landmarks) which are invariant under some transformation, usually a sim-

ilarity transformation (i.e. translation, rotation and scaling) in the 2D or 3D cases.

The landmarks are commonly selected to be structural important features of the face

components (e.g. eye corners, eyebrows, mouth, nose, chin, etc) and the shape model

is learnt from a representative dataset. It consists of a normalization step, using Gen-

eralized Procrustes Analysis (GPA) [15] that removes the similarity effects, followed by

a Principal Components Analysis (PCA) [56]. Shape generation is based on a weighted

linear combination of the PCA eigenvectors where the shape parameters represent these

mixing weights.

Several model fitting strategies have been proposed, most of which can be cate-

gorized as being either generative (holistic) or discriminative (patch-based). These

differences are highlighted in figure 1.1 where examples of PDM shapes, generative

appearance and discriminative model are shown.

The holistic representations model the appearance of all image pixels describing the

face. The Active Appearance Models (AAMs) [99][38] are probably the most widely

used generative technique. AAMs match parametric models of shape (the PDM) and

appearance (also captured by a PCA) into new images by solving a nonlinear optimiza-

tion that minimizes the difference between the synthetic template and real appearance
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Point Distribution Model (PDM) Generative Appearance Model Discriminative Appearance Model

Figure 1.1: Parametric face alignment aims to find the parameters of a Point Dis-

tribution Model (PDM) that best describe the face of interest in an image. The left

image shows shape instances of the PDM (the first three modes of deformation). The

appearance/texture model could be either generative or discriminative. In a gener-

ative representation all the pixels belonging to the face are modeled (center image).

Discriminative methods only consider local correlation between pixels (right image).

(it builds synthetic versions of the target face). By synthesizing the expected appear-

ance template it achieves a high registration accuracy on the dataset it was trained for

but it performs poorly in unseen data (individuals not captured by the texture PCA).

If the appearance of a target individual does not lie in the subspace spanned by the

appearance basis, the AAM can not generate a ’good’ template and the model fitting

will not converge. The generative representation generalizes poorly when new faces of

interest exhibits large amounts of variability such as variations of identity, expression,

pose, lighting or non-rigid motion, due to the huge dimensional representation of the

appearance (learnt from limited data). This generalization problem gets worse by the

typically quadratic error norm (L2 norm) used. New data, that can be seen as outliers,

have a significant impact on the fitting quality. In fact, some solutions [80][54] that

deal with this generalization problem use robust error norms.

Discriminative or parts-based methods such as the Constrained Local Models (CLM)

[23][25] or the Active Shape Models (ASM) [93][98], can improve the model’s represen-

tation capacity, as it accounts only for local correlations between pixel values. Such
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approaches use an ensemble of local feature detectors (each landmark has it own ex-

pert detector), whose locations are constrained to lie within the subspace spanned by

the shape model (PDM), i.e. independent landmark measurements are made which

are then combined by enforcing a prior over their joint motion. Fitting such model

involves a two step fitting strategy: a local search and a global optimization. The first

step performs an exhaustive local search using a feature detector, obtaining response

maps for each landmark. Then, the global optimization finds the PDM parameters

that jointly maximize the detection responses at once.

In summary, generative approaches can achieve higher fitting accuracy, but discrim-

inative methods perform a lot better in unseen images.

1.3 Related Work

Model-based deformable models that are able to fit to new data instances have great

interest in computer vision. The contents of this thesis relates to techniques based on

Point Distribution Models (PDM). Several approaches have been proposed.

Generative Methods: The Active Contours Models (ACMs) or Snakes [55] are

energy minimizing models, that deform spline curves according to internal and external

forces. Internal forces keep the curve smooth while the external forces pull the curve

towards the local image features like lines or edges. In Active Blobs [91] the shape

deformation is based on physical properties such as stiffness and elasticity modeled

by Finite Element Methods (FEM). A single static texture template with illumination

modeling is used. The Active Appearance Models (AAM) [99], described earlier in

section 1.2, match parametric models of shape (PDM) and appearance (EigenFaces

[59]), minimizing the texture difference between the model and the covered target by

sets of image alignment warps (piecewise affine warps). The original fitting process

rely on a precomputed regression matrix. Several AAM extensions exist. In Direct

Appearance Models (DAM) [107] the authors noticed that one shape may contain many

textures but no texture is associated with more than one shape. The DAM predicts the
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shape directly from texture information. In Constrained Active Appearance Models

[94] the model matching is driven by a probabilistic framework (MAP formulation)

allowing to include prior constraints on point positions. Adaptive AAMs [9][96] update

the Jacobian matrix (considered fixed in the standard formulation [99]) improving

fitting performances for individuals outside the training set. In [9] linearly adapts the

gradient matrix during the convergence and [96] uses Quasi-Newton based methods.

The AAM has been reformulated with true analytical derived gradients by Matthews

et al.[38], achieving a better fitting accuracy and real-time performances using the In-

verse Compositional (IC) [83][84] approach. The Inverse Compositional method showed

that the image registration, which involves solving a nonlinear optimization, can be

done more efficiently using (inverse) compositional updates of the parameters (instead

of the original additive updates [11]). By reversing the roles of the image and the

model in the error function, both Jacobian and the Hessian matrices become constant

and can be precomputed. Several AAM fitting algorithm, using the IC approach, have

been proposed: the Simultaneous Inverse Compositional (SIC) [85], the Normalization

Inverse Compositional (NIC) [84] and the Project-Out (PO) [38]. The main difference

between them is the way the optimization is done, i.e. optimizing shape and appear-

ance parameters at once (SIC) or to project out the appearance variation optimizing

only the shape parameters (NIC, PO). The appearance variation effects can be re-

moved from the error image (NIC) or from the steepest descent images (PO). In this

last case, the optimization is done in a subspace in which the appearance variation can

be ignored. Adaptive Active Appearance Model (AAAM) [111][110] introduce a modi-

fication in the cost function that includes aligning multiple (previously aligned) frames

as an additional constrain. Better performance in video sequences was reported. Ro-

bust AAMs [80][54] extend the base formulations [99][38] to deal with occlusion (pixel

outliers) by minimizing robust error functions (e.g. Hubber, Tukey bisquare or Cauchy

functions) instead of the L2 norm, using Iteratively Reweighted Least Squares (IRLS).

A robust norm AAM evaluation was presented in [101]. Fourier Active Appearance

Models (FAAM) [82] presented an efficient joint alignment formulation, that fits an

AAM across multiple filter responses (Gabor filters). Their work has shown substan-
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tial improvement in performance under illumination variation.

Extensions to 3D have also been proposed [31][8][7][6], with the 3D Morphable

Model (3DMM) [105] one of the most popular. The 3DMMs shape model is built from

3D dense range scans, usually with several thousands of vertices and the appearance

model consists of 3D cylindrical folded textures. Due to the large amount of data,

the algorithm is quite slow taking minutes to fit the model to an image. Efficient

3DMMs, based on the IC algorithm, have also been proposed [90]. Still, its Jacobian

and Hessian are only locally valid and take an average of 30s per frame, making it

impracticable for real-time applications. Hybrid solutions, have also been proposed,

such as the combined 2D+3D AAM [43][37] that uses 2D and 3D concepts working

under a scaled orthographic projection model.

The AAMs have also been extended to 3D volumetric data (e.g. Magnetic Reso-

nance Imaging - MRI or ultrasound imaging). Several methods have been proposed,

mainly standard regression extensions [87][92][52] or IC based techniques [2][3].

Discriminative Methods: In this paradigm, both shape and appearance are

combined by constraining an ensemble of local feature detectors to lie within the sub-

space spanned by a PDM. As discussed in section 1.2, fitting such a model requires a

local search, using a feature detector, and a global optimization step that estimates the

PDM parameters. The original Active Shape Models (ASM) [98], also known as Smart

Snakes, uses as local detectors Gaussian models (mean and covariance) of grey level

profile gradients (sampled along normal scanlines). The ASM global optimization con-

sists of weighted peak responses taken from all landmarks (the matching was based in

minimizing Mahalanobis distances between the sampled and the model profiles). The

Pictorial Structures (PS) [63] introduced an efficient method of matching part-based

models to images. The PS does not use an explicit shape model (like the PDM). The

shape is encoded in a tree structure of geometric relationships between pairs of parts

and the global set of final feature locations is efficiently found by dynamic program-

ming. The PS is mainly a global search method and it has been shown less accurate

when compared to specialized methods that use a full shape model [23]. The Boosted
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Appearance Model (BAM) [108][109] uses a set of weak classifiers (Haar-like rectangu-

lar features) as an appearance model. These set of discriminative features are designed

to distinguish between correct and incorrect image alignment (piecewise-affine warps,

as the generative formulations). The classification boundary is learnt offline using a

boosting framework (GentleBoost). The BAM model fitting consists of iteratively up-

date the PDM parameters via gradient ascent such that the warped image achieves

the maximal score from the trained classifier. The Constrained Local Model (CLM)

[23][25], uses a joint model of shape and appearance, similar to the Active Appearance

Model (AAM) [99]. However, the appearance of a CLM takes the form of rectangular

regions surrounding individual features instead of triangulated patches covering the

full face. The feature templates are then individually matched into the image using

normalized correlation. The global step combines all the responses using the Nelder-

Mead simplex algorithm. Boosted Regression Active Shape Models (BR-ASM) [24]

describe the local landmark regions by a set of discriminative haar wavelets, learnt by

means of GentleBoost. Both boosted classification and boosted regression strategies

are evaluated (i.e. scoring the local alignment vs predicting the amount of local correc-

tion). Boosted regression as shown to have a wider range of convergence. In Convex

Quadratic Fitting (CQF) [115] the local detectors are based on a linear Support Vector

Machines (SVM) [106] built from aligned (positive) and misaligned (negative) patch

examples. The response maps are found by performing an exhaustive local search

around each current landmark estimate. The resulting responses are approximated by

convex surfaces (full Gaussian functions) and the global optimization step estimates

the PDM parameters that jointly combine all the Gaussians. Bayesian Constrained Lo-

cal Models (BCLM) [104] generalizes the CQF (maximum likelihood) into a Bayesian

formulation (MAP). In [46] a CQF similar approach is used, but the response maps are

approximated by a Mixture of Gaussians. The work in [47] includes additional facial

components detection to further constrain the PDM optimization. The component

detection system enforces search directions that are determined by ’direction’ classi-

fiers (Adaboost using Gabor features with eight orientations and five scales). Recently,

the Subspace Constrained Mean-Shift (SCMS) [41] use a nonparametric approxima-
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tion of the response maps (using the mean-shift algorithm). However, in the global

optimization the PDM parameters update is essentially a regularized projection of the

mean-shift vector for each landmark, meaning that the optimization is very sensitive

to outliers (when the mean-shift output is very far away from the correct landmark

location).
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1.4 Thesis Overview

This thesis is structured in three main parts:

The first main part, presented in chapter 2, describes the Gener-

ative 2.5D Active Appearance Models (AAM) [70] method-

ology, an extension of the original 2D AAM [99][38] algorithm,

extended to deal with a full perspective camera projection. The

building process of both the 3D shape and the 2D appearance models are reported in

detail, namely the linear 3D pose representation, the camera model, piecewise affine

warping procedure, the Jacobian of The Warp and the initial estimate problem.

Several 2.5D AAM fitting strategies are proposed: the Simultaneous Forwards Addi-

tive (SFA), the Normalization Forwards Additive (NFA), their efficient approximations

(ESFA and ENFA) and the robust to occlusions versions (RSFA, RNFA, ERSFA and

ERSFA). Extensive results, involving the fitting convergence, fitting performance in

unseen data, robustness to occlusion, tracking performance and pose estimation are

shown, comparing the 2.5D AAM model with the standard 2D AAM [38] and the com-

bined 2D+3D AAM [37] models.

The second main part, in chapter 3, entitled Discriminative

Bayesian Active Shape Models (DBASM), describes the two

discriminative algorithms developed. These approaches are closely

related to Constrained Local Models (CLM) [23][25] and/or Active

Shape Models (ASM) [93][98], where an ensemble of local feature

detectors are constrained to lie within the subspace spanned by the shape model.

This chapter presents a new Bayesian global optimization strategy (DBASM [71]),

where the posterior distribution of the shape parameters are inferred in a MAP sense

by means of a Linear Dynamical System (LDS). The likelihood term is extracted from

each one of the local response maps. Several local strategies used to represent these

responses, either parametric and nonparametric, are described in detail. After, the
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second order global alignment is explained. It consists of an inference step that finds

posterior distribution parameters, using a LDS.

Later, in section 3.5, the Bayesian Active Shape Models (BASM) [72] strategy is

presented. BASM is an extension of the previous DBASM formulation where the prior

distribution is explicitly modeled by means of recursive Bayesian estimation. Extensive

results are presented, evaluating DBASM and BASM global optimization strategies,

local face parts detectors and tracking performance in several standard datasets. Qual-

itative results taken from the challenging Labeled Faces in the Wild (LFW) dataset

are also shown.

The third main part, in chapter 4, addresses the Identity and

Facial Expression Recognition [66]. Face geometry is ex-

tracted from input images using the Active Appearance Models

(AAM) and low dimensional manifolds were then derived using

Laplacian EigenMaps (LE) resulting in two types of manifolds, one for model identity

and the other for person-specific facial expression. The identity and facial expres-

sion recognition system, uses a two stage approach: First, a Support Vector Machines

(SVM) [106] is used to establish identity across expression changes, while the sec-

ond stage deals with person-specific expression recognition with a network of Hidden

Markov Models (HMMs) [48]. Results taken from people exhibiting the six basic ex-

pressions (happiness, sadness, anger, fear, surprise, disgust) plus the neutral emotion

are shown.

Finally, the chapter 5, contains a general Conclusion and Discussion of the

overall work. As final note, some of the thesis related videos can be seen at the

webpage: http://www.isr.uc.pt/~pedromartins/Videos/PhD.
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1.5 Contributions

Briefly, the main contributions of this thesis are as follows:

1. Extension of the standard 2D Active Appearance Models (AAM) to deal with

a full perspective projection model. The 2.5D AAM combines a 3D Point Dis-

tribution Model (PDM) and a 2D appearance model whose control points are

defined by perspective projections of the PDM. The full six Degrees of Freedom

(6 DOF) of the face are modeled by continuously integrate small pose changes at

each frame since the beginning of tracking.

2. Fitting an AAM into a new image consists of optimizing the shape and appear-

ance parameters that best describe the target face. Typically, a nonlinear opti-

mization is involved, minimizing the difference between the synthetic appearance

template and the and real appearance sampled from the image. In this thesis,

we revisit the AAM model fitting strategies by carefully derive each new com-

ponent for the 2.5D AAM case. Two main fitting algorithms, the Simultaneous

Forwards Additive (SFA), the Normalization Forwards Additive (NFA) and their

computationally efficient approximations are proposed. Robust SFA and NFA

solutions, taking into account head partial and self occlusions are also proposed.

3. A novel discriminative face alignment technique is presented. The Discriminative

Bayesian Active Shape Model (DBASM) is a new global optimization strategy

that efficiently solves the global alignment. DBASM infers both the shape and the

pose parameters, in a maximum a posteriori (MAP) sense, by means of a Linear

Dynamical System (LDS). This approach models the covariance of the latent

variables, i.e. it maintains 2nd order statistics of the shape and pose parameters,

which represents the confidence in the current parameters estimate.

4. A second Bayesian global optimization strategy (Bayesian Active Shape Models -

BASM), an extension of DBASM, is also presented. BASM was designed to infer

both the PDM and the pose parameters, in a MAP sense, by explicitly modelling

the prior distribution (encoding the dynamic transitions of the PDM parameters).
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Using recursive Bayesian estimation we model the prior distribution of the data

as being Gaussian. The mean and covariance were assumed to be unknown and

are treated as random variables.

5. Finally, the last part of the thesis, proposes a two step identity and facial ex-

pression recognition approach that relies a low dimensional representation of the

geometry of the face. Face geometry is extracted from input images using the

Active Appearance Models (AAM) and low dimensional manifolds were then de-

rived using Laplacian EigenMaps (LE). The first stage uses a Support Vector

Machines (SVM) to establish identity across expression changes. The second

stage deals with person-specific facial expression recognition and is composed by

a network of several Hidden Markov Models (HMM), each one specialized in a

given facial emotion. The decision was made by the sequence that yielded the

highest probability.

1.6 Publications

The main material in this thesis has been published in the following conference pro-

ceedings (listing by chapter):

Chapter 2 - Generative 2.5D Active Appearance Models:

• Face Alignment Through 2.5D Active Appearance Models [70]

Pedro Martins, Rui Caseiro, Jorge Batista

BMVC 2010 - British Machine Vision Conference

• Generative Face Alignment Through 2.5D Active Appearance Models

Pedro Martins, Rui Caseiro, Jorge Batista

CVIU - Computer Vision and Image Understanding [Under Review - Minor Rev.]

Chapter 3 - Discriminative Bayesian Active Shape Models:

• Let the Shape Speak - Discriminative Face Alignment using Conjugate Priors [72]

Pedro Martins, Rui Caseiro, João F. Henriques, Jorge Batista

BMVC 2012 - British Machine Vision Conference [Oral Presentation]
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• Discriminative Bayesian Active Shape Models [71]

Pedro Martins, Rui Caseiro, João F. Henriques, Jorge Batista

ECCV 2012 - European Conference on Computer Vision

• Towards Generic Fitting Using Multiple Features Discriminative Active Appear-

ance Models [69]

Pedro Martins, Jorge Batista

ICIP 2010 - IEEE International Conference on Image Processing

• Towards Generic Fitting Using Discriminative Active Appearance Models Em-

bedded on a Riemannian Manifold [68]

Pedro Martins, Jorge Batista

VISAPP 2010 - International Conference on Computer Vision Theory and Ap-

plications

Chapter 4 - Identity and Facial Expression Recognition:

• Identity and Expression Recognition on Low Dimensional Manifolds [66]

Pedro Martins, Jorge Batista

ICIP 2009 - IEEE International Conference on Image Processing

• Simultaneous Identity and Expression Recognition Using Face Geometry on Low

Dimensional Manifolds [67]

Pedro Martins, Jorge Batista

IbPria 2009 - Iberian Conference on Pattern Recognition and Image Analysis
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Chapter 2

Generative 2.5D Active

Appearance Models

This chapter addresses the matching of a 3D deformable face model to 2D images through

a 2.5D Active Appearance Models (AAM). A 2.5D AAM that combines a 3D metric Point

Distribution Model (PDM) and a 2D appearance model, whose control points are defined

by a full perspective projection of the PDM, is presented. The advantage is that, assum-

ing a calibrated camera, 3D metric shapes can be retrieved from single view images. Two

model fitting algorithms and their computational efficient approximations are presented: the

Simultaneous Forwards Additive (SFA) and the Normalization Forwards Additive (NFA),

both based on the Lucas-Kanade framework. The SFA algorithm searches for shape and

appearance parameters simultaneously whereas the NFA projects out the appearance from

the error image and searches only for the shape parameters (SFA is therefore more accurate).

Robust solutions for the SFA and NFA are also described in order to take into account the

self-occlusion or partial occlusion. Several performance evaluations for the SFA, NFA and

theirs efficient approximations were performed. The experiments include evaluating the fre-

quency of converge, the fitting performance in unseen data and the tracking performance

in the FGNET Talking Face sequence. Results show that the 2.5D AAM can outperform

both the 2D+3D combined models and the 2D standard methods. The robust extensions to

occlusion were tested on synthetic sequences showing that the model can deal efficiently with

large head rotation.
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Publications

The contents of this chapter resulted in two main publications:

• Face Alignment Through 2.5D Active Appearance Models [70]

Pedro Martins, Rui Caseiro, Jorge Batista

BMVC 2010 - British Machine Vision Conference

• Generative Face Alignment Through 2.5D Active Appearance Models

Pedro Martins, Rui Caseiro, Jorge Batista

CVIU - Computer Vision and Image Understanding [Under Review - Minor Rev.]

2.1 Introduction

Facial image alignment is a key aspect in many computer vision applications, such as

advanced human computer interaction, face recognition, head pose estimation, facial

expression analysis, surveillance or realistic graphical animation. Detecting and track-

ing faces in video is a challenging task due to the non-rigidity structure of faces and

also due to the large variability in shape, texture, pose and lighting conditions of their

images.

The Active Appearance Model (AAM), introduced by [99], is one of the most ef-

fective face alignment technique with respect to fitting accuracy and efficiency. The

standard AAMs are intrinsically 2D models, combining a 2D Point Distribution Model

(PDM) [98][95] and a 2D appearance model into a single formulation using a fitting

process that rely on a precomputed regression matrix. The AAM has been reformu-

lated with true analytical derived gradients by Matthews et al.[38], achieving a better

fitting accuracy and real-time performances using the Inverse Compositional (IC) [83]

approach. Their solution is probably the fastest introduced so far, where its key to

efficiency is that both the Jacobian and the Hessian matrices are constant and can be

precomputed. A dual inverse compositional algorithm was also proposed in [4], dealing

with both the geometric and photometric transformations in image registration under

varying lighting conditions.
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Although the excellent performance of the 2D AAM, its convergence ability is

severely affected under large 3D head pose variations. To deal with this issue, several

solutions have been proposed [100][73][30][13]. View-Based AAM [100] uses multiple

2D AAMs taken from each view, while issues related to self-occlusion are solved by

using multiple view-specific templates. Similarly, the solution proposed by [73] uses

multiple view appearance models although combined with a sparse 3D PDM. In [16]

a IC algorithm for simultaneously fitting a 2D and a 3D PDM to multiple images is

proposed. Their fitting methodology, instead of relying on multiple independent opti-

mizations, is formulated in a single-objective optimization by enforcing the same 3D

model across all the views. In [30][31], a 3D PDM derived from the Candide model [40]

is used, being combined with a weak perspective model. In that work, head occlusions

are handled by exploiting facial texture symmetry and the model fitting is based on a

numerically estimated gradient.

Natural extensions to 3D have also been proposed [31][88][8][7][6], with the 3D

Morphable Model (3DMM) [105] one of the most popular. There are several differences

between AAMs and 3DMMs. The 3DMMs are built from 3D range scans, therefore

are usually constructed to be denser, including several thousands of vertices whereas

the AAMs use only a few tens. The appearance model consists of 3D cylindrical folded

textures that are densely aligned between all samples in the training set. This huge

alignment step involves a modified optical flow, designed to operate on cylindrical

coordinates, and smooth interpolation methods to fill in the registration holes. A

reflectance model (the Phong model) is also used, i.e. the appearance model also

uses surface normals. The large amount of data, due to the density of the 3DMMs,

makes the algorithm quite slow, requiring several minutes to fit per frame (50 minutes

using a SGI R10000 processor). Efficient 3DMMs, working under a scaled orthographic

projection model and based on the IC algorithm, have also been proposed [90]. Still,

its Jacobian and Hessian are only locally valid and take an average of 30s per frame to

fit, making it impracticable for real-time applications.

This chapter addresses the fitting of a 3D shape deformable face model from a single

view through 2.5D AAM. The 2.5D model can be viewed as a 3D sparse PDM whose
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projections define 2D control points for the 2D appearance. This means that 2.5D

data has components of both 2D image data and 3D volumetric shape data. Conse-

quently, the 2.5D model combines the advantages of both 3DMMs and 2D AAMs, in

particular the robustness to pose changes and the fitting speed. Face alignment on this

2.5D dimensional space will carry an extra level of complexity since the IC approach

is invalid in this case [86]. To deal with this problem, Matthews et al.[37] proposed a

2D+3D AAM work around by exploiting the 2D and 3D shape models simultaneously.

The shape instance generated by the 2D AAM is constrained to be consistent with the

projection of a 3D affine shape (a 3D PDM is used, build from non rigid structure

from motion [42]). This constraint is formulated as part of the cost function, where

a balancing weight is added and the value of this weighting constant is determined

manually. In [42] is also showed that any 2D projection of a 3D shape model can

be represented by a 2D shape model but at the expense of using up to 6 times more

parameters than using a 3D model. However, a weak perspective projection model was

used in this demonstration and this property does not hold for the perspective projec-

tion model. The solution described in this chapter explores the advantages of using a

single 3D model to constrain the possible 2D shape projection under the assumption

of a full perspective model.

2.1.1 Contributions

The proposed solution extend the Active Appearance Model approach to deal with

matching a 3D face shape model to a single 2D image using a perspective projection

model, whereas previous approaches have generally only dealt with scaled orthographic

projections. This approach uses a single 3D metric PDM combined with a full per-

spective model. The use of a full perspective model carries an important advantage

over the state of the art solutions. Assuming a calibrated camera, an estimation of

the 3D Euclidean shapes can be obtained from a single image and face tracking can

be performed by using cameras with short focal length and strong radial distortion

(e.g. a low cost webcam). Compared to [37], no balancing weight is required since the

approach is based on a single, low dimensional, 3D PDM.

36



Chapter 2. Generative 2.5D AAM 2.1. Introduction

Two algorithms to fit a 3D deformable shape model to a 2D image are proposed.

Both algorithms seek to minimize the difference between the projected model and the

target image using slightly different strategies: The Simultaneous Forwards Additive

(SFA) and the Normalization Forwards Additive (NFA), both based on the Lucas-

Kanade forwards additive [85] update step. The SFA algorithm is computationally

expensive but more accurate. It searches for shape and appearance parameters si-

multaneously whereas the NFA projects out the appearance from the error image and

searches only for the shape parameters. Although both solutions require evaluating

several components per iteration, efficient approximations are proposed leading to an

efficient update step. By comparison, our fitting solution is based on analytically de-

rived gradients (”true gradients”) rather than gradients approximated by numerical

differences as in [30], genetic algorithms in [7] or generic optimization methods like the

simplex in [8]. Finally, real-time performance can be achieving when using the efficient

approximations, unlike the 3DMMs [105][90]. Moreover the methods used to acquired

3D dense shapes and textures normally demand very time consuming 3D reconstruction

approaches or the use of expensive and cumbersome laser scan hardware.

