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“And we should consider every day lost on which we have not danced at least once.  

And we should call every truth false which was not accompanied by at least one laugh.” 
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Abstract 

In the last couple of decades the scientific community has given a great attention to a 

striking class of modern artificial materials, the so-called metamaterials. This class of 

artificial materials is characterized by extraordinary and unusual electromagnetic 

properties, and it has naturally attracted researchers worldwide. It has been shown that 

these materials have exciting applications in the emerging fields of nanophotonics and 

plasmonics. The characterization of the electromagnetic behavior of metamaterials is 

therefore increasingly important. 

This thesis is devoted to the study of numerical methods based on effective medium 

theory to characterize the electromagnetic response of nonlocal metamaterials. 

A new numerical formalism is developed to extract the effective parameters of 

metamaterials formed by periodic arrangements of arbitrarily shaped dielectric/metallic 

inclusions embedded in dielectric/metallic hosts.  

Some fundamental topics such as negative refraction, the Poynting vector and other 

energy relations are discussed and illustrated with numerical examples. 

A novel metamaterial configuration that permits achieving a broadband DNG 

response as well as superlensing is proposed. 

A new numerical formalism is proposed to solve the Maxwell’s equations in 

scenarios wherein electromagnetic waves interact with arbitrary shaped spatially 

dispersive wire media bodies. Using this numerical formalism, some exciting 

applications are proposed for a class of wire media known as double wire medium. The 

possibility of enhancing the magnetic field at the tip of tapered double wire medium 

waveguide is discussed. Finally, rooted in the anomalous properties of the double wire 

medium, an exciting solution to suppress the chromatic aberrations inherent to single-

material glass lenses is proposed. 
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Resumo 

No último par de décadas, a comunidade científica tem dado grande atenção a uma 

notável classe de materiais artificiais modernos, os chamados metamateriais. Esta classe 

de materiais artificiais é caraterizada por propriedades eletromagnéticas extraordinárias 

e pouco usuais, e tem naturalmente atraído investigadores em todo o mundo. 

Demonstrou-se que estes materiais têm aplicações interessantes em áreas emergentes 

como a nanofotónica e a plasmónica. A caraterização do comportamento 

electromagnético em metamateriais é, portanto, cada vez mais importante.  

Esta tese é dedicada ao estudo de métodos numéricos baseados em teoria de meio 

efetivo para caraterizar a resposta eletromagnética de metamateriais não-locais. 

Um novo formalismo numérico é desenvolvido para extrair os parâmetros efetivos de 

metamateriais formados por arranjos periódicos de inclusões dielétricas/metálicas com 

forma arbitrária, inseridas em meios dielétricos/metálicos. 

Alguns tópicos fundamentais tais como índice de refração negativo, o vetor de 

Poynting e relações de energia, são discutidos e ilustrados com exemplos numéricos. 

Uma nova configuração metamaterial é proposta para atingir uma resposta DNG de 

banda larga, bem como superlensing. 

Um novo formalismo numérico é desenvolvido para resolver as equações de 

Maxwell em cenários em que as ondas eletromagnéticas interagem com formas 

arbitrárias de meios espacialmente dispersivos formados por arranjos de fios metálicos. 

Usando este formalismo numérico, são discutidas algumas aplicações interessantes para 

uma classe de fios conhecida como double wire medium. A possibilidade de concentrar 

o campo magnético na extremidade de um guia de ondas afunilado formado pelo double 

wire medium, é discutida. Finalmente, baseada nas propriedades anómalas do double 
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wire medium, é proposta uma interessante solução para suprimir as aberrações 

cromáticas inerentes às lentes compostas por um único vidro. 

Palavras Chave 

Metamateriais, Homogeneização Não-local, FDFD, Resposta DNG Com Banda Larga, 

Superlensing, Vetor de Poynting, Taxa de Aquecimento, Energia Armazenada, Wire 

Media, Dispersão Espacial, Guia de Ondas Afunilado, Aberrações Cromáticas, Lentes 

Acromáticas. 
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I. Introduction 

I.1. Overview 

This thesis is dedicated to the study of the interaction between electromagnetic waves 

and metamaterials using effective medium methods. In addition, based on the developed 

numerical methods some exciting applications for wire media metamaterials are 

proposed and discussed. 

The history of modern metamaterials can be traced back to 1968, when Veselago 

suggested that a medium having electric permittivity  and magnetic permeability   

simultaneously negative is characterized by left-handed propagation, rather than by 

right-handed propagation as in usual materials [1]. Nevertheless, the scientific boom 

related with metamaterials only appeared three decades later when in 2000, building on 

Veselago’s work, Pendry showed that a lossless slab with negative refraction 1n    

makes a perfect lens that beats the diffraction limit [2]. 

Metamaterials typically consist of periodic arrangements of metallic/dielectric 

inclusions embedded in a given host medium. The key characteristic of this type of 

microstructured materials is that they are characterized by exotic electromagnetic 

responses which are usually radically different from those of its constituents. 

Perhaps one of the most fascinating aspects of metamaterials is that they may permit 

an unparalleled control of wave propagation (e.g., “Transformation Optics” [4, 5]), 

which in turn may open new avenues to a broad range of potential applications. 

Naturally, in order to implement a given metamaterial-based device, first it is imperative 

to deeply understand how electromagnetic radiation interacts with this modern class of 
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artificial media, and how a desired response can be realized in practice. This is where 

the homogenization procedure comes in. It provides efficient tools to describe the 

electromagnetic response of any given material and, in this specific case, in 

metamaterials. In fact, after properly homogenized, a metamaterial for instance formed 

by a periodic arrangement of dielectric/metallic inclusions in a dielectric host can be 

regarded as a continuous medium whose electromagnetic properties are accurately 

described by some effective parameters. This tremendously simplifies the prediction of 

the interaction between electromagnetic waves and metamaterials. 

Nevertheless, not everything is a bed of roses, and homogenizing an arbitrary 

metamaterial msy be a tremendous challenge! In fact, in order to achieve the most 

interesting electromagnetic responses (e.g, artificial magnetism), metamaterials are 

typically composed by inclusions with characteristic sizes only one order of magnitude 

inferior to the wavelength of radiation . Such a property may impose some restrictions 

on the traditional homogenization methods mainly due to the emergence of spatially 

dispersive effects [3, 6-9]. Indeed, the most common homogenization techniques used 

to model the effective response of metamaterials are limited by the fact that they do not 

take into account the effect of spatial dispersion [10, 11], or simply by the fact that they 

are grounded in not entirely valid assumptions [12-15]. This work seeks to contribute to 

overcome these limitations.  

Based on a previously developed theory [16], a spatially dispersive numerical 

formalism that accurately characterizes the electromagnetic response of periodic 

metamaterials is proposed. The developed method is applied to determine the 

electromagnetic behavior of a metamaterial configuration formed by arrays of dielectric 

particles embedded in a plasmonic host. It is shown that such metamaterial may be an 

interesting option to achieve a broadband left-handed regime as well as superlensing. In 
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addition, the physical connection between the macroscopic and microscopic Poynting 

vector, stored energy and heating rate in metamaterials is clarified. 

Special attention is given to an important class of strongly spatially dispersive 

metamaterials known as “double wire medium”. A novel efficient formalism is 

developed here to properly model the spatially dispersive nature of this metamaterial 

structure. Based on this numerical formalism, some exciting applications are proposed 

for the double wire medium, such as subwavelength field concentration or suppression 

of chromatic aberrations. 

Throughout this work the time dependence i te   is assumed. 

I.2. Organization of the Thesis 

The thesis is organized in 6 chapters, being the first one this introductory chapter. 

In Chapter II, some homogenization techniques commonly used to characterize the 

electromagnetic response of metamaterials are reviewed, and their respective limitations 

are briefly described. In Sec. II.2.2, a completely general finite differences frequency 

domain (FDFD) method based on a previously developed nonlocal homogenization 

theory [16] is derived to extract the effective parameters of microstructured materials. 

The proposed numerical formalism permits computing a nonlocal dielectric function 

 eff ,  k  that takes into account the hypothetical spatially dispersive nature of a 

metamaterial. In Sec. II.3.1, the effective parameters are extracted for several 

metamaterial configurations formed by periodic arrangements of dielectric/plasmonic 

cylinders embedded in plasmonic/dielectric hosts. The local parameters such as the 

relative permittivity r  or magnetic permeability r  are calculated for these 

metamaterials, from the computed nonlocal dielectric function. In Sec. II.3.2, the 

effective response of a metamaterial composed by horseshoe shaped inclusions [17] is 
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analyzed. Due to the asymmetric geometry of the inclusions, the bianisotropic effects 

play a relevant role in the electromagnetic characterization of the material, and therefore 

they are also computed. Most of the results obtained in this chapter with the FDFD 

formalism are compared with other homogenization techniques [10, 18]. 

In Chapter III, relying on the fact that the effective permittivity eff  and effective 

permeability eff  of a zero-index metamaterial (Sec. II.3.1.3) may be simultaneously 

negative in a certain frequency window, several topics are investigated. First, supported 

by the theory reported in [19], the macroscopic Poynting vector, stored energy and 

heating rate are computed (Sec. III.2.) using the FDFD homogenization formalism 

derived in Chapter II, and the respective connection with their microscopic counterparts 

is highlighted. Each of these three quantities is calculated from microscopic and 

macroscopic models. 

Still in the third chapter, the possibility of using the zero-index metamaterial to 

achieve a broadband regime where both eff  and eff  are simultaneously negative and 

well-matched to free-space is analyzed. Additionally, the possibility of using such a 

material to mimic the Veselago-Pendry’s superlens is also discussed. The results 

obtained with the FDFD formalism are compared against those predicted by elementary 

mixing formulas [18] and full-wave simulations [20]. 

Chapter IV is dedicated to the topic of spatial dispersion in wire media [7, 9]. In Sec. 

IV.2, a straightforward approach based on the inverse Fourier transform of the 

constitutive relation ( , )  D k E is discussed. Based on this solution, two FDFD 

implementations are proposed to model the spatially dispersive response of complex 

shaped bodies of microstructured materials formed by arrays of nonconnected crossed 

metallic wires. In Sec. IV.3, a different spatially dispersive FDFD solution rooted in a 

quasi-static homogenization model [21] that takes into account the microstructure of the 
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metamaterial is proposed. It is proven that the way how the electric field E and electric 

displacement D are linked at the boundary of the metamaterial and a dielectric/metallic 

region is of crucial importance. This is illustrated in Sec. IV.4, where some scattering 

problems are solved using the three studied implementations. The obtained results are 

compared with analytical data based on mode matching and also with a full-wave 

simulator [20]. 

In the fifth chapter, some novel applications for the double wire medium are put 

forward. In Sec. V.3, the possibility of concentrating the electromagnetic field in a 

narrow spot by tapering a metamaterial waveguide is discussed. In Sec. V.4, a novel and 

exciting solution to minimize the effects of chromatic aberrations inherent to single-

material glass lenses is proposed. 

In Chapter VI, the main conclusions of this work are outlined, as well as some future 

work. 

I.3. Main Contributions 

The key contributions of this thesis are: 

 Development of an efficient, straightforward and accurate FDFD numerical 

formalism to extract the effective parameters of nonlocal metamaterials. 

 Clarification of fundamental physical concepts (e.g., negative refraction, 

Poynting vector) in the context of negative-index metamaterials and effective 

medium theory. 

 Proposal of a novel metamaterial to achieve a broadband matched DNG 

response and superlensing based on high-index materials embedded in a 

plasmonic host. 
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 Development of a novel FDFD-SD numerical formalism based on a quasi-

static model to properly model the spatially dispersive nature of complex 

shaped wire media topologies. 

 Analytical study and numerical demonstration of electromagnetic field 

concentration using a tapered waveguide formed by a spatially dispersive 

nanowire-based material. 

 Proposal of a novel and exciting solution to suppress the chromatic 

aberrations inherent to single-material glass lenses. 

In the body of this thesis each of the above topics is expanded and the new 

contributions are compared with the open literature. 
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II. Homogenization of Metamaterials 

II.1. Introduction 

Homogenization methods have been used over several decades to describe the 

interaction of electromagnetic waves with heterogeneous mater [1]. The key idea of 

homogenizing a material composed by different constituents is to regard it as a 

continuous medium whose electromagnetic response may be correctly described by 

only a few effective parameters, typically the effective permeability eff  and the 

effective permittivity eff . By using such effective parameters it is avoided taking into 

account all the minute microscopic details of the material, which in turn tremendously 

simplifies solving radiation and propagation problems. Moreover, effective medium 

techniques significantly reduce the computational effort required to model the 

electromagnetic response of a given heterogeneous structure as well. Traditional 

homogenization techniques were originally derived to characterize the electromagnetic 

behavior in conventional media, whose dimensions of the inclusions are several orders 

of magnitude smaller than that of the wavelength of radiation. 

As discussed in Chapter I, in contrast with conventional media, metamaterials are 

generally characterized by spatial dispersion, which is not taken into account by the 

traditional homogenization techniques. 

In this chapter, the state of the art of homogenization methods for metamaterials and 

their respective limitations are reviewed. Furthermore, based on a spatially dispersive 

and completely general homogenization formalism derived in Ref. [2], a finite 
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differences frequency domain (FDFD) formalism that enables an efficient and accurate 

extraction of the effective parameters of metamaterials is proposed. 

II.2. The Homogenization Problem 

II.2.1. Limitations of Traditional Homogenization Techniques 

The pioneering contributions to the development of homogenization procedures for 

conventional media came from Plank, Lorentz, Planck, and Oseen [1]. Plank was in fact 

the first to introduce the concept of macroscopic electromagnetism i.e., the possibility of 

using averaged quantities of the microscopic fields in order to provide a useful and 

accurate mean for the characterization of the effective medium parameters of arbitrary 

materials. The theory of averaging procedures was further developed in the last century 

[3, 4] and, more recently, the concept of macroscopic electromagnetism was extended to 

the characterization of the effective response of metamaterials [5, 6]. 

Homogenization procedures based on the use of mixing formulas, e.g. the classic 

Clausius-Mossotti (CM) formula [7], are perhaps the simplest ones. Nevertheless, even 

though the CM formula may yield very accurate results in some very specific scenarios, 

it is limited by the fact that it relies on the assumption that the volume fraction of the 

inclusions is relatively small, which is rarely the case of metamaterials. 

Metamaterials are mostly formed by periodic arrangements of dielectric or metallic 

particles, hence valuable information about their effective response may also be 

retrieved from their band structure, but the applicability of this procedure is obviously 

limited in cases of electromagnetic band gaps or in case of losses [6].  

The effective parameters of metamaterials may also be retrieved from the inversion 

of computed or measured scattering data [8, 9]. In fact, this procedure is unquestionably 

the most popular retrieval method to characterize composite media nowadays. However, 

this method suffers from some drawbacks, namely it may fail in scenarios wherein the 
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bianisotropic and spatially dispersive effects are not neglectable [J.5]. This inversion 

method may as well yield multiple solutions, making it cumbersome to determine the 

correct branch, and in some cases the extracted parameters may be unphysical [10, 11]. 

Other homogenization approaches have been proposed over the years [12-14], but their 

application is ultimately limited to very specific geometries, or to the quasi-static limit, 

or restricted by some other factor. 

II.2.2. Nonlocal Homogenization model 

A systematic and completely general homogenization method to extract the effective 

parameters of metamaterials was introduced in 2007 [2, 15]. This method is based on 

the solution of a source-driven numerical problem, and therefore it does not involve the 

computation of the eigenmodes. The homogenization procedure proposed in Ref. [2] 

describes the metamaterial in terms of a nonlocal dielectric function rather than in terms 

of the bianisotropic constitutive relations, which are commonly used in several works 

regarding homogenization techniques. This nonlocal homogenization method assumes 

particular importance in the characterization of metamaterials with strong spatial 

dispersion which, as already mentioned, cannot be homogenized with classical methods. 

The dielectric function reported in [2] is defined as nonlocal since it takes into 

account the spatially dispersive effects inherent to most metamaterials. A spatially 

dispersive material is characterized by the fact that the polarization acquired by the 

inclusions does not depend exclusively on the macroscopic (averaged) field in the 

immediate vicinity of the particle but depends also on the macroscopic electric field at 

distances larger than the characteristic dimension of the basic cell. As a consequence of 

spatial dispersion, the electric displacement vector D and the electric field E  are related 

through a spatial convolution in the space domain, and thus in the spectral domain 

(plane waves) the dielectric function becomes a function of both the frequency of 
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operation   and of the wave vector k . In fact, it has been recently shown that such 

materials may have quite interesting applications such as the transport and manipulation 

of the electromagnetic fields in the nanoscale [16, 17], anomalous dispersion of light 

colors [18], subwavelength waveguiding [19, 20], suppressing the chromatic aberrations 

inherent to single glass lenses [J.2], amongst others. Therefore, it would be highly 

desirable to have nonlocal homogenization methods which properly characterize 

metamaterials with strong spatial dispersion. 

An interesting property of the homogenization approach of Ref. [2] is that the 

constitutive relations implicit in the spatially dispersive model are very general. 

Namely, they can model arbitrary composit media, such that the electric displacement 

vector is related to the macroscopic electric field through a spatial convolution, and thus 

include as a particular case the conventional constitutive relations that characterize the 

material using effective permittivity and permeability tensors, and possibly 

bianisotropic parameters (magneto-electric tensors). In particular, it was shown in Ref. 

[2] that the conventional local parameters, if meaningful, may be extracted by 

differentiating the nonlocal dielectric function with respect to the wave vector. 

II.2.2.1 Overview of the Homogenization Formalism 

Here, an overview of the nonlocal homogenization framework is presented, explaining 

its principles and how it can be used to extract the effective parameters (e.g., eff  and 

eff ) of metamaterials. 

For simplicity, without loss of generality, it is assumed that the structured material 

under study is a two-dimensional (2D) metal-dielectric crystal, obtained by translating a 

two dimensional unit cell along the primitive vectors 1a  and 2a  (Fig. 2.1). The periodic 
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material can have dielectric and/or metallic inclusions with the magnetic permeability 

equal to 0  and relative permittivity  r , r . 

 

Fig. 2.1. Geometry of a two dimensional unit cell of a generic metallic-dielectric periodic material with a 

dielectric inclusion and a PEC inclusion. 

The aim of the method introduced in Ref. [2] is to calculate the nonlocal dielectric 

function  eff eff ,   k  of the metamaterial, where   is the angular frequency and 

 , ,x y zk k kk  is the wave vector. The possible dependence of the dielectric function 

 eff ,  k  on the wave vector results from spatial dispersion effects [21], which are 

characteristic of several metamaterials, even for very low frequencies [18, 19, 22, 23]. 

In order to compute the unknown dielectric function for a given  , k , the composite 

material is excited with a Floquet-periodic external distribution of electric current ej  of 

the form .
,av

i
e e e k rj j , where ,avej  is a constant vector. Consequently, the induced 

“microscopic” electric and induction fields e and b , respectively, have also the Floquet 

property, and satisfy the microscopic Maxwell’s equations: 

i  e b        (2.1a) 

0
0

e d i 


   
b

j j e,      (2.1b) 

where  0 r 1d i   j e is the induced microscopic current relative to the host 

medium and r  is the periodic permittivity of the material. 
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The macroscopic average fields avE  and avB  for a 2D metamaterial are defined as 

follows:  

2
av

cell

1
( ) ie d

A
 


  k rΕ e r r,  2

av
cell

1
( ) ie d

A
 


  k rΒ b r r.  (2.2) 

In the above,  is the unit cell of the material and cell 1 2A  a a  is the area of   (Fig. 

2.1). It can be easily verified that the macroscopic fields verify the following equations: 

av av 0   k E B        (2.3a) 

av
,av

0
g e 


   

B
D k P ,      (2.3b) 

where 2

cell

1
( ) i

e e e d
i A




  k.rP j r r is by definition the applied polarization vector. 

Moreover the generalized electric displacement ,avgD  verifies the constitutive relation, 

,av 0 av eff av( , )g g     D E P k E ,    (2.4) 

where 

2

cell

1
( ) i

g d e d
i A

 


  k rP j r r    (2.5) 

is the so-called generalized polarization vector, which can be related to the classical 

polarization and magnetization vectors, P  and M , respectively, and with higher-order 

multipoles [2]: 

...g i  P P M  .      (2.6) 

The omitted terms in Eq. (2.6) involve spatial derivatives of the quadrupole density and 

other higher-order multipole moments. It should be clear that Eq. (2.4) permits 

determining the dielectric function for a given ( , ) k  provided gP  is known for three 

independent vectors avE  (e.g., for 
avE ui , where  iu  is directed along the coordinate 

axes). Hence, the unknown dielectric function can be computed using the algorithm 
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described next: (i) For a fixed   and k , determine the microscopic fields. To this 

purpose, select three independent vector amplitudes ,avej  for the applied current ej  and 

then solve the microscopic Maxwell’s Equations [Eq. (2.1)] for each distribution of 

current (it is assumed that the obtained average fields avE  form an independent set of 

vectors). (ii) determine the generalized polarization vector Pg  associated with each 

distribution of microscopic fields using Eq. (2.5). (iii) Calculate the dielectric function 

of the material eff eff ( , )   k  so that it is consistent with Eq. (2.4). The calculated 

dielectric function is independent of the excitation, i.e. it is independent of the specific 

set of constant vectors ,avej  that is considered in the calculation. 

II.2.2.2 Extraction of Local Parameters 

An important property derived in Ref. [2] (see also Refs. [24, 25]) is that in the presence 

of weak spatial dispersion, so that the composite material can be described using 

conventional constitutive relations and its response is to some degree of approximation 

local, the effective parameters of the artificial medium (local permittivity, local 

permeability and magneto-electric parameters) can be readily extracted from the 

nonlocal dielectric function. Specifically, the relation between the nonlocal dielectric 

function and the local parameters is as follows: 

 
21 1 1 1

eff
r r r rr 2

0

,
c c          

  

                  
   

k . . . k k . k I k, (2.7) 

where I  is the identity dyadic, ( )r   and ( )r   are the relative local permittivity and 

permeability dyadics, respectively, and     and     are dimensionless tensors that 

characterize the magneto-electric coupling [2]. The constitutive relations implicit in the 

definition of the local parameters are [2]: 
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0 r av 0 0     D .E .H       (2.8a) 

av 0 0 av 0 r     B .E .H.      (2.8b) 

It is important to emphasize that the above constitutive relations are different from 

the constitutive relation implicit in Eq. (2.4). The constitutive relations (2.8) are local, 

i.e., their components are independent of the wave vector, which is an advantage since it 

drastically reduces the number of parameters that characterize the material. Moreover, 

the constitutive relations (2.8) are valid both in the spectral and in the spatial domains, 

which considerably simplifies the analysis of problems involving interfaces between 

different local media. The constitutive relations (2.8) have been used for a long time in 

the characterization of media with optical activity [25, 26]. 

As mentioned in Sec. II.2.2.1, it is assumed that the geometry of the metamaterial is 

intrinsically two-dimensional (the axis of the structure is along z (Fig. 2.1)) and that 

0zk  . Furthermore, it is also supposed that the electromagnetic wave is transverse 

electric to z (TEz). In such a scenario, it may be assumed that  r r, ˆ ˆzz z z   u u , and the 

relative magnetic permeability of the medium ,r zz  can be numerically calculated as 

follows [2]: 

eff
r, 2 2

0 eff ,
2

0 k 0

1
( )

1
1

2

zz

yy

xc k

  
 




 
     

,    (2.9) 

where  
eff , eff ( , 0)y yyy     u k u  (the homogenization method is summarized in Fig. 

