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ABSTRACT 

DIN 34CrNiMo6 high strength steel is a very versatile engineering material. It combines high ductility, 

deep hardenability, toughness and strength. Due to the combination of these properties, it is ideal for 

critical components which work under severe service conditions, for instance shafts, axles, crankshafts, 

connecting rods, pinions, torsion bars, bolts, aircraft components, high pressure vessels for nuclear plants, 

among others. Besides, such components have geometric discontinues introduced for design purposes and 

are often subjected to relatively complex loading. These characteristics make them susceptible to fatigue 

failure. In order to reduce the risk of unexpected in-service failure, accurate fatigue life prediction models 

are required. 

 

The thesis has two main purposes. The first is the study of the fatigue behaviour of DIN 34CrNiMo6 high 

strength steel under proportional biaxial loading. The loading paths analysed are single bending, single 

torsion and in-phase bending-torsion. In relation to the last type, three ratios of the bending moment (B) 

to the torsion moment (T) are considered, namely B=2T, B=T and B=2T/3. The specimen geometries 

used in the experiments are round bars with lateral U-shaped notches. The tests are conducted at stress 

ratios close to zero (R≈0) under constant-amplitude loading. The detection of crack initiation is carried 

out in situ with a digital monitoring system. The fatigue life predictions are obtained using the         

Coffin-Manson (CM) and Smith-Watson-Topper (SWT) models. The notch effect is evaluated with the 

theory of critical distances and the strain energy density model. A very satisfactory correlation between 

both the experimental and the predicted lives was found either from the CM or the SWT models.  

 

The second objective of the thesis is the development of user-friendly software to address in-plane fatigue 

crack growth problems. This computer application incorporates an extensive range of geometries, such as 

notched and unnotched rectangular cross-section bars with corner cracks, notched and unnotched round 

bars with surface cracks, and notched and unnotched plates with through cracks. Additionally, it is able to 

compute automatically the transition from corner and surface cracks to through cracks. The main 

independent variables affecting the calculation procedure are identified and optimised. Then, the 

procedure is successfully validated by comparing the numerical results obtained here with those available 

in the literature. After that, the software is applied to specific issues, namely the evaluation of the extent 

of the surface region in cracked bodies; the development of a plane strain specimen able to study different 

phenomena affected by the stress state, for instance those involving diffusion, plastic deformation and 

brittle fracture; and the determination of the Paris law constants from the analysis of crack front marks on 

fracture surfaces of small cross-section rounds bars. In all the above-mentioned situations, the software 

proved to be efficient and user-friendly.   

 

Keywords: biaxial loading, in-phase combined bending-torsion, notch effect, fatigue life prediction, crack 

initiation, crack shape evolution, crack growth, surface region, plane strain specimen, Paris law constants. 
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RESUMO 

O aço de alta resistência DIN 34CrNiMo6 é um material muito versátil. Este aço combina elevada 

ductilidade, alta temperabilidade, tenacidade e resistência. As propriedades acima referidas fazem dele 

um material ideal para componentes críticos, tais como cambotas, veios, eixos, bielas, pinhões, barras de 

torção, parafusos, componentes aeronáuticos, reservatórios sob pressão para unidades nucleares, etc., que 

funcionam sob a ação de condições de serviço severas. Além disso, estes componentes apresentam 

descontinuidades geométricas introduzidas por questões de projeto e são muitas vezes sujeitos a 

carregamentos relativamente complexos. Estas características tornam-nos suscetíveis a falhas por fadiga. 

Para que este risco seja reduzido é necessário ter modelos de previsão de vida à fadiga fiáveis.    

 

A presente tese tem dois objetivos principais. O primeiro consiste no estudo do comportamento à fadiga 

do aço de alta resistência DIN 34CrNiMo6 quando sujeito a carregamentos proporcionais biaxiais. Neste 

trabalho são analisados carregamentos de flexão simples, torção pura e flexão-torção em fase. Em relação 

ao último tipo, são consideradas três relações entre o momento fletor (B) e o momento torçor (T), 

nomeadamente B=2T, B=T e B=2T/3. As geometrias de provetes utilizadas têm uma secção circular e 

apresentam um entalhe lateral em forma de U. Os ensaios são efetuados para razões de tensão próximas 

de zero com amplitude de carga constante. A deteção da iniciação da fenda é realizada in situ com o 

auxílio de um sistema de aquisição de imagem digital. As previsões de vida à fadiga são obtidas com os 

modelos de Coffin-Manson (CM) e Smith-Watson-Topper (SWT). O efeito do entalhe é avaliado a partir 

da teoria das distâncias críticas e do modelo da densidade de energia de deformação. Os resultados 

previstos aproximam-se, de forma muito satisfatória, dos obtidos experimentalmente, quer no modelo de 

CM, quer no modelo de SWT. 

 

O segundo objetivo da tese consiste no desenvolvimento de um software para análise de problemas de 

propagação de fendas por fadiga. A ferramenta informática desenvolvida apresenta uma considerável lista 

de geometrias que incluem desde barras entalhadas e não entalhadas de secção retangular com fendas de 

canto, barras entalhadas e não entalhadas de secção circular com fendas superficiais, e placas entalhadas e 

não entalhadas com fendas passantes. Além disso, esta ferramenta é capaz de efetuar a transição 

automática de fendas de canto e superficiais para fendas passantes. As principais variáveis independentes 

que afetam a exatidão do procedimento de cálculo são identificadas e otimizadas. Em seguida, o 

procedimento é validado com sucesso através da comparação dos resultados numéricos obtidos com os 

existentes na literatura. Finalmente, o software é aplicado a casos específicos, nomeadamente à 

determinação da dimensão da camada superficial em peças entalhadas; ao desenvolvimento de um 

provete de deformação plana para estudar fenómenos afetados pelo estado de tensão, tais como difusão, 

deformação plástica e fratura frágil; e à obtenção das constantes da lei de Paris a partir de frentes de fenda 

existentes nas superfícies de fratura de peças com secção circular de pequeno diâmetro. Nos casos acima 

referidos, a ferramenta informática revelou ser eficiente e simples de utilizar.   

 

Palavras-chave: carregamento biaxial, carregamento combinado flexão-torção em fase, efeito do entalhe, 

previsão de vida à fadiga, iniciação de fenda, evolução da forma da fenda, propagação de fenda, região 

superficial, provete de deformação plana, constantes da lei de Paris. 
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CHAPTER 1 

INTRODUCTION 
 

 

 
This chapter provides an introduction to the research topic 

and describes in detail the main purposes of the thesis. 
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NOMENCLATURE 

a  crack length 
FEM  finite element method 
N  number of loading cycles  
S  applied stress  
SEM  scanning electron microscopy 
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1.1. Introduction 

High strength steels cover a broad spectrum of applications and are being increasingly used in different 

areas due to both good strength-to-weight ratio and good corrosion resistance. DIN 34CrNiMo6, in 

particular, combines deep hardenability, high ductility, toughness and strength. These features make it 

ideal for critical components, such as shafts, axles, crankshafts, connecting rods, pinions, torsion bars, 

bolts, aircraft components, high pressure vessels for nuclear plants, among others.  

 

In general, such components are subjected to severe service conditions and complex loading. Besides, 

they have geometric discontinuities introduced by design and functional purposes. These characteristics 

make them susceptible to fatigue failure. For the material studied in the present research, there are many 

cases of fatigue failure reported in the literature. In the last few years, some critical examples are drive 

shafts (Savković, 2012), connecting rods (Griza, 2009), diesel generator crankshafts (Espadafor, 2009), 

train axles (Yu, 2009), bolts and pins (Yu, 2008), wing-fuselage connectors (Witek, 2006) and cargo 

aircraft main landing gears (Eliaz, 2005). 

 

Therefore, fatigue failure remains to be a major concern. Fatigue failure is a sequential process that 

encompasses three main stages, i.e. crack initiation, crack propagation and final fracture. It is a result of 

numerous factors and can cause not only a large loss of money but also loss of lives. Despite the 

significant progress achieved in the last decades, several factors affecting fatigue phenomenon are not 

completely understood. In order to reduce the risk of unexpected in-service failure, additional research on 

fatigue life prediction of notched components under complex loading is required.  

 

In notched components, the highest stresses and strains are found close to the notch root. Due to stress 

and strain concentration phenomena, nominal elastic stresses can result in elastoplastic stress-strain fields 

around the notch. The fatigue damage accumulation caused by cyclic loading at the notch root is likely to 

lead to crack initiation and crack propagation which can culminate in fatigue failure. Therefore, a crucial 

task in the design of notched components is an effective evaluation of the fatigue life. Nonetheless, the 

complexity of the problem depends on several variables, including the notch geometry, loading type, 

loading magnitude, among others. The effect of a biaxial loading in notched components is a current 

research topic. However, there are no significant data on combined bending-torsion loading. 

 

In certain situations, particularly in notched components, the crack propagation stage can be dominant in 

terms of total fatigue life. Technological processes, such as casting, welding, machining, etc., may 

enhance the importance of this stage, since they introduce small defects that act as local stress raisers 

making easier the crack initiation. In this sense, an efficient prediction of fatigue crack propagation life is 

fundamental for an effective design. Numerical methods have proved to be reliable tools to address 

fatigue crack growth problems. Nevertheless, this approach requires specific algorithms, usually not 

available in commercial software, implying additional programming tasks, which are time-consuming and 

laborious. On the other hand, the existing reliable software has been developed by research groups and is 
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not available commercially. Therefore, there is a need to create new software especially suited to the 

study of fatigue crack growth.  

 

1.2. Research objectives  

The first objective of the thesis is to contribute to a better understanding of the fatigue behaviour of DIN 

34CrNiMo6 high strength steel under in-phase combined bending-torsion loading. In order to meet this 

aim, severely notched specimens subjected to constant amplitude loading are studied. More specifically, 

this investigation includes the following tasks: 

 

• Experimental characterisation of the material in terms of microstructure, elastic constants, monotonic 

and cyclic properties, fatigue strength and fatigue ductility properties, and hysteresis loop shapes;    

• Experimental determination of both a-N and S-N curves for notched specimens subjected to different 

in-phase combined bending-torsion loadings; 

• Experimental analysis and numerical prediction of initiation sites, fatigue crack paths and surface 

crack angles at the initial stage of crack growth;   

• Analysis of crack initiation sites by SEM in order to identify the damage mechanisms involved in the 

fatigue process and three-dimensional laser scanning of fracture topologies; 

• Development of an appropriate finite element model able to evaluate the local stress and local strain 

fields around the notch and identification of an appropriate fatigue damage parameter; 

• Prediction of fatigue life for notched specimens subjected to in-phase combined bending-torsion 

loading using different fatigue life prediction models available in the literature.  

 
The second objective of the thesis is the development of user-friendly software able to address fatigue 

crack growth problems as well as its optimisation, validation and application to specific issues. Briefly, 

the main tasks are the following:   

 

• Development and programming of an efficient calculation procedure with a user-friendly interface 

able to study in-plane fatigue crack growth problems; 

• Systematic identification and optimisation of the independent variables affecting the accuracy of the 

calculation procedure; 

• Validation of the calculation procedure developed here by comparing the numerical results obtained 

with those available in the literature; 

• Application of the software to evaluate the extent of surface regions in notched specimens with 

different types of crack front, namely surface cracks, corner cracks and through cracks;  

• Definition of a plane strain specimen to be applied in the study of different phenomena affected by 

the stress state, for instance those involving diffusion, plastic deformation and brittle fracture; 

• Determination of the Paris law constants from the analysis of crack fronts marked on fracture 

surfaces of small cross-section round bars. 
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1.3. Outline of thesis 

The present thesis is organised into seven chapters. A brief description of each one is given below:   

 

• Chapter 1 provides an introduction to the research topic and describes in detail the main purposes of 

the thesis;  

• Chapter 2 is devoted to the literature review. It is divided into two main parts. The first tackles the 

fatigue phenomenon. It identifies the main variables affecting fatigue and describes some of the 

models used to predict the fatigue life of notched components and to predict the fatigue life under 

multiaxial loading. The second is focused on the numerical modelling of fatigue crack growth using 

the finite element method;  

• Chapter 3 outlines the experimental procedure. It describes the material, specimen geometries and 

testing apparatus used in the monotonic tensile tests, determination of the elastic constants, low-cycle 

fatigue tests, in-phase combined bending-torsion tests and fatigue crack front marking tests. The 

details on the procedures used to analyse the microstructure of the material and the fracture surfaces 

by scanning electron microscopy and optical microscopy; to acquire the fracture surfaces by        

three-dimensional laser scanner; and to determine the Paris law constants from fatigue crack front 

marks are also provided in this chapter; 

• Chapter 4 describes the numerical procedure. The two first sections present the numerical models 

developed to calculate the elastic constants of the material and to evaluate the stress and strain fields 

at the notch tip for the in-phase combined bending-torsion tests. The third section is concerned with 

the fatigue crack growth models implemented to study the crack shape evolution in notched and 

unnotched rectangular bars with corner cracks, notched and unnotched round bars with surface 

cracks, and notched and unnotched plates with through cracks. The three last sections address the 

strategies used to evaluate the extent of the surface region in cracked bodies; to develop a plane strain 

specimen; and to determine the Paris law constants from the analysis of crack front marks on fracture 

surfaces of small cross-section round bars; 

• Chapter 5 details the experimental findings. In the first section, the microstructure of the material is 

analysed. The second section presents the results of the monotonic uniaxial tests. The third section 

tackles the calculation of the elastic constants. The fourth section is devoted to the low-cycle fatigue 

tests and the analysis of the fracture surfaces by SEM. The last section is concerned with the in-phase 

combined bending-torsion tests. It encompasses the analysis of initiation sites, fatigue crack paths, 

surface crack angles, topologies of fracture, crack front profiles, among others. The determination of 

the fatigue life in terms of a-N and S-N curves as well as the fatigue life predictions using different 

methods available in the literature are also presented here;  

• Chapter 6 contains the numerical findings. The first section is devoted to the presentation of the       

in-plane fatigue crack growth software developed in the present research. It encompasses the 

identification and optimisation of the main variables affecting the accuracy of the numerical 

procedure as well as the validation of the numerical results. The second section evaluates the extent 

of the surface region in notched geometries. The third section deals with the development of a plane 
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strain specimen. The last section concerns the determination of Paris law constants from the analysis 

of fatigue crack front marks on fracture surfaces of small cross-section round bars; 

• Chapter 7 presents the main conclusions of the thesis and identifies some relevant topics that merit 

additional research. 
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CHAPTER 2 - LITERATURE REVIEW 

PART A - FATIGUE PHENOMENON 
 

 

 
This chapter is devoted to the literature review and contains 

two main parts (Part A and Part B). Part A tackles the fatigue 

phenomenon and is organised into four sections. The first 

section identifies the main variables affecting fatigue. The 

second and third sections address both the different fatigue 

design philosophies and the cyclic stress-strain response. The 

fourth section deals with the fatigue life prediction models for 

notched bodies. The last section is focused on the multiaxial 

fatigue damage models.        
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NOMENCLATURE 
 
a0 intrinsic crack length  
b fatigue strength exponent 
bγ shear fatigue strength exponent 
c fatigue ductility exponent 
cγ shear fatigue ductility exponent 
D notch depth 
DPM critical distance for the point method 
DLM  critical distance for the line method 
DAM  critical distance for the area method 
E Young’s modulus  
f0 pulse bending fatigue limit 
f-1 fully-reversed bending fatigue limit 
f(εij) equivalent strain function 
f(σij) equivalent stress function 
F rotation factor 
FEM finite element method 
G shear modulus 
HCF high-cycle fatigue 
IST incremental step test 
KT   stress concentration factor  
K f   fatigue strength reduction factor  
Kσ   stress concentration factor  
Kε   strain concentration factor  
k’ cyclic hardening coefficient 
k monotonic hardening coefficient 
J1, J2 1st and 2nd invariants of the stress tensor  
J2,a amplitude of the 2nd invariant of the stress 

tensor 
LCF low-cycle fatigue 
MST multiple step test 
n’ cyclic hardening exponent 
n monotonic hardening exponent 
Nf number of cycles to failure 
NT transition point  
q notch sensitivity index 
R  stress ratio 
Rε strain ratio 
Ra, Rb axes of the circumscribed ellipse 
SST single test method 
t time 
t-1 fully-reversed torsion fatigue limit 
Uth effective threshold SIF ratio for a crack 

length ath 
Uth0 effective threshold SIF ratio for a long 

crack 
We maximum strain energy density 
Wn nominal strain energy density  
Wp strain energy density due to elastic-plastic 

stress  
xeff effective distance 
Y(ath) geometric factor 
∆γ shear strain range 
∆ε1, ∆ε2, ∆ε3 principal strain ranges 
∆εe elastic strain range  

∆εp  plastic strain range  
∆εeq equivalent normal strain  
∆ε total strain range 
∆σ normal stress range  
∆σ1, ∆σ2, ∆σ3 principal stress ranges  
∆σeq equivalent stress range  
∆τ shear stress range  
∆Wp plastic strain energy absorbed per cycle 
∆We elastic strain energy absorbed per cycle 
∆We+ elastic strain energy associated with the 

tensile stress  
∆Weff effective strain energy density 
∆Wt total strain energy absorbed per cycle 
∆W0p hysteresis energy of the material at the 

fatigue limit 
∆W0t tensile elastic energy of the material at the 

fatigue limit 
∆τ shear stress range  
∆K th long crack threshold stress intensity factor 

range 
ε1, ε2, ε3  principal strains   
εf’ fatigue ductility coefficient  
εFI strain intensity function 
εm mean strain  
εnom nominal strain  
εn

p nominal plastic strain  
χ relative stress gradient 
ϕ phase angle 
σ1, σ2, σ3 principal stresses  
σ0 fatigue limit at zero mean stress 
σa normal stress amplitude  
σeff effective stress  
σf’ fatigue strength coefficient  
σFI stress intensity function  
σH hydrostatic stress  
σH,a hydrostatic stress amplitude 
σH,m mean value of the hydrostatic stress 
σm mean normal stress  
σn, σnom  nominal stress  
σn,max  maximum normal  stress  
σUTS ultimate tensile strength  
σYS yield strength 
γ shear strain 
γmax maximum shear strain 
γf’  shear fatigue ductility coefficient 
τa shear stress amplitude 
τf’ shear fatigue strength coefficient  
τm mean shear stress 
ρ notch radius 
ν Poisson’s ratio 
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2.1. Fatigue phenomenon 

Fatigue is a progressive, localised and permanent change that takes place in mechanical components 

subjected to repeated or fluctuating strain fields caused by nominal stresses considerably below the tensile 

strength of the materials involved. Fatigue failure can occur due to load fluctuations but also due to the 

synergy of several damaging factors, which are usually called creep fatigue, thermomechanical fatigue, 

corrosion fatigue, sliding contact fatigue, rolling contact fatigue, fretting fatigue, etc. (Suresh, 1998).   

 

As is well-known, August Wöhler (1819-1914) was the first researcher to address fatigue failure (Wöhler, 

1871) by studying the behaviour of full-scale railway axles under cyclic loading. The presentation of the 

test data in terms of applied stress versus number of cycles to failure, termed S-N diagram, was a major 

innovation and rapidly spread to other applications also subjected to fluctuating load, such as ships, 

aircrafts, industrial machinery, etc. (Farahmand, 1997).  

 

Fatigue failure, as depicted in Figure 2.1, is a sequential process that encompasses three main stages. The 

first stage comprises the microscopic crack nucleation and crack initiation. Due to the difficulty in 

separating these two events, many authors divide crack nucleation and crack initiation into two 

independent stages. The second stage is the stable crack growth. In this period, the crack reaches a critical 

size at which the remaining uncracked cross-section of the mechanical component becomes too weak to 

carry the imposed loading. The last stage consists of a period of unstable crack propagation which 

culminates in a sudden fracture of the remaining cross-section of the mechanical component. 

 

Crack initiation is, in general, a surface phenomenon. Different reasons have been suggested to explain 

this fact. For example, the lower restraint at the material surface has been mentioned as a favourable 

condition to crack initiation. Other arguments are the inhomogeneous stress distribution due to notch 

effects or other geometrical discontinuities which lead to peak stresses at the surface. Surface roughness 

and similar surface effects, such as corrosion or fretting fatigue, also promote crack initiation at the 

 

 

Figure 2.1.  Main stages of fatigue failure (Farahmand, 1997). 
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surface. Therefore, crack initiation life is highly dependent on surface conditions.    

 

Fatigue crack nucleation, as postulated by Ewing and Humfrey (1903), starts from invisible microcracks 

in slip bands. Further studies demonstrated that nucleation of microcracks generally occurs very early in 

the fatigue life. Nevertheless, microcracks remain invisible for a considerable part of the total life. Cyclic 

slip is caused by cyclic shear stress. However, the shear stress on crystallographic slip planes differs from 

grain to grain. In short, it depends on the size and shape of the grains, crystallographic orientation of the 

grains and anisotropy of the material. In view of this fact, some grains at the material surface are more 

susceptible to cyclic slip than others.  

 

Figure 2.2 schematises the crack initiation on the surface of a ductile metal under uniaxial tensile stress. 

In grains favourably oriented to the applied fluctuating load, fine localised slip lines appear on the surface 

of material. At the early stage, the slip lines are visible on the surface for the tensile portion of the cycle 

and disappear in the unloading portion. After few cycles, this reversible process is interrupted and 

permanent slip bands are formed. These permanent slip bands, named as persistent slip bands (PSB), can 

result in intrusions and extrusions, which are localised stress concentration sites for the formation of a 

microcrack. Further continuation of cyclic loading results in stable crack growth. At the early stage of 

stable crack growth, the direction of the propagation is not exactly perpendicular to the applied load but 

depends on the orientation of the primary slip band (see Figure 2.1). In a subsequent moment, the growth 

direction changes and the crack tends to propagate in a direction normal to the applied load. In general, 

this stage is influenced by the magnitude of the alternating stress, mean stress and severity of the 

environment. When a critical crack length is reached, the propagation becomes unstable leading to the 

 

 

Figure 2.2. Slip bands formation leading to crack initiation as a result of cyclic                                     

loading (Farahmand, 1997). 
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final fracture.  

 

With respect to polycrystalline metals, such as high strength steels or aluminium alloys, it is important to 

note that they have a complex nucleation process which is affected by the presence of grain boundaries, 

precipitates, impurities and inclusions. In this case, slip bands are the result of dislocation movements 

within individual grains. These movements can only occur along a slip plane determined by the crystal 

structure. Particularly in high strength steels, the crack nucleation from inclusions has been reported by 

several authors (Ransom, 1954; Costa, 2001; Puchi-Cabrera, 2007; Sirin, 2008; Branco, 2012e). It tends 

to occur at inclusions located at the material surface or slightly below. Although inclusions are not 

harmful in terms of static strength, they reduce the ductility of the material and tend to interact with cyclic 

slip. In practice, an inclusion acts as a micronotch leading to a local change in the stress distribution. High 

strength steels, due to their high yield stresses, have high notch sensitivity. In this sense, the presence of 

inclusions in this kind of materials must be avoided, otherwise crack nucleation can occur.  

 

As schematised in Figure 2.1, a crack first starts in a surface grain and then grows into the next. In this 

stage, the overall growth path is along planes of maximum shear stress. According to the terminology of 

fracture mechanics, it corresponds to mode II (Figure 2.3b). In the second stage, the crack gradually turns 

to grow perpendicular to the tensile stress axis, i.e. under mode I (Figure 2.3a). The transition between 

both stages, which occurs over a few grains, is mainly controlled by the material microstructure and 

applied stress. In general, lower stress magnitudes increase the time associated with stage I and vice 

versa. On the other hand, the length of the stage I increases with the grain size of the material.  

 

In materials subjected to multiaxial fatigue, as illustrated in Figure 2.4, crack growth patterns can be 

explained in two different ways. According to Brown et al. (1973), the different crack growth patterns 

depend on the orientations of the planes of maximum shear stress amplitudes with the free surface of the 

material. The first crack growth pattern (Figure 2.4a-d) is termed case A while the other (Figure 2.4e-h) 

 

 

Figure 2.3. Schematic illustration of the three basic modes of fracture: a) mode I; b) mode II;                                  

c) mode III (Socie, 2000). 
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Figure 2.4. Schematic illustration of the two crack growth patterns in multiaxial fatigue suggested by 

Brown et al. (1973) and  termed case A and case B: a) multiaxial strains; b) plane of maximum shear 

stress amplitude and plane and direction of stage I crack growth; d) plane and direction of stage II crack 

growth (Suresh, 1998). 

is termed case B. The surface planes are marked in grey in Figures 2.4a. The planes of maximum shear 

stress amplitudes, wherein the stage I cracks initiate, are depicted in Figures 2.4b-c. In case A, the shear 

stress acts on the free surface in a direction parallel to the crack length and there is no shear stress acting 

perpendicular to the free surface along the crack depth. This is an in-plane stress shear. In these 

circumstances, the crack advances more in a direction parallel to the surface than in a direction normal to 

the surface, i.e. this type of crack tends to be shallow and has a small crack aspect ratio. The plane in 

which the stage II crack growth occurs is exhibited in Figure 2.4d and is due to simultaneous or 

alternating slip involving more than one slip system. In case B, the crack is subjected to out-of-plane 

shear stress. Here, the stage I crack growth initiates at the surface oriented at a 45º angle. The crack 

advances from the free surface to the interior of the material leading to a more critical cross-section 

reduction than that in the previous case. The stage II crack growth is presented in Figure 2.4d and is also 

from the free surface into the material. In this case, the fatigue crack growth process can be described by 

the intrusion-extrusion model.    

 

Fatigue life is a result of many factors which are grouped into different categories, such as microstructure 

of the material, processing techniques, load spectrum, environment and geometry (Ellyin, 1997). The 

effects of the above-mentioned factors are briefly outlined below.  

 

i) Effect of microstructure  

As already referred, average grain size, grain structure and microstructural defects have a strong effect on 

fatigue life. Figure 2.5 plots typical ratios of the endurance limit to the ultimate tensile strength against 
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Figure 2.5. Effect of steel microstructure on endurance ratio (Boyer, 1986). 

the steel microstructures. According to the figure, a tempered martensite structure provides the highest 

fatigue limit. Pearlitic structures, particularly those with coarse pearlite, have poor resistance to fatigue.  

In general, materials with large grain sizes exhibit lower fatigue limit than those with smaller grain size 

when subjected to cyclic loading at room temperature. On the contrary, at temperatures in the creep range, 

the coarse-grained materials appear to have better fatigue performance.  

 

The damage in metallic materials is caused by plastic deformation, which is generally due to the motion 

of dislocations. This motion is affected by precipitates, impurities, grain boundaries, among others. As is 

well-known, the dislocation structure and density is influenced by the cyclic deformation. Besides, the 

initial dislocation structures vary considerably with the processing technique used (annealing or work 

hardening, etc.). Furthermore, a cyclic loading can cause phase transformation (for example,        

austenite-martensite transformations) which generally results in a reduced fatigue life (Ellyin, 1997). 

 

ii) Effect of processing techniques 

Processing techniques such as forging, rolling and extrusion have influence on the grain orientation and 

can produce directional properties. Generally speaking, the oriented direction has better fatigue properties 

than the transverse direction. For instance, the ratio of transverse to longitudinal fatigue limits in 

specimens made of DIN 34CrNiMo6 high strength steel was found to be about 0.7-0.8 (Ranson, 1952). 

On the other hand, material processing techniques, such as grinding, turning, extrusion, can also be a 

source of defects, i.e. cavities, inclusions, pores, etc. which act as micronotches. Figure 2.6 shows the 

cycles to failure for specimens of DIN 34CrNiMo6 high strength steel with large spherical inclusions 

(diameters of about 0.13mm) and with small spherical inclusions (no larger than 0.02mm) detected at the 

fracture surfaces and identified as silicate particles. As can be seen, the fatigue lives achieved were 

significantly affected by the size of the inclusions. In fact, inclusions cause an early strain localisation 

which accelerates the fatigue crack initiation process.  

 

Fatigue life is also highly influenced by heat treatments, namely hardening, cold and hot working, surface  
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Figure 2.6. Effect of non-metallic inclusion size on fatigue life in specimens made of DIN 34CrNiMo6 

high strength steel (ASM, 2000a). 

coating, plating, cladding, among others. Components are generally heat treated after manufacturing to 

enhance several properties, in particular residual stresses. The existence of tensile residual stresses at the 

surface must be avoided, since it is not beneficial to fatigue behaviour. On the contrary, compressive 

residual stresses at the surface enhance fatigue properties. Nevertheless, heat treatments in steels can 

cause surface descarburisation which decreases the surface toughness and produces microcracks. Besides, 

it is important to note that forming, drawing, forging, extrusion, rolling, machining, etc. produce rough 

surfaces, microstructural changes and residual stresses. Therefore, it is expected that these rough surfaces 

lead to a decrease in fatigue life.   

 

iii) Effect of environmental factors 

a. Corrosive environment 

The mechanical degradation of a material due to the conjoint action of cyclic stresses and harmful 

environments is named corrosion fatigue. The most visible effects are pitting and surface roughness. 

These regions act as micronotches and are potential sites of crack nucleation. In this context, the critical 

locations are those where fatigue slip activity occurs. The slight difference between the electromechanical 

potential of the outside and the inside of the slip band promotes the corrosion process. The performance 

against corrosion fatigue can be increased by improving the surface properties through the application of 

different surface treatments, for instance nitriding, shot peening, cladding, plating, among others. The 

effect of a corrosive environment (3% wt. NaCl solution) on fatigue behaviour of DIN 34CrNiMo6 high 

strength steel is presented, as an example, in Figure 2.7 (Puchi-Cabrera, 2007). The S-N curves for tests 

in air and in corrosive environment were obtained by fitting the experimental data to a power law 

function. As can be seen, the curves behave differently. In air, there is a fatigue limit. On the contrary, 
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Figure 2.7. S-N curves of DIN 34CrNiMo6 high strength steel tested in corrosive environment and in      

air (Puchi-Cabrera, 2007). 

in a corrosive environment, the fatigue limit is not observed. On the other hand, the S-N curve obtained in 

a corrosive environment is shifted to the left, which is clear sign of lower fatigue strength. 

 

Different mechanisms have been proposed to explain the effect of a corrosive environment on fatigue 

crack growth. These mechanisms can generally be grouped into three categories (Ellyin, 1997), i.e.   

 

• oxidation of the crack surface: it changes the properties of the material around the crack tip and 

additionally promotes the development of crack closure. The crack surfaces develop a brittle oxide 

layer due to subsequent crushing and reforming. This process tends to create a wedge-like shape at 

the crack tip which reduces the crack driving force (Suresh, 1982). Additionally, as postulated by 

Zhiqiang et al. (1991), crack closure simplifies the movement of the corrosive solution out of the 

crack tip decreasing the exposure to the corrosive medium. The combination of these two facts, i.e. 

the reduced driving force induced by the oxide layer and the shielding properties generated by crack 

closure, promotes a decrease of the crack growth rate; 

• hydrogen embrittlement: it results from the migration of atomic hydrogen to regions of high stress 

concentration, such as the crack tip. This absorption of hydrogen ions promotes the embrittlement of 

the crack tip material. The embrittled area is susceptible to microcrack initiation which progressively 

grows and joins to the dominant crack. This accelerated crack growth mechanism has been observed 

in high strength steels. In lower strength steels, the hydrogen absorption enhances the nucleation and 

growth of microvoids at the crack tip which also results in an accelerated crack growth; 

• exposure time to the corrosive environment: the time of chemical absorption at the crack tip during 

each loading cycle plays an important role on the fatigue crack growth rate (Bartlett, 1990). In 
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general, at high values of the stress intensity factor range, a higher frequency results in lower crack 

growth rates. This is because, at higher frequencies, the corrosive environment is not able to fully 

penetrate the crack tip before closing again. At lower frequencies, the corrosive environment has 

more time to contact with the crack tip which increases the crack growth rates. An opposite 

behaviour is observed at lower values of the stress intensity factor range, i.e. reduced frequencies 

promote lower crack growth rates because in these circumstances the higher exposure time produces 

larger amounts of corrosion products which lead to early crack closure and lower driving forces.  

 

b. Temperature 

Temperature is other important environmental factor that affects both the fatigue resistance and crack 

propagation rates. At low temperatures, i.e. room temperature or below, crack growth is frequency or time 

independent. In general, the fatigue strength of a material increases as the temperature decreases. Table 

2.1 compiles average values of the ratio of the fatigue strength at -40ºC, -78ºC and -188ºC to the fatigue 

strength at room temperature for several groups of metallic alloys (Frost, 1962). As can be observed, 

these ratios are essentially in the range 1.05-2.6. Besides, it is important to note that softer materials 

generally provide higher ratios than harder materials. The effect of the mean tensile stress on the          

low-temperature fatigue strength suggests that the results lie between the modified Goodman and Gerber 

lines (see Figure 2.11). At high temperatures, crack growth is frequency or time dependent. Increasing 

temperatures cause plastic flow which alters the crack front plastic zone as well as the strain and stress 

distributions. Cyclic loading at elevated temperature can be described as a phenomenon combining       

rate-independent fatigue and rate-dependent creep mechanisms. The prevalence of one mechanism over 

the other depends on temperature, microstructure, loading rate, loading wave form, among others. Cyclic 

actions and increased temperatures enhance oxidation which may have a significant influence on crack 

growth. On the other hand, oxidation results in weakening and embrittlement of grain boundaries, 

especially at the crack tip region near the surface. In general, increasing temperatures reduce fatigue 

strength. Figure 2.8 presents, as an example, the effect of elevated temperature on fatigue behaviour of 

DIN 34CrNiMo6 high strength steel (MIL-HDBK-5H, 1988). The grey and black circles represent the 

experimental results while the dashed and full lines correspond to the fitting functions. As can be seen, 

the increase in temperature reduces the fatigue resistance. This effect is much more pronounced for the 

highest temperature than in the other cases.   

 

Table 2.1. Ratios of the fatigue limit in torsion to in rotating bending for different materials (Frost, 1999). 

Material  

Ratio of the fatigue strength at a given temperature to 
the fatigue strength at room temperature a 

-40ºC -78ºC -188ºC 

Carbon steels  1.2 1.3 2.6 

Alloy steels  1.05 1.1 1.6 

Stainless steels  1.15 1.2 1.5 

Aluminium alloys  1.15 1.2 1.7 

Titanium alloys   1.1 1.4 
a Fatigue strength at 1×106 cycles. 
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Figure 2.8. S-N curves of DIN 34CrNiMo6 high strength steel obtained at different                    

temperatures (MIL-HDBK-5H, 1988). 

 

iv) Effect of load  

The load history experienced by a component, i.e. magnitude, sign and rate of loading, plays a major role 

on fatigue life. In certain cases, such as rotating shafts of stationary equipment, the load history is almost 

uniform with small variation from cycle to cycle. In other cases, for instance moving vehicles or 

aerospace components, the load history is almost random in nature during their service life (Figure 2.9a). 

It means that the load at a given instant cannot be predicted a priori. Different methods of cyclic counting 

have been proposed to convert irregular load histories to blocks of constant amplitude (Figure 2.9b). The 

rain flow counting method (Matsuishi, 1968) is one of the most popular approaches. Detailed information 

on the current practices for cycle counting can be found in the ASTM E1049 (2011) standard. In general, 

the counting methods can be grouped into two categories, i.e. one parameter description (e.g. level 

crossing count, peak count, range count) and at least two parameters description (e.g. range-mean count, 

etc.). The constant amplitude cyclic loading (Figure 2.9c) is used as a reasonable approximation when 

there are no significant deviations in the load history. According to Figure 2.9c, the stress range (∆σ) is 

given by the following expression 

 

minmax σσσ −=∆  (2.1) 

 

being σmax and σmin the maximum stress and the minimum stress during a complete cycle. The stress 

amplitude (σa) and the mean stress (σm) can be written by Equation 2.2 and Equation 2.3, respectively.  
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Figure 2.9. Types of loading: a) random; b) blocks of constant amplitude; c) constant amplitude. 

 

2
minmax σσ

σm

+=  (2.3) 

 

The stress ratio (R) is defined as the algebraic ratio of the minimum cyclic stress to the maximum stress 

cyclic stress during a complete cycle (Equation 2.4). Such a parameter is widely used to distinguish 

different constant amplitude loading conditions. Two common test references are R  = -1 and R  = 0, which 

are called fully reversed and pulsating tension, respectively. 

 

max

min

σ

σ
R =  (2.4) 

 

The strain ratio (Rε) is another parameter used in fatigue analysis and can be written in the form  

 

max

min

ε
ε

ε =R  (2.5) 

 

being εmin and εmax the minimum strain and the maximum strain during a complete cycle, respectively. In 

general, this parameter is employed in strain-controlled low-cycle fatigue tests, where the total strain (∆ε) 

is controlled throughout the cycle. As is well-known, with respect to the number of cycles to failure, 

fatigue is generally divided into low-cycle fatigue (LCF) and high-cycle fatigue (HCF). The former is 

characterised by large plastic deformation and fatigue lives usually lower than 104 cycles. The latter is 

characterised by microscopic localised plastic deformation and fatigue lives above 104 cycles. 
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The total damage induced on a given part as a result of the previous damage history and the loading order 

effects can be evaluated using different cumulative damage models (Fatemi, 1998). In essence, these 

models are based on a damage variable which controls the fatigue process (Kujawski, 1988). For 

example, the well-known Palmgren-Minner rule, first proposed by Palmgren (1945) and later developed 

by Minner (1945), is based on a linear damage accumulation law and states that the fatigue damage 

contribution by each individual load spectrum at a given stress level is proportional to the number of 

cycles applied at that stress level (ni) divided by the total number of cycles required to fail the part at the 

same stress level (Nfi), i.e. 

 

1=∑
fi

i

N

n  (2.6) 

 

being i the number of loading levels. Due to its simple formulation (linear damage assumption and 

insensitivity to the loading sequence experienced by the component), this damage function has been 

criticised. However, such a rule is probably the most used damage formulation. Moreover, it is important 

to mention that more complex damage formulations do not necessarily provide better results than the 

linear damage models (Melcon, 1962; O’Neil, 1970). 

 

a. Mean stress 

The mean stress, defined by Equation 2.3, strongly affects fatigue life. In general, the effect of a positive 

mean stress is to reduce fatigue life whilst a negative mean stress may increase it. The influence of the 

mean stress on fatigue life is usually studied by establishing a set of S-N curves for different stress ratios. 

Figure 2.10 shows a family of S-N curves obtained at different stress ratios for DIN 34CrNiMo6 high 

 

  

Figure 2.10. Family of S-N curves obtained at different stress ratios for DIN 34CrNiMo6 high strength 

steel (MIL-HDBK-5H, 1988). 
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strength steel (MIL-HDBK-5H, 1988). It can be noted that for a fixed maximum stress the fully-reversed 

condition (R = -1) is the most severe with the least fatigue life. Besides, for a fixed maximum stress, the 

higher is the stress ratio, the higher is the fatigue life. Different formulations have been proposed to 

predict the fatigue limit of a material under a given mean stress from the fatigue limit at zero mean stress. 

The two relationships generally accepted as representing the experimental data were proposed by Gerber 

(1874) and Goodman (1899) and can be expressed by 
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where σ0 is the fatigue limit at zero mean stress, σUTS is the tensile strength and n is a constant (n = 2 in 

the former and n = 1 in the latter). Both relationships are depicted in Figure 2.11. As can be seen, the 

Gerber diagram defines a parabola having as end-points the fatigue limit at zero mean stress and tensile 

strength of the material. The modified Goodman diagram assumes that the fatigue limit decreases linearly 

with increasing tensile mean stress. A diagram of similar form to the modified Goodman diagram, known 

as Soderberg line, is defined by the following equation   
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being σYS the yield strength of the material. Regardless of the relationship, loading conditions inside the 

lines are supposedly safe and those outside lead to failure. One the other hand, experience has shown that 

most data lie between the Gerber and the Goodman diagrams. In view of this fact, the Goodman line is 

considered as the lower bound and the Gerber line as the upper bound. It is usual to plot the Goodman and 

Gerber criteria in terms of dimensionless quantities, i.e. σa/σ0 versus σm/σUTS. This approach is often  

 

  

Figure 2.11. Goodman, Gerber and Soderberg diagrams. 
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referred to as the R-M diagram because it shows the relationship between the safe range of stress (R) and 

the mean stress (M). 

 

b. Type of loading 

The type of loading is also a major aspect on fatigue life. Figure 2.12 shows two S-N curves obtained for 

notched specimens of DIN 34CrNiMo6 high strength steel subjected to both axial and rotating bending 

load (Socie, 1980). As can be seen, the results have large differences. It is clear that the fatigue 

performance is significantly higher under rotating bending than under axial loading. The fatigue limits for 

torsion and rotating bending are also different. Table 2.2 lists average ratios of the fatigue limit in torsion 

to in rotating bending for different materials (Frost, 1999). According to the results, these ratios are 

typically within the range of 0.52-0.58 having an overall average equal to 0.55. For stronger wrought 

aluminium alloys, for instance, which do not exhibit a distinct fatigue limit, this ratio depends on the 

endurance at which the torsional and bending fatigue strengths are estimated. Average values of 0.64 and 

0.56 have been obtained when the fatigue strengths are evaluated at 1×107 and 5×108 cycles, respectively. 

Besides, it appears that for those metals, in which failure is initiated at a free surface, this ratio has an 

average value not far from that predicted by the von Mises criterion (i.e. 0.577).  
 

   

Figure 2.12. S-N curves obtained under rotating bending and axial loading for DIN 34CrNiMo6 high 

strength steel (Socie, 1980). 

 

Table 2.2. Ratios of the fatigue limit in torsion to in rotating bending for different materials (Frost, 1999). 

Material  Ratio of fatigue limit in torsion to in rotating bending 

19 carbon steels (Moore, 1927) 0.55 

14 alloy steels (Moore, 1927) 0.58 

5 non-ferrous alloys (Moore, 1927) 0.52 

49 wrought metallic alloys (Gough, 1924) 0.56 

14 wrought metallic alloys (Cazaud, 1953) 0.575 



22 

 

c. Loading sequence  

Loading sequence effects are also relevant parameters on fatigue performance. Take for example the 

fatigue data presented in Figure 2.13, which were obtained from unnotched specimens subjected to two 

different load histories, termed here load history A and load history B (Socie, 1980). The former has a 

first stress peak at ∆σ1/2 and the latter has a first stress peak at –∆σ1/2. The remaining cyclic load pattern 

is identical in both cases (∆σ2/2). Although both load histories have similar patterns, the resultant fatigue 

lives are totally different. The differences are due to the loading sequence effect. According to the results, 

the first negative stress peak is less damaging than the first positive stress peak. Besides, the lower is the 

value of ∆σ2, the more pronounced is the loading sequence effect on fatigue life. 

 

d. Loading frequency  

Loading frequency is another variable affecting fatigue performance. Table 2.3 presents fatigue limits 

obtained at various testing frequencies for different materials. The results available in the literature show 

 

 

Figure 2.13. Fatigue data showing sequence effects for two load histories (load history A and load history 

B) in 2024-T4 aluminium (Socie, 1980). 

 

Table 2.3. Fatigue limit at various testing frequencies for different materials (Krouse, 1934). 

Material 
                        Fatigue limit (MPa) 

                 Frequency: 25Hz 167Hz 500Hz 

SAE 1020 steel  215 215 230 

Stainless steel  415 435 480 

SAE 4140 steel  675 680 700 

Grey cast iron  70 70 77 

Alloy cast iron  180 180 200 
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that the fatigue limit or strength at long endurances of a material, which does not heat up or whose surface 

is not chemically attacked, remains constant or increases slightly over the frequency range of 1-200Hz. At 

higher testing speeds, the fatigue limit continues to increase with testing speed up to frequencies of about 

2kHz. Beyond this frequency, the experimental data are not in accordance but there is evidence that after 

a peak frequency the fatigue strength decreases with increasing frequency. 

 

v) Effect of geometry 

a. Stress concentration 

Fatigue design of a component is governed by a region of high local stress, such as an abrupt change in 

section, a notch or a hole. In general, these regions, termed geometric discontinuities, are sources of stress 

or strain concentration and are probable sites of crack initiation. As is well-known, at these regions, the 

local stress and strain are much greater than the nominal applied stress or strain. Besides, as already 

mentioned, the fatigue crack usually initiates at a point where the stress is highest, which often occurs at 

the surface. There are several reasons why stress peaks and fatigue damage often occur at the surface, 

such as the component may have stress raisers at the surface; the corrosion and erosion damages always 

roughen the smooth surface and introduce micronotches which act as local stress raisers; the microscopic 

plastic deformation occurs more easily at the surface due to less restraint than in the interior; and the 

residual stresses often reach a maximum at the surface. The fatigue life of a notched component is less 

than that of an unnotched component. However, it is important to highlight that the geometric 

discontinuities, in general, cannot be avoided due to functional requirements or connection details. The 

effect of stress concentration on fatigue behaviour of notched and unnotched specimens made of DIN 

34CrNiMo6 high strength steel is exhibited, as an example, in Figure 2.14. In the former specimens, the  

 

 

Figure 2.14. S-N curves for DIN 34CrNiMo6 high strength steel obtained using notched (KT  = 2) and 

unnotched (KT = 1) specimens (MIL-HDBK-5H, 1988). 
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stress concentration factor (KT), defined as the ratio of the peak stress in the notched specimen to that of 

the corresponding unnotched specimen, is equal to 2. In the latter, KT  = 1. As can be seen, the fatigue life 

is significantly reduced by the presence of the notch. 

 

b. Surface finish 

Crack initiation is associated, in general, with a free surface. Therefore, the surface characteristics 

resulting from the manufacturing techniques (such as grinding, turning, forging, extrusion, etc.) or surface 

treatments (for instance electroplating, shot peening, surface hardening, etc.) have a significant influence 

on fatigue properties. The influence of the manufacturing techniques as well as the additional surface 

treatments on fatigue strength can be explained at least by three reasons. Firstly, notch-like surface 

irregularities may have been created. Secondly, the condition of the material at the surface may have been 

changed (it may have been hardened by cold-work or softened by decarburisation). Thirdly, residual 

stresses may have been introduced into the surface layer. Many researchers have considered the effect of 

surface finishing on fatigue. In general terms, fatigue life increases as the magnitude of surface roughness 

decreases. Apart from the surface roughness, the fatigue properties are significantly affected by the depth 

and intensity of the residual stresses existing at the surface. Compressive residual stresses at the surface 

improve its fatigue life. Therefore, a final surface finishing process is beneficial to fatigue when it 

increases the depth and the intensity of the compressively stressed layer and detrimental when it decreases 

or removes such a layer. The compressive residual stresses can be produced by using different techniques, 

namely surface alloying, surface hardening, mechanical working of the surface or by a combination of 

these processes.  

 

The first group includes, for example, carburising, carbonitriding and nitriding. In these processes, 

carbon, nitrogen or both elements are introduced into the surface layer of the component. The solute 

atoms strengthen the surface layer and increase its bulk relative to the material below the surface. Figure 

2.15 presents, as an example, the effect of different nitriding treatment conditions on the fatigue 

behaviour of DIN 34CrNiMo6 high strength steel (Sirin, 2008). The S-N curve for conventionally heat 

treated steel is provided for comparison purposes. As can be observed, the values of the fatigue properties 

increase with the nitriding time. The increase in the nitriding time leads to a high case thickness, which 

promotes an effective movement of the fatigue crack initiation site into the core of the material. The 

second group includes, among others, induction, flame, laser and electron beam hardening. These 

processes consist of heating the surface above the critical temperature of the material and then quenching 

to produce a hard martensitic surface layer containing high compressive residual stresses. The last group 

includes, for example, shot peening, skin rolling, pre-stressing and grit blasting, among others. These 

processes must be carried out in the final heat-treated condition to achieve the desirable effect. The 

exposition of mechanically worked surfaces to elevated temperature generally results in a loss of the 

desirable residual gradient. In this sense, the subsequent thermal treatments must be eliminated or closely 

controlled when they are essential. Figure 2.16 plots, as an example, typical S-N bands for conventionally 

heat treated, shot peened and nitrided crankshafts made of DIN 34CrNiMo6 high strength steel (ASM, 
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Figure 2.15. S-N curves of conventionally heat treated and nitrided DIN 34CrNiMo6 high strength steel 

for different nitriding treatment conditions (Sirin, 2008). 

 

 

Figure 2.16. Typical S-N bands for conventionally heat treated, shot peened and nitrided crankshafts 

made of DIN 34CrNiMo6 high strength steel (ASM, 2000a). 

2000a). The improvements in fatigue properties either due to shot peening or nitriding are unequivocal. 

Besides, it is also clear that the nitrided crankshafts lead to greater fatigue lives than the shot peened 

crankshafts. In certain conditions, various surface treatments are applied to the components to improve 

their corrosion resistance, appearance and wear resistance. Metal plating generally decreases the fatigue 
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resistance. At least, three effects can explain this behaviour, namely the notch effect of fissures in the 

plating; induced residual tensile stresses in the substrate; and hydrogen embrittlement. Figure 2.17 

compares, as an example, the S-N curves obtained from unplated and plated DIN 34CrNiMo6 high 

strength steel (Díaz, 2000). The as-deposited samples were coated with an electroless nickel layer. As can 

be observed, the plating material leads to a significant reduction in fatigue life and in fatigue limits 

relatively to the unplated material. Identical conclusions have been reported in similar studies conducted 

with high strength steel substrates coated with different types of deposits (Garcés, 1999; Guzmán, 2000). 

Anodising is also used to enhance corrosion protection and wear resistance. In general, this technique 

produces a reduction in fatigue life ranging from a negligible amount up to 10-15% of the fatigue 

endurance. This reduction is attributed to one or a combination of the following factors: increased surface 

roughness, cracking in the coating and induced residual tensile stresses in the material immediately 

beneath the coating.   

 

c. Size 

As already mentioned, the fatigue results vary with the loading type. However, it is important to refer that 

even when the same load type is defined, the fatigue limit depends on the size of the component. The 

experimental results available in the literature based on laboratory tests show that the fatigue limit tends 

to decrease with increasing specimen diameters. Table 2.4 summarises various experimental results 

obtained from rotating bending tests on batches of mechanically polished specimens of different 

diameters cut from nominally similar material. The results confirm that, in general, the fatigue limits of 

these steels decrease as the specimen diameter increases. Besides, the experimental results available in the 

literature indicate that size-effects are more pronounced in rotating bending than in tensile tests. The  

 

 

Figure 2.17. S-N curves for conventionally heat treated and electroless Ni-P plated DIN 34CrNiMo6 high 

strength steel (Díaz, 2000). 
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Table 2.4. Size effect of specimen diameter on fatigue limit (Frost, 1999). 

Material 
 Fatigue limit (MPa) 

Specimen diameter (mm): 3.2 6.3 12.5 25 50 

SAE 1020 steel (Morkovin, 1944)  240 220 193 200 200 

SAE 1020 steel, stress-relieved (Moore, 1939)  200 200 193 193  

SAE 1035 steel (Morkovin, 1944)  260 260 240 240 240 

SAE 2345 steel (Moore, 1939)  480 460 460   

SAE 4130 steel (Morkovin, 1944)  520 475 450   

SAE 4340 steel (Gadd, 1945)   550  500 500 

 

change in fatigue limit with size appear to be most marked in specimens having a worked finish, such as 

those created by mechanical polishing or surface-rolling (Frost, 1999). 

 

2.2. Fatigue design philosophies 

Fatigue design philosophies have evolved over the years from the simple concept of infinite life to the 

more sophisticated concept of damage tolerance (Kirkby, 1980). Nowadays, the four basic fatigue design 

philosophies are termed infinite-life, safe-life, fail-safe and damage-tolerance. These philosophies are 

briefly outlined below.  

 

• Infinite-life: this method is based on the assumption that the maximum stress is lower than the 

endurance limit, below which no fatigue failures occur and therefore infinite life is expected. It is 

appropriate for the design of components that experience very high number of cycles and are 

subjected to uniform or preferably close to constant amplitude loading in non-corrosive environment, 

such as rotating components of machinery, engine valve springs, among others. In practice, only an 

endurance limit, and not a complete S-N curve, is required. Nevertheless, this design method is not 

economical or practical in many design situations, since it results in heavy and inefficient parts. Due 

to the scatter inherent to the fatigue tests, a suitable safety factor must be applied regarding the 

calculated endurance limit or the allowable stress.  

• Safe-life: in this method, the allowable fatigue or strain is related to that which would be expected to 

cause failure at the required lifetime. This strategy is most suited to parts and structures that are 

subjected to limited number of load repetitions during their lifetime, so proportioning them for 

infinite life would be neither practical nor economically viable. For example, several spacecraft 

components are subjected to few hundred of loading cycles, or less, during their lifetime. In these 

cases, the fatigue strength should be based on the required life in order to provide an efficient design. 

In this design method, the allowable fatigue stress is defined from an appropriate S-N curve. The S-N 

curves can be obtained in different ways, i.e. using laboratory specimens, geometric details, 

prototypes or full-scale components. A suitable factor of safety is recommended with respect to 

either the life or the stress or possibly both.  

• Fail-safe: in this method, a fatigue crack is allowed to grow but the component is designed in a way 

that the presence of a crack will not lead to failure before it is detected. In other words, the design 

includes alternative load-carrying members and therefore the failure of one of them can be tolerated 
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by load redistribution to the remaining members which avoids complete or catastrophic failure. The 

failure causes a small increase in displacement and the integrity of the component or structure is 

ensured by the crack stoppers. Generally, this design method requires information about the fracture 

thoughness and crack propagation properties of the material. For example, the aircraft industry 

commonly uses structural details in wings or fuselages which serve as crack stoppers and prevent 

cracks from growing to a dangerous length between their scheduled inspections. However, it is 

important to note that the fail-safe concept is not economically viable for all structures.  

• Damage-tolerance: this method is based on the assumption that manufacturing flaws can exist in any 

structure and that these flaws can propagate with usage. The fracture mechanics is used to analyse the 

crack growth and to define a critical size from which a rapid fracture can occur. An adequate 

selection of materials with high fracture toughness is crucial to attain an efficient design. Periodic 

inspections are scheduled to detect cracks of a certain size which is an important aspect either in 

terms of preventive maintenance or in terms of safety. For example, aircraft maintenance comprises 

periodic inspections done at intervals determined by a program of testing which can be redefined at 

any time as a result of the damage detected. The frequency of re-inspection is a critical issue for the 

aircraft industry since the safety margins are very small. On the contrary, in the maintenance of 

nuclear reactors, the safety margins are much greater and consequently the frequency of re-inspection 

is less important. However, the hostile radiation environment is a serious problem. It makes each 

inspection much more difficult and time-consuming. 

 

2.3.  Cyclic stress-strain response 

The material response as a result of reversed plastic deformation can differ depending on the controlled 

variable. Figure 2.18 exhibits several typical stress-strain responses and the corresponding cyclic input 

variables. In the case of fully-reversed strain-controlled tests, the material response is characterised by 

strain hardening behaviour (Figure 2.18a), i.e. the uncontrolled stress increases with the number of cycles; 

or strain softening behaviour (Figure 2.18b), i.e. the uncontrolled stress decreases with the number of 

cycles. The mean stress relaxation (Figure 2.18c) occurs under strain-controlled conditions with non-zero 

mean strain. On the other hand, if the maximum and minimum stresses are controlled, the so called cyclic 

strain ratcheting takes place (Figure 2.18d). Both cyclic strain ratcheting and cyclic mean stress relaxation 

are characterised by unclosed hysteresis loops.  

 

The propensity for cyclic hardening or cyclic softening can be predicted on the basis of the monotonic 

properties. In general, materials with a ratio of the ultimate tensile strength (σUTS) to the yield strength 

(σYS) greater than 1.4 (Equation 2.9) cyclically harden and those with a ratio less than 1.2 (Equation 2.10)  
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Figure 2.18. Material response to different modes of cyclic input variables: a) cyclic strain hardening;      

b) cyclic strain softening; c) cyclic mean stress relaxation; d) cyclic strain ratcheting (Ellyin, 1997). 

cyclically soften (Smith, 1963). For ratios 1.2 < σUTS / σYS < 1.4, hardening or softening may occur. Hard 

and strong materials, such as high strength steels, have a tendency to undergo cyclic softening. Soft 

materials, for instance aluminium alloys, exhibit cyclic hardening. In particular, the DIN 34CrNiMo6 

high strength steel studied in this research agrees with this empirical rule, i.e. cyclically softens (Smith, 

1963; Landgraf, 1969; Pape, 2007; Branco, 2012b). 

 

In the majority of cyclic loading cases, the material response reaches a steady-state regime, or the 

variation from cycle to cycle tends to be quite small. Therefore, it is expected that the hysteresis loops do 

not change significantly with the number of cycles. Figure 2.19 presents an idealised saturated hysteresis 

loop obtained in a fully-reversed strain-controlled test conducted under constant strain rate. It is defined 

by saturated stress amplitude (∆σ/2) and saturated strain amplitude (∆ε/2). The plastic strain amplitude 

can be calculated using the approximate equation 

 

E
p

222

σεε ∆−∆=
∆  (2.11) 



30 

 

being ∆εp/2 the plastic strain amplitude, ∆σ/2 the stress amplitude and E the Young’s modulus.   

 

The stable material response can be described by a cyclic stress-strain curve (Figure 2.20). Such a curve is 

usually obtained by connecting the tensile tips of the stabilised hysteresis loops for different strain 

amplitudes of fully-reversed strain-controlled tests (Rε = -1). In general, a number of identical smooth 

highly polished samples are tested under constant amplitude until failure occurs. The hysteresis loops at 

the half-life are chosen as the representative stable behaviour. This method is called single step test (SST) 

and is rather time-consuming. Other popular methods used to obtain the cyclic stress-strain curve are 

summarised in Table 2.5 (Ellyin, 1997). For example, in the multiple step test (MST), the sample is      

  

 

Figure 2.19. Schematic presentation of a saturated hysteresis loop (Ellyin, 1997).   

 

Table 2.5. Different methods used to obtain a cyclic stress-strain curve (Ellyin, 1997).  

Test method Scheme of strain cycles 

Single step test  

 

Multiple step test  
(low-to-high sequence) 

 

Multiple step test with 
(high-to-low sequence) 

 

Incremental step test 
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Figure 2.20. Monotonic and cyclic stress-strain curves for DIN 34CrNiMo6 high strength steel (Landgraf, 

1970).   

subjected to various strain blocks. A low-to-high sequence is often used, but to avoid a mean-stress effect, 

a high-to-low strain sequence is preferable. The incremental step test (IST) comprises the application of 

blocks of increasing and decreasing strain amplitudes. After several blocks, the cyclic stable state is 

achieved. At this point, it is only necessary to draw a line through the tips of each hysteresis loop, from 

the smallest strain range to the largest. Nevertheless, it is important to note that the SST method is the 

norm and the others are viewed as an approximation to the above.  

 

The relative position of the monotonic and the cyclic stress-strain curves can be used to characterise the 

initial material behaviour in cyclic straining. Briefly, when the cyclic stress-strain curve lies above the 

monotonic stress-strain curve, the material cyclically hardens; when the cyclic stress-strain curve lies 

below the monotonic stress-strain curve, the material cyclically softens. The latter case is presented, as an 

example, in Figure 2.20 which compares both the monotonic and cyclically stabilised stress-strain curves 

for DIN 34CrNiMo6 high strength steel (Landgraf, 1970).  

 

The stabilised stress-strain response can be described mathematically by a power law (Morrow, 1965), i.e.  
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being n’ the cyclic hardening exponent and k’ the cyclic hardening coefficient. The unknowns are usually 

determined from the test data by a best fit procedure. Using Equation 2.11 and Equation 2.12, the 
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cyclically stabilised stress-strain curve can be expressed in terms of total strain amplitude versus stress 

amplitude as follows (Ramberg, 1943) 
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where ∆εe/2 is the elastic strain amplitude. Although this equation describes the relationship between the 

stable stress and strain amplitudes, it does not give any information about the shape of the hysteresis loop 

branches. This description, in an analytical form, is important to explain several phenomena in cyclic 

behaviour. The first studies on the shape of the hysteresis loops were conducted by Masing (1926). A 

material is said to exhibit Masing-type behaviour if the hysteresis loop branches can be described by the 

cyclically stabilised stress-strain curve magnified by a factor of two (Equation 2.14). Thus, the upper 

branches form a unique curve when the compressive tips of the stable hysteresis loops of different strain 

amplitudes are moved to a common origin defined by the maximum compressive stress. On the contrary, 

non-Masing materials are those whose behaviour differs from the above description. According to the 

experimental data available in the literature, the hysteresis loop branches of DIN 34CrNiMo6 high 

strength steel can be satisfactorily predicted by assuming Masing-type behaviour (Branco, 2012b).  
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The master curve is an alternative form to measure the deviation from the Masing-type description. This 

curve, as depicted in Figure 2.21, can be obtained by matching the linear response of the upper branches 

obtained at different strain amplitudes. With respect to an auxiliary coordinate system (∆σ*, ∆ε*), it is 

defined as follows 
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being k* and n* the cyclic hardening coefficient and cyclic hardening exponent of the master curve 

measured with respect to the origin 0*. The relationships between the two coordinate systems are given by 

the following equations (Ellyin, 1997) 
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Figure 2.21. Schematic representation of a master curve (Ellyin, 1997).   

where δσ0 is the increase in the proportional stress limit, i.e. a measure of cyclic expansion of the elastic 

range. The deviation from the Masing-type behaviour for a given stable hysteresis loop can be evaluated 

by the area contained within the original lower branch and a symmetric lower branch. The larger the area, 

the greater the deviation. An example of this deviation is presented in Figure 2.21 by the grey area. The 

dashed line corresponds to the symmetric lower branch. 

 

The cyclically stabilised material properties can be used to predict the fatigue life. The elastic strain 

component is often described in terms of a relation between stress amplitude and number of reversals to 

failure (Basquin, 1910), i.e. 
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where σf’ is the fatigue strength coefficient, b is the fatigue strength exponent and 2Nf is the number of 

reversals to failure. This relation is exhibited in Figure 2.22. As can be seen, in a log-log scale, it leads to 

a straight line. Increased fatigue life is expected with a decreasing fatigue strength exponent and an 

increasing fatigue strength coefficient. The mean stress effect (σm) can be accounted for in Equation 2.21. 
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The plastic strain component is described by the Coffin-Manson relationship (Coffin, 1954; Manson, 

1954) which can be written in the form 
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being εf’ the fatigue ductility coefficient and c the fatigue ductility exponent. As exhibited in Figure 2.22, 

the previous formula represents a straight line in a log-log scale. Increased fatigue life is expected with 

a decreasing fatigue ductility exponent and an increasing fatigue ductility coefficient. The mean strain  



34 

 

 

Figure 2.22. Elastic, plastic and total strain amplitudes versus number of reversals to failure.    

effect can be accounted for in Equation 2.23. Unlike the mean stress effect, the mean strain effect is very 

small and is, in general, negligible for Nf  > 1000 cycles (Ellyin, 1985). 
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The total strain-life curve (Equation 2.24) can be obtained by summing both the elastic and plastic strain 

components. This expression can only be used to predict the fatigue life at zero mean stress and therefore 

it must be modified to include the mean stress effect.  
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The Coffin-Manson (CM) model (Equation 2.25) includes a mean stress correction into the elastic term of 

the strain-life curve. This model is based on the premise that the mean stress has significant effect on 

longer lives and vice versa. It is consistent with observations that the mean stress has greater impact at 

longer lives. Manson et al. (1981) suggested that both the elastic and the plastic terms should be modified 

to account for the mean stress effect. Their model, given by Equation 2.26, maintains the independence of 

the elastic to plastic ratio from the mean stress but tends to overestimate the mean stress effect on short 

lives, where plastic strain dominates (Ince, 2011). The Smith, Watson and Topper model, defined by 

Equation 2.27, controls the influence of both the mean stress and the strain amplitude. Such a formulation 

gives, in general, good estimation of mean stress effect in the long life regime, but it is conservative in the 

low-cycle fatigue region (Koh, 1991). 
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The transition point (2NT), as depicted in Figure 2.22, represents the life at which both the elastic and 

plastic strain components are equal. This condition, replacing Nf by NT, leads to Equation 2.28. For a 

number of cycles longer than the transition point, the elastic component dominates over the plastic 

component and vice versa. For most materials, the number of cycles to failure associated with the 

transition point is within the range 103-104. 
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During a cyclic loading, part of the supplied energy is stored in the material and emitted as heat. The 

stored energy is generally divided into a recoverable part and an unrecoverable part. The hysteresis loop 

is taken to represent the latter. The importance of the hysteresis energy to the fatigue phenomenon was 

first reported by Bairstow (1910). Under strain-controlled conditions, the area of the hysteresis loop is 

almost constant during the life. This area represents the plastic strain energy absorbed per cycle (∆Wp) 

and is depicted in Figure 2.23 by the dark grey region.  

 

The cyclically stabilised hysteresis loop can be used as a damage parameter to formulate a fatigue 

criterion for the entire range of the fatigue life. The fatigue criterion assumes the form (Ellyin, 1997) 

 

( ) p
p

fpp WNW 0
 2 ∆+=∆ ακ  (2.29) 

 

being κp and αp two material constants determined from the best fit to the experimental data and ∆W0p is 

the hysteresis energy of the material at the fatigue limit. For most metals, the value of ∆W0p is very small 

and can be omitted for lives up to 5×105 reversals (2Nf < 5×105). For lives close to the fatigue limit, the 

total strain energy can be used to advantage, since ∆Wp is difficult to measure accurately. The expression 

to calculate the total strain energy (∆Wt) includes the sum of both the elastic and plastic strain energies 

per reversal which correspond, respectively, to the light grey and dark grey regions of Figure 2.23, i.e. 
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where ∆Wp and ∆We are the plastic and elastic strain energies, respectively. In this approach, the fatigue 

failure criterion can be written as follows (Ellyin, 1997) 
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Figure 2.23. Cyclic strain energy per density for uniaxial stress state (Koh, 2002).  

being κ and α two material constants obtained from the best fit to the experimental data and ∆W0 

approximately equal to the elastic energy range at the fatigue limit. The two previous approaches are not 

sensitive to the mean stress effect and therefore are suitable for fully-reversed or almost fully-reversed 

tests. In order to overcome this drawback, Golos et al. (1987; 1988) proposed a different approach, 

defined by Equation 2.32, which consists of the sum of both the plastic strain energy and elastic strain 

energy associated with the tensile stress (∆We+), i.e. the dark grey and dashed regions of Figure 2.23. 
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The fatigue failure criterion is given by (Golos, 1987) 
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where κt and αt are two material constants obtained from the best fit to the experimental data and ∆W0t is 

the tensile elastic energy range at the fatigue limit. 

 

2.4. Fatigue life of notched bodies 

Fatigue life of notched components can be analysed using different models. In the following subsections, 

some of the models that have gained a widespread acceptance are briefly outlined.   

 

2.4.1 Stress-based models 

Stress-based approaches to high-cycle fatigue are based on empirical relationships between applied stress 

and number of cycles to failure, the so-called S-N curves. The presence of a discontinuity, hereafter 

referred to as notch, causes a stress concentration phenomenon. At and near the notch, the local stress is 

higher than the remote nominal stress. The intensity of the stress concentration on the notch root is often 

characterised by the elastic stress concentration factor (KT), which is defined by the ratio of the maximum 
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 local elastic stress to the remote nominal stress, i.e. 
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TK

σ
σ max=   (2.34) 

 

being σmax the maximum local elastic stress at the notch tip and σnom the nominal stress distant from the 

notch. This factor is influenced by the specimen geometry and the loading mode but is not affected by the 

mechanical properties of the material. The notch effect is very strong on fatigue behaviour and is usually 

evaluated by the fatigue strength reduction factor (Kf). The most accepted definition of the fatigue 

strength reduction factor is the ratio of the fatigue strength of an unnotched part to the fatigue strength of 

a notched part, i.e. 
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being ∆σ0 the fatigue strength of the unnotched part and ∆σ0n the fatigue strength of the notched part. The 

fatigue strength reduction factor, also called fatigue notch factor or fatigue stress concentration factor, is 

a function of different parameters, such as material properties, material inherent defects, notch size, notch 

shape, stress gradient, loading type and number of loading cycles. The relation between the fatigue 

strength reduction factor and the elastic stress concentration factor is often expressed in terms of the notch 

sensitivity index (q), which can be expressed by Equation. 2.36. A material is said to be fully notch 

sensitive when Kf  = KT, i.e. q = 1; and it is said to be notch insensitive when Kf  = 1, i.e. q = 0. 
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The experimental determination of Kf is probably the most reliable approach. However, it is relatively 

expensive and time-consuming. Due to this fact, alternative approaches have been proposed to obtain the 

fatigue strength reduction factor. In general, these approaches can be grouped into average stress, 

fracture mechanics and stress field intensity methods. Several systematic reviews on the topic are 

available in the literature (Yao, 1995; Pluvinage, 1998; Qylafku, 1999; Ostash, 2001). Among the 

previous methods, the average stress method has been extensively used. It is based on the assumption that 

the controlling parameter for fatigue failure should be stress averaged over a critically stressed line, area 

or volume surrounding the stress concentration. The model formulated by Kuhn et al. (1952) is 

considered the basis of the average stress models and is defined by   
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being ρ the radius of the notch root, ω the open angle of the notch and A a material constant which is a 

function of the material tensile strength limit. It assumes, as schematised in Figure 2.24, that the fatigue  
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failure occurs when the average stress over a length d, measured from the notch root, is equal to or greater  

than the fatigue strength of a smooth specimen. Neuber (1958) proposed an alternative formulation 
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where a is a material constant defined from the tensile strength limit of the material. The model proposed 

by Peterson (1959) is a special case of the average stress model since it assumes that the stress near the 

notch decreases linearly. It can be written as  
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where a is a constant defined from the yield tensile strength of the material. Siebel et al. (1955), based on 

the same assumption, obtained the expression given by the following equation   
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being a a material constant and χ the relative stress gradient at the notch root. Using the concept of 

intrinsic defects, Heywood (1962) found the expression 

 

ρ
a

K
K T

f

21

1

+

−=
 

 (2.41) 

 

where a is a constant that depends on the material and specimen. Applying the relative stress gradient, 

 

 

Figure 2.24. Schematic presentation of the average stress model (Yao, 1995).  
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Buch (1974) deduced the following relationship  
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being A and h constants that depend on the material and specimen and ρ0 a function of the two previous 

constants. Wang et al. (1992) developed another expression based on the relative stress gradient, which 

can be written in the form 
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being A and b material constants and χ the relative stress gradient at the notch root. Alternative models 

obtained from the average stress method can be found elsewhere (Schijve, 1980; Hardy, 1992).  

 

The fatigue strength reduction factor can also be calculated using fracture mechanics models. The fracture 

mechanics model proposed by Ting et al. (1993), as depicted in Figure 2.25, is based on the concept of a 

non-propagating crack of length ath. In this approach, the fatigue strength reduction factor is defined by 
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where Uth0 is the effective threshold stress intensity ratio for a long crack, Uth is the effective threshold 

stress intensity ratio for a crack length ath, Y(ath) is the geometric factor, D is the notch depth and a0 is the  

 

 

Figure 2.25. Schematic presentation of the fracture mechanics model (Yao, 1995).  
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intrinsic crack length. The value of a0 can be calculated from the following equation 
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being ∆Kth the long crack threshold stress intensity factor range, which is a material constant for a given 

stress ratio. If ath > a
*, Equation 2.44 assumes the form 
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where Deff is the effective notch depth. If ath  < a*, Equation 2.44 can be written as follows 
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being Uth0 and Uth* the effective threshold stress intensity factor ratio for a long crack and for a crack with 

length a*, respectively. Alternative expressions for Kf obtained from fracture mechanics models were 

proposed by Smith et al. (1977) and Yu et al. (1988). 

 

The stress field intensity method, as illustrated in Figure 2.26, assumes that fatigue failure is caused by 

damage accumulation in a region surrounding the notch with size of several grains. In this approach, the 

damage accumulation is not only a function of the peak stress but also of the stress field intensity of the 

damage zone. If the history of the local stress field intensity function in the failure region near the notch is 

the same as that of the smooth specimen, the notched and the smooth specimens have the same fatigue 

life (Yao, 1993; Shang, 2001). The stress field intensity function (σFI) can be defined by 
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being Ω the fatigue failure region, V the volume of the fatigue failure region, )(r
rϕ  the weight function 

and f  (σij) is the equivalent stress function. The equivalent stress function can be the von Mises equivalent 

stress, major stress, or another magnitude related to the stress, supposed to play a major role in the fatigue 

failure process. The weight function accounts for the contribution of the equivalent stress at a point P to 

the peak stress at 0=r
r

. It can be obtained either analytically or numerically. Besides, it should have the 

following characteristics:  

 

• 0 ≤ )(r
rϕ ≤ 1 and )(r

rϕ is a generalised monotonically decreasing function about ||r
r

; 

• ,1)0( ≡ϕ  which means that the contribution of the stress at the notch root is maximum; 

• when stress gradient χ = 0, ,1)( ≡r
rϕ which is consistent with the condition of smooth specimens. 
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Figure 2.26. Schematic presentation of the stress field intensity model (Qylafku, 1999).  

The above-mentioned conditions can be fulfilled through the following function  
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where χ is the relative stress gradient. For a notched specimen, the fatigue strength reduction factor is 

defined by  
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being the stress equivalent function given by  
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where σn is the applied net stress. For a plane damage zone D and for a linear damage zone E, the 

previous equation leads, respectively, to 
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being S and L their respective sizes. In a second stage, the original approach based on elastic stress 

distributions (Pluvinage, 1997; Pluvinage, 1997a) was improved to evaluate the real elastic-plastic stress 

distribution near the notch tip (Qylafku, 1999; Shang, 2001). Figure 2.27 exhibits a typical elastic-plastic 

stress distribution near the notch tip in a log-log scale and the corresponding relative stress gradient in 
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Figure 2.27. Typical elastic-plastic stress distribution versus the distance from the notch tip (Qylafku, 

1999).  

normal coordinates. This stress distribution encompasses three main regions:   

 

• the first region includes the maximum stress (x > 0) which is defined by the coordinates xmax, σmax. In 

elastic analyses, the maximum stress occurs at the notch tip (x = 0) and then the stress gradually 

decreases with the distance from the notch root; 

• the second region is an intermediate between the other two regions; 

• the third region is characterised by a stress distribution which can be fitted by a power function. In 

this region, the stress distribution can be considered a straight line. The abscissa of the first point of 

this region is named effective distance (xeff) and the resultant stress is called effective stress (σeff). It is 

supposed to be the boundary of the fatigue process zone and it is simultaneously the boundary of the 

stress relaxation. The stress distribution of the third region, as referred to above, can be defined by a 

power law (Equation 2.54) where α and C are constants depending on loading and geometry.  
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The relative stress gradient (χ), exhibited in Figure 2.27, can be written in the form  
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being σYY(x) the normal stress distribution in the loading direction. This expression evaluates the ratio of 

the first derivative of the stress distribution to the value of stress at the corresponding point. As can be 
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seen in Figure 2.27, at the effective distance, the relative stress gradient has its minimum value. Based on 

this approach, the stress field intensity can be expressed in the following form 
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and the fatigue strength reduction factor is given by 
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being xeff the effective distance schematised in Figure 2.27.  