Expanded solutions for the SFA and NFA are also proposed to handle self and

partial occlusion, namely the Robust Simultaneous Forwards Additive (RSFA) and the

Robust Normalization Forwards Additive (RNFA). These fitting methods use robust

weighting functions that combine outlier estimation with pixel visibility extracted from

the 3D pose.

In short, the main contributions in this chapter are as follows:

1. The use of a 2.5D AAM that combines a 3D metric Point Distribution Model

(PDM) and a 2D appearance model whose control points are defined by full

perspective projection of the PDM.

2. A unique shape model is used where all the six degrees of freedom (6 DOF) are

modeled using a simple linear parametric model.

3. Two model fitting algorithms and their computationally efficient approximations

are proposed: the Simultaneous Forwards Additive (SFA) and the Normalization
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Forwards Additive (NFA).

4. Robust solutions for the SFA and NFA are also proposed in order to take into

account head partial and self occlusions.

Other 2D AAM related extensions such as using Light-Invariant theory to deal

with external shading [27], multi-band appearance models [53][60][39][81] or modifying

the cost function in order to include the previously aligned frame as an additional

constraint (SICOV) [111] can be easily incorporated into the proposed algorithms with

expected improvements on the overall performance.

2.1.2 Outline

This chapter is organized as follows: Section 2.2 explains the 2.5D parametric model

building process. The 3D PDM and 2D appearance models are both described in

detail, as well as the full perspective camera model involved. Section 2.3 presents

two model fitting algorithms, their respective efficient approximations and also the

robust approaches to self and partial occlusion. In Section 2.4 is described how to

efficiently evaluate the Jacobian of the warp for both shape and pose parameters, and

the 2.5D AAM initial estimate problem is discussed in Section 2.5. Experimental

results comparing both robust and non-robust fitting performances are presented in

Section 2.6 and the results are discussed. Finally, Section 2.7 summarizes the chapter.

2.2 2.5D Parametric Models

The aim is to build a 2.5D AAM by combining a 3D metric Point Distribution Model

(PDM) with a 2D appearance model whose control points are defined by full perspective

projection of the PDM, as shown in figure 2.1. The 3D PDM is modeled by the shape

and pose parameters, p and q respectively, that uniquely define a shape s in the 3D

space whose projection into the image space sets 2D control points where the generated

texture (λ) is held.
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Figure 2.1: The 2.5D parametric model. The 3D shape model uniquely defines a

shape in the 3D space whose projection into the image space sets the 2D control points

to the generated texture by the appearance model.

2.2.1 The Shape Model

The shape of a non-rigid object can be expressed as a linear combination of a set of

n basis shapes plus a rigid mean shape vector. This representation is also known as

a Point Distribution Model (PDM) [95]. In PDM notation, each 3D v-point shape

is defined by the vertex locations of a mesh s = (X1, . . . , Xv, Y1, . . . , Yv, Z1, . . . , Zv)
T

and the training data consists of a set of annotated images of those shapes (usually by

hand). The shapes are then aligned into a common mean shape using a Generalized

Procrustes Analysis (GPA) [15] that removes location, scale and rotation effects (fig.

2.2).

Applying a Principal Components Analysis (PCA) [56] to the aligned shapes, results

the linear parametric model s = s0 + Φp, where p is a vector of shape configuration

weights, s0 is the mean shape (also refereed as the base mesh) and the basis Φ =

[φ1 · · ·φn] represent the allowed models of deformation. Figure 2.3 shows the visual

representation of the first three modes of variation.
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Figure 2.2: The shape alignment process using a Generalised Procrustes Analysis.

a) Shows the raw shape data and b) the aligned data. All shapes are aligned into a

common reference. The individual translation, scale and rotation effects are filtered.

In this work, the 3D PDM, including the full pose variation, is defined by

s = s0 +
n∑
i=1

piφi +
6∑
j=1

qjψ
(t)
j +

∫ t−1

0

6∑
j=1

qjψ
(t)
j ∂t︸ ︷︷ ︸

sψ

. (2.1)

where p = (p1, . . . , pn)T are the previous shape parameters, q = (q1, . . . , q6)T are the

pose parameters and sψ is the contribution of pose increments over time t. The first two

terms represent the PDM modes of deformation, the third term is the current estimated

pose, and the last term (sψ) acts as an offset that accumulates pose increments from

previous time frames. Note that ψ1, . . . , ψ6 are a special set of eigenvectors that are

only valid for small changes in pose. With this formulation, the shape model (eq.2.1)

holds the full 6 DOF between the camera referential and the target face by means of

incremental pose updates on the current mesh s.

Expressing a rotation of θ radians around an arbitrary axis w = (wx, wy, wz)
T by

the Rodrigues formula

R(w, θ) = I3 + ŵ sin(θ) + ŵ2(1− cos(θ)), ŵ =


0 −wz wy

wz 0 −wx
−wy wx 0

 , (2.2)

40



Chapter 2. Generative 2.5D AAM 2.2. 2.5D Parametric Models

the incremental rotation update, based on the linearization of eq.2.2 and holding the

first order terms, is given by

R(w, θ) ≈ I3 + ŵθ. (2.3)

By relaxing the constraint that w is of unit length, the θ coefficient can be dropped from

eq.2.3. According, the pose update that transforms each 3D point Pi = (Xi, Yi, Zi) of

the mesh s into P′i, is given by

P′i = R(w)Pi + Ti (2.4)

where Ti = (tx, ty, tz)
T represents the 3D translation components. Defining the pose

parameters vector as q = [wx, wy, wz, tx, ty, tz]
T , eq.2.4 can be written as

P′i =


0 Zi −Yi 1 0 0

−Zi 0 Xi 0 1 0

Yi −Xi 0 0 0 1

q, (2.5)

that describes how a single mesh point location is updated from Pi to P′i through the

pose vector q.

Extending eq.2.5 to all the 3D mesh points of shape s, the small updates of the pose

contribute to the current mesh through an amount of
∑6

j=1 ψjqj. Ψ = [ ψ1 . . . ψ6] is

the extended version of eq.2.5, incorporating all the v points of the mesh s, and being

expressed w.r.t. the updated base mesh (which is given by s0 + sψ). It can be seen as

a special set of pose eigenvectors and it is written as

Ψ(sψ) =



0 sz10 + sz1ψ −sy10 − s
y1
ψ 1 0 0

...
...

...
...

...
...

0 szv0 + szvψ −syv0 − s
yv
ψ 1 0 0

−sz10 − sz1ψ 0 sx1
0 + sx1

ψ 0 1 0
...

...
...

...
...

...

−szv0 − szvψ 0 sxv0 + sxvψ 0 1 0

sy10 + sy1ψ −sx1
0 − sx1

ψ 0 0 0 1
...

...
...

...
...

...

syv0 + syvψ −sxv0 − sxvψ 0 0 0 1


︸ ︷︷ ︸

ψ1,...,ψ6

. (2.6)
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Since Ψ is a function of sψ (since s0 is constant), it requires being evaluated every time

the mesh s is updated.

Finally, the last term of the PDM, sψ, consists in the integral form

sψ =

∫ t−1

0

6∑
j=1

qjψ
(t)
j ∂t, (2.7)

that collects small pose updates over time t. The sψ term plays a fundamental role. It

overcomes the previous constraint on the incremental pose update so that the 6DOF

can be successfully used and it allows updating the base mesh referential (as in eq.2.6)

so that correct head rotations can be modeled.

2.2.2 The Camera Model

Using a full perspective camera, the 3D shape s generated by the PDM (eq.2.1), is

projected into the image space as


w(x1 · · ·xv)

w(y1 · · · yv)

w · · ·w

 =


fx αs cx

0 fy cy

0 0 1


︸ ︷︷ ︸

K

[
R0 t0

]
︸ ︷︷ ︸

Base Pose


sx1 · · · sxv

sy1 · · · syv

sz1 · · · szv

1 · · · 1


︸ ︷︷ ︸
PDM shape (eq.2.1)

(2.8)

where K is the camera matrix (with fx, fy the focal length, cx, cy the principal point

and αs the skew parameter) and it is assumed to be known. R0 and t0 are the rigid

motion components between the camera frame and an extra referential where the PDM

is defined. We define this rigid motion as the base pose. Both R0 and t0 are fixed and

estimated during the PDM building process.

2.2.3 The Texture Model

The texture model is almost identical to the traditional 2D formulation [99], where each

training image is texture-warped into a common frame using a warping function W.

This function W(xp,p,q) is a piecewise affine warp and is a function of the shape and

pose parameters that define the 2D texture control points by means of the perspective
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Figure 2.3: The first three modes of variation of the 3D PDM. On top is shown the

3D base mesh s0p and the camera frame. The PDM is composed by a mean shape plus

a weighted eigenshape contribution. Each row of images shows the 2D image projection

of how the shape deforms by spanning the weights pi from −3σi to 3σi (i = 1, . . . , n).

The shape variances, σ2
i are captured when applying the PCA in the model building

process. The middle column represents the mean shape projection s0p when p = 0.
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projection of the mesh s (using eq.2.8). The warp is defined for all the projected pixels

xp
1 contained within the projected base mesh, s0p, and is given by

W(xp,p,q) = xpi + α
(
xpj − xpi

)
+ β

(
xpk − xpi

)
,∀ triangles ∈ s0p (2.9)

where xpi , xpj , xpk are triangle vertex’s coordinates and α, β are the barycentric

coordinates [12] for the pixel xp. The appearance model is obtained by applying a

low memory PCA on all the warped training images and it is represented by a base

appearance, A0(xp), plus a linear combination of m eigen images Ai(xp), as

A(xp) = A0(xp) +
m∑
i=1

λiAi(xp), xp ∈ s0p (2.10)

with λi being the appearance parameters. To model the gain and illumination offset

effects, two extra appearance images are added Am+1(xp) = A0(xp) and Am+2(xp) = 1

which imposes the need for orthonormalization [85].

2.2.4 3D to 2D Piecewise Affine Warp

The warp function W(xp,p,q), is a piecewise affine warp that is function of the shape

and pose parameters. The warp W(xp,p,q) involves a 3D to 2D transformation,

i.e. the 3D face mesh is generated from shape and pose parameters using eq.2.1 and

then is projected into the image plane by a full perspective model using eq.2.8. As

shown in figure 2.1, the converted 3D mesh points into 2D define the texture mapping

control points. The piecewise affine warp is composed by sets of affine warps between

corresponding triangles of the mesh. The base triangles are found by partitioning the

convex hull of the projected mean shape, s0p, using the Delaunay triangulation, and

each pixel belonging to a given triangle is mapped to its correspondent triangle using

barycentric coordinates (see supplementary material section for details).

Figure 2.4 shows an illustration of this warping procedure. The warped image

I(W(xp,p,q)) is computed by backwards warping the input image I(xp), therefore

preventing holes, using the current estimate of the warp W(xp,p,q). The warp is

done for all the pixels xp that lie within the projected base mesh s0p.

1During the remaining of the chapter, xp = [x, y]T defines a projected 3D point into the 2D image

space, by eq.2.8.
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(a) I(W(xp,p,q)) (b) Piecewise affine warp illustration (c) Input image I(xp)

Figure 2.4: Piecewise affine warping. The warped image I(W(xp,p,q)) is computed

by backwards warping the input image I(xp), using the current estimate of the warp

W(xp,p,q).

2.3 Model Fitting

Fitting the AAM consists in finding the set of parameters, p, q and λ that best

describe the face in the target image. Since the Inverse Compositional (IC) approach

[83] was proved in [86] to be invalid for the 2.5D case, two algorithms are proposed and

described: the Simultaneous Forwards Additive (SFA) and the Normalization Forwards

Additive (NFA), both following the additive formulation proposed by Lucas-Kanade

[84][11][64][20].

Both formulations include the 6DOF embedded in the PDM and just like the so-

lutions initially proposed in [84][85], the SFA searches for all the parameters simul-

taneously whereas the NFA projects out the appearance from the error image. In

section 2.3.3 it is shown how to maintain the fitting efficiency by making a simple

approximation, precomputing a couple of terms. The experimental evaluation, as will

be shown in section 2.6, proves that the proposed solution substantially improves the

fitting performance.
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2.3.1 Simultaneous Forwards Additive (SFA)

The SFA goal is to minimize the squared difference between the current instance of the

appearance and the target warped image. The optimization consists in solving

arg min
p,q,λ

∑
xp∈s0p

[
A0(xp) +

m+2∑
i=1

λiAi(xp)− I(W(xp,p,q))

]2

(2.11)

simultaneously for the shape, pose and appearance parameters, p, q and λ respectively.

I(W(xp,p,q)) represents the input image I(xp) warped by W(xp,p,q) as defined in

section 2.2.3. The nonlinear optimization in eq.2.11 can be solved by gradient descent

using additive updates to the parameters as

∑
x∈s0p

[A0(xp) +
m+2∑
i=1

(λi + ∆λi)Ai(xp)− I(W(xp,p + ∆p,q + ∆q))]2. (2.12)

Expanding and holding the first order Taylor terms gives2

∑
xp∈s0p

[
A0(xp) +

m+2∑
i=1

λiAi(xp) +
m+2∑
i=1

∆λiAi(xp)− I(W(xp,p,q)) · · ·

· · · − ∇I
∂W(xp,p,q)

∂p
∆p−∇I

∂W(xp,p,q)

∂q
∆q

]2

(2.13)

where ∇I
(
∇I ≡ ∇I(W(xp,p,q)) = (∂I(W(xp,p,q))

∂x
, ∂I(W(xp,p,q))

∂y
)
)

represents the gradi-

ents of the image I(xp) evaluated at W(xp,p,q), before the warp. ∇I is computed in

the coordinate frame of I(xp) and then warped back using the current warp estimate

W(xp,p,q). The terms ∂W(xp,p,q)

∂p
and ∂W(xp,p,q)

∂q
are Jacobians of the warp w.r.t. the

shape and pose parameters, respectively3.

Defining the combined parameters vector as r = [pT qT λT ]T and denoting the

(n+ 6 +m+ 2) Steepest Descent images SD(xp)sfa as

SD(xp)sfa =
[
∇I

∂W
∂p1

. . . ∇I
∂W
∂pn

∇I
∂W
∂q1

. . .∇I
∂W
∂q6

−A1(xp) . . . −Am+2(xp)
]
,

(2.14)

2The derivation of eq.2.13 can be found in supplementary material section.
3From now on, ∂W∂p and ∂W

∂q will be used as condensed representation for these Jacobians. Section

2.4 is totally dedicated to evaluate these Jacobians of the warp.
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eq.2.13 can be written as

∑
xp∈s0p

[
A0(xp) +

m+2∑
i=1

λiAi(xp)− I(W(xp,p,q))− SD(xp)sfa∆r

]2

. (2.15)

Taking the partial derivative and making-it equal to zero
(
∂(eq.2.15)
∂∆r

= 0
)

comes the

closed from solution for the combined parameters update as

∆r = H−1
sfa

∑
xp∈s0p

SD(xp)TsfaE(xp)sfa (2.16)

where

Hsfa =
∑

xp∈s0p

SD(xp)TsfaSD(xp)sfa (2.17)

represents the Gauss-Newton approximation to the Hessian matrix and E(xp)sfa rep-

resents the error image defined as

E(xp)sfa = A0(xp) +
m+2∑
i=1

λiAi(xp)− I(W(xp,p,q)). (2.18)

This procedure is done iteratively and the parameters are additively updated by

r← r + ∆r until ∆r ≤ ε or a maximum number of iterations is reached.

The SFA is a computationally expensive algorithm since the reevaluation of the

image warp I(W(xp,p,q)), the gradients before the warp ∇I(W(xp,p,q)), the er-

ror image E(xp)sfa, the Jacobians ∂W
∂p

, ∂W
∂q

, that depend on p and q respectively, the

SD(xp)sfa images and the Hessian matrix Hsfa and its inverse, are required for each

iteration. This makes SFA algorithm rather slow but very accurate since it searches

for shape, pose and appearance parameters simultaneously. Nevertheless, some com-

ponents of the Jacobians ∂W
∂p

, ∂W
∂q

are constant and can be precomputed (see section

2.4).

The algorithm 1 summarizes the SFA fitting method. Only at startup, a rough 3D

pose estimation is required (the initial q parameters), taken from a combination of face

detector (AdaBoost method [75]) and a 6DOF pose parameters extraction. See section

2.5 for details. The model starts with the initial shape parameters p = 0 (the mean

shape), λ = 0 (the mean appearance) and sψ = 0 (zero pose offset).
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Precompute:1

The 2.5D parametric models: (s0, Φ, Ψ) and (A0(xp),Ai(xp))2

Evaluate ∂W(xp,p)

∂xk
and ∂W(xp,p)

∂yk
for k = 1, . . . , v (see figure 2.8)3

repeat4

Update pose reference Ψ(sψ) with eq.2.65

Warp image I(xp) with W(xp,p,q), computing I(W(xp,p,q))6

Evaluate the gradients ∇I(xp) and warp to ∇I(W(xp,p,q))7

Compute the Error image E(xp)sfa using eq.2.188

Evaluate the Jacobian of the warp w.r.t shape ∂W(xp,p,q)

∂p
(eq.2.41)9

Evaluate the Jacobian of the warp w.r.t pose ∂W(xp,p,q)

∂q
(eq.2.44)10

Compute Steepest Descent images SD(xp)sfa using eq.2.1411

Find the Hessian matrix Hsfa and its inverse with eq.2.1712

Compute the parameters updates ∆r with eq.2.1613

Update parameters r← r + ∆r14

Update pose offset sψ ← sψ +
∑6

j=1 ψj∆qj15

until ||∆r|| ≤ ε or maximum number of iterations reached ;16

Algorithm 1: Simultaneous Forwards Additive (SFA).
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2.3.2 Normalization Forwards Additive (NFA)

A slightly different algorithm that minimizes the expression in eq.2.11 is the NFA

algorithm. An alternative way of dealing with the linear appearance variation is to

project out the appearance images Ai(xp) from the error image [85]. Denoting the

appearance into a single image by

A(xp,λ) = A0(xp) +
m+2∑
i=1

λiAi(xp), (2.19)

eq.2.11 can be written as

arg min
p,q,λ

∑
xp∈s0p

[A(xp,λ)− I(W(xp,p,q))]2 . (2.20)

Supposing, by now, that there is no appearance variation, which means that A(xp,λ) =

A0(xp), the (n+ 6) modified SDnfa(xp) images are represented, as

SD(xp)nfa =

[
∇I

∂W

∂p1

. . . ∇I
∂W

∂pn
∇I

∂W

∂q1

. . .∇I
∂W

∂q6

]
. (2.21)

Applying a first order Taylor expansion to eq.2.20 results

∑
xp∈s0p

A0(xp)− I(W(xp,p,q))− SDnfa(xp)

 ∆p

∆q

2

(2.22)

and following the same strategy used for the SFA approach, the error image and the

Hessian are, respectively, given by

E(xp)lk = A0(xp)− I(W(xp,p,q)) (2.23)

and

Hnfa =
∑

xp∈s0p

SD(xp)TnfaSD(xp)nfa. (2.24)

Dealing with the full appearance variation (A(xp,λ)) requires a normalization pro-

cedure. It is accomplished in the following two steps:

(1) Project the error image, E(x)lk, into the appearance basis by estimating the m+2

appearance parameters using

λi =
∑

xp∈s0p

Ai(xp)E(xp)lk, i = 1, . . . ,m+ 2 (2.25)
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(2) Remove the component of the error image in the direction of Ai(xp) finding the

normalized error image

Enfa(xp) = E(xp)lk −
m+2∑
i=1

λiAi(xp). (2.26)

The NFA method consists in normalizing the error image (that has appearance

A(xp,λ)) so that the component of the error image in the direction Ai(xp) is zero.

This step has the advantage of estimate the appearance parameters λ. Finally, the

parameters updates are given by ∆p

∆q

 = H−1
nfa

∑
xp∈s0p

SD(xp)TnfaE(xp)nfa. (2.27)

The NFA algorithm is less computationally expensive than the SFA, since it projects

out the appearance from the error image and searches only for the shape and pose pa-

rameters. As shown in algorithm 2, each iteration requires reevaluating the image warp

I(W(xp,p,q)), the warped gradients ∇I, the error image, E(xp)lk, the normalized er-

ror image E(xp)nfa, the Jacobians ∂W
∂p

, ∂W
∂q

, SD(xp)nfa and the Hessian H−1
nfa. However,

note that the SD(xp)nfa images are much smaller in number than the SD(xp)sfa, i.e.

(n << m), with typical values of n about 10 − 20 and m about 50 − 80. The NFA

algorithm performs much faster than the SFA.

2.3.3 Efficient Approximations to SFA and NFA

Some computational load can be reduced by eliminating the need to recompute the

image gradients at each iteration. Following the idea proposed by Hager et al.[34], and

assuming existence of good estimates for all the parameters p, q and λ (in eq.2.11),

the error image E(xp)sfa will be ≈ 0 and we can say that:(
A0(xp) +

m+2∑
i=1

λiAi(xp)

)
≈ I(W(xp,p,q))

⇓(
∇A0(xp) +

m+2∑
i=1

λi∇Ai(xp)

)
︸ ︷︷ ︸

∇Ai(xp,λ)

≈ ∇I(W(xp,p,q)). (2.28)
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Precompute:1

The 2.5D parametric models: (s0, Φ, Ψ) and (A0(xp),Ai(xp))2

Evaluate ∂W(xp,p)

∂xk
and ∂W(xp,p)

∂yk
for k = 1, . . . , v (see figure 2.8)3

repeat4

Update pose reference Ψ(sψ) with eq.2.65

Warp input image I with W(xp,p,q), computing I(W(xp,p,q))6

Evaluate the gradients ∇I(xp) and warp to ∇I(W(xp,p,q))7

Compute the Error image E(xp)lk, eq.2.238

Project-out the error image into Ai(xp) basis and estimate the appearance9

parameters λ using eq.2.25

Find the normalization error image E(xp)nfa with eq.2.2610

Evaluate the Jacobian of the warp w.r.t shape ∂W(xp,p,q)

∂p
(eq.2.41)11

Evaluate the Jacobian of the warp w.r.t pose ∂W(xp,p,q)

∂q
(eq.2.44)12

Compute Steepest Descent images SD(xp)nfa using eq.2.2113

Find the Hessian matrix Hnfa and its inverse14

Compute the parameters updates

 ∆p

∆q

 with eq.2.27
15

Update parameters p← p + ∆p and q← q + ∆q16

Update pose offset sψ ← sψ +
∑6

j=1 ψj∆qj17

until

∥∥∥∥∥∥ ∆p

∆q

∥∥∥∥∥∥ ≤ ε or maximum number of iterations reached ;
18

Algorithm 2: Normalization Forwards Additive (NFA).
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Under this approximation, the Efficient SFA/NFA Steepest Descent images from

eq.2.14 and eq.2.21, respectively, can be rewritten as

SD(xp)esfa =

[
∇Ai(xp,λ)

∂W

∂p1

. . . ∇Ai(xp,λ)
∂W

∂pn
∇Ai(xp,λ)

∂W

∂q1

. . .

. . .∇Ai(xp,λ)
∂W

∂q6

−A1(xp) . . . −Am+2(xp)

]
, (2.29)

and

SD(xp)enfa =
[
∇A0(xp)

∂W
∂p1

. . . ∇A0(xp)
∂W
∂pn

∇A0(xp)
∂W
∂q1

. . .∇A0(xp)
∂W
∂q6

]
. (2.30)

The approximation in eq.2.28, besides providing extra computation efficiency (the

gradients of the template ∇A0 can be precomputed when using ENFA and also the

gradients of all the eigen faces ∇Ai when using ESFA), it has the great advantage

of providing better stability to noise sensitivity since it avoids the reevaluation of

the gradients in the input image ∇I(W(xp,p,q)) and at both warps ∂I(W(xp,p,q))

∂x
,

∂I(W(xp,p,q))

∂y
of each iteration.

Figure 2.5 shows an example of the ESFA fitting method applied in a video sequence.

Each image shows three different views of the 3D mesh and input frame overlaid with

its current projection.

The algorithms 10 and 11, shown in A.2, summarize the detailed steps of the

Efficient versions of the Simultaneous and the Normalization Forwards Additive ap-

proaches.

2.3.4 Robust Fitting

Both SFA and NFA are data driven algorithms and the error image continuously drives

the models in further updates. In the case of occlusion, the error image accounts for all

the pixels equally (L2 norm) leading the model to diverge. To overcome this problem,

occlusion can be modeled as outlier pixels in the appearance model and handled by

robust fitting methods [80] [54], namely by Iteratively Reweighted Least Squares (IRLS)

where outliers are not accounted for the parameters updates.
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Figure 2.5: 2.5D AAM fitting using the Efficient Simultaneous Forwards Additive

(ESFA) algorithm. Each image shows the input frame overlaid with the projected

mesh and three different views of the current 3D mesh s. The full video sequence can

be seen at http://www.isr.uc.pt/~pedromartins/Videos/PhD.

The robust fitting seeks to minimize

arg min
p,q,λ

∑
xp∈s0p

ρ


A0(xp) +

m+2∑
i=1

λiAi(xp)− I(W(xp,p,q))︸ ︷︷ ︸
E(xp)sfa


2

, σxp

 (2.31)

where ρ(.) is a robust error function that has the purpose of weighting the large errors

on E(xp)sfa so that they have less significance in updating the fitting parameters. The

vector of scale parameters is defined as σxp and can be estimated from the error image,

E(xp)sfa. The notation σxp reflects that each pixel xp is treated independently i.e. the

decision if a pixel is occluded is not influenced by any other pixel.