(2.2)). 

 

Fig. 2.2. Extraction of the effective-medium parameters of a composite material based on the theory of 

Ref. [2]. 

,k
eff

eff



Nonlocal Effective Medium Approach to Wave Propagation in Metamaterials  
 

19 

It is clear from Eq. (2.9) that the emergence of artificial magnetism is intrinsically 

related to spatial dispersion effects of second order [2, 24]. On the other hand, putting 

0k  in Eq. (2.7) it is readily found that:  

 
1

eff
r r

0

, 0
     




  k . .  .      (2.10) 

If a given material has inversion symmetry, i.e., it is invariant under the 

transformation r r  with respect to some suitable origin of the coordinates, the 

magneto-electric coupling is inexistent ( 0   ). In such a case, the local electric 

permittivity is given by eff( ) ( , 0)r    k . However, generally the tensors   and   

do not vanish and must be taken into account to properly describe the electromagnetic 

response of the material. It may be easily shown that the meaningful components of the 

tensor   for the 2D geometry under analysis (TEz –polarized waves with 0zk  ) are 

zx  and zy . Thus, it may be assumed that 

ˆ ˆ ˆ ˆzx z x zy z y   u u u u ,       (2.11) 

where ˆ ˆ ˆ ˆz x z x u u u u  represents the tensor product of two vectors. Taking into account 

that in reciprocal media the tensor   is linked to   by the relation 
T

    [26] (the 

superscript “T” represents the transpose tensor), and substituting Eq. (2.11) into Eq. 

(2.7) it is readily found that 

eff ,
r,

0 0

1 xy
zx zz

xc k

 





 


k

,  eff ,
r,

0 0

1 xy
zy zz

yc k

 





 


k

.   (2.12) 

It is clear from the above equation that the magneto-electric parameters are obtained 

from the first order derivatives of the nonlocal dielectric function with respect to the 

wave vector. 
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It is important to stress that the extraction of the local material parameters 

 eff 0( / , 0   k , eff , zx  and )zy  is obviously based on the assumption that the 

response of the material is to some degree of extent local. This is equivalent to say that 

the effective medium can be accurately described by the bianisotropic constitutive 

relations [Eq. (2.8)]. In these conditions, if follows from Eq. (2.7) that the nonlocal 

dielectric function is necessarily a quadratic form of the wave vector. In particular, it 

should be clear that the magnetic permeability eff  [Eq. (2.9)] should completely 

determine the spatial dispersion effects of second order, or equivalently it should 

univocally determine the second order derivates of the nonlocal dielectric function eff  

with respect to k . It may be straightforwardly verified from Eq. (2.7) (by calculating 

the derivatives 2 2
xk   and 2

x yk k    at the origin) that eff  should verify, besides Eq. 

(2.9), the following formulas: 

 2
eff

2 2
0 eff ,

2
0 k 0

1

1
1

2
xx

yc k


 





     

    (2.13a) 

 3
eff

2 2
0 eff ,

0 k 0

1

1
1 xy

x yc k k


 





      

    (2.13b) 

The above formulas should be regarded as consistency conditions of the 

bianisotropic model, i.e. if the material is in fact local it must verify (1) (2) (3)
eff eff eff    , 

where (1)
eff  is the magnetic permeability extracted using Eq. (2.9). 

II.2.2.3 2D-FDFD Discretization 

In Ref. [2] it was shown that the Method of Moments (MoM) may be used to 

numerically compute the nonlocal dielectric function  eff ,  k . However, it is well 

known that the MoM is mainly suitable for the characterization of metallic structures, 
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being less efficient in scenarios wherein the metamaterial is composed by dielectric 

inclusions. 

In fact, finite differences (FD) methods are usually much more versatile and 

powerful [27]. In general, either in the frequency or time domains, FD methods are 

excellent to model devices with a complex geometry or structures of finite size. They 

are accurate and stable methods where the sources of error such as the grid resolution, 

nonphysical reflections from the grid boundaries, and the effect of representing curved 

surfaces on a Cartesian grid, are well modeled and understood. For example in Ref. 

[28], also based on the nonlocal homogenization formalism, a robust and efficient finite 

differences time domain (FDTD) algorithm was proposed to compute the effective 

nonlocal dielectric function of metamaterials formed by either metallic and/or metallic 

inclusions embedded in a host medium. 

As described in Sec. II.2.2.1, the first step of the algorithm used to extract the 

nonlocal dielectric function consists in determining the microscopic electric fields along 

the unit cell of the metamaterial. For the sake of simplicity it is assumed that the 

electromagnetic field is TE-z polarized and hence it has only the xe , ye  and zh  Cartesian 

components. It is also assumed that the wave vector is restricted to the xoy plane 

( 0)zk  . Hence, in such case, the problem to be solved [Eq. (2.1)] reduces to: 

22 2

r 0 ,2

222

r 0 ,2

y x
x e x

y

yx
y e y

x

e e
e i j

x y c

ee
e i j

x y c

  

  

            


         

.    (2.14) 

In the above, ,e xj  and ,e yj  are the components of the applied current density ( .
,av

i
e e e k rj j ) 

along the x and y coordinates, respectively. 

Here, a FDFD numerical formalism to solve the nonlocal homogenization formalism 

is developed. Being a frequency-domain method, it is able to resolve sharp resonances 
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and obtain solutions at a single frequency more efficiently than time-domain methods. 

In the FD method the unit cell   is divided into many rectangular grids. A portion of 

the grid with a dielectric inclusion is illustrated in Fig. 2.3. 

 

Fig. 2.3. Geometry of the grid mesh for the FDFD method. The nodes are spaced by x  and y  along the 

x- and y -directions, respectively. The shaded region represents a portion of the dielectric inclusion with 

dielectric permittivity r . 

In order to discretize the derivates of the microscopic electric fields in Eq. (2.14) the 

FDFD formulas proposed in [29] are employed: 

 
2

2 2

( 1, ) 2 ( , ) ( 1, )
,

( )
y y y ye e i j e i j e i j

i j
x x

    


 
   (2.15a) 

 
2 ( 1, ) ( , ) ( 1, 1) ( , 1)

,y y y y ye e i j e i j e i j e i j
i j

x y x y

       


   
 (2.15b) 

 
2

2

2

( , 1) 2 ( , ) ( , 1)
,

( )
x x x xe e i j e i j e i j

i j
y y
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

 
    (2.15c) 

 
2 ( , 1) ( , ) ( 1, 1) ( 1, )

,x x x x xe e i j e i j e i j e i j
i j

x y x y

       


   
, (2.15d) 

where x  and y  is the grid spacing along the x- and y- directions, respectively (Fig. 

2.3). The discrete indices ( , )i j  attached to the field components are such that 

 /2,
( , )

i j
x x x x y

e i j e


 , 
 , /2

( , )
i j

y y x y y
e i j e


 , where ( , )i jx y  are the Cartesian coordinates of 

the considered node (see Fig. 2.3). If the mesh of Fig. 2.3 has N nodes in the unit cell, 
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then there are 2N unknowns, as each node corresponds two components of the electric 

field, xe  and ye  respectively. The microscopic magnetic field 
0

1 y x
z

e e
h

i x y
 

    
 is 

calculated using the formula [27]: 

0

( 1, ) ( , ) ( , 1) ( , )1
( , ) y y x x

z

e i j e i j e i j e i j
h i j

i x y
   

    
,  (2.16) 

being  /2, /2
( , )

i j
z z x x y y

h i j h
 

 . All the nodes situated at the boundary of the unit cell 

have some adjacent nodes lying outside the unit cell, but they can be “brought back” 

using the Bloch-Floquet periodic boundary conditions, 

( , ) ( , )x yik a ik bx a y b e x y    .     (2.17) 

In the formula above, ( , )x y  is any microscopic field component, xk , yk  and a , b  are the 

wave vector components and the lattice constants along the x- and y- directions, 

respectively. Substituting Eqs. (2.15) into the linear system of equations (2.14) and 

taking into account the Bloch-Floquet boundary conditions (2.17), it is possible to 

reduce the homogenization problem to a standard linear system that can be numerically 

solved with respect to the unknowns (microscopic electric field components at the grid 

nodes). In such a manner it is possible to obtain the microscopic fields along the unit 

cell, which are then used to compute the nonlocal dielectric function as described in 

II.2.2.1. Moreover, since the problem under discussion is effectively two-dimensional it 

is only needed to solve two excitation problems (rather than three excitation problems 

as in three-dimensional scenarios) to retrieve the nonlocal dielectric function. 
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II.3. Application of the Homogenization Method 

II.3.1. Computation of the Effective Parameters of Quasi-Local Media 

In this section of the thesis, in order to validate the FDFD numerical code developed in 

Sec. II.2.2.3, the effective parameters are computed for metamaterials formed by 

cylindrical inclusions. Such metamaterials are characterized by a nearly local 

electromagnetic response, i.e., their effective medium can be accurately described by 

the bianisotropic constitutive relations [Eq. (2.8)]. Thus, the electromagnetic responses 

of these metamaterials verify to a good approximation the consistency conditions of the 

bianisotropic model described in Sec. II.2.2.2. Moreover, due do the cylindrical shape 

of the inclusions, the respective metamaterials have inversion symmetry, and hence the 

magneto-electric coupling is inexistent ( 0   ). 

II.3.1.1 Dielectric Cylinders 

To begin with, the dielectric function is computed for a metamaterial formed by lossless 

cylindrical dielectric inclusions with circular cross-section and dielectric constant r  

with 1r  . The cylindrical inclusions with radius R stand in air and are arranged in a 

square lattice with period a  (see inset of Fig. 2.4a). The effective dielectric function 

(Fig. 2.4) is computed for 0k  and for the normalized frequency / 0.001a c   (quasi-

static regime). A uniform mesh with / 34x y a     is used. The computation time for 

each sample is approximately 15s in a standard personal computer [30]. 

The calculated permittivity is compared with the effective permittivity extracted 

from the band structure of the periodic material (slope of the fundamental mode near the 

origin of the Brillouin zone) using the hybrid plane-wave integral-equation-based 

method described in Refs. [31, 32]. 
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Fig. 2.4. (a): Quasi-static effective permittivity as a function of the volume fraction Vf  (in percentage) of 

the inclusions for different values of the permittivity r . (b): effective permittivity as a function of r  for 

different values of Vf . The discrete symbols in (a) and (b) correspond to the values computed with the 

homogenization method and the solid lines are obtained from the slope of the band structure of the 

material at the origin of the Brillouin zone. The geometry of the unit cell of the two dimensional 

metamaterial is shown in the inset: the unit cell consists of a cylindrical inclusion with circular cross-

section, radius R , and permittivity r . 

In Fig. 2.4a the computed results are shown as a function of the volume fraction of 

the cylinders for different values of the permittivity: r 3  , 6 r  and 15 r . It can be 

seen that the results obtained using the homogenization method concur very well with 

the results obtained from the slope of the band structure at the origin of the Brillouin 

zone. As expected, the effective permittivity increases with the volume fraction of the 

cylinders. In Fig. 2.4a, the effective permittivity is plotted as a function of the relative 

permittivity of the cylinders, now for a fixed volume fraction of the inclusions. It is seen 

that the effective permittivity is more sensitive to the variation of r  for cylinders with 

large radii. 

In a second example, both eff  and eff  are extracted for a mixture of lossless high-

index cylinders with permittivity r 56   and normalized radius 0.4R a  (Fig. 2.5), also 

standing in air. It has been reported in the literature that metamaterials formed by a 

mixture of cylinders with large dielectric constant may exhibit a strong magnetic 

response due to the excitation of the Mie resonance in the particles [33]. Related 

configurations (with spherical inclusions) have been studied to mimic the response of an 

isotropic double-negative medium [34, 35]. Using the FDFD implementation of the 

ef
f /

 0
 

ef
f /

 0
 

V (volumefraction)f

a) b) 

 

V 46%f

V 35%f

V 25%f

r 15
r

2R
a

a
r 6

3r

r

0



   II. Homogenization of Metamaterials 
 

26 

nonlocal homogenization model, the effective parameters of the considered system are 

computed as a function of the normalized frequency /a c  (Fig. 2.5). Consistent with 

Ref. [33], it can be seen that the composite material may have an effective response 

very different from that of its non-magnetic dielectric constituents, and in particular that 

the magnetic response may be greatly enhanced near / 0.8a c  , while the electric 

response has a sharp resonance around / 1.2a c  . 

 

Fig. 2.5. Effective permittivity eff  (green curves) and permeability eff  (blue curves) as a function of the 

normalized frequency /a c . The discrete symbols correspond to the values extracted with the FDFD 

method and the solid lines are the values obtained using the Clausius-Mossotti formula. The high-index 

cylindrical-shaped inclusion has a radius 0.4R a  and permittivity r 56  . The host material is air. 

The obtained results are compared with those predicted by the Clausius-Mossotti 

mixing formula (the expressions of the dynamic electric and magnetic polarizabilities 

can be found in Ref. [36]). As can be seen in Fig. 2.5, despite the relatively large 

diameter of the cylinders, the results extracted with the FDFD method agree 

surprisingly well with those obtained using the Clausius-Mossotti formula. This 

indicates that the interaction between the inclusions is predominantly of the dipole type. 

II.3.1.2 Plasmonic Cylinders 

Particles with a plasmonic response are important building blocks of optical 

metamaterials. Several configurations that exploit the existence of plasmonic resonances 

(which occur even for extremely subwavelength particles) in order to tailor the effective 

properties of a composite material (notably the magnetic response in the optical regime) 
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have been put forward in the literature [37-39]. Thus, it is relevant to characterize the 

optical response of a metamaterial formed by an array of such particles. For simplicity, 

it is supposed that the complex permittivity of the inclusions is described by the Drude 

model 
2

( ) 1
( )

p
r i


 

 
 

 
, where p  is the plasma frequency and  is the collision 

frequency. The Drude dispersion model may describe accurately the response of noble 

metals through the infrared and optical regimes. It is assumed that the normalized 

plasma frequency satisfies / 1pa c  , where a  is the lattice period. The inclusions stand 

in air, are arranged in a square lattice and have a normalized radius 0.45R a . Note that 

these parameters are the same as in Ref. [37]. 

The extracted permittivity (  eff eff , 0   k ) is depicted in Fig. 2.6 as a function 

of the normalized frequency / p  . Clearly, the effective permittivity of the 

metamaterial has several sharp singularities, especially close to the frequency 

/ 0.7p   , which corresponds to the surface plasmon resonance for a single 

cylindrical particle ( r 1   ). This irregular behavior of the electric response is a 

consequence of the excitation of multiple quasi-static resonances that are characteristic 

of closely coupled plasmonic particles, consistent also with the results of Ref. [37], 

which showed that in general the material may support almost dispersionless bulk 

plasmons, propagating plasmon polaritons, and modes associated with high-multipole 

resonances. In Ref. [37] it was shown that these “high-multipole resonances” may be 

associated with a regime where the structure behaves as a double negative material. This 

is indeed supported by the developed FDFD homogenization method. It is shown in Fig. 

2.6 that in the vicinity of / 0.63p    both the effective permittivity and the effective 

permeability are simultaneously negative (the effective permeability is plotted in the 

inset of Fig. 2.6, and is evaluated using Eq. (2.9)). In particular, the FDFD results yield 
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that at / 0.637p    the effective permittivity is eff 0.56    and the effective 

permeability is eff 2.35   , consistent with the values reported in Ref. [37] for a nearby 

frequency ( eff 0.427    and eff 2.35    at / 0.6p   ). 

 

Fig. 2.6. Real and imaginary parts of the effective permittivity eff 0/ i       as a function of the 

normalized frequency p  , for a mixture with plasmonic-cylinders arranged in a regular lattice, for 

different values of the damping frequency: / 0.001p   (black curves), / 0.01p   (green curves) 

and / 0.1p   (blue curves). The solid lines correspond to the real part of 
eff
 while the dashed lines 

represent the imaginary part. The host material is air. The inset shows the real part of the effective 

magnetic permeability ( / 0.001p  ) of the system in the vicinity of / 0.64p   . 

When the absorption is increased, i.e.  is increased, so that the surface plasmon 

polaritons are more damped, the somewhat irregular behavior of the electric response 

tends to disappear. The effect of loss is particularly important at the frequencies 

associated with the plasmonic resonances. In Ref. [40] it was shown that similar to this 

example, the effective permittivity (in the quasi-static regime) of a metamaterial formed 

by square-shaped tilted plasmonic inclusions with sharp corners also has several 

singularities which are a consequence of the excitation of multiple quasi-static 

plasmonic resonances. Such a property was also validated and confirmed in Ref. [J.5] 

using the FDFD implementation of the nonlocal homogenization formalism. 

II.3.1.3 Zero-Index Media 

Zero-index media is a class of metamaterials with index of refraction equal to zero (or 

near zero) at a given frequency of operation. Due to the relatively long wavelengths 

intrinsic to these materials, they may have interesting potentials in tunneling 
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electromagnetic energy through narrow channels and bends [36, 41, 42], to increase the 

directivity of an antenna [43], to manipulate the shape of wave fronts [44], and to design 

metamaterials with a broadband negative refraction and imaging with super resolution 

[J.3]. In general, zero-index media are strongly mismatched with free-space due to the 

huge difference between the wave impedance /    in such materials and free-

space. Nevertheless, when both the permeability and the permittivity are near zero, the 

metamaterial may have near zero-index and may be matched to the free-space. The 

possibility of matching the response of the metamaterial with that of free-space will be 

further discussed in the next Chapter. 

Clearly, the realization of a material with such properties is not a trivial matter. One 

possibility to realize zero-index materials relies on racemic mixtures of left-handed and 

right-handed helices of certain pitch angle, as considered in [45]. In 2007 [36], a 

different strategy to obtain a material with simultaneously near zero permittivity and 

permeability was explored. It was shown that such material may be easily implemented 

provided a material with near zero permittivity (and no magnetic response) is somehow 

available. This may be the case of some metals at optical and UV frequencies, and some 

semiconductors and polar dielectrics at infrared frequencies. Specifically, it was shown 

in Ref. [36] that by embedding dielectric particles with suitable size and permittivity in 

a host background with near zero permittivity it may be possible to realize a composite 

material with simultaneously near zero permittivity and permeability. In this section of 

the thesis, the effective parameters of such zero-index composite materials are 

characterized. For simplicity, it is supposed that the geometry of the metamaterial is 

similar to that of Sec. II.3.1.1. Specifically, the metamaterial is formed by lossless 

cylindrical-shaped inclusions with normalized radius / 0.4R a   and arranged in a 

square lattice. However, instead of being embedded in air, it is considered that the 
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cylindrical inclusions are embedded in an epsilon-near zero (ENZ) host medium 

( 0)h  . It was demonstrated in Ref. [36] that at the frequency where h 0  , the 

effective permittivity of the composite material vanishes, whereas the effective 

permeability is given by the following exact formula.  

2
h,cell 1 r

eff 0
cell cell r 0 r

( )2 1

( )

A J k RR

A A k R J k R

 
 

  
 

,  at p   (2.18) 

where, 2
h,cell cellA A R  , r r 0 0k      and lJ  is the Bessel function of 1st kind and 

order l . 

As a further validation of the FDFD numerical code described in Sec. II.2.2.3, the 

effective permeability of this composite material was computed. The effective 

permeability is written in terms of the derivatives of the nonlocal dielectric function 

with respect to the wave vector [Eq. (2.9)]. The calculated result is shown in Fig. 2.7 

(discrete symbols) as a function of the relative dielectric permittivity of the cylinders r , 

and compares very well with the exact result given by Eq. (2.18) (solid line). It may be 

seen that the magnetic response has a resonance when r 36   and that the permeability 

is near zero, eff 0  , when r 56  . 

 

Fig. 2.7. Effective permeability eff  as a function of the permittivity r  of dielectric cylinders arranged in a 

square lattice and embedded in a host medium with permittivity near to zero ( h 0  ). The cylindrical-

shaped inclusions have normalized radius 0.4R a . The solid curve was obtained using the formula 

derived in Ref. [36] and the discrete symbols were obtained with the FDFD method. 
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In order to study the frequency response of the metamaterial, the effective 

permittivity and the effective permeability are calculated as functions of frequency. It is 

assumed that the host permittivity ( h ) is described by the Drude dispersion model, and 

that the permittivity of the cylinders is independent of frequency, such that r 56  . The 

normalized plasma frequency verifies / 1.0pa c   and the collision frequency is such 

that / 0.001p  . Figure 2.8a shows the extracted effective parameters (discrete 

symbols) as function of the normalized frequency / p  , showing that consistent with 

the theory of [36], both the permittivity and permeability are near zero at the plasma 

frequency: eff eff( ) ( ) 0p p     . The solid lines in Fig. 2.8a represent the effective 

parameters predicted by the Clausius-Mossotti mixing formula (see Ref. [36]), and it 

can be seen that the general agreement with the data extracted with the FDFD 

homogenization model is quite good. It can also be seen in Fig. 2.8a that in the 

frequency window 0.8 1p   , both the effective permittivity and permeability are 

negative and hence the material behaves as a double negative (DNG) material. This 

topic will be further developed in Chapter III. In Fig. 2.8b the amplitude of the electric 

field component ye  is shown at different frequencies of operation marked in Fig. 2.8a, 

and supposing that the excitation k.r
,av

i
e e ej j  is directed along y and 0k . It may be 

seen in Fig. 2.8b (i) that when 1p    ( h 0  ) the electric field does not penetrate into 

the cylinder and is strongly concentrated in the ENZ region, so that the spatially average 

electric displacement vector y yd e  vanishes ( eff 0  ). The situation is quite 

different at the resonance of the electric response , 1.282p   , as shown in Fig. 2.8b 

(ii). 
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Fig. 2.8. (a) Real parts of the effective permittivity eff  (green curves) and permeability eff  (blue curves) 

as a function of the normalized frequency / p  . The discrete symbols correspond to the values extracted 

with the FDFD method and the solid lines were obtained using the Clausius-Mossotti formula. The 

inclusion has a radius 0.4R   and permittivity r 56   and the host medium is characterized by a Drude 

type dispersion model. (b) normalized amplitude of the electric field component ye  in the unit cell (when 

the current source is directed along y  at the frequency where the effective permittivity hits a resonance 

(ii) and when eff 0   (i). 

II.3.2. Computation of the Effective Parameters of Nonlocal Media 

Next, the effective response of a metamaterial composed by plasmonic inclusions 

shaped as a horseshoe is studied. It is shown that because of the asymmetric shape of 

the inclusions, the bianisotropic effects must be considered and hence the relevant 

magneto-electric tensors are computed using Eqs. [2.12]. Moreover, using the 

consistency conditions of the local model described in Sec. II.2.2.2 it is shown that the 

effective response of the metamaterial is spatially dispersive, and therefore it cannot be 

fully described by the bianisotropic relations [Eq. (2.8)]. 

II.3.2.1 Horseshoe Inclusions 

An interesting proposal to obtain a strong magnetic response using plasmonic nano-

particles is based on nanostructures shaped as a horseshoe. It was shown in Ref. [46] 
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that such “U-shaped nanoantennas” with dimensions much smaller than the light 

wavelength can have a magnetic plasmon resonance with resonant frequency depending 

on the shape and material properties rather than on the wavelength. 