 

As earlier mentioned, the average stress methods are based on the idea that fatigue failure takes place if a 

critical volume of material is subjected to a critical stress. The formulation proposed by Neuber (Equation 

2.38) uses a reference stress obtained by averaging the elastic stress over a certain distance from the notch 

root and is named line method (LM). The Peterson’s model (Equation 2.39) considers the stress at a 

specific distance from the notch apex and is called point method (PM). These two methods have been 

revisited by different authors (Tanaka, 1983; Lazzarin, 1997; Taylor, 1999). This approach was extended 

to more complex methods, such as the area method (AM) or volume method (VM) and is called the 

theory of critical distances (TCD). A common feature of this theory is the use of elastic stress 

distributions in front of the notch. Another common feature is the use of a material characteristic length, 

termed critical distance.  

 

The critical distance can be obtained using the El Haddad (1980) parameter (a0) presented in Equation 

2.45. The critical distances for the point method (DPM), line method (DLM) and area method (DAM) are 

schematised in Figure 2.28 and can be defined as follows  
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being DPM, DLM and DAM the critical distances for the point method, line method and area method, 

respectively. The calculation of a0 is identical to that for an intrinsic crack size, which is usually described 

by the Kitagawa-Takahashi (1976) diagram. The intrinsic crack size (a0) indicates the crack length below 

which a small crack defect exists and linear elastic fracture mechanics (LEFM) is not valid. Figure 2.29 

presents a typical Kitagawa-Takahashi diagram. As can be seen, the fatigue limit changes with the length 
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Figure 2.28. Concept of the theory of critical distances (TCD): a) point method; b) line method; c) area 

method (Susmel, 2011).  

 

 

Figure 2.29. Kitagawa-Takahashi diagram describing the crack size effect on fatigue propagation of short 

and long cracks (Taylor, 2008).   

of a pre-existing crack. For large cracks, the results lie on a line corresponding to the prediction of the 

LEFM and are controlled by the threshold stress intensity factor range for crack growth (∆Kth). For very 

small cracks, the crack size has no effect on fatigue limit which is given by ∆σ0. For intermediate crack 

lengths, the data are between these two types of behaviour. General speaking, in the case of crack lengths 

much smaller than a0, the presence of a crack is harmless; in the case of crack lengths much greater than 

a0, the LEFM procedures are applied; in the case of crack lengths similar to a0, the analysis is carried out 

using the TCD.  
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2.4.2 Strain-based models 

The strain-based models attempt to account directly for the plasticity at the notch root. This approach, as 

depicted in Figure 2.30, is based on the assumption that both smooth and notched specimens have the 

same life and accumulate the same damage if their stress-strain histories, at the crack initiation sites, are 

similar. In this sense, an accurate determination of the local stress-strain history experienced by the 

material at the notch root is essential. The available methods used to determine the local stress and strain 

fields at the notch root encompass experimental techniques, such as the strain gauges, X-ray diffraction, 

among others; analytical approximations methods, for instance the approaches proposed by Hardrath and 

Ohman (1953), Neuber (1968), Molski and Glinka (1981), etc.; and the application of the finite element 

method (FEM).   

 

The degree of stress concentration depends on the notch geometry and can be characterised by 

introducing the stress concentration factor (Kσ) and the strain concentration factor (Kε). These two factors 

can be expressed, respectively, as follows  
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where σmax and εmax are, respectively, the maximum stress and strain at the notch root and σnom and εnom 

are, respectively, the nominal stress and strain calculated at a region remote from the stress concentration. 

Although there are some circumstances in which both the nominal stress and nominal strain are defined 

with respect to a reduced cross-section at the notch location, the former approach is preferable from a 

physical point of view (Ellyin, 1997). In unidirectional or cyclic straining is valid the relationship  
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Figure 2.30. Schematic illustration of the local strain approach (Ellyin, 1997).  
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being KT the elastic stress concentration factor (see Equation 2.34). In the case of elastic behaviour, the 

three factors are similar.  

 

Several researchers have tried to correlate the elastic stress concentration factor to the stress and strain 

concentration factors. The formulation developed by Hardrath and Ohman (1953) is given by Equation 

2.64. The Neuber’s rule (1968) assumes that the elastic stress concentration factor is equal to the 

geometric mean of the stress and strain concentration factors (Equation 2.65).  
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Assuming a stress-strain relationship given by a power law, i.e. 
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and that the nominal stress and the nominal strain are in the elastic range, Equation 2.65 can be written in 

the form  
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being k the monotonic hardening coefficient, n the monotonic hardening exponent, σ the local stress and 

σn the nominal stress. For cyclic loading applications, Topper et al. (1969) replaced KT by the fatigue 

strength reduction factor (Kf), i.e.  
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where k’ and n’ are the parameters of the appropriate cyclic stress-strain curve and ∆σn is the nominal 

stress range. As exhibited in Figure 2.31, the stress-strain behaviour at the notch root can be determined 

from the intersection of the stress-strain curve and the Neuber’s hyperbolas, which occurs at points Q and 

R. The stress and strain amplitudes of the stabilised hysteresis loop can be calculated using the following 

relationship   
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being ∆σ/2 the local stress amplitude, ∆ε/2 the local strain amplitude, ∆σn/2 the nominal stress amplitude  
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Figure 2.31. Schematic illustration of the procedure used to obtain the local stress-strain response at the 

notch tip using a smooth specimen according to the Neuber’s rule (Suresh, 1998).   

and ∆εn/2 the nominal strain amplitude. The number of cycles required to produce a crack at the notch 

can be determined from the fatigue life curves obtained under strain-controlled conditions using smooth 

specimens. Therefore, inserting both Equation 2.20 and Equation 2.22 into Equation 2.69, the number of 

cycles to initiate a macroscopic crack (Ni) can be expressed as follows 
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where b and c are, respectively, the fatigue strength and the fatigue ductility exponents. The mean stress 

effect can be accounted for using a mean stress correction formula.  

 

Shang et al. (2001) proposed a local stress-strain field intensity model (SSFI) which was developed on the 

basis of the local stress field intensity (SFI) approach (Yao, 1993; Qylafku; 1998). This new model 

assumes that the damage cumulative process at the notch depends not only on the local stress field 

intensity but also on the local strain intensity field. Thus, two field intensity parameters are used to 

describe the fatigue damage at the notch, i.e. the stress field intensity parameter (σFI) given by Equation 

2.48 and the strain intensity field parameter (εFI) given by  
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being Ω the fatigue failure region, V the volume of the fatigue failure region, )(r
rϕ  the weight function 

and f(εij) the equivalent strain function. These weight functions, as already referred to in Section 2.4.1, are 

generally monotonically decreasing functions of .r
r

 The three typical characteristics are:  

 

• 0 ≤ )(r
rϕ ≤ 1;      
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• ;1)0( ≡ϕ  

• when χ = 0, .1)( ≡r
rϕ  

 

For an isotropic material, appropriate functions are (Shang, 2001): 
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where σeqQ is the equivalent stress at point Q, εeqQ is the equivalent strain at point Q, σpeak is the maximum 

stress, εpeak is the maximum strain, and θ and r are schematised in Figure 2.32. The parameters                

(1- σeqQ/σpeak) and (1- εeqQ/εpeak) account for the effect of stress and strain gradients, respectively. The 

stress field intensity and the strain field intensity parameters can be determined by means of the       

elastic-plastic finite element method. Figure 2.32 illustrates, as an example, the calculation of the main 

parameters for a ductile material under plane stress state. For the ith element in the fatigue failure region 

Ω, the equivalent stress and strain functions are defined, respectively, as follows 
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where σXX, σYY, τXY are the stress components, εXX, εYY, γXY are the strain components and ν is the 

Poisson’s ratio. For a point Q located in the ith element of the finite element mesh, the weight functions  

 

 

Figure 2.32. Schematic illustration of the procedure used to obtain the stress intensity parameter and the 

strain intensity parameter using an elastic-plastic finite element analysis (Shang, 2001).  
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presented in Equations 2.72 and 2.73, can be rewritten in the form 
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where σeq
i and εeq

i are, respectively, the equivalent stress and strain functions computed by means of 

elastic-plastic finite element analysis for the ith element. Repeating this analysis for all elements in the 

fatigue damage failure region Ω, the stress field intensity and strain field intensity values are 

approximately given by 
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being S the area of the fatigue damage failure region. 

 

2.4.3 Energy-based models 

Hutchinson (1968) demonstrated that the strain energy density distribution in the plastic zone ahead of a 

crack tip for a material with bilinear stress-strain behaviour is equal to that calculated from a linear elastic 

stress-strain analysis. Molski and Glinka (1981) assumed the same behaviour for notched components and 

materials with nonlinear stress-strain distributions. In view of this point, the strain energy density can be 

calculated using an elastic stress distribution, even in the presence of localised plastic yielding at the 

notch tip. Then, the strain energy density calculated is converted into equivalent elastic-plastic strains and 

stresses existing at the notch tip by using the nonlinear stress-strain curve of the material under analysis.  

 

The equivalent strain energy density concept states that the ratio of the maximum strain energy density in 

the notch tip to the nominal strain energy density is the same in elastic and elastic-plastic straining. This 

concept is depicted in Figure 2.33. If the straining at the notch root is in the elastic regime, this ratio under 

uniaxial stress state is equal to  
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where We is the maximum strain energy density at the notch root, Wn is the nominal strain energy density 

and KT is the elastic stress concentration factor. Molski and Glinka (1981) assumed that the previous  
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Figure 2.33. Graphical interpretation of the equivalent energy density concept (Glinka, 1985).  

relationship is also applicable when localised plastic yielding occurs ahead of the notch tip, i.e. 

 

  2
Tnep KWWW ==   (2.81) 

 

being Wp the strain energy density due to the elastic-plastic stress. Using the nonlinear stress-strain curve 

given by Equation 2.66, the previous relationship can be written in the form 
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where k is the monotonic hardening coefficient, n is the monotonic hardening exponent, σ is the local 

stress and σn is the nominal stress. The previous equation can be extended to account for the small       

non-linearity just below the yield limit. In such a case, it is given by Equation 2.83 (Glinka, 1895). 
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Ellyin and Kujawski (1987) obtained a similar formulation (Equation 2.84) for the strain energy density 

along a smooth notch boundary using the Rice’s J-integral, which can be written as follows 
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being εp the plastic strain at the notch root and εn
p the nominal plastic strain. This expression reduces to 

the Molski-Glinka’s model (Equation 2.82) when the nominal strain values are below the yield limit of 

the material (εn
p = 0) and reduces to the Neuber’s model (Equation 2.65) when the material has a high 
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strain hardening slope, i.e. 2/(n+1) ≈ 1 (Ellyin, 1987). 

 

In the case of cyclic loading, the nominal and local stresses are replaced by the nominal and local stress 

ranges. The stress-strain behaviour can be defined by the cyclic stress-strain curve (Equation 2.13). In this 

way, Equation 2.82 assumes the form 
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while Equation 2.83 can be written as follows  
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where k’ is the cyclic hardening coefficient and n’ is the cyclic hardening exponent.   

 

A more general approach to analyse the elastic-plastic deformation existing at the notch root was 

proposed by Ellyin and Kujawski (1989). For a body subjected to small-scale yielding near the notch, as 

depicted in Figure 2.34, there is a relationship between the actual elastic-plastic material and a linear 

elastic material which can be expressed as 
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being σij
a and εij

a the actual stress and strain fields, σij
e and εij

e the stress and strain fields obtained from a 

linear elastic analysis, and VR is the volume enclosed by R which is a far-field boundary where the 

 

 

Figure 2.34. Notch with small-scale yielding at its root: a) plastic zone size; b) tractions at a radius R 

away from the notch root (Ellyin, 1997). 
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effect of the plastic zone RP is negligible, i.e. R >> RP. For an elastic-plastic material under constant 

amplitude cyclic loading, the above energy approach leads to  
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being ∆Wp the plastic strain energy per cycle and ∆We the elastic strain energy per cycle. In addition, the 

number of cycles to failure (2Nf) can be related to the total strain energy per cycle (∆Wt) by Equation 

2.31. Therefore, the number of cycles to initiate a crack at the notch root can be estimated by solving both 

Equations 2.88 and 2.31. One advantage of this formulation is that it can be applied to uniaxial and 

multiaxial states under constant amplitude cyclic loading (Ellyin, 1989). 

 

Bentachfine et al. (1999) developed a volumetric approach based on the total strain energy density per 

cycle. As in other volumetric approaches, this method assumes that the fatigue process requires a critical 

volume to take place. It can be used in both uniaxial and multiaxial fatigue problems, either in low-cycle 

or high-cycle regimes. The total strain energy density range (∆W) can be obtained with the finite element 

method. A typical distribution of ∆W versus the distance from the notch tip is exhibited in Figure 2.35. 

This distribution can be divided into three main parts:  

  

• a first region where the strain energy density is nearly constant and has its maximum value;  

• a second region which is an intermediate region between the first and the third regions; 

• a third region where the strain energy density exhibits a power law dependence on the distance from 

  

 

Figure 2.35. Typical strain energy density distribution at the notch tip plotted in a log-log scale 

(Bentachfine, 1999).  
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the notch tip which can be expressed mathematically as follows 

 

γϕ −=∆ rW    (2.89) 

 

where ϕ and γ are constants.   

 

The critical volume, in which the fatigue process takes place, is assumed to be cylindrical and has a 

diameter equal to the effective distance (xeff). According to the authors (Bentachfine, 1999), the effective 

distance must be higher than the plastic zone diameter since the effective stress is lower than the yield 

stress; and it must be located in the high stressed region where the stress gradient is not too high. As 

depicted in Figure 2.53, the strain energy density at the effective distance (xeff) is termed effective strain 

energy density (∆Weff). The number of cycles to initiate a crack at the notch can be estimated by using the 

average strain energy density which is defined by  
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being W∆ the average strain energy density and A and a are parameters which depend on the notch 

radius. The fatigue strength reduction factor can be obtained from Equation 2.91.  
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2.5. Multiaxial fatigue  

Many critical mechanical components and structures experience a multiaxial stress state during their 

service life. The fatigue process under multiaxial loading is, in general, complex because it usually 

involves three-dimensional stress or strain histories. In this sense, the ability to accurately predict the 

fatigue behaviour under complex loading states is of great practical significance. Several attempts have 

been made to develop a universal multiaxial damage model. Nevertheless, the efficiency of a specific 

model depends on different aspects, such as materials, fracture and fatigue mechanisms, loading 

conditions, etc. (Kim, 1999; Liu, 2005). Accordingly, no single multiaxial fatigue damage model has been 

universally accepted yet (Socie, 1987).  

 

The first research on multiaxial fatigue was published by Lanza (1886) in the nineteenth century and was 

performed under combined bending-torsion loading. In the beginning of the twentieth century, various 

empirical models obtained from experimental results were proposed (Manson, 1917; Haigh, 1923;  

Nishiara, 1941; Gough, 1951). The first theories to predict fatigue failure under multiaxial loading were 

basically an extension of the failure theories for static multiaxial stress states to cyclic multiaxial stress 

states. The main purpose of these theories was to reduce complex multiaxial stress states to an equivalent 

uniaxial stress state and then use it to predict the fatigue life from conventional fatigue tests. However, 
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these models may work for proportional or in-phase loadings but often lead to significant errors for       

non-proportional or out-of-phase loadings (Garud, 1981; Zenner, 2004).  

 

The definitions of proportional and non-proportional loadings are important concepts in multiaxial 

fatigue. Proportional loading is assumed to exist when the orientation of the principal stress axes remains 

fixed with respect to the axes of the component. Non-proportional loading is assumed to occur when the 

orientation of the principal stress axes changes with respect to the axes of the component. Two 

representative examples of proportional and non-proportional loading are illustrated in Figures 2.36a and 

2.36b, respectively. The shaft is subjected to both shear and axial stresses. In the former example, the size 

of the Mohr’s circle changes over the time but X’ coincides with the principal normal stress axis. On the 

contrary, in the latter example, X’ does not always coincide with the principal normal stress axis (Socie, 

2000). The terms in-phase and out-of-phase are used to describe particular loading cases involving 

periodic histories, such as sine or triangular waveforms. In-phase loading results always in proportional 

paths while out-of-phase loading can result in proportional or non-proportional paths. For example,      

out-of-phase tension-torsion is always a non-proportional loading. Figure 2.37 exhibits, as an example, a 

typical in-phase strain history (Figure 2.37a) and a typical out-of-phase strain history (Figure 2.37b).   

  

One of the most complicated characteristics of non-proportional loading is the additional cyclic hardening 

which is not observed under proportional cyclic loading. The additional cyclic hardening depends on 

loading conditions, temperature, material hardness and microstructure. This phenomenon was explained   

 

 

Figure 2.36. Shaft subjected to both shear and axial stresses resulting in: a) proportional multiaxial 

loading; b) non-proportional multiaxial loading (Socie, 2000).  
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Figure 2.37. Typical example of an: a) in-phase; b) out-of-phase strain history (Socie, 2000).  

by a change in the slip plane from one crystallographic slip system to another which can be produced by 

the rotation of maximum shear plane (Kanazawa, 1979). This may prevent the development of stable 

dislocation structures associated with proportional loading. Kanazawa et al. (1977) also reported shorter 

fatigue life due to the additional hardening under non-proportional loading when compared to the 

proportional loading with the same amplitude level. Due to this fact, the analysis of non-proportional 

cyclic loading has been a topic of interest in the last decades (McDowell, 1985; Benallal, 1987; Socie, 

1987; Fan, 1991; Jiang, 1997).   

 

The analysis of the non-proportional hardening effect can be carried out from three different perspectives, 

i.e. experimental studies, constitutive modelling or empirical methods. With respect to the first group, a 

considerable number of studies about the effect of the strain shape, load amplitude and load sequence on 

the additional non-proportional hardening behaviour can be found in the literature (Ohno, 1982; Ohashi, 

1985; Tanaka, 1985a; Tanaka, 1985b; Krempl, 1984; Taleb, 2009). Regarding the second group, different 

constitutive models relating stress to strain or plastic strain by means of continuum mechanics were 

developed (Chaboche, 1979; McDowell, 1985; Doong, 1991; Tanaka, 1994). In essence, these models are 

based on the Mroz multiple surface (1967) and the Armstrong-Frederick (1966) plasticity formulations. A 

comprehensive review on plasticity theories can be found elsewhere (Chaboche, 2008). The last group 

quantifies the effect of non-proportional hardening from the strain amplitude path using a 

phenomenological approach. An example is the method proposed by Kanazawa (1979). In this case, the 

degree of non-proportionality is accounted for by a rotation factor (F) defined by the ratio of the 

maximum shear strain range at 45º to the maximum shear strain range, i.e.  
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rangestrain shear  Maximum

 45ºat  rangestrain shear  Maximum=F   (2.92) 

 

and depends on both phase angle and amplitude. This factor is a measure of the ellipticity of the strain 

path in a plot of the shear strain amplitude (γ/2) versus the normal strain (ε), as shown in Figure 2.38, or 

the ratio of the minor to the major axis of the circumscribed ellipse (Socie, 2000). Figure 2.38a shows a 

set of sinusoidal loadings with the same shear strain amplitude (γ = 2ε) and different phase angles, while 

Figure 2.38b exhibits a set of sinusoidal loadings with 90º phase angle and different shear strain 

amplitudes. The corresponding values of the rotation factor (F) are listed in Table 2.6. The additional 

non-proportional cyclic hardening can be modelled using the following expression 
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where ∆σe/2 is the equivalent stress amplitude, ∆εp
e/2 is the equivalent plastic strain amplitude, k’ is the 

proportional cyclic hardening coefficient, n’ is the proportional cyclic hardening exponent, F is the 

rotation factor and α is the material dependent non-proportional hardening coefficient. Typical values of  

 

 

Figure 2.38. Non-proportional loading histories: a) phase difference: b) amplitude                        

difference (Socie, 2000).  

 

Table 2.6. Rotation factor for different strain histories (Socie, 2000).  

Strain history Rotation factor, F 

0º, γ=2ε 0 

30º, γ=2ε 0.27 

60º, γ=2ε 0.57 

90º, γ=2ε 1.0 

90 º, γ=1.3ε 0.67 

90 º, γ=0.7ε 0.33 
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the non-proportional hardening coefficient for different materials are compiled in Table 2.7. As can be 

seen, this constant depends on both material and temperature. From the two previous tables, it is possible 

to infer that α and F are within the range 0-1.   

 

The formulation of the non-proportionality factor proposed by Ioth et al. (1995) allows evaluating the 

stress response from the strain history and can be expressed as 
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being εI(t) the principal stress at time t, εImax the maximum principal stress, ξ(t) the angle between εI(t) 

and εImax and T is the time for a cycle. The main variables are identified in Figure 2.39. This factor  

 

 

Figure 2.39. a) Definition of ξ(t); b) polar representation of ∆εI (Ioth, 2004).   

 

Table 2.7. Non-proportional hardening coefficient for various materials (Socie, 2000).   

Material α 

316 stainless steel (Cailletaud, 1991) 1.0 

304 stainless steel (Socie, 1987; Doong, 1990; Ioth, 1995) 0.5-1.0 

316 stainless steel at 550ºC (Andrews, 1989)   0.37 

1045 steel (Fatemi, 1989) 0.3 

304 stainless steel at 650ºC (Hamada, 1997) 0.3 

6061-T6 aluminium (Ioth, 1997) 0.2 

42 Cr-Mo Steel (Chen, 1996) 0.15 

1% Cr-Mo-V steel (Kanazawa, 1977) 0.14 

1100 aluminium (Cailletaud, 1991) 0 
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evaluates the severity of non-proportional straining in a cycle. The non-proportional strain range (∆εNP) 

can be defined by the following equation  

 

( ) INP F εαε ∆+=∆  1   (2.95) 

 

where F is the factor of non-proportionality, α is the material dependent non-proportional hardening 

coefficient and ∆εI is the principal strain range. This factor of non-proportionality was incorporated by 

Ioth et al. (2004) into an incremental multiple surface plasticity model with six material properties. The 

predictions obtained for 304 stainless steel and 6061 aluminium subjected to various loading paths were 

satisfactory.  

 

Another method which directly estimates the maximum shear stress amplitude from the loading path is 

the minimum circumstantial circle (Dang Van, 1989; Papadopoulos, 1997). The shear stress amplitude, as 

represented in Figure 2.40, is defined as the radius of the minimum circle circumscribing the load path in 

a deviatoric stress space. Later, Li et al. (2000) and Freitas et al. (2000) proposed a new method termed 

minimum circumscribed ellipse. In this case, the shear stress amplitude (τa) is defined by   

 

( ) 2/1 22
baa RR +=τ   (2.96) 

 

where Ra and Rb are, respectively, the length of the major and minor axes of the minimum circumscribed 

ellipse in a deviatoric stress space around the whole loading path. The graphical interpretation of this 

method is also presented in Figure 2.40. As can be seen, the shear stress amplitude for the rectilinear 

loading (load path 2) is equal to Ra, since Rb is zero. The main advantage of the minimum circumscribed 

ellipse method relatively to the minimum circumscribed circle method is that it can evaluate the effect of 

non-proportional loading in an easier manner (Li, 2000; Freitas, 2000). 

 

 

Figure 2.40. Schematic representation of the minimum circumscribed circle approach and minimum 

circumscribed ellipse approach (Freitas, 2000).   
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Multiaxial fatigue problems can be analysed using different models. In general, these models can be 

classified into three main categories, namely stress-based, strain-based and energy-based models (Garud, 

1981; Wang, 2004). The stress-based models are suitable for the high-cycle fatigue regime where the 

behaviour is mainly elastic. The strain-based models are appropriate for the low-cycle fatigue regime 

where the behaviour is mainly inelastic. Energy-based models can be formulated using elastic energy for 

high-cycle fatigue; plastic energy for low-cycle fatigue; or the sum of elastic and plastic energies (Macha, 

2001). In the last decades, numerous attempts have been made to develop a universally accepted 

multiaxial fatigue criterion. However, this has not yet been achieved. The accuracy of the existing criteria 

depends essentially on the material, loading and fatigue and fracture mechanisms (Kim, 1999).  

 

Several review papers on multiaxial fatigue criteria are presently available in the literature. Some 

examples are the papers of Garud (1981), Brown and Miller (1982), Krempl and Lu (1984), Ellyin and 

Valaire (1982), You and Lee (1996), Papadopoulos et al. (1997), Macha and Sonsino (1999), Wang and 

Yao (2004), Karolczuk and Macha (2005), Ding et al. (2007), Balthazar and Malcher (2007),  Meggiolaro 

and Castro (2009), Li et al. (2009), Fatemi and Shamsaei (2011), Kenmeugne et al. (2012). In the next 

subsections, various models that have gained a widespread acceptance are briefly outlined. The first 

subsection (Subsection 2.5.1) is devoted to the stress-based models which can be divided into equivalent 

stress methods, stress invariant methods and average stress methods. Subsection 2.5.2 is focused on the 

strain-based models. Subsection 2.5.3 tackles the energy-based models. The last subsection (Subsection 

2.5.4) covers the critical plane models which comprise stress-based, strain-based and energy-based 

approaches.   

 

2.5.1 Stress-based models 

i) Equivalent stress methods 

Equivalent stress methods attempt to predict the fatigue limit under a combined stress loading from 

usually accepted criteria for static yield under complex stress states. In this way, simple uniaxial tests 

could be used to describe the fatigue behaviour of components subjected to complex loading. The most 

usual yield criteria encompass the maximum normal stress, maximum shear stress and von Mises theories. 

Such theories applied to cyclic loading can be written, respectively, as follows (Socie, 2000) 
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being ∆σeq the equivalent stress range and ∆σi the principal stress ranges. The three above-mentioned 

criteria are depicted in Figure 2.41. Typical experimental test data are also plotted for comparison  
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Figure 2.41. Schematic illustration of the maximum normal stress, maximum shear stress and von Mises 

theories (Socie, 2000). 

purposes. As can be seen, the von Mises theory, sometimes called octahedral shear stress theory, better 

fits the experimental results than the others. These three criteria are only applicable to proportional or    

in-phase loading and can be combined with the Goodman diagram to incorporate the mean stress effect in 

in-phase problems.  

 

Based on an extensive set of experimental results, obtained under combined in-phase bending-torsion 

conditions, Gough and Pollard (1935; 1937) proposed an ellipse quadrant equation for ductile materials 
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and an ellipse arc equation for brittle materials 
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where ∆σ is the normal stress range, ∆τ is the shear stress range, f-1 is the fully-reversed bending fatigue 

limit and t-1 is the fully-reversed torsion fatigue limit. These formulations, though empirical in nature, 

correlate excellently data of combined in-phase bending-torsion and account for anisotropy effects (Lee, 

1985). Figure 2.42 compares the two previous equations with experimental data obtained for various  
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Figure 2.42. Fatigue limits of three different steels under combined bending-torsion loading (Socie, 

2000).   

materials. Ellipse arc and ellipse quadrant equations are represented by the full lines and dashed lines, 

respectively. The black circles refer to experimental results. As can be seen, the proposed equations fit 

well the experimental results.  

 

More recently, Lee (1985) proposed an alternative formulation of the ellipse quadrant of Gough in order 

to incorporate phase difference between loadings which assumes the form 
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where ξ and K are defined, respectively, by 

 

( )ϕβξ sin 12 +=    (2.103) 
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being ∆σeq the equivalent stress range, ∆σ the normal stress range, ∆τ the shear stress range, ϕ the phase 

difference between the applied bending and torsion loading and β a material constant. Lee (1989) 

modified Equation 2.102 to include the bending mean stress. The expression proposed was successfully 

applied to SM45C structural steel subjected to multiaxial bending-torsion loading and is given by  
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where σm is the bending mean stress, σUTS is the ultimate tensile strength and n is an empirical constant 

within the range of 1-2. Lee’s equations (Equations 2.102 and 2.105) have a material constant and 

therefore require extra experimental work which limits the application of the method. 

 

ii) Stress invariant methods 

The basic idea of the stress invariant approaches is to directly relate the fatigue strength to the invariants 

of the stress tensor and or the deviator tensor. The formulation proposed by Sines (1959) relates the 

fatigue strength to the second invariant of the stress deviator and the first invariant of the stress tensor. It 

can be written as follows 

 

βυσ ≤+ mHaJ ,,2
   (2.106) 

 

where J2,a is the amplitude of the second invariant of the stress deviator, σH,m is the mean value of the 

hydrostatic stress, and υ and β are two material constants. The second invariant of the stress deviator (J2) 

and the hydrostatic stress (σH) are defined by  
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being σ1, σ2 and σ3 the principal stresses and J1 the first invariant of the stress deviator. The α and β 

constants can be obtained from torsion and repeated bending tests using the following relationships   
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where f0 is the pulse bending fatigue limit and t-1 is the fully-reversed torsion fatigue limit. This criterion 

is suitable for high-cycle fatigue under multiaxial proportional loading. Furthermore, it reproduces the 

uniqueness of the torsion fatigue limit. In addition, it establishes a linear relationship between the bending 

limit and a superimposed static normal stress (Papadopoulos, 1997). In fully-reversed bending problems, 

the ratio of the fully-reversed torsion fatigue limit to the fully-reversed bending fatigue limit (t-1/f-1) is 
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equal to 3/1 . However, this value is not in agreement with the experimental results which indicate that 

this ratio varies from 0.5 for mild metals to 1.0 for brittle metals. When the pulse bending fatigue limit is 

not available, the Goodman line (see Figure 2.11) can be applied to obtain f0 which is given by 
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being f-1 the fully-reversed bending fatigue limit and σUTS the ultimate tensile strength. Based on this 

assumption, this criterion is given by Equation 2.112 (Papadopoulos, 1997). 
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The formulation proposed by Crossland (1956) assumes that the fatigue criterion should consider the 

maximum value of the hydrostatic stress, i.e. 

 

βασ ≤+ max,,2 HaJ    (2.113) 

 

where σH,max is the maximum value of the hydrostatic stress and α and β are two material constants given 

by Equation 2.114 and Equation 2.110, respectively. As can be seen, the material constants depend on 

both the bending and torsion fatigue limits.  
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The formulation proposed by Kakuno and Kawada (1979) states that the contribution of the amplitude 

and mean value of the hydrostatic stress must be separated, i.e. 

 

βλσασ ≤++ mHaHaJ ,,,2
   (2.115) 

 

where σH,a is the amplitude of the hydrostatic stress, σH,m is the mean value of the hydrostatic stress, α 

and β are, respectively, given by Equations 2.114 and 2.110, and λ is defined by (Papadopoulos, 1997) 
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being t-1 the fully-reversed torsion fatigue limit and f0 the pulse bending fatigue limit. 

 

The criterion proposed by Deperrois (1991) is defined by the following expression  
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where D1 to D5 are values computed in a five-dimensional Euclidean space (E5). Firstly, the longest chord 

D5 between the two distinct points of the stress path in a deviatoric space is obtained. Then, it is 

considered a sub-space orthogonal to the direction of D5 and the loading path is projected onto this       

sub-space named E4. After that, a new longest chord D4 is computed. The process is repeated successively 

for the other sub-spaces. In some circumstances, there is a lack of uniqueness of the longest chord which 

makes difficult the definition of the orthogonal sub-space (Papadopoulos, 1997). Nevertheless, when the 

maximum chord of the loading path in E5 is unique, this criterion provides satisfactory results (Ballard, 

1995).  

 

The stress invariant methods based on the shear stress amplitude require complex mathematical 

calculations when the applied cyclic loading is out-of-phase. As referred to above, different methods to 

calculate the shear stress amplitude have been proposed. Papadopoulos and Dang Van (1988) proposed 

that the shear stress amplitude is the radius of the minimum circle circumscribing the loading path. In 

order to simplify the calculations, the stress deviator tensor is mapped onto a vector of a five-dimensional 

Euclidean space (Papadopoulos, 1997). The mean value of the shear stress (J2,m)1/2 is defined by the 

vector pointing from the origin to the centre of the minimum circumscribed circle whilst the alternating 

value of the shear stress amplitude (J2,a)
1/2 is equal to the radius R of the circle (see Figure 2.40). The 

centre w* can be found by solving the min-max problem (Equation 2.118) and the radius can be 

determined from Equation 2.119. This method can lead to inconsistent results. Take for example the two 

loading paths depicted in Figure 2.40 (the first is a non-proportional loading and the second is a 

proportional loading). Although they produce the same equivalent shear stress amplitude, the fatigue 

damage is certainly different.  
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Freitas et al. (2000) proposed a different approach to calculate the shear stress amplitude. The main 

difference relatively to the previous approach is that the loading path is circumscribed by an ellipse (see 

Figure 2.40). The equivalent shear stress amplitude, as already mentioned, is obtained by  

   

22
.2 baa RRJ +=    (2.120) 

 

where Ra and Rb are the semi-axes of an ellipse circumscribing the whole loading path. The computational 

algorithm proposed comprises two main steps (Li, 2000). Firstly, the minimum circumscribed circle of 
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radius Ra which is equal to the major semi-axis of the ellipse is computed. This step is performed 

according to the minimum circumscribed circle method, i.e. by solving the min-max problem. Then, the 

minor semi-axis of the ellipse Rb is determined from the minimum ellipse contained both in the circle and 

in the loading path. This approach accounts for the effect of non-proportional loading on fatigue life and 

has presented good results of multiaxial fatigue strength when assessed in confrontation with 

experimental results reported in the literature (Li, 2000).  

 

The approach proposed by Mamiya and Araújo (2002) suggests, as schematised in Figure 2.43, the 

construction of a prismatic envelope containing the loading path projected onto the deviatoric plane to 

calculate the equivalent shear stress amplitude. Based on this assumption, the equivalent shear stress 

amplitude can be written in the form  
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where ai are the amplitudes of the components xi(t) of the microscopic deviatoric stresses defined by 

Equation 2.122.    
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The experimental validation revealed better results than the Crossland (1956) criterion and results as good 

as the ones provided by Papadopoulos (1997) and Li et al. (2000) criteria. On the other hand, the 

computational algorithm required to compute the equivalent shear stress amplitude is simpler. However, 

 

 

Figure 2.43. Ellipsoid in Rm space and circumscribed rectangular prism arbitrarily oriented (Mamiya, 

2002). 
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this criterion is limited to cases in which the shape of the convex hull circumscribing the microscopic 

loading path is close to an ellipsoid (Mamiya, 2002). 

 

iii) Average stress methods 

Average stress methods attempt to predict the fatigue damage from average normal and shear stresses 

acting on a generic material plane within an elementary volume (Papadopoulos, 1997). The model 

proposed by Grubisic and Simbürger (1976) divides the materials into three categories, depending on the 

ratio of the fully-reversed torsion fatigue limit to the fully-reversed bending fatigue limit (t-1/f-1). For the 

range 0.577 ≤  t-1/f-1 ≤ 0.8, its formulation can be expressed by the following formula 
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where An is the effective straining of a material plane ∆, and θ and ϕ are, as depicted in Figure 2.44, the 

spherical coordinates of the unit vector n normal to the plane ∆. The application of this criterion in cyclic 

torsion with a mean shear stress is given by 
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being τa the shear stress amplitude, f-1 the fully-reversed bending fatigue limit and f0 the pulse bending 

fatigue limit.  

 

 

Figure 2.44. Definition of the spherical coordinates of the unit vector n normal to the                            

plane ∆ (Bernasconi, 2008). 
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The model formulated by Liu (1993) can be condensed in the following formula  
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where a, m, b and n are material parameters defined, respectively, by (Zenner, 2000) 
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being f-1 the fully-reversed bending fatigue limit, t-1 the fully-reversed torsion fatigue limit, f0 the pulse 

bending fatigue limit and t0 the pulse torsion fatigue limit. In order to reduce the number of constants, the 

value of t0 can be obtained using Equation 2.130 (Zenner, 2000). This criterion can be only applied to 

ductile materials in the range 0.577 ≤  t-1/f-1 ≤ 0.866, otherwise a and b are negative. On the other hand, it 

suggests that the torsion fatigue limit is a function of a superimposed static shear stress, which does not 

corroborate the experimental results available in the literature (Papadopoulos, 1997).  
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The approach proposed by Papadopoulos (1987; 1995) is based on a mesoscopic scale introduced by 

Dang Van (1973). The mesoscopic scale is an intermediate scale between a macro-level and a micro-level 

and corresponds to the scale of the metal grains of a metallic aggregate. The fatigue criterion is defined 

from an average measure of the shear stress amplitude within the elementary volume, i.e. 
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where χ varies between 0 to 2π to cover all the gliding directions on a plane ∆. The normal stresses acting 

normal to the eventually existing embryo cracks are taken into account by the average measure 
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being N the normal stresses acting in the planes with orientations ϕ and θ. The above volumetric quantity, 

as demonstrated by Sines et al. (1981), is equal to the hydrostatic stress (σH). Based on these two average 

quantities defined in Equations 2.131 and 2.132, the fatigue criterion can be written as follows 

 

βασ ≤+ max,
2

HaT    (2.133) 

 

where σH,max is the maximum value of the hydrostatic stress. This expression is similar to the one obtained 

by Crossland (1956), except the second invariant of the stress deviator, which is replaced by the average 

stress quantity. According to the author, this criterion is confined to hard metals for which is valid the 

inequality 0.577 ≤  t-1/f-1 ≤  0.8. Although this model seems to be complicated, when applied to out-of-phase 

loading, it results in a very simple form, i.e. 
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being σa the normal stress amplitude, τa the shear stress amplitude, σm the mean normal stress, and α and 

β two material constants defined, respectively, by Equation 2.114 and Equation 2.110.  

 

2.5.2 Strain-based models 

After the studies of Coffin (1954) and Manson (1954), several attempts were made to correlate low-cycle 

multiaxial fatigue results from strain-based versions of the static yield criteria. The strain-based equations 

are replicas of the stress-based expressions presented in the previous subsection. The most usual strain 

criteria are the maximum normal strain, the maximum shear strain and the von Mises theories, which can 

be written, respectively, as follows (Karolczuk, 2005) 
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where ∆εeq is the equivalent strain range, ∆ε1, ∆ε2 and ∆ε3 are the principal strain ranges. The equivalent  

strain approach is not able to explain the nucleation and propagation of cracks on specific planes. Besides, 

it cannot account for the differences in the ratio of the tension fatigue limit to the torsion fatigue limit for 

a wide range of materials and it is not suitable for non-proportional loading. The inadequacy to correlate 

data from tension and torsion tests was first reported by Yokobori et al. (1965).      

 

The model proposed by Mowbray (1980) is based on a Coffin-Manson type equation (You, 1996) 
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where  
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being A an empirical constant, ν the Poisson’s ratio, λσ the hydrostatic stress ratio. Both f (λσ, ν) and     

g(λσ, A) functions were developed to evaluate the variation of σf’ and εf’ fatigue properties, which depend 

on the type of multiaxial loading and on the value of the hydrostatic stress. However, ∆ε1/2 is not a proper 

parameter in multiaxial fatigue due to its non-conservativeness (You, 1996).  

 

Andrews and Ellison (1973) and later Sines and Ohgi (1981) modified the Coffin-Manson equation using 

the maximum shear strain as the damage parameter. This model is expressed mathematically by      

 

( ) ( ) ( ) ( ) c
ffp

b
f

f
e NN

E
 ' 

'
max 2 121
2

εν
σ

νγ +++=∆    (2.141) 

 

where ∆γmax is the maximum shear strain range, and νe and νp are the Poisson’s ratios in the elastic and 

plastic regions, respectively. Under proportional loading, the fatigue behaviour is well modelled. On the 

contrary, under non-proportional loading, the predictions are non-conservative. Therefore, without further 

modifications, it is not suitable for multiaxial fatigue under non-proportional loading (Ding, 2007). 

 

2.5.3 Energy-based models 

Energy-based models assume that the accumulation of plastic work is the main cause for irreversible 

damage and eventual fatigue failure. The model proposed by Morrow (1965) relates the hysteresis energy 

per cycle (∆Wp) to the fatigue life by the following relationship  
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where σf’ is the fatigue strength coefficient, b is the fatigue strength exponent, εf’ is the fatigue ductility 

coefficient and c is the fatigue ductility exponent. Thus, it is possible to conclude that the total work to 

failure is not constant since b+c is not equal to unity. For long life tests, it is not reliable because the 

hysteresis energy per cycle is difficult to measure due to the small values of plastic strain (Socie, 2000).  

 

Garud (1981b) extended the uniaxial hysteresis loop energy concept proposed by Morrow to multiaxial 

fatigue. For multiaxial loading conditions, the plastic work for a cycle (∆WC) is defined by  
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where σij and εij
p are the stress and plastic strain tensors. For proportional tension-torsion loading, it can 

be written in the form 
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being n’ the cyclic hardening exponent, ∆σ the stress range, ∆εp the plastic strain range, ∆τ the shear 

stress range and ∆γ the shear strain range. Based on experimental results conducted under in-phase and 

out-of-phase conditions, the author suggested the following formula  
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where ξ is a weighting factor applied to the shear work term. Garud (1981b) proposed a constant value for 

the weighting factor (ξ = 0.5). Thus, no additional tests are required and the model can be applied using 

uniaxial material tests. However, other studies have demonstrated that ξ depends on the material and 

loading conditions (Socie, 2000). Besides, it is difficult to apply in high-cycle fatigue due to the 

impossibility to accurately measure the plastic work per cycle. 

 

The model proposed by Ellyin and Golos (1988) is based on the total strain energy per cycle (∆Wt). This 

quantity, as defined in Equation 2.32, is given by the sum of both the plastic strain energy (∆Wp) and 

elastic strain energy associated with the tensile stress (∆We+). These two variables are depicted in Figure 

2.23 for uniaxial loading. For proportional or biaxial non-proportional loading, the total strain energy per 

cycle can be expressed as follows  
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where σij and εij are the stress and plastic strain tensors, σi are the principal stresses, εi are the elastic part 

of the principal strains, T is the period of one cycle, and H(x) is the Heavised function defined as H(x) = 1 

for x ≥ 0 and H(x) = 1 for x < 0. The fatigue failure criterion is defined by  
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being Cu, κu and αu material constants determined by fitting from uniaxial test data. This formulation 

provides good correlation between in-phase multiaxial and uniaxial tests (Ellyin, 1991). The Cu constant 

is associated with the positive elastic energy. The ρ  constant is a multiaxial constraint factor which 

depends on the magnitude of the principal stresses and the effective Poisson’s ratio. In practice, it 

accounts for the severity of the loading type. The multiaxial constraint factor is given by (Ellyin, 1997) 
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and ε1 is the principal strain, γmax is the maximum shear strain, εa is the applied axial strain, and εt is the 

applied shear strain, νe is the Poisson’s ratio in the elastic region and νp is the Poisson’s ratio in the plastic 

region. Equation 2.148 demonstrates the importance of the orientation of the free surface with respect to 

the imposed principal strains. Besides, it is able to distinguish between states where the crack grows along 

the surface (Case A of Figure 2.4) and those where the crack grows into the material (Case B of Figure 

2.4). Under out-of-phase conditions, the multiaxial constraint factor is calculated when the shear strain in 

the direction 45º to the surface reaches its maximum value (γ = γmax), i.e. 

 

( )
max

)(

)(
 1 1

γγγ
ενρ

=








+=

t

t    (2.150) 

 

where ε1(t) and γ(t) are, respectively, the principal strain and shear strain at time t (Ellyin, 1993).  

 

2.5.4 Critical plane methods  

Critical plane models are based on the maximum principal plane failure mode or maximum shear plane 

failure mode and can be divided into three main groups, namely stress-based models, strain-based models 

and energy-based models (Karolczuk, 2005). The first group may be appropriate in high-cycle fatigue, 



72 

 

where plastic deformation is negligible. Several examples are the models proposed by Findley (1958), 

Matake (1977), McDiarmid (1991; 1994), Dang Van (1989; 1989a) and Papadopoulos (2001). The 

second group, such as Brown and Miller (1973; 1979), Fatemi and Socie (1988) and Macha (1988) 

models, may be suitable in the presence of plastic deformation but do not reflect the constitutive 

behaviour of material. The third group reflects the constitutive behaviour of material including mean 

stress effects and non-proportional loading. Representative examples are the models formulated by Smith, 

Watson and Topper (1970), Liu (1993), Chu et al. (1993) and Glinka et al. (1995). A comprehensive 

review on critical plane models in multiaxial fatigue failure can be found elsewhere (Karolczuk, 2005).  

 

i) Stress-based models 

The model proposed by Findley (1959) is based on a linear combination of the shear stress amplitude and 

maximum normal stress acting on the critical plane. The failure criterion is defined by    

   

fk n =+∆
max,2

στ    (2.151) 

 

where ∆τ is the shear stress range, σn,max is the maximum normal stress and k and f are two material 

constants. The critical plane is defined as the plane experiencing the maximum value of f. In the case of 

zero mean stress, the orientation of the critical plane depends on both the maximum principal stress 

direction and the material constant k. In the case of non-zero mean stress, the orientation of the critical 

plane is affected by the two previous quantities (σ1 and k) and variable and static stresses. For long-life 

fatigue, Equation 2.151 is often written in the form (Park, 2000; Backstrom, 2001)   
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being τf
* computed from the following formula   
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where τf’ is the shear fatigue strength coefficient, bγ is the shear fatigue strength exponent and 21 k+  is 

a correction factor (≈1.04). 

 

Matake (1977) also proposed a model based on a linear combination of the shear stress amplitude and 

maximum normal stress acting on the critical plane. However, in this case, the critical plane is the plane 

on which the shear stress amplitude reaches its maximum value. The failure criterion is defined by  
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being β and ξ two material constants. Indeed, the two previous criteria are similar. The main differences 



 

73 

 

 are the material constants. In the present formulation, β is given by Equation 2.110 and ξ is equal to  
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where t-1 is the fully-reversed torsion fatigue limit and f-1 is the fully-reversed bending fatigue limit. This 

criterion was formulated to analyse cyclic torsion, cyclic bending and proportional torsion with bending. 

For these cases, constant directions of the principal stresses can be assumed. Thus, Equation 2.154 can be 

written in the form    

 

βσξσσ =+−
max,

31  
2 n

   (2.156) 

 

where σ1 and σ3 are the principal stresses. 

 

McDiarmid (1991; 1994) proposed a model based on the maximum shear stress amplitude and the normal 

stress acting on the critical plane. The critical plane is assumed to be the plane of maximum shear stress 

range. The failure criterion is given by 
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where τa and σn,max are the shear stress and the maximum normal stress acting on the critical plane, tA,B is  

the shear fatigue strength for case A or case B of Figure 2.4, and σUTS is the ultimate tensile strength. For 

long-life fatigue, the previous equation leads to   
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being τf’ the shear fatigue strength coefficient and bγ the shear fatigue strength exponent. 

 

The failure criterion formulated by Dang Van (1989; 1989a; 1993; 1999) arose from the observation that 

fatigue crack nucleation is a local process that begins in grains. As a result of plastic deformation, 

characteristic slip bands are formed in grains leading to the crack process. This model states that the 

microscopic shear stress in the grain area (τµ) affects crack nucleation along slipping bands and that the 

microscopic hydrostatic stress (σµ,h) influences crack opening process. The failure criterion assumes a 

linear combination of these two fatigue quantities, i.e. 
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where a1 and a2 are constants determined from cyclic uniaxial fatigue tests. The shear stress is computed 
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from the microscopic principal stresses applying the Tresca maximum shear stress theory  
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being σµ,1(t) and σ µ,3(t) the microscopic principal stresses calculated from the microscopic stress tensor 

σµ,ij(t). The microscopic stress tensor is defined as follows 
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where σij(t) is the macroscopic stress tensor and dev ρ* is the deviatoric part of the stabilised residual 

stress tensor. The critical plane position corresponds to the plane where the shear stress achieves the 

maximum value.  

 

The model proposed by Papadopoulos (2001) is based on a linear combination of generalised shear stress 

amplitude (Ta) acting on the critical plane and the maximum value of hydrostatic stress (σH,max). The 

failure criterion can be expressed as 

 

∞∞ ≤+ γσα max,max HaT    (2.162) 

 

where α∞ and γ∞ are material constants and Ta is an average stress quantity which corresponds to a mean 

square value of the shear stress amplitude in the critical plane. The critical plane is defined as the plane 

where Ta achieves its maximum value.  

 

ii) Strain-based models 

Brown and Miller (1973) proposed a theory based on a physical interpretation of the mechanisms of 

plastic deformation and fatigue crack growth in which is suggested that fatigue life is controlled by the 

maximum shear strain (γmax)  
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or the strain normal to the plane of maximum shear (εn) 
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where ε1 and ε3 are the principal strains. This theory can be represented mathematically by contours of 

constant fatigue life, called Γ plots, which can be expressed by Equation 2.165 or Equation 2.166. The 

critical plane is assumed to be the plane with maximum shear stress.  
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The Γ plots consist of two separate curves for any given fatigue life depending on whether the crack 

system is case A or case B (see Figure 2.4). For each type of crack, specific equations were subsequently 

developed. Case A and case B are, respectively, described by (Brown, 1979) 
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where g, h and j are life dependent constants and ∆γmax is the maximum shear strain range. The value of j 

varies from 2 for ductile materials to 1 for brittle materials. Later, this criterion (Equations 2.167 and 

2.168) was reduced to a linear form (Kandil, 1982)  
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being γ̂∆  the equivalent shear strain range, ∆εn the normal strain range acting on the plane of maximum 

shear strain range and S a material constant (Socie, 2000). The application of strain ranges, as in the 

previous equation, is justified in proportional loading when shear and normal strains are in-phase and 

their extremes occur at the same instant. For variable amplitude loading, Wang and Brown (1993) 

proposed the following formula 
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where εn
* is the normal strain excursion, σn is the mean normal stress, νe is the Poisson’s ratio in the 

elastic region and νp is the Poisson’s ratio in the plastic region. The normal strain excursion (εn
*) is 

calculated in the plane of maximum shear strain range (∆γns) for the cycle with maximum value of ∆γns. 

 

Fatemi and Socie (1988) replaced the normal strain term of Equation 2.169 by the normal stress. The 

failure criterion is expressed mathematically as 

 

( ) ( ) γγ γ
τ

σ
σγ c ' 

'
max,nmax 2  21

2 ff
b

f
f

YS

NN
G

n +=







+∆    (2.171) 

 



76 

 

where ∆γmax is the maximum shear strain range, σn,max is maximum normal stress on the plane of 

maximum shear strain range, σYS is the yield strength, bγ the shear fatigue strength exponent, cγ the shear 

fatigue ductility exponent and n is a constant determined experimentally from axial and torsion data. The 

n/σYS ratio evaluates the sensitivity of the material to the normal stress. This criterion explains the 

difference between tension and torsion loading as well as mean stress and non-proportional hardening 

effects. It is important to note that critical plane models based only on strain terms are not able to reflect 

the mean stress effect or strain path dependent hardening (Socie, 2000). In this case, the mean stress can 

be incorporated into the criterion through the maximum value of normal stress acting on the critical plane 
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being σn,a and σn,m the alternating and mean normal stresses. For low-cycle fatigue regime, this approach 

leads to Equation 2.173. 
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Macha (1988) formulated a generalised multiaxial random fatigue criterion based on the maximum shear 

strain εns(t) and the normal strain εn(t) acting on the critical plane. For a given fatigue life, the failure 

criterion, defined by a linear combination of strains, can be written as 

 

[ ] qtctb nns
t

=+ )()(max εε    (2.174) 

 

where b, c and q are constants. The fatigue failure occurs under influence of both normal and shear strains 

in the direction s on the fracture plane with normal n, as schematised in Figure 2.45. The direction s in  

 

   

Figure 2.45. Normal strain and shear strain histories in the critical plane (Karolczuk, 2005).  
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the fracture plane coincides with the mean direction of the maximum shear strain. In a general case, the 

maximum shear strain direction rotates on the fixed plane with normal n at time t. Thus, the direction s is 

assumed to be a mean direction from all directions of maximum shear strain occurring in the analysed 

time (Karolczuk, 2005).  

 

iii) Energy-based models 

The model proposed by Smith, Watson and Topper (1970) assumes that fatigue failure is due to the 

normal strain energy density (Wn) acting on the critical plane. The damage parameter, often referred to as 

SWT parameter, was originally developed to incorporate the mean stress effect in uniaxial loading 

situations (Equation 2.27). Nevertheless, it can be used in multiaxial proportional and non-proportional 

loading for materials that fail primarily as a result of mode I tensile cracking. The formulation of the SWT 

parameter for multiaxial loading is based only on stresses and strains occurring in the critical plane and is 

given by (Socie, 1987)   
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being σn,max and ∆ε1 the maximum normal stress and the normal strain range acting on the critical plane 

which is defined as the plane where the normal strain range reaches its maximum value (∆ε1). Due to the 

stress term, this model can be used to describe mean stress and non-proportional hardening effects. 

 

Liu (1993) developed an energy-based method for estimating the fatigue life from the concept of virtual 

strain energy. In this approach, the virtual strain energy on a plane (∆W) includes both the elastic work 

and the plastic work, i.e. 

 

pe WWW ∆+∆=∆    (2.176) 

 

where ∆We is the elastic work component and ∆Wp is the plastic work component. The former is 

represented by the two grey areas schematised in Figure 2.46 and the latter is approximately equal to the 

product ∆σ∆εp. Assuming that 
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and applying the total strain-life relationship (Equation 2.24), the virtual strain energy can be expressed as 
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being E the Young’s modulus and σf’, b, εf’ and c the fatigue strength and fatigue ductility properties. The 
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Figure 2.46. Elastic and plastic strain energies (Socie, 2000).  

critical plane is the plane on which the product ∆σ∆ε reaches the maximum value. In the case of shear 

work, it is defined as  

 

γτ ∆∆≅∆  W    (2.179) 

 

and Equation 2.178 is written as follows 
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where G is the shear modulus and τf’, bγ, γf’ and cγ are the shear fatigue strength and shear fatigue 

ductility properties. The critical plane is the plane on which the product ∆τ∆γ reaches the maximum 

value. 

 

The virtual strain energy for multiaxial loading is associated with two possible tensile modes, i.e. a tensile 

failure mode, termed ∆WI and defined by Equation 2.178, and a shear failure mode, termed ∆WII and 

given by Equation 2.180. In the latter case, the formulation distinguishes two crack types, namely the case 

A (∆WII,A) and case B (∆WII,B) represented in Figure 2.4. For case A, the stress and strain ranges are 

calculated using the Morh’s circle from the first and third principal stresses (σ1, σ3) and the first and third 

principal strains (ε1, ε3). For case B, the procedure is similar but the calculations are performed using the 

first and second principal stresses (σ1, σ2) and the first and second principal strains (ε1, ε2). 

 

The model formulated by Chu et al. (1993; 1995) is also based on the shear work and normal work. In 

order to include the mean stress effect, the stress ranges are replaced by the maximum stresses. The 

damage parameter (∆W*) is defined by 
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where ∆ε is the normal strain range, ∆γ is the shear strain range, σn,max is the maximum normal stress and 

τn,max is the maximum shear stress. Rather than being defined on the plane of maximum normal strain or 

maximum shear strain, the damage parameter corresponds to the maximum value of ∆W*. The maximum 

value of ∆W* for an uniaxial test with strain amplitude εa and stress amplitude σa can be obtained by 

maximising the following function 
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which occurs for a plane at θ = 20.7º. The fatigue life expression, defined in terms of standard material 

constants, can be expressed as 
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where A and B are, respectively, defined by 
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being νe and νp the Poisson’s ratio in the elastic and plastic regions. Thus, for typical values of νe and νp, 

i.e. 0.3 and 0.5, A and B are approximately equal to 1.02 and 1.04, respectively.  

 

Glinka et al. (1995) proposed another energy-based parameter that considers only the shear work and a 

mean stress correction, which can be written mathematically as 
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where σn,max and τn,max are the maximum absolute values of normal and shear stresses in the critical plane 

defined as the plane of maximum shear strain range (∆γ). The mean stress correction aims at evaluating 

crack surface sliding and crack opening. The normal mean stress is associated with crack opening and the 

shear mean stress is associated with crack surface sliding. The fatigue life expression, defined in terms of 

shear strain-life properties, is given by  
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where G is the shear modulus, τf’ is the shear fatigue strength coefficient, bγ is the shear fatigue strength 

exponent, γf’ is the shear fatigue ductility coefficient and cγ is the shear fatigue ductility exponent. 
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CHAPTER 2 - LITERATURE REVIEW 

PART B - CRACK GROWTH MODELLING 
 

 

 
This chapter is devoted to the literature review and contains 

two main parts (Part A and Part B). Part B is focused on the 

crack growth modelling using the finite element method and is 

organised into three sections. The first section presents the 

state-of-the-art. The second section describes in detail the 

main steps of the technique, namely the tasks associated with 

the finite element method, the tasks associated with the 

calculation of the stress intensity factor along the crack front, 

and the tasks associated with the crack growth model. The last 

section identifies the effects of the main physical variables on 

crack shape and fatigue life. 
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NOMENCLATURE 

3D three-dimensional 
A area 
a crack length 
a/b crack aspect ratio 
a/D, a/t, a/W dimensionless crack length 
BEM boundary element method  
C Paris law constant 
C(T) compact tension specimen 
CC corner crack specimen 
dA virtual crack area extension 
da/dN fatigue crack growth rate 
dK/da stress intensity factor gradient 
D diameter 
DBEM dual boundary element method 
ESIS European Structural Integrity Society 
dT transition depth 
E Young’s modulus 
FCG  fatigue crack growth 
FE finite element 
FEM finite element method 
G energy release rate 
K, K i stress intensity factor, stress intensity factor of the ith node 
K IC fracture toughness  
Kmax, Kmin maximum stress intensity factor, minimum stress intensity factor 
LEFM linear elastic fracture mechanics  
L1  radial size of crack front elements 
M(T) middle-crack tension specimen 
m Paris law exponent 
Nf fatigue life 
OICC oxide induced crack closure 
PICC plasticity induced crack closure 
PPP  preferred propagation path 
RICC roughness induced crack closure 
SIF  stress intensity factor 
Sr dependent parameter 
t thickness  
W width 
WE work of external forces 
Y geometric factor 
XFEM extended finite element method 
δi displacement of the ith crack front node 
∆a, ∆amax crack growth increment, maximum crack advance 
∆K, ∆Kmax stress intensity factor range, maximum range of stress intensity factor 
∆K th threshold value of the stress intensity factor range 
ν  Poisson’s ratio 
φ stress function 
Π potential energy of a loaded body 
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2.6. State-of-the-art 

In the last decades, the study of fatigue crack growth has received a great deal of attention. This is due to 

the fact that modern defect-tolerant design approaches to fatigue are based on the premise that 

engineering components are inherently flawed, i.e. defects are potentially present. Therefore, accurate 

tools to predict the crack shape and fatigue life are fundamental to increase the reliability. 

 

Different numerical crack growth techniques have been successfully developed. One of the most efficient 

approaches consists of an automatic iterative procedure based on the finite element method (FEM). It 

comprises five mains steps repeated cyclically. Firstly, an adequate three-dimensional (3D) finite element 

model representative of the problem is created. Secondly, the displacement field of the cracked body is 

obtained. Thirdly, the stress intensity factors (SIF) at the crack front are calculated. Fourthly, the crack 

front advances as well as the number of cycles are calculated by applying an adequate Paris law. Fifthly, 

the provisional crack front nodes are used to define a new crack front. The repetition of the previous steps 

up to the final fracture allows studying both the crack shape evolution and fatigue life.    

 

Regarding the definition of the new crack front, two main methodologies can be distinguished. The     

two-degree-freedom model (Newman et al., 1981) considers only few crack front key points (usually the 

surface and deepest nodes) and assumes a particular crack shape (semi-circular, part-circular,              

semi-elliptical, part-elliptical, etc.) throughout the propagation whose aspect ratio is allowed to change 

gradually as the crack grows. In the literature, there are many examples of studies conducted using this 

strategy. For example, Hosseini et al. (1985) and Mahmoud et al. (1986) analysed the crack shape 

evolution and the stress intensity factors of semi-elliptical surface cracks in plates under tension and 

bending. Carpinteri (1992) used the same approach to study the propagation and dimensionless SIFs of 

elliptical-arc surface cracks in round bars subjected to tension and bending as well as to analyse the shape 

change of surface cracks in round bars under cyclic axial loading (1993). In another study, Carpinteri et 

al. (1996a) studied the evolution of part-through cracks in round bars under cyclic combined axial and 

bending loadings. A two-parameter theoretical model that adjusts two points (the deepest point of the 

crack front and the point near the flaw border) to an elliptical-arc was employed. This model has been 

exhaustively used by the authors. They studied the fatigue growth of external surface cracks in notched 

and unnotched pressurised pipes (1998; 1998a; 2000; 2003; 2006) as well as in welded T-joints (2005). 

The crack propagation and stress intensity factors of surface cracks in semi-circular circumferential 

notched round bars subjected to cyclic tension and bending (2006a) were also studied. The same authors 

suggested an improved analysis based on a three-parameter theoretical model to predict the fatigue crack 

propagation of elliptical-arc surface cracks in round bars subjected to cyclic tension and  bending (1996b) 

as well as to analyse circumferential surface flaws in pipes (2000a). In this case, the coordinates of the 

points along the crack front were adjusted to an ellipse by employing the least square method. The 

dimensionless stress intensity factors along the crack front for tension and bending were also evaluated. 

Shih et al. (1997) analysed the fatigue crack growth of round bars from two initial crack types (elliptical 

arc and straight-edge). A two-parameter SIF formulation which accounts for the crack aspect ratio and the 

crack depth ratio was developed. Burande et al. (1999) studied the fatigue crack growth of a thick plate 
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with semi-elliptical surface cracks subjected to tension and bending. Brighenti (2000) modelled      

axially-cracked pipes under pulsating internal pressure by applying the two-parameter theoretical model 

combined with a semi-elliptical crack shape. Antunes et al. (2002) performed an identical approach to 

study the crack shape evolution, final crack length and fatigue life in notched specimens with central hole 

made of polymer particle composites. In this research, the crack was assumed to be quarter-elliptical. 

Iranpour et al. (2006) investigated the crack shape evolution and the stress intensity factors of pipes under 

bending and plates under tension considering semi-elliptical crack shapes and the two-parameter 

theoretical model. More recently, Carpinteri et al. (2009) examined the fatigue propagation of initial    

part-elliptical surface cracks in round bars under eccentric axial loading acting perpendicular to the crack 

plane. This study demonstrated that the crack paths were not remarkably affected by the values of loading 

eccentricity. Finally, Carpinteri et al. (2010) studied the effect of residual stresses due to cold-drawing 

processes on fatigue crack propagation in metallic cracked round bars with V-shaped circumferential 

notches.  

 

The above-mentioned approach has provided acceptable results in terms of crack shape evolution and 

stress intensity factors. However, it is not suitable for situations containing irregular crack shapes, or for 

cases in which significant shape variations are expected, or even when improved predictions are required. 

In these cases, the multiple-degree-of-freedom model (Smith, 1989) is more suitable because each crack 

front node is analysed separately avoiding shape assumption. Therefore, the greater is the number of 

nodes along the crack front, the better are the results. A comprehensive identification and optimisation of 

the main parameters affecting the accuracy of the multiple-degree-of-freedom model was carried out by 

Lin et al. (1999; 1999a; 1999b). Due to its flexibility, it has been used in different contexts. Lin et al. 

(1997) studied the fatigue crack shape development of several initial surface cracks in round bars 

subjected to constant amplitude axial loading using nine corner nodes. Regardless of the initial crack 

shape, the results demonstrated that the crack always tends to preferred propagation paths. Besides, it was 

observed that larger values of the Paris law exponent always make the aspect ratio change more rapidly. 

Couroneau et al. (1998) proposed a simplified model to address the fatigue crack growth of surface cracks 

in round bars under tension and bending. It was demonstrated that once a crack has propagated up to a 

certain relative depth, the subsequent propagation stage is independent of its initial crack aspect ratio. In 

this sense, the propagation was divided into two stages. The former was influenced by the initial crack 

shape, loading type and Paris law exponent. The latter was a function of the loading type and Paris law 

exponent. On the other hand, a transition criterion between these two stages was proposed, being the 

transition depth a decreasing function of the Paris law exponent. In another study, the same authors 

discussed the validity of different simplifying hypotheses to approach the crack shape evolution in round 

bars under tension and bending. It was concluded that the crack front must be described by, at least, two 

independent parameters. Carpinteri et al. (2007) developed a numerical procedure to compute an 

approximate SIF function for surface cracks in round bars subjected to complex mode I loading. Five 

elementary mode I stress distributions (constant, linear, quadratic, cubic and quartic) directly applied on 

the crack faces were considered and the results agreed satisfactory with those found in the literature. 

Toribio et al. studied the crack shape (2009) and the compliance evolution (2011) of surface cracks in 
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round bars under tensile loading using a closed-form stress intensity factor solution available in the 

literature. This closed-form stress intensity factor was developed by Shin et al. (2004) and accounts for 

the effect of crack shape, either under tension or bending. 

 

Particular attention has been also given to the study of fatigue crack growth in notched round bars. Lin et 

al. (1999c) tackled the shape evolution of surface cracks in fatigued round bars with semi-circular 

circumferential notches. The deviations of the crack profiles from the widely assumed elliptical-arc shape 

were examined and the results demonstrated that the shapes adopted by the crack are not always close to 

this crack configuration. The maximum deviations occur at the early stage of propagation. In another 

study, the authors (1998a) focused on surface cracks initiated from different semi-circular circumferential 

notches of round bars subjected to both tension and bending. Not surprisingly, the notch shape and the 

loading type had a significant effect on crack growth. Besides, the number of cycles required to propagate 

a given surface crack to a specific position was larger for bending than for tension. On the other hand,  the 

number of cycles increases with the increase of the notch radius. The crack shape predictions were 

compared with those obtained from a V-notched round bar with a surface crack. In the latter case, due to 

the larger stress concentration along the free boundary caused by the sharp notch, the crack shape 

changed more rapidly. Gardin et al. (2007) investigated the influence of residual compressive stresses 

induced by roller burnishing on fatigue crack propagation in notched round bars with semi-elliptical small 

edge cracks. Citarella et al. (2010) predicted the crack paths in lateral notched round bars with initially 

quarter-circular cracks subjected to torsion using the dual boundary element method and the finite 

element method. The computational results obtained from the two methods were found to be in good 

agreement.  

 

The simulation of surface and embedded cracks in plates has also been considerably studied. Gilchrist et 

al. (1991) analysed the profile adopted by semi-elliptical surface cracks under a remotely applied tension 

fatigue loading. The crack front was modelled assuming piecewise linear polygonal lines. It was observed 

that any irregular defect can attain a regular profile for which the stress intensity factor is nearly constant 

around the whole crack front. Besides, the ratio of the minimum SIF to the maximum SIF along the crack 

front was approximately unitary. This behaviour, i.e. Kmin/Kmax ≈ 1, was termed iso-K profile. Nykänen et 

al. (1996) simulated fatigue growth of surface cracks in plates under mode I loading. The crack fronts 

were also modelled using piecewise linear polygonal lines with eight degrees of freedom. The predictions 

were in good agreement with those obtained experimentally. The improved technique optimised by Lin et 

al. (1997a) was used to simulate the growth of semi-elliptical surface cracks in plates under tension and 

bending. A cubic spline curve was applied to improve the crack front definition. It was observed that 

under tension the crack developed in an almost semi-elliptical shape and its aspect ratio did not change 

significantly through the thickness. However, the shape changed significantly for bending. The crack 

propagated much more rapidly on the free surface than at the crack depth position. In the same study, the 

evolution of circular and elliptical embedded defects in an infinite body under remote uniform tension 

was also analysed. The initially circular crack maintained its shape whilst the elliptical crack evolved to a 

circle due to a more rapid growth along the minor axis than along the major axis. This behaviour reflects 
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the tendency to equalise the crack driving force around the crack front perimeter. The studies conducted 

by Lazarus (1999; 2003) on fatigue growth of planar cracks loaded by remote tensile uniform loading 

demonstrated the same conclusions. Regardless of the initial crack shape, after a certain propagation 

depth, the crack reaches a circular shape. Favier et al. (2006) achieved identical conclusions in the 

analysis of various initial embedded crack shapes (circular, elliptical, rectangular, heart-shaped) in infinite 

bodies under mixed-mode shear loading. Nevertheless, in these simulations, the cracks evolve to almost 

elliptical stable shapes. Wu (2006; 2006a) proposed a new method to predict the crack shape based on a 

given stress intensity factor distribution for surface cracks in plates subjected to mode I loading. In 

essence, it consists of an iterative procedure that adjusts the SIF distribution to a function that depends on 

the crack geometry. Le et al. (2011) predicted the shape of surface cracks in plates exposed to thermal 

cyclic loading. The cyclic temperature gradient induced a tensile state near the surface and a compression 

state at the centre of the plate. As a result, the crack slowed down at the deepest point and propagated 

more rapidly at the surface point. Under these circumstances, the well-known iso-K profile was not 

reached. The interaction of coalescing surface defects in plates subjected to different remote loadings was 

tackled by Lin et al. (1997c) and by Carpinteri et al. (2004).  

 

The multiple-degree-of-freedom model is a very versatile approach and has been used to address different 

engineering issues. Mi et al. (1994), using the dual boundary element method, analysed the mixed-mode 

crack growth of embedded elliptical cracks in cylindrical bars and quarter-elliptical corner cracks in 

square bars. Lin et al. (1997b) modelled the fatigue growth of external surface cracks in notched and 

unnotched pressurised pipes. The same authors (1998; 2001) simulated the fatigue crack shape for corner 

cracks emanating from fastener holes in plates under cyclic tension loading. Cao et al. (2002) developed a 

finite element model for studying subsurface median cracks in trilayer sandwiches due to contact loading. 

The crack front was constructed using a cubic spline approximation in order to represent complex crack 

shapes. Lee et al. (2004) studied fatigue crack growth in composite-repaired aluminium plates 

considering both linear and non-linear analyses. This study focused on several fatigue crack growth 

specificities, such as the crack shape evolution, the stress intensity factor variations through the thickness 

and the effect of the thickness on fatigue life. Sekine et al. (2005) investigated fatigue crack growth of 

cracked aluminium panels repaired with an adhesively bonded fiber-reinforced polymer composite by 

combining both the boundary element method and the finite element method. Spievak et al. (2001) 

focused on the analysis of the crack shape evolution and fatigue life for a spiral bevel pinion gear. The 

plasticity induced crack closure and moving loads were incorporated into this simulation. Branco et al. 

employed a numerical procedure to study the shape evolution of fatigue cracks in the middle-crack 

tension (2008) and compact tension (2008a) specimens. In both studies, the main variables affecting the 

crack shape were identified and the crack shape change was linked with the distribution of the stress 

intensity factor along the crack front. Indeed, the K distribution along the crack front was found to be the 

driving force for the shape variations. Branco et al. developed a reverse engineering technique able to 

determine the constants of Paris law from the analysis of fracture surfaces in double-U specimens (2009) 

and in small cross-section round bars (2010b; 2012d). The technique compares experimental crack shapes 

with numerical predictions obtained with a multiple-degree-of-freedom model. The two constants of the 
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Paris law are those that best fit the numerical predictions to the experimental data. Branco et al. (2010a) 

used the multiple-degree-of-freedom model to develop a grooved M(T) specimen able to obtain pure 

plane strain conditions. The same approach was used to study the crack shape evolution in double-U and 

central hole specimens with corner cracks representative of gas turbine discs with and without residual 

stress effects (Branco, 2011). In another study, the effect of the crack shape on plasticity induced crack 

closure in M(T) specimens was tackled (Branco, 2008b). The 3D fatigue crack growth technique was 

used to obtain stable crack shapes. Crack closure was found to produce a significant tunnelling effect, 

with maximum values of ∆K and Kmax at the surface. Hou et al. (2008; 2011) simulated the crack shape 

evolution in surface cracks considering crack closure effects. Yu et al. (2010; 2012) developed an 

equivalent thickness concept to predict the shape evolution and fatigue life in generic engineering 

structures from fatigue crack growth data obtained from standard specimens.  

 

Nowadays, fatigue crack growth can be addressed using different software solutions. However, not all are 

available commercially. For example, ADAPCRACK3D (Schöllmann, 2003) is software focused on the 

determination of crack paths as well as on the evaluation of fatigue lives in arbitrary 3D geometries under 

complex loading. Firstly, the crack is inserted into the 3D-FE mesh of the uncracked body. Secondly, the 

mesh is improved since the insertion of crack, in general, entails mesh impairments. Finally, among other 

variables, both the crack growth and the corresponding number of load cycles are evaluated. This tool 

was used to analyse several unexpected in-service failures, such as fatigue crack propagation in a wheel 

tyre of a high speed train (Richard, 2005; Richard, 2008), in a frame of a hydraulic press (Fulland, 2008) 

and in real structures (Richard, 2012). FRANC3D (1999; 1999b) is alternative software able to predict 

complex three-dimensional crack trajectories. It comprises three main tasks. Firstly, it is developed an 

uncracked model. Secondly, the crack is inserted into the mesh. The insertion a posteriori of the crack 

into the model can deteriorate the mesh. Thus, several remeshing techniques are employed to improve the 

results. Finally, the crack propagation is performed using the boundary element method. This computer 

application was used by Yngvesson et al. (1999) to examine the fatigue crack growth of surface cracks 

under non-symmetric loading. Spievak et al. (2001) and Ural et al. (2005) studied fatigue crack growth of 

spiral bevel gears. Poursaeidi et al. (2009) analysed fatigue crack growth simulation in generator fan 

blades. Rozumek et al. (2010) evaluated the stress intensity factor along crack paths in cruciform 

specimens under out-of-phase cyclic loading. FRANC/FAM (Schöllman, 1999) was developed to predict 

fatigue crack growth and to evaluate fatigue lives in geometries under complex arbitrary planar loading 

conditions. CRACKTRACER 3D (Bremberg, 2008) is a recent tool developed based on a different 

approach. The cracked structure boundary is modelled as a discretised skin. Then, a tube-like domain 

enclosing the crack front is traced and filled with hexahedral elements while the remaining cracked 

structure is meshed with tetrahedral elements. Finally, the two separate meshes are connected. A former 

version able to address mode I loading problems was used to investigate cyclic crack propagation in 

corners and holes (Dhondt, 2005). ZENCRACK (2007) is commercial FE software designed for linear 

elastic fracture mechanics problems but it is also able to study 3D fatigue crack propagation problems. 

The uncracked 3D-FE mesh is created using an external FE package and consists of a pure hexahedral 

mesh in the complete structure. Then, the crack front is modelled by refining the mesh. It is carried out 
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introducing a set of special elements, named crack-blocks, in the vicinity of the crack front. In fact, 

although there are several types of crack-blocks, the crack region is vulnerable and potentially affected by 

numerical errors (Hou, 2001; Maligno, 2010). Additionally, difficulties associated with the transition 

from surface cracks to through cracks were also reported (Roy, 2005). NASCRAC (1989, 1989b), 

NASGRO (2009), AFGROW (Harter, 2002) and ESACRACK (2000) are software based on a different 

philosophy. In all these computer applications, fatigue life is determined from libraries of geometries and 

crack configurations by applying appropriate stress intensity factor solutions. In the recent years, more 

sophisticated algorithms able to simulate fatigue crack growth in complex three-dimensional components 

using structured (Kolk, 2006; Weber, 2008; Shi, 2010) and unstructured meshes (Moslemi, 2009; Ayhan, 

2011) have been proposed. 