Modified Robust Error Function

Several robust error functions can be used, such as the Hubber, the Tukey or the

Cauchy function (see [101] for an AAM related comparison). In this work a slightly

modified robust error function, based on the Talwar function, is used. The Talwar
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(a) Back-face Culling (b) 40◦ (c) 50◦ (d) 60◦ (e) 75◦ (f) 90◦

Figure 2.6: a) Back-face Culling illustration. n is the normal vector from a triangle

in mesh s and z is the view vector from the camera reference. Images (b)(c)(d)(e) show

the triangle visibility mask over the projected base mesh, s0p, for a head pan variation

of 40◦, 50◦, 60◦, 75◦ and 90◦ w.r.t the base pose using the Back-face Culling technique.

Non-visible triangles (in black) are not used to update the parameters.

function assigns a weight of 1 to inliers and 0 to outliers, according to

ρ(E(xp), σxp) =

 1, |E(xp)| ≤ σxp

0, |E(xp)| > σxp .
(2.32)

The scale parameter, σxp , can also be estimated from several ways. Since statistical

distribution of the error image is unknown it can be assumed that the error image has

a given percentage of outliers (e.g. 5% or 10%) and σxp is set such that the largest

user defined percentage of error pixels are rejected. Other solution, consists in estimate

σxp from the fitting error residuals using the Median of Absolute Deviations (MAD).

The scale estimation can be moved into the AAM model building process by simply

running, in an offline mode, a fitting algorithm for every (unoccluded) training image

and then estimate the MAD fitting error. Figure 2.7 shows robust fitting results using

the MAD as an estimate to the scale parameters σxp .

The 2.5D proposed model has the advantage of being able to estimate the visible

areas (say mesh triangles) in the image projection model. The robust function modi-

fication consists in using information about the triangles visibility over the projected

base mesh (by Back-face Culling) and select the invisible triangles by the camera to be

dropped. These occluded triangles are established as outliers and are not taken into

consideration in the fitting process. See figure 2.6.
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Robust Fitting Algorithms (RSFA and RNFA)

The derivation of the Robust versions of SFA and NFA algorithms, RSFA and RNFA

respectively, is similar to those of section 2.3, where the RSFA final parameters update

is given by

∆r = H−1
rsfa

∑
x∈s0p

ρ(E(xp)2
sfa)SD(xp)TsfaE(xp)sfa (2.33)

being ρ(E(xp)2
sfa) a weight mask that measures the confidence of each pixel over the

base mesh. The Hessian is defined as

Hrsfa =
∑

x∈s0p

ρ(E(xp)2
sfa)SD(xp)TsfaSD(xp)sfa. (2.34)

Algorithm 3 describes in detail the steps required for the RSFA.

In the same way, the Robust version of NFA (RNFA) includes a weight mask in the

Steepest Descent images, when evaluating the Hessian matrix,

Hrnfa =
∑

x∈s0p

ρ(E(xp)2
rnfa)SD(xp)TnfaSD(xp)nfa (2.35)

and the parameters updates become ∆p

∆q

 = H−1
rnfa

∑
x∈s0p

ρ(E(xp)2
rnfa)SD(xp)TnfaE(xp)rnfa (2.36)

with the error image being

E(xp)rnfa = A0(xp) +
m+2∑
i=1

λiAi(xp)− I(W(xp,p,q)). (2.37)

Just like in the NFA algorithm, the RNFA requires an appearance normalization

step for the error image. As referred in section 2.3.2, the goal of this normalization

step is to make the component of the error image in the direction of Ai(xp) to be

zero. The NFA method deals with this by simply projecting the error image into the

appearance basis (Ai(xp)). However the same approach can not be used in the robust

version. With the use of a robust error function, ρ(.), the appearance vectors are no

longer orthonormal.
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Precompute:1

The 2.5D parametric models: (s0, Φ, Ψ) and (A0(xp),Ai(xp))2

Evaluate ∂W(xp,p)

∂xk
and ∂W(xp,p)

∂yk
for k = 1, . . . , v (see figure 2.8)3

repeat4

Update pose reference Ψ(sψ) with eq.2.65

Warp input image I with W(xp,p,q), computing I(W(xp,p,q))6

Evaluate the gradients ∇I(xp) and warp to ∇I(W(xp,p,q))7

Evaluate triangle visibility by Back Face Culling8

Compute the Error image E(xp)sfa using eq.2.189

Estimate the weight mask ρ(E(xp)2
sfa)10

Evaluate the Jacobian of the warp w.r.t shape ∂W(xp,p,q)

∂p
(eq.2.41)11

Evaluate the Jacobian of the warp w.r.t pose ∂W(xp,p,q)

∂q
(eq.2.44)12

Compute Steepest Descent images SD(xp)sfa using eq.2.1413

Find the Hessian matrix Hrsfa and its inverse with eq.2.3414

Compute the parameters updates, ∆r, with eq.2.3315

Update parameters r← r + ∆r16

Update pose offset sψ ← sψ +
∑6

j=1 ψj∆qj17

until ||∆r|| ≤ ε or maximum number of iterations reached ;18

Algorithm 3: Robust Simultaneous Forwards Additive (RSFA).
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A slightly modified solution of the normalization step, initially proposed in [85], can

be used. Starting from the error image E(x)nfa, the goal is to compute the appearance

parameters update ∆λ that minimize

∑
xp∈s0p

ρ(E(xp)2
rnfa)

(
Ernfa(xp) +

m+2∑
i=1

∆λiAi(xp)

)2

, (2.38)

which has the least squares minimum given by

∆λ = H−1
A

∑
xp∈s0p

ρ(E(xp)2
rnfa)Ai(xp)TE(xp)rnfa (2.39)

where

HA =
∑

xp∈s0p

ρ(E(xp)2
rnfa)

m+2∑
i=1

Ai(xp)TAi(xp) (2.40)

is the appearance Hessian.

Algorithm 4 describe the RNFA algorithm steps, including the robust appearance

normalization.

Efficient Robust Approximations (ERSFA and ERNFA)

The efficient approximations presented in section 2.3.3 are also valid for the robust

fitting versions. The main changes w.r.t. the standard versions (RSFA and RNFA)

are the use of efficient Steepest Descent images in eqs.2.29 and 2.30, respectively. See

algorithms 12 and 13 in A.2 for details. Figure 2.7-top shows some occlusion robust

examples using the ERNFA algorithm in a video sequence. Dealing with self-occlusion

effects can be seen in figure 2.7-bottom where the ERSFA algorithm was used.

2.4 The Jacobian of The Warp

The Jacobians of the warp measure the rate of change of the destination in the warp

W(xp,p,q) w.r.t. the parameters p and q. Two Jacobians must be derived, ∂W(xp,p,q)

∂p

and ∂W(xp,p,q)

∂q
, w.r.t. shape and pose parameters, respectively.

57



Chapter 2. Generative 2.5D AAM 2.4. The Jacobian of The Warp

Precompute:1

The 2.5D parametric models: (s0, Φ, Ψ) and (A0(xp),Ai(xp))2

Evaluate ∂W(xp,p)

∂xk
and ∂W(xp,p)

∂yk
for k = 1, . . . , v (see figure 2.8)3

repeat4

Update pose reference Ψ(sψ) with eq.2.65

Warp input image I with W(xp,p,q), computing I(W(xp,p,q))6

Evaluate the gradients ∇I(xp) and warp to ∇I(W(xp,p,q))7

Evaluate triangle visibility by Back Face Culling8

Compute the Error image E(xp)rnfa using eq.2.379

Estimate the weight mask ρ(E(xp)2
rnfa)10

Find the Hessian appearance HA with eq.2.4011

Compute the appearance parameters update ∆λ with eq.2.3912

Update appearance parameters λ← λ + ∆λ13

Recompute E(xp)rnfa using eq.2.37 (normalized error image)14

Evaluate the Jacobian of the warp w.r.t shape ∂W(xp,p,q)

∂p
(eq.2.41)15

Evaluate the Jacobian of the warp w.r.t pose ∂W(xp,p,q)

∂q
(eq.2.44)16

Compute Steepest Descent images SD(xp)nfa using eq.2.2117

Find the Hessian matrix Hrnfa and its inverse with eq.2.3518

Compute the parameters updates

 ∆p

∆q

 with eq.2.36
19

Update parameters p← p + ∆p and q← q + ∆q20

Update pose offset sψ ← sψ +
∑6

j=1 ψj∆qj21

until

∥∥∥∥∥∥ ∆p

∆q

∥∥∥∥∥∥ ≤ ε or maximum number of iterations reached ;
22

Algorithm 4: Robust Normalization Forwards Additive (RNFA).
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Figure 2.7: The top images show the robust 2.5D AAM fitting using the ERNFA

algorithm. The weight mask ρ(E(xp)2
rnfa) is shown on the right. The scale parameters

σxp were estimated assuming that there always exists 10% of outliers in the error

image. On bottom images the ERSFA algorithm was used with σxp estimated from

the fitting error MAD. Both full video sequences can be seen at http://www.isr.uc.

pt/~pedromartins/Videos/PhD.

2.4.1 Jacobian of The Warp for The Shape Parameters

The Jacobian of the warp for the shape parameters can be decomposed by the chain

rule as

∂W(xp,p,q)

∂p
=

v∑
k=1

[
∂W(xp,p,q)

∂xk

∂xk
∂p

+
∂W(xp,p,q)

∂yk

∂yk
∂p

]
. (2.41)

Taking eq.2.9, comes that ∂W(xp,p,q)

∂xk
= (1− α − β, 0) and ∂W(xp,p,q)

∂yk
= (0, 1− α − β).

These Jacobians are images w.r.t. a particular vertex and have the same size of the

projected base mesh s0p. Figure 2.8 shows examples of these images for some landmarks

(note the x and y components). The Jacobians are only non zero around the neighbor

triangles of vertex kth, taking the maximum value of 1 at the vertex location and

decaying linearly with a rate of (1− α− β) to the other surrounding vertex’s.
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x

y
(a) ∂W

∂x30

∂W
∂y30

(b) ∂W
∂x40

∂W
∂y40

(c) ∂W
∂x56

∂W
∂x56

Figure 2.8: (a) (b) (c) Shows ∂W(xp,p,q)

∂xk
and ∂W(xp,p,q)

∂yk
for the landmarks 30, 40

and 56, respectively. Top and bottom rows represent Wx(xp,p,q) and Wy(xp,p,q)

components. For clarity the shown images are black/white inverted. The location of

the vertex has a maximum value and decays linearly to its neighbors. Note the highly

sparse matrices shown.

The remaining terms ∂xk
∂pi

and ∂yk
∂pi

are both scalars, found by combining eq.2.8 and

eq.2.1, as


wxk

wyk

w

 = K
[

R0 t0

]
︸ ︷︷ ︸

M0


sxk0 + piφ

xk
i +

∑n
j 6=i pjφ

xk
j +

∑6
j=1 qjΨ

xk
j + sxkψ

syk0 + piφ
yk
i +

∑n
j 6=i pjφ

yk
j +

∑6
j=1 qjΨ

yk
j + sykψ

szk0 + piφ
zk
i +

∑n
j 6=i pjφ

zk
j +

∑6
j=1 qjΨ

zk
j + szkψ

1

 . (2.42)

To compute ∂xk
∂pi

we take the differential ∂
∂pi

(wxk
w

) from eq.2.42, and do the same for

∂yk
∂pi

= ∂
∂pi

(wyk
w

), resulting in

∂xk
∂pi

=
ξ1Ξ3 − Ξ1ξ3

(Ξ3)2
and

∂yk
∂pi

=
ξ2Ξ3 − Ξ2ξ3

(Ξ3)2
(2.43)

with i = 1, . . . , n (shape parameters) and k = 1, . . . , v (landmarks). The ξ1, ξ2, ξ3,Ξ1,Ξ2

and Ξ3 are all scalars values defined in A.1. Note that the amount
∑n

j 6=i pjφj (non-rigid

shape deformation excluding the ith parameter) is constant when taking the ith shape

parameter differential.

As previously mentioned, ∂xk
∂pi

and ∂yk
∂pi

are both scalars and depend on p and q

by means of Ξ1, Ξ2 and Ξ3. Reevaluating the Jacobian of the warp for the shape

60



Chapter 2. Generative 2.5D AAM 2.4. The Jacobian of The Warp

parameters only requires evaluating eqs.2.43 and multiplying it by the precomputed

components ∂W(xp,p,q)

∂xk
and ∂W(xp,p,q)

∂yk
as presented in eq.2.41. The projection matrix,

M0, is constant and can be precomputed since a calibrated camera was assumed.

2.4.2 Jacobian of The Warp for The Pose Parameters

The same approach is taken to evaluate the Jacobian of the warp for the pose param-

eters, that is given by

∂W(xp,p,q)

∂q
=

v∑
k=1

[
∂W(xp,p,q)

∂xk

∂xk
∂q

+
∂W(xp,p,q)

∂yk

∂yk
∂q

]
. (2.44)

A chain rule decomposition is used and the new terms ∂xk
∂qj

and ∂yk
∂qj

, again both scalars,

are found by combining eq.2.8 with eq.2.1, leading to


wxk

wyk

w

 = M0


sxk0 +

∑n
i=1 piφ

xk
i + qjψ

xk
j +

∑
i 6=j qiψ

xk
i + sxkψ

syk0 +
∑n

i=1 piφ
yk
i + qjψ

yk
j +

∑
i 6=j qiψ

yk
i + sykψ

szk0 +
∑n

i=1 piφ
zk
i + qjψ

zk
j +

∑
i 6=j qiψ

zk
i + szkψ

1

 . (2.45)

In the same way, ∂xk
∂qj

= ∂
∂qj

(wxk
w

) and ∂yk
∂qj

= ∂
∂qj

(wyk
w

), resulting in

∂xk
∂qj

=
ξ4Ξ6 − Ξ4ξ6

(Ξ6)2
and

∂yk
∂qj

=
ξ5Ξ6 − Ξ5ξ6

(Ξ6)2
(2.46)

with j = 1, . . . , 6 and k = 1, . . . , v. The scalar terms ξ4, ξ5, ξ6,Ξ4,Ξ5,Ξ6 are also defined

in A.1. Just like in section 2.4.1, the terms ∂xk
∂qj

and ∂yk
∂qj

depend both on p and q by

means of Ξ4, Ξ5 and Ξ6.

Summarizing, both the Jacobians of the warp depend on the current shape and

pose parameters, so they are required to be recomputed at every iteration. However,

both common components ∂W(xp,p,q)

∂xk
and ∂W(xp,p,q)

∂yk
depend only on the configuration

of the projected base mesh, s0p , and thus can be precomputed and efficiently stored

as sparse matrices, reducing the overall computation. At the fitting stage only the

computation of ∂xk
∂pi

, ∂yk
∂pi

, ∂xk
∂qj

and ∂yk
∂qj

, is required, being all scalar values.
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Figure 2.9: The figure shows the coordinate frames involved in the 2.5D AAM. The

base pose T0 is the transformation between the camera and the base mesh s0, the

TPOSIT is the transformation that results from applying POSIT algorithm and TAAM

is the initial transformation required to startup the fitting algorithm. Note that the

AAM fitting solves the pose parameters w.r.t. the updated base pose referential and

not to the camera.

2.5 The Initial Estimate

The 2.5D AAM requires a rough head pose estimation to establish the initial 3D pose

parameters q. From the monocular point of view, estimate the head pose consists on

recovering the camera position and relative orientation to a known set of 3D points.

In this work the 6DOF pose parameters are estimated using a combination of Ad-

aboost [75] face detection with the Pose from Orthography and Scaling with ITerations

(POSIT) [26]. The POSIT algorithm estimates the 6DOF given a set of 3D points (a

rigid model) and corresponding 2D image projections. The base mesh s0 is used as

the required 3D rigid model and the 2D correspondences are given by the base mesh

projection s0p, scale adjusted to the average AdaBoost detection.

Figure 2.9 shows the different coordinate frames involved in the 2.5D AAM. The

camera, the current head position and the base pose referential are shown. The base

pose reference, R0, t0, in homogeneous coordinates and represented as T0, is established

during the AAM building process where the training shapes are all aligned into s0.
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The pose estimated by the combination of face detection and POSIT is represented

as TPOSIT . The initial pose TAAM is the rigid transformation between the base pose

reference and the current head position. Note that the AAM fitting solves the pose

parameters w.r.t. the updated base pose referential (s0 + sψ) and not to the camera

(applying a further base pose transformation is required to get the 3D mesh points

w.r.t the camera frame).

As shown in figure 2.9 the reference frames follow the relationship, T0TAAM =

TPOSIT , that solving for TAAM , gives

TAAM = T−1
0 TPOSIT . (2.47)

2.6 Experimental Results

The 3D shape model (PDM) can be acquired by several ways such as using laser

range scans, time-of-flight cameras (ToF), Structure from Motion (SfM) techniques

and of course multi-camera networks. The 3D PDM in this work was built using

a fully calibrated stereo system where the 2D shape on each view was extracted by

fitting a 2D AAM [38] with v = 58 landmarks (see supplementary material section A.5

for details). For evaluation purposes a 2.5D AAM was constructed from a set of 20

individuals collected from our institution. A total of 20 images for each individual (10

left + 10 right) exhibiting several expressions and head poses were used in both shape

and texture model building process, as described in section 2.2. The 2.5D AAM held

n = 12 shape parameters, m = 79 eigenfaces and the projected base mesh has 68970

gray level pixels (i.e. the figure 2.4-a has size 285× 242 pixels).

This evaluation compares the projective 2.5D AAM (NFA, SFA, ENFA, and ESFA

algorithms) against the state-of-the-art 2D AAM algorithms (Project Out - PO [38]

and Simultaneous Inverse Compositional - SIC [79]) and the combined 2D+3D AAM

[37] (2D+3D Project Out and 2D+3D Simultaneous Inverse Compositional). Briefly,

the 2D+3D AAM [37] uses two shape models: a 2D PDM and a 3D affine PDM built

from Non-Rigid Structure-from-Motion (NRSfM). The optimization goal has two main

parts (see eq.39 from [37]): the first part deals with pixel intensity matching by opti-
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mizing a standard 2D AAM (shape, similarity and appearance parameters) while the

second part is a (heavily weighted) soft constrain that enforces the matching between

a 3D PDM (scaled orthographic) projection and the current 2D model instance. This

constraint ensures that the 2D model deforms according to a valid 3D face projection.

The main differences between the 2.5D model and the 2D+3D AAM are: (1) The

camera projection models. The 2.5D AAM uses a full perspective projection (allowing

to retrieve Euclidean metric 3D shapes) whereas the 2D+3D AAM uses a scaled or-

thographic projection model. (2) The model is less complex, using just a single PDM

instead of two, and it does not require the NRSfM techniques. (3) Finally, the 2D+3D

AAM requires to manually tune the weight parameter K that balances the two main

terms.

To effectively compare the 2.5D AAM with the 2D+3D AAM an additional 3D

(affine) PDM, built from NRSfM, is required. The NRSfM data consists in short video

sequences (around 200 frames) taken from the same 20 individuals exhibiting several

facial expressions and pose changes. The 2D SIC algorithm was used to fit all the

sequences (around 4000 frames in total). Several well known NRSfM algorithms were

tested, namely the Xiao-Kanade’s method [42]4 (the same approach used in 2D+3D

AAM), the Torresani et al. technique that models the shape by a Linear Dynamical

System [49] and the NRSfM that uses Discrete Cosine Transform (DCT) basis [36]. In

the 2D+3D AAM experiments it was used the state-of-art NRSfM-DCT technique [36]

as it proves to be the most reliable in the conducted experiments. Note that, extra

Procrustes alignment and PCA are required since no standard basis are given.

2.6.1 Fitting Robustness and Rate of Convergence

To evaluate the fitting robustness and the rate of convergence of the proposed solu-

tions, the performance evaluation scheme presented in [38][37] was adopted. Figure

2.10 shows the results obtained by comparing the fitting robustness and rate of con-

vergence of all the non-robust 2.5D algorithms (NFA, SFA, ENFA, ESFA), the 2D+3D

algorithms (PO 2D+3D, SIC 2D+3D) and the standard 2D algorithms (PO 2D, SIC

4Code provided by Vincent’s Structure from Motion Toolbox [78]
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Figure 2.10: Fitting and convergence robustness evaluation between the 2.5D, 2D+3D

[37] and 2D algorithms [38]. Best viewed in color.

2D).

These experiments measure the performance of the algorithms in two ways: (1)

the average frequency of convergence i.e. the number of times each algorithm has

converged vs. initial perturbation; (2) the average rate of convergence i.e. the 2D

Root Mean Square (RMS) error in the mesh point location vs. iteration number (if

convergence was accomplished). For these experiments, each AAM was perturbed

from a set of ground truth parameters using independent Gaussian distributions with

variance equal to a multiple of a given eigenvalue mode, and tested for convergence.

Formally, the parameters disturbance at each experiment was given by

p = pGT +N (0, kσp) (2.48)

λ = λGT +N (0, kσλ) (2.49)

with an increasing factor k =]0, 0.1, 0.2, . . . , 3.9, 4]. The σp and σλ are the standard

deviations from the shape and appearance parameters, respectively. The variances σ2
p

and σ2
λ were estimated at the model building process when applying PCA to both

shape and texture models.

The ground truth data was generated using the same AAM by a combination of
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tracking (say fitting in every frame) / manual initialization / visual confirmation on

several small sequences taken from each individual. A subset of 20 random selected

frames, from each sequence, was used for further testing, accounting a total of 400

frames. For each testing frame a set of 20 trials was generated by perturbing the

shape and appearance parameters simultaneously from the ground-truth (20 trials ×

40 noise increasing perturbations experiments per test image). All the algorithms were

executed and their convergence ability was evaluated by comparing the final 2D RMS

error shape with the ground-truth. A threshold of 1.0 RMS pixels was used to define

convergence.

Analyzing figure 2.10, it can be concluded that both 2.5D and 2D+3D fitting al-

gorithms are more robust than 2D algorithms (PO and SIC) and they converge faster,

taking fewer iterations to converge. The 3D PDM is inherently higher dimensional

than the 2D PDM, however, it uses less 3D shape parameters than the 2D PDM to

represent the same visual phenomenon (our PDM has only 12 shape parameters). The

3D PDM is also less prone to local minima because a 2D model can easily generate

physically unfeasible shapes, i.e. spanning the 2D PDM parameters can produce a

shape that is not even possible, as described in [42][37]. Figure 2.10 also shows that

our projective 2.5D AAM performs better than the 2D+3D versions 5.

Besides the full perspective model addition, the 2.5D model outperforms the 2D+3D

versions, as it has the following advantages: (1) The 2.5D AAM is less dimensional,

so less prone to local minima, e.g. the NFA solves (n+ 6) parameters whereas the PO

2D+3D solves (n2D+4+n+6), namely the 2D shape parameters (n2D), the 4 similarity

parameters, the 3D shape parameters (n) and the 6 scaled orthographic camera pa-

rameters (the scale, 3D rotations and the 2D translations). (2) The optimization uses

more accurate gradients. The forwards additive approaches when compared with the

inverse compositional (in particular the 2D model from the 2D+3D AAM) produce less

5Notice that the methods PO 2D+3D, NFA, ENFA (normalization versions) and SIC 2D+3D,

SFA, ESFA (simultaneous versions) should be compared among themselves due to its optimization

strategies similarities, i.e. to project out the appearance variation optimizing only the shape and pose

or optimizing all parameters at once, respectively.
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second order terms in the Taylor series approximation (eq.2.13). The main optimiza-

tion neglects more terms if an inverse compositional method is used [64]. This means

that our forwards additive 2.5D use gradients that are closer to the ”true” gradients,

being therefore more accurate and take less iterations to converge (as shown by figure

2.10-b). (3) As previously mentioned, the 2D+3D AAM requires tuning a constant K

that weights the 3D affine projection constraint. When K is too small (soft constant)

the combined model fits a 2D and a 3D shape independently (the 3D projection and

the 2D model do not converge). However, if K is set to be too large, e.g. 106, the gra-

dient descent updates (times the inverse of the Hessian) are too small, and the model

requires a lot more iterations to converge. In all experiments K was set to K = 10000.

The 2.5D model does not have this weighting issue. (4) The 2D+3D AAM requires to

compute Jacobians for the constraints w.r.t. the 2D shape and pose parameters (∂Fti
∂p

Jp

and ∂Fti
∂q

Jq), which are not required for the 2.5D model. Furthermore, these Jacobians

are numerically estimated. (5) A minor, but still an advantage, is that our model do

not require to inverse compose the warp at each iteration since the parameters update

is additive. Both 2D versions and consequently the 2D+3D versions require to inverse

compose the warp at each iteration, which still is an approximation (averaging the

neighbor triangles) since no true inverse exists [38]. (6) Finally, the 2.5D AAM is a

lot more simple and easier to implement when compared to the 2D+3D model.

The results also show that the efficient versions (ENFA, ESFA) perform even better

than the standard formulations. The main reason for this performance increase is the

reduced noise influence that comes out from avoiding the reevaluation of the gradients

of the input image in each iteration, as described in section 2.3.3. The Efficient-

SFA, that searches simultaneously for all the parameters, has proved to be the best

algorithm w.r.t. convergence speed showing high fitting success rates even from far

initial estimates.

2.6.2 Performance in Unseen Data

The AAM is a generative (holistic) method as it models the appearance of all image

pixels within the face. By synthesizing the expected appearance template it achieves
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a high registration accuracy on the dataset it was trained for but it performs poorly

in unseen data (individuals not captured by the texture PCA). If the appearance of a

target individual does not lie in the subspace spanned by Ai(xp), the AAM can not

generate a good template and the model fitting will not converge.

The AAM fitting performance in unseen data was evaluated by running a series

of experiments, changing the amount of training images in the model building pro-

cess. The IMM [57] database was used, as it consists of 240 annotated images (58

ground truth landmarks) of 40 different human faces presenting different head pose,

illumination and facial expression.