The two-dimensional metamaterial consists of metallic nanoantennas arranged in a 

square lattice (see inset of Fig. 2.9a). The permittivity r  of the inclusions follows the 

Drude dispersion model, being the normalized plasma frequency 30.0pa c   and the 

collision frequency / 0.001p  . The normalized thickness of the “arms” of the 

nanoantennas is / 0.18b a   and the distance between the opposite arms is / 0.26d a  . 

Using the homogenization FDFD method, the effective permeability eff  of the 

composite material is calculated as a function of the normalized frequency a c  (solid 

line Fig. 2.9a). As in the examples of Sec. II.3.1, the effective permeability is calculated 

from the second order derivatives of the nonlocal dielectric function with respect to the 

wave vector [Eq. (2.9)]. The homogenization method predicts that there is a magnetic 

resonance around 1.47a c  . It is interesting to compare the FDFD-homogenization 

results with the effective parameters obtained with the well-known method of extraction 

based on the inversion of the reflection and transmission coefficients [8, 9]. In order to 

calculate the required reflection and transmission coefficients (for a metamaterial with 

one layer thickness), a commercial full-wave electromagnetic simulator [47] is used. 

The extracted parameters are also shown in Fig. 2.9a (discrete symbols), revealing a fair 

agreement with the FDFD-homogenization results. It may be seen that the resonance is 

slightly shifted to higher frequencies and that the magnetic response is weaker. The 

justification for these properties may be that the effective permeability extracted with 

the FDFD method is a parameter intrinsic to the periodic material (bulk permeability), 

whereas the method of extraction reported in Refs. [8, 9] depends on the thickness of 

the metamaterial slab (in the simulation a mono-layer) as well on interface effects. 
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Fig. 2.9. (a) Real part of the effective permittivity eff  as a function of the normalized frequency /a c . 

Solid line: homogenization method desccribed in this thesis; Discrete symbols: parameters extracted 

using the inversion of the reflection and transmission coefficients [8, 9]. The geometry of the unit cell is 

shown in the inset and consists of a U-shaped plasmonic inclusion with complex permittivity r . The arms 

of the horseshoe have a normalized thickness 0.18b a  and normalized length 0.79L a . The distance 

between the two arms is 0.26d a . (b) Real parts of eff , ( , 0)xx  k  (blue solid curve) and 

eff , ( , 0)yy  k  (green dashed curve) as a function of the frequency. The host medium is air. (c) and (d) 

normalized amplitude of the magnetic field zh  in the unit cell, when the current source is directed along x 

and y  respectively, at / 1.47a c  . (e) and (f) represent the real part of the electric field vector e in the 

unit cell, when the current source is directed along x and y  respectively. 

Figure 2.9b shows the real part of the effective permittivity components 

 eff , , 0xx  k  and  eff , , 0yy  k  along the two principal directions of the structure, x  

and y  respectively, as a function of frequency. It can be seen that the dielectric function 

along the y  axis eff ,yy  (dashed green curve) is barely sensitive to the variation of the 

frequency whereas eff ,xx  hits a resonance at 1.57a c  . This resonance is a 

consequence of the coupling between the electric and magnetic fields (bianisotropy) 

existent in this structure. This will be further discussed ahead. 

Figures 2.9c and 2.9d show the normalized amplitude of the magnetic field ,maxz zh h  

(at 1.47a c  , and for the same material parameters as in the example of Fig 2.9a) 

when the external current source is directed along x  and y  (supposing that 0k ), 

respectively. Likewise, Figs. 2.9e and 2.9f show snapshots (at t=0) of the microscopic 

electric field vector e in the unit cell when the current source is directed along x  and y , 
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respectively. It can be easily shown from the Maxwell’s Equations that for 0k  the 

external excitation enforces a nonzero external electric field in the system, while the 

external magnetic induction field vanishes. In other words, if 0k , only the electric 

response is excited. Consistent with this property, it is seen from Fig. 2.9f (current 

source directed along y) that the electric field distribution is somewhat similar to that of 

two electric dipoles. Figure 2.9d (current source directed along y) shows that the 

induced current flows from one end to the other in each arm of the horseshoe, creating 

two magnetic fields that cancel out in all the points with coordinates / 0.5x a  . 

On the other hand, when the current source is directed along x  (Figs. 2.9c and 2.9e), 

i.e. 
xe ejj u , the magnetic field zh  and the electric field are highly concentrated between 

the arms of the horseshoe. Even though 0k , such field distribution corresponds to the 

excitation of a magnetic resonance of the system. This occurs due to the lack of 

inversion symmetry of the considered material, which permits the emergence of 

bianisotropic effects. Thus, even though the external excitation is purely electric 

( 0)k , the field distribution in Figs. 2.9c and 2.9e is mostly determined by the 

magnetic response of the metamaterial, since the metamaterial is operated close to the 

magnetic resonance (see Fig. 2.9a). 

To demonstrate in a conclusive manner the emergence of the bianisotropic effects, 

the magneto-electric coupling parameters zx  and zy  of the metamaterial are calculated 

using Eq. (2.12). The numerical simulations predict (not shown here) that 0zy  , 

consistent with the fact that the structure of this metamaterial is invariant under the 

transformation    , , , ,x y z x y z  . On the other hand, the amplitude of the parameter 

zx  may be quite significant. 
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Figure 2.10 depicts  Im zx  as a function of frequency (for a lossless metamaterial 

the tensor   is purely imaginary [26]), showing that it exhibits the same behavior as the 

magnetic permeability, hitting a resonance at nearly the same frequency ( 1.47)a c  . 

Figure 2.10 depicts the frequency dependence of  eff , , 0xx  k  (also shown in Fig. 

2.9b), which, from Eq. (2.10), is related to the local parameters through the relation 

  2
eff , 2

1 1
, 0xx xx zx

effc
   


  k , where xx  is the relative local permittivity along x. 

Interestingly, the previous formula predicts that in presence of bianisotropic effects, 

eff ,xx  has a resonance at the frequency where the permeability vanishes. This is 

confirmed by Fig. 2.10, which shows that at / 1.55a c   the magnetic permeability 

vanishes and the xx component of the nonlocal dielectric function has a pole. 

 

Fig. 2.10. Nonlocal dielectric function along the x -direction (green dashed line), effective permeability 

(black dotted line) and magneto-electric parameter (blue solid line) for the horseshoe geometry of Fig. 

2.9a. 

As already mentioned in Sec. II.2.2.2, the extraction of the material parameters ( zx ,

eff , xx , and )yy  is based on the assumption that the effective medium can be accurately 

described by the bianisotropic constitutive relations [Eq. (2.8)]. In these conditions, the 

nonlocal dielectric function is necessarily a quadratic form of the wave vector [Eq. 

(2.7)]. In particular, it should be clear that the magnetic permeability eff  should 

completely determine the spatial dispersion effects of second order, or equivalently it 

should univocally determine the second order derivatives of the nonlocal dielectric 
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function eff  with respect to k . As already mentioned, if a metamaterial is local it must 

verify the consistency conditions of the bianisotropic model, i.e., it must verify 

(1) (2) (3)
eff eff eff     where (1)

eff  is the magnetic permeability extracted using Eq. (2.9), and 

(2)
eff  and (3)

eff  are calculated using Eqs. (2.13a) and (2.13b), respectively. Figure 2.11 

demonstrates that the consistency relations are not satisfied in the horseshoe 

configuration, because the curves describing each of the extraction formulas do not 

agree. Moreover, the curves associated with (2)
eff  and (3)

eff  exhibit a resonance with a 

nonphysical dispersion at 1.6a c  . This unsettling result implies that the magnetic 

permeability of the structure depends on the direction of propagation, and thus the 

response of the horseshoe particle cannot be fully described by the assumed 

bianisotropic relations [Eq. (2.8)]. 

 

Fig. 2.11. Real part of the effective permittivity eff  as a function of the normalized frequency /a c  

considering different formulas for the extraction of eff . 

Indeed, it must be emphasized that a truly local material (with zx , eff , xx , and yy  

independent of k ) should satisfy (1) (2) (3)
eff eff eff    , and hence, in general the horseshoe 

metamaterial should be regarded as nonlocal. The origin of the spatially dispersive 

response of the metamaterial may be related to the excitation of the electric quadrupole 

moment, which is known to have strength comparable to that of the magnetic dipole in 

other metamaterials with a topology similar to that of the horseshoe [48, 49]. The 

excitation of the electric quadrupole is a consequence of the fact that the induced 

ef
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electric current does not form a closed loop [48] (Figs. 2.9c and 2.9d). Indeed, it was 

numerically verified (not shown here) that to a very good approximation 

(1) (2) (3)
eff eff eff     in the examples considered in Sec. II.3.1, wherein the metamaterials 

were formed by inclusions with circular cross-section, which force the induced current 

to circulate in a loop. 

Another reason for the lack of consistency between (1)
eff , (2)

eff  and (3)
eff  in the geometry 

of Fig. 2.9a may be the fact that the volume density of the horseshoe inclusions in that 

example is too high to expect a local response of the material (these high densities of 

particles are typical of metamaterials, and are necessary to have a strong magnetic 

response). When working with densely packed crystals the expansion of the dielectric 

function must include additional terms which are second-order with respect to k  and 

possibly other terms of even higher orders. Physically, those terms are related to the 

higher-order multipole moments that are not taken into account by the bianisotropic 

constitutive relations [Eq. (2.8)]. 

It was also shown in Ref. [J.5] using the FDFD formalism (and confirmed using the 

inversion process of Refs. [8, 9]) that in order to obtain very subwavelength resonant 

horseshoe particles ( / 1ra c  ) the absolute value of the real part of the permittivity 

of the inclusions r  must be relatively small. Specifically, it was shown that in order to 

obtain ultra subwavelength particles, it is necessary that the skin depth of the metal,  , 

is comparable to or larger than the thickness of the nanoantennas. 

II.4. Concluding Remarks 

In this chapter, a FDFD implementation of the nonlocal homogenization approach 

proposed in [2] was developed. It was demonstrated that the proposed numerical 

method may be an excellent solution to solve the homogenization problem, yielding 
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very accurate results, and allowing for the computation of the effective parameters of 

metamaterials formed by dielectric and metallic inclusions with arbitrary shapes, taking 

into account both the effect of loss and frequency dispersion. The derived FDFD 

formalism was compared with several homogenization methods, demonstrating not only 

its accuracy but also its generality. 

In particular, the electrodynamics of arrays of horseshoe shaped nanoparticles were 

analyzed, and it was emphasized the fact that such metamaterials may be characterized 

by significant magneto-electric coupling, as well as nonlocal effects that cannot be 

described by the usual bianisotropic constitutive relations. The developed formalism can 

be easily extended to fully three-dimensional structures.  
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III. Negative Index Metamaterials 

III.1. Introduction 

In 1968, Veselago [1] theoretically investigated the electromagnetic behavior of a 

medium having both electric permittivity   and magnetic permeability  negative (DNG 

material) and concluded that such a medium would have propagation properties 

radically different from those of right-handed materials with both   and  greater than 

zero. Veselago argued that in such a medium the direction of the Poynting vector of a 

plane wave is oppositely directed to that of its phase velocity, suggesting that this 

isotropic medium supports backward wave propagation and also that its refractive index 

is negative. Based on Veselago’s work, in 2000 Pendry suggested that a lossless 

material slab with negative index of refraction ( 1n    at a fixed frequency of operation) 

makes a perfect lens with resolution independent of the wavelength of operation and of 

the polarization of the light [2]. Since Pendry’s seminal work, several authors have 

analyzed and proposed the design of metamaterial configurations whose effective 

response is characterized by a DNG regime in some frequency window [3-10], and in 

particular by an index of refraction 1n    at a given frequency of operation [11-16]. A 

large variety of the physical effects associated with DNG materials as well as some of 

their very interesting potential applications were also highlighted and established in 

several works [17-22]. 

Even though some fundamental concepts such as negative permittivity and 

permeability are widely accepted and relatively well understood today, there are still 

some elementary concepts related with the physics of DNG metamaterials such as the 
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“heating rate,” “stored electromagnetic energy” and “Poynting vector” that remain a 

topic of discussion and controversy [23, 24]. More specifically, it has been discussed 

whether the classic definition of the Poynting vector, which defines the power flux per 

unit surface, should be modified or not when dealing with DNG metamaterials. 

In this chapter, based on the effective response of the Zero-Index metamaterial 

analyzed in Chapter II (Sec. II.2.3.1), the physics of negative refraction is settled, 

showing that the Poynting vector and other power relations may be unambiguously 

defined consistently with the classic formulas for homogenous bulk media. Moreover, it 

is shown that the Zero-Index metamaterial may be an excellent route to design 

broadband DNG metamaterials and for achieving imaging with super resolution as well. 

Similar to Chapter II, in all the scenarios reported in this Chapter the electric field is 

assumed to lie in the xoy plane, whereas the magnetic field is directed along the z-

direction. 

III.2. Poynting Vector 

III.2.1. Power Flux in Macroscopic Media 

The Poynting vector is one of the cornerstones of the monument of Maxwell’s theory. It 

is usually introduced starting from the calculation of the instantaneous time variation of 

the electromagnetic energy stored within a certain volume, which in vacuum is equal to 

the flux of 0/  s e b  through the boundary of the considered region [25, 26] (here, as 

in Chapter II, e  and b  represent the microscopic local fields and 0  is the free-space 

permeability). Although it is arguable whether s  may be considered a local 

electromagnetic power density vector [25-27], its flux through an arbitrary closed 

surface is well known to represent the instantaneous rate of energy change in the interior 

volume. When dealing with an idealized continuous isotropic material other than 
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vacuum, with local permittivity and permeability   and , respectively, it is well 

established that its definition should be modified as /  s e b . In practice, any natural 

material is actually formed by a collection of finite-sized atoms and molecules and 

therefore proper care should be taken in the definition of such ‘continuum’ and in the 

way how the  fields and constitutive parameters are averaged over several of these basic 

elements. Nevertheless, the classic definition of Poynting vector has been validated by 

over a century-long series of experiments on electromagnetic wave propagation and it is 

well consistent with the continuity of power flow across a boundary between two 

materials with different constitutive parameters. 

A rigorous definition of the Poynting vector gets more challenging when dealing 

with metamaterials, i.e., artificial materials formed by arrays of sub-wavelength 

inclusions with exotic electromagnetic properties. As described in Chapter II, one of the 

goals of the research in metamaterials consists of properly describing these structures as 

bulk materials, which can be done through homogenization techniques. In fact, it has 

been shown theoretically (using rigorous homogenization procedures) and also 

experimentally how negative index metamaterials (NIMs), for which the average power 

flow bends towards a regular dielectric or vacuum, may be realized in given frequency 

windows. As predicted in Veselago’s work [1], the effective permittivity and 

permeability of such materials have a negative real part, consistent with the backward 

flow of s with respect to the phase velocity. Despite the success of various experiments 

proving these anomalous properties, the counterintuitive wave interaction of NIMs [1] 

has raised a series of concerns about the applicability of classic electromagnetic 

theorems to such values of homogenized parameters, and this debate has recently been 

extended to the very definition of Poynting vector [23, 24]. In the case of metamaterials, 

it is evident that it should first be defined a proper averaging procedure for the 
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microscopic fields that filters out their irrelevant higher-order fluctuations around the 

inclusions [25, 26]. Assuming that the averaged source fields are defined with capital 

letters in the form E e  and B b , it has been argued that the proper definition of 

averaged Poynting vector in metamaterials should be modified to neglect the artificial 

magnetic effects on which negative refraction is based, and the creative definition 

0/  S E B  has been put forward [24], independent of the actual value of the 

effective permeability. Based on this definition of Poynting vector, the very notion of 

negative refraction has been put into discussion [23, 24]. Since the Poynting vector is 

inherently based on a (nonlinear) quadratic expression, the relation   e b e b  is 

generally incorrect and thus, in general, 0/ E B  may not have the same meaning as its 

microscopic counterpart (this is evident if one considers the interface between such 

material and a magnetic homogeneous material with 0  , for which power 

conservation would not be satisfied if one associates to this expression the meaning of 

power flux density). Here, based on the theory of Ref. [28], these issues are clarified 

and it is proven from first-principles considerations that it is indeed possible to put 

forward a meaningful and self-consistent definition of averaged Poynting vector and 

other power relations in metamaterials, consistent with those in natural materials. 

III.2.2. Poynting Self-Consistently 

Here, it is assumed that the time-averaged Poynting vector in media with no magnetism 

( 0  ) is defined such that  *1
c 02 Re  s e b . 

In Ref. [28], it was theoretically proven that in low-loss 2D periodic arrays of 

inclusions, the spatially averaged microscopic Poynting vector, 

2
c

cell

1
d

A 

 S s r,      (3.1) 
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associated with Bloch-periodic time-harmonic fields  i te  k r , with real valued wave 

vector k, may be exactly related to the macroscopic generalized effective permittivity of 

the homogenized metamaterial by the following relation: 

    * * eff
0

1 1ˆ ˆRe ,
2 4 l

l l
k

  
      


S E B E k E, ,l x y   (3.2) 

where E e , B b , the effect of the spatial averaging operator  is an ideal low 

pass filter such that av
ie  k rE E , where avE  is calculated using Eq. (2.2) (Chapter II Sec. 

II.2.2.1) and lk  is the l-th component of k . The nonlocal permittivity tensor eff  is that 

defined in the previous Chapter and can be calculated using the retrieval algorithm 

described in Sec. II.2.2.1. Equation (3.2) is written in perfect analogy with the definition 

of power flux in natural optical crystals with spatially dispersive properties [29], and 

this is not necessarily surprising as this homogenization procedure may also be applied 

to natural materials. Even though Ref. [28] considered only the case of Bloch natural 

modes, it may be proven that the validity of (3.2) extends even to the case in which 

external sources are embedded in the composite material. Equation (3.2) shows that the 

proper expression for S  needs to be corrected to include the spatial dispersion in eff . 

After having discussed that the result (3.2) may be applied to arbitrarily excited 

metamaterials with a general form of spatial dispersion, let us apply it specifically to the 

case wherein the macroscopic description of the metamaterial may be characterized by 

effective local relative permittivity  eff eff , 0   k  and permeability eff  [Eq. (2.9)]. 

Moreover, for the sake of simplicity, the discussion is restricted to the case of isotropic 

media and it is assumed no magneto-electric coupling, i.e. 0   , as in NIMs. In 

such a scenario, the nonlocal permittivity tensor described in the previous Chapter (Eq. 

(2.7)) reduces to: 
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   
2

1eff
eff eff 2

0

, 1
c   

 
    k I k I k.    (3.3)1 

Substituting the above formula into (3.2), the classic textbook formula for time-

averaged Poynting vector in magneto-dielectric media [28] is readily recuperated: 

*1
Re{ }

2
 S E H ,       (3.4) 

where 1 1
0 eff  H B, ensuring that the only meaningful definition of power flux vector 

density in metamaterials coincides with the well established one for natural materials. 

This expression applies equally well to negative values of eff , i.e., it holds for NIMs. 

In order to highlight the importance of the findings described above, let us consider 

an arbitrary surface   that may intersect one or more different materials and may 

enclose sources of radiation, as illustrated in Fig. 3.1. 

 

Fig. 3.1. A closed surface   encloses a non-uniform region. 

The power flow towards the region outside   can be unambiguously calculated through 

the microscopic Poynting vector as ˆ .  cP ds


 n s . Obviously, because of the strong 

                                                 
1 Even though Eqs. (2.7) and (3.3) appear to be different in this scenario wherein the 2D metamaterial is 

characterized by a nearly local isotropic response and the magneto-electric tensors are negligible, it may 

be easily shown that in such a scenario eff , eff ,xx yy   whereas eff , eff , 0xy yx   , where 

 
eff , eff ( , 0)i jij     u k u , and eff r( , 0)   k . Therefore, in such a scenario the term r  in Eq. (2.7) 

is precisely equal to the term eff I in Eq. (3.3). Similarly, the term 
1

r
 

   
 

k I k in Eq. (2.7) is the 

same as  1
eff 1   k I k  in Eq. (3.3). 

  material 2 material 1 

n0 0,
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fluctuations of the microscopic fields near the portions of   that intersect regions with 

matter, the use of e  and b  to calculate the power flow is impractical. However, 

provided the wavelength of radiation is much larger than the characteristic granularity 

of the materials, it is possible to average out the fluctuations of the microscopic fields 

and use effective medium theory. Indeed, assuming that   encloses a macroscopic 

region, it can be written: 

ˆ ˆ.  .  cP ds ds
 

  n s n S ,      (3.5) 

where S  is the spatially averaged Poynting vector, which, as discussed before, in case 

of local materials may be written in terms of the average fields and effective parameters 

as in Eq. (3.4). It follows that S  can be really regarded as an averaged flux of 

electromagnetic power, and the power flow through the generic surface   remains the 

same, independent of one using the microscopic or the macroscopic fields. Actually, 

this property is true even if   is not a closed surface, because the averaging operator 

 establishes an intrinsically local relation between macroscopic and microscopic 

fields. 

From the previous discussion it should also be clear that in order for the Poynting 

vector to be really regarded as a flux of electromagnetic energy within an effective 

medium description, then S  needs to be defined self-consistently as in Eq. (3.4) for 

every material, because any acceptable definition of a macroscopic Poynting vector is 

constrained to satisfy Eq. (3.5). In particular, the definition of macroscopic Poynting 

vector in a given material cannot be made independent of the definition of the 

(macroscopic) Poynting vector in vacuum, and it certainly cannot be simultaneously 

compatible with different forms, such as D B , E H , etc. [23]. 
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III.2.3.  Energy Relations 

Here, within this framework, other spatially averaged energy quantities of interest 

(average stored energy and heating rate) are considered. 

The expression for the averaged stored energy: 

 
2

22 2
av

cell 0 cell

1 1

4 4
W d d

A V


  


 

 
b

r e r,    (3.6) 

may be related to the macroscopic effective parameters in analogy with Eq. (3.2) as 

[28]: 

 
2

*
av eff

0

1 1

4 4
W 

 


   


B
E E.     (3.7) 

Equations. (3.6) and (3.7) are strictly valid for vanishingly small loss and time-harmonic 

Bloch microscopic fields. In the special case of local metamaterials, for which Eq. (3.3) 

applies, the stored energy expression becomes: 

   2 2

av 0 eff 0 eff

1 1

4 4
W    

 
 

 
 

H E ,     (3.8) 

which is consistent with classic textbook formulas for magneto-electric dispersive 

media [25, 26], but extended here to local metamaterials and effective constitutive 

parameters. 

Finally, analogous considerations can be applied to the heating rate in metamaterials. 

The spatially averaged heating rate is analogously defined as: 

2 3
av

cell

1
( ) ( )

2
q d

A

 


  r e r r,     (3.9) 

which may be written in terms of the generalized permittivity tensor as [28]: 

  *
av eff

1
Re ,

2
q i     E k E .    (3.10) 
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The above formula holds exactly only in the case of real-valued wave vector k , which, 

due to the presence of loss, can only be obtained if the metamaterial is excited by an 

external current distribution ,av
i

e e e k.rj j  (evidently, they are not eigenmodes of a lossy 

array). For a local material, Eq. (3.10) simplifies into: 

   2 2

av 0 eff 0 eff

1 1

2 2
q        E H ,    (3.11) 

again extending to the textbook formulas for natural materials to local metamaterials. 

