
E
c

o
lo

g
ic

a
l risk

 a
sse

ssm
e

n
t o

f a
 tro

p
ic

a
l m

e
ta

l c
o

n
ta

m
in

a
te

d
 a

re
a

:
 

 th
e

 c
a

se
 stu

d
y

 o
f S

a
n

to
 Am

a
ro, B

a
h

ia
, B

ra
zil  

Jú
lia

 C
. N

ie
m

e
y

e
r  

2
0

1
1 

Júlia Carina Niemeyer 

Coimbra 2012 

Ecological risk assessment of  
a tropical metal contaminated area:  

the case study of Santo Amaro, Bahia, Brazil 

U
N

IV
ER

SI
D

A
D

E 
D

E
 C

O
IM

B
R

A

Ecological risk assessment of 
a tropical metal contaminated area: 

the case study of Santo Amaro, Bahia, Brazil

Júlia Carina Niemeyer

2012

Jú
lia

 C
ar

in
a 

N
ie

m
ey

er
Ec

ol
og

ic
al

 ri
sk

 a
ss

es
sm

en
t o

f  
a 

tr
op

ic
al

 m
et

al
 c

on
ta

m
in

at
ed

 a
re

a:
 

th
e 

ca
se

 s
tu

dy
 o

f S
an

to
 A

m
ar

o,
 B

ah
ia

, B
ra

zi
l





 
 

Departamento de Ciências da Vida 

Faculdade de Ciências e Tecnologia 

Universidade de Coimbra 

 
 
 
 
 
 
 
 
 
 
 
 
 

Ecological risk assessment of a tropical metal contaminated 

area: the case study of Santo Amaro, Bahia, Brazil 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Júlia Carina Niemeyer 
2012 

 





ii 
 

            
   
 

Dissertação apresentada à Universidade de Coimbra 
para a obtenção do grau de Doutor em Biologia, 
especialidade em Ecologia, realizada sob a orientação 
científica do Professor Doutor José Paulo Sousa, 
Professor Auxiliar do Departamento de Ciências da 
Vida da Faculdade de Ciências e Tecnologia da 
Universidade de Coimbra, e coorientação do Professor 
Doutor Eduardo Mendes da Silva, Professor Associado 
III do Instituto de Biologia da Universidade Federal da 
Bahia, Brasil. 
 





iii 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

O trabalho científico desta dissertação foi financiado pela Fundação para a Ciência e a 

Tecnologia sob a forma de bolsa de investigação (referência: SFRH / BD / 28796 / 

2006), co-financiada pelo Fundo Social Europeu no âmbito do Programa Operacional 

Potencial Humano do Quadro de Referência Estratégica Nacional. 

 

 

 

 

 

 

                       
 

 





iv 
 

 
                     
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

O trabalho científico desta dissertação foi financiado pelo Programa Alban, Programa 

de cooperação entre a União Europeia e a América Latina de Bolsas de Alto nível no 

âmbito do Ensino Superior, sob a forma de bolsa de investigação (referência: 

E05D058118BR, de Fevereiro de 2006 a Fevereiro de 2007). 





v 

 

Contents 
 

Acknowledgements vi 

Resumo / Summary viii 

 

Chapter 1 General introduction 1  

 

Section 1 – Initial risk assessment phases  

  

Chapter 2 Conceptual model of contamination and analysis plan 29 

  

Chapter 3 Ecological risk assessment of a metal contaminated area in the 

tropics. Tier 1: screening phase 55  

 

Section 2 – Detailed risk assessment  

  

Chapter 4 Effects of metal contamination of tropical soils on the 

reproduction of Folsomia candida, Eisenia andrei and 

Enchytraeus crypticus 89 

  

Chapter 5 Microbiological soil quality indicators as tools in ecological risk 

assessment of a metal contaminated area in the tropics  119 

  

Chapter 6 Functional and structural parameters to assess the ecological 

status of a metal contaminated area in the tropics 149 

  

Chapter 7 Ecological risk assessment of a metal contaminated area in the 

tropics. Tier 2: detailed assessment 183 

  

Chapter 8 General discussion 225 

  





vi 
 

Acknowledgements 
 
 
I would like to thank the Program Alban and the FCT (Fundação para a Ciência e a 
Tecnologia, Portugal) for providing me PhD grants, and the University of Coimbra for 
the PhD opportunity. 
 
I am highly indebted to my supervisor Prof. Dr. José Paulo Sousa, for sheltering me in 
his research group and guiding me along the several phases of the work, culminating 
with his precise and deep corrections of the manuscript. In addition, his professional 
advices and belief in my capabilities significantly contributed to my career. 
 
I also express my warm gratitude to Prof. Dr. Eduardo Mendes da Silva, for accepting 
the co-supervision of this work, for being constantly available to guide me in the field 
work and for providing me complementary supervision and friendship.  
 
To my colleagues and friends of the Lab of Soils of the University of Coimbra, Cátia 
Silva, Carla Martins (in memorian), Cláudia Norte, Cristina Rufino, Dalila Costa, Rui 
Moreira, Sara Mendes, Sónia Chelinho, Tiago Natal da Luz, my recognition for their 
support and friendship and, additionally, Tiago Natal da Luz kindly provided me with 
precious lab-work training at the beginning of this work. 
 
To all my colleagues, Salomão Cohin-de-Pinho, Alice Andrade, Bruno Abdon, Ubiratan 
Outeiro, Gilberto Rodrigues, Gabriel Carvalho, Viviane Neves and Vitor Groth, that 
provided indispensable help with field work, I am mostly thankful. 
 
I would like to acknowledge the help of Dr. Marco Nogueira and Dr. Michiel Rutgers, 
co-authors involved with this work, for their valuable and needful contributions.  
 
Chapters 2 and 7 of this thesis have been greatly improved by the insightful comments 
of Prof. Dr. Rui Ribeiro and Dra. Matilde Moreira-Santos, with whom I had the privilege 
of working. 
 
Several people have made me feel home in Coimbra, Marcie Pereira, Maria Emília 
Carapito and Maria Teresa Alvim, my friend Matilde Moreira Santos and my Brazilian 
friends Jucimary Vieira, Manoel Bandeira and Patrick Materatski. 
 
To my friends of UFBA, not still mentioned, Adriana Medeiros, Angélica Yohana 
Cardozo, Antoine Leduc, Carla Chastinet, Doriedson Gomes, Graziela Chagas, Jojó, 
Katia Silva, Sheila Resende, Thirza Santos, Yukari Mise, and to my friends Cristina 
Sisinno and Maria Edna Nunes, all whom have always demonstrated their friendship. 
 
My family, especially my father João, my mother Cecília and my brother João Gabriel 
have always supported me in my professional decisions, my special thanks.  
 



vii 
 

My husband, Alexandre Wegner, has played an important role in my work, his 
encouragement, comprehension and support, were crucial to me, and I dedicate this 
work to him. 
 
God has guided me through these years and given me the necessary strength to 
overcome certain obstacles… 
 
 



viii 
 

Resumo 
 
 
O presente estudo, realizado na área abandonada de uma fundição de chumbo no Brasil, teve 

como principal objetivo contribuir para a aplicação, em ambientes tropicais, de um esquema 

de análise de risco ecológico em etapas, e avaliar a adequabilidade dos diferentes parâmetros 

nas etapas dentro do enfoque da Tríade. Buscou-se caracterizar o risco ecológico em vários 

pontos da área de estudo, uma das mais contaminadas por metais do mundo, em Santo Amaro 

(BA, Brasil), fornecendo informações que indiquem possíveis medidas de remediação para o 

local e trazendo uma importante contribuição para decisões futuras. O objetivo deste trabalho 

é contribuir para o uso da avaliação de risco ecológico em processos de restauração e 

recuperação de locais contaminados no Brasil, seguindo as atuais tendências mundiais de 

proteção do solo. O Capítulo 2 apresenta a investigação preliminar, incluindo a fase de 

formulação do problema e o levantamento de informações científicas disponíveis sobre a área 

de estudo, resultando na elaboração de um modelo conceitual para o local e um plano de 

análise para a avaliação de risco. Um esquema em fases é proposto, integrando informações 

de três linhas de evidência (LoE): química, ecotoxicológica e ecológica. Os objetivos e as ações 

de cada fase da análise de risco foram estabelecidos para incluir avaliações ecológicas e 

ecotoxicológicas, não realizadas nos estudos anteriores sobre o local, com foco no 

compartimento ambiental solo. O plano de análise incluiu duas fases, usando a abordagem da 

Tríade: a fase 1, sendo uma fase de “varredura”, (Capítulo 3); e a fase 2, sendo a avaliação de 

risco detalhada (Capítulo 7). Na fase 1, a LoE química indicou um alto nível de contaminação 

por metais relacionados às atividades da antiga fábrica, mostrando uma alta heterogeneidade 

espacial relacionada aos locais de deposição de escórias e à tentativa de recobrir a escória com 

solo. Na LoE ecotoxicológica, os ensaios de fuga com organismos de solo indicaram um risco 

mais alto para o solo, relacionado aos locais dentro da área da fábrica com solos arenosos, do 

que para a água, relacionado aos ensaios com eluatos (luminescência de V. fischeri e ensaio de 

letalidade com D. magna), o que sugere uma alta retenção dos metais no solo da maioria dos 

pontos analisados. Na LoE ecológica, respiração basal do solo, bait lamina e cobertura vegetal 

apresentaram a mesma tendência nas respostas, apesar da menor sensibilidade deste último 

parâmetro. Os altos valores de risco encontrados em locais dentro da área da fábrica 

sugeriram a necessidade de ações de remediação do local, enquanto que algumas incertezas 

associadas às diferentes respostas nas LoE sugeriram a necessidade de avançar para a fase 2 

da avaliação de risco em alguns pontos (cujas informações foram coletadas nos capítulos 

seguintes à fase 1). O Capítulo 4 apresenta os efeitos dos solos contaminados sobre a 
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reprodução de Eisenia andrei, Enchytraeus crypticus e Folsomia candida, e uma discussão 

sobre as diferentes sensibilidades destas species e sobre a performance destes ensaios 

padronizados em solos tropicais. Os Capítulos 5 e 6 foram dedicados aos parâmetros 

ecológicos usados na LoE ecológica. O Capítulo 5 apresenta o uso de indicadores microbianos 

de qualidade de solo na avaliação das condições ecológicas e da atividade biológica na área de 

estudo. O Capítulo 6 apresenta a aplicação das avaliações ecológicas e ensaios in situ para 

avaliar os efeitos na estrutura e no funcionamento do ecossistema. Os resultados de alguns 

destes parâmetros indicaram que a cobertura vegetal e a composição de espécies estiveram 

correlacionadas com algumas funções do solo, tais como a ciclagem de nutrientes e a quebra 

de material orgânico. Os endpoints avaliados foram estrutura da vegetação, invertebrados da 

superfície do solo, decomposição do material orgânico e alguns parâmetros microbianos. Estes 

parâmetros indicaram uma clara diferença entre os pontos dentro e fora da área da fábrica, 

indicando risco ecológico mesmo 17 anos depois do encerramento das atividades da fábrica.  

No Capítulo 7 são apresentados os valores de risco para cada LoE e os valores de risco 

integrado, calculados na fase 2 da análise de risco, usando os resultados dos parâmetros 

apresentados nos Capítulos de 4 a 6, e incluindo os ensaios com plantas e os ensaios crônicos 

aquáticos com os eluatos. Os altos valores de risco em alguns pontos, confirmando o risco 

indicado na fase 1, restringem o uso da área mesmo como área industrial, requerendo o 

encapsulamento do solo. No Capítulo 8 é apresentada uma discussão crítica sobre os 

resultados e sobre as perspectivas de pesquisas futuras para o local. Em geral, os resultados 

sugerem que a deposição de escória dentro da área da fábrica e a tentativa falhada de 

encapsulamento tem impedido o estabelecimento da vegetação, levando a uma mudança e 

simplificação da estrutura do habitat. Aliado ao efeito tóxico dos metais, a limitação do 

estabelecimento da vegetação resulta em baixos conteúdos de matéria orgânica no solo para 

servir de fonte de C e energia para os microrganismos e como proteção para a comunidade 

microbiana contra os altos níveis de metais no solo. Estas mudanças nas condições 

microclimáticas no solo e na quantidade de entrada de matéria orgânica causam impactos 

negativos na atividade microbiana e dos organismos do solo, consequentemente afetando os 

serviços do ecossistema e outros processos realizados por estes organismos. O 

encapsulamento adequado dos depósitos de escória, com o paralelo re-estabelecimento da 

cobertura vegetal, parecem ser essenciais para melhorar a condição ecológica do local. 

 

Keywords: Avaliação de risco ecológico, Ecotoxicologia terrestre, Função de habitat, Função de 

retenção, Metais  
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Summary 
 
 
The present study was carried out in an abandoned lead smelter in Brazil, with the major goal 

of further contribute to the application of a tiered ecological risk assessment framework to 

tropical environments, and to evaluate the feasibility and usefulness of different assessment 

tools to be used in different tiers within a Triad approach. The results aimed at characterizing 

the ecological risk in one of the most metal contaminated areas in the world, in Santo Amaro 

(BA, Brazil), ranking sites in the study area, supplying information to indicate remediation 

measures and bringing an important contribution to support future decisions. This thesis aims 

at providing important information to help the regular use of the risk assessment process to 

support site restoration and reclamation decisions in Brazil, following the current trends in soil 

protection around the world. Chapter 2 presents the preliminary investigation, including the 

problem formulation phase and the collection of the scientific information available about the 

study area, that resulted in the conceptual model and the analysis plan for the risk assessment. 

A tiered approach is proposed integrating information from three lines of evidence (LoE): 

chemical, ecotoxicological and ecological. Aims and actions of each phase of risk assessment 

are established, in order to include the ecological and ecotoxicological perspectives missing in 

previews studies conducted in this area, focusing on the soil compartment. The analysis plan 

included two tiers using the triad approach: tier 1, the screening phase (Chapter 3), and tier 2, 

the detailed risk assessment (Chapter 7). At tier 1, chemical LoE indicated a high level of metal 

contamination in the study area caused by the smelting activities, showing high spatial 

heterogeneity originated not only by the uneven deposition of residues during smelting 

activities, but also by the current status of the (pseudo) rehabilitated residue piles. In the 

ecotoxicological LoE, avoidance tests on soil organisms indicated a higher risk at sites inside 

the smelter and with sandy soils than tests on eluates (V. fischeri luminescence and D. magna 

lethal), suggesting a high retention of metals on soils in most areas. Regarding the ecological 

LoE, soil respiration, bait lamina and vegetation cover revealed a concordant response, despite 

the lower sensitivity of this last parameter. Very high risk levels, associated with sandy soils 

and residue deposits inside the smelter area, suggest the need to proceed with remediation 

actions, while the uncertainties associated with the contradictory information given by certain 

LoE at certain sampling points showed the need to confirm potential risks in a tier 2 analysis 

(which information was collected in the following chapters). Chapter 4 presents the effects of 

the tested metal contaminated soils on the reproduction of Eisenia andrei, Enchytraeus 

crypticus and Folsomia candida, and a discussion about the different sensitivities of these 
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species and about the performance of these standardized tests in tropical soils. Chapters 5 and 

6 are dedicated to ecological parameters used within the ecological LoE. Chapter 5 presents 

the use of microbial soil-quality indicators to evaluate the ecological conditions and biological 

activity in the study area. Chapter 6 presents the application of ecological evaluations and in 

situ tests following known protocols, evaluating the ecological risk to ecosystem structure and 

functioning. Results of some microbial parameters showed that vegetation cover and plant 

species composition were correlated with some soil functions, such as nutrient cycling and 

organic material breakdown. The endpoints evaluated were vegetation structure, soil ground 

running invertebrates, decomposition of organic material and some microbial parameters. The 

ecological parameters indicated a clear distinction between sites inside and outside the 

smelter area, indicating an ecological risk to soil system even 17 years after the end of smelting 

activities. In Chapter 7 the integration of the parameters measured on chapters 4 to 6 is 

presented on calculating the risk values for each line of evidence and the integrated risk values 

in a tier 2 assessment. The high risk values in some points, confirming the risks pointed at tier 

1, restrict the use of the area even to industrial activities, requiring sealed soils. In Chapter 8 a 

critical discussion of the results obtained and some words about the future perspectives for 

forthcoming studies on the site are presented. Results suggest that the deposit of highly 

contaminated tailings within the area and the failed attempt to encapsulate them have 

impaired the proper establishment of the vegetation, leading to change and simplification of 

the habitat structure. Allied to direct toxic effect of metals, the limitation of plant 

reestablishment resulted in low amounts of organic matter inputs into the soil to act as source 

of C and energy for microbial growth and for acting as protection for microbial community 

against high levels of heavy-metals in soil. These changes in the microclimatic conditions at the 

ground level, and in the amount and quality of the potential of organic matter inputs, caused 

negative impacts on microbial activity and on soil organisms, consequently affecting the 

ecosystem services and underlying processes carried out by them. The suitable encapsulation 

of the tailing deposits, with the concomitant re-establishment of a vegetation cover, seems to 

be essential to improve the ecological conditions at this site. 

 

Keywords: Ecological risk assessment, Soil ecotoxicology, Habitat function, Retention function, 

Metals 
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General introduction 

 

1.1 Soil protection and ecological risk assessment  

 

Soil is a dynamic system essential to the survival of humans and ecosystems. It can be 

considered a non-renewable resource, due to the high rates of degradation and the slow 

formation and generation soil processes (EC 2004). The main threats to soil, impairing the 

provision of different ecosystem services, include erosion, decline in organic matter, soil 

sealing, compaction, decline in biodiversity, salinisation, floods and landslides, and soil 

contamination from natural or anthropogenic sources (local and diffuse) (EC 2004; Bone et al. 

2010). 

Nowadays, soil contamination is no longer perceived as a few severe incidents, but 

rather recognized as a problem at world scale. Contaminated land has the potential to pose 

serious environmental and human health risks, including the contamination of other 

environmental compartments such as surface and groundwater, air and biota (Blum et al. 

2004; Balasubramaniam et al. 2007). Just in the US, McKeehan (2011) estimated in over 

600,000 the number of brownfields. Brownfields are vacant, abandoned, or underutilized 

commercial and industrial properties, where real or perceived environmental contamination is 

an obstacle to redevelopment or utilization. Furthermore, abandoned mines, dump areas, 

thermoelectric industries, dams and other deactivated structures are considered brownfields. 

In Europe, some countries provided estimates about brownfields: Germany (about 128,000 

hectares), The Netherlands (between 9,000 and 11,000 hectares), Belgium/Wallonia (about 

9,000 hectares) (Grimski and Ferber 2001). However, these data are not directly comparable 

because they include different kinds of sites, since there is a lack of consensus about the 

concept of brownfields in Europe. 

The protection of soils, its diversity and ecological functions, has become an objective 

of environmental agencies around the world (Bone et al. 2010). Legislation aiming to protect 

soils in Europe includes the EU Soil Thematic Strategy (EC 2006), the European strategy to 

biodiversity conservation, and the, still under discussion, Soil Framework Directive – SFD (EC 

2006).  The SFD has the objective of establishing a common strategy for the protection and 

sustainable use of soil, integrating soil concerns into policy making, preventing threats to soil 

and mitigating their effects, restoring degraded soils to a level of functionality consistent at 

3
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least with the current and future uses. Being approved, the SFD will require identification of 

risk areas, to be carried out on the basis of common elements (EC 2006). 

Some EU member states have legislation focused on soil contamination. The 

Netherlands, Germany and Belgium are some of the most advanced states for soil protection 

in EU (Bone et al. 2010). The Netherlands policies include the 1987 Soil Protection Act 

(amended 2008) (VROM 1986), the Soil Policy Letter (Van Geel 2003) and the Soil Remediation 

Circular (VROM 2009). The German policies include the Federal Soil Protection Act (Federal 

Ministry for the Environment Nature Conservation and Nuclear Safety 1998), where reference 

is made to “harmful soil changes”, and the Federal Soil Protection and Contaminated Sites 

Ordinance (Federal Ministry for the Environment Nature Conservation and Nuclear Safety 

1999). Belgium approved the Decree on Soil remediation and Soil Protection (Public Waste 

Agency of Flanders 2007) and the Order of the Flemish Government establishing the Flemish 

regulation on soil remediation and soil protection (Flemish Government 2007). In England, the 

Soil Strategy for England (DEFRA 2009) was built on the First Soil Action Plan for England 

(2004-2006), aiming to improve the sustainable management of soil and tackle degradation 

within 20 years. The Soil Strategy for England is focused on four main themes: the sustainable 

use of agricultural soils; the role of soils in mitigation and adaptation to climate change; 

protecting soil functions during construction and development; preventing pollution and 

dealing with historic contamination (DEFRA 2009). 

In general, politics and actions on soil protection rest on two basic approaches: (i) 

Optimization of biodiversity and (ii) Protection of ecosystem services (and their underlying 

biological/ecological processes) essential for the survival of mankind. Soil is seen as a 

multifunctional unit, supplying provisioning (food, water, fuel), regulating (soil erosion, flood 

control), cultural (recreation, spiritual value, sense of place) and essentially supporting (soil 

formation, nutrient cycling, oxygen from photosynthesis) services simultaneously (Letey et al. 

2003; Millennium Ecosystem Assessment 2005; Tallis and Kareiva 2005).  

The role of biodiversity on the quality of ecosystem services is very complex and hard 

to quantify because of the mutually dependent interactions between soil organisms (as in food 

webs) and their different role in ecosystem processes, such as in nutrient cycling (Griffiths et 

al. 2001; Swartjes et al. 2011). To Ghilarov (2000), the meaning of biodiversity for ecosystem 

functioning depends on the definition of “ecosystem function”. According to Ghilarov (2000), 

any decrease in species diversity will be meaningful if we consider ecosystem functioning 

including the synthesis of all compounds that plants, animals and other organisms contain in 

4
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their bodies or release to the external environment; not only considering ecosystem “as a 

natural factory producing different goods and services”, which is an utilitarian human’s point 

of view, but also as a “living stage for a unique evolutionary play”. Although the concept of 

ecosystem services can contribute to develop a framework to the sustainable use of 

biodiversity and natural resources, final decisions depend on the socio-political and cultural 

context where they are inserted (Wallace 2007). 

Ecosystem services have received explicit attention in the EU Soil Thematic Strategy 

that pointed the following ecosystem services as protection goals (EC 2006): 

a) Production of food and other biomass; 

b) Capacity for storing, filtering and transformation of nutrients, substances and water; 

c) Reservoir of biodiversity; 

d) Physical and cultural environment to human activities; 

e) Source of raw material; 

f) Reservoir of carbon; 

g) Conservation of arqueologic and geologic patrimony. 

Discussion on contaminated sites led to the question whether we should protect the 

multifunctionality of soils, as a resource for future generations, or whether we should make a 

differentiation between different types of land use, the so called “risk based approach”. 

According to Bardos et al. (2011), there has been a shift from the multifunctional policy 

approach for land remediation, to “end-use-related” remediation, which is considered a more 

sustainable approach. Despite the environmental benefits of the rehabilitation of 

contaminated land required for any future use (multifunctionality), rather than for a specific 

land use, the former is considered an unsustainable political approach because of its economic 

and social costs, being an obstacle to the reuse of contaminated land. More sustainable 

development appraisals, such as the risk-based land management (RBLM), have begun to be 

applied to remediation projects and debated in sustainable brownfield regeneration, as in UK 

Sustainable Remediation Forum (SuRF-UK) (Bardos et al. 2011). The concept of RBLM aims to 

restore the usability and economic value of the land by risk reduction (fitness for use), 

protection of the environment and reduction of aftercare (Vegter 2001).  

5
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The RBLM approach is complex and has generated a demand for decision support tools 

(Vegter et al. 2003). Therefore risk assessment provides a useful starting point to prioritize 

actions and to conduct any remediation strategy. Also, land use can be adjusted according to 

soil quality indicated by a site-specific risk assessment (Vegter et al. 2003; Faber 2006). In this 

context, the Ecological Risk Assessment (ERA) process has been recognized as a powerful tool 

for the decision-making process in the management of contaminated sites or sites suspected 

of contamination (USEPA 1998; Suter et al. 2000; Bardos et al. 2002). Furthermore, purposes 

for ERA include the estimate of the risk in contaminated sites for public disclosure and damage 

assessment, when those who contaminated a site must compensate any injury to natural 

resources (Suter et al. 2000).  

ERA is a complex process of collecting, organizing and analyzing environmental data to 

estimate the probability of adverse effects due to contamination, being expert judgment 

fundamental in the decision making framework before, during and after the process (Jensen 

and Mesman 2006). ERA uses data from different environmental compartments collected at 

different lines of evidence and different sources of information, such as chemical analysis of 

contaminants, physical properties of the environment, biological surveys, and ecotoxicity tests 

with environmental samples. Although a general trend of biological responses, according to 

the type of contamination, can be expected in contaminated areas, the relationships between 

the sources, exposure, and effects to ecological receptors are complex and often specific to a 

particular site, a set of environmental condition, and a specific receptor organism, claiming for 

a site-specific ERA to support decisions about risk management and remediation. Site-specific 

risk assessments will involve only a single geographical area of concern and, therefore, can 

incorporate locally relevant aspects of environmental chemistry and species sensitivity, while 

for regional and national-scale assessments, more general assumptions are taken, frequently 

producing results that are more conservative in an effort to be protective of sensitive species 

or locations (USEPA 2007). Rutgers et al. (2000) highlighted the need of defining the intended 

soil use before the implementation of the site-specific ERA, followed by the selection of what 

groups of organisms or ecological processes are most likely to be affected given the soil use at 

that site. 

An ERA process should include indicators both of ecosystem structure and functions 

(Burger et al. 2007). In spite of the recent increase of test systems and standardized protocols 

developed for the terrestrial compartment (Achazi 2002; Knacker et al. 2004; Roembke et al. 

2006a) there is still a lack of information on terrestrial ecosystems including soil biodiversity, 

biology of species, ecosystems functioning and toxicity database in comparison to the aquatic 
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compartment (Ahlers 2001; Swartjes et al. 2008). There is still a gap between soil protection 

and assessment concepts and those currently discussed in ecology, especially those covering 

both risk assessment and ecosystem functioning (Van Straalen 2002; Filser et al. 2008; 

Kuperman et al. 2009), since the impact of chemicals on soil functions has mostly been studied 

in reductionist ecotoxicological approaches, such as spiked soils in laboratory.  

The aforementioned challenges are more critical in tropical environments. Although a 

no distinct tropical ecotoxicology should exists (da Silva and Soares 2010), there is a lack of 

knowledge about ecotoxicology in tropical environments (Lacher and Goldstein 1997), which 

may be a challenge to risk assessment in these regions (Chelinho et al. 2012). There are 

important differences in behavior and distribution of contaminants in tropical areas, once 

different conditions between environments, such as temperature (Spurgeon et al. 1997; Abdel-

Lateif et al. 1998; Garcia 2004) and soil properties (Bradham et al. 2006; Roembke et al. 

2006b), can influence the toxicity of contaminants and should be considered during the ERA 

and management of contaminated environments (Guimarães et al. 2000). For example, high 

temperatures in humid tropical areas can accelerate microbial and chemical degradation, 

volatilization, rate of uptake and increased bioconcentration (Castillo et al. 2010). Transport of 

soil contaminants by surface runoff and groundwater leaching can be favored by rainy 

conditions prevailing in some tropical areas (Henriques et al. 2007; Castillo et al. 2010; 

Chelinho et al. 2012). Furthermore, the higher species richness and ecological diversity than in 

temperate regions can mean a higher number of species at risk, and the possible occurrence of 

more sensitive species cannot be ignored (Lacher and Goldstein 1997; Castillo et al. 2010). 

Any ERA should start with the application of generic and conservative principles for 

optimum protection (Rutgers and Jensen 2011). In this sense, ecotoxicological data has been 

used in the derivation of risk limits and environmental quality objectives like the Soil Screening 

Levels (SSL), also known as benchmarks, guideline values, etc. SSL are normally derived from 

No Observed Effect Concentration (NOEC) values, e.g. by using Species Sensitivity Distribution 

(SSD) (Posthuma et al. 2002). In many countries the first stage of the ERA of contaminated soils 

consists in the comparison of soil concentrations with national SSL. For the majority of sites, 

this generic risk assessment is sufficient to exclude acceptable risks (when the SSL are not 

exceeded), being considered very useful screening tools (Rutgers and Jensen 2011). However, 

when the SSL are exceeded, a more specific assessment is necessary. Since the SSL data are 

derived from spiked experiments conducted in laboratory, large discrepancies have been 

observed between the predicted and observed effects (Jensen et al. 1996). In this way, the 

complement of chemical analysis with direct toxicity testing can tell us whether the 
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contaminants are bioavailable and at toxic levels, integrating the combined effect of mixtures, 

including its degradation products and metabolites, and that of contaminants not analyzed or 

for which soil quality levels do not exist (Weeks et al. 2004; Fernandez et al. 2005; Jensen and 

Mesman 2006), reducing uncertainties. 

The response of biota to environmental conditions is an integrated result of the direct 

and indirect impacts of contaminants, natural stressors, or a combination of both. Biological 

systems under stress commonly exhibit a certain sequence of responses; some general 

patterns include reduction in species diversity, shifts in species composition, simplification of 

community structure, substitution of sensitive taxa by tolerant ones, changes in nutrient 

cycling, and changes in primary productivity (e.g. Georgieva et al. 2002, Podgaiski and 

Rodrigues 2010). In ERA, the effects of stressors should be explored and understood at 

multiple levels of organization. One same stressor can be beneficial at one level and 

detrimental at another (Odum 1985). Even at the same level the effects are species dependent 

due to different routes of exposure or to intrinsically different sensitivity of the species (Breure 

et al. 2005). For example, in ecotoxicological studies with the usual tested species of soil 

invertebrates, Folsomia candida, Enchytraeus crypticus and Eisenia andrei, there is not a 

general ranking of their sensitivity among different contaminants (Kobeticová et al. 2008; 

Kuperman et al. 2009). 

The movement of contaminants between environmental compartments (e.g. soil to 

water) and between trophic levels should be considered in risk assessment and risk 

management (Blum et al. 2004). Because of the soil quality implications to other 

environmental compartments, both habitat function and retention function are commonly 

evaluated in ERA of contaminated soils. According to the International Standardization 

Organization (ISO), in the guideline ISO 15799 on the ecotoxicological characterization of soils 

and soil materials (ISO 2003), the habitat function is the ability of soils/ soil materials to serve 

as a habitat for micro-organisms, plants, soil living animals and their interactions (biocenoses), 

while the retention function is the ability of soils/soil materials to adsorb pollutants in such a 

way that they cannot be mobilized via the water pathway, including the buffer inhibiting 

movement of water, contaminants or other agents into the ground water. The habitat function 

is commonly evaluated through testing the soil matrix using soil invertebrates or plant tests 

(e.g. Hund-Rinke et al. 2003), while retention function is assessed by testing soil extracts (e.g. 

eluates) with aquatic organisms, such as algae and cladocerans (e.g. Natal da Luz et al. 2012). 
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1.2 Regulatory context of the ecological risk assessment 

 

Regulatory agencies around the world are increasingly incorporating risk based 

approaches into environmental decision making (Pollard et al. 2004). In the US, the study of 

toxic effects gained prominence with the advent of modern environmental law, especially with 

the Clean Water Act of 1970 for aquatic systems and the Comprehensive Environmental 

Response, Compensation, and Liability Act (CERCLA) of 1981 for terrestrial systems (Kapustka 

et al. 2004). The application of ecological risk assessment to contaminated sites was stimulated 

by USEPA (US Environmental Protection Agency) in the Superfund program (USEPA 1989). The 

practice of ERA took off after 1992 with the publication of the USEPA (1992) framework and 

other texts.  

European cooperation on soil quality assessment started with the CARACAS (Concerted 

Action on Risk Assessment for Contaminated Sites in the European Union; 1996–1998) and 

CLARINET (Contaminated Land Rehabilitation Network for Environmental Technologies in 

Europe; 1998–2000) concerted actions. In 1996 the industrial network NICOLE (Network for 

Industrially Contaminated Land in Europe) started and, in 2005, after several meetings where 

ERA was discussed, it was concluded that the industry clearly has a potential to impact 

ecological processes in soil (Bardos et al. 2005). It was advocated to further develop an 

intelligent cost-effective tiered approach, possibly along the idea of the triad approach 

(integrating chemical analyses, ecotoxicity testing and biological surveys) (see section 1.3.2). In 

2005 the HERACLES (Human and Ecological Risk Assessment for Contaminated Land in 

European Member States) network was initiated, with the purpose to promote harmonization 

of models and frameworks of risk assessment in Europe. Also the EU Soil Thematic Strategy 

and SFD will further stimulate attention to ERA at contaminated sites, once they predict the 

exchange of information aiming the harmonization of some elements to develop and improve 

the methodologies on risk assessment (Rutgers and Jensen 2011). For more details about the 

history on European cooperation in the field of soil contamination see Swartjes et al. (2008). 

In The Netherlands, the Soil Protection Act was introduced in 1986 and extended in 

1994, with the addition of a procedure to determine the urgency of remediation based on site-

specific risk assessment (Swartjes 2009). Such procedure was significantly improved by the use 

of the triad approach (Mesman et al. 2007). According to Rutgers and Jensen (2011), the ERA 
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approach in The Netherlands might be different from many other countries with a soil 

protection policy, being applied for all sites with a serious soil contamination, and remediation 

should be seriously considered for all unpaved and uncovered soil, including those at industrial 

sites. Contaminated sites are first assessed using a set of Soil Quality Standards which take 

both human and ecological risk into account, applied to all kind of land uses and soil types 

(Rutgers and Den Besten 2005). This assessment is followed by a calculation of Toxic Pressure 

of the mixture of contaminants. The Triad is applied in a subsequent step to further improving 

ERA when it is recommended. In many cases, the goal of a Triad approach is to reduce the 

surface area to be remediated and hence to reduce costs (Rutgers and Jensen 2011). 