All the fitting algorithms that previously appeared in section 2.6.1 were used in

this evaluation, namely PO 2D, SIC 2D, PO 2D+3D, SIC 2D+3D, NFA, SFA, ENFA

and SFA. Four main experiments were conducted, training all the algorithms with the

full sized dataset (100% - 240 images), then 75% (180 images), 50% (120 images) and

finally only 25% (60 images) of the dataset. Then, all the runs were evaluated by fitting

the entire IMM set.

Figure 2.11 shows the fitting performance curves for these four experiments. These

are standard curves that show the percentage of faces that converge with less or equal

Root Mean Square (RMS) error amount. The table in the same figure shows quan-

titative values taken by sampling the graphics using a fixed RMS error amount (7.5

pixels - represented as the vertical line in the graphics). As expected, all the methods

reveals a fitting performance decrease (less images converge for the same RMS value)

as the appearance representation power decrease. The relative performance between

all the methods are conform to section 2.6.1. The 2D models have the lower perfor-

mance (where the Project Out performs the worst), followed by the combined 2D+3D

model and then our projective 2.5D versions, where the efficient algorithms perform

the better. According, the simultaneous versions perform better than the error nor-

malization versions mainly due to their improved search strategy (all parameters at

once). The overall results show that using a 3D PDM projection effectively increases

the performance in unseen data.
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Reference 7.5 RMS PO 2D SIC 2D PO 2D+3D SIC 2D+3D NFA 2.5D ENFA 2.5D SFA 2.5D ESFA 2.5D

(a) 100% 28.7 56.2 65.4 78.3 76.2 84.6 81.2 86.7

(b) 75% 27.1 50.4 58.3 71.2 68.8 77.9 73.8 81.7

(c) 50% 23.8 39.6 51.7 67.1 64.2 70.4 68.3 74.2

(d) 25% 13.6 23.3 39.6 59.2 56.2 63.7 61.7 67.1

Figure 2.11: Fitting performances curves on the IMM [57] database using 100%,

75%, 50% and 25% of training images, respectively. The table shows quantitative

values taken by sampling the graphics using a fixed RMS error amount (7.5 pixels

- represented as the vertical line). Each table entry show how many percentage of

images converge with less or equal RMS error that the reference. Top images show

fitting examples from the IMM database using the ESFA algorithm.

2.6.3 Robust Methods Evaluation

The robust fitting methods proposed in this work intend to improve the performance

w.r.t. self occlusion due to 3D head motion. To evaluate these algorithms, namely

the RNFA, the RSFA and the efficient versions ERNFA and ERNFA, three synthetic

sequences were created. A set of images with an individual standing in near frontal

position was used. The current 3D mesh location was found by fitting the 2.5D AAM

using ESFA. Then, ranging the 3D mesh from−90◦ to 90◦ degrees in both roll, pitch and

yaw angles, using one degree of resolution, the fixed appearance image was projected

into the camera and stored (figure 2.12-top). Finally, all the robust fitting algorithms

were evaluated using these sequences, starting from the frontal position. In all the

algorithms the scale parameters, σxp , were estimated from the fitting error MAD.
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Figure 2.12: Robust algorithms evaluation on synthetic sequences at top figure. The

graphics show the RMS error due to roll, pitch and yaw angles ranging from −90◦ to

90◦, respectively.

Figure 2.12-bottom shows the RMS error in point location for all the algorithms. Once

again the Efficient versions of the algorithms (ERNFA and ERSFA) outperform their

standard versions (RNFA and RSFA). Also, the ERSFA performs slightly better that

the ERNFA, as expected, due to the parameters search strategy. These experiments

show that, using the efficient algorithms, the model can successfully deal with rotations

of almost ±90◦ in roll, pitch and yaw angles, respectively.

2.6.4 Results on the BU-4DFE Dataset

This section evaluates the quality of the 3D recovered shape when using the 2.5D AAM.

The Binghamton University 3D Dynamic Facial Expression Database (BU-4DFE) [50]

was used for this evaluation process. The BU-4DFE dataset includes high resolution

3D dense reconstructions of video sequences of several individuals showing the six

prototypic facial expressions [21] namely, anger, disgust, happiness, fear, sadness, and

surprise. The 3D facial expressions were captured at 25 frames per second where each

expression sequence contains about 100 frames (resolution of 1040× 1392 per frame).

Due to the generative nature of the AAM, a new BU-4DFE tuned model must be
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built to run these experiments. To fit every frame of the database the AAM should hold

as much shape variation as possible. To accomplished this the training images were

composed by the most emotion expressive images of the testing set. These training

images were hand annotated using also the 58 landmarks scheme (v = 58). Holding 95%

of the shape and appearance variance produces a 2.5D AAM with 19 shape parameters,

(n = 19), and 87 eigenfaces, (m = 87). The projected base mesh width was set to

300 pixels, as described in the 3D model building process in supplementary material,

resulting on a total of 100500 gray level pixels used by the appearance model.

In this section, only the ESFA algorithm has been used, because it was shown

previously to be the most accurate. A subset of the BU-4DFE dataset, consisting

in 7 males and 7 females, forming a total of around 8400 frames were used in this

evaluation. The ESFA algorithm was applied on every frame of each sequence for all

the testing subjects, and the RMS error between the current PDM shape s (the shape

that the model fits for) and the ground truth extracted from the BU-4DFE dataset

was evaluated.

The shape RMS error is given by

eRMS(s) =

√√√√1

v

v∑
i=1

(
sxi − sxigt

)2
+
(
syi − syigt

)2
+
(
szi − szigt

)2
(2.50)

where the ground truth shape, sgt, was extracted from the dense reconstruction by

lookup the 3D depth from the 2D image projections found by the 2.5D AAM.

Figure 2.13 shows examples of the AAM fitting, the correspondent 3D dense re-

construction ground truth and a graphic showing the RMS shape error over time for

each emotion sequence (for a single test subject). The evaluation shows that globally,

during the entire sequence, the fitting error stays low, exhibiting an average error of

around 5mm (in 3D space). Typically, in the captured facial expression sequences of

the BU-4DFE dataset, each individual starts from a neutral expression, exhibits the

emotion until its maximum intensity and then goes back to the neutral state. The

graphic shows that the RMS error match this behavior, i.e. the AAM has a lower

shape fitting error during the begin and at end of the sequences when the individual

displays the neutral emotion. The results also show that the surprise facial expression
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Angry Disgust Fear Happy Sad Surprise Overall

avg 4.51 4.82 4.92 4.78 4.64 6.28 4.99

std 0.42 0.83 0.92 0.36 0.82 1.67 0.83

Table 2.1: The RMS shape fitting error over a subset of the BU-4DFE dataset con-

sisting of 14 individuals (7 males and 7 females). About 8400 frames were used. The

table show the mean and standard deviation found for each facial expression sequence

and also for the entire set (overall). The units are in mm.

is the one that holds more fitting error, mainly because it is the emotion that more

deforms the face from the neutral state.

Table 2.1 displays the mean and standard deviations of the RMS shape error over

the entire testing subset of the BU-4DFE.

2.6.5 Tracking Performance

The tracking performance is evaluated on the challenging FGNet Talking Face (TF)

[32] video sequence that holds 5000 frames of video of an individual engaged in a

conversation. The full sequence is annotated using 68 landmarks (2D ground truth).

Just like in previous sections (2.6.1 and 2.6.2), all AAM algorithms are used, namely

the PO 2D, SIC 2D, PO 2D+3D, SIC 2D+3D, NFA, SFA, ENFA and SFA. A minor

difference from the previous experiments is that a few annotated frames from the TF

sequence were added in each AAM so that the appearance model Ai(xp) can now

include the new individual.

The figure 2.14 shows the RMS fitting error for all the evaluated methods. Since

we are using a 58 landmark scheme and the TF uses 68, the error was only measured

over the correspondent landmarks. The quantitative values on the legend box are the

mean and standard deviation values for the RMS error.

Globally, as expected, all the 2.5D algorithms (NFA, ENFA, SFA and ESFA) per-

form better than the 2D algorithms (especially when exists some degree of head pose

variation) and slightly better than the 2D+3D algorithm, confirming their relative per-

formance. Again, the efficient versions also express a performance advantage over all
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Figure 2.13: Evaluation of the 3D recovered shape when using the 2.5D AAM. The

top a)-g) figures show examples of AAM fitting on a test subject of the BU-4DFE [50]

database exhibiting the six basic emotions plus the neutral one. Images h)-n) shows the

correspondent 3D dense reconstruction provided by the database. The ground truth,

sgt, used in all evaluations is a sparse shape that results from retrieving the 3D data

from the dense reconstruction on the 2D projections points found by the AAM (the red

mesh at top figures). The bottom graphic show the RMS shape error during each of

the facial expressions sequences of the testing individual shown in the top images. The

RMS error units are in mm. A 2.5D AAM fiting video showing some examples of BU-

4DFE dataset can be seen at http://www.isr.uc.pt/~pedromartins/Videos/PhD.
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Figure 2.14: RMS shape error on the Talking Face [32] video sequence. The top

images show ESFA fitting examples. The values on legend box are the mean and

standard deviation RMS errors, respectively. Best viewed in color.

the others.

2.6.6 Head Pose Estimation

As described previously, one of the main advantage of using the 2.5D AAM is its ability

to recover the 3D Euclidean shapes from a single image. The figure 2.15-top shows

some of these examples taken from the TF video sequence using the ERSFA algorithm.

Only qualitative results are shown because the TF dataset does not provide 3D ground

truth information.

Although the proposed methods are not explicitly oriented for pose estimation,

the updates on the pose parameters, ∆q, can be analyzed and used for this purpose.

The pose is, therefore, estimated between the camera coordinate frame and the rigid

component of the PDM (given by s0+sφ) at each frame. The bottom part of figure 2.15

show the pose estimation results taken from the TF sequence. Again, only qualitative
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Figure 2.15: The top images show qualitative 3D shape recovery results on the first

1000 frames of the Talking Face [32] video sequence. The graphics show the estimated

roll, pitch and yaw angles (in degrees) and distance (in mm) to camera. The ERSFA

algorithm was used in both experiments. The full video sequence can be seen at

http://www.isr.uc.pt/~pedromartins/Videos/PhD.
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Normalization Versions Simultaneous Versions

PO 2D PO 2D+3D NFA 2.5D ENFA 2.5D SIC 2D SIC 2D+3D SFA 2.5D ESFA 2.5D

Time per iteration 310 340 1780 760 460 550 1820 780

Table 2.2: Fitting times by iteration on the evaluated algorithms. The present times

are in ms taken using a MatLab implementation. Note that the 2.5D methods even

being slower, they require less iterations to converge.

results are shown due to the lack of 3D ground truth.

2.6.7 Computational Performance

Table 2.2 shows a comparison, in computational cost, between all the evaluated algo-

rithms during the entire section 2.6. The table shows approximated fitting times per

iteration using a MatLab implementation on a 3GHz Intel i7 CPU with 4GB of RAM

running Fedora 14 OS. All the AAM use the same settings mentioned on section 2.6.1.

The 2D Projected Out is probably the fastest approach introduced so far, where

both the Jacobian and the Hessian matrices are constant and can be precomputed. The

2D + 3D PO only requires to reevaluate the Jacobians for the constraints and parts

of the Hessian (most part is constant). The simultaneous extensions (SIC 2D and SIC

2D+3D) are much slower because they must evaluate the SD images, the Hessian and

its inverse on a larger set of parameters that now include the appearance parameters.

As shown in algorithms 1, 2, 10 and 11 the 2.5D algorithms need to perform image

warping (it takes around 1200ms and 220ms in the standard and efficient versions,

respectively), recompute the SD images (around 400ms) and the Hessian. Even being

slower, they require less iterations to converge as shown in figure 2.10-b. However a

C/C++ version of ESFA achieves near real-time performance (around 10 fps - using a

base mesh with almost 70K pixels). Additional speed up can be achieved by reducing

the base mesh size.
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2.7 Conclusions

In this chapter we presented a novel formulation for 3D facial image alignment from

single view 2D images through a 2.5D AAM. The major contribution of the chapter

lies on the use of a 2.5D AAM that combines a 3D metric PDM with a full perspective

projection model that defines the 2D appearance. The 2.5D AAM is able to recover 3D

Euclidean shapes by assuming a calibrated camera. Two algorithms and computational

efficient approximations are proposed, both based on the Lucas and Kanade framework:

the Simultaneous Forwards Additive (SFA) and the Normalization Forwards Additive

(NFA). The SFA, when compared with NFA, is the most accurate algorithm and also

the most computationally expensive. Their efficient versions have shown a substan-

tial improvement in the fitting performance, being more robust to noise and able to

converge from far initial estimates, requiring less computational effort. To make the

model able to deal with self or partial occlusion, robust extensions to SFA and NFA

were also proposed. Again, their efficient approximations perform much better that the

basic versions. Several performance evaluations carried out on real an synthetic data

demonstrated that the 2.5D AAM algorithms outperform both the combined 2D+3D

AAM and the traditional 2D AAM algorithms and accurately handle face pose varia-

tions. Finally, the quality of the 3D retrieved shape was also evaluated. The performed

tests on the BU-4DFE [50] database show that the 2.5D AAM is an effective method

to recover the 3D Euclidean shape.
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Chapter 3

Discriminative Bayesian Active

Shape Models

This chapter presents a simple and very efficient solution to align facial parts in unseen

images. The proposed approach is closely related to Constrained Local Models (CLM) and

Active Shape Models (ASM), where an ensemble of local feature detectors are constrained

to lie within the subspace spanned by a Point Distribution Model (PDM). Fitting a model

to an image typically involves two steps: a local search using a detector, obtaining response

maps for each landmark (likelihood term) and a global optimization that finds the PDM

parameters that jointly maximize all the detection responses. The global optimization can be

seen as a Bayesian inference problem, where the posterior distribution of the PDM parameters

(including pose) can be inferred in a maximum a posteriori (MAP) sense. However, previous

formulations do not model explicitly the covariance of the latent variables, which represents

the confidence in the current solution. In the Discriminative Bayesian Active Shape Model

(DBASM) formulation, described here, the MAP global alignment is inferred by a Linear

Dynamical System (LDS) that takes this information into account. The Bayesian paradigm

provides an effective fitting strategy, since it combines in the same framework both the shape

prior and multiple sets of patch alignment classifiers.

In later work, the previous DBASM formulation was extended to explicitly model the

prior distribution. A second global optimization, Bayesian Active Shape Model (BASM)

is presented, where the prior term is used to encode the dynamic transitions of the PDM
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parameters. Using recursive Bayesian estimation, the prior distribution of the data is modeled

as being Gaussian. The mean and covariance were assumed to be unknown and treated as

random variables.

Both DBASM and BASM extensive evaluations were performed on several standard

datasets (IMM, BioID, XM2VTS and FGNET Talking Face) against state-of-the-art methods

while using the same local detectors. Face parts descriptors were also evaluated, including

the recently proposed Minimum Output Sum of Squared Error (MOSSE) filter. It is demon-

strated that generic image alignment by explicitly modelling the prior distribution (BASM)

offers a significant increase in performance. Finally, qualitative results taken from the chal-

lenging Labeled Faces in the Wild (LFW) dataset are also shown.

Publications

The contents of this chapter resulted in two main publications:

• Discriminative Bayesian Active Shape Models [71]

Pedro Martins, Rui Caseiro, João F. Henriques, Jorge Batista

ECCV 2012 - European Conference on Computer Vision

• Let the Shape Speak - Discriminative Face Alignment using Conjugate Priors [72]

Pedro Martins, Rui Caseiro, Joäo F. Henriques, Jorge Batista

BMVC 2012 - British Machine Vision Conference [Oral Presentation]

3.1 Introduction

Deformable model fitting aims to find the parameters of a Point Distribution Model

(PDM) that best describe the object of interest in an image. Several fitting strategies

have been proposed, most of which can be categorized as being either holistic (gen-

erative) or patch-based (discriminative). The holistic representations [99][38] model

the appearance of all image pixels describing the object. By synthesizing the expected

appearance template, a high registration accuracy can be achieved. However, such

representation generalizes poorly when the object of interest exhibits large amounts of

80



Chapter 3. Discriminative Bayesian ASM 3.1. Introduction

Figure 3.1: Examples of the DBASM global alignment on the LFW [33] dataset.

Video at http://www.isr.uc.pt/~pedromartins/Videos/PhD.

variability, such as the case of the human face under variations of identity, expression,

pose, lighting or non-rigid motion, due to the huge dimensional representation of the

appearance (learnt from limited data).

Recently, discriminative-based methods, such as the Constrained Local Model (CLM)

[98][116][24][74][25][115], have been proposed. These approaches can improve the model’s

representation capacity, as it accounts only for local correlations between pixel values.

In this paradigm, both shape and appearance are combined by constraining an en-

semble of local feature detectors to lie within the subspace spanned by the PDM. The

CLM implements a two step fitting strategy: a local search and a global optimization.

The first step performs an exhaustive local search using a feature detector, obtain-

ing response maps for each landmark. Then, the global optimization finds the PDM

parameters that jointly maximize the detection responses. Each landmark detector

generates a likelihood map by applying local detectors to the neighborhood regions

around the current estimate.

Some of the most popular optimization strategies propose to replace the true re-

sponse maps by simple parametric forms (Weighted Peak Responses [98], Gaussians

Responses [115], Mixture of Gaussians [46]) and perform the global optimization over

these forms instead of the original response maps. The detectors are learned from

training images of each of the object’s landmarks. However, due to their small local

support and large appearance variation, they can suffer from detection ambiguities. In
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[41] the authors attempt to deal with these ambiguities by nonparametrically approx-

imating the response maps using the mean-shift algorithm, constrained to the PDM

subspace (Subspace Constrained Mean-Shift - SCMS). However, in the SCMS global

optimization the PDM parameters update is essentially a regularized projection of the

mean-shift vector for each landmark onto the subspace of plausible shape variations.

Since a least squares projection is used, the optimization is very sensitive to outliers

(when the mean-shift output is very far away from the correct landmark location).

The patch responses can be embedded into a Bayesian inference problem, where the

posterior distribution of the global warp can be inferred in a maximum a posteriori

(MAP) sense. The Bayesian paradigm provides an effective fitting strategy, since it

combines in the same framework both the shape prior (the PDM) and multiple sets of

patch alignment classifiers to further improve the accuracy.

3.1.1 Main Contributions

1. A novel and efficient Bayesian formulation is presented to solve the MAP global

alignment problem (Discriminative Bayesian Active Shape Model - DBASM). The

main advantage of the proposed DBASM with respect to the previous Bayesian

formulations is that we model the covariance of the latent variables, which rep-

resents the confidence in the current parameters estimate i.e. DBASM explicitly

maintains 2nd order statistics of the shape and pose parameters, instead of as-

suming them to be constant. It is shown that the posterior distribution of the

global warp can be efficiently inferred using a Linear Dynamical System (LDS)

taking this information into account.

2. It is shown that aligning the PDM using a Bayesian approach offers a significative

increase in performance, in both fitting still images and video sequences, when

compared with state-of-the-art first order forwards additive methods [98][115][41].

We confirm experimentally that the MAP parameter update outperforms the

standard optimization strategies, based on maximum likelihood solutions (least

squares). See figures 3.6 and 3.7.
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3. A comparison between several face parts descriptors is presented, including the

recently proposed Minimum Output Sum of Squared Error (MOSSE) filters [28].

The MOSSE maps aligned training patch examples to a desired output, producing

correlation filters that are notably stable. These filters exhibit a high invariance

to illumination, due to their null DC component. Results show that the MOSSE

outperforms the others detectors, being particularly well-suited to the task of

generic face alignment (figures 3.2 and 3.5).

4. A second Bayesian global optimization strategy is presented (Bayesian Active

Shape Models - BASM) designed to infer both the PDM and the pose parame-

ters, in a MAP sense, by explicitly modelling the prior distribution (encoding the

dynamic transitions of the PDM parameters). Using recursive Bayesian estima-

tion, the prior distribution of the data is modeled as being Gaussian. The mean

and covariance were assumed to be unknown and treated as random variables.

This means that, not only the mean and the covariance are estimated but also the

probability distribution of the mean and the covariance (using conjugate priors).

5. Extensive evaluations were performed on several standard datasets (IMM [57],

BioID [61], XM2VTS [45] and FGNET Talking Face [32]) against state-of-the-

art methods while using the same local detectors. Qualitative results of the

challenging Labeled Faces in the Wild (LFW) [33] dataset are also shown.

3.1.2 Outline

This chapter is organized as follows: Section 3.2 briefly explains the shape model

PDM. Section 3.3 presents our DBASM global optimization approach. Experimental

results comparing the fitting performances of several local detectors (including the

MOSSE filters) and several global optimizations strategies are shown in Section 3.4.

The BASM extended global optimization is introduced and described in Section 3.5.

Performance evaluation experiments, following the previously determined protocol, is

shown in Section 3.6. Finally, Section 3.7 provides the overall conclusions.
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3.2 The Shape Model - PDM

The shape s of a Point Distribution Model (PDM) is represented by the 2D vertex loca-

tions of a mesh, with a 2v dimensional vector s = (x1, y1, . . . , xv, yv)
T . The traditional

way of building a PDM requires a set of shape annotated images that are previously

aligned in scale, rotation and translation by Procrustes Analysis [15]. Applying a PCA

[56] to a set of aligned training examples, the shape can be expressed by the linear

parametric model

s = S (s0 + Φbs,q) (3.1)

where s0 = (x0
1, y

0
1, . . . , x

0
v, y

0
v)
T is the mean shape (also referred to as the base mesh),

Φ is the shape subspace matrix holding n eigenvectors (retaining a user defined vari-

ance, e.g. 95%), bs is a vector of shape parameters, S(.,q) represents a similarity

transformation function of the q pose parameters. Defining the pose parameters to

be q = (s cos(θ) − 1, s sin(θ), tx, ty)
T (where s, θ, tx, ty are the scale, rotation and

translations w.r.t. the base mesh s0, respectively) and Ψ to be a matrix holding four

special eigenvectors Ψ = [ψ1 ψ2 ψ3 ψ4] with ψ1 = s0, ψ2 = (−y0
1, x

0
1, . . . ,−y0

v , x
0
v)
T ,

ψ3 = (1, 0, . . . , 1, 0)T and ψ4 = (0, 1, . . . , 0, 1)T , the 2D pose can be linearly represented

[38] (i.e. the amount s0 + Ψq represents the same geometric change than applying a

generic 2D similarity transformation to s0).

From the probabilistic point of view, bs follows a multivariate Gaussian distribution

bs ∝ N (bs|0,Λ), with Λ = diag(λ1, . . . , λn), where λi denotes the PCA eigenvalue of

the ith mode of deformation.

3.3 Global PDM Optimization - DBASM

This section describes the proposed global optimization method (Discriminative Bayesian

Active Shape Models - DBASM). The deformable model fitting goal (that follows the

parametric form eq.3.1) is formulated as a global shape alignment problem in a maxi-

mum a posteriori (MAP) sense.
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(a) Example image and search regions.
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Figure 3.2: The DBASM combines a Point Distribution Model (PDM) and a set of

discriminant local detectors, one for each landmark. a) Image with the current mesh

showing the search region for some landmarks. b) The local detector (the MOSSE

filter [28] itself). c) Response maps for the correspondent highlighted landmarks. The

DBASM global optimization jointly combines all landmark response maps, in a MAP

sense, using 2nd order statistics of the shape and pose parameters.

3.3.1 The Alignment Goal

Given a 2v vector of observed positions y, the goal is to find the optimal set of param-

eters b∗s that maximizes the posterior probability of being its true position. Using a

Bayesian approach, the optimal shape parameters are defined as

b∗s = arg max
bs

p(bs|y) ∝ p(y|bs)p(bs) (3.2)

where y is the observed shape, p(y|bs) is the likelihood term and p(bs) is a prior

distribution over all possible configurations. The section 3.3.2 describe some possible

strategies to set the observed shape vector y.
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The complexity of the problem, in eq.3.2, can be reduced by making some simple

assumptions. Firstly, conditional independence between landmarks can be assumed

simply by sampling each landmark independently. Secondly, it can also be considered

that we have an approximate solution to the true parameters (b ≈ b∗s). Combining

these approximations, the eq.3.2 can be rewritten as

p(b|y) ∝

(
v∏
i=1

p(yi|b)

)
p(b|b∗k−1) (3.3)

where yi is the ith landmark coordinates and b∗k−1 is the previous optimal estimate of

b.

3.3.2 The Likelihood Term

The likelihood term, including the PDM model (in eq.3.1), becomes the following

convex energy function:

p(y|b) ∝ exp

−1

2
(y− (s0︸ ︷︷ ︸

∆y

+Φb))TΣ−1
y (y− (s0 + Φb))

 (3.4)

where ∆y is the difference between the observed and the mean shape and Σy is the

uncertainty of the spatial localization of the landmarks (2v × 2v block diagonal co-

variance matrix). From the probabilistic point of view, the likelihood term follows a

Gaussian distribution given by

p(y|b) ∝ N (∆y|Φb,Σy). (3.5)

Finding the Likelihood Parameters - Local Optimization Strategies

This section briefly describes several local strategies to represent the true response

maps by a probabilistic model (parametric and nonparametric). We also describe how

to extract from each probabilistic model the likelihood term of the MAP formulation

(observed shape y and the landmark uncertainty covariance Σy).

Let zi = (xi, yi) be a candidate to the ith landmark, being yci the current landmark

estimate, Ωyci
a L × L patch centered at yci , ai a binary variable that denotes correct
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landmark alignment, Di the score of a generic local detector and I the target image up

to a similarity transformation (typically the detector is designed to operate at a given

scale). The probability of pixel zi to be aligned is given by

pi(zi) = p(ai = 1|I(zi),Di) =
1

1 + e−aiDi(I(zi))
(3.6)

where the detector score is converted to probability using the logistic function. The

parameters yi and Σyi can be found by minimizing the expression [104]

arg min
yi,Σyi

∑
zi∈Ωyc

i

pi(zi)N (zi|yi,Σyi) (3.7)

where several strategies can be used to do this optimization.