  

2.7. The automatic crack growth technique  

As referred to in the previous section, the fatigue crack growth technique can be divided into five main 

steps cyclically repeated. Firstly, a numerical model representative of the cracked body is created (Figure 

2.47a). It includes the definition of the geometry, boundary conditions, loading, crack shape, elastic 

constants and fatigue crack growth rate. Secondly, the displacement field of the crack front nodes is 

calculated (Figure 2.47b). In general, the methods used are the finite element method (FEM), the 

boundary element method (BEM), the dual boundary method (DBEM), the extended finite element 

method (XFEM) or the two first together (FEM/BEM). Thirdly, the stress intensity factors along the crack 

front are computed (Figure 2.47c) using displacement matching methods (extrapolation method, singular 

elements based method, quarter-point displacement method, etc.) or energy-based methods (external 

forces work method, stiffness derivative formulation, mapping technique, J-integral method, energy 

domain integral, crack closure integral method, etc.). Fourthly, an adequate crack growth model is applied 

to calculate the crack front advances, which are used to establish a provisional crack front (Figure 2.47d) 

 

 

Figure 2.47.  Schematic presentation of the 3D-FE automatic fatigue crack growth technique: a) definition 

of a crack front; b) calculation of the displacement field of crack front nodes; c) calculation of stress 

intensity factors along the crack front; d) calculation of nodal advances of crack front nodes; e) relocation 

of corner and intermediate nodes (Branco, 2013). 
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and to estimate the number of loading cycles. Finally, the corner nodes of the crack front are moved to 

their final positions (Figure 2.47e). In the models with multiple degrees of freedom, the crack front is 

defined using a cubic spline that passes through both the corner and intermediate nodes. In the models 

with two degrees of freedom, the key points (usually the surface and the deepest nodes) are used to define 

a theoretical crack shape, which is often assumed to be semi-circular, part-circular, semi-elliptical,       

part-elliptical, among others. 

 

The above-mentioned steps are repeated many times during a simulation. According to the main variables 

of the calculation procedure, this automatic technique can be organised into three main tasks. As 

schematised in Figure 2.48, the main tasks encompass the development of a representative finite element 

model, the calculation of the stress intensity factors at the crack front, and the application of an adequate 

crack growth model. Besides, it is also clear that the output data of a given task serves directly as input 

data of the next step. Therefore, each calculation must be careful studied and optimised to ensure reliable 

numerical results. Otherwise, errors propagate through the simulation which has a repercussion on the 

predicted crack fronts and fatigue lives.  

 

Figure 2.48 identifies the main independent parameters associated with each task. The effects of some 

parameters are known and the adequate values can be found in the literature, such as the mesh topology, 

type of finite elements, crack shape definition and orientation of layers. Others require specific parametric 

studies that must be performed case-by-case, since there are no universal optimum values, for example 

the radial size of crack front elements, refinement of the layers at the crack front, crack growth increment, 

among others.  

 

 

Figure 2.48. Main parameters of the calculation procedure developed to predict the fatigue crack shape 

using the FEM (Branco, 2008). 
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2.7.1 Finite element method 

In an elastic body statically loaded, the stress field is obtained considering equilibrium equations, strain 

compatibility equations and constitutive relations. The equilibrium equations express the equilibrium of 

each element of volume of the body, while the strain compatibility relations guarantee that neither empty 

spaces nor coincidences happen when the body deforms. Finally, the constitutive relations of the material 

relate the stresses to the elastic strains. To simplify the mathematical formulation of the problem, a stress 

function φ can be defined, such that for a bi-dimensional problem: 
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where σij are the stress components. The stress equilibrium equations, the strain compatibility equations 

and the constitutive relations produce the following bi-harmonic equation: 
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named Airy’s equation (Sokolnikoff, 1956). Thus, the study of the stress field of a body in equilibrium 

reduces to the calculation of φ that satisfies the Airy’s differential equation. The solution must satisfy the 

boundary conditions of the problem being studied. This last requirement limits the analytical solution to 

bodies with simple shapes.  

 

The FEM is a numerical procedure able to solve the Airy’s equation that replaces it by a system of linear 

algebraic equations. Its application encompasses the following steps: i) meshing of the body under study;                   

ii) interpolation; iii) calculation of elemental matrices; iv) assembling; v) resolution of the system of 

equations; and vi) calculation of displacements, stresses and strains fields from the nodal displacements. 

The nodal displacements are the primary variables, and the stresses and strains are calculated from them. 

 

As is well-known, the FEM is a versatile technique with which is possible to analyse bodies with different 

shapes, boundary conditions, material properties and subjected to different loads. However, the solution is 

affected by errors because the displacement field inside each element is defined only approximately using 

shape functions. The accuracy of the approximation depends on the type of elements, size of elements and 

real displacement field. Besides, there are round-off errors which are associated with the limitations of 

computers to represent real numbers. In this sense, these errors propagate within the FEM affecting the 

final solution. 

 

The application of the FEM to the analysis of linear elastic fracture mechanics (LEFM) problems is 

complicated by the stress singularity existing at the crack front. In fact, the shape functions are 

polynomials defined over elements of finite length, and so the strains (obtained from differentiation of 
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displacements), and the stresses (equal to strains multiplied by characteristic constants of the material) are 

also polynomials and therefore cannot reach infinite values in a finite length. Thus, the displacement field 

assumed by the FEM in the elements connected to the singular crack front never fits the real distribution 

of displacements. Accordingly, incorrect nodal displacements are obtained. Even in the elements adjacent 

to the crack front, the stress gradient can be too high to be simulated by them. This causes an additional 

difficulty when the crack front elements are small. Therefore, the order of convergence increases 

substantially from the crack front elements to the neighbouring ones.  

 

In order to improve the global accuracy of the FEM analysis of cracked bodies, different solutions can be 

considered: 

 

• the mesh should be refined around the crack front to capture the r0.5 variation of the displacement 

field, i.e. the r-0.5 stress variation. However, this refinement increases the computational effort. Thus, 

an important objective is to find an optimum mesh with which the crack tip singularity is efficiently 

modelled without overrunning computer storage or raising excessively computational costs;  

• higher order elements, such as the isoparametric ones, are recommended. Although singularity is 

only approximately simulated, the solutions are substantially improved. Besides, with these elements 

a larger mesh can be used, not only near the crack front but in the whole body, enabling a reduction 

of the total number of elements for the same degree of accuracy;  

• the use of singular elements at the crack front is also recommended. The order of singularity for 

LEFM is known for plane strain conditions. In view of this fact, such elements introduce that 

singularity in their formulation which reduces the error at the crack front where is important to have 

accurate values. As a consequence, less refined meshes can be used near the crack front for the same 

degree of accuracy.  

 

i) Mesh topology  

There is a general agreement that the best mesh topology should contain, at least, two regions with 

different mesh schemes (Carpinteri, 1996a; Lin, 1997; Lee, 2004): a cracked region (Figure 2.49a) which 

comprises the small volume of material surrounding the crack front; and an uncracked region (Figure 

2.49d) which corresponds to the remaining volume of the body. The former, made of several concentric 

rings centred at the crack tip, is automatically remeshed after each crack increment whilst the latter 

remains practically unchanged throughout the simulation.  

 

This concept can be improved by including an intermediate region named transition mesh (Figure 2.49b) 

whose main aims are to decrease the total number of elements and to promote a smooth transition from a 

refined mesh near the crack front to a larger mesh at remote positions (Antunes, 1999). The spider web 

mesh (Figure 2.49a) can be created directly from the crack front coordinates in order to avoid the 

deterioration associated with the insertion a posteriori of the crack into the regular mesh. After that, it is 

connected to the transition mesh, which leads to the rectangular box schematised in Figure 2.49c. Finally,  
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Figure 2.49. Examples of a typical mesh topology used to analyse cracked bodies (Branco, 2008):           

a) spider web mesh; b) transition mesh; c) cracked region; d) uncracked region; e) assembled FE model.  

the regular mesh (Figure 2.49d) is added to the previous one to obtain the assembled finite element model 

exhibited in Figure 2.49e. This approach has been successfully used in different situations. Some 

examples can be found elsewhere (Branco, 2008; 2008b; 2009; 2010a; 2012d). 

 

ii) Types of finite elements   

The finite elements commonly used in fracture mechanics are the isoparametric ones. The European 

Structural Integrity Society (ESIS) recommendations are for isoparametric elements with quadratic shape 

functions (Sedmak, 1992). The isoparametric elements can represent curved shapes with a small number 

of elements, since they can have a distorted shape. This effect is achieved by defining the elements in 

local coordinates and establishing a relation between local and global coordinates. So, fewer elements can 

be used for modelling bodies with curved or complex boundaries. Besides, they are convergent and have 

a rate of convergence higher than other types of elements. On the other hand, quadratic isoparametric 

elements are well tested and are available in almost all general finite element packages. 

 

Usually, the isoparametric quadrilateral 20-node element (Figure 2.50a) is employed in the uncracked 

region (Lin, 1999; Lee, 2004; Gardin, 2007; Carpinteri, 2009; Le, 2011). Each node has three degrees of 

freedom (along x, y and z axes), which means that the total number of degrees of freedom for this element 

is sixteen. It simulates parabolic variations of displacements and consequently linear variations of stresses 

and strains. A full numerical integration scheme for the calculation of rigidity matrices and nodal forces is 

done over 3x3x3 points. Therefore, it is suitable for elastic analyses. However, the calculated stresses at 
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Figure 2.50. a) 20-node isoparametric brick element; b) quarter-point 20-node isoparametric brick 

element; c) collapsed 20-node isoparametric brick element; d) double collapsed 20-node isoparametric 

brick element; e) 15-node isoparametric wedge element (not collapsed); f) quarter-point 15-node 

isoparametric wedge element (not collapsed).  

the individual integration points can show some wavy behaviour. Consequently, the presentation of 

stresses is often carried out using mean values, which contributes to smooth these variations (Bakker, 

1992). 

 

In the crack front, the introduction of the linear elastic r-0.5 stress singularity in the finite element analysis 

can be done using analytical elements or modified isoparametric elements. The former are based on the 

analytical expressions of the linear elastic fracture mechanics, containing the stress intensity factor in 

their formulation, which avoids posterior calculation of SIFs. The latter are obtained from the                 

bi-dimensional 8-node and three-dimensional 20-node isoparametric elements positioning the 

intermediate nodes near to the crack front at quarter-point positions (Figure 2.50b). The connection to 

standard elements is not a problem and there is no need for transition elements. The use of singular 

isoparametric elements is very interesting and simple because it only requires changing the position of 

nodes of the standard elements. In addition, the use of singular elements is always possible since, as 

referred to above, the isoparametric standard elements are present in all commercially available finite 

element software. Furthermore, there are different types of isoparametric singular elements. For instance,        

quarter-point singular elements (Figure 2.50b); quarter-point collapsed elements (Figure 2.50c); double 

collapsed quarter-point elements (Figure 2.50d); higher order singular elements; natural (not collapsed)          

quarter-point triangular or wedge elements (Figure 2.50f); and singular isoparametric elements in which 

not only the position of the nodes is changed but also the shape functions (Gavete, 1989). Either the 

quarter-point collapsed elements (Figure 2.50c) or the natural quarter-point wedge elements (Figure 

2.50f) have been recurrently used by different authors (Lin, 1999; Antunes, 2002; Lee, 2004; Branco, 

2008; Carpinteri, 2009; Maligno, 2010; Yu, 2012; Branco, 2012d).  
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The effect of different crack tip isoparametric elements on the quality of the numerical results was 

systematically investigated by Antunes (1999). This study encompassed the conventional 15-node 

isoparametric wedge element (Figure 2.50e); the quarter-point 15-node isoparametric wedge element 

(Figure 2.50f); and the collapsed 20-node isoparametric brick element (Figure 2.50c). The results 

demonstrated a high performance of the singular elements relatively to the conventional 15-node 

isoparametric wedge element. Besides, among the singular elements, the best was the collapsed 20-node 

isoparametric brick element. The good behaviour of the singular elements was expected since they 

incorporate the r-0.5 crack tip singularity. However, some errors can occur at corner points (the points 

where the crack front intersects a free surface) because the same singularity is implicitly assumed there by 

the singular elements. In fact, at a corner point, there is still a r-λ singularity but usually λ < 0.5. Note that 

the singularity is λ = 0.5 at a corner point only when the crack front intersects the surface at the critical 

angle. Since most calculations are carried out for an intersection angle of 90º and a Poisson’s ratio of 

about 0.3, λ < 0.5 for mode I (i.e., KI 
= 0) and λ > 0.5 for mode II and mode III (i.e., KII and KIII are 

infinite). In practice, values of K obtained at corner points are finite and usually of the same order as 

values elsewhere along the crack front (Pook, 1994) which is an indication of the inaccuracy of FEM near 

the surface. Bakker (1992) showed that practically only the calculated free surface value of K is affected 

by the mesh refinement in the direction longitudinal to the crack front. The inside values are not 

particularly affected by the correctness achieved at the surface. So, the finite element mesh near corner 

points must be refined not only in the radial direction, but also in the thickness direction. The variability 

of the boundary layer thickness and of the order of singularity make the mesh definition more difficult. 

 

iii) Radial size of crack front elements 

In a wide range of problems, the most efficient mesh design at the crack tip has proved to be a spider web 

pattern. It consists of several concentric rings focused on the crack tip (Figure 2.49a). The inner-most ring 

of elements is made of triangle prisms (Figure 2.50c or Figure 2.50e). Moreover, the appropriate level of 

mesh refinement depends on the purpose of analysis and singular elements must be included when finite 

element results near the crack tip are required. Guinea et al. (2000) concluded that the minimum angular 

discretisation of the elements surrounding the crack tip is 30º, which means at least six elements. Murti et 

al. (1986) recommended a minimum of five, but preferably six. Furthermore, it was demonstrated that the 

influence of the other rings of elements on the accuracy of the FEM results is secondary (Antunes, 1999; 

Guinea, 2000). On the contrary, the size of the singular elements plays a crucial role on the accuracy of 

results.  

 

The optimum radial size of the singular elements (L1) is assured when a balanced modelling of both 

singular and non-singular fields is achieved. The quarter-point elements can represent a radial variation of 

stress from the crack tip that is the sum of the r-0.5 singular term and a constant finite stress term. 

Furthermore, a cracked body generally possesses, in the vicinity of the crack tip, a stress field defined by 

the sum of the singular term and a finite stress term which varies non-linearly with the position. If the 

quarter-point element is larger than the singular region (Figure 2.51c), in the domain of this element, the  
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Figure 2.51. Relation between radial size of crack front elements (L1) and singular region (rs): a) L1< rs;    

b) L1≈ rs; c) L1> rs (Antunes, 1999). 

finite stress term with non-linear variation has to be represented by the constant stress term (Harrop, 

1982). On the other hand, if the singular elements are too small (Figure 2.51a), the elements adjacent to 

crack tip elements have to attempt to represent the singular term. Therefore, the singular elements cannot 

be smaller or bigger than the singular region (Figure 2.51b). In fact, the error introduced increases in the 

former case and decreases in the latter case.  

 

An optimum singular element size should exist for each crack configuration. However, finding the  

optimum size in numerical fracture mechanics is not easy in virtue of the variability of the singularity 

dominated zone existing from one crack configuration to another. This zone is variable around a crack tip 

and along a crack front. Murti et al. (1986) analysed several crack geometries and concluded that the 

singularity dominated zone was different for each crack configuration. There is an optimum size of 

singular elements in each case, but it generally takes a different value for each crack configuration. In this 

way, universal optimum sizes do not exist. In addition, it is difficult to find general guidelines for proper 

use of singular elements for all classes of crack problems. This forces the universal optimum singular 

element to be defined in a weak sense under an acceptable upper bound tolerance. For instance, Antunes 

(1999) studied the optimum value of L1 in a corner crack (CC) specimen. The optimum size of L1 was 

found by maximising the work of the external forces, given by  

 

∑ 






 ×= iiE dFW
2

1  (2.190)

 

where Fi and di are the force and displacement for the ith node, respectively. In fact, the discretisation 

error associated with the FEM produces over-rigidity, i.e. decreases WE. Therefore, the minimisation of 

the error associated with a finite element discretisation corresponds to the maximisation of WE. The 

results showed optimum sizes between 5-10% of the crack length. Murti et al. (1986) found universal 

optimum sizes within 15-25 % of the crack length. Nykänen (1996) found optimum values ranged from 

1.25 to 2.75% of the crack length. Branco et al. (2008a), also based on the maximisation of WE, studied 

four geometries (middle-crack tension specimen, compact tension specimen, single edge crack specimen, 

double edge crack specimen). As exhibited in Figure 2.62, two main trends were found: i) for the single 
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Figure 2.52. Evolution of the optimum value of L1 for different specimen geometries (Branco, 2008a).  

edge crack specimen and the compact tension specimen (two asymmetrical geometries), the optimum 

value of L1/a varies with crack length; ii) for the middle-cracked tension specimen and the double edge 

crack specimen (symmetrical geometries), the optimum value of L1/a appears to be constant in the range 

of a/W studied. Furthermore, Figure 2.52 shows that the optimum radial size of crack front elements for 

these cases lay in the interval 2-6% of the crack length.  

 

iv) Orientation and refinement of layers 

The degree of orthogonality of the mesh surrounding the crack front is a relevant parameter for 

calculating the stress intensity factor using direct methods. Lin et al. (1999) studied five different 2D 

crack plane meshes in a particular defect embedded in an infinite body under remote tension. The mesh 

orthogonality varied from the precisely orthogonal mesh (Figure 2.53a) to the most distorted one (Figure 

2.53d). The crack fronts were defined using cubic spline functions. The geometric factor (Y) was obtained 

using the J-integral method (energy-based method) and the quarter-point displacement method (direct 

method). The results presented in Figure 2.54a show that the geometric factors found are not identical 

along the crack front for these meshes. Besides, it can be noted that the decrease in the degree of 

orthogonality is responsible for an increase in the difference of the geometric factors. Nevertheless, the 

geometric factors along the crack front obtained with the J-integral are nearly constant and revealed to be 

practically independent of the degree of non-orthogonality. However, if the QA’ distance (normal to the 

crack front) is considered instead of the QA distance, the values of the geometric factor along the crack 

front become coincident for all meshes (Figure 2.54b). Therefore, applying this correction, even a mesh 

severely non-orthogonal can be able to achieve good results. Notwithstanding, a non-orthogonal mesh 

should be avoided since it introduces an extra difficulty in locating the right position of point A’ which 

usually is not coincident with the corner node A.   
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Figure 2.53. Different degrees of mesh non-orthogonality (Lin, 1999).  

 

 

Figure 2.54. Effect of the mesh orthogonality on the geometric factor using the quarter-point 

displacement method and the distance between: a) Q and A; b) Q and A’ (Lin, 1999). 

The quality of the numerical results is influenced by the mesh refinement along the crack front (Wu, 

2006). The surface regions of the crack front are particularly important, as they involve complex 

singularities. The presence of lateral notches and grooves certainly affect the extent of the surface region. 

Besides, a relatively fast transition from plane stress state at the surface to plane strain state at interior 

positions can be expected. Additionally, there are surface phenomena, such as crack closure, residual 

stresses and even different propagation mechanisms (leading to different FCG rates) that must be properly 

included into the numerical models. The finite element mesh should be sufficiently refined to 

accommodate these near surface variations. However, a limited number of studies was found regarding 

the extent of the surface region. Burton et al. (1984) analysed through-thickness cracks and determined an 

extent of the surface region less than 1.5% of the crack length. Narayana et al. (1994) in a similar study 

concluded that the extent of the surface region is lower than 5% of the crack length. Antunes et al. (2000) 

studied a 5mm-quarter-circular crack in a bar with rectangular cross-section and quantified the extent of 

 

 



98 

 

     

Figure 2.55. Comparison of numerical and experimental crack shapes (Branco, 2006).  

the surface region in 1.5º (nearly 2.6 % of the crack length). Branco et al. (2006) used two different 

models with the same computational effort to study the crack shape evolution in middle-crack tension 

specimens. In the model exhibited in Figure 2.55a, the crack front had eight elements uniformly disposed, 

while in the model of Figure 2.55c the same number of elements was disposed non-uniformly. By 

comparing Figures 2.55a and 2.55c, there is no doubt that the layer refinement along the crack front is a 

relevant parameter. As can be seen, considerable differences between both predicted crack shapes are 

observed. Surprisingly, in this case, the model with more layers nearby the surface presented worse 

results. This fact was explained by an insufficient number of elements in depth direction, since the layers 

were concentrated near the surface.  

 

v) Crack front shape definition   

As discussed previously, the numerical prediction of crack shape is established from a set of discrete 

corner nodes located at the crack front. The local normal increments at these corner nodes are used to 

define the new crack front. The position of the intermediate nodes affects the correctness of the results. In 

the simplest approach (Figure 2.56a), the corner nodes are connected by straight lines and the 

intermediate nodes are positioned at the midpoint of both neighbouring corner nodes (Smith, 1989). Then, 

the SIF is calculated at these corner nodes and used to obtain the local increments. After that, a new set of 

points is obtained by summing the original positions and the calculated local increments. These new 

points are considered as the corner nodes of the new crack front and are used to define the positions of the 

new intermediate nodes. In certain circumstances, it is necessary to modify manually the positions of 

several corner nodes, especially in the cases in which large crack shape changes occur. The level of 

automation of the simulation technique is obviously affected which is a clear disadvantage. Besides, the 

numerical results have demonstrated that a crack front defined from polygonal lines leads to errors in the 

calculation of the stress intensity factors.  

 

A different approach (Figure 2.56b) was proposed by Lin et al. (1999). Instead of using a polygonal line, 

the crack front is defined by a cubic spline function that passes through both the corner and intermediate 

nodes. In a first stage, the corner and intermediate nodes are applied to obtain a provisional crack front 

which serves to define a cubic spline. After that, the cubic spline is used to relocate both the corner and    

 

 Experimental results  Numerical results 
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Figure 2.56. Crack front shape definitions: a) polygonal line; b) cubic spline curve.  

intermediate nodes according to predefined criteria. For example, the nodes can be positioned suitably 

distanced along the cubic spline, as exhibited in Figure 2.55a; or can be positioned in specific locations 

throughout the thickness, as in the case presented in Figure 2.55b; or according to any other criterion. 

Besides, this procedure can be fully automated since no manual modifications of nodal positions are 

needed. Moreover, it is important to note that a crack front definition based on a cubic spline leads to 

more accurate stress intensity factors along the crack front. For example, Lin et al. (1999) studied the SIF 

values along circular defects embedded in infinite bodies subjected to remote tension. Relatively to the 

exact solution (Sneddon, 1946), the average of SIF values obtained with the quarter-point displacement 

method were inaccurate about 0.5% with the cubic spline and about 5% with the polygonal line. Such 

results demonstrate that the SIF values along the crack front are very sensitive to the positions of the 

intermediate nodes. 

 

2.7.2 Calculation of stress intensity factor with the FEM 

As referred to above, accurate stress intensity factors are decisive to obtain good fatigue life predictions. 

Numerically, the methods for extracting the stress intensity factors can be divided into two categories: 

displacement matching methods (for example, displacement extrapolation method, singular elements 

based method, etc.); and energy-based methods (for instance, external forces work method, stiffness 

derivative formulation, mapping technique, J-integral method, energy domain integral, crack closure 

integral method, etc.). In the first case, the form of the local solution is assumed and the value of the 

displacement near the crack tip is used to determine the magnitude of the coefficients in the asymptotic 

expansion. In the second case, the strength of the singular stress field is related to the energy release rate 

(G), i.e. the sensitivity of the total potential energy to the crack position. Due to the increasingly more 

powerful computers, these approaches have received growing attention over the past decades and are able 

to solve almost all the problems. However, the results obtained are only approximations of the real 

solutions. In the next paragraphs, the K methods used in this research are briefly outlined.  
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i) Displacement matching  methods     

In the displacement matching extrapolation methods, the displacement field obtained with the finite 

element method is compared with the analytical displacement field which contains K in its formulation. 

For a bi-dimensional crack under mode I loading, the analytical expression for the displacement normal to 

the crack plane is given by (Ingraffea, 1980)  
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where E is the Young’s modulus, ν is the Poisson’s ratio, κ is an elastic parameter equal to (3-4ν) for 

plane strain and (3-ν)/(1+ ν) for plane stress, Ai are parameters depending on the geometry and load 

conditions, r and θ are the polar coordinates defined according to Figure 2.57, and vB and vP are the 

displacements normal to the crack plane of points P’ and P, respectively. Due to the symmetry of mode I 

loading, the normal displacement at the crack tip is zero (vp = 0). The extrapolation is more accurate when 

evaluated along the crack faces (θ = ±π), as first suggested by Chan et al. (1970). 

 

The simplest estimation of KI can be made by using the first term of the previous equation. For the point 

A (r = l/4), in plane strain, under mode I loading, and θ = π, it leads to the following equation. 
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The value of KI can be calculated by replacing the material constants, the length of the element side PB, 

and the displacement of point A (which can be obtained using the FEM). This K value is valid in the 

whole singular region because it is independent of the coordinate system.   

 

 

Figure 2.57. Quarter-point singular elements and coordinates for near crack-tip field description. 
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Considering only the two first terms and particularising Equation 2.191 for nodes A (r = l/4) and B (r = l) 

on the singular element at the upper face of crack (θ = π), vA and vB can be written by Equation 2.193 and 

Equation 2.194, respectively. 
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By solving these equations, the stress intensity factor is given by Equation 2.195. 
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The values of stress intensity factors estimated using Equations 2.192 and 2.195 are affected by two types 

of errors: i) errors in the displacements obtained with the FEM. These values are more incorrect in the 

elements closest to the crack front, even when singular elements are used. The displacements of crack 

front points are particularly affected by errors (Antunes, 1993). Therefore, other points more distant from 

the crack front should be used in order to reduce the these errors; ii) errors due to truncature of the 

analytical expressions of displacements since only the first term (Equation 2.192) or the two first terms 

(Equation 2.195) are used. The term r0.5 is dominant near the crack tip while the other terms (r, r3/2, r2, …) 

become important away from the crack front. Therefore, the K values calculated from these expressions 

are affected by errors that increase with the distance from the crack front. In fact, a solution able to reduce 

this type of error would be to choose point A very close to point P. But, it is not efficient because the 

displacements resulting from the FEM are more incorrect in the elements closest to the crack front.  

 

There are two solutions to overcome these errors: i) the first solution is to select point A at an optimum 

location, far enough from the crack front to reduce the FEM errors and close enough to reduce truncature 

errors. However, this optimum location is not easy to find, and even if that point is located, K values there 

can be too erroneous; ii) usually, the solution adopted comprises the calculation of the stress intensity 

factor for several points along a direction emanating from the crack tip. The calculated K values are 

plotted on a graph of K against r, as exemplified in Figure 2.58. Then, a curve is fitted by regression in 

order to extrapolate the stress intensity factor for r = 0. This extrapolation eliminates the error associated 

with the analytical expressions, while the FEM errors are greatly reduced if the nodes nearest to the crack 

front are not used. The nodes more affected by the FEM errors can be identified in a plot of K versus r. 

As depicted in Figure 2.58, these nodes deviate from the dominant trend. In general, regression curves of 

order two or three (but not restricted to) are adequate to achieve good extrapolation.  

 

The main advantage of this method for estimating K is its simplicity. In addition, only a FEM analysis is  
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Figure 2.58. Schematic representation of K calculation using the extrapolation method (Antunes, 1999).  

 

required to obtain a K distribution along the crack front. However, Equations 2.192 and 2.195 are only 

valid for plane strain conditions. It is a common practice to assume plane strain conditions for all crack 

front points, except for surface points where plane stress conditions prevails. Consequently, in Equations 

2.192 and 2.195, E is replaced by E/(1-ν2). Nevertheless, this is correct only if the singularity at these 

points is r-0.5.  

 

ii) Energy-based methods  

In the energy-based methods, the stress intensity factor is calculated from the energy release rate (G). In 

the total energy method (Irwin, 1957), the total potential energy of the body is calculated for the initial 

and virtually extended crack using the FEM being the energy release rate obtained directly from its 

definition. The stiffness derivative method (Parks, 1974; Hellen, 1975) also uses a virtual crack extension 

technique but only the finite elements distorted by the extension are involved in the analysis. DeLorenzi 

(1982; 1985) improved this method by calculating G from a continuum mechanics viewpoint. But, unlike 

the stiffness derivative method, it is not restricted to the FEM. The J-integral method (Rice, 1968; 

Murakami, 1983) is an alternative technique. However, the evaluation of pointwise values is difficult in 

three-dimensional cracked bodies. More recent formulations of the J-integral (Li, 1985; Shih, 1986) apply 

a volume integration that provides better accuracy and are much easier to implement numerically. In the 

crack closure integral method, proposed by Irwin (1957), G is estimated considering crack extension and 

evaluating the work done close to the crack relatively to the original configuration. In order to avoid the 

need of two FEM analyses, Rybicki et al. (1977) used the nodal forces ahead the crack tip and the 

displacements behind it. Shivakumar et al. (1988) and Roeck et al. (1995) extended the formulation to 

three-dimensional problems. In the external forces method (Antunes, 1999), the calculation of K is done 

in an indirect way from the energy release rate (G) by applying the following relationship 
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2-1

EG
=K

ν
 (2.196)

 

where E is the Young’s modulus and ν is the Poisson’s ratio. This expression is valid for plane strain 

conditions. For plane stress conditions, it is replaced by EGK = . In general, plane strain conditions are 

considered along the whole crack front, except at the free surfaces where plane stress conditions are 

defined. The energy release rate (G) is the derivative of the potential energy of the body with respect to 

the crack area for fixed load or fixed displacement, i.e.   

 

dA

d
G

Π−=  (2.197)

 

where Π is the potential energy of the loaded body and dA is the virtual crack area extension. This 

quantity is physically meaningful and can be considered as the crack driving force. The virtual crack area 

extension (dA) must be in the plane of the crack and normal to the crack front, either for an infinitesimal 

extension (Figure 2.59a) or for a uniform extension along the whole crack front (Figure 2.59b). In the 

second case, G is only a mean value.  

 

The potential energy of a cracked body statically loaded with point (Fp), surface (FS) and body (FB) 

forces is expressed by 

 

∫ ∫∫ ⋅−⋅−⋅⋅∏
S V

TTTT

V

dV  dS - dV  
2

1
= BSP FuFuFuεσσσσ  (2.198)

 

where σσσσ, εεεε and u are the stress, strain and displacement vectors, respectively; V is the volume of the body; 

and S is the surface of the body. The surface and body forces are forces per unit of area and volume, 

respectively. The first term in the previous equation represents the elastic deformation energy of the body 

(U) and the last three terms represent the potential of the external forces. According to this expression, the  

 

 

Figure 2.59. a) Local virtual crack extension; b) uniform virtual crack extension. 
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energy available for crack extension (energy release rate) has two sources: the work of applied external 

forces and the energy stored in the body. 

 

The potential energy can be calculated in different ways. According to the principle of energy 

conservation (first law of thermodynamics), the work of external forces is equal to the deformation 

energy of the body (WE = U), i.e. the work performed by the external forces in an adiabatic and reversible 

way is stored as deformation energy in the body. Since the work done by the external forces acting on a 

body is given by 
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the potential energy can be defined by Equation 2.200. Therefore, G is given by Equation 2.201. 

 

E-W=Π  (2.200)

dA

dW
G E=  (2.201)

 

This derivative can be approximately calculated considering two values of WE for the initial and virtual 

crack extension areas A and A+∆A. Thus, the previous equation leads to Equation 2.202. 

 

A

W
G E

∆
∆≈  (2.202)

 

The error of this approximation increases with the virtual crack increment ∆A. Antunes (1993), in a 2D 

analysis, studied the error introduced by a finite crack extension and concluded that good results were 

obtained if crack increments less than 15 % of the crack length are considered. An alternative formulation 

to calculate G, proposed by Antunes (1993), considers the virtual crack extensions (A-∆A) and (A+∆A) 

and can be written mathematically using Equation 2.203.  

 

( ) ( )
A2∆

WW
G ∆AAE∆AAE −+ −

≈  (2.203)

 

This formulation demonstrated to be clearly better than the one given by Equation 2.202. However, the 

best solution, presented in Figure 2.60, is obtained by calculating several values of WE for different virtual 

crack increments, plot them against ∆A, fit a polynomial curve to the results by regression and evaluate 

the derivative of that polynomial for ∆A = 0. The slope of the tangent to curve WE - ∆A at point ∆A = 0 is, 

therefore, the value of G. It is important to note that the accuracy of K increases with the number of  
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Figure 2.60. Evolution of WE with ∆A (Antunes, 1999).  

virtual crack increments considered but increases the computational effort as well.  

 

Finally, the values of WE can be obtained numerically using the FEM. In the FEM, the external forces are 

replaced by equivalent nodal forces. In view of this fact, the work of external forces can be given by  
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where NN is the number of nodes, (FX, FY, FZ) are the Cartesian components of the nodal force on the ith 

node, (u, v, w) are the displacements of the ith node, F is the global vector of nodal forces and δδδδ is the 

global vector of nodal displacements. So, the finite element results that are necessary in the present 

method for K calculation are only the nodal displacements and the nodal forces.  

 

This method is especially advantageous when loads and reactions act far from the crack front or when act 

close to the crack front without producing work. In these cases, the displacements close to the crack front, 

which are the most affected by simulation difficulties of the crack singularity, are not necessary. 

Therefore, a larger mesh near the crack front can be used without a significant change in the FEM results 

needed to calculate the stress intensity factor. Furthermore, this method uses the nodal displacements 

which are the primary variables of the FEM analysis and therefore are the most accurate. The main 

disadvantage is the need of at least two FEM analyses to calculate K. It becomes particularly important 

when K is necessary at several points along the crack front. Another disadvantage is the fact that the 

virtual crack extension technique is not suitable for the calculation of separate modes since the energy 

release rate is the result of the combined modes I, II and III. Besides, it is not exempt of general errors. 

The correctness of K remains dependent on the final accuracy of nodal displacements, number of virtual 

extensions, value of ∆A as well as the adequacy of the polynomial regression selected.   
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2.7.3 Crack growth model 

The local crack front advances can be estimated using the Paris law. This expression relates the fatigue 

crack growth rate (da/dN) to the range of stress intensity factor (∆K) and can be expressed by 

 

( ) mKC
dN

da  ∆=  (2.205)

 

where C and m are constants dependent on loading spectrum, material microstructure, environmental 

effects and stress state. The fatigue life (Nf) can be obtained by integrating the previous equation, i.e.  
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where ai and af are the lower and upper limits of integration, respectively. Since ∆K varies with the crack 

growth, the fatigue life can be calculated using an Euler integration algorithm (Equation 2.207).  
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The accuracy of the numerical integration can be increased by reducing the value of ∆a. If local 

increments along the crack front are considered, the Paris law can be used for each crack front node, i.e. 

 

( ) m
i

i KC
dN

da  ∆=  (2.208)
 

 

where dai and ∆Κi are, respectively, the local normal crack growth increment and the range of stress 

intensity factor for the ith node of the crack front. Making appropriate amendments in the previous 

equation, the local normal crack growth increment at an arbitrary node for the jth iteration can be written 

as follows  
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being ∆a(j)
max the maximum crack growth increment for the jth iteration and ∆K(j)

max the maximum stress 

intensity factor range along the crack front for the jth iteration. The propagation at each crack front node 

under mode I loading is assumed to occur in the normal direction of the crack front (Figure 2.47d). The 

corresponding number of fatigue cycles for the jth iteration can be expressed by 
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where ∆a(j)
max is the maximum crack growth increment for the jth iteration, ∆K(j)

max is the maximum stress 

intensity factor range along the crack front for the jth iteration, and C and m are the Paris law constants.  

 

As referred to above, Equations 2.209 and 2.210 can be used to estimate the local crack growth 

increments at each point along the crack front and the number of fatigue cycles. Nevertheless, the 

accurateness of these calculations depends on ∆amax. In this sense, an optimum value of this parameter 

must be obtained to ensure feasible numerical results in terms of crack shape and fatigue life. 

 

i) Crack growth increment     

The value of ∆amax plays an important role in the accuracy of the numerical procedure (Lin, 1999c; 

Branco, 2008a). Generally, a small constant value is used throughout the crack growth process in order to 

achieve more accurate results. As reported in the literature (Lin, 1999b; Branco, 2006), larger crack 

increments give greater number of fatigue cycles for a given crack depth. Figure 2.61a compares the 

number of cycles obtained using three different crack increments (t/50, t/100 and t/167) for a plate with 

surface crack subjected to tension (Lin, 1999b). As can be seen, the convergence is achieved with the 

decrease in crack increment. Therefore, the lower is the crack increment, the more accurate are the 

calculations. For example, when the crack reached the plate back, the difference between the cases of 

∆amax = t/100 and ∆amax = t/167 is on average about 2%. Nevertheless, the difference between the cases of 

∆amax = t/50 and ∆amax = t/167 is much higher. Besides, an oscillatory behaviour of the crack front is 

exhibited when higher values of ∆amax are used (Courounea, 1998; Branco, 2008a). Figure 2.61b presents 

the evolution of d/t for three values of ∆amax (0.005a, 0.05a, 0.12a) in a middle-crack tension specimen 

(Branco, 2006). The data show a clear convergence as the crack increment decreases. The differences 

between the cases of ∆amax = 0.005a and ∆amax = 0.05a are lower than 3%, whilst the differences between  

 

 

Figure 2.61. Effect of the crack growth increment on the: a) number of fatigue cycles (Lin, 1999b);          

b) crack shape (Branco, 2006).   
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the cases of ∆amax = 0.005a and ∆amax = 0.12a are greater than 10%. For the highest increment, an 

oscillatory behaviour is evident. 

 

In the literature, different methodologies have been used to define the value of ∆amax. Some authors 

consider the maximum crack increment as a relation between a geometrical variable and a constant. For 

example, Lin et al. (1999b) defined it as a fraction of the thickness (t/167, t/100, t/50) to examine fatigue 

crack growth of semi-elliptical surface cracks in rectangular plates or as a fraction of the diameter (d/250) 

in similar studies for circumferential notched round bars (1999c) and unnotched round bars (1997). Wu 

(2006) studied the shape of surface cracks in plates considering maximum crack increments equal to t/200 

for tension and t/300 for bending. Gardin et al. (2007) simulated the effect of compressive residual stress 

fields on fatigue crack growth of notched round bars assuming a maximum crack increment equal to d/98.  

Another approach assumes that the maximum crack increment is defined as a percentage of the crack 

length. For example, Nykänen (1996) considered a maximum crack increment as a function of the actual 

crack length. Branco et al. studied the crack shape evolution in middle-crack tension (2008) and compact 

tension specimens (2008a) with maximum crack increments equal to 0.1% of the crack length. Other 

authors defined a constant number of load cycles per iteration. For example, Carpinteri et al. (2010) 

analysed the influence of the cold-drawing process on fatigue crack growth in V-notched round bars using 

a constant number of cycles equal to 250. Antunes et al. (2002) performed a cycle-by-cycle integration to 

examine the fatigue life predictions in polymer particle composites.  

 

2.8. Effect of physical variables on crack shape and fatigue life 

A detailed analysis of crack shape and fatigue life requires the use of adequate dependent parameters. The 

crack shape characterisation has been carried out mainly using the well-known crack aspect ratio and 

intersection angle parameters. The former evaluates the ratio of the surface node to the deepest node (a/b) 

in terms of crack length. The latter (α) quantifies the angle between the crack front and the free surface. 

Some examples are schematically presented in Figure 2.62. For example, Carpinteri et al. studied the 

crack shape evolution in round bars with the variables depicted in Figure 2.62a (1996a) and in Figure 

2.62b (1996b). Couroneau et al. (1998) and Shin et al. (2004) used the parameters illustrated in Figure 

2.62c. In another study, Couroneau et al. (2000) compared different models using the crack aspect ratios 

defined in Figures 2.62a to 2.62c in order to investigate which of those better describe the crack shape. 

Lin et al. (1997; 1999c) used the crack aspect ratio given by the variables represented in Figure 2.62d. 

Antunes (1999) studied high temperature fatigue crack growth in corner crack specimens using the crack 

aspect ratio defined through the variables a and b of Figure 2.62e. Branco et al. (2011) analysed the effect 

of residual stresses on crack shape in corner crack specimens made of nickel-base supperalloys using the 

crack aspect ratio (a/b) of Figure 2.62f. Nykänen (1996), Lin et al. (1997; 1999a), Burande et al. (1999), 

Wu (2006) and Le et al. (2011) examined surface cracks in finite thickness plates under mode I using the 

variables a and b of Figure 2.62g. The crack shape developments in corner cracks emanating from 

fastener holes were studied by Newman et al. (1984), Lin et al. (1998) and Antunes et al. (2002) 

employing the a/b ratio defined in Figure 2.62h. Branco et al. investigated the crack shape evolution of  
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Figure 2.62. Examples of dependent parameters used to characterise crack shape changes. 

through cracks in compact tension (2008a) and middle-crack tension (2008) specimens using the 

intersection angle and the crack aspect ratio defined in Figure 2.62i. Lin et al. introduced the relative 

standard deviation to examine the deviation from theoretical shapes of crack profiles obtained 

numerically, such as part-circular (1997), quarter-elliptical (1998, 1999c) and semi-elliptical (1997b; 

1999a; 1999c) configurations. It can be written in the following form  
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where n is the number of corner nodes used to define the crack front and Ei represents the relative 

deviation of point P (see Figure 2.62f) from the theoretical shape (dashed line). Smaller values of Sr mean 

a better approximation to the theoretical shapes. Murakami et al. (1994) considered the crack area to 

characterise irregular cracks. The fatigue limit and threshold stress intensity factor range (∆Kth) were 

related with A1/2, being A the effective area obtained by projecting the defect or crack onto the plane 

perpendicular to the maximum tensile stress direction. Regarding the fatigue life, it is generally studied by 

analysing the crack length versus number of load cycles.  

 

2.8.1 Effect of initial crack shape 

The effect of the initial crack shape on the early propagation period has been described in the literature by 

several authors (Carpinteri, 1993; Lin, 1997; Couroneau, 1998; Branco, 2012d). Figure 2.63a shows the 

evolution of the crack aspect ratio (a/b) for several initial surface cracks in round bars subjected to tension 

loading (Lin, 1997). As can be seen, regardless of the initial crack configuration, the propagation tends 

always to a preferred propagation path (PPP). Besides, it can be noted that initial crack aspect ratios less 

distant from the inclined asymptote converge more rapidly to the preferred propagation path than the  
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Figure 2.63. Evolution of: a) crack aspect ratio (Lin, 1997); b) stress intensity factor (Branco, 2012d) in 

round bars with surface cracks subjected to tension. 

 

others. On the other hand, the influence of the initial crack shape on the crack aspect ratio weakens as the 

crack extends. This effect is more evident at the early propagation stage. The extent of the early 

propagation stage was quantified by Branco et al. (2008) in middle-crack tension specimens. It was given 

by an exponential function dependent on the initial distance to the preferred propagation path. This 

conclusion was subsequently extended to compact tension specimens (2008a). In the second stage of 

propagation, the PPP depends mainly on the loading type and Paris law exponent (Couroneau, 1998). The 

experimental data available in the literature (Caspers, 1990; Shin, 2004) also show a convergence towards 

preferred propagation paths, which is in close agreement with the numerical predictions.  

 

As is well-known, during the fatigue crack growth process, the stress intensity factors along the crack 

front usually change. In addition, the SIF distribution along the crack front is quite sensitive to local shape 

variations, i.e. small shapes in the crack front are responsible for large changes in the stress intensity 

factors. Besides, the crack tends to equalise the crack driving force around its perimeter. It means that the 

crack attains a regular profile such that the stress intensity factor is practically constant around its front. 

Thus, the ratio of the minimum stress intensity factor to the maximum stress intensity factor (Kmin/Kmax) 

tends to one. This behaviour (i.e. Kmin/Kmax ≈ 1), first reported by Gilchrist et al. (1991), is termed iso-K 

profile. For example, arbitrary planar defects in infinite bodies under remote uniform tension propagate 

into circular crack shapes which are subsequently maintained (Gilchrist, 1991; Lazarus, 1999; Lin, 

1999b); arbitrary planar cracks in infinite bodies loaded in shear (Favier, 2006) grow towards stable and 

almost elliptical shapes. Branco et al. found Kmin/Kmax ratios approximately equal to 0.98 for the       

middle-crack tension specimen (2008) and for the compact tension specimen (2008a) which are close to 

the ideal iso-K profile. However, in other cases, it is impossible to reach the above-mentioned profile. 

Figure 2.63b shows the evolution of the Kmin/Kmax ratio for surface cracks in round bars subjected to 

tension (Branco, 2010b; Branco, 2012d). As can be seen, the ratio suddenly increases in the early stage of 
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propagation and then drops gradually to values about 0.9. Therefore, it is clear that the crack is not able to 

reach the iso-K profile which is justified by the presence of the free boundary (Lin, 1997). Moreover, for 

plates with surface cracks subjected to tension, bending and both, it is also impossible to reach and 

maintain the iso-K profile due to both the front and back surfaces as well as due to the bending 

component of load (Lin, 1999b). So, the iso-K profile depends not only on the initial crack shape and size 

but also on the geometry and applied load.  

 

2.8.2 Effect of Paris law exponent 

The effect of the Paris law exponent (m) on the crack aspect ratio can be anticipated by the power-law 

dependency of the fatigue crack growth equation (Equation 2.205). The results show that the crack aspect 

ratio changes more intensely for higher m values. Figure 2.64a plots the evolution of a/b against a/D in 

round bars with surface cracks subjected to tension and bending for three m values (m = 2, m = 3, m = 4). 

The effect of different inicial crack shape configurations is also examined. As can be seen, the increase in 

the Paris law exponent leads to smaller values of a/b for identical values of dimensionless crack length 

(a/D). Besides, a considerable effect of m on the crack aspect ratio, either in early propagation stage or in 

the subsequent propagation stage, is clearly observed. In the former stage, a specific propagation path is 

obtained for each initial crack shape. Nevertheless, in the latter stage, the propagations performed with 

the same values of m tend to preferred propagation paths not dependent on the initial crack shape.  

 

The amount of crack growth needed to achieve the PPP is termed transition depth and depends on the 

Paris law exponent, loading type and specimen geometry. Figure 2.64b plots the extent of the transition 

depth against the exponent of the Paris law for round bars under tension and bending (Couroneau, 1998) 

as well as for middle-crack tension (Branco, 2008) and compact tension (Branco, 2008a) specimens. 

Although different transition criteria were used by these authors, the same conclusions were found, i.e.  

 

 

Figure 2.64. Evolution of: a) a/b with a/D for different values of m (Couroneau, 1998); b) transition depth 

with m for different loading types and geometries (Couroneau, 1998; Branco, 2008; Branco, 2008a). 
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the transition depth is a monotonously decreasing function of m. Besides, it is greater in tension than in 

bending. Moreover, the transition depth is greater in M(T) specimens than in C(T) specimens, which can 

be explained by the higher K gradients (dK/da) existing in the latter as a result of its geometrical 

asymmetry. 

 

2.8.3 Effect of loading type 

The role of the loading type in fatigue crack growth is known (Carpinteri, 1996a; Lin, 1999a; Branco, 

2009b). Figure 2.65a shows the evolution of the crack aspect ratio (a/b) with the dimensionless crack 

length (a/D) for surface cracks in round bars under tension and bending (Branco, 2009b). Different initial 

crack fronts, namely part-circular (a0/b0 = 1), part-elliptical (a0/b0 = 0.25, a0/b0 = 0.5) and straight (a0/b0 = 0) 

shapes with different dimensionless crack lengths (a0/D = 0.05, a0/D = 0.1, a0/D = 0.2) were analysed. 

Regardless of the loading type, all propagation paths tend to converge to inclined asymptotes. During the 

early growth, the process of convergence is faster for initial crack configurations closer to the preferred 

propagation paths. As can be observed, the convergence occurs more rapidly for bending than for tension. 

Besides, it is clear that the preferred propagation paths for tension and bending are different. In both 

cases, either the numerical or experimental results, have demonstrated that the resultant crack shapes are 

approximately semi-elliptical and that the a/b values are greater for tension than for bending. It means 

that for bending, the crack grows more rapidly along the free surface than at deepest points. A more 

effective loading effect on crack aspect ratio is presented in Figure 2.65b. It exhibits the evolution of a/b 

with a/D for surface cracks in rectangular cross-section plates subjected to tension and bending. As can be 

seen, the PPP are completely different which is exclusively associated with the different loading types.  

 

 

Figure 2.65. Evolution of the crack aspect ratio with the dimensionless crack length in: a) round bars with 

surface cracks (Branco, 2009b); b) rectangular plates with surface cracks (Lin, 1999a) subjected to 

tension and bending.  
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Besides, a slight increase in crack aspect ratio is observed as the crack approaches closely to the back 

surface of the plate. It is caused by the larger stress intensity factor at the depth point than that at the 

surface point due to the effect of the plate back surface. Similarly to the round bar, the values of a/b are 

lower for bending than for tension. Moreover, the convergence towards the PPP is also faster for bending 

than for tension. 

 

2.8.4 Effect of geometry  

The specimen geometry is another variable that affects the crack aspect ratio. These differences can be 

explained by specific stress gradients associated with each type of geometry. An example of the 

importance of stress gradients in the PPP is represented in Figure 2.66a (Lin, 1998). It plots a/b against a/t 

for corner cracks emanating from fastener holes in plates loaded in tension. Different ratios r/t (r/t = 0.5, 

r/t = 3) and different initial crack shapes (a0/b0 = 1, a0/b0 = 1.32, a0/b0 = 1.72, a0/b0 = 2) are analysed. The 

results exhibited show a strong effect of the r/t ratio on the preferred propagation paths and on the 

transition depth. In relation to the former effect, the increase in r/t decreases the a/b values. Regarding the 

latter effect, the transition depth decreases with r/t. Such trends can be explained by the relatively small 

gradient of the stress distribution near the hole edge for the largest r/t values. Figure 2.66b presents the 

evolution of the crack aspect ratio (a/b) with the dimensionless crack length (a/D) for surface cracks in 

circumferentially notched and unnotched round bars under tension (Carpinteri, 2006a). The presence of 

the notch significantly alters the a/b ratio. A considerable decrease in the crack aspect ratio is observed, 

regardless of the initial crack shape, which is a direct consequence of the high stress concentrations 

existing at the notch root. Besides, a remarkable effect of the notch on the stress intensity factor is 

observed along the crack front. Unlike the case of the unnotched round bars in which the maximum SIF is 

attained at the deepest point, for the notched round bars the maximum SIF always occurs  

 

 

Figure 2.66. Evolution of the crack aspect ratio in: a) corner cracks emanating from fastener holes in 

plates (Lin, 1998); b) surface cracks of notched and unnotched round bars subjected to                      

tension (Carpinteri, 2006a). 
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near the external surface of the round bar.   

 

2.8.5 Surface effects 

Surface effects, such as crack closure or residual stress, among others, have been used to explain different 

fatigue phenomena. The former is caused by the contact of crack flanks during a portion of the loading 

cycle and can be classified according to the main closure mechanisms as plasticity induced crack closure 

(PICC), oxide induced crack closure (OICC) and roughness induced crack closure (RICC). The latter is 

the result of manufacturing and processing operations from which inhomogeneous plastic deformation is 

introduced by mechanical, thermal or chemical phenomena.  

 

Figure 2.67a presents the evolution of a/b with a/t in rectangular cross-section plates with surface cracks 

subjected to tension for a constant growth rate along the crack front and for a case with crack closure. In 

the second case, the constant of the Paris law at the free surface (CS) was defined using the relationship        

CS = 0.9m CD, where CD is the Paris law constant at the deepest point of the crack surface (Newman, 

1981). As can be observed, with crack closure, the crack aspect ratio slightly increases for a given 

dimensionless crack length. Pang (1993) further modified the previous assumption for welded joints using 

a constant CS/CD ratio equal to 0.85m. More recently, Hou (2011) demonstrated that such a relation (i.e.   

CS = 0.9m CD) for surface cracks is erroneous when is assumed a theoretical crack shape and proposed a 

new value approximately equal to 0.63m. However, when the crack shape is not constrained, this relation 

is approximately equal to 0.8m, which is close to the Newman’s assumption. The difference is probably 

due to an incorrect r-0.5 singularity used in the stress intensity factor estimation.  

 

The effect of residual stress fields on the crack aspect ratio for round bars with surface cracks under  

  

 

Figure 2.67. Evolution of the crack aspect ratio in: a) rectangular cross-section plates with surface cracks 

under tension (Lin, 1999a); b) round bars with surface cracks under tension (Carpinteri, 2010).  
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tension is presented in Figure 2.67b (Carpinteri, 2010). Three different initial crack shapes (a0/b0 = 0,    

a0/b0 = 0.5, a0/b0 = 1) with similar dimensionless crack length (a0/D = 0.1) were studied. As can be seen, 

the introduction of residual stress fields causes lower a/b values. A similar trend was also observed for 

notched round bars subjected to residual stress (Gardin, 2007).  
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CHAPTER 3 

EXPERIMENTAL PROCEDURE 
 

 

 
This chapter outlines the experimental procedure. It describes 

the material, specimen geometries and testing apparatus   

used in the monotonic tensile tests, determination of the  

elastic constants, low-cycle fatigue tests, in-phase combined    

bending-torsion tests and fatigue crack front marking tests. 

The details on the procedures used to analyse the 

microstructure of the material and the fracture surfaces by 

scanning electron microscopy and optical microscopy; to 

acquire the fracture surfaces by three-dimensional laser 

scanner; and to determine the Paris law constants from 

fatigue crack front marks are also provided in this chapter.     
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NOMENCLATURE 

a/D dimensionless crack length 
Acc. V accelerating voltages 
B bending moment  
B/T ratio of the bending moment to the torsion moment 
C Paris law constant 
CCD charge-coupled device 
CNC computer numeric control 
D diameter 
dε/dt strain rate 
F force 
f frequency 
FEM finite element method 
FFT fast Fourier transformation 
HSS high strength steel 
IET impulse excitation technique 
JPEG joint photographic experts group 
L1-L4   characteristic dimensions of the gripping system 
LCF low-cycle fatigue 
m Paris law exponent 
Magn magnification 
MNET mixed numerical-experimental technique 
nB number of cycles of overloads 
OM optical microscopy 
PC personal computer 
PCI peripheral component interconnect 
Q&T quenched and tempered 
R  stress ratio 
Rε strain ratio 
SEM scanning electron microscopy 
SE secondary electrons 
Spot spot sizes 
SST single step test 
T torsion moment 
TIFF tagged image file format 
∆ε total strain range  
∆σ normal stress range  
∆σΒ/∆σ overload ratio 
∆K stress intensity factor range 
∆τ shear stress range  
σ normal stress 
σa normal stress amplitude  
σm mean normal stress amplitude 
σ/τ ratio of the normal stress to the shear stress  
τ shear stress 
τa shear stress amplitude  
τm mean shear stress amplitude 
θi, ri polar coordinates  of the ith node of crack front 
  
 



 

119 

 

3.1. Material 

High strength steels (HSS) cover a broad spectrum of steels and are being increasingly used in different 

areas due to both good strength-to-weight ratio and good corrosion resistance. With regard to the 

metallurgical designation, HSS can be divided into conventional high strength steels which include 

carbon-manganese, bake hardenable, high-strength interstitial-free and low-alloy steels; and advanced 

high strength steels which encompass dual phase, complex phase, transformation-induced plasticity and 

martensitic steels. The main difference between conventional and advanced high strength steels is their 

microstructure. The former are single-phase ferritic steels while the latter are primarily multi-phase steels 

with a microstructure containing a phase other than ferrite-perlite, such as martensite, bainite, austenite 

and or retained austenite in amounts enough to produce unique mechanical properties (Mejía, 2011).  

 

Due to their diversity in terms of mechanical properties, HSS can address different demands. Figure 3.1 

compares the lower yield strength and the lower ultimate tensile strength for different conventional (black 

contour) and advanced high strength (grey contour) steels. As can be seen, the same mechanical 

properties can be found for different types of material. Nevertheless, the advanced high strength steels are 

generically characterised by improved mechanical properties (i.e. higher yield and ultimate tensile 

strengths) and consequently can provide better performance (AHSS, 2009). 

 

The material used in this research was the DIN 34CrNiMo6 high strength steel. The equivalent standard 

grades are listed in Table 3.1. This steel, in particular, constitutes a very important engineering material 

 

 

Figure 3.1.  Comparison of lower yield strength versus lower ultimate tensile strength for various 

conventional and advanced high strength steels. 
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and is usually employed in the manufacture of a wide range of mechanical components that comprises 

axles, shafts, crankshafts, connecting rods, valves, propeller hubs, gears, couplings, torsion bars, landing 

gears, heavy duty parts of rock drills, among others. As can be seen in Figure 3.1, DIN 34CrNiMo6 is 

typically a martensitic steel (see Section 5.1). Within the group of multi-phase steels, it is the one that 

provides highest yield and ultimate tensile strengths. Martensitic steels are characterised by a martensitic 

matrix containing small amounts of ferrite and or bainite (Lee, 1999). This microstructure is the result of 

a rapid quenching which transforms most of the austenite into martensite. Besides, the precipitation of a 

fine dispersion of alloy carbides during tempering is the main process responsible for the strengthening in 

this steel (Huang, 1971; Lee, 1999; Tartaglia, 2008).  

 

The material was supplied by the professional trading company of steels F. Ramada, Aços e Indústrias 

S.A. and its nominal chemical composition, in weight percentage, is presented in Table 3.2. This batch 

was provided by the supplier as oil quenched and tempered (Q&T). Firstly, it was austenitised at about 

850-880ºC for approximately 30 minutes, followed by oil cooling in order to produce a quenched 

martensitic structure, then tempered at about 660ºC for at least 2 hours and, subsequently, air cooled. As 

is well-known, this low-alloy steel advantageously combines strength, ductility and toughness. However, 

it is extremely susceptible to the tempering conditions (Lee, 1999). For example, tempering temperatures 

within the range 250-450ºC can cause severe embrittlement and therefore must be avoided. Additionally, 

the tempering temperature and the holding time also affect the mechanical properties. The increase in 

these variables leads to the decrease in strength and hardness. Nevertheless, the effect of tempering 

temperature is more significant on those properties than the holding time. Regarding the ductility, the 

higher are the tempering temperature and the holding time, the higher is its value. Therefore, optimum 

characteristics in terms of strength, ductility and toughness are achieved from different processes of heat 

tempering.  

 

Table 3.1. Equivalent standard grades (DIN 34CrNiMo6). 

Standard  Grade 

British standards, BS 970:1991 817M40 

French standards, AFNOR  35NCD6 

Swedish standards, SS 2541 

Italian standards, UNI 35NiCrMo6 

Spanish standards, UNE F-1272 

European standards, EN 10277-5 

American standards, SAE/AISI 4340 

Japanese standards, JIS SNCM447H 

Russian standards, GOST 38Ch2N2MA 

Indian standards, IS 40NiCrMo3 

 

Table 3.2. Nominal chemical composition of DIN 34CrNiMo6 (wt%).  

   C Si Mn Cr Mo   Ni 

   0.34 ≤ 0.40 0.65 1.50 0.22  1.50 

 



 

121 

 

The alloying elements have also a preponderant role in mechanical properties. The amount of carbon is 

the key and is deliberated higher in martensitic steels to obtain strength and hardness. Generally, the 

higher the alloy content, the greater the hardenability; and the higher the carbon content, the greater the 

available strength. Manganese contributes markedly to hardenability during quenching as well as to 

increase the hardness on tempering by retarding the coalescence of carbides. Nickel is similar to 

manganese at low alloy additions but is less potent at high alloy levels during quenching while on 

tempering it has a relatively small effect because it is not a carbide former. Silicon is relatively ineffective 

in low carbon steel but is very effective in high carbon steel during quenching; besides, it increases the 

hardness of tempered martensite, regardless of the tempering temperature. Molybdenum contributes to 

improve the hardenability during quenching; retards the softening of martensite at all tempering 

temperatures; and reduces the susceptibility to tempering embrittlement. Chromium behaves much like 

molybdenum, i.e. improves the hardenability during quenching and retards the softening of martensite at 

all tempering temperatures (Grange, 1977; Marder, 1986). 

 

3.2. Uniaxial tensile tests 

The uniaxial tensile tests were carried out using the specimen geometry schematised in Figure 3.2. The 

tests were conducted according to the procedures described in the ASTM E8 (2011) standard and aimed 

at obtaining the monotonic response of the high strength steel supplied as well as the main mechanical 

properties. The samples were machined in a high precision computer numerical control (CNC) turning 

centre from extruded 20mm-diameter round bars at the Department of Mechanical Engineering of the 

Polytechnic Institute of Coimbra (DEM/ISEC/IPC). 

 

Two samples (references UT-1 and UT-2) were tested in a computer-controlled 100 kN Instron 4206 

electromechanical tension and compression universal testing machine at the Department of Mechanical 

Engineering of the University of Coimbra (DEM/FCT/UC). The electromechanical machine used, 

depicted in Figure 3.3, is based on a variable-speed electric motor, a two-stage synchronous belt reduction 

system and two screws that move the crosshead up or down. The movement of the crosshead (Figure 3.3) 

 

 

Figure 3.2.  Specimen geometry used in uniaxial tensile tests (in accordance with ASTM E8).  



 

122 

 

 

Figure 3.3.  Scheme of electromechanical machine and experimental apparatus used in tensile tests.   

loads the specimen in tension or in compression and can be modified by changing the speed of the motor. 

In general, these machines offer a wide range of test speeds and crosshead displacements.   

 

The tests were performed at room temperature, under position control, at a displacement rate of 1 

millimetre per minute, until specimen fracture occurred. The strain on specimen was measured using an 

axial extensometer (Instron 2630-100) with a gauge length of 50mm protected against over-extension. A 

multi-channel data acquisition system, able to record several variables simultaneously (such as time, 

extension, load, strain and displacement) was used. Data were recorded at a rate of 10 samples per second 

throughout the duration of the test. 

 

The specimens were connected to the machine using mechanical wedge action grips. These grips are 

designed to simplify the loading, alignment and positioning of specimen. The contact between the 

specimen and the grip faces ensures that the gripping force increases as the pull load goes up. It makes 

this kind of grips particularly suitable for testing high strength materials since specimen slippage is 

eliminated. Besides, the attached extensometer remains at the same place after the specimen failure.  

 

3.3. Determination of the elastic constants using a resonant technique 

The knowledge of the elastic constants is fundamental to characterise the stress-strain behaviour of 

materials. In view of this fact, a significant number of experimental techniques have been proposed to 

calculate their values. Those techniques can be classified into two broad categories: static and dynamic 

techniques (Armstrong, 1971; Radovic, 2004; Antunes, 2008; Pantano, 2012).  
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The former group directly measures the stress and strain during the mechanical tests. The constants are 

then determined from the slope of the linear region of the stress-strain curve. Among others, mechanical 

tests comprise tensile, compressive, flexural or torsional tests (Pantano, 2012). An alternative static 

method for measuring elastic constants is nanoindentation (Radovic, 2004). In this case, a load is applied 

in order to make an indent which is monitored and recorded continuously as a function of displacement. 

From the stored data, a resultant load-displacement curve is computed. Then, the slope of the top part of 

the unloading curve of load-displacement is used to calculate the Young’s modulus whilst the Poisson’s 

ratio is evaluated using contact mechanics relationships.  

 

Regarding the latter category, it encompasses pulse methods and resonant methods. Pulse methods are, 

generally, based on measuring the transit time, i.e. the time spent by the ultrasonic pulse through the 

specimen from the transmitting to the receiving transducer. In this case, the elastic constants are 

calculated using the dimensions and density of the sample as well as the transit time for the longitudinal 

and transversal ultrasonic waves. Resonant methods are based on the principle that there is an intrinsic 

relation between elastic constants of a sample and its vibratory behaviour. Samples are excited to vibrate 

and the resultant vibration is monitored in order to obtain their natural frequencies. The elastic constants 

are then defined from the vibration modes, natural frequencies, dimensions and mass of samples. It is 

important to refer that resonant methods offer remarkable advantages. For example, several constants can 

be calculated from one specimen; average values are measured which is suitable for numerical modelling; 

this method only requires small amounts of material; and as a non-destructive technique, it is suitable for 

quality control.  

 

In this research, a resonant method was carried out to evaluate the elastic constants. In general, the 

application of a resonant method involves three main steps: i) experimental determination of resonant 

frequencies; ii) establishment of analytical or numerical relations between resonant frequencies and 

elastic properties; iii) and calculation of elastic constants.  

 

With respect to the first step, the impulse excitation technique (IET), schematically exhibited in Figure 

3.4, was used. It consists of exciting the sample by a single external mechanical impulse that induces 

vibrations in the sample and can be done acoustic (Radovic, 2004) or mechanically (Figure 3.4). Very  

 

 

Figure 3.4.  Test apparatus used in the determination of the experimental resonant frequencies by the 

impulse excitation technique.  
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little energy is required. Then, the vibration is detected and analysed in order to obtain the frequency 

response functions. In the present research, the dynamic response was obtained from strain gauges glued 

onto the sample (Figure 3.4). Finally, the resultant resonant frequencies are calculated by using a 

frequency analyser.  

 

Concerning to the second step, as mentioned above, the relations between elastic properties and resonant 

frequencies can be established analytical and numerically. Rayleigh’s (McIntyre, 1988; Ayorinde, 1993), 

Rayleigh-Ritz (Deobald, 1988; Frederiksen, 1995) or FE methods (Fallstrom, 1991; Antunes, 2008) are 

approaches often used for modelling the behaviour of a plate. The first one is easily implemented but is 

too inaccurate. The second one provides good accuracy but is greatly dependent on the choice of 

admissible functions for representing the displacement field and leads to a huge amount of calculations. 

The third one, due to the high calculation capacity of current computers, is a suitable option. Besides, it 

can be applied to 3D problems and handle with complex shapes or complex boundary conditions. In this 

sense, the finite element method was adopted is this study. Nevertheless, it is important to note that the 

procedure adopted here is not completely experimental since it combines experimental and numerical 

techniques. In a literal sense, it is a mixed numerical-experimental technique (MNET) being the unknown 

material parameters of the numerical model updated until the dynamic response numerically predicted 

matches the experimental observations as closely as possible.  

 

In relation to the third step, the calculation of elastic constants with the FEM can be done in different 

ways. For example, optimising an objective function (Hwang, 2000); based on a sensitivity analysis of the 

resonant frequencies to the material properties (Lauwagie, 2004) or even using neural networks (Liu, 

2002). The method based on the sensitivity analysis was implemented in this research (see Section 4.1). 

 

The specimen geometry used in IET tests is shown in Figure 3.5b. It was machined from a small piece of 

material (Figure 3.5a) at the DEM/ISEC/IPC. The tests were conducted according to the procedures 

described in the ASTM E1876 (2009) at the DEM/FCT/UC. Firstly, the sample was cut by band saw and 

then was milled by a horizontal milling machine and carefully polished to obtain a perfect plate, i.e. with 

a uniform thickness, sharp edges and without chamfers or bevels, since accurate calculations by this  

  

 

a) b) 

Figure 3.5.  Specimen geometry used in the IET tests: a) initial geometry; b) final geometry. 
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methodology require similar numerical and experimental geometries (Radovic, 2004). This geometry was 

the outcome of a numerical study that sought to achieve the highest sensitivities to the material constants 

as well as to avoid superposition of distinct resonant frequencies (see Section 4.1). 

 

Small size extensometers with electrical resistances of 120Ω and gauge factors of 2 were glued onto the 

specimen. These extensometers had a mass of 0.00216g and a grid size of about 2mm. Therefore, 

resonant frequencies were not affected. In order to measure the resonant frequencies associated with the 

different vibrational modes, the orientation and location of the extensometers on the specimen were 

meticulously selected.  

 

The specimen was suspended with two thin cotton wires to approximate the free-free boundary conditions 

of the finite element model as close as possible. The impulse excitation was accomplished by a single 

elastic strike at anti-nodal positions. The mechanical vibration was detected by extensometers glued onto 

the specimen and was converted into electrical signal which was addressed to a personal computer (PC). 

The impulse force was not recorded.  

 

A data acquisition system with maximum sampling rate of 20×106 samples per second and a vertical 

resolution of 12 bits was used. The sampled time functions were converted into frequency domains by a 

fast Fourier transformation (FFT) algorithm and then the experimental resonant frequencies were 

evaluated by using the software Microcal Origin (version 5.0). The density was evaluated from the mass 

and dimensions of the specimen which were measured using a high precision balance and a micrometre. 

  

3.4. Low-cycle fatigue tests 

The specimen geometry used in low-cycle fatigue (LCF) tests is presented in Figure 3.6. These tests were 

conducted according to the procedures described in ASTM E606 (2004) standard and aimed at studying 

the cyclic deformation behaviour as well as obtaining the fatigue ductility and fatigue strength properties 

of the DIN 34CrNiMo6 high strength steel studied here. The samples were machined in a high precision 

CNC turning centre from extruded 20mm-diameter round bars at the DEM/ISEC/IPC. Before testing, the 

surfaces were prepared with utmost care. A high-speed mechanical polishing with 600, 1200 and 2500 

grit silicon carbide papers, and 6µm diamond paste was carried out.  

 

Fully-reversed strain amplitude-controlled and fully-reversed stress amplitude-controlled fatigue tests 

were carried out at room temperature using sinusoidal waves. Table 3.3 summarises the different applied 

strain and stress amplitudes as well as the number of specimens used in LCF tests. The former tests were 

performed with total strain amplitudes (∆ε/2) lying between ±0.4 and ±2.0%. A fixed strain ratio (Rε = -1) 

was used. Additionally, a constant strain rate (dε/dt) equal to 8×10-3 s-1 was assumed, being the testing 

frequency (f) calculated from Equation 3.1 as a function of the total strain amplitude. The hysteresis loops  
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Figure 3.6.  Specimen geometry used in LCF tests (in accordance with ASTM E606). 

 

Table 3.3. Total strain and total stress amplitudes defined in low-cycle fatigue tests. 

 Specimen reference Total strain amplitude, ∆ε/2 [%] Total stress amplitude, ∆σ/2 [MPa] 

 D200 2.00  

 D150 1.50  
 D125 1.25  
 D100 1.00  
 D080 0.80  
 D060 0.60  
 D050 0.51  
 D040 0.41  
 T635  635.0 

 T600  600.0 

 T580  580.0 

 T560  560.0 

 T540  540.0 

   Total: 8 specimens 5 specimens 

D_ _ _: fully-reversed strain-controlled tests                                               T_ _ _: fully-reversed stress-controlled tests 

 

at the half-life were chosen as the representative of stable behaviour. Regarding the latter tests, a stress 

ratio (Rσ) equal to -1 was defined. The stress amplitude (∆σ/2) ranged from ±540 to ±635MPa.  

 

The single step test (SST) was adopted here. According to this method, identical specimens are tested 

under constant strain amplitude until failure occurs (see Section 2.3). Although more time-consuming 

than other alternative procedures, such as the multiple step test, incremental step test, monotonic tension 

after cyclic straining, etc., the SST is the norm. Besides, the results obtained through other test methods 

should be viewed as an approximation to the SST, since the plastic response, in general, is path and 

history dependent. Tests were interrupted when specimens separated into two pieces. 

 

The tests were conducted at the DEM/FCT/UC on a computer-controlled 100 kN DARTEC closed-loop    

servo-hydraulic testing machine. As schematised in Figure 3.7, the upper grip is suspended from the 
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Figure 3.7.  Scheme of experimental apparatus used in LCF tests. 

crosshead which can slide in vertical direction using the lift cylinders. The lower grip is situated at the 

end of the piston of the hydraulic actuator. The system control is provided by a fully digital controller 

(model 8800) capable of running a broad range of static and dynamic tests. The main interface of the 

digital controller is windows-based software application which provides full system control, including 

waveform generation, limit setup and status monitoring. In alternative, hardware operator panel can also 

be used. 

 

The axial load acting on the specimen is measured by a load cell mounted between the test specimen and 

the crosshead. A linear variable differential transformer monitors the piston position. The strain can be 

evaluated using an axial extensometer which is clamped to the specimen. Thus, depending on the 

objective, there are three alternative control modes that can be used in tests, namely position control, 

stress control or strain control. The acquisition system converts the output signals generated by the load 

cell, the piston position and the extensometer into digital data. Such data can be displayed in real-time on 

the console software in the form of line graphs and can also be recorded for further analysis using specific 

commercial software.  

 

The specimens were connected to the testing machine with threaded grips which is a suitable solution to 

avoid misalignments in the vertical direction. A 12.5mm-gauge extensometer (model Instron 2620-601) 

was clamped to the specimen via two separated knife-edges. In strain-controlled tests, the software 

devoted to low-cycle fatigue (Instron LCF, version 7.02) was used. At least, 200 samples per cycle were 
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collected and recorded. In stress-controlled tests, data were monitored and recorded using the computer 

application Instron SAX (version 7.1).  

 

3.5. High-cycle fatigue tests   

The fatigue behaviour of severely notched specimens subjected to different proportional loading paths 

was investigated. The specimens used here are presented in Figure 3.8a and Figure 3.8b. The former was 

used in single bending and in-phase combined bending-torsion tests, whilst the latter was used in       

single-torsion tests. The geometry of Figure 3.8a consists of a 16mm-diameter round bar with a lateral 

notch. The notch has a U-shape with a diameter and a depth of 3mm and is placed asymmetrically with 

respect to the longitudinal centre of the specimen only to facilitate mounting and observation during the 

test. The geometry of Figure 3.8b has a smaller diameter. The notch is similar, having the same diameter, 

the same depth and is located at the same place. The change in geometry aimed at reducing the applied 

load for the same nominal stress level.  

 

The specimens were machined in a high precision CNC turning centre from extruded 20mm-diameter 

round bars at the DEM/ISEC/IPC. Before testing, the surfaces were carefully polished, firstly, with a 

high-speed mechanical polishing using successively 600, 1200 and 2500 grit silicon carbide papers, and 

then using 6µm diamond paste.   

 

 

a) 

 

 

b) 

Figure 3.8.  Specimens used in multiaxial fatigue tests: a) single bending and in-phase combined     

bending-torsion; b) single torsion. 
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Figure 3.9 exhibits the different loading paths applied in high-cycle fatigue tests. As can be seen, five 

different proportional loading paths were studied, namely single bending (Figure 3.9a), single torsion 

(Figure 3.9e) and in-phase combined bending-torsion (Figures 3.9b-d). With respect to the last type, three 

ratios of bending moment to torsion moment (ratios B/T) were adopted, which encompassed B=2T 

(Figure 3.9b), B=T (Figure 3.9c) and B=2T/3 (Figure 3.9d).  

 

Tables 3.4, 3.5 and 3.6 summarise, respectively, the loading conditions studied in single bending, single 

torsion and in-phase combined bending-torsion tests. All loading paths were examined for three different     

 

 

Figure 3.9.  Proportional loading paths applied in fatigue tests: a) single bending (B); b) in-phase 

bending-torsion (B=2T); c) in-phase bending-torsion (B=T); d) in-phase bending-torsion (B=2T/3);         

e) single torsion (T).  

 

Table 3.4. Summary of loading conditions tested in single bending tests.  