In UK, ERA framework is applied only to controlled waters and certain protected 

habitats, defined in Part IIA of the Environmental Protection Act of 1990 (Weeks 2004). 

In many other countries, soil quality is expressed in chemical concentrations as 

standards to address the potential ecological risks without an established ERA framework. For 

example, in Brazil, target values and intervention values established for soils in the Resolução 

CONAMA 420/09 (BRAZIL, 2009), pre-defined based on fitotoxicity assays, and ecological and 

human risk, is the guideline to prevention, punition and chemical criteria about soil quality, for 

management of soil use and remediation. However, until 2011 only the State of São Paulo had 

reference values of soil quality in Brazil. Environmental agencies of each Brazilian State should 

list the different soils in their territory and establish reference values (backgrounds) until 2013, 

providing crucial information to identify contaminated areas and carry out intervention 

actions. A project of identification and mapping of contaminated sites or under investigation, 

carried out at São Paulo, registered 2514 sites until December 2008 (CETESB 2007). These data 

evidenced the importance of detecting and identifying contaminated areas because of the 

risks associated to future uses, such as residential use. 

  

1.3 Ecological risk assessment schemes – a bird’s eye 

 

1.3.1 Main phases of an ERA 

Although different schemes of ERA are proposed and applied in different countries, the 

components of the ERA process are similar among them, generally including the following 

phases:  
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1. Preliminary investigation: this phase includes the problem formulation of the 

assessment, including the collection of all the scientific information available for the area; the 

development of a conceptual model; and an analysis plan for the risk assessment (e.g. Pereira 

et al. 2004; Weeks et al 2004). Although this phase is basically a desk work, complemented 

with one or two site visits, it is a critical step for the risk assessment process, since many of the 

actions to be taken on the following phases are dependent on the information (and gaps of 

information) identified at this stage. The conceptual model is built involving what is currently 

known about the site, geographical limits, source and type of contamination, historical use and 

activities in the site, current pathways of exposure, and observation of perceptible risks and 

ecological receptors at risk (Weeks 2004, Jensen and Mesman, 2006, Ashton et al. 2008). It 

should take into account the inherent properties of contaminants involved, such as toxicity, 

persistence, mobility, potential of bioaccumulation through food chains, etc. In addition, the 

development of the conceptual model involves site characterization and identification of data 

gaps, urgency of decisions, current and future land use, and whether the site may be regulated 

under specific directives (Jensen and Mesman, 2006). After the conceptual model is developed 

(which can be updated throughout the risk assessment process based on the information 

being collected), if ecological receptors are able to be exposed to the contaminants given their 

fate, behavior and proximity, an analysis plan for the risk assessment is proposed.  

2. Exploratory investigation: this is an optional phase to confirm the existence of 

unacceptable contamination on the study area by performing a preliminary sampling on the 

site, followed by chemical analysis and comparison with soil quality guidelines. In some cases 

where contamination is not so visible, this exploratory investigation is performed with the 

objective of providing the proof of the absence of contamination. 

3. Main investigation: this phase is performed in case a contamination is confirmed 

and a potential ecological risk can occur.  This phase is usually done using a tiered approach 

where in each tier different assessment tools belonging to different lines of evidence are 

applied, including more detailed chemical analysis, bioassays and ecological field surveys. 

Ecological receptors potentially at risk and major pathways of exposure identified in the 

preliminary investigation and described in the conceptual model are the main targets on this 

main investigation phase. Besides a more detailed evaluation of the spatial extent of the 

contamination, these assessments usually consider evaluation of effects on soil invertebrates, 

plants, and wildlife species, and some assessments also examine effects on microbial 

communities and soil processes (Jensen and Mesman 2006, USEPA 2007, Swartjes et al. 2008). 

At the end of the assessment, the results are integrated to describe the risk. Moreover, effects 
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on the retention function of the soil, using assays with aquatic organisms are also applied. The 

combined information of the different blocks (lines) of information to infer a potential risk for 

the site is called the triad, and has been used as one promising approach to be applied in this 

main investigation phase (see 1.3.2.). 

The ERA framework designed by USEPA (1998) consists of the following components 

(Sutter et al. 2000): a) Problem formulation, including the planning phase; b) Analysis, where 

the technical evaluation of the data concerning the characterization of exposure and effects is 

carried out; c) Risk characterization, where the results of the analysis phase are integrated to 

estimate and describe risks. 

The Canadian framework for ERA consists of the three tiers: Screening Assessment 

(basically desktop work), Preliminary Quantitative ERA (field and laboratory quantitative data 

collection), and Detailed Quantitative ERA (detailed quantitative methods for reduction of 

uncertainties, if necessary). Each tier includes the following components: receptor 

characterization, exposure assessment, hazard assessment, and risk characterization though 

the Detailed Quantitative ERA does not necessarily include all components. More details about 

the Canadian framework can be obtained from the homepage of the Canadian Council of 

Ministers of the Environment (CCME, www.ccme.ca) or in CCME (1996, 1997a). Acceptable 

risks are dependent on land-use type since in Canada, soil quality guidelines are derived for 

given land-uses, including agricultural, residential/parkland, commercial and industrial (CCME, 

1997b, 2006). 

The UK framework was based on schemes from US, Australia, Canada and the 

Netherlands (Weeks 2004), being a tiered framework using the Triad approach, where early 

tiers are screening phases, and subsequent tiers are intended to make more realistic 

assessments of the risk to key ecological receptors. This framework includes a first step called 

“Tier 0” involving the development of a conceptual site model, aiming to determine whether a 

site falls under the Part IIA conditions (Weeks 2004), where mode detailed studies need to be 

performed. 

An harmonization of ERA tools and in the resulting soil quality standards of these tools 

within the EU have been discussed since 2005 under the HERACLES, a long term research 

network to promote the development of common risk assessment tools for soil quality 

assessment (Swartjes et al. 2008). A promising approach is the Triad (Rutgers and Den Besten 

2005) which has been adapted and successfully applied in Europe (Jensen and Mesman 2006; 

Critto et al. 2007; Semenzin et al. 2007, 2008).  In The Netherlands, the EU country with most 
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experience in the application of site-specific ERA, a practical Triad approach has been 

developed (Mesman et al. 2007) and it is described in 1.3.2. In other EU countries (e.g., 

Germany, Spain and Sweden), ERA can be based on additional types of testing to make the 

triad approach feasible (Rutgers and Jensen 2011). A Decision Support System (DSS-

ERAMANIA) for assisting in site-specific ERA was developed based on research at the Acna di 

Cengio (Italy) contaminated site, using the Triad and the Weight of Evidence (WoE) 

approaches, and where ecological observations and ecotoxicological tests were compared 

according to Multi Criteria Decision Analysis (MCDA) (Critto et al. 2007, Semenzin 2007, 2008, 

2009).  

 

1.3.2 The Triad approach  

The Triad approach was originally developed to evaluate sediment quality (Long and 

Chapman 1985). Consisting of three lines of evidence (LoE; chemical, ecotoxicological and 

ecological), the Triad approach is usually applied within a tiered system, i.e., information from 

each LoE is collected at each tier following a stepwise cost-effective process (Jensen and 

Mesman 2006). The tiered approach is designed to be efficient in excluding extreme sites, i.e., 

either sites that pose no risk to ecosystems or sites that pose a high risk and where 

remediation actions are needed. Moreover it is essential to gather sufficient evidence of harm, 

or the possibility of harm, at sites where risk management may be required (Ashton et al. 

2008). The Triad approach relies on the concept of WoE, which is the process of combining 

information from multiple lines of evidence to reach a conclusion about an environmental 

system or stressor (Burton et al. 2002). Such approach minimizes the chance of false positive 

and false negative conclusions. 

Tier 1 is essentially a screening phase, aiming to produce a first spatial representation 

of the risk and to determine whether a site can be excluded from higher tiers and of further 

testing (either because it is unlikely to pose a risk to the relevant ecological receptors or 

because a high risk is detected and there could be a need for immediate mitigation actions), or 

it needs to be further evaluated (Weeks et al. 2004, Critto et al. 2007) at Tier 2. Thus, the tools 

used in tier 1 to collect information from each LoE should not only be able to indicate effects, 

but also be rapid, easy to apply and cost-effective (Jensen and Mesman 2006). 

Tiers 2 and 3 are performed to reduce uncertainties about the actual risk. In tier 2, the 

chemical LoE can comprise extraction techniques to assess the bioavailable fraction of 

13



Chapter 1 

pollutants in soil. This should be complemented with information derived from 

ecotoxicological tests (ecotoxicological LoE) and ecological surveys (ecological LoE).  

The ecotoxicological LoE usually comprises long-term studies focusing on chronic 

endpoints such as reproduction and growth, and some mineralization processes, since chronic 

effects can occur at intermediate levels of pollution (between target or baseline values and 

intervention values, usually representing high contamination levels) (Weeks et al. 2004; Critto 

et al. 2007). At this LoE, standardized chronic tests with Collembola (ISO 1999) and Oligochaeta 

(ISO 1998, 2004) to evaluate sub-lethal effects of the soil matrix on the reproduction of soil 

invertebrates, and plant emergence and growth tests (ISO 2005) to evaluate the habitat 

function to vegetation, have been recommended. Soil extracts are used to perform widely 

established tests with aquatic organisms (e.g. cladocerans and microalgae) to evaluate the 

retention function of soil. The ecological information at tier 2 is collected to get more details 

about the possible impact on populations and communities of microbial communities, flora 

and fauna in situ. Such surveys are more time consuming and may require specific knowledge, 

but provide site-specific information about the status of specific taxonomic groups or 

ecosystem processes (Chapman 1990).  

Although standardized ecotoxicity tests were originally designed to assess toxic effects 

of chemicals added to soils in regulatory risk assessment, they have been used in a WoE 

approach (Sutter et al. 2000) together with ecological and chemical data in retrospective risk 

assessments. Some OECD and ISO standard protocols have already been developed that can be 

used in ERA (Achazi 2002; Roembke et al. 2006a). However, the use of these tests (developed 

for temperate environments) under different conditions such as with different species, soil 

types and climatic regimes, can result in differences in the measured toxicity (Weeks et al. 

2004). In this way, adequate methodologies should be generated to recognize these 

differences, adapting the ERA protocols to the specific conditions of different sites. As the vast 

majority of the world’s most threatened biodiversity hotspots are found in the tropics, 

ecotoxicology in these regions represents an enormous challenge. Therefore, it requires the 

determination or development of appropriate tools to prevent the loss of valuable ecological 

services (da Silva and Soares 2010). 

On the ecological line of evidence, despite the fact that environmental agencies 

encourage biological surveys, they are less frequently carried out for contaminated soils than 

for waters or sediments. Biological surveys include a variety of techniques for characterization 

of populations, communities and ecosystem processes. For example, microbial biomass, soil 
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basal respiration, enzyme activities, and nutrient transformations are important attributes 

related to soil fertility (Edwards 2002) and can be used as bioindicators of soil health as a 

consequence of contamination (Smejkalova et al., 2003; Castaldi et al. 2004), agricultural use 

(Araujo et al. 2003), suitable management or success of restoration practices (Balota et al. 

2004; Nogueira et al. 2006; Clemente et al. 2007). Soil microorganisms fix carbon and nitrogen 

by forming new biomass using the energy they obtain from oxidation of carbon sources 

through respiration or inorganic chemical reactions (Chen et al. 2003), constituting an 

important reservoir of nutrients (Gregorich et al. 1994), and improving the sustainability of an 

ecosystem (Kaschuk et al. 2010). Contaminants may affect a variety of microbiological 

processes in soil thereby affecting the nutrient cycling and the capacity to perform key 

ecological functions, such as the mineralization of organic compounds and the synthesis of 

organic matter (Giller et al. 1998, 2009; Moreno et al. 2009). However, because the microbial 

community may adapt to the novel conditions and surpass the negative effect of 

contamination (Lejon et al. 2010), microbial data from field surveys should be interpreted with 

supporting information (e.g. chemical analysis) to avoid misleading interpretations (Sutter et 

al. 2000). 

Below and above ground soil invertebrates surveys are also widely performed in site-

specific ERA. Soil invertebrates are recognized regulators of nutrient recycling and organic 

matter breakdown by fragmenting leaf litter (the litter shredders like earthworms, isopods, 

diplopods, etc), improving soil structure (manly earthworms) and microbial activity (several 

groups of soil mesofauna like collembolan and mites) (Dangerfield and Milner 1996). They 

positively affect soil chemistry for plant nutrition and increase the likelihood of successful 

plant community restoration (Muys et al. 2003) and consequently play an important role in 

ecosystem restoration (Snyder and Hendrix 2008).  

Vegetation surveys are one of the most used tools to evaluate habitat quality in 

terrestrial ecosystems (Godinez-Alvarez et al. 2009). Plants are the primary producers, a key 

structural component of the habitat for all soil inhabitants. Measurements of vegetation cover 

and composition are important to indicate changes in habitat quality due to stress caused by 

pollution. Besides, some advantages such as their immobility and easy sampling make them a 

suitable tool to be used in ERA (Sutter et al. 2000, Weeks et al. 2004, Jensen and Mesman 

2006). 

One of the most common approaches in biological surveys is the calculation of 

diversity indexes for biological communities. Although diversity indices are largely used to 
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evaluate environmental quality because they are easy to interpret, some authors noticed their 

insensitivity to species differences and abundance (Izsák and Papp 2000) and that they do not 

necessarily provide direct information on environmental quality or degree of degradation 

(Thiebaut et al. 2002). A general review about problems with indices is presented by Green 

and Chapman (2011). The authors recommend to avoid the use of indices because of the loss 

of information and the likelihood of misleading conclusions; if the use is inevitable, they should 

be used together with other statistical methods that retain more information in the biological 

data set (e.g., an appropriate combination of univariate and multivariate analysis) (Green and 

Chapman 2011). 

Risk characterization is the culminating step of the risk assessment process. Risk 

characterization communicates the key findings and the strengths and weaknesses of the 

assessment through a conscious and deliberate transparent effort to bring all the important 

considerations about risk into an integrated analysis by being clear, consistent and reasonable.  

According to Rutgers and Jensen (2011), although many tools for a Triad approach in 

ERA area available, the increasing number of Triad-based Risk Assessment will demand for 

improved, new, standardized, robust and cost-effective tools. We hope to contribute in this 

sense with the present work, applying the Triad approach to risk assessment of a tropical 

metal contaminated area in Brazil. 

 

1.4 Objectives  

 

The major goal of this work is to further contribute to the application of a tiered ERA 

framework to tropical environments, and to evaluate the feasibility and usefulness of different 

biological parameters to be used in different tiers. The results aimed at characterizing the 

ecological risk in one of the most metal contaminated areas in the world, ranking sites in the 

study area, supplying information to indicate remediation measures and bringing an important 

contribution to support future decisions. This thesis aims at providing important information 

to help the regular use of the risk assessment process to support site restoration and 

reclamation decisions in Brazil, following the current trend in soil protection around the world. 

The present study was carried out in an abandoned lead smelter that was operational 

between 1960 and 1993, located adjacent to the urban area of Santo Amaro, BA, Brazil, about 
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150 Km away from Salvador. The area presents a high health risk to animals and humans 

(Costa 2001; Carvalho et al. 2003), due to high levels of metals in soil and water, as well as by 

tailings and airborne dust from atmospheric deposition through chimneys emission (up to 3 km 

from the industrial area), while the smelter was operational (Anjos 2003; Machado et al. 

2004). This site is a useful demonstration-site to apply the framework for several reasons. 

Firstly, there is more than 30 years of published research about the smelter, but mainly 

concerning risks to human health. This site is considered by Brazilian authorities as one of the 

priority metal contaminated areas to monitor in the country. Although a human risk 

assessment has already been performed in Santo Amaro by FUNASA (2003), human risk-based 

criteria are unrelated to the ecological parameters that may be important to sustain soil 

functions and the provision of ecosystem services (Dawson et al. 2007). Therefore, the 

implementation of an ecological risk assessment is considered a priority. Secondly, metals are 

in fact the major source of contamination in the area, facilitating the interpretation of the 

results obtained. 

The specific questions we would like to answer with this study are: 

• Does the metal contamination in the smelter area still pose some ecological risk to soil 

habitat and retention functions 17 years after the closure of the smelter? How is the 

spatial extension of the risks posed by the smelter area?  

• Are the effects detected directly related to the presence of the metals (direct toxicity) 

or to an indirect effect (habitat disruption)? 

• Is a tiered ERA framework suitable to be applied in contaminated sites with this 

typology of contamination? Does it need (and if so, how) to be modified to generate 

more sound decisions about soil quality in the tropics? 

• Which type of biological (ecotoxicological and ecological) parameters are more 

sensitive to detect risk? Are they able to discriminate different levels of risk? And at 

which tier should they be used? 

The data gathered on this study, when trying to answer these questions, will provide 

relevant information that can help risk managers to take better and more sound decisions to 

mitigate the environmental risks and to rehabilitate the area for specific land-uses. 
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1.5 The structure of this thesis  

 

This thesis is divided into eight chapters, including this one.  

Chapter 2 presents the Preliminary Investigation, including the problem formulation 

phase and the collection of the scientific information available about the study area, that 

resulted in the conceptual model and the analysis plan for the risk assessment. A tiered 

approach is proposed integrating information from three lines of evidence: chemical, 

ecotoxicological and ecological. Aims and actions of each phase of risk assessment are 

established, in order to include the ecological and ecotoxicological perspectives missing in 

previews studies conducted in this area. Although the aquatic compartment is included in the 

conceptual model, the analysis plan focus only on the soil compartment. 

Chapter 3 presents the tier 1 (or screening phase) of the Triad (included in the Main 

investigation). This phase also intended to calculate risk with the purpose of ranking sites 

within the study area and to identify those that may need to be further investigated. 

Chapter 4 presents the application of laboratorial chronic tests with soil invertebrates 

to evaluate the ecological risk of soils from the study area to this group of organisms. This 

chapter presents the effects of the tested metal contaminated soils on the reproduction of 

Eisenia andrei, Enchytraeus crypticus and Folsomia candida, and a discussion about the 

different sensitivities of these species and about the performance of these standardized tests 

in tropical soils. 

Chapters 5 and 6 are dedicated to ecological parameters used in the ecological LoE. 

Chapter 5 presents the use of microbial soil-quality indicators to evaluate the ecological 

conditions and biological activity in the study area. Chapter 6 presents the application of 

ecological evaluations and in situ tests following known protocols, evaluating the ecological 

risk to ecosystem structure and functioning. The endpoints evaluated were vegetation 

structure, soil ground running invertebrates, decomposition of organic material and some 

microbial parameters. The effect of the historical contamination on the ecosystem and a 

critical discussion about the use of these tools in risk assessment are presented. 
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In Chapter 7 the integration of the parameters measured on chapters 4 to 6 is 

presented on calculating the risk values for each line of evidence and the integrated risk values 

in a Tier 2 assessment.  

Finally, in chapter 8 a critical discussion of the results obtained and some words about 

the future perspectives for forthcoming studies on the site are presented  
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Abstract 

The majority of the risk assessment studies carried out are based just on chemical 

characterization, focused on limit values of contaminants in soils, water or food, usually not 

including biological and ecotoxicological considerations. However, when these studies are 

doing aiming at a reclamation of contaminated areas or human risk assessment, approaches 

related to ecosystem structure and functioning should be considered. The abandoned area of 

the lead smelter Plumbum in Santo Amaro, Bahia, Brazil, is a historical case of a serious metal 

contaminated area, being considered as priority in metal monitoring by Brazilian authorities 

due to human and environment contamination. This study presents the problem formulation 

phase of the environmental risk assessment, including the scientific information available 

about the study area, the conceptual model for the contaminated site, and the analysis plan 

for the risk assessment. A tiered approach is proposed integrating information from three lines 

of evidence: chemical, ecotoxicological and ecological. Aims and actions of each phase of the 

risk assessment are established, to include the ecological and ecotoxicological perspectives not 

included by previews studies conducted in this area, focusing on the soil compartment. 

Key words: ecological risk assessment, metals, soil ecotoxicology 
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2.1 Introduction 

 

Environmental impacts of mining activities have been described for many countries 

around the world, related to the exploitation of geologic resources, processing of raw material, 

and generated tailings and wastewater. Such activities release, in first place, metals that were 

trapped in a mineral form, and that under certain circunstances may become available to 

biological communities. The effects of metal contamination quite often persist after closure of 

metal industries because adequate reclamation measures are not taken (Pereira et al. 2004). 

As microorganisms cannot degrade metals, their impact in the environment can persist for 

decades, limiting the establishment of vegetation and faunal communities, thus originating an 

impairment of ecosystem functions and associated ecosystems services. Furthermore, 

surrounding natural and/or production areas (crops, pastures) and public health may be at 

risk. 

At these areas the assessment of risks to the environment become a priority1 for local 

stakeholders as way to better define actions to take, i.e., implement remediation measures to 

decrease the risks or not. In this context, Ecological Risk Assessment (ERA) becomes a cost-

effective management tool, allowing not only to evaluate the risks, but also to discriminate 

those sites inside the assessment area where (remediation) actions should take place, from 

those where no action is required (Weeks et al. 2004). 

Ecological risk assessment is a complex process of collecting, organizing and analyzing 

environmental data to estimate the risk of contamination to ecosystems (Jensen and Mesman 

2006). The initial phase of an ERA for contaminated sites encompasses a close dialogue with 

local social actors (e.g., stakeholders, population), aiming to understand their concerns and 

their plans regarding the future of the site. This dialogue should help defining the protection 

goals and the level of risk to be accepted for the site according to the intended land-use, 

overarching aspects of the entire ERA process (Lanno 2003).  

In parallel to this dialogue, the collection of all scientific and technical information 

about the site (complemented by one or more site visits) also takes place at this stage, which 

usually culminates in the construction of a conceptual model for the site (CSM) and an action 

                                                           
1 Human health risks are also a priority in these cases. However, since they are not the subject of this 
study they were no highlighted in the text. 
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plan that will govern the ERA process (Pereira et al. 2004). The CSM is an essential tool to 

communicate with stakeholders and should rule the type of actions/decisions taken further 

down in the ERA process. It is built based on what is currently known about the site. 

Information about the sources and types of contaminants, extent of contamination, current 

pathways of exposure, and ecological receptors at risk should be compiled (Weeks 2004, 

Jensen and Mesman 2006). Furthermore, the CSM should include information about the 

perceived risks and areas needing urgent action, and should identify data gaps (Jensen and 

Mesman 2006). At this stage, a decision to implement a full ERA should be taken based on the 

information gathered and on particular legal requirements.  

After this first phase, and if a full ERA process is required, a site specific evaluation 

starts by collecting information from different lines of evidence – LoEs – usually adopting a 

Triad approach and taking decisions on the risk following a “weight of evidence” approach. The 

Triad approach, originally developed to evaluate sediment quality (Long and Chapman 1985), 

has been recommended and successfully applied in ERA of contaminated soils (Wagelmans et 

al. 2009). Consisting of three lines of evidence (chemical, ecotoxicological and ecological), is 

usually applied using a tiered framework (Jensen and Mesman 2006, Rutgers and Jensen 

2010). The progression through tiers reflects a refinement in the ecological relevance of 

information gathered and progressive reduction of uncertainty. This stepwise process allows to 

eliminate from further investigation such areas within the study site showing no risk (or an 

acceptable risk) and areas showing a high risk with a high degree of confidence at the initial 

steps, therefore stopping the ERA and saving resources (Week 2004). 

The aim of this chapter is to present the conceptual site model and the analysis plan of 

a site-specific ERA of a metal-contaminated area in Santo Amaro da Purificação (BA, Brazil), 

following a tiered framework and adopting the Triad approach, joining information from 

chemical, ecological and ecotoxicological lines of evidence (LoE). This case of contamination is 

considered as priority in monitoring of metal contamination in Brazil by Brazilian health 

authorities (FUNASA 2003), as the area is one of the most metal contaminated sites of the 

world (Anjos and Sánchez 2001). Although a human risk assessment has already been 

performed in Santo Amaro (FUNASA 2003), human risk-based criteria are unrelated to the 

ecological parameters that may be important to sustain soil functions (Dawson et al. 2007). 

Therefore, a site-specific ERA is necessary to evaluate the risks towards key ecological 

receptors and processes they mediate. Despite preview works cover soil compartment, there 

was a lack of systematic sampling and a lack of information about methodology, detection 

limits, location of sampling, or chemical analysis not covering all main contaminants (not just 
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Pb and Cd) etc., which were pointed by FUNASA (2003) as a limitation to use these data in 

ATSDR (Agency for Toxic Substances and Disease Registry) methodology for human risk 

assessment. FUNASA (2003) carried out complementary analysis to fulfill these gaps focusing 

on smelter area and urban area under a human risk perspective. Furthermore, none of the 

preview works analyzed receptors and compartments under an ecological perspective of soil 

functioning. This ERA will be focused on the soil compartment and its ecological receptors at 

risk addressing indirectly the risk to ground water and associated fresh water systems. 

 

2.2 Study site: location and history 

 

2.2.1 Location of the study site 

The study site belongs to the Plumbum Mining and Metalurgy Ltd (initially called 

COBRAC, Brazilian Lead Company) and is located Northwest of urban area of the small city of 

Santo Amaro da Purificação, state of Bahia, Brazil (Lat: 12° 32‘4’’ S, Long: 38° 42’ 43‘’ W). The 

city is located in the metropolitan region of Salvador, on the right bank of the Subaé River, and 

comprises an area of 518 km2 and 58,387 habitants, and elevated indices of poverty (IBGE 

2009). 

The climate of the region is tropical, characterized by a dry and a rainy season, hot 

weather with annual mean temperature of 25.4 °C and annual precipitation ranging between 

1.000 and 1.600 mm (FUNASA 2003). The rainy season occurs between May and July. Atlantic 

forest is the dominant biome, but historical occupation since the early days of colonization has 

modified the landscape considerably by suppression of vegetation. 

The smelter area (Fig 2.2) is located 300 m away from the Subaé river, which crosses 

the city and meets the bay of Todos os Santos ca 10 Km downstream. The river has a 

recognized historical importance to the economic and commercial development of this region, 

including food supply. However, it has been strongly impacted by domestic and industrial 

wastes without treatment, and also by the smelter activities that aggravated this scenario (CRA 

2000; FUNASA 2003). 
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Fig. 2.1 Location of the Santo Amaro city in the State of Bahia, Brazil. 

 

 

Fig. 2.2 Smelter area of Plumbum metallurgy, Santo Amaro, Bahia, Brazil. 

 

2.2.2 The smelter and the environmental liability 

The smelter remained active between 1960 and 1993, producing lead ingots. The raw 

mineral source used was galena (PbS), containing about 86% lead, and coming mainly from the 

Boquira mine, 800 km away from the smelter.  

In 1960 the COBRAC started its activities and since then there are reports of 

environmental impacts. In 1961, an investigation carried out by Dr. Hans Dittimar, requested 
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by cattle breeders, indicated the smelter as responsible by soil, air and water contamination 

and cattle death (Oliveira 1977). At this date, the first request to close the smelter due to 

aquatic contamination was made. 

In 1980 and 1981, CEPRAM (State Council of Environmental Protection) imposed some 

measures to reduce environmental pollution and treatment of the residues by establishing the 

annual limit of refined Pb in 22,000 ton/year (Cunha and Araújo 2001). In order to attend this 

decision, a reduction of 50% in the production should occur (Tavares 1990). CEPRAM measures 

also included the monitoring of human health on local population. 

In 1988 COBRAC was incorporated to Grupo Trevo and called Plumbum Mining and 

Metallurgy Ltd, and in 1991 the smelter required the license of operation to the state 

environmental office (CRA) (Anjos 2003). This agency imposed some conditions to issue the 

license, among them: (I) a better control of atmospheric emissions; (ii) minimization of the 

contamination of the Subaé River by effluents or runoff; (iii) characterization of tailings; (iv) 

monitoring for metals in groundwater and Subaé River; (v) an epidemiological study including 

measures of prevention, control and treatment of affected population. According to CRA these 

conditions were never met and the smelter was shut down in 1993 and the area was 

abandoned (Anjos 1998; FUNASA 2003). 

At the end of 1992, it was estimated that about 50% of the particulate matter 

generated by the smelter was not being captured (Silvany Neto et al. 1996). The mean 

composition of the tailings generated by this smelter was characterized by Machado et al. 

(2004) using X- ray fluorescence  as: 32.5% SiO2, 4.19% Al2O3, 5.02% MgO, 0.74% SO3, 18.90% 

CaO, 1.10% MnO, 7.68% ZnO, 3.78% PbO, 244% Fe2O3 and 1.69% others. The slag was 

classified by Santos (1995) as Class 1 – Hazardous, according to the Brazilian guideline NBR 

10.004 (ABNT 1987, posteriorly revised and modified in ABNT 2004). The metal contamination 

of the nearby town occurred through the deposited tailings and airborne dust from 

atmospheric deposition through chimney’s emission while the smelter was operational (Anjos 

2003; Machado et al. 2004). Until 1994 more than 500,000 tons of tailings were generated. It 

has been reported that approximately 180,000 m3 of tailings had been deposited around the 

smelter area from which approximately 55,000 m3 were buried under roads by municipal 

authorities or used by the habitants in their house's backyards (Machado et al. 2004).  

In 1995, the CRA required the encapsulation of tailings according to standard protocols 

to mitigate contamination, and following guidelines to disposition of non inert residues or 

hazardous solid residues (Anjos 2003). However, only part of the total tailings was covered 
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with a thin layer of soil and an exotic grass (Brachiaria sp) was planted to fix the soil. In some 

areas, tailings were again exposed causing aerial dispersion of tailings dust in the smelter site 

(Anjos 2003; Machado et al. 2004).  

In 2003, the Brazilian Ministry of Health applied the methodology of ATSDR (Agency for 

Toxic Substance and Disease Registry) to human health risk assessment (FUNASA 2003). This 

study showed the environmental contamination (soil, groundwater, domiciliary dusts, 

sediments and food) by metals.  

 

2.2.3 Contamination of the environmental compartments 

Despite preview works cover all  environmental compartments, there was a lack of 

systematic sampling and a lack of information about methodology, detection limits, location of 

sampling, or chemical analysis not covering all main contaminants, pointed by FUNASA (2003) 

as Pb, Cd, Cu and Zn. 

According to Costa (2001) and Carvalho et al. (2003), the site presents a high health 

risk to humans due to high levels of metals in soil and water, occasioned  by the exposed 

furnace slags and airborne dust, besides the past atmospheric deposition through chimney’s 

emission (up to 3 km from the industrial area) (Anjos 2003; Machado et al. 2004). Several 

studies showed human contamination by Pb and Cd, especially in children (Sylvany-Neto et al. 

1989, 1996; Tavares and Carvalho 1992, Carvalho et al. 1996). A study carried out by the 

Brazilian health authority (FUNASA 2003) observed the following routes of exposure to 

humans (pass, present and future): ingestion or dermal contact with superficial soil from the 

smelter area or streets and backyards, due to tailings deposition, inhalation of domiciliary 

contaminated dusts, ingestion of food cultivated in contaminated soils or ingestion of mollusks 

or crustaceans from the estuary of the Subaé River. 

High levels of metal contamination have been found in the Subaé River and its estuary 

system, sediments and the associated biota (Paredes et al. 1995, Cunha and Araújo 2001), and 

in the sediments and biota of Todos os Santos Bay (Tavares 1990, Hatje et al. 2006, Amado-

Filho et al. 2008), related to the smelter contamination, and putting health risk for subsistence 

fishers and subsistence shellfish consumers (Souza et al. 2011). The Subaé River is one of the 

main tributaries of the Todos os Santos Bay, the second largest bay in Brazil (Hatje et al. 2006). 

Hatje et al. 2006, assessing the current trace metal contamination of the sediments and the 

benthic macrofauna assemblages in Subaé estuarine system, concluded that the inactive Pb 
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smelter is an important contemporaneous source of trace metals for the Subaé system. Anjos 

(1998) pointed out that groundwater contamination in the smelter area exceeded the 

recommended threshold for Pb and Cd. High levels of Pb values in groundwater were also 

found in monitoring wells distant from the smelter area (Machado et al. 2004), confirming the 

dispersal contamination of the surrounding of the smelter occasioned probably by 

atmospherically dispersion of particulate materials at the time of the smelter works.  

High mean levels of Pb were found by Costa (2001), in 1995, in blood of cattle grazing 

in the smelter area (28,4 ± 22,0 µg/dL, n=29) when compared with a control group not 

belonging to Santo Amaro da Purificação (1,73 ± 0,68 µg/dL, n=17). The usual presence of 

cattle grazing in the smelter area and drinking water from the basin was recorded also by 

Carvalho et al. (2003) which stressed the risk for human health, through the consumption of 

meat and milk from these animals.  

Machado et al. (2010) showed a clear persistence of Pb and Cd contamination on the 

superficial soil around the smelter site, related to the past emissions when the smelter was still 

active, with some points exceeding by far the agricultural and residential intervention values 

from CETESB (2005). 

Nowadays, the management objectives and strategies to Santo Amaro are related to 

prevent potential harm effects to human health and to the environment. The main concerns of 

the current projects are related directly to human health, such as to the possibility of remove 

the tailings that were used to pave streets, squares and backyards in urban area, the 

bioaccumulation of metals in plants on these backyards, air dispersion of dusts in urban area, 

agricultural use of surrounding areas of smelter. 

 

2.2.4 How the site looks today 

An initial site visit was made at the start of project to conduct a visual inspection of the 

site. Nowadays, the entry in the smelter area is forbidden to avoid human exposure to 

contamination. Our team required a judicial authorization to enter in the smelter area for 

scientific purpose.  

Inside the smelter area, there are the smelter facilities ruins and some piles of furnace 

slag covered by soil. The site is a grassland area with some herbaceous and shrubs, which were 

planted in the smelter area after the disposing of soil inside the tailings deposits. In general, 
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low vegetation cover and evidence of erosion and runoff were noted in these pills.  

Furthermore, furnace slag can be seen in some points inside the smelter area, evidencing a 

failed procedure of furnace slag recovery (Fig. 2.3A). It seems that the vegetation is not able to 

establish in some points where the tailings are visible at the superficial layer, which can favor 

the dispersion of contaminated dusts mainly in the dry season (Fig. 2.3B). 