Weighted Peak Response (WPR): The simplest solution is to take the spatial

location where the response map has a higher score [98]. The new landmark position

is then weighted by a factor that reflects the peak confidence. Formally, the WPR

solution is given by

yWPR
i = max

zi∈Ωyc
i

(pi(zi)) , ΣWPR
yi

= diag(pi(y
WPR
i )−1) (3.8)

that is equivalent to approximate each response map by an isotropic GaussianN (zi|yWPR
i ,ΣWPR

yi
).

Gaussian Response (GR): The previous approach was extended in [115] to ap-

proximate the response maps by a full Gaussian distribution N (zi|yGR
i ,ΣGR

yi
). This

is equivalent to fit a Gaussian density to weighted data. Let d =
∑

zi∈Ωyc
i

pi(zi), the

solution is given by

yGR
i =

1

d

∑
zi∈Ωyc

i

pi(zi)zi, ΣGR
yi

=
1

d− 1

∑
zi∈Ωyc

i

pi(zi)(zi − yGR
i )(zi − yGR

i )T . (3.9)

Kernel Density Estimator (KDE): The response maps can also be approxi-

mated by a nonparametric representation, namely using a Kernel Density Estimator

(KDE) (isotropic Gaussian kernel with a bandwidth σ2
h). Maximizing over the KDE

is typically performed by using the well-known mean-shift algorithm [41]. The kernel

bandwidth σ2
h is a free parameter that exhibits a strong influence on the resulting es-

timate. This problem can be addressed by an annealing bandwidth schedule. It can
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Figure 3.3: Qualitative comparison between the three local optimization strategies.

The WPR simply chooses the maximum detector response. GR approximates the

response map by a full Gaussian distribution. KDE uses the mean-shift algorithm to

move to the nearest mode of the density. Its uncertainty covariance is found using the

entire response map centered at the found mode. The two examples in the right show

patches under occlusion (typically multimodal responses).

be shown [19] that there exists a σ2
h value such that the KDE is unimodal. As σ2

h is

reduced, the modes divide and the smoothness of KDE decreases, guiding the opti-

mization towards the true objective. Formally, the ith annealed mean-shift landmark

update is given by

y
KDE(τ+1)
i ←

∑
zi∈Ωyc

i

zi pi(zi) N (y
KDE(τ)
i |zi, σ2

hj
I2)∑

zi∈Ωyc
i

pi(zi) N (y
KDE(τ)
i |zi, σ2

hj
I2)

(3.10)

where I2 is a two-dimensional identity matrix and σ2
hj

represents the decreasing an-

nealed bandwidth. The KDE uncertainty error consists on computing the weighted

covariance using the mean-shift results as mean

ΣKDE
yi

=
1

d− 1

∑
zi∈Ωyc

i

pi(zi)(zi − yKDE
i )(zi − yKDE

i )T . (3.11)

Figure 3.3 highlights the differences between the three local optimization strategies

(WPR, GR and KDE). Notice that DBASM deals with mild occlusions. When a

landmark is under occlusion typically the response map is multi-modal. If a KDE

local strategy is used (DBASM-KDE), the landmark update will select the nearest

mode (eq.3.10) and the covariance of that landmark (eq.3.11) will be inherently large,

modeling a high localization uncertainty. Then, the global optimization stage jointly
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combines all uncertainties (MAP sense), handling occlusions. Similarly, to deal with

large occlusions, a minor tweak is required. One can simply set a large covariance for

the occluded landmarks.

3.3.3 The Prior Term

The prior term, according to the approximations taken, can be written as

p(bk|bk−1) ∝ N (bk|µb,Σb) (3.12)

where µb = bk−1 and Σb = Λ+Ξ. The Λ is the shape parameters covariance (diagonal

matrix with PCA eigenvalues) and Ξ is an additive dynamic noise covariance (that can

be estimated offline).

3.3.4 The MAP Global Alignment

An important property of Bayesian inference is that, when the likelihood and the prior

are Gaussian distributions the posterior is also Gaussian [17]. Following the Bayes’

theorem for Gaussian variables, and considering p(bk|bk−1) a prior Gaussian distribu-

tion for bk and p(y|bk) a likelihood Gaussian distribution, the posterior distribution

takes the form ([17], pag 90).

p(bk|y) ∝ N (bk|µ,Σ) (3.13)

Σ = (Σ−1
b + ΦTΣ−1

y Φ)−1 (3.14)

µ = Σ(ΦTΣ−1
y y + Σ−1

b µb). (3.15)

Note that, the conditional distribution p(y|bk) has a mean that is a linear function of

bk and a covariance which is independent of bk. This could be a possible solution to

the global alignment optimization [104]. However, in practice, this is a naive approach

because it does not model the covariance of the latent variables, bk, which is crucial

to account for the confidence in the current parameters estimate.
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Second Order Global Alignment

The MAP global alignment solution can be inferred by a Linear Dynamical System

(LDS). The LDS is the ideal technique to model the covariance of the latent variables

and solve the naive approach limitations. The LDS is a simple approach that recursively

computes the posterior probability using incoming Gaussian measurements and a linear

model process, taking into account all the available measures (same requirements as

our alignment problem). The state and measurement equations of the LDS, according

to the PDM alignment problem, can be written as

bk = Abk−1 + q (3.16)

∆y = Φbk + r (3.17)

where the current shape parameters bk are the hidden state vector, q ∼ N (0,Σb) is

the additive dynamic noise, ∆y is the observed shape deviation that are related to the

shape parameters by the linear relation Φ (eq.3.1) and r is the additive measurement

noise following r ∼ N (0,Σy). The previous shape estimated parameters bk−1 are

connected to the current parameters bk by an identity relation plus noise (A = In).

We highlight that the final step of the LDS derivation consists of a Bayesian infer-

ence step [17] (using the Bayes’ theorem for Gaussian variables), where the likelihood

term is given by eq.3.5 and the prior follows N (AµF
k−1,Pk−1) where

Pk−1 = (Λ + Ξ) + AΣF
k−1A

T . (3.18)

From these equations we can see that the LDS keep up to date the uncertainty on the

current estimate of the shape parameters. The LDS recursively computes the mean

and covariance of the posterior distributions of the form

p(bk|yk, . . . ,y0) ∝ N (bk|µF
k ,Σ

F
k ) (3.19)

with the posterior mean µF
k and covariance ΣF

k given by the LDS formulas:

K = Pk−1ΦT (ΦPk−1ΦT + Σy)−1 (3.20)

µF
k = AµF

k−1 + K(y− ΦAµF
k−1) (3.21)

ΣF
k = (In −KΦ)Pk−1. (3.22)
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Finally, the optimal shape parameters that maximize eq.3.2 are given by µF
k . In

order to estimate the pose parameters, we also apply the LDS paradigm. The difference

is that, in this case, the state vector is given by q and the observation matrix is Ψ.

The algorithm 5 summarizes the proposed DBASM global optimization.

DBASM is a more powerful representation than the naive Bayesian approach (eqs.

3.14 and 3.15), propagating both state and uncertainty.

Precompute:1

The parametric models (s0, Φ, Ψ) and the MOSSE filters in the Fourier domain H∗i2

Initial estimate of the shape/pose parameters and covariances (b0,P0) / (q0,Q0).3

repeat4

Warp image I to the base mesh using the current pose parameters qk [0.5ms]5

Generate current shape s = S(s0 + Φbk,qk)6

for Landmark i = 1 to v do7

Evaluate the detectors response (MOSSE correlation F−1{F{(I)} �H∗i }) [3ms]8

Find yi and Σyi using a local strategy (sec. 3.3.2),e.g. if using KDE, eqs.3.10 and 3.11, respectively.9

end10

Update the pose parameters and their covariance [0.1ms]:11

Qk−1 = (Λq + Ξq + Qk−1), Kq = Qk−1ΨT (ΨQk−1ΨT + Σy)−1

qk = qk−1 + Kq(y−Ψqk−1), Qk = (I4 −KqΨ)Qk−112

Update the shape parameters (with pose correction) and their covariance [0.2ms]:13

Pk−1 = (Λ + Ξ + Pk−1), Kb = Pk−1ΦT (ΦPk−1ΦT + Σy)−1

bk = bk−1 + Kb(y− Φbk−1 −Ψqk), Pk = (In −KbΦ)Pk−114

until ||bk − bk−1|| ≤ ε or maximum number of iterations reached ;15

Algorithm 5: Overview of the DBASM method. The performance of DBASM is

comparable to ASM [98], CQF [115] or SCMS [41] depending of the local strategy

DBASM-WPR, DBASM-GR or DBASM-KDE, respectively. It achieves near real-time

performance. The bottleneck is always obtaining the response maps (3ms x number

landmarks), although it can be done in parallel.
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3.3.5 Hierarchical Search (DBASM-KDE-H)

A slightly different annealing approach is proposed in this section. When the local

response maps are approximated by KDE representations, the overall alignment can

be done by a hierarchical search strategy. The standard search uses the mean-shift

algorithm with an iterative kernel bandwidth relaxation, e.g. σ2
hj

= [15, 10, 5, 2], fol-

lowed by a global optimization step (LDS MAP formulation). However, the mean-shift

bandwidth annealing schedule can be combined with additional global optimization

steps. Bottom levels use highest KDE bandwidth and perform global optimization

steps. Then the next level shrinks the bandwidth and repeats the process. This solu-

tion is composed by multiple levels of fixed kernel bandwidth mean-shifts followed by

global optimization steps (the annealing is performed between hierarchical levels).

Algorithms 6 and 7 highlight the differences between these two annealing schedules.

The hierarchical version when compared to the standard search, forces more global

optimization steps to take place, which in some cases produces better results (see later

evaluation section 3.4.3).

repeat1

Warp image, generate shape.2

for Landmark i = 1 to v do3

Detector response4

Find yi and Σyi using KDE5

for σ2
hj

= [15, 10, 5, 2] do6

Mean-Shift using σ2
hj

7

end8

Global Optimization Step9

end10

until ||update|| ≤ ε / max iter ;11

Algorithm 6: Standard KDE search.

for σ2
hj

= [15, 10, 5, 2] do1

repeat2

Warp image, generate shape.3

for Landmark i = 1 to v do4

Detector response5

Find yi and Σyi using KDE6

Mean-Shift using σ2
hj

7

Global Optimization Step8

end9

until ||update|| ≤ ε / max iter ;10

end11

Algorithm 7: Hierarchical search.
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3.4 Evaluation Results

The experiments were designed to evaluate the local detector (MOSSE [28]) and the

new Bayesian global optimization (DBASM). All the experiments were conducted on

several databases with publicly available ground truth. (1) The IMM [57] database

that consists on 240 annotated images of 40 different human faces presenting different

head pose, illumination, and facial expression (58 landmarks). (2) The BioID [61]

dataset contains 1521 images, each showing a near frontal view of a face of one of 23

different subjects (20 landmarks). (3) The XM2VTS [45] database has 2360 images

of frontal faces from 295 subjects (68 landmarks). (4) The tracking performance is

evaluated on the FGNet Talking Face (TF) [32] video sequence that holds 5000 frames

of video of an individual engaged in a conversation (68 landmarks). (5) Finally, a

qualitative evaluation was also performed using the Labeled Faces in the Wild (LFW)

[33] database that contains images taken under variability in pose, lighting, focus, facial

expression, occlusions, different backgrounds, etc.

3.4.1 Local Detector - The MOSSE filter

The Minimum Output Sum of Squared Error (MOSSE) filter, recently proposed in

[28], finds the optimal filter that minimizes the Sum of Squared Differences (SSD) to

a desired correlation output. Briefly, correlation can be computed in the frequency

domain as the element-wise multiplication of the 2D Fourier transform (F) of an input

image I with a filter H, also defined in the Fourier domain as

G = F{I} �H∗ (3.23)

where the� symbol represents the Hadamard product and (∗) is the complex conjugate.

The correlation value is given by F−1{G}, the inverse Fourier transform of G.

MOSSE finds the filter H, in the Fourier domain, that minimizes the SSD between

the actual output of the correlation and the desired output of the correlation, across a

set of N training images,

min
H∗

N∑
j=1

(F{Ij} �H∗ −Gj)
2 (3.24)
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where G is obtained by sampling a 2D Gaussian uniformly. Solving for the filter H∗

yields the closed form solution

H∗ =

∑N
j=1 Gj �F{Ij}∗∑N

j=1F{Ij} � F{Ij}∗
. (3.25)

The MOSSE filter maps all aligned training patch examples to an output, G, cen-

tered at the feature location, producing notably stable correlation filters.

At the training stage, each patch example is normalized to have zero mean and

a unitary norm, and is multiplied by a cosine window (required to solve the Fourier

Transform periodicity problem). This also has the benefit of emphasizing the target

center. These filters have a high invariance to illumination changes, due to their null

DC component and revealed to be highly suitable to the task of generic face alignment

(see figure 3.2).

3.4.2 Evaluating Local Detectors

Three landmark expert detectors were evaluated. The most used detector [115][41] is

based on a linear classifier built from aligned (positive) and misaligned (negative) grey

level patch examples (see image 3.4). The score of the ith linear detector is given by

Dlinear
i (I(yi)) = wT

i I(yi) + bi, (3.26)

with wi being the linear weight, bi the bias constant and I(yi) a vectorized patch of

pixel values sampled at yi. Similarly, a quadratic classifier can be used

Dquadratic
i (I(yi)) = I(yi)

TQiI(yi) + LT
i I(yi) + bi (3.27)

with Qi and Li being the quadratic and linear terms, respectively. Finally, the MOSSE

filter correlation gives

DMOSSE
i (I(yi)) = F−1{F{I(yi)} �H∗i } (3.28)

where H∗i is the MOSSE filter from eq.3.25. Both linear and quadratic classifiers (linear-

SVM [77] and Quadratic Discriminant Analysis) were trained using images from the
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Figure 3.4: SVM based local landmark detectors. The expert local landmark detec-

tors consists in train a linear SVM classifier with aligned (+ positive) versus misaligned

(- negative) patch examples for each individual landmark.

IMM [57] dataset with 144 negative patch examples (for each landmark and each image)

being misaligned up to 12 pixels in x and y translation.

The MOSSE filters were built using aligned patch samples with size 128× 128. A

power of two patch size is used to speed up the FFT computation, however only a

40 × 40 subwindow of the output is considered. During the MOSSE filter building,

each training patch requires a normalization step. Each example is normalized to have

a zero mean and a unitary norm and is multiplied by a cosine window. The desired

output G (eq.3.25) is set to be a 2D Gaussian function centered at the landmark with

3 pixels of standard deviation.

The global optimization method that best evaluates the detectors performance is

the approach that relies the most on the output of the detector, i.e., the Active Shape

Models (ASM) [98]. The results are present in the form of fitting performance curves,

which were also adopted by [22][24][23][115][41]. These curves show the percentage of

faces that achieved convergence with a given Root Mean Square (RMS) error amount.

The figure 3.5 shows fitting performance curves that compare the three kinds of detec-
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(c) BioID [61] database

Figure 3.5: Fitting performance curves comparing different detectors (Linear,

Quadratic and MOSSE) on the IMM, XM2VTS and BioID database, respectively.

The AVG means the average location provided by the initial estimate (Adaboost [75]

face detector).

tors using the ASM[98] optimization1 and the proposed global DBASM technique using

a Weighted Peak Response strategy (DBASM-WPR). From the results several conclu-

sions can be highlighted: (1) the MOSSE filter always outperforms the others, specially

when using simpler optimization methods; (2) the DBASM optimization improves the

results even with simple detectors; (3) maximum performance can be achieved by using

the MOSSE detector and the DBASM optimization.

The use of MOSSE filters is an interesting solution that works well in practice and

is particularly suited to detection of facial parts. However it is important to stress that

is not crucial for the performance of the Bayesian formulation. DBASM still improves

performance when using standard detectors.

3.4.3 Evaluating Global Optimization Strategies

In this section the DBASM optimization strategy is evaluated w.r.t. state-of-the-art

global alignment solutions. The proposed DBASM and DBASM-H methods are com-

pared with (1) ASM [98], (2) CQF [115], (3) BCLM [104], (4) GMM [46] using 3

1The ASM [98], CQF [115] and SCMS [41] use as local optimizations the WPR, GR and KDE

strategies, respectively.
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Gaussians (GMM3) and (5) SCMS [41]. Note that the DBASM can be used with dif-

ferent local strategies to approximate the response maps (e.g. WPR, GR or KDE as

described in section 3.3.2). In these experiments the KDE was fixed as local strategy

(BCLM-KDE, SCMS-KDE, DBASM-KDE) in order to compare the global optimiza-

tion approaches. The results from ASM, CQF and GMM3 are provided as a baseline.

The same bandwidth schedule of σ2
h = (15, 10, 5, 2) is always used for KDE. All the ex-

periments, in this section, use MOSSE filters as local detectors (using the same settings

as in section 3.4.2) built with only training images from the IMM [57] set and tested

on the remaining datasets2. In all cases, the nonrigid parameters start from zero, the

similarity parameters were initialized by a face detection [75] and the model was fitted

until convergence (limited to a maximum of 20 iterations).

Figure 3.6 shows the fitting performance curves for the IMM, XM2VTS and BioID

datasets, respectively. The CQF performs better than GMM3, mainly because GMM

is very prone to local optimums due to its multimodal nature (it is worth mentioning

that given a good initial estimate GMM offers a superior fitting quality). The main

drawback of CQF is the limited accuracy due to the over-smoothness of the response

map (see figure 3.3). The BCLM is slightly better than SCMS due to its improved

parameter update (MAP update vs first order forwards additive). The SCMS improves

the results when compared to CQF due to the high accuracy provided by the mean-

shift. In some cases, the ASM achieves a comparable performance to the SCMS;

the reason for this relies on the excellent performance of the MOSSE detector. The

proposed Bayesian global optimization (DBASM) outperforms all previous methods,

by modeling the covariance of the latent variables which represent the confidence in

the current parameters estimate (see figure 3.6). The results show that the hierarchical

annealing version of DBASM-KDE (DBASM-KDE-H) performs slightly better, but at

the cost of more iterations.

Figure B.1, in appendix B, shows detailed fitting performance curves arranged by

comparable local optimization strategies (WPR, GR and KDE). Additionally, the same

2The results presented on the IMM dataset use training images collected at our institution. This

is done due to incompatibility of the annotation formats.
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overall evaluation is repeated but now using the linear SVM as local feature detectors.

The results are shown in figure B.2 with the corresponding table B.1 of quantitative

results. The overall conclusions remain the same, DBASM still improves performance

when using standard detectors.

Tracking Performance

Tracking performance is also tested on the FGNET Talking Face video sequence (figure

3.7). Each frame is fitted using as initial estimate the previously estimated shape and

pose parameters. Figure B.3, in the appendix B, show the equivalent results when using

the SVM linear detectors. The relative performance between the global optimization

approaches is similar to the previous experiments, where the DBASM technique yields

the best performance.

Qualitative evaluation is also performed using the challenging Labeled Faces in the

Wild (LFW) database [33], where some results can be seen on figure 3.8.

3.4.4 Evaluating Multiple Feature Detectors

This formulation allows different patch alignment detectors to be seamlessly incorpo-

rated into the model. Multiple shape observations measurements can be considered by

just updating the posterior distribution N (bk|µF
k ,Σ

F
k ) using multiple times the LDS

correction steps.

In this section a global fitting strategy (DBASM-GR) is set and used to evaluate

the fitting performance when using multiple landmark local detectors. To make a

fair comparison the same kind of detector is used, in this case a linear SVM build

from aligned (positive) and misaligned (negative) examples. Using the same settings,

described in section 3.4.2, three independent linear SVM detectors were trained, one

uses as input features the grey level patch values I(z), the second uses the magnitude

of the gradients
√

Ix(z)2 + Iy(z)2 and the last one uses the orientation (phase) of the

gradients arctan( Iy(z)

Ix(z)
).

Figure 3.9 shows fitting curves for the DBASM-GR fitting approach when using just

the first detector, Bayesian fusion of the first and the second detector and fusion of all
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(b) XM2VTS [45] database
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(c) BioID [61] database

Reference 7.5 RMS IMM (240 images) XM2VTS (2360 images) BioID (1521 images)

ASM 50.0 30.7 70.0

DBASM-WPR∗ (our method) 56.7 (+6.7) 45.1 (+14.4) 75.4 (+5.4)

CQF 45.4 10.9 47.0

GMM3 40.8 (-4.6) 10.4 (-0.5) 51.7 (+4.7)

BCLM-GR∗ 48.3 (+2.9) 15.9 (+5.0) 54.2 (+7.2)

DBASM-GR∗ (our method) 50.4 (+5.0) 18.0 (+7.1) 62.2 (+15.2)

SCMS-KDE 54.6 35.7 69.0

BCLM-KDE 57.1 (+2.5) 43.4 (+7.7) 71.9 (+2.9)

DBASM-KDE (our method) 64.6 (+10.0) 54.5 (+18.8) 76.5 (+7.5)

DBASM-KDE-H (our method) 64.6 (+10.0) 53.5 (+17.8) 76.5 (+7.5)

The fitting curves for methods (*) are present in Appendix B.

Figure 3.6: Fitting performance curves. The table shows quantitative values taken by

setting a fixed RMS error amount (7.5 pixels - vertical line in the graphics). Each table

entry show how many percentage of images converge with less or equal RMS error than

the reference. The results show that our proposed methods outperform all the other

(using all the local strategies WPR, GR and KDE). Top images show DBASM-KDE

fitting examples from each database.
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Figure 3.7: Evaluation of the tracking performance of several fitting algorithms on

the FGNET Talking Face [32] sequence. The values on legend box are the mean and

standard deviation RMS errors, respectively. Top images show DBASM-KDE fitting

examples of the tested sequence. Best viewed in color. This evaluation can be seen at

http://www.isr.uc.pt/~pedromartins/Videos/PhD.
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(a) AVG (b) ASM (c) CQF (d) GMM3 (e) BCLM -

KDE

(f) SCMS -

KDE

(g) DBASM -

KDE

(h) DBASM -

KDE-H

Figure 3.8: Qualitative fitting results on LFW [33] database. The AVG means the

initial mesh estimate.
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(b) XM2VTS [45] database
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Figure 3.9: Fitting performance curves for DBASM-GR evaluating Bayesian fusion of

multiple local SVM detectors. Three linear SVM detectors were trained. One uses grey

level values as input features, other uses magnitude of the gradients and the last uses

the phase of the gradients. The ’Grey’ label means using DBASM-GR with a single

detector, ’Grey + AbsGrad’ means the fusion of two detectors and ’Grey + AbsGrad +

PhaseGrad’ fusion of all three detectors.

the detectors. The results show that the fitting performance can be increased by using

Bayesian fusion of the first and second detectors. However, ’bad’ (noisy) detectors, like

the phase of the gradients, penalize performance.
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3.5 Modeling the Prior Term

This section presents an extension to the previously DBASM [71] global alignment

strategy in section 3.3. The remain of the chapter corresponds to the paper: ’Discrim-

inative Face Alignment using Conjugate Priors’ [72] presented at the BMVC 2012.

Faces are nonrigid structures described by continuous dynamic transitions. In the

Bayesian paradigm the prior term can be used to encode the underlying dynamic of the

shape. The prior term follows a Gaussian distribution with mean µb and covariance

Σb

p(bk|bk−1) ∝ N (bk|µb,Σb). (3.29)

Mean µb and covariance Σb of the data are assumed to be unknown and modeled

as random variables ([1] pag.87-88). Recursive Bayesian estimation can be applied to

infer the parameters of the prior distribution in eq.3.29. Defining b as an observable

vector, the Bayes theorem tells us that the joint posterior density can be written as

p(µb,Σb|b) ∝ p(b|µb,Σb)p(µb,Σb). (3.30)

Performing recursive Bayesian estimation with new observations requires that joint

prior density p(µb,Σb) should have the same functional form than the joint posterior

density p(µb,Σb|b). The joint prior density, conditioning on the covariance Σb, can be

written as

p(µb,Σb) = p(µb|Σb)p(Σb). (3.31)

The previous condition is true if we assume that the covariance follow an inverse-

Wishart distribution and µb|Σb follow a normal distribution (the conjugate prior for a

Gaussian with known mean is an inverse-Wishart distribution [1])

Σb ∼ Inv-Wishartυk−1
(Λ−1

υk−1
), µb|Σb ∼ N (θk−1,

Σb

κk−1

) (3.32)

where υk−1 and Λk−1 are the degrees of freedom and scale matrix for the inverse-

Wishart distribution, respectively. θk−1 is the prior mean and κk−1 is the number

of prior measurements. According with these assumptions, the joint prior density
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becomes

p(µb,Σb) ∝ |Σb|−(υk−1+n)/2+1 exp
(
−1

2
tr(Λk−1Σ−1

b )− κk−1

2
(µb − θk−1)TΣ−1

b (µb − θk−1)
)
,

(3.33)

a normal-inverse Wishart distribution (the product between a Gaussian and an inverse-

Wishart). We recall that n is the number of shape parameters.

The inference step in eq.3.30 involves a Gaussian likelihood and the joint prior

p(µb,Σb), resulting in a joint posterior density of the same family (conjugate prior

for a Gaussian with unknown mean and covariance), i.e. following a normal inverse-

Wishart(θk, Λk/κk; υk, Λk) distribution with the hyperparameters [1]:

υk = υk−1 +m, κk = κk−1 +m (3.34)

θk =
κk−1

κk−1 +m
θk−1 +

m

κk−1 +m
b (3.35)

Λk = Λk−1 +
m∑
i=1

(bi − b)(bi − b)T +
κk−1m

κk−1 +m
(b− θk−1)(b− θk−1)T (3.36)

where b is the mean of the new samples, m the number of samples used to update

the model. The posterior mean θk is a weighted average between the prior mean θk−1

and the sample mean b. The posterior degrees of freedom are equal to prior degrees of

freedom plus the sample size. In the present case, the second term in eq.3.36 (
∑M

i=1 · · · )

is null because the model is updated with one sample each time (m = 1).