 
Specimen  
reference 

Normal stress amplitude,  
σa [MPa] 

Mean normal stress,  
σm [MPa] 

Normal stress range,  
∆σ [MPa] 

Stress ratio,  
R 

 B-1 195.6 206.1 401.7 0.03 

 B-2 195.6 206.1 401.7 0.03 

 B-3 218.8 229.3 448.1 0.02 

 B-4 218.8 229.3 448.1 0.02 

 B-5 295.0 304.2 599.2 0.02 

 B-6 295.0 304.2 599.2 0.02 

Total: 6 specimens 

 

Table 3.5. Summary of conditions tested in single torsion tests. 

 
Specimen  
reference 

Shear stress amplitude,  
τa [MPa] 

Mean shear stress,  
τm [MPa] 

Shear stress range,  
∆τ [MPa] 

Stress ratio,  
R 

 T-1 334.1 167.0 334.1 0.03 

 T-2 334.1 167.0 334.1 0.03 

 T-3 400.9 200.5 400.9 0.03 

 T-4 400.9 200.5 400.9 0.03 

 T-5 445.5 222.7 445.5 0.02 

 T-6 490.0 245.0 490.0 0.02 

 T-7 490.0 245.0 490.0 0.02 

Total: 7 specimens 
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Table 3.6. Summary of loading conditions tested in-phase combined bending-torsion tests.  

 
Specimen  
reference 

Normal stress amplitude,  
σa [MPa] 

Mean normal stress,  
σm [MPa] 

Normal stress range,  
∆σ [MPa] 

Stress ratio,  
R 

� B=2T series (σa = 4τa; σm = 4τm; ∆σ = 4∆τ)   

 B2T-1 179.1 194.0 358.1 0.04 

 B2T-2 223.8 238.7 447.6 0.03 

 B2T-3 298.4 313.3 596.8 0.02 

� B=T series (σa = 2τa; σm = 2τm; ∆σ = 2∆τ)   

 BT-1 179.1 194.0 358.1 0.04 

 BT-2 179.1 194.0 358.1 0.04 

 BT-3 179.1 194.0 358.1 0.04 

 BT-4 223.8 238.7 447.6 0.03 

 BT-5 223.8 238.7 447.6 0.03 

 BT-6 223.8 238.7 447.6 0.03 

 BT-7 298.4 313.3 596.8 0.02 

� B=2T/3 series (σa = 4/3τa; σm = 4/3τm; ∆σ = 4/3∆τ)   

 B2T3-1 179.1 189.0 358.1 0.03 

 B2T3-2 223.8 233.8 447.6 0.02 

 B2T3-3 298.4 308.4 596.8 0.02 

Total: 13 specimens 

 

stress levels. Tests were conducted in load control, under constant amplitude loading. A stress ratio (R) 

very close to zero was defined in order to avoid potential fluctuations of the gripping system during the 

absence of loading. These loading conditions aimed at evaluating different orders of magnitude of fatigue 

life. Sinusoidal load waves and frequencies at about 3-6Hz were used. 

 

Tests were performed at the DEM/FCT/UC on the servo-hydraulic testing machine described in the 

previous section (Figure 3.10a). A special gripping system that can be assembled in three different ways 

was used, as displayed in Figures 3.10b-d. In the in-phase combined bending-torsion tests, the B/T ratio 

can be changed by moving the screw (Figure 3.10d) in the slot. The B/T ratio can be increased by moving 

the screw to the left and vice versa. Figure 3.10d presents, as an example, the gripping system assembled 

for the case B=2T.  

 

The detection of crack initiation and growth was performed in-situ with a digital monitoring system 

(Figure 3.11a-b). It consisted of a high performance 14-bit charge-coupled device (CCD) digital camera 

(pco.pixelfly usb) and an optical device with variable magnification (Specwell M850-S) coupled to a 

micrometre driven translation stage supplied by the Parker Hannifin Corporation (Model M4424). The 

micrometre driven translation stage was firmly fixed to the frame of the testing machine using three 

orthogonally-mounted aluminium profiles with independent horizontal and vertical translations (Figures 

3.10a and 3.11b). The in-plane motion of the driven translation stage was done using two micrometric 

screws able to provide a maximum displacement in each direction of 50mm. This solution provided an 

easy and efficient observation of the notch. The digital camera was connected to a PC via a peripheral  
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b) 

 
c) 

 

a) d) 

Figure 3.10.  a) Servo-hydraulic testing machine used in fatigue tests. Details of the gripping system 

assembled for: b) single bending; c) single torsion; d) in-phase combined bending-torsion (B=2T) tests.  

  

a) b) 

Figure 3.11.  Digital monitoring system used in the detection of crack initiation and growth. Details of 

the: a) digital camera and optical device; b) micrometre driven translation stage. 
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component interconnect (PCI) board and was controlled, in a manual mode, with the Camware 32-bit 

Windows software. This computer application can be used to control all camera parameters and settings 

as well as to save and record images in a tagged image file format (TIFF). The digital camera has a high 

resolution (1392×1040 pixel) and allows exposure times in the range 5µs to 60s.  

 

In all tests, the notch was placed upside down (Figure 3.11a) and the digital monitoring system was 

located immediately below (Figures 3.11a-b). Therefore, the relative position of the notch with respect to 

the digital monitoring system was always the same, regardless of the load path applied. Apart from the 

software, a manual diaphragm incorporated into the optical device and a manual focus system were also 

used to optimise image quality. In addition, a fine layer of blue ink mixed with acetone was deposited on 

the surface of the notch allowing a more uniform reflection of light.  

 

Digital images were recorded in a systematic manner using an exposure time of 1s and were captured 

every 5×103 cycles. After crack detection, usually for surface cracks having a length of 200-300µm, the 

interval was reduced to 2×103 cycles. In the final stage of testing, the images were recorded every 1×103 

cycles. In longer tests (lives greater than about 150×103 cycles), during the crack initiation period, images 

were acquired every 10×103 cycles and after that were reduced successively to 5×103, 2×103 and 1×103 

cycles.  

 

The notch was always observed under the maximum load applied during the test which simplified the in 

situ detection of crack initiation and growth. At the time of observation, the cyclic loading was suspended 

and a static load with a magnitude corresponding to the maximum applied stress was applied. As a result, 

the crack remained open as long as necessary which contributed to easy crack detection and an accurate 

measurement of surface crack length. After crack observation and image recording, the cyclic test was 

resumed. Tests were finished before specimen separation into two pieces, more specifically, tests were 

stopped automatically by the digital controller of the testing machine when a target displacement was 

reached during the downward movement of the piston which was fixed at 7mm. The typical uncracked 

ligaments observed in tests varied between 15-25% of cross-sectional area of the specimens.   

 

The relations between the force applied by the testing machine (F) and the resultant bending (B) and 

torsion (B) moments in the specimen for the different types of tests are presented in Figure 3.12 (several 

forces and moments were intentionally omitted in those simplified free-body diagrams since they do not 

interfere on the specimen). Table 3.7 exhibits the values of the L1-L4 variables used in this research. These 

values were fixed for each test. The change in L4 was necessary to modify the ratio of the bending 

moment to torsion moment (B/T) which depends on the position of the screw in the slot (see Figures 

3.10d and 3.11b), as explained before.  

 

Figure 3.12 can also be used to establish a link between the force applied by the testing machine and the 

maximum nominal stresses acting on the specimen. In the case of the single bending tests (Figure 3.12a),  
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a) b) c) 

Figure 3.12.  Relation between the force applied by the piston of the testing machine and the resultant 

bending and torsion moments at the specimen: a) single bending; b) single torsion; c) in-phase combined 

bending-torsion tests. 

 

Table 3.7. Main dimensions used in the tests. 

 Type of test  L1 [mm] L2 [mm] L3 [mm] L4 [mm] Ratio σ/τ  

 Single bending 184.5     

 Single torsion  60.0    

 In-phase combined bending-torsion (B=2T)  60.0 125.0 62.5 4 

 In-phase combined bending-torsion (B=T)  60.0 125.0 125.0 2 

 In-phase combined bending-torsion (B=2T/3)  60.0 125.0 187.5 4/3 

 

the maximum nominal bending stress (σ) on the cross-section of the notch root and the force applied by 

the testing machine (F) can be related by Equation 3.2. 
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With respect to the single torsion tests (Figure 3.12b), the relation between the maximum nominal torsion 

stress (τ) on the cross-section of the notch root and the force applied by the testing machine can be written 

according to Equation 3.3. 
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Regarding the in-phase combined bending-torsion tests (Figure 3.12c), Equations 3.3 and 3.4 relate, 

respectively, the maximum nominal torsion and bending stresses acting on the cross-section of the notch 

root with the force applied by the testing machine. From the torsional equilibrium condition, the relation 

Rp×L4 = F×L2 can be established. In this way, the force on the screw (Rp) is given by: Rp = F × (L2/L4). 
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The ratio of the bending stress to the torsion stress (σ/τ), using the two previous equations, is defined by 

Equation 3.5. Therefore, from the values of L3 and L4 used in the tests, the ratios σ/τ for the cases B=2T, 

B=T and B=2T/3 are, respectively, equal to 4, 2 and 4/3, as listed in Table 3.7. 
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3.6. Fatigue crack front marking tests  

Complementary to the high-cycle fatigue study, additional tests were conducted to mark the crack front 

on the fracture surface of the specimens. These tests were carried out using exactly the same methodology 

described in the previous section (i.e. included the same gripping systems, loading paths, specimens, 

image acquisition, etc.). Nevertheless, in this case, the main objective was to mark the crack on the 

fracture surface of the specimens in order to understand the effect of the loading paths studied on crack 

shape. In view of this fact, at least one fatigue marking test was performed for each loading path. Table 

3.8 lists the loading details of each case.  

 

The procedure adopted to mark the crack fronts on the fracture surface of the specimen was based on the 

beach marking technique (Lynch, 2007). In particular instants of the test, the applied stress level is 

changed for several cycles and then is resumed. The change in loading conditions affects the crack 

propagation resulting in particularly well-defined progression markings on the fracture surface. In this 

case, the perturbations were caused by overload sequences applied several times during the tests. The 

number of cycles of the overload sequences (nB) was deliberated reduced throughout the test due to the 

increase in crack propagation velocity.  

 

Table 3.9 summarises the criteria used to carry out the overload sequences on the specimen. In the first 

part of the test (when the crack was a surface crack), the overload sequences were applied for surface 

crack lengths multiples of approximately 2.5mm with overload ratios (∆σB/∆σ) equal to 1.75 (i.e. 75% 

above the nominal stress range) and values of nB between 100-60 cycles. In the second part (when the  
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Table 3.8. Loading used in fatigue crack front marking tests. 

 
Specimen  
reference 

Stress amplitude,  
σa or τa [MPa] 

Mean stress,  
σm or τm [MPa] 

Stress range,  
∆σ or ∆τ [MPa] 

Stress ratio,  
R 

 B-m 195.6 206.1 401.7 0.03 

 T-m 334.1 167.0 334.1 0.03 

 B2T-m 179.1 194.0 358.1 0.04 

 BT-m 179.1 194.0 358.1 0.04 

 B2T3-m 179.1 194.0 358.1 0.04 

 

Table 3.9. Details of the fatigue crack front marking process.  

   Loading sequence and crack length details Marking nB [cycles] ∆σB/∆σ ai [mm] bi [mm] 

  

1 100 1.75 ≈ 2.5  

2 80 1.75 ≈ 5.0  

3 60 1.75 ≈ 7.5  

4 15 1.75 ≈ 10.0  

5 10 1.50  ≈ 2.0 

6 6 1.50  ≈ 2.0 

7 6 1.50  ≈ 2.0 

8 3 1.50  ≈ 2.0 

 

crack was a through crack), the crack length was measured laterally. The overload sequences were 

applied when the difference between the crack length of the last overload and the current crack length (bi) 

was roughly equal to 2.0mm. In this case, the overload ratios (∆σB/∆σ) were only equal to 1.50 and the 

number of cycles varied between 10 and 3 cycles. Moreover, in order to better evaluate the number of 

cycles applied, the loading frequency was reduced to 1Hz during the overload periods. 

 

3.7. Analysis of material microstructure 

The microstructure of the material was examined by both optical microscopy (OM) and scanning electron 

microscopy (SEM). The sample was prepared according to the recommendations of the ASTM E3 (2011) 

standard. Firstly, a piece of material was cut using a band saw machine from an extruded 20mm-diameter 

round bar perpendicularly to the tensile axis (Figure 3.13a). Then, a preliminary polishing was carried out 

using a rotary disc and wet grit silicon papers with grit sizes progressively finer (600, 1200 and 2500) in 

order to ensure a flat surface. After that, the sample was mounted in a cylindrical mould filled with 

synthetic resin (Figure 3.13b). Next, the surface of the sample was careful polished to a scratch-free 

condition using a rotary disc impregnated with diamond paste of different grades, namely 6µm and 3µm. 

The as-polished surface was successively examined with a microscope to guarantee the scratch-free 

condition. After final polishing, the sample surface was etched with nital (≈5% solution HNO3 in ethyl 

alcohol).  

  

The microstructure examination by OM was carried using a high-resolution Carl Zeiss Axiotech 100HD 

microscope (Figure 3.14a) connected to a digital camera (resolution: 1315×1033 pixel, 12 bits per colour) 
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a) b) 

Figure 3.13.  Sample for OM and SEM analyses: a) material supplied; b) sample used. 

 

  

a) b) 

Figure 3.14.  a) Optical microscope (Carl Zeiss Axiotech 100HD model); b) scanning electron 

microscope (Philips XL30 model). 

whose output was captured by a PC equipped with the Samsung free software (version 2.0). The light 

source consisted of an adjustable halogen lamp. The micrographs were taken with magnifications varying 

between 200-1000 times and were saved in a JPEG (joint photographic experts group) file format. The 

grain size measurement was obtained by applying the procedure described in the ASTM E112 (2010) 

standard. This study was performed using the open source software package ImageJ. 

  

The microstructure examination by SEM was performed with a Philips XL30 microscope (Figure 3.14b). 

The Philips XL30 is a fully computer-controlled SEM that offers a four-axis motorised stage with full 

manual override. Due to its fine electron source of the lanthanum hexaboride single crystal system, it is 

capable of very high resolutions, more specifically 3.5nm at an accelerating voltage of 30kV, which 

corresponds to magnifications up to 200×103 times. The micrographs were saved in the standard TIFF file 
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format. The images were formed by detection of secondary electrons (SE) with accelerating voltages 

(Acc. V) of 30kV, spot sizes (Spot) of 3 and magnifications (Magn) of 3×103 times.  

 

3.8. Analysis of fracture surfaces  

The fracture surfaces of the specimens used in uniaxial tensile tests, low-cycle fatigue tests, high-cycle 

fatigue tests and fatigue crack front marking tests were examined by SEM. The fracture surfaces of the 

two last tests were also examined by OM. The microscopes used in the former and latter observations 

were the ones described in the previous section which can be seen in Figure 3.14b and Figure 3.14a, 

respectively. 

 

The objective of the analysis of fracture surfaces of the uniaxial tests by SEM aimed at characterising the 

surface morphology and the failure mechanics. Regarding the low-cycle fatigue tests, the goal was to 

identify the main fatigue damage mechanisms associated with the levels of strain amplitude applied. 

Thus, specimens covering the strain amplitudes used in tests (0.4%, 1.0% and 2.0%) were analysed. With 

respect to the high-cycle fatigue tests, the examination of fracture surfaces intended to understand the 

crack initiation behaviour caused by the different load paths applied. Therefore, a specimen from each 

loading path was analysed. Table 3.10 summarises the specimens examined as well as the SEM 

parameters defined in each case. 

 

The main purpose of the analysis by OM was to obtain macro views of the fracture surfaces to understand 

the effect of the loading paths on the angles of crack initiation, topologies of fracture surfaces and  

 

 Table 3.10. Summary of fracture surfaces analysed by SEM. 

 Specimen reference  Accelerating voltage [kV] Spot size Magnification Diffraction 

� Uniaxial tensile tests     

 UT-1 10.0, 10, 5.0 2.8, 2.0, 2.0 20, 750, 750 SE 

� Low-cycle fatigue tests     

 D200 10.0 3.3 17, 74, 500 SE 

 D100 10.0 3.8 19, 500  SE 

 D040 10.0 3.3, 3.8 18, 500  SE 

� High-cycle fatigue tests     

 B-1 5.0 2.4 21, 750 SE 

 T-1 5.0 2.5 300, 500 SE 

 B2T-1 10.0 3.8, 3.8, 3.3 20, 100, 2000 SE 

 BT-1 5.0 4.2 20 SE 

 B2T3-1 10.0 3.8 20, 99, 750 SE 

� Fatigue crack front marking tests    

 B-m 5.0 2.4, 3.3, 2.5 40, 750, 1000  SE 

 T-m 10.0 3.4 20, 200, 800, 2500 SE 

 B2T-m 10.0 3.0 25 SE 

 BT-m 10.0 3.8, 3.3  21, 250 SE 

 B2T3-m 5.0 4.2  21 SE 

SE: secondary electrons 
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propagation planes, among others. Particularly in the case of the fatigue crack front marking tests, another 

objective was to observe the influence of the loading paths applied on the resultant crack shape profiles. 

These examinations were carried using the same methodologies described in Section 3.7 but, in this case, 

the magnifications defined varied between 0.8-4.5 times. 

 

Finally, in both SEM and OM analyses, the samples were sectioned perpendicularly to their longitudinal 

axis using a high-speed diamond saw. Before examination, the samples were ultrasonically cleaned in 

trichloroethylene solution for ten minutes and then in distilled water also for ten minutes. 

 

3.9. Three-dimensional laser scanning of fracture surfaces  

Different recording techniques can be used to acquire an accurate shape of an object. Among them, laser 

scanning is getting great interest due to its simplicity and speed. It analyses an object by collecting a set 

of points which are used to construct a digital three-dimensional model. Laser scanner principles are, in 

essence, triangulation based, time-of-flight based and phase-difference based. In the first case, a laser 

point (Figure 3.15a), line (Figure 3.15b) or pattern (Figure 3.15c) is projected onto an object and the 

deformation of this point, line or pattern is measured by using a visible sensor. The name of the technique 

is due to the relative positions of the projector, the sensor and the object which are configured in a 

triangular shape. In the second case, the scanner computes distances by measuring the timeframe between 

sending a short laser pulse and receiving its reflection from an object. Since the laser pulse travels with a 

constant speed, the distance between the scanner and the object can be determined. In the third case, a 

modulated continuous laser wave is used instead of a laser pulse. 

 

In this research, the triangulation based technique (Figure 3.15) was used to replicate the fracture surfaces 

of the specimens used in the fatigue crack front marking tests. This study was carried out to better 

understand the influence of the loading path on the topologies of fracture. The analyses were performed at 

the DEM/ISEC/IPC using a Roland Picza 3D Laser Scanner LPX-600 (Figure 3.16a). In order to enhance 

the data acquisition, the samples were painted with a thin layer of white paint (Figure 3.16b). The cloud 

points were determined using the plane scanning method. In this method, the object and the laser head 

move in synchronisation to produce parallel beams of light which are used to scan the object across its 

face. The precision can be controlled by increasing the number of scanned surfaces and reducing the 

pitches in height and width directions. Table 3.11 presents the scanning settings selected which aimed at 

 

 

Figure 3.15.  Triangulation scanner principle: a) point; b) line; c) pattern.  
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a) b) 

Figure 3.16.  a) Roland Picza 3D Laser Scanner LPX-600; b) typical aspect of samples after painting.  

 

Table 3.11. Scanning settings selected. 

Scanned planes Height-direction pitch [mm] Width-direction pitch [mm] 

6 (maximum) 0.2 (minimum) 0.2 (minimum) 

 

replicating the fracture surfaces as accurately as possible. The Roland Dr.Picza 3TM software was used to 

control the entire process, i.e. settings definition, data acquisition, data storage and data editing.  

 

3.10. Determination of the Paris law constants from fatigue crack front marks  

The fatigue crack propagation properties are usually obtained using a well-established procedure (BS ISO 

12108; ASTM E647) based on standard geometries, namely M(T) and C(T) specimens. However, these 

specimens cannot be easily produced when the available material has a small cross-sectional area. This is 

the case of circular shaped components, such as pins, bolts, wires, axles, shafts, etc. On the other hand, it 

is important to note that fatigue crack propagation results obtained from small cross-sectional specimens 

can differ considerably from standard specimens (Puigh, 1981; Sriharsha, 1999; Li, 2002). Therefore, 

alternative methodologies to evaluate the Paris law constants from small cross-section round bars would 

be interesting.   

 

In this research, a new mixed numerical-experimental technique (MNET), able to determine the constants 

of the Paris law in round bars from the observation of fatigue crack marks on fracture surfaces, is 

proposed. As schematised in Figure 3.17, the technique encompasses three main steps. Firstly, at least 

two crack fronts are marked on the fracture surface of the specimen and the number of cycles between 

them is counted. Secondly, a representative 3D-FE fatigue crack growth model is used to predict the 

crack shape evolution and fatigue life. Thirdly, a comparison between the numerical and experimental 

results is carried out in order to find the constants that fit best the former to the latter results.  
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The experimental fatigue crack front marking tests were carried out by Yang et al. (2006). The material 

used was the S45 carbon steel. Its chemical composition and mechanical properties are presented in 

Tables 3.12 and 3.13, respectively. The tests were performed using the 12mm-diameter and 190mm-long 

round bar specimens presented in Figure 3.18. The initial crack shape consisted of a straight edge crack 

with 1mm depth and was created using a linear cutting machine. Both ends of the specimen, with 

diameters of 15mm and lengths of 50mm, were fixed to the grips of the testing machine through     

button-head connections.  

 

A MST809 servo-hydraulic testing machine was used to apply the loading to the specimen. The tests were 

performed at room temperature, in load control, under a maximum cyclic tension of 25kN with 15Hz 

sinusoidal-wave form and stress ratio equal to 0.1. The shape and depth growth of fatigue cracks were 

monitored using a zoom stereomicroscope and crack front marking. The crack front marks were produced 

by changing the stress ratio, reducing the maximum applied load to one-half for several cycles. 

 

 

Figure 3.17.  Mixed numerical-experimental technique proposed to calculate the constants of the Paris 

law. 

 

 

Figure 3.18.  Specimen geometry used in crack front marking tests (Branco, 2012d). 

 

Table 3.12. Nominal chemical composition of S45 carbon steel (wt%).  

   C Mn Ni Cr Mo   Si P S Gu 

   0.4556 0.6490 0.0458 0.0735 0.0111  0.2310 0.0108 0.0132 0.1398 

 

 

Table 3.13. Mechanical properties of S45 carbon steel at room temperature (Yang, 2006). 

 Property   Value 

 Ultimate tensile strength   775  MPa 
 Monotonic tensile yield strength   635 MPa 
 Young’s modulus   206 MPa 
 Poisson’s ratio   0.3 
 Fracture toughness   104  MPa·m0.5 
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Figure 3.19a exhibits the typical beach marks obtained in the fatigue crack marking tests. From the 

experimental data, several visible crack shapes, at different places of cross-section, were selected. The 

selection was based on a careful analysis of crack shape in terms of symmetry. The crack fronts used in 

the determination of C and m constants (1, 2, A and B) are presented in Figure 3.19b. Table 3.14 shows 

the polar coordinates (r, θ) of each one of them measured according to the referential schematised in 

Figure 3.19a. Only half of the crack front was analysed from which seventeen points were obtained. Table 

3.15 exhibits the numbers of loading cycles applied experimentally between the different crack fronts 

 

 
 

a) b)  

Figure 3.19. a) Fracture surface (initial crack of 1.0mm, 25kN cyclic tension loading); b) sketch of the 

visible crack fronts used (Branco, 2012d). 

 

Table 3.14. Polar coordinates of the experimental crack shapes used (Branco, 2012d). 

Visible crack 
shapes 

1  
(a/D=0.253) 

2 
(a/D=0.418) 

A 
(a/D=0.299) 

B 
(a/D=0.383) 

Point, i θ [º] r (mm) θ [º] r (mm) θ [º] r (mm) θ [º] r (mm) 

1 0 3.036 0 5.020 0.000 3.597 0.000 4.598 

2 5.036 3.041 4.520 5.019 4.878 3.609 4.465 4.593 

3 10.081 3.065 8.642 5.054 9.666 3.635 8.857 4.615 

4 15.092 3.081 12.855 5.089 14.451 3.661 13.251 4.654 

5 20.065 3.121 16.951 5.133 19.235 3.700 17.644 4.694 

6 25.184 3.179 21.128 5.191 24.024 3.752 22.037 4.757 

7 30.103 3.235 25.287 5.279 28.809 3.813 26.429 4.819 

8 35.125 3.285 29.415 5.370 33.596 3.892 30.822 4.902 

9 40.068 3.364 33.558 5.469 38.382 3.978 35.215 5.004 

10 45.082 3.468 37.752 5.584 43.168 4.074 39.609 5.102 

11 50.019 3.569 41.873 5.717 47.954 4.196 44.002 5.213 

12 55.028 3.679 46.023 5.862 52.741 4.305 48.396 5.346 

13 60.008 3.809 50.116 6.024 57.525 4.448 52.788 5.482 

14 62.791 3.883 52.099 6.103 59.918 4.513 54.985 5.541 

15 65.000 3.949 54.234 6.199 62.312 4.581 57.182 5.602 

16 67.643 4.038 56.124 6.276 64.514 4.650 59.343 5.680 

17 70.060 4.109 58.068 6.381 66.717 4.718 61.505 5.752 
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Table 3.15. Number of cycles between the experimental crack fronts (Branco, 2012d). 

Crack shape combination  Number of cycles 

1-2  22953 

1-B  40474 

A-2  22953 

 

analysed. Based on the experimental data, the fatigue crack growth rate calculated in depth direction was 

given by (Yang, 2006): 

 

( ) 256.3 9109037.1 K
dN

da ∆×= −  (3.6) 

 

i.e., m = 3.256 and C = 1.9037×10-9 (da/dN [mm/cycle] and ∆K [MPa·m0.5]).  
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CHAPTER 4 

NUMERICAL PROCEDURE 
 

 

 
This chapter describes the numerical procedure. The two first 

sections present the numerical models developed to calculate 

the elastic constants of the material and to evaluate the stress 

and strain fields at the notch tip for the in-phase combined 

bending-torsion tests. The third section is concerned with the 

fatigue crack growth models implemented to study the crack 

shape evolution in notched and unnotched rectangular bars 

with corner cracks, notched and unnotched round bars with 

surface cracks, and notched and unnotched plates with 

through cracks. The three last sections address the strategies 

used to evaluate the extent of the surface region in cracked 

bodies; to develop a plane strain specimen; and to determine 

the Paris law constants from the analysis of crack front marks 

on fracture surfaces of small cross-section round bars.   
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NOMENCLATURE 

a crack length 
a0 initial crack length 
ad accumulated difference parameter 
C Paris law constant 
D diameter 
E Young’s modulus 
FB bending force 
FT torsion force 
FEA  finite element analysis 
FEM finite element method 
f i resonant frequency 
fLB1,E   first experimental longitudinal bending frequency  
fT1,E   first experimental torsional frequency  
fLB1,N  first numerical longitudinal bending frequency  
fT1,N   first numerical torsional frequency  
h, Θ stress triaxiality parameters  
IET impulse excitation technique 
L length 
LB1 first longitudinal bending resonant mode 
L i radial size of the ith element 
MNET   mixed numerical-experimental technique 
m Paris law exponent 
n notch depth 
Ni  number of elements on the ith curve 
N number of loading cycles 
r notch radius 
rP radial distance between the node P and the crack tip 
Sγ

ψ  dimensionless sensitivity of the variable ψ to the parameter γ 
T original thickness 
t reduced thickness 
T1 first torsional resonant mode 
Ti height of the ith element  
tpl, tqm transformation matrixes 
U fraction of the loading cycle in which the crack remains fully open 
W width 
ν Poisson’s ratio 
η notch angle 
σ1, σ2, σ3  principal stresses 
σij stress tensor components 
σH hydrostatic stress  
σvM von Mises equivalent stress 
λ ratio of the torsion force to the bending force 
δx, δy, δz       displacement in the x, y and z directions 
∆a, ∆amax      crack increment, maximum crack increment 
∆K, ∆Kmax    stress intensity factor range, maximum stress intensity factor range 
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4.1. Determination of elastic constants 

As mentioned in Section 3.3, the elastic constants were determined using a mixed numerical-experimental 

technique (MNET). This technique consists of three fundamental steps: firstly, the resonant frequencies 

are determined experimentally; secondly, a relation between the resultant experimental resonant 

frequencies and the values of the elastic constants is established; and thirdly, the elastic constants are 

calculated using an iterative procedure. 

 

The first step was described in detail in Section 3.3. Briefly, the experimental resonant frequencies were 

determined by applying the impulse excitation technique (IET). A thin rectangular plate of uniform 

thickness was excited by a single external impulse being the vibration addressed to a personal computer 

and processed by a frequency analyser. The geometry used was the outcome of a preliminary numerical 

study carried out to obtain the highest sensitivities of the resonant frequencies to the elastic constants as 

well as to avoid overlapping of distinct resonant frequencies. Figure 4.1 exhibits the types of geometries 

analysed which were designed taking into account the shape constraint imposed by the material provided. 

The sensitivities of the resonant frequencies to the elastic constants were defined analytically, in a 

dimensionless form, to facilitate the comparison of results. The expression used is presented in Equation 

4.1. In a literal sense, the sensitivity of the variable ψ to the independent parameter γ is denoted by Sγ
ψ 

and means that if γ is increased by 1 per cent, ψ increases by Sγ
ψ per cent. 

 

  S  

ψ
γ

γ
ψψ

γ ⋅
∂
∂=  (4.1) 

 

Each sensitivity was calculated from three distinct finite element analyses (FEA) performed using 

different values of the independent variable. The pairs of points ψ-γ obtained for each independent 

variable were fitted to a second order polynomial function. From that function, the derivative ∂ψ/∂γ was 

calculated.  

 

Table 4.1 presents the resonant frequencies (fi) for the specimen geometries studied as well as the 

sensitivity (SE
f) of the resonant frequency to the Young’s modulus (E) and the sensitivity of the resonant 

frequency (Sν
f) to the Poisson’s ratio (ν). According to the calculations, it is possible to observe that the 

resonant frequencies are significantly higher for disks and round bars than for plates. However, a great 

resonant frequency can difficult signal acquisition since its amplitude is quite low. In view of this fact, 

plates are preferable than disks or round bars.  

 

In relation to the sensitivities of the resonant frequencies to the Young’s modulus, all geometries 

produced the same result, i.e. SE
f = 0.5. Regarding the sensitivities of the resonant frequencies to the 

Poisson’s ratio, the greatest value (Sν
f = 0.17) was obtained for the disk. Nevertheless, the resonant 

frequency is relatively high which is not suitable due to the reasons quoted above. Torsion modes (i  = 2) 

of plates also have relatively high sensitivities to the Poisson’s ratio (Sν
f = -0.1105 and Sν

f = -0.1095)  
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Figure 4.1.  Types of specimen geometries analysed: a) round bar; b) rectangular cross-section plate;      

c) disk; d) half-disk; e) half-disk with hole.        

 

Table 4.1. Sensitivities of the resonant frequencies to the Young’s modulus and to the Poisson’s ratio.  

 Resonant mode, i if
E
  S  if  Sν  Frequency, fi [Hz] 

 Round bar     

 1 0.5 -0.0093 23.938×103 

 2 0.5 -0.0257 52.120×103 

 Rectangular plate (T = 1mm)    

 1 0.5 0.0067 2.131×103 

 2 0.5 -0.1095 4.258×103 

 3 0.5 0.019 5.895×103 

 Rectangular plate (T = 2mm)    

 1 0.5 0.0055 4.242×103 

 2 0.5 -0.1105 8.241×103 

 3 0.5 0.015 11.631×103 

 Disk     

 1 0.5 -0.0823 20.292×103 

 2 0.5 0.1700 33.894×103 

 3 0.5 -0.065 45.950×103 

 Half-disk    

 1 0.5 -0.0070 26.236×103 

 2 0.5 -0.0871 34.976×103 

 3 0.5 -0.011 65.787×103 

 Half-disk with hole    

 1 0.5 -0.0649 25.785×103 

 2 0.5 -0.0089 27.746×103 

 3 0.5 -0.002 44.405×103 
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along with resonant frequencies relatively low. Therefore, this kind of geometry is undoubtedly the best 

choice since it combines high sensitivities and low frequencies. It is important to refer that the increase in 

plate thickness has a reduced influence on the sensitivities but increases significantly the resonant 

frequencies. In order to reduce the magnitude of measurement errors, higher thicknesses are more 

interesting. Besides, regardless of the thickness, resonant frequencies are not overlapped.  

 

The second step, as stated above, consists of establishing a relation between the experimental resonant 

frequencies and the values of the elastic constants. In a wider sense, resonant frequencies are influenced 

by different parameters, such as material properties, specimen geometry and boundary conditions. 

Assuming free-free boundary conditions, an isotropic material and a perfect rectangular plate, resonant 

frequencies (fi) can be written as a function of the following variables   

 

( ) ,,,,, TWLEff i ρν=  (4.2) 

 

being ρ the density, L the length, W the width and T the thickness. As is well-known, the FEM can be 

used to replicate the experimental tests. Nevertheless, resonant frequencies obtained numerically are 

affected by the type of element and by the average element size. In order to minimise these effects, 

sensitivity studies of the resonant frequencies to the type of element and to the average element size were 

done. The FE mesh used is exhibited in Figure 4.2a and was created with the pre-processor GeoStar 256K 

included in the commercial finite element package COSMOS/M (2001). It was developed using regularly 

spaced solid isoparametric elements (50×18×2 elements). The material was assumed to be homogeneous, 

linear elastic and isotropic. A perfect rectangular parallelepiped shape was assumed. The specimen was 

supported by low rigidity springs in order to simulate free-free boundary conditions. Figures 4.2b and 

4.2c present, respectively, the first longitudinal bending (LB1) and the first torsional (T1) resonant modes 

obtained numerically using the FE model described. 

 

Regarding the third step, the main objective is the calculation of the elastic constants. As referred to in 

Section 3.3, the method used here was based on a sensitivity analysis of the resonant frequencies to the 

material properties (Lauwagie, 2004; Antunes, 2008; Rébillat, 2011). According to the results presented 

in Table 4.1, the highest sensitivity of the resonant frequency to the Poisson’s ratio was reached for the 

second resonant mode, which is the first torsional mode (Figure 4.2c). Therefore, this resonant mode was 

selected to determine the value of the Poisson’s ratio. With respect to the Young’s modulus and bearing 

in mind that sensitivities are not affected by the vibratory frequencies, it was evaluated from the first 

bending mode (Figure 4.2b).  

 

The iterative procedure adopted to calculate the elastic constants from the resonant frequencies obtained 

experimentally is schematically depicted in Figure 4.3. In this procedure, the initial values of both elastic 

constants (E(0) and ν(0)) are defined by the user. However, it is important to note that the final values are 

independent of the initial ones. Then, the first numerical longitudinal bending frequency (fLB1,N) and the 

sensitivity of LB1 to E (∂fLB1/∂E) are calculated and subsequently used to update the value of the Young’s  
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a) b) c) 

Figure 4.2.  a) Three-dimensional finite element mesh; b) first longitudinal bending resonant mode (f1);          

c) first torsional resonant mode (f2). 

 

 

Figure 4.3.  Algorithm of the iterative procedure used to calculate the elastic constants. 

modulus (E(p+1)). After that, the first numerical torsional frequency (fT1,N) and the sensitivity of T1 to ν 

(∂fT1/∂ν) are calculated which allows an update of the value of the Poisson’s ratio (ν(p+1)). These steps are 

repeated until convergence is achieved. One of the most interesting advantages of the present approach is 

the limited number of iterations required to obtain the elastic constants. The permanent and successive 

update of E and ν accelerates the convergence.  

 

4.2. High-cycle fatigue tests 

Fatigue failure is caused by extremely localised phenomena. This implies that the main local parameters, 

such as loading sequence, geometrical details, material properties, etc., must be determined as accurately 

as possible in order to achieve reliable fatigue life predictions. Among other methods, the FEM can 

provide a precise description of the local stress-strain state. As a result, it is extremely helpful to predict 

the region most susceptible to fatigue crack initiation. Thus, representative finite element models of the 

specimen geometries and loading paths studied experimentally in high-cycle fatigue tests (see Section 

3.5) were developed to assess the local stress-strain states in the vicinity of the critical regions.   

 

The physical models developed to replicate the single bending, single torsion and in-phase combined 

bending-torsion tests can be seen, respectively, in Figures 4.4a-c. The bending moments were applied by 

two forces parallel to the axis of the specimen with the same magnitude and opposite directions. The 

directions and points of application of this pair of forces were selected to ensure the opening of the notch,  
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a) 

 

b) 

 

c) 

Figure 4.4.  Physical models of the: a) single bending test; b) single torsion test; c) in-phase combined 

bending-torsion test. 

i.e. the notch root was subjected to a positive bending stress. The torsion moments were created by a 

couple of forces with the same magnitude and opposite directions acting on a plane normal to the 

longitudinal axis of the specimen. The forces, in both cases, were applied at one end of the specimen 

while the other was fixed. The B/T ratios were defined by changing the value of λ which was equal to 

1/2, 1 and 3/2 for the cases B=2T, B=T and B=2T/3, respectively (Figure 4.4c). With respect to the 

specimen used in the single torsion tests, the cross-section was assumed to be constant (Figure 4.4b). The 

ends of the specimen were simplified due to their remote position relatively to the notch root.   

 

Figure 4.5 schematises the procedure adopted to create the FE mesh. Firstly, a set of sixteen primary 

points were defined using Cartesian coordinates (Figure 4.5a). Secondly, the points were connected by 

straight lines. Thirdly, a new set of secondary points located at the surface of specimen was added. The 

geometric relation between the primary and secondary points is depicted in Figure 4.5b. In practice, as 
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Figure 4.5.  Schematic presentation of finite element mesh generation: a) primary points; b) relation 

between primary and secondary points; c) volumes of notched region.  

illustrated to the points 4 and 4’, the z-coordinates of the secondary points were placed on the surface of 

the specimen. Fourthly, new curves were created by joining the secondary points. Fifthly, from the 

straight lines and from the curves at the surface, seven volumes were defined (Figure 4.5c). Then, the 

three volumes above the notch, not depicted in the figure, were modelled. The following step was the 

generation of the unnotched part of the specimen which was done in a similar way. Next, all existing 

volumes were meshed. After that, the other three quarters of the specimen were generated by symmetry. 

Finally, the boundary conditions and loadings were defined for each case.  

 

The FE mesh was developed parametrically which enabled the study of different notch depths (b) and 

notch radii (r). It was created with the pre-processor GeoStar 256K included in the commercial FEM 

package COSMOS/M (2001) using 3D 8-node isoparametric hexahedrical elements. The assembled 

model, exhibited in Figure 4.6a, had 99823 nodes and 76608 elements. Figures 4.6b and 4.6c present 

magnifications of the notched region and of its middle-section, respectively. The mesh density resulted 

from a trade-off between accuracy and efficient computation. As can be seen, it is extremely refined near 

the notch region in order to achieve accurate results in that zone. In contrast, at remote positions, a coarser 

mesh was developed to reduce the computational effort.  

 

The mesh was optimised in a systematic manner. The methodology adopted here was based on the 

principle that the stress field tends to stabilise with mesh refinement. In view of this fact, the starting 

point was a large mesh which was successively refined in the more sensitive regions. The initial mesh 

density is presented in Table 4.2 (N1 to N8 represent the number of elements on the curves identified in 
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Figure 4.6.  Finite element mesh: a) assembled model; b) detail of the notched region; c) detail of the 

middle-section of the notched region (Branco, 2012e). 

 

Table 4.2. Initial and final densities of the finite element mesh.  

  Curve N1 N2 N3 N4 N5 N6 N7 N8  

  Initial number of elements 6 6 12 12 6 6 12 6  

  Final  number of elements 16 8 9 9 5 4 16 13  

 

Figures 4.5a-b and 4.6a). The optimum value of elements in each curve, for the different loading paths 

studied, was determined by performing independent simulations. For a given curve, the number of 

elements varied within the interval 2-24, whilst the number of elements on the other curves remained 

constant. The parameter analysed, which is expected to be representative of the stress field, was the ratio 

of the von Mises equivalent stress (σvM) to the maximum principal stress at the notch (σ1). The von Mises 

equivalent stress was computed from the following equation 

 

( ) ( ) ( ) ( )[ ] 2/1 2222 2 2 6
2

1
ZYXZXYYYZZZZXXYYXXvM σσσσσσσσσσ +++−+−+−=  (4.3) 

 

being σij the components of the stress tensor. Figure 4.7a shows the evolution of σvM/σ1 with the number 

of elements on the curve N3 for the different loading paths studied. As observed, these ratios converge 

asymptotically to constant values. In view of this fact, the suitable number of elements on a given curve 

was calculated as the value from which the variation of the ratios for two consecutive analyses (i.e. with k 

and k+1 elements on the curve) was less than 0.35%. Figure 4.7b exhibits the variation of the σvM/σ1 ratio 

with the number of elements on the curve N3 for the different loading cases studied. From the results, it is 

possible to conclude that the variations decrease continuously towards zero with the number of elements; 
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and that the optimum value of elements on a given curve depends on the loading path. In order to simplify 

the numerical procedure, only a single mesh was adopted. The final number of elements is summarised in 

Table 4.2 and was defined as the maximum value found in the five loading situations for each curve.  

 

The optimised mesh was subjected to a careful sensitivity analysis. Figure 4.8 presents the dimensionless 

sensitivities of the σvM/σ1 ratio to the number of elements on the curves N1-N8 for the different loading 

paths calculated using Equation 4.1. The small sensitivities obtained in the calculations, regardless of the  

 

       

a) 

 

b)            

Figure 4.7.  a) Evolution of σvM/σ1 with the number of elements on the curve N3; b) variation of σvM/σ1 

with the number of elements on the curve N3. 
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Figure 4.8.   Dimensionless sensitivities of the σvM/σ1 ratio to the number of elements on the curves Ni. 

loading case, are clear indicator of an optimised mesh. Nevertheless, as expected, the curves that define 

the mesh density along the notch (N3, N4 and N7) are the most sensitive to the number of elements. This is 

reflected in greater values of dimensionless sensitivity. On the contrary, the curves away from that region 

are naturally less influent, as evidenced by the smaller dimensionless sensitivities. 

 

The material was assumed to be homogeneous and isotropic with a linear regime described by its 

Poisson’s ratio and Young’s modulus. The numerical simulations were performed using the commercial 

FEM package COSMOS/M (2001).  

 

4.3. Modelling of crack shape evolution  

In the present study, the simulation of crack shape evolution was carried out by employing an automatic 

three-dimensional finite element technique (Smith, 1989; Lin, 1999). This approach, as stated in Section 

2.7, comprises five main steps cyclically repeated as long as necessary. Firstly, a FE model with a 

representative crack shape is developed (Figure 4.9a). Secondly, the displacement field of the crack front 

nodes is computed (Figure 4.9b). Then, the stress intensity factors along the crack front are calculated 

(Figure 4.9c). After that, an adequate crack growth model is applied to define the crack front advances 

from which a new provisional crack front is established (Figure 4.9d). Finally, the corner and 

intermediate nodes are moved to their final positions using a cubic spline in order to enhance the crack 

front definition (Figure 4.9e). Due to the continuous repetition of the previous steps, the accuracy of each 

calculation must be optimised; otherwise errors propagate into the new steps leading to unreliable results. 

 

The cracked geometries analysed here are illustrated in Figure 4.10 and encompassed unnotched and 

notched rectangular bars with corner cracks (Figures 4.10a-b); unnotched and notched round bars with  
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Figure 4.9.   Schematic presentation of the 3D-FE fatigue crack growth technique used: a) definition of 

the crack front; b) calculation of the displacement field of crack front nodes; c) calculation of stress 

intensity factors along the crack front; d) calculation of nodal advances along the crack front;                   

e) relocation of corner and intermediate nodes of the crack front. 

 

 

Figure 4.10.   Geometries studied: a) rectangular bar with corner crack; b) notched rectangular bar with 

corner crack; c) round bar with surface crack; d) notched round bar with surface crack; e) plate with 

surface crack; f) notched plate with surface crack; g) plate with through crack; h) notched plate with 

through crack. 
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surface cracks (Figures 4.10c-d); unnotched and notched plates with surface cracks (Figures 4.10e-f); and 

unnotched and notched plates with through cracks (Figures 4.10g-h). The values of the physical variables 

used in the simulations, such as length (L), width (W), thickness at the crack plane (t), diameter (D), notch 

radius (r) and notch depth (n) are summarised in Table 4.3.   

 

Figure 4.11 presents the physical models considered in the simulations. Symmetry conditions were used 

to reduce the computational time. For the geometries of Figures 4.10a-b, only half of the specimen was 

modelled (Figures 4.11a-b) by applying symmetries with respect to the y-axis (δy = 0). For the geometries 

of Figures 4.10c-f, only a quarter of the specimen (Figures 4.11c-f) was simulated. In these cases, 

symmetries with respect to the y-axis (δy = 0) and z-axis (δz = 0) were imposed. Regarding the geometries 

of Figures 4.10g-h, only one eighth of the specimen (Figures 4.11g-h) was modelled by defining 

symmetries with respect to the x-axis (δx = 0), y-axis (δy = 0) and z-axis (δz = 0). Additionally, in all cases, 

the movements along the x-axis (δx = 0) and along the z-axis (δz = 0) of the surfaces at the end of the 

specimens were restrained (from the grey line to the top) to simulate the constraint imposed by the high  

 

  

Figure 4.11.   Physical models: a) rectangular bar with corner crack; b) notched rectangular bar with 

corner crack; c) round bar with surface crack; d) notched round bar with surface crack; e) plate with 

surface crack; f) notched plate with surface crack; g) plate with through crack; h) notched plate with 

through crack. 



 

156 

 

rigidity of the machine grips. The cracks were assumed to be planar, normal to the longitudinal axes of 

the specimens and existing in their middle-section. The material was defined homogeneous, isotropic and 

with a linear elastic behaviour. Dynamic loadings were applied at the top of the specimens. The remote 

tension and bending stresses were equal to 100MPa with a stress ratio R = 0.1.  

 

The finite element meshes were developed based on the methodology schematised in Figure 4.12. This 

approach, as recommended in Section 2.7.1, combines a cracked region and an uncracked region; and 

 

Table 4.3. Physical dimensions used in simulations of crack shape evolution.  

 Geometry L [mm] W [mm] t [mm] D [mm] r [mm] n [mm] 

 Rectangular bar with corner crack 100-200 15 5-15    

 Notched rectangular bar with corner crack  100-200 15 5-15  0.5-2 0.5-4 
 Round bar with surface crack 100-200   5-20   
 Notched round bar with surface crack 100-200   5-20 0.5-2 0.5-4 
 Rectangular plate with surface crack 100-200 15 5-30    
 Notched plate with surface crack 100-200 15 5-30  0.5-2 0.5-4 
 Plate with through crack 100-200 25 4-15    
 Notched plate with through crack 100-200 25 4-15  0.5-2 0.5-4 
 

 

Figure 4.12.   Methodology used to create the FE meshes for crack shape modelling: a) standard 20-node 

isoparametric element; b) collapsed 20-node isoparametric element; c) collapsed 20-node isoparametric 

element with intermediate nodes at quarter-point positions; d) crack front definition; e) spider web mesh; 

f) spider web and transition meshes; g) assembled model.  
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avoids the insertion of the crack a posteriori into the mesh of the uncraked model. The mesh was started 

from the crack, as depicted in Figure 4.12d. The crack front was divided into eighteen corner nodes 

(Figure 4.12d) and seventeen intermediate nodes. Either Cartesian or polar coordinate systems can be 

adopted. The spider web mesh consisted of three concentric rings with five elements arranged 

surrounding the crack tip (Figure 4.12e). The collapsed 20-node isoparametric element with intermediate 

nodes moved to quarter-positions (Figure 4.12c) was used in the first ring. The standard 20-node 

isoparametric element (Figure 4.12a) was employed in the other two rings. The layers of elements of the 

spider web mesh were oriented orthogonally to the crack front. A transition mesh aiming at promoting a 

smooth transition from a refined region to a relatively coarse region was added (Figure 4.12f). In general, 

this is achieved by creating a rectangular pattern. Here, the rectangular pattern was implemented 

combining standard 20-node isoparametric and collapsed 20-node isoparametric (Figure 4.12b) elements. 

The regular mesh (Figure 4.12g) was developed using the standard 20-node isoparametric element.   

 

The pattern of Figure 4.13c was used to create the spider web and transition meshes. The angular 

discretisation of the elements surrounding the crack tip was equal to 36º. As postulated in Section 2.7.1, 

the minimum number of elements is five (Murti, 1986) with an angle about 30º (Guinea, 2000). The radial 

sizes and heights of those elements were controlled by the variables L1-L4 and T1-T3, respectively. In the  

 

 

Figure 4.13.   Definition of the: a) number of elements of the unnotched geometries; b) number of 

elements of the notched geometries; c) radial size of the elements of spider web and transition meshes.  
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unnotched geometries, the values of the variables T1-T3 remained constant, being adopted the relation                       

T1 = T2 = T3 = (L1 + L2 + L3) sin 36º. In the notched geometries, T1 and T2 were defined in the same way. 

However, the value of T3 could be adjusted in order to make the mesh more flexible and adaptable to the 

notch size. The density of the regular mesh was specified from the variables N1-N5, which symbolise the 

numbers of elements on the curves (Figures 4.13a-b). The sum N1+N2 was constant throughout each 

simulation. The values N1 and N2 were automatically calculated as a function of the crack length. For the 

notched geometries, the mesh was complemented by the values of N4 and N5, which define the level of 

refinement near the notch. The former represents the number of elements between the transition mesh and 

the top of the notch, whilst the latter defines the number of elements in depth. These two variables change 

from case to case and are calculated in function of the notch radius (r) and notch depth (n).  

 

Figure 4.14 presents a typical assembled FE mesh created for the notched plate with through crack. The 

values of the N1-N5 variables, as well as the minimum numbers of elements and nodes used for the 

different geometries studied, are summarised in Table 4.4. 

 

 

Figure 4.14.  Typical FE mesh used in fatigue crack growth simulations for notched plates with through 

cracks (r  = 1.75mm, n = 2mm, t = 7.5mm, L = 200mm, 2W = 50mm): a) general overview; b) detail of the 

notch; c) detail of the crack tip and the spider web mesh.  
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Table 4.4. Minimum numbers of elements and nodes used in FE meshes.  

 Geometry N1 + N2 N3 N4 N5 Elements Nodes 

 Rectangular bar with corner crack 10 12   7032 68743 

 Notched rectangular bar with corner crack  10 12 4-10 2-10 7232 71743 

 Round bar with surface crack 10 12   7152 72631 

 Notched round bar with surface crack 10 12 4-10 2-10 7490 76210 

 Rectangular plate with surface crack 10 12   7032 68743 

 Notched plate with surface crack 10 12 4-10 2-10 7232 71743 

 Plate with through crack 10 12   7199 72842 

 Notched plate with through crack 10 12 4-10 2-10 7357 74469 

 

The stress intensity factors along the crack front were calculated using the extrapolation method with two 

points. In such a method, as summarised in Figure 4.15a and explained in detail in Section 2.7.2, the K 

values are determined for two points (A and B) and extrapolated to the crack tip (r = 0). In this research, 

the K values were estimated considering only the two first terms of the analytical expression for the 

displacement normal to the crack plane (see Equation 2.191). Therefore, for an arbitrary node P (Figure 

4.15b), located on the upper face of the crack (θ = π), the K value is defined by  

  

   v '
8

 p××= E
r

K
p

π  (4.7)

 

being rp the radial distance between the node P and the crack tip, vp the crack opening displacement and 

E’ the modified Young modulus which is expressed as E’ = E/(1-ν2) in plane strain state and E’ = E in 

plane stress state. In order to simulate the linear elastic r-0.5 stress singularity, the intermediate nodes of 

the elements surrounding the crack tip were moved to quarter-point positions (Figure 4.15b).  

 

       

Figure 4.15.  Schematic determination of stress intensity factors along the crack front using the 

extrapolation method with two points; b) identification of nodes moved to quarter-point positions. 
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The crack front was approximated by a cubic spline. In essence, it is a piecewise function that passes 

through a set of points (k), usually named knots. Therefore, for each interval, a cubic spline was 

established by applying the following expression 
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being xi and f(xi) the pairs of knots and f  ’’ (xi) the second order derivatives. This expression contains only 

two unknown variables (the second order derivatives at the end of each interval) which can be calculated 

by Equation 4.9. Thus, the application of the previous equation to all interior knots implies k-1 

simultaneous equations and k+1 unknown second derivatives. However, because this is a natural cubic 

spline, the second derivatives at the end knots are zero and therefore the problem reduces to k-1 equations 

and k-1 unknown variables. Besides, the resulting system of equations is tridiagonal which is particularly 

quick and easy to solve.   
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The local crack increments of corner nodes for mode I loading, as schematised in Figure 4.16a, were 

calculated assuming that the propagation occurs along the direction normal to the crack front. For an 

arbitrary corner node i, the normal crack increment for the j th iteration, derived from the Paris law (see 

Section 2.7.3), can be determined from the following equation 
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being ∆ai
(j) the crack growth increment of the i th node for the j th iteration, ∆a(j)

max the maximum crack 

growth increment for the j th iteration, ∆Κi
(j) the SIF range of the i th node for the j th iteration, ∆Κ(j)

max the 

maximum SIF range for the j th iteration, and m the Paris law exponent. The provisional corner nodes were 

used to draw a cubic spline on which both the corner and intermediate nodes were placed (Figure 4.16b). 

By comparing the provisional and final positions of the corner nodes, it is possible to conclude that the 

application of the cubic spline causes significant differences. These results were obtained for a notched 

circular bar with surface crack (r  = 1.98mm, n = 2mm, D = 16mm, L = 100mm) using nine corner nodes 

uniformly disposed along the crack front and admitting a maximum crack advance ∆amax = D/50. Besides, 

it is important to note that, as addressed in Section 2.7.1, the cubic spline promotes a smoother crack front  
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Figure 4.16.  a) Calculation of local crack increments; b) positioning the corner and intermediate nodes by 

using a cubic spline function.  

definition than the classical polygonal line (dashed line of Figure 4.16a) resulting in more accurate 

estimations of stress intensity factors as well as improved predictions of fatigue crack growth. Moreover, 

it is also important to note that the polygonal line approach is unable to ensure an automatic simulation 

since the end nodes are not properly located. In order to proceed, it would be essential a manual 

repositioning of these two nodes. On the other hand, the positions of the interior nodes cannot be 

controlled because each node moves freely. Contrarily, with a cubic spline, the simulation is fully 

automatic and the new corner nodes can be placed in any location provided that a criterion is defined. For 

example, in the case of Figure 4.16b, the new crack front maintains a uniform disposition of layers, i.e. 

the corner nodes are place in specific locations separated from each other by 90/8º. 

 

The number of cycles for the j th iteration, derived from the Paris law and assuming a crack increment 

normal to the crack front, was calculated by the following equation 
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being C the Paris law constant. The effect of crack closure on fatigue crack growth was studied by 

considering an effective stress intensity range (∆Keff). For the i th node of the j th iteration, it was defined by 

Equation 4.12, where Ui represents the fraction of the load cycle for which the crack remains fully open. 
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Due to the variation of ∆K with the crack growth, an Euler integration algorithm was implemented in 

order to calculate the fatigue life. The number of cycles was computed by Equation 4.13.  
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4.4. Extent of surface region in cracked geometries 

Finite elements meshes used in fatigue studies have a strong influence on the computational time and on 

the quality of the numerical results. An adequate modelling of the surface regions, among other aspects, is 

particularly important to perform accurate simulations. As is well-known, surface regions involve 

complex singularities (Bazant, 1979; Benthem, 1977). At corner points the singularity although existing is 

usually different from r-0.5. Moreover, a relatively fast transition from plane stress state at the surface to 

plane strain state at interior positions is expected to occur. For example, the presence of lateral notches is 

expected to contribute to a faster transition; and surface phenomena such as crack closure, residual 

stresses, etc., have more intense effects near the surface. Therefore, in order to define FE models more 

sensitive and adjusted to the reality, it is necessary to know in advance the possible extent of the surface 

regions with the aim to incorporate them into the design.  

 

The extent of the surface region was studied for unnotched and notched rectangular bars with corner 

cracks (Figures 4.10a-b); unnotched and notched round bars with surface cracks (Figures 4.10c-d); and 

unnotched and notched plates bars with through cracks (Figures 4.10g-h). This set of geometries was 

selected to cover a broad range of engineering situations. Note that it encompassed rectangular bars, 

round bars and plates as well as corner cracks, surface cracks and through cracks. The methodology 

adopted to carry out this study is schematised in Figure 4.17. Firstly, realistic crack shapes were obtained 

by employing the crack growth modelling technique described in the previous section (Figure 4.17a). 

After that, a representative crack front was selected (Figure 4.17b) with which a highly refined mesh was 

created for further analysis. Next, the stress field at the crack front (Figure 4.17c) was computed from the 

highly refined FE model developed. Finally, the values of triaxiality along the crack front (Figure 4.17d) 

were calculated and subsequently examined to quantify the extent of the surface region.  

 

The fatigue crack growth simulations performed to obtain realistic crack shapes aimed at studying 

different geometrical variables, propagation conditions and loading types. Tables 4.5, 4.6 and 4.7 

summarise, respectively, the various cases analysed for the unnotched and notched rectangular bars with 

corner cracks (Figures 4.10a-b); unnotched and notched round bars with surface cracks (Figure 4.10c-d); 

and unnotched and notched plates with through cracks (Figure 4.10g-h).  
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The refined meshes were developed in a similar way to the ones used in fatigue crack growth simulation, 

i.e. incorporating a spider web mesh, a transition mesh and a regular mesh. However, these new meshes 

were created with a high level of refinement towards the surface which was fundamental to accurately 

quantify the existing stress gradients in that region. Figure 4.18 shows a typical refined finite element 

mesh used (r  = 1.5mm, n = 2mm, D = 16mm, L = 200mm). As can be seen, the crack front was divided into 

three main regions (Figure 4.18c). The most refined region (Region I), placed near the surface, consisted 

of 26 layers non-uniformly distributed. The smallest element size had 1µm. The sizes of the other 

elements were defined from the relation 1×1.1(i-1)
 µm where i is the layer number (i  = 1 at the surface).  

 
 

       

Figure 4.17.  Methodology used to calculate the extent of the surface region: a) FCG simulation;               

b) creation of a refined 3D-FE mesh; c) calculation of the stress components at the crack                    

front; d) computation of triaxiality parameters and analysis of results.  

 

Table 4.5. Details of FCG simulations of the unnotched and notched rectangular bars with corner cracks.  

Case W [mm] r [mm] n [mm] ν m a0 [mm] Loading 

Lateral notched specimen with corner crack (L = 100mm; t = 12mm; initial crack shape: quarter-circular)  

01, 02, 03 6, 7, 8 1.5 2 0.3 3 0.5 T 

04, 05, 06 10 0.75, 1.0, 1.5 2 0.3 3 0.5 T 

07, 08, 09, 10 10 0.5 0.75, 1, 2, 3 0.3 3 0.5 T 

11, 12 8 1.5 2 0.3 2, 4 0.5 T 

13, 14 6 1.5 2 0.3 3 0.5 B, B+T 

15, 16 10 0.75 2 0.29, 0.31 3 0.5 T 

17 10 0.5 4 0.3 3 0.5 T 

18, 19, 20, 21, 22, 23, 24 5 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.5 T 

25, 26, 27, 28, 29, 30, 31 7 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.5 T 

32, 33, 34, 35, 36, 37, 38 10 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.5 T 

39, 40, 41, 42, 43, 44, 45 14 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.5 T 

        

Unnotched bar with corner crack (L = 100mm; t = 12mm; initial crack shape: quarter-circular) 

46, 47, 48, 49 5, 7, 10, 14   0.3 3 0.5 T 
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Table 4.6. Details of FCG simulations of the unnotched and notched round bars with surface cracks.  

Case t [mm] r [mm] n [mm] ν m a0 [mm] Loading

Lateral U-notched round bar with surface crack (L = 100mm; initial crack shape: semi-circular)  

01, 02, 03 16 0.5, 0.65, 0.75 2 0.3 3 1 T 

04, 05 8 0.5 2 0.3 3 1 B, B+T 

06, 07, 08 8, 9, 10 0.75 2 0.3 3 1 T 

09, 10 8 0.75 1, 1.5 0.3 3 1 T 

11, 12 8 0.5 2 0.3 2, 3 1 T 

13, 14, 15 12 1, 1.5, 2 2 0.3 3 1 T 

16, 17 8 1.5 2 0.29, 0.31 3 1 T 

18, 19, 20, 21, 22, 23, 24 6 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.75 T 

25, 26, 27, 28, 29, 30, 31 8 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.75 T 

32, 33, 34, 35, 36, 37, 38 12 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.75 T 

39, 40, 41, 42, 43, 44, 45 16 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.75 T 

        

Unnotched round bar with surface crack (L = 100mm; initial crack shape: part-circular) 

46, 47, 48, 49 6, 8, 12, 16   0.3 3 0.75 T 

 

 
Table 4.7. Details of FCG simulations of the unnotched and notched plates with through cracks.  

Case t [mm] r [mm] n [mm] ν m a0 [mm] Loading

Lateral U-notched plate with through crack (L = 100mm; 2W = 50mm; initial crack shape: straight) 

01, 02, 03 5 0.5, 1, 1.5 2 0.3 3 1 T 

04, 05, 06 5, 7.5, 10 0.5 1 0.3 3 1 T 

07, 08 5 0.5 2 0.3 2, 3 1 T 

09, 10 5 0.5 1 0.3 3 1 B, B+T 

11, 12 5 0.5 1 0.29, 0.31 3 1 T 

13, 14 5 0.5 3, 4 0.3 3 1 T 

15 2.5 1 4 0.3 3 1 T 

16, 17, 18, 19 10 0.5, 1, 1.5, 2 2 0.3 3 0.5 T 

20, 21, 22 2.5, 5, 7.5 0.5 2 0.3 3 0.5 T 

23, 24, 25 5 0.5 1.5, 2.5, 4 0.3 3 0.5 T 

26, 27 7.5 0.5 2 0.3 2, 4 0.5 T 

28, 29 10 1.5 2 0.29, 0.31 3 0.5 T 

30, 31, 32, 33, 34, 35, 36 2.5 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.5 T 

37, 38, 39, 40, 41, 42, 43 5 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.5 T 

44, 45, 46, 47, 48, 49, 50 7.5 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.5 T 

51, 52, 53, 54, 55, 56, 57 10 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 2 0.3 3 0.5 T 

        

Crack closure (U1 = 0.96, U2 = 0.98) 

58 5 0.5 1 0.3 3 1 T 

        

Crack closure (U1 = 0.88, U2 = 0.9, U3 = 0.92, U4 = 0.94, U5 = 0.96, U6 = 0.98) 

59 5 0.5 1 0.3 3 1 T 

        

Unnotched plate with through crack (L = 100mm; 2W = 50mm; initial crack shape: straight) 

60, 61, 62, 63 2.5, 5, 7.5, 10   0.3 3 1 T 
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Figure 4.18.  Typical refined FE mesh used to evaluate the extent of the surface region for the notched 

round bar with surface crack: a) general overview; b) detail of notch; c) detail of layer refinement.  

The intermediate region (Region II) had 14 layers uniformly distributed with longitudinal sizes of 50µm. 

The larger region (Region III) was created with 10 layers, also uniformly distributed, which filled the rest 

of the crack front. 

 

The stress field at the crack front was computed using the application GeoStar 256K included in the 

commercial FEM package COSMOS/M (2001). For each crack front node (corner and intermediate), the 

stress tensor employed to calculate the extent of the surface region was obtained with respect to a local 

coordinate system (X’Y’Z’) whose axes X’ and Y’ (Figure 4.19) were normal and tangent to the crack 

front, respectively. The local stress tensor (σ’ pq) was determined by applying the transformation law for 

second order Cartesian tensors given by the following equation 

 

 
lmqmplpq tt σσ   ' =  (4.14)
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Figure 4.19.  Relation between the global and local Cartesian coordinate systems defined to calculate the 

stress tensors of the crack front nodes.  

being tpl and tqm transformation matrixes, σlm the stress tensor given by the software with respect to the 

global coordinate system (XYZ), and θ the rotation angle between the global and local Cartesian 

coordinate systems. The transformation matrix for a rotation about the Y-axis, as schematised in the 

previous figure, is given by Equation 4.15. A specific algorithm, written using the Visual Basic language, 

was developed to compute the rotated stress tensors and principal stresses of all corner and intermediate 

nodes of the crack front.   
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The extent of the surface region (Figure 4.17d) was evaluated from stress triaxiality parameters. In this 

study, the widely used Θ and h stress triaxiality parameters were selected. The former, probably the most 

used in the scientific literature, is defined as the ratio of the average hydrostatic stress (σH) to the 

equivalent von Mises stress (σvM) and can be expressed by (Chandrakanth, 1995) 
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being σ1, σ2 and σ3 the principal stresses. The latter represents the ratio of the out-of-plane stress to the 

sum of the in-plane normal stress components multiplied by the Poisson’s ratio and can be written 

mathematically by (MacDonald, 1990) 

 

)( ZZXX
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σσν

σ
+

=  (4.17)

 

where σXX, σYY and σZZ are the normal stresses (calculated with respect to the local coordinate system).  
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4.5. Definition of a plane strain specimen 

Stress state is a main parameter within fracture mechanics since it influences different phenomena, 

namely those involving diffusion (hydrogen embrittlement, high temperature fatigue crack growth), 

plastic deformation (ductile fracture, plasticity induced crack closure), and brittle fracture. Besides, in the 

near-surface regions of a crack front, the plane stress state dominates whilst at interior positions the plane 

strain state prevails. The isolation of the plane stress state is usually achieved with relatively thin 

specimens while the study of plane strain situations is performed with relatively thick specimens.  

 

A pure plane strain specimen would be quite interesting to study all the above-mentioned phenomena. A 

simple way to develop such a specimen is the inclusion of lateral side grooves. This approach has been 

followed by different authors in order to introduce triaxial stress states. Mostovoy et al. (1967) developed 

a tapered double cantilever beam (TDCB) with lateral side grooves and the particularity of having 

constant K. Freed et al. (1966) studied side grooved specimens and proposed a modified expression to 

calculate fracture toughness. The specimen thickness (B) in the expression of the ASTM E399 standard, 

was replaced by (B×BN)1/2, where BN is the net thickness at the narrowest part of the side-groove. 

MacDonald et al. (1990) suggested the use of side grooves for fracture toughness specimens in order to 

meet the crack front straightness requirements. Compact tension specimens (C(T)) with lateral side 

grooves were used to study creep crack growth in a nickel-base superalloy at 600ºC (Branco, 1999). An 

acceleration of crack growth was observed compared to normal C(T) specimens. Josefson et al. (2000) 

used four-point-bend specimens with V-lateral side grooves to study the effect of variable amplitude 

loading on crack closure level and fatigue crack growth rate under plane strain conditions. Trattnig et al. 

(2008) studied the effect of stress triaxiality ratio on fracture behaviour by using different geometries, 

namely C(T) specimens with lateral side grooves and circumferentially cracked cylindrical specimens. 

However, since there are no standards defining the lateral grooves, all of them have been fixed 

empirically. Therefore, the main objective here is the development of a grooved geometry able to isolate 

the plane strain state at a controlled level. 

 

The geometry selected was a standard middle-crack tension specimen with lateral U-shaped (Figure 

4.20b) or V-shaped (Figure 4.20c) grooves. The lateral grooves were introduced to isolate the plane strain 

state. Both configurations are easy to produce and ensure high reproducibility. Such features are 

particularly important from an experimental point of view. The main geometrical variables are identified 

in Figure 4.20. The reduced thickness (t) is given by the relationship t = T-2n. Note that U-shaped grooves 

can be considered a particular case of V-shaped grooves with a notch angle (η) equal to zero. 

 

The methodology adopted was identical to the one described in the preceding section (Figure 4.17) but 

conducted in the modified M(T) specimen. Firstly, realistic crack shapes were obtained by using an 

automatic fatigue crack growth technique. In order to achieve efficient computation, the physical model 

consisted of only one eighth of the specimen (Figure 4.11h). The simulations were carried out from 
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Figure 4.20.  a) Grooved M(T) specimen; b) U-shaped groove; c) V-shaped groove (Branco, 2010a).  

straight cracks with an initial depth (a0) equal to 0.5mm and covered different notch geometries in terms 

of radius, depth and angle, different elastic constants and different fatigue crack growth rates. Table 4.8 

lists the cases studied. The refined meshes, as exhibited in Figure 4.21, followed the approach set out in 

Section 4.4. As can be seen, the three levels of refinement towards the thickness were created (Figure 

4.21d). Particularly the rather fine mesh placed at the surface was extremely important to capture the high 

stress gradients of that region. The stress field was computed using the application GeoStar 256K 

included in the commercial FEM package COSMOS/M (2001). Then, the stress components of the crack 

front nodes were calculated with respect to a local coordinate system (Figure 4.19) through Equation 

4.14. Finally, the Θ and h stress triaxiality parameters were computed for all corner and intermediate 

nodes of the crack front. From the results collected, alternative specimen geometries with different levels 

of triaxiality were proposed. 

 

Many studies of fatigue have been performed in M(T) specimens assuming straight crack shapes. In view 

of this fact, a parallel study was conducted using straight crack shapes (i.e. no fatigue crack propagation 

was carried out). This was important to understand the effect of the crack shape on the final dimensions of 

the plane strain specimen. Figure 4.22 depicts the three main steps of the simplified procedure. The first 

step (Figure 4.22a) consists of creating a refined mesh with a straight crack shape. After that, the stress 

  



 

169 

 

Table 4.8. Details of FCG simulations (L = 200mm, 2W = 50mm, a0 = 0.5mm). 

Case t = T-2n [mm] r [mm] n [mm] ν m η [º] 

1, 2, 3, 4 2.5, 5, 7.5, 10 0.75 2 0.3 3 0 

5, 6, 7, 8 5 0.5, 0.75, 1, 1.5 2 0.3 3 0 

9 [M(T)] 5   0.3 3  

10 5 0 2 0.3 3 90 

11, 12, 13, 14 5 0.5 0.5, 0.75, 1.5, 4 0.3 3 0 

15, 16, 17 5 0.5 2 0.3 3 0, 60, 90 

18, 19 5 0.5 2 0.3 2, 4 0 

20, 21 2.5 0.75 2 0.28, 0.32 3 0 

22 1.25 1.98 2 0.3 3 0 

23, 24, 25, 26, 27, 28, 29, 30 2.5, 5, 7.5, 10, 15, 20, 30, 40 0.5 1 0.3 3 0 

31, 32, 33, 34, 35, 36, 37, 38 2.5, 5, 7.5, 10, 15, 20, 30, 40 0.5 2 0.3 3 0 

39, 40 , 41, 42, 43, 44, 45, 46 2.5, 5, 7.5, 10, 15, 20, 30, 40 0.5 4 0.3 3 0 

47, 48, 49, 50, 51, 52, 53, 58 2.5, 5, 7.5, 10, 15, 20, 30, 40  0.75 1 0.3 3 0 

59, 60, 61, 62, 63, 64, 65, 66 2.5, 5, 7.5, 10, 15, 20, 30, 40 0.75 2 0.3 3 0 

67, 68, 69, 70, 71, 72, 73, 74 2.5, 5, 7.5, 10, 15, 20, 30, 40 0.75 4 0.3 3 0 

75, 76, 77, 78, 79, 80, 81, 82 2.5, 5, 7.5, 10, 15, 20, 30, 40 1.0 1 0.3 3 0 

83, 84, 85, 86, 87, 88, 89, 90 2.5, 5, 7.5, 10, 15, 20, 30, 40 1.0 2 0.3 3 0 

91, 92, 93, 94, 95, 96, 97, 98 2.5, 5, 7.5, 10, 15, 20, 30, 40 1.0 4 0.3 3 0 

99, 100, 101, 102, 103 M(T) 10, 15, 20, 30, 40   0.3 3  

104 14.5 0.5 2 0.3 3 0 

 

 

Figure 4.21.  Typical FE meshes used: a) general overview; b) crack tip; c) notch plane; d) refinement 

towards thickness (L = 200mm, 2W  = 50mm, r   = 1.5mm, n = 3mm, t = 5mm, η = 0º). 
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Figure 4.22.  Simplified methodology for defining a plane strain specimen assuming straight crack 

shapes: a) development of a refined finite element mesh; b) calculation of stress components at the crack 

front; d) computation of triaxiality parameters and analysis of results. 

components of the crack front nodes are computed (Figure 4.22b). Note that Equation 4.14 is not 

necessary since both global and local coordinate systems are coincident. Finally, the triaxiality parameters 

are calculated and analysed to propose alternative plane strain specimens (Figure 4.22c).  

 

4.6. Determination of the Paris law constants from fatigue crack front marks  

As explained in Section 3.10, the mixed numerical-experimental technique proposed to determine the 

Paris law constants from fatigue crack marks on fracture surfaces of small cross-section round bars 

encompasses three main steps (Figure 3.17). Briefly, the first step requires the marking of at least two 

crack fronts on the fracture surface of the specimen and the counting of the number of cycles between 

them. The second step aims at developing a representative numerical model able to simulate the crack 

shape evolution and fatigue life. Finally, the numerical results are fitted to the experimental results in 

order to determine the Paris law constants. 

 

The first step, devoted to the experimental work, was described in detail in Section 3.10. The numerical 

simulation of crack shape evolution and fatigue life (see Figure 3.17) was carried out using the 3D-FE 

FCG technique described in Section 4.3. The physical model is presented in Figure 4.23a. The geometry 

of the ends was simplified taking into consideration their remote position relatively to the crack front. 

Movements along x and z (δx = δz = 0) were restrained to simulate the constraint imposed by the high 

rigidity of the machine grips (grey surface at the top of Figure 4.23a). The crack was assumed to be plane, 

normal to the axis of the specimen, and existing in its middle-section. Therefore, mode I loading is 

expected along the whole crack front. The material was defined homogeneous, isotropic and with linear 

elastic behaviour. Dynamic loadings created by a couple of forces applied at one end of the specimen 
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Figure 4.23.  Mixed numerical-experimental technique proposed to determine the constants of the Paris 

law: a) physical model; b) finite element mesh (Branco, 2012d). 

were defined. Figure 4.23b shows the typical finite element meshes used. The crack front was divided 

into seventeen corner nodes and sixteen intermediate nodes. A refined region nearby the free surface of 

the round bar consisting of four layers was included. The intermediate nodes of the elements surrounding 

the crack tip were moved to quarter-point positions. The assembled model had 71743 nodes and 7232 

elements. The stress intensity factors at corner nodes were computed using the extrapolation method with 

two points from the points A and B depicted in Figure 4.23b. A plane strain condition was assumed for all 

positions, except at the free boundary where plane stress state prevailed. The local crack increments, 

given by Equation 4.10, were calculated assuming that the propagation occurred along the direction 

normal to the crack front. The crack front was approximated by a cubic spline. The fatigue cycles were 

evaluated with an Euler integration algorithm (Equation 4.13).   