 

 

 

 

 

 

 

 

 

Fig. 2.3 A) Evidence of runoff and erosion in a pile of furnace slag (gray material) in the smelter area, at 

rainy season. B) The aspect of the smelter area in the dry season (dusts and lack of vegetation). 

 

Regarding aquatic compartment, two temporary ponds are located inside the smelter 

area, which were formed by the arrangement from the piling of furnace slags. The Subaé River 

is located 300 m far away this area. During the rainy season there is drainage from the site to 

the river through a drainage channel. There is possible risk to these aquatic compartments (the 

ponds and the river) and consequently the sediment and associated biota, besides occasioned 

by runoff of the contaminated soil. Ground water could, in principle, to be also at risk due to 

leaching potential of metals. 

A pre-sampling campaign was designed, using six transects on a radial shape to 

confirm the presence of total metal concentrations of the main contaminants (Pb, Cd, Cu, Zn) 

in soil and to determine any major gradients of contamination. The transects shared a central 

point (P0, located next to the smelter facility) and were composed of four or five points each, 
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located at 20, 50, 150, 400, and 1,000 m from P0. The results for total metals in soil confirmed 

the high level of contamination by Pb, Cd, Cu and Zn, once some points presented a critical 

level of contamination, exceeding by far (between one and 200 times) the screening levels of 

these four metals (corrected Dutch Intervention Values, VROM 2000).  

 

2.3 Conceptual model and analysis plan 

 

2.3.1 Building up the conceptual model 

A Conceptual Model is the essential first step in the ERA, beginning with a combination of 

desk studies and subsequent site visits and explorations to identify potential contaminants, 

pathways of exposure and ecological receptors, aiming to identify potential significant 

pollutant-recptor linkages (Weeks et al. 2004). To build up the Conceptual Model in the 

present work, some steps were followed: 

1) To know the management objectives and strategies to the site. In Santo Amaro, they 

are related to prevent potential harm effects to human health and to the environment, 

avoiding air dispersion of dust, avoiding the contamination of Subaé system, and 

ensuring the agricultural use of surrounding areas of smelter. 

2) Summarize existing site data, identifying data gaps or inconsistencies. 

3) Site visit and exploration, identifying possible contamintant-pathway-receptor linkages 

in situ, visible risks and possible data gaps, and examining the current state of the site. 

Based on the available information about the site, including the one obtained in the site 

visit and the chemical pre-sampling, a conceptual model (Fig. 2.4) and an analysis plan (section 

2.3.2)  for an ecological risk assessment were developed. This assessment focuses on the soil 

compartment and aims at: 

- Assessing the possible loss of habitat function and retention function of soil inside and 

surrounding the smelter area, evaluating the adverse effects of historical contamination on soil 

organisms, and the likelihood of effects to aquatic organisms via leaching; 
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- Assessing potential ecological risks at the site using the Triad approach, i.e., by 

integrating information from different lines of evidence (LoE’s): ecotoxicological (previous 

aim), chemical and ecological; 

- To combine the information gathered to help prioritizing the management of areas 

within the site and formulate appropriate action strategies using the information gathered. 

The primary contamination source identified was soil contaminated by furnace slag 

deposition or by aerial deposition (wind-blow of dusts or past chimney emissions). 

Contaminant-pathway-receptor linkages for the site were identified based on the history of 

the smelter activities, preview works and on the site visit. The principal source of potential 

exposure to the ecological receptors is the contaminated soil, through ingestion, cellular 

absorption, aerial deposition (wind-blow particles) and root uptake. Metal contaminants can 

be available posing potential risk to primary receptors, such as plants, soil invertebrates and 

soil microbial communities. In addition, other species can be linked to contaminants through 

the terrestrial food chain, such invertebrates feeding on plants, and vertebrates, such birds 

(seed-, plant-eating and invertebrate-feeding species), small mammals, amphibians, reptiles 

and raptor species. 
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Fig. 2.4 Conceptual model for risk assessment in the contaminated area in Santo Amaro, Bahia, Brazil. 
Environmental compartments are circles, exposure pathways are arrows and ecological receptors are 
represented by boxes. The soil is the main source of contaminants (tail deposits and aerial deposition). 
Receptors in bold were those considered for evaluation in this study. 

 

 

2.3.2 Analysis plan 

The analysis plan for the site-specific risk assessment was focused on the soil 

compartment, addressing indirectly the risk to groundwater and fresh water systems. Non-soil 

invertebrates, vertebrates and direct effects on water systems were not covered by this study. 

A summary of the assessment and measurement endpoints is shown in Table 2.1  

The definitive soil sampling strategy was designed based on the soil total metal 

concentrations of the major metals detected at the site (Pb, Cd, Cu, Zn) and derived from the 

pre-sampling campaign (see section 2.2.4). Two 1 km transects (T1 and T3) were defined along 

the two major gradients of contamination detected. The two transects shared a central point 
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(P0, located next to the smelter facility) and were composed of five points each, located at 20, 

50, 150, 400, and 1000 m from P0 (P20T1 till P1000T1 and P20T3 till P1000T3). 

Soils samples at each sampling point consisted of a composite sample collected at the 

top 20 cm. Soil was hand mixed on site to homogenize, transported to the laboratory, sieved 

(≤5 mm), and processed according to the different analyses (see details at each chapter). Due 

to the heterogeneity of the soil among the different sampling points, it was necessary to work 

on a multi-reference basis. Therefore soils were assembled into three groups based on a 

Factorial analysis. Each group differed mainly in terms of texture, organic matter content and 

pH. To find matching reference soils, soil from several points in the surroundings of the area 

were screened, analyzed for metals and soil properties, and three reference soils (the best 

possible for each identified group of soils) were selected at 9 km (Ref. 1) and 3 km (Refs. 2 and 

3) from the site. Details on this process (grouping the soils and finding the reference soils) can 

be found on Chapter 3. 

The analysis plan included two tiers. Tier 1 was essentially a screening phase, aiming to 

produce a first representation of the risk and to determine whether a site can be excluded 

from higher tiers of testing (either because it is unlikely to pose a risk to the relevant ecological 

receptors or because a high risk is detected and there could be a need for immediate 

mitigation actions), or if it needs to be further evaluated (Weeks et al. 2004; Critto et al. 2007). 

Thus, the tools used in tier 1 should be also rapid, easy to apply and cost-effective (Jensen and 

Mesman 2006).  

In this phase, the chemical LoE comprised the calculation of the toxic pressure (Rutgers 

and Jensen 2010) based on the comparison of the total concentrations of metals of the study 

site with soil screening levels. The ecological information at tier 1 was collected through a 

quick vegetation survey  and by assessing easy measureable functional parameters, such as soil 

respiration (Jensen and Mesman 2006) and soil faunal feeding activity using bait lamina sticks 

(Von Törne 1990; Van Gestel et al. 2003; Hamel et al. 2007). These tools have been proposed 

as  relevant for fast ecological assessments (Filzek et al. 2004; André et al. 2009; Van Gestel et 

al. 2009) and  some of them (bait-lamina) have already been successfully tested in tropical soils 

(Römbke et al. 2006).  

Regarding the ecotoxicological LoE at tier 1, short-term cost-effective bioassays 

evaluating both the habitat and retention functions of the soil were carried out. The later was 

evaluated using soil extracts (eluates) in tests with cladocerans (Daphnia magna acute test) 

and with the luminescent bacteria Vibrio fischeri (Van Gestel et al. 2001; Achazi 2002; Loureiro 
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et al. 2005). Soil samples were used to evaluate the loss of habitat function through avoidance 

tests with earthworms (Hund-Rinke et al. 2003; Antunes et al. 2008) and collembolans (Natal-

da-Luz et al. 2004).  

Tier 2 was performed to reduce uncertainties about the actual risk pointed by tier 1 

and contains also information from the three lines of evidence. The chemical LoE at this tier 

comprised the calculation of the toxic pressure based on total metals in habitat function (as 

done in tier 1) and the analysis of extractable metals using 0.01 M CaCl2 solution to assess the 

soil retention function (mainly with the aim of evaluating potential to ground-water 

contamination). 

The ecotoxicological LoE in tier 2 usually comprises long-term studies focusing on 

chronic endpoints such as reproduction and growth, since sublethal endpoints are usually 

more sensitive being able to discriminate intermediate levels of potential effects than lethal 

endpoints (Sutter et al. 2000). At this LoE, standardized chronic tests with Collembola (ISO 

1999) and Oligochaeta (ISO 1998, 2004) were performed to evaluate sub-lethal effects of soil 

matrix on reproduction of soil invertebrates (van Gestel et al. 2001, Loureiro et al 2005, Natal 

da Luz et al. 2011), furthermore evaluating the toxicity to organisms with different roles in soil 

processes and exposed to soil contaminants via different exposure routes. Effects towards 

plants were evaluated by performing plant growth tests using standard species (at least one 

monocotyledonous and one dicotyledonous species) following ISO 11269-2 (ISO 2005). In 

addition, soil extracts (eluates) were used to perform widely established tests with cladocerans 

(OECD 2008) and microalgae (OECD 1984) to evaluate the retention function of soil, thus 

assessing the indirect risk to aquatic compartment (mainly groundwater) (Jensen and Mesman 

2006, Chelinho et al. 2009). 

Regarding the ecological LoE at tier 2, information was collected to get more details 

about the possible impact on selected ecological receptors. Changes in diversity and 

community composition of plants, soil surface dwelling invertebrates, as well as several 

functional processes were evaluated. 

Microbiological soil-quality indicators considered in this study were microbial biomass, 

substrate-induced respiration, enzymatic activity and nutrient transformations. These are 

proxies for important processes related to soil fertility (Edwards 2000) and can be used as 

bioindicators of soil stress by contamination (Castaldi et al. 2004; Smejkalova et al. 2003, 

Zimakowska-Gnoinska et al. 2000, Gulser and Erdogan 2008), or to indicate suitable 
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management and restoration practices (Balota et al. 2004; Nogueira et al. 2006; Clemente et 

al. 2007). 

Pitfall trapping was established in all sampling points and also at the reference sites to 

determine whether metal pollution exerts effects on community parameters of surface-

dwelling invertebrates. The ecological evaluation was complemented with the assessment of 

effects on organic matter (litter) decomposition, a functional parameter by excellence, which 

can be used as indicative of negative effects on the soil microbial community, soil fauna or 

both. The litter bag test is considered the most appropriate method available for assessing 

organic material breakdown in semi-field or field conditions, and mass loss has been 

considered the best suited measurement endpoint (Knacker et al. 2003; Römbke et al. 2003; 

OECD 2006). 

45



Chapter 2 

 

 

 

Table 2.1 Assessment and measurement endpoints. Adapted from Weeks et al (2004). 

Receptor Relevance for the 
ecosystem 
functioning 

Assessment endpoint Measurement endpoints 

Plant community Food and habitat 
supply for animal 
species 

Maintenance of soil 
structure 

Supply of nutrients 

Habitat function in order 
to sustain plant 
germination, growth, 
biomass and  species 
richness  

 

Plant toxicity test with 
monocotyledonous and 
dicotyledonous species 

Determination of 
vegetation cover in situ 

Determination of 
vegetation richness species 
in situ 

Soil invertebrate 
community and 
activity 

Food supply for 
animal species 

Predation 
microfauna 

Decomposition of 
organic material 

Maintenance of soil 
structure 

Habitat function in order 
to sustain diverse and 
active invertebrate 
populations 

Avoidance behavior tests 
with earthworms and 
springtails 

Reproduction tests with 
earthworms, springtails 
and enchytraeids 

Composition of soil surface 
dwelling macroarthropods 
community collected on 
pitfall traps (richness, 
diversity index, differences 
in community 
composition) 

Feeding activity evaluated 
by bait lamina test in situ 

Decomposition rate of 
organic material on litter 
bags in situ 

Soil microbial 
community 

Nutrients supply to 
support plant 
growth 

Important in 
maintaining 
microagregatte soil 
structure 

Habitat function in order 
to sustain viable and 
functional microbial 
populations 

Soil basal respiration 

Soil microbial biomass of 
carbon and nitrogen 

Microbial enzymatic 
activity (dehydrogenase, 
acid phosphatase and 
asparaginase) 

Soil nitrification and 
ammonification rate 

Organic material 
breakdown on litter bags 
in situ 
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Table 2.1 (Continued). 

 

 

 

 

 

 

 

 

 

 

 

 

Receptor Relevance for the 
ecosystem 
functioning 

Assessment endpoint Measurement endpoints 

Microorganisms 
and algae 

Primary production 

Recycling of nutrients 

Retention function of 
soil in order to 
evaluate risks to 
aquatic receptors (in 
this case particularly 
via groundwater 
contamination) 

Vibrio fischeri (bacteria) 
luminescence test 

Algae growth test 

Aquatic 
invertebrates 

Aquatic food web Retention function of 
soil in order to  
evaluate risks to  
aquatic receptors (in 
this case particularly 
via groundwater 
contamination) 

Cladocerans lethal test 

Cladocerans reproduction 
test 
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2.4 Conclusions 

 

This work showed a conceptual model for the contaminated area of Sto Amaro and an 

analysis plan for an environmental risk assessment for that area, using the Triad approach 

(integrated information from chemical, ecotoxicological and ecological lines of evidence). The 

tiered approach proposed allowed an early screening of risk involving short-term and cost-

effective tools in tier 1, and a detailed assessment of risk in tier 2. Integrated risk values will 

provide information about the actual bioavailability of contaminants, and it will help to 

prioritize areas to action, besides avoid unnecessary costs in remedial actions.  

The framework proposed can be adapted to other scenarios or sources of 

contamination in order to stimulate the development of site-specific risk assessment to 

support actions of management and reclamation of contaminated areas.  
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Abstract  

The present study presents data on the screening phase (tier 1) of a site specific ecological risk 

assessment in a former smelter area heavily contaminated with metals (Santo Amaro, Bahia, 

Brazil). Joining information from three lines of evidence (LoE), chemical, ecotoxicological and 

ecological, integrated risk values were calculated to rank sites within the area and identify 

those that may need further investigation in tier 2. Eleven points were selected up to 1,000 m 

from the smelter. Three reference points were 3 and 9 Km away from the area. Risk values for 

the chemical LoE were derived from calculating the toxic pressure based on total metal 

concentrations. Those for the ecotoxicological LoE were based on avoidance (Folsomia candida 

and Eisenia andrei) and eluate tests (Daphnia magna acute test and Microtox) whereas for the 

ecological LoE the bait lamina test, soil basal respiration and vegetation cover were used to 

derive risk values. The chemical LoE showed high risk in those points inside the area where 

metal loadings exceeded in much the existing soil screening values. Ecotoxicological tools 

showed a variable response, with tests on soil organisms inducing a higher risk (again at sites 

inside the smelter and with sandy soils) than tests on eluates. The three parameters 

composing the ecological LoE revealed a concordant response, despite the lower sensitivity of 

the vegetation cover. A high risk on this LoE was also observed on those sampling points where 

a high chemical risk was calculated. Integrated risk was low outside the smelter area. Inside, a 

high spatial heterogeneity of risk levels was observed, related to the non homogeneous 

deposition of smelting residues. Very high risk levels, associated with sandy soils and residue 

deposits, suggest the need to proceed with remediation actions. However, the uncertainties 

associated with the contradictory information given by certain LoEs for certain sampling points 

show the need to confirm potential risks in a tier 2 analysis. 

 

Keywords:  Integrated risk values, Lines of evidence, Soil habitat function, Soil retention 

function, Triad 
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3.1  Introduction 

 

The triad approach, originally developed to evaluate sediment quality (Long and 

Chapman 1985), has been recommended and successfully applied in ecological risk assessment 

(ERA) of contaminated soils (Wagelmans et al. 2009). Consisting of three lines of evidence (LoE; 

chemical, ecotoxicological and ecological), the triad approach is usually applied within a tiered 

system, i.e., information from each LoE is collected at each tier following a step-wise cost-

effective process (Jensen and Mesman 2006). While tiers 2 and 3 are performed to reduce 

uncertainties about the actual risk, tier 1 is essentially a screening phase, aiming to produce a 

first spatial representation of the risk and to determine whether a site can be excluded from 

higher tiers of testing (either because it is unlikely to pose a risk to the relevant ecological 

receptors or because a high risk is detected and there could be a need for immediate 

mitigation actions), or it needs to be further evaluated (Weeks et al. 2004a; Critto et al. 2007). 

Thus, the tools used in tier 1 to collect information from each LoE should be not only able to 

indicate effects, but also rapid, easy to apply and inexpensive, i.e., cost-effective (Jensen and 

Mesman 2006). 

In tier 1, the chemical LoE comprises the comparison of the total concentrations of 

contaminants at the study sites with soil screening levels. This should be complemented with 

information derived from ecological surveys (ecological LoE) and ecotoxicological tests 

(ecotoxicological LoE) (Weeks et al. 2004a; Fernandez et al. 2006). The ecological information 

at tier 1 is often collected through quick soil fauna or vegetation surveys and by measuring 

quick microbial parameters (e.g. soil respiration) (Jensen and Mesman 2006).In addition, the 

bait lamina test developed by Von Törne (1990), being a practical tool to assess soil faunal 

feeding activity in situ (Larink and Sommer 2002; van Gestel et al. 2003; Hamel et al. 2007), has 

been proposed as a relevant tool for ecological assessments (Filsek et al. 2004; André et al. 

2009; Van Gestel et al. 2009), and has already been successfully tested in tropical soils 

(Römbke et al. 2006). Regarding the ecotoxicological LoE, short-term cost-effective bioassays 

evaluating both the habitat and retention functions of the soil are currently used in tier 1. Such 

bioassays integrate the combined effect of mixtures and that of contaminants not analyzed or 

for which soil quality levels do not exist (Weeks et al. 2004a; Fernandez et al. 2005; Spurgeon 

et al. 2005; Jensen and Mesman 2006). Whereas soil extracts (e.g. eluates) are used to perform 
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widely established tests with cladocerans, microalgae and the luminescent bacteria Vibrio 

fischeri (van Gestel et al. 2001; Achazi 2002; Loureiro et al. 2005a), soil samples are being 

increasingly evaluated through avoidance tests with earthworms (Hund-Rinke et al. 2003; 

Antunes et al. 2008) and collembolans (Natal-da-Luz et al. 2004). Earthworm avoidance tests 

have been shown to be a useful tool in the screening phase of risk assessment of 

contaminated soils (Lukkari and Haimi 2005), providing rapid information for future decisions 

(Schaefer 2003; Loureiro et al. 2005b), while being ecological relevant and of low cost 

(Yeardley et al. 1996). Although collembola avoidance tests are still under the process of 

standardization, their use in soil ecotoxicology has been acknowledged (Natal-da-Luz et al. 

2004; Aldaya et al. 2006), mainly because the avoidance response of collembola is less 

influenced by the soil properties than that of earthworms (Natal-da-Luz et al. 2008). However, 

one of the limitations to use avoidance tests is that some substances are not perceived as 

repellents by the organisms and consequently are not avoided, leading to an underestimation 

of the risk (Greenslade and Vaughan, 2003). Moreover, high concentrations of some 

substances (e,g, pesticides acting as AChE inhibitors) may affect mobility of the organisms to 

such an extent that they are not able to avoid the contaminated soil, creating also biased 

results (Natal-da Luz, personal communication).  

This study aimed to conduct the first step (tier 1) of a site-specific ERA of a metal 

contaminated area in Santo Amaro (BA, Brazil), joining information from the three LoE 

mentioned above. Although a human risk assessment has already been performed in Santo 

Amaro (FUNASA 2003), human risk-based criteria are unrelated to the ecological parameters 

that may be important to sustain soil functions (Dawson et al. 2007). Therefore, a site-specific 

ERA is necessary to evaluate the risks towards key ecological receptors. Besides bringing 

together chemical and (ecological and biological) effect data, the present study also intended 

to calculate risk with the purpose of ranking sites within the study area and to identify those 

that may need to be further investigated. In this way, the present work constitutes an 

innovative approach in metal contaminated tropical environments, bringing an important 

contribution to the resolution of a local problem.  
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3.2 Materials and methods 

 

3.2.1 Study area 

 This study was carried out in an abandoned lead smelter that was operational between 

1960 and 1993, located adjacent to the urban area of Santo Amaro, BA, Brazil (12° 32’ 49” S, 

38° 42’ 43” W). The area presents a high health risk to animals and humans (Costa 2001; 

Carvalho et al. 2003), due to high levels of metals in soil and water, as well as by tailings and 

airborne dust from atmospheric deposition through chimneys emission (up to 3 km from the 

industrial area), while the smelter was operational (Anjos 2003; Machado et al. 2004). It has 

been reported that approximately 180,000 m3 of tailings had been deposited around the 

smelter area from which approximately 55,000 m3 were buried under roads and house's 

backyards (Machado et al. 2004). In 1995, the Bahia environmental state agency 

recommended the encapsulation of tailings with the use of organic matter rich soil to mitigate 

contamination (Anjos 2003). However, because the process was carried out without following 

the adequate standard procedure, tailings are still exposed and the aerial dispersion of tailings 

dust is still occurring within and outside the smelter area (Anjos 2003; Machado et al. 2004). 

 

3.2.2 Soil sampling and selection of reference soils 

 Based on the soil total metal concentrations (Pb, Cd, Cu, Zn) derived from a pre-

sampling campaign using six transects on a radial shape (unpublished data), two 1 Km 

transects (T1 and T3) were defined along the two major gradients of contamination detected. 

The two transects shared a central point (P0 – located next to the smelter facility) and were 

composed of five points each, located at 20, 50, 150, 400, and 1,000 m from P0 (P20T1-

P1000T1 and P20T3-P1000T3; see Fig. 3.1). 

 Soils samples at each sampling point consisted of a composite sample made of four 

sub-samples collected at the top 20 cm. Soil was hand mixed on site to homogenize, 

immediately transported to the laboratory, sieved (≤5 mm), and defaunated by one freeze-

thawing cycle. After the physico-chemical characterization of each of the 11 soil samples (see 

next section), a multivariate factor analysis was run using soil properties data (metals 
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excluded; see next section) aiming to define groups of samples and the main variables defining 

those groups. Based on this analysis, soil samples were assembled into three groups mainly 

differing in terms of texture, organic matter content and pH. The obtained results dictated the 

adoption of a multireference system. Soil from several points in the surrounding of the area 

were screened, analyzed for metals and soil properties, and three reference soils (the best 

possible for each identified group of sampling points) were selected at 3 km (Ref. 2 and 3) and 

9 Km (Ref. 1) from the area (see Fig. 3.1). 

 

Smelter 
buildings

Subaé river

Road

Train line

Pond

Pond

Pond

40m

Smelter 
border

P400T1

P150T1
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P1000T3 (1 Km from P0)

P400T3 (400m from P0 – inside smelter)

Ref. 3 (± 3 Km from the area)
P1000T1 (1 Km from P0)

Ref. 1 (± 9 Km from the 
area)

 

Fig. 3.1 Schematic representation of the study area (an abandoned lead smelter, Santo Amaro, BA, 

Brazil) showing the location of the 11 sampling points along the two transects and of the three 

reference points. 

 

3.2.3 Soil physico-chemical characterization 

Based on the historical use of the site and on a previous study (FUNASA 2003), soils 

were analyzed for the four main metals responsible for the contamination of the area (Pb, Cd, 

Cu, and Zn), and also for Cr, Ni, Fe, Co, and Mn. Metals were quantified in the bulk soil by 

inductively coupled plasma-atomic spectroscopy. Other soil physico-chemical parameters 

measured were pH (KCl 1M) (ISO 1994a), water holding capacity (ISO 1998), cation exchange 
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capacity (ISO 1994b), organic matter (OM) content (loss on ignition at 500 ºC for 6 h) and soil 

texture (LNEC 1970). 

 

3.2.4 Avoidance tests with Folsomia candida and Eisenia andrei 

Avoidance tests with collembolans and earthworms were conducted using dual 

combinations of each test soil vs. the corresponding reference soil. To validate the test results, 

dual control tests using OECD (1984a) artificial soil were performed with both test species. 

Prior to testing, the water content of each soil (including the OECD soil) was adjusted to 50% of 

its maximum water holding capacity. Both test species originated from laboratory cultures 

maintained as described by Natal-da-Luz et al. (2009). 

Tests with F. candida were carried out based on the ISO draft guideline 17512-2 (ISO 

2007a). Cylindrical plastic containers (diameter: 7 cm; height: 6 cm) were divided into two 

equal sections by a plastic divider introduced vertically. Each container was filled with 30 g 

fresh weight (FW) of test soil on one side and 30 g FW of the corresponding reference soil on 

the other side. After removal of the divider, 20 adult collembolans (10 to 12 d old) were placed 

into the middle line of each test container. After 48 h of incubation, the content of each 

compartment was emptied into other plastic container to which water and a few drops of blue 

ink were added. The mixture was gently stirred and the organisms floating on the water 

surface were counted. Five replicates were prepared for each combination tested, plus one 

replicate without animals for pH and moisture determination. In the dual control tests with 

OECD soil the same procedures were adopted but the artificial soil was placed on both sides of 

the tests container. All tests were performed in a temperature controlled chamber at 25±2ºC 

and with a photoperiod of 16:8 h (light:dark). 

Avoidance tests with E. andrei were conducted according to the ISO guideline 17512-1 

(ISO 2007b). The test procedures, number of replicates per soil combination and incubation 

conditions were similar to those used for F. candida. However, rectangular plastic boxes 

(length: 20 cm, width: 12 cm, height: 5 cm) were used, and 250 g FW of (test, or reference) soil 

were placed in each section of the test container, and ten adult worms were used per replicate 

The number of organisms in each section was counted and recorded after a 48 h exposure 

period. For the dual control tests with OECD soil, the same procedures of the avoidance tests 

were adopted. 
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3.2.5 Daphnia magna lethal test 

 A 48 h D. magna lethal test (OECD 1984b) was conducted on eluates prepared from all 

soils. Soil eluates were obtained by shaking on a magnetic stirrer a soil:water mixture (ratio 

1:4) for 18 h. The obtained soil suspension was left to settle for 24 h, time after which the 

supernatant was centrifuged for 7 min at 3370g, filtered through a Schleicher & Schuell filter 

paper and stored in plastic bottles at 4ºC and in darkness until use (within 10 days). Although 

filtration may decrease sample toxicity by removing the fraction of the contaminant adsorbed 

to suspended particles (Weltens et al. 2000), it was a required procedure to eliminate the 

potential detrimental effects of the suspended particles per se on the biological responses 

being measured. The pH was not adjusted. The water used to prepare the eluates was 

reconstituted hard water (ASTM 2002), since it was the media used for organism culturing in 

the tests as control and dilution media. Organism used for testing were 24-h old neonates 

(clone Ircha) from third- to fifth-broods of mothers cultured according to the procedures 

outlined in Rosa et al. (2010). Four replicates were set up for each treatment with five 

neonates and 50 mL each. During testing the incubation conditions were similar to those used 

for the soil organisms, and no food was provided. After 24 and 48 h exposure periods, the 

immobility/death of the neonates was checked. Measurements of pH, dissolved oxygen and 

electrical conductivity were measured at the beginning and at the end of all tests. All soil 

eluates were first tested at 100%. For eluates where immobility was observed, a dilution series 

of 100, 50, 25, 12.5 and 6.25% of the eluate was tested to determine the median lethal dilution 

(LC50 values).  

 

3.2.6 Vibrio fischeri luminescent test 

 The luminescent test with the marine bacterium V. fischeri was carried out on all soil 

eluates, prepared as described above but using ultra-pure rather than ASTM water, following a 

previously established protocol (ASTM 2004). All tests were carried out by Cetrel (Camaçari, 

BA, Brazil). The Microtox toxicity analyzer model 500 (Azur Environmental, Carlsbad, CA, USA) 

was used to measure the light emission of the bacteria after a 15 min exposure. 
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3.2.7 Soil fauna feeding activity using bait lamina  

Bait material was prepared in a 1/5/14 ratio of finely ground oat, activated charcoal 

and cellulose powder (Merck). Five groups (samples) of five bait lamina strips were exposed in 

each sampling point for 14 days. Baits were inserted vertically into the soil, within an area of 

15 x 15 cm at each group. In parallel, soil moisture was determined at each point. After the 

exposure period, each bait lamina was removed from the soil, conditioned together with the 

baits from the same group and brought to the laboratory. There, after carefully washing it in 

water, each bait strip was visually assessed by holding it against a light source and counting the 

number of pierced (= eaten) holes. No distinction was made between partially or fully pierced 

holes. The feeding activity per sample (group of five strips) at each sampling point was 

expressed in percentage, dividing the number of eaten holes by the total number of holes. 

 

3.2.8 Basal soil respiration 

At each sampling point soil samples for the determination of basal respiration were 

collected using a different procedure than described in section 2.2. In this case, at each 

sampling point three parallel transects (5 m apart) were defined. Along each transect, 15 

subsamples (10cm depth) were collected and pooled to form a composite sample. After 

mixing, the samples were sieved (< 5mm), stored at 4 °C and processed within the next 72 h. 

The methodology to determine the basal soil respiration is described in Alef (1995). Basal soil 

respiration was measured after 8 days for incubation at 28°C in the dark, with soil moisture 

adjusted to 60% of water holding capacity. The CO2 evolved from 100g samples in hermetically 

sealed containers was trapped in 20 mL of 1 M NaOH. Back-titration with standardized HCl 

revealed the remaining NaOH and consequently the CO2-C evolved. Results were expressed on 

an oven-dried soil basis at 105 °C for 24h. 

 

3.2.9 Vegetation cover 

Assessment of percentage of vegetation cover was carried out according to Veiga and 

Wildner (1993). A plastic grid of 50 cm x 50 cm, subdivided in small 100 squares of 5 cm x 5 cm, 

was randomly released four times (four samples) at each sampling point. The sum of the 
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intersections of small squares over vegetation in each grid represents the percentage of 

vegetation cover at each sample. 

 

3.2.10 Data analysis 

3.2.10.1 Ecotoxicological and ecological tests 

The avoidance response to each tested soil was calculated according to the ISO 

guidelines (ISO 2007a, b). Avoidance data for E. andrei at each combination tested was 

corrected for site specific properties using a generalized linear model developed by our team 

based on data gathered with non-contaminated natural soils (unpublished study). Soils 

properties considered in the model were texture parameters (sand and silt contents) and soil 

pH. According to this unpublished study, the avoidance response of F. candida showed much 

less sensitivity to soil properties. Therefore no correction was done for this organism in the 

current study. The significance of the avoidance responses (p<0.05) was evaluated using the 

Fisher exact test (Zar 1996), as described by Natal-da-Luz et al. (2008). For the avoidance tests, 

a one-tailed test was chosen, and the null hypothesis assumes that half of the individuals are 

staying in the soil that is being assessed, meaning that there are no avoiders regarding that 

soil. For the dual control tests, a two-tailed test was chosen, and the null hypothesis assumes 

an equal distribution of the organisms on both sides of each test container. The 24 and 48 h 

LC50 values for D. magna and respective 95% confidence limits (CL) were computed using the 

software PriProbit 1.63, with the probit transformation of the proportion of deaths and the log 

transformation of the dilution values (Sakuma 1998). For the V. fischeri test, the EC50 values 

(median effective dilutions) and respective 95% CL were calculated using the Microtox Omni 

Software 1.18 (Azur Environmental).  

For the ecological parameters (bait lamina test, vegetation cover and soil basal 

respiration) differences between sampling points were evaluated via a one-way analysis of 

variance followed by the Dunnet test. In these analyses an overall reference value was used, 

based on the values obtained for each reference sampling point. Soil moisture and organic 

matter contents were used as covariables in the basal respiration ANOVA. Normality and 

homoscedasticity were checked via the Kolmogorof-Smirnov and Bartlet tests, respectively. 

Analyses were done using the Statistica 7.0 software (Stat Soft). 
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3.2.10.2 Risk calculations  

 Risk calculations followed the approach proposed by Jensen and Mesman (2006) 

where risk values are expressed in a scale ranging from zero (“no risk”) to one (“high risk”). 

This method assumes that the risk value of the reference soils is zero and that the risk of the 

tested soils is calculated in relation to the value of the respective reference soil. This implies 

that results from the various parameters across the three LoE should be made comparable 

(expressed under the same scale). For each sampling point, the calculation of the risk values 

was done through three steps: (1) scaling the results of each test/evaluation within each LoE; 

(2) integrating scaled information and calculating the contribution of each LoE to the overall 

risk; (3) integrate the information from the three LOEs and calculate the integrated risk.  

In the first step, the results of all determinations within each LoE were scaled between 

zero and one. For the chemical LoE the total content of each metal was used to calculate the 

specific Toxic Pressure (PAF - Potential Affected Fraction of species) at each sampling point.  

This was done based on the mixture model of concentration addition described by De Zwart 

and Posthuma (2005). The benchmarks (HC50EC50 values) and model parameters used for each 

metal in these calculations can be found in Rutgers et al. (2008). According to these authors 

the use of HC50 values derived from species sensitivity distributions based on NOEC values 

(HC50NOEC) could originate an overestimation of risk values (many values closer to 1). Since no 

HC50 values based on EC50 values (HC50EC50) are available in literature, they advise to apply 

the safety factor of 10 to the HC50NOEC and work with those values (HC50EC50 = 10 x HC50NOEC; 

Rutgers et al. 2008). Prior to calculations, the HC50EC50 values were corrected for sampling site-

specific differences (taking into account the organic matter and the clay content of each soil) 

according to the correction formula described in Boivin et al. (2006). This implies that different 

HC50EC50 values (HC50cor) were used for each metal at each sampling point. Since HC50 values 

exist only for some metals, risk derived from the chemical LoE was based only on the 

concentrations of Pb, Cd, Cu, Zn, Cr and Ni. 