Marginalizing over the joint posterior distribution p(µb,Σb|b) (eq.3.30) with respect

to Σb gives the marginal posterior distribution for the mean of the form

p(µb|b) ∝ tυk−n+1(µb|θk, Λk/(κk(υk − n+ 1))). (3.37)

where tυk−n+1 is the multivariate Student-t distribution with υk − n + 1 degrees of

freedom.

Using the expectation of marginal posterior distribution p(µb|b) as the model pa-

rameters at time k, we get (see table of expectation for multivariate t-distributions

e.g.[1] pag.576).

µbk = E(µb|b) = θk. (3.38)

Similarly, marginalizing over the joint posterior distribution p(µb,Σb|b) with re-

spect to µb gives the marginal posterior distribution p(Σb|b) that follows an inverse
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Wishart distribution. The expectation for marginal posterior covariance is (see table

of expectation for inverse Wishart distributions e.g.[1] pag.575)

Σbk = E(Σb|b) = (υk − n− 1)−1Λk. (3.39)

3.5.1 MAP Global Alignment

In Bayesian inference, when the likelihood and the prior are Gaussian distributions the

posterior is also a Gaussian. Consequently, a possible solution to the global alignment,

can be given by the Bayes’ theorem for Gaussian variables ([17], pag.90), considering

p(bk|bk−1) a prior Gaussian distribution for bk and p(y|bk) a likelihood Gaussian

distribution. Note that, the conditional distribution p(y|bk) has a mean that is a

linear function of bk and a covariance which is independent of bk (eq.3.4). However,

we further extend this result by adding two main components: (1) use a second order

estimate of the latent variables [71] (the covariance Σk−1). Using the covariance of

the latent variables is a crucial issue, as it allows to account for the confidence on the

current estimate (i.e. the amount of uncertainty in bk−1 should be considered in the

estimate of bk). (2) Bayesian fusion of detectors. Allow to multiple (M) local detectors

(
∑M

m=1 · · · ) to be seamlessly incorporated into the model, usually increase the fitting

accuracy. The recursive posterior distribution takes the form of

p(bk|yk, . . . ,y0) ∝ N (bk|µk,Σk) (3.40)

Σk =

(
(Σbk + Σk−1)−1 + ΦT

M∑
m=1

(
Σ−1

y(m)

)
Φ

)−1

(3.41)

µk = Σk

(
ΦT

M∑
m=1

(
Σ−1

y(m)
∆y(m)

)
+ (Σbk + Σk−1)−1µbk

)
(3.42)

where ∆y(m), Σy(m)
are the multiple likelihood observations.

The pose parameters q are estimated in the same way. The parameters of the

normal inverse-Wishart distribution (eqs.3.34, 3.35 and 3.36) are kept up date and the

global optimization step is used. However, the term Φ must be changed by Ψ (section

3.2) in both eqs.3.41 and 3.42. See algorithm 8 where the overall global optimization

is summarized.
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Precompute: The PDM s0, Φ, Ψ,ΛPCA = diag(λ1, . . . , λn), where λi is the ith PCA1

eigenvalue and the local detectors H∗i

Initial estimate of the shape/pose parameters and their covariances (b0,Σ0) (q0,Σ
q
0)2

(shape: υ0 = 2n, κ0 = 1, θ0 = b0, Λ0 = nΛPCA)3

(pose: υq0 = 8, κq0 = 1, θq0 = q0, Λq0 = 4×diag([0.05 0.005 5 5]2))4

repeat5

Warp image I to the base mesh using the current pose parameters qk [0.5ms]6

Generate current shape s = S(s0 + Φbk,qk)7

for Landmark i = 1 to v do8

Evaluate the M detector(s) response(s), eq.3.25 [M x 3ms]9

Find the likelihood parameters yi and Σyi using a local strategy (section 3.3.2)10

end11

Estimate the pose parameters: (shape observation: ∆y = y− s0) [0.15ms]12

- Update parameters of the normal inv-Wishart distrib. using eqs.3.34, 3.35 and 3.3613

- Expectation of the prior parameters µqk = θqk and Σqk = (υqk − 4− 1)−1Λqk14

- Evaluate the pose parameters qk and the covariance Σqk by eqs.3.42 and 3.41,15

(changing Φ by Ψ)

Estimate the shape parameters: (shape observation: ∆y = y− s0 −Ψqk) [0.25ms]16

- Update parameters of the normal inv-Wishart distrib. using eqs.3.34, 3.35 and 3.3617

- Expectation of the prior parameters µbk = θk and Σbk = (υk − n− 1)−1Λk18

- Evaluate the shape parameters bk and the covariance Σbk by eqs.3.42 and 3.4119

until ||bk − bk−1|| ≤ ε or maximum number of iterations reached ;20

Algorithm 8: Overview of the Bayesian Active Shape Models (BASM) method. The

performance of BASM is comparable to ASM [98], CQF [115] or SCMS [41] depending

of the local strategy BASM-WPR, BASM-GR or BASM-KDE, respectively. It achieves

near real-time performance. The bottleneck is always obtaining the response maps

(M x 3ms x number landmarks), although it can be done in parallel.
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Hierarchical Search (BASM-KDE-H)

According to section 3.3.5 when the local response maps are approximated by KDE

representations, the global alignment can also be done by a hierarchical search. The

same can be said for the BASM-KDE approach. The following sections refer to this

method as BASM-KDE-H.

3.6 Evaluation Results

According to section 3.4 a similar evaluation protocol was followed in this section. The

main assessment experiments were performed in the IMM [57], the BioID [61] and the

XM2VTS [45] databases. Tracking performance was evaluated/compared using the

FGNet Talking Face (TF) [32] video sequence and finally, qualitative results taken

from the Labeled Faces in the Wild (LFW) [33] dataset are also shown.

Local Detectors

As previously discussed, performing a fair comparison requires that all the evaluated

global optimization strategies use the same local detector. Section 3.4.2 shows that

the recently proposed MOSSE filter [28] perform better than the most used detector:

the linear classifier build from aligned (positive) and misaligned (negative) examples

[115][41]. As so, all the following experiments use the MOSSE filter as local landmark

detector. The MOSSE filters use the same settings than previous section 3.4.2, i.e.

Ij (the aligned patch examples) have size of 128 × 128 and G (the desired output) is

set to be a 2D Gaussian function centered at the landmark with 3 pixels of standard

deviation (recall eq.3.25). In the following section, the performance of a Bayesian fusion

of detections is also evaluated. The additional detector used is still a MOSSE filter but

built from magnitude of gradients ||∇Ij||.
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3.6.1 Evaluating Global Optimization Strategies

The BASM global optimization strategy (both BASM and BASM-H methods) are

evaluated against (1) ASM [98], (2) CQF [115], (3) BCLM [104], (4) GMM [46] using

three Gaussians (GMM3) (5) SCMS [41] and (6) DBASM [71] (described in previous

section 3.3). Like previous section 3.4.3, the local search strategy KDE is fixed and

comparable global optimization approaches are evaluated. The KDE kernel bandwidth

schedule of σ2
h = (15, 10, 5, 2) is used. Similarly, the results from ASM, CQF and GMM3

are provided as a baseline. In all cases, the nonrigid parameters start from zero, the

similarity parameters were initialized by a face detection (Adaboost [75]) and the model

was fitted until convergence (limited to a maximum of 20 iterations).

Figures 3.10 shows the fitting performance curves for the IMM, XM2VTS and BioID

datasets, respectively. The table, in the same figure 3.10, shows quantitative values

taken by sampling the curves using a fixed RMS error amount (7.5 pixels, shown as

a vertical line in graphics). To avoid confusion, the remainder local strategies (WPR

and GR) appear only in the table.

The results show that the proposed Bayesian global optimization (BASM) outper-

forms all previous methods. Explicitly modelling the prior distribution and using the

covariance of the latent variables (inherited from DBASM) offers a significative increase

in fitting performance. The Bayesian fusion of (M = 2) local detectors was evaluated

using the method that previously achieved the best performance (BASM-KDE). The

results (BASM-KDE Fusion) show that including multiple sets of patch alignment clas-

sifiers further improve (’a lot’) the accuracy. In fact, this approach achieves the overall

best results.

Tracking performance is evaluated in the FGNET Talking Face video sequence

(figure 3.11). Each frame is fitted using as initial estimate the previously estimated

shape and pose parameters. The relative performance between the global optimization

approaches is similar to the previous experiments, where the BASM techniques yields

the best performance. Here, the hierarchical annealing version of BASM-KDE (BASM-

KDE-H) performs slightly better, but at the cost of more iterations. The fusion of local

detectors (BASM-KDE Fusion), as expected, improves even further the performance.
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(a) IMM [57] database

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

RMS Error

P
ro

po
rt

io
n 

of
 Im

ag
es

BioID Fitting Performance

 

 

AVG
ASM
CQF
GMM3
SCMS
BCLM−KDE
DBASM−KDE
DBASM−KDE−H
BASM−KDE
BASM−KDE−H
BASM−KDE Fusion

(b) XM2VTS [45] database
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(c) BioID [61] database

Reference 7.5 RMS IMM (240 images) XM2VTS (2360 images) BioID (1521 images)

ASM 50.0 30.7 70.0

DBASM-WPR (previous sec.3.3) 56.7 (+6.7) 45.1 (+14.4) 75.4 (+5.4)

BASM-WPR (this section) 58.4 (+8.4) 47.4 (+16.7) 77.1 (+7.1)

CQF 45.4 10.9 47.0

GMM3 40.8 (-4.6) 10.4 (-0.5) 51.7 (+4.7)

BCLM-GR 48.3 (+2.9) 15.9 (+5.0) 54.2 (+7.2)

DBASM-GR (previous sec.3.3) 50.4 (+5.0) 18.0 (+7.1) 62.2 (+15.2)

BASM-GR (this section) 51.8 (+6.4) 19.7 (+8.8) 63.5 (+16.5)

SCMS-KDE 54.6 35.7 69.0

BCLM-KDE 57.1 (+2.5) 43.4 (+7.7) 71.9 (+2.9)

DBASM-KDE (previous sec.3.3) 64.6 (+10.0) 54.5 (+18.8) 76.5 (+7.5)

DBASM-KDE-H (previous sec.3.3) 64.6 (+10.0) 53.5 (+17.8) 76.5 (+7.5)

BASM-KDE (this section) 65.4 (+10.8) 57.0 (+21.3) 80.3 (+11.3)

BASM-KDE-H (this section) 64.0 (+9.4) 56.6 (+20.9) 79.9 (+10.9)

BASM-KDE Fusion of 2 Detectors 72.5 (+17.9) 58.7 (+23.0) 88.2 (+19.2)

Figure 3.10: Fitting performance curves. The table shows quantitative values taken

by setting a fixed RMS error amount (7.5 pixels - vertical line in the graphics). Each

table entry show how many percentage of images converge with less (or equal) RMS

error than the reference. The results show that our proposed methods outperform all

the other (using all the local strategies WPR, GR and KDE). AVG is the location

provided by the initial estimate [75].

109



Chapter 3. Discriminative Bayesian ASM 3.6. Evaluation Results

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

40

Frame Number

R
M

S
 E

rr
or

Tracking Performance

 

 

ASM  (10.5 / 6.4)
CQF  (10.6 / 3.9)
GMM3  (11.1 / 4.3)
SCMS−KDE  (8.2 / 2.6)
BCLM−KDE  (9.5 / 3.6)
BASM−KDE  (6.4 / 1.7)
BASM−KDE−H (6.3 / 1.5)
BASM−KDE Fusion (5.9 / 1.5)

Figure 3.11: Evaluation of the tracking performance of several fitting algorithms on

the FGNET Talking Face [32] sequence. The values on legend box are the mean and

standard deviation RMS errors, respectively. Top images show BASM-KDE fitting

examples. Best viewed in color. This evaluation can be seen at http://www.isr.uc.

pt/~pedromartins/Videos/PhD.

Qualitative evaluation is also performed using the Labeled Faces in the Wild (LFW)

database [33], where some results can be seen on figure 3.12.
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Figure 3.12: Qualitative BASM image alignment examples in the challenging Labeled

Faces the Wild dataset [33]. See BASM qualitative video results at http://www.isr.

uc.pt/~pedromartins/Videos/PhD.
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3.7 Conclusions

An efficient solution to align facial parts in unseen images is described in this chapter.

Fitting a Point Distribution Model (PDM) to an image involves a global optimization

step where the responses of an ensemble of local feature detectors are jointly maxi-

mized. A novel Bayesian paradigm (DBASM) to solve the global alignment problem

in a maximum a posteriori (MAP) sense is presented, being shown that the posterior

distribution of the global warp can be efficiently inferred using a Linear Dynamical Sys-

tem (LDS). The main advantage w.r.t. previous formulations is that DBASM model

the covariance of the latent variables which represent the confidence in the current

parameters estimate.

The DBASM technique was extended to explicitly model the prior distribution. In

this new strategy (BASM) the dynamic transitions of the PDM parameters, encoded

by the prior distribution, were being continuously kept up to date. The extended global

optimization strategy makes use of recursive Bayesian estimation to model a Gaussian

prior, treating the mean and covariance as random variables. This means that not only

the mean and the covariance are estimated, but also the probability distribution of the

mean and the covariance.

Several performance evaluation results are presented, comparing both local detec-

tors and global optimization strategies. Evaluating the local detectors show that the

MOSSE correlation filters offer a superior performance in landmark local detection.

Global optimizations evaluation were performed in several image publicly available

datasets, namely on, the IMM, the XM2VTS, the BioID, and the Labeled Faces on the

Wild. Tracking performance is also evaluated on a video sequence using the FGNET

Talking Face dataset. The new Bayesian paradigms are shown to significantly outper-

form other state-of-the-art fitting solutions.
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Chapter 4

Identity and Facial Expression

Recognition

In this chapter, a solution for identity and facial expression recognition is proposed using a

two stage classifier approach with a low dimensional representation of the geometry of the

face. Face geometry is extracted from input images using the Active Appearance Models

(AAM) and low dimensional manifolds were then derived using Laplacian EigenMaps (LE)

resulting in two types of manifolds, one representing identity and the other person-specific

facial expressions. The first stage uses a multiclass Support Vector Machines (SVM) to estab-

lish identity across expression changes. The second stage deals with person-specific expression

recognition and is composed by a network of several Hidden Markov Models (HMM), each one

specialized to a given facial emotion. The decision was made by the sequence that yielded

the highest probability. For evaluation proposes a database was build consisting on 6770

images captured from four people exhibiting seven different emotions. The identity overall

recognition rate was 96.8%. Facial expression results are identity dependent and the most

expressive individual achieves 81.2% of overall recognition rate.
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Publications

The contents of this chapter resulted in two main publications:

• Identity and Expression Recognition on Low Dimensional Manifolds [66]

Pedro Martins, Jorge Batista

ICIP 2009 - IEEE International Conference on Image Processing

• Simultaneous Identity and Expression Recognition Using Face Geometry on Low

Dimensional Manifolds [67]

Pedro Martins, Jorge Batista

IbPria 2009 - Iberian Conference on Pattern Recognition and Image Analysis

4.1 Introduction

Facial expression is one of the most powerful, natural and immediate means for hu-

mans to share their emotions and intentions. However, automatic facial expression

recognition is a difficult task because faces vary from one individual to another quite

considerably due to differences in age, ethnicity, gender, occluding objects such as

glasses and hair, pose and lighting changes. Psychological studies focus on the in-

terpretation on this mean to interact and describe that there are six basic emotions

universally recognized [21][62], namely: joy, sadness, surprise, fear, anger and disgust

(see image 4.1). An automatic, efficient and accurate facial expression extraction sys-

tem would thus be a powerful tool assisting on these studies, allowing also other kinds

of applications such as Human Computer Interfaces (HCI), smart interactive systems,

video compression, etc.

In the past, a lot of effort was dedicated to facial expression recognition in still im-

ages (static recognition). Many techniques have been applied such as Neural Networks

[114], Gabor Wavelets [58] or the Active Appearance Models (AAM) [10][35][113][29].

More recently, attention has been shifted particularly towards modeling dynamical fa-

cial expressions. Facial dynamics is very important to efficiently classify emotions,

since dynamic methods can deal with most ambiguities in static recognition by simply
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(a) Neutral (b) Happy (c) Sad (d) Surprise (e) Anger (f) Fear (g) Disgust

Figure 4.1: The six basic human emotions universally recognized plus the neutral

expression.

using previous time instants to estimate the most probable facial expression. Dynami-

cal approaches can use shape deformations [29], texture dynamics [76] or a combination

of them [112]. A dynamic classifier in [103] is based on building spatio-temporal model

for each universal expression. The recognition of unseen expression uses the Hausdorff

distance to compute dissimilarity values for classification. The authors in [112] propose

a dynamic recognition based on the differential Active Appearance Model parameters.

A sequence of input frames is fitted using the classical AAM then a specific frame

is selected as reference frame. Then the corresponding sequence of differential AAM

parameters is recognized by computing the directed Hausdorff distance and the K-

Nearest Neighbor classifier. In [18], a Bayesian approach is used to modeling temporal

transitions of facial expressions represented in a manifold using Local Binary Pattern

(LBP) [102] features as facial appearance representation.

The identity and facial expression recognition approach presented in this chapter

[66][67], is based on the idea that it is straightforward for a human to capture the

emotion and consequently the identity of a mimic, or someone known using makeup.

Humans can understand both the identity/expression based only on facial motion. This

general idea suggests that face geometry could be used to recognize both the identity

and facial expression (focusing on the six basic emotions plus the neutral one).

In this work, face images were represented by a set of 2D sparse feature points ex-

tracted using Active Appearance Models (AAM) [99][38]. AAMs are an effective way to

locate facial features, modeling both shape and texture from an observed training set,
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being able to extract relevant face information without background interference. Both

the identity and person-specific expression manifolds were learnt in a facial geometric

feature space using Laplacian EigenMaps (LE) [51]. LE are nonlinear dimension reduc-

tion techniques that derive a low dimensional manifold lying in a higher dimensional

more complex manifold. Such manifold is derived by embedding image data into a low

dimensional space, where a image sequence is then represented as a trajectory in that

feature space.

The recognition is based on a two stage cascade of classifiers. The first stage uses

a multiclass Support Vector Machines (SVM) [106] that determines the identity. The

second stage deals with the facial expression, being composed by a network of Hidden

Markov Models (HMM) [48]. For an input image, the AAM fitting framework extracts

facial geometric related features and projects them into the identity manifold. The

first SVM stage predicts the identity and the respective person-specific model is loaded

to stage two. Here the extracted features are projected into the expression manifold

and the HMM based network decides the most likely facial expression.

4.1.1 Outline

This chapter is organized as follows: Section 4.2 gives an brief introduction to the 2D

Active Appearance Models (AAM), the building and fitting of such model. Section 4.3

briefly describes how to derive low dimensional manifolds using the Laplacian Eigen-

Maps (LE). Similarly, a briefly introduction of the Hidden Markov Models (HMM) is

presented in Section 4.4. The Section 4.5 addresses to the proposed approach of

recognizing the identity and the facial expression. Experimental results are presented

in Section 4.6 and, finally, Section 4.7 summarizes the chapter.

4.2 Active Appearance Models (AAM)

Active Appearance Models (AAM) [99][38] are generative linear parametric models of

shape and texture, commonly used to model faces. These adaptive template matching

methods, learn offline the variability of shape and texture that is captured from a
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representative training set, being able to fully describe with photorealistic quality the

trained faces as well as unseen. The following sections describe how to build such

models and how to fit them into an image.

4.2.1 Parametric Models of Shape and Appearance

The shape of an AAM is defined by the vertex locations of a 2D triangulated mesh.

Mathematically, the representation used for a single v-point shape is a 2v vector given

by s = (x1, . . . , xv, y1, . . . , yv)
T . The AAM training data consists of a set of annotated

images with the shape mesh marked (usually by hand). The shapes are aligned to a

common mean shape using a Generalized Procrustes Analysis (GPA) [15], removing

location, scale and rotation effects. Principal Components Analysis (PCA) [56] are

then applied to the aligned shapes, resulting on the linear parametric model

s = S

(
s0 +

n∑
i=1

pisi,q

)
(4.1)

where the new shapes s are synthesized by deforming the mean shape s0 = (x0
1, . . . , x

0
v,

y0
1, . . . , y

0
v)
T using a weighted linear combination of eigenvectors si. The shape genera-

tion is controlled by two sets of parameters: the shape parameters p and the 2D pose

parameters q (S(.,q) represents a similarity transformation). The shape parameters

p are a n dimensional vector which represents the eigen-shapes mixing weights with n

being the number of eigenvectors that hold a user defined variance, typically 95%.

The 2D pose is represented by the similarity parameters vector as q = (s cos(θ)−

1, s sin(θ), tx, ty)
T where s, θ, tx,ty are the scale, rotation and translations w.r.t. the

base mesh s0, respectively. As described in section 3.2, an additional matrix Ψ is

defined to hold four special eigenvectors that linearly model the 2D pose [38].

Building a texture model, requires warping each training image so that the control

points match those of the mean shape, s0. In order to prevent holes, the texture

mapping is performed using the reverse map with bilinear interpolation correction. This

texture mapping procedure is performed, using a piecewise affine warp, i.e. partitioning

the convex hull of the mean shape by a set of triangles using the Delaunay triangulation.

Each pixel inside a triangle is mapped into the correspondent triangle in the mean shape
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Figure 4.2: Texture warping examples. Top images I(x) are warped using W(x,p,q)

into the images I(W(x,p,q)) shown at the bottom.

using barycentric coordinates (see figure 4.2). This procedure removes differences in

texture due shape changes, establishing a common texture reference frame. A texture

model is obtained by applying a low-memory PCA on the normalized textures. Defining

pixel coordinates as x = (x, y)T , the appearance of the AAM is an image, A(x), defined

over the pixels x ∈ s0 such as

A(x) = A0(x) +
m∑
i=1

λiAi(x), x ∈ s0. (4.2)

The appearance A(x) can be expressed as a base appearance A0(x) plus a linear

combination of m appearance images Ai(x) (EigenFaces). The coefficients λi are the

appearance parameters.

4.2.2 Fitting an AAM into an Image

Fitting an AAM is usually formulated [38] as minimizing the texture error, in a least

square sense, between the current model instance A(x) and the input backwarped

image onto the base mesh I(W(x,p,q)),

arg min
p,q,λ

∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x)− I(W(x,p,q))

]2

. (4.3)

In eq. 4.3 the warp W is the piecewise affine warp from the base mesh s0 to the current

AAM shape s. Hence, W is a function of the shape and pose parameters p and q,

118



Chapter 4. Identity and Facial Expr. Recognition 4.3. Laplacian EigenMaps

respectively.

The Simultaneous Inverse Compositional (SIC) [84][85] minimize eq.4.3 by per-

forming a Gauss-Newtow gradient descent optimization simultaneously on the warp

parameters p, the pose parameters q and the appearance parameters λ.

Concatenating all the n + 4 + m parameters in a single vector, r = (pT |qT |λT )T

and denoting the Steepest Descent images [85] as

SDSIC(x) =

(
∇A

∂W

∂p1

· · · ∇A
∂W

∂pn
∇A

∂W

∂q1

· · · ∇A
∂W

∂q4

A1(x) · · ·Am(x)

)
(4.4)

where ∇A is defined as ∇A = ∇A0 +
∑m

i=1 λi∇Ai, the parameters update are com-

puted as

∆r = H−1
SIC

∑
x∈s0

SDT
SIC(x)E(x) (4.5)

where HSIC is the Gauss-Newtow approximation of the Hessian given by

HSIC =
∑
x∈s0

SDT
SIC(x)SDSIC(x), (4.6)

and the error image, E(x), is defined as the difference between the current model

appearance and the most recent warped image

E(x) = A0(x) +
m∑
i=1

λiAi(x)− I(W(x,p,q)). (4.7)

The Simultaneous Inverse Compositional, when compared with other fitting ap-

proaches, such as the Project-Out [38] or the precomputed numerical estimate [99],

work rather slow, since the Steepest Descent images depend on the appearance param-

eters and they have to re-computed in every iteration. On the other hand, SIC achieves

the better fitting accuracy which is desirable for our proposes.

4.3 Laplacian EigenMaps (LE)

Laplacian EigenMaps (LE) [51] is a nonlinear dimension reduction technique that de-

rive a low dimensional manifold lying in a higher dimensional more complex manifold.

The LE builds a graph that incorporates neighborhood information of the dataset and
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(a) Input (b) 1st (c) 2nd (d) 5th (e) 10th (f) Final

Figure 4.3: AAM fitting example using SIC. The images show the evolution of the

geometric model during several iterations until convergence.

using the notion of the Laplacian of the graph, computes a low dimensional representa-

tion that optimally preserves local neighborhood information. Given k feature points

x1, · · · ,xk ∈ <n, a weighted graph with k nodes is build, one for each point, with a set

of edges connecting neighboring points. The embedding map is found by computing

the eigenvectors of the graph Laplacian [51]. See algorithm 9 where this method is

described. Finding such embedding map, Φ, requires tuning l nearest neighbors for

graph building and select the number of dimensions, d, where the input features are

projected into.