 

The determination of the Paris law constants (third step of Figure 3.17) was done by applying adequate 

dependent parameters. In this case, a new dependent parameter, named accumulated difference (ad), was 

proposed to predict the m exponent. This parameter, defined by Equation 4.18, analyses the entire crack 

front and is equal to zero only when all crack front nodes are overlapped with the experimental crack 

shape. The main variables are identified in Figure 4.24, being di the difference between the numerical and  
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Figure 4.24.  Definition of the ad dependent parameter used to predict the crack shape (Branco, 2012d). 

experimental coordinates of the i th node of the crack front and n the number of corner nodes at the crack 

front. In theory, the suitable m value is the one that minimises the ad parameter. The C constant was 

found by equalising the numerical and the experimental numbers of cycles.  
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CHAPTER 5 

EXPERIMENTAL RESULTS 
 

 

 
This chapter details the experimental findings. In the first 

section, the microstructure of the material is analysed. The 

second section presents the results of the monotonic uniaxial 

tests. The third section tackles the calculation of the elastic 

constants. The fourth section is devoted to the low-cycle 

fatigue tests and the analysis of the fracture surfaces by SEM. 

The last section is concerned with the in-phase combined 

bending-torsion tests. It encompasses the analysis of initiation 

sites, fatigue crack paths, surface crack angles, topologies of 

fracture and crack front profiles. The determination of the 

fatigue life in terms of a-N and S-N curves as well as the 

prediction of the fatigue life using different methods available 

in the literature are also presented here. 
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NOMENCLATURE 

a crack length 
a0 El Haddad parameter 
a/b, a’/b’ crack aspect ratio 
ASTM American Society of Testing and Materials 
b fatigue strength exponent 
c fatigue ductility exponent 
C Paris law constant 
d distance from the notch root  
DLM  critical distance for the line method 
E Young’s modulus 
EN fatigue prediction error  
FEM finite element method 
FFT fast Fourier transformation 
fLB1,E   first experimental longitudinal bending frequency  
fT1,E   first experimental torsional frequency  
fLB1,N  first numerical longitudinal bending frequency  
fT1,N   first numerical torsional frequency  
k’ cyclic hardening coefficient 
LM line method 
m Paris law exponent 
n’  cyclic hardening exponent 
N number of loading cycles 
Ne, Np experimental life, predicted life 
Nf, 2Nf number of cycles to failure, number of reversals to failure 
N0.5 number of cycles in which the crack reached a surface length equal to 0.5mm 
PD potential drop 
R, Rσ  stress ratio 
Rε strain ratio 
RA reduction area 
t time 
Tσ scatter band index  
YPE yield point elongation 
∆ε, ∆ε/2   strain range, strain amplitude   
∆εe, ∆εp  elastic strain range, plastic strain range   
∆εvML/2  local von Mises equivalent strain amplitude   
∆σ, ∆σ/2   stress range, stress amplitude   
∆σvML/2  local von Mises equivalent stress amplitude 
∆K stress intensity factor range 
∆K th range of the threshold value of the stress intensity factor 
∆K th0 range of the threshold value of the stress intensity factor for R=0 
∆Wp plastic strain energy range per cycle  
∆Wt total strain energy range per cycle  
εR elongation  
εf’ fatigue ductility coefficient  
θp principal direction 
ν Poisson’s ratio 
σa, σm normal stress amplitude, mean normal stress  
τa, τm shear stress amplitude, mean shear stress  
σf’ fatigue strength coefficient 
σij stress tensor components 
σUTS ultimate tensile strength  
σvML,max   maximum local von Mises equivalent stress 
σvML,min   minimum local von Mises equivalent stress 
σYS, σYS’ yield strength, cyclic yield strength  
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5.1.  Microstructure of the material   

As referred to in Chapter 3, DIN 34CrNiMo6 steel combines deep hardenability, high ductility, toughness 

and strength. It has high fatigue and creep resistance and is often used where severe service conditions 

exist (ASM, 2000) and when high strength is required. These features make it ideal for critical structural 

applications, such as aircraft components, high pressure vessels for nuclear power plants, automobile 

components, among others. The optimum characteristics to address the different demands are achieved by 

a set of standard heat treatments which are summarised in Table 5.1.  

 

The final microstructure has a preponderant role in mechanical properties (ASM, 2000). In essence, it 

primarily consists of a martensitic matrix with small amounts of ferrite, bainite and some retained 

austenite. A martensitic microstructure is formed when the steel cools faster than the critical cooling rate 

for martensitic formation. Bainite is formed through the decomposition of austenite to acicular ferrite and 

carbides above the martensitic start temperature. The two primary forms of bainite are upper bainite and 

lower bainite. In the former, the carbides are typically located between the acicular ferrite whilst in the 

latter the carbides tend to precipitate at an inclined angle to the major growth direction or longitudinal 

axis of the acicular ferrite grains (Tartaglia, 2008). 

 

Figure 5.1a presents the microstructure of the DIN 34CrNiMo6 steel studied here, which was obtained by 

optical microscopy from a sample polished and etched with nital (see Section 3.7). The micrograph 

illustrates the grain boundaries and the non-uniform distribution of precipitates. As can be seen, the 

material has a fine microstructure mainly composed of martensite and lower bainite. Martensite appears 

lighter and bainite is etched darker in optical micrograph. The average grain size obtained using the 

procedure described by the ASTM E112 standard (2010) was about 8µm. Besides, relatively high 

inclusions with sizes ranging from 2-3 to 30µm were found. A representative example is denoted by the  

 

Table 5.1. Standard heat treatments applied to DIN 34CrNiMo6 steel (ASM, 2000). 

  Heat treatment Description  

  Normalise Heat to 845-900ºC and hold for a time period that depends on thickness; air cool.   

  Anneal  Heat to 830-860ºC and hold for a time period that depends on thickness; furnace cool.  

  Harden Heat to 800-845ºC and hold 15 minutes for each 25mm of thickness; oil quench to below 65ºC, or 
quench in fused salt to 200-201ºC, hold 10 minutes, and then air cool to below 65ºC.   

 

  Temper Hold at least 30 minutes at 200-650ºC; air cool. Temperature and time at temperature depend on 
desired final hardness. 

 

  Spheroidise Preheat to 690ºC and hold 2 hours, increase the temperature to 745ºC and hold 2 hours, cool to 
650ºC and hold 6 hours, furnace cool to about 600ºC, and finally air cool to room temperature. An 
alternative method is to heat to 730-745ºC, hold several hours and then furnace cool to room 
temperature.  

 

  Stress relieve After straightening, forming or machining, parts may be stress relived at 650-675ºC.   

  Bake To avoid hydrogen embrittlement, plated parts must be baked at least 8 hours at 185-195ºC as 
soon after plating as possible.   
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a) 

 

b) 

Figure 5.1. Microstructure of the DIN 34CrNiMo6 high strength steel from a sample polished and etched 

with nital: a) optical microscopy; b) scanning electron microscopy (Branco, 2012b). 

white arrow. Another example is shown in Figure 5.1b, which shows a micrograph obtained by scanning 

electron microscopy from the same sample (see Section 3.7). The presence of inclusions in DIN 

34CrNiMo6 steel is well-known and has been reported in several studies. The typical inclusions found are 

sulphide inclusions, globular oxides, fragmented aluminia inclusions, and elongated silicate inclusions 

(Murty, 1975; Lee, 1999; Costa, 2001; Tartaglia, 2008). In the present research, despite several attempts, 

the chemical composition of the inclusions was not clearly identified. 

 

5.2. Uniaxial tensile tests 

The monotonic response of the DIN 34CrNiMo6 steel was investigated using two specimens. The tests 

were conducted according to the protocol described in the ASTM E8 (2011) standard (see Section 3.2). 

Figure 5.2 exhibits the tensile stress-strain curves of the two specimens. As can be seen, the behaviour of 
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the two curves is very similar, except for the non-uniform plastic deformation region (ε > 10%). Besides, 

it is also possible to observe a yield point elongation (YPE), i.e. an area in which an increase in strain 

occurs without an increase in stress. The difference in strain between the upper yield strength (first zero 

slope) and the onset of uniform strain hardening is about 1.93%.  

 

The monotonic mechanical properties obtained are summarised in Table 5.2. These results are in good 

agreement with those reported in the literature (ASM, 2000a) for nearly identical conditions. However, 

the yield strength and the ultimate tensile strength values determined in this research are slightly higher 

than the reference values which can be associated with the different tempering temperatures. With regard 

to the elongation and reduction of area, the findings are in line with the literature.  

 

The tensile fracture surfaces were examined by SEM (specimen UT1). Figures 5.3a-b display two 

micrographs taken at low and high magnifications, respectively. Figure 5.3a shows considerable plastic 

deformation before fracture. The plastic deformation in the centre of the plane of minimum cross-section, 

at the neck location, promotes the nucleation and growth of voids to a critical dimension. Necking starts 
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Figure 5.2. Monotonic stress-strain curves obtained in the tensile tests.  

 
Table 5.2. Mechanical properties of the DIN 34CrNiMo6 high strength steel. 

  Mechanical property Value [Experimental] 

a Value [ASM, 2000a] b 

  Yield strength, σYS [MPa] 967 860 

  Ultimate tensile strength, σUTS [MPa] 1035 1020 

  Elongation, εR [%] 18 20 

  Reduction of area, RA [%] 58 60 
a Oil quenching: 850-880ºC, Tempering: 660ºC                                            b Oil quenching: 845ºC, Tempering: 650ºC  



178 

 

 

a) 

 

b) 

Figure 5.3. Tensile fracture surfaces obtained by SEM: a) low magnification; b) high magnification. 

when the stress-strain curve has passed the maximum point where plastic deformation is no longer 

uniform. Nevertheless, the typical ductile cup-and-cone fracture surface is not observed. In this case, the 

fracture is a mixed mechanism involving microvoid coalescence and cleavage. Figure 5.3b presents 

several inclusions found in the tensile fracture surface which are disseminated throughout the material. It 

has been observed that these particles, when located at the surface, came off during the polishing process. 

This is totally undesirable and inevitably leads to a reduction in fatigue strength.   

 

5.3. Determination of the elastic constants using a resonant technique 

The elastic constants were obtained using a mixed numerical-experimental technique that comprises the 

experimental determination of the resonant frequencies; the establishment of relations between resonant 

frequencies and elastic constants; and the calculation of the final values (see Sections 3.3 and 4.1). The 
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resonant frequencies were determined by applying the impulse excitation technique (see Section 3.3). The 

tests were conducted according to the protocol described in the ASTM E1876 (2009) standard using a 

rectangular cross-section specimen (see Figure 3.5). 

 

Figure 5.4a shows a typical output signal recorded for the rectangular cross-section specimen. As can be 

seen, there is no evidence of damping. The frequency spectrum was obtained by fast Fourier 

transformation (FFT) and is presented in Figure 5.4b. The peaks represent the first longitudinal bending 

(fLB1,E) and the first torsional (fT1,E) resonant frequencies, whose values are listed in Table 5.3. 
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b) 

Figure 5.4. a) Output signal versus time; b) response in frequency domain obtained by FFT analysis for 

the rectangular cross-section specimen (Branco, 2009c). 
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The relation between resonant frequencies and elastic constants, as referred to in Section 4.1, was carried 

out using the FEM. A perfect rectangular parallelepiped shape was modelled with regularly spaced 3D 

isoparametric elements (see Figure 4.2a). The elastic constants were calculated using an iterative 

procedure based on sensitivity analyses of the resonant frequencies to the material properties (see Figure 

4.3). Table 5.3 presents the evolution of elastic constants and numerical resonant frequencies (fLB1,N and 

fT1,N) during the iterative process. As can be seen, this algorithm ensures a fast convergence to the final 

solution. In both cases, only three iterations were required. 

 

A sensitivity analysis of the elastic constants to the material density, experimental resonant frequencies, 

and specimen dimensions was performed. The sensitivities (Sγ
ψ) were calculated analytically, in a 

dimensionless form, to facilitate the comparison of results (see Equation 4.1). Each value of sensitivity 

was obtained from three different values of the independent variable, i.e. an independent variable with no 

perturbation; with a perturbation of -1%; and with a perturbation of +1%. Then, the three pairs of points 

ψ-γ were fitted to a second order polynomial function which was used to obtain the ∂ψ/∂γ derivate. After 

that, the dimensionless sensitivity was calculated. Figure 5.5 shows the final values obtained with respect 

to the Young’s modulus (black series) and Poisson’s ratio (grey series).   

 

Table 5.3. Calculation of the elastic constants of the DIN 34CrNiMo6 high strength steel.  

  Elastic constant Iteration: 0 1 2 

  Young’s modulus, E11 [GPa]  210.000 209.721 209.762 

  Numerical resonant frequency, fLB1,N [Hz]  3644.17 3641.39 3641.76 

  Experimental resonant frequency, fLB1,E [Hz]  3641.76 3641.76 3641.76 
     

  Poisson’s ratio, ν12  0.30000 0.29605 0.29630 

  Numerical resonant frequency, fT1,N [Hz]  5915.85 5920.38 5920.41 

  Experimental resonant frequency, fT1,E [Hz]  5920.41 5920.41 5920.41  
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Figure 5.5. Dimensionless sensitivities of the elastic constants to the material density, experimental 

resonant frequencies and specimen dimensions (Branco, 2009c). 
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According to the figure, the greater dimensionless sensitivities of the Young’s modulus are caused by the 

first longitudinal resonant frequency, specimen thickness, specimen length and material density. Besides, 

it is possible to observe that their orders of magnitude are very similar. Therefore, the accuracy of the 

predicted Young’s modulus depends on the accuracy of these variables. The other ones, namely the first 

torsional resonant frequency and the specimen width, are less important in this context.  

 

Regarding the dimensionless sensitivities of the Poisson’s ratio, the greater values are produced by the 

experimental resonant frequencies, specimen length and specimen width. In these cases, the 

dimensionless sensitivities are particularly high. It means that accurate predictions of ν require an 

absolute control of these input variables. On the contrary, the specimen thickness and the material density 

play a secondary role in this calculation.  

 

5.4. Low-cycle fatigue tests  

The cyclic deformation behaviour of the DIN 34CrNiMo6 high strength steel was studied using the 

geometry exhibited in Figure 3.6. These tests were conducted according to the protocol described in the 

ASTM E606 (2004) standard (see Section 3.4). The single step test (SST) method was adopted. Eight 

tests were performed under fully-reversed strain-controlled conditions (Rε = -1) and five were carried out 

under fully-reversed stress-controlled conditions (Rσ = -1).  

 

Figures 5.6a-b show the stress-strain response for two strain amplitudes (∆ε/2), respectively ∆ε/2 = ±2% 

and ∆ε/2 = ±0.8%. A strain-softening phenomenon occurs in both cases, i.e. the uncontrolled stress 

decreases with the increasing number of cycles until a stable state is achieved. In Figure 5.6a, the stable 

behaviour is observed after 40-50 cycles; in Figure 5.6b, it occurs after about 500 cycles. Therefore, in 

this steel, the stable cyclic state is reached generically for life ratios lower than 40% of the total number 

of cycles to failure. In view of this fact, the hysteresis loops at the half-life were chosen as representative 

of the stable behaviour. 

 

Both the stress range (∆σ) and the total strain range (∆ε) were calculated from the hysteresis loops. The 

stress range was defined as ratio of the stable load range to the original circular cross-sectional area of the 

specimen. The total strain range was related to the elastic and plastic strain ranges by the formula   

 

pe εεε ∆+∆=∆  (5.1)

 

being ∆εe and ∆εp the elastic strain range and the plastic strain range, respectively. The former, applying 

the Hooke’s law, is given by Eq. 5.2; the latter, replacing Eq. 5.2 in Eq. 5.1, is defined by Eq. 5.3. 

 

( )Ee σε ∆=∆  (5.2) 

( )Ep σεε ∆−∆=∆  (5.3) 
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Figure 5.6. Stress-strain hysteresis loops: a) ∆ε/2 = ±2.0%; b) ∆ε/2 = ±0.8% (Branco, 2012e). 

Table 5.4 summarises the main information obtained from the low-cycle fatigue tests performed in this 

research. In the following subsections, the cyclic deformation response, the fatigue strength and fatigue  
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Table 5.4. Results of low-cycle fatigue tests (Branco, 2012b). 

 Specimen 
reference 

Stress                
amplitude,                
∆σ/2 [MPa] 

Total strain 
amplitude,                      
∆ε/2 [%] 

Elastic strain 
amplitude,               
∆εe/2 [%] 

Plastic strain 
amplitude,                
∆εp/2 [%] 

Number of                
cycles to               
failure, Nf 

Number of       
reversals to 
failure, 2Nf 

 D200 891.8 2.003 0.425 1.578 131 262 

 D150 869.0 1.503 0.414 1.089 240 480 

 D125 831.6 1.254 0.396 0.858 321 642 

 D100 796.8 1.004 0.380 0.624 767 1 534 

 D080 750.6 0.806 0.358 0.448 1 219 2 438 

 D060 726.6 0.607 0.346 0.261 2 523 5 046 

 D050 697.5 0.512 0.332 0.180 5 140 10 280 

 D040 675.3 0.413 0.322 0.091 13 378 26 756 

 T635 635 .0 0.303 0.303 - 56 181 112 362 

 T600 600.0 0.286 0.286 - 196 724 393 448 

 T580 580.0 0.277 0.277 - 138 769 277 538 

 T560 560.0 0.267 0.267 - 142 690 285 380 

 T540 540.0 0.257 0.257 - 299 787 599 574 

D_ _ _: fully-reversed strain-controlled tests                                               T_ _ _: fully-reversed stress-controlled tests 

 

ductility properties, the shape of the hysteresis loops, the fracture surface morphologies and the fatigue 

mechanisms are examined.  

 

5.4.1 Cyclic stress-strain response 

The cyclic stress curves versus the number of cycles at fixed strain amplitude, in a semi-log scale, are 

shown in Figure 5.7a. Regardless of the strain amplitude, a gradual cyclic softening behaviour is 

observed. The softening behaviour identified here agrees with the empirical rule proposed by Smith 

(1963), in which metals with σUTS/σYS < 1.2, in general, cyclically soften (σUTS/σYS = 1.07). Besides, it is 

clear that the higher is the strain amplitude, the lower is the rate of softening. On the other hand, a rapid 

drop in stress amplitude is observed when failure is imminent.  

 

The cyclic stress response of the material can also be evaluated by plotting the stress amplitude against 

the life ratio (N/Nf). As can be seen in Figure 5.7b, this representation comprises a rapid initial softening 

region taking nearly 5-10% of the life ratio; followed by a region characterised by a progressive decrease 

in stress amplitude up to 90-95% of the life ratio; and a short region with a rapid drop in stress 

culminating in fatigue failure.  

 

A convenient method of describing the stable material response is the cyclic stress-strain curve (Ramberg, 

1943). This curve can be represented by 
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 ∆+∆=∆ σσε  (5.4)

 

being k’ the cyclic hardening coefficient and n’ the cyclic hardening exponent. Generally, such a curve 
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b) 

Figure 5.7. Evolution of the stress amplitude with the: a) number of cycles; b) life ratio for different strain 

amplitudes (Branco, 2012b).  

can be drawn by connecting the tips of stable hysteresis loops for different strain amplitudes of          

fully-reversed strain-controlled tests. The stable hysteresis loops as well as the cyclic stress-strain curve 

obtained in this study are presented in Figure 5.8. As can be seen, the tips of the stable hysteresis loops 

are very close to the curve, either for ascending or descending branches. Nevertheless, the former are 

better fitted than the latter. In any cases, the Ramberg-Osgood model (Eq. 5.4) satisfactorily describes the  
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Figure 5.8. Cyclic stress-strain curve obtained by connecting the tips of stable hysteresis loops for 

different strain amplitudes of fully-reversed strain-controlled tests (Branco, 2012e).  

stabilised hysteresis loops. The k’ and n’ constants, as first proposed by Morrow (1965), can be related by 

a power law 
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 ∆
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being ∆σ/2 the stress amplitude and ∆εp/2 the plastic strain amplitude. Figure 5.9 plots the stress 

amplitude against the plastic strain amplitude in a log-log scale. As can be observed, the function is able 

to fit the experimental data. In this research, the unknown variables were obtained by linear regression 

using the least square method. A relatively high correlation coefficient was found (r   = 0.982). The k’ and 

n’ values are summarised in Table 5.5.  

 

Figure 5.10 compares the cyclic curve and the monotonic curve (Figure 5.2) obtained here. It is evident 

that the cyclic curve lies above the other, which indicates cyclic softening behaviour. It is also clear that 

the cyclic yield strength (σYS’) is smaller than the monotonic yield strength (σYS). Regarding the 

monotonic curve, almost ideal elastic perfect-plastic behaviour is observed in this range. The degree of 

cyclic softening with respect to the monotonic stress-strain curve was defined by a simple expression 
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σ

σσ −=  (5.6)

  

being σa
1 the stress amplitude in the first cycle and σa the stress amplitude at the half-life. The degree of 

cyclic softening versus the strain amplitude is plotted in Figure 5.11. According to the results presented, it 
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Figure 5.9. Relationship between cyclic stress amplitude and elastic strain amplitude (Branco, 2012e). 
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Figure 5.10. Monotonic and cyclic stress-strain curves of DIN 34CrNiMo6 (Branco, 2012b). 

 

Table 5.5. Cyclic stress-strain curve parameters of DIN 34CrNiMo6 high strength steel. 

  Property   Value 

  Cyclic hardening coefficient, k’ [MPa]  1361.6 

  Cyclic hardening exponent, n’   0.1041 
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Figure 5.11. Degree of softening versus strain amplitude.  

can be concluded that the degree of softening initially increases rapidly with the strain amplitude and then 

gradually decreases (∆ε  >  0.52). A similar trend was observed from the analysis of both the monotonic 

and cyclic curves obtained by Pape et al. (2007). The steep increase in the degree of softening for lower 

strain amplitudes occurs in both cases as well as the progressive reduction for higher amplitudes. 

Nevertheless, the decrease in the degree of softening is more intense in the present case.   

 

As is well-known, the cyclic stress-strain curve describes the relation between the stable stress and stable 

strain amplitudes but it is not able to describe the shape of the hysteresis loops. However, several 

phenomena in cyclic behaviour can be explained from the analysis of the hysteresis loop shapes. The first 

analytical studies on hysteresis loop shapes were reported by Masing (1926). A material exhibits    

Masing-type behaviour when the hysteresis loop shapes can be obtained from the cyclic stress-strain 

curve (Equation 5.4) magnified by a factor of two (Equation 5.7). For such materials, the upper branches 

form a unique curve when the compressive tips of the stable hysteresis loops of different strain 

amplitudes are moved to a common origin defined by the maximum compressive stress. Non-Masing 

materials are those whose behaviour differs from the above description.  
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Figure 5.12 presents the Masing curve computed from Equation 5.7 and the stable hysteresis loops for 

various strain amplitudes in relative coordinates (i.e. the compressive tips of the stable hysteresis loops 

are made to coincide). The cyclic stress-strain curve is also plotted for comparison purposes. Although the 

upper branches do not form a unique curve, it is possible to conclude that the Masing curve describes 

satisfactorily the upper branches of the stable hysteresis loops.  
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The master curve is an alternative way to examine the closeness of a material to the ideal Masing-type 

behaviour (Lefebvre, 1984). It is obtained by matching the linear response of the upper branches of the 

stable hysteresis loops obtained at different strain amplitudes. Its equation, regarding to an auxiliary 

coordinate system (∆ε*, ∆σ*) with its origin at the smallest linear portion, can be written in the form 
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where k* and n* are determined from the experimental data. Figure 5.13 exhibits the master curve of the 

material studied in this research. The unknown constants (k* and n*) were calculated by the least square 

method and are summarised in Table 5.6. A symmetric lower branch (dashed line) was also drawn for the 

stable hysteresis loop of ∆ε = 4%. The area between the dashed line and the corresponding full line 

indicates the deviation from the ideal Masing-type behaviour. As can be observed, this area is residual, 

which demonstrates that the Masing-type behaviour can be assumed. Besides, it tends to decrease for 

smaller total strain ranges.  
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Figure 5.12. Cyclic stress-strain curve obtained by connecting the compressive tips of the stable 

hysteresis loops of different strain amplitudes (Branco, 2012b). 

 

Table 5.6. Master curve parameters of DIN 34CrNiMo6 high strength steel. 

  Property   Value 

  Master curve hardening coefficient, k* [MPa]  1384.1 

  Master curve hardening exponent, n*   0.1123 
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Figure 5.13. Master curve obtained by matching the upper branches of hysteresis loops of different strain 

amplitudes (Branco, 2012b). 

 

5.4.2 Low-cycle fatigue life and low-cycle fatigue properties 

The first stress-based approach to fatigue was carried out by Wöhler (1871). Since then, fatigue data have 

been presented in log-log scales. The relation between stress amplitude (∆σ/2) and number of reversals to 

failure (2Nf) can be written in the form (Basquin, 1910) 

  

( )b
ff N  ' 2 

2
σσ =∆  (5.8)

 

being σf’ the fatigue strength coefficient and b the fatigue strength exponent. As is well-known, Eq. 5.8 in 

a log-log scale leads to a straight line, as illustrated in Figure 5.14. Generally, the unknowns are evaluated 

by a best fit technique from the experimental data. The first constant (σf’) is the interception of the plot at 

2Nf = 1 and the other (b) is the slope of the plot. In the present research, the fatigue strength constants 

were obtained by linear regression using the least square method. A relatively high correlation coefficient 

was found (r  = 0.987). The σf’ and b values are summarised in Table 5.7. The elastic component of strain, 

in uniaxial stress state, can be obtained from the Basquin relationship (Eq. 5.8) and Eq. 5.2. It leads to 
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being ∆εe/2 the elastic strain amplitude and E the Young’s modulus. Based on an energetic argument, 

Morrow (1965) suggested a simple rule to relate the fatigue strength exponent to the cyclic hardening 
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Figure 5.14. Stress amplitude versus number of reversals to failure.  

 

Table 5.7. Fatigue strength properties of DIN 34CrNiMo6 high strength steel. 

  Property  Value 

  Fatigue strength coefficient, σf
’ [MPa] 1183.7 

  Fatigue strength exponent, b -0.0545 

 

exponent (Eq. 5.10). The prediction (b ≈ -0.06842) is relatively close but not sufficiently precise. Note 

that the error is about 20%. In view of this fact, such a rule is not applicable in the case of this material.   
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Strain-based approaches, in essence, establish a relation between the elastic or plastic strain amplitude 

and fatigue life. For low-cycle fatigue (∆εp > ∆εe), as first observed by Coffin and Manson (Coffin, 1954; 

Manson, 1954), the plastic strain amplitude (∆εp/2) and the number of reversals to failure can be 

expressed in the following form   
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where εf’ and c are the fatigue ductility coefficient and the fatigue ductility exponent, respectively. This 

equation, in a log-log scale, leads to a straight line, as shown in Figure 5.15. The unknowns are evaluated 

by a best fit technique from the experimental data. The first constant (εf’) is the interception of the plot at 

2Nf  = 1 and the other (c) is the slope of the plot. In this study, the fatigue ductility constants were obtained 
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by linear regression using the least square method. A relatively high correlation coefficient was found       

(r  = 0.997). The εf’ and c values are summarised in Table 5.8. A similar relation to that of Eq. 5.10 was 

proposed by Morrow (1965) to relate c and n’ (Eq. 5.12). The predicted value (c ≈ -0.6579) is relatively 

close. The difference, in this case, is about 8%. However, in general, the correlation between 

experimental and predicted exponents is rather weak.  
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The fatigue resistance relationship in terms of total strain amplitude (Eq. 5.13) can be obtained by adding 

the elastic and plastic components, given by Eq. 5.9 and Eq. 5.11, respectively. Figure 5.16 plots the total 

strain amplitude against the number of reversals to failure. The fatigue strength-life (Eq. 5.9) and fatigue 

ductility-life (Eq. 5.11) curves are also exhibited. The transition point (NT), defined as the life at which 

both the elastic and plastic strain amplitudes are equal (see Eq. 2.28), is relatively small (NT  = 3038). For  
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Figure 5.15. Plastic strain amplitude versus number of reversals to failure. 

 

Table 5.8. Fatigue ductility properties of DIN 34CrNiMo6 high strength steel. 

  Property  Value 

  Fatigue ductility coefficient, εf’ 0.4697 

  Fatigue ductility exponent, c -0.6059 
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Figure 5.16. Total strain-life, fatigue strength-life and fatigue ductility-life curves (Branco, 2012b).  

lives lower than NT, the plastic strain component prevails over the elastic one and vice versa. Thus, it can 

be concluded that longer lives (NT > 3038) require stress amplitudes lower than 815.8MPa (Eq. 5.8) and 

strain amplitudes smaller than 0.73% (Eq. 5.13). The values of the total strain-life curve obtained in this 

study were compared with results found in the literature for the DIN 34CrNiMo6 high strength steel 

(Endo, 1969; Pape, 2007; Tartaglia, 2012). Regardless of the sources and objectives of the studies, the 

results are all very close (see Figure 5.16).  

 

Energy-based approaches assume that the dissipated strain energy per cycle has a main contribution to the 

fatigue damage process. The plastic strain energy dissipated per cycle (∆Wp) due to plastic deformation is 

the area of the hysteresis loop. Under strain-controlled conditions, it is almost constant during the life, 

which is a clear advantage. For a Masing-type material, ∆Wp can be defined as follows (Morrow, 1965) 
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n
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+
−=∆    
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'1  (5.14)

 

where ∆εP is the plastic strain range, ∆σ is the stress range and n’ is the cyclic hardening exponent. For a 

non-Masing material, the value of ∆WP is given by (Lefebvre, 1984) 
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where n* is the hardening exponent of the master curve and δσ0 = ∆σ-∆σ*. Figure 5.17 presents a plot of 

the ∆WP at the half-life versus the number of reversals to failure (2Nf). The ∆WP values were obtained in 

three ways, namely by measuring the area of the hysteresis loops, by applying Eq. 5.14 and by applying 
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Eq. 5.15. Table 5.9 summarises the values of the plastic strain energy dissipated per cycle obtained for 

different strain amplitudes (∆ε/2). As can be seen, there are no significant differences in the three cases. 

For high strength steels, the plastic strain energy dissipated per cycle versus the number of reversals in a 

log-log scale can be satisfactorily fitted to a straight line (Ellyn, 1997), i.e.  

 

  ( ) p
fp NpW ακ  2 =∆  (5.16)

 

being κp and αp two unknowns determined from the experimental data. The former (κp) is the plastic 

strain energy dissipated per cycle at one reversal and the latter (αp) is the slope of the straight line. The 

constants (κp and αp) of the experimentally measured values of ∆WP were evaluated using the least 

square method and are listed in Table 5.10. The experimentally measured values of ∆WP were compared 

with predictions obtained in the literature (Sih, 2004a) using the isoenergy density theory (Sih, 2004). As 

can be observed, the predicted values are practically superimposed on the dashed line (Eq. 5.16) and 

therefore are in good agreement with those measured experimentally.  

 

The plastic strain energy per cycle measured experimentally and calculated by Eq. 5.14 (Masing-type 

material) and Eq. 5.15 (non-Masing material) are compared in Figure 5.18. Although not totally clear, the 

calculations from Eq. 5.15 are on average 1.8% more accurate than those from Eq. 5.14. However, and 

not surprisingly, the agreement is fairly good in both cases. 

 

This approach, as a damage parameter, has certain limitations. For longer lives, close to the fatigue limit  
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Figure 5.18. Calculated versus experimentally measured plastic strain energy dissipated per cycle.  

 

Table 5.9. Experimental and theoretical values of ∆Wp.  

  Strain amplitude, 
  ∆ε/2 [%] 

∆Wp measured  
experimentally [MJ/m3]  

∆Wp determined by  
Eq. 5.14 [MJ/m3]  

∆Wp determined by  
Eq. 5.15 [MJ/m3] 

2.003 45.041 45.671 41.733 

1.503 29.828 30.707 28.003 

1.254 22.226 23.146 21.033 

1.004 14.889 16.142 14.616 

0.806 9.828 10.918 9.834 

0.607 5.261 6.1460 5.518 

0.512 3.371 4.063 3.634 

0.413 1.589 1.998 1.781 

 

 

Table 5.10. Constants of Eq. 5.16 for DIN 34CrNiMo6 high strength steel. 

  Property  Value 

  Coefficient κp [MJ/m3] 2115.84 

  Exponent αp -0.6924 

 

of the material, ∆WP is a very small value which makes it difficult to measure. To overcome this, the total 

strain energy (∆W), given by the sum of the elastic and plastic strain energies, can be used to advantage. 

However, both ∆WP and ∆W approaches are more suitable for fully-reversed or almost fully-reversed tests 

since they are not sensitive to the mean stress. Thus, the formulation proposed by Golos et al. (1987) is 

preferable. In this case, both the sum of the hysteresis energy and elastic energy associated with the 

tensile stress are used. The total strain energy range per cycle (∆Wt) can be defined by 
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where ∆Wp is the plastic strain energy dissipated per cycle and ∆We+ is the tensile elastic strain energy per 

cycle. For a non-Masing material under a cyclic loading with σmin ≤ 0, the previous equation can be 

written in the form of Eq. 5.18 (Ellyn, 1987).  
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Figure 5.19 presents in a log-log scale the total strain energy range per cycle versus the number of 

reversals to failure for the DIN 34CrNiMo6 high strength steel studied here. The experimental data can be 

fitted using the following expression (Ellyin, 1987)  

 

  ( ) t
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ft WNtW 0
 2 ∆+=∆ ακ  (5.19)

 

being κt > 0 and αt < 0. The constant ∆W0t is the tensile elastic energy at the material fatigue limit. The κt 

and αt constants can be determined from the best fit to the experimental data. Table 5.11 lists the final 
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Figure 5.19. Strain energy range per cycle versus number of reversals to failure. 

 

Table 5.11. Constants of Eq. 5.19 for DIN 34CrNiMo6 high strength steel. 

  Property  Value 

  Coefficient κt [MJ/m3] 2165.37 

  Exponent αt -0.6854 

  Constant ∆W0t [MJ/m3] 0.7049 
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values which were calculated using the least square method. As can be seen from Figure 5.19, the total 

strain energy range per cycle is a very good correlating parameter for the fatigue life interval studied here. 

All the results are very close to the proposed function (Eq. 5.19). The value of ∆W0t corresponds to            

a fatigue limit stress amplitude of 537MPa. This is satisfactorily close to the values reported in the 

literature (526 ± 15MPa) by Rabb (1996) for smooth specimens subjected to tension-compression (R =  -1). 

 

5.4.3 Analysis of fracture surfaces 

The macroscopic surface morphologies after low-cycle fatigue tests for several total strain amplitudes are 

presented in Figure 5.20. Regardless of the strain amplitude, and not surprisingly, the final fracture 

surfaces are similar, presenting angles at about 45º in relation to the loading axes. 

 

Figures 5.21a-c show typical SEM images of fracture surfaces taken at low magnification for different 

strain amplitudes. Figure 5.21a (∆ε/2 = 0.4%) exhibits a fracture surface caused by propagation of several 

cracks nucleated at the periphery of the specimen, leading to the formation of various steps that result 

from the junction of different propagation planes. However, a flat surface with practically no shear lip is 

observed. Figure 5.21b (∆ε/2 = 2.0%) also presents a fracture surface characterised by propagation of 

several cracks. Nevertheless, at this total strain amplitude, the junction of various propagation planes 

implies a microscopically inclined fracture. Additionally, the propagation area contains some fatigue 

striations combined with secondary cracks (indicated by the white arrow and exhibited in detail in Figure 

5.21c). The fatigue striations denote essentially transgranular crack propagation. Moreover, as expected, 

the stable crack growth region is larger in Figure 5.21a due to the smaller total strain amplitude applied. 

 

Figures 5.22a-c present typical SEM images of fracture surfaces taken at high magnification near the 

crack initiation site for different strain amplitudes. At lower strain amplitudes (Figure 5.22a), the 

initiation site is clearly dominated by cleavage-like facets whilst at higher strain amplitudes (Figure 5.22b  

 

 

       a)           b) c)        d) 

Figure 5.20. Macroscopic surface morphologies of low-cycle fatigue specimens: a) ∆ε/2 = 0.5%;                

b) ∆ε/2 = 0.8%; c) ∆ε/2 = 1.25%; d) ∆ε/2 = 1.5% (Branco, 2012b). 
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a) 

  
b) 

  
c) 

Figure 5.21. Fracture surfaces for different values of ∆ε/2 (Branco, 2012b): a) ∆ε/2 = 0.4%;                        

b) ∆ε/2 = 2.0%; c) ∆ε/2 = 2.0% (detail of fatigue striations combined with secondary cracks). 
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a)  

  
b)  

  
c) 

Figure 5.22. SEM micrographs of fracture surfaces near the crack initiation sites for different total strain 

amplitudes: a) ∆ε/2 = 0.4%; b) ∆ε/2 = 1.0%; c) ∆ε/2 = 2.0% (Branco, 2012b). 
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and Figure 5.22c) the initiation site is a mixed of cleavage-like facets and ductile dimples. Besides, the 

higher the strain amplitude is, the more numerous the ductile dimples are. The fatigue damage mechanism 

observed here results from the cyclic solicitations applied which cause extrusions and intrusions leading 

to the formation of a microcrack smaller than the grain size along the slip band at the specimen surface. 

Then, the microcrack grows through the grain boundaries and eventually can form, by coalescence of 

shorter cracks, a critical one that propagates into the bulk perpendicularly to the stress axis. 

 

5.5. High-cycle fatigue tests  

The high-cycle fatigue tests performed in this research aimed at studying the fatigue behaviour of 

severely notched geometries subjected to different proportional loading paths (Figure 3.9). The specimen 

geometries used are presented in Figure 3.8. These tests encompassed single bending (Table 3.4), single 

torsion (Table 3.5) and in-phase combined bending-torsion (Table 3.6). In relation to the last type, the 

ratios of the bending moment (B) to the torsion moment (T) analysed were B=2T, B=T and B=2T/3. The 

detection of crack initiation was carried out in situ with a digital monitoring system (Figure 3.11). Stress 

ratios (R) very close to zero (0.02-0.04) were adopted. The normal and shear stress amplitudes (σa and τm) 

as well as the mean normal and shear stresses (σm and τm) were calculated using Equations 3.2-3.4. 

Tables 5.12, 5.13 and 5.14 summarise, respectively, the main results of the single bending, single torsion 

and in-phase combined bending-torsion tests performed in this research. 

 

Table 5.12. Summary of results of the single bending tests.  

 Specimen 
 reference 

Normal stress 
amplitude, σa [MPa] 

Mean normal 
stress, σm [MPa] 

Shear stress 
amplitude, τa [MPa] 

Mean shear 
stress, τm [MPa] 

Cycles to failure, 
Nf [cycles] 

 B-1 195.6 206.1   142052 

 B-2 195.6 206.1   241674 

 B-3 218.8 229.3   99708 

 B-4 218.8 229.3   71509 

 B-5 295.0 304.2   25410 

 B-6 295.0 304.2   33562 

Total: 6 specimens 

 

Table 5.13. Summary of results of the single torsion tests.  

 Specimen 
 reference 

Normal stress 
amplitude, σa [MPa] 

Mean normal 
stress, σm [MPa] 

Shear stress 
amplitude, τa [MPa] 

Mean shear 
stress, τm [MPa] 

Cycles to failure, 
Nf [cycles] 

  T-1   167.0 178.2 203168 

  T-2   167.0 178.2 234708 

  T-3   200.5 211.6 100857 

  T-4   200.5 211.6 71901 

  T-5   222.7 233.9 59957 

  T-6   245.0 256.1 55587 

  T-7   245.0 256.1 68199 

Total: 7 specimens 
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Table 5.14. Summary of results of the in-phase combined bending-torsion tests. 

 Specimen 
 reference 

Normal stress 
amplitude, σa [MPa] 

Mean normal 
stress, σm [MPa] 

Shear stress 
amplitude, τa [MPa] 

Mean shear 
stress, τm [MPa] 

Cycles to failure, 
Nf [cycles] 

� B=2T series (σa = 4τa; σm = 4τm; ∆σ = 4∆τ) 

    B2T-1 179.1 194.0 44.8 48.5 159714 

    B2T-2 223.8 238.7 56.0 59.7 95383 

    B2T-3 298.4 313.3 74.6 78.3 39205 

� B=T series (σa = 2τa; σm = 2τm; ∆σ = 2∆τ) 

   BT-1 179.1 194.0 89.5 97.0 144876 

   BT-2 179.1 194.0 89.5 97.0 113465 

   BT-3 179.1 194.0 89.5 97.0 106883 

   BT-4 223.8 238.7 111.9 119.4 52840 

   BT-5 223.8 238.7 111.9 119.4 40818 

   BT-6 223.8 238.7 111.9 119.4 57918 

   BT-7 298.4 313.3 149.2 156.7 16628 

� B=2T/3 series (σa = 4/3τa; σm = 4/3τm; ∆σ = 4/3∆τ) 

   B2T3-1 179.1 189.0 134.3 141.8 85361 

   B2T3-2 223.8 233.8 167.9 175.3 30242 

   B2T3-3 298.4 308.4 223.8 231.3 9312 

Total: 13 specimens 

 

5.5.1 Fatigue crack paths, surface crack angles and fracture surfaces 

Figures 5.23a-e show representative fatigue crack paths obtained in the experimental tests for the different 

loading conditions. A significant influence of the loading pattern on the crack trajectory is observed. As 

can be seen, in the first case (Figure 5.23a), the crack propagates in a direction approximately normal to 

the axis of the specimen. In the other cases (Figures 5.23b-e), the crack trajectories become more and 

more curved. This is due to an increase of the ratio of the shear stress to the normal stress.  

 

Representative crack initiation sites, depicted by the white circles, are also exhibited in Figure 5.23. There 

is a clear effect of the loading path on the initiation process. In the two first cases (Figures 5.23a-b), due 

to the absence or reduced level of shear stresses, the crack initiates in the centre of the notch; in the other 

cases (Figures 5.23c-e), the crack initiates close to the curved edge of the notch. The closeness increases 

with the ratio of the shear stress to the normal stress.   

 

The fatigue crack paths and the initiation sites seem to be controlled, in this case, by the distribution of 

the principal stresses along the notch surface. These stress distributions, as evidenced in Figure 5.24, vary 

substantially with the loading path. The combination of both the loading pattern and the notch geometry 

results in complex triaxial stress states. The most susceptible regions to crack initiation are identified by 

the white squares which correspond to the maximum principal stresses. The dashed white lines represent 

the most likely crack surface paths. In Figure 5.23 are also compared the numerical predictions in terms 

of crack initiation sites (white squares) and surface crack paths (dashed white lines) with experimental 
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Figure 5.23. Surface crack paths and initiation sites for different loading paths. Specimen reference:         

a) B-1; b) B2T-2; c) BT2-1; d) B2T3-2; e) T-1 (Branco, 2012e). 

 

              B      B=2T B=T        B=2T/3      T 

                                  

 

     

 

     a)         b)                 c)        d)     e) 

Figure 5.24. Numerical prediction of surface crack paths and initiation sites for different loading paths:    

a) B; b) B=2T; c) B=T; d) B=2T/3; e) T (Branco, 2012e). 

results for the different loading cases studied here. As can be seen, the numerical predictions obtained 

from this criterion are very close to those detected experimentally.  

 

Figures 5.25a-e exhibit representative surface crack orientations at the initial stage of crack growth with 

 First principal stress (σσσσ1):     MIN.                                                 MAX. 
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a) b) 

  

c) d) 

 

e) 

Figure 5.25. Surface crack orientation at the early stage of crack growth for different loading paths. 

Specimen reference: a) B-m; b) B2T-m; c) BT-m; d) B2T3-m; e) T-m. 

respect to the normal direction of the specimen axis for the different loading paths analysed. The angle, as 

schematised, varies considerably from case to case. For single bending (Figure 5.25a), the crack grows in 

a direction normal to the specimen axis (0º) which is expected since it is subjected to mode I loading. In 

the other cases (Figures 5.25b-e), the angle is increasingly greater due to the higher ratio of the shear 

stress to the normal stress. These cases are predominantly under mixed mode I/III loading and, therefore, 

B B=2T 

B=T B=2T/3 

T 
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the increase in the τ/σ ratio has a direct repercussion on the surface crack orientation. These angles can be 

predicted by computing the principal directions (θp) for the nodes with maximum principal stresses, i.e. 

solving the following equation 

 

  







 −= −

YZ

ZZYY
p τ

σσ
2

 tanθ2 1  (5.20)

 

being σZZ, σYY and τYZ the stress components obtained by the FEM. Table 5.15 summarises the numerical 

predictions obtained by Eq. 5.20 (θpn) and the experimentally measured angles (θpe) for the different tests 

carried out in this research. Figure 5.26 plots the numerical predictions against the experimentally 

measured angles. As can be seen, numerical and experimental angles are in fairly good agreement. On the 

other hand, these results suggest that the propagation, at the surface, is controlled by the principal stress 

direction, i.e. crack paths are normal to the principal stress directions. Besides, although not perfect, the 

previous analysis can anticipate, in a relatively precise manner, the most likely initiation sites, surface  

 

Table 5.15. Comparison between experimental and predicted surface crack orientations.   

   Referential system Loading path   Angle predicted, θpn  [º]  Angle measured, θpe [º] 

   

B 0 0 

B=2T 11.1 9.5-12.0 

B=T 20.8 18.0-22.5 

B=2T/3 26.1 22.0-25.1 

T 38.6 32.0-36.5 
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Figure 5.26. Experimental versus predicted crack surface angles at the initial stage of crack growth for 

different loading paths. 



204 

 

crack paths and surface crack orientations at the initial stage of crack growth. 

 

Furthermore, it is important to note that crack initiation always occurred from small defects (labelled by 

the arrows in Figures 5.25a-e) on the notch surface, very close to the most likely initiation sites. These 

surface irregularities act as local stress raisers making easier the fatigue crack initiation process. Besides, 

due to the presence of defects throughout the notch surface, multi-crack initiation behaviour was observed 

in most of the cases. Take for example the image sequence exhibited in Figures 5.27a-d. In Figure 5.27a, 

several cracks, relatively close to each other, have initiated at different places of the notch surface. After 

about 3000 cycles (Figure 5.27b), the coalescence of neighbouring cracks is evident (labelled by the 

orange arrows). In a second stage, the cracks gradually approach each other (Figure 5.27c). In most cases, 

this propagation takes place in different planes. The junction of the different planes causes visible steps at 

the notch surface (Figure 5.27d).  

 

Figures 5.28a-e present typical fracture surfaces obtained in the fatigue crack front marking tests for the 

different loading paths studied in this research. For each case, top and front views are shown. As can be 

 

  

a) b) 

  

c) d) 

Figure 5.27. Multi-crack initiation sequence in a single bending test (specimen B-4): a) 42010 cycles;      

b) 45020 cycles; c) 50007 cycles; d) 56011 cycles.  

42,010 cycles 45,020 cycles 

50,007 cycles 56,011 cycles 
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B B=2T B=T 

 

   

   

a) b) c) 

B=2T/3  T 

  

  

d) e) 

Figure 5.28. Fracture surfaces of fatigue crack front marking tests for the different loading paths. 

Specimen reference: a) B-m; b) B2T-m; c) BT-m; d) B2T3-m; e) T-m (Serra, 2012). 

seen, there is a considerable effect of the loading path on the fracture surfaces. For single bending (Figure 

5.28a), fracture surfaces are flat and normal to the specimen axis. This is expected since these specimens 

are under mode I loading. The several steps observed at the surface are a reflex of the multi-crack 

propagation process described earlier. In the other cases (Figures 5.28b-e), the typical fracture surfaces 

have increasingly complex shapes due to higher ratios of the shear stress to the normal stress and are the 

result of out-of-plane propagation. Besides, the steps caused by the coalescence of cracks are also evident. 

In relation to the crack front markings, the differences are also clear. In Figure 5.28a, marks are almost             

semi-elliptical and progressively flatter. This fact can be confirmed in Figure 5.29, which plots the crack  
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Figure 5.29. Crack aspect ratio (a’/b’) versus dimensionless crack length (a’/D’). 

aspect ratio (a’/b’) against the dimensionless crack length (a’/D’). For single bending, as schematised in 

the upper part of Figure 5.29, a’ and b’ represent the semi-axes of an ellipse whose centre is coincident 

with the origin of the coordinate system and D’  = D-n (n is the notch depth). As can be seen, a’/b’ 

decreases with a’/D’. In the other cases (Figures 5.28b-e), marks are not symmetric in relation to the   

half-thickness and are increasingly curved in consequence of the higher ratios of the shear stress to the 

normal stress. Figure 5.29 presents the crack aspect ratio (a’/b’) versus the dimensionless crack length 

(a’/D’) for these four loading paths. The variables a’ and b’, as depicted in Figure 5.29, are the semi-axes 

of an ellipse whose centre is on the notch root but not necessarily at the half-thickness. Therefore, such 

data need careful interpretation. Despite the differences in the definition of the crack aspect ratio, it is 

interesting to note that the a’/b’ values are relatively close, regardless of the loading path. 

 

Figures 5.30a-e show the fracture topologies obtained from the fatigue crack front marking tests by 3D 

laser scanning (see Section 3.9) for the different loading paths studied here. In these figures, it is possible 
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 B B=2T B=T 

 

   

a) b) c) 

B=2T/3 T 

  

d) e) 

Figure 5.30. Fracture surfaces obtained by 3D scanner for the different loading paths. Specimen 

reference: a) B-m; b) B2T-m; c) BT-m; d) B2T3-m; e) T-m.  

to better understand the surface patterns. Not surprisingly, out-of-plane propagation clearly increases with 

the ratio of the shear stress to the normal stress. On the other hand, the steps caused by coalescence of 

cracks are also evident. 

 

The facture surfaces were also examined by SEM in order to identify the damage mechanisms involved in 

the fatigue process. As mentioned before, crack initiation occurred from small defects and inclusions at 

the notch surface. A representative case of crack initiation from a surface defect at the notch is exhibited 

in Figures 5.31a-b, which was observed in the fatigue crack front marking tests for a specimen subjected 

to single bending. The direction of propagation is from the top to the bottom. The initiation site, either in 

Figure 5.31a or in Figure 5.31b, is identified by the black arrow. Particularly in the latter, due to its higher 

magnification, the surface defect is clearly visible. Besides, it is possible to identify the presence of 

several inclusions (white arrows) with different sizes and shapes. Some of them, as stated before, come 

off from the notch surface. A typical example is presented in Figure 5.31a (grey arrow). Unlike most 

cases, the particle is still attached to the specimen.  

 

Figures 5.32a-b shows another example of crack initiation from a surface defect at the notch which 

occurred for an in-phase combined bending-torsion test (B=2T/3). In the two figures, the initiation site is  
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a)  

  
b) 

Figure 5.31. SEM micrographs of fracture surfaces near the crack initiation site for a single bending test 

magnified: a) 750 times; b) 1000 times.  

identified by the black arrow and the direction of propagation is from the bottom to the top. Figure 5.32a 

was taken at low magnification whilst Figure 5.32b shows in detail the initiation site. In the latter, the 

surface defect is perfectly visible. Furthermore, the typical fatigue markings caused by cyclic loading are 

clearly observed. As can be seen, these markings are characterised by radial convergence to the initiation 

sites. This denotes essentially a ductile failure mode with evidence of local plastic deformation and 

transgranular fracture. In Figure 5.32a, it is particularly visible an area of pores (white arrows) with 

approximately circular shapes.   

 

A representative example of crack initiation from an inclusion at the notch surface, occurred in a single 

torsion test, is shown in Figures 5.33a-b. In the two figures, the direction of propagation is identified by  

 

B-m 

B-m 
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a)  

  
b)  

Figure 5.32. SEM micrographs of fracture surfaces near the crack initiation site for an in-phase combined 

bending-torsion test (B=2T/3) magnified: a) 99 times; b) 750 times. 

the black arrow. Figures 5.33a and 5.33b were taken at low and high magnification, respectively. This 

particle, with maximum length of about 20µm, has approximately an elliptical shape. As can be seen, the 

radial lines converge to the inclusion which indicates that the propagation occurred from this defect. 

 

Figures 5.34a-b exhibit other examples of inclusions found in the analyses of fracture surfaces carried out 

in this research. The first image (Figure 5.34a) was obtained in the fatigue crack front marking tests for 

single bending loading. The inclusions of the second image (Figure 5.34b) were observed in an in-phase 

combined bending-torsion test (B=2T). The presence of inclusions and pores in DIN 34CrNiMo6 high 

strength steel has been reported by several authors. Costa et al. (2001) studied fatigue and fretting 

behaviour in ion-nitrided smooth specimens and concluded that crack initiation always occurred from 
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a)  

  

b)  

Figure 5.33. SEM micrographs of fracture surfaces near the crack initiation site for a single torsion test 

magnified: a) 200 times; b) 1000 times. 

internal defects below the surface treatment region. Sirin et al. (2008) also analysed the fatigue behaviour 

of ion-nitrided smooth specimens. The dominant fatigue crack initiation mechanism was the nucleation of 

cracks from non-metallic inclusions existing at the subsurface. Puchi-Cabrera et al. (2007) examined the 

fatigue performance of smooth specimens coated with 4µm-thickness TiCN films. The fracture surfaces 

revealed the presence of a considerable number of unreacted particles and pores. Nevertheless, in this 

case, the fatigue cracks nucleated at the surface of the coating and propagated normal to the          

subtract-coating interface without bifurcation. Tartaglia et al. (2012) compared the fatigue resistance of 

quenched and tempered specimens with austempered specimens. The investigation of the fracture 

surfaces also revealed the existence of non-metallic particles on the microstructure. Among others, these  

  

T-5 

T-5 
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a) 

 

b) 

Figure 5.34. SEM micrographs of fracture surfaces containing several inclusions: a) single bending 

loading; b) in-phase combined bending-torsion loading (B=2T/3). 

inclusions were identified as manganese sulphide (MnS) stringer particles. In another study on 

mechanical properties and hydrogen embrittlement resistance of austempered specimens and Q&T 

specimens, the authors found numerous types of inclusions, more specifically sulphide stringer inclusions, 

fragmented alumina inclusions, globular oxides and elongated silicate inclusions (Tartaglia, 2008). 

 

As stated before, multi-crack initiation sites were observed on the notch surfaces. Typical examples are 

presented in Figures 5.35a-c. In the three situations, the direction of propagation is from the bottom to the 

top. The first case (Figure 5.35a) results from an in-phase combined bending-torsion test (B=2T/3). The 
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a) 

 

b) 

 

c) 

Figure 5.35. SEM micrographs of fracture surfaces revealing multi-crack initiation.                       

Specimen reference: a) B2T3-1; b) B2T3-m; c) B2T-m. 
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other two (Figures 5.35b-c) resulted from the fatigue crack front marking tests for loading paths equal to 

B=2T/3 and B=2T, respectively. Regardless of the case, several fracture steps are clearly observed which 

can be associated with the junction of different propagation planes caused by nucleation of various cracks 

at the periphery of the notch surface. Tartaglia et al. (2012) in their studies on fatigue resistance of Q&T 

specimens and austempered specimens reported the same behaviour. 

 

Figures 5.36a-b show, in detail, a fracture step formed by the junction of two close cracks initiated at the 

notch surface of a specimen subjected to single torsion loading. The first micrograph (Figure 5.36a) 

presents the left side of the fracture step whilst the other (Figure 5.36b) exhibits the right side. The  

 

 

a) 

 

b) 

Figure 5.36. SEM micrographs of fracture surfaces revealing the junction of two cracks initiated at the 

notch surface: a) left side; b) right side of the fracture step.   
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direction of propagation is from the top to the bottom. The two crack initiation sites, identified by the 

black arrows are perfectly identified by the fatigue markings. As can be seen, the nucleation of these two 

cracks took place at different planes which led to the formation of an accentuated fracture step. 

 

5.5.2 Experimental fatigue life  

As described in the previous subsection, fatigue failure was caused by multi-crack initiation. In order to 

derive the typical a-N curves, termed here 2b-N curves, for the different loading paths, it was assumed 

that the surface crack length, at a given instant, was equal to the sum of the individual crack lengths (see 

Figure 5.37a). For partially overlapped cracks, the final crack length was defined by the distance between 

opposite ends, as schematised in Figure 5.37b. The analysis stopped when one end of the crack surface 

reached the border of the notch. Figures 5.38-5.40 plot the surface crack length (2b) versus the number of 

loading cycles (N) for the different in-phase combined bending-torsion loading paths studied in  

 

∑= i2b2b  

  

a)                                                                  b) 

Figure 5.37. Crack length definition to obtain the 2b-N curves: a) close cracks; b) cracks overlapped. 

 

0

3

6

9

12

15

0 40,000 80,000 120,000 160,000

S
u

rf
ac

e 
cr

ac
k 

le
n

g
th

, 2
b

 [
m

m
]

Number of loading cycles, N

 B2T-1

 B2T-2

 B2T-3

σa = 298.42 MPa 

σa = 223.81 MPa σa = 179.05 MPa 

2b = c1 N 
c2

B=2T

 

Figure 5.38. Crack length versus number of loading cycles for the in-phase combined bending-torsion 

loading tests (B=2T).  
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Figure 5.39. Crack length versus number of loading cycles for the in-phase combined bending-torsion 

loading tests (B=T). 
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Figure 5.40. Crack length versus number of loading cycles for the in-phase combined bending-torsion 

loading tests (B=2T/3). 

this research, respectively B=2T, B=T and B=2T/3. For each loading path, at least three different values 

of the normal stress amplitude (σa) were examined. The data were fitted to a power law. Although there 

are small differences, both the experimental data and the proposed expressions are relatively close. The 

slopes of the curves for a fixed surface crack length (2b = 1.5mm), obtained from the fitted functions, are 
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shown for illustrative purposes. The results collected are in line with the expectations. On the one hand, 

the higher the normal stress amplitude, the faster the surface crack growth. On the other hand, the slopes 

of the curve increase with the normal stress amplitude. Nevertheless, it is important to stress that, in some 

cases, specimens tested under identical loading conditions led to different 2b-N curves. This is evident by 

comparing the 2b-N curves of BT-1 and BT-2 tests (grey and black squares of Figure 5.39). As can be 

seen, not only the curves but also the slopes at 2b = 1.5mm are different. The multi-crack initiation 

mechanism already described is a plausible explanation for this fact. In the BT-2 test, two cracks initiated 

practically in simultaneous (Figure 5.41a) followed by other two. In the BT-1 test, a dominant crack arose 

on the notch surface (Figure 5.41b) and another one emerged only at a later stage. This is consistent with 

the results presented in Figure 5.39, since the 2b-N curve of the BT-2 test corresponds to a faster crack 

growth than the other, which can be associated with the multiple cracks found.  

  

 

a) 

 

b) 

Figure 5.41. Notch surface: a) BT-2 test (2b ≈ 3.86mm); b) BT-1 test (2b  ≈  0.95mm). 

BT-2 

BT-1 
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The effect of the shear stress amplitude (τa) on the 2b-N curves is presented in Figure 5.42. It displays 

results of three tests carried out under the same normal stress amplitude for three different in-phase 

combined bending-torsion loadings (B=2T, B=T and B=2T/3). Predictably, the increase in the shear stress 

amplitude reduces the fatigue life and increases the crack growth rate. The different crack growth rates 

can be inferred by comparing the slopes of the curves exhibited in the figure for 2b  =  1.5mm.   

 

The shear stress amplitude has also a great influence on the fatigue life. Figure 5.43 plots the number of 

cycles to failure (Nf) against the normal stress amplitude (σa) for the three different in-phase combined 

bending-torsion tests (B=2T, B=T, B=2T/3) carried out in this research. As can be seen, there are clear 

differences between the S-N curves. Not surprisingly, the higher the shear stress amplitude, the lower the 

fatigue life. Additionally, the slope of the curves tends to decrease with the decrease in the shear stress 

amplitude. This figure also shows the 95% confidence bounds for the median curve given by the ASTM 

E739 (1998) standard for the case B=T. In the other cases (B=2T/3, B=2T), the resultant confidence 

bands were omitted to get a clear figure. The resultant S-N curves, as stated in the ASTM E739 (1998) 

standard, can be written in the following forms 

 

  
af Log σccLog N  21 +=  (5.21)

 

  ( ) 43  10 c
f

c
a Nσ =  (5.22)

 

being c1 to c4 fitting constants. Table 5.16 summarises the constants found for the in-phase combined  
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Figure 5.42. Crack length versus number of loading cycles for tests performed under the same normal 

stress amplitude for different loading paths.  
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Figure 5.43. Normal stress amplitude versus number of cycles to failure for the in-phase combined 

bending-torsion tests. 

 

Table 5.16. Constants of the S-N curves obtained in the present research.   

  Loading path   
4

3
1 c

c
c −=  

4
2 c

1
c =  

3c  
4c  2σ)  

  B 12.982 -3.435 3.779 -0.291 0.01139 

  B=2T 11.450 -2.766 4.140 -0.362 0.00120 

  B=T 13.848 -3.892 3.558 -0.257 0.00446 

  B=2T/3 14.666 -4.326 3.390 -0.232 0.00061 

  T 12.851 -3.404 3.775 -0.294 0.01076 

 

bending-torsion tests performed in the present study. The variance of the normal distribution obtained for 

each case is also shown in Table 5.16.  

 

The evolution of the normal stress amplitude with the number of cycles to failure for the single bending 

loading tests is exhibited in Figure 5.44. In this case, six tests were performed for three different normal 

stress amplitudes. As can be seen, experimental data are relatively close to the fitted S-N curve. The 95% 

confidence bounds for the median curve, given by the ASTM E739 (1998) standard, are also displayed in 

this case. The c1 to c4 of Equations 5.21 and 5.22 are listed in Table 5.16.  

 

Regarding the single torsion tests, the shear stress amplitude (τa) was used as the representative stress, 

instead of σa since the latter is null. Figure 5.45 plots the shear stress amplitude against the number of 

cycles to failure for the seven tests performed in this study. As can be seen, experimental data are 

relatively close to the fitted stress-life curve. The 95% confidence bounds for the median curve, given by  
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Figure 5.44. Normal stress amplitude versus number of cycles to failure for the single bending tests. 
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Figure 5.45. Shear stress amplitude versus number of cycles to failure for the single torsion tests. 

the ASTM E739 (1998) standard, are also presented in the figure. Table 5.16 exhibits the c1 to c4 

constants of Equations 5.21 and 5.22 calculated using the shear stress amplitude as representative stress. 

 

The fatigue life (Nf) versus the local von Mises equivalent stress amplitude (∆σvML/2) for the different 

loading paths studied here is displayed in Figure 5.46. The local von Mises equivalent stress amplitudes 
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were computed from the linear elastic finite element models (see Section 4.2) at the initiation sites (see 

Figure 5.24). Equation 4.3 was applied to obtain both the maximum (σvML,max/2) and minimum (σvML,min/2) 

local stress amplitudes. In a log-log scale, as shown in the figure, a very satisfactory linear correlation 

between both variables was found. These data were used to obtain the design curve applying the 

procedure recommended by the International Institute of Welding (Hobbacher, 1996). The mean curve 

(dashed line) was fitted to the experimental data with a relatively high correlation coefficient (r  = 0.958). 

The upper and lower bounds were drawn for a 95% survival probability calculated from the mean value 

assuming two-sided confidence levels equal to 75%. The scatter band index (Tσ) was equal to 1.393. 

Table 5.17 lists the constants of Equation 5.23 for the mean curve and the upper and lower bounds.  

 

  ( ) 65   102/ c
f

c
vML Nσ =∆  (5.23)

 

According to the previous results, and regardless of the loading path, the local von Mises equivalent stress 

amplitude seems to be able to correlate, in a satisfactory way, the resultant stress-strain states with the 

fatigue lives. The same conclusion was reached by Abreu et al. (2007) in their studies on fatigue  
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Figure 5.46. Local von Mises equivalent stress amplitude versus fatigue life for the different loading paths 

studied. 

 

Table 5.17. Constants of Equation 5.23 for the mean curve and upper and lower bounds.    

  Curve   c5 c6 

  Upper bound 4.231 -0.271 

  Media curve 4.159 -0.271 

  Lower bound (design curve) 4.087 -0.271 
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behaviour of tubular specimens subjected to in-phase combined bending-torsion loading. Similar scatter 

band indexes equal to 1.48 and 1.62 were found for notched and welded specimens, respectively. 

 

Figure 5.47 plots, as an example, the local von Mises equivalent stress amplitude (∆σvML/2) against the 

number of cycles in which at the first time the crack reached a surface length of 0.5mm (N0.5). Based on 

the values of the crack aspect ratio (a’/b’) presented in Figure 5.29, this surface crack length corresponds 

to crack depths clearly lower than 0.25mm, since the crack shapes are notoriously semi-elliptical. 

Although this is an empirical crack size, such a value is within the range typically used in aeronautical 

fatigue analysis. In aircraft fatigue, the value of N0.5 is the so-called safe-life period, in which no visual 

inspection is required (Zhang, 2003). In a log-log scale, as already observed for the fatigue lives, a very 

satisfactory linear correlation between these two variables can be distinguished. The experimental results 

were fitted by linear regression with a relatively high correlation coefficient (r  = 0.946). The constants of 

Equation 5.24 for the mean curve and for the upper and lower bounds, obtained using the procedure 

recommended by the International Institute of Welding in the same conditions that those described in the 

previous case (i.e. 95% survival probability calculated from the mean value assuming two-sided 

confidence levels equal to 75%), are summarised in Table 5.18. The scatter band index (Tσ) was equal to 

1.462. The increase in this parameter can be attributed to the multi-crack initiation phenomenon 

originated by the high concentration of defects and pores on the notch surface (see Section 5.5.1).   
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Figure 5.48 exhibits the ratio of the number of cycles in which at the first time the crack reached a surface  
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Figure 5.47. Local von Mises equivalent stress amplitude versus number of cycles in which at the first 

time the crack reached a surface length equal to 0.5mm. 
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Figure 5.48. Relation between N0.5 and Nf for the different loading paths studied.  

 

Table 5.18. Constants of Equation 5.24 for the mean curve and upper and lower bounds.    

  Curve   c7 c8 

  Upper bound 4.022 -0.240 

  Media curve 3.939 -0.240 

  Lower bound (design curve) 3.857 -0.271 

 

length of 0.5mm to the number of cycles to failure (N0.5/Nf) for the different loading paths studied here. In 

each set of tests, loading increases from the top to the bottom. The N0.5/Nf ratio, as highlighted by the 

dashed lines, varies between 42-75%. Besides, it is also clear that most of these ratios are within the range 

42-55%, which represents about 70% of the total number of cases. On the other hand, N0.5/Nf ratios are 

very similar for the different loading paths. 

   

5.5.3 Fatigue life predictions  

Fatigue life predictions were carried out from linear elastic finite element analyses. The notch effect on 

fatigue was accounted for using the theory of critical distances. The critical distance to average the stress 

profile can be defined using the El Haddad parameter (Equation 2.45). For R = 0, it leads to 
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where ∆Kth is the range of the threshold value of the stress intensity factor and ∆σ0 is the fatigue limit 

stress range of the unnotched specimen. These two constants are determined under the same load ratio as 
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the mechanical component to be assessed. The value of ∆Kth for the DIN 34CrNiMo6 high strength steel 

studied here was obtained from the data available in the literature which are listed in Table 5.19 (Luke, 

2011). The calculation of the range of the threshold value of the stress intensity factor for R = 0 (∆Kth0) 

was performed using the formulation proposed by Klesnil and Lukas (1972) 

 

   x
thth RKK )1(0 −∆=∆  (5.26)

 

being x a material constant obtained experimentally and ∆Kth0 the range of the threshold value of the 

stress intensity factor for R = 0. From the above-mentioned data, the constants found were x = 0.87 and 

∆Kth0 = 7.12 MPa·m0.5. For comparison purposes, the value of ∆Kth0 was also calculated using the model 

proposed by Vosikivsky (1979), i.e.  

 

   BRKK thth −∆=∆ 0
 (5.27)

 

where B is a material constant. The constants obtained were ∆Kth0 = 7.09 MPa m0.5 and B = 5.91. Indeed, 

the two values of ∆Kth0 differ only in 0.43%. As can be seen in Figure 5.49, for stress ratios close to zero,  

 

Table 5.19. Material properties for DIN 34CrNiMo6 high strength steel (Luke, 2011).  

  Stress ratio  C m ∆Kth 

  R = -1 4.32×10-9 2.5 13 

  R = 0.1 2.42×10-8 2.5 6.5 

da/dN in mm/cycle and ∆Κ in MPa·m0.5  
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Figure 5.49. Range of the threshold of the stress intensity factor versus stress ratio. 
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as in the case of the present study (Rmin = 0.015 and Rmax = 0.04), both functions are almost overlapped. 

These formulations, although simple in nature, have been successfully used by different authors either for 

steels or aluminium alloys (Costa, 1991; Borrego 2001).  

 

Regarding the fatigue limit of the notched specimen, it was calculated from the fatigue limit at zero mean 

stress (R = -1) by applying the Goodman relationship (Equation 2.7). The fatigue limit at zero mean stress 

was estimated from Equation 5.19 and is about 537MPa. The same value obtained from the Basquin 

equation (Equation 5.8) for a fatigue life equal to 1×106 cycles is equal to  

 

MPa 8.536
2

)102(7.1183
2

)2(7.1183
2

0545.060545.0 =∆⇔×=∆⇔=∆ −− σσσ
fN  (5.28)

 

which is practically equivalent. Based on these values, the fatigue limit stress range of the notched 

specimen for R = 0 is approximately equal to ∆σ0 = 353MPa.  

 

Thus, the El Haddad parameter (El Haddad, 1979), as indicated in Equation 5.25, is equal to 129µm.  This 

calculation represents only a reference value since it was obtained for R = 0. In practice, a specific value 

of a0 was calculated for each test in order to take into account the effective stress ratio which varied from 

0.015 to 0.04 (see Tables 3.4-3.6). The line method was used to average the elastic stress distribution over 

the critical region. In this method, the critical distance (see Equation 2.59) is given by   

 

m 25812922 0 µ=⇔×=⇔= LMLMLM DDaD  (5.29)

 

where a0 is the El Haddad parameter and DLM is the critical distance for the line method.  

  

The local von Mises equivalent stress was selected as representative of the fatigue failure process. As 

referred to in Section 5.5.2, it is able to correlate in a satisfactory way the resultant stress-strain states 

with fatigue lives. Figure 5.50 plots, as an example, the local von Mises equivalent stress (σvML) against 

the distance from the notch surface (d) for a specimen subjected to single bending. As can be seen, the 

maximum stress occurs at the notch surface and then gradually decreases to an asymptotical value. The 

critical stress calculated by applying the line method, as indicated in the figure, corresponds to 928MPa.  

 

In Figure 5.51 is compared, in a dimensionless form, the stress profiles obtained for the different loading 

paths studied here. The local von Mises equivalent stress (σvML) was divided by its maximum value 

(σvML,max) and the distance from the notch surface (d) was divided by the critical distance (DLM). Looking 

at the resultant stress-distance curves, it is possible to observe a first stage (d/DLM ≤ 1) with similar 

profiles and second stage (d/DLM > 1) in which the differences gradually increase with the dimensionless 

distance. 
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Figure 5.50. Local von Mises equivalent stress range versus distance from the notch surface for a 

specimen subjected to single bending. 
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Figure 5.51. Dimensionless local von Mises equivalent stress range (∆σvmL/∆σvmL,max) versus the 

dimensionless distance from the notch surface (d/DLM) for the different loading paths studied.   

The number of cycles to crack initiation (Ne) was evaluated from the 2b-N curves. The crack length a0 

was inferred from the surface crack length (2b0). Taking into consideration the crack shapes observed in 

the fatigue crack front marking tests, a crack aspect ratio equal to a0/b0 = 0.8 was assumed. As Figure 5.52 

shows, such a ratio seems to be adequate. The crack front marks exhibited in the figure were obtained in a   
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Figure 5.52. Detail of crack front marks obtained in a test performed under in-phase combined         

bending-torsion loading (Specimen reference: BT-m).  

test conducted under in-phase combined bending-torsion loading (B=T). Based on this assumption, the 

initiation life was calculated when the surface crack length has reached a value equal to 2b0 (which 

corresponds to a crack depth a0 = 129µm). For R = 0, it leads to 2b0 = 322µm. In practice, the value of 2b0 

was calculated for each test to account for the effective stress ratio used (see Tables 3.4-3.6) and it varied 

from 317µm to 321µm. Tables 5.20-5.22 summarise, respectively, the crack initiation lives obtained for 

the single bending, single torsion and in-phase combined bending-torsion tests performed in this study. 

 

The models of Coffin-Manson (CM) and the Smith, Watson and Topper (SWT) were used to predict the 

crack initiation lives. In terms of local von Mises equivalent stress, these models can be formulated, 

respectively, as follows 
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being ∆εvML/2 the averaged local von Mises equivalent strain amplitude, σvML,m the averaged mean local 

von Mises equivalent stress, σvML,max the averaged maximum local von Mises equivalent stress, E  the 

Young’s modulus, σf’ and b the fatigue strength properties, and εf’ and c the fatigue ductility properties.  

 

The local stresses and strains for each test were calculated from the critical stress which was computed 

using the procedure described above. The elastic properties, fatigue strength properties and fatigue 

ductility properties used are compiled in Table 5.3, Table 5.7 and Table 5.8, respectively. The 

experimental fatigue lives (Ne) and the predicted fatigue lives obtained using both the CM (NCM) and 

SWT (NSWT) models for the single bending, single torsion and in-phase combined bending-torsion tests 

are summarised, respectively, in Tables 5.20-5.22.  

 

The experimental lives (Ne) versus the predicted lives (Np) calculated using the CM and SWT models 

for the loading paths studied here are plotted in Figures 5.53 and 5.54, respectively. As can be seen, the 
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Table 5.20. Experimental and predicted fatigue lives for the single bending tests.  

   Specimen 
   Reference 

σvML,max 
[MPa] 

σvML,m 
[MPa] 

∆εvML/2 
[-] 

Ne  
[cycles] 

NCM  
[cycles] 

NSWT  
[cycles] 

   B-1 919.6 471.9 2.134×10-3 65765 70554 93040 

   B-2 919.6 471.9 2.134×10-3 135085 70554 93040 

   B-3 1035.6 530.0 2.256×10-3 53742 24300 24771 

   B-4 1034.8 528.0 2.263×10-3 37108 24300 24771 

   B-5 1384.7 703.0 2.484×10-3 8896 4625 2741 

   B-6 1384.7 703.0 2.484×10-3 16956 4625 2741 

Total: 6 specimens 

 

Table 5.21. Experimental and predicted fatigue lives for the single torsion tests. 

   Specimen 
   Reference 

σvML,max 
[MPa] 

σvML,m 
[MPa] 

∆εvML/2 
[-] 

Ne  
[cycles] 

NCM  
[cycles] 

NSWT  
[cycles] 

   T-1 906.0 467.6 2.090×10-3 108731 84731 116853 

   T-2 906.0 467.6 2.090×10-3 171230 84731 116853 

   T-3 1087.2 558.3 2.521×10-3 56636 17306 16069 

   T-4 1087.2 558.3 2.521×10-3 43141 17306 16069 

   T-5 1208.0 618.7 2.809×10-3 29291 9112 6862 

   T-6 1328.8 679.2 3.096×10-3 25990 5620 3593 

   T-7 1328.8 679.2 3.096×10-3 36424 5620 3593 

Total: 7 specimens 

 

Table 5.22. Experimental and predicted fatigue lives for the in-phase combined bending-torsion tests. 