For the ecotoxicological LoE, the scaling of the avoidance data was done based on the 

percentage of avoidance, where negative values (no avoidance) were set to zero. Since the 

avoidance response towards a reference soil (when tested against itself) is zero, percentage 

values (converted between 0 and 1) were used directly as individual risk values. In the D. 

magna and V. fischeri tests, the LC50 and EC50 values, respectively, expressed as the 

percentage of dilution of the eluates, were used. For the ecological LoE, the bait lamina 

(expressed as the percentage of fed holes), the vegetation cover (expressed in percentage 
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values), and the basal soil respiration (expressed as µg CO2-C g-1 day-1) values were scaled 

using an overall reference value calculated based on the values from the three reference 

sampling points.  

In the second step, the risk derived from each LoE was calculated by integrating the 

respective scaled information for each parameter. In the chemical LoE this was achieved by 

estimating the msPAF (multi-substance PAF) by integrating the individual metal PAF’s 

according to a response addition model described by De Zwart and Posthuma (2005). Finally, in 

step three, the integrated risk (IR) was calculated for each tested soil (sampling point). To 

evaluate whether the different lines of evidence contributed differently to the total risk, the 

standard deviation associated to each IR value was also calculated. More details on the 

calculation involved in each of the three steps (including formulas for each type of data used) 

can be seen in Jensen and Mesman (2006). 

 

3.3 Results and discussion 

 

3.3.1 Soil properties and selection of reference soils 

Soils from the study area showed low (<2%) to medium (2 to 6%) organic matter 

content (according to the USEPA 2004), a Cation Exchange Capacity (CEC) mostly between 30 

and 40 meq/100 g, and pH values near neutral, with the exception of soils P1000T1 and Ref.2 

with a low pH (Table 3.1). These characteristics agrees with those reported by Anjos (2003), 

who identified basic pH high CEC, high clay percentage and high organic matter content as 

characteristics of soils from the study area. 

Results from the multivariate factor analysis indicated that texture (described by 

coarse sand, silt and clay contents) was the main soil characteristic determining the separation 

of the soils (along axis 1, explaining 49.5% of the variation), followed by pH (along axis 2, 

explaining 24.3%) and organic matter content (along axis 3, explaining 12.8% of total 

variation). Texture variables separated soils of group 2 (highest sand content and lowest silt 

and clay contents) from all other soils. The latter were then separated into two groups based 

mainly on their OM content, with group 1 generally presenting lower values than group 3. The 

reference soil allocated to each of the three soil groups was selected so that its characteristics 

matched, to the extent possible, these three soil properties, which are known to influence not 
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only the bioavailability of contaminants (Kuperman et al. 2009), but also the avoidance 

response of the two tested soil-dwelling species (Natal-da-Luz et al. 2008). The heterogeneity 

of the soil inside the smelter area can be related to the failed attempt to encapsulate the 

tailings by depositing thousands of cubic meters of soil from regions around (Anjos 2003). 

 

3.3.2 Soil metal concentrations 

 Total metal concentrations for each soil are shown in Table 3.2. For at least one among 

four metals (Pb, Cd, Cu, and Zn), soils from three sampling points presented levels exceeding 

the HC50cor values. Among these points, P0 presented a high degree of Zn contamination by 

exceeding almost three fold the corresponding HC50cor value, whereas points P150T1 and 

P50T3 presented a critical level of contamination, exceeding by far (between 1.6 and 73.5 

times) the screening levels of these four metals. 

High levels of metal contamination in the area were also previously reported (Anjos 

2003; Machado et al. 2004). Most likely, such contamination levels resulted from the 

deposition of residues inside the smelting area as well as from the aerial deposition of 

contaminated particles from the smelter plume while in function, being responsible for the 

extent of contamination outside the smelter area. 
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Table 3.2 Total metal concentrations (mg/Kg) in sampled soils and respective references. 

Soil group Pb Cd Cu Zn Cr Ni Fe Mn 

Group 1         

Ref 1 16 <0.2 66 94 77 54 45000 840 

P1000T1 23 <0.2 60 80 62 46 48000 360 

P20T3 308 <0.2 56 420 78 60 49000 672 

P400T3 179 0.3 44 90 59 46 34000 760 

Group 2         

Ref 2 13 <0.2 18 24 16 28 2900 34 

P0 1264 <0.2 76 3800 (2.8) 72 57 52000 674 

P20T1 133 <0.2 56 220 80 56 41000 780 

P150T1 37460 (10.4) 771 (9.8) 594 (1.6) 42200 (33.5) 57 70 110000 1720 

P50T3 26074 (7.1) 62 3196 (8.2) 95940 (73.5) 80 40 117000 5880 

Group 3         

Ref 3 152 <0.2 40 260 59 40 53000 820 

P50T1 164 <0.2 60 240 80 58 43000 720 

P400T1 961 8.8 60 840 64 48 35000 540 

P150T3 2200 12 108 3300 84 58 56000 678 

P1000T3 99 <0.2 56 156 84 52 49000 568 

Numbers in superscript indicate an exceedance of the corrected Dutch HC50EC50 values (after Rutgers et al. 
2008) (Ex: the [Pb] at P150T1: 37460 (10.4), indicates that [Pb] was 10.4 times higher than the HC50corPb). 
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3.3.3 Avoidance tests with Eisenia andrei and Folsomia candida 

Avoidance tests with F. candida fulfilled the validity criteria, since mortality at each 

combination was less than 20% (ranged between 2% and 18% in avoidance tests, and was 1% 

in dual control tests), and a homogeneous distribution of individuals in the two compartments 

was observed in the dual control tests (p>0.05, Fischer Exact test). Collembolans avoided 

significantly most of the test soils (Fig. 3.2). The exception was soil from point P1000T3, where 

no avoidance was detected. Considering that points P150T1 and P50T3 presented the two 

most contaminated soils (with the highest concentrations of Cu, Zn, Pb and Cd), a stronger 

avoidance response was expected relatively to all other soils. F. candida is known to avoid 

copper concentrations well below those that impair survival and reproduction (e.g. a 48 h EC50 

for avoidance of 61 mg/Kg versus a 28 d EC50 for reproduction of  751 mg/Kg; Greenslade and 

Vaughan 2003), and some evidences point that the same can occur with zinc (Natal-da-Luz et 

al. 2004). However, according to Greenslade and Vaughan (2003), these organisms do not 

avoid cadmium. Moreover, F. candida seems to be less sensitive to lead than to other metals, 

as observed by Sandifer and Hopkin (1996) (EC50reproduction=2970 µg/g at pH 6.0), and as 

reported by Fountain and Hopkin (2001), where  F. candida fed on yeast contaminated with Pb 

up to 49200 µg/g did not exhibited significant change in mortality at all concentrations. In view 

of these facts, the weak avoidance response observed in these two soils (22% in P150T1 and 

11% in P50T3) was most likely due to other factors than due to the total metal loads. Although 

there are indications that the avoidance response of F. candida is less influenced by soil 

properties than that of E. andrei (Natal-da-Luz et al. 2008), the fact that soils P150T1 and 

P50T3 had a higher organic matter content and pH compared to Ref 2, may have influenced 

the availability of metals to the organisms. Moreover, the very low organic matter content in 

soils from P0 and P20T1 may have caused the higher avoidance response observed.  
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Fig. 3.2  Avoidance percentage (mean + standard deviation) of Folsomia candida (white bars) and Eisenia 

andrei (black bars) for each tested soil. Asterisks indicate a significant avoidance using Fisher exact test 

(* p≤0.05; ** p<0.01). Negative values were not shown. 

 

Tests with E. andrei also fulfilled the validity criteria since no mortality was found in 

any soil and the organisms were homogeneously distributed between the two compartments 

in the dual control tests (p>0.05 in Fischer Exact test). All soils were significantly avoided by the 

earthworms (see Fig. 3.2). An impairment of the habitat function of the soil according to the 

avoidance criterion proposed by Hund-Rinke and Wiechering (2001), i.e., an avoidance 

response higher than 60%, was observed for all soils from group 2 and also for soils from 

points P1000T1 and P50T1. This strong avoidance response may have been induced by the 

high levels of metals, in some cases exceeding by far the HC50cor values, or by soil related 

properties known to influence the avoidance behavior of earthworms. Loureiro et al. (2005b) 

reported avoidance response of E. andrei to copper (EC50=181.1 mg/kg Cu) and Lukkari et al. 

(2005) observed a significant avoidance of Aporrectodea tuberculata to 53 mg/Kg of Cu and 92 

mg/Kg of Zn. Moreover, Alvarenga et al. (2008) observed avoidance response of E. fetida to a 

mine contaminated soil containing 1250, 362, 264, and 2.6 mg/kg of Pb, Cu, Zn, and Cd, 

respectively. These findings support our results for soils from group 2, presenting contents of 

several metals higher than the benchmarks reported by these authors. Besides the high levels 

of metals, other factors are known to influence the avoidance response of E. andrei. According 

to Natal-da-Luz et al. (2004; 2008), soils with low pH, low organic matter content and fine 
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texture are avoided by these organisms, which could explain the high avoidance response for 

soils P1000T1, P20T1 and P50T1 (low pH and low organic matter content, respectively, in 

comparison with the respective reference soils). In the case of sampling point P1000T1, by 

being outside the smelter area and in the middle of a pasture, the presence of another type of 

contamination (e.g., pesticides) eliciting the observed high avoidance response should not be 

ruled out. The high organic matter content in soil from point P400T1 (5.1%) relatively to the 

respective reference may explain the lack of a strong avoidance response by E. andrei. Organic 

matter decreases the bioavailability of metals in soil (Lock et al. 2000; Lock and Janssen 2001) 

and E. andrei, being a compost worm, is known to prefer soils with high organic matter 

content. 

Overall, earthworms were generally more sensitive to the metal contamination and 

presented a less variable response than the collembolans. The present results are thus in 

accordance with the documented sensitivity of earthworms to metals in avoidance tests 

(Yeardley et al. 1996; Hund-Rinke and Wiechering 2001; Lukkari et al. 2005) and their more 

consistent response to metal contaminated soils than collembolans (Natal-da-Luz et al. 2004) 

confirming their valuable use in ERA (Römbke et al. 2005). 

 

3.3.4 Daphnia magna lethal test and Vibrio fischeri luminescent test 

 Lethal effects on D. magna were observed in eluates prepared from soils P150T1 and 

P1000T1; values of 24 h LC50 of 88% (95% CL; 82 – 95) and >100% and of 48 h LC50 of 68% (95% 

CL; 63–74) and 91% (95% CL; 85–97), respectively, were registered. Regarding the V. fischeri 

test, eluate from soil P50T3 was toxic to the bacteria, with a 15 min EC50 value of 8.6% (95% CL 

of 1.1–65.3). The present results are in agreement with the fact that metal loads were highest 

in soils from points P150T1 and P50T3. Although the soil from point P1000T1 was not classified 

as metal contaminated according to the HC50cor benchmarks used, the response in this soil 

eluate was most likely related to the low pH (3.7) of the bulk soil, and thus the low pH levels in 

this soil eluate; pH ranged from 4.84-4.98 to 5.53-6.22 at the start and end of the lethal test, 

respectively. Actually, lethal effects on cladocerans due to pH alone are likely to occur for 

values outside the range 6.0-9.0 (USEPA 2002). In agreement, the lack of lethal effects in the 

eluate prepared from the P0 soil (classified as metal contaminated according to the HC50cor 

values) was most likely due to the fact that pH level in this eluate was always well above 6.98, 

i.e., level not only not detrimental for freshwater organisms but at which most metals are not 

in their dissolved form and thus not bioavailable. The present results suggest that the 
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retention function of soils at most of the sampling points was enough to prevent the 

mobilization of metals via the water pathway. Bioavailability of metals in soils may depend on 

several factors, such as pH, organic matter content, cation exchange capacity and clay content 

(Van Gestel 1992). Due to soil heterogeneity, the sorption potential might vary considerably, 

resulting in changes of contaminant availability, sometimes even within a small area. With 

time, sequestration processes become even more pronounced, a phenomenon generally 

referred to as “ageing”. In general, most of the soils sampled have low organic matter content, 

however, all soils (except P1000T1 and Ref 2) have an alkaline pH, typical of soils of this region 

(Anjos 2003), which favors soil adsorption and restricts metal bioavailability. Moreover, soil 

“ageing” may be occurring in the area between the closure of the smelter in 1993 and the last 

attempt to rehabilitate the residue piles in 2001 (Anjos 2003).  

 

3.3.5 Bait lamina test 

 The average feeding activity observed at the sampling points was in general 

significantly lower than the overall reference value (Table 3.3). Lower feeding activity was 

registered at sampling points within the smelter area, mainly at those associated to a high 

degree of contamination (P0, P150T1 and P50T3) or to a low organic matter content (P20T1 

and P50T1). Unexpectedly, point P400T3 also presented a low feeding activity, but other soil or 

habitat parameters must explain these results. With the exception of sampling point P1000T1, 

bait lamina data was, in general, in good agreement with the E. andrei avoidance responses, 

i.e., high avoidance was usually associated to a low feeding activity. This is in agreement with 

van Gestel et al. (2003) that found a strong association between soil fauna feeding activity 

measured by bait lamina and earthworm densities. The observed decline in feeding activity at 

contaminated sampling points may suggest an impact of metals on the soil fauna, especially 

earthworms, and eventually on invertebrate abundance and diversity (Weeks et al. 2004b). 

Similar results were also reported by Filsek et al. (2004) and André et al. (2009) on metal 

contaminated areas in the UK and Portugal, respectively. 
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Table 3.3 Ecological parameters (average values ± standard deviation) for the assessed sampling points. 
The values for the three reference points were averaged to give an overall reference value. Asterisks 
indicate significant differences (* p<0.05; ** p<0.01; *** p<0.001) for a one-tailed hypothesis of a 
Dunnet test between each sampling point and the overall reference value (Ref value higher than 
sampling point value). In the soil respiration ANOVA, soil moisture and soil organic matter contents were 
used as covariables. N - number of replicates. 

Soil groups 

Bait lamina  

(% pierced holes) 

N=5 

Vegetation cover  

(%) 

N=4 

Respiration 

 (ug CO2/ g soil/ day) 

N=3 

Overall 
reference 

48.6 ± 13.9 81.3 ± 21.0 139.4 ± 106.4 

Group 1    

P1000T1 45.3 ± 16.1 67.5 ± 15.0 164.0 ± 79.1 

P20T3 30.4 ± 15.4 32.5 ± 12.6 *** 82.6 ± 15.8 

P400T3 10.3 ± 6.7 *** 97.5 ± 5.0 165.2 ± 41.3 

Group 2    

P0 18.4 ± 14.3 *** 22.5 ± 22.2 *** 34.9 ± 7.8 *** 

P20T1 17.8 ± 10.2 *** 30.0 ± 16.3 *** 35.1 ± 7.1 *** 

P150T1 7.3 ± 8.1 *** 30.0 ± 42.4 *** 49.2 ± 6.6 ** 

P50T3 11.8 ± 5.7 *** 20.0 ± 14.1 *** 52.2 ± 12.6 ** 

Group 3    

P50T1 19.8 ± 6.8 *** 57.5 ± 12.6 41.4 ± 2.4 ** 

P400T1 61.5 ± 23.8 100.0 ± 0.0 234.9 ± 83.3 

P150T3 5.5 ± 6.9 *** 57.5 ± 9.6 60.5 ± 9.2 * 

P1000T3 26.3 ± 17.5 * 100.0 ± 0.0 n.d. 

n.d. - not determined
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3.3.6 Basal soil respiration 

Basal soil respiration was significantly lower in sampling points inside the smelter area, 

either those with high metal contents (P0, P150T1, P50T3 and P150T3) or those with very low 

organic matter content (P20T1 and P50T1), despite the correction for this parameter (Table 

3.3). These results showed impairment in microbial activity, which indicates a probable 

negative effects on nutrients cycle in points inside the smelter area. Respiration is a functional 

parameter widely used to indicate the microbial activity related to nutrient cycling (Araujo and 

Monteiro, 2007). Results obtained by Zimakowska-Gnoinska et al (2000) confirmed that soil 

respiration can be used for estimations and comparisons of soil ecological conditions and 

biological activity of soils. These authors observed a significantly lower oxygen consumption in 

soil samples from contaminated sites in comparison to uncontaminated sites. Similar results 

were obtained by Gulser and Erdogan (2008) that presented a negative correlation between 

soil respiration and metal contents in roadside fields of intensive traffic areas. 

 

3.3.7 Vegetation cover 

Vegetation cover ranged between 20-100 % (Table 3.3). Like for the other two 

ecological parameters, and despite the large variability in the data, a significant reduction of 

the vegetation cover in comparison to the overall reference situation was observed in most 

sampling points within the smelter area (P0, P20T1, P150T1, P20T3 and P50T3). These points, 

together with P50T1 and P150T3 (where a reduction in vegetation cover was also observed), 

correspond to sites where tailings were deposed and where a non-successful re-vegetating 

action took place. At these sites vegetation was dominated by one herbaceous species. In 

some of these points, evidences of erosion were observed, which could have originated the 

delay of the natural regeneration process. 

Our results are in agreement with Salemaa et al (2001). When studying plant diversity 

and cover along a metal pollution gradient in a smelter area in SW Finland, these authors 

found that these parameters decreased in soils with metals and sulphur, and increased with 

distance from the smelter. Similarly to our findings, they also found that a few tolerant species 

dominated the ground vegetation on the most polluted sites. They also found that the 

understory vegetation near the smelter was more damaged than trees, which confirms the 

importance of including understory vegetation in monitoring programmes. 
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According to Godinez-Alvarez et al (2009) vegetation cover is an important indicator of 

soil quality. However when used alone (without information on other vegetation parameters 

like biomass or species richness) data obtained should be interpreted carefully, since a higher 

cover does not necessarily indicate a good soil quality. In this study vegetation cover showed 

to be a less sensitive parameter than bait-lamina or microbial basal respiration, being able to 

detect differences only on those heavy degraded soils. However, due to the extreme simplicity 

in terms of sampling, can be considered a good parameter for the screening phase when used 

together with other ecological parameters. 

 

3.3.8 Lines of evidence and integrated risk 

Table 3.4 shows the individual contribution and the combined calculated risk values for 

each LoE. Sampling points presenting very high risk values (above 0.75) derived from the 

chemical LoE were, as expected, those where the metal concentrations exceed the HC50cor 

values (P0, P150T1 and P50T3) or were near that threshold (P150T3; see also Table 3.2). 

Regarding the ecotoxicological LoE, the differences in sensitivity of the screening tests were 

clearly visible in their contribution for the calculated combined risk, with avoidance tests 

indicating a higher risk than aquatic tests. The highest risk values (0.60 to 0.82) for this LoE 

were found in the more sandy soils (sampling points from group 2), with clay and silt soils 

presenting lower risk values (P1000T1 was the exception to this trend due to the high 

contribution of the earthworm avoidance test). Despite the differences in sensitivity, the 

contributions of the three parameters from the ecological LoE were concordant with the other 

LoE’s in indicating greater risk values (above 0.60) for sampling sites from group 2 (sandy soils 

with high metal content), and for P150T3 (soil with high metal loadings). 

The combination of the three lines of evidence into an integrated ecological risk value 

(IR) for tier 1, showed the spatial heterogeneity of the risk along the study area. However, high 

levels of risk were found at sampling points within the smelter area, particularly in soils with a 

coarse texture (soils from group 2; Fig. 3.3). Very high integrated risk values (IR > 0.75) were 

calculated for sampling points P0, P150T1 and P50T3 which, according to the Dutch limit 

acceptable values according to land use (Jensen and Mesman 2006) restricts their use to 

industrial activities and requires sealed soils. Among the latter soils, the weight of evidence 

was strong, since a high level of risk was indicated by each of the three lines of evidence (as 

illustrated in Fig.3.3 by the low levels of standard deviation and balanced triangular graphs). 
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Sampling points P20T1 and P150T3 showed a moderate risk (0.51 ≤ IR ≤ 0.75) (Fig. 3.3). 

However, the weight of evidence was not as strong as for the three soils described earlier, as 

seen by the slightly higher standard deviation associated to the IR values. At sampling point 

P20T1 the low risk indicated by the chemical LoE did not agree with the high risk values for 

both the ecotoxicological and the ecological LoE’s. The observed low metal loadings on this 

soil, and the consequent low chemical risk values obtained, were unexpected due to the 

spatial location of the sampling point. However this is another clear sign of the spatial 

heterogeneity of the contamination within the smelter area and the degree of uncertainty 

associated to this spatial variation. This type of discrepancy, i.e. high effects on the biological 

parameters but low risk shown by the chemical parameters, may lead to the discussion about 

the weighting of the different LoE’s. In principle each LoE is equally weighted, but under 

special circumstances a differential weighting can be attributed. Rutgers and Jensen (2010) 

mention, as examples, that the lack of proper reference sites or a deficient chemical 

characterization are situations where a lower weight should be attributed to the ecological and 

to the chemical LoE’s respectively. In this study, the lower and unexpected risk value obtained 

for the chemical LoE could justify the attribution of a lower weight to this LoE. However, the 

option of attributing the same weight to each LoE was followed, especially because the 

existing experiences in attributing different weights to different LoE’s are scarce for the 

terrestrial environment. Moreover this discrepancy should be confirmed on a tier 2 

assessment. In sampling point P150T3, the low weight of evidence was originated by the low 

risk values of the ecotoxicological LoE (0.3 – Table 3.4). The reason behind this low risk value is 

the very low sensitivity of the aquatic tests performed. Although these findings should be 

further investigated in a tier 2 evaluation, they trigger the discussion of differential weighting, 

this time within each LoE. 

  A low risk (IR ≤ 0.50) was associated to sampling points P50T1, P400T1, P1000T1, 

P20T3, P400T3, and P1000T3, all clay based soils. On points P50T1, P20T3, P400T3 and 

P1000T3 all the lines of evidence pointed to the same direction (a general low risk), despite the 

high impact on soil fauna feeding activity found in P400T3 (a trend not followed by the other 

two ecological parameters measured). However for the other two sampling points some 

uncertainties still persisted (IR value with a high standard deviation). The risk at sampling point 

P1000T1 was just indicated by the ecotoxicological LoE, as the chemical and ecological LoE 

indicated no risk. The high toxicity of this soil, mainly indicated by the earthworm avoidance, 

can either be related to the low pH value of the soil or to the presence of contaminants not 

analyzed in this study, namely pesticides. Nevertheless the tendency of earthworm avoidance 
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tests to produce high risk values (near 1) when the percentage avoidance is used directly as 

individual risk value in the scaling process (see methods section) should not be neglected. One 

could argue that another type of scaling process could be used instead with this type of data. 

However this problem can be minimized since avoidance tests with earthworms should be only 

one of the ecotoxicological tools applied at this tier. For sampling point P400T1 the high 

standard deviation associated to the IR value was due to the indication of low or no risk by the 

ecotoxicological and ecological LoE’s, respectively, and to the low to moderate risk signaled by 

the chemical LoE, related to the levels of Pb and Zn. This result may indicate that the metal 

levels at this point had a low bioavailability, thus, that this degree of uncertainty needs to be 

further confirmed in a second tier of risk analysis. 

These results confirm the added value of deriving risk values in site specific risk 

assessment not only by adopting the triad approach, but also by obtaining ecotoxicological 

information using different test organisms, covering different sensitivities and exposure 

routes. As shown in this study, biological testing is of direct relevance to the principle of 

significant harm, because the organisms will respond to the bioavailable fraction of the 

contaminant (Spurgeon et al. 2005). Furthermore, ecological data derived also from different 

parameters give information about the structure and function of soils, linked directly to the 

aim of diversity protection, complementing and improving the ecological relevance of the risk 

assessment process. Either a positive response in an ecotoxicological screening test, an 

exceedance of soil screening levels or evidences of damage to the ecological structure and 

functioning of soils, is sufficient to warrant progression to the next tier in the process, where a 

reduction of uncertainties is done through sublethal bioassays, determination of the available 

fraction of contaminants and inclusion of additional ecological data. 
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Table 3.4  Individual risk values for each param
eter and com

bined risk for each line of evidence. For each sam
pling point, values are scaled betw

een 0 and 1 and are given in 
relation to the respective reference soil (risk for reference soil is set to 0) (see text for details). ChLoE (chem

ical line of evidence); EcLoE (ecotoxicological line of evidence); 
ELoE (ecological line of evidence).  
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Fig. 3.3  Integrated ecological risk values (+ standard deviation) (Min: 0; Max: 1) for each sampling point, 

combining information from the chemical, ecotoxicological and ecological lines of evidence. Points with 

grey bars are located inside of the smelter area. Different bands indicate limits of accepted risk values 

for different soil uses (A- Agriculture; R- Residential; I-Industrial; asterisks indicate necessity of sealed 

soils) according to Jensen & Mesman (2006). Triangles on top of each bar represent the contribution of 

each LoE for the integrated risk value being an indicator of the weight of evidence (on the top right the 

example the length of each axis of the triangle represent maximum risk (1) from each LoE). 

 

 

3.4 Conclusions 

 

In general, integrated risk was low outside the smelter area, although some 

uncertainties were observed that need further investigation on the next tier. Inside the 

smelter area a high spatial heterogeneity of risk levels was observed, probably related to the 

non homogeneous deposition of smelting residues. Very high levels of risk were observed 

mainly in sampling points having sandy soils, and possibly associated to residue deposits. This 

high risk (above 0.75) may indicate the need to proceed with some remediation action. 

However, due to several uncertainties associated to the contradictory information given by the 

lines of evidence in some sampling points, there is a need to confirm the potential risk in a tier 

2 analysis. With this aim, further data from the three lines of evidence (including evaluation of 

metal extractable concentrations, sublethal bioassays and additional ecological surveys) is 

being collected.  
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the reproduction of Folsomia candida, Eisenia 
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Effects on the reproduction of soil invertebrates 

 

Abstract 

The present study evaluated the ecotoxicity of metal contaminated soils nearby to an 

abandoned lead smelter, on the reproduction of the oligochaete species Eisenia andrei and 

Enchytraeus crypticus and the collembolan Folsomia candida. Eleven points were selected up 

to 1,000 m from the smelter, and the reference points were 3 and 9 km far away from the 

area. Reproduction tests were conducted according to ISO guidelines, under a temperature of 

25°C. Reproduction of oligochaetes and collembolans was affected in several soils; however, 

these organisms showed different sensitivities. Oligochaete species were the most sensitive, 

and impairment on reproduction was highly correlated to soil contamination and slag content. 

Reproduction of Collembola was not correlated to metal concentrations. The results reinforced 

the importance of ecotoxicity tests to assess soil toxicity as a complement of physical and 

chemical analyses. These tests integrated the combined effect of mixtures of contaminants 

and their actual bioavailability. Data obtained still highlighted the importance of using different 

test species in environmental risk assessment, since species may be affected in a different way 

due to the fact that they represent different routes of exposure to the contaminants.  

 

Keywords:  Soil invertebrates, Reproduction, Metals, Folsomia candida, Enchytraeus crypticus, 

Eisenia andrei 

91



Chapter 4 

 

4.1 Introduction 

 

Mining activities have contributed to metal contamination of soil systems (Natal-da-

Luz et al. 2004) often resulting in acid mine drainage formation (e.g. Lopes et al. 1999; Huang 

et al. 2010). Toxicity of soil due to metal contamination is usually evaluated based on its total 

metal concentrations. However, it is widely recognized that chemical quantification of metals 

in soil per si is not sufficient to evaluate potential risks. Joint effects of metal mixtures to soil 

organisms may be different than expected from the effect of single chemical exposures, 

depending on factors such as the nature of the chemicals and multi-contaminant interactions 

(De Zwartz and Posthuma 2005). On the other hand, ecotoxicological assays integrate the 

impact of contaminants as a whole (including those not considered or detected by chemical 

analyses) (Weeks et al. 2004; Natal-da-Luz et al. 2009). Due to that reason, ecotoxicological 

assays have been recommended to evaluate the ecological risk of contaminated soils as a 

complement of chemical analyses (Fernández et al. 2005; Antunes et al. 2008; Lors et al. 2009). 

In fact, ecotoxicological tests with soil invertebrates using sublethal endpoints are suitable for 

assessing the toxicity of polluted soils (van Gestel et al. 2001) and reproduction is an endpoint 

with high ecological meaning due to its relevance at the population level (van Gestel 2012).  

Moreover, soil invertebrates play an important role in the provision of ecological 

processes in soil (Jansch et al. 2005; Römbke et al. 2005; Lavelle et al. 2006). For instance the 

importance of earthworm populations on soil aggregates formation and organic matter 

decomposition (Marinissen and Hillernaar 1997) and their influence on resource availability to 

other species (“ecosystem engineers” [Jones et al. 1994]) has been reported. Mesofauna 

species, like collembolan, play an important role on soil structure as well, namely influencing 

surface roughness at fine scales (Schrader et al. 1997).  

Due to the key-role of these soil fauna groups, over the last decade, earthworm (Ávila 

et al. 2009; Natal-da-Luz et al. 2011), enchytraeid (Römbke 2003; Amorim et al. 2005) and 

collembola species (Domene et al. 2007; Crouau and Pinelli 2008) have been used in 

ecotoxicological laboratory tests to evaluate the toxicity of metal-contaminated soils. These 

species have shown to be sensitive towards chemical stressors (Römbke 2003; Fountain and 

Hopkin 2005; Römbke et al. 2005), and represent different routes of exposure to soil 

contaminants. Several standardized guidelines advice the use of key-species of earthworms, 
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collembolans, and enchytraeids as suitable organisms to be used in laboratory ecotoxicological 

tests to evaluate the toxicity of soil pollutants (ISO 1998a; ISO 1999; ISO 2004). Therefore 

makes reproduction laboratory tests suitable to be integrated in high tier levels of ecological 

risk assessment (ERA) schemes as proposed by Jensen and Mesman (2006). Integrated on the 

tier 2 of an ongoing site specific ERA of a metal contaminated area in Brazil (Santo Amaro, 

Bahia), laboratory reproduction tests with soil species were performed. These ecotoxicological 

tests were achieved in metal contaminated tropical soils collected along an abandoned mining 

area using the earthworm Eisenia andrei, the potworm Enchytraeus crypticus and the 

collembolan Folsomia candida as test organisms. The working hypothesize was that the 

reproductive output of the test species was lower with increases in the metal contamination of 

the test soils. 

 

4.2 Materials and methods 

 

4.2.1 Study area 

 The present study was carried out in an abandoned lead smelter (operational between 

1960 and 1993), located in an area adjacent to the urban area of Santo Amaro, BA, Brazil 

(12° 32 ′ 49 ″ S, 38° 42 ′ 43 ″ W). This area presents a high risk to animals and humans health 

(Costa 2001; Carvalho et al. 2003) and to the environment, due to the high metal 

contamination of soil and water, and tailings and airborne dust from atmospheric deposition 

(up to 3 km from the industrial area), resulting from the smelter activity (Anjos 2003; Machado 

et al. 2004). In 1995, the Bahia environmental state agency recommended the encapsulation 

of tailings to mitigate contamination. However, the process failed because it was conducted 

inappropriately (Anjos 2003; Machado et al. 2004). Due to that reason, there are signs of soil 

erosion and tailings are exposed and the aerial and runoff derived dispersion of contaminated 

material is still occurring in some areas within the smelter area (Anjos 2003; Machado et al. 

2004). A full characterization of the study site can be found in Chapter 3 (Niemeyer et al. 

2010). 

 

4.2.2 Soil sampling  
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 Based on soil total metal concentrations (Pb, Cd, Cu, Zn) derived from a pre-sampling 

campaign using six transepts on a radial shape, two 1 km transepts (T1 and T3) shared a 

central point (P0 – located next to the smelter facility) and were composed of 5 points each (at 

20, 50, 150, 400, and 1000 m from P0). Tested soils were divided into three groups according 

to main soil properties. Three reference soils were selected at 9 km (Ref. 1) and 3 km (Ref. 2 

and 3) from the study area (Fig.4.1). The reference soils were selected so that their 

characteristics matched each of the three soil groups, to the extent possible, in what regards 

texture, pH and organic matter, which are known to influence not only the bioavailability of 

contaminants (Kuperman et al. 2009), but also the response of the tested species (Chelinho et 

al. 2011). Detailed information regarding soil sampling and choice of reference soils can be 

found in Chapter 3 (Niemeyer et al. 2010). 
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Fig. 4.1 Schematic representation of the study area (an abandoned lead smelter, Santo Amaro, BA, 

Brazil) showing the location of the 11 sampling points along the two transects and of the three 

reference points. 
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Based on the historical use of the site and on a previous study (FUNASA 2003), soils 

were analyzed for the main metals responsible for the contamination of the area (Pb, Cd, Cu, 

and Zn) and also for Cr, Ni, Fe, Co, and Mn. Metals were quantified in the bulk soil by 

inductively coupled plasma-atomic spectroscopy. The other soil physico-chemical parameters 

measured were pH (KCl 1M) (ISO 1994a), water holding capacity (WHC; ISO 1998b), cation 

exchange capacity (CEC; ISO 1994b), organic matter (OM) content (loss on ignition at 500°C for 

6 h) and soil texture (LNEC 1970). 
 

4.2.4 Test organisms 

The collembolan F. candida, the earthworm E. andrei and the potworm E. crypticus 

were used as test organisms. F. candida laboratory cultures were maintained in plastic culture 

containers with a moist substrate of 10:1 (w/w) plaster of Paris:activated charcoal, using 

granulated yeast as food supply once a week (ISO 1999). Laboratory cultures of E. crypticus 

were kept in plastic culture containers using the standard natural soil Lufa 2.2 as substrate and 

feeding them daily with finely grounded oat meal (ISO 2004). In the E. andrei laboratory 

cultures a mixture of horse manure and Sphagnum peat (1:1, w/w) was used as substrate in 

plastic culture containers (36 cm length, 22 cm width, and 11 cm height), and cooked oat meal 

was given once a week as food (ISO 1998a). All species were maintained in laboratory for many 

generations at 20 ± 2°C and under a photoperiod of 16:8 h light:dark. 

 

4.2.5 Reproduction tests 

The procedures adopted in reproduction laboratory tests followed the respective ISO 

guidelines. The tests were performed at a photoperiod of 16:8 h light:dark, but the 

temperature was adjusted to 25 ± 1°C, a more realistic condition considering tropical areas. 