Build the Adjacency Graph:1

Nodes i and j are connected by an edge to the l nearest neighbors.2

Choosing the weights Wij: (if i and j are connected by an edge) then Wij = 13

Build EigenMaps:4

Lf = λDf (4.8)

where Dii =
∑

jWji is a diagonal weight matrix and L = D −W is the Laplacian

matrix. Let f0, · · · , fk−1 be the solutions of eq.4.8 order by eigenvalues

λ0 = 0 ≤ λ1 ≤ · · · ≤ λk−1). Leaving out the eigenvector f0 corresponding to

eigenvalue 0, the embedding d-dimensional Euclidean space is given by

Φ = [f1|f2| · · · |fd].
Algorithm 9: Laplacian EigenMaps (LE).
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4.4 Hidden Markov Models (HMM)

Hidden Markov Models (HMM) [48] have been widely used for many classification and

modeling problems. HMM is a finite set of states, each of which is associated with a

multidimensional probability distribution. Transitions among the states are governed

by a set of probabilities called transition probabilities. In a particular state an outcome

or observation can be generated, according to the associated probability distribution.

Only the observation is visible to an external observer, not the state, therefore states

are hidden to the outside. An HMM is given by the following set of parameters:

1. The transition probabilities matrix A given by

Ai,j = p(qt+1 = j|qt = i), i, j = 1, . . . , h (4.9)

where qt denotes the current state, and h the number of hidden states.

2. The probability distribution of each state

Bj = p(Ot|qt = j), j = 1, . . . , h (4.10)

with Ot being a observation at time t. The observations, in this case, use a contin-

uous probability density function, usually approximated by a weighted mixture

of M Gaussians as

Bj(Ot) =
M∑
m=1

ωjmN (Ot|µjm,Σjm), j = 1, . . . , h (4.11)

where ωjm are the mixing coefficients, µjm and Σjm are means the covariances

matrices, respectively.

3. Finally, the initial state distribution (initial probability) is denoted as

πi = p(q1 = i), i = 1, . . . , h (4.12)

In compact notation, an HMM can be represented by Λ = (π,A, ωjm, µjm,Σjm).
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Figure 4.4: Overview of the proposed solution of recognize identity and facial ex-

pression. For an input image, the AAM extracts the shape parameters, p. These

parameters are projected into a first manifold and the identity is predicted using SVM.

The facial expression recognition mechanism is person-specific based. It uses a network

of seven HMMs specialized in each facial emotion. The predicted expression is the one

whose HMM sequence generated the highest probability.

4.5 The Recognition Approach

The proposed solution models both identity and facial expression in independent low

dimensional manifolds, building person-specific expression models. The different man-

ifolds were derived from embedding image data into a low dimensional subspace using

Laplacian EigenMaps (LE) [51]. Learning these manifolds requires a discriminative

facial representation from images, that is provided by the AAM fitting framework, see

figure 4.3, where face images are represented by a set of sparse 2D feature point. As

discriminatory features, instead of vectors with (x, y) feature points, there were used

AAM related geometric features, i.e. regarding eq.4.1 the shape parameters, p, provide

the same geometric information but using less dimensional features (n << 2v). Face

normalization is done by only selecting the shape parameters that model deformation
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Figure 4.5: 2D representation of the identity manifold, ΦI, learnt with AAM geomet-

ric related features for 4 persons.

(i.e. ignoring the 4 similarity parameters).

Both identity, ΦI, and person-specific expression manifolds ΦEi (with respect to

subject i) were then learnt in a facial geometric feature space, consequently, an image

sequence from a test subject describing a facial emotion is represented as a trajectory

in the learnt manifold. Each image sequence starts with the subject at the neutral ex-

pression, then it exhibits an emotion into a maximum of expressivity and returns back

to the neutral stage. See figure 4.6. These manifolds were build using LE representa-

tions for the shape parameters (which are related to face geometry). This approach

maps the shape parameters, p, into a less dimensional space, i.e. p′ = ΦT
I p, where

the mapped features in our experiments acquire a huge discrimination power. As men-

tioned, two types of LE manifolds were derived: (1) The first type of manifold (lets

call it identity manifold ΦI) was built using data from all individuals, see figure 4.5; (2)

the second type (the expression manifold ΦEi) uses data only from a single individual,

emphasizing the differences in individual facial motion of the different expressions, see

figure 4.6. This system holds an identity manifold and expression manifold for each of

the individuals in the training set.

For recognition proposes, an approach with two stage cascade of classifiers was

used. The first stage deals with identity recognition (across expression changes) where
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Figure 4.6: Low dimensional manifolds learnt with geometric AAM related features

for 4 persons exhibiting 7 expressions several turns each. Top-right, top-left, bottom-

right and bottom-right figures represent the expression models ΦEi for person i =

1, 2, 3 and 4, respectively. Each facial expression sequence represents a trajectory in

this space. All sequences start and finish at the neutral expression, hence, the high

concentration of projected points over the neutral cluster.

124



Chapter 4. Identity and Facial Expr. Recognition 4.6. Experimental Results

a multiclass Support Vector Machines (SVM) [106][14] was trained with the identity

manifold resulted data. The person-specific expression recognition, due the temporal

dependency during the evolution of a facial emotion, is performed on the second stage

using Hidden Markov Models (HMM) [48]. Seven HMM displaced in a parallel architec-

ture were trained, each one specialized on the analyzed expressions. Input observation

sequences (expression manifold projected features) fed each one of the HMM (shape

parameters as latent variables) and the final decision was based on the sequence that

yielded the highest (forward-backward) probability.

Figure 4.4 shows an overview of the proposed solution. Summarizing, it has a

feature extracting mechanism and a two stage cascade classifiers trained with embedded

manifold data. For an input image, the AAM fitting framework extracts the normalized

shape parameters, p. These parameters are projected into the identity manifold p′ =

ΦT
I p, and the first SVM stage predict the identity i for the projected parameters

p′. The second stage loads the expression manifold, ΦEi , for the predicted identity.

This stage consists on a network of seven HMMs displaced in a parallel architecture.

The input features are projected into the expression manifold, p′′ = ΦT
Ei

p and the

predicted expression is the one whose HMM model generated sequence yielded the

highest probability.

4.6 Experimental Results

For the purpose of this work, a Facial Dynamics Database was built. It consists of

several individuals, showing the seven basic facial expressions [62], namely: neutral

expression, happiness, sadness, surprise, anger, fear and disgust. All facial emotions

sequences were taken by starting and ending on the neutral expression. Each individual

repeated all facial emotions four times. The dataset is formed by a total of 6770 images

(640× 480) taken from four individuals.

The AAM model was build using a total of 28 images (7 images for each of the

4 person). Since the AAM will be used to fit every frame of the captured database,

it should held as much shape variation as possible. The training images were then
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composed by the most expressive images of the 7 emotions (from a random repeti-

tion sequence). These training images were hand annotated using v = 58 landmarks.

Training the model holding 95% of shape and appearance variance produces an AAM

with n = 18 shape parameters and m = 29 EigenFaces. All the 6770 frames of the

Facial Dynamics Database were then fitted using the AAM model, retrieving the shape

parameters, p, for each frame.

Two main schemes were used for the manifold building: setting data for identity and

setting the data for the expressions of each individual. A total of five manifolds were

constructed (one identity manifold plus four individual-specific expression manifolds).

These LE manifolds were build with both the number of adjacency graph neighbors,

and the number of dimensions where the input features were projected into, found by

cross-validation. Figures 4.5 and 4.6 show the manifolds produced for the identity and

expressions, respectively. Regarding figure 4.6 it is noticed that person 1 (figure 4.6-

top-right) is the most expressive and all facial emotions start and end from the neutral

expression. This explains the high concentration of projected points over the neutral

cluster.

On the first stage, a multiclass SVM [14] was trained with the input features of the

identity manifold. The SVM classification was achieved using one-against-all voting

scheme with a Gaussian Radial Basis Function (RBF) kernel. The kernel parameters

and the missclassification penalty, were also found by cross-validation. Each individual-

specific expression models in the second stage is composed by a network of seven HMM

models displaced in a parallel architecture. These HMM models are specialized in each

of the seven expressions. Representing h as the of number hidden states from a given

HMM, h Gaussian Mixtures were fitted on the low dimensional data of the respective

expression using K-means as the initial estimate. Maximum likelihood estimates of

the parameters (π,A, ωjm, µjm,Σjm) were found using the Expectation-Maximization

algorithm. The optimal number of states h and mixtures M were found by cross-

validation analyzing the likelihood outputs on the re-estimation process (after the EM).

The final decision of the HMM network is made by evaluating the highest forward-

backward probability on the sequence path provided by the Viterbi algorithm from all
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Indv1 Indv2 Indv3 Indv4

Indv1 98.11 0.09 1.79 0

Indv2 1.32 98.67 0 0

Indv3 2.93 0.29 94.50 2.27

Indv4 1.29 0.13 2.32 96.25

Overall recognition rate = 96.88%

Table 4.1: Identity model confusion matrix.

of the seven HMM.

4.6.1 Performance Evaluation

To evaluate the performance of the proposed solution, the dataset was divided into

4 fold for cross validation F1, F2, F3 and F4, that matches to the four repetitions

of all expressions that each subject has made. The results shown are of the form of

confusion matrices that were obtained from the cross-validation of the four folds (i.e.

[test F1, train F2, F3, F4] [test F2, train F1,F3,F4] [test F3, train F1,F2,F4] and

finally [test F4, train F1, F2, F3]).

Identity and expression models were evaluated independently. Table 4.1 displays the

confusion matrix for the identity recognition and table 4.2 shows the confusion matrices

for the expression models for each person in the dataset. Baseline comparative results

taken by a static based recognition [67] (still image classification using a multiclass one-

against-all SVM with a Radial Basis Function kernel) are shown in table 4.3. Notice

that, due the HMM based recognition, the results in table 4.2 could be misleading.

This table shows classification for each of the 6770 frames, but when the observations

don’t have length enough the HMM don’t produce reliable results, misclassifying many

frames (that happens during the start of an emotion when no previous information is

available). For this reason, the HMM network decision at the end of each observation

sequence (full expression) is also shown at table 4.2).

Figures 4.7 and 4.8 shows several examples of the overall proposed approach. It is

shown the projection into the identity manifold and the trajectory described on the

respective expression manifolds.
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Person 1 Neut Happ Sad Surp Ang Fear Disg Full Sequence

Neut 58.40 0 3.05 0 16.03 0 22.52 3 0 0 0 1 0 0

Happ 1.25 95.00 0 0 3.75 0 0 0 4 0 0 0 0 0

Sad 0.59 0 97.92 1.47 0 0 0 0 0 4 0 0 0 0

Surp 0 0 0.66 99.34 0 0 0 0 0 0 4 0 0 0

Ang 0 2.69 5.09 0.59 87.72 1.20 2.69 0 0 0 0 4 0 0

Fear 0 0 0 29.37 2.23 68.40 0 0 0 0 1 0 3 0

Disg 0 0 4.14 0.95 32.80 0 62.10 0 0 0 0 1 0 3

Overall recognition rate = 81.27% 25/28 sequences

Person 2 Neut Happ Sad Surp Ang Fear Disg Full Sequence

Neut 47.32 1.67 0 0 0 41.94 9.06 2 0 0 0 0 2 0

Happ 0 70.34 0 25.85 0 3.80 0 0 3 0 1 0 0 0

Sad 0 0.35 93.43 0.69 0 1.38 4.15 0 0 4 0 0 0 0

Surp 0 0 0.38 97.32 0.76 1.53 0 0 0 0 4 0 0 0

Ang 0 0 1.84 0 91.70 0.92 5.53 0 0 0 0 4 0 0

Fear 0 1.23 2.05 31.14 0 61.47 4.09 0 0 0 2 0 2 0

Disg 15.30 0.65 0 9.12 1.95 2.93 70.03 1 0 0 0 0 0 3

Overall recognition rate = 75.95% 22/28 sequences

Person 3 Neut Happ Sad Surp Ang Fear Disg Full Sequence

Neut 61.30 20.10 0 0 18.59 0 0 2 1 0 0 1 0 0

Happ 0.86 96.53 0 2.59 0 0 0 0 4 0 0 0 0 0

Sad 0.44 0 94.76 0.87 2.18 1.31 0.44 0 0 4 0 0 0 0

Surp 23.40 0 0 76.06 0 0.53 0 1 0 0 3 0 0 0

Ang 0 2.38 2.38 1.90 92.86 0.48 0 0 0 0 0 4 0 0

Fear 21.25 0 6.87 16.87 1.25 46.25 7.50 1 0 0 1 0 2 0

Disg 27.03 1.35 16.21 0 9.46 1.35 44.60 1 0 1 0 0 0 2

Overall recognition rate = 73.20% 21/28 sequences

Person 4 Neut Happ Sad Surp Ang Fear Disg Full Sequence

Neut 25.00 8.00 0 39.00 28.00 0 0 1 0 0 2 1 0 0

Happ 0 95.79 0 0.47 0 0 3.74 0 4 0 0 0 0 0

Sad 1.51 30.65 53.26 6.53 8.04 0 0 0 1 3 0 0 0 0

Surp 1.40 2.80 0 66.35 2.80 26.63 0 0 0 0 3 0 1 0

Ang 0 0.87 2.19 4.82 87.72 0.43 3.95 0 0 0 0 4 0 0

Fear 0 0 0 22.00 0 80.00 0 0 0 0 1 0 3 0

Disg 0 0 0 6.47 0 0.49 93.03 0 0 0 0 0 0 4

Overall recognition rate = 71.30% 22/28 sequences

Table 4.2: Confusion matrices of the facial expression recognition experiments using

the HMM. Each table represents the individual results. The information in the right,

labeled as Full Sequence, shows the recognition results by using the HMM with full

sequence observations. Note that, a total of 6770 images were used in this evaluation.
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Person 1 Neut Happ Sad Surp Ang Fear Disg

Neut 69.85 9.16 2.29 0 0.76 1.14 16.79

Happ 0 84.58 3.33 10.41 1.66 0 0

Sad 0 0 100 0 0 0 0

Surp 0.66 0 0 99.33 0 0 0

Ang 2.40 0 0.89 0.59 84.43 0.29 11.37

Fear 0 0.74 0 38.66 0 60.59 0

Disg 2.54 0 0 37.57 20.70 0 39.17

Overall recognition rate = 76.85%

Person 2 Neut Happ Sad Surp Ang Fear Disg

Neut 67.78 0 6.37 0 0 25.83 0

Happ 1.14 78.70 0 17.11 0 3.04 0

Sad 1.73 0 86.85 5.53 0 0 5.88

Surp 0.76 25.95 0.76 41.60 0 26.71 4.19

Ang 1.38 0 1.84 0 79.26 0.46 17.05

Fear 2.86 0 2.04 57.37 0 33.61 4.09

Disg 1.62 17.26 3.58 22.80 1.62 2.93 50.16

Overall recognition rate = 62.56%

Person 3 Neut Happ Sad Surp Ang Fear Disg

Neut 43.71 0 20.10 25.62 0 10.55 0

Happ 3.89 80.52 0.43 6.49 0 3.89 4.76

Sad 8.29 0 72.48 0 10.48 2.62 6.11

Surp 5.31 6.91 0 65.95 0 21.80 0

Ang 4.28 0.47 25.71 0 61.90 0.95 6.66

Fear 21.25 23.12 0 18.75 0 23.13 13.75

Disg 10.13 2.02 37.16 10.81 5.40 2.02 32.43

Overall recognition rate = 54.30%

Person 4 Neut Happ Sad Surp Ang Fear Disg

Neut 52.50 17.50 0 18.00 0 0 12.00

Happ 4.67 90.19 0 3.73 0 1.14 0

Sad 2.01 12.56 42.71 0 0 0 42.71

Surp 1.86 2.80 0 56.54 0 32.71 6.07

Ang 2.19 0 0 0 55.70 0 42.10

Fear 1.43 3.34 0 16.26 0 75.60 3.34

Disg 0.49 6.46 0 0 0.99 0 92.03

Overall recognition rate = 66.47%

Table 4.3: Confusion matrices of the facial expression recognition experiments taken

using the SVM (still images - static based recognition). Here presented as baseline

results. Again, each table represents the individual results. In the same way, a total of

6770 images were used in this evaluation.
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Figure 4.7: Examples of identity and expression recognition. The left images show

the AAM fitting, the expression trajectory on the manifold is represented as a black

path at center image and the projected test point into the identity manifold is the

black dot at right image. The full video sequence can be seen at http://www.isr.uc.

pt/~pedromartins/Videos/PhD.
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Figure 4.8: Additional examples of identity and expression recognition. The left

images show the AAM fitting, the expression trajectory on the manifold is represented

as a black path at center image and the projected test point into the identity manifold

is the black dot at right image.
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4.7 Conclusions

Human identity and facial expression recognition were achieved using a two stage clas-

sifier approach using low dimensional representation of the geometry of the face. Facial

geometry related features were extracted using the Active Appearance Models (AAM)

and low dimensional manifolds for identity and person-specific expression were derived

using Laplacian EigenMaps (LE). For an input image, the AAM fitting framework ex-

tracts the normalized shape parameters and the first SVM stage predicts the identity

for the projected parameters. The second stage is composed by a network of seven

Hidden Markov Models (HMM), each one specialized on the several facial emotions

analyzed. The normalized shape parameters are projected into the expression mani-

fold of the predicted individual and the predicted expression is the one whose HMM

generated sequence yielded the highest probability. For evaluation proposes a database

was build having 6770 images captured from four people exhibiting seven different emo-

tions. Our four fold cross-validation results show that the system is able to recognize an

overall 96.8% in the identity. Since it was used person-specific expression models, the

facial expression is dependent of each individual. In our dataset the most expressive

individual achieves an overall recognition rate of 81.2% and the less expressive 71.3%.
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Conclusion

Advanced issues on facial and identity recognition requires basic face handling, namely

non-rigid face registration. Model-based approaches are effective methods that can be

used to overcome the large variation in shape and texture that images of human faces

can present.

This thesis presents its main contributions in the face alignment/registration do-

main. Two different approaches where studied: generative and discriminative align-

ment methods (chapter 2 and 3, respectively). In short, the generative 2D Active

Appearance Model (AAM) was extended to deal with a full perspective projection

model and two new fitting algorithms, their efficient versions and robust to outliers

extensions were proposed. The contributions in discriminative techniques include two

novel global optimization strategies (DBASM and BASM). Both make inference in a

MAP sense and align images using second order statistics of the latent variables. The

difference is that the BASM formulation extends the DBASM by continuously update

the prior distribution, therefore delivering more accurate results.

Recognition tasks, such as identity and facial expression classification were also

addressed (chapter 4). A smaller contribution is made in this recognition field. Still, an

efficient and effective face and emotion recognition system was presented. The overall

approach uses a low dimensional representation of the face geometry and a network of

Hidden Markov Models (HMMs). The system determines the facial expression from

the extracted facial motion across time (facial dynamics).
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More detailed descriptions are presented below.

Generative Face Alignment

A novel enhanced version of the 2D Active Appearance Models [38] (AAM) is proposed

in this thesis. The 2.5D AAM, presented in chapter 2, extends the standard AAM

to work with a full perspective projection model. The 2.5D AAM combines a 3D

Point Distribution Model (PDM) and a 2D appearance model whose control points

are defined by perspective projections of the PDM. The full six Degrees of Freedom

(6 DOF) of the face are modeled by continuously integrate small pose changes at each

frame since the beginning of tracking.

Two main fitting algorithms, the Simultaneous Forwards Additive (SFA), the Nor-

malization Forwards Additive (NFA) and their computationally efficient approxima-

tions are proposed (ESFA and ENFA). Robust SFA and NFA solutions (RSFA and

RNFA, respectively), taking into account partial and self occlusions are also proposed.

All efficient versions (ESFA, ENFA, ERSFA and ERNFA) have shown a substantial

improvement in the fitting performance, being more robust to noise and able to con-

verge from far initial estimates, requiring less computational effort. The 2.5D AAM

when compared with the 2D AAM or the 2D+3D AAM versions, has shown to better

handle unseen data, converge faster and presented higher fitting success rates from far

initial estimates.

The 2.5D AAM can achieve a high fitting accuracy, but it has the cost of label-

ing training examples. For best performance, the appearance model must be able to

generated a valid template, i.e. the target individual must be included in the model

building process (the main drawback of all the generative techniques).

Discriminative Face Alignment

This class of methods, presented in chapter 3, were designed to overcome the gen-

eralization limitation of the generative/holistic approaches (fitting in unseen data).

Discriminative methods make use of an ensemble of local feature detectors whose lo-

cations are constrained by a PDM. Typically, fitting such model involves a two step
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approach: a local search (obtaining response maps for each landmark) and a global

optimization strategy that finds the shape parameters that jointly maximize all the

detection responses.

A Discriminative Bayesian Active Shape Model (DBASM) is proposed with a new

global optimization strategy that efficiently solves the global alignment. DBASM infers

both the shape and the pose parameters, in a maximum a posteriori (MAP) sense,

by means of a Linear Dynamical System (LDS). This approach maintains 2nd order

statistics of the shape and pose parameters, which represents the confidence in the

current parameters estimate. A second Bayesian global optimization strategy, Bayesian

Active Shape Models (BASM), an extension of DBASM is also described. BASM was

designed to explicitly model the prior distribution by means of recursive Bayesian

estimation. The prior distribution of the data was modeled as being Gaussian. The

mean and covariance were assumed to be unknown and are treated as random variables.

A comparison between several face parts descriptors is also included, showing that

the MOSSE filters [28] produce correlation filters that are notably stable, being par-

ticularly well-suited to the task of generic face alignment. Several DBASM and BASM

evaluations were performed in unseen data using several image datasets, including the

challenging Labeled Faces in the Wild (LFW). These discriminative techniques shown

to significantly outperform other state-of-the-art fitting solutions.

Identity and Facial Expression Recognition

Finally, the chapter 4 proposes a two step identity and facial expression recognition

approach that relies on a low dimensional representation of the geometry of the face.

Face geometry is extracted from input images using the AAM and low dimensional

manifolds were then derived using Laplacian EigenMaps (LE). The first stage uses a

Support Vector Machines (SVM) to establish identity across expression changes. The

second stage deals with person-specific facial expression recognition and is composed

by a network of several Hidden Markov Models (HMM), each one specialized in a given

facial emotion. The decision was made by the sequence that yielded the highest prob-

ability. The results in our database (6770 images captured from four people exhibiting
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the six basic emotions plus the neutral) show that the system is able to successful

recognize the identity with 96.8%. Since it was used person-specific expression models,

the facial expression is dependent of each individual. The most expressive individual

achieves an overall recognition rate of 81.2% and the less expressive 71.3%.

5.1 Future Work

5.1.1 Unconstrained Non-Rigid Image Registration

The discriminative performance of DBASM/BASM [71][72] could be increased by en-

hancing the following components:

1. Extend the likelihood term to a non-parametric distribution: In [71]

the global optimization was treated as an Bayesian inference problem, where the

posterior distribution of the PDM parameters (and 2D pose) is inferred in a MAP

sense. Even the response maps are being nonparametrically approximated (using

the mean-shift algorithm), where only a single Gaussian (for each landmark) is

extracted and used as likelihood term. The inferred posterior distribution is in

fact a Gaussian as both likelihood and prior are also Gaussians. The likelihood

term can be extend to be a non-parametric distribution (our at least a finite mix-

ture of Gaussians). This can be done by using nonparametric Bayesian inference

techniques [89] such as Markov Chain Monte Carlo (MCMC) methods.

2. Shape representation - use a non-parametric shape model: Like other

previous works, DBASM uses a linear shape model (the PDM) that is built

by applying a PCA on a representative dataset (typical with a few hundreds of

images). Significant improvements are expected by relaxing the linear assumption

to a non-parametric representation (which supplies the neglected PCA missing

components).

3. Deal with 3D head pose - extend to non-parametric 3D shape data:

Comparing 2D with 3D image alignment methods, the first is indeed more com-

putational efficient, although the latter clearly have the potential to deliver more
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accurate solutions, in particular for extreme head poses. According to the previ-

ous point a 3D non-parametric shape model is desirable.

4. Use 3D depth information: Recently, low cost 3D depth capable cameras

(e.g. Kinect) had become very popular. An interesting addition is to seamlessly

fuse the 3D depth information (multiple likelihoods) in the current formulation

to increase the fitting performance.

5.1.2 Pose-Invariant Facial Dynamics Recognition

Developing robust and generalizable models for identity and facial expression recog-

nition requires to establish a common reference frame, also known as the canonical

referential. Considering that 2D face images are projections of 3D faces, the projective

shape-space, which holds information about the spatial configuration of the landmarks

that are invariant to the camera perspective, is of most importance in expression anal-

ysis. Since the projective shape-space is not well defined in the mathematical com-

munity, projective shapes in constrained situations can be approximated with affine

shapes. Affine shape-space for facial landmark configurations has Grassmannian prop-

erties [5] and therefore nonrigid facial deformations due to various expressions can be

represented as points on the Grassmann manifold (also a sequence can be modeled as

a trajectory in this manifold). To model the sequential shape-data it is mandatory

to take into account the Riemannian structure of the space in order to extract all the

underlying information.

The goal is to extend one of the most common used sequential data classification

algorithm (the Hidden Markov Models) to this shape-space (Grassmann manifold) by

flattening using Rolling Mapping: Inference problems on Riemannian manifolds are

usually addressed by embedding the manifolds into Euclidean spaces. In this paradigm,

the embedding is obtained by fattening the manifold via local diffeomorphisms (tan-

gent spaces). However, flattening the manifold through tangent spaces is not free of

drawbacks. The exponential map is onto but only one-to-one in a neighborhood of

a point (only locally defined). Therefore, the inverse mapping (logarithmic map) is
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uniquely valid only around a small neighborhood of that point. The idea is to project

all the data from the manifold onto its affine tangent space at a particular point and

then perform the classification there. To eliminate the distortion induced by local dif-

feomorphisms, the mathematical concept called Rolling Map [44] can be used. The

novelty in this approach is that the manifold will be firstly rolled (without slipping or

twisting) as a rigid body, then the given data is unwrapped onto the affine tangent

space (having Euclidean properties) where the classification can be performed.