III.2.4. Numerical Results 

In Chapter II (Sec. II.3.1.3), it was briefly discussed that the effective response of the 

Zero-Index metamaterial may be characterized by a regime where both the effective 

permeability and permittivity are simultaneously negative (Fig. 2.8). Based on this 

finding, the Zero-Index metamaterial may be regarded as a NIM , and therefore it will 

be used in this section in order to numerically test the results derived in the previous 

sections. The high-index cylinders have relative permittivity 50.47r   and normalized 

radius / 0.435R a  , whereas the host plasmonic medium follows the Drude dispersion 

model with / 1.0pa c  . To begin with the host is assumed to be lossless, i.e. / 0p  . 

Figure 3.2 shows the local effective parameters    eff, eff 0, 0 /y yyy      u k u  and 

eff ( )  , extracted using the nonlocal FDFD approach based on the retrieval algorithm 

described in Sec. II.2.2.1 and Eq. (2.9), respectively. As seen, both permittivity and 

permeability are simultaneously negative for a range of frequencies 0.85 / 1a c  . It 

should be mentioned that an interesting characteristic of this metamaterial is that it can 

be tuned in order to provide not only a negative index of refraction but also a good 

matching with free-space. More specifically, the metamaterial parameters were tuned to 

ensure that eff eff( ) ( ) 1       at / 0.88a c  . This topic will be further discussed in 

this Chapter, in a different context. The solid lines represent the effective parameters 
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predicted by the Clausius-Mossotti mixing formulas [25, 26], and consistent with the 

results obtained in the previous chapter, the obtained curves agree fairly well with the 

data extracted using the FDFD method (dashed), confirming that a local description of 

such NIM is accurate. 

In order to characterize the Poynting vector in the zero-index metamaterial, the wave 

vector was fixed at each frequency   so that eff eff/xk c   , as reported in the inset 

of Fig. 3.2a. The structure is excited by an external current density distribution 

 xik x
ye ej ej u , which effectively excites the natural Bloch mode of this array, and the 

corresponding microscopic fields are determined numerically [Eqs. (2.14) and (2.16)]. 

The macroscopic averaged electric and induction fields are then calculated as described 

in the previous chapter (Sec. II.2.2.1). 

 

Fig. 3.2. Effective permittivity eff  (green curves) and permeability eff  (blue curves) versus normalized 

frequency /a c . The discrete symbols correspond to nonlocal homogenization values and the solid lines 

are obtained using Clausius-Mossotti formulas. The inset shows the wave vector xk  as a function of 

frequency. (b) x-component of the Poynting vector calculated using: (i) Averaged microscopic Poynting 

vector (solid blue) [Eq. 3.1]; (ii) Nonlocal homogenization model (circles) [Eq. (3.3)]; (iii) Local effective 

parameters (diamonds) [Eq. (3.4)]; (iv) Results based on the definition of Poynting vector of Ref. [24] 

(dashed).. 

Figure. 3.2b shows the x-component of the Poynting vector calculated using: (i) the 

spatial average of its exact microscopic definition s  [Eq. (3.1)] (solid blue line); (ii) the 

macroscopic (averaged) fields and generalized permittivity tensor [Eq. (3.2)] (discrete 

circles); (iii) the local effective parameters [Eq. (3.4)] (discrete diamonds); (iv) the 

incorrect definition of Poynting vector 0/  S E B  proposed in [24] (dashed curve). 
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Consistent with the theory of Ref. [28], the results obtained with microscopic and 

macroscopic (averaged) fields are coincident. Even the results obtained with a local 

model, using the standard Poynting vector definition (3.4), follow very closely the exact 

curves, also confirming the effective response of this metamaterial is nearly local. In 

particular, it is seen that all three curves indeed flip the sign of power flow crossing the 

frequency p , ensuring that for negative index propagation ( p  ) power univocally 

flows backward. Finally, the curve obtained assuming the wrong definition in [24] 

yields a completely different response, since it neglects the artificial magnetism 

introduced by high-permittivity cylinders, and it cannot be interpreted as an average 

power flux density. Its value is always positive for 0xk  , incorrectly implying that no 

negative refraction and backward wave propagation could be possible in such 

metamaterial [24]. 

The theory described above establishes that Eq. (3.2) yields exactly the same result 

as the spatial average of s  in the limit of vanishing loss, ensuring that indeed Eq. (3.2) 

represents the correct macroscopic definition of Poynting vector in an arbitrary 

metamaterial. In addition, it was proved that Eq. (3.4) is the correct definition for local 

metamaterials, as in the present example. 

Next, the numerical discussion is extended to the energy relations described in Sec. 

III.2.3., namely the average stored energy and heating rate. Figure 3.3a shows the stored 

energy avW  in the metamaterial sample of Fig. 3.2, comparing the results based on Eqs. 

(3.6), (3.7) and (3.8), in analogy with Fig. 3.2b. It is seen that the exact averaged stored 

energy (3.6) (solid blue line), coincides with the stored energy computed from nonlocal 

effective parameters (3.7) (discrete circles), in agreement with [28]. Moreover, the 

results obtained from local effective parameters (3.8) (discrete diamonds) follow 
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reasonably well the two curves, again confirming that the metamaterial response is 

local. 

 

Fig. 3.3. (a) Stored energy calculated using: (i) Averaged microscopic stored energy (solid blue) [Eq. 

(3.6)]; (ii) Nonlocal homogenization model (circles) [Eq. (3.7)]; (iii) Local effective parameters 

(diamonds) [Eq. (3.8)]. (b) Heating rate calculated using: (i) Averaged microscopic heating rate (solid 

blue) [Eq. (3.9)]; (ii) Nonlocal homogenization model (circles) [Eq. (3.10)]; (iii) Local effective 

parameters (diamonds) [Eq. (3.11)]. 

Figure 3.3b shows the comparison among the three definitions of heating rate described 

above (3.9)-(3.11) for / 0.1p   and cylinder permittivity r 50.47 0.1i    (for 

simplicity, frequency dispersion is ignored). The results obtained using Eq. (3.9) (solid 

blue line) and Eq. (3.10) (discrete circles) are virtually coincident, despite the presence 

of small loss. Similarly, the results computed using the local model (3.11) (discrete 

diamonds) agree extremely well. 

As is well known, effects of loss are unavoidable in realistic metamaterials, and thus 

it is interesting to study how the energy flux vectors compare in a more realistic 

scenario, as in Fig. 3.4a and 3.4b, where we consider / 0.1p   and / 2.0p  , 

respectively. Despite the presence of strong loss, the general agreement between 

Eqs.(3.1), (3.2) and (3.4) remains very good, confirming that even in lossy systems the 

macroscopic Poynting vector can be self-consistently defined (to a very good 

approximation) as the averaged microscopic Poynting vector. In fact, it can be 
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theoretically shown that Eqs. (3.1) and (3.2) remain exactly equal despite the presence 

of loss.2 

 

Fig. 3.4. (a,b) Similar to Fig. 3.2b, except that losses are taken into account: (a) / 0.1p  , (b) 
/ 2.0p  . (c) Similar to Fig. 3.3a, except that losses are taken into account ( / 0.5p  ). 

It is also interesting to analyze what happens to the stored energy when the effect of loss 

is taken into account. In Fig. 3.4c the loss in the metamaterial is such that / 0.5p  , 

and the results obtained using Eqs. (3.6)-( 3.7) partially lose their close agreement, but 

this is not surprising, since the same definition of macroscopic stored energy density 

loses much of its physical meaning in the presence of losses [29, p.63]. Still, the 

different curves show good agreement in the limit of low losses. 

III.3. Mimicking the Veselago-Pendry Superlens 

III.3.1. Introduction 

In Sec. III.1 it was briefly mentioned that building on Veselago’s work, Pendry 

suggested that a lossless material slab with 1n    (at a fixed frequency) makes a perfect 

lens with unlimited resolution. Such extraordinary phenomenon has its roots on two 

effects: on one hand the propagating plane waves are focused due to negative refraction; 

on the other hand the evanescent modes are restored due to resonant excitation of 

guided modes supported by the double-negative medium when 1    . 

Nevertheless, it soon became evident that this imaging mechanism is strongly sensitive 

                                                 
2 M. G. Silveirinha, (unpublished). 
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to losses and material dispersion [30-32], besides the numerous practical difficulties 

related to the realization of double-negative media.  

As discussed in the previous chapter (Sec. II.3.1.2), metamaterials based on periodic 

arrays of plasmonic particles may be used for achieving regimes of simultaneously 

negative   and   [33-35]. Moreover, in the previous Chapter, based on the findings of 

Ref. [33], it was confirmed using the FDFD nonlocal homogenization method that 

nanoparticles with negative permittivity can support multiple electric resonances [36] 

and such resonances can indeed be useful if one wishes to tailor the effective properties 

of a composite material (particularly the magnetic response in the optical regime). On 

the other hand, such inherently electrostatic resonances may also be a source of sharp 

singularities in the effective response eff  of a composite material, and in practice may 

imply strong spatial dispersion and also that the frequency range where the response of 

the effective medium is useful may be quite narrow. As shown in Sec. II.3.1.2, a 

periodic array of plasmonic cylindrical inclusions may support many high-multipole 

resonances in the vicinity of the frequency at which the real part of the permittivity of 

the inclusion satisfies   1r    , and some of these resonances may be associated with 

a regime where the structure behaves as a DNG material. However, the frequency 

window where the effective permittivity eff  and effective permeability eff  are 

simultaneously negative is very narrow due to the sensitive behavior of eff  in the DNG 

regime. In other words, when the inclusions are operated near the plasmonic resonance 

the characteristic wavelength of a guided mode may be shorter than the lattice constant, 

and in such case the material cannot be regarded as an effective medium, and thus it 

cannot be homogenized. 

Here, it is shown that by interchanging the roles of the dielectric host material and of 

the plasmonic inclusions (e.g., zero index metamaterial (Sec. II.3.1.3)), it may be 
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possible to circumvent the above mentioned drawbacks and achieve a broadband DNG 

regime, where the response of the effective medium is to a good approximation local 

(already proven in this Chapter) and in part insensitive to loss effects. Moreover, it is 

shown that in case of sufficiently low loss such configuration enables mimicking to 

some extent the Veselago-Pendry’s lens and imaging with super-resolution. 

III.3.2. Limitations of DNG Metamaterials Based on Plasmonic-Type 

Inclusions 

In order to further illustrate the inherent bandwidth design based on plasmonic-type 

inclusions, the effective parameters ( eff  and eff ) are calculated for the metamaterial 

configuration described in Sec. II.3.1.2, i.e., a configuration formed by an array of 

plasmonic inclusions embedded in air and arranged in a square lattice with lattice 

constant a . It is assumed that the cylinders have a normalized radius / 0.44R a  , the 

plasma frequency is such that / 1.0pa c   and the collision frequency is 

/ 0.001.p   The effective parameters,  eff eff , 0   k  and eff  (Eq. (2.9)) are 

computed using the FDFD formalism described in the previous chapter and are depicted 

in Fig. 3.5a as a function of the normalized frequency / p  . As shown, the frequency 

window where both eff  and eff  are simultaneously negative is extremely narrow 

(0.625 / 0.626)p   . It should be recalled that the computed results are 

qualitatively analogous to those reported in [33] for a similar geometrical structure. The 

inset of Fig. 3.5a illustrates the irregular behavior of the effective permittivity eff  in the 

vicinity of 0.7 p   (where r 1)    , caused by the excitation of multiple quasi-static 

resonances. In order to determine how the effective response of this configuration is 

affected by losses, in Fig 3.5b the effective permeability eff eff effi      is depicted at 

the magnetic resonance for different values of absorption, i.e., for different values of . 
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It is clear from Fig 3.5b that even for extremely low values of absorption 

4( / 5 10p    , blue curves) the magnetic resonance is tremendously damped and it 

almost disappears when a slightly higher value of loss is considered ( 3/ 1 10p    , 

green curves), confirming that the DNG response of this configuration is not only 

extremely narrowband but also very sensitive to the effect of loss. 

 

Fig. 3.5. (a) Real parts of the effective permittivity eff eff effi      (green curves) and permeability 

eff eff effi      (blue curves) as a function of the normalized frequency / p   ( 4/ 10p   ). The 

inset shows the real part of the effective permittivity ( 4/ 10p   ) in the vicinity of the plasmonic 

resonance of the inclusions ( / 0.7p   ). (b) Real and imaginary parts of the effective permeability 

eff eff effi      as a function of the normalized frequency p  , for different values of the damping 

frequency: 4/ 10p    (black curves), 4/ 5 10p     (blue curves) and 3/ 10p    (green curves). 

The solid lines correspond to the real part of 
eff

 while the dashed lines represent the imaginary part. 

III.3.3. Broadband Matched DNG metamaterials 

The example of the previous section illustrates the inherent bandwidth restrictions and 

high loss sensitivity of typical metamaterial designs based on materials with a 

plasmonic-type response. Surprisingly, as described next, there may be a simple 

strategy to overcome these apparently fundamental limitations and achieve a broadband 

low loss response. Notably, this may involve simply interchanging the roles of the 

inclusions and of the host material. In order that DNG materials can be used effectively 

as functional elements of novel electromagnetic devices it is essential that they can be 

efficiently coupled to conventional dielectrics. In practice, this requires that the 

impedance of the DNG material,  , is relatively close to the impedance of vacuum 

a) 

   
0.64 0.69 0.74

�4

�2

0

2

4 b) 

Ef
fe

ct
iv

e 
pa

ra
m

et
er

s eff

eff

/ p

eff

/ p

0.620 0.625 0.630 0.635 0.640

�4

�2

0

2

4

0.

0.1

0.2

0.3

0.4

0.5
eff eff

/ p

4/ 10p 4/ 5 10p

3/ 10p

0.620 0.625 0.630 0.635

�3

�2

�1

1

2

3



Nonlocal Effective Medium Approach to Wave Propagation in Metamaterials  
 

59 

0 0 0/   , or equivalently that ~  , being   and   the relative permittivity and 

permeability of the DNG material, respectively. Hence, in an ideal scenario it would be 

desirable to have matched operation,   , over a broad frequency region. 

In Chapter II, based on the findings of Ref. [37], it was confirmed that embedding 

dielectric particles with suitable size and permittivity in a host background with near-

zero permittivity, permits achieving a matched operation in the regime where the 

effective parameters are simultaneous near zero eff eff( ) ( ) 0p p      (Figs. 2.8 and 

3.2a). The analysis of Ref. [37], was however focused in the regime eff eff 0    (for 

geometries that are intrinsically two-dimensional), and the possibility of having 

matched operation over a broad frequency band or superlensing ( eff eff 1    ) was not 

investigated. However, it is evident that causality and passivity restrictions imply that 

for small absorption both eff ( )   and eff ( )   must increase with frequency [26], and 

hence if eff eff 0    at a given frequency p , then for p   the effective 

permittivity and permeability are simultaneously negative. Next, based on these ideas it 

is demonstrated that the zero index metamaterial enables, indeed, a broadband DNG 

regime. Moreover, it is shown that the results derived for the 2D zero index 

metamaterial can be readily extended to a 3D configuration formed by high index 

dielectric spheres instead of cylinders. It is shown that contrarily to the 2D 

configuration, the 3D metamaterial permits achieving a broadband matched DNG 

response for two polarizations rather than for a single polarization, as in the 2D model. 

III.3.3.1 2D Configuration 

In Sec. III.2.4 it was shortly discussed the possibility of tuning the parameters of the 

zero index metamaterial in order to obtain a matched DNG regime and, more 

interestingly, to obtain an effective index of refraction eff 1n    at a given frequency of 
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operation. As already mentioned, the configuration used to numerically analyze the 

Poynting vector was tuned in order to assure a matched DNG operation and that 

eff eff( ) ( ) 1       at / 0.88a c   i.e., eff / 0.88
( ) 1

a c
n





  , (Fig. 3.2a), and the same 

results (effective parameters as a function of frequency) are depicted in Fig. 3.6a in a 

narrower frequency band, to clearly show the broadband matched DNG regime 

achieved with this metamaterial. In fact, using the Clausius-Mossotti formulas it is 

possible to fine tune the geometry of the metamaterial in such a way that 

eff eff( ) ( )     in the DNG regime, ensuring a good matching with free-space in a 

wide frequency window. Notably, at / 0.88a c   the response of a planar metamaterial 

slab may mimic to some extent the Veselago-Pendry’s lens [1, 2] as it will be 

demonstrated ahead. It is also seen in Fig. 3.6a that eff ( )   and eff ( )   are 

simultaneously negative for 0.79 / 1.0p   , being the bandwidth of the DNG 

regime several orders of magnitude wider than what is achievable when the roles of the 

inclusions and host are interchanged, as discussed in Sec. III.3.2 (e.g. in one of the 

examples of Sec. III.3.2 the DNG bandwidth was less than 0.2 %). 

 

Fig. 3.6. (a) Same as Fig. 3.2a but the effective parameters are depicted in a narrower frequency band. (b) 

Real and imaginary parts of the effective permittivity eff eff effi      (green curves) and permeability 

eff eff effi      (blue curves) as a function of the normalized frequency / p  , for the same 

configuration as in (a), except that losses are taken into account: / 0.1p   and r r/ 0.1    . The solid 

lines correspond to the real parts of eff  and eff  while the dashed lines represent the imaginary parts. 

It is interesting to analyze the robustness with respect to loss of the proposed 

configuration by calculating the effective parameters eff eff effi      and 
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eff eff effi      using the FDFD numerical method described in Chapter II, when losses 

are taken into account. Figure 3.6b reports the combined effect of loss in the plasmonic 

host and loss in the dielectric inclusions ( r r ri     ), and it is seen that the two 

mechanisms of loss add up resulting in moderate loss in both the effective permittivity 

and permeability. It can also be seen in Fig. 3.6b that for r r/ 0.1     and / 0.1p   it 

is still possible to achieve a broadband DNG regime of operation, however, as expected, 

it is not possible to provide that eff eff( ) ( ) 1      . This contrasts sharply with the 

response of the complementary structure described in Sec. III.3.2, which is strongly 

affected by loss, and indicates that the present configuration is far more robust in this 

regard. In Ref. [J.3] a more extensive study was performed regarding the effect of loss 

in this metamaterial and it was concluded that interestingly, the loss in the host medium 

affects mainly the imaginary part of eff  whereas the loss in the dielectric inclusions 

affects mainly the imaginary part of eff  (see [J.3] for further details). 

In Fig. 3.7a the dispersion diagram obtained by solving 2 2
eff eff( / )k c    is 

depicted around the plasma frequency, for the case / 0p  . The blue circles were 

obtained using the FDFD nonlocal homogenization method (Chapter II) whereas the 

green diamonds were calculated using the Clausius-Mossotti theory [37]. The band 

structure is formed by two nearly twin bands that have reflection symmetry with respect 

to p  , and are associated with transverse electromagnetic waves. The two bands 

touch at the 0k   point, because the condition eff eff 0    excludes the possibility of 

a photonic band-gap and ensures a continuous linear dispersion close to the plasma 

frequency. In Fig. 3.7a the lower band corresponds to the frequency window where the 

material behaves as a left-handed material, which in this case happens for 

0.81 / 1.0p   . The negative slope of this band shows that the group velocity 
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



 is negative for 0.81 / 1.0p   , confirming the emergence of backward 

wave propagation in this regime. On the other hand, the upper band corresponds to a 

frequency window where both eff ( )   and eff ( )   are positive (right-handed material), 

which happens for 1.0 / 1.23p   . 

Besides the two bands associated with the transverse modes, there are also two flat 

bands at p   (not shown in Fig. 3.7a) which are associated with longitudinal modes. 

The emergence of such “bulk” Plasmon modes is made possible by the condition 

eff eff 0   . The electric plasmon modes are such that E  is parallel to the wave 

vector, and 0H , and occur when eff 0  . Similarly, the magnetic plasmon modes are 

such that H  is parallel to the wave vector, and 0E , and occur when eff 0  . 

 

Fig. 3.7. (a) Band structure (only the bands associated with transverse electromagnetic waves are shown) 

calculated from: FDFD nonlocal homogeniztion method (blue circles); Clausius-Mossotti formula (green 

diamonds); plane wave method (black stars). (b) The complete band structure calculated using the plane 

wave method, showing also the dispersionless bands associated with the longitudinal modes (the 

dispersion of the transverse modes is plotted with black-stars so that it can be distinguished from the 

dispersion of the longitudinal modes). 

To further validate the extracted effective parameters, the exact band structure of the 

periodic medium was calculated using the plane wave method [38]. Since the host 

material is dispersive the plane wave method must be implemented as described in Refs. 

[39-42]. To ensure the convergence of the plane wave method the (in-plane) electric 

field was expanded into 2148 plane waves. The computed results (along a segment of 
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the Brillouin zone with  , 0xkk ) are depicted in Fig 3.7b. This panel shows that the 

band structure is formed by a very large number of nearly dispersionless (flat) bands 

with accumulation point at p  . Such bands correspond to the longitudinal plasmon 

modes discussed previously. For an ideal continuous medium they should all be 

concentrated at p  , but due to the granularity of the structure this is not strictly 

observed in the metamaterial implementation as they become more scattered. It is worth 

noting that there is an infinite number of flat bands because due to the periodicity of the 

structure, the plasmon band is folded into many branches. 

Besides the dispersionless bands, it is possible to identify in Fig 3.7b two nearly twin 

bands (black stars in Fig 3.7b, also depicted in Fig 3.7a), whose dispersion matches well 

the dispersion of the transverse electromagnetic waves computed with homogenization 

theory (Fig 3.7a). Therefore, the band structure calculations support the effective 

medium theory. 

III.3.3.2 3D Configuration 

The ideas derived in the previous section can be readily generalized to the three-

dimensional case. To illustrate this, let us consider an array of spheres with permittivity 

r , embedded in a near-zero permittivity host, and arranged in a cubic lattice with lattice 

constant a  (inset of Fig. 3.8). It has been shown in previous works that arrays of 

magneto-dielectric spheres standing in air enable a DNG response [6], however the 

difference in the proposed design is that the spheres have no intrinsic magnetic response 

and are embedded in a plasmonic material. 

It was shown recently with full-wave homogenization simulations that the 

metamaterial response can be accurately modeled using the Lewin’s formulas when the 
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inclusions are embedded in a low permittivity host [43]. For the case of inclusions with 

trivial permeability, the Lewin’s formulas read [44]: 

L h 3 1
e

1
1

1/ 3a
 

 

 
   

,  L 3 1
m

1
1

1/ 3a


  


,       (3.12) 

where 

 
 

h r1
e 3

h r

2 /1

4 /

F

R F

  


   
 



,      

 
 

1
m 3

21

4 1

F

R F




 
 



.      (3.13) 

with    
 2

2 sin cos

1 sin cos
F

  


   



 

 and   r/R c   . 