Both soil pH and moisture were measured at the beginning and the end of the tests. The 

moisture of the test soils was always adjusted to 50% of the WHC before being used in the 

tests. OECD artificial soil was used as control in all tests to confirm the quality of the test 

organisms used. This soil consisted of 10% Sphagnum peat (previously air dried and sieved at 5 

mm), 20% kaolinite clay and 70% quartz sand (OECD 1984). All tested soils were evaluated only 

at the 100% dilutions. 
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4.2.5.1 Reproduction tests with E. andrei 

 The procedure adopted in reproduction tests with E. andrei followed the ISO guideline 

11268-2 (ISO 1998a). One week before starting the test, adult worms (with a well-developed 

clitellum) were selected and acclimatized in OECD artificial soil (with the addition of fine horse 

manure as food supply). Four replicates were prepared per each test soil, each one consisting 

of a cylindrical plastic box with 500 g of soil (wet mass). At the beginning of the test, ten 

acclimatized worms, weighting between 250 and 500 mg were washed, weighted and then 

introduced in each replicate. Horse manure was added as food supply once a week. After 28 d, 

surviving earthworms were counted to assess mortality. After 56 d, at the end of the assay, the 

test boxes were placed into a water-bath at 60 °C to force juveniles to reach the surface and to 

be counted. 

 

4.2.5.2 Reproduction tests with E. crypticus 

 The procedure adopted in reproduction tests with E. crypticus followed the ISO 

guidelines 16387 (ISO 2004). Four replicates were used per test soil. The test vessels consisted 

of glass vessels (100 ml capacity) filled with 30 g of soil (wet mass). Ten organisms with a well-

developed clitellum were introduced in each vessel and finely ground oat was given as food 

after 0 and 14 d of beginning of the test. The test vessels were opened twice a week to aerate 

the soil and to adjust moisture by weighting the vessels and compensating the weight loss by 

the addition of distilled water. After 28 d, each test container was filled with alcohol 80% to kill 

the organisms. Some drops of Bengal red (1% solution in ethanol) were added and the mixture 

was shaken to homogenize. After 24 h, the content of each vessel was sieved (250 µm) and 

then the organisms red colored were observed under the binocular (40x) for counting the 

number of juveniles born during the test period. An additional replicate without organisms was 

prepared per each test soil to measure the moisture and the soil pH at the end of the test. 

 

4.2.5.3 Reproduction tests with F. candida  

The procedure adopted in reproduction tests with F. candida followed the ISO 

guideline 11267 (ISO 1999). Springtails 10 to 12 d old obtained from synchronized cultures 

were used in the experiment. Five test glass vessels (100 ml capacity) with 30 g of soil (wet 

mass) were prepared per each test soil. Ten springtails 10 to 12 d old, obtained from 
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synchronized cultures, were introduced in each replicate. Granulated dry yeast (approximately 

2 mg) was added as food at the beginning and after 14 d of experiment. Twice a week, the test 

vessels were opened to allow soil aeration and once a week the water loss by evaporation was 

compensated (water loss determined by the weight loss of the test vessels). After 28 d, the 

content of each test vessel was transferred to a larger vessel, filled up with water and gently 

stirred, leading organisms (adults and juveniles) to float into the surface. Afterwards, some 

drops of a dark ink were added to the water surface to increase contrast and facilitate 

counting of living organisms. The number of surviving adults was recorded. The water surface 

was photographed and the number of juveniles was counted using UTHSCSA Image Tool for 

Windows, version 3.0. As for enchytraeids, an additional replicate without springtails was 

prepared per each test soil for measuring of soil moisture and pH at the end of the test period. 

 

4.2.6 Data analysis 

For each test, differences in the number of juveniles produced between contaminated 

soils and the respective reference soil was evaluated by one-way analysis of variance (ANOVA) 

followed by Dunnet’s post-hoc test, using organic matter as covariable in the analysis. Data 

normality and homoscedasticity were previously evaluated by Kolmogorov-Smirnov and 

Bartlett’s tests, respectively. 

To investigate the relationship between total metal concentrations and reproduction 

of the test species, partial correlation analyses (using also organic matter as co-variable) were 

conducted using the Pearson’s correlation coefficient. Moreover, partial correlations were also 

performed between the reproduction of the tests species and the index of metal pollution (W) 

proposed by Widianarko et al. (2000), which indicates how much the background 

concentration is exceeded by the metal concentrations of the test soil. For a tested soil, this 

index is the logarithm of the multiplication of a factor for each metal, which is calculated as the 

ratio between the metal concentration in the tested soil by the mean concentration of the 

metal at the reference sites. The W index was calculated for each sampling point, aiming to 

obtain a unique value representing all metals analyzed. Initially developed for sediment 

samples, the W index can be used to synthesize the metal loading of any environmental 

sample in comparison to metal basal levels, including soils (Timmermans et al. 2007; Janssens 

et al. 2008). This index is negative when metal loadings are below the basal levels, whereas the 

positive values indicate metal loadings higher than the basal levels. All analyses were 

performed using Statistica 6.0 (StatSoft 2001). 
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4.3 Results 

 

4.3.1 Soils characterization 

A full characterization of the collected soils is given in Chapter 3 (Niemeyer et al. 2010). 

Soils from the study area showed an organic carbon content ranging from 0.12 to 3.31%, a CEC 

between 30 and 40 meq/100 g, and pH values between 6.1 and 7.2, except the soils P1000T1 

and Ref.2 that presented pH values of 3.7 and 4.9, respectively (Table 4.1).  

 

4.3.2 Chemical analysis 

Table 4.2 shows the total metal concentrations measured in the tested soils and the 

corresponding index W of metal pollution. 

Sandy soils showed metal concentrations exceeding the Dutch HC50cor screening 

levels, at list for one metal, which indicate high ecological risk (Rutgers et al. 2008). P0 

presented a high Zn contamination exceeding by almost three times the corresponding HC50cor 

value, whereas P150T1 and P50T3 presented a critical level of contamination, exceeding by far 

(between 1.6 and 73.5 times) the screening levels; please see Chapter 3 for detail explanation 

on these screening levels. The W index values estimated were slightly positive (or even 

negative) in the reference soils or in soils collected outside the smelter area (e.g. P1000T1), 

contrasting to highly positive W values in most of the soil collected the smelter area. According 

to the W index, P150T1 and P50T3 soils were the most contaminated ones.  

98



Effects on the reproduction of soil invertebrates 

 

Table 4.1  Physico-chemical characteristics of sampled soils and respective reference soils. USDA – United 
States Department of Agriculture; CEC – Cation Exchange Capacity; WHC – Water Holding Capacity. 

 

 

 

Soil group Coarse 
sand (%) 

Fine 
sand 
(%) 

Sand 
(total) 

(%) 

Silt 
(%) 

Clay 
(%) 

Texture 
(USDA) 

pH (KCl 
1:5 v:v) 

Organic 
matter (%) 

CEC 
(meq 
100g) 

WHC 
(%) 

Group 1           

Ref 1 2.3 8.5 10.9 42.1 47.0 Silty 
Clay 

7.1 1.1 34.16 53.78 

P1000T1 2.5 21.8 24.3 19.9 55.8 Clay 3.7 2.0 43.20 59.95 

P20T3 11.4 30.0 41.4 22.3 36.3 Clay 
Loam 

6.8 1.9 42.16 67.73 

P400T3 6.5 8.6 15.1 52.4 32.5 Silt Clay 
Loam 

7.1 1.9 35.84 56.67 

Group 2           

Ref 2 50.9 38.5 89.4 2.8 7.7 Loamy 
Sand 

4.9 1.0 37.60 27.53 

P0 43.2 31.3 74.5 11.9 13.6 Sandy 
Loam 

6.7 0.3 38.56 44.12 

P20T1 48.0 13.8 61.8 19.0 19.3 Sandy 
Loam 

7.1 0.2 37.28 46.40 

P150T1 56.2 21.1 77.4 12.3 10.3 Sandy 
Loam 

6.7 2.1 21.28 28.55 

P50T3 69.2 9.1 78.3 10.4 11.3 Sandy 
Loam 

7.2 2.8 16.56 22.05 

Group 3           

Ref 3 22.2 15.0 37.2 11.1 51.7 Clay 6.1 3.9 36.48 60.75 

P50T1 25.2 13.4 38.6 29.0 32.4 Clay 
Loam 

6.7 1.1 38.16 54.51 

P400T1 19.6 23.9 43.5 20.2 36.3 Clay 
Loam 

6.8 5.1 37.44 58.93 

P150T3 8.4 15.2 23.5 21.4 55.1 Clay 6.8 2.5 49.20 61.76 

P1000T3 10.3 19.5 29.8 29.8 40.4 Clay 
Loam 

7.0 5.7 42.72 57.57 
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Table 4.2  Total metal concentrations (mg/Kg) and the metal pollution index in tested and respective 
reference soils. This table was adapted from Niemeyer at al. 2010. 

Sites 
Total (mg/kg)  

Metal pollution 
index 

Pb Cd Cu Zn Cr Ni Fe Mn  W 

Group 1           

Ref. 1 16 <0.2 66 94 77 54 45000 840  1.26 

P1000T1 23 <0.2 60 80 62 46 48000 360  0.80 

P20T3 308 <0.2 56 420 78 60 49000 672  3.12 

P400T3 179 0.3 44 90 59 46 34000 760  2.76 

Group 2           

Ref. 2 13 <0.2 18 24 16 28 2900 34  -0.89 

P0 1264 <0.2 76 3800 (2.8) 72 57 52000 674  5.61 

P20T1 133 <0.2 56 220 80 56 41000 780  2.44 

P150T1 37460 (10.4) 771 (9.8) 594 (1.6) 42200 (33.5) 57 70 110000 1720  13.33 

P50T3 26074 (7.1) 62 3196 (8.2) 95940 (73.5) 80 40 117000 5880  13.63 

Group 3           

Ref. 3 152 <0.2 40 260 59 40 53000 820  -0.37 

P50T1 164 <0.2 60 240 80 58 43000 720  2.60 

P400T1 961 8.8 60 840 64 48 35000 540  5.98 

P150T3 2200 12 108 3300 84 58 56000 678  7.83 

P1000T3 99 <0.2 56 156 84 52 49000 568  2.09 

Numbers in superscript indicate an exceedance of the corrected Dutch HC50EC50 values (after Rutgers et 
al. 2008) (Ex: the [Pb] at P150T1: 37460 (10.4), indicates that [Pb] was 10.4 times higher than the 
HC50corPb). See Chapter 3 (Niemeyer et al. 2010) for details on this correction. 
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 4.3.3 Reproduction tests with E. andrei and E. crypticus  

Reproduction tests with E. andrei fulfilled the validity criteria of ≥ 80% of survival, > 30  

juveniles per test vessel and coefficient of variation < 30% between replicates in OECD artificial 

soil and reference soils (ISO 1998a). Considering all tested soils, survival ranged between 90 

and 100%, except in P1000T1 soil where the survival was 85 ± 17.3%. The reproduction found 

in the reference soils was always higher or equal to that found in the OECD artificial soil and 

the Ref 2 soil showed the highest reproduction mean ± standard deviation [SD] of 132.3 ± 24.7 

(n = 4). The reproduction of earthworms significantly decreased (compared to the respective 

reference soils) in treatments composed by soils with high (P50T3, P150T1 and P150T3) and 

low (P1000T1, P1000T3 and P20T1) indices of metal contamination. The P1000T1 soil, that was 

the test soil with the lowest index of metal contamination, was the soil that showed the lowest 

number of juveniles (mean ± SD of 5 ± 7; n = 4) (Fig. 4.2). 
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Fig. 4.2 Number of Eisenia andrei juveniles (average + standard deviation, n = 4) in OECD artificial soil, 

reference soils (white bars) and test soils (black bars) within each soil group. Asterisks indicate 

significant differences (*p≤0.05; **p≤0.01; ***p≤0.001) compared to the respective reference soil. 

 

Reproduction test with E. crypticus fulfilled the validity criteria of > 25 juveniles per 

test box and coefficient of variation < 50% between replicates in OECD artificial soil and in 

natural reference soils (ISO 2004). The number of juveniles found in OECD soil was generally in 

the same order of magnitude to that found in the reference soils and, similarly to the  
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reproduction of E. andrei, Ref 2 was the reference soil that showed the highest reproduction 

on average (1089 ± 86; n = 4). As for the earthworms, the reproduction of E. crypticus was 

significantly lower (compared to the respective reference soil) for soils with high (P50T3, 

P150T1 and P0) and low (P1000T1 and P20T1) index of metal contamination. However, for 

potworms, the soil that showed the lowest reproduction was the test soils with the second 

highest index of metal contamination (P150T1), where 7 ± 0.5 organisms were observed on 

average (n = 4; Fig 4.3). 

Highly significant negative correlations were found between the reproduction of both 

oligochaete species and metal contamination, represented by the Widianarko index (E. andrei, 

r= - 0.72, p<0.001; E. crypticus, r= - 0.61, p<0.001) (Table 4.3). 
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Fig. 4.3 Number of Enchytraeus crypticus juveniles (average + standard deviation, n = 4) in OECD artificial 
soil and reference soils (white bars) and test soils (black bars) for each soil group. Asterisks indicate 
significant differences (*p≤0.05; **p≤0.01; ***p≤0.001) compared to the respective reference soil. 
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4.3.4 Reproduction of F. candida 

 Reproduction test with collembolan fulfilled the validity criteria of ≥ 80% of survival, 

>100 juveniles per test box and coefficient of variation <30% between replicates (ISO 1999) in 

OECD and in reference soils. The collembolan reproduction found in OECD soil was in the same 

order of magnitude of that found in Ref 1, but lower than that found in Ref 3. The Ref 2 soil 

showed lower reproduction when compared to that in OECD and test soils from the same 

group (Fig. 4.4). Significant decreases on reproduction were observed (compared to respective 

reference soil) in soils with W indices of metal contamination between 2.09 and 7.83 (Fig. 4.4). 

The contaminated soils that showed the highest toxicity were P50T1 and P150T3, where 351 ± 

141 and 344 ± 43 (n = 5) were found, respectively. No significant correlations were found 

between reproduction of F. candida and metal contamination (Table 4.3). 
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Fig.4.4 Number of F. candida juveniles (average + standard deviation) in OECD artificial soil and 
reference soils (white bars) and test soils (black bars) for each soil group. Asterisks indicate significant 
differences (*p≤0.05; **p≤0.01; ***p≤0.001) compared to the respective reference soil. 
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4.4 Discussion 

 

The high metal contamination found in the tested soils agrees with the data previously 

reported by Anjos (2003) and Machado et al. (2004). According to these authors, such 

contamination results from the deposition of residues inside the smelting area as well as from 

the aerial deposition of contaminated particles from the smelter plume while in function. Soil 

heterogeneity found in the test soils is most probably related to the spatial distribution of 

different actions recently undertaken in the study area for local rehabilitation, namely the 

failed attempt to encapsulate the tailings by covering with nearby soil (Anjos 2003). 

Soils P0, P50T3 and P150T1 from Group 2, the most metal contaminated soils, affected 

the reproduction of both oligochaete species. In these soils, at least one metal (Pb, Cd, Cu or 

Zn) exceeded the reported EC50 values that cause negative effects on the reproduction of 

oligochaetes (Table 4.4). However, no significant effects on the reproduction of colembolans 

were found in these soils, despite the fact that they exceeded in much the reported EC50 

values that cause negative effects on the reproduction of F. candida (Table 4.4).  

Effects of Pb contamination on collembolan reproduction could be expected at P50T3 

and P150T1, since the Pb concentrations (26074 and 37460 mg Pb/kg soil, respectively) were 

one order of magnitude higher than the EC50 of 2970 mg Pb/kg found by Sandifer and Hopkin 

(1996) in OECD soil with pH 6.0, and were similar to an EC50 of 2560 mg Pb/kg found by 

Greenslade and Vaughan (2003). Moreover, toxic effects of Cu could be expected at P50T3 

(with 3196 mg Cu/kg soil) that exceeded in one order of magnitude the EC50 values found by 

Sandifer and Hopkin (1996) and Greenslade and Vaughan (2003), 700 and 751 mg Cu/kg soil, 

respectively. According to data from Sandifer and Hopkin (1996) and Greenslade and Vaughan 

(2003), EC50 values of cadmium for the reproduction of F. candida, derived from standard 

tests in OECD soil, were 590 and 351 mg Cd/kg soil, respectively. Based on these data, in 

P150T1 soil some effects of cadmium could be expected. Menta et al. (2006) found an EC50 of 

47.4 mg Cd/kg soil; however, the test duration was 2 weeks longer, not being comparable with 

our data. 

Lock and Janssen (2003), using F. candida to evaluate the toxicity of zinc chloride, zinc 

oxide and zinc powder in OECD artificial soil, found EC50 values of 391, 461, and 393 mg Zn/kg 

soil, respectively. Considering these data, effects of Zn on collembolan reproduction could be 
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expected in P0, P50T3 and P150T1, but these soils did not affect the reproduction of F. 

candida. On the other hand, zinc toxicity could be an explanation to the toxic effects observed 

on P20T3 and P150T3 soils.  

Ageing processes and soil-related factors, such as organic matter or clay content play 

an important role in the toxicity of metals to soil invertebrates. According to Smit and van 

Gestel (1998) zinc toxicity to F. candida was related to organic matter and clay content of soil 

in freshly contaminated soils. However, the authors highlighted that the use of spiked soils 

overestimated the effects of zinc by a factor of 5 to 8 compared to a test soil that was 

subjected to ageing under field conditions for 1.5 years. Thus, care should be taken in 

extrapolating the results of laboratory toxicity tests on metals in OECD soil to field soils, in 

which the biological availability of contaminants is likely to be lower (Fountain and Hopkin 

2004). These reasons could explain the absence of effects on reproduction when it should be 

expected due to metal contents. 

Despite the fact that total Zn concentration in P400T1 exceeded the EC50 values 

reported in the literature about effects on the reproduction of E. andrei and E. crypticus (see 

Table 4.4), no effects were observed on the reproduction of oligochaete species when 

compared to the respective reference soil. Concerning soil properties, it has been shown that 

the effective concentrations for soil oligochaetes exposed to zinc, cadmium, copper and lead 

varied over more than two orders of magnitude depending on the soil characteristics (Lock et 

al. 2000; Lock and Janssen 2001). According to Lock and Janssen (2001), a 14 d LC50 for 

Enchytraeus albidus exposed to contaminated soils with zinc and cadmium may vary from 83.0 

to 1140 mg Zn/kg and from 55.2 to 704 mg Cd/kg, respectively, depending on the type of clay 

and on the organic matter content used in the artificial soil. These authors also showed that pH 

and cation exchange capacity (CEC) were the most important parameters affecting zinc and 

cadmium toxicity; high pH and CEC capacity decreased metals bioavailability. 
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Table 4.4 Some literature data on toxic effect on the reproduction of Eisenia fetida (cocoon production), 
Enchytraeus sp. and Folsomia candida (number of juveniles) for metals Pb, Cd, Cu, Zn, Cr, Ni and Mn.  

Species Metal 
Exposure 
time (d) 

Soil 
EC50 - mg/kg      

(95% CI) 
Reference 

Eisenia fetida 

Pb 56 OECD 10% O.M. 1940 (-) Spurgeon et al (1994) 

Cd 56 OECD 10% O.M. 46.3 (25.4-91.4) Spurgeon et al (1994) 

Cu 56 OECD 10% O.M. 53.3 (32.5-186) Spurgeon et al (1994) 

Zn 

56 

56 

21 

OECD 5% O.M. 

OECD 10% O.M. 

OECD 10% O.M. 

136 

276 (202-375) 

705 (551–1050) 

Spurgeon and Hopkin (1996) 

Spurgeon et al (1994) 

Lock and Janssen (2003) 

Cr 21 OECD 10% O.M. 892 (679 -1110) Lock and Janssen (2002a) 

Ni 21 OECD 10% O.M. 362 (241-508) Lock and Janssen (2002b) 

Mn 56 Sandy loam soil 927 Kuperman et al (2004) 

Enchytraeus albidus Pb 42 OECD 10% O.M. 320 (272-371) Lock and Janssen (2002c) 

Enchytraeus crypticus 

Cd 21 Lufa 2.2 35 (31 -38) Castro-Ferreira et al (2012) 

Cu 28 OECD 10% O.M. 477 (345-658) Posthuma et al (1997) 

Zn 28 OECD 10% O.M. 336 (266-425) Posthuma et al (1997) 

Enchytraeus albidus Cr 42 OECD 10% O.M. 637 (355-791) Lock and Janssen (2002a) 

Enchytraeus albidus Ni 42 OECD 10% O.M. 275 (217-346) Lock and Janssen (2002b) 

Enchytraeus crypticus Mn 28 Sandy loam soil 192 (147-238) Kuperman et al (2004) 

Folsomia candida 

Pb 
28 

28 

OECD 10% O.M. 

OECD 10% O.M. 

2970 ( - ) 

2560 ( - ) 

Sandifer and Hopkin (1996) 

Greenslade and Vaughan (2003) 

Cd 

28 

28 

45 

OECD 10% O.M. 

OECD 10% O.M. 

OECD 10% O.M. 

590 ( - ) 

351 (290-410) 

47.4 ( - ) 

Sandifer and Hopkin (1996) 

Greenslade and Vaughan (2003) 

Menta et al (2006) 

Cu 
28 

28 

OECD 10% O.M. 

OECD 10% O.M. 

700 ( - ) 

751 (624-905) 

Sandifer and Hopkin (1996) 

Greenslade and Vaughan (2003) 

Zn 

28 

28 

28 

OECD 10% O.M. 

OECD 10% O.M. 

OECD 10% O.M. 

900 ( - ) 

865 (811-924) 

391 (266–660) 

Sandifer and Hopkin (1996) 

Greenslade and Vaughan (2003) 

Lock and Janssen (2003) 

Cr 28 OECD 10% O.M. 604 (254-3380) Lock and Janssen (2002a) 

Ni 28 OECD 10% O.M. 476 (347-671) Lock and Janssen (2002b) 

Mn 28 Sandy loam soil 
1663 (1491-
1834) 

Kuperman et al (2004) 
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The effects to E. andrei in P150T3 can be related both to Zn and Pb concentrations 

(3300 mg/kg and 2200 mg/kg, respectively), and to high clay content (55.1%). Spurgeon and 

Hopkin (1996) found an EC50 value of 136 mg Zn/kg soil to cocoon production of E. fetida in 

artificial soil with 5% OM content and pH of 6.0. The same authors in other work (Spurgeon 

and Hopkin 1997), studying the effect of different temperatures (15, 20 and 25°C) on the acute 

and chronic toxicity of Zn to E. fetida, recorded the lowest EC50 on cocoon production of 234 

mg Zn/kg at 25°C, suggesting that there is an increase of the toxicity of zinc at higher 

temperatures. Concerning Pb, the concentration in P150T3 is higher than the EC50 of 1940 mg 

Pb/kg soil on cocoon production of E. fetida, reported by Spurgeon et al (1994). Furthermore, 

Bradham et al. (2006), exposing the earthworm E. andrei for 28 d to different soil types spiked 

with 2000 mg Pb/kg soil, observed even mortality in some soils. 

Besides the influence that soil properties may have on the bioavailability of metals, 

they can also influence the response of soil organisms (Amorim et al. 2005), which can explain 

the significantly reduced reproduction of oligochaete species in soils where the metal 

concentrations were low. The reproduction of both oligochaete species was significantly 

reduced in soils P20T1 and P1000T1, while the reproduction of E. andrei and F. candida was 

reduced in P50T1. This decrease could be related to the low organic matter content in P20T1 

(0.2%), low organic content in P50T1 (1.1%) in combination with high clay content (32.4%); and 

to low organic matter (2.0 %), high clay content (55.8%) and low pH (3.7) in P1000T1 soil. Such 

soil characteristics probably constituted unsuitable conditions to the reproduction of 

oligochaetes, according to Chelinho et al. (2011) that reported limitations on the use of E. 

andrei in soils with a pH lower than 4.2 or low organic matter content (e.g., <2%). The same 

limitations were reported by the authors for E. crypticus, although these species presented a 

wider range of tolerance concerning soil pH (between 4.2 and 7.7) and organic matter content 

(between 0.6 and 4.8%). Low reproduction of E. andrei in soils with a combination of high clay 

content (33%) and low organic carbon content (0.6%) was also observed by van Gestel et al. 

(2011). The low organic matter content on P50T1 (1.1 %) could be an explanation for the lower 

reproduction of F. candida on this soil than in its respective reference soil (Ref 3; 3.9 %), since 

some authors (e.g., Crommentuijn et al. 1997) pointed that low organic matter content can act 

as stressor to F. candida. 
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On soil P1000T3, localized outside the smelter area, the impairment on reproduction 

of E. andrei and F. candida cannot be explained by metal concentrations neither by soil 

properties. Probably another source of contamination (agrochemicals, natural chemicals), not 

analyzed in the present study, is the responsible by the effect. Previous results showed that 

this soil was significantly avoided by E. andrei (Chapter 3), which can reinforce the indicative of 

an unknown source of contamination.  

No plausible explanation was found for the effects on the reproduction of F. candida in 

P400T3 soil. Crouau and Pinelli (2008), comparing ecotoxicity of three polluted industrial soils 

for the F. candida, reported how complex and difficult is to interpret results of ecotoxicological 

tests with soils from polluted sites. Vasseur et al. (2008) investigating the toxicity of metal and 

PAHs contaminated soils on the reproduction of soil invertebrates, found that toxicity cannot 

simply be extrapolated from pollutant concentrations in a complex matrix in which 

bioavailability of pollutants may be reduced by ageing. On the other hand, interactions 

between the effects of a natural stressor and a toxicant can sometimes result in greater effects 

than expected from either of the stress types alone, as can be seen in the review of Holmstrup 

et al. (2010). Stimulatory effect of low levels of contaminants can also be present, as pointed 

by Smit and van Gestel (1998) to the reproduction of F. candida at 160 and 256 mg Zn/kg soil 

in OECD soil, and at 160, 256 and 410 mg Zn/kg soil in a natural soil with an organic matter 

content of 2.4% and clay content of 1.9%. 

Maybe the lack of statistically significant effects on the reproduction on some soils 

from group 2 was related to the low reproduction of F. candida on the respective reference 

soil (Ref 2 - 224 ± 62 juveniles), used for comparisons. The high percentage of fine sand and 

the low WHC in Ref 2 when compared to the other soils might be the cause of the lower 

performance of F. candida in this soil. Our results are in accordance to Domene et al. (2011) 

that reported a significantly lower reproduction of this species in the more fine textured soils 

(with higher silt and fine sand content and with higher CEC values), and positive and significant 

effects of moisture on reproduction. 

Despite significant negative effects (p<0.05) on the reproduction were observed in 

some soils, no significant correlations were found between reproduction of F. candida and 

total metal concentrations. In general, F. candida appeared to be more tolerant to metal 

contamination than E. andrei and E. crypticus. Similar results were also found by Schultz et al. 

(2004), where Enchytraeus sp. was more sensitive than F. candida in metal-contaminated soils. 

van Gestel et al. (2001) observed that collembolan appeared to be less sensitive than 
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earthworms and plants to assess soils with oil and metal pollution. van Gestel et al. (2011), 

considering reproduction of soil invertebrates in soils contaminated with molybdenum, 

observed that earthworms were most sensitive to Mo, followed by the enchytraeids and the 

Collembola, this last showing absence of toxicity in most soils. 

Differences in sensitivity of collembolans and oligochaetes on metal contaminated soils 

could be explained in part by differences in exposure (Achazi 2002), since solid soil phases are 

more important for uptake process of springtails, while soft-bodies oligochaete species are 

more influenced by porewater characteristics (Vijver et al. 2001). Furthermore, it is suggested 

that Collembola can avoid contaminated food, and are able to excrete assimilated metals 

during moulting (Fountain and Hopkin 2001), which can be related to their more resistant to 

metal contaminantion.  

Our results suggest that toxicity data obtained in spiked OECD soil should not be used 

directly in risk assessment for metals in natural contaminated soils. Bioavailability of metals to 

soil invertebrates may depends on some factors, such as soil pH, OM content, CEC and clay 

content (van Gestel 1992). According to Peijnenburg et al. (1997), clay minerals are important 

natural ion-exchange materials, while pH is the most important factor controlling metal 

partitioning for most metals in soil. Due to the heterogeneity of soil materials, the sorption 

potential varied considerably and this may lead to changes in contaminant availability, 

sometimes within a small area. Along a temporal gradient, the process of ageing occurs, and 

metal sequestration by soil increases, as pointed out by VROM (2000), thus reducing 

bioavailability. So, the challenge should be to have EC50 values used for comparison derived 

based on natural soils or corrected for natural soil properties. 

Currently, the study area in Santo Amaro is probably a case of strong metal adsorption 

process, probably due to the type of clay content and more alkaline pH values of massapê soil, 

and also due to ageing processes, since the factory stopped its activities in 1993. The soils at 

the sampling sites were classified as Vertisols and Inceptisols  (Soil  Taxonomy,  USDA)  

originated  from  carbonaceous shale,  rich  in  expansive  clay  (montmorillonite),  with  

generally  low  porosity and consequently low permeability (Machado et al. 2002). 

Furthermore, the form in which the contaminant is present in the soil has environmental 

relevance and should be considered in interpreting results from ecotoxicity tests (Davies et al. 

2003). Andrade Lima and Bernardez (2011), studying the leaching of the slag in the Plumbum 

smelter area in Santo Amaro, found that the Pb, Zn, Cd and other potentially toxic elements 

were relatively stable in a weak acidic environment for short contact times, which can be 
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explained by the low leachability of the metallic Pb and the Zn-bearing species. Furthermore, 

results on metal extracts from this study area are presented in Chapter 7 (Niemeyer et al. 

2012) showing the low availability of metals in the 0.01 M CaCl2 extracts, which could be an 

indicative of low bioavailability of metals to plants and invertebrates. However, the 

bioavailability of metals to soil invertebrates are not predicted just by water soluble 

concentrations (Crommentuijn et al. 1997; Peijnenburg et al. 1999; Vijver et al. 2001), since the 

uptake of metals could occur through a different exposure route (Fountain and Hopkin 2001) 

and because soil properties can act as stressors themselves (Crommentuijn et al. 1997).  

 

4.5. Conclusions 

 

The outcome of the reproduction tests indicated some loss of habitat function for the 

tested species in the majority of the sites analyzed, which can indicate risk to soil functioning 

once these invertebrates play an important role in maintaining the structure and fertility of soil 

and are an important part of soil food web. Reproduction of oligochaete species was impaired 

mainly in sites corresponding to the deposition of tailings inside the area, and significant 

negative correlations were found between reproduction and total metal concentrations, 

suggesting that the toxic effects were caused directly by contamination.  

No significant correlations were found between reproduction of F. candida and metal 

contamination. The lack of significant effects on the most contaminated soils can be related 

not only to ageing process, but also to the low reproduction in a reference soil used in 

comparisons, probably because a high content of fine sand and low WHC. 

In general, Oligochaeta was the most sensitive group in reproduction tests. Our results 

reinforce the importance of using a battery of tests in environmental risk assessment, since 

tested species can be affected in a different way. Furthermore, data of chemical 

determinations and soil properties should be used together in the interpretation of 

reproduction results in natural contaminated soils. 
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Microbial soil quality indicators as tools in ecological risk assessment 

 

Abstract  

Microbial and biochemical indicators of soil health were used to assess the ecological 

conditions and biological activity of soils contaminated with metals at a lead smelter plant and 

surrounding area in northeast Brazil. Soil respiration, microbial biomass of C and N, acid 

phosphatase, asparaginase, and density of ammonifying and ammonium-oxidizing 

microorganisms were positively correlated with soil organic carbon and/or water content, but 

showed negative correlations with  metal contents in soil. Nitrification rate and metabolic 

quotient (qCO2) were positively correlated with metal contamination, suggesting favorable 

conditions for N loss and microbial stress, respectively. No significant correlations were found 

between metal concentrations in soil and dehydrogenase activity or ammonification rate, 

considering water content and soil organic carbon as covariables. Soil respiration, microbial 

biomasses of C and N, dehydrogenase, acid phosphatase, asparaginase activities, and 

ammonifying microorganisms were positively correlated with percentage vegetation cover, 

while nitrification and ammonification rates were negatively correlated with this parameter. In 

general, soil respiration, microbial biomass of C and N, acid phophatase, asparaginase, density 

of ammonifying and ammonium oxidizing microorganisms, nitrification rate and qCO2 

indicated high ecological risk for soil functions mediated by microorganisms (concerning to C 

and nutrient cycling) due to deposition of tailing contaminated with metals, even 17 years 

after the smelter activities had stopped. Besides direct effect of metal toxicity on microbial 

biomass and activity, there are indirect effects related to changes in vegetation cover, soil 

organic carbon, pH, and nutrient availability, and consequently changes in the soil 

microclimate and physical-chemical properties that may lead to losses of habitat function for 

soil microorganisms and the key processes they play. However, a multivariate decomposition 

of variance indicated that vegetation cover explained only 3.1%, whereas metals explained 

26.9% of the variation associated to the microbial/biochemical indicators, showing a stronger 

effect of metals. 

 

Keywords: Microbial activity, Microbial biomass, Metals, Soil enzymes, Soil quality 
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5.1 Introduction 

 

 Contaminants may affect a variety of microbial processes in soil, thereby affecting the 

nutrient cycling and the capacity to perform key ecological functions, such as mineralization of 

organic compounds and synthesis of organic matter (Giller et al. 1998, 2009; Moreno et al. 

2009). Microbial biomass, soil basal respiration, enzyme activities, and nutrient 

transformations are important attributes related to soil fertility (Edwards 2002) and can be 

used as indicators of soil health to monitor soil contamination (Castaldi et al. 2004; Smejkalova 

et al. 2003), agricultural use (Araujo et al. 2003; Tu et al. 2006), suitable management or 

success of restoration practices (Balota et al. 2004; Nogueira et al. 2006; Clemente et al. 2007). 