138



Bibliography

[1] Bayesian Data Analysis. Chapman & Hall/CRC, 2nd edition, 2004.

[2] A.Andreopoulos and J.K.Tsotsos. A novel algorithm for fitting 3-d active ap-

pearance models: Applications to cardiac mri segmentation. In Scandinavian

Conference on Image Analysis, 2005.

[3] A.Andreopoulos and J.K.Tsotsos. Efficient and generalizable statistical models

of shape and appearance for analysis of cardiac mri. Medical Image Analysis,

12(3):335–357, 2008.

[4] A.Bartoli. Groupwise geometric and photometric direct image registration. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 30(12):2098–2108,

December 2008.

[5] A.Edelman, T.A.Arias, and S.T.Smith. The geometry of algorithms with or-

thogonality constraints. SIAM - Journal of Matrix Analysis and Applications,

20(2):303–353, 1999.

[6] A.Sattar and R.Seguier. Mvaam (multi-view active appearance model) optimized

by multi-objective genetic algorithm. In IEEE International Conference on Au-

tomatic Face and Gesture Recognition, pages 1–8, 2008.

[7] A.Sattar, Y.Aidarous, and R.Seguier. Gagm-aam: A genetic optimization with

gaussian mixtures for active appearance models. In IEEE International Confer-

ence on Image Processing, pages 3220–3223, 2008.

139



Bibliography Bibliography

[8] A.Sattar, Y.Aidarous, S.Le.Gallou, and R.Seguier. Face alignment by 2.5d ac-

tive appearance model optimized by simplex. In International Conference on

Computer Vision Systems (ICVS), March 2007.

[9] A.U.Batur and M.H.Hayes. Adaptive active appearance models. IEEE Transac-

tions on Image Processing, 14(11):1707–1721, November 2005.

[10] B.Abboud and F.Davoine amd M.Dang. Facial expression recognition and syn-

thesis based on an appearance model. Signal Processing Image Communication,

19(8):723–740, September 2004.

[11] B.Lucas and T.Kanade. An iterative image registration technique with an ap-

plication to stereo vision (darpa). In DARPA Image Understanding Workshop,

pages 121–130, April 1981.

[12] O. Bottema. Topics in Elementary Geometry. Springer, 2008.

[13] C. Butakoff and A.F. Frangi. Multi-view face segmentation using fusion of statis-

tical shape and appearance models. Computer Vision and Image Understanding,

114(3):311–321, March 2010.

[14] C-C.Chang and C.-J.Lin. LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011. Soft-

ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[15] C.Goodall. Procrustes methods in the statistical analysis of shape. Journal of

the Royal Statistical Society, Series B, 53(2):285–339, 1991.

[16] C.Hu, J.Xiao, I.Matthews, S.Baker, J.Cohn, and T.Kanade. Fitting a single

active appearance model simultaneously to multiple images. In British Machine

Vision Conference, September 2004.

[17] C.M.Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

140

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Bibliography Bibliography

[18] C.Shan, S.Gong, and P.McOwan. Dynamic facial expression recognition using a

bayesian temporal manifold model. In British Machine Vision Conference, pages

297–306, 2006.

[19] C.Shen, M.J.Brooks, and A.Hengel. Fast global kernel density mode seeking: Ap-

plications to localization and tracking. IEEE Transactions On Image Processing,

16(5):1457–1469, May 2007.

[20] C.W.Chen and C.C.Wang. 3d active appearance model for aligning faces in

2d images. In IEEE/RSJ International Conference on Intelligent Robots and

Systems - IROS, September 2008.

[21] T. Dalgleish and M. Power. Handbook of Cognition and Emotion. John Wiley &

Sons Ltd, June 1999.

[22] D.Cristinacce and T.F.Cootes. Facial feature detection using adaboost with shape

constraints. In British Machine Vision Conference, 2003.

[23] D.Cristinacce and T.F.Cootes. Feature detection and tracking with constrained

local models. In British Machine Vision Conference, 2006.

[24] D.Cristinacce and T.F.Cootes. Boosted regression active shape models. In British

Machine Vision Conference, 2007.

[25] D.Cristinacce and T.F.Cootes. Automatic feature localisation with constrained

local models. Pattern Recognition, 41(10):3054–3067, 2008.

[26] D. DeMenthon and L.S. Davis. Model-based object pose in 25 lines of code.

International Journal of Computer Vision, 15:123–141, June 1995.

[27] D.Pizarro, J.Peyras, and A.Bartoli. Light-invariant fitting of active appearance

models. In IEEE Conference on Computer Vision and Pattern Recognition, June

2008.

141



Bibliography Bibliography

[28] D.S.Bolme, J.R.Beveridge, B.A.Draper, and Y.M.Lui. Visual object tracking

using adaptive correlation filters. In IEEE Conference on Computer Vision and

Pattern Recognition, 2010.

[29] F.Dornaika and F.Davoine. View- and texture-independent facial expression

recognition in videos using dynamic programming. In IEEE International Con-

ference on Image Processing, 2005.

[30] F.Dornaika and J.Ahlberg. Fast and reliable active appearance model search for

3d face tracking. In International Conference on Model-based Imaging, Render-

ing, Image Analysis and Graphical Special Effects, pages 113–122, March 2003.

[31] F.Dornaika and J.Ahlberg. Fitting 3d face models for tracking and active ap-

pearance model training. Image and Vision Computing, 24:1010–1024, September

2006.

[32] FGNet. Talking face video, 2004.

[33] G.B.Huang, M.Ramesh, T.Berg, and E.L.-Miller. Labeled faces in the wild: A

database for studying face recognition in unconstrained environments. Technical

Report 07-49, University of Massachusetts, Amherst, 2007.

[34] G.Hager and P.Belhumeur. Efficient region tracking with parametric models of

geometry and illumination. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20(10):1025–39, October 1998.

[35] H.-S.Lee and D.Kim. Expression-invariant face recognition by facial expression

transformations. Pattern Recognition Letters, pages 1797–1805, October 2008.

[36] I.Akhter, Y.Sheikh, S.Khan, and T.Kanade. Nonrigid structure from motion in

trajectory space. In Neural Information Processing Systems, 2008.

[37] I.Matthews, J.Xiao, and S.Baker. 2d vs. 3d deformable face models: Repre-

sentational power, construction, and real-time fitting. International Journal of

Computer Vision, 75(1):93–113, October 2007.

142



Bibliography Bibliography

[38] I.Matthews and S.Baker. Active appearance models revisited. International

Journal of Computer Vision, 60(1):135–164, November 2004.

[39] I.M.Scott, T.F.Cootes, and C.J.Taylor. Improving appearance model matching

using local image structure. In Information Processing in Medical Imaging, pages

258–269, 2003.

[40] J.Ahlberg. Candide-3 - an updated parameterized face. Technical Report LiTH-

ISY-R-2326, Dept. of Electrical Engineering, Linköping University, Sweden, 2001.
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Appendix A

2.5D AAM

A.1 The Jacobian of The Warp Partial Differentials

Defining the elements m0ij of the base projection matrix M0 as


m011 m012 m013 m014

m021 m022 m023 m024

m031 m032 m033 m034


︸ ︷︷ ︸

M0

= K
[

R0 t0

]
(A.1)

the quantities ξ1, . . . , ξ6 and Ξ1, . . . ,Ξ6 are scalar values given by

ξ1 = m011φ
xk
i +m012φ

yk
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ξ3 = m031φ
xk
i +m032φ

yk

i +m033φ
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(A.2)
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Appendix A. 2.5D AAM A.2. Details on the Efficient Fitting Algorithms
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A.2 Details on the Efficient Fitting Algorithms

Precompute:1

The 2.5D parametric models2

Evaluate
∂W(xp,p)
∂xk

and
∂W(xp,p)
∂yk

(fig. 2.8)3

Gradients of the template ∇A0(xp)4

Gradients of the Eigen images ∇Ai(xp)5

repeat6

Update pose reference Ψ(sψ) with eq.2.67

Warp input image I(W(xp,p,q))8

Error image E(xp)sfa using eq.2.189

Find Jacobian
∂W(xp,p,q)

∂p (eq.2.41)10

Find Jacobian
∂W(xp,p,q)

∂q (eq.2.44)11

Compute efficient SD images SD(xp)esfa12

using eq.2.29

Hessian matrix and its inverse13

Hesfa =
∑

xp
SD(xp)TesfaSD(xp)esfa

Parameters updates14

∆r = H−1
esfa

∑
xp

SD(xp)TesfaE(xp)sfa

Update parameters r← r + ∆r15

Update pose offset16

sψ ← sψ +
∑6
j=1 ψj∆qj

until ||∆r|| ≤ ε or max. number of17

iterations reached ;

Algorithm 10: Efficient SFA.

Precompute:1

The 2.5D parametric models2

Evaluate
∂W(xp,p)
∂xk

and
∂W(xp,p)
∂yk

(fig. 2.8)3

Gradients of the template ∇A0(xp)4

repeat5

Update pose reference Ψ(sψ) with eq.2.66

Warp input image I(W(xp,p,q))7

Error image E(xp)lk using eq.2.238

Estimate λ using eq.2.259

Normalized Error image E(xp)nfa10

Find Jacobian
∂W(xp,p,q)

∂p (eq.2.41)11

Find Jacobian
∂W(xp,p,q)

∂q (eq.2.44)12

Compute efficient SD images SD(xp)enfa13

using eq.2.30

Hessian matrix and its inverse14

Henfa =
∑

xp
SD(xp)TenfaSD(xp)enfa ∆p

∆q

 = H−1
enfa

∑
xp

SD(xp)TenfaE(xp)efa
15

Update p← p + ∆p and q← q + ∆q16

Update pose offset17

sψ ← sψ +
∑6
j=1 ψj∆qj

until

∥∥∥∥∥∥ ∆p

∆q

∥∥∥∥∥∥ ≤ ε or max. number of
18

iterations reached ;

Algorithm 11: Efficient NFA.
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Appendix A. 2.5D AAM A.2. Details on the Efficient Fitting Algorithms

Precompute:1

The 2.5D parametric models2

Evaluate
∂W(xp,p)
∂xk

and
∂W(xp,p)
∂yk

(fig. 2.8)3

Gradients of the template ∇A0(xp)4

Gradients of the Eigen images ∇Ai(xp)5

repeat6

Update pose reference Ψ(sψ) with eq.2.67

Warp input image I(W(xp,p,q))8

Evaluate triangle visibility9

Error image E(xp)sfa using eq.2.1810

Estimate the weight mask ρ(E(xp)2sfa)11

Find Jacobian
∂W(xp,p,q)

∂p (eq.2.41)12

Find Jacobian
∂W(xp,p,q)

∂q (eq.2.44)13

Compute efficient SD images SD(xp)esfa14

using eq.2.29

Weighted Hessian matrix Hersfa =15 ∑
xp
ρ(E(xp)2sfa)SD(xp)TesfaSD(xp)esfa

Parameters updates ∆r =16

H−1
ersfa

∑
xp
ρ(E(xp)2sfa)SD(xp)TesfaE(xp)sfa

Update parameters r← r + ∆r17

Update pose offset18

sψ ← sψ +
∑6
j=1 ψj∆qj

until ||∆r|| ≤ ε or max. number of19

iterations reached ;

Algorithm 12: Efficient Robust SFA.

Precompute:1

The 2.5D parametric models2

Evaluate
∂W(xp,p)
∂xk

and
∂W(xp,p)
∂yk

(fig. 2.8)3

Gradients of the template ∇A0(xp)4

repeat5

Update pose reference Ψ(sψ) with eq.2.66

Warp input image I(W(xp,p,q))7

Evaluate triangle visibility8

Error image E(xp)rnfa using eq.2.379

Estimate the weight mask ρ(E(xp)2rnfa)10

Hessian Appearance HA with eq.2.4011

Update app. parameters λ← λ + ∆λ12

Recompute E(xp)rnfa using eq.2.3713

Find Jacobian
∂W(xp,p,q)

∂p (eq.2.41)14

Find Jacobian
∂W(xp,p,q)

∂q (eq.2.44)15

Compute efficient SD images SD(xp)enfa16

using eq.2.30

Weighted Hessian matrix Hernfa =17 ∑
xp
ρ(E(xp)2rnfa)SD(xp)TenfaSD(xp)enfa ∆p

∆q

=
18

H−1
ernfa

∑
xp
ρ(E(xp)2rnfa)SD(xp)TenfaE(xp)rnefa

Update p← p + ∆p and q← q + ∆q19

Update pose offset sψ ← sψ +
∑6
j=1 ψj∆qj20

until

∥∥∥∥∥∥ ∆p

∆q

∥∥∥∥∥∥ ≤ ε or max. number of
21

iterations reached ;

Algorithm 13: Efficient Robust NFA.

153



Appendix A. 2.5D AAM A.3. Piecewise Affine Warp

A.3 Piecewise Affine Warp

The piecewise affine warp is composed by sets of affine warps between corresponding

triangles of the mesh. The base triangles are found by partitioning the convex hull

of the projected mean shape, s0p, using the Delaunay triangulation, and each pixel

belonging to a given triangle is mapped to its correspondent triangle using barycentric

coordinates.

As mentioned, two meshes are involved in the warping procedure: the projected base

mesh s0p (that is fixed) with the triangle vertexes < (x0
pi
, y0
pi

)T , (x0
pj
, y0
pj

)T , (x0
pk
, y0
pk

)T >

and the current projected mesh sp with the triangles vertexes coordinates < (xpi , ypi)
T ,

(xpj , ypj)
T , (xpk , ypk)

T >, being (i, j, k = # triangles). See figure 2.4. Both meshes

depend on p and q by eqs.2.9 and 2.1.

The barycentric coordinates α, β, used in eq.2.9, are given by

α =
(xp − x0

pi
)(y0

pk
− y0

pi
)− (yp − y0

pi
)(x0

pk
− x0

pi
)

(x0
pj
− x0

pi
)(y0

pk
− y0

pi
)− (y0

pj
− y0

pi
)(x0

pk
− x0

pi
)

(A.5)

β =
(yp − y0

pi
)(x0

pj
− x0

pi
)− (xp − x0

pi
)(y0

pj
− y0

pi
)

(x0
pj
− x0

pi
)(y0

pk
− y0

pi
)− (y0

pj
− y0

pi
)(x0

pk
− x0

pi
)
, (A.6)

and the eqs. 2.9, A.5, A.6, 2.1 and 2.8 can be combined into a single per-triangle affine

warp, as

W(xp,p,q) = (a1 + a2xp + a3yp, a4 + a5xp + a6yp)
T (A.7)

where a1, a2, a3, a4, a5 and a6 are the affine parameters that are given by

a1 = (xpi(x
0
pjy

0
pk
− y0

pjx
0
pk

) + x0
pi(xpky

0
pj − y

0
pk
xpj ) + y0

pi(x
0
pk
xpj − x0

pjxpk))/∆

a2 = (y0
pk

(xpj − xpi) + y0
pi(xpk − xpj ) + y0

pj (xpi − xpk))/∆

a3 = (x0
pk

(xpi − xpj ) + x0
pj (xpk − xpi) + x0

pi(xpj − xpk))/∆

a4 = (ypi(x
0
pjy

0
pk
− y0

pjx
0
pk

) + x0
pi(ypky

0
pj − y

0
pk
ypj ) + y0

pi(x
0
pk
ypj − x0

pjypk))/∆

a5 = (y0
pk

(ypj − ypi) + y0
pi(ypk − ypj ) + y0

pj (ypi − ypk))/∆

a6 = (x0
pk

(ypi − ypj ) + x0
pj (ypk − ypi) + x0

pi(ypj − ypk))/∆

with

∆ = (x0
pj − x

0
pi)(y

0
pk
− y0

pi)− (y0
pj − y

0
pi)(x

0
pk
− x0

pi).

(A.8)

The affine parameters a1, . . . , a6 need only to be computed once per triangle, not

once per pixel. Also, and since the projected base mesh is fixed (i.e. there is always a
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constant warping frame), a lookup table that encodes the triangle identity speeds up

the entire warping procedure. The algorithm 14 summarizes this section by showing

the list of steps required to perform the piecewise affine warp.

Precompute: The triangle lookuptable1

Evaluate the current mesh s from p and q using eq.2.12

Find the full perspective mesh projection sp with eq.2.83

Compute the affine parameters (a1, a2, a3, a4, a5, a6) for each triangle using eqs.A.84

For each pixel xp in the projected base mesh s0p , lookup the triangle where xp lies in5

and then lookup the corresponding values of (a1, . . . , a6)

Evaluate W(xp,p,q) from eq.A.7 and bilinear interpolate to find I(W(xp,p,q))6

Algorithm 14: Piecewise affine warp.

A.4 Simultaneous Forwards Additive Derivation

The nonlinear optimization at eq. 2.11:

arg min
p,q,λ

∑
xp∈s0p

[
A0(xp) +

m+2∑
i=1

λiAi(xp)− I(W(xp,p,q))

]2

can be solved by gradient descent using additive updates to the parameters as∑
x∈s0p

[A0(xp) +
m+2∑
i=1

(λi + ∆λi)Ai(xp)− I(W(xp,p + ∆p,q + ∆q))]2. (A.9)

Using a first order Taylor expansion, the last term can be expressed as

I(W(xp,p + ∆p,q + ∆q)) ≈ I(W(xp,p,q)) +
∂I(W(xp,p,q))

∂p
∆p +

∂I(W(xp,p,q))
∂q

∆q, (A.10)

and, the chain rule can be used on part of the second term of eq.A.10, giving

∂I(W(xp,p,q))
∂p

=
[
∂I(W(xp,p,q))

∂x

∂Wx(xp,p,q)
∂p

+
∂I(W(xp,p,q))

∂y

∂Wy(xp,p,q)
∂p

]
. (A.11)

Rearranging the terms, results

∂I(W(xp,p,q))

∂p
=

»
∂I(W(xp,p,q))

∂x

∂I(W(xp,p,q))

∂y

–
| {z }

∇I(W(xp,p,q))

2664
∂Wx(xp,p,q)

∂p1

· · ·
∂Wx(xp,p,q)

∂pn
∂Wy(xp,p,q)

∂p1

· · ·
∂Wy(xp,p,q)

∂pn

3775
| {z }

Jacobian of the Warp
∂W(xp,p,q)

∂p

, (A.12)
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Left Image Right Image
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Figure A.1: Left and right images captured by a calibrated stereo system. Each

shape annotation results from applying a 2D AAM. The 3D recovered structures (for

each camera) are shown on the right picture. Red and blue colors respectively.

being ∇I(W(xp,p,q)) the gradients of the image I(xp) evaluated at W(xp,p,q) and

the term ∂W(xp,p,q)

∂p
the Jacobian of the warp w.r.t. the shape parameters, p.

Similarly for the pose parameters, q, part of the last term of eq.A.10 can be written

as

∂I(W(xp,p,q))

∂q
= ∇I(W(xp,p,q))

∂W(xp,p,q)

∂q
. (A.13)

Finally the eq.A.9, can be written as

X
xp∈s0p

"
A0(xp) +

m+2X
i=1

λiAi(xp) +

m+2X
i=1

∆λiAi(xp)− I(W(xp,p,q))−∇I
∂W

∂p
∆p−∇I

∂W

∂q
∆q

#2

. (A.14)

A.5 Building the 3D PDM From Stereo Data

The 3D PDM used in this work, was built using a fully calibrated stereo system where

the 2D shape on each view was extracted by fitting a 2D AAM [38] using v = 58

landmarks. See figure A.1.

The classical triangulation algorithm was used to recover the 3D structure for each

view. In short, the triangulation algorithm consists in finding the depths Zl and Zr

from the normalized perspective projections (xl, yl) = (Xl
Zl
, Yl
Zl

) and (xr, yr) = (Xr
Zr
, Yr
Zr

)

with (Xl, Yl, Zl) and (Xr, Yr, Zr) being the coordinates of the same 3D point in the left

and right camera frame, all this, knowing the rotation R and translation t between
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cameras. The least-squares solution, using all the v points in each shape annotation,

is given by

 Zl1 · · · Zlv

Zr1 · · · Zrv

 =

 −R


xr1 · · · xrv

yr1 · · · yrv

1 · · · 1




xl1 · · · xlv

yl1 · · · ylv

1 · · · 1



† [

t · · · t
]
.

(A.15)

Using eqs.A.15, the 3D shape mesh samples from pairs of 2D image annotations

can be retrieved, as illustrated in figure A.1. However, these mesh coordinates are

expressed w.r.t. the camera coordinate frame and therefore the user head rotations are

not correctly modeled. To overcome this problem, the PDM was converted into the

base pose (R0, t0) coordinate frame (as included in eq.2.8)1, by firstly removing the

mean from s0, centering the mean shape around de origin2 and then R0 and t0 were

found by solving the following optimization problem:

arg min
θ,γ,tz

K

 Rpan(θ)Rroll(γ)


0

0

tz




sx1

0 · · · sxv0

sy10 · · · s
yv
0

sz10 · · · szv0
1 · · · 1

 (A.16)

where Rpan(θ) and Rroll(γ) represent the pan and roll rotations matrices by θ and

γ amount, respectively, that changes the 3D orientation of s0. The tz parameter is the

translation along the camera optical axis from the centroid of the mean shape s0.

The optimization in eq.A.16 is performed in four steps. First tz is found by setting a

desirable 2D mesh projection width over the image plane (p.e. 200 pixels) holding θ and

γ equal to zero. This width value defines the base mesh projection size that is related

to all the fitting algorithms computational complexity. The base mesh projection

size define the constant warping frame described in the texture model section and

1Expressing the PDM w.r.t. another coordinate frame requires only changes on the rigid motion

(s0).
2It would be convenient to center s0 around the neck axis, where the true head rotations are made.

However, estimating the true neck coordinate frame is not in the scope of this work. We simply move

the center of gravity of s0 back and down 50mm as s0 ← (sxi
0 , s

yi

0 − 50, szi
0 − 50), i = 1, . . . , v.
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consequently the size of all the Steepest Descent images. Then θ and γ are optimized

independently in order to hold a symmetric mesh projection. A symmetric shape is

desirable to balance the model fitting, otherwise the AAM will perform better for user

head rotations where the texture model holds more pixels.

Finally, the last step consist in optimize again for tz using the previously found

values of θ and γ, just to hold the desirable 2D mesh projection width. The base pose

is then given by

R0 = Rpan(θ)Rroll(γ) and t0 =


0

0

tz

 . (A.17)
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Appendix B

DBASM Evaluation

B.1 Additional Global Strategies Evaluation

Figures B.1 and B.2 show detailed fitting performance curves when using two different

local detectors: the MOSSE filters and the linear SVM detectors, respectively. Fitting

algorithms with comparable local strategies, namely Weighted Peak Responses (WPR),

Gaussian Responses (GR) and Kernel Density Estimator (KDE) are shown individually.

Similarly to section 3.4.3, the table B.1 shows quantitative values of figure B.2 (SVM

local detectors) taken by setting a fixed RMS error amount (7.5 pixels). Each table

entry show how many percentage of images converge with less or equal RMS error than

the reference.

Figure B.3 shows tracking performance evaluation on the FGNET Talking Face [32]

sequence using the linear SVM local detectors.
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MOSSE Detectors
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KDE:
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(a) IMM [57] database
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(b) XM2VTS [45] database
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(c) BioID [61] database

Figure B.1: Fitting performance curves when using MOSSE filter as local detector.

Local strategies are shown by rows - Weighted Peak Responses (WPR), Gaussian Re-

sponses (GR) and Kernel Density Estimator (KDE). AVG means the initial estimate

given by Adaboost [75] face detector. The results show that our proposed methods

(DBASM-WPR, DBASM-GR, DBASM-KDE and DBASM-KDE-H) outperform all the

others.
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Linear SVM Detectors
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(a) IMM [57] database
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(b) XM2VTS [45] database
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(c) BioID [61] database

Figure B.2: Fitting performance curves when using the linear SVM detector. Local

strategies are shown by rows - Weighted Peak Responses (WPR), Gaussian Responses

(GR) and Kernel Density Estimator (KDE). The results show that our proposed meth-

ods (DBASM-WPR, DBASM-GR, DBASM-KDE and DBASM-KDE-H) outperform all

the others.
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Reference 7.5 RMS IMM (240 images) XM2VTS (2360 images) BioID (1521 images)

ASM 21.7 8.1 40.4

DBASM-WPR (our method) 22.5 (+0.8) 10.6 (+2.5) 45.1 (+4.7)

CQF 26.2 10.6 43.9

GMM3 20.0 (-6.2) 9.0 (-1.6) 34.0 (-9.9)

BCLM-GR 28.3 (+2.1) 14.0 (+3.4) 47.5 (+3.6)

DBASM-GR (our method) 36.7 (+10.5) 18.8 (+8.2) 53.8 (+9.9)

SCMS-KDE 37.1 15.7 50.4

BCLM-KDE 40.0 (+2.9) 19.4 (+3.7) 53.6 (+3.2)

DBASM-KDE (our method) 43.8 (+6.7) 27.3 (+11.6) 61.2 (+10.8)

DBASM-KDE-H (our method) 43.3 (+6.2) 26.2 (+10.5) 61.8 (+11.4)

Table B.1: Quantitative results using the SVM linear detectors. The table shows

quantitative values taken by setting a fixed RMS error amount (7.5 pixels - w.r.t.

figure B.2). Each table entry show how many percentage of images converge with less

or equal RMS error than the reference. Again, the results show that our proposed

methods outperform all the other, using all the different local strategies WPR, GR

and KDE.
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Linear SVM Detectors
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Figure B.3: Evaluation of the tracking performance of several fitting algorithms on

the FGNET Talking Face [32] sequence using the linear SVM detectors. The values

on legend box are the mean and standard deviation RMS errors, respectively. When

using simpler detectors the results remain the same, DBASM methods are more stable

and accurate.
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