To investigate the potentials of this fully three-dimensional (3D) configuration, it is 

considered first that the plasma frequency is such that / 1.0pa c   and that / 0p   

(lossless case). The normalized radius of the spheres is / 0.482R a   and the dielectric 

permittivity r 58.4  . These parameters ensure a matched DNG operation 

eff eff( ) ( )    . The effective parameters calculated with Lewin’s theory [Eq. 3.12] are 

depicted in Fig. 3.8, showing a very wideband DNG response in the range 

0.8 / 1.0p    and that eff eff( ) ( ) 1       at / 0.88a c  , in qualitative 

agreement with the results for the 2D configuration. In Ref. [J.3] it was further shown 

that the robustness with respect to the effect of loss of the 3D model, is qualitatively 

consistent with that of the 2D configuration described in the previous section. 
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Fig. 3.8. Effective permittivity eff  (green curves) and permeability eff  (blue curves) ( / 0p  ) as a 

function of the normalized frequency / p  . Both curves were calculated using Lewin’s formulas. The 

geometry of the unit cell is shown in the inset: it consists of a spherical inclusion with normalized radius 

/R a  and permittivity r  embedded in a host medium with permittivity h  described by a Drude-type 

dispersion model. 

To conclude this section, possible combinations of realistic materials that may enable 

realizing the described metamaterial are discussed. At infrared and optical frequencies 

the role of the plasmonic material may be played (at very specific frequency bands) 

either by noble metals (e.g. silver in the optical regime) or polar dielectrics (e.g. SiC at 

the far-IR [45]). However, in these regimes materials with large permittivities are 

difficult to find, even though that they may be possibly synthesized as metamaterials 

[46]. Yet, the most promising possibility is perhaps the terahertz regime, where several 

materials with high index and relatively low loss are readily available (e.g. TiO2, 

MgO:LiNbO3 [47, 48]). In this regime, either materials with a terahertz polariton 

resonance such as CsI [49], or semiconductors (e.g. InSb [50]) are characterized by a 

negative permittivity in some frequency band and thus may be used as the host material. 

As an example, here, a 3D setup based on TiO2 (titanium dioxide) spheres embedded in 

a HgTe (mercurium telluride) host is considered. HgTe is a high mobility (degenerate) 

semiconductor, whose electrical response may be modeled by a Drude model of the 

form    

2

1 p

i


  

 

 
     
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*
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m

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  and collision 

frequency 
*

n

e
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   (within the same level of approximation as that considered in Ref. 
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[50] for InSb), where e  is the electron charge and 0  is the permittivity of vacuum. 

With the data available in the literature it is possible to estimate that 14.4   [51], and 

that the effective electron mass is *
00.03m m  [52]. On the other hand, the mobility of 

the electrons n  and the electron concentration N, depend significantly on the 

temperature, and can be calculated using the data of Refs. [53, 54]. As a consequence, 

the plasma and collision frequencies of HgTe are tunable with the temperature. At room 

temperature, we have 3 23.5 10 /n cm V s    and 17 34.3 10N cm   and thus the plasma 

frequency should be about / 2 9.0[THz]p    and the collision frequency 

/ 2 0.27[THz]  . Unfortunately, this value of p  is far too high to enable the 

combination of HgTe and TiO2 at room temperature in the proposed design. In fact, the 

permittivity of TiO2 drops sharply after the polaritonic resonance at 5.7[THz] [47]. To 

circumvent this problem, an operation at lower temperatures is considered to effectively 

decrease the plasma frequency of HgTe. The permittivity of TiO2 is almost insensitive 

to temperature [47]. 

In the first example (Fig. 3.9a), an operation at 30T K  is considered, for which the 

plasma frequency of HgTe can be estimated as 1.012pf THz . The permittivity of TiO2 

at this frequency is 
2TiO 95.2 2.0i    [47]. Equations (3.12)-( 3.13) are used to 

determine the radius of the spheres in order to ensure eff eff 0    at 1.012pf THz , 

and this yields / 0.35R a   ( 47.2a m ). Nevertheless, it should be mentioned that in 

the example of Fig. 3.9a the radius of the spheres was slightly adjusted to / 0.33R a   in 

order to have simultaneously eff eff 1      at 0.989f THz  [Fig. 3.9a]. In the same 

figure the effective parameters are calculated using a time-domain full-wave 

homogenization simulator [43] are also depicted, confirming the accuracy of the 

Lewin’s formulas [44]. Moreover, the results shown in Fig. 3.9a confirm that the 



Nonlocal Effective Medium Approach to Wave Propagation in Metamaterials  
 

67 

effective response of the 3D configuration formed by realistic materials may provide a 

fairly matched and fairly broadband DNG response, i.e., the real part of the effective 

permittivity eff   (solid green curve) is reasonably identical to the real part of the 

effective magnetic permeability eff  (solid blue curve) in a relatively wide range of 

frequencies. The bandwidth of DNG operation is about 8%, which should be contrasted 

with the results of Sec. III.3.3.1. It is relevant to mention that it is possible to achieve a 

bandwidth of DNG operation of nearly 10% with metamaterials formed by split ring 

resonators and metallic wires [3], a bandwidth of nearly 20% with metamaterials formed 

by several layers of fishnets [7], or even larger values using transmission line based 

metamaterials [8]. Nevertheless, these structures do not provide an isotropic matched 

response, unlike the zero-index metamaterial, or may require electronic lumped 

components not available at optics. 

 

Fig. 3.9. Real and imaginary parts of the effective permittivity eff eff effi      (green curves) and 

permeability eff eff effi      (blue curves) as a function of frequency in the infrared domain, for the 

scenario wherein the plasmonic host is HgTe and the spherical inclusions are made of TiO2. (a) T=30K. 

The radius of the TiO2 was tuned to ensure that eff eff 1      at 0.989f THz . The discrete symbols 

were calculated using the full-wave homogenization simulator [43] and the solid curves were determined 

using Eqs. (3.12)-(3.13). (b) T=77K. 

In Fig. 3.9b the effective response of the 3D configuration is depicted at 77T K . For 

this temperature, 3.411pf THz  and 
2TiO 136.5 14.7i   . The normalized radius of the 

spheres is chosen / 0.276R a   ( 78.2a m ). It can be seen (Fig. 3.9b) that at 77K it is 

not possible anymore to ensure a DNG response. In fact, the effective magnetic 
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response is strongly damped by the increased loss of TiO2 (due to operation closer to the 

resonance of TiO2) because as mentioned previously, the effective magnetic response is 

mainly affected by the loss in the dielectric inclusions. 

III.3.4. Negative Refraction 

To further characterize the potentials of the proposed metamaterials, the refraction of a 

Gaussian cylindrical beam by a planar metamaterial slab is analyzed using a commercial 

full-wave electromagnetic simulator [55]. In the first example, the 2D configuration 

reported in section III.3.3.1 is considered, where the inclusions are high-index cylinders 

and the magnetic field is parallel to the axes of the cylinders (z-direction). The 

metamaterial slab is finite along the x  and y  directions, with dimensions 17.8xL a  

and 60.4yL a , respectively. In the simulation the effect of loss was taken into account 

by considering that the collision frequency satisfies / 0.05p  . The Gaussian beam 

illuminates the slab along the direction 33i   . Figure 3.10a shows a snapshot in time 

of the z-component of the magnetic field at / 0.88a c  , i.e. at the frequency where 

according to the results of Figs. 3.2a and 3.6a the effective parameters are 

eff eff 1    . The negative refraction is evident from Fig. 3.10a, which shows that the 

beam is bent in an unusual way at the interfaces.  

While in the 2D configuration, the DNG response is polarization sensitive and is 

revealed only when the magnetic field is parallel to the cylindrical inclusions, it is 

possible to overcome this limitation by considering the 3D metamaterial formed by 

spherical inclusions. In such a scenario, it is possible to obtain a magnetic response for 

the two polarizations, i.e., both when the magnetic field is parallel to the z-direction (P-

polarized waves) and, also when the electric field is parallel the z-direction (S-polarized 

waves). 
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Fig. 3.10. Snapshots of zH  (P-polarized waves) and zE (S-polarized waves) when a cylindrical Gaussian 

beam illuminates ( 33ºi  ) a metamaterial slab: (a) 2D-configuration (cylindrical inclusions) and slab 

with dimensions 17.8xL a  and 60.4yL a  and plasmonic host with collision frequency / 0.05p  . 

(b) and (c) 3D-configuration (spherical inclusions) and a slab with dimensions 8.87xL a  and 

54.3yL a  and plasmonic host with collision frequency / 0.05p  . 

To illustrate this, let us consider a metamaterial formed by spherical dielectric 

inclusions with dimensions 8.87xL a  and 54.3yL a  along the x  and y directions, 

respectively. The metamaterial has the same parameters as in Fig. 3.8, except that losses 

in the host material were also taken into account assuming / 0.05p  . Figures 3.10b 

and 3.10c show a snapshot in time of the z-component of the magnetic field (for a P-

polarized incident wave) and of the electric field (for an S-polarized incident wave), 

respectively, when the metamaterial is illuminated by a cylindrical Gaussian beam. 

These two snapshots are calculated at / 0.88a c  , the frequency at which the effective 

parameters satisfy eff eff 1    , and at a .z const  plane that cuts the spheres into two 

equal parts (i.e. at half-height of the unit cell). It can be checked (not shown here) that 

the results obtained for other cuts are very similar. The results of Figs. 3.10b and Fig. 

3.10c confirm a strong negative refraction effect for both polarizations, and that the 

level of reflections is very low, demonstrating that the metamaterial is well matched 

with free-space. It should be noticed that the transmission and incident angles satisfy 

t i   , consistent with the fact that eff 1n   . 

In Ref. [J.3] it was also proven that the response of the 2D metamaterial and the 

negative refraction are little affected by disorder in the structure. Such property stems 
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from the fact that at the plasma frequency (and possibly at nearby frequencies), the 

electromagnetic fields are unable to sense the granularity of the slab, and an external 

observer is unable to tell if the inclusions of the metamaterial slab are periodically or 

randomly arranged [37, 56, 57]. 

To conclude this section, next the possibility of achieving negative refraction in a 

3D-configuration wherein the host medium is HgTe and the spherical inclusions are 

made of TiO2 is investigated. The parameters for this configuration are the same as in 

the example of Fig. 3.9a. The dimensions of the slab are 3.84xL a  and 44.3yL a  

along the x  and y  directions, respectively ( 47.2a m ). Figs. 3.11a and 3.11b show a 

snapshot in time of the z-component of the electric field (for an S-polarized incident 

wave) and of the magnetic field (for a P-polarized incident wave), respectively, at 

0.989f THz , the frequency at which eff eff 1     . Despite the presence of loss both 

in the host medium and dielectric, the negative refraction is well evident in both Figs. 

3.11a and 3.11b. 

 

Fig. 3.11. Snapshots of the electromagnetic fields when a Gaussian beam ( 22ºi  ) illuminates  a 

metamaterial slab formed by TiO2 spherical inclusions embedded in a HgTe host ( 30 )T K , with 

dimensions 3.84xL a  and 44.3yL a . (a) P-polarized waves. (b) S-polarized waves. 

III.3.5. Superlensing 

One of the most exciting potentials of DNG materials is the fact that a metamaterial slab 

with eff eff 1     is able to avoid the effects of diffraction and focus electromagnetic 
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radiation with no resolution limit [2]. Unlike conventional optical lenses which can only 

process the propagating waves, a DNG slab permits as well restoring the evanescent 

waves. In the near-field, the condition eff eff 1     can be relaxed, and there are 

simpler solutions to achieve superlensing [11-14]. Indeed, to obtain superlensing for a 

specific polarization, it is sufficient to guarantee that only one of the effective 

parameters ( eff  or eff ) is negative, because the magnetic and electric responses are 

decoupled in the near field. 

It is natural to wonder if the metamaterial structures investigated in the previous 

sections, may mimic to some extent the response of the perfect lens. To this end, first let 

us consider the configuration where the metamaterial is formed by cylindrical 

inclusions, and has the same parameters as in Figs. 3.2a and 3.6a. Using a full-wave 

electromagnetic simulator [55], the transfer function T of a metamaterial slab was 

determined as a function of the transverse wave number of the impinging wave, yk . The 

frequency of operation is / 0.88a c   i.e., the frequency at which the effective 

parameters of the metamaterial satisfy eff eff 1    . The slab has dimensions xL a  

and it is infinite along the y- and z- directions, and the effect of loss was taken into 

account supposing that the collision frequency of the plasmonic host is such that 

/ 0.01p  . The obtained results are depicted in Fig. 3.12 (blue solid curve), and are 

compared with the transfer function of an ideal Pendry’s lens (black dashed curve) with 

1     ( 0 xLT e , with  22
0 /yk c   ). As seen, the results are qualitatively 

similar, and support, undoubtedly, that the metamaterial indeed amplifies the evanescent 

waves (i.e. waves with / 1yk c   ). It should be pointed out that the edge of the Brillouin 

zone ( yk a  ) corresponds in Fig. 3.12 to 0/ / 0.88 3.57yk k   , i.e. to the range of 
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the horizontal axis. Thus, as expected, the resolution of the system is ultimately limited 

by the granularity of the material. 

 

Fig. 3.12. Amplitude of the transfer function T  of the metamaterial slab as a function of the transverse 

wave vector, yk , for a fixed frequency of operation  . The slab has dimensions 00.14xL a    and is 

infinite along the y- and z- directions. The blue solid line was obtained with a full-wave simulation using 

CST Microwave Studio [55], whereas the black dashed line represents the transfer function of an ideal 

Pendry’s lens with 1    . 

Using a full-wave electromagnetic simulator [55], the case wherein a magnetic line 

source (infinitely extended along the z direction) (inset of Fig. 3.13a) is placed at a 

distance 1d  above the 2D metamaterial slab was studied. The slab has the same 

parameters as in Fig. 3.12, but it is finite along the y-direction, with 30.55yL a . The 

magnetic field profile was calculated at a plane located at a distance 2d  below the slab. 

It was assumed that 1 2 00.5 0.07xd d L    . Notice that the slab thickness corresponds 

to a single period of the bulk metamaterial. In principle, unlike in other configurations 

reported in the literature, this will not create significant problems, because when the 

permittivity of the host material is near zero, the electromagnetic wave that illuminates 

the material slab may “see” the material as a continuous material, independent of the 

exact thickness of the material in the direction of propagation [37] (however this 

property may not hold when the excitation is placed in the very near-field of the slab 

due to the excitation of higher-order diffraction modes). The normalized magnetic field 

at the image plane is depicted in Fig. 3.13a as a function of 0/y   (solid green curve), 
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where 0  is the wavelength associated with the frequency of operation that provides 

eff eff 1    . The half-power beamwidth (HPBW) is equal to 00.2 . 

In Fig. 3.13a the imaging performance of the 3D metamaterial configuration (Sec. 

III.3.3.2) is also analyzed, based on a setup analogue to that considered in the 2D case. 

The 3D metamaterial parameters are as in Fig. 3.8. The dimensions of the slab in the x  

and y  directions are exactly the same as those considered for the 2D slab. Similarly, it 

was assumed that 1 2 00.5 0.07xd d L    . In Fig. 3.13a the profile of the magnetic 

field at the image plane obtained using the 3D-metamaterial (solid blue line) is shown at 

the frequency where the effective parameters of both configurations are eff eff 1    . 

Notice that the wave is P-polarized. Interestingly, the HPBW obtained using the 

spherical inclusions is precisely the same as the one obtained using cylindrical 

inclusions and it is equal to 00.2 . The squared normalized magnetic field at the image 

plane, when the slab is absent and the distance between the source and the image plane 

is 1 2d d  is also reported in Fig. 3.13a (dashed blue curve). It should be noticed that 

when the lens is present the total distance between the source and the image plane is 

1 2 00.28xd d L    , whereas when the lens is absent the distance is reduced to 

1 2 00.14d d   . Thus, notwithstanding the greater proximity between the source and 

the image plane, in the latter case the HPBW increases to 00.3 . For the propagating 

distance 1 2 xd d L   in free-space, the HPBW is 00.48 . It is clear that the metamaterial 

lenses enable, indeed, a superlensing effect and compensate the effects of propagation 

of free-space. 

The imaging properties of the 2D lens were also studied when the frequency of 

operation is detuned from the value / 0.88a c   (frequency where the effective 

parameters are eff eff 1    ) (Fig. 3.13c). As seen in Fig. 3.13c, at a lower frequency 
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of operation / 0.78a c   (solid blue curve), despite the presence of some side lobes 

may be present, the beam is still sharply focused with the same HPBW as that obtained 

at / 0.88a c  , indicating a reasonable tolerance to the effects of frequency dispersion. 

However, at / 0.98a c   (solid green line) the lens completely loses its focusing 

ability. 

 

Fig. 3.13. Profiles of the fields for a magnetic line source placed at a distance 1 0.5 xd L  above the 2D 

and 3D superlenses. The image plane is located at a distance 2 1d d  from the lower interface of the 

lenses. (a) Profile of the square normalized magnetic field for (i) 2D-configuration (solid green curve), (ii) 

3D-configuration (solid blue curve) and (iii) without lens (dashed blue curve). The effective parameters at 

the frequency of operation are such that eff eff 1    . The inset represents the geometry of either the 

2D and 3D problems. (c) similar to the result depicted in (a) for the 2D-configuration, but for different 

frequencies of operation. 

The possibility of achieving a superlensing effect for S-polarized waves (electric 

field parallel to the z-direction) using the 3D-configuration was studied as well. In order 

to check this, a simulation was performed in the scenario wherein an electric source 

(infinitely extended along the z-direction) is placed at a distance 1d  above the 3D 

metamaterial. The slab has dimensions xL a  and 30.55yL a  (the inset of Fig. 3.14). 

The normalized electric field at the image plane is depicted in Fig. 3.14 as a function of 

0/y   (solid blue line), where 0  is the wavelength associated with the frequency of 

operation where eff eff 1    . The half-power beamwidth (HPBW) is equal to 00.19 , 

which is slightly narrower than in the case of P-polarized waves. This is only possible 

because of the strong magnetic response of the metamaterial, since it is well known that 
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the near-field imaging of P-polarized waves requires 1   , whereas the near-field 

imaging of S-polarized waves requires 1   . The square normalized electric field at 

the image plane when the slab is absent and the distance between the source and the 

image plane is 1 2d d  is also shown in Fig. 3.14 (dashed blue curve). Again, 

notwithstanding the greater proximity between the source and the image plane, in the 

latter case the HPBW increases to 00.25 .  

 

Fig. 3.14. Profiles of the electric field for an electric line source placed at a distance 1 0.5 xd L  above the 

superlens (3D-configuration). The solid blue curve is the profile of the field when the lens is present and 

at a distance 1 2 00.28xd d L     of the electric line source, whereas the dashed blue curve is the profile 

of the field when the lens is absent and at a distance 1 2 00.14d d    of the electric source. 

To conclude, let us consider a fully 3D scenario wherein both the metamaterial slab 

and the source are finite along all the directions of space. To this end, an electrically 

small horizontal dipole antenna with dimensions 00.075dpL   oriented along the z -

direction is considered. The dipole antenna is located at a distance 1d  above the 

metamaterial slab with dimensions xL a , and 30.55y zL L a   (Fig. 3.15a). The 

microstructure of the metamaterial is the same as in the example of Fig. 3.14. In Fig. 

3.15b (at the plane xoy) the square normalized amplitude of the magnetic field is 

depicted at a distance 1 2 00.28xd d L     from the dipole antenna (solid blue curve) 

in the presence of the lens, and at a distance 1 2 00.14d d    (dashed blue curve) when 
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the lens absent. The HPBW when the lens is present is equal to 00.09 , while when the 

lens is absent the HPBW increases to 00.148 . This demonstrates that even in this 

demanding scenario the lens still provides a remarkable focusing effect, even more 

exciting than in the previous cases. However, it must be mentioned that the response of 

the lens may depend on the specific position of the source with respect to the inclusions. 

In fact, the imaging properties described previously correspond to the case wherein the 

dipole is placed exactly above a dielectric sphere (center of the unity cell). If the dipole 

is shifted along the xoy plane into an interstitial place, the magnetic field profile at the 

image plane is significantly changed (discrete black stars in Fig. 3.14b; the HPBW is 

equal to 00.26 ). Clearly, when placed at an interstitial site the source excites all the 

neighboring spheres with the same strength, which broadens the beam profile. This 

happens due to the excitation of higher-order diffraction modes (due to the proximity of 

the dipole and the metamaterial slab), whose description is beyond the validity of 

effective medium theory. These results reveal that the granularity of the metamaterial 

may not be negligible in the near-field, and show that when the source is placed in the 

very-near field the metamaterial cannot be regarded as a truly continuous medium. 

Figure 3.14c shows a snapshot in time of the magnetic field at the xoy plane when 

the lens is present, whereas Fig. 3.14d shows a similar plot but for the case where the 

lens is absent. These results suggest interesting applications for metamaterials formed 

by a plasmonic host and high index inclusions in imaging. However, in practice, the 

realization of such systems with passive natural materials may be difficult. Indeed, it 

can be checked (not shown here) that the loss of the metamaterial formed by HgTe and 

TiO2 considered in sections III.3.3.2 and III.3.4 is slightly too large to enable a 

superlensing effect, even though it may permit focusing (based uniquely on the negative 

index of refraction) limited by diffraction. 
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Fig. 3.15. a) Geometry of the finite-sized plasmonic slab with high-index spherical inclusions. The dipole 

antenna is located at a distance 1 0.5 xd L  above the slab with dimensions xL a , and 
30.55y zL L a  . (b) Profile of the square normalized magnetic field at a distance 2 0.5 xd L  below the 

superlens. (c) Snapshot of the magnetic field radiated by the dipole antenna at the xoy plane (d) similar to 

(c) but in a scenario wherein the lens is absent. 

III.4. Summary 

In this Chapter (Sec. III.2), it was shown how it is possible to self-consistently define 

the Poynting vector and energy relations in metamaterials with local constitutive 

parameters, even when negative index of refraction or anomalous values of effective 

constitutive parameters are considered. It was proven from first-principles 

considerations based on the general theory derived in [28] that the correct definitions of 

Poynting vector, stored energy and heating rate in NIMs coincide with those in natural 

materials after properly defining macroscopic averaged fields and effective constitutive 

parameters, and that other proposed definitions are not physically meaningful. The 

results described were also validated with full-wave numerical simulations considering 

a 2D NIM (the zero index metamaterial described in Chapter I), which indeed supports 

backward propagation and power flow anti-parallel to phase velocity, showing excellent 

quantitative agreement with Eq. (3.4) and the theory based on an effective medium 
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approach. Thus, independent of whether one considers one or two levels of 

homogenization (over an atomic scale in natural media, and over an additional 

mesoscopic scale in metamaterials), the macroscopic Poynting vector can always be 

defined self-consistently with its form in vacuum, maintaining its physical meaning of a 

power flux density vector. 

In the second part of the Chapter (Sec. III.3), it was shown that metamaterials formed 

by spherical or cylindrical dielectric inclusions embedded in a plasmonic host medium, 

may imitate an ideal continuous DNG material in a frequency window notably wider 

than conventional designs where the role of the inclusions and the host is interchanged. 

It was demonstrated using full-wave simulations that the proposed configurations are 

less affected by loss than conventional designs, and may mimic to some extent the 

Veselago-Pendry’s superlens enabling a strong broadband negative refraction effect and 

superlensing. Thus, the proposed design may be an exciting route to obtain a DNG 

response in different frequency regimes.  
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IV. Macroscopic Electromagnetic Response of 

Complex Shaped Spatially Dispersive Bodies Formed 

by Metallic Wires 

IV.1. Introduction 

As discussed in the second Chapter of this thesis (Sec. II.2.2), the effective response of 

metamaterials formed by inclusions with characteristic sizes comparable to the 

wavelength of operation is typically characterized by spatial dispersion. This is 

equivalent to say that in such spatially dispersive metamaterials the polarization vector 

depends not only on the macroscopic electric field, but also on its spatial derivatives [1]. 