   Specimen 
   Reference 

σvML,max 
[MPa] 

σvML,m 
[MPa] 

∆εvML/2 
[-] 

Ne  
[cycles] 

NCM  
[cycles] 

NSWT  
[cycles] 

B=2T series       

    B2T-1 873.8 454.4 1.999×10-3 102386 134817 200999 

    B2T-2 1092.2 563.7 2.519×10-3 49103 16947 15805 

    B2T-3 1456.3 745.9 3.386×10-3 24207 3773 2111 

B=T series             

   BT-1 983.9 511.6 2.251×10-3 92544 38305 45843 

   BT-2 983.9 511.6 2.251×10-3 83278 38305 46026 

   BT-3 983.9 511.6 2.251×10-3 56749 38305 46026 

   BT-4 1229.9 634.8 2.837×10-3 26420 8365 6212 

   BT-5 1229.9 634.8 2.837×10-3 21225 8365 6212 

   BT-6 1229.9 634.8 2.837×10-3 31306 8365 6212 

   BT-7 1639.9 839.9 3.813×10-3 8314 2378 1136 

B=2T/3 series             

   B2T3-1 1177.8 604.8 2.731×10-3 50261 10539 8362 

   B2T3-2 1472.2 752.1 3.432×10-3 17967 3594 1973 

   B2T3-3 1962.9 997.6 4.601×10-3 4099 1295 491 

Total: 13 specimens 
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Figure 5.53. Experimentally obtained versus predicted fatigue lives obtained by the Coffin-Manson 

model. 
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Figure 5.54. Experimentally obtained versus predicted fatigue lives obtained by the Smith, Watson and 

Topper  model.   
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predictions calculated using both models are close to the experimental values for predicted lives greater 

than about 2×104 cycles. In this region, a satisfactory linear correlation is obtained in a log-log scale. On 

the other hand, and not surprisingly, for shorter lives the predictions tend to be increasingly conservative. 

This fact can be explained by an inadequate simulation of the local stress-strain field at the notch.  

 

In order to better simulate the local stress-strain field at the notch, the equivalent strain energy density 

concept was applied. As stated in Section 2.4.3, this concept assumes that the ratio of the strain energy 

density in the notch tip to the nominal strain energy density is the same in elastic or elastic-plastic 

straining. A typical stress-strain curve obtained using this approach for a single bending case (Case B-3) 

is exhibited in Figure 5.55. Firstly, the stress and strain at the notch tip are calculated for the maximum 

loading (Point A). The maximum stress (σmax) can be obtained using the following equation  
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where k’ is the cyclic hardening coefficient, n’ is the cyclic hardening exponent, KT is the elastic stress 

concentration factor, σn,max is the maximum nominal stress and E is the Young’s modulus. In this 

research, the quantity KT×σmax was replaced by the maximum local von Mises stress (σvML,max) given by 

the FEM. The σvML,max values used in this research are listed in Tables 5.20-5.22. This procedure avoided 

the calculation of the elastic stress concentration factors. The maximum strain (εmax) was evaluated by 

substituting σmax into the cyclic stress-strain curve given by 
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being k’ the cyclic hardening coefficient, n’ the cyclic hardening exponent and E the Young’s modulus. 

The stress and strain ranges were obtained with respect to an auxiliary coordinate system (∆σ, ∆ε) with 

origin at point A (see Figure 5.55). The resultant stress range (∆σ) was found by solving the formula 
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where k’ is the cyclic hardening coefficient, n’ is the cyclic hardening exponent, KT is the elastic stress 

concentration factor, ∆σn is the nominal stress range and E is the Young’s modulus. The strain range (∆ε) 

was determined from the basic cyclic stress-strain curve by applying a factor of 2, i.e.  
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being k’ the cyclic hardening coefficient, n’ the cyclic hardening exponent and E the Young’s modulus.  
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The values of ∆σ and ∆ε for the case B-3 are represented in Figure 5.55 and account for the difference 

between both point A and point B in terms of stress and strain, respectively.  

 

The above-mentioned procedure was applied to the remaining cases of Tables 5.20 to 5.22. In all the 

cases, the nominal behaviour is elastic (see Tables 3.4 to 3.6) but the notch behaviour is inelastic (see 

Tables 5.20 to 5.22) since σvML,max > σYS’. Therefore, this procedure can be applied in all the cases studied 

here. The resultant values of maximum stress (σmax), mean stress (σm) and strain range (∆ε/2) for the 

different loading paths investigated are listed in Tables 5.23 to 5.25. The experimental fatigue lives (Ne) 

and the predicted fatigue lives obtained from both the CM (NCM) and SWT (NSWT) models for the single 

bending, single torsion and in-phase combined bending-torsion tests are summarised, respectively, in 

Tables 5.23-5.25.  

 

The experimental fatigue lives (Ne) versus the predicted fatigue lives (Np) calculated using the CM and  
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Figure 5.55. Hysteresis loops obtained for a single bending test by applying the strain energy density 

concept (Case B-3).  

 

Table 5.23. Experimental and predicted fatigue lives for the single bending tests.  

   Specimen 
   Reference 

σmax 
[MPa] 

σm 
[MPa] 

∆ε/2 
[-] 

Ne  
[cycles] 

NCM  
[cycles] 

NSWT  
[cycles] 

   B-1 735.4 203.9 2.652×10-3 65765 113225 96656 

   B-2 731.3 207.8 2.598×10-3 135085 132598 93040 

   B-3 755.8 186.6 2.943×10-3 53742 54366 45320 

   B-4 755.8 186.6 2.943×10-3 37108 54366 45320 

   B-5 807.1 155.1 3.972×10-3 8896 10603 8470 

   B-6 807.1 155.1 3.972×10-3 16956 10603 8470 

Total: 6 specimens 
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Table 5.24. Experimental and predicted fatigue lives for the single torsion tests. 

   Specimen 
   Reference 

σmax 
[MPa] 

σm 
[MPa] 

∆ε/2 
[-] 

Ne  
[cycles] 

NCM  
[cycles] 

NSWT  
[cycles] 

   T-1 731.8 207.0 2.607×10-3 108731 129407 111264 

   T-2 731.8 207.0 2.607×10-3 171230 129407 111264 

   T-3 769.1 176.6 3.162×10-3 56636 34721 28135 

   T-4 769.1 176.6 3.162×10-3 43141 34721 28135 

   T-5 789.5 163.8 3.553×10-3 29291 18168 14520 

   T-6 807.8 156.3 3.954×10-3 25990 10786 8502 

   T-7 807.8 156.3 3.964×10-3 36424 10692 8502 

Total: 7 specimens 

 

Table 5.25. Experimental and predicted fatigue lives for the in-phase combined bending-torsion tests. 

   Specimen 
   Reference 

σmax 
[MPa] 

σm 
[MPa] 

∆ε/2 
[-] 

Ne  
[cycles] 

NCM  
[cycles] 

NSWT  
[cycles] 

B=2T series       

    B2T-1 718.8 219.1 2.448×10-3 102386 215775 190395 

    B2T-2 765.0 179.4 3.093×10-3 49103 39682 32290 

    B2T-3 820.5 150.5 4.294×10-3 24207 7554 6000 

B=T series             

   BT-1 745.6 194.9 2.792×10-3 92544 77816 65140 

   BT-2 745.6 194.9 2.792×10-3 83278 77816 65140 

   BT-3 745.6 194.9 2.792×10-3 56749 77816 65140 

   BT-4 789.8 163.9 3.556×10-3 26420 18083 14449 

   BT-5 789.8 163.9 3.556×10-3 21225 18083 14449 

   BT-6 789.8 163.9 3.556×10-3 31306 18083 14449 

   BT-7 844.2 143.8 5.024×10-3 8314 4120 3273 

B=2T/3 series             

   B2T3-1 762.3 181.6 3.047×10-3 50261 43552 35553 

   B2T3-2 805.6 156.2 3.911×10-3 17967 11382 9054 

   B2T3-3 878.4 134.0 6.402×10-3 4099 1868 1484 

Total: 13 specimens 

 

the SWT models for the loading paths studied here are presented in Figure 5.56 and Figure 5.57, 

respectively. Two scatter bands for Ne/Np ratios equal to 0.5 (i.e. Np = 2Ne) and 2 (i.e. Ne = 2Np) were 

plotted. In general, fatigue life predictions in this range (i.e. 0.5 <  Np/Ne  < 2. 0) are considered acceptable. 

As can be seen, in both figures, a large majority of data are inside the scatter bands (more specifically, 

77% for the CM model and 65% for the SWT model). Besides, except for a single case in the CM model, 

the points outside the scatter bands are at the safe side (i.e. Ne/Np > 1). It means that the amount of data 

inside the scatter bands or at the safe side is about 97% for the CM model and 100% for the SWT model. 

This fact suggests that the SWT model is, in general, more conservative than the CM model.  

 

In relation to the points outside the scatter bands, they tend to occur for predicted lives lower than 104 
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Figure 5.56. Experimentally obtained versus predicted fatigue lives obtained by the Coffin-Manson 

model. 
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Figure 5.57. Experimentally obtained versus predicted fatigue lives obtained by the Smith, Watson and 

Topper  model.   
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cycles in the cases of single torsion and in-phase combined bending-torsion loading. In this range, the 

SWT model is more conservative than the CM model. On the other hand, for predicted lives greater 

than 104 cycles, the data are well correlated in both models. 

 

Tables 5.26 and 5.27 present, respectively, several statistical data obtained from the Ne/Np ratios for the 

CM and SWT models, namely the minimum Ne/Np ratio, maximum Ne/Np ratio, mean ratio, standard 

deviation and mean deviation. As can be seen, the values of the Ne/Np ratio for the CM model are within 

the range 0.47-3.41, with mean and standard deviation equal to 1.44 and 0.72, respectively. For the SWT 

model, the Ne/Np ratios vary between 0.54-4.28 and the mean and the standard deviation are, respectively, 

equal to 1.79 and 0.92. Furthermore, regardless of the model, the worst results in terms of standard 

deviation were found for B=2T. In opposition, the best standard deviations were obtained for single 

bending (B).  

 

In order to better compare the values obtained by the two models, the fatigue prediction error (EN) defined 

by following expression was determined  
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where Ne is the experimental life and Np is the corresponding predicted life. The probability density 

functions of the fatigue prediction error obtained for the CM and SWT models are presented in Figure 

5.58. As can be seen, the CM model gives better results than the SWT model. In both cases, the errors  

 

Table 5.26. Statistical data for the Ne/Np ratios obtained from the CM model. 

   Tests Minimum Ne/Np Maximum Ne/Np Mean  Standard deviation Mean deviation 

   All tests 0.47 3.41 1.44 0.72 0.54 

   B 0.58 1.60 0.95 0.33 0.25 

   B=2T 0.47 3.20 1.64 1.15 1.04 

   B=T 0.73 2.02 1.34 0.40 0.34 

   B=2T/3 1.15 2.19 1.64 0.43 0.37 

   T 0.84 3.41 1.78 0.80 0.64 

 

   

Table 5.27. Statistical data for the Ne/Np ratios obtained from the SWT model. 

   Tests Minimum Ne/Np Maximum Ne/Np Mean  Standard deviation Mean deviation 

   All tests 0.54 4.28 1.79 0.92 0.70 

   B 0.68 2.00 1.20 0.44 0.35 

   B=2T 0.54 4.03 2.03 1.47 1.34 

   B=T 0.87 2.54 1.65 0.52 0.50 

   B=2T/3 1.41 2.76 2.05 0.55 0.47 

   T 0.98 4.28 2.20 1.04 0.84 
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Figure 5.58. Probability density functions of fatigue life predictions for the CM and SWT models.  

tend to be moved to the safe side. Nevertheless, the results obtained with the CM model are closer to a 

mean error equal to zero than the SWT model.  
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CHAPTER 6 

NUMERICAL RESULTS 
 

 

 
This chapter contains the numerical findings. The first section 

is devoted to the presentation of the in-plane fatigue crack 

growth software developed in the present research. It 

encompasses the identification and optimisation of the main 

variables affecting the accuracy of the numerical procedure as 

well as the validation of the numerical results. The second 

section evaluates the extent of the surface region in notched 

geometries. The third section deals with the development of a 

plane strain specimen. The last section concerns the 

determination of the Paris law constants from the analysis of 

fatigue crack front marks on fracture surfaces of small     

cross-section round bars. 
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NOMENCLATURE 

a, a0 crack length, initial crack length 
a/b crack aspect ratio 
a/D dimensionless crack length 
ad accumulated difference parameter 
ASTM American Society of Testing and Materials 
C Paris law constant 
C(T) compact tension specimen 
D diameter 
E Young’s modulus 
FEA  finite element analysis 
FEM finite element method 
h, Θ, TZ, Rv stress triaxiality parameters  
K i stress intensity factor of the ith node  
K IC fracture toughness 
Kmax, Kmin maximum stress intensity factor, minimum stress intensity factor 
L length 
m Paris law exponent 
M(T) middle-crack tension specimen 
MNET  mixed numerical-experimental technique 
n notch depth 
N number of loading cycles 
PPP preferred propagation path 
PICC  plasticity induced crack closure 
pβ percentage of the thickness with h ≥ β 
r notch radius 
S1, S2 extent of the surface region, extent of the near-surface region 
Sγ

ψ  dimensionless sensitivity of the variable ψ to the parameter γ 
SIF stress intensity factor 
T original thickness 
t reduced thickness 
T1 first torsional resonant mode 
Ti height of ith element  
tpl, tqm transformation matrixes 
U fraction of the loading cycle in which the crack remains fully open 
W width 
Y geometric factor 
ν Poisson’s ratio 
η notch angle 
σ1, σ2, σ3        principal stresses 
σij stress tensor components 
σH hydrostatic stress  
σvM von Mises equivalent stress 
δx, δy, δz       displacement in the x, y and z directions 
∆a, ∆amax      crack increment, maximum crack increment 
∆K, ∆Kmax    stress intensity factor, maximum stress intensity factor 
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6.1. Modelling of crack shape evolution 

6.1.1. Lynx: new tool to model mode I fatigue crack growth  

The modelling of fatigue crack growth (FCG) using commercial FEM packages is time-consuming and 

laborious. In part, this is because software is developed for general purposes. However, as stated in the 

preceding chapters, the numerical models used to address FCG problems are very specific and require a 

set of tasks usually not available. It is, therefore, necessary to create additional algorithms to perform 

those actions. Besides, commercial specific software is scarce and not sufficiently reliable for research 

purposes. On the other hand, the reliable software able to study these phenomena has been developed by 

research groups but is not available commercially.  

 

In view of these facts, a new tool capable of simulating in-plane fatigue crack propagation was developed. 

The software, named Lynx, was designed in a modular manner and is very simple to use since it greatly 

simplifies the modelling work (Branco, 2011a). An intuitive and user-friendly interface was created to 

enhance its functionality. It incorporates an extensive range of situations usually studied in the context of 

fatigue crack propagation (Branco, 2012c), such as unnotched and notched rectangular bars with corner 

cracks (Figures 4.10a-b), unnotched and notched circular bars with surface cracks (Figures 4.10c-d), 

unnotched and notched plates with surface cracks (Figures 4.10e-f), unnotched and notched plates with 

through cracks (Figures 4.10g-h). Besides, due to its modular structure, other geometries can be added. 

 

This application was developed using Visual Basic language. The flowchart of the calculation procedure 

is shown in Figure 6.1. As can be seen, it includes three main stages. The first one is the pre-processing 

 

 

Figure 6.1. Schematic illustration of the calculation procedure (Branco, 2011a). 
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part in which meaningful input data are received, namely geometrical dimensions, mechanical properties 

and numerical variables. At this stage, the graphical user interface (GUI) is a great way to increase the 

user-friendliness of the program as well as to minimise human data entry errors.  

 

The second stage is focused on the processing part which is the core of the FCG simulation. Briefly, it 

consists of a set of subroutines repeated consecutively for hundreds of times. In such a case, there is a risk 

of error propagation since the final results of a subroutine are input data of the following one. Therefore, 

optimised variables and methods are of major importance to achieve reliable results.  

 

Finally, the third stage refers to the post-processing part. In essence, the collected output data can be 

analysed in terms of crack shape evolution, stress intensity factors or number of fatigue cycles. 

Furthermore, it is also possible to provide complementary graphical and numerical results, such as 

displacement field, stress field, strain field, deformed shape or even animated videos using a compatible 

post-processor.  

 

i) Pre-processing stage  

In this stage, all geometrical, mechanical and numerical variables are defined using the graphical-user 

interface (GUI). The interface consists of eight windows, hierarchically organised according to the type of 

input data. This approach is more attractive to the user since it simplifies the process and ensures a clear 

separation of tasks. Moreover, enlightening drawings were added to the windows in order to improve the 

understanding of the problem. Default values are also suggested which can minimise the learning curve of 

less experienced users.  

 

The typical windows of the graphical-user interface are exhibited in Figure 6.2 and Figure 6.3. The first 

window (Figure 6.2a) allows defining the specimen geometry and its main dimensions. At this moment, 

fifteen different situations are available but other cases can be added. The second window (Figure 6.2b) is 

used to define the initial crack shape. The user can set a maximum of fifty corner nodes in Cartesian or 

polar coordinates. The third window (Figure 6.2c) is devoted to the definition of the elastic constants, 

fracture toughness, fatigue crack growth rate, and type and magnitude of loading. Individual constants of 

the Paris law can be defined for each corner node. In the cases in which a constant fatigue crack growth 

rate is defined, the crack retardation at the free surface can be simulated by defining adequate crack 

closure levels. Besides, in situations where the crack shape changes from a corner crack (Figures 4.10a-b) 

or surface crack (Figures 4.10d-f) to a through crack during the propagation, it is possible to define 

fatigue crack growth rates for each situation (i.e. before and after the shape transition). The loadings 

available are tension, bending or both. The fourth window (Figure 6.2d) is related to the finite element 

mesh. The user can specify the number and dimension of concentric rings surrounding the crack tip as 

well as the total number of elements along the different curves. The fifth window (Figure 6.3a) deals with 

the calculation of the stress intensity factors at the crack front. Currently, only displacement matching 

methods are available (Section 2.7.2), namely the Zhu’s method and the extrapolation method with two   
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a) b) 

  

c) d) 

Figure 6.2. Graphical-user interface: a) specimen geometry; b) crack shape; c) material properties and 

loading definitions; d) FE mesh (Branco, 2011a). 

points. The sixth window (Figure 6.3b) allows the input of several numerical parameters associated with 

the reliability of the numerical simulation, such as the maximum crack advance (∆amax), the position of 

the intermediate nodes of adjacent elements (quarter-point or half-point positions), and the position of the 

nodes at the crack front (cubic spline or polygonal line). The penultimate window (Figure 6.3c) 

encompasses the definition of the variables needed to carry out an automatic transition from a corner or 

surface crack to a through crack (cases of Figures 4.10a-b and Figures 4.10d-f). In the last window  
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a) b) 

  

c) d) 

Figure 6.3. Graphical-user interface: a) calculation of stress intensity factor; b) maximum crack front 

advance; c) transition options; d) output definitions (Branco, 2011a). 

(Figure 6.3d), several output options are taken in order to ensure a fast analysis of results as well as an 

adequate management of the temporary files created during the simulation.  

 

ii) Processing stage  

This stage is the core of the Lynx and deals with the fatigue crack growth simulation (Figure 6.1). The 

data entered in the preceding stage are stored in four ASCII files (model_options.txt, mesh_options.txt, 

crack_front(j).txt and output.dat). From the stored information, a representative finite element mesh is 

generated (FE_model(j).ses). The mesh is created from the crack front to avoid the mesh impairments 
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which occur when the crack is inserted a posteriori into the 3D-FE mesh of the uncracked body. The 

spider web mesh can have between one and three concentric rings. The angular discretisation of these 

elements is equal to 36º. The inner-most ring is based on collapsed 20-node isoparametric elements and, 

as a default, the intermediate nodes are placed at quarter-positions. The transition mesh is added in order 

to create a rectangular box which aims at promoting a faster and smoother change from a refined mesh 

near the crack tip to a larger mesh at remote positions. It combines both collapsed 20-node isoparametric 

and 20-node isoparametric quadrilateral elements. Then, the regular mesh, relatively coarse, is generated 

using 20-node isoparametric quadrilateral elements. As a default, the intermediate and corner nodes of the 

crack front are positioned on a cubic spline. 

 

After that, the code transfers the execution control to the processor GeoStar 256K, whose main interface 

is exhibited in Figure 6.4, waiting for the completion of the FE analysis. In this moment, the control is 

recovered by the Lynx which reads the displacement field and calculates the stress intensity factors at the 

crack front. Next, an adequate crack growth model is applied in order to define the crack front advances 

and the corresponding number of fatigue cycles. The provisional positions are used to establish a new 

crack front which is the input data of the next iteration. The procedure is repeated as long as no critical 

values of fracture toughness or crack length are reached (i.e. K  > KIC or a  >  aend).  

 

The transition from a corner or surface crack to a through crack (a  = aT ) is automatically computed by the 

software (cases of Figures 4.10a-b and Figures 4.10d-f). The methodology developed tries to ensure that 

the crack front propagates as close as possible to the edge of the specimen. The algorithm implemented is  

 

 

Figure 6.4. Main graphical user interface (Branco, 2011a).  
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presented in Figure 6.5 and, in essence, consists of a set of actions performed before the transition       

(B1-B4); a set of actions carried out during the transition (TR); and a set of actions conducted after the 

transition (A1-A3). The first ones comprise a progressive reduction of the number of concentric rings, a 

diminution of the radial size of the crack front elements and a decrease of the maximum crack front 

advance. The reduction of the number of concentric rings (B1-B3) occurs when the transition mesh cannot 

be created outside the restricted area ZR (Figure 6.5). The decrease of the radial size of the crack front 

elements (Li*) and of the maximum crack front advance (∆a*) occurs in stage B4 in order to obtain crack 

fronts as close as possible to the edge of the specimen. The transition to the through crack is started when  

 

 

Figure 6.5. Algorithm to carry out an automatic transition from a corner or surface crack to a through 

crack: a) general overview; b) identification of the main stages. 
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the transition mesh can no longer be created outside the transition area (ZT). At this moment, consecutive 

crack fronts (right-hand side of Figure 6.5a) are defined by increasing successively the crack front 

advance in order to reach the situation depicted in stage TR, i.e. the transition mesh can be created out of 

the transition region (XT). Then, the radial size of the crack front elements (Li** ) and the maximum crack 

front advance (∆a** ) are progressively increased in order to reach their standard values. The last stages 

aim to increase the number of concentric rings (A1-A3). A new concentric ring can be added when the free 

space after the restricted area (XR) is enough to accommodate its radial size (L2 or L3). 

 

In order to enhance the interactivity of the software, a resume option was also implemented to simplify 

the restart of a simulation interrupted for any reason. A specific file is created at the end of each iteration, 

being used when a simulation is resumed. For the same reason, a pause option was also added, which 

allows the user to observe particular moments of the simulation supported by a post-processor. Besides, 

the graphical-user interface (Figure 6.2 and Figure 6.3) can be used to change the input variables at any 

moment. 

 

iii) Post-processing stage  

The post-processing stage is devoted to the analysis of results (Figure 6.1). The information about the 

crack front profiles, stress intensity factors at the crack front and fatigue lives is exported to a spread sheet 

file and further analysed. Complementary, the FE meshes created during the simulation can be loaded in a 

compatible FE post-processor. At this moment, the original mesh files are compatible with the GeoStar 

256K. Nevertheless, if necessary, other plug-in programs can be developed. 

  

6.1.2. Procedure optimisation 

The development of a reliable numerical procedure requires a careful identification and optimisation of 

the independent parameters. The identification of these parameters as well as the discussion of their 

effects on the simulation of fatigue crack growth were tackled in detail in Sections 2.7-2.8. Figure 6.6 

summarises the independent parameters that must be considered in the study of fatigue crack growth 

using a numerical procedure based on the finite element method. As can be seen, the parameters are 

organised according to the main stages carried out in the processing part, namely the application of the 

finite element method (Figures 4.9a-b), calculation of the stress intensity factor at the crack front (Figure  

 

 

Figure 6.6. Identification of numerical independent parameters that affect the accuracy of a numerical 

procedure able to study the fatigue crack growth based on the finite element method (Branco, 2013a). 
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4.9c), and application of an appropriate crack growth model (Figures 4.9d-e). Some parameters have 

universal optimum values whereas others are defined parametrically. 

 

With respect to the former group, several parameters were defined based on the literature results. It 

included a mesh topology that incorporated a spider web mesh centred at the crack tip; the use of singular 

elements able to better simulate the r-0.5 stress singularity at the crack tip; a crack front defined by a cubic 

spline; and a direction criterion that assumed a local propagation normal to the crack front. These 

parameters have been exhaustively discussed in Sections 2.7-2.8 and Sections 4.3-4.6. Regarding the 

latter group, optimisation studies were performed to find the appropriate values. 

 

i) Mesh topology 

There is a broad consensus that the best topology consists of a spider web mesh with several concentric 

rings centred at the crack tip combined with a coarse mesh in remote positions (Figure 4.12). As referred 

to in the previous chapters, this topology was adopted in the present research. Besides, an intermediate 

mesh was added to simplify the transition between the two above-mentioned meshes.    

 

The effect of the number of concentric rings on the stress intensity factor (SIF) along the crack front was 

studied in order to select an optimised pattern to the spider web mesh.  Figure 6.7 presents the SIF values 

against the thickness for a straight crack front in rectangular plates with through cracks subjected to 

tension (Figure 4.10) obtained with different spider web patterns. The stress intensity factors were 

calculated using the extrapolation method with 2 points. The points used, as schematised in the figure, 

were at the same distance from the crack tip. The SIF values obtained with one concentric ring are  

  

 

Figure 6.7. Evolution of the stress intensity factor along the crack front in rectangular plates with through 

cracks (T = 5mm, L = 200mm, 2W = 50mm, a = 12.5mm, L1 = constant) subjected to tension (Branco, 

2013a). 
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significantly lower, in general, about 10-12%. In contrast, with two or three concentric rings, the stress 

intensity factors are quite close and the maximum differences are smaller than 0.85%. Based on these 

results, a spider web mesh made with three concentric rings was implemented in this research as a default 

setting.   

 

This value has been repeatedly endorsed by different authors. Lin et al. used three concentric rings with 

an angular discretisation of elements surrounding the crack tip equal to 45º to study fatigue crack growth 

phenomena in round bars (1997; 1998a), fastener holes (1998) and plates (1997a; 1999).  Carpinteri et al. 

used exactly the same pattern in their research on FCG in pipes (2000; 2000a; 2003), round bars (2006a; 

2007; 2009; 2010) and shells (2006). Antunes et al. (2002) also used three concentric rings but with an 

angular discretisation of elements surrounding the crack tip equal to 36º. Branco et al. used the latter 

pattern to simulate the crack shape evolution in compact-tension specimens (2008a); to propose a notched 

specimen for crack propagation studies under plane strain conditions (2010a; 2013); to determine the 

Paris law constants from beach marks on fracture surfaces (2009; 2012d) and to evaluate the extent of 

surface regions in notched cracked bodies under mode I loading (2012a). The same authors used four 

rings to model the crack shape evolution in middle-crack tension specimens (2008); and to study the 

influence of through-thickness crack shapes on plasticity induced crack closure (2008b). 

  

ii) Type of finite elements 

As referred to above, the finite elements were selected based on the literature results. At the crack tip, the 

collapsed 20-node isoparametric element with intermediate notes at quarter-positions (Figure 4.12c) was 

used. In the other regions, the mesh was created using 20-node isoparametric elements (Figure 4.12a). 

The transition mesh was made with both 20-node isoparametric (Figure 4.12a) and collapsed 20-node 

isoparametric elements (Figure 4.12b). The advantage of the isoparametric elements is their natural ability 

to represent curved shapes because they can be distorted. Besides, they are well tested and are available in 

all general finite element packages. 

 

The high performance of the singular elements relatively to the conventional elements is a fact. It was 

demonstrated, for instance, by Antunes (1999). In addition, it was also demonstrated that the collapsed 

20-node isoparametric element with intermediate nodes at quarter-point positions (Figure 4.12c) provides 

better results than the 15-node isoparametric element with intermediate nodes at quarter-point positions 

(Figure 2.50f). The enhanced behaviour is expected since these elements incorporate the r-0.5 crack tip 

singularity.  

 

The effect of the position of the intermediate nodes on the stress intensity factor is presented in Figure 

6.8. This figure exhibits the ratio of the stress intensity factor at the ith node (Ki) to the maximum stress 

intensity factor (Kmax) along the crack front for a notched round bar subjected to tension which was 

obtained using collapsed 20-node isoparametric elements with intermediate nodes at quarter-point 

positions and collapsed 20-node isoparametric elements with intermediate nodes at half-point positions.  
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Figure 6.8. Evolution of the Ki/Kmax ratio along the crack front in a notched round bar with a semi-circular 

surface crack of 1.5mm subjected to tension (D = 24mm, L = 200mm, r = 1.5mm, n = 2mm, a = 1.5mm,       

L1 = constant). 

The SIF values were calculated using the extrapolation method with two points. The nodes selected are 

depicted in the figure above. Although the trends are similar, there are significant differences in the 

magnitudes of the Ki/Kmax values. Besides, it is also clear that the results for the singular element are 

higher, on average, about 5-6%. Naturally, these differences in the entire simulation would have 

implications in terms of fatigue lives and crack front profiles. 

 

iii) Radial size of crack front elements 

As stated in Section 2.7.1, the most-inner ring of the spider web mesh has a relevant role on the accuracy 

of the numerical results (Antunes, 1999; Guinea, 2000). In theory, the optimum radial size of the singular 

elements (L1) is assured when a balanced modelling of both singular and non-singular fields is achieved. 

Nevertheless, in practice, this is a very complex problem because there are no universal optimum values. 

The optimum radial sizes of crack front elements are generally provided by individual studies (Murti, 

1986; Nykänen, 1996; Antunes, 1999; Branco, 2008; Branco, 2008a) which is computationally intensive 

and time-consuming. Therefore, these values are defined under an acceptable upper bound tolerance and 

are valid in a weak sense.   

 

With respect to the unnotched geometries, the optimum L1 was defined using average values available in 

the literature. Table 6.1 lists the range of values used here (the variables Li and Ti were defined in Figure 

4.13c). In relation to the notched geometries, the problem is more difficult to solve. On the one hand, the 

existing results are scarce. On the other hand, both the spider web mesh and the transition mesh must be 

confined to the interior of the notch (see Figure 4.14) and, therefore, the selected sizes of the finite 

elements are implicitly limited by the notch dimensions, particularly by its radius. In view of this fact, L1 



247 

 

was defined as a fraction of the notch radius (r) and was maintained throughout the simulation. The 

values used for each situation are reported in Table 6.1. The relations between the radial size of crack tip 

elements and the values of L2-L4 and T1-T3 used for the unnotched and notched geometries are also 

summarised in the same table.  

 

Figure 6.9 compares the evolution of the Ki/Kmax ratio along a straight crack front in a rectangular plate 

with through crack subjected to tension for two significantly different values of L1 (1% of the crack length 

and 10% of the crack length). The stress intensity factors were calculated using the extrapolation method 

with two points, from the points A and B represented in the figure. As can be seen, the trends are similar 

and the differences between the Ki/Kmax ratios, except near the surface, are quite small. For example, for 

values of x/t < 0.95, the differences are lower than 0.4%, whilst at the surface are about 5%. Therefore, 

although the value of L1 has increased one order of magnitude, the Ki/Kmax ratios maintained quite stable  

 

Table 6.1. Sizes of the elements of spider web mesh and transition mesh.   

Geometry L1 L2 = L3 = L4 T1 = T2 T3 

Rectangular bar with corner crack L1>0.02a ˄  L1>0.1a = L1 = (L1+L2+L3)×sin36º = T1 

Notched rectangular bar with corner crack L1<(r sin 36º)/9  = L1 = (L1+L2+L3)×sin36º variable 

Round bar with surface crack L1>0.02a ˄  L1>0.1a = L1 = (L1+L2+L3)×sin36º = T1 

Notched round bar with surface crack L1<(r sin 36º)/9 = L1 = (L1+L2+L3)×sin36º variable 

Rectangular plate with surface crack L1>0.02a ˄  L1>0.1a = L1 = (L1+L2+L3)×sin36º = T1 

Notched plate with surface crack L1< (r sin 36º)/9 = L1 = (L1+L2+L3)×sin36º variable 

Plate with through crack L1>0.02a ˄  L1>0.1a = L1 = (L1+L2+L3)×sin36º = T1 

Notched plate with through crack L1<(r sin 36º)/9 = L1 = (L1+L2+L3)×sin36º variable 

 

 

 

Figure 6.9. Evolution of the Ki/Kmax ratio along the crack front in a rectangular plate with a straight crack 

(T = 5mm, L = 200mm, 2W = 50mm, a = 12.5mm, L1 = constant) subjected to tension (Branco, 2013a). 
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and with no significant differences. 

  

iv) Density and orientation of layers  

Most of the numerical studies focused on fatigue crack growth assume uniform layers along the crack 

front. As referred to in Chapter 4, the present research follows the prevailing trend (Figures 4.12 and 

4.14). The only exception was in the determination of the Paris law constants from the analysis of crack 

front marks on fracture surfaces of small cross-section round bars (Section 4.6). The finite element model 

encompassed a refined region close to the free boundary in order to provide a better description of the 

crack shape near that region (Figure 4.23).  

 

Regarding the orientation of the layers surrounding the crack tip, the numerical models created to study 

fatigue crack growth phenomena were prepared to accommodate precisely orthogonal layers. This 

approach is advantageous in the calculation of stress intensity factors especially when displacement 

matching methods are used (Lin, 1999). The influence of the degree of non-orthogonality of the mesh 

surrounding the crack front on the SIF values can be seen in Figure 6.10. This figure presents the 

evolution of the Ki/Kmax ratio along the crack front in a notched plate with through crack obtained from 

two meshes with different degrees of orthogonality. The situations studied included a precisely 

orthogonal mesh with layers normal to the crack front and a mesh with parallel layers to each other. The 

crack front selected is a stable crack shape with an average crack length of 12.47mm which is the result of 

a numerical simulation started from a straight crack with an initial length of 0.5mm. The SIF values were 

calculated using the extrapolation method with two points. The differences in the Ki/Kmax ratios tend to 

increase from the half-thickness to the free surface which is a consequence of the crack curvature caused  

 

 

Figure 6.10. Evolution of the Ki/Kmax ratio along the crack front in a notched plate with a through         

crack (T = 10mm, L = 200mm, 2W = 50mm, am = 12.47mm, r = 1.5mm, n = 2mm) subjected to              

tension (Branco, 2013a). 
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by the presence of the notch. It is important to note that some layers of the precisely orthogonal model are 

rotated about 25º relatively to the non-orthogonal model. However, the maximum differences in the 

Ki/Kmax ratios are lower than 3.5%. 

 

v)  Crack front definition 

As described in Section 2.7.1, two main approximation methods can be used to define the crack front 

shape, i.e. polygonal line or cubic spline. The former (Smith, 1989) consists of a simple connection of the 

corner nodes by straight lines, being the intermediate nodes placed at half-point positions of both 

neighbouring corner nodes. The latter (Lin, 1999) uses a cubic spline that passes through both the corner 

and intermediate nodes. In this manner, the final crack front is smoother which is associated with more 

accurate estimations of stress intensity factors. On the other hand, this approximation avoids the need to 

modify the nodal positions when large crack shape changes occur and thereby leads to a fully automatic 

procedure. Last but not least, the crack front profiles are more realistic than those achieved through the 

polygonal line. 

 

Figure 6.11 exhibits the values of the Ki/Kmax ratio along the crack front in a notched round bar with 

surface crack obtained using a polygonal line approximation, a cubic spline approximation with both 

corner and intermediate nodes positioned on the curve, and a cubic spline approximation with corner 

nodes positioned on the curve and intermediate nodes at half-point positions. The SIF values were 

calculated using the extrapolation method with two points. The crack front selected was a stable crack 

shape with an average radius of 2.55mm which was the result of a simulation started from a semi-circular 

crack with radius of 0.25mm. Note that a very small crack growth increment (∆a = D/800) was adopted in  

  

 

Figure 6.11. Evolution of the Ki/Kmax ratio along the crack front in a notched round bar with semi-circular 

surface crack subjected to tension (D = 16mm, L = 200mm, am = 2.55mm, r = 0.75mm, n = 1.5mm). 
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this simulation. This means that the provisional and final positions of the corner nodes are relatively close 

to each other and, therefore, the main difference between the three situations analysed is the position of 

the intermediate nodes. In fact, the Ki/Kmax ratios are highly sensitive to the positions of the intermediate 

nodes. As can be seen, the results are nearly the same for the polygonal line approximation and for the 

situation in which the corner nodes are on a cubic spline and the intermediate nodes are at half-point 

positions. However, the values of the Ki/Kmax ratios are, on average, about 3% lower when the 

intermediate nodes are positioned together with the corner nodes on the cubic spline curve.  

 

vi) Stress intensity factor calculation 

Numerical methods to extract the stress intensity factors, as explained in Section 2.7.2, can be divided 

into displacement matching methods and energy-based methods. The former group compares the 

predicted numerical displacement field with the analytical displacement field, which contains K in its 

formulation. The latter group calculates the stress intensity factor from the energy release rate. It is 

important to emphasise that energy-based methods are more accurate than displacement matching 

methods but, in general, require more computational effort. In this sense, a trade-off between accuracy 

and computational effort is a solution to increase the efficiency.  

   

In this research, two direct methods (extrapolation method with two points and Zhu’s method) and an 

energy-based method (external forces method) were tested. The mathematical formulations were 

presented in detail in Section 2.7.2. Figure 6.12 exhibits typical results of the SIF values estimated along 

the crack front using these methods for a plate with through crack subjected to tension. An overview of 

the figure shows that both the external forces method and extrapolation method with two points have  

 

 

Figure 6.12. Evolution of the Ki/Kmax ratio along the crack front in rectangular plate with a curved crack 

front (T = 10mm, L = 200mm, 2W = 50mm, am = 12.53mm) subjected to tension (Branco, 2013a). 
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identical trends. The SIF values obtained by the energy-based method are 1-2% higher. Regarding the 

Zhu’s method, it can be distinguished an oscillatory behaviour in the values of the stress intensity factors 

which does not match with the other two methods. As a consequence, the differences relatively to the 

external forces method are considerably higher, between 4-6%.  

 

The computational effort is another major issue which cannot be ignored. Although the external forces 

method is more accurate, it requires thirty-seven analyses to carry out an iteration (assuming a crack front 

divided into eighteen nodes, as mentioned in Section 4.3) whilst the direct methods only need a single 

analysis. On the basis of these reasons, it would be unreasonable to adopt the energy-based method. Thus, 

the choice has fallen on the extrapolation method with two points, since it combines accuracy and 

efficiency. Furthermore, this method has been successfully used in diverse situations (Antunes, 1999; 

Branco, 2008; 2008a; 2008b; 2009; 2011a; 2012d; 2013). Therefore, it is well established and well tested.  

 

vii)   Crack growth model 

The crack growth model applied in the present research was discussed in Section 4.3. As already noted in 

Section 2.7.3, the maximum crack advance (∆amax) is intimately connected with the accuracy of the 

numerical results in terms of crack shape and fatigue life (Lin, 1999c; Branco, 2008a). In order to ensure 

good predictions, small values of ∆amax are recommended. The inaccuracies result from the assumption 

that C(∆K)m is constant for each iteration which is not true. As is well-known, it depends on the crack 

length and increases continuously as the crack propagates.  

   

Figure 6.13 shows the evolution of the crack aspect ratio (a/b) with the dimensionless crack length (a/D) 

for different maximum crack advances (D/50, D/100, D/150, D/200, D/250, D/300) in a round bar with  

 

 

Figure 6.13. Effect of ∆amax on a/b in a round bar with surface crack (D = 16mm, L = 100mm). 
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surface crack subjected to tension. The initial crack shape was a part-elliptical front with a0/b0 = 0.4 and 

a0/D = 0.1. For a maximum crack advance equal to D/50, the typical oscillatory behaviour reported in 

Section 2.7.3 is clearly distinguished. The values of a/b are either above or below the full line, especially 

for dimensionless crack lengths (a/D) within the interval 0.15-0.30. These sudden changes in the crack 

shape are clear sign of unduly high crack advances. By reducing this parameter, it is possible to remove 

such a phenomenon. Take, for instance, the predictions obtained with values of ∆amax equal to D/200, 

D/250 and D/300. In these cases, the results are perfectly superimposed and the maximum differences are 

lower than 1%. In view of this fact, a value of D/300 was defined as the recommended crack advance for 

round bars since it conciliates efficient computation and accuracy. Based on the same approach, the 

recommended values of crack advances for notched and unnotched bars with corner cracks; notched and 

unnotched plates with surface cracks; and for notched and unnotched plates with through cracks were 

found to be equal to t/250, W/500 and W/300, respectively.  

 

6.1.3. Procedure validation  

The typical crack front developments obtained with the fatigue crack growth technique developed here 

are presented in the two following figures (Figures 6.14 and 6.15). Figure 6.14 shows the shape evolution 

of a part-circular surface crack (a0/D = 0.1, a0/b0 = 1) and a straight surface crack (a0/D = 0.1, a0/b0 = 0) 

in a round bar subjected to tension. These results clearly demonstrate that the early propagation stage is 

strongly dependent on the initial crack shape. As can be seen, the initial straight shape (a0/b0 = 0) grows 

much more rapidly in depth direction than along the free surfaces. In contrast, the growing of the         

part-circular shape (a0/b0 = 1) is more balanced along the whole crack front. Nevertheless, the effect of the 

initial crack shape gradually weakens as the crack extends leading to a subsequent propagation stage in 

which the crack front profiles are very similar to each other. These stable crack shapes are often termed 

preferred propagation paths (PPP). The amount of crack growth needed to achieve the second stage, as 

 

 

Figure 6.14. Crack front developments in unnotched round bars (D = 16mm, L = 100mm, m = 3, ν = 0.30,      

E = 210 GPa) from different initial defects subjected to tension: a) part-circular shape (a0/D = 0.1,          

a0/b0 = 1); b) straight shape (a0/D = 0.1, a0/b0 = 0). 
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Figure 6.15. Crack front developments in notched round bars (D = 16mm, L = 100mm, r = 0.5mm,              

n = 2mm, m = 3, ν = 0.30, E = 210 GPa) from semi-circular cracks (a0/D = 0.0625, a0/b0 = 1) subjected              

to: a) tension; b) bending. 

pointed out by several authors (Carpinteri, 1993; Couroneau, 1998; Lin, 1998; Branco, 2009b), depends 

not only on the initial crack shape but also on the loading type, fatigue crack growth rates, elastic 

constants and crack length. Therefore, shapes intrinsically closer to the PPP reach it faster than the others. 

Figure 6.15 exhibits the shape evolution of a semi-circular defect (a0/D = 0.0625, a0/b0 = 1) in a notched 

round bar (r = 0.5mm, b = 2mm) subjected to tension and bending. Although not obvious in the figure, a 

rigorous analysis of the results shows that all the propagation is affected by the loading effect. On the one 

hand, when the crack is a surface crack, it grows more rapidly in the depth direction under bending than 

under tension. On the other hand, the preferred propagation path, when the crack becomes a through 

crack, tends to be more flat than the PPP for tension (Branco, 2012a). Besides, it is notorious that the 

crack front profiles in this phase are not significantly affected by the notch, since the crack shape 

developments of Figure 6.15a are very close to those found in Figures 6.14a-b.  

 

The crack front profiles and the values of the stress intensity factor computed using the present numerical 

procedure were compared with the ones found in the literature for validation. Figure 6.16a presents the 

evolution of the crack aspect ratio (a/b) with the dimensionless crack length (a/D) for different initial 

crack fronts with the same dimensionless crack length (a0/D = 0.1) in a round bar subjected to tension. In 

fact, as suggested in Figure 6.14, the trajectory drawn by the crack strongly depends on the initial crack 

aspect ratio. Nevertheless, this high effect weakens gradually, as the crack propagates, leading the crack 

shape to a preferred propagation path. Additionally, it is possible to observe a good agreement between 

the numerical results presented here and those found in the literature (Carpinteri, 1993; Lin, 1997; Shin, 

2004; Toribio, 2009) for the same propagation conditions (a0/D = 0.1, m = 3, ν = 0.3). Figure 6.16b shows 

the ratio of the minimum SIF to the maximum SIF along the crack front (Kmin/Kmax) during the crack 

growth for a round bar with surface crack under constant amplitude cyclic tension. Different initial crack 

shapes (a0/b0 = 0, a0/b0 = 1) with the same dimensionless crack length (a0/D = 0.1) were considered. 
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Figure 6.16. Evolution of the: a) crack aspect ratio with the dimensionless crack length; b) Kmin/Kmax ratio 

with the dimensionless crack length (Branco, 2012d). 

This ratio (Kmin/Kmax) is interesting to characterise the SIF variations along the crack front with the crack 

growth. At the early stage, it suddenly increases and then goes down slightly to values about 0.85-0.88. 

After that, the ratio rises up slightly towards values close to one (Kmin/Kmax ≈ 0.98). Moreover, at the early 

stage, the gradient of the Kmin/Kmax ratio is less intense for the part-circular crack shape (a0/b0 = 1) than for 

the straight crack shape (a0/b0 = 0). This explains the more significant shape changes observed in the latter 
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case (Figure 6.14b). The predicted values of the Kmin/Kmax ratio were compared with results found in the 

literature (Lin, 1997) for the same propagation conditions (a0/D = 0.1, m = 3, ν = 0.3). As can be seen, both 

types of data are in excellent agreement. Note that the maximum differences are lower than 1.3%. 

 

6.2. Extent of the surface region in cracked bodies 

Reliable numerical tools for analysing two-dimensional fatigue crack growth problems are available but 

the transition to three-dimensional models is still taking place. Besides, the scarce software solutions 

developed to predict fatigue crack growth from experimental da/dN-∆K curves (see Section 2.6) are not 

all available commercially; and the commercial solutions available are not sufficiently robust to perform 

fully automatic and error-free simulations (Hou, 2001). Therefore, more effective methods are required to 

improve the quality of the numerical results. 

 

On the other hand, it must not be forgotten that the study of fatigue crack growth based on the FEM is 

closely related to the type of finite element meshes created, either in terms of computational time or in 

terms of quality of results. Among other aspects, an adequate FE mesh must be developed to accurately 

simulate the extent of the surface regions. Surface regions are particularly important since they involve 

complex singularities. At corner points, the singularity although existing, is usually different from r-0.5.  

 

Indeed, the order of singularity depends on the intersection angle of the crack with the free surface and on 

the Poisson’s ratio of the material (Bazant, 1979; Benthem, 1977; Heyder, 2005). Besides, a relatively 

fast transition from plane stress at the surface to plane strain at interior positions is expected to occur. The 

presence of lateral notches certainly affects this transition and, accordingly, the extent of the surface 

region with or without notches is different. Moreover, surface phenomena, such as crack closure, residual 

stress, etc., have more intense effects near the surface and must be properly incorporated into the 

numerical model to enhance simulations.  

 

The extent of the surface region can be quantified using stress triaxiality parameters. The ratio of the 

average hydrostatic stress to the equivalent von Mises stress (Θ) is probably the most used (see Equation 

4.16). This parameter varies typically from 0 for pure shear to 5-6 for sharp notches. Among others, it 

was used by Wang et al. (2000) to study ductile failure of tubular joints; by Chen et al. (2005) and Anvari 

et al. (2006) to model ductile crack growth using cohesive elements; by Kim et al. (2004) to compile 

solutions of crack tip stress triaxialites for standard and non-standard fracture toughness testing specimens 

via detailed elastic-plastic 3D-FE analyses; and by Mirone (2007) to predict ductile failure of notched 

geometries subjected to different triaxiality histories. An alternative parameter (see Equation 6.1) also 

defined from the ratio of the average hydrostatic stress to the equivalent von Mises stress and the 

Poisson’s ratio was proposed by Lemaitre (1996).  
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The ratio of the out-of-plane stress component to the sum of the in-plane stresses multiplied by the 

Poisson’s ratio (h) is an alternative stress triaxiality parameter also often used in the literature (see 

Equation 4.17). This parameter varies from 0 for plane stress to 1 for plane strain. It was used by Bakker 

(1992) to study three-dimensional constraint effects on the stress intensity factor in plates with       

through-thickness cracks; by Kotousov et al. (2002) to compute three-dimensional stress constraint 

effects in elastic plates with notches; by Berto et al. (2004) to calculate constraint factors in plates with   

V-shaped notches; by Kotousov et al. (2010) to evaluate constraint factors in plates under quasi-brittle 

fracture; and by Branco et al. (2010a; 2013) to propose grooved middle-crack tension specimens for plane 

strain studies.   

 

The out-of-plane stress constraint (Tz) is another stress triaxiality parameter which can be defined by the 

following relationship (Guo, 1993) 
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being σ1, σ2, σ3 the principal stresses in the normal plane of the crack front calculated with respect to a 

local coordinate system (X’Y’Z’) whose Z’-axis is tangential to the crack front. In a literal sense, Tz = 0 

for plane stress state and TZ = ν for plane strain state. This parameter was used by Guo (1999) to analyse 

the plastic constraint for through-thickness cracked bodies; by She et al. (2007) to study out-of-plane 

constraints of cracks in thin elastic plates; by Zhao et al. (2007) to describe the stress field near the border 

of semi-elliptical surface cracks in plates; by Zhang et al. (2007) to characterise 3D stress states of 

quarter-elliptical corner cracks subjected to uniform tension; by Yang (2009) to obtain stress and strain 

concentration factors for notched round bars subjected to tension; and by Yu et al. (2010) to define 

equivalent thicknesses for corner cracks relatively to through-thickness specimens. 

 

O’dowd et al. (1991; 1992) introduced the elastic-plastic Q-value to quantify the crack tip constraint as 

plastic flow progress from small scale yielding to fully yielded conditions. Henry et al. (1997) found a 

unique linear relationship between the Θ stress triaxiality factor and the Q-value which is independent of 

the specimen geometry, specimen size, crack depth and deformation level. Nevertheless, a limited number 

of studies focused on the extent of surface regions near corner points were found. This extent is expected 

to change with the specimen geometry, presence of notches, loading pattern, loading level and material 

properties. Burton et al. (1984) analysed through-thickness cracks and reported extents of z/a ≤ 1.5% for 

the surface region. Narayana et al. (1994) estimated the thickness of the surface effect (ts) by the 

following formula 
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being t the thickness of the cracked body and a half of the crack length. Bakker (1992) studied the 

variation of the h parameter along the crack front, and the influence of thickness and crack tunnelling in 
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plates with through-thickness cracks. Antunes et al. (2000) used the variation of the stress intensity factor 

to quantify the extent of near-surface regions in corner crack specimens. The maximum values were 

observed at angular positions α = 1.5º, which corresponds to an extent of the surface region z/a ≤ 2.6 % for 

a quarter-circular crack with radius of 5mm. Camas et al. (2011; 2012) analysed the size of the plastic 

zone and the stress state along the thickness direction in standard C(T) specimens using ultrafine meshes. 

 

6.2.1. Selection of representative crack shapes  

The extent of the surface region, as stated in Section 4.4, was studied using realistic crack shapes. The 

broad range of simulations performed are summarised in Tables 4.5-4.7 and encompassed notched and 

unnotched rectangular bars with corner cracks (Figures 4.10a-b); notched and unnotched round bars with 

surface cracks (Figures 4.10c-d); and notched and unnotched plates with through cracks (Figure 4.10g-h). 

 

For each geometry, the set of simulations defined aimed at analysing the main parameters affecting the 

crack shape, namely specimen size, notch configuration, fatigue crack growth rates, loading type and 

elastic constants. Some of these effects are schematised in Figure 6.17. Figure 6.17a presents the effect of 

the notch radius on the crack shape in notched round bars (D = 16mm, L = 100mm) subjected to tension. 

  

     

Figure 6.17. Effect of the: a) notch radius; b) loading type; c) thickness; d) crack closure on the crack 

shape (Branco, 2012a).  
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Two different notch radii (r = 0.5mm and r = 1.0mm) with the same notch depth (n = 1.0mm) were studied. 

As can be seen, the decrease in the notch radius leads to a faster crack growth towards the notch root 

which is a natural consequence of the greater stress concentration factor. The difference d1 in the depth 

direction, measured when both profiles A and B became through cracks, is clear sign of this. After this 

moment, the notch effect decreases gradually over time, resulting in very similar profiles, regardless of 

the situation. 

 

Figure 6.17b exhibits the loading effect on the crack shape in a notched round bar (D = 16mm,                    

L = 100mm, r = 0.5mm, n = 2.0mm) subjected to tension and bending. The crack front profiles are different 

throughout the propagation. Surface cracks under bending grow more rapidly in the depth direction than 

under tension, as indicated by the difference d2 measured when the profiles C and D became through 

cracks. But even after this, the crack shape developments are different to each other. Due to a progressive 

attenuation of the notch effect, the profiles tend to be similar to the preferred propagation paths of the 

unnotched round bars which are slightly different for tension and bending (Carpinteri, 1993; Branco, 

2009b) as referred to above. 

 

The effect of the specimen size on the crack shape in a rectangular plate with through crack subjected to 

tension (L = 100mm, 2W = 50mm) is visible in Figure 6.17c. Two different thickness values (t = 5mm and    

t = 10mm) were considered in this analysis. The crack shape is almost straight in both situations, except in 

a small portion near the surface where a typical delay is observed (Branco, 2008). The delay increases 

with the thickness, as evidenced by d3 which represents the difference between the surface coordinates of 

two crack fronts with the same length at the half-thickness of the specimens. Besides, the extent of the 

surface region in the depth direction (d4 and d5) is different and tends to be greater for higher values of 

thickness. The results clearly show that d5 > d4.  

 

The effect of the crack closure phenomenon on the crack shape in a rectangular plate with through crack 

subjected to tension (L = 100mm, 2W = 50mm, t = 5mm) is displayed in Figure 6.17d. The case at the top 

has no crack closure while the other has crack closure at the surface and near-surface nodes, respectively 

U1 = 0.96 and U2 = 0.98. On the one hand, the crack curvature in both cases is substantially different; with 

crack closure, the tunnelling effect is greater, as demonstrates the value of d6. On the other hand, the 

extent of the delay in the depth direction is also different; it is more effective in the case of crack closure 

than without crack closure, as can be seen by comparing the values of d7 and d8.  

 

The FCG simulations were started intentionally from very small initial defects (see Tables 4.5-4.7). In 

this way, the transient part of the propagation represented a small portion of the simulation. This period of 

propagation is essentially affected by the initial crack shape, loading type, fatigue crack growth rates and 

specimen geometry (Couroneau, 1998; Branco, 2008a). Branco et al. (2008a) compared the extent of this 

phase in standard C(T) and M(T) specimens (see Figure 2.46b) and observed that it is greater in the latter, 

which was explained by the lower da/dK gradients existing in this geometry (Schijve, 1998). Figure 6.18  
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Figure 6.18. Evolution of the crack aspect ratio (d/t) with the dimensionless crack length (a/W) for 

notched (L = 200mm, 2W = 50mm, t = 5mm, r = 1.5mm, n = 2mm) and unnotched (L = 200mm, 2W = 50mm, 

t = 5mm) plates with through cracks subjected to tension (Branco, 2013). 

plots the crack aspect ratio (d/t) versus the dimensionless crack length (a/W) for unnotched plates with 

through cracks (L = 200mm, 2W = 50mm, t = 5mm) subjected to tension. Different initial crack shapes with 

similar dimensionless crack length (a0/W = 0.2) were studied. The dashed black and grey lines correspond 

to the transient part of propagation. In this phase, a high sensitivity of the crack aspect ratio with regard to 

the initial crack configuration is observed, which results in a period of significant shape changes. The full 

black and grey lines represent, respectively, the stable propagations of the notched and unnotched plates. 

This preferred propagation paths are undoubtedly different in these two cases, but regardless of the 

situation, the initial crack configurations closer to the PPP reach it faster than the others. Besides, it is also 

unquestionable that the transient phase, in these cases, is a short period of the propagation.   

 

Concerning with the values of stress intensity factor along the crack front, an identical behaviour was 

found. Figure 6.19 presents the evolution of the Kmin/Kmax ratio with the dimensionless crack length (a/W) 

in notched and unnotched plates with through cracks subjected to tension. The initial crack shapes of the 

notched and unnotched plates had crack aspect ratios equal to d0/t = 0.2 and d0/t = -0.2, respectively. The 

dashed black and grey lines correspond to the transient parts of propagation. As can be distinguished, 

sudden changes in Kmin/Kmax ratios are visible in this phase which is clear evidence of strong shape 

changes. Nevertheless, the gradients of the Kmin/Kmax ratios decrease gradually as the crack tends to the 

stable part of propagation. These facts are in agreement with the evolution of the crack aspect ratios 

observed in the previous figure. The full black and grey lines represent the stable propagations of the 

notched and unnotched plates, respectively. The Kmin/Kmax ratios, in these cases, are almost overlapped 

and are relatively close to unity (≈ 0.98). Besides, it is also evident that the convergence of the Kmin/Kmax 
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Figure 6.19. Evolution of the Kmin/Kmax ratio with the dimensionless crack length in notched (L = 200mm, 

2W = 50mm, t = 5mm, r = 1.5mm, n = 2mm) and unnotched (L = 200mm, 2W = 50mm, t = 5mm) plates with 

through cracks subjected to tension (Branco, 2013). 

ratios towards the stable values is fast and occupies a very limited period of propagation.  

 

The analysis of these two figures makes clear that the transient part of propagation in M(T) specimens is 

relatively small; and that the crack front profiles are very similar in the stable phase. Based on these two 

premises, the 3D-FE refined models developed to calculate the stress triaxiality were computed from 

stable crack shapes. The crack front profiles selected had values of dimensionless crack length equal to 

a/W = 0.5. In this region, the crack is perfectly stabilised which means that no transient crack shapes are 

used. Therefore, unless stated otherwise, the analysis of stress triaxiality along the crack front was 

performed using stable crack shapes with dimensionless crack length a/W = 0.5. Figure 6.20a identifies 

the stable crack shapes selected in the course of the present investigation for the different cases studied.    

 

The same concept was adopted with regard to the other geometries of this study, namely unnotched and 

notched rectangular plates with corner cracks (Figure 4.11a-b); and unnotched and notched round bars 

with corner cracks (Figure 4.11c-d). Figures 6.20b-c present the way used to select the representative 

crack shapes in these cases. Nevertheless, the propagation in these cases is relatively different. In truth, 

the propagation still tends to preferred propagation paths but the crack aspect ratio and the Kmin/Kmax ratio 

are not constant as the crack grows. This is evident, for example, in Figures 6.16a and 6.16b in which are 

represented, respectively, the evolutions of the crack aspect ratio and the Kmin/Kmax ratio with the 

dimensionless crack length for different initial crack shapes in round bars with surface cracks subjected to 

tension. Among other reasons, this behaviour can be explained by the nature of the free boundaries of the  
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Figure 6.20. Crack front profiles selected to compute the h stress triaxiality parameter at the crack front 

in: a) unnotched and notched plates with through cracks; b) unnotched and notched rectangular bars with 

corner cracks; c) unnotched and notched round bars with surface cracks. 

geometry which forces the crack perimeter to change continuously during the propagation. In the other 

three cases (unnotched rectangular bars with corner cracks, notched rectangular bars with corner cracks 

and notched round bars with surface cracks), the propagation behaves identically, i.e. the crack aspect 

ratios and the Kmin/Kmax ratios are not constant in the stable part of propagation. Therefore, the extent of 

the surface region evaluated for a/W = 0.5 is not valid for other ranges. In order to address this 

incongruence, correcting functions that take into account the effect of the crack length on the extent of the 

surface region were further developed (see Equation 6.8).  

 

6.2.2. Stress triaxiality at the crack front  

As referred to in Section 4.4, the stress triaxiality at the crack front was calculated using the ratio of the 

average hydrostatic stress to the equivalent von Mises stress (Θ) and the ratio of the out-of-plane stress to 

the in-plane stress components multiplied by the Poisson’s ratio (h). Due to high stress gradients existing 

near the surface, the definition of an appropriate mesh refinement in the thickness direction was a very 

important aspect. The mesh must be sufficiently sensitive to detect the faster transition from plane stress 

state near the free boundary to plane strain state at interior positions. Figure 6.21 plots the values of the h 

stress triaxiality parameter against the dimensionless position (x/t) in a notched plate with through crack 

obtained using a numerical model with uniform layers (black line) and a numerical model with a ultrafine 

mesh near the surface (grey symbols). The two models have equal number of layers (49) and therefore  
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Figure 6.21. Evolution of the h stress triaxiality parameter with the dimensionless position (x/t) in a 

notched plate with through crack considering two mesh densities towards the thickness (r = 0.5mm,           

n = 1.0mm, t = 10mm). 

require the same computational effort. At the surface (x/t = 0), the values of h are substantially different. 

The non-uniform layer model gives a value of h near to zero (h = 0.0093), indicating that the plane stress 

state was achieved, as would be expected. On the contrary, in the other model, the relatively high value of 

h (h = 0.367) at the surface does not suggest the existence of plane stress state, which is contradictory. 

This error is naturally due to the coarse mesh, not sufficiently refined to detect high stress gradients near 

the surface. The sudden variation in the h values, particularly in the range 0.8-0.95, is other evidence that 

the uniform layer model is unable to represent the real stress triaxiality state. Nevertheless, with respect to 

interior positions (x/t > 0.03), the differences are imperceptible, which indicates that the high refinement 

here is not necessary. This fact can be explained by the lower stress gradients that occur in that zone. The 

final mesh density, used in the following calculations, combines these two main aspects, i.e. it is          

ultra-refined near the surface and relatively coarse at interior positions. The smallest element size of the 

ultra-refined mesh, as described in Section 4.4, is equal to 1µm. The sizes of the other elements are 

defined from the relationship 1×1.1(i-1) µm where i is the layer number.  

 

Another important decision was made regarding the stress triaxiality parameters. The h stress triaxiality 

parameter, unlike the Θ stress triaxiality parameter, has fixed lower and upper limits. This is a strong 

advantage since it simplifies the comparison of results obtained in different situations. Figure 6.22 

exhibits the evolution of the Θ and h stress triaxiality parameters along the dimensionless position (x/t) in 

a notched plate with through crack for two different values of the Poisson’s ratio (ν = 0.29 and ν = 0.30)  
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Figure 6.22. Evolution of Θ and h stress triaxiality parameters with the dimensionless position (x/t) in a 

notched plate with through crack (r = 0.5mm, n = 1.0mm, t = 5mm) for two different values of ν. 

using the non-uniform layer model. As can be seen, both h-curves (dashed lines) start from zero (nearly 

zero) and tend to unity. However, the Θ-curves (full lines) have different initial values (0.602 and 0.554) 

and converge to asymptotic values relatively different (1.707 and 1.637). This demonstrates that the 

comparison of results in the latter case is more complex since the upper and lower limits are not known. 

Besides, the range of variation changes from case to case which introduces too much unpredictability. In 

the former case, the situation is quite different because the upper (h = 1) and lower (h = 0) limits as well as 

the range of variation are well-defined. Besides, the upper and lower limits represent extreme states, i.e. 

plane strain state (h = 1) and plane stress state (h = 0). Based on these facts, the h stress triaxiality 

parameter was selected to carry out the following analysis. 

 

6.2.3. Effects of the variables affecting crack shape on stress triaxiality  

A close relationship between crack shape and stress triaxiality at the crack front was observed. Therefore, 

the variables affecting the crack shape, such as specimen geometry, material properties, fatigue crack 

growth rates, loading paths, etc., are important in terms of stress triaxiality. The understanding of these 

effects on the stress triaxiality is crucial to accurately examine the extent of the surface region.  

 

Figure 6.23 presents the effect of the previous variables on the h stress triaxiality curves. In the following 

figure, the h-curves are plotted against the dimensionless parameters x/t or α/αmax (these variables are 

depicted in Figure 6.20). The former is used in the cases of geometries with through cracks and the other 

is used in the remaining cases. An overview of Figure 6.23 shows that the h-curves start from zero near 

the free boundary (plane stress state) and tend to unity in the depth direction (plane strain state). 
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Nevertheless, the transition between these two extreme states varies considerably from case to case, in 

particular, the slope of the h-curves near the surface. The effect of the specimen geometry on the h-curves 

is exhibited in Figure 6.23a (cases 09, 01 and 07 of Tables 4.5, 4.6 and 4.7, respectively). Three different 

geometries with the same notch configurations (r = 0.5mm, n = 2.0mm) are analysed (more specifically, a  
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Figure 6.23. Effect of: a) specimen geometry; b) notch radius; c) specimen size; d) notch depth and crack 

length on the stress triaxiality (Branco, 2012a). 
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Figure 6.23 (continued). Effect of: e) crack length and exponent of the Paris law; f) crack closure;            

g) loading; h) Poisson’s ratio on the stress triaxiality (Branco, 2012a). 

notched rectangular bar with corner crack, a notched round bar with surface crack and a notched plate 

with through crack). As can be seen, the h-curve of the notched plate tends to higher values of stress 

triaxiality in the depth direction than the others. On the other hand, the slopes near the surface are clearly 

different in the three cases. Therefore, the results evidence that each h-curve is an intrinsic characteristic 

of the geometry.   
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The effect of the notch radius (r) on the h-curves is shown in Figure 6.23b. Three different notch radii 

(cases 01-03 of Table 4.7) are analysed in a notched plate with through crack. The notch radius exerts a 

strong influence on the h-curves that acts throughout the crack front. The h-curves computed for greater 

radii lay always below the others. This trend is explained by different stress concentration factors near the 

notch root caused by different notch radii. The increase in the stress concentration factor results in higher 

slopes of the h-curves near the surface. Besides, as already observed in Figure 6.17a, smaller notch radii 

cause a faster crack growth along the free boundary which is responsible for different stable crack shapes. 

Accordingly, the resultant stress triaxiality values are also different. The effect of the stress concentration 

on the h-curves is even more evident by comparing the results of stress triaxiality of unnotched (case 61 

of Table 4.7) and notched plates. It makes clear that the h values are significantly smaller in the former 

case, particularly in the depth direction. Therefore, there is a strong relation between stress concentration 

and stress triaxiality. 

 

The effect of the specimen size on the stress triaxiality is exhibited in Figure 6.23c. Three different values 

of thickness (t) are analysed (cases 04-06 of Table 4.6) in a notched plate with through crack. The crack 

configuration remained unaltered. The main differences occur near the free surface where high slopes of 

the h-curves are observed for the larger thicknesses. In the depth direction, the curves are nearly 

overlapped and therefore the differences are not remarkable.  

 

The effect of the notch depth (n) on the h-curves is displayed in Figure 6.23d. Three different values of 

notch depth (cases 01, 04 and 13 of Table 4.7) are examined in a notched plate with through crack. 

Although not obvious at the first sight, the stress triaxiality rises along the whole crack front. The increase 

in the h values is more evident in the depth direction than that in the region surrounding the free surface. 

Besides, it is important to refer that the gain in the h-curves due to the notch depth is very slightly and 

tends to zero as the notch depth increases.  

 

The effect of the crack length on the h-curves is presented in Figure 6.23e. Particularly in this case, the    

h-curves computed have different dimensionless crack lengths (a/W = 0.14, a/W = 0.19 and a/W = 0.24) and 

resulted from a single propagation (case 02 of Table 4.6) in a notched round bar subjected to tension. As 

observed, the stress triaxiality near the surface decreases with the crack length but tends to be similar in 

the depth direction. This situation occurs in the notched and unnotched geometries with corner and 

surfaces cracks. In these cases, the crack front perimeter increases continuously during the propagation 

which explains the different h-curves obtained. In the notched and unnotched geometries with through 

cracks, the crack propagation is quite different. As noted in Figures 6.18 and 6.19, the crack front 

maintains similar profiles after a short initial period of propagation, which leads to h-curves practically 

independent of the crack length.  

 

The effect of the exponent of the Paris law (m) on the h-curves is plotted in Figure 6.23e. Three different 

values of m are studied (cases 01, 11 and 12 of Table 4.6) in a notched round bar subjected to tension. As 
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can be seen, the curves have similar trends without relevant differences. However, a careful analysis of 

the data shows that the higher is the m value, the higher is the stress triaxiality.  

 

The effect of the crack closure on the h-curves is shown in Figure 6.23f. This study comprised no crack 

closure (case 04 of Table 4.7), crack closure (case 58 of Table 4.7) and more intense crack closure (case 

59 of Table 4.7). The geometry selected was a notched plate with through crack. The two first situations 

have almost similar crack shapes (as shown in Figure 6.17d) and therefore the stress triaxiality is 

equivalent. Nevertheless, the increase in the crack closure level produces higher crack shape changes 

which have repercussions on the h-curves.  

 

The effect of the loading on the h-curves is depicted in Figure 6.23g. Three different loading situations 

corresponding to tension, bending and both simultaneously (cases 01, 04, 05 of Table 4.7) were studied in 

a notched round bar with surface crack. As can be seen, the h-curves are slightly different. The effect of 

the loading acts throughout the crack front. These facts are in agreement with the conclusions mentioned 

in relation to Figure 6.17b, i.e. different loading types produce different crack shape developments. 

 

The effect of the Poisson’s ratio (ν) on the h-curves can be seen in Figure 6.23h. Three different values of 

ν (cases 04, 11, 12 of Table 4.8) are analysed in a notched plate with through crack. In the range 

analysed, the differences are not clear but it is possible to conclude that the higher is the Poisson’s ratio, 

the lower is the h-curve. This influence on the crack shape, as well as on the h-curves, can be explained 

by the corner singularity near the free surface of the round bar, which is a function of the Poisson’s ratio. 

With regard to the Young’s modulus, its effect on the h-curves is not relevant (Branco, 2013).   

 

6.2.4. Evaluation of the extent of the surface region  

The analysis of Figure 6.23 makes clear that a generic h-curve can be divided into three main regions (see 

Figure 6.24): a surface region, relatively small, characterised by high stress gradients; a near-surface  

 

 

Figure 6.24. Definitions of surface, near-surface and interior regions (Branco, 2012a). 
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region, in which the stress gradients decrease progressively to asymptotic values near unity; and an 

interior region without significant stress gradients with a dominant extent relatively to the others.  

 

A global criterion based on the slope of the h-curves was proposed to objectively quantify the extent of 

the above-mentioned regions. Briefly, as depicted in Figure 6.24, the transition between the surface and 

near-surface regions occurs when the slope of the h-curve is less than 90% and is represented by the 

dimensionless variable S1; the transition between the near-surface and interior regions takes place when 

the slope of the h-curve is less than 10% and is represented by the dimensionless variable S2. 

 

In order to apply the proposed criterion, each h-curve was fitted to a fifth order logarithm function 

 

( ) ( ) ( ) ( ) ( ) ( )5
5

4
4

3
3

2
210 χln aχln aχln aχln aχln aaχh +++++=  (6.4)

 

being a0-a5 fitting constants and χ the dimensionless variable x/t or α/αmax. This type of function was 

adequate and led to correlation coefficients extremely high (r > 0.999). In a second stage, the derivatives 

of these functions were computed. Then, the values of S1 and S2 were calculated numerically using a 

specific subroutine written in VBA programming language. In order to define upper bounds for the 

surface and near-surface regions, the variables affecting the h stress triaxiality were examined. 

 

The main conclusions with respect to S1 are reported in Figures 6.25a-c. These three figures plot the 

extent of the surface region (S1) against the dimensionless crack length (a/W) in notched rectangular bars 

with corner cracks, notched round bars with surface cracks and notched plates with through cracks, 

respectively. The variables studied were the specimen size, notch radius, notch depth, crack length, 

Poisson’s ratio and exponent of the Paris law. The numbers in brackets refer the FCG simulations 

performed which are listed in Tables 4.5-4.7, respectively.    

 

The results of Figures 6.25a-b show that the extent of the surface region is a decreasing function of the 

dimensionless crack length. Regarding the notched plates with through cracks (Figure 6.25c), S1 is 

independent of a/W. These two types of behaviour are expected and are in agreement with the conclusions 

stated in the previous subsection. In notched plates with through cracks, the crack front profiles stabilise 

after a short initial propagation period leading to identical h-curves and identical S1 values. However, the 

fatigue crack growth process in the other cases is substantially different. The crack aspect ratio 

progressively changes during the propagation which has repercussions on the h-curves and on the extent 

of the surface region.  

 

The effect of the specimen size on the extent of the surface region can be analysed by comparing the 

series of filled black diamonds, squares and circles (Figures 6.25a-c). The variables analysed were the 

width (W), diameter (D) and thickness (t) for notched rectangular bars with corner cracks, notched round 

bars with surface cracks and notched plates with through cracks, respectively. The results obtained show  
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c) 

Figure 6.25. Evolution of S1 with a/W: a) notched rectangular bars with corner cracks; b) notched round 

bars with surface cracks; c) notched plates with through cracks (Branco, 2012a). 
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that the increase in the specimen size decreases the extent of the surface region. A thicker specimen has a 

greater percentage of the crack front predominantly under plane strain state and therefore the relative size 

of the surface region is necessarily lower. 

 

The effect of the notch radius on S1 can be seen by comparing the series of filled black, grey and white 

triangles (Figures 6.25a-c). Regardless of the geometry, the decrease of the notch radius results in higher 

S1 values. Smaller notch radii increase the stress concentration factors which originate more pronounced 

slopes of the h-curves near the free surface (see Figure 6.23b). As a consequence, the high stress gradients 

exist in a larger region.   

 

The effect of the notch depth on the extent of the surface region is presented in Figure 6.25a. Three 

different values of n (n = 0.75mm, n = 1mm, n = 2mm) were examined for a notched rectangular bar with 

corner crack. The results show that the higher is the notch depth, the higher is S1. However, the 

differences of the curves are not significant. This fact is due to the small influence of the notch depth on 

the h-curves, as already observed in Figure 6.23d.  

 

The effect of the Poisson’s ratio on S1 is displayed in Figure 6.25b. Three different values of ν (ν = 0.29,  

ν = 0.30, ν = 0.31) were studied for a notched round bar with surface crack. The decrease in ν leads to 

smaller S1 values. Besides, it is important to note that the Poisson’s ratio has a significant influence on the 

extent of the surface region. Even in this small range, the final values of S1 are clearly different.  

 

The effect of the Paris law exponent on the extent of the surface region can be seen in Figure 6.25c. Three 

different values of m (m = 2, m = 3, m = 4) were studied for a notched plate with through crack. Based on 

the results achieved, it is evident that the Paris law exponent has a limited influence on the S1 values. This 

is in line with the conclusions stated in Figure 6.23e. As already said, the h-curves are not remarkably 

affected by this variable.  

 

Apart from the previous analysis based on stable crack shapes, the values of S1 for unstable crack shapes 

were also calculated. Figure 6.26 presents the evolution of the extent of the surface region with the 

dimensionless crack length considering both unstable crack shapes (a/W < 0.2) and stable crack shapes 

(a/W > 0.2). This analysis was conducted in notched rectangular bars with corner cracks, notched round 

bars with surface cracks, and notched plates with through cracks. The full lines were plotted only based 

on stable crack shapes. The symbols (squares, triangles and circles) refer to the entire propagation.  