These biological indicators have the advantage of being easy and relatively fast to measure, 

thus being cost-effective tools for monitoring (Alkorta et al. 2003). Moreover, they provide an 

integrative biological assessment of soil health (Alkorta et al. 2003; Epelde et al. 2006). 

Microbiologically-mediated processes, catalyzed by enzymes, are essential to soil 

functioning, providing the basis of carbon, nitrogen, phosphorus, and sulfur cycling in soil 

(Alkorta et al. 2003). Microbial biomass is an important constituent of the soil biological 

fertility, involved in the biogeochemical cycle of nutrients and carbon. In addition, it is an 

important reservoir of nutrients in ecosystems. Soil microorganisms immobilize carbon and 

nitrogen by forming new biomass using the energy they obtain from oxidation of carbon 

sources through respiration, or inorganic chemical reactions (Chen et al. 2003). Therefore, 

more microbial biomass can stock and cycle more nutrients (Gregorich et al. 1994), improving 

the sustainability of an ecosystem (Kaschuk et al. 2010). Soil enzymes can be used as indicative 

of biological activity on a given biochemical processes in soil, being sensitive to alteration of 

soil health as a consequence of use and management (Balota et al. 2004; Bastida et al. 2006; 

Nayak et al. 2007). They also have been used as responsive indicators of contamination with 

metals on soil biochemical properties involved in carbon and nutrient cycling (Kuperman and 

Carreiro 1997; Dias-Júnior 1998; Gülsen and Erdogan 2008).  

Effects derived from a long-term exposure of microbial communities to metals cannot 

be predicted by recent addition of metal salts into the soil because microbial communities 

respond differently to chronic or acute exposures (Giller et al. 1998; Renella et al. 2002). In 

addition, metal bioavailability may change according to ageing after contamination as a 
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consequence of physical-chemical interactions with the soil matrix (McGrath 2002; Vig et al. 

2003). Moreover, the microbial community may adapt to the novel condition (Sobolev and 

Begonia 2008) overcoming the negative effect of contamination (Lejon et al. 2010). Thus, long-

term metal contaminated sites represent good conditions for studying chronic exposition of 

microbial communities. In general, there have been observed negative effects of metal 

contamination on soil microbial community size and diversity (Kelly et al. 2003), enzymatic 

activities (Begonia et al. 2004; Zeng et al. 2007), microbial biomass (Yuangen et al. 2004), N 

mineralization, and microbial respiration (Rost et al. 2001).  

Microorganisms in soil under stress may be metabolically less effective because they 

need to invest more energy for cell maintenance, resulting in increased C-CO2 release per unit 

of microbial biomass (Epelde et al. 2006), a ratio also known as microbial metabolic quotient, 

qCO2 (Anderson and Domsch 1993). This coefficient has been proposed as indicator of 

microbial stress caused by metal contamination in soil (Zhang et al. 2008), where the higher 

values, the higher stress.  

This study is integrated in a broader project dealing with assessing the ecological risk 

of a metal multicontaminated area at Santo Amaro, Bahia, Brazil. Time- and cost-effective 

microbial and biochemical indicators of soil health were assessed aiming at investigating the 

extent to which a long-term contamination changed the ecological status of a former lead 

smelting area. We hypothesized that each microbial or biochemical indicators respond to the 

metal contamination gradient, being impaired in highly contaminated sites as compared to 

sites at greater distances from the source of contamination. 

 

5.2 Materials and methods 

 

5.2.1 Study area 

This study was carried out within and around an abandoned lead smelter that 

operated between 1960 and 1993, near to the urban area of Santo Amaro, BA, Brazil 

(12° 32 ′ 49 ″ S, 38° 42 ′ 43 ″ W). The site presents a high health risk for humans (Costa 2001; 

Carvalho et al. 2003) due to high levels of metals in soil and water. A total of 500.000 t of 

tailings were deposited inside and in the surroundings of the smelter, and buried under roads 

and house’s backyards (aprox. 55.000 m3) (Machado et al. 2004). In addition, airborne 
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contaminated dust from atmospheric deposition through chimney emissions reached up to 3 

km away from the industrial area during the period the smelter operated (Anjos 2003; 

Machado et al. 2004). In 1995, the Bahia State environmental agency recommended the 

encapsulation of tailings with soil rich in organic matter to mitigate contamination. However, 

the process failed and currently, in some areas, tailings are still exposed and the aerial 

dispersion by dust is still occurring within and outside the smelter area (Anjos 2003; Machado 

et al. 2004), leading to risks of soil and water contamination. 

The soils at the sampling sites were classified as Vertisols and Inceptisols (Soil 

Taxonomy, USDA) originated from carbonaceous shale, rich in expansive clay 

(montmorillonite), with generally low porosity and consequently low permeability (Machado 

et al. 2002). 

 

5.2.2 Soil sampling and estimation of vegetation cover 

Two 1-km transects (T1 and T3) were defined along the two major detected gradients 

of contamination (Fig. 5.1). The two transects shared a central point (P0 – located close to the 

smelter plant) and comprised 5 sampling points each (at 20, 50, 150, 400, and 1000 m from 

P0).  

Soil sampling was done in April 2009 at 0-10 cm topsoil layer. At each point, three 

parallel transects of 10 m long were defined 2 m apart. Along each parallel transect 10 

subsamples were collected and pooled to form a composite sample. After mixing, the samples 

were sieved (< 5 mm), stored at 4 °C, and processed within 72 h. 

Sites in the surrounding area were screened, analyzed for metals, soil properties and 

vegetation. Three reference sites were selected at 3 km (Ref. 2 and 3) and 9 km (Ref. 1) away 

from the central sampling site (P0) (Fig.5.1) aiming not only to represent the diversity of 

habitat composition of the area surrounding the smelter, but also to match the properties of 

soils and vegetation from sites inside the smelter area.  

Assessment of vegetation cover was carried out according to Veiga and Wildner 

(1993). Briefly, a plastic grid with 50 cm x 50 cm size, subdivided in 100 small squares of 5 x 5 

cm, was randomly released four times on each sampling site. The sum of the intersections of 

small squares over vegetation in each grid represents the percentage of vegetation cover. 
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Fig. 5.1 Schematic representation of the study area (an abandoned lead smelter, Santo Amaro, BA, 

Brazil) showing the location of the 11 sampling points along the two transects and of the three 

reference points. 

 

5.2.3 Soil metals concentration and physico-chemical analyses  

Soil samples were analyzed for the main four metals causing contamination in the 

smelter area and proximities (Pb, Cd, Cu, and Zn) and also for Cr, Ni, Fe, Co, and Mn. Metals 

were quantified in the bulk soil and in 0.01 M CaCl2 extracts by inductively coupled plasma-

atomic spectroscopy. Extractions using 0.01 M CaCl2 have been proposed as a suitable 

technique for determination of available fraction of metals in soil (Houba et al. 1996). The 

extracts were obtained by shaking 15 g of soil (dry weight) for 2.5 h at 200 rpm with 150 mL of 

a 0.01 M CaCl2 solution. The slurry was then centrifuged for 5 min at 3000 rpm and extracts 

(supernatants) were filtered through a Schleicher & Schuell filter paper (Dassel, Germany, 

Reference nº 595). 

Other soil physical-chemical parameters measured were pH (1M KCl) (ISO 1994a), soil 

moisture after oven drying at 105 °C overnight, water holding capacity (ISO 1998), cation 

exchange capacity (ISO 1994b), organic matter content (mass loss on ignition at 500 °C for 6 h), 
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and soil texture (LNEC 1970). Mineral N (NO3
--N and NH4

+-N) was quantified in aqueous 

extracts by titration with 0.01 N sulfuric acid (Chapman and Pratt 1978).  

 

5.2.4. Soil microbial and biochemical analyses 

For nitrogen transformation rates (nitrification and ammonification) each sample was 

divided into three aliquots. One was used to measure the initial NO3
--N and NH4

+-N 

concentrations as described above. The second aliquot received 125 µg g-1 of NH4
+-N as 

ammonium sulfate, while the third one was left with no N addition before being both 

incubated at 28°C for 21 days in the dark. NO3
--N and NH4

+-N concentrations were again 

determined and values obtained before and after incubation were used to calculate the 

nitrification and ammonification rates (Schuster and Schroder 1990).  

The ammonifying and ammonium oxidizing microorganisms were estimated by most 

probable number (MPN) (Woomer 1994) after serial dilution of soil samples in sterile 0.85% 

saline, and inoculation in multiple 5-replication vials containing the respective liquid culture 

medium. For ammonifying microorganisms, hydrolyzed casein was used as source of organic N 

(Sarathchandra 1978), while for ammonium oxidizers, NH4
+-N was used as energy source in the 

mineral medium (Schmidt and Belser 1994). After appropriated incubation time at 28 oC in the 

dark, the positive vials were counted,  confronted to a most probable number table, and 

results expressed as log MPN g-1 dry soil. 

Dehydrogenase activity was assessed in field-moist soil samples incubated with 1.5% 

triphenyl tetrazolium chlorine (TTC) for 24 h at 37 oC in the dark and expressed as µg of 

triphenyl tetrazolium formazan (TTF) g-1 d-1 at 37 ºC (Casida et al. 1964). Asparaginase activity 

was estimated by incubation at 37 oC for 2 h in sodium acetate buffer pH 10 and L-asparagine 

as substrate. The NH4
+-N produced was quantified by steam distillation in KCl-AgSO4 extracts 

(Frankenberger and Tabatabai 1991) and expressed as μg N-NH4
+ g-1 h-1 at 37ºC. Acid 

phosphatase activity was determined using 0.05 M sodium p-nitrophenyl phosphate as 

substrate in samples incubated in modified universal buffer pH 6.5 at 37ºC for 1 h; the color 

intensity was measured colorimetrically and the activity expressed as µg of p-nitrophenol 

(PNP) g-1 h-1 at 37ºC (Tabatabai and Bremner 1969).  

Microbial biomass of carbon (MBC) and nitrogen (MBN) were estimated by fumigation-

extraction method. Two 25 g aliquots of field-moist soil samples were weighed and one of 

them was fumigated for 24 h at 28 oC with ethanol-free chloroform in the dark. Afterwards, 
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fumigated and non-fumigated samples were extracted with 0.5 M K2SO4 and the organic C was 

quantified (Anderson and Ingram 1993). MBC was estimated considering the difference 

between C concentrations in the fumigated and non-fumigated extracts, by using a kC = 0.33 

(Vance et al. 1987). MBN was estimated in the same extracts after sulfuric digestion of an 

aliquot of the extract and determination of N content by semi-micro Kjeldahl method 

considering a kN = 0.68 (Brookes et al. 1985). The metabolic quotient (qCO2) was obtained by 

the ratio between the C-CO2 evolved from soil samples (data from Niemeyer et al. 2010) and 

the respective MBC (Anderson and Domsch 1993), expressed as mg C-CO2 g-1 MBC h-1 The 

qCO2 values are inversely related to the efficiency to which the microbial biomass uses the 

substrates, i.e., higher values indicate higher stress and less efficiency. 

 

5.2.5 Data analysis 

Statistical differences on microbial parameters between sites were evaluated using a 

one-way ANOVA followed by a Dunnet’s test. Soil moisture, total organic C and mineral N were 

used as covariables in all analyses. A partial Principal Component Analysis (pPCA) was used to 

visualize the major response pattern of microbial indicators, using the same soil parameters as 

covariables. 

Partial correlations between microbial parameters and total and extractable metal 

concentrations, and vegetation cover were done using the Pearson’s correlation coefficient. 

Moreover, partial correlations were also performed between the assessed microbial variables 

and the index of metal pollution (W) proposed by Widianarko et al. (2000). This index is the 

ratio between the metal concentration in each site by the corresponding background 

concentration (reference value or basal level). The result indicates how much the background 

concentration is exceeded at a given site. The factors for each metal were then multiplied by 

one another and the logarithm of the product was taken. In this study, the basal level for each 

metal was calculated as the geometric mean from the three reference sites. This index was 

calculated for each sampling point, aiming at synthesizing the information on metal 

contamination joining information from all metals analyzed. Initially developed for sediment 

samples, the W index can be used to synthesize the metal loading of any environmental 

sample in comparison to metal basal levels, including soils (Timmermans et al. 2007; Janssens 

et al. 2008). This index can take negative values in sites where metal loadings are below the 

basal levels, whereas positive values indicate metal loadings higher than the basal levels.  
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In order to separate the contribution of metals and vegetation cover in explaining the 

differences for microbial parameters, a multivariate decomposition of variance was 

performed. This was done via several redundancy analyses using the microbial parameters as 

response variables, and metals and/or vegetation cover (depending on the analysis) as 

explanatory variables, in addition to soil moisture, soil organic carbon, and mineral nitrogen 

contents as covariables. The significance of the percentage of variation explained by metals 

alone, vegetation cover alone, and the interaction between both factors was assessed by the 

Monte Carlo’s permutation tests. All analyses of variance and correlations were performed on 

the Statistica 7.0 package. All multivariate analyses were done using CANOCO 4.0 software.  

 

5.3 Results 

 

5.3.1 Characterization of the sampling sites 

Soils from the study sites showed low to medium organic carbon content (USEPA 

2004), ranging from 0.12 to 3.31%, a Cation Exchange Capacity (CEC) mostly between 30 and 

40 meq/100 g, and pH values near to neutral, except in the sites P1000T1 and Ref.2 that 

presented low values (Table 5.1).  

Vegetation cover ranged between 20-100 % (Table 5.1). In general, a significant 

reduction of the vegetation cover in comparison to the reference sites was observed in most of 

the sampling points within the smelter area (P0, P20T1, P150T1, P20T3, and P50T3). These 

points, together with P50T1 and P150T3, correspond to sites in which tailings were deposited 

and where the unsuccessful revegetation can be observed. At these sites, vegetation was 

dominated by one herbaceous species (Brachiaria sp.). In some of these sites, there were 

evidences of erosion, which could have delayed the natural regeneration process. Further 

discussion on this issue is given in Chapter 3 (Niemeyer et al. 2010). 

 

5.3.2 Soil metal concentrations  

 Total and 0.01 M CaCl2-extractable metal concentrations are shown in Table 5.2. For at 

least one out of four metals (Pb, Cd, Cu, and Zn), soils from three sampling points inside the 

smelter area (P0, P50T3, and P150T1) presented critical levels of contamination with total 
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metal levels exceeding the Dutch benchmark values for ecological assessment, as defined by 

Rutgers et al. (2008). Results of Co (not included in Table 5.2) were below the detection limit in 

all sites: <24 mg/kg (total) and <10.8 mg/kg (extracts). 

 

5.3.3 Soil microbial and biochemical parameters – differences among sites 

Soil microbial properties varied among sites, being conditioned mainly by the metal 

loadings and degree of habitat disturbance, as measured by vegetation cover. The basal 

respiration and microbial biomass of carbon and nitrogen presented significantly lower values 

especially at sites nearby the central point (P0) when compared to the overall reference (Table 

5.3). Contrary to expected, the metabolic quotient qCO2 only presented high values at P20T3 

and P150T1, but with high variability, and no significant differences from the overall control. 

The activities of dehydrogenase, phosphatase, and asparaginase had significant decreases in 

the soils inside the smelter. 

Some other soil microbial properties related to N cycling, namely ammonification and 

nitrification rates, presented higher values in sites inside the smelter area. However, significant 

differences against the overall reference were found only for nitrification rate (Table 5.3). 

Regarding the number of ammonifiers, significantly lower numbers were found in sites inside 

the smelter area, whereas no differences were found among sites for the nitrifiers (ammonium 

oxidizers). 

The partial principal component analysis permitted to see how the attributes were 

correlated to the sampling sites (Fig. 5.2). Axis 1 separated the sites with lower metal loadings 

(the 3 references, P1000T1 and P400T3), and located them in the positive side of the axis. 

These were mostly located outside the smelter area, and were associated to higher levels of 

microbial respiration, microbial biomass C and N, ammonifiers, and higher phosphatase and 

asparaginase activities. Points in the negative side of the axis 1, presenting higher W index 

(Table 5.2) values and located mostly inside the smelter area, were mainly characterized by 

higher ammonification and nitrification rates.  
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Table 5.1 Soil physico-chem
ical characteristics and vegetation cover (%

) in the sites w
ithin and around the lead sm

elter area, and in the three reference (Ref) sites. 

   
 

Sites 
Coarse 
sand 
(%

) 

Fine 
sand 
(%

) 

Sand 
(total) 

(%
) 

Silt 
(%

) 
Clay 
(%

) 
Texture 
(U

SD
A) 

CEC 
(m

eq/ 
100 g) 

pH
 (KCl 1:5 
v:v) 

P 
(m

g/kg) 
O

rganic 
carbon 

(%
) 

M
ineral 
N

 
(m

g/kg) 

W
ater 

content 
(%

) 

W
H

C 
(g/100 g) 

V
egetation 

cover (%
) 

Ref 1 
2.3 

8.5 
10.9 

42.1 
47.0 

Silty Clay 
34.16 

7.1 
72 

0.64 
42 

19.54 
53.78 

81.3 ± 21.0 
Ref 2 

50.9 
38.5 

89.4 
2.8 

7.7 
Loam

y Sand 
37.60 

4.9 
1 

0.58 
42 

13.21 
27.53 

Ref 3 
22.2 

15.0 
37.2 

11.1 
51.7 

Clay 
36.48 

6.1 
52 

2.26 
56 

47.20 
60.75 

P0 
43.2 

31.3 
74.5 

11.9 
13.6 

Sandy Loam
 

38.56 
6.7 

47 
0.17 

70 
31.04 

44.12 
22.5 ±22.2 

P20T1 
48.0 

13.8 
61.8 

19.0 
19.3 

Sandy Loam
 

37.28 
7.1 

58 
0.12 

42 
32.67 

46.40 
30.0 ± 16.3 

P20T3 
11.4 

30,0 
41.4 

22.3 
36.3 

Clay Loam
 

42.16 
6.8 

106 
1.10 

42 
35.04 

67.73 
32.5 ± 12.6 

P50T1 
25.2 

13.4 
38.6 

29.0 
32.4 

Clay Loam
 

38.16 
6.7 

63 
0.64 

56 
28.59 

54.51 
57.5 ± 12.6 

P50T3 
69.2 

9.1 
78.3 

10.4 
11.3 

Sandy Loam
 

16.56 
7.2 

>200 
1.62 

56 
39.48 

22.05 
20.0 ± 14.1 

P150T1 
56.2 

21.1 
77.4 

12.3 
10.3 

Sandy Loam
 

21.28 
6.7 

>200 
1.22 

42 
29.41 

28.55 
30.0 ± 42.4 

P150T3 
8.4 

15.2 
23.5 

21.4 
55.1 

Clay 
49.20 

6.8 
16 

1.45 
42 

40.71 
61.76 

57.5 ± 9.6 

P400T1 
19.6 

23.9 
43.5 

20.2 
36.3 

Clay Loam
 

37.44 
6.8 

>200 
2.96 

56 
24.43 

58.93 
100.0 ± 0.0 

P400T3 
6.5 

8.6 
15.1 

52.4 
32.5 

Silt Clay Loam
 

35.84 
7.1 

1 
1.10 

70 
45.48 

56.67 
97.5 ± 5.0 

P1000T1 
2.5 

21.8 
24.3 

19.9 
55.8 

Clay 
43.20 

3.7 
35 

1.16 
56 

28.74 
59.95 

67.5 ± 15.0 

P1000T3 
10.3 

19.5 
29.8 

29.8 
40.4 

Clay Loam
 

42.72 
7.0 

>200 
3.31 

42 
n.d. 

57.57 
n.d. 
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Table 5.3 (Continued) 

Sites 

Respiration 

(μg CO
2 / g 

soil/ day) 

M
BC 

(µg/g) 

M
BN

 

(µg/g) 
C/N

 

qCO
2  

(m
g CO

2 -C/ 
g biom

ass 
C/ h) 

D
ehydrogen

ase 

(µg PN
P/ g/ 

d) 

Acid 
phosphata

se 

(ug 
PN

F/g/h) 

A
sparaginase 

(μg N
-

N
H

4
+/g/h) 

A
m

m
onification 

(μg N
 /g  /day) 

A
m

m
onifiers 

(log of M
PN

/ 
g) 

N
itrification 

rate 

(%
) 

N
itrifiers 

N
H

4
+ 

oxidizers 
(log 

M
PN

/g) 

P50T1 
41.4 ± 2.4* 

412.9 ± 31.4 
11.0 ± 
4.2*** 

41.10 ± 
15.23 

1.1 ± 0.1 
1.2 ± 2.0** 

235.7 ± 
50.3** 

11.2 ± 
19.5*** 

1.8 ± 0.3 
5.5 ± 0.5*** 

17.1 ± 
4.9*** 

2.6 ± 0.1 

P50T3 
52.2 ± 12.6* 

461.7 ± 20.1 
22.0 ± 4.5* 

21.62 ± 4.76 
1.3 ± 0.3 

2.1 ± 0.5* 
450.3 ± 

45.4 
32.5 ± 35.1** 

1.8 ± 0.3 
5.6 ± 0.5*** 

13.5 ± 4.5* 
2.2 ± 0.5 

P150T1 
49.2 ± 6.6* 

115.5 ±  87.0*** 
9.3 ± 1.3*** 

12.03 ± 9.24 
12.6 ± 15.9 

3.3 ± 0.5 
355.3 ± 
166.0* 

22.8 ± 
11.8*** 

0.4 ± 0.2 
5.6 ± 0.1*** 

8.7 ± 2.8 
2.4 ± 0.3 

P150T3 
60.5 ± 9.2* 

543.6 ± 160.8 
26.6 ± 3.1** 

20.85 ± 7.62 
1.3 ± 0.4 

2.1 ± 1.1* 
651.2 ± 
150.7 

37.0 ± 12.4* 
1.5 ± 0.3 

6.6 ± 0.6 
10.2 ± 0.5 

2.3 ± 0.0 

P400T1 
234.9 ± 83.3 

797.3 ± 193.3 
83.0 ± 21.2 

9.62 ± 0.43 
3.3 ± 0.4 

16.8 ± 3.7 
573.1 ± 
133.3 

91.7 ± 32.9 
0.8 ± 0.1 

7.0 ± 0.3 
-0.2 ± 5.9 

2.8 ± 0.0 

P400T3 
165.2 ± 41.3 

805.3 ± 216.2 
59.7 ± 26.5 

14.18 ± 2.82 
2.3 ± 0.3 

1.5 ± 1.1** 
792.0 ± 

34.5 
97.8 ± 16.6 

0.4 ± 1.0 
6.4 ± 0.1 

-3.3 ± 3.17 
2.9 ± 0.1 

P1000T1 
164.0 ± 79.1 

1098.1 ± 184.1 
51.1 ± 22.0 

23.79 ± 9.79 
1.71 ± 0.7 

4.8 ± 6.2 
515.6 ± 
353.5 

71.57 ± 18.8 
0.6 ± 1.8 

6.4 ± 0.4 
1.9 ± 7.4 

2.8 ± 0.0 

P1000T3 
n.d. 

n.d. 
n.d. 

n.d. 
n.d. 

n.d. 
n.d. 

n.d. 
n.d. 

n.d. 
n.d. 

n.d. 

Ref – Reference soil 
M

BC – M
icrobial biom

ass Carbon 
M

BN
 – M

icrobial biom
ass N

itrogen 
C/N

 – C to N
 ratio of the m

icrobial biom
ass 

n.d. - not determ
ined
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5.3.4 Soil microbial and biochemical parameters – relationship with metal contamination and 

vegetation cover 

Most microbial parameters presented significant partial correlations (using soil 

moisture, soil organic carbon, and mineral nitrogen as covariables) with metal loadings in soil 

given by the Widianarko’s pollution index (W). Negative relations were found for basal 

respiration, microbial biomass (C and N), phosphatase and asparaginase activities, and number 

of ammonifiers, whereas a significant positive relation was observed for nitrification rate 

(Table 5.4). No significant correlations were observed for microbial C/N ratio, qCO2, 

dehydrogenase activity, and ammonification rate. 

Similar trends can also be seen when looking at individual metals, especially when 

considering the total metal concentrations (Table 5.4), given that the correlations with 

extractable metal were weaker. Significant negative correlations were observed for microbial 

biomass C with Pb, and number of ammonifiers with total Fe, Pb and Ni. Significant positive 

correlation with extractable concentrations of Cd and Pb were found for qCO2. 

Microbial and biochemical parameters also presented significant correlations with 

vegetation cover (Table 5.4). Positive correlations were mostly found with basal respiration, 

microbial biomass (C and N), enzyme activities (dehydrogenase, phosphatase, and 

asparaginase), and number of ammonifiers, whereas negative correlations were observed with 

nitrogen transformation rates (ammonification and nitrification). 

As an attempt to decipher the different contribution of metals and vegetation cover in 

explaining the variation of microbial and biochemical parameters, the multivariate 

decomposition of variance (partial RDAs using soil moisture, soil organic carbon, and mineral 

nitrogen contents as covariables) showed that total metal concentrations explained a 

considerable portion of the variation (49.1%), whereas vegetation cover explained only 25.3% 

(Table 5.5). However much of the variation in these values correspond to shared variance 

between both variables (22.2%), indicating that vegetation alone explains only 3.1% against 

26.9% of the variation explained by metals alone (Table 5.5). 

 

Chapter 5 

134



Ta
bl

e 
5.

4 
Pe

ar
so

n’
s 

pa
rt

ia
l c

or
re

la
tio

ns
 b

et
w

ee
n 

m
ic

ro
bi

al
 p

ar
am

et
er

s 
an

d 
m

et
al

 c
on

ce
nt

ra
tio

n 
(t

ot
al

 a
nd

 e
xt

ra
ct

ab
le

), 
ov

er
al

l m
et

al
 lo

ad
in

g 
(W

id
ia

na
rk

o’
s 

in
de

x 
- 

W
) a

nd
 

ve
ge

ta
tio

n 
co

ve
r 

– 
VE

G
. 

M
ic

ro
bi

al
 p

ar
am

et
er

s 
 

To
ta

l m
et

al
 c

on
ce

nt
ra

tio
ns

 
 

Ex
tr

ac
ta

bl
e 

m
et

al
 c

on
ce

nt
ra

tio
ns

 
 

W
 in

de
x 

 
VE

G
 

 
Cu

 
Fe

 
M

n 
Zn

 
Cd

 
Cr

 
Pb

 
N

i 
 

M
n 

Cd
 

Pb
 

N
i 

 
 

 
 

Ba
sa

l r
es

pi
ra

tio
n 

 
-0

.5
4*

**
 

-0
.5

3*
* 

-0
.5

3*
* 

-0
.5

7*
* 

n.
s.

 
n.

s.
 

-0
.5

0*
* 

n.
s.

 
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

 
-0

.7
0*

**
 

 
0.

61
**

* 

M
BC

 
 

n.
s.

 
-0

.4
4*

* 
-0

.3
5*

 
-0

.4
0*

 
-0

.3
8*

 
n.

s.
 

-0
.4

7*
* 

-0
.4

5*
* 

 
0.

60
**

* 
n.

s.
 

-0
.3

6*
 

0.
60

**
* 

 
-0

.6
4*

**
 

 
0.

58
**

* 

M
BN

 
 

-0
.4

7*
* 

-0
.6

4*
**

 
-0

.4
8*

* 
-0

.5
4*

* 
-0

.3
9*

 
-0

.3
9*

 
-0

.5
5*

**
 

-0
.4

5*
* 

 
n.

s.
 

n.
s.

 
-0

.3
5*

 
n.

s.
 

 
-0

.7
2*

**
 

 
0.

73
**

* 

C/
N

 
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
0.

39
* 

n.
s.

 
n.

s.
 

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
 

n.
s.

 
 

n.
s.

 

qC
O

2 
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

0.
44

**
 

n.
s.

 
n.

s.
 

0.
36

* 
 

n.
s.

 
0.

45
**

 
0.

45
**

 
n.

s.
 

 
n.

s.
 

 
n.

s.
 

D
eh

yd
ro

ge
na

se
 

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

 
n.

s.
 

 
0.

42
* 

Ac
id

 P
ho

sp
ha

ta
se

 
 

n.
s.

 
-0

.5
1*

* 
-0

.3
4*

 
n.

s.
 

n.
s.

 
-0

.6
5*

**
 

n.
s.

 
-0

.5
6*

**
 

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
 

-0
.4

7*
* 

 
0.

56
**

* 

As
pa

ra
gi

na
se

 
 

-0
.4

7*
* 

-0
.4

8*
* 

-0
.4

6*
* 

-0
.5

1*
* 

n.
s.

 
n.

s.
 

-0
.4

8*
* 

n.
s.

 
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

 
-0

.6
5*

**
 

 
0.

55
**

 

Am
m

on
ifi

ca
tio

n 
ra

te
 

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

 
n.

s.
 

 
-0

.4
2*

 

N
itr

ifi
ca

tio
n 

ra
te

 
 

0.
35

* 
0.

43
**

 
0.

38
**

 
0.

35
* 

n.
s.

 
0.

54
**

 
n.

s.
 

0.
35

* 
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

 
0.

43
**

 
 

-0
.6

2*
**

 

Am
m

on
ifi

er
s 

 
-0

.3
7*

 
-0

.6
1*

**
 

-0
.4

1*
 

-0
.4

5*
* 

-0
.4

0*
 

-0
.4

0*
 

-0
.5

1*
* 

-0
.4

7*
* 

 
n.

s.
 

-0
.3

6*
 

-0
.3

7*
 

n.
s.

 
 

-0
.6

1*
**

 
 

0.
73

**
* 

N
H

4
+  O

xi
di

ze
rs

 
 

n.
s.

 
n.

s.
 

-0
.3

3*
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

n.
s.

 
 

n.
s.

 
n.

s.
 

n.
s.

 
n.

s.
 

 
n.

s.
 

 
n.

s.
 

M
BC

 –
 M

ic
ro

bi
al

 b
io

m
as

s 
Ca

rb
on

 
M

BN
 –

 M
ic

ro
bi

al
 b

io
m

as
s 

N
it

ro
ge

n 
C/

N
 –

 C
 to

 N
 r

at
io

 o
f t

he
 m

ic
ro

bi
al

 b
io

m
as

s 
N

H
4

+  O
xi

di
ze

rs
 –

 N
itr

ifi
er

s 
am

m
on

iu
m

 o
xi

di
ze

rs
 

n.
s.

 - 
no

t s
ig

ni
fic

an
t (

p>
0.

05
) 

*p
<0

.0
5;

 *
*p

<0
.0

1;
 *

**
p<

0.
00

1 

135



Chapter 5 

Table 5.5 Variance partitioning of m
icrobial and biochem

ical data according to total m
etal content and vegetation cover. Values expressed in percentage of total variation 

excluding covariables (soil m
oisture, soil organic carbon, and m

ineral nitrogen contents).  

 Variables 
Variation explained (%

) 
P 

Variation of m
icrobial and biochem

ical 
param

eters (excluding covariables) 
66.8* 

 

Covariables 
33.2 

 

M
etals and Vegetation (Total) 

52.2 
0.002 

M
etals 

49.1 
0.002 

Vegetation 
25.3 

0.002 

M
etals (pure) 

26.9 
0.002 

Vegetation (pure) 
3.1 

0.002 

Shared 
22.2 

 

* expressed as %
 of total variation 
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5.4 Discussion 

 

 The high levels of metals in the soil of smelting area have been previously reported 

(Anjos 2003; Machado et al. 2004), and resulted both from deposition of residues inside the 

smelting area and aerial deposition of contaminated particles from the smelter plume during 

the smelting activity. The plume was also responsible for the extent of contamination outside 

the smelter area. The heterogeneity of the soil inside the smelter area can be attributed to 

heterogeneous deposition of tailings and the partially unsuccessful attempt to encapsulate 

some of the piles by depositing thousands of cubic meters of nearby soil (Anjos 2003).  

This study has revealed significant differences in soil microbial and biochemical 

attributes among the sampling sites differently affected by the lead smelter activity. This can 

be attributed to disturbances caused by deposition of tailings in the area and to their 

unsuccessful encapsulation using soil brought from nearby areas, which affected the soil 

(Niemeyer et al. 2010), and its microbial and biochemical properties. Negative correlations 

between the W index with some microbial and biochemical attributes illustrate the negative 

effects of metal contamination on the soil microbial community and some essential role they 

play in the biogeochemical cycles. Under such condition, the sustainability of the vegetation in 

the metal-contaminated sites has not been reached, and may lead to more environmental risks 

in the future. As key microbial processes on C, N and P cycling have been impaired under such 

condition, in addition to higher contents of metals, the maintenance of vegetation in these 

heavily-contaminated sites can be progressively difficult, leading to intensification of erosive 

processes and dispersion of pollutants (Broos et al. 2005). 

There have been some controversial findings regarding the effect of metal 

contamination on soil respiration, as some works have observed increased respiration rates 

whereas others a decrease with increasing metal concentrations in soil (Smejkalova et al. 2003; 

Rajapaksha et al. 2004; Khan and Joergensen 2006). In the present work, the soil basal 

respiration rate was lower in the metal-contaminated soils inside the smelter area and 

correlated negatively with total soil metal concentrations. These results agree with those 

obtained by Zimakowska-Gnoinska et al. (2000) who observed less oxygen consumption in soils 

from metal-contaminated sites in comparison to uncontaminated samples, in addition to 

strong negative correlations between soil respiration and soil pollution levels. Gulser and 
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Erdogan (2008) also observed that soil respiration correlated negatively with contents of 

several metals in roadside fields near to intensive traffic; soil respiration significantly increased 

with decreasing the levels of metal contents according to the distance from the roadside. In 

the present work, the negative correlations between soil respiration and metal concentrations, 

and the positive correlations between soil respiration and other microbial indicators confirmed 

that soil respiration can be used for estimations and comparisons between soil ecological 

conditions and biological activity (Zimakowska-Gnoinska et al. 2000). 