As is well known, this implies that in the bulk metamaterial region the electric 

displacement vector D is related to the electric field E through a constitutive relation of 

the form ( , )i    D E , which for the case of fields with a plane wave type spatial 

dependence of the form ie k r  reduces simply to ( , )  D k E . 

One of the anomalous properties of materials characterized by spatial dispersion is 

that when illuminated by electromagnetic waves, “additional waves” can be excited and 

hence the classical boundary conditions that impose the continuity of the tangential 

fields at the interfaces are insufficient to solve a scattering problem based on mode 

matching. The usual way to fix this problem is to impose additional boundary 

conditions (ABC’s) [1-4], but generally this analytical approach is restricted to very 

specific geometries of the involved materials. In fact, things get much more complicated 

when one desires to describe the interaction of electromagnetic waves with complex 

shaped geometries of spatially dispersive bodies, since in such scenarios it is not 
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possible to solve the scattering problem using mode matching techniques. One option to 

overcome this drawback is the numerical modeling of the spatially dispersive response 

of the metamaterial. The most straightforward solution is based on obtaining a spatial 

relation between E and D by applying an inverse Fourier transform 

( , , ,lk i l x y z
l


  


) to the bulk constitutive relation [5-12]. However, even though 

this solution is apparently valid, it is not necessarily the correct one. In fact, the 

constitutive relation ( , )  D k E  is only valid in the bulk metamaterial region and it 

does not hold exactly at the boundary between the metamaterial and a given 

dielectric/metallic region. This, of course, can create ambiguities in the solution of 

electromagnetic problems involving bodies formed by spatially dispersive materials. 

Hence, it is logical to ask what is the correct way of linking the E and D fields at the 

interface between a spatially dispersive metamaterial and a metallic/dielectric region. 

In this Chapter, it is shown that the correct manner of linking the D  and E  fields 

across the interface does not reduce to a simple Fourier inversion of the bulk 

constitutive relations, but rather requires the knowledge of internal (microscopic) 

degrees of freedom of the involved materials at the boundary. Furthermore, it is 

discussed how the Maxwell’s equations can be solved using numerical methods in the 

presence of arbitrarily shaped bodies with a spatially dispersive response. To this end, 

the electromagnetic response of arbitrarily shaped bodies of metamaterials formed by 

“wire media” is investigated. It is well known that such microstructured material is 

characterized by a strong spatially dispersive response [13-16], and that such a property 

may be the root of interesting applications in the emerging fields of nanophotonics and 

plasmonics [17-25, J.2]. Even though the uniaxial wire medium [13] is the most well-

known metamaterial with a nonlocal response, such a property is also inherent to other 

wire media topologies, including arrays of long helices and arrays of both connected 
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and nonconnected crossed wires [4, 16]. Here, the double wire medium – a double array 

of nonconnected metallic wires – is chosen for illustration purposes, but the theory can 

be trivially extended to other wire medium topologies. It is demonstrated that a naive 

numerical discretization of the spatially dispersive response of the double wire medium 

based on an inverse Fourier transform of ( , )  D k E  may drastically fail at the 

interface, even for geometries of the metamaterial where mode matching techniques can 

be used. On the other hand, it is shown that a discretization based on an effective 

medium framework wherein the metamaterial response is expressed in terms of 

additional variables with known physical meaning [26] is a correct solution to link the E 

and D fields at the boundary. 

IV.2. Model Based on the Bulk Electromagnetic Response 

IV.2.1. The Interface Problem 

With the objective of highlighting that a discretization of the spatially dispersive 

response of a metamaterial based on an inverse Fourier transform is ambiguous at the 

interfaces, let us first consider a specific example.  

Without loss of generality, suppose that both the electric field and electric 

displacement field are oriented along the z-direction, and are linked in the bulk region as 

follows: 

( , )z zD i E    .       (4.1) 

Furthermore, for the purpose of illustration it is assumed that the material is non-

magnetic and that the dielectric function is a rational function of the wave vector, so that 

0
2

0 2

( , )
...h

x

b

a a k
   

 
k ,     (4.2) 
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where h , 0b , 0a , 2a ,…,  are independent of the wave vector, but in general may depend 

on frequency. It is supposed that the material has a center of symmetry at the 

microscopic level so that the dielectric function is an even function of k . Moreover, it 

is assumed without loss of generality that ( , )  k  depends exclusively on xk i
x


 


. 

In case the only nonzero coefficients are 0a , 2a , it is clear from Eqs. (4.1) and (4.2), that 

the zD  and zE  fields satisfy the following partial differential equation in the bulk 

region: 

 2
0 , 2 , 0c z x c z za P a P b E   ,      (4.3) 

where ,c z z h zP D E  is here defined as the polarization of the medium with respect to 

a background with permittivity h . Notice that if the material has a local response the 

coefficient 2a  vanishes. 

Let us now suppose that the plane 0x   corresponds to an interface between two 

different materials, so that one of the materials occupies the semispace 0x  , whereas 

the second material occupies the region 0x  , and that the constitutive relation in both 

bulk materials is of the generic form of Eq. (4.2). Evidently, the coefficients 0a , 2a , and 

0b  in general differ in the two materials. Therefore, it is tempting to consider that the 

,c zP  and zE  fields are related in all space by: 

      2
0 , 2 , 0c z x c z za x P a x P b x E   .    (4.4) 

The spatial relation between the zD  and zE  fields (Eq. (4.4)) together with the standard 

macroscopic Maxwell’s Equations 0i E H and ext i  H j D and the 
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Sommerfeld radiation completely determine, for a given excitation extj , the 

electromagnetic fields  ,E H  in all space. 

The outlined approach based on an inverse Fourier transform of the constitutive 

relation ( , )  D k E  and other variants are the basis of several studies which aim to 

characterize the electromagnetic response of either nanoparticles or macroscopic bodies 

made of either natural media or metamaterials with spatial dispersion [5-12]. However, 

it is important to underscore that even if the bulk constitutive relation (4.3) holds 

exactly up to the boundary, in general the form of Eq. (4.4) remains unjustified at 0x  , 

i.e., at the boundary. The reason is that there are many inequivalent ways of relating 

,c zP  and zE  through a differential equation, but which reduce to Eq. (4.3) in the bulk 

regions. In fact, since for an abrupt interface the coefficients 0a , 2a , and 0b  are 

discontinuous at 0x  , a priori nothing forbids that ,c zP  and zE  are linked by, for 

example,  

     0 , 2 , 0c z x x c z za x P a x P b x E      ,    (4.5) 

rather than by Eq. (4.4). Notice that the above equation is equivalent to Eq. (4.4) in the 

bulk regions (i.e. for 0x   where  2 .a x const ) but not at 0x  . Indeed, the form of 

Eq. (4.4) suggests that  2 ,x c za P  is continuous at the interface, whereas differently Eq. 

(4.5) implies that 2 ,x c za P  is continuous at the interface. Hence, the two formulations 

imply different boundary conditions at the interfaces, even though they are equivalent in 

the bulk regions. 

In fact, there are infinitely many possibilities of linking ,c zP  and zE  at the boundary, 

and some of them cannot even be formulated in terms of the coefficients 0a , 2a , and 0b  
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of the effective medium model! For example, if one replaces the term  2 ,x c za P  in Eq. 

(4.4) by the term      1
2 ,x x c zA x A x a P     where  A x  is an arbitrary piecewise 

constant function of x discontinuous at 0x  , one obtains other inequivalent ways of 

linking ,c zP  and zE  in all space, involving an extra parameter (  A x ) which is 

unrelated to the bulk material dielectric function. 

IV.2.2. Double Wire Medium 

As mentioned in the Introduction, without loss of generality this work is focused in the 

electromagnetic response of the double wire medium. This material is formed by two 

arrays of metallic wires with radius wr , such that each array of parallel wires is arranged 

in a square lattice with lattice constant a and tilted by 45  with respect to the interfaces. 

One set of wires is oriented along the direction 1ˆ (1,0,1) / 2u  while the 

complementary set of wires is oriented along the direction 2ˆ ( 1,0,1) / 2u   . Both sets 

of wires lie in planes parallel to the xoz plane and the distance between adjacent 

perpendicular wires is / 2a  [Figs. 4.1a and 4.1b]. 

 

Fig. 4.1. (a) and (b): Cuts of a “double wire medium” along the xoy and xoz planes, respectively. The slab 

has thickness L. 

The wires stand in a host material with relative permittivity h . The effective 

response of the “double wire medium” is characterized by a dielectric function ( , )  k  

such that [3, 15, 27]: 

b)a)
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1
( , ) 1

( / )1
( 1)

h y y

ii i h
h i

m h V p

k
c k

f

   


  
 

  

  

 
 
  
 

  

u u u u u u

,   (4.6) 

where 0 m   is the permittivity of the metal,  2
/V wf r a  is the volume fraction of 

each set of wires, 1/2{2 / [ln( / 2 ) 0.5275]} /p wa r a     is the plasma wave number 

and c is the speed of light in vacuum. For simplicity, in this Chapter it is considered that 

the propagation is along the xoy plane with 0zk   (or equivalently 0z  ), and it is also 

assumed that the only nontrivial electromagnetic field components are zE , zD , xH  and 

yH . In this scenario, the dielectric function reduces to a scalar in the xoy plane, 

( , ) ( , )x ii ik k    , 1, 2i  , because for 0zk   we have 1 2/ 2xk k k   , and hence 

Eq. (4.6) becomes: 

2 2

2

1
( , ) 1

( / ) / 21
( 1)

x h
h x

m h V p

k
c k

f

  
 

  

 
 
  
 

  

,   (4.7) 

which is clearly of the same form as in Eq. (4.2), i.e., it is a rational function of the 

wave vector. 

Since the only non-zero field components are the zE , zD , xH  and yH  fields, it is 

easily found that the Maxwell’s equations, 0i E H  and ext i  H j D , 

reduce to the scalar equation: 

22 2

0 ,2 2
0

z
z z s z

D
E E i j

x y c

 


          
,    (4.8) 
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where , ˆext s zjj z  represents an external current density, i.e. an external excitation. 

Therefore, provided one is able to link zE  and zD  in all space, the Maxwell’s Equations 

can be solved univocally. Next, it is discussed how this can be done based on Eq. (4.7). 

IV.2.2.1 Constitutive Relations in the Bulk Region 

Similar to what was outlined in Sec. IV.2.1, substituting Eq. (4.7) into Eq. (4.1) and 

calculating the inverse Fourier transform ( x xi k  ) of the resulting expression, 

permits obtaining a spatial relation between the electric field zE  and the electric 

displacement zD  that makes manifest the spatially dispersive nature of the response of 

the metamaterial: 

22
,2 2

2
0

1
0

2
c z

h c h p z

P
E

x c

   


            
,    (4.9) 

where  2 2 1c p m h Vf        and , 0c z z h zP D E   . This is analogous to Eq. (4.3) 

for the particular case of the double wire medium. It should be noted that ,c zP  is the 

contribution to the polarization vector due to the conduction currents in the nanowires. 

Thus, Eq. (4.9) effectively determines the response of the conduction polarization 

current to the “applied” macroscopic electric field. 

Apparently, Eq. (4.9) is only valid in the bulk region of the metamaterial. However, 

it can be trivially extended to scenarios wherein a metamaterial body is surrounded by a 

standard dielectric (e.g. air). Indeed, if one regards ( , )h h x y   as a position dependent 

function that represents the relative permittivity of the background dielectric regions, 

and similarly ( , )p p x y   and ( , )c c x y   as functions that vanish outside the 

metamaterial, it is clear that in a standard dielectric Eq. (4.9) reduces to: 
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2 2

,2

1
0

2h c zP
c x


          

.     (4.10) 

This relation is correct because in a standard dielectric 0z h zD E  , or equivalently 

, 0c zP  . Thus, if one lets ( , )h h x y  , ( , )p p x y   and ( , )c c x y   be space 

dependent, Eq. (4.9) yields the correct constitutive relations both in the bulk 

metamaterial and in the bulk dielectric region (i.e in the region that surrounds the 

metamaterial body). If in addition one assumes that Eq. (4.9) also holds across the 

boundary  which as discussed in Sec. IV.2.1 in general may be a “leap of faith”  then 

it is possible to calculate the electromagnetic fields in all space by combining and 

solving Eq. (4.8) and Eq. (4.9). Next, it is briefly described how this can be done 

numerically using the FDFD method. 

IV.2.2.2 FDFD Discretization 

The unknown fields [solution of Eqs. (4.8) and (4.9)] can be obtained using the well-

known FDFD method already described in Chapter II ( Sec. II.2.2.3). Here, Eqs. (2.15a) 

and (2.15c) are rewritten as follows: 

   
2

2
2

, ( 1, ) 2 ( , ) ( 1, )F i j F i j F i j F i j x
x


     


  (4.11a) 

   
2

2
2

, ( , 1) 2 ( , ) ( , 1)F i j F i j F i j F i j y
y


     


,  (4.11b) 

where , 0c z z h zF P D E    . To discretize Eq. (4.9), two FDFD solutions are 

considered. (i) In the first approach Eq. (4.9) is used in all the regions of space to link zE  

and zD . From now on this solution will be referred as the direct inverse transform 

(DIT1) solution. (ii) In the second approach, Eq. (4.9) is used to link zE  and zD  inside 
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the metamaterial as well as for all the nodes that are over the boundary. For nodes that 

are completely outside the metamaterial (and such that all the neighboring nodes are 

also outside the metamaterial) it is used simply 0z h zD E   rather than Eq. (4.9). From 

now on this implementation will be referred as DIT2. The perfectly matched layer 

(PML) described in [28] is used to truncate the computation domain in both 

implementations. 

IV.3. Model based on Internal Degrees of Freedom of the Medium 

Recent works [4, 26, 29] have shown that the spatial dispersion inherent to wire media 

may be described by a quasi-static homogenization model that applies in a wide range 

of scenarios, including the case where the wires are periodically loaded with conducting 

metallic bodies. In this homogenization framework a current I  and an additional 

potential  , are associated with each set of wires. The current I  may be identified with 

the current that flows along the metallic wires, whereas the additional potential is the 

average quasi-static potential drop from a given wire to the boundary of the respective 

unit cell (both the current and the additional potential are interpolated in a suitable 

manner, so that they become continuous functions of the spatial coordinates) [26]. 

IV.3.1. Double Wire Medium 

In this Section, based on the quasi-static homogenization model mentioned above, a 

spatial relation between the E and D fields will be obtained for the double wire medium 

case. Later, it will be proved that this solution produces results consistent with the true 

physical response of the material. 
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IV.3.1.1 Constitutive relations based on the internal degrees of 

freedom 

For the case of the double wire medium the electrodynamics of the metamaterial is 

described by the following set of equations [4, 26]: 

0i E Η        (4.12) 

ext i  H j D       (4.13) 

( )w wZ i L I E
x   


 
   


    (4.14) 

wI i C
x  


 



,      (4.15) 

0

1
ˆh

cell

I

i A





 


 
 D E u      (4.16) 

where 2
cellA a , ˆu  is a unit vector that defines the orientation of the -th set of wires 

(=1,2), wC , wL  and wZ  are the effective capacitance, inductance and self-impedance of 

the wires per unit length of a wire, respectively [4, 26], extj  represents an external 

excitation, and the second term in the right-hand side of Eq. (4.16) is the macroscopic 

density of current associated with flow of charges along the metallic wires, 

ˆw
cell

I

A





J u . In the above, I  and   are the current and additional potential 

associated with the -th set of wires, and ˆE  u E  ( ˆx  u r  with ( , , )x y zr ). 

Thus, substituting Eq. (4.14) into Eq. (4.15) it is found that: 

2
1

w h w w w
w

I
C I i C Z I i C E

x C x c


  
 

   
            

   (4.17) 

where it was used the fact that 0 0w w hC L     for the case of straight wires [26]. For the 

configuration of interest in this work, it is known that both the electric displacement 
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vector and the electric field only have a z-component. Therefore, for propagation in the 

xoy plane it may written: 

1
ˆ ˆ ˆ

2
z zE E E      E u z u    ( 1, 2  ) (4.18) 

, ,

1
ˆ ˆ ˆ

2
w w z w z

cell

I
J J

A


     J u z u   ( 1, 2  ), (4.19) 

and by substituting Eqs. (4.18) and (4.19) into Eq. (4.17) it is obtained: 

2
,

, ,

1 1w z
w h w z w w w z w z

w cell

J
C J i C Z J i C E

x C x c A 

   
            

.  (4.20) 

On the other hand, ˆ
x 



 


u  and since here it is assumed 0

z





, this implies that 

1

2x x

 
 

 
. Hence, the final result is obtained: 

2
,

, ,

1 1 1

2
w z

w h w z w w w z w z
w cell

J
C J i C Z J i C E

x C x c A

   
            

.  (4.21) 

Using now Eq. (4.16) and the definition of wJ , it follows that ,
0

w z
z h z

J
D E

i
 


   and 

hence: 

2

0 0

0 0

1

2
w z z

h z h h z
w

wz
w w h z z

cell

C D D
E E

x C x c

CD
i C Z E E

A

  
 

 
 

                      
 

  
 

.  (4.22) 

Since  2
0p w h cellC A    and  12 2

0 ( 1)w w h m h c wZ i r i C      


       where 

 2 2 1c p m h Vf        [4, 26] it is possible to write Eq. (4.22) as follows: 

22
, ,2 2

2
0 0

1
0

2
h p c z c z

h c h p z
h p

P P
E

x x c

     
   

                     
.  (4.23) 
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As already mentioned in Sec. IV.2.2, the solution of Eqs. (4.8) and (4.9) allows 

determining the unknown electromagnetic fields. Similarly, Eq. (4.23) together with Eq. 

(4.8) (which can also be obtained from Eqs. (4.12) and (4.13)) form a linear system that 

permits calculating the electromagnetic fields in all space. 

The parameters wC , wL  and wZ  associated with the quasi-static model are all 

independent of spatial derivatives. More specifically, wC , wL  and wZ  depend on the 

geometry of the material and on the properties of the host/metal. For this reason, this 

formalism is based on a framework wherein the response of the wire medium is “local” 

(even though its electrodynamics is nonlocal). Hence, it is reasonable to assume that Eq. 

(4.23) holds even across a boundary between two materials with different structural 

parameters, in the same sense that the Maxwell’s equations can hold at the interface 

between two dielectrics. Notice that as already mentioned, a standard dielectric can also 

be described with this formalism since it can be considered as the limit of a nanowire 

material with vanishingly thin wires. 

Clearly, the effective medium formalism associated with the set of Eqs. (4.12) - 

(4.16) is based on the knowledge of the dynamics of the additional variables I  and   , 

which have known physical meaning, and thus is based on the knowledge of internal 

degrees of freedom of the material. 

It should be noted that Eq. (4.23) is precisely the same as Eq. (4.9) in the bulk region, 

i.e., when p  and h  are constant and independent of the position. However, the two 

equations are completely different at the interfaces, since the parameters p , c  and h  

may vary with space. This happens if for example the permittivity of the host medium 

or the radii of the wires vary in space. 

In the same manner as in Sec. IV.2.2, in the quasi-static model it is assumed that 

( , )h h x y  , ( , )p p x y   and ( , )c c x y  . In a standard dielectric, the limit 
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0p   is taken and also ( , ) 0c x y  . Note that in this case p  cannot be chosen 

exactly equal to zero, otherwise Eq. (4.23) becomes singular. 

IV.3.1.2 FDFD Discretization 

The FDFD discretization of the linear system formed by Eqs. (4.23) and (4.8) is 

analogous to that already described in Sec. IV.2.2. The only relevant difference is that 

the second order derivatives of Eqs. (4.23) are of the generic form ( , ) ( , )G x y U x y
x x

 
 

, 

where 1 2( , ) ( , ) ( , )h pG x y x y x y    and , 0( , ) /c zU x y P  . The derivative ( , ) ( , )G x y U x y
x x

 
 

 

is discretized in the following manner: 

2 2 2

( , ) ( 1, ) ( , ) ( , ) ( , ) ( 1, )
( , )

A i j U i j B i j U i j C i j U i j
G U i j

x x x x x

             
,  (24) 

where  ( , ) ( , ) ( 1, ) 2A i j G i j G i j   ,  ( , ) ( , ) ( 1, ) ( 1, ) 2B i j G i j G i j G i j      and 

 ( , ) ( , ) ( 1, ) 2C i j G i j G i j   . Again, the computation domain is truncated with a 

PML [28]. In this implementation, (4.23) is used in all space (both in the metamaterial 

and in standard dielectrics or metals). This solution based on the internal degrees of 

freedom of the metamaterial will be referred as the “IDF solution”. 

IV.4. Numerical Results and Discussion 

Here, the results obtained with the formulations of Secs. IV.2 and IV.3 are compared, 

and it is confirmed that the form of the constitutive relations at the interfaces is of 

crucial importance.  

IV.4.1. Scattering Problem: Double Wire Medium – Air Interface 

In the first example, a double wire medium slab formed by PEC wires is considered, i.e, 

m   . The metamaterial has thickness L and is surrounded by air (Fig. 4.1b). The 
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permittivity of the host region in the double wire medium is taken equal to 10h  , and 

the lattice constant a is such that / 20a L  and 0.05wr a . Figure 4.2 shows the 

reflection and transmission coefficients   and   as a function of the normalized 

frequency /L c  for a plane wave that illuminates the slab with an angle of incidence 

15ºi  .  

The green triangles and the blue circles represent the results computed with the 

FDFD-SD methods DIT1 and DIT2, respectively (Sec. IV.2.2.2). These two approaches 

are based on Eq. (4.9). On the other hand, the orange stars were obtained using the 

FDFD-SD method IDF ( Sec. IV.3.1.2) based on the knowledge of the internal structure 

of the metamaterial [Eq. (4.23)]. Note that in the implementations DIT1 and IDF the 

parameter 2
p  is taken as vanishingly small outside the metamaterial. Finally, the black 

solid curves in Fig. 4.2 were computed using an analytical approach derived in Ref. [3], 

based on mode matching and additional boundary conditions. It was demonstrated in 

Ref. [3] that this analytical method compares very well with full-wave simulations that 

take into account all the minute details of the microstructure of the metamaterial. 

Therefore, the solid curves can be regarded here as the “exact solution” of the problem.  

Figure 4.2 shows that the DIT1 method can be quite inaccurate, as the green curve 

for the amplitude of the transmission coefficient   (Fig. 4.2c) largely mismatches the 

curve obtained with the analytical model (solid black curve). This confirms that a proper 

discretization of the electromagnetic fields at the interfaces between the spatially 

dispersive metamaterial and the air region is of crucial importance. On the other hand, 

the blue curves (DIT2) concur better with the analytical model. The results obtained 

with the IDF implementation (orange symbols) yield a nearly perfect agreement with 

the analytical formalism. This supports that to model correctly the electromagnetic 

response of spatially dispersive bodies it may be necessary to know some of the internal 
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degrees of freedom of the metamaterial, which cannot be accessed simply from the 

knowledge of the bulk electromagnetic response. Moreover, in Ref. [J.1] it was also 

shown that in this scenario, the results obtained with the IDF implementation concur 

extremely well with those predicted by the full-wave simulator [30], further validating 

the IDF solution. 