 

As can be seen, in the first part of the propagation, due to the significant crack shape changes already 

reported, the extent of the surface region does not fit the trends and is clearly unstable. Nevertheless, as 

the crack grows, this instability diminishes progressively and the values of S1 fit the trends. However, it is 

possible to conclude that the values of S1 in both the unstable and stable periods have approximately the 

same order of magnitude.  
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Figure 6.26. Evolution of S1 with a/W for unstable crack shapes (Branco, 2012a). 

The analysis of S2 was performed in a similar manner. Figures 6.27a-c exhibit the evolution of the extent 

of the near-surface region with the dimensionless crack length in notched rectangular bars with corner 

cracks, notched round bars with surface cracks and notched plates with through cracks, respectively. The 

variables examined were the specimen size, notch radius, notch depth, crack length, Poisson’s ratio and 

exponent of the Paris law. The numbers in brackets refer to the FCG simulations performed which are 

listed in Tables 4.5-4.7, respectively.   

 

According to the results of Figures 6.27a-b, the extent of the near-surface region is a decreasing function 

of the dimensionless crack length. However, in the case of Figure 6.27c, S2 is independent of a/W. As 

already said, the differences are due to different fatigue crack growth processes. In the latter case, the 

crack tends to stabilise after a short initial period of propagation which leads to identical crack front 

profiles, h-curves and S2 values. In the former cases, the progressive change in the crack aspect ratio 

causes different crack front profiles, h-curves and S2 values. 

 

The effect of the specimen size on S2 can be analysed by comparing the series of filled black diamonds, 

squares and circles (Figures 6.27a-c). The variables analysed were the width (W), diameter (D) and 

thickness (t) for notched rectangular bars with corner cracks, notched round bars with surface cracks and 

notched plates with through cracks, respectively. As can be seen, the higher is the size of the specimen, 

the lower is the extent of the near-surface region. Due to the increase in the specimen size, the portion of 

the crack front predominantly under plane strain state tends to increase. In this sense, the extent of the      

near-surface region is successively lower.  

 

The effect of the notch radius on the extent of the near-surface region can be inferred by comparing the 

series of filled black, grey and white triangles (Figures 6.27a-c). The decrease in the notch radius results 

in smaller values of S2. Lower notch radii cause higher stress concentration factors and higher slopes in 
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Figure 6.27. Evolution of S2 with a/W: a) notched rectangular bars with corner cracks; b) notched round 

bars with surface cracks; c) notched plates with through cracks (Branco, 2012a). 
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the h-curves (see Figure 6.23b). As a consequence, the curves of higher slopes tend to become horizontal 

more rapidly which reduces the extent of the near-surface region.  

 

The effect of the notch depth on S2 is presented in Figure 6.27a. Three different values of n (n = 1mm,      

n = 2mm, n = 3mm) were examined for a notched rectangular bar with corner crack. The higher is the 

notch depth, the higher is the extent of the near-surface region. The increase in b produces slightly higher 

stress triaxiality values and slightly higher slopes of the h-curves at interior regions. In this way, the lower 

slopes of the h-curves are achieved more slowly, which means that S2 tends to increase.  

 

The effect of the Poisson’s ratio on the extent of the near-surface region is exhibited in Figure 6.27b. 

Three different values of ν (ν = 0.29, ν = 0.30, ν = 0.31) were studied for a notched round bar with surface 

crack. The differences are not significant in this range but it is perceptible that the increase in ν rises S2.  

 

The effect of the Paris law exponent on S2 can be seen in Figure 6.27c. Three different values of m (m = 2,      

m = 3, m = 4) were studied for a notched plate with through crack. Due to the low influence of this variable 

on the h-curves, the extent of the near-surface region is not particularly affected by the m values. As can 

be distinguished, the results of the three situations are practically overlapped. 

 

The calculation of S2 for unstable crack shapes was also carried out. Figure 6.28 plots the extent of the 

near-surface region against the dimensionless crack length for unstable (a/W < 0.2) and stable crack 

shapes (a/W  > 0.2). The analysis comprised notched rectangular bars with corner cracks, notched round 

bars with surface cracks and notched plates with through cracks. The full lines were plotted from stable 

crack shapes. The symbols (squares, triangles and circles) refer to the entire propagation.  

 

In the first part of the propagation, the values of S2 oscillate considerably, which is a reflex of the intense 
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Figure 6.28. Evolution of S2 with a/W for unstable crack shapes (Branco, 2012a). 
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crack shape changes that occur in this period. As a result of that, the resultant S2 values do not fit the 

trends of the stable propagation. However, as the crack grows, the fluctuations disappear and S2 follows 

the trends. Furthermore, it is important to note that the S2 values have the same order of magnitude, either 

in the unstable period or in the stable period.   

 

In a second stage, S1 and S2 were computed for a wide range of situations. The detailed information about 

the fatigue crack growth simulations performed in this research is given in Table 4.5 (cases 18-45) for 

notched rectangular bars with corner cracks; in Table 4.6 (cases 18-45) for notched round bars with 

surface cracks; and in Table 4.7 (cases 30-57) for notched plates with through cracks. This exhaustive 

analysis focused on the notch radius and specimen size. The other variables remained unchanged due to 

their smaller influence on the extents of the surface and near-surface regions. These calculations, as 

already stated in Chapter 4, were carried out from stable crack shapes. 

 

Figures 6.29a-c exhibit the evolution of S1 and S2 with the specimen size and notch radius for notched 

rectangular bars with corner cracks, notched round bars with surface cracks and notched plates with 

through cracks, respectively. As can be seen, the S1 values (grey symbols) tend to decrease with the notch 

radius whilst the S2 values (black symbols) tend to increase. On the other hand, it is clear that both 

variables tend to asymptotic values. As referred to above, this behaviour is explained by the stress 

concentration factors resultant from each notch radius. Lower stress concentration factors are the reflex of 

higher notch radii and result in less intense stress triaxialities near the free boundary (i.e. smaller S1 

values) and in greater S2 values since the transition to a predominant plane strain state is slower.  

 

In relation to the specimen size, its effect on S1 and S2 is similar. Both variables tend to decrease with this 

variable. This fact is in line with the conclusions postulated before. The perimeter of the crack increases 

which reduces the relative size of the surface and near-surface regions. A six parameter Taylor series 

polynomial (Equation 6.5) was used to fit both the S1 and S2 curves. Table 6.2 presents the xi constants 

found here. Besides, correlation coefficients relatively high (r > 0.997) were achieved. As can be seen, the 
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Table 6.2. Constants of Equation 6.5 (Branco, 2012a). 

 x1 x2 x3 x4 x5 x6 

  Notched rectangular bar with corner crack 

  S1 3.7980×10-2 -8.8866×10-3 1.3042×10-4 5.2009×10-4 -4.5836×10-10 2.0394×10-4 

  S2 3.1470×10-1 -1.3489×10-1 3.3428×10-2 1.5725×10-2 -2.6812×10-10 -3.1079×10-3 

 Notched round bar with surface crack 

  S1 2.4045×10-2 -6.0341×10-3 -1.5246×10-3 5.8593×10-4 6.0026×10-10 4.8631×10-4 

  S2 4.9496×10-2 4.9488×10-2 2.5333×10-2 -1.5304×10-2 1.9302×10-10 5.5585×10-3 

  Notched plate with through crack 

  S1 2.6859×10-2 -3.2684×10-3 -4.8632×10-3 -7.5458×10-4 -5.2562×10-11 1.5800×10-3 

  S2 5.2652×10-1 -2.2482×10-1 8.1154×10-2 3.0394×10-2 1.6026×10-10 9.7227×10-3 
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black and grey lines, plotted using the proposed equation, are very close to the FEM results.   

 

The analysis of the results shows that S1 is typically less than 3% of x/t or α/αmax; and S2 varies from 3% 

to 30% of x/t or α/αmax. Besides, it is also evident that S1 is an order of magnitude lower than S2. Taking  
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b) 

Figure 6.29. Evolution of S1 and S2: a) notched rectangular bars with corner cracks; b) notched round bars 

with surface cracks (Branco, 2012a). 
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c) 

Figure 6.29 (continued). Evolution of S1 and S2: c) notched plates with through cracks (Branco, 2012a). 

into account that the three situations studied are substantially different, either in terms of type of 

geometries or in terms of crack families, the results achieved are expected to be generic and valid for a 

broad range of cases. Nevertheless, for smaller sizes of the specimens, it is important to note that S1 and 

S2 tend to increase and therefore the bounds proposed must be used with caution. 

 

6.2.5. Relations S1-KT and S2-KT 

In the previous subsections, the stress concentration factor (KT) was used to explain the behaviour of the 

S1 and S2 values. In this subsection, the links between S1-KT and S2-KT are examined in detail. The cases 

studied before (i.e. cases 18-45 of Table 4.5 for notched rectangular bars with corner cracks; cases 18-45 

of Table 4.6 for notched round bars with surface cracks; and cases 30-57 of Table 4.7 for notched plates 

with through cracks) were analysed in terms of stress concentration factor. This factor was defined as the 

ratio of the maximum stress to the corresponding remote nominal stress calculated from the gross      

cross-sectional area (see Equation 2.34). Such analyses, as in the previous subsection, focused on the 

effect of the specimen size and on the notch radius. The other variables remained unchanged (n = 2mm,     

m = 3, ν = 0.3 and tension loading).  

 

Figures 6.30a-c present the evolution of S1 with KT (grey symbols) and S2 with KT (black symbols) for 

notched rectangular bars with corner cracks; notched round bars with surface cracks; and notched plates 

with through cracks, respectively. As can be seen, linear equations can be used to describe the relations  
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Figure 6.30. Evolution of S1 and S2 with KT: a) notched rectangular bars with corner cracks; b) notched 

round bars with surface cracks; c) notched plates with through cracks (Branco, 2012a). 

S1-KT and S2-KT. The correlation coefficients found were relatively high (r > 0.990). The slopes of the full 

lines seem to depend on the geometry but not on the size of the specimen. Besides, not surprisingly, the 
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increase in KT results in greater S1 values and lower S2 values. These facts are in agreement with the 

conclusions referred to in the previous subsections. On the one hand, higher KT values are responsible for 

higher stress triaxialities and higher slopes of the h-curves near the free boundary of the specimen which 

leads to greater extents of the surface region. On the other hand, higher KT values promote a faster 

transition from a predominant plane stress state near the surface to a predominant plane strain state in the 

depth direction which means that the extent of the near-surface region tends to diminish. 

 

Based on the results of Figures 6.30a-c, two empirical functions that relate the stress concentration factor, 

the notch radius and the size of the specimen to S1 (Eq. 6.6) and S2 (Eq. 6.7) were developed, i.e.  
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where q is the size of the specimen (W for notched rectangular bars with corner cracks; D for notched 

round bars with surface cracks; and t for notched plates with through cracks) and xi are fitting constants 

given in Table 6.3. These equations proved to be independent of the geometry. Besides, this formulation 

is particularly interesting because it is based on three known variables, namely the stress concentration 

factor, notch radius and size of the specimen, and only on two unknown constants. These equations are 

valid in the ranges (dimensions in millimetres): W ε [5-14], D ε [8-16], t ε [2.5-10] and r ε [0.5-2]. Note 

that the maximum errors between the proposed expressions (full lines) and the FEM results (circle 

symbols) are lower than 5%. 

 

Finally, the effect of the crack length on S1 and S2 was examined. This study was carried out for the 

notched rectangular bar with corner crack and for the notched round bar with surface crack. As mentioned 

before, the notched plate with through crack is not affected by the crack length (see Figure 6.25c and 

Figure 6.27c) and therefore no corrections regarding the values of Equation 6.6 and Equation 6.7 are 

required. The correction function for the other two geometries is given by 
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being xi the fitting constants listed in Table 6.4. This equation is valid in the range 0.3 ≤   a/W  ≤  0.85. In 

this interval, the fitting error is lower than 4%.  

 

Table 6.3. Constants of Equation 6.6 and Equation 6.7 (Branco, 2012a).   

  Geometry x7 x8 x9 x10 

  Notched rectangular bar with corner crack -4.9891×10-4 1.9265×10-2 6.2868×10-1 -6.9932×10-1 

  Notched round bar with surface crack 1.6729×10-4 1.1822×10-2 2.0363×10-1 -2.8655×10-1 

  Notched plate with through crack -5.8200×10-4 1.6650×10-2 8.9323×10-1 -6.0126×10-1 
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Table 6.4. Constants of Equation 6.8 (Branco, 2012a).   

  Geometry x11 x12 

  Notched rectangular bar with corner crack   

  S1 8.3578×10-1 -2.6374×10-1 

  S2 5.5487×10-1 -8.2373×10-1 

  Notched round bar with surface crack   

  S1 7.4890×10-1 -3.9501×10-1 

  S2 5.1319×10-1 -9.9368×10-1 

 

 

6.3. Definition of a plane strain specimen for fatigue and fracture studies 

Stress state has a major influence on different phenomena, namely those involving diffusion (hydrogen 

embrittlement, high temperature fatigue crack growth), plastic deformation (ductile fracture, plasticity 

induced crack closure), and brittle fracture:   

 

• hydrogen induced cracking is susceptible to stress triaxiality (Cayón, 2003). The zones of the 

component more critical for hydrogen induced cracking are those submitted to triaxial stress states, 

since the volumetric deformation is favourable for hydrogen accumulation; 

• high temperature fatigue crack growth in nickel-base superalloys has been found to be greatly 

influenced by the stress triaxiality. Significant tunnelling effect has been observed in C(T) and 

Corner Crack (CC) specimens, as a result of the influence of the stress state on the oxidation 

mechanism (Webster, 1994; Tong, 1997). At the surface, the plane stress state promotes cyclic plastic 

deformation and propagation is predominantly transgranular (Antunes, 2001). Inside, the triaxiality 

associated with plane strain states promotes diffusion of oxygen. Therefore, propagation tends to be 

intergranular and time-dependent;  

• ductile fracture in metallic alloys usually follows a multi-step failure process involving several 

mechanisms: nucleation of microscopic voids by fracture or decohesion of second-phase inclusions, 

growth of voids induced by plastic straining, localisation of plastic flow between the enlarged voids 

and final tearing of the ligaments between enlarged voids (Van Stone, 1985). These mechanisms are 

greatly affected by the stress state (Clausmeyer, 1991; Kim, 2004a); 

• plasticity induced crack closure (PICC) is an extrinsic micromechanism affecting fatigue crack 

growth (FCG), which also depends on crack tip plastic deformation. There is a general agreement 

that plane stress state has significantly larger levels of crack closure compared with plane strain 

loading conditions. However, the level and even the existence of PICC under plane strain conditions 

still are controversial (Newman, 1981a; Fleck, 1982; Sehitoglu, 1991; Pippan, 1994; Costa, 1998; 

Pommier, 2002;  Antunes, 2010; Antunes, 2011);  

• brittle fracture toughness is known to reduce with the increase of the thickness. A minimum thickness 

is defined in order to obtain the plane strain fracture toughness (KIC). In fact, in standard fracture 

toughness testing of deeply cracked C(T) specimens or single edge cracked bars in three-point-bend, 

the thickness of the specimen is recommended to be either half of, or equal to the width of the 

specimen (ASTM E399, 2009). 
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The isolated analysis of plane stress and plane strain states is important in fundamental studies of material 

behaviour. In general, as discussed in Section 4.5, the plane stress state is obtained with thin specimens, 

while the plane strain state is achieved with thick specimens or introducing lateral side grooves. However, 

the plane stress state still exists at the surface and additionally the experimental procedure requires more 

material and higher loads. Besides, since there are no standards defining the specimen, or the lateral side 

grooves or the thickness, all of these aspects have been defined empirically without an objective measure 

of the resultant stress triaxiality state.  

 

The development of a plane strain specimen would be useful to study all phenomena affected by stress 

triaxiality states. The approach followed here, as discussed in detail in Section 4.5, consists of a standard 

M(T) specimen modified with lateral side grooves. The lateral side grooves are introduced in order to 

reduce the size of the plane stress surface regions. This solution combines easiness of production, high 

groove reproducibility and comparability of results with standard geometries, which are very important 

features from an experimental point of view.  

 

6.3.1. Selection of representative crack shapes 

As stated in Section 4.5, the plane strain specimen was developed using realistic crack shapes. The crack 

growth simulations performed are summarised in Table 4.8. These simulations aimed at studying the 

main parameters affecting the crack shape, such as notch radius, notch depth, notch angle, thickness, 

fatigue crack growth rate and elastic constants.  

 

The typical crack front developments obtained for the standard M(T) and modified M(T) specimens are 

presented in Figure 6.31. Many crack front profiles were intentionally omitted to avoid overlapping. This 

figure can also be used to understand the effects of some of the above-mentioned variables on the crack 

shape profiles. Figure 6.31a compares the crack shape evolution in both standard M(T) and modified  

 

 

Figure 6.31. Effect of: a) groove; b) thickness on fatigue crack shape developments (L = 200mm,            

2W = 50mm, a0/W = 0.2) obtained in standard M(T) and notched M(T) specimens (Branco, 2013a). 



281 

 

M(T) specimens with the same reduced thickness. The evident differences in shape are, therefore, due to 

the presence of the groove. In the unnotched case, the crack shape is almost straight, except near the 

surface where a delay is observed which is depicted by the d1 variable. In the other case, the crack growth 

along the boundary of the specimen is faster than in depth due to the increase of the stress concentration 

factor caused by the U-shaped groove, as can be distinguished by the d2 variable. 

 

Figure 6.31b compares the crack shape evolution in two modified M(T) specimens for two different 

values of thickness (t = 5mm and t = 10mm). In both cases, the crack growth along the boundary of the 

specimen is faster than in the thickness direction. Nevertheless, the decrease in thickness results in a delay 

near the surface, as evidenced by the d3 and d4 variables. Besides, it is also clear that the sizes of these 

regions in the depth direction, evaluated by the d5 and d6 variables, are different and tend to be greater for 

higher values of thickness.   

 

The analysis of this figure also makes clear that the crack front profiles, although different from case to 

case, tend to be similar after a short initial period of propagation in which high shape changes occur. As 

already analysed in Section 6.2, in particular in Figures 6.18 and 6.19, the transient part of propagation in 

M(T) specimens is relatively small; besides, the crack front maintains its shape during the stable phase of 

propagation. Based on these two premises, the 3D-FE refined models developed to compute the stress 

triaxiality were created from stable crack shapes. This was achieved by propagating the crack from a very 

small initial length (a0/W = 0.02) up to a/W = 0.5. Consequently, unless stated otherwise, the analysis of 

stress triaxiality along the crack front in the following subsections is performed using stable crack shapes 

with dimensionless crack length equal to a/W = 0.5. 

 

6.3.2. Stress triaxiality at the crack front 

As already observed in Section 6.2, a close relationship between crack shape and stress triaxiality can be 

established. In this sense, all the variables affecting the stable crack shape, namely geometrical 

parameters and material properties, are important in terms of stress triaxiality. In this context, the former 

group (particularly the thickness, groove radius and groove depth) play a major role since they can be 

controlled by the user; unlike the others which are intrinsic characteristics of the materials. Accordingly, 

it is important to understand the effect of the geometrical variables on the stress triaxiality level of the 

modified M(T) specimen. 

 

The relation between the stress triaxiality and the different variables studied here was carried out using 

the h stress triaxiality parameter (see Equation 4.17). This parameter, as observed in the study of the 

extent of the surface region (Section 6.2), is an easy and powerful way to establish a link between those 

variables and the resultant stress triaxiality state. 

 

Figure 6.32 shows the effects of different variables on the stress triaxiality. This figure presents the 

evolution of the h stress triaxiality parameter with the dimensionless position along the thickness (x/t). In  
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Figure 6.32. Effect of the: a) thickness and crack length; b) groove radius; c) groove depth and groove 

angle; d) exponent of the Paris law and Poisson’s ratio on the h-curves (Branco, 2013). 

general, the h-curves start from zero near the surface (plane stress state) and tend to unity (plane strain 

state) in the depth direction. Nevertheless, the transition between these two states varies considerably 

from case to case, in particular the slope of the curves near the surface. Therefore, the systematic 

quantification of these differences is necessary to develop a pure plane strain specimen.    
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Figure 6.32a shows the effect of the thickness on the h-curves (cases 01-04 of Table 4.8). The most 

significant differences are observed near the surface. The slope of the h-curves increases with the 

thickness which means that the curves computed for higher thicknesses lay above the others. As a result, 

stress triaxiality states are higher for greater thicknesses. However, it is also clear that the differences 

between the h-curves tend to decrease as the thickness increases.  

 

Figure 6.32b presents the effect of the groove radius on the h-curves (cases 05-08 of Table 4.8). These 

results show that the stress triaxiality is extremely influenced by this variable. The decrease in the groove 

radius leads to higher h values in the whole domain of the curves. This can be explained by different 

stress concentration factors near the groove root. Smaller groove radii increase the stress concentration 

factor along the free boundary of the specimen which promotes a faster crack growth near the surface as 

well as high stress triaxiality levels. The effect of the stress concentration factor on the h-curves is even 

more visible by comparing the two extreme curves corresponding to the standard M(T) specimen (case 09 

of Table 4.8) and the modified M(T) specimen with sharp V-shaped grooves (case 10 of Table 4.8). Not 

surprisingly, the curve of the latter case clearly lies above the other in consequence of its higher stress 

concentration factor. The nature of the M(T) specimen can explain the differences, i.e. a rectangular plate 

with constant cross-section cannot compete with a grooved geometry in terms of stress triaxiality.   

 

Figure 6.32c exhibits the effect of the groove depth on the h-curves (cases 11-14 of Table 4.8). Near the 

surface, the influence of this variable on the stress triaxiality level is not relevant since the curves are 

practically overlapped. However, a notorious difference is observed in the in-depth direction. Therefore, 

the higher is the groove depth, the greater is the stress triaxiality value.  

 

The effect of the groove angle on the h-curves can also be seen in Figure 6.32c (cases 15-17 of Table  

4.8). Three groove angles (η = 0º, η = 60º, η = 90º) with the same groove radius (r = 0.75mm) and the same 

groove depth (n = 2.0mm) were examined. The results achieved show that the stress triaxiality levels are 

quite similar in the three curves which indicates that the groove shape is not relevant, provided that the 

groove radius and the groove depth are maintained.   

 

Apart from the geometrical effects, the influences of the material properties on the stress triaxiality level 

were also studied. Figure 6.32d displays the effect of the exponent of the Paris law (m) on the h-curves 

(cases 05, 18, 19 of Table 4.8). The influence of this parameter on the stress triaxiality level is very slight. 

As can be seen, the three curves have the same behaviour in the whole domain. Although not obvious at 

the first sight, it is possible to conclude that an increase in the exponent of the Paris law is responsible for 

higher h values. Figure 6.32d also exhibits the effect of the Poisson’s ratio on the h-curves (cases 01, 20, 

21 of Table 4.8). The differences in the range represented (ν = 0.28, ν = 0.30, ν = 0.32) are relatively small. 

Nevertheless, this elastic property has a strong effect on the stress triaxiality. The results demonstrate that 

the h values increase with ν. This fact can be explained by the corner singularity existing near the surface 

of the specimen, which is a function of the Poisson’s ratio (Heyder, 2005; Ševcík, 2012). With respect to 

the influence of the Young’s modulus on the stress triaxiality, an extremely weak effect was observed. 
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After a careful analysis, it is possible to infer that the lower is the Young’s modulus, the higher is the       

h-curve (Branco, 2013).   

 

The effect of the crack length on the h-curves was also examined. Figure 6.32a shows the h-curves 

obtained for the same propagation (case 22 of Table 4.8) considering three crack fronts with different 

dimensionless crack lengths (a/W = 0.35, a/W = 0.50, a/W = 0.65). As can be distinguished, there are no 

perceptible differences between the values of stress triaxiality. This is an expected result which 

demonstrates again that a single crack front profile can be used to evaluate the stress triaxiality in the 

stable phase of propagation.  

 

In conclusion, higher stress triaxiality levels can be achieved by using thick specimens with small groove 

radii and long groove depths. The ideal situation (r = 0mm) is not technologically feasible. In this way, a 

trade-off between groove radius and technology is required.  

 

6.3.3. Definition of a plane strain specimen 

The plane strain specimen was defined using the h-curves. This was a logical decision since these curves 

have revealed a high sensitivity to the variables that affect the stress triaxiality. In this sense, it was 

possible to quantitatively relate the stress triaxiality with the main geometrical variables.  

 

The strategy adopted here is depicted in Figure 6.33. In a first stage, the resultant h-curves of the stable 

crack shapes obtained in the FCG simulations are computed. Then, the geometrical variables of the 

specimen that meet the plane strain state criterion are determined. 

 

The plane strain state criterion applied is based on two independent limits (see Figure 6.33). The first one, 

the h-limit (β), defines the minimum intensity of the plane strain state (represented in the vertical plane of 

the figure below). The second one, the pβ-limit (ζ), defines the amount of the specimen in which there is a  

 

 

Figure 6.33. Scheme of the strategy adopted to define the plane strain specimen (Branco, 2013). 
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value greater or equal to the minimum intensity defined (dark grey region of the horizontal plane). The 

higher is β, the more intense is the plane strain state. The higher is ζ, the greater is the amount of the 

specimen under plane strain state. Therefore, the increase of the h-limit or of the pβ-limit results in more 

pure plane strain states and thicker specimens. 

 

This concept is particularly interesting because it allows an effective comparison of different geometrical 

solutions in terms of stress triaxiality. Besides, this approach enables a balance between intensity and 

extent of plane strain state. In other words, the plane strain state )(ps 
 
ζ
β  is assumed to exist when a 

percentage of the thickness greater or equal to ζ has h stress triaxiality values greater or equal to β.  

 

The h-limits considered here were β  = 0.96, β  = 0.95, β  = 0.94 and β  = 0.93. For each of them, the percentage 

of the thickness (pβ) in which the stress triaxiality parameter was greater or equal to the h-limit (β) was 

calculated. The calculations of pβ were exhaustively repeated for different geometrical variables. The 

cases studied here comprised groove radii in the range [0.5-1] mm; groove depths in the range [1-4] mm; 

and thicknesses in the range [2.5-40] mm. Table 4.8 summarises the main variables defined in the fatigue 

crack growth simulations performed to obtain the stable crack shapes necessary to compute the                

h-curves (cases 23-98). The standard M(T) specimen was also examined (cases 99-103 of Table 4.8). 

 

Figures 6.34a and 6.34b plot the pβ values against the thickness for two h-limits, respectively β  = 0.96 and 

β = 0.94. Apart from the effect of the thickness, it is also possible to analyse the effect of the groove radius 

(r = 0.5mm, r = 0.75mm, r = 1.0mm) and the effect of the groove depth (n = 1mm, n = 2mm, n = 3mm). The 

evolution of pβ with the thickness for the standard M(T) specimen is also displayed in both figures.   

 

The resultant curves, termed β-curves, are well-defined and have identical trends. The effect of the 

thickness is evident. For smaller thicknesses, the slopes are very steep whilst for greater thicknesses the 

curves tend to asymptotic values which depend on the groove geometry and on the h-limit. In relation to 

the groove radius, it is also clear that the greater is the value of r, the lower is the value of pβ. Regarding 

the groove depth, although its effect on the β-curves is less pronounced, it is visible that higher groove 

depths lead to greater values of pβ. These results are in line with the conclusions enunciated in Figure 

6.32, i.e. higher thicknesses, higher groove depths and smaller groove radii result in increased stress 

triaxiality levels. Accordingly, the combination of these three factors can contribute to minimise the plane 

stress surface regions.  

 

On the other hand, it is important to bear in mind that the β-curves of the standard M(T) specimens, in 

both cases, are well below the values obtained for the modified M(T) geometries. It means that the 

thickness necessary to achieve a given value of pβ is much higher in the standard M(T) specimen. So, as 

stated before, the introduction of lateral side grooves into the geometry is extremely beneficial to obtain 

thinner specimens with the same stress triaxiality level. 
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Figure 6.34. Evolution of pβ for: a) β = 0.96; b) β = 0.94 in standard and modified M(T)                  

specimens (Branco, 2013). 

Here, the pure plane strain state is assumed to exist when the limits β = 0.96 and ζ = 96% are 

simultaneously met ),(ps96% 
0.96  

i.e. the specimen is considered under predominant plane strain condition 

when, at least, 96% of its thickness has values of the h stress triaxiality parameter greater or equal to 0.96.  

This is a very restrictive criterion because it combines a high intensity of plane strain state with a large 

amount of specimen that comply the condition. The dashed line of Figure 6.34a presents different 

geometrical solutions that meet this criterion (black and grey symbols). Table 6.5 summarises the values 

of the reduced thickness (t), groove radius (r) and groove depth (n) for each of those cases. 
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Table 6.5. Main geometrical variables of the plane strain specimens (Branco, 2013). 

  Geometry Reduced thickness, t Original thickness, T Groove radius, r Groove depth, n 

  1  13.0 21.0 0.5 4.0 

  2  14.5 18.5 0.5 2.0 

  3 17.0 19.0 0.5 1.0 

  4 20.6 28.6 0.75 4.0 

  5 22.5 26.5 0.75 2.0 

  6 24.9 26.9 0.75 1.0 

 

Geometry 2 (of Table 6.5) is a balanced solution since it reduces the material and production costs. The 

groove radius (r = 0.5mm) is technically feasible. The groove depth (n = 2mm) is a reasonable value, 

avoiding excessive machining time. The amount of material is minimal because it has the smallest 

original thickness (T = 18.5mm). Besides, the proposed plane strain geometry can be made using current 

machining technology which simplifies the manufacturing process and reduces costs. Moreover, due to its 

small cross-section, tests can be performed using typical laboratory equipment. This simplifies the 

apparatus and ensures a good reproducibility. In order to avoid non-planar crack propagation, a perfect 

alignment of the opposite lateral side grooves is fundamental.  

 

The remaining geometrical variables and the other aspects of the tests, namely the width-to-height ratio, 

specimen preparation, apparatus, data analysis, validation of results, etc., are similar to those proposed by 

the fatigue testing standards for the M(T) specimen. In this sense, the comparability of results between 

standard and modified geometries is possible, which is very interesting and highly desirable.  

 

It is important to stress that a plane strain geometry defined from the standard M(T) specimen based on 

the same criterion would require a thickness of 78.9mm. On the other hand, a standard specimen with the 

same thickness to the proposed plane strain specimen would have plane stress surface regions equal to 

15% (i.e. only 70% of the thickness with h > 0.96) against the 2% (96% of the thickness with h > 0.96) of 

the proposed solution. Therefore, the plane stress surface regions would be 7.5 times higher in the former 

specimen. The contrast between the two cases is remarkable. This is clear evidence that the introduction 

of lateral side grooves is an effective and straightforward approach to reduce the extent of the plane stress 

surface regions. 

 

Figure 6.35 presents a versatile way to find alternative combinations of the geometrical variables that 

meet the plane strain criterion proposed which can be useful when the solutions of Table 6.5 are not 

viable, due to, for example, thickness constraints. In addition, solutions for less severe plane strain state 

criteria are also exhibited. The new criteria were defined in a similar manner but with lower h-limits and 

lower pβ-limits, i.e. 95% of the thickness with h ≥ 0.95 );(ps95% 
0.95 94% of the thickness with h ≥ 0.94 );(ps94% 

0.94  

and 93% of the thickness with h ≥ 0.93  ).(ps93% 
0.93 In this manner, the balance between intensity and extent of 

plane strain state is maintained but with a less intense degree. The plane strain state criterion should be 

defined in accordance with the severity of the phenomenon under study and the objectives of the research.   
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Figure 6.35. Different combinations of r, t and n for different plane strain state criteria (Branco, 2013). 

As can be seen, the plane strain state criterion has a significant influence on the results. The decrease in 

the h-limit, which means less severe plane strain state criteria, leads to smaller thicknesses. Furthermore, 

the higher is the h-limit, the greater is the influence of the groove depth on the results, since the curves 

tend to be more distant from each other.   

 

As referred to in Section 4.5, a parallel study aiming at defining a plane strain specimen using straight 

crack shapes was conducted. The first step, as for the study based on realistic crack shapes, was to 

understand the link between geometrical variables and stress triaxiality state. In the same way, the straight 

crack fronts had a dimensionless crack length equal to a/W = 0.5. The h stress triaxiality parameter was 

also used to examine the effects of the geometrical variables.  

 

Not surprisingly, the h-curves behave in the same way. Figure 6.36a exhibits the effect of the thickness on 

the h-curves. As can be seen again, the slope of the h-curves increases with the thickness which means 

that the curves computed for higher t values lay above the others. Besides, it also clear that the differences 

between the h-curves tend to decrease as the thickness increases. In the direction of the thickness, the 

curves are overlapped which is not totally observed for the curved cracks (Figure 6.32a). The different 

behaviour is a consequence of the different stable crack shapes that result for each value of thickness. As 

mentioned with respect to Figure 6.17, the increase in the thickness affects the delay near the free surface, 

either in terms of tunnelling effect or size of the surface region.  

 

Figure 6.36b presents the effect of the groove radius on the h-curves. As expected, the stress triaxiality is 

strongly affected by this variable. The increase of the groove radius results in lower h values near the 

surface. In the direction of the thickness, the curves converge to unity. Nevertheless, the convergence is  
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Figure 6.36. Effect of: a) thickness; b) groove radius; c) groove depth; d) groove angle and crack shape on 

the h-curves (Branco, 2010a). 

faster for curved cracks (see Figure 6.32b). This is comprehensible because the crack fronts are straight 

which is not necessarily true in the case of realistic crack shapes obtained from different notch radii 

(Figure 6.31b). Besides, it is also evident that the standard M(T) specimen produces lower stress 

triaxiality states than the grooved geometries which is associated with its lower stress concentration factor 

due to the non-existence of any notch. As a consequence, the h-curves of geometrical configurations with 

higher stress concentration factors (i.e. lower groove radii) clearly lay above the others. 
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Figure 6.36c shows the effect of the groove depth (n) on the h-curves. As noted above, near the surface 

there are no relevant differences since the h-curves are perfectly overlapped (Figure 6.32c). In that region, 

the groove radius seems to be preponderant. Nevertheless, in the direction of the thickness, the h-curves 

tend to increase with longer grooves.  

 

Figure 6.36d displays the effect of the groove angle on the h-curves. Similarly to the conclusions stated 

for the curved cracks (Figure 6.32c), the results achieved show that the stress triaxiality values are quite 

similar which is a strong sign that the groove shape is not relevant, provided that the groove radius and 

the groove depth are maintained.   

 

As postulated earlier, the h-curves are very sensitive to the crack shape. This can be seen in Figure 6.36d 

by comparing the h-curves of a realistic crack front obtained with the 3D-FE FCG technique (case 34 of 

Table 4.8) and of a straight crack shape with the same geometrical details and material properties. The    

h-curves behave differently in the whole domain represented. On the one hand, the slopes of the h-curves 

are clearly different, being higher for the straight crack front. On the other hand, the upper limits obtained 

are also different and tend to be greater in the case of the curved crack front. The higher slope of the 

straight crack front indicates that the transition from a predominant plane stress state to a predominant 

plane strain state is achieved faster. On the basis of these results, the plane strain specimen obtained from 

straight crack shapes is expected to be thinner than that obtained with curved crack shapes. 

 

After this study, the β-curves were obtained. As before, the analysis comprised different thicknesses, 

groove radii and groove depths. The same h-limits were examined, namely β = 0.96, β = 0.95, β = 0.94 and 

β = 0.93. Figures 6.37a-b exhibit the pβ values for the cases β = 0.96 and β = 0.94, respectively. At first 

glance, the trends of the β-curves are similar to those achieved with fatigue crack growth modelling (see 

Figures 6.34a-b). In a similar way, the pβ values tend rapidly to zero as the thickness decreases; and 

converge to asymptotic values for thicker specimens. The asymptotic values increase with smaller notch 

radii and with greater notch depths. In fact, the same behaviour is observed in the whole domain of the 

curves, i.e. the pβ values are higher for smaller r values and higher h values. Nevertheless, the effect of 

the groove depth tends to be less effective as the notch radius decreases. On the other hand, the β-curves 

tend to be closer to each other as the notch radius diminishes. 

 

The effect of the h-limit is also evident. The reduction of the β values results in an almost negligible 

influence of the notch depth on the pβ values (in Figure 6.37b the differences between the β-curves are 

much more mitigated than in Figure 6.37a). Moreover, the influence of the notch radius on the pβ values 

is also attenuated since the β-curves computed for the same notch radius tend to be closer in Figure 6.37b 

than in Figure 6.37a. These conclusions are not surprising. Indeed, they are in line with the trends 

observed in Figures 6.34a-b. However, the β-curves obtained with fatigue crack growth modelling are 

more sensitive to the notch radius and to the notch depth than with straight crack fronts. As can be seen in 

Figures 6.34a-b, the curves are furthest from each other. 
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Figure 6.37. Evolution of pβ for: a) β = 0.96; b) β = 0.94 in an analysis based on straight crack fronts.  

Figure 6.38 compares the pβ values obtained with fatigue crack growth modelling (full lines) and with 

straight crack fronts (dashed lines) for β = 0.96 (p0.96) considering different notch radii (r = 0.5mm and        

r = 1.0mm) and different notch depths (n = 1mm and n = 2mm). As can be seen, the β-curves for straight 

crack fronts lay always above the others. This shows that the plane strain specimens obtained in this case 

are thinner than those obtained using stable crack shapes, as already observed in Figure 6.36d. Therefore, 
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Figure 6.38. Comparison of pβ values considering stable crack fronts and straight crack fronts. 

the plane strain specimen proposed (Geometry 2 of Table 6.5) continues to meet the pure plane strain 

state criterion (i.e. at least 96% of the thickness with h values greater than 0.96) but is, naturally, a more 

conservative solution than the one achieved from straight crack fronts.    

 

6.3.4. Stress intensity factor solution  

The stress intensity factor solution (K) for the proposed plane strain specimen was obtained by applying 

the finite element method. The relationship found can be expressed in the form 

 

aK    
ln(a/W)

(a/W)
 0.19230-(a/W) 0.176891 3 πσ








+=

 
(6.9)

 

being a/W the dimensionless crack length, σ the remote stress, and a the half-crack length. The numerical 

results were fitted by the least square method. The fitting error of the proposed solution, in the range      

0.1 ≤   a/W  ≤ 0.9, is less than 2%. 

 

Figure 6.39 plots the geometric factor (Y) against the dimensionless crack length (a/W). The triangle 

symbols represent the results obtained from the FEM and the black full line represents the fitted curve. As 

exhibited in the figure, the proposed function is adequate to fit the data obtained here. 

 

Figure 6.39 also presents the evolution of the geometric factor with the dimensionless crack length for the 

standard M(T) specimen. The dashed line corresponds to the numerical results of the present study whilst 

the circle symbols are the geometric factor derived from the solution proposed by Tada et al. (1973). As 

can be observed, the differences between these two sources are quite small, since the results are in 

excellent agreement. In the range 0.2 ≤  a/W ≤ 0.9, the maximum differences are lower than 3%. The values 

n = 1 mm (straight crack front) 

n = 2 mm (straight crack front) 

n = 1 mm (curved crack front) 

n = 2 mm (curved crack front) 
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Figure 6.39. Stress intensity factor solution for the plane strain specimen. 

of Tada et al. (1973) are, in general, slightly higher which means that such a solution is more 

conservative. 

 

6.3.5. Sensitivity analysis 

The plane strain specimen was subjected to a careful sensitivity analysis. The sensitivities were calculated 

analytically and in a dimensionless form to facilitate the comparison of results (see Equation 4.1). This 

study aimed at understanding the effect of the main variables that affect the crack shape on the pβ values. 

Thus, the independent variables analysed were the main geometrical variables (reduced thickness, groove 

radius and groove depth) and material properties (Poisson’s ratio, Young’s modulus and exponent of the 

Paris law).  

  

Each sensitivity was calculated from three distinct analyses which were carried out using three different 

values of the independent variable, i.e. an independent variable with no perturbation; with a perturbation 

of -1%; and with a perturbation of +1%. Therefore, in order to obtain the stable crack shapes required to 

compute the h-curves necessary to calculate the pβ values, new fatigue crack growth simulations were 

performed. The new simulations were conducted in the plane strain geometry proposed (Geometry 2 of 

Table 6.5). For each independent variable (γ), three h-curves were established and the resultant values of 

pβ were computed. The three pairs of points pβ-γ were fitted to a second order polynomial function which 

was used to obtain the ∂pβ/∂γ derivative. After that, the dimensionless sensitivity was calculated. 

 

Figure 6.40 presents the dimensionless sensitivities of the pβ to the independent variables for two different 

h-limits (β = 0.96 and β = 0.94). Regardless of the h-limit considered, the trends are similar. However, it is 

clear that the higher is the h-limit, the higher are the dimensionless sensitivities. 
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Figure 6.40. Sensitivity analysis of the main independent variables. 

In relation to the geometrical variables, the most significant effects are caused by the thickness and 

groove radius. The groove depth has a limited influence on the pβ values. These results are in accordance 

with the conclusions stated before.  

 

Regarding the Poisson’s ratio and the Young’s modulus, they behave differently. The former is 

responsible for the highest dimensionless sensitivities, whilst the latter has a negligible effect on this 

variable. In relation to the exponent of the Paris law, no significant dimensionless sensitivities were 

observed. These results are also in agreement with the previous conclusions. 

 

6.4. Determination of the Paris law constants from fatigue crack front marks 

Reliable fatigue crack propagation properties are essential for accurate life predictions. These properties 

are commonly evaluated using a standard procedure (BS ISO 12108; ASTM 647) that incorporates the 

use of standard specimens. The geometries employed (M(T) and C(T) specimens) are characterised by 

through cracks, nearly straight, and with no significant shape changes during the propagation. 

 

In small circular shaped components, the application of this procedure is not recommended. On the one 

hand, the production of standard specimens in not easy; on the other hand, the use of miniature specimens 

has led to slower fatigue crack growth rates than in standard specimens (Shin, 2012). In view of these 

facts, alternative procedures are desirable.  

 

In round bars, the crack suffers significant shape changes during the propagation. Under mode I, either 

numerically or experimentally, it has been demonstrated that small cracks are nearly part-elliptical whilst 

longer cracks tend to be flat (Carpinteri, 1993; Lin, 1997; Shin, 2004). Figure 6.41 presents the fatigue 
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Figure 6.41. Fatigue crack shape developments of different initial surface cracks in round bars subjected 

to tension and bending (Branco, 2012c). 

shape evolution of three different initial surface cracks (a0/b0 = 1, a0/b0 = 0.4, a0/b0 = 0) in round bars 

subjected to tension (Figures 6.41a-c) and bending (Figures 6.41d-f). It can be seen that at the early stage 

of crack growth, the shape development strongly depends on the initial crack configuration. It is clear that 

for the initial straight shape (a0/b0 = 0), the crack grows much more rapidly in depth than along the free 

surface whilst for the initial part-circular (a0/b0 = 1) and part-elliptical (a0/b0 = 0.4) shapes the growing is 

more balanced along the whole crack front. However, the importance of the initial crack configuration 

gradually disappears as the crack extends. As a consequence, the crack fronts tend to be similar. The 

amount of crack growth needed to achieve this part of propagation also depends on the initial crack 

configuration, as already discussed in Figure 6.16a, and therefore the shapes closer to the preferred 

propagation path reach it faster than the others.  

 

The effect of the loading type on the crack profiles is not totally clear in the previous figure. Nevertheless, 

as has been reported in the literature (Carpinteri, 1993; Couroneau, 1998), the fatigue propagation paths 

are distinct for tension and bending. Figure 6.42 plots the crack aspect ratio (a/b) against the 

dimensionless crack length (a/D) for different initial crack fronts (a0/b0 = 1, a0/b0 = 0.8, a0/b0 = 0.6,  
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Figure 6.42. Fatigue propagation paths of different initial configurations in round bars subjected to 

tension and bending (Branco, 2012c; Branco, 2012d).   

a0/b0 = 0.4, a0/b0 = 0) in round bars subjected to tension and bending. As can be seen, at the early stage of 

propagation, the crack paths are practically overlapped either for tension or for bending and seem to be 

controlled by the initial crack configuration. After this period, the trajectories drawn by the cracks are 

different and the results indicate that the cracks are more flat for bending than for tension. Besides, there 

is no doubt that the preferred propagation paths strongly depend on the loading type. Furthermore, the 

convergence to the preferred propagation paths is faster for bending than for tension.  

 

The effect of the Paris law exponent on the crack aspect ratio is also exhibited in Figure 6.42. Three 

different fatigue propagation paths obtained from an initial straight crack shape (a0/b0 = 0, a0/D = 0.1) 

subjected to tension are examined. At the early stage of propagation, there are no relevant changes.  

However, as the crack grows, different propagation paths are observed. Besides, it is notorious that the 

propagation paths crossover for dimensionless crack lengths in the range 0.47 ≤  a/ D ≤  0.50. After that 

instant, the trajectories diverge. The crossover point depends on several variables, in particular the 

exponent of the Paris law, loading type and initial crack shape (Carpinteri, 1993; Lin, 1997; Couroneau, 

1998; Shin, 2007; Toribio, 2009). 

 

Such a study can be used to identify the region more sensitive to the m constant. Ideally, the experimental 

crack shapes used in the evaluation of the Paris law constants must be selected in this region. On the 

contrary, crack shapes in the early period of propagation are not recommended because the shape changes 

are not yet obvious which results in less accurate predictions. For example, in the case of Figure 6.42, the 

three curves tend to follow unequivocal paths for values of a/D≥ 0.2. In view of this fact, the experimental 

crack shapes should be selected from this point on. In this research, as summarised in Table 3.14, the 

experimental crack shapes used are in the above-mentioned range.   
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The first step encompassed the determination of the m exponent. A set of numerical simulations was 

performed using values of m contained in the interval 2.6 to 3.6 (da/dN [mm/cycle], ∆K [MPa·m0.5]). 

Each numerical simulation was started from the crack shape 1 (Figure 3.19b) and was interrupted when 

the first node of the crack front (node at the symmetry line identified in Figure 4.23b) reached the length 

of the crack shape 2 (Figure 3.19b). Then, for each case, the values of the accumulated difference (ad) 

between the numerical and experimental crack shapes were computed using Equation 4.18.  

 

Figure 6.43 plots the values of accumulated difference (ad) against the Paris law exponent. The proposed 

parameter has proved to be very sensitive to any crack shape changes. As can be seen, a well-defined 

tendency emerges from the results. This is clear evidence of the suitability of the selected dependent 

parameter for this purpose. The ad values were fitted to a second order polynomial function (Equation 

6.10). A high correlation coefficient was achieved (r = 0.997).  

 

 108.940m 105.597m 109.021)( -1-12-2 ×+×−×=mad  (6.10)

 

In theory, the correct value of m can be found by minimising the value of the accumulated difference. So, 

it means that the derivative of the previous function must be equal to zero. Therefore, solving this 

equation, the value of m is given by 

 

[ ] 3.102m0 105.597m 109.02120)( 1-2- =⇔=×−××⇔=mad
dm

d  (6.11)

 

being da/dN in mm/cycle and ∆K in MPa·m0.5. The error involved in the prediction of m, relatively to the 

experimental value, is of 4.73%. This is clearly acceptable in this context. Note that due to the low stress 
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Figure 6.43. Determination of the Paris law exponent (Branco, 2012d). 
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ratio (R = 0.1) used, crack closure can exist. This can affect both the crack shape and the m prediction. In 

order to avoid such a risk, higher stress ratios are preferable. 

 

The second step comprised the determination of the C constant. The value of m predicted previously was 

fixed. Then, a new set of numerical simulations was performed using C values within the range of 7×10-9 

to 2.4 ×10-9 (da/dN [mm/cycle], ∆K [MPa·m0.5]). Each numerical simulation was started from the crack 

shape 1 (Figure 3.19b) and was interrupted when the first node of the crack front (node at the symmetry 

line identified in Figure 4.23b) reached the length of the crack shape 2 (Figure 3.19b). A maximum crack 

growth increment equal to D/2000 was used. The number of loading cycles between these two prescribed 

crack fronts, computed using Equation 4.13, was the result of each simulation. 

 

Figure 6.44 plots the number of cycles predicted against the Paris law constant. The number of cycles 

obtained between the two experimental crack shapes is also exhibited. An exponential function was fitted 

to the results by employing the least square method (Equation 6.12). A relatively high correlation 

coefficient was achieved (r = 0.995).  

 

-1.006C 895.85)( =CN  (6.12)

 

Theoretically, the C constant can be calculated by equalising the previous function to the experimental 

number of cycles, i.e. solving the following equation 

 

9-1.006 10849.146523C 895.8546523)( −×=⇔=⇔= CCN  (6.13)

 

being da/dN in mm/cycle and ∆K in MPa·m0.5. The numerical and experimental results are in good 

agreement. Note that the difference between both values is less than 2.87%. Naturally, this error can be 

considered acceptable. 

 

In order to evaluate the robustness of the proposed technique, the procedure was carefully repeated for 

other combinations of the experimental crack shapes exhibited in Figure 3.19b. Two different situations, 

corresponding to the combinations 1 to B (1-B) and A to 2 (A-2), were studied. For each of them, as 

described previously, the accumulated difference parameter (ad) was computed through Equation 4.18 for 

various values of m. From the values of ad, a second order polynomial function was fitted. Then, the Paris 

law exponent was achieved by minimising this function. Next, with the predicted value of m, new 

numerical simulations were performed for different C constants aiming at obtaining the numerical number 

of cycles between both crack shapes. These results were fitted to an exponential function. Equalising the 

function achieved to the corresponding experimental number of cycles (see Table 3.15), the C constant 

was calculated. Finally, the predicted constants were compared with the experimental values. Table 6.6 

presents the C and m constants predicted in each case as well as the errors relatively to the experimental 

results. Regardless of the combinations examined, the errors are similar. For example, in the combination 
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Figure 6.44. Determination of the Paris law constant (Branco, 2012d). 

 

Table 6.6. Predicted C and m constants for different combinations of the experimental crack shapes used. 

  Crack shape combination C m Error of  C relatively to the 
experimental value [%]  

exp

numexp

C

CC −  

Error of m relatively to the 
experimental value [%]  

exp

numexp

m

mm −  

  1-2 1.8489×10-9 3.102 2.87% 4.73% 

  1-B 1.8983×10-9 3.101 2.19% 4.76% 

  A-2 1.8615×10-9 3.099 1.35% 4.82% 

da/dN in mm/cycle and ∆K in MPa·m0.5 

 

1-B, no significant effects were introduced due to use of a different first visible crack shape; in the 

combination B-2, the influence of a different second visible crack shape was not relevant. These results 

reinforce the robustness of the proposed approach. The average values of C and m (C = 1.8629×10-9 and  

m = 3.101) were considered the final predictions of the Paris law constants.  

 

The final numerical values of C and m were used to carry out an entire simulation from the initial straight 

crack shape used in the experimental tests. Then, the numerical and experimental crack shapes were 

compared. This comparison was done through the difference di (depicted in Figure 4.24) which was 

calculated assuming that both crack shapes were overlapped at the symmetry line of the cross-section of 

the specimen. Figure 6.45 shows the evolution of the dimensionless variable di/ri with the angle θi (being 

ri the experimental radius) for the crack fronts X, 1, A, B, 2 and Y schematised in Figure 3.19b. As can be 
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Figure 6.45. Evolution of di/ri with θi for several experimental crack fronts (Branco, 2012d). 

seen, the results obtained have well-defined limits that vary between -1% and 5%. Besides, although 

some exceptions are observed, it is possible to distinguish a dominant tendency for the curves in which 

the differences increase progressively towards the surface. Such results found in this study demonstrate 

that the mixed numerical-experimental technique proposed here is able to obtain the Paris law constants 

from materials in the form of round bars.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 
 

 

 
This chapter presents the main conclusions of the thesis and 

identifies some relevant topics that merit additional research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

302 

 

 

NOMENCLATURE 

ASTM American Society of Testing and Materials 
a crack length 
B bending moment 
C Paris law constant 
CM Coffin-Manson 
C(T) compact tension specimen 
FE finite element 
FEM finite element method 
IIW International Institute of Welding 
N number of loading cycles  
Nf number of cycles to failure  
N0.5 number of cycles in which at the first time the crack reached a surface length of 0.5mm  
m Paris law exponent 
M(T) middle-crack tension specimen 
R stress ratio 
S applied stress 
SEM scanning electron microscopy 
SWT Smith, Watson and Topper 
T torsion moment  
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7.1. Conclusions 

As outlined in the previous chapters, the present research aimed at studying the fatigue phenomenon from 

two different perspectives, i.e. by following experimental and numerical approaches. The experimental 

work consisted firstly of a full characterisation of the material in terms of microstructure, monotonic and 

cyclic stress-strain responses as well as in terms of fatigue ductility and fatigue strength properties. After 

that, the fatigue behaviour of severely notched specimens made of DIN 34CrNiMo6 high strength steel 

subjected to in-phase constant amplitude bending-torsion loading was tackled. The numerical work 

encompassed the development of fatigue crack growth software which was subsequently used to address 

different problems, such as the evaluation of the surface region in cracked bodies, the definition of a plane 

strain specimen for fatigue and fracture studies, and the determination of the Paris law constants from the 

analysis of crack front marks on fracture surfaces of small cross-section round bars. 

 

Regarding the experimental work, the following conclusions can be drawn:  

 

• The material exhibited a fine microstructure mainly composed of martensite and lower bainite. The 

average grain size obtained from the procedure described by the ASTM E112 standard (2010) was 

about 8µm. As usual in this high strength steel, relatively high inclusions with sizes ranging from 2 to 

30µm were found;   

• The monotonic response of the material was investigated from uniaxial tensile tests which were 

conducted according to the procedure described in the ASTM E8 (2011) standard. The stress-strain 

curve was characterised by a yield point elongation and considerable plastic deformation before 

fracture. The fracture surfaces revealed a mixed mechanism involving microvoid coalescence and 

cleavage; 

• The elastic properties were evaluated using a mixed numerical-experimental technique. The first step 

encompassed the calculation of the experimental resonant frequencies, which were obtained applying 

the protocol described in the ASTM E1876 (2009) standard. After that, a finite element model 

relating the elastic constants to the resonant frequencies was developed from which the values of the 

Young’s modulus and the Poisson’s ratio were successfully determined;   

• The low-cycle fatigue behaviour of the material was studied under fully-reversed strain-controlled 

conditions. The tests were conducted according to the procedure described in the ASTM E606 (2004) 

standard and aimed at obtaining the fatigue ductility and fatigue strength properties of the steel. A 

strain-softening phenomenon was observed throughout the entire life. The shape of the hysteresis 

loops exhibited an almost ideal Masing-type behaviour. The SEM micrographs evidenced 

transgranular crack propagation. At lower strain amplitudes, the initiation sites were dominated by 

cleavage-like facets whilst at higher strain amplitudes the initiation sites revealed a mixed of 

cleavage-like facets and ductile dimples; 

• The fatigue behaviour of severely notched specimens subjected to different constant amplitude 

proportional loading paths was studied. The tests encompassed single bending, single torsion and    

in-phase combined bending-torsion loading and were performed under constant amplitude at stress 
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ratios close to zero. With respect to the last type of loading, three ratios of the bending moment (B) to 

the torsion moment (T) were defined, namely B=2T, B=T and B=2T/3. The specimen geometries 

consisted of round bars with lateral U-shaped notches. The detection of crack initiation was carried 

out in situ with a digital monitoring system; 

• A significant influence of the loading path on the surface crack trajectories was observed. In the 

absence of shear stress, the crack grows in a direction normal to the axis of the specimen. When the 

ratio of the shear stress to the normal stress increases, the surface crack trajectories tend to be more 

curved. These trajectories seem to be controlled by the distribution of the principal stresses at the 

notch. The numerical predictions based on this variable were very similar to those observed 

experimentally; 

• Regarding the initiation sites, a strong effect of the loading path was also distinguished. In the 

presence of shear stresses, the crack tends to initiate closer to the curved edge of the notch, whilst in 

the absence of shear stresses or reduced levels of the ratio of the shear stress to the normal stress, the 

crack initiates in the centre of the notch. The most susceptible regions to crack initiation are those 

where the first principal stress achieves the maximum value. The predictions obtained with the FEM 

were very close to those observed in the experiments; 

• The angle of the surface crack orientations at the initial stage of crack growth was also affected by 

the loading path. For single bending, it was normal to the specimen axis. In the other cases, it 

increased with the increase of the ratio of the shear stress to the normal stress. This angle orientation 

can be anticipated by the principal stress direction at the initiation site. The numerical predictions 

were practically the same to those found in the experimental tests; 

• The fracture surfaces revealed a mechanism of multi-crack initiation. The cracks were nucleated from 

surface irregularities or surface defects that acted as local stress raisers making easier the fatigue 

crack initiation process. Due to the coalescence of neighbouring cracks, it was possible to distinguish 

several steps at the fracture surfaces. The SEM analysis denoted essentially ductile failure modes 

with evidence of local plastic deformation and transgranular fracture; 

• A significant effect of the shear stress on the a-N curves (i.e. crack length versus fatigue life) and on 

the S-N curves (i.e. applied stress versus fatigue life) was found. Both curves show a significant 

reduction of the fatigue life with the shear stress amplitude. In relation to the a-N curves, derived in 

terms of surface crack length versus number of loading cycles, their slopes increased with the shear 

stress. With respect to the S-N curves, an opposite behaviour was distinguished; 

• The local von Mises equivalent stress was adequate to correlate the resultant stress-strain states with 

the fatigue life. A very satisfactory linear correlation was found in a log-log scale between the 

equivalent stress and the fatigue life, regardless of the loading path. The design curve was created 

from the experimental data by applying the procedure recommended by the International Institute of 

Welding (IIW);    

• The ratio of the number of cycles in which at the first time the crack reached a surface length of      

0.5mm to the number of cycles to failure (N0.5/Nf) varied between 42-75%. Such a ratio was similar 

for the various loading paths and ranged from 42-55% in about 70% of the cases studied; 
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• The fatigue life predictions were obtained using the well-known Coffin-Manson (CM) and Smith, 

Watson and Topper (SWT) models. The initiation lives were defined based on the El Haddad 

parameter. In a first stage, the theory of critical distances was applied. For higher lives, the two 

models gave very satisfactory results. However, for lower lives, both approaches were too 

conservative due to an unrealistic simulation of the stress-strain response at the notch tip. In a second 

stage, the strain energy density model was used to correct the stress-strain response at the notch tip. 

In both cases, the predictions for lower lives were considerable improved. Nonetheless, the 

predictions were on average conservative. In general, the SWT was more conservative than the CM 

model.   

 

Regarding the numerical work, the main conclusions are the following: 

 

• A new computer tool able to address in-plane fatigue crack growth propagation problems was 

developed. The software, named Lynx, incorporates an extensive range of situations, such as notched 

and unnotched rectangular bars with corner cracks, notched and unnotched round bars with surface 

cracks, notched and unnotched plates with surface cracks, and notched and unnotched plates with 

through cracks. Besides, this tool is able to compute automatically the transition from corner and 

surface cracks to through cracks; 

• The calculation procedure consists of five steps cyclically repeated, i.e. generation of the FE mesh of 

the cracked body, calculation of the displacement field, calculation of the stress intensity factors at 

the crack front, calculation of the crack front advances and the resultant number of loading cycles, 

and definition of a new crack front. The main independent variables affecting the above-mentioned 

procedure were identified and optimised. After that, the procedure was successfully validated by 

comparing the predictions with results published by other authors. The crack front profiles and the 

stress intensity factors predicted here were in excellent agreement with those found in the literature;  

• The extent of the surface region in cracked bodies was analysed using realistic crack shapes and 

stress triaxiality parameters. The main effects were caused by the specimen geometry, notch 

geometry and crack length. An intimate relation between crack shape and stress triaxiality was found. 

Based on the stress triaxiality curves, the crack front was divided into a surface region, a near-surface 

region and an interior region. According to the data collected, the surface region was lower than 3% 

of the crack front perimeter whilst the near-surface region varied from 3% to 30% of the crack front 

perimeter. The former is on average one order of magnitude lower than the latter. These two regions 

were successfully related to the stress concentration factors of the corresponding uncracked bodies by 

linear functions. Empirical two-constant equations were formulated to evaluate the extents of the 

surface and near-surface regions from the stress concentration factor, notch radius and specimen size;     

• A plane strain specimen able to study different phenomena affected by the stress state was developed. 

The methodology adopted here was based on stress triaxiality parameters and on realistic crack 

shapes. The geometry consisted of a standard M(T) specimen with U-shaped grooves. The grooves 

were introduced to reduce the size of the plane stress surface regions. Since it is based on a standard 

geometry, the comparability of results is possible, which is an interesting aspect. Besides, it ensures 
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easiness of production and high reproducibility. A stress intensity factor solution obtained 

numerically using the FEM was proposed; 

• A parallel study to define a plane strain specimen from straight crack shapes was conducted. The 

results demonstrated that without crack shape modelling the specimen required is thinner. Therefore, 

the geometry proposed based on realistic crack shapes is more conservative and remains appropriate 

to meet the pure plane strain state criterion in both cases;   

• A mixed numerical-experimental technique capable of determining the Paris law constants from the 

analysis of crack fronts marks on fracture surfaces of small cross-section round bars was proposed. 

The technique comprises three main tasks. Firstly, an experimental test is performed in order to 

obtain, at least, two crack front profiles marked on the fracture surfaces and the number of cycles 

between them. Secondly, a 3D-FE fatigue crack growth technique able to predict the crack shape and 

fatigue life is created. Finally, the experimental data and the numerical predictions are compared to 

obtain the C and m constants. The former constant is determined by minimising the shape difference 

between the experimental and the predicted crack fronts. The latter constant is found by equalising 

both the experimental and numerical fatigue lives. The technique was successfully applied to      

12mm-diameter and 190mm-long circular cross-section specimens made of S45 steel subjected to 

tension. The differences between the experimental and predicted C and m constants were less than 

5% and 3%, respectively. 

 

7.2. Future research 

During the course of the present investigation, several issues were addressed. Nevertheless, there are a 

number of areas in which further research might be conducted. As in the previous section, the topics that 

merit additional research are divided into experimental and numerical work. 

 

Regarding the experimental work, the suggestions are outlined below:   

 

• The experimental tests carried out in this study were conducted under constant amplitude loading and 

at stress ratios close to zero. In order to better understand the damage accumulation process, it would 

be interesting to perform tests under variable amplitude loading as well as to use different stress 

ratios either under constant amplitude or variable amplitude loading; 

• Although there have been used two geometries, for each loading path only a single specimen was 

tested. Thus, in order to better understand the stress concentration effect on the stress-strain response 

of the material at the notch tip, it would be interesting to conduct additional tests for specimens 

having different stress concentration factors or having alternative notch geometries; 

• The El Haddad parameter (El Haddad, 1979) was calculated using reference values. The threshold 

stress intensity factor range was estimated from data available in the literature; the fatigue limit of the 

unnotched specimen was extrapolated from the results obtained experimentally at R = -1. In this 

sense, it would be interesting to perform specific tests to define these two material properties for the 

stress ratio used here; 
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• The stress-strain response at the notch tip used to predict the fatigue life was obtained using a 

simplified method based on linear elastic finite element analyses. Although the results obtained have 

been consistent, it would be preferable to develop a non-linear elastic-plastic model with isotropic 

and kinematic hardening to obtain more accurate stress-strain results. In fact, such a model has been 

already developed and all simulations have been already computed. Unfortunately, the analysis of 

results is taking place at the present moment and therefore the fatigue life predictions are not yet 

finished.  

 

Concerning the numerical work, the possible future research is presented below:  

 

• To date, Lynx was essentially designed to address in-plane fatigue crack growth problems. Therefore, 

a natural upgrade is to extend it to out-of-plane propagation. On the other hand, it is also desirable to 

include new in-plane problems, such as welded joints, pipes, pressure vessels, among others. In 

addition, new methods to estimate the stress intensity factor at the crack front can be implemented (in 

particular, energy-based methods). Besides, the development of other plug-in programs would be 

also interesting to make it compatible with more commercial FEM packages; 

• Although the extent of the surface region in cracked bodies has been studied for a wide range of 

situations, a follow-up study is required to define the density of layers near the surface region to be 

incorporated into the fatigue crack growth models. Moreover, in order to broaden the scope of this 

study, it is recommended to analyse such a problem considering non-linear elastic-plastic models; 

• In relation to the plane strain specimen and in order to better relate the different plane state criteria 

with the various phenomena affected by the stress state, it would be interesting to perform some 

experimental work to evaluate the performance of the proposed notched geometries in different 

circumstances; 

• Regarding the determination of the Paris law constants, the fatigue crack front marks used in the 

calculations were performed for a stress ratio R = 0.1. Therefore, crack closure is likely to exist at this 

stress ratio. In view of this fact, a numerical evaluation of the crack closure level would be interesting 

in order to be included into the fatigue crack growth models. In addition, it would be also interesting 

to test the proposed methodology with other materials and diameters as well as to extend it to other 

situations in which the standard procedure based on the well-known M(T) and C(T) specimens is not 

adequate. 

 

 

 

 

 

 

 

 

 



 

308 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

309 

 

 

 

 

REFERENCES 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

310 

 

 

 

 

 

 

 



311 

 

A 

Abreu L, Costa JD, Ferreira J (2007). Fatigue behaviour of AlMgSi tubular specimens subjected to 

bending-torsion loading. International Journal of Fatigue 31, 1327-1336. 

AHSS (Advanced High Strength Steel) Application Guidelines (2009). World Auto Steel, version 4.1. 

Andrews R, Brown M (1989). Elevated temperature out-of-phase fatigue behaviour of a stainless steel. 

Biaxial and multiaxial fatigue, EGF 3, Mechanical Engineering Publications, London, 641-658.  

Andrews J, Ellison E (1973). A testing rig for cycling at high biaxial strains. Journal of Strain Analysis 

for Engineering Design 8, 165-175.   

Antunes FV (1993). Use of finite element method in the calculation of stress intensity factors, Master 

Thesis, Department of Mechanical Engineering, University de Coimbra [in Portuguese]. 

Antunes FV (1999). Influence of frequency, stress ratio and stress state on fatigue crack growth in nickel 

base superalloys at elevated temperature. PhD thesis, Department of Mechanical and 

Manufacturing Engineering, University of Portsmouth, United Kingdom. 

Antunes FV, Ferreira JAM, Branco CM, Byrne J (2000). Stress intensity factor solutions for corner cracks 

under mode I loading. Fatigue and Fracture of Engineering Materials and Structures 23, 81-90. 

Antunes FV, Ferreira JM, Branco CM, Byrne J (2001). Influence of stress state on high temperature 

fatigue crack growth in Inconel 718. Fatigue and Fracture of Engineering Materials and 

Structures 24, 127-135. 

Antunes FV, Ferreira JM, Costa JD, Capela C (2002). Fatigue life predictions in polymer particle 

composites. International Journal of Fatigue 24, 1095-1105. 

Antunes FV, Ramalho AL, Ferreira JM, Capela C, Reis P (2008). Determination of elastic constants by 

resonant technique: a sensitivity analysis. Journal of Testing and Evaluation 36, 89-99. 

Antunes FV, Branco R, Costa JD, Rodrigues D (2010). Plasticity induced crack closure in MT specimen: 

Numerical versus experimental. Fatigue and Fracture of Engineering Materials and Structures 

33, 673-686. 

Antunes FV, Branco R, Rodrigues D (2011). Plasticity induced crack closure under plane strain 

conditions. Key Engineering Materials 465, 548-551. 

Anvari M, Scheider I, Thaulow C (2006). Simulation of dynamic ductile crack growth using strain-rate 

and triaxiality-dependent cohesive elements. Engineering Fracture Mechanics 73, 2210-2228. 



312 

 

Armstrong P (1971). Measurement of Mechanical Properties, Techniques of Metals Research, Volume 5 

(Part 2), Wiley, New York, 1971, 103.  

Armstrong P, Frederick C (1966). A mathematical representation of the multiaxial Bauschinger effect. 

CEGB Report RD/B/N731, Berkeley Nuclear Laboratories. 

ASM Handbook (2000). Properties and selection: irons, steels and high-performance alloys: high-strength 

structural and high-strength low-alloy steels. Volume 1, 391-446, ISBN: 0871703890. 

ASM Handbook (2000a). Properties and selection: irons, steels and high-performance alloys: Fatigue 

resistance of steels. Volume 1, 673-688, ISBN: 0871703890. 

ASTM E3 (2011). Standard guide for preparation of metallographic specimens. ASTM International, 

West Conshohocken, PA, DOI: 10.1520/E0003-11. 

ASTM E8 (2011). Standard test methods for tension testing of metallic materials. ASTM International, 

West Conshohocken, PA, DOI: 10.1520/E0008_E0008M-11. 

ASTM E112 (2010). Standard test methods for determining average grain size. ASTM International, 

West Conshohocken, PA, DOI: 10.1520/E0112-10. 

ASTM E399 (2009). Standard test method for linear-elastic plane-strain fracture toughness KIC of 

metallic materials. ASTM International, West Conshohocken, PA, DOI: 10.1520/E0399-09E02. 

ASTM E606 (2004). Standard practice for strain-controlled fatigue testing. ASTM International, West 

Conshohocken, PA, DOI: 10.1520/E0606-04E01.  

ASTM E647 (2011). Standard test method for measurement of fatigue crack growth rates, ASTM 

International, West Conshohocken, PA, DOI: 10.1520/E0647-11E01. 

ASTM E739 (1998). Standard practice for statistical analysis of linear or linearized stress-life (S-N) and 

strain-life (ε-n) fatigue data, ASTM International, PA, DOI: 10.1520/E0739-91R98. 

ASTM E1049 (2011). Standard practices for cycle counting in fatigue analysis. ASTM Internacional, 

West Conshohocken, PA, DOI: 10.1520/E1049-85R11E01. 

ASTM E1876 (2009). Standard test method for dynamic Young's modulus, shear modulus, and Poisson's 

ratio by impulse excitation of vibration, ASTM International, PA, DOI: 10.1520/E1876-09.  

Ayhan A (2011). Three-dimensional fracture analysis using tetrahedral enriched elements and fully 

unstructured mesh. International Journal of Solids and Structures 48, 492-505. 



313 

 

Ayorinde EO, Gibson RF (1993). Elastic constants of orthotropic composite materials using plate 

resonance frequencies classical lamination theory and an optimized three-mode Rayleigh 

formulation. Composites Engineering 3, 395-407. 

B 

Backstrom M, Marquis G (2001). A review of multiaxial fatigue of weldments: experimental results, 

design code and critical plane approaches. Fatigue of Engineering Materials and Structures 24, 

279-291. 

Bairstow  L (1910). The elastic limits of iron and steel under cyclic variation of stress. Philosophical 

Transactions of the Royal Society A 210, 35-55. 

Bakker A (1992). Three-dimensional constraint effects on stress intensity distributions in plate geometries 

with through-thickness cracks. Fatigue and Fracture of Engineering Materials and Structures 15, 

1051-1069. 

Ballard P, Dang Van K, Deperrois A, Papadopoulos IV (1995). High cycle fatigue and a finite element 

analysis. Fatigue and Fracture of Engineering Materials and Structures 18, 397-411. 

Balthazar J, Malcher L (2007). A review on the main approaches for determination of the multiaxial high 

cycle fatigue strength. Mechanics of Solids in Brazil, Edited by Alves M and Mattos H, Brazilian 

Society of Mechanical Sciences and Engineering 63-80, ISBN 978-85-85769-30-7. 

Bartlett M, Hudak Jr J (1990). The influence of frequency-dependent crack closure on corrosion fatigue 

crack growth. Materials and Components Engineering, Edited by Kitagawa H and Tanaka T, 

Volume III, 1783-1788. 

Basquin OH (1910). The exponential law of endurance tests. American Society for Testing and Materials, 

ASTM 10 (II), 625-630. 

Bazant ZP, Estenssoro LF (1979). Surface singularity and crack propagation. International Journal of 

Solids and Structures 15, 405-426. 

Benallal A, Marquis D (1987). Constitutive equations for nonproportional cyclic elasto-plastic 

viscoplasticity. Transactions of the American Society of Mechanical Engineers, Journal of 

Engineering Materials and Technology 109, 326-336. 

Bentachfine S, Pluvinage G, Gilgert J, Azari Z, Bouami D (1999). Notch effect in low cycle fatigue. 

International Journal of Fatigue 21, 421-430. 



314 

 

Benthem JB (1977). State of stress at the vertex of a quarter-infinite crack in a half-space. International 

Journal of Solids and Structures 13, 479-492. 

Bernasconi A, Foletti S, Papadopoulos I (2008). A study on combined torsion and axial load fatigue limit 

tests with stresses of different frequencies. International Journal of Fatigue 30, 1430-1440. 

Berto F, Lazzarin P, Wang C (2004) Three-dimensional linear elastic distributions of stress and strain 

energy density ahead of V-shaped notched in  plates of arbitrary thickness. International Journal 

of Fracture 127, 265-282. 

Borrego LP (2001). Fatigue crack growth under variable amplitude load in an AlMgSi alloy. PhD thesis, 

Department of Mechanical Engineering, University of Coimbra [in Portuguese]. 

Boyer  H (1986). Atlas of fatigue curves. ASM International, ISBN: 978-0-87170-214-2. 

Branco CM, Baptista J, Byrne J (1999). Crack growth under constant sustained load at elevated 

temperature in IN718 superalloy. Materials at High Temperature 16, 27-35. 

Branco R (2006). Numerical study of fatigue crack growth in M(T) specimens. MSc thesis, Department 

of Mechanical Engineering, University of Coimbra [in Portuguese].  

Branco R, Antunes FV (2008). Finite element modelling and analysis of crack shape evolution in mode-I 

fatigue Middle Cracked Tension specimens, Engineering Fracture Mechanics 75, 3020-3037. 

Branco R, Antunes FV, Martins RF (2008a). Modelling fatigue crack propagation in CT specimens, 

Fatigue and Fracture of Engineering Materials and Structures 31, 452-465. 

Branco R, Antunes FV, Rodrigues DM (2008b). Influence of through-thickness crack shape on plasticity 

induced crack closure. Fatigue and Fracture of Engineering Materials and Structures 31,         

209-220. 

Branco R, Antunes FV, Martins Ferreira JA, Silva JM (2009). Determination of Paris Law constants with 

a reverse engineering technique, Engineering Failure Analysis, 16, 631-638. 

Branco R, Antunes FV, Costa JD, Barbosa J (2009b). Numerical modelling of fatigue crack growth in 

shafts under tension and bending. 3rd International Conference on Integrity Reliability and 

Failure (IRF’2009), University of Porto, FEUP, 20-24 July, Portugal. 

Branco R, Antunes FV, Costa JD (2009c). Influence of elastic constants on crack shape evolution in 

axles. 3rd International Conference on Integrity Reliability and Failure (IRF’2009), University of 

Porto, FEUP, 20-24 July, Portugal. 



315 

 

Branco R, Silva JM, Infante V, Antunes F, Ferreira F (2010a). Using a standard specimen for crack 

propagation under plain strain conditions. International Journal of Structural Integrity 1,        

332-343. 

Branco R, Antunes FV, Costa JD, Yang F, Kuang Z (2010b). Determination of the Paris law constants 

from crack shapes on fracture surfaces in round bars, Advances in Mechanical Engineering 

Research. Volume 1, Edited by David Malach, Nova Science Publishers, 1-14, USA, ISBN:  

978-1-61761-111-0. 