Microbial biomass is involved in the control of soil organic matter decomposition and 

synthesis, besides acting as easy-release storage of nutrient in ecosystems. Therefore, sites 

with high microbial biomass can stock and recycle more nutrients (Gregorich et al. 1994; 

Kaschuk et al. 2010) to be used for plant nutrition and thus improving the sustainability of a 

particular ecosystem. Consequently, sites with low microbial biomass can have these functions 

impaired, as observed in some sites inside the smelter area around the tail deposits. These 

sites also showed a low vegetation cover, indicating that the soil functions have still not been 

reestablished and that further actions are needed for reclamation of the degraded sites. 

MBC, MBN, and basal respiration were positively correlated with soil organic C, while 

MBC was also positively correlated to soil moisture and mineral N (supplementary material), 

showing that microbial indicators can be impacted due to changes in carbon and nitrogen in 

soil as consequence of soil pollution or management (Monokrousos et al. 2006; Nogueira et al. 

2006; Jiang et al. 2010). Given that most of the soil microbial community is composed by 

chemorganotrophic microorganisms, improvement of soil organic carbon usually stimulates 

microbial activity and biomass (Kaschuk et al. 2010). In addition, soil organic matter brings 

indirect beneficial effects to the soil microbial community by improving the soil capacity for 

water retention and metal complexation (Giller et al. 2009; Moreno et al. 2009).  

Enzyme activities were positively correlated with MBC, MBN, and basal respiration 

(data not shown), indicating that they are associated with active microorganisms, which are 

the major source of enzymes in soil. Thus, the probable impact on enzyme activities was 

caused by direct suppression of microbial growth due to negative conditions in the metal-

contaminated sites (Kuperman and Carreiro 1997). As indicated by the variance partitioning, 

metal concentrations were the most responsible for changes in these attributes than 

vegetation cover and the large portion explained by vegetation is shared with metals, showing 

their strong indirect effect on microbial parameters. The significant correlations between MBC, 

MBN, and basal respiration with organic C (supplementary material) indicate that higher 
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organic C levels in soil are supporting greater microbial biomass and enzyme activities, not only 

by acting as C and energy sources for soil microbial community, but also due to a chelating 

effect protecting microorganisms and soil enzymes from excessive levels of metals in soil 

(Balota et al. 2004; Moreno et al. 2009; Lejon et al. 2010). 

 Nitrification and ammonification rates have key roles in the nitrogen cycling in soil. 

While nitrification is considered one of the most sensitive soil microbial processes regarding to 

metal stress (Broos et al. 2005), some studies have shown adaptation of nitrifying populations 

to metal-contaminated sites (Mertens et al. 2006). In the present work, nitrification rate was 

positively correlated with metal concentrations, but in this case, part of that behavior can be 

explained by the high pH in the highly contaminated sites. It is known that nitrification is 

favored under high pH, which, at the same time, makes metals less available and thus less 

toxic to the microbial community. Soil moisture, pH and ammonium contents in soil are 

generally the main factors affecting nitrification (Krave et al. 2002). In fact, soil pH showed the 

greatest positive correlation with nitrification in the present work (r=0.43, p<0.01), 

emphasizing the importance of soil pH on this attribute (Sarathchandra 1978; Sauvé et al. 

1999). In addition, in long-term contaminated sites, adaptation or selection of specific 

microbial groups or (sub) populations resistant or tolerant to metal contamination is likely to 

occur (Giller et al. 2009). Sobolev and Begonia (2008) suggested that denitrifying 

microorganisms were adapted to elevated levels of Pb by selecting for metal-resistant 

enzymes. Adaptation not only of nitrifying populations in contaminated sites but also other 

microbial communities is also known to occur (Lejon et al. 2010), and this may have occurred 

in the present work. A long-term exposure to a heavily Zn-contaminated soil induced structural 

changes and tolerance of the nitrifying microorganisms to Zn, as compared to the nitrifying 

community in an uncontaminated control soil (Mertens et al. 2006).  

Significant correlations were found between qCO2 and total Cd and Ni, and extractable 

Pb and Cd. Once this parameter indicates the energetic demand of heterotrophic 

microorganisms, integrating MBC and basal respiration, these results can indicate metal stress 

to soil microorganisms, evidencing the need for more C to supply their energetic demand per 

unit of microbial biomass (Bardgett and Saggar 1994; Fliessbach et al. 1994; Valsecchi et al. 

1995). Soil microbial biomass and activity (sensu lato) are closely related to vegetation cover. 

In the present work, positive correlations were observed between vegetation cover 

and MBC, MBN, soil basal respiration, enzyme activities, and ammonifier microorganisms. 

Vegetation cover can contribute to reduce metal toxicity to microbial community because they 
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offer favorable conditions not only in the rhizosphere region but also in the bulk soil due to 

inputs of plant residues that will run humification (Tordoff et al. 2000). On the other hand, 

vegetation cover showed significantly negative correlations with individual metal contents and 

the pollution index (W) (data not shown). These relationships can explain the low percentage 

of the variation of microbial data explained by vegetation cover alone, and the high 

percentage explained by the interaction with total metals. This does not mean that vegetation 

is not important for microbial communities, but that, in this case, the vegetation cover was 

highly conditioned by the metal loadings. The failed establishment of the vegetation in metal-

contaminated sites, conditioning microbial parameters, resulted mainly from direct metal 

contamination (Tordoff et al. 2000). 

Vegetated soils have been reported to have both higher microbial biomass and 

microbial activity when compared to bare soils (Epelde et al. 2006). Hernández-Allica et al. 

(2006) and Epelde et al. (2010), in studies on phytoextration with Thlaspi caerulescens in metal 

polluted soils, the revegetation activated the soil microbial activity and their functionality. This 

positive response can be attributed to the improvement of soil conditions, such as organic 

compounds released by the plant roots and the presence of additional surfaces for microbial 

colonization (Delorme et al. 2001). 

 Soil metal contamination in Santo Amaro has impaired the vegetation cover in the 

smelter area and modified the plant species composition and invertebrates, changing and 

simplifying the ecosystem structure (Niemeyer et al. submitted/ecological parameters). 

Contamination had detrimental effects on soil properties, modifying the microclimatic 

conditions at the ground level, and the amount and quality of the potential organic inputs into 

the soil. Our results showed that these changes caused negative impacts to the soil 

microorganisms and processes inside the smelter area, where worse values were generally 

observed. The main negative effects seem to be due to limitation of plant reestablishment that 

results in low amounts of organic matter inputs into the soil to be used as source of C and 

energy for microbial growth and also on the protection of microbial community against high 

levels of metals in soil. Nogueira et al. (2006) recommended providing plant covering in 

degraded areas to prevent the advance of soil degradation by erosion and to increase 

microbial activity and diversity, which also contribute to decrease the nutrient losses by 

leaching. This could also be recommended as a management strategy to be applied in the 

smelter area in Santo Amaro, improving the soil health and preventing the dust dispersion by 

wind, which is a current problem for human health, once this area is located at the 

neighborhood of the city. 
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5.5 Conclusions 

 

Microbial indicators were positively correlated with soil organic carbon and vegetation 

cover, while negatively correlated to soil metal levels. In general, microbial indicators showed 

high ecological risks to soil functions related to tailing deposition even 17 years after the lead 

smelter have stopped its activities. The main negative effects seem to be due to limitation of 

plant reestablishment that results in low amounts of organic matter inputs into the soil to be 

used as source of C and energy for microbial growth and also on the protection of microbial 

community against high levels of metals in soil. 

We can conclude that, besides direct effect of metal toxicity on microbial biomass and 

activity, there are indirect effects related to changes in the vegetation cover, soil organic 

carbon, pH, and nutrient availability. These attributes have changed the soil microclimate and 

physical-chemical properties that may have lead to losses of habitat function for soil 

microorganisms and the key processes they play, as in carbon and nutrient cycling. 
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Abstract  

 

Ecological parameters (soil invertebrates, microbial activity, and plant community) were 

assessed in a metal contaminated site in an abandoned lead smelter and non-contaminated 

reference sites, as part of an ecological risk assessment (ERA). Vegetation cover inside the 

smelter area was lower and presented a homogenous species composition than outside. 

Failure in vegetation establishment caused an impoverishment of habitat conditions, which 

allied to metal toxicity, originated a significant impairment of soil microbial and faunal 

communities in the contaminated sites. A significant reduction in the number of species (and 

species assemblages) of surface dwelling macroarthropods and feeding activity was observed. 

Moreover, basal respiration, microbial biomass C and phosphatase activity also decreased.  As 

a result, a significant impairment of organic material decomposition in the most contaminated 

sites was observed. Metal contamination affected the ecological status of the site, leading to a 

risk for ecosystem functioning and provisioning of ecosystem services like organic matter 

decomposition and nutrient cycling, even 17 years after the end of smelting activities. 

Regarding the sensitivity of the ecological parameters assessed, most were able to distinguish 

sites within the smelter are from those outside. However only bait lamina, basal respiration 

and microbial biomass carbon presented high capacity to distinguish the level of soil 

contamination being promising candidates to integrate the Ecological Line of Evidence of an 

ERA.  

 

Keywords: Bait lamina, Litter decomposition, Soil invertebrate communities, Vegetation, 

Microbial activity, Risk assessment 
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6.1 Introduction 

 

Ecological parameters have been recommended to be used in ecological risk 

assessment (ERA) of contaminated sites (Sprenger and Charters 1997; Jensen and Mesman 

2006; Rutgers and Jensen 2011). Either used independently or integrated in a TRIAD approach, 

underpinning the ecological line of evidence, ecological parameters are integrative indicators 

of adverse impacts resulting from contaminant exposure. 

Ecological effects of contaminants in soil functions can be assessed both from a 

structural and a functional perspective (Rutgers 2008; Van Straalen 2002; Semenzin et al. 

2009). However, data on how biological processes are impaired due to soil pollution is still 

scarce since most of assessed ecological parameters are structural (e.g. vegetation surveys, soil 

faunal density and taxonomic composition). Therefore, links between pollutant effects on soil 

organisms and on soil functions should be deeply investigated (Cortet et al. 1999) by 

simultaneously assessing ecological structural and functional parameters in a site evaluation. 

In ERA schemes for contaminated soils, ecological parameters can be measured at 

different tiers and include different groups of organisms (from microorganisms to soil 

macrofauna) and different biological levels (populations, communities, processes). Soil fauna is 

a key component of soil environments, involved in many aspects of organic matter 

decomposition and nutrient cycling (acting mainly as regulators of microbial activity), and on 

the contribution for maintenance of soil structure (Lavelle 1996). Different studies on soil 

fauna showed the suitability of these organisms in indicating soil ecological status when 

comparing areas with different levels of contamination (Gongalsky 2003; Creamer et al. 2008). 

In addition to the evaluation of soil faunal communities (usually done on a later phase of the 

assessment) the use of bait-lamina sticks has been proposed as a relevant tool for ecological 

assessments and was successfully tested in temperate (e.g. Hamel et al. 2007) and tropical 

soils (e.g. Römbke et al. 2003). 

 Vegetation surveys are one of the most used tools to evaluate habitat quality in 

terrestrial ecosystems (Godínez-Alvarez et al. 2009) because plants are the primary producers, 

key structural component of the habitat for all soil inhabitants. Measurements of vegetation 

cover and composition are important to indicate changes in habitat quality due to stress 
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caused by pollution. Besides, some advantages such as their immobility and easy sampling 

make them a suitable tool to be used in ERA (Suter et al. 2000). 

Regarding functional parameters, microbial endpoints are the most used. Because the 

crucial role of soil microorganisms in carbon and nutrient cycling (Nannipieri et al. 2002) and 

on decontamination processes, indices related to microbial diversity, biomass and activity can 

provide important information about the functional impairment or improvement in the soil 

(Giller et al. 1998; Nogueira et al. 2006). These features make microbial parameters suitable 

for using in risk assessment of impacted areas (Moreno et al. 2009; Jiang et al. 2010). However, 

being probably the most integrative indicator of several processes occurring in soil, the rate of 

organic material decomposition can be used as indicative of negative effects on the soil 

microbial community, soil fauna or both. Although some studies reported a low sensitivity of 

this parameter when assessing risks of contaminants, showing none or transient effects (Dinter 

et al. 2008; Van Gestel et al. 2009), other studies on metal contaminated sites showed effects 

(Creamer et al. 2008). 

This study aimed to investigate the ecological status of a former smelting area with a 

long-term history of metal contamination located at Santo Amaro (Bahia, Brazil). Moreover, 

the different sensitivity of each parameter to metal contamination will also be evaluated 

aiming to propose the most suitable methods in these contamination scenarios. We 

hypothesized that each ecological endpoint responds to the metal contamination gradient, 

indicating a decrease in ecological status in the highly contaminated sites as compared to the 

reference sites. 

 

6.2 Materials and methods 

 

6.2.1 Study area 

The study was carried out in an abandoned lead smelter that operated between 1960 

and 1993, in the neighborhood of Santo Amaro city, BA, Brazil (12° 32’ 49” S, 38° 42’ 43” W) 

(Fig. 6.1). Tailings and airborne dust containing metals were spread in the region, leading to 

soil contamination (Costa 2001; Carvalho et al. 2003). And despite the attempt, in 1995, to 

encapsulate the residues with soil rich in organic matter, signs of habitat degradation due to 
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contamination are still visible. A more detailed description of the study area is given in Chapter 

3 (Niemeyer et al. 2010).  

Based on the total metal concentrations in soil (Pb, Cd, Cu, Zn) derived from a pre-

sampling strategy using six radial transects (unpublished data), two 1-km transects (T1 and T3) 

were chosen along the two major gradients of contamination. Starting in a shared central 

point (P0 – located next to the smelter facility) five extra sampling points were established on 

each transect at 20, 50, 150, 400, and 1000 m (P20T1-P1000T1 and P20T3-P1000T3; see 

Fig.6.1). Three reference sites were selected at 3 km (Ref. 2 and 3) and 9 km (Ref. 1) away from 

P0 (Fig.6.1) with soil properties similar to the soils along the transects, but without metal 

contamination. Further details about sampling, soil physical-chemical characterization 

(including metal analysis), and selection of the reference sites are given in Chapter 3 

(Niemeyer et al. 2010). 

All surveys were carried out in July 2008, with exception of litter bag test that was 

conducted between October 2009 and February 2010.   

Smelter 
buildings

Subaé river

Road

Train line

Pond

Pond

Pond

40m

Smelter 
border

P400T1

P150T1

P50T1
P20T1

P20T3

P50T3

P150T3

P0

Ref. 2  (± 3 Km from the area)
P1000T3 (1 Km from P0)

P400T3 (400m from P0 – inside smelter)

Ref. 3 (± 3 Km from the area)
P1000T1 (1 Km from P0)

Ref. 1 (± 9 Km from the 
area)

 

Fig. 6.1 Schematic representation of the study area (an abandoned lead smelter, Santo Amaro, BA, 

Brazil) showing the location of 11 sampling sites along two transects and three reference sites. Sites 

outside the area are: P400T1, P1000T1, P1000T3 and the three references sites. 
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6.2.2 Vegetation cover and succession stage 

Vegetation assessment was carried out according to Veiga and Wildner (1993). Further 

details are given in Chapter 5 (Niemeyer et al. 2012). Simultaneously, the plant species within 

10 m radius were inventoried. Classification of successional plant community stage followed 

the Brazilian criteria established by the Environmental National Council (Brazil 1994). 

 

6.2.3 Surface dwelling invertebrates 

 Surface dwelling invertebrates were sampled using pitfall traps (plastic cups, Ø 8 cm, 

11 cm depth) containing 50% ethanol and some drops of neutral detergent. Three traps were 

set up in each sampling point, separated 5 m apart in a triangular disposition, over one week in 

July/2008. After collection, specimens were preserved in 70% ethanol until identification at 

morphospecies level.  

 The total number of individuals of each morphospecies at each site was obtained by 

pooling the results from the three traps. Number of species, abundance, species richness 

(Margalef index), species diversity (Shannon index), evenness (Pielou index) and dominance 

(Berger-Parker index) were calculated. 

 

6.2.4 Soil fauna feeding activity (bait lamina method-BLT)  

The BLT was prepared using a 1:5:14 ratio of finely ground oat, activated charcoal and 

cellulose powder (Merck), respectively. Five groups (samples) of five bait-lamina strips were 

exposed in each sampling point for 14 days, in July/2008. Bait strips were inserted vertically 

into the soil, each group occupying an area of 15 cm x 15 cm. In parallel, soil moisture was 

determined in each point. After the exposure period, bait-lamina were removed and taken to 

the laboratory. After careful washing in tap water, each bait strip was assessed visually against 

light and counting the number of pierced (= eaten) holes. No distinction was made between 

partially or fully pierced holes. The feeding activity per sample (group of five strips) at each 

sampling point was expressed in percentage.  
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6.2.5 Microbial parameters 

Soil samples for assessment of microbial parameters were taken in three parallel 

transects (2 m apart, and 10 m long), defined at each sampling point. Along each transect, 15 

subsamples (0-10 cm depth) were taken and pooled to form a composite sample that was 

sieved (<5 mm), stored at 4 °C and processed within 72 h. 

Basal respiration was determined according to Alef (1995) for 8 days using 1 M NaOH 

as CO2 trap. Microbial biomass carbon (MBC) was estimated by fumigation-extraction method 

(Vance et al. 1987) and C determination in the extracts according to Anderson and Ingram 

(1993), using a kC = 0.33.Dehydrogenase activity (DHA), was assessed in field-moist samples  

incubated with 1.5% triphenyl tetrazolium chlorine (TTC) for 24 h at 37oC (Casida Jr et al. 

1964). Acid phosphatase activity was determined using 0.05 M sodium p-nitrophenyl 

phosphate as substrate (Tabatabai and Bremner 1969). For nitrification rate, samples received 

125 µg g-1 of NH4
+-N as ammonium sulfate or left with no N addition and incubated at 28°C for 

21 days in the dark.  After determinations of NO3
--N and NH4

+-N concentrations before and 

after incubation (Keeney and Nelson, 1982), the nitrification rate was calculated (Schuster and 

Schroder 1990).  

 

6.2.6 Litter breakdown  

 Litter bags were used to measure leaf breakdown. Nylon bags with size of 30 cm × 20 

cm and a large mesh size (1.0 cm × 0.2 cm) were used to allow activity both by macro- and 

microorganisms (Cortez 1998). Dried leaves of Schinus terebinthifolius Raddi (Anacardiaceae), a 

native tree species, were collected in a non-contaminated area and used as substrate in the 

litter bags (4 g in each bag). This species is quite frequent at the study site and is palatable to 

the soil macrofauna (Podgaiski and Rodrigues 2010). Litter bags were placed on the soil 

surface. At each sampling point 4 small areas (4 m apart on a quadrangular shape) were 

defined and 4 bags were placed in each area (total of 16 bags per sampling site). One litter bag 

of each small area was collected randomly at each period (15, 43, 83 and 131 days) and 

processed immediately. Any visible plant material from other species, organisms, or soil were 

removed manually. The material was dried at 60 °C and weight was recorded. Afterwards, the 

ash-free dry weight (AFDW) was calculated by subtracting the mass of the ignited residue at 

600 °C for 1 hour. Litter mass loss was calculated by subtracting the AFDW of the remaining 
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litter from the AFDW of the initial input, and using soil and litter correction factor according to 

EPFES protocol (Römbke et al., 2003). Results were expressed as % of mass lost. The monthly 

decay rate constant was calculated by using the single negative exponential decay model 

mt/m0 = e –kt, where mt/m0 is the proportion of mass remaining at time t, and t is the time 

elapsed in days (months), and k is the derived daily (monthly) decay constant. Further details 

are given in OECD (2006) and Römbke et al. (2003). 

 

6.2.7 Data analysis 

The Widianarko’s pollution index (WPI) was calculated for each sampling point 

(Widianarko et al., 2000) to pool the information from all assessed metals. Details are shown in 

Chapter 4. The geometric mean of each metal concentration in the 3 reference sites was used 

as base level for each metal. This index can take negative values where metal loadings are 

below the base levels, while positive values increase with the metal loading above the base 

levels. 

For BLT, arthropod abundance and richness, vegetation cover, soil microbial 

respiration, MBC, DHA, phosphatase activity and nitrification rate, differences between 

sampling points were tested with one-way ANOVA (analysis of variance) followed by Dunnet´s 

test against the overall reference (the average of the values obtained for all reference points 

was used as overall reference). Soil moisture and organic matter contents were used as 

covariables in the ANOVA for basal respiration and phosphatase activity. For MBC, DHA and 

nitrification rate, mineral N was also included as covariable. Differences in abundance and 

morphospecies richness of surface dwelling arthropods from sites inside vs. sites outside the 

smelter area was tested by t-test for independent samples. In all analyses, normality and 

homogeneity of variances were checked with Kolmogorov-Smirnov and Bartlett's tests (Fisher 

test in case of t-test), respectively, Transformations were applied whenever necessary and 

according to the type of data. Differences between decomposition rates were tested with 

ANCOVA (analysis of covariance). Additionally, ecological parameters were correlated 

(Pearson’s correlation coefficient) with WPI to find which parameters best respond to the 

contamination gradient. Partial correlations were run for microbial parameters using soil 

moisture, organic matter and mineral nitrogen contents as covariables. Analyses were carried 

out using the Statistica 7.0 software (Statsoft, Tulsa, OK, USA). 
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  Principal component analysis (PCA) was used to display similarities in vegetation 

composition, surface dwelling arthropod community, and microbial parameters among sites. 

Soil moisture, organic matter and mineral nitrogen contents were used as covariables in the 

microbial PCA, using Canoco for Windows® v.4. To check whether the differences for microbial 

parameters, surface dwelling arthropods and vegetation were different between sites inside 

and outside the smelter area, an Analysis of Similarity (ANOSIM) followed by a Similarity 

Percentage Analysis (SIMPER) were run for each matrix, based on a Bray-Curtis similarity 

matrix using the Primer v.5 software. 

 

6.3 Results 

 

6.3.1 Sites characterization and metal concentrations in soil 

A full characterization of sites is given in Chapter 3 (Niemeyer et al. 2010). Soils from 

the study sites showed low (<2%) to medium (2 to 6%) organic matter content (USEPA 2004), a 

cation exchange capacity (CEC) mostly between 30 and 40 meq/100 g, and pH near to 7, with 

the exception of sites P1000T1 and Ref.2, with pH at the acidic range (Table 6.1). Soil 

heterogeneity within the smelter area is attributed to spatial distribution of different actions 

undertaken to rehabilitate the area, namely the failed attempt to encapsulate the tailings by 

covering with nearby soil (Anjos 2003). 

For at least one metal (Pb, Cd, Cu, or Zn), sandy soils presented levels exceeding the 

Dutch HC50cor benchmarks (Table 6.2), indicating high ecological risk (Rutgers et al., 2008). P0 

presented a high Zn contamination exceeding by almost three times the corresponding HC50cor 

value, whereas P150T1 and P50T3 presented a critical level of contamination, exceeding by far 

(between 1.6 and 73.5 times) the screening levels. WPI corroborates these data, with slightly 

positive (or even negative) values in the reference sites or sites outside the smelter areas, in 

contrast to highly positive values in most of the contaminated sites.   
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Table 6.2 Total m
etal concentrations (m

g/Kg) and the pollution index in sam
pled and respective reference soils. 

Sites 
Total (m

g/kg) 
 

M
etal pollution 

index 

Pb 
Cd 

Cu 
Zn 

Cr 
N

i 
Fe 

M
n 

 
W

 

Ref. 1 
16 

<0.2 
66 

94 
77 

54 
45000 

840 
 

1.26 

Ref. 2 
13 

<0.2 
18 

24 
16 

28 
2900 

34 
 

-0.89 

Ref. 3 
152 

<0.2 
40 

260 
59 

40 
53000 

820 
 

-0.37 

P0 
1264 

<0.2 
76 

3800 (2.8) 
72 

57 
52000 

674 
 

5.61 

P20T1 
133 

<0.2 
56 

220 
80 

56 
41000 

780 
 

2.44 

P20T3 
308 

<0.2 
56 

420 
78 

60 
49000 

672 
 

3.12 

P50T1 
164 

<0.2 
60 

240 
80 

58 
43000 

720 
 

2.60 

P50T3 
26074

 (7.1) 
62 

3196 (8.2) 
95940 (73.5) 

80 
40 

117000 
5880 

 
13.63 

P150T1 
37460 (10.4) 

771 (9.8) 
594 (1.6) 

42200 (33.5) 
57 

70 
110000 

1720 
 

13.33 

P150T3 
2200 

12 
108 

3300 
84 

58 
56000 

678 
 

7.83 

P400T1 
961 

8.8 
60 

840 
64 

48 
35000 

540 
 

5.98 

P400T3 
179 

0.3 
44 

90 
59 

46 
34000 

760 
 

2.76 

P1000T1 
23 

<0.2 
60 

80 
62 

46 
48000 

360 
 

0.80 

P1000T3 
99 

<0.2 
56 

156 
84 

52 
49000 

568 
 

2.09 

N
um

bers in superscript indicate an exceedance of the corrected D
utch H

C50
EC50  values (after Rutgers et al. 2008) (Ex: the [Pb] at P150T1: 37460 

(10.4), indicates that [Pb] w
as 10.4 tim

es higher than the H
C50

cor Pb). 
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6.3.2 Vegetation cover and successional stage 

The highest vegetation cover were found outside the smelter area (Ref 1, Ref 2, P400T3, P1000T3, 

P1000T1 and P400T1; 67.5-100%, average = 86.0%, SD = 16.1%), whereas the lowest values were found 

close the smelter plant (P0, P20T1, P50T1, P150T1, P20T3, and P50T3, 20-100 %, average = 43.4%, SD = 

26.9%) (Table 6.3). Vegetation cover correlated negatively with Widinarko’s index (r=-0.59, p<0.05).   

A total of 53 plant species were identified; the full list for each site is shown in supplementary 

material (Table A.1 in the Annex A). Sites P1000T3 and Ref2 were in a more advanced successional stage, 

with arboreal cover predominating over herbaceous, with occurrence of climbing plants, litter and mean 

diameter at breast high (DBH) of 8-18 cm. The other sites showed secondary vegetation in an initial stage of 

succession.  

The axis 1 in the PCA represents a clear gradient of contamination, showing a clear separation 

between sites outside the area (including reference sites – right side of the axis) and contaminated sites 

inside (left side of the axis), which grouped  showing a high similarity in plant composition (Fig. 6.2). The 

dissimilarity between plant community in sites inside and outside was 63.98% (SIMPER analysis) with both 

communities being significantly different (ANOSIM - global R=0.36, p<0.01). The homogeneity of vegetation 

composition inside the smelter was much higher (77.9% similarity) than outside (20.1% similarity). 

 

 

Functional and structural parameters to assess the effects of metal contamination  

161



Chapter 6 

-1.0 1.5

-1
.0

1.
5

P1000T1

P1000T3

P400T1

P400T3

P150T1

P150T3

P50T1
P50T3

P20T1
P20T3

P0

REF1

REF3

  

  

Arboreous
Psidium sp.

Herbaceous
Acanthospermum hispidum
Momordica charantida
Oxalis sp.

Arbustive
Cuphea sp.
Ricinus communis
Senna occidentalis
Sidastrum micranthum
Solanum sp.
Spermacoce verticillata

Jatropha gossypiifolia

Poaceae sp.2
Eupatorium pauciflorum

Desmodium sp.

Clitoria farchildiana
Psidium guajava

Cecropia pachystachya

Mimosa pudica

Ageratum conyzoides

Cyperus sp.

Guarea guidonia
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Fig. 6.2 Principal component analysis (PCA) diagram on plant community composition.  Legend: grey upper triangles - 

arboreous species; grey diamonds – shrub species; grey circles – herbaceous species; black upper triangles – sampling 

points (no survey was possible in Ref3 due to logistic constrains). Variance explained: Axis 1- 24.4%; Axis 2 – 19.4%. 

 

162



Ta
bl

e 
6.

3 
Ec

ol
og

ic
al

 p
ar

am
et

er
s 

(a
ve

ra
ge

 v
al

ue
s 

± 
st

an
da

rd
 d

ev
ia

tio
n)

 f
or

 t
he

 a
ss

es
se

d 
sa

m
pl

in
g 

po
in

ts
. 

Th
e 

va
lu

es
 f

or
 t

he
 t

hr
ee

 r
ef

er
en

ce
 p

oi
nt

s 
w

er
e 

ge
om

et
ri

ca
lly

 
av

er
ag

ed
 t

o 
gi

ve
 a

n 
ov

er
al

l 
re

fe
re

nc
e 

va
lu

e.
  

A
st

er
is

ks
 in

di
ca

te
 s

ig
ni

fic
an

t 
di

ff
er

en
ce

s 
(*

 p
<0

.0
5;

 *
* 

p<
0.

01
; 

**
* 

p<
0.

00
1)

 f
or

 a
 o

ne
-t

ai
le

d 
hy

po
th

es
is

 o
f 

a 
D

un
ne

t’
s 

te
st

 
be

tw
ee

n 
ea

ch
 s

am
pl

in
g 

po
in

t a
nd

 th
e 

ov
er

al
l r

ef
er

en
ce

 v
al

ue
 (a

ss
um

in
g 

th
at

 R
ef

 v
al

ue
 h

ig
he

r 
th

an
 s

am
pl

in
g 

po
in

t v
al

ue
 a

nd
 lo

w
er

 fo
r 

Po
te

nt
ia

l N
itr

ifi
ca

tio
n)

. I
n 

th
e 

A
N

O
VA

s 
fo

r 
so

il 
m

ic
ro

bi
al

 p
ar

am
et

er
s,

 s
oi

l m
oi

st
ur

e,
 s

oi
l o

rg
an

ic
 m

at
te

r 
an

d 
so

il 
ni

tr
og

en
 c

on
te

nt
s 

w
er

e 
us

ed
 a

s 
co

-v
ar

ia
bl

es
 (s

ee
 te

xt
 fo

r 
m

or
e 

de
ta

ils
). 

n 
- n

um
be

r 
of

 r
ep

lic
at

es
. 

So
il 

gr
ou

ps
 

Ba
it 

la
m

in
a 

(%
 p

ie
rc

ed
 h

ol
es

) 

n=
5 

Ve
ge

ta
tio

n 
co

ve
r 

(%
) 

n=
4 

Re
sp

ir
at

io
n 

(μ
g 

CO
2
/ 

g 
so

il/
 d

ay
) 

n=
3 

M
BC

  

(µ
g/

g)
 

n=
3 

D
eh

yd
ro

ge
na

se
 

(µ
g 

PN
P/

 g
/ 

d)
 

n=
3 

A
ci

d 
ph

os
ph

at
as

e 

(u
g 

PN
F/

g/
h)

 

n=
3 

N
itr

ifi
ca

tio
n 

(%
) 

n=
3 

D
ec

om
po

si
tio

n 
ra

te
 a  

k 
(m

on
th

ly
) 

n=
4 

O
ve

ra
ll 

re
fe

re
nc

e 
48

.6
 ±

 1
3.

9 
81

.3
 ±

 2
1.

0 
13

9.
4 

± 
10

6.
4 

64
2.

4 
± 

41
6.

1 
7.

2 
± 

2.
3 

61
7.

1 
± 

23
3.

2 
3.

9 
± 

2.
2 

0.
26

56
 ±

 0
.1

43
8 

P0
 

18
.4

 ±
 1

4.
3 

**
* 

22
.5

 ±
 2

2.
2 

**
* 

34
.9

 ±
 7

.8
**

* 
17

8.
1 

± 
55

.1
**

* 
0.

7 
± 

0.
4 

**
 

26
9.

0 
± 

22
.1

**
 

15
.2

 ±
 9

.6
**

 
0.

04
66

7*
**

 

P2
0T

1 
17

.8
 ±

 1
0.

2 
**

* 
30

.0
 ±

 1
6.

3 
**

* 
35

.1
 ±

 7
.1

**
* 

25
2.

4 
± 

14
2.

3*
* 

1.
3 

± 
1.

9*
* 

19
6.

4 
± 

33
.9

**
* 

12
.4

 ±
 2

.1
* 

n.
d.

 

P2
0T

3 
30

.4
 ±

 1
5.

4 
32

.5
 ±

 1
2.

6 
**

* 
82

.6
 ±

 1
5.

8 
17

0.
3 

± 
17

4.
1 

**
* 

1.
4 

± 
1.

0*
* 

44
3.

4 
± 

9.
3 

13
.3

 ±
 3

.5
* 

n.
d.

 

P5
0T

1 
19

.8
 ±

 6
.8

 *
**

 
57

.5
 ±

 1
2.

6 
41

.4
 ±

 2
.4

**
 

41
2.

9 
± 

31
.4

 
1.

2 
± 

2.
0*

* 
23

5.
7 

± 
50

.3
**

 
17

.1
 ±

 4
.9

**
* 

0.
06

32
**

* 

P5
0T

3 
11

.8
 ±

 5
.7

 *
**

 
20

.0
 ±

 1
4.

1 
**

* 
52

.2
 ±

 1
2.

6*
* 

46
1.

7 
± 

20
.1

 
2.

1 
± 

0.
5*

 
45

0.
3 

± 
45

.4
 

13
.5

 ±
 4

.5
* 

0.
04

12
**

* 

P1
50

T1
 

7.
3 

± 
8.

1 
**

* 
30

.0
 ±

 4
2.

4 
**

* 
49

.2
 ±

 6
.6

**
 

11
5.

5 
± 

 8
7.

0*
**

 
3.

3 
± 

0.
5 

35
5.

3 
± 

16
6.

0*
 

8.
7 

± 
2.

8 
0.

04
35

**
* 

P1
50

T3
 

5.
5 

± 
6.

9 
**

* 
57

.5
 ±

 9
.6

 
60

.5
 ±

 9
.2

* 
54

3.
6 

± 
16

0.
8 

2.
1 

± 
1.

1*
 

65
1.

2 
± 

15
0.

7 
10

.2
 ±

 0
.5

 
0.

02
48

**
* 

P4
00

T1
 

61
.5

 ±
 2

3.
8 

10
0.

0 
± 

0.
0 

23
4.

9 
± 

83
.3

 
79

7.
3 

± 
19

3.
3 

16
.8

 ±
 3

.7
 

57
3.