 

Fig. 4.2. Reflection and transmission coefficients as a function of the normalized frequency for a double 

wire medium slab with thickness 20L a  illuminated by a plane wave with angle of incidence 15ºi  . 

Solid (black) curves: mode-matching approach based on additional boundary conditions [3]. Star shaped 

(orange) symbols: IDF approach (Sec. IV.3.1.2); Triangle shaped (green) symbols: DIT1 approach (Sec. 

IV.2.2.2); Circle shaped (blue) symbols: DIT2 approach (Sec. IV.2.2.2); (a) and (b): amplitude and phase 

of the reflection coefficient  , respectively. (c) and (d): amplitude and phase of the transmission 

coefficient  , respectively. 

The several dips in the reflection characteristic in Fig. 4.2 are associated with Fabry-

Pérot resonances. These resonances are ultra-subwavelength (e.g. the first dip of the 

reflection coefficient occurs at / 0.13L c  , which corresponds to the metallic wires 

with length 02 0.03wmL L   ) because the “double wire medium” can be 

characterized by a very large positive index of refraction with anomalous frequency 

dispersion in the low frequency limit [20, 25]. 
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To illustrate the application of the method in case of metallic loss, next it is assumed 

that the metal permittivity 0 m   has a Drude-type dispersion (Sec. II.3.1.2). It is 

assumed that the plasma frequency is such that / 0.125pa c   and that the collision 

frequency is / 0.05p  . The remaining structural parameters, as well as the incoming 

wave, are as in Fig. 4.2. The reflection and transmission coefficients calculated with the 

IDF approach and with the analytical (ABC based) approach [3] are plotted in Fig. 4.3. 

As seen, the agreement between the FDFD-SD results and the analytical model is 

excellent, confirming that the constitutive relation (4.23) is valid across the interfaces 

between different media even in case of metal loss. 

 

Fig. 4.3. Similar to Fig. 4.2 but the permittivity of the wires is described by the Drude model 
21 ( )m p i       . The parameters of the Drude Model are / 0.125pa c   and / 0.05p  . Solid 

(black) curves: mode-matching approach based on additional boundary conditions [3]. Star shaped 

(orange) symbols: IDF approach (Sec. IV.3.1.2). 

 

 

 

-A
rg

 (
)

[º
]

-A
rg

 (
)

[º
]

b)

/L c

a)

c) d)

/L c

/L c

/L c



IV. Macroscopic Electromagnetic Response of Complex Shaped Spatially Dispersive Bodies Formed by 
Metallic Wires 

 

100 

IV.4.2. Scattering Problem: Double Wire Medium – PEC Interface 

In this Section, the case where the metamaterial slab is backed by a metallic region (a 

good conductor, which we will refer to as the “ground plane”; the permittivity of the 

ground plane is taken as )h    is considered. The incoming wave propagates in air 

as in the examples of Sec. IV.4.1, and the angle of incidence is taken equal to 70ºi  . 

The thickness of the slab is 20L a , the radius of the wires is 0.05wr a , and the 

relative permittivity of the host region is 30h  . The metallic wires are assumed PEC. 

It is assumed that the metallic wires are in ohmic contact with the ground plane. In 

the formalism DIT2 (Sect. IV.2.2) there is no way of specifying that the metallic wires 

are in contact with the “ground plane”. On the other hand, in the models DIT1 and IDF 

this can be taken into account by imagining that the wires are slightly prolonged into the 

metal, so that they penetrate into a thin transition layer inside the metal. Thus, in the 

transition layer the parameter p  (which depends on the radius of the wires) is taken the 

same as in the metamaterial region. Farther inside the metal, similar to the previous 

examples, the limit 0p   is taken to model the fact that the wires are severed past the 

transition layer. In the numerical implementation, the thickness of the metal transition 

layer was taken equal to 0.04L. 

Figure 4.4 shows the phase of the reflection coefficient   as a function of frequency. 

Similar to the previous examples (Fig. 4.2) it is seen in Fig. 4.4a that the agreement 

between the analytical method based on ABCs (solid black curve) and the IDF approach 

is nearly perfect. The results also concur well with full-wave simulations that take into 

account the granularity of the metamaterial (dashed blue curve). On the other hand, both 

the DIT1 and the DIT2 approaches yield totally wrong results (Fig. 4.4b), because they 

are unable to capture the dynamics of the current along the wires in the vicinity of the 

ground plane, and are also unable to capture the fact that the wires are in ohmic contact 
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with the adjacent region. This not only confirms that a proper discretization is of vital 

importance at the interfaces, but also shows that the methods DIT1 and DIT2 are very 

inaccurate in a scenario where the double wire medium is attached to a metallic surface. 

 

Fig. 4.4. Phase of the reflection coefficient   as a function of the normalized frequency for a double wire 

medium slab with thickness L, backed by a PEC surface. Solid (black) curves: mode-matching approach 

based on additional boundary conditions [2]. (a) Star shaped (orange) symbols: IDF approach (Sec. 

IV.3.1.2); Dashed blue curve: CST Microwave Studio [30]. (b) Triangle shaped (green) symbols: DIT1 

approach (Sec. IV.2.2.2); Circle shaped (blue) symbols: DIT2 approach (Sec. IV.2.2.2); 

It should be underlined that the FDFD implementations do not require any additional 

boundary conditions, because they assume that Eq. (4.9) or Eq. (4.23), depending on the 

implementation, are valid across the interface. In some sense, in the FDFD 

implementations the ABCs are indirectly enforced by the adopted form of the 

constitutive relation across the interface. For example, the IDF approach, Eq. (4.23) 

implicitly imposes that both ,c zP  and ,

2

1 c z

h p

P

x 



, with , 0c z z h zP D E   , are 

continuous across the interfaces. In case of a wire medium adjacent to a dielectric (e.g. 

air region) this implies (because we take 2 0p   in the dielectric) that , 0x c z diel
P   at 

the dielectric side of the boundary. This homogeneous boundary condition will 

effectively ensure (together with the PML boundary conditions) that , 0c zP   in the 

dielectric region and thus, because ,c zP  is continuous at the boundary, that the 

conduction current vanishes at the wire medium side of the interface, , 0c z WM
P  , which 

is equivalent to the ABC used in [2]. On the other hand, if the wire medium is adjacent 
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to a metal transition layer (such that the wires are prolonged into the metal), the 

continuity of ,

2

1 c z

h p

P

x 



 enforces that , 0x c z WM
P   at the wire medium side of the 

boundary, because h   at the metal side. This boundary condition is also 

equivalent to that considered in Ref. [2]. Thus, it follows that the IDF approach is 

compatible with the ABC formalism described in [2]. It is also interesting to mention 

that the ABCs implicitly enforced by the DIT1 method are the continuity of ,c zP  and 

,x c zP  at the interfaces. These in general are inconsistent with the microstructure of the 

material because one should have , 0x c z diel
P   and , 0c z diel

P   at the dielectric side of 

the boundary rather than the continuity of ,c zP  and ,x c zP . 

IV.5. Concluding Remarks 

In this Chapter, it was argued that the knowledge of the bulk electromagnetic response 

of a spatially dispersive material is insufficient to characterize the response to a 

macroscopic external excitation in presence of interfaces, even in simple scenarios 

where the geometry of the interfaces is trivial. It was highlighted that the partial 

differential equations that link D  and E , obtained by inverse Fourier transforming the 

constitutive relations in the spectral domain, may not hold across a boundary between 

two different materials, and that it is possible to link D  and E  through inequivalent 

differential equations over the interfaces, but which are totally consistent in the bulk 

regions. The correct form of the differential equations across the boundary can only be 

determined based on the knowledge of the internal structure of the metamaterial. It was 

illustrated how this can be done in practice for the particular case of a double wire 

medium, and a general FDFD-SD approach was developed to accurately characterize 
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the electromagnetic response of spatially dispersive wire medium bodies with arbitrary 

geometries. 
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V. Applications of Double Wire Media 

V.1. Introduction 

The discussion of Chapter IV was mainly focused on the correct manner of discretizing 

the constitutive relations at a boundary and therefore, the geometries considered in the 

examples of Secs. IV4.1 and IV4.2 were quite elementary. Due to this reason, the 

considered problems also admit an analytical solution based on mode matching and 

additional boundary conditions. However, one of the key features of the FDFD-SD 

(IDF) approach developed in Chapter IV is that it also enables to obtain the solution of 

scattering and waveguiding problems in scenarios wherein electromagnetic waves 

interact with complex arbitrary shapes of spatially dispersive bodies. Typically, such 

problems cannot be solved using analytical methods. 

In this Chapter, the FDFD-SD (IDF) implementation derived in Chapter IV will be 

used in order to investigate some interesting applications of double wire media bodies 

with complex arbitrary geometries. 

First, in order to further validate the FDFD-SD (IDF) implementation, the imaging of 

a superlens formed by an ultradense array of crossed metallic wires is studied. 

Next, the possibility of concentrating the electromagnetic field in a narrow spot by 

tapering a double wire medium waveguide is discussed.  

Finally, based on the fact that the effective response of the double wire medium can 

be characterized by a low-loss anomalous refractive index in the visible domain, the 

design of an achromatic lens is proposed. It is theoretically and numerically shown that 

the proposed lens nearly eliminates the chromatic aberrations inherent to single-material 
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glass lenses, and that such a metamaterial based lens may be an interesting alternative to 

the conventional achromatic doublets. 

As in Chapter IV, in all the examples reported here, the propagation is assumed to be 

in the xoy plane with 0z   ( 0)zk  , and that the electric field is polarized along the z-

direction. 

V.2. Superlensing with a Double Wire Medium Slab 

In what follows, the imaging of a source by a metamaterial slab with finite width is 

investigated (inset of Fig. 5.1a). Previous works [1-3] have shown that a high-index 

dielectric material can be used as a lens that enhances the near field and the 

subwavelength details, and thus enables a superlensing effect. In Refs. [1, 2] it was 

theoretically suggested and experimentally verified that an ultradense array of crossed 

metallic wires may have a large index of refraction, and that it may support highly 

confined modes with very short propagation wavelengths, which when excited by a 

source permit restoring the subwavelength spatial spectrum of the source. Next, the 

imaging properties of the double wire medium are studied based on the FDFD-SD (IDF) 

discretization. 

A double wire medium with thickness 10L a  is considered in the near field of an 

electric line source placed at a distance 1 00.04d   above the metamaterial (inset of Fig. 

5.1a). The radius of the wires is 0.05wr a  and the normalized frequency of operation is 

/ 0.3L c  . It is assumed that the wires are PEC and stand in air. The width of the slab 

along the y-direction is 01.2w  . 

Figure 5.1a shows the normalized electric field profile at a distance 2 1d d  below 

the lens calculated using the FDFD-SD method (star shaped orange symbols), and Fig. 

5.1b shows the associated electric field density plot. The predicted half power 
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beamwidth (HPBW) is 00.13 , which is nearly four times smaller than the traditional 

diffraction limited value. In the absence of the metamaterial lens, and for the same 

propagation distance ( 1 2d d ) in the air region the HPBW would be 00.32 , which 

clearly confirms that the metamaterial lens can restore the subwavelength details of the 

source and compensate for the evanescent decay in the air regions. The electric field 

profile was also calculated using an analytical model (solid curve in Fig 5.1a) based on 

a Sommerfeld-type integral (see Ref. [1] for details). The analytical method assumes 

that the metamaterial slab has infinite width w along the y-direction. As seen in Fig. 

5.1a, the results obtained with the analytical model concur well with the FDFD-SD 

simulations. 

 

Fig. 5.1. (a) Amplitude of the normalized squared electric field imaged by a metamaterial lens with 

00.3 / 2L   , /10a L  and 0.05wr a  (see the inset). Solid curve: analytical model (Ref. [1]). Star 

shaped orange symbols: FDFD-SD method. (b) Density plot of the normalized electric field for the 

scenario of panel (a). 

In Ref. [J.1] it was also shown that this metamaterial lens can discriminate two 

sources separated by a distance nearly two times inferior to the diffraction limit. 

V.3. Concentrating the Electromagnetic Field with a Tapered 

Waveguide 

V.3.1. Introduction 

It is known that by tapering plasmonic waveguides it may be possible to slow down and 

ultimately stop the light [4, 5, 6], and therefore concentrating the electromagnetic 
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energy in the nanoscale [4, 7]. Next, it is shown that by tapering a double wire medium 

waveguide the magnetic field may be significantly enhanced toward the tip of the 

waveguide. 

V.3.2. Guided Modes in a Subwavelength Waveguide 

To begin with, the FDFD-SD (IDF) implementation is used to characterize the guided 

modes supported by an ultra dense array of metallic wires [8]. 

Figure 5.2a shows the dispersion characteristic of the transverse electric (TE) surface 

wave modes supported by a dense array of PEC wires for different lattice constants a . 

The discrete star-shaped symbols were calculated using the FDFD-SD method and the 

solid curves were obtained using an analytical method based on mode matching and 

additional boundary conditions [8]. Note that the analytical method assumes an infinite 

waveguide along the y-direction. The dispersion of the guided modes is determined with 

the FDFD-SD method as follows: For each wavelength of operation ( 0 ) the 

metamaterial slab is excited by an electric line source placed within the waveguide. 

Then, the guided wavelength g  is determined by inspection of the real part of the 

electric field along the central line of the metamaterial slab (i.e. along the direction of 

propagation) at a distance sufficiently large (about 00.2 ) from the source. The effective 

index of refraction seen by the guided mode is 0 / /eff g yn k c    . Consistent with 

Ref. [8], Fig. 5.2a, shows that the metamaterial supports extremely subwavelength 

guided modes characterized by a large effective index of refraction /eff yn k c  . 

Moreover, the index of refraction of a guided mode increases as the lattice constant a  

decreases, i.e., as the density of wires increases for a fixed metal volume fraction. The 

agreement between the results predicted by the numerical method and the analytical 

model of Ref. [8] is excellent. Figure 5.2b shows a time snapshot of the electric field in 
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the xoy plane for a double wire medium waveguide with lattice constant / 20a L  at 

the normalized frequency of operation / 0.1L c  . As seen, the guided mode is strongly 

confined to the waveguide, in agreement with the fact that the effective index of 

refraction is 6effn   (Fig. 5.2a). 

 

Fig. 5.2. Normalized propagation constant yk  of the TE-guided modes as a function of frequency, for a 

fixed thickness L  of the metamaterial formed by PEC wires, and different lattice constants a. The radius 

of the wires is 0.05wr a  and the wires stand in a vacuum. Solid curve: analytical model (Ref. [8]). Star 

shaped (orange) symbols: FDFD-SD method. (b) Time snapshot of zE  (in arbitrary unities) at the 

frequency / 0.1L c   when a waveguide with / 20a L  is excited by an electric line source positioned 

at 0(0, 0.2 ) . 

V.3.3. Cascaded Waveguides: Impedance Matching Condition 

In this subsection, it is discussed how the waveguide analyzed in Sec. V.3.2 can be 

tapered so that the guided electromagnetic energy can be concentrated in an ultra-

subwavelength region. 

Let us start by considering two cascaded waveguides with  thickness L and 2 0.6L L , 

respectively (Fig. 5.3a). Since there is an abrupt transition, a matching condition for the 

two waveguides must be derived, so that one can ensure a good transmission at the 

junction. To this end, a transmission line analogy is considered, so that each waveguide 

is associated with a voltage iV , a current iI  and an impedance iZ  ( 1,2i  ). To a first 

approximation, the field component yH  is proportional to the microscopic current 

flowing in the metallic wires, and thus it should vanish at the interfaces. Thus, from the 
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point of view of the waves inside the waveguide, the interfaces with air may be regarded 

as magnetic walls (PMC). Hence, the guided mode is expected to be quasi-transverse 

electromagnetic (quasi-TEM) with respect to the direction of propagation (y-direction), 

and that the relevant field components are zE  and xH . Moreover, the following 

correspondences can be established: 

~ xV H L ,       (5.1a) 

~ zI E ,       (5.1b) 

~ x

z

H
Z L

E
,      (5.1c) 

where L is the thickness of the metamaterial slab along the x-direction. Notice that V is 

associated with xH  and I with zE  because a waveguide with PMC walls is the 

electromagnetic dual of a standard waveguide with PEC walls. On the other hand, for a 

TE mode, ~ z
x

E
H

y




 and hence the fields inside the waveguide also satisfy: 

~x
y

z

H
k

E
.       (5.2) 

From Eqs. (5.1c) and (5.2) it follows that to keep the impedance constant in the two 

waveguides, and thus ensure a good matching at the transition, one should guarantee 

that: 

.yk L const       (5.3) 

Figure 5.3a shows a density plot of the normalized electric field for a metamaterial 

waveguide similar to that of Fig. 5.2a ( / 20a L ) in cascade with another waveguide 

with thickness 2 0.6L L . The frequency of operation is / 0.25L c  . The lattice 



Nonlocal Effective Medium Approach to Wave Propagation in Metamaterials  
 

112 

constant 2a  of the second waveguide is determined so that Eq. (5.3) is satisfied, i.e, that 

,2 2y yk L k L , where yk  and ,2yk  represent the wave numbers in the waveguide with 

thickness L and 2L , respectively. This can be done by using the analytical model of Ref. 

[8], provided ,2yk  and 2L  are known. The density plot of Fig. 5.3a shows that the electric 

field amplitude is kept nearly constant across the junction of the two waveguides, 

indicating a good matching. This result is confirmed in Fig. 5.3b, where the profile of 

the normalized electric field along the central line of the waveguide is depicted (solid 

blue curve). It can be seen that despite the abrupt transition, the wave is barely reflected. 

In contrast, the dashed green curve is obtained without ensuring the impedance match, 

(specifically the lattice constant 2a  is tuned so that ,2y yk k ), and in this case a standing 

wave pattern with a much stronger modulation is obtained. 

 

Fig. 5.3. (a) normalized 
2

zE  in the vicinity of two cascaded double wire medium waveguides with 

thicknesses L  and 2 0.6L L , at the frequency of operation / 0.25L c  . The fields were obtained using 

the FDFD-SD full wave simulator. (b) Profile of the square normalized electric field along the central line 

of the waveguide. Solid blue curve: the lattice constant in the second waveguide region is tuned so that 

the impedance matching condition (Eq. (5.3)) is satisfied; Green dashed curve: the lattice constant in the 

second waveguide region is tuned so ,2y yk k . 

V.3.4. Tapered Waveguide 

In this subsection, the theory derived in Sec. V.3.3 is used to investigate the 

waveguiding by a tapered metamaterial slab formed by PEC wires with initial thickness 

iL , that is first tapered toward a tip with thickness 0.2f iL L , and then expanded towards 

its original thickness iL  (inset of Fig. 5.4a). The taper profile is linear and the distance 
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between the points with thickness iL  and fL  is 00.45 . The thickness of the waveguide is 

defined as position-dependent function such that ( )wg wgL L y . The frequency of 

operation is / 0.25iL c   and the lattice constant at the beginning of the waveguide is 

13i ia L .  

Figure 5.4a shows the effective index of refraction ,wg y wgn k c   seen by the guided 

mode toward the tip of the waveguide, where , , ( )y wg y wg wgk k L  is the wave number 

along the y-direction determined so that Eq. (5.3) is satisfied for each wgL . As expected, 

wgn  increases significantly as the tip is approached. In Fig. 5.4b the lattice constant wga  is 

depicted as a function of the thickness of the waveguide. In the same manner as in Fig. 

5.3, for each wgL  the lattice constant wga  is determined so that ,y wgk  satisfies the matching 

condition [Eq. (5.3)]. Figure 5.4c shows a density plot of the normalized 

electromagnetic fields along the waveguide. Consistent with the results reported in Fig. 

5.3, the electric field remains essentially constant along the waveguide, despite the 

tapering. This is further supported by Fig. 5.4d, which shows the normalized electric 

field profile (solid blue curve) along the axis of the waveguide. The ripple observed in 

the electric field profile in the vicinity tip may be related to numerical imprecision, as 

near the tip the guided wavelength is extremely small, and thus a very refined mesh is 

required to obtain fully converged results. In contrast, both components of the magnetic 

field are strongly enhanced as the tip is approached, indicating that tapering the 

metamaterial waveguide permits concentrating the magnetic field into a subwavelength 

spot (Fig. 5.4c). This also shown in the inset of Fig. 5.4d, which depicts /x yH H  (black 

curve) and ,1/x xH H  (green curve) along the axis of the waveguide, where ,1xH  is the 

amplitude of the x-component of the magnetic field in a waveguide with constant 

thickness iL L . It is evident that yH  is nearly negligible as compared to xH  (black 
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curve), indicating, indeed, quasi-TEM propagation, in agreement with the initial 

assumption. Moreover, xH  is enhanced about five times with respect to a waveguide 

with constant thickness iL L  (green curve), which is consistent with the fact that 

/ 5f iL L  . 

 

Fig. 5.4. (a) y-component of the guided wave number ,y wgk  (calculated using Eq. (5.3)) as a function of 

the normalized thickness of the tapered metamaterial waveguide. The geometry of the waveguide is 

shown in the inset. (b) Normalized lattice constant wga  as a function of the thickness of the waveguide. (c) 

Normalized 
2

zE , 
2

xH  and 
2

yH  in the vicinity of the tapered waveguide. (d) Profile of the normalized 

electric field along the central line of the waveguide. The inset shows the profile of x yH H  along the 

central line of the waveguide (solid blue curve) and xH  normalized to the amplitude of the x-component 

of the magnetic field in a waveguide with constant thickness iL L . 

In Ref. [J.1] it was further shown that if a double wire medium waveguide is tapered 

and severed at the tip, the electric field is nearly constant along the waveguide and both 

components of the magnetic field are greatly enhanced. Also in this scenario, the 

enhancement of the magnetic field is roughly inversely proportional to the compression 

of the waveguide. 
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V.4. Suppression of Chromatic Aberrations 

V.4.1. Introduction 

Conventional optical single-material glass lenses are unable to focus all the spectral 

components of light into the same convergence point, even in ideal circumstances where 

the effects of diffraction are negligible. The reason for this limitation is the frequency 

dispersion of the glass refractive index, which causes wavelengths associated with 

different colors to be refracted differently [9]. Hence the image produced by a glass lens 

may be distorted, and in such a case the optical system is said to suffer from chromatic 

aberrations. The material dispersion is manifested in the form of beautiful rainbows 

when white light is separated into its spectral components by a glass prism [10], and is 

rooted in fundamental physical restrictions, stemming from the causality and passivity 

of the dielectric response. Causality and passivity determine that the index of refraction 

of any conventional low-loss dielectric material is a strictly increasing function of 

frequency [11]. 

Since the optical path length of a given ray in an optical system, 1 1 ... N Nn l n l    , 

is written in terms of the indices of refraction ( in ) of the involved materials, the 

correction of chromatic aberrations is a non-trivial problem. Indeed, the material 

dispersions are combined additively, and since / 0in dn d  , it follows that  is a 

strictly increasing function of frequency. Nevertheless, several strategies to minimize 

the effect of chromatic aberrations are well documented in the literature and are 

typically based on the combination of materials with different positive dispersion (e.g. 