Branco R, Antunes FV, Martins Ferreira JA, Silva JM (2011). Effect of residual stresses on crack shape 

of corner cracks at holes in nickel base superalloys. Superalloys: Production, Properties and 

Applications, Edited by Jeremy E. Watson, 1-24, Nova Science Publishers, USA, ISBN:         

978-1-61209-536-3. 

Branco R, Antunes FV, Costa JD (2011a). Lynx: a user-friendly computer application for simulating 

fatigue growth of planar cracks using FEM. Computer Applications in Engineering Education, 

DOI:10.1002/cae.20578 (in press). 

Branco R, Antunes FV, Costa JD (2011b). Extent of surface region near corner points. 28th Meeting of 

Spanish Group of Fracture, 26, 637-642, 6-8 April, Gijón, Spain. 

Branco R, Antunes FV, Ricardo LCH, Costa JD (2012a). Extent of surface regions near corner points of 

notched cracked bodies subjected to mode-I loading. Finite Elements in Analysis and Design 50, 

147-160. 

Branco R, Costa JD, Antunes FV (2012b). Low-cycle fatigue behaviour of 34CrNiMo6 high strength 

steel. Theoretical and Applied Fracture Mechanics 58, 28-34. 

Branco R, Antunes FV, Costa JD (2012c). Lynx: new tool to model mode-I fatigue crack propagation, 4th 

International Conference on Crack Paths (CP2012), 19-21 September, Gaeta, Italy.  

Branco R, Antunes FV, Costa JD, Yang F, Kuang Z (2012d). Determination of the Paris law constants in 

round bars from beach marks on fracture surfaces. Engineering Fracture Mechanics 96, 96-106. 

Branco R, Costa JD, Antunes FV (2012e). Multiaxial fatigue life prediction for lateral notched round bars 

made of 34CrNiMo6 high strength steel. Fatigue Crack Growth: Mechanisms, Behavior and 

Analysis. Edited by Ping Tang and Jim Leor Zhang, Nova Science Publishers, 273-292, 

USA, ISBN: 978-1-62081-599-1. 

Branco R, Antunes FV, Costa JD (2013). Notched M(T) specimen for plane strain studies. International 

Journal of Fatigue, DOI: 10.1016/j.ijfatigue.2013.01.011 (in press).  



316 

 

Branco R, Antunes FV, Costa JD (2013a). Extent of the surface region in notched Middle Cracked 

Tension specimens. Key Engineering Materials. Special Issue on Crack Growth Modelling. 

Edited by M. H. Alibadi, pages 1-21 (accepted for publication). 

Bremberg D, Dhondt G (2008). Automatic crack insertion for arbitrary crack growth. Engineering 

Fracture Mechanic 75, 404-416. 

Brighenti R (2000). Axially-cracked pipes under pulsating internal pressure. International Journal of 

Fatigue 22,     559-567. 

Brown M, Miller K (1973). A theory for fatigue failure under multiaxial stress-strain conditions. 

Proceedings of the Institute of Mechanical Engineers 187, 745-755. 

Brown M, Miller K (1979). Initiation and growth of cracks in biaxial fatigue. Fatigue of Engineering 

Materials and Structures 1, 231-246. 

Brown M, Miller K (1982). Two decades of progress in the assessment of multiaxial low-cycle fatigue 

life. Low-cycle fatigue and life prediction, ASTM STP 770, 482-99. 

BS ISO 12108 (2002). Metallic materials. Fatigue testing. Fatigue crack growth method. British 

Standards Institution, London, ISBN 0-580-42962-8. 

Buch A (1974). Analytical approach to size and notch-size effects in fatigue of aircraft material 

specimens. Materials Science and Engineering 15, 75-85. 

Burande S, Sethuraman R (1999). Computational simulation of fatigue crack growth and demonstration 

of leak before break criterion. International Journal of Pressure Vessels and Piping 76, 331-338. 

Burton WS, Sinclair GB, Solecki JS, Swedlow JL (1984). On the implications for LEFM of the          

three-dimensional aspects in some crack/surface intersection problems. International Journal of 

Fracture 25, 3-32. 

C 

Cailletaud G, Doquet V, Pineau A (1991). Cyclic multiaxial behaviour of an austenitic stainless steel: 

Microstructural observations and micromechanical modelling. Fatigue Under Biaxial and 

Multiaxial loading. European Structural Integrity Society, ESIS publication 10, 131-149. 

Camas D, Garcia-Manrique J, Gonzalez-Herrera A (2011). Numerical study of the thickness transition in                  

bi-dimensional specimen cracks. International Journal of Fatigue 33, 921-928. 



317 

 

Camas D, Garcia-Manrique J, Gonzalez-Herrera A (2012). Crack front curvature: Influence and effects 

on the crack tip fields in bi-dimensional specimens. International Journal of Fatigue 44, 41-50. 

Cao Y (2002). Three-dimensional finite element modelling of subsurface median crack in trilayer 

sandwiches due to contact loading. Engineering Fracture Mechanics 69, 729-743. 

Carpinteri A (1992). Elliptical-arc surface cracks in round bars. Fatigue and Fracture of Engineering 

Materials and Structures 15, 1141-1153.  

Carpinteri A (1993). Shape change of surface cracks in round bars under cyclic axial loading. 

International Journal of Fatigue 15, 21-26.  

Carpinteri A, Brighenti R (1996a). Part-through cracks in round bars under cyclic combined axial and 

bending loading. International Journal of Fatigue 18, 33-39. 

Carpinteri A, Brighenti R (1996b). Fatigue propagation of surface flaws in round bars: a three-parameter 

theoretical model. Fatigue and Fracture of Engineering Materials and Structures 19, 1471-1480.  

Carpinteri A, Brighenti R (1998). Circumferential surface flaws in pipes under cyclic axial loading.  

Engineering Fracture Mechanics 60, 383-396. 

Carpinteri A, Brighenti R, Spagnoli A (1998a). Part-through cracks in pipes under cyclic bending.   

Nuclear Engineering and Design 185, 1-10. 

Carpinteri A, Brighenti R, Spagnoli A (2000). Fatigue growth simulation of part-through flaws in       

thick-walled pipes under rotary bending. International Journal of Fatigue 22, 1-9. 

Carpinteri A, Brighenti R (2000a). A three-parameter model for fatigue behaviour of circumferential 

surface flaws in pipes. International Journal of Mechanical Sciences 42, 1255-1269. 

Carpinteri A, Brighenti R, Vantadori S (2003). Circumferential notched pipe with an external surface 

crack under complex loading. International Journal of Mechanical Sciences 45, 1929-1947.  

Carpinteri A, Brighenti R, Vantadori S (2004). A numerical analysis on the interaction of twin coplanar 

flaws. Engineering Fracture Mechanics 71, 485-499. 

Carpinteri A, Brighenti R, Huth H, Vantadori S (2005). Fatigue growth of a surface crack in a welded      

T-joint. International Journal of Fatigue 27, 59-69.  

Carpinteri A, Brighenti R, Vantadori S (2006). Notched shells with surface cracks under complex 

loading. International Journal of Mechanical Sciences 48, 638-649.  



318 

 

Carpinteri A, Brighenti R, Vantadori S (2006a). Surface cracks in notched round bars under cyclic tension 

and bending. International Journal of Fatigue 28, 251-260.  

Carpinteri A, Brighenti R, Vantadori S, Viappiani D (2007). Sickle-shaped cracks in a round bar under 

complex mode-I loading. Fatigue and Fracture of Engineering Materials and Structures 30,      

524-534.  

Carpinteri A, Vantadori S (2009). Sickle-shaped cracks in metallic round bars under cyclic eccentric axial 

loading, International Journal of Fatigue 31, 759-765. 

Carpinteri A, Brighenti R, Vantadori S (2010). Influence of the cold-drawing process on fatigue crack 

growth of a V-notched round bar, International Journal of Fatigue 32, 1136-1145. 

Caspers M, Mattheck C, Munz D (1990). Propagation of surface cracks in notched and unnotched rods.                     

In: Surface-crack growth: Models, experiments and structures, ASTM STP 1060, American 

Society of Testing and Materials, 365-389. 

Cayón A, Alvarez JA, Gutiérrez-Solana F (2003). Influence of microstructure and triaxial stress states on 

hydrogen induced cracking. Anales de Mecanica de la Fractura 20, 273-278. 

Castro JT, Meggiolaro MA, Miranda AC, Wu H, Imad A, Benseddiq N (2012). Prediction of fatigue 

crack initiation lives at elongated notch roots using short crack concepts. International Journal of 

Fatigue 42, 172-182.  

Cazaud R (1953). Fatigue of metals. Chapman and Hall, London.  

Chaboche J, Dang Van K, Cordier G (1979). Modelization of the strain memory effect on the cyclic 

hardening of 316 stainless steel. SMIRT-5, Division L, Berlin. 

Chaboche J (2008). A review of some plasticity and viscoplasticity constitutive theories. International 

Journal of Plasticity 24, 1642-1693. 

Chan SK, Tuba IS, Wilson WK (1970). On the finite element method in linear fracture mechanics. 

Engineering Fracture Mechanics 2, 1-17. 

Chandrakanth, S, Pandey PC (1995). An isotropic damage model for ductile material. Engineering 

Fracture Mechanics 50, 457-465. 

Chen CR, Kolednik O, Heerens J, Fischer FD (2005). Three-dimensional modeling of ductile crack 

growth: Cohesive zone parameters and crack tip triaxiality. Engineering Fracture Mechanics 72, 

2072-2094. 



319 

 

Chen X, Gao Q, Sun X (1996). Low-cycle fatigue under non-proportional loading. Fatigue and Fracture 

of Engineering Materials and Structures 19, 839-854. 

Chu C, Conle F, Bonnen J (1993). Multiaxial stress-strain modeling and fatigue life prediction of SAE 

axle shafts.  Advances in Multiaxial Fatigue, ASTM STP 1191, American Society for Testing 

and Materials, USA, 37-54. 

Chu C (1995). Fatigue damage calculation using the critical plane approach. Journal of Engineering 

Materials and Technology 117, 41-49.  

Citarella R, Cricrì G (2010). Comparison of DBEM and FEM crack path predictions in a notched shaft 

under torsion, Engineering Fracture Mechanics 77, 1730-1749. 

Clausmeyer H, Kussmaul K, Roos E (1991). Influence of stress state on the failure behaviour of cracked 

components made of steel. Applied Mechanics Review 44, 77-92. 

Coffin LF (1954). A study effects of cyclic thermal stresses on ductile metal. Transactions of ASME 76, 

931-950. 

Cosmos/M (2001). User’s manual, Cosmos/M 2.7, Structural Research and Analysis Corporation, 1st 

Edition,  December.  

Costa JD, Ferreira JM, Ramalho AL (2001). Fatigue and fretting fatigue of ion-nitrided 34CrNiMo6 steel. 

Theoretical and Applied Fracture Mechanics 35, 69-79. 

Costa JD, Ferreira JM (1998). Effect of stress ratio and specimen thickness on fatigue crack growth of 

CK45. Theoretical and Applied Fracture Mechanics 30, 65-73. 

Costa JD (1991). Analysis of defect tolerance in aluminum alloys. PhD thesis. Department of Mechanical 

Engineering. University of Coimbra [in Portuguese]. 

Couroneau N, Royer J (1998). Simplified model for the fatigue crack growth analysis of surface cracks in 

round bars under mode I. International Journal of Fatigue 20, 711-718. 

Couroneau N, Royer J (2000). Simplifying hypotheses for fatigue growth analysis of surface cracks in 

round bars under mode I. Computers and Structures 77, 381-389. 

Crossland B (1956). Effect of large hydrostatic pressures on torsional fatigue strength of an alloy steel. 

International Conference on Fatigue Metals. Institution of Mechanical Engineers, London,      

138-149. 

 



320 

 

D 

Dang Van K (1973). Sur la résistance résistance à la fatigue des métaux. Thèse de doctorat. Scientifique 

et Technologique l’Armement 47, 643 [in French]. 

Dang Van K, Griveau B, Message O (1989). On a new multiaxial fatigue limit criterion: theory and 

application. Biaxial and Multiaxial Fatigue, EGF 3, Mechanical Engineering Publications, 

London, 479-496. 

Dang Van K, Cailletaud J,  Douaron A, Lieurade H (1989a). Criterion for high-cycle fatigue failure under 

multiaxial loading. Biaxial and Multiaxial Fatigue, EGF 3, Mechanical Engineering Publications, 

London, 459-478. 

Dang Van K (1993). Macro-micro approach in high-cycle multiaxial fatigue. Advances in Multiaxial 

Fatigue, ASTM STP 1191, American Society for Testing and Materials, Palo Alto, USA,          

120-130. 

Dang Van K (1999). Introduction to fatigue analysis in mechanical design by the multiscale approach. 

High-Cycle Metal Fatigue in the Context of Mechanical Design, Springer-Verlang, Vienna,       

57-88. 

DeLorenzi H (1982). On the energy release rate and the J-Integral for 3-D crack configurations. 

International Journal of Fracture 19, 183-193.  

DeLorenzi H (1985). Energy release rate calculations by the finite element method. Engineering Fracture 

Mechanics 21, 129-143. 

Deobald LR, Gibson RF (1988). Determination of elastic constants of orthotropic plates by a modal 

analysis Rayleigh-Ritz technique. Journal of Sound and Vibration 124, 269-283. 

Deperrois A (1991). Sur le calcul de limites d’endurance des aciers. Thèse de Doctorat. Ecole 

Polytechnique, Paris [in French].  

Dhondt G (2005). Cyclic crack propagation at corners and holes. Fatigue and Fracture of Engineering 

Materials and Structures 28, 25-30. 

Dı́az JA, Passarelli M, Berrı́os JA, Puchi-Cabrera ES (2002). Fatigue behavior of a 4340 steel coated with 

an electroless Ni-P deposit. Surface and Coatings Technology 49, 45-56. 

Ding X, He G, Chen C, Zhu Z, Liu X, Crepeau P (2007). A brief review of multiaxial high-cycle fatigue. 

Metallurgical and Materials Transactions 38B, 591-599.  



321 

 

Doong S, Socie D, Robertson I (1990). Dislocation substructures and non-proportional hardening. Journal 

of Engineering Materials and Technology 112, 456-464. 

Doong S, Socie, D (1991). Constitutive modeling of metals under nonproportional cyclic loading. Journal 

of Engineering Materials and Technology 113, 23-30. 

E 

El Haddad MH, Topper TH, Smith KN (1979). Prediction of non propagating cracks. Engineering 

Fracture Mechanics 11, 573-584.  

El Haddad MH, Dowling NF, Topper TH, Smith KN (1980). J-integral applications for short fatigue 

cracks at notches. International Journal of Fracture 16, 15-24. 

Eliaz N, Sheinkopf H, Shemesh G, Artzi H  (2005). Cracking in cargo aircraft main landing gear truck 

beams due to abusive grinding following chromium plating. Engineering Failure Analysis 12, 

337-347.   

Ellyin F, Valaire B (1982). High strain multiaxial fatigue. Journal of Engineering Materials and 

Technology 104, 165-173. 

Ellyin F (1985). Effect of tensile-mean-strain on plastic strain energy and cyclic response. Journal of 

Engineering Materials and Technology 107, 119-125.  

Ellyin F, Kujawski D (1987). Notch stress-strain prediction for elastic-plastic loading. Res. Mechanica 

20, 177-190.  

Ellyin F, Golos K, Xia Z (1988). Multiaxial fatigue damage criterion. Journal of Engineering Materials 

and Technology 110, 63-68.  

Ellyin F, Kujawski (1989). Generalization of notch analysis and its extension to cyclic loading. 

Engineering Fracture Mechanics 32, 819-826. 

Ellyin F, Golos K, Xia Z (1991). In-phase and out-of-phase multiaxial fatigue. Journal of Engineering 

Materials and Technology 113, 112-118. 

Ellyin F, Xia Z (1993). A general theory of fatigue with application to out-of-phase cyclic loading. 

Journal of Engineering Materials and Technology 115, 411-416.  

Ellyin F (1997). Fatigue damage, crack growth and life prediction. Chapman & Hall, First edition,      

ISBN 0-412-59600- 8. 



322 

 

Endo T, Morrow J (1969). Cyclic stress-strain and fatigue behavior of representative aircraft metals. 

Journal of Materials 4, 159-175. 

ESA v4.0 (2000). ESACRACK user’s manual. TOS-MCS/2000/41/In. 

Espadafor F, Villanueva J, García M (2009). Analysis of a diesel generator crankshaft failure. 

Engineering Failure Analysis 16, 2333-2341. 

Ewing JA, Humfrey JC (1903). The fracture of metals under repeated alternations of stress. Philosophical 

Transactions of the Royal Society A200, 241-250. 

F 

Fallstrom K, Jonsson M (1991). A nondestructive method to determine material properties in anisotropic 

plates. Polymer Composites 12, 293-305. 

Fan J, Peng X (1991). A physically based constitutive description for nonproportional cyclic plasticity. 

Journal of Engineering Materials and Technology 113, 254.262. 

Farahmand B, Bockrath G, Glassco J (1997). Fatigue and Fracture Mechanics of High Risk Parts: 

Application of LEFM & FMDM theory. Chapman & Hall, ISBN: 0-412-12991-4. 

Fatemi A, Socie D (1988). A critical plane approach to multiaxial fatigue damage including out-of-phase 

loading. Fatigue and Fracture of Engineering Materials and Structures 11, 149-165. 

Fatemi A, Socie D (1989). Damage mechanisms and life predictions. Advances in Fatigue Science and 

Technology, NATO Advanced Study Institute, Series E: Applied Sciences, Klumer Academic 

Publishers 159, 877-890. 

Fatemi A, Yang L (1998). Cumulative fatigue damage and life prediction theories: a survey of the state of 

the art for homogeneous materials. International Journal of Fatigue 20, 9-34.   

Fatemi A, Shamsaei N (2011). Multiaxial fatigue: An overview and some approximation models for life 

estimation. International Journal of Fatigue 33, 948–958. 

Favier E, Lazarus V, Leblond J (2006). Coplanar propagation paths of 3D cracks in infinite bodies loaded 

in shear, International Journal of Solids and Structures 43, 2091-2109.  

Findley W (1958). A theory for the effect of mean stress on fatigue of metals under combined torsion and 

axial load or bending. Engineering Materials Research Laboratory, Division of Engineering, 

Brown University. 



323 

 

Fleck NA, Smith RA (1982). Crack closure - is it just a surface phenomenon? International Journal of 

Fracture 4, 157-159. 

FRANC3D v1.14 (1999). Concepts and users guide. Cornell University. 

FRANC3D v1.14 (1999b). Menu and dialog reference. Cornell University 

Frederiksen PS (1995). Single-layer plate theories applied to the flexural vibration of completely free 

thick laminates. Journal of Sound and Vibration 186, 743-759. 

Freed C.N., Krafft J.M. (1966). Effect of side grooving on measurements of plane strain fracture 

toughness. Journal of Materials 1, 770-790. 

Freitas M, Li B, Santos J (2000). Multiaxial Fatigue and Deformation: Testing and Prediction. ASTM 

STP 1387, 139-156. 

Fricke W (2003). Fatigue analysis of welded joints: state of development. Marine Structures 16, 185-200. 

Frost N, Denton K (1962). Surface layer effects when comparing reversed direct stress and rotating 

bending fatigue limits of mild steel. Metallurgia 65, 287-290. 

Frost NE, Marsh KJ, Pook LP (1999). Metal Fatigue. Oxford Engineering Science Series, Oxford 

University Press, ISBN 0-486-40927-9. 

Fulland M, Sander M, Kullmer G, Richard HA (2008). Analysis of fatigue crack propagation in the frame 

of hydraulic press. Engineering Fracture Mechanics 75, 892-900. 

G 

Gadd C, Zmuda A, Ochiltree N (1945). Correlation of stress concentration with fatigue strength of engine 

components. Society of Automotive Engineers, Technical Paper 450227 53.  

Garcés Y, Sánchez H, Berrı́os J, Pertuz A, Chitty J, Hintermann H, Puchi ES (1999). Fatigue behavior of 

a quenched and tempered AISI 4340 steel coated with an electroless Ni-P deposit. Thin Solid 

Films 355-356, 487-493.  

Gardin C, Courtin S, Bézine G, Bertheau D, Ben Hadj Hamouda H (2007). Numerical simulation of 

fatigue crack propagation in compressive residual stress fields of notched round bars. Fatigue 

and Fracture of Engineering Materials and Structures 30, 231-242. 

Garud YS (1981). Multiaxial fatigue: a survey of the state-of-the-art. Journal of Testing and Evaluation 9, 

165-178. 



324 

 

Garud YS (1981b). A new approach to the evaluation of fatigue under multiaxial loadings. Journal of 

Engineering Materials and Technology 103, 118-126. 

Gavete L, Michavila F, Díez, F (1989). A new singularity finite element in linear elasticity. 

Computational Mechanics 4, 361-371. 

Gerber WZ (1874). Calculation of the allowable stresses in iron structures (Bestimmung der zulässigen 

spannungen in eisen-constructionen). Bayer Archit. Ing. Ver. 6, 101-110.  

Gilchrist MD, Smith RA (1991). Finite element modelling of fatigue crack shapes. Fatigue and Fracture 

of Engineering Materials and Structures 6, 617-626. 

Glinka G (1985). Calculation of inelastic notch-tip strain-stress histories under cyclic loading. 

Engineering Fracture Mechanics 22, 839-854. 

Glinka G, Wang G, Plumtree A (1995). Mean stress effects in multiaxial fatigue. Fatigue and Fracture of 

Engineering Materials and Structures 18, 755-764. 

Golos K, Ellyin F (1987). Generalization of cumulative damage criterion to multilevel cyclic loading. 

Theoretical and Applied Fracture Mechanics 7, 169-176. 

Golos K, Ellyin F (1988). A total strain energy density theory for cumulative damage. Journal of Pressure 

Vessel Technology 110, 36-41. 

Goodman J (1899). Journal of Mechanics Applied to Engineering, 1st edition, Longman, London. 

Gough HJ (1924). The fatigue of metals. Scott, Greenwood & Son, London.  

Gough HJ, Pollard HV (1935). The strength of metals under combined alternating stress. Proceedings of 

the Institute of Mechanical Engineers 131, 3-18. 

Gough HJ, Pollard HV (1937). Properties of some materials for cast crankshafts, with special reference to 

combined alternating stresses. Proceedings of the Institute of Automobile Engineers 31, 821-893.  

Gough H, Pollard H, Clenshaw W (1951). Some experiments on the resistance of metals to fatigue under 

combined stresses. Aero Research Council, R&M 2522. 

Grange RA, Hribal CR, Porter LF (1977). Hardness of tempered martensite in carbon and low-alloys 

steels, Metallurgical Transactions 8A, 1775-1785. 

Griza S, Bertoni F, Zanon G, Reguly A, Strohaecker T (2009). Fatigue in engine connecting rod bolt due 

to forming laps. Engineering Failure Analysis 16, 1542-1548. 



325 

 

Grubisic V, Simbürger A (1976). Fatigue under combined out-of-phase multiaxial stresses. International 

Conference on Fatigue, Testing and Design. Society of Environmental Engineers, London,       

27.1-27.8. 

Guinea GV, Planas J, Elices M (2000). KI evaluation by the displacement extrapolation technique. 

Engineering Fracture Mechanics 66, 243-255. 

Guo W (1993) Elastoplastic three-dimensional crack border field I - Singular structure of the field. 

Engineering Fracture Mechanics 46, 93-104. 

Guo W (1999). Three-dimensional analyses of plastic constraint for through-thickness cracked bodies. 

Engineering Fracture Mechanics 62, 383-407. 

Guzmán C, Dı́az N, Berrı́os JA, Pertuz A, Puchi Cabrera ES (2000). Fatigue properties of a SAE 4340 

steel coated with a Nimet HP autocatalytic nickel deposit. Surface and Coatings Technology 

133-134, 561-571. 

H 

Haddadi H, Bouvier S, Banu M, Maier C, Teodosiu C (2006). Towards an accurate description of the 

anisotropic behaviour of sheet metals under large plastic deformations: modelling, numerical 

analysis and identification. International Journal of Plasticity 22, 2226-2271. 

Haigh B (1923). The thermodynamic theory of mechanical fatigue and hysteresis in metals. Report of the 

British Association for the Advancement of Science 358-368. 

Hamada N, Sakane M (1997). High temperature nonproportional low cycle fatigue using fifteen loading 

paths. 5th International Conference on Biaxial/Multiaxial Fatigue. Edited by Macha E and Mróz 

Z, Technical University of Opole, Poland, 251-266. 

Hardrath F, Ohman L (1953). A study of elastic and plastic stress concentration factors due to notches and 

fillets in flat plates, NASA TC1117. 

Hardy S, Malik N (1992). A survey of post-Peterson stress concentration factor data. International Journal 

of Fatigue 14, 147 

Harrop LP (1982). The optimum size of quarter-point crack tip elements. International Journal for 

Numerical Methods in Engineering 17, 1101-1103. 

Harter JA (2002). AFGROW users guide and technical manual. Ohio: Air Vehicles Directorate, Air Force 

Laboratory, Wright-Patterson Air Force Base. 



326 

 

Hellen TK (1975). On the method of virtual crack extension, International Journal for Numerical Methods 

in Engineering 9,187-207. 

Henry BS, Luxmoore AR (1997). The stress triaxiality constraint and the Q-value, as a ductile fracture 

parameter. Engineering Fracture Mechanics 57, 375-390. 

Heyder M, Kolk K, Kuhn G (2005). Numerical and experimental investigations of the influence of corner 

singularities on 3D fatigue crack propagation. Engineering Fracture Mechanics 72, 2095-2105. 

Heywood R (1962). Designing against fatigue of metals. Reinhold Publishing Corporation, New York.  

Hobbacher A (1996). Recommendations for fatigue design of welded joints and components. Abington 

Publishing [IIW Document XII-1966-03/XV-1127-03].   

Hosseini A, Mahmoud MA (1985). Evaluation of stress intensity factor and fatigue crack growth of 

surface cracks in bending plates. Engineering Fracture Mechanics 22, 957-974. 

Hou Chien-Yuan (2008). Simultaneous simulation of closure behaviour and shape development of fatigue 

surface cracks. International Journal of Fatigue 30, 1036-1046. 

Hou Chien-Yuan (2011). Simulation of surface crack shape evolution using the finite element technique 

and considering the crack closure effects. International Journal of Fatigue 33, 719-726. 

Hou J, Goldstraw M, Maan S, Knop M (2001). An evaluation of 3D crack growth using ZENCRACK. 

Department of Defence, Defence Science & Technology Organisation, DSTO Technical Report 

(DSTO-TR-1158).  

Huang DH, Thomas G (1971). Structure and mechanical properties of tempered martensite and lower 

bainite in Fe-Ni-Mn-C steels, Metallurgical Transactions 2, 1587-1598. 

Hutchinson J (1968). Singular behaviour at the end of a tensile crack in a hardening material. 

International Journal of Physics and Solids 16, 13-31.  

Hwang SF, Chang CS (2000). Determination of elastic constants of materials by vibration testing. 

Composite Structures 49, 183-190. 

I 

Ince A, Glinka G (2011). A modification of Morrow and Smith-Watson-Topper mean stress correction 

models. Fatigue and Fracture of Engineering Materials and Structures 34, 854-867.  



327 

 

Ingraffea AR, Manu C (1980). Stress-intensity factor computation in three dimensions with quarter-point 

elements, International Journal for Numerical Methods in Engineering 15, 1427-1445. 

Ioth T, Sakane M, Ohnami M, Socie D (1995). Nonproportional low-cycle fatigue criterion for type 304 

stainless steel. Transaction of the American Society of Mechanical Engineers, Journal of 

Engineering Materials and Technology 117, 285-292. 

Ioth T, Nakata T, Sakane M, Ohnami M (1997). Nonproportional low cycle fatigue of 6061 aluminum 

alloy under 14 strain paths. Proceedings of 5th International Conference on Biaxial/Multiaxial 

Fatigue. Edited by Macha E and Mróz Z, Technical University of Opole, Poland, 173-187. 

Itoh T, Kameoka, M, Obataya Y (2004). A new model for describing a stable cyclic stress-strain 

relationship under non-proportional loading based on activation state of slip systems. Fatigue and 

Fracture of Engineering Materials and Structures 27, 957-966. 

Iranpour M, Taheri  F (2006) A study on crack front shape and the correlation between the stress intensity 

factors of a pipe subject to bending and a plate subject to tension. Marine Structures 19,          

193-216. 

Irwin G (1957). Fracture. Encyclopedia of Physics 4, Springer, Berlin. 

J 

Javidi A, Rieger U, Eichlseder W (2008). The effect of machining on the surface integrity and fatigue life, 

International Journal of Fatigue 30, 2050-2055. 

Jiang Y, Kurath P (1997). Nonproportional cyclic deformation: critical experiments and analytical 

modelling. International Journal of Plasticity 13, 743-763. 

Josefson B, Svensson T, Ringsberg J, Gustafsson T, Maré J (2000). Fatigue life and crack closure in 

specimens subjected to variable amplitude loads under plane strain conditions. Engineering 

Fracture Mechanics 66, 587-600. 

K 

Kakuno H, Kawada Y (1979). A new criterion of fatigue strength of a round bar subjected to combined 

static and repeated bending torsion. Fatigue and Fracture of Engineering Materials and Structures 

2, 229-236. 

Kanazawa K, Miller KJ, Brown MW (1977). Low-cycle fatigue under out-of phase loading conditions. 

Journal of Engineering Materials and Technology 99, 222-228. 



328 

 

Kanazawa K, Miller KJ, Brown MW (1979). Cyclic deformation of 1% Cr-Mo-V steel under                        

out-of-phase loads. Fatigue of Engineering Materials and Structures 2, 217-228. 

Kandil F, Brown (1982). Biaxial low-cycle fatigue fracture of 316 stainless steel at elevated temperatures. 

Book 280, The Metals Society, London, 213-210.  

Karolczuk A, Macha E (2005). A review of critical plane orientations in multiaxial fatigue failure criteria 

of metallic materials. International Journal of Fracture 134, 267-304. 

Kenmeugne B, Fotsing B, Anago G, Fogue M, Robert J, Kenne J (2012).  On the evolution and 

comparison of multiaxial fatigue criteria. International Journal of Engineering and Technology 4, 

37-46 

Kim Y-J, Kim J-S, Cho S-M (2004). 3-D constraint effects on J testing and crack tip constraint in M(T), 

SE(B), SE(T) and C(T) specimens: numerical study. Engineering Fracture Mechanics 71,       

1203-1218. 

Kim J, Gao X, Srivatsan S (2004a). Modelling of void growth in ductile solids: effects of stress triaxiality 

and initial porosity. Engineering Fracture Mechanics 71, 379- 400. 

Kim K, Park J, Lee J (1999) Multiaxial fatigue under variable amplitude loads. Transactions of the 

American Society of Mechanical Engineers, Journal of Engineering Materials and Technology 

121, 286-293. 

Kirkby WT, Forsyth PJE, Maxwell RJ (1980). Design against fatigue - current trends. Aeronautical 

Journal 84, 1-12. 

Kitagawa H, Takahashi S (1976). Applicability of fracture mechanics to very small cracks or the cracks in 

the early stage. 2nd International Conference on Mechanical Behaviour of Materials, Boston, 

627-631. 

Klesnil M, Lukas P (1972). Effect of stress cycle asymmetry on fatigue crack growth. Materials Science 

and Engineering 9, 231-240. 

Koh SK (2002). Fatigue damage evaluation of a high pressure tube steel using cyclic strain energy 

density. Pressure Vessels and Piping 79, 791-798. 

Koh SK, Stephens RI (1991). Mean stress effect on low-cycle fatigue for high strength steel.  Fatigue and 

Fracture of Engineering Materials and Structures 14, 413-428. 

Kolk K, Kuhn G (2006). The advanced simulation of fatigue crack growth in complex 3D structures. 

Archive of Applied Mechanics 76, 699-709.  



329 

 

Kotousov A, Wang CH (2002). Three dimensional stress constraint in an elastic plate with a notch.  

International Journal of Solids and Structures 39, 4311-4326. 

Kotousov A, Lazzarin P,  Berto F, Hardinga S (2010). Effect of the thickness on elastic deformation and 

quasi-brittle fracture of plate components. Engineering Fracture Mechanics 77, 1665-1681. 

Krempl E, Lu H (1984). The hardening and rate dependence behavior of fully annealed AISI type 304 

stainless steel under biaxial in-phase and out-of-phase strain cycling at room temperature. 

Transactions of the American Society of Mechanical Engineers, Journal of Engineering 

Materials and Technology 106, 376-382. 

Krouse GN (1934). A high-speed fatigue testing machine and some tests of speed effect on endurance 

limit. Proceedings of American Society for Testing and Materials 34, 156-164.  

Kuhn P, Hardraht H (1952). An engineering method for estimating the notch-size effect in fatigue tests on 

steel. NACA TN2805, Langley Aeronautical Laboratory, Washington. 

Kujawski D, Ellyin F (1988). On the concept of cumulative fatigue damage. International Journal of 

Fracture 37, 263-278.  

L 

Landgraf R (1970). Achievement of high fatigue resistance in metals and alloys. American Society for 

Testing and Materials, ASTM STP-467, 3-36. 

Landgraf R, Morrow JD, Endo J (1969). Determination of the cyclic stress-strain curve. American 

Society for Testing and Materials, Journal of Materials 4, 176-188.  

Lanza G (1886). Strength of shafting subjected to both twisting and bending. Transactions of American 

Society of Mechanical Engineers 8, 130-144. 

Lauwagie T, Sol H, Heylen W, Roebben G (2004). Determination of the in-plane elastic properties of the 

different layers of laminated plates by means of vibration testing and model updating, Journal of 

Sound and Vibration 274, 529-546. 

Lazarus V (1999) Fatigue propagation path of 3D plane cracks under mode I loading. Comptes Rendus de 

l’Académie des Sciences Paris, T327, Série IIb: 1319-1324. 

Lazarus V (2003). Brittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote 

tensile loading. International Journal of Fracture 122, 23-46. 



330 

 

Lazzarin P, Tovo R, Meneghetti G (1997). Fatigue crack initiation and propagation phases near notches in 

metals with low notch sensitivity. International Journal of Fatigue 19, 647-657.  

Le HN, Gardin C (2011). Analytical prediction of crack propagation under thermal cyclic loading 

inducing a thermal gradient in the specimen thickness - Comparison with experiments and 

numerical approach. Engineering Fracture Mechanics 78, 638–652 

Lee S (1985). A criterion for fully-reversed out-of-phase torsion and bending. Multiaxial Fatigue. 

American Society for Testing and Materials, ASTM STP 853, 553-568.   

Lee S (1989). Out-of-phase, combined bending and torsion fatigue of steels. Biaxial and multiaxial 

fatigue, EGF 3, Mechanical Engineering Publications, London, 621-634. 

Lee WS, Su TT (1999). Mechanical properties and microstructural features of AISI 4340 high-strength 

alloy steel under quenched and tempered conditions. Journal of Materials Processing Technology 

87, 198-206.   

Lee WY, Lee JJ (2004) Successive 3D analysis technique for characterization of fatigue crack growth 

behaviour in composite-repaired aluminum plate. Composite Structures 66, 513-520. 

Lefebvre D, Ellyin F (1984). Cyclic response and inelastic strain energy in low cycle fatigue, 

International Journal of Fatigue 6, 9-15. 

Lemaitre J  (1996). A course on damage mechanics. Springer, New York.  

Li F, Shih CF, Needleman A (1985). A comparison of methods for calculating energy release rates. 

Engineering Fracture Mechanics 21, 405-421. 

Li B, Reis M, Freitas M (2009). Comparative study of multiaxial fatigue damage models for ductile 

structural steels and brittle materials. International Journal of Fatigue 31, 1895-1906. 

Li B, Santos J, Freitas M (2000). A unified numerical approach for multiaxial. fatigue limit evaluation. 

Mechanics of Structures and Machines 28, 85-103.  

Li M, Stubbins JF (2002). Subsize specimens for fatigue crack growth rate testing of metallic materials. 

In: Sokolov MA, Landes JD, Lucas GE, editors. Small specimen test techniques: fourth volume, 

ASTM STP 1418. West Conshohocken, PA, ASTM International 321-335. 

Lin XB, Smith RA (1997). Shape growth simulation of surface cracks in tension fatigued round bars. 

International Journal of Fatigue 19, 461-469. 



331 

 

Lin XB, Smith RA (1997a). An improved numerical technique for simulating the growth of planar fatigue 

cracks. Fatigue and Fracture of Engineering Materials and Structures 20, 1363-1373. 

Lin XB, Smith RA (1997b). Numerical analysis of fatigue growth of external surface cracks in 

pressurised cylinders, International Journal of Pressure Vessels 71, 293-300.  

Lin XB, Smith RA (1997c). Fatigue growth analysis of interacting and coalescing surface defects. 

International Journal Fracture 85, 283-299. 

Lin XB, Smith RA (1998). Fatigue shape analysis for corner cracks at fastener holes. Engineering 

Fracture Mechanics 59, 73-87. 

Lin XB, Smith RA (1998a). Fatigue growth simulation for cracks in notched and unnotched round bars. 

International Journal of Mechanical Sciences 5, 405-419. 

Lin XB, Smith RA (1999). Finite element modelling of fatigue crack growth of surface cracked plates. 

Part I: The numerical technique. Engineering Fracture Mechanics 63, 503-522. 

Lin XB, Smith RA (1999a). Finite element modelling of fatigue crack growth of surface cracked plates. 

Part II: Crack shape change. Engineering Fracture Mechanics 63, 523-540. 

Lin XB, Smith RA (1999b). Finite element modelling of fatigue crack growth of surface cracked plates. 

Part III: tress intensity factor and fatigue crack growth. Engineering Fracture Mechanics 63,    

541-556. 

Lin XB, Smith RA (1999c). Shape evolution of surface cracks in fatigued round bars with a semicircular 

circumferential notch. International Journal of Fatigue 21, 965-973. 

Lin XB, Smith RA (2001). Numerical simulation of fatigue crack growth for corner cracks emanating 

from fastener holes. Notch Effects in Fatigue and Fracture, 271-287.  

Liu GR, Lam KY, Han X (2002). Determination of elastic constants of anisotropic laminated plates using 

elastic waves and a progressive neural network, Journal of Sound and Vibration 52, 239-259. 

Liu J (1999). Weakest link theory and multiaxial criteria. European Structural Integrity Society 25, 55-68.  

Liu K (1993). A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. 

Advances in Multiaxial Fatigue. Edited by McDowell D and Ellis R. American Society for 

Testing and Materials STP 1191, Philadelphia, 67-84.  

Liu Y, Mahadevan S (2005). Strain-based multiaxial fatigue damage modelling. Fatigue and Fracture of 

Engineering Materials and Structures 28, 1177-1189. 



332 

 

Luke M, Varfolomeev I, Lütkepohl K, Esderts A (2011). Fatigue crack growth in railway axles: 

Assessment concept and validation tests. Engineering Fracture Mechanics 78, 714-730. 

Lynch SP (2007). Progression markings, striations, and crack-arrest markings on fracture surfaces. 

Materials Science and Engineering A, 468–470, 74-80. 

M 

MacDonald BD, Pajot JJ (1990). Stress intensity factors for side-grooved fracture specimens. Journal of 

Testing and Evaluation 18, 281-285. 

Macha E (1988). Generalization of strain criteria of multiaxial cyclic fatigue to random loadings. 

Technical University of Opole 23, 89-123. 

Macha E (2001). A review on energy-based multiaxial fatigue failure criteria. The Archive of Mechanical 

Engineering 48, 71-101. 

Macha E, Sonsino CM (1999). Energy criteria of multiaxial fatigue failure. Fatigue and Fracture of 

Engineering Materials and Structures 22, 1053-1070. 

Mahmoud MA, Hosseini A (1986). Assessment of stress intensity factor and aspect ratio variability of 

surface cracks in bending plates. Engineering Fracture Mechanics 24, 897-913. 

Maligno AR, Sajaratnam R, Leen SB, Williams EJ (2010). A three-dimensional (3D) numerical study of 

fatigue crack growth using remeshing techniques, Engineering Fracture Mechanics 77, 94-111. 

Mamiya EN, Araújo JA (2002). Fatigue limit under multiaxial loadings: on the definition of the 

equivalent shear stress. Mechanics Research Communications 29, 141-151. 

Manson SS (1954). Behaviour of materials under conditions of thermal stress. NACA TN-2933, National 

Advisory Committee for Aeronautics. 

Mason W (1917). Alternating stress experiments. Proceedings of Institution of Mechanical Engineers, 

121- 196.  

Marder AR (1986). Heat-treated alloy steels, Encyclopedia of Materials Science. Pergamon Press and 

MIT Press, 2111-2116.  

Masing G (1926). Eigenspannungen und verfestigung beim messing. 2nd International Congress of 

Applied Mechanics. Zurich: Orell Fussliverlag, 332-335.  



333 

 

Matake T (1977). An explanation on fatigue limit under combined stress. Bulletin of The Japan Society of 

Mechanical Engineers 20, 257-263.  

Matsuishi M, Endo T (1968). Fatigue of metals subjected to varying stress. Preliminary Proceedings of 

the Kyushu District Meeting. The Japan Society of Mechanical Engineers 37-40 [in Japanese]. 

McDiarmid D (1991). A general criterion for high cycle multiaxial fatigue failure. Fatigue and Fracture of 

Engineering Materials and Structures 14, 429-453. 

McDiarmid D (1994). A shear stress based critical plane criterion of multiaxial fatigue failure for design 

and life prediction. Fatigue and Fracture of Engineering Materials and Structures 17, 1475-1485. 

McDowell DL (1985). A two surface model for transient nonproportional cyclic plasticity. Part I: 

development of appropriate equations. Journal of Applied Mechanics 52, 298-302. 

McIntyre ME, Woodhouse J (1988). On measuring the elastic and damping constants of orthotropic sheet 

materials. Acta Metallurgica 36, 1397-1416. 

Meggiolaro M, Castro J (2009). Evaluation of multiaxial stress-strain models and fatigue life prediction 

methods under proportional loading. Mechanics of Solids in Brazil, Edited by Mattos H and 

Alves M, Brazilian Society of Mechanical Sciences and Engineering 365-384,                                  

ISBN: 978-85-85769-43-7. 

Mejía I, Bedolla-Jacuinde A, Maldonado C, Cabrera JM (2011). Hot ductility behavior of a low carbon 

advanced high strength steel (AHSS) microalloyed with boronMaterials Science and Engineering 

528A, 4468-4474. 

Melcon MA, Crichlow WJ, McCulloch AJ (1962). An engineering evaluation of methods for the 

prediction of fatigue life in airframe structures. Technical Report ASD-TR-61-134, Lockheed 

California Company.  

Mi Y, Aliabadi MH (1994). Three-dimensional crack growth simulation using BEM. Computers and 

Structures 52, 871-878.  

MIL-HDBK-5H (1988). Military Handbook: Metallic materials and elements for aerospace vehicle 

structures. Military Standardisation Handbook, Department of Defense, USA.   

Minner MA (1945). Cumulative damage in fatigue. Journal of Applied Mechanics 12, A159-A164.   

Mirone G (2007). Role of stress triaxiality in elastoplastic characterization and ductile failure prediction. 

Engineering Fracture Mechanics 74, 1203-1221. 



334 

 

Molski K, Glinka G (1981). A method of elastic-plastic stress and strain calculation at a notch root. 

Materials Science and Engineering 50, 93-100. 

Moore HF, Jordan RL (1939). 5th International Congress for Applied Mechanics 188. 

Moore HF, Kommers JB (1927). The fatigue of metals. McGraw-Hill, New York. 

Morkovin D, Moore HF (1944). Third progress report on the effect of size of specimen on fatigue 

strength of three types of steel. Proceedings of American Society for Testing and Materials 42, 

137-155. 

Morrow JD (1965). Cyclic plastic strain energy and fatigue of metals. International Friction, Damping 

and Cyclic Plasticity, American Society for Testing and Materials, ASTM STP 378, 

Philadelphia, 45-87. 

Moslemi H, Khoei A (2009). 3D adaptive finite element modeling of non-planar curved crack growth 

using the weighted superconvergent patch recovery method. Engineering Fracture Mechanics 76, 

1703-1728. 

Mostovoy S., Crosley P.B., Ripling E.J. (1967). Use of crack-line-loaded specimens for measuring     

plane-strain fracture toughness. Journal of Materials 2, 661-681. 

Mowbray D (1980). A hydrostatic stress-sensitive relationship for fatigue under biaxial stress conditions. 

Journal of Testing and Evaluation 8, 3-8.  

Mroz Z (1967). On the description of anisotropic work hardening. Journal of the Mechanics and Physics 

of Solids. 15, 163-175. 

Murakami Y, Endo M (1994) Effects of defects, inclusions and in homogeneities on fatigue strength. 

International Journal of Fatigue 16, 163-182. 

Murakami T, Sato T (1983). Three-dimensional J-Integral calculation of part-through surface crack 

problems. Computers and Structures 17, 731-736. 

Murti V, Valliappan S (1986). A universal optimum quarter point element. Engineering Fracture 

Mechanics 25,      237-258. 

Murty YV, Morral JE, Kattamis TZ, Mehrabian R (1975). Initial coarsening of manganese sulfide 

inclusions. Metallurgical and Materials Transactions 6A, 2031-2039.     

 



335 

 

N 

Narayana KB, Dattaguru B, Ramamurthy TS, Vijayakumar K (1994). A General procedure for modified 

crack closure integral in 3D problems with cracks. Engineering Fracture Mechanics 48, 167-176. 

NASCRAC (1989). Manual. Failure Analysis Associates, Palo Alto, Califórnia, USA.  

NASCRAC (1989b). Theory Manual, Failure Analysis Associates, Palo Alto, Califórnia, USA. 

NASGRO v6.0 (2009). Fracture mechanics and fatigue crack growth analysis software. Reference 

manual. 

Neuber (1968). Theory of stress concentration for shear-strained prismatical bodies with arbitrary         

non-linear stress-strain law. Journal of Applied Mechanics 28, 544-551  

Neuber H (1958). Theory of Notch Stresses: Principles for Exact Calculation of Strength with Reference 

to Structural form and Material, Springer, Berlin, Germany, 1958. 

Newman Jr JC, Raju IS (1981). An empirical stress intensity factor equation for the surface crack. 

Engineering Fracture Mechanics 15,185-192.  

Newman Jr JC (1981a). A crack-closure model for predicting fatigue crack propagation under aircraft 

spectrum loading. Methods and models for prediction of crack growth under random loading, 

ASTM STP 748, 53-84. 

Newman Jr JC, Raju IS (1984). Prediction of fatigue crack growth patterns and lives in three-dimensional 

cracked bodies. 6th International Conference on Fracture, New Delhi, India, December 4-10. 

Nishiara T, Kawamoto M (1941). The strength of metals under combined alternating bending and torsion. 

College of Engineering, Volume 10, Kyoto Imperial University, Japan. 

Nykänen TJ (1996). Fatigue crack growth simulations based on free front shape development. Fatigue 

and Fracture of Engineering Materials and Structures 19, 99-109. 

O 

O’dowd NP, Shih CF (1991). Family of crack-tip fields characterized by a triaxiality parameter - I: 

Structure of fields. Journal of Mechanics and Physics of Solids 39, 989-1015. 

O’dowd NP, Shih CF (1992). Family of crack-tip fields characterized by a triaxiality parameter - II: 

Fracture Applications. Journal of Mechanics and Physics of Solids 40, 939-963. 



336 

 

O’Neil MJ (1970). A review of some cumulative damage theories. Australian Defence Scientific Service, 

Aeronautical Research Laboratories, Report 326, Melbourne, Australia.  

Ohashi Y, Kawai M, Kaito M (1985). Inelastic behavior of type 316 stainless steel under                      

non-proportional cyclic stressings at elevated temperature. Transactions of the American Society 

of Mechanical Engineers, Journal of Engineering Materials and Technology 107, 101-109. 

Ohno N (1982). Constitutive model of cyclic plasticity with a nonhardening strain region. Transactions of 

the American Society of Mechanical Engineers, Journal of Applied Mechanics 49, 721-726. 

Ostash O, Panasyuk V (2001). Fatigue process zone at notches. International Journal of Fatigue 23,      

627-636. 

P 

Palmgren A (1945). Ball and roller bearing engineering. Translated by G. Palmgren and B. Ruley. SKF 

Industries, Philadelphia, 82-83.   

Pang H (1993). Fatigue crack growth and coalescence of surface cracks. 12th conference offshore 

mechanics arctic engineering, 485-491. 

Pantano M, Espinosa H, Pagnotta L (2012) Mechanical characterization of materials at small length 

scales. Journal of Mechanical Science and Technology 26, 545-561. 

Papadopoulos I (1987). Fatigue polycyclique des métaux: une nouvelle approche. Thèse de doctorat. 

Ecole Nationale des Ponts et Chaussées, Paris, France.   

Papadopoulos I, Dang Van K (1988). Sur la nucleation des fissures en fatigue polycyclique sous 

chargement multiaxial. Archives of Mechanics 40, 759-774. 

Papadopoulos I (1995). A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress 

conditions. Fatigue and Fracture of Engineering Materials and Structures 18, 79-91. 

Papadopoulos I, Davoli P, Gorla C, Filippini M, Bernasconi A (1997). A comparative study of multiaxial 

high-cycle fatigue criteria for metals. International Journal of Fatigue 19, 219–235. 

Papadopoulos I (1998). Critical plane approaches in high-cycle fatigue: on the definition of the amplitude 

and mean value of shear stress acting on the critical plane. Fatigue and Fracture of Engineering 

Materials and Structures 21, 269-285. 

Papadopoulos I (2001). Long life fatigue under multiaxial loading. International Journal of Fatigue 23, 

831-849. 



337 

 

Pape J, Neu R (2007). A comparative study of the fretting fatigue behavior of 4340 steel and PH 13-8 Mo 

stainless steel. International Journal of Fatigue 29, 2219-2229. 

Park J, Nelson D (2000). Evaluation of an energy-based approach and a critical plane approach for 

predicting constant amplitude multiaxial fatigue life. International Journal of Fatigue 22, 23-39. 

Parks D (1974). A stiffness derivative finite element technique for determination of crack tip stress 

intensity factors. International Journal of Fracture 10, 487-502. 

Peterson R (1959). Metal Fatigue, Edited by Sines G and Waisman J, McGraw-Hill, New York. 

Pippan R, Kolednik O, Lang M (1994). A mechanism for plasticity-induced crack closure under plane 

strain conditions. Fatigue and Fracture of Engineering Materials and Structures 17, 721-726. 

Pluvinage G (1997). Notch effect in high cycle fatigue. Advances in fracture research. Fatigue of metallic 

and non-metallic materials and structures. 9th International Conference on Fracture (ICF9) 3, 

1239-1250. 

Pluvinage G (1997a). Application of notch fracture mechanics to fracture emanating from stress 

concentrators. Advances in Computational Engineering Congress of Computational Engineering 

Sciences, 213-218. 

Pluvinage G (1998). Fatigue and fracture emanating from notch; the use of the notch stress intensity 

factor. Nuclear Engineering and Design 185, 173-184. 

Pommier S (2002). Plain strain crack closure and cyclic hardening. Engineering Fracture Mechanics 69, 

25-44. 

Pook LP (1994). Some implications of corner point singularities. Engineering Fracture Mechanics 48, 

367-378. 

Poursaeidi E, Salavatian M (2009). Fatigue crack growth simulation in a generator fan blade. Engineering 

Failure Analysis 16, 888-898. 

Puchi-Cabrera ES, Staia H, Quinto DT, Villalobos-Gutiérrez C, Ochoa-Pérez E (2007). Fatigue properties 

of a SAE 4340 steel coated with TiCN by PAPVD. International Journal of Fatigue 29, 471-480. 

Puigh RJ, Bauer RE, Ermi AM, Chin BA (1981). Miniaturized fatigue crack growth specimen technology 

and results. Journal of Nuclear Materials 103-104, 1501-1504. 

 



338 

 

Q 

Qylafku G, Azari Z, Gjonaj M,  Pluvinage G (1998). On the fatigue failure and life prediction for notched 

specimens. Materials Science 34, 604-618. 

Qylafku G, Azari Z, Kadi N, Gjonaj M, Pluvinage G (1999). Application of a new model proposal for 

fatigue life prediction on notches and key-seats. International Journal of Fatigue 21, 753-760. 

R 

Rabb R (1996). Fatigue failure of a connecting rod. Engineering Failure Analysis 3, 13-28. 

Radovic M. (2004). Comparison of different experimental techniques for determination of elastic 

properties of solids, Materials Science and Engineering 368A, 56-70.  

Ramberg W, Osgood WR (1943). Description of stress-strain curves by three parameters. NACA TN 902, 

National Advisory Committee for Aeronautics. 

Ransom, JT (1954). The effect of inclusions on the fatigue strength of SAE 4340 steels. Transactions of 

the American Society of Metals 46, 1254-1269. 

Ranson JT, Mehl RF (1952).  The anisotropy of the fatigue properties of SAE 4340 steel forgings. 

Proceedings of American Society for Testing and Materials 52, 779-786.  

Rébillat M, Boutillon X (2011). Measurement of relevant elastic and damping material properties in 

sandwich thick plates. Journal of Sound and Vibration 330, 6098-6121. 

Rice J (1968). A path independent integral and approximate analysis of strain concentration by notches 

and cracks. Journal of Applied Mechanics 10, 487-502.  

Richard HA, Fulland M, Sander M, Kullmer G (2005). Fracture in a rubber-sprung railway wheel, 

Engineering Failure Analysis 12, 986-999. 

Richard HA, Sander M, Fulland M, Kullmer G (2008). Development of fatigue crack growth in real 

structures, Engineering Fracture Mechanics 75, 331-340. 

Richard HA, Sander M, Schramm B, Kullmer G, Wirxel M (2012). Fatigue crack growth in real 

structures. International Journal of Fatigue (in press).  

Roeck G, Wahab M (1995). Strain energy release rate formulae for 3D finite elements. Engineering 

Fracture Mechanics 50, 569-580. 



339 

 

Roy M, Sumpter J, Timbrell C, Wiehahn M (2005). Stress intensity factors for cracked plates under       

out-of-plane bending, 18th Annual Worldwide ABAQUS Users' Conference, Stockholm, 

Sweden, May 18-20.  

Rozumek D, Lachowicz C, Macha E (2010). Analytical and numerical evaluation of stress intensity factor 

along crack paths in the cruciform specimens under out-of-phase cyclic loading. Engineering 

Fracture Mechanics 77, 1808-1821. 

Rybicki E, Kanninen M (1977). A finite element calculation of stress intensity factors by modified crack 

closure integral. Engineering Fracture Mechanics 9, 931-938. 

S 

Savković M, Gašić M, Petrović D, Zdravković N, Pljakić R (2012). Analysis of the drive shaft fracture of 

the bucket wheel excavator. Engineering Failure Analysis 20, 105-117.  

Schijve J (1980). Stress gradients around notches. Fatigue and Fracture of Engineering Materials and 

Structures 3, 325-338. 

Schijve J (1998). Fatigue specimens for sheet and plate material. Fatigue and Fracture of Engineering 

Materials and Structures 21, 347-357. 

Schöllmann M, Richard HA (1999). FRANC/FAM - a software system for the prediction of crack 

propagation. Journal of Structural Engineering 26, 39-48.  

Schöllmann M, Fulland M, Richard HA (2003). Development of a new software for adaptive crack 

growth simulations in 3D structures. Engineering Fracture Mechanics 70, 249-268. 

Sedmak A, Savovic N, Pavisic M (1992) ESIS Recommendations for use of finite element method in 

fracture mechanics. 9th European Conference on Fracture (ECF9), Bulgaria, Reliability and 

Structural Integrity of Advanced Materials, Ed. by Sedmak S, Sedmak A, Ruzié A, EMAS. 

Sehitoglu H, Sun W (1991). Modelling of plane strain fatigue crack closure. ASME Journal of 

Engineering Materials and Technology 113, 31-40. 

Sekine H, Yan B, Yasuho T (2005). Numerical simulation study of fatigue crack growth behaviour of 

cracked aluminum panels repaired with a FRP composite patch using combined BEM/FEM. 

Engineering Fracture Mechanics 75, 2549-2563. 

Ševčík M, Hutař P, Zouhara M, Náhlík L (2012). Numerical estimation of the fatigue crack front shape 

for a specimen with finite thickness. International Journal of Fatigue 39, 75-80. 



340 

 

Serra A, Branco R, Costa JD, Antunes FV (2012). Fatigue behaviour of lateral notched round bars under 

torsion-bending loading. 13th Portuguese Conference on Fracture, 2-3 February, 107-112, 

Coimbra, Portugal. 

Ševcík M, Hutar P, Zouhar M, Náhlík L (2012). Numerical estimation of the fatigue crack front shape for 

a specimen with finite thickness. International Journal of Fatigue 39, 75-80. 

Shang D, Wang D, Li M, Yao W (2001). Local stress–strain field intensity approach to fatigue life predic 

under random cyclic loading. International Journal of Fatigue 23, 903-910. 

She C, Guo W (2007). The out-of-plane constraint of mixed-mode cracks in thin elastic plates. 

Intermational Journal of Solids and Structures 44, 3021-3034.  

Shi J, Chopp D, Lua J, Sukumar N, Belytschko T (2010). Abaqus implementation of extended finite 

element method using a level set representation for three-dimensional fatigue crack growth and 

life predictions, Engineering Fracture Mechanics 77, 2840-2863. 

Shih CF, Moran B, Nakamura T (1986).  Energy release rate along a three-dimensional crack front in a 

thermally stresses body. International Journal of Fracture 30, 79-102.   

Shih Y, Chen J (1997). Analysis of fatigue crack growth on a cracked shaft. International Journal of 

Fatigue 19, 477-485. 

Shin CS, Cai CQ (2004). Experimental and finite element analyses on stress intensity factors of an 

elliptical surface cracks in a circular shaft under tension and bending. International Journal of 

Fracture 129, 239-264. 

Shin CS, Cai CQ (2007). Evaluating fatigue crack propagation properties using a cylindrical rod 

specimen. International Journal of Fatigue 29, 397-405. 

Shin CS, Liu SW CQ (2012). Evaluating fatigue crack propagation properties using miniature specimens. 

International Journal of Fatigue 43, 105-110. 

Shivakumar K, Tan P, Newman Jr J (1988). A virtual crack-closure technique for calculating stress 

intensity factors for cracked three dimensional bodies. International Journal of Fracture 36,       

R43-R50.  

Siebel E, Stieler M (1955). Significance of dissimilar stress distributions for cycling loading.               

VDI-Zeitschrift 97, 121-126 [in German]. 



341 

 

Sih GC, Jeong DY (2004). Hysteresis loops predicted by isoenergy density theory for Polycrystals. Part                      

I: Fundamentals of non-equilibrium thermal–mechanical coupling effects. Theoretical and 

Applied Fracture Mechanics 41, 233-266. 

Sih GC, Jeong DY (2004a). Hysteresis loops predicted by isoenergy density theory for Polycrystals. Part 

II: Cyclic heating and cooling effects predicted from nonequilibrium theory for 6061-T6 

aluminum, SAE 4340 steel and Ti–8Al–1Mo–1V titanium cylindrical bars. Theoretical and 

Applied Fracture Mechanics 41, 267-289. 

Sines G (1959). Behavior of metals under complex static and alternating stresses. Metal Fatigue, Edited 

by Sines G and Waisman J, McGraw-Hill, New York, 145-169. 

Sines G, Ohgi G (1981). Fatigue criteria under combined stresses or strains. Journal of Engineering 

Materials and Technology 103, 82-90. 

Sirin SY, Sirin K, Kaluc E (2008) Effect of the ion nitriding surface hardening process on fatigue 

behavior of AISI 4340 steel. Materials Characterization 59, 351-358. 

Smith RA, Miller K (1977). Fatigue cracks at notches. International Journal of Mechanical Sciences 19, 

11-22. 

Smith RA, Cooper JF (1989). A finite element model for the shape development of irregular planar 

cracks. International Journal of Pressure Vessels and Piping 36, 315-326. 

Smith RW, Hirschberg MH, Manson SS (1963). Fatigue behaviour of materials under strain cycling in 

low and intermediate life range, NACA TN D-1574, National Advisory Committee for 

Aeronautics. 

Smith R, Watson P, Topper T (1970). A stress-strain parameter for the fatigue of metals. Journal of 

Materials 5, 767-778. 

Sneddon IN (1946). The distribution of stress in the neighbourhood of a crack in an elastic solid. 

Proceedings of the Royal Society of London. Series A 187, 229-260. 

Socie D.F (1980). Fatigue life estimation techniques. Technical Report, 145, Electro General Corporation. 

Socie, D (1987). Multiaxial fatigue damage models. Journal of Engineering, Materials and Technology 

109, 293-298. 

Socie D, Marquis G (2000). Multiaxial Fatigue. Society of Automotive Engineers, ISBN: 0-7680-0453-5. 

Sokolnikoff IS (1956). Mathematical Theory of Elasticity, McGraw-Hill. 



342 

 

Spievak L, Wawrzynek P, Ingraffea A, Lewicki G (2001). Simulating fatigue crack growth in spiral bevel 

gears. Engineering Fracture Mechanics 68, 53-76. 

Sriharsha HK, Pandey RK, Chatterjee S (1999). Towards standardizing a sub-size specimen for fatigue 

crack propagation behaviour or a nuclear pressure vessel steel. Engineering Fracture Mechanics 

64, 607-624. 

Suresh S, Ritchie RO (1982). Mechanistic dissimilarities between environmentally influenced         

fatigue-crack rates in lower strength steels, Metal Science 16, 592-538.  

Suresh S (1998). Fatigue of Materials. Cambridge University Press, 2nd Edition, ISBN: 9780521578479. 

Susmel S, Taylor D (2011). The Theory of Critical Distances to estimate lifetime of notched components 

subjected to variable amplitude uniaxial fatigue loading. International Journal of Fatigue 33, 

900-911.  

Swift HW (1952). Plastic instability under plane stress. Journal of Mechanical and Physics of Solids 1,    

1-18. 

T 

Tada H, Paris PC, Irwin G (1973). The stress analysis of cracks handbook. Del Research Corporation, 

Missouri, USA. 

Taleb L, Hauet A (2009). Multiscale experimental investigations about the cyclic behavior of the 304L 

SS. International Journal of Plasticity 25, 1359-1385. 

Tanaka K (1983). Engineering formulate for fatigue strength reduction due to crack-line notches. 

International Journal of Fracture 22, 39-45. 

Tanaka E (1994). A nonproportionality parameter and a cyclic viscoplastic constitutive model taking into 

account amplitude dependence and memory effects of isotropic hardening. European Journal of 

Mechanics, A/Solids 13, 155-173. 

Tanaka E, Murakami S, Ooka M (1985a). Effects of plastic strain amplitudes on non-proportional cyclic 

plasticity. Acta Mechanica 57, 167-182. 

Tanaka E, Murakami S, Ooka M (1985b). Effects of strain path shapes on nonproportional cyclic 

plasticity. Journal of Mechanics of Physics and Structures 33, 559-575. 

Tartaglia J, Hayrynen K (2012). A Comparison of fatigue properties of austempered versus quenched and 

tempered 4340 steel, Journal of Materials Engineering and Performance 21, 1008-1024. 



343 

 

Tartaglia J, Lazzari K, Hui G, Hayrynen K (2008). A comparison of mechanical properties and hydrogen 

embrittlement resistance of austempered vs quenched and tempered 4340 steel. Metallurgical 

and Materials Transactions 39A, 559-576. 

Taylor D (1999). Geometrical effects in fatigue: a unifying theoretical model. International Journal of 

Fatigue 21, 413-420. 

Taylor D (2008). The theory of critical distances. Engineering Fracture Mechanics 75, 1696-1705 

Timbrell C, Cook G. 3D FE fracture mechanics analysis for industrial applications. Zentech International 

Limited, UK. 

Ting J, Lawrence F (1993). A crack closure model for predicting the threshold stresses of notches. 

Fatigue and Fracture of Engineering Materials and Structures 16, 93-114. 

Tong J, Byrne J, Hall R, Aliabadi MH (1997). A comparison of corner notched and compact tension 

specimens for high temperature fatigue testing. In: Proc. Conference Engineering Against 

Fatigue, 17-21 March, University of Sheffield, United Kingdom. 

Topper TH, Sandor BI, Morrow J (1969). Cumulative damage under cyclic plastic strain control. Journal 

of Materials 4, 189-99. 

Toribio J, Matos JC, González B, Escuadra J (2009). Numerical modelling of crack shape evolution for 

surface flaws in round bars under tensile loading. Engineering Failure Analysis 16, 618-630.  

Toribio J, Matos JC, González B, Escuadra J (2011). Compliance evolution in round cracked bars under 

tensile fatigue. Engineering Fracture Mechanics 78, 3243-3252. 

Trattnig G, Antretter T, Pippan R (2008). Fracture of austenitic steel subject to a wide range of stress 

triaxiality ratios and crack deformation modes. Engineering Fracture Mechanics 75, 223-235. 

U 

Ural A, Heber G, Wawrzynek P, Ingraffea A, Lewicki D, Neto J  (2005). Three-dimensional, parallel, 

finite element simulation of fatigue crack growth in a spiral bevel pinion gear. Engineering 

Fracture Mechanics 72, 1148-1170. 

V 

Van Stone RH, Cox TB, Low JR, Psioda JA (1985). Microstructural aspects of fracture by dimple 

rupture. International Materials Reviews 30, 157-179. 



344 

 

Vosikivsky O (1979). The effect of stress ratio on fatigue crack growth rates in steels. Engineering 

Fracture Mechanics 11, 595-602.   

W 

Wang C, Brown M (1993). A path-independent parameter for fatigue under proportional and 

nonproportional loading. Fatigue and Fracture of Engineering Materials and Structures 16,     

1285-1298. 

Wang C, Brown M (1996). Life prediction techniques for variable amplitude multiaxial fatigue. Part 1: 

theories. Journal of Engineering Materials and Technology 118, 367-370. 

Wang B, Hu N, Kurobane Y, Makino Y, Lie ST (2000). Damage criterion and safety assessment 

approach to tubular joints. Engineering Structures 22, 424-434. 

Wang Z, Zhao S (1992). Fatigue design, Mechanical Industry Publisher.   

Wang Y, Yao W (2004). Evaluation and comparison of several multiaxial fatigue criteria. International 

Journal of Fatigue 26, 17–25. 

Weber W, Steinmann P, Kuhn G (2008). Precise 3D crack growth simulations. International Journal of 

Fracture 149, 175-192. 

Webster GA, Ainsworth RA (1994). High temperature component life assessment. Ed. Chapman Hall, 

United Kingdom. 

Witek L (2006). Failure analysis of the wing-fuselage connector of an agricultural aircraft. Engineering 

Failure Analysis 13, 572-581.  

Wöhler A (1871). Tests to determine the forces acting on railway carriage axles and the capacity of 

resistance of the axles. Engineering, 11. 

Wu Z (2006). The shape of a surface crack in a plate based on a given stress intensity factor distribution. 

Pressure Vessels and Piping 83, 168-180.  

Wu Z (2006a). On the through-thickness crack with a curve front in center-cracked tension specimens. 

Engineering Fracture Mechanics 73, 2600-2613. 

Y 

Yang FP, Kuang Z., Shlyannikov VN (2006). Fatigue crack growth for straight-fronted edge crack in a 

round bar, International Journal of Fatigue 28, 431-437. 



345 

 

Yang Z (2009). Stress and strain concentration factors for tension bars of circular cross-section with 

semicircular groove. Engineering Fracture Mechanics 76, 1683-1690. 

Yao W (1993). Stress field intensity approach for predicting fatigue life. International Journal of Fatigue 

15, 243-245.  

Yao W, Kaiquan X, Gu Y (1995). On the fatigue notch factor, Kf. International Journal of Fatigue 17, 

245-251. 

Yngvesson M, Nilsson F (1999). Fatigue crack growth of surface cracks under non-symmetric loading. 

Engineering Fracture Mechanics 63, 375-393. 

Yokobori Y, Yamanouchi H, Yamanoto S (1965). Low cycle fatigue of thin-walled hollow cylinder 

specimens of mild in unixial and torsional tests at constant strain amplitude. International Journal 

of Fracture Mechanics 1, 3-13.  

You B, Lee S (1996). A critical review on multiaxial fatigue assessments of metals. International Journal 

of Fatigue 18, 235–244. 

Yu M, DuQuesnay D, Topper T (1988). Notch fatigue behaviour of SAE1045 steel. International Journal 

of Fatigue 10, 109-116. 

Yu P, She C, Guo W (2010). Equivalent thickness conception for corner cracks. International Journal of 

Solids and Structures 47, 2123-2130. 

Yu P, Guo W (2012). An equivalent thickness conception for prediction of surface fatigue crack growth 

life and shape evolution. Engineering Fracture Mechanics 93, 65-74.  

Yu Z, Xu X (2008). Failure analysis of connecting bolts and location pins assembled on the plate of     

main-shaft used in a locomotive turbochanger. Engineering Failure Analysis 15, 471-479. 

Yu Z, Xu X (2009). Failure analysis of a locomotive turbocharger main-shaft. Engineering Failure 

Analysis 16, 495-502. 

Z 

Zencrack User’s Manual v7.5 (2007). Zentech International Limited, United Kingdom. 

Zenner H (2004). Multiaxial fatigue methods, hypotheses and applications an overview. 7th International 

Conference on Biaxial/Multiaxial Fatigue and Fracture, Berlin, Germany, 3-16. 



346 

 

Zenner H, Simbürger A, Liu J (2000). On the fatigue limit of ductile metals under complex multiaxial 

loading, International Journal of Fatigue 22, 2000.  

Zhang B, Guo W (2007). Three-dimensional stress state around quarter-elliptical corner cracks in elastic 

plates subjected to uniform tension loading. Engineering Fracture Mechanics 74, 386-398. 

Zhang X, Wang Z (2003). Fatigue life improvement in fatigue-aged fastener holes using the cold 

expansion technique. International Journal of Fatigue 25, 1249-1257. 

Zhao J, Guo W, She C (2007). The in-plane and out-of-plane stress constraint factors and K-T-Tz 

description of stress field near the border of a semi-elliptical surface crack. International Journal 

of Fatigue 29, 435-443. 

Zhiqiang X, Yujiu S, Mingjing T (1991). Crack closure induced by corrosion products and its effect in 

corrosion fatigue. International Journal of Fatigue 13, 69-72.   

 



ISBN 978-972-8954-31-4

978- 972- 8954- 31- 4


	Acknowledgements
	Abstract
	Resumo
	List of contents
	List of figures
	List of tables
	Chapter 1 - Introduction
	Nomeclature
	1.1 Introduction
	1.2 Research objectives
	1.3 Outline of thesis

	Chapter 2 - Literature review - Part A - Fatigue phenomenon
	Nomenclature
	2.1 Fatigue phenomenon
	i. Effect of mictrostructure
	ii. Effect of processing techniques
	iii. Effect of environmental factors
	a. Corrosive environment
	b. Temperature

	iv. Effect of load
	a. Mean stress effect
	b. Type of loading
	c. Loading sequence
	d. Loading frequency

	v. Effect of geometry
	a. Stress concentration
	b. Surface finishing
	c. Size


	2.2 Fatigue design philosophies
	2.3 Cyclic stress-strain response
	2.4 Fatigue life of notched bodies 
	2.4.1 Stress-based models
	2.4.2 Strain-based models
	2.4.3 Energy-based models


	2.5 Multiaxial fatigue 
	2.5.1 Stress-based models
	i. Equivalent stress methods
	ii. Stress invariant methods
	iii. Average stress methods

	2.5.2 Strain-based models
	2.5.3 Energy-based models
	2.5.4 Critical plane methods
	i. Stress-based models
	ii. Strain-based models
	iii. Energy-based models


	Chapter 2 - Literature review - Part B - Crack growth modelling
	Nomenclature
	2.6 State-of-the-art
	2.7. Automatic crack growth technique
	2.7.1 Finite element method
	i. Mesh topology
	ii. Types of elements
	iii. Radial size of crack front elements
	iv. Orientation and refinement of layers
	v. Crack front shape definition

	2.7.2 Calculation of SIF with the FEM
	i. Displacement matching methods
	ii. Energy-based methods

	2.7.3 Crack growth model
	i. Crack growth increment

	2.8 Effect of physical variables on crack shape and fatigue life
	2.8.1 Effect of initial crack shape
	2.8.2 Effect of Paris law exponent
	2.8.3 Effect of loading type
	2.8.4 Effect of geometry
	2.8.5 Surface effects



	Chapter 3 - Experimental procedure
	Nomenclature
	3.1 Material
	3.2 Uniaxial tensile tests
	3.3 Determination of the elastic constanst using a resonant technique
	3.4 Low-cycle fatigue tests
	3.5 High-cycle fatigue tests
	3.6 Fatigue crack front marking tests
	3.7 Analysis of material microstructure
	3.8 Analysis of fracture surfaces
	3.9 Three-dimensional laser scanning of fracture surfaces
	3.10 Determination of the Paris law constants from fatigue crack front marks

	Chapter 4 - Numerical procedure
	Nomenclature
	4.1 Determination of elastic constants
	4.2. High-cycle fatigue tests
	4.3 Modelling of crack shape evolution
	4.4 Extent of surface region in cracked geometries
	4.5 Determination of a plane strain specimen
	4.6 Determination of the Paris law constants from fatigue crack front marks

	Chapter 5
	Nomenclature
	5.1 Microstructure of the material
	5.2 Uniaxial tensile tests
	5.3 Determination of the elastic constants using a resonant technique
	5.4 Low-cycle fatigue tests
	5.4.1 Cyclic stress-strain response
	5.4.2 Low-cycle fatigue life and low-cycle fatigue properties
	5.4.3 Analysis of fracture surfaces

	5.5 High-cycle fatigue tests
	5.5.1 Fatigue crack paths, surface crack angles and fracture surfaces
	5.5.2 Experimental fatigue life
	5.5.3 Fatigue life predictions


	Chapter 6
	Nomenclature
	6.1 Modelling of crack shape evolution
	6.1.1 Lynx: new tool to model mode I fatigue crack growth
	i. Pre-processing stage
	ii. Processing stage
	iii. Post-processing stage

	6.1.2 Procedure optimisation
	i. Mesh topology
	ii. Type of finite elements
	iii. Radial size of crack front elements
	iv. Density and orientation of layers
	v. Crack front definition
	vi. Stress intensity factor calculation
	vii. Crack growth model

	6.1.3 Procedure optimisation

	6.2 Extent of the surface region in cracked bodies
	6.2.1 Selection of representative crack shapes
	6.2.2 Stress triaxiality at the crack front
	6.2.3 Effect of the variables affecting crack shape on stress triaxiality
	6.2.4 Evaluation of the extent of the surface region
	6.2.5 Relation S1-KT and S2-KT

	6.3 Definition of a plane strain specimen for fatigue and fracture studies
	6.3.1 Selection of representative crack shapes
	6.3.2 Stress triaxiality at the crack front
	6.3.3 Definition of a plane strain specimen
	6.3.4 Stress intensity factor calculation
	6.3.5 Sensitivity analysis

	6.4 Determination of the Paris law constants from fatigue crack front marks

	Chapter 7 - Conclusions and future research
	Nomenclature
	7.1 Conclusions
	7.2 Future research

	References