[12-15]). This is possible because the system can be designed so that the trajectories of 

the rays inside the lens change with frequency in such a manner that the profile of   at 

the exit surface is invariant (apart from the sum of an irrelevant constant). Lenses with 

reduced aberrations are known as achromatic doublets. 
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The definition of  suggests that the effects of material dispersion in glass ( 0gn  ) 

may be easier to suppress if a material with anomalous dispersion ( 0xwn  ) is available. 

However, the aforementioned restrictions stemming from Kramers-Kronig relations for 

causal and passive dielectric media [11], indicate that a regime of anomalous dispersion 

implies very significant loss, and hence this solution seems to be impractical. The 

question remains: is it possible to overcome this limitation? 

In Chapter IV (Sec. IV.4.1) it was briefly mentioned that the double wire medium 

may enable the realization of a dielectric response with broadband anomalous 

dispersion [16, 17] in the visible domain, such that 0xwn  . Such a property stems from 

the strong spatially dispersive nature of the metamaterial, where the restrictions on the 

dispersion of the index of refraction for this class of media are less strict than for 

conventional dielectrics. Here, it is theoretically demonstrated that such a metamaterial 

may permit reducing significantly the chromatic aberration of a conventional thin glass 

lens. 

V.4.2. Ray Optics in Thin Compound Lenses 

To begin with, a thin compound lens formed by two materials is considered. The 

refracting surfaces at the air interfaces have radius of curvature 1R  and 2R . The adopted 

convention is that 1R  and 2R  are positive for convex surfaces (seen from the air region), 

and it is assumed that the i-th (i=1,2) refracting material is associated with a material 

with index  in   (Fig. 5.5a). 
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Fig. 5.5. (a) Illustration of the chromatic aberration of a conventional thin biconvex glass lens with 

parameters 1 2 ( )gn n n   . (b) Biconvex optical metamaterial lens that corrects the chromatic aberration 

for all the colors of light; the compound lens is formed by a thin plano-convex glass lens coated with a 

thin plano-convex double wire medium. 

Since the radii of conventional optical lenses have physical sizes that correspond to 

tens or even hundreds of wavelengths of the visible spectrum, geometrical optics may 

be used to describe how light propagates in such optical systems. For a thin compound 

lens standing in air, the focal length satisfies the well-known Lensmaker’s equation [9]: 

   1 2
1 2

1 1 1
1 1 .n n

f R R
         (5.4) 

For a thin lens, the distances 1S  and 2S , from the object and focal plane to the lens, 

respectively, satisfy 
1 2

1 1 1
.

f S S
   Obviously, a lens formed by a single material (let’s 

say glass), has focal length such that  
1 2

1 1 1
1 ,gn

f R R

 
   

 
 where ( )gn    is the 

refractive index of the glass. Since the permittivity ( )   of glass is an increasing 

function of frequency in the optical domain [11], it is manifest from Eq. (5.4) that the 

focal length f  of the lens is a decreasing function of frequency. Therefore, the focusing 

provided by the biconvex lens of Fig. 5.5a is imperfect, as the colors of light associated 

with longer wavelengths (“red” light) are less refracted by the optical system, 

converging to a longitudinal point farther than the components of light associated with 

shorter wavelengths (“violet” light). The change f  in the focal length caused by a 

change gn  in the refractive index of the glass is the chromatic aberration. 
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For a compound lens it can be assumed to a first approximation that both 1n  and 2n  

vary linearly with frequency so that  1 10 1n n n     and  2 20 2n n n     where 

1 1 / ,n dn d  2 2 / ,n dn d  0 ,      and that 0  is some reference frequency at 

which the lens is designed (and for which 1 10n n  and 2 20n n ). Then, using Eq. (5.4), it 

is easily found that the optical power of the bi-layer lens can be made independent of 

frequency provided [12]: 

1
1 2

2

.
R

n n
R

         (5.5) 

From the above formula it is manifest that the correction of the chromatic aberrations 

can be achieved by considering two materials with positive dispersion (when 1n  and 2n  

are both positive) and such that the radii of curvature of two refracting surfaces have 

opposite signs. This is the conventional solution that is the basis of achromatic doublets 

and that has been used for decades [12]. 

Let us now go the other way around and consider that the thin lens is instead formed 

by two convex refracting surfaces, i.e. 1R  and 2R  are positive. In such a scenario, in order 

to satisfy the condition (5.5) a material with anomalous dispersion is required, because 

1n  and 2n  must have opposite signs. To the best of our knowledge, this solution has not 

been seriously considered before because regimes of anomalous dispersion in 

conventional materials imply very significant loss. Here, it is shown that the double 

wire medium takes that solution to the realm of reality. For this case it is assumed that 

 1 xwn n   and  2 ,gn n   being  xwn   the effective index of refraction of the 

metamaterial. Hereafter, a lens that satisfies Eq. (5.5) with 0xwn   will be referred to as 

compensated biconvex lens. 
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V.4.3. Low Loss Broadband Anomalous Dispersion 

In the previous Chapter it was shown that in the considered scenario i.e., propagation in 

the xoy plane with 0zk   and 
zzEE u , the double wire medium is characterized by the 

dielectric function ( , )xk   given by Eq. (4.7). Here it is assumed that the wires stand in 

air, i.e., 1h  . The effective index of refraction, /xw xn ck   of the metamaterial is 

found by solving the dispersion equation  22 / ( , )x xk c k    with respect to xk . This 

yields: 

 
2 2 4

23 1
2

2 4
p p p

xw m m m

c c c
n

  
  

  
     

          
     

,   (5.6) 

where  1 ( 1)m m Vf   . In the particular case of perfectly conducting wires ( m  ), 

the index of refraction reduces to 

2
3 1

1 8 ,
2 2

p
xw

c
n




 
    

 
 which is clearly a 

decreasing function of frequency [17], since p  is a parameter that depends merely on 

the geometry of the metamaterial. This property still holds for realistic metals at optical 

frequencies. This is illustrated in Fig. 5.6, where xw xw xwn n in    is ploted as a function 

of frequency for Al nanowires modeled by a Drude dispersion model with parameters 

consistent with experimental data reported in the literature [18]. It is seen that the 

metamaterial is characterized by low-loss broadband anomalous dispersion in the entire 

visible domain. 
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Fig. 5.6. Refractive indices of dense flint glass SF10 (black curve) and of the nanowire metamaterial (blue 

curves). 

It is curious to mention that notwithstanding that at the “microscopic level” all the 

constituents (host and inclusions) of the metamaterial satisfy 0,n   the effective 

medium is characterized by 0xwn   due to the complex electromagnetic interactions 

between its different elements. In particular, the optical path length of a wave that 

transverses a metamaterial slab decreases with frequency, whereas a naïve application 

of the formula 1 1 ... N Nn l n l     (with in  standing either for the inclusions or for the 

host) would suggest the opposite. This apparent contradiction is explained by the fact 

that the formula 1 1 ... N Nn l n l     is not valid when the distance between the different 

materials is small on the scale of the wavelength, because in such conditions the wave 

envelope is described by an effective index of refraction, which is not a simple average 

of those of the constituent materials. In some sense, in a nanowire metamaterial the sum 

of many positives ( 0i i
i

l n   ) can yield a negative optical path length ( 0xw i
i

n l  ). 

V.4.3.1 Metamaterial Prism 

In order to further confirm that the effective refractive index of the double wire medium 

is a decreasing function of frequency in the optical domain, the refraction of a 

cylindrical Gaussian beam by a metamaterial prism with 14   and aperture 

0.756 mW   is investigated using the FDFD-SD implementation. The metamaterial has 

lattice constant 100a nm  and the nanowires have radius 0.14wr a . The beam waist of 

xwn

210xwn

gn

,xw gn n

nm
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the incoming wave was taken equal to 0 0.752 3.5 mw  . Figures 5.7a, b and c show 

density plots of 
2

zE  in the vicinity of the prism at 0.38 ,m   0.56 m   and 

0.75 ,m   respectively, and support that shorter wavelengths are less refracted than 

longer wavelengths, confirming that the effective refractive index xwn  of the 

metamaterial prism is a decreasing function of frequency in the optical domain. The 

spectral electromagnetic fields associated with 0.38 ,m   0.56 m   and 

0.75 m   [Figs. 5.7-a,b,c] can be blended and represented in a RGB color scale   

taking into account the relative intensity of the fields for each wavelength  and this 

results in a  reversed rainbow [Fig. 5.7d]. In Fig. 5.7e the angle of transmission, ,t  is 

depicted as a function of frequency calculated with (i) the FDFD-SD code (black solid 

curve) (ii) the theoretical formula  arcsin sint xwn   (blue dashed curve) [17]. It is 

seen that the results concur very well. 

 

Fig. 5.7. Panels (a), (b) and (c): normalized 2
zE  in the vicinity of a metamaterial prism at: (a) 

0.38 .m   (b) 0.56 m  . (c) 0.75 m  . (d) reversed rainbow obtained by blending the different 

light wavelengths [panels (a), (b) and (c)]. (e) transmission angle t  as a function of the wavelength 

 m   for a Gaussian beam that illuminates the prism along the normal direction. The blue dashed curve 

was obtained using the theoretical formula  arcsin sint xwn   and the black solid curve was calculated 

using the full wave FDFD-SD implementation. 
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V.4.4. Achromatic Biconvex Metamaterial Lens 

To illustrate how the considered metamaterial can, indeed, nearly eliminate the 

chromatic aberration of a single-material glass lens, the design of a compensated 

biconvex lens is considered, such that ~ 7.8 mf   and 1 xwn n , 2 gn n . The nanowire 

material has the same parameters as in the previous example, except that the nanowires 

diameter is increased to 2 30wr nm . It is assumed that the dielectric is a dense flint 

glass SF10. In the visible spectrum, the refractive index ( )gn   of this glass is described 

to a first approximation by the so-called Cauchy’s equation 2( ) /g mn A B    with 

1.7280A   and 20.01342[ ]B m  [19]. At the central frequency of the visible spectrum 

0( /2 =595[THz])  , it is possible to estimate 
130.89 10xwn THz
      , 

130.18 10gn THz
     , 0 3.01xwn  , and 0 1.78gn  . Hence, from Eqs. 5.4 and 5.5 it 

follows that the radius of curvature of the first and second interfaces is 1 46.24 mR   

and 2 9.25 mR  , respectively. The central thickness of the two layers is taken 

1 0.26d m  and 2 1.31d m .  

To have a reference against which the performance of the compensated biconvex 

lens can be compared, let us consider as well an ordinary single material plano-convex 

lens ( 1R ) made exclusively of glass ( 1 2 gn n n  ), and with the same optical power 

as the compensated lens (i.e. 1 f  is invariant). This requires that the radius of curvature 

2sR  of the convex surface is taken equal to: 
1
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central thickness of the single-material lens is 2 1.31sd m . Figure 5.8a shows the 

electric field profile calculated along the mid-plane perpendicular to the single-material 

lens under the illumination of a cylindrical Gaussian beam. The dashed and solid curves 

in Fig. 5.8a were obtained using a commercial full-wave electromagnetic simulator [20] 
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and a FDFD code, respectively. The FDFD code predicts that the chromatic aberration 

f  (defined with respect to the central frequency 0 ) at 0.75 m   and 0.38 m  , is 

0.26[ ]f m   and 0.37[ ]f m    (Fig. 5.8a), respectively. 

The achromatic biconvex metamaterial lens performs far better than the ordinary 

lens. Figure 5.8b shows a density plot of 
2

zE  obtained with the FDFD-SD code at 

0.75 m   in the vicinity of the biconvex lens. The focal spot created by the lens under 

the illumination of a cylindrical Gaussian beam is evident. Figure 5.8c shows the 

electric field profile calculated along the mid-plane perpendicular to the biconvex lens. 

For this case, the FDFD-SD code predicts that the chromatic aberration at the 

wavelength 0.38 m   is drastically reduced to 0.052[ ]f m  , whereas the 

chromatic aberration associated with the wavelength 0.75 m   is reduced to 

0.039[ ]f m   . Thus, the chromatic aberrations associated with the wavelengths at 

the edges of the visible spectrum are practically eliminated. This property is actually 

valid in the entire visible spectrum, as supported by Fig. 5.8d that shows the focal curve, 

i.e., the chromatic aberration f  as a function of the wavelength. The yellow stars were 

calculated using the FDFD-SD simulations whereas the yellow circles were obtained 

using the full-wave simulator taking into account all the minute details of the 

metamaterial [20]. It can be seen that the compensated lens permits focusing all the 

colors into the same convergence point. The diamond symbols in Fig. 5.8d represent the 

focal curve of the ordinary single-material glass lens of Fig. 5.8a, showing a significant 

chromatic aberration.  
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Fig. 5.8. Profile of the normalized squared electric field near the focal region of the single-material glass 

lens. Solid curves: obtained using Microwave Studio [20]. Dashed curves: obtained with the FDFD 

simulator. (b) normalized 
2

zE  (obtained using the FDFD-SD full wave simulator ) in the vicinity of the 

compensated biconvex metamaterial lens. (c) analogous to (a), but for the compensated biconvex 

metamaterial lens. (d) focal plane curve as a function of the wavelength. The yellow stars (FDFD-SD 

implementation and the yellow circles (Microwave Studio [20]) represent the position of the foci of the 

compensated metamaterial lens. The red triangles and the diamond symbols (FDFD) represent the focal 

curve of a conventional achromatic doublet and of the single-material lens, respectively. 

It should be noted that Eq. (5.4) is based on the thin lens approximation, and thus 

even within the framework of geometrical optics it is not exact. To take this into 

account and provide a more robust correction of the chromatic aberrations, the 

parameters of the metamaterial in the FDFD-SD simulations of Fig. 5.8 were slightly 

adjusted so that 94a nm  and 2 33wr nm . Moreover, in the CST simulations of Fig. 5.8, 

the lattice constant of the nanowire material and the diameter of the wires were adjusted 

to 123a nm  and 2 25wr nm , in order to have a physical response more consistent with 

the homogenization model. 

The performance of a standard doublet formed by a biconvex crown glass N-BK7 

lens [21] and a concave-plane dense flint glass SF10 lens was also investigated. In this 

scenario, the doublet is formed by two materials with positive dispersion ( 1n  and 2n  are 

both positive). Note that this achromat is not of the same type as that represented in  
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Fig. 5.5, wherein the middle interface is planar. Indeed, it was verified (not shown here) 

with both ray tracing and full wave simulations that the generic configuration of Fig. 5.5 

is less effective in the correction of the aberrations when both materials have positive 

dispersion than the solution (based on biconvex and concave-plane layers) reported here 

(Fig. 5.9).  

 

Fig. 5.9. Standard achromatic doublet based on biconvex and concave-plane layers. 

In order that the optical power of the doublet is the same as that of the compensated 

lens, the radii of curvature of the first and second convex surfaces (N-BK7) were chosen 

1 3.10 mR   and 2 9.25 mR  , and the radius of curvature of the concave-plane 

surfaces (SF10) 3 8.11 mR    and 4R  . The central thicknesses of both glasses is 

1 m . The focal curve of this doublet is also represented in Fig. 5.8d (red triangles), 

showing a reduction of the chromatic aberration comparable to that of the compensated 

lens.  

V.5. Concluding Remarks 

The potentials of the FDFD-SD (ISD) implementation derived in Chapter IV were 

illustrated, and the simulator developed was used to analyze some interesting 

configurations of double wire media with complex shapes. Mainly for the sake of 

further validation of the FDFD-SD implementation, it was confirmed that a dense array 

of a double wire medium slab may behave as a near-field superlens. 
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The possibility of concentrating the electromagnetic fields at the tip of an ultra 

compact tapered waveguide formed by wire media was investigated, showing that this 

may be an exciting route for enhancing and focusing the magnetic field in a 

subwavelength spot. 

Finally, and likely to be the most exciting application for the double wire medium 

proposed in this thesis, it was shown that based on the low-loss broadband anomalous 

material dispersion in the optical domain of the metamaterial, it is possible to design 

optical systems with performance nearly independent of the material dispersion. The 

level of aberrations obtained with the design reported in this work is of order of 

magnitude comparable to what is achievable with conventional achromats. Since by 

adjusting the composition and geometry of the metamaterial one can engineer the 

dispersion of xwn , it is envisioned that despite the obvious technological challenges, an 

optimized structure may provide an exciting route for improved optical instruments 

insensitive to chromatic aberrations. 
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VI. Conclusions 

VI.1. Main Results 

This thesis was essentially devoted to the numerical modeling of nonlocal metamaterials 

based on effective medium theory. Relying on homogenization approaches, a 

metamaterial configuration characterized by a broadband DNG response was proposed, 

and the relation between microscopic and macroscopic quadratic forms like the 

Poynting vector was clarified. Furthermore, some exciting applications for the double 

wire medium were proposed. 

In Chapter II, based on a previously proposed nonlocal homogenization formalism 

[1], an efficient and systematic FDFD numerical method that permits the extraction of 

the effective parameters of periodic arrangements of metallic/dielectric inclusions was 

suggested. In Sec. II.3.1, the effective parameters such as the nonlocal effective 

dielectric permittivity eff  and the effective magnetic permeability eff  were extracted 

for several metamaterial configurations characterized by a quasi-local response. The 

proposed method was successfully compared against other homogenization techniques 

[2, 3]. In the second part of Chapter II (Sec. II.3.2), the effective response of a 

metamaterial configuration formed by horseshoe shaped plasmonic inclusions was 

analyzed. It was shown that due to the asymmetric shape of the inclusions, the 

bianisotropic effects must be taken into account to properly model the electromagnetic 

response of the metamaterial. Furthermore, it was demonstrated that this metamaterial is 

not only characterized by bianisotropy but by spatial dispersion as well. 
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In chapter III, a zero-index DNG metamaterial (Sec. II.3.1.3) was used to prove how 

it is possible to self-consistently define the Poynting vector and energy relations in 

metamaterials with local constitutive parameters, even when negative index of 

refraction or anomalous values of effective constitutive parameters are considered. It 

was proven from first-principles considerations based on the general theory derived in 

[4] that the correct definitions of Poynting vector, stored energy and heating rate in 

NIMs coincide with those in natural materials after properly defining macroscopic 

averaged fields and effective constitutive parameters. Moreover, it was shown that other 

proposed definitions for such energy relations are not physically meaningful [5]. Still in 

Chapter III, it was shown that the zero-index index material may be instrumental in 

achieving a broadband DNG regime. It was demonstrated that the DNG response is 

fairly robust to effect of loss and disorder, and that the DNG bandwidth of the 

metamaterial is indeed some orders of magnitude higher than that of its complementary 

configuration (Sec. III.3.2). Moreover, it was shown that in case of sufficiently low loss, 

this configuration may mimic to some extent the Veselago-Pendry’s lens, enabling a 

superlensing effect in the near-field. 

In Chapter IV, a general and efficient spatially dispersive finite-difference 

frequency-domain FDFD-SD based formalism was proposed to accurately calculate the 

electromagnetic fields in a general scenario involving complex shaped spatially 

dispersive bodies of the double wire medium. The main objective of this Chapter was to 

highlight that the constitutive relations in the bulk region cannot be extended in a trivial 

manner across an interface. It was shown by numerically solving several scattering 

problems that the most straightforward way of modelling the spatial dispersion [6, 7], 

which consists on Fourier inverting the bulk constitutive relation ( , )  D k E , is only 

valid in some very specific scenarios and generally may drastically fail. Furthermore, it 
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was demonstrated that E and D can be linked based on a quasi-static homogenization 

formalism that takes into account some internal (microscopic) details of the 

metamaterial [8]. Such a solution yields physically correct results in scenarios where the 

aforementioned approach fails. 

In Chapter V some exciting applications of the double wire medium configuration 

were put forward. In the first part of the Chapter (Sec. V.2), using the FDFD-SD (IDF) 

formalism derived in Chapter IV, it was numerically confirmed that a superlens formed 

by an ultradense array of crossed metallic wires may restore the subwavelength details 

of an electric line source [9]. The possibility of concentrating the electromagnetic fields 

at the tip of a tapered double wire medium waveguide was analyzed (Sec. V.3). Finally, 

a novel approach to correct the chromatic aberrations inherent to single glass lenses was 

proposed. This solution is based on the fact that the double wire medium may be 

characterized by broadband anomalous material dispersion and very low loss in the 

optical domain [10]. It was theoretically and numerically shown with the FDFD-SD 

formalism that by coating a standard glass lens with the metamaterial it is possible to 

cancel out the effects of material dispersion, and design a compensated bi-layer lens 

with nearly no chromatic aberrations, in the whole visible range. The proposed theory 

was further supported by full-wave numerical simulations that take into account all the 

minute details of the nanostructure of the metamaterial [11], and it was demonstrated in 

a conclusive manner the suppression of the chromatic aberrations.  

VI.2. Future Work 

To conclude the thesis, some possible extensions for the presented studies are discussed 

as well as other research directions. 

Future work on the suppression of the chromatic aberrations may include the design 

of a mono-layer lens that consists of a double wire medium biconvex surface embedded 
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in a glass host. The key idea relies on compensating the positive dispersion of the glass 

with the negative dispersion determined by the metal inclusions, so that the resulting 

metamaterial is nearly dispersionless. Furthermore, one can also explore other degrees 

of freedom of the material (e.g., tilting the wires)1 to further reduce the chromatic 

aberrations. It is envisioned that these solutions may not only be an alternative to the 

conventional achromatic lenses, but they may also be a better approach for the design of 

achromatic lenses because in principle a mono-layer lens is easier to fabricate than a 

doublet formed by two surfaces with symmetric curvature. 

The effect of chromatic dispersion affects not only the performance of glass lenses, 

but also the performance of optical fibers. Chromatic dispersion occurs in optical fibers 

because the index of refraction of silica, the material used for fiber fabrication, changes 

with the optical frequency ω. This dispersive effect can add additional noise through 

phenomena such as intersymbol interference and mode-partition noise, and it is 

responsible for pulse broadening as well [12]. The solutions used to overcome this 

limitation consist on controlling the spectral width of the optical source [12]. It is 

believed that similar to the solution proposed here to suppress the chromatic aberrations 

of optical lenses, the double wire medium might be used to coat a silica optical fiber and 

reduce the effects of material dispersion. Since an optical fiber may be regarded as a 

waveguide, the initial step of the proposed study would consist on considering a double 

wire medium waveguide in cascade with a silica waveguide. In order to provide an 

impedance match between the two waveguides and ensure good transmission, a quarter-

wave impedance transformer can be used. 

It would also be very interesting to develop a full-wave 3D simulator to model the 

complete electromagnetic response of realistic (homogenized) double wire medium 

                                                 
1 In the double wire medium configuration the wires are tilted 45 

 with respect to the interfaces. 
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models. Contrarily to the 2D scenarios of propagation considered in this thesis, 

discretizing a fully 3D model of the double wire medium increases tremendously the 

computational resources required, and hence it is very challenging to develop such a 3D 

simulator. 

Another possibility for a future work relies on the fact that for wave polarizations 

different from the one considered here, the double wire medium has several interesting 

applications such as focusing of the electromagnetic radiation using a flat metamaterial 

lens and ultraconfined waveguiding [13, 14]. For these problems, analytic methods 

based on mode matching can still only be used for very specific geometries of the 

metamaterial. Hence, it would also be desirable to have a full-wave simulator to 

investigate the electromagnetic macroscopic behavior of complex geometries of the 

metamaterial and for different wave polarizations. 
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