1 
± 

13
3.

3 
-0

.2
 ±

 5
.9

 
0.

16
6*

 

P4
00

T3
 

10
.3

 ±
 6

.7
 *

**
 

97
.5

 ±
 5

.0
 

16
5.

2 
± 

41
.3

 
80

5.
3 

± 
21

6.
2 

1.
5 

± 
1.

1*
* 

79
2.

0 
± 

34
.5

 
-3

.3
 ±

 3
.1

7 
0.

04
23

**
* 

P1
00

0T
1 

45
.3

 ±
 1

6.
1 

67
.5

 ±
 1

5.
0 

16
4.

0 
± 

79
.1

 
10

98
.1

 ±
 1

84
.1

 
4.

8 
± 

6.
2 

51
5.

6 
± 

35
3.

5 
1.

9 
± 

7.
4 

0.
45

15
 

P1
00

0T
3 

26
.3

 ±
 1

7.
5 

* 
10

0.
0 

± 
0.

0 
n.

d.
 

n.
d.

 
n.

d.
 

n.
d.

 
n.

d.
 

0.
38

26
 

M
BC

 –
 M

ic
ro

bi
al

 b
io

m
as

s 
Ca

rb
on

 
n.

d.
 - 

no
t d

et
er

m
in

ed
 

a 
af

te
r 

lo
g 

of
 p

er
ce

nt
ag

es
 

 

163



6.3.3 Surface dwelling invertebrates 

A total of 1,277 individuals, grouped into 72 morphospecies, were collected in the pitfall traps. 

Hymenoptera, Coleoptera and Orthoptera occured in all sites, Araneae and Dermaptera in 92.3%, and 

Opiliones in 69% of the sites (Table 6.4). Isopoda (30.8% of sites), Diplopoda and Hemiptera (15.4%), and 

Mantodea (1 site) were less frequent. Coleoptera and Araneae presented the highest morphospecies 

richness (20 and 19, respectively), followed by Hymenoptera with 16 morphospecies. Hymenoptera was the 

most abundant group in terms of individuals (n = 459), followed by Coleoptera and Araneae (n = 265 each). 

Differences in abundance, morphospecies richness or biodiversity descriptors were only found 

when comparing sites inside and outside the smelter area. Sites outside the area (namely Ref2, P400T3 and 

P1000T3) presented more morphospecies than sites inside (t=2.48, p<0.05). However, no significant 

differences were detected for abundance or any other descriptor of biodiversity (Table 6.4). Analyzing each 

major faunal group individually, the aforementioned trend was found for abundance and richness of 

spiders (t=2.51, p<0.05 and t=2.63, p<0.05, respectively), and abundance of opilionids (t=2.61, p<0.05). In 

contrast, hymenopterans followed the inverse trend for number of individuals (t=2.72, p<0.05). No 

correlation was found between none of the invertebrate parameters and WPI. 

The PCA showed marked dissimilarity between sites inside and outside the smelter area (Fig. 6.3), 

with sites outside (400 m or more beyond P0) located in the positive side of axis 1. The ANOSIM revealed 

significant differences between these two groups (Global R=0.239, p<0.01). This separation pattern was 

mainly attributed to 40 morphospecies (SIMPER analysis, average dissimilarity 74,6%), with the highest 

contributions (up to 50%) attributed to morphospecies of Hymenopeta (2), Coleoptera (3), Orthoptera (2), 

Dermaptera (1) and Opilionidae (1). 
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Fig. 6.3 Principal component analysis (PCA) diagram on surface dwelling arthropods. Legend: grey circles – 

morphospecies; black upper triangles – centroids of the sampling points (no survey was possible in Ref3 due to logistic 

constrains). Variance explained: Axis 1- 17.7%; Axis 2 – 13.6%. 
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Table 6.4 N
um

ber of individuals and m
orphospecies (show

n in brackets) of each O
rder of surface dw

elling invertebrates caught in pitfall traps (n=3) at each site, and the 
ecological descriptors for each site, considering all groups together.  

 
 

 
 

Sites 

 
 

Ref 1 
Ref 2 

 
P0 

P20T1 
P20T3 

P50T1 
P50T3 

P150T1 
P150T3 

P400T1 
P400T3 

P1000T1 
P1000T3 

 
Sites inside 

sm
elter 

Sites 
outside 
sm

elter 

O
rders 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

A
raneae (Ar) 

 
73 (5) 

9 (4) 
 

4 (3) 
2 (2) 

7 (4) 
2 (1) 

3 (1) 
5 (4) 

 
14 (4) 

5 (5) 
2 (2) 

139 (7) 
 

228 (15) 
37 (9) 

H
ym

enoptera (H
y) 

 
15 (5) 

15 (5) 
 

31 (3) 
26 (3) 

48 (4) 
76 (3) 

57 (5) 
33 (2) 

52 (4) 
15 (3) 

16 (6) 
45 (5) 

30 (3) 
 

121 (13) 
338 (10) 

Coleoptera (Co) 
 

11 (4) 
13 (6) 

 
8 (4) 

2 (2) 
28 (7) 

16 (5) 
32 (7) 

2 (1) 
14 (5) 

88 (4) 
13 (3) 

7 (4) 
31 (4) 

 
75 (11) 

190 (17) 

O
rthoptera (O

rt) 
 

14 (3) 
10 (3) 

 
16 (4) 

8 (3) 
21 (3) 

13 (2) 
21 (6) 

4 (2) 
9 (2) 

10 (2) 
16 (2) 

24 (2) 
23 (4) 

 
87 (5) 

102 (7) 

Isopoda (Iso) 
 

 
 

 
1 (1) 

 
 

 
 

 
 

5 (2) 
11 (1) 

1 (1) 
 

 
12 (2) 

6 (3) 

O
piliones (O

pil) 
 

 
4 (2) 

 
 

1 (1) 
2 (2) 

2 (1) 
 

 
1 (1) 

6 (1) 
7 (3) 

10 (1) 
2 (2) 

 
23 (3) 

12 (3) 

D
erm

aptera (D
erm

) 
 

3 (1) 
2 (1) 

 
 

1 (1) 
9 (1) 

4 (1) 
4 (1) 

1 (1) 
6 (1) 

2 (1) 
5 (1) 

2 (1) 
1 (1) 

 
13 (1)  

27 (1)  

H
em

iptera (H
em

) 
 

 
1 (1) 

 
 

 
 

 
 

 
 

1 (1) 
 

 
 

 
1 (1) 

1 (1) 

D
iplopoda (D

ipl) 
 

 
 

 
 

1 (1) 
 

 
 

 
 

 
 

2 (1) 
 

 
2 (1) 

1 (1) 

M
antodea (M

ant) 
 

 
1 (1) 

 
 

 
 

 
 

 
 

 
 

 
 

 
1 (1) 

0 

Biodiversity descriptors 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

ABU
N

D
A

N
CE (total) 

 
116 

55 
 

60 
41 

115 
113 

117 
45 

82 
141 

73 
93 

226 
 

 

TAXA
 (total) 

 
18 

23 
 

15 
13 

21 
13 

20 
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6.3.4 Soil fauna feeding activity (BLT) 

 Lower feeding activity was registered in sites within the smelter area, usually associated with 

contamination (P0, P150T1, P50T3 and P150T3) or low organic matter content (P20T1 and P50T1) (Table 

6.3). Point P400T3 also presented low feeding activity, however other soil or habitat parameters (not 

assessed) must explain these results. A significant negative correlation (r = -0.72, p<0.01) was found 

between feeding activity and metal loading, given by WPI. 

 

6.3.5 Microbial parameters 

Microbial parameters generally decreased inside the smelter area in relation to the overall 

reference, except for nitrification, which showed inverse trend (Table 6.3).  

Most of parameters correlated negatively with the metal loadings (WPI), like microbial respiration 

(r=-0.70, p<0.001), microbial biomass carbon (r=-0.64, p<0.001), phosphatase activity (r=-0.47, p<0.05) and 

nitrification (r=0.43, p<0.05), while no correlation was found for DHA.   

The pPCA showed a clear separation of the sites outside the smelter area, except P400T1 (Fig. 6.4). 

Such separation was confirmed by an ANOSIM (Global R=0.091, p<0.05) and by a SIMPER analysis, where 

microbial respiration, microbial biomass carbon and phosphatase activity contributed to over 90% of the 

dissimilarity between both groups. 

 

6.3.6 Organic material breakdown 

The validity criterion of 60 % of mass loss in the reference site at the end of the study (Römbke et 

al. 2003) was fulfilled. The monthly decay rate in contaminated sites within the smelter area was lower 

than in the overall reference sites (Table 6.3). Only sites located 1000 m away from P0 presented higher 

decay rates than the reference sites. Considering the threshold value proposed by Römbke et al. (2003) of 

>25% difference in mass loss between contaminated and the reference sites at the end of the study, all 

sites within the smelter area showed an unacceptable risk, where differences compared to the overall 

reference ranged between 30.5% and 64.1% after 131 days of exposure. A significant and negative 

correlation was found between the monthly decay rate and WPI (r=-0.61, p<0.05). 

 

Functional and structural parameters to assess the effects of metal contamination  
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Fig. 6.4 Partial Principal component analysis (pPCA) ordination on the microbial parameters. Black upper triangles 

represent centroids of the sampling points (no survey was possible in P1000T3 due to logistic constrains). Variance 

explained: Axis 1- 60.1%; Axis 2 – 16.2%. 

 

6.4 Discussion 

 

6.4.1 Impairment of ecological parameters  

The smelting activity caused a high level of metal contamination in the study area, besides 

moderate to high levels of some metals (namely Pb and Zn) in the vicinity due to deposition of tailings and 

contaminated dust. No clear contamination gradient could be found along the two transects. This spatial 

heterogeneity is caused not only by unequal deposition of residues, but also by erosion on the (pseudo) 

rehabilitated tailings, leaving the pile partially exposed. 

Metal contamination allied to loss of habitat affected the different ecological parameters. The 

general trend was an impaired ecological response inside the smelter area in comparison with the sites 

outside. 
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The vegetation cover inside the smelter area decreased and was more homogeneous, with a high 

frequency of cropped arboreal and invasive herbaceous species in an initial successional stage. This is 

attributed to metal toxicity, even 17 years after the smelting activity stopped, in addition to the failure in 

rehabilitating the area. Van Assche and Clijsters (1990) also found potential phytotoxicity in the soil 

surrounding a zinc smelter more than 20 years after the smelter closure. In addition, nutrient imbalances 

and a reduced water-holding capacity restrict the plant recolonization on degraded sites (Tordoff et al. 

2000; Salemaa et al. 2001), conditions observed in the sites where soil encapsulation was not effective.  

A diverse and structured plant community helps to maintain essential functions in soil like cycling 

processes, providing food and habitat to a highly active and diverse community of decomposing organisms 

(Balvanera et al. 2006; Jensen and Mesman 2006). However, contamination mostly impaired plant 

community and habitat conditions inside the smelter area, affecting other ecological parameters, namely 

the soil fauna feeding activity and surface dwelling invertebrates. In fact, data from the BLT showed a 

strong impairment of feeding activity in sites within the smelter area associated to a high contamination or 

to a low organic matter content, in addition to a low vegetation cover. Similar results have also been shown 

in grasslands with gradient of metal contamination (Filsek et al. 2004) and abandoned uranium mine in 

Portugal (André et al. 2009), where the abundance and diversity of key detritivore groups decreased. In 

fact, the feeding activity measured via BLT seems to be related with the abundance of different faunal 

groups, namely earthworms (van Gestel et al. 2003) and collembolans (Helling et al. 1998; Birkhofer et al. 

2011). Although not assessed in this study, an impact on such organisms would also be expected due to the 

high metal contamination and the loss of habitat function (Fountain and Hopkin 2004). 

Besides a significant decrease in the total morphospecies richness inside the smelting area, changes 

in community composition of surface dwelling invertebrates also occurred. Community outside  was more 

abundant and rich in morphospecies of spiders and opilionids, whereas the community inside the area 

presented more abundance of hymenopterans. Ferreira (2010) reported a decrease in the abundance of 

spiders with the increase of metals in soil in a copper mine, showing that different guilds responded 

differently to contamination, in which the ground hunters were most affected. Read et al. (1998), studying 

epigeic macroarthropods along a metal contamination gradient, reported that few species were able to 

adapt to contamination and a larger number was found at non-contaminated sites. Besides the direct 

effects of contamination, the decrease in abundance (241 vs. 23 individuals) and species richness (16 vs. 8) 

inside the smelter area can also be attributed to indirect effects. Depletion of preys for specialist species, 

and the impoverishment of the habitat structure, may impair the trophic requirements for many species. 

The inverse trend observed for abundance of ants is in agreement with Grzes (2009), who found an 

increase in species richness along a metal contamination gradient. Metals may be negative to several 
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ecological parameters, mainly colony size and relative abundance (Grzes 2010), but ants have the ability to 

regulate and resist in metal contaminated sites. In this case indirect effects on and population may have 

occurred. Ants may have benefited from spider and/or coleopteran decreases in abundance or richness as 

these groups can act as their predators or competitors. In addition, metal pollution affected the habitat 

structure, creating patches of low vegetation cover, resulting in increase in soil temperature and decrease 

in moisture, which may have favored the thermophilic species (Grzes 2009). 

Metal contamination highly impaired the microbial community and processes, as all parameters 

inside the smelter area significantly differed from the reference sites. Moreover, significant negative 

correlations with metal loadings were found. Kapustka (1999) has not advised the inclusion of microbial 

parameters for ecological assessments due to their strong functional redundancy, rapid change across a 

small spatial scale, and high influence of confounding factors (e.g. moisture, nutrients). However, several 

other authors have reported a decrease in enzyme activity, microbial biomass carbon and basal respiration 

(Zimakowska-Gnoinska et al. 2000; Gülser and Erdogan 2008; Jiang et al. 2010) in impacted soils, pointing 

out its usefulness in  assessing metal effects on microbial functions in contaminated areas. Soil microbial 

communities and the key processes they mediate are closely related to vegetation and soil use (Zak 2003; 

Nogueira et al. 2006; Fagotti et al. 2012). Vegetation contribute to reduce metal toxicity by offering 

favorable conditions in the rhizosphere (Dias-Junior et al. 1998) and in the bulk soil due to inputs of organic 

residues that act as carbon and energy supply, in addition to a protective effect against metals by chelation. 

The failure in establishment of vegetation inside the smelter area, especially in tailing deposits, also 

contributed to decrease the microbial activity and biomass. 

Nitrification was the only microbial parameter that increased significantly among the most 

contaminated sites inside the smelter area. Although considered sensitive to metal stress (Broos et al. 

2005), adaptation of nitrifying populations to metal-contaminated sites have been shown (Mertens et al. 

2006). High nitrification rates may indicate unbalance in the N-cycling, leading to N losses by leaching or 

denitrification. The nitrification rate tends to decrease along the successional stages in a forest (Singh et al. 

2001), and thus recently disturbed ecological systems show higher nitrification rates, but decreases along 

the successional status (Montagnini et al. 1989). 

Litter breakdown was also significantly impaired within the smelter area, with decay rate being 

negatively correlated with metal loadings. Although showing only transient or no effects  under some 

stressors (e.g., Dinter et al. 2008; van Gestel et al. 2009; Podgaiski and Rodrigues 2010), some studies have 

revealed significant effect of metal  (e.g. Creamer et al. 2008) or pesticide contamination (Förster et al. 

2006) in this parameter.   
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The litter bag study showed low decay rates in the most contaminated sites. The reduced microbial 

activity, faunal feeding activity and density of detritivores, allied to a low moisture and high temperature in 

the more exposed sites due to the low vegetation cover, may have contributed to reduce the litter 

decomposition in these sites. Thus, the effects on litter decomposition is attributed not only to a direct 

effect of metals on microbial and faunal communities, but also to indirect effects leading to non-suitable 

habitat conditions for soil fauna and microbial communities as mentioned earlier. 

 

6.4.2 Sensitivity of ecological parameters for risk assessment 

The sensitivity analysis took into account not only the ability of each parameter to detect 

differences between contaminated and non-contaminated sites, but also the ability to detect a gradient of 

contamination and time necessary to obtain the parameter (Table 6.5). 

All microbial parameters were able to differentiate the contaminated from the reference sites. 

Except for DHA, they tended to give similar information because showed significant correlations among 

them. However, only two of them (basal respiration and microbial biomass carbon) presented a high 

capacity to distinguish the level of soil contamination.  Since these two parameters were highly correlated 

(r=0.82, p<0.001), assessing only one is enough to have information relative to microbial activity. . 

Conversely to microbial parameters, soil fauna structural parameters were not able to detect 

contamination gradients when considering each site individually. . However, abundance and taxonomic 

richness were able to differentiate the sites inside and outside the smelter. These results were somehow 

expected since we sampled highly mobile surface dwelling organisms, which are not associated to 

properties of a particular site, but with features of a large area around the site. Semezin et al. (2008) found 

that soil dwelling invertebrate abundance, taxonomic richness and the QBS index (a measure of soil quality 

based on microarthropods morphotypes) were sensitive parameters for assessing effects of soil 

contamination with metals and PAHs. Similarly to our findings, diversity indices were not sensitive to 

contamination. More elaborated conclusions could be taken, namely in terms of effects to particular 

functional groups and to find better cause-effect relationships, if identification would to be done at species 

level. However, the separation into morphospecies seems to be sensitive enough for a first evaluation of 

contamination or habitat disruption. Therefore, this metric should be incorporated in the ecological line of 

evidence when soil fauna is an ecological receptor under potential risk. 

Contrary to structural parameters of fauna, the feeding activity was sensitive to soil metal 

contamination. This high sensitivity, allied to the fact that several studies showed a relation between BLT 

and abundance of microarthropods and lumbricids (Birkhofer et al. 2011), and the possibility to have data 
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from a large number of sampling points over a short period of time, makes the BLT a definitive parameter 

to be included in the Ecological LoE in site specific assessments (particularly in tier 1).   

Despite significantly different in sites inside and outside the smelter area, vegetation cover and 

composition were not able to detect gradients of contamination. Critto et al. (2007) presented a low rank 

for vegetation related parameters in Tier 1, mainly due to their cost. However in higher tiers (2 or 3) such 

parameters presented higher ranking mainly related to their site-specific relevance. In this case, we 

consider relevant the parameters on vegetation since they showed/explained important derived effects of 

contamination, especially those related to habitat disruption. So, at different levels, both assessed 

parameters (vegetation cover and species composition) should be incorporated in the Ecological LoE. Plant 

litter decomposition showed high sensitivity to contamination and habitat disruption, but presented low 

capacity to differentiate the level of contamination. Despite being sensitive, it gave similar information as 

the BLT, thus not being a priority parameter to integrate a tiered scheme, also due to the long time needed 

for obtaining data. 

 

6.5 Conclusion 

 

In general, the ecological parameters indicated a clear distinction between sites inside and outside 

the smelter area, indicating an ecological risk to soil system even 17 years after the smelting activities 

stopped. Metal-rich tailings within the area and the failed attempt to encapsulate them have impaired the 

proper establishment of vegetation, leading to a  simplification of the habitat structure, which conducted to 

low  organic matter input into the soil to act as source of carbon and energy for microbial growth and for 

acting as protection for microbial community against high levels of metals in soil. Moreover, these changes 

caused negative impacts on microbial activity and on soil organisms (feeding activity and species 

composition of surface dwelling organisms), consequently affecting the ecosystem processes that they 

mediate. 

The suitable encapsulation of the smelter residues, with the concomitant re-establishment of a 

vegetation cover, seems to be essential to improve the ecological conditions at this site, preventing further 

soil loss and contributing to improve the soil function, minimizing the risk of air and water pollution. 
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Chapter 7 

Ecological risk assessment of a metal-
contaminated area in the tropics. Tier II: detailed 
assessment. 
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Abstract 

The present study presents data on the detailed evaluation (tier 2) of a site-specific ecological 

risk assessment in a former smelter area heavily contaminated with metals (Santo Amaro, 

Bahia, Brazil). Joining information from three lines of evidence (LoE), chemical, ecotoxicological 

and ecological, integrated risk values were calculated to rank sites within the area and confirm 

the potential risk pointed in tier 1. Risk values were calculated separately for the habitat and 

for the retention functions in each point. Habitat function included the chemical LoE calculated 

based on total metal concentrations. The ecotoxicological LoE based on reproduction tests 

with terrestrial invertebrates (reproduction of Folsomia candida, Enchytraeus crypticus, Eisenia 

andrei), growth and plant biomass (Avena sativa and Brassica rapa). For the ecological LoE, 

ecological parameters, embracing microbial, soil invertebrates and litter breakdown were used 

to derive risk values. Retention function included the chemical LoE, calculated based on 

extractable metal concentrations, and the ecotoxicological LoE based on eluate tests with 

aquatic organisms (reproduction of Daphnia magna and growth of Pseudokirchneriella 

subcapitata). Ecological and ecotoxicological results in habitat function indicated that the 

metal residues are sufficient to cause risk to biota. The most affected endpoints in ecotoxicity 

tests were reproduction of E. crypticus and E. andrei, and plant biomas. The ecological LoE, 

based on microbial parameters, litter breakdown and arthropods diversity, indicated damage 

to soil structure and function in several sites. In spite of the high total metal concentrations in 

soil, the low metal levels in extracts and the lack of toxicity in aquatic tests using eluates 

indicated a high soil retention function in most of the selected sites. Integrated risk was low 

outside the smelter area. Inside, a high spatial heterogeneity of risk levels was observed, 

related to the non homogeneous deposition of smelting residues. Integrated risk of tier 2 

showed the same trend of tier 1, with no risk to retention function in most of the selected 

sites, but a loss of habitat function in some of them. High risk levels, associated with sandy 

soils and residue deposits, suggest the need to proceed with remediation actions. These high 

risk levels observed inside the smelter due to metals were not only of a direct nature (e.g., 

strong toxicity to some tested organisms), but also of indirect nature, with the failure of the 

establishment of vegetation and the consequent loss of habitat quality of microorganisms and 

soil fauna. This study point some light in the selection of tools for the tier 2 of the ERA in a 

tropical metal contaminated site, focusing on ecological receptors in risk and using available 

chemical methods, ecological surveys and ecotoxicity tests. 
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7.1 Introduction 

 

Ecological risk assessment (ERA) is a process of collecting, organizing and analyzing 

environmental exposure and effect data to estimate the risk of contamination to ecosystems, 

being a useful tool, for instance, in managing the risk of contaminated lands (Jensen and 

Mesman 2006). Only a site specific risk assessment integrating contaminant exposure and 

biological effects, either through bioassays or in situ surveys, may reveal potential adverse 

effects of specific (point or diffuse) pollution problems (Posthuma et al. 2008), since toxicity 

cannot simply be extrapolated from mixtures of contaminants measured in soil due to 

interactions between them and potential alterations in their bioavailability caused mainly by 

soil properties and ageing (Vasseur et al. 2008). Thus, chemical analysis need to be 

complemented with bioassays, which have the key advantage of assessing the toxicity of the 

whole soil matrix, i.e., of the bioavailable mixture of contaminants, including degradation 

products and metabolites. Moreover, indirect effects of chemicals, like changes in food 

availability, habitat and soil structure, may be more important in ERA than direct toxicity 

(Heimbach 1997), and such impacts can best be evaluated through in situ ecological surveys. 

For the process of risk characterization, the Triad approach, which consists of 

integrating three lines of evidence (LoE), chemical, ecotoxicological and ecological (Long and 

Chapman 1985), has widely been recommended and successfully applied in site specific ERA of 

contaminated soils (Jensen and Mesman 2006; Wagelmans et al. 2009). The Triad approach is 

usually applied within a tiered system, i.e., information from each LoE is collected at each tier 

following a step-wise cost-effective process (Jensen and Mesman 2006). While tier 1 is 

essentially a screening phase, tier 2 is performed to reduce uncertainties about the actual risk. 

Thus, the tools used in tier 2 to collect information of each LoE should be directed to indicate 

long-term effects, derived from habitat disruption, while being more ecologically relevant and 

of a high capacity to differentiate levels of contamination (Jensen and Mesman 2006; Critto et 

al. 2007). 

In tier 2, the chemical LoE should comprise extraction techniques to quantify the 

available fraction of the contaminants in soil, complementing the data obtained with the total 

contaminant concentrations. This LoE should be complemented with information derived from 

ecotoxicological tests (ecotoxicological LoE) and ecological surveys (ecological LoE). At this 
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phase, the ecotoxicological LoE usually comprises long-term tests to assess both the habitat 

and retention functions of the soil (ISO 2003) focusing on sublethal endpoints (Weeks et al. 

2004; Critto et al. 2007). 

For the soil matrix, standardized reproduction tests with Oligochaeta (ISO 1998a, 2004) 

and Collembola (ISO 1999) have been recommended to evaluate sub-lethal effects on soil 

fauna (e.g., Gonzalez et al. 2011; Natal-da-Luz et al. 2011). Standard tests with plants (ISO 

2005) are also recommended as part of tests batteries for the ecotoxicological characterization 

of soils within ERA processes (van Gestel et al. 2001; Achazi 2002; Pandard et al. 2006) and, in 

particular, they have been widely used in toxicity assessments in metal contaminated areas 

(Öncel et al. 2000; Everhart et al. 2006; Loureiro et al. 2006; Alvarenga et al. 2008). To evaluate 

the soil retention function, soil extracts are prepared to perform widely established 

standardized tests with cladocerans and microalgae to evaluate the retention function of soil 

(e.g., OECD 1984a, 1998; Chelinho et al. 2010; Natal-da-Luz et al. 2012), as recommended by 

ISO guidelines on the ecotoxicological characterization of soils (ISO 2003). Finally, the 

ecological information collected at tier 2 will provide information on the actual impacts on 

populations and communities of flora and fauna at the study sites (Jensen and Mesman 2006). 

Surveys of species diversity and population structure of soil invertebrates and fauna and soil 

microbial parameters and decomposition rates are often applied at this LoE. Compared with 

the other LoE, the latter has the disadvantage that is generally very time consuming and may 

require more specialized knowledge (Suter et al. 2000). 

 This study aimed to conduct the tier 2 of a site-specific ERA of a metal contaminated 

area in Santo Amaro (BA, Brazil), following the Triad approach, i.e., joining information from 

the three LoE mentioned above, and complementing the analysis (trying to reduce some 

uncertainties) done during tier 1 (Chapter 3; Niemeyer et al. 2010). The results obtained in the 

screening phase (tier 1) indicated very high risk levels at some sampling points, associated with 

residue deposits, which suggested the need to proceed with remediation actions. However, 

uncertainties generated by contradictory information among LoE at certain sampling points 

indicated the need to further elucidate potential risks through a more detailed assessment, to 

rank sites within the study and fully identify those that need remediation actions (tier 2). To 

more comprehensively perform tier 2, the present study proposes, within each LoE, to 

separately calculate the ecological risk for the habitat function and retention function of the 

soil at each sampling point. 
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7.2 Materials and methods 

 

7.2.1 Study area 

 The present study was carried out in an abandoned industrial area in Santo Amaro, BA, 

Brazil, presenting a severe metal contamination originated from a lead smelter that was 

operational for 33 years (1960-1993). Human and animal contamination (Costa 2001; Carvalho 

et al. 2003), and very high levels of metals in soil and water (Anjos 2003; Machado et al. 2004) 

have been reported, caused by the tons of contaminated debris deposited around the smelter 

area (aprox. 180,000 m3) and under roads and house´s backyards (aprox. 55,000 m3), as well as 

by the aerial dispersion and deposition of dusts (covering a larger area up to 3 Km from the 

area) while the smelter was operational. More details are in Niemeyer et al. (2010). The soils in 

the sampling sites are Vertisols and Inceptisols (Soil Taxonomy, USDA) originated from 

carbonaceous shale, rich in expansive clay (montmorilonite), with generally low porosity and 

consequently low permeability (Machado et al. 2002). 

 

7.2.2 Soil sampling and selection of reference soils 

Two 1-km transects (T1 and T3) were defined along the two major detected gradients 

of contamination (Fig. 7.1). The two transects shared a central point (P0 – located close to the 

smelter plant) and comprised 5 sampling points, each at 20, 50, 150, 400, and 1000 m from P0.  

Based on a multivariate factor analysis using soil properties data (metals excluded), soil 

samples were assembled into three groups mainly differing in terms of texture, organic matter 

content and pH. Soils from several points in the surrounding of the area were screened, 

analyzed for metals and soil properties, and three reference soils (the best possible for each 

identified group of sampling points) were selected at 3 km (Ref. 2 and 3) and 9 km (Ref. 1) 

from P0 Details about soil sampling and groups are shown in Chapter 3 (Niemeyer et al. 2010). 
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Smelter 
buildings

Subaé river

Road

Train line

Pond

Pond

Pond

40m

Smelter 
border

P400T1

P150T1

P50T1
P20T1

P20T3

P50T3

P150T3

P0

Ref. 2  (± 3 Km from the area)
P1000T3 (1 Km from P0)

P400T3 (400m from P0 – inside smelter)

Ref. 3 (± 3 Km from the area)
P1000T1 (1 Km from P0)

Ref. 1 (± 9 Km from the 
area)

 

Fig. 7.1 Schematic representation of the study area (an abandoned lead smelter, Santo Amaro, BA, 

Brazil) showing the location of the 11 sampling points along the two transects and of the three 

reference points. 

 

7.2.3 Chemical analysis (Chemical LoE) 

Based on the historical use of the site and on a previous study (FUNASA 2003), soils 

were analyzed for the four main metals responsible for the contamination of the area (Pb, Cd, 

Cu, and Zn), and also for Cr, Ni, Fe, Co, and Mn. Metals were quantified in the bulk soil and in 

extracts, obtained by shaking 15 g of soil (dry weight) for 2 h:30 min at 200 rpm with 150 ml of 

a 0.01 M CaCl2 solution. The slurry was then centrifuged for 5 min at 3,000 rpm and the 

extracts (supernatants) were filtered through a Schleicher & Schuell filter paper (Dassel, 

Germany, Reference nº 595). Metals were quantified in the bulk soil and in extracts by 

inductively coupled plasma-atomic spectroscopy. 

Other soil physico-chemical parameters measured were pH (KCl 1M) (ISO 1994a), 

water holding capacity (WHC; ISO 1998b), cation exchange capacity (ISO 1994b), organic 

matter (OM) content (loss on ignition at 500 ºC for 6 h) and soil texture (LNEC 1970). 

Total metal concentrations were compared with the benchmarks median hazard 

concentration (HC50EC50 values; see explanation in Chapter 3) and Ecological Soil Screening 

Levels (Eco-SSLs) for plants (USEPA 2004). The latter consist in the geometric mean of the 
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maximum acceptable toxicant concentration for several species under different test conditions 

of pH and percentage of organic matter, developed to be used in the screening phase of the 

Superfund ERA process. 

 

7.2.4 Soil invertebrates reproduction tests (Ecotoxicological LoE) 

Reproduction tests with Enchytraeus crypticus (28 d), Eisenia andrei (56 d) and 

Folsomia candida (28 d) were conducted following the ISO standard guidelines (ISO 2004, 

1998a, 1999), except for the test temperature which was adjusted for 25ºC, rather than for 20 

ºC. All soils were tested at 100%. At the end of the exposure period, reproduction was 

estimated as the mean number of juveniles per replicate. All detailed procedures are described 

in Chapter 4 of the present thesis. 

 

7.2.5 Soil plant growth tests (Ecotoxicological LoE) 

Plant tests followed the ISO guidelines (ISO 2005), with minor modifications, to 

evaluate the effects on seeds germination, shoot length and biomass of two plant species. The 

monocotyledonous Avena sativa (oat) and the dicotyledonous Brassica rapa (rape) were 

selected, according to a list of species recommended by the ISO guideline. OECD artificial soil 

(OECD 1984b) and the reference soils were used as controls. All tests were carried out on 

100% soil samples on plastic boxes (12 cm x 9 cm x 6 cm) filled with approximately 450 g 

moistened soil (about 50% of the soil WHC), with four replicates per soil. A number of 10 seeds 

were planted on each replicate with the help of a pair of tweezers. Each plastic box was placed 

inside a similar box filled with distilled water, and the maintenance of soil moisture was 

guaranteed by capillarity through a fiberglass rope. Twice a week, the position of the test 

boxes was rearranged according to a randomization scheme, within a plant growth chamber at 

23°C with a 16:8-h light:dark cycle (8000-14000 lx) and relative humidity of 60%. No fertilizer 

was added. Seed germination was determined by visual seed emergence and was recorded at 

day four. After 50% of the seeds in the control soil germinated, the number of seedling per 

replicate was reduced to 5 evenly distributed plants. After an exposure period of 14 d for A. 

sativa and 21 d for B. rapa, growth was estimated as shoot length (in fresh material) and dry 

biomass after oven drying the living matter at 70°C until constant weight. 
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7.2.6 Cladoceran reproduction tests (Ecotoxicological LoE) 

 The 21-d Daphnia magna reproduction tests were conducted on soil eluates prepared 

from each tested soils as described in Chapter 3 (Niemeyer et al. 2010); using reconstituted 

hard water (ASTM 2002), the same used as control and dilution medium in tests. The tests 

were carried out according to the OECD guideline (OECD 1998), with 24-h old neonates (clone 

A sensu Baird et al. (1989)) from third- to fifth-brood. Ten replicates were set up for each 

treatment, each with 1 organism and 50 ml of medium and incubated at 19 to 21°C under a 

14:10-h light:dark cycle (4000 lx). Daily the organisms were fed with Pseudokirchneriella 

subcapitata (3 x 105 cells/ml) and newborn neonates were recorded and removed from the 

vessels. Parent organisms were transferred to new medium every two days, times at which pH, 

dissolved oxygen and electrical conductivity were measured in new and old medium. All soil 

eluates were first tested at 100%. At the end of the 21-d exposure reproduction was estimated 

as the mean number of offspring per live parent animal. Cases where strong lethal effects 

were observed (P150T1 and P1000T1), a dilution series of 100, 80, 64, 51, and 40% and 100, 

83, 69, 58 and 48%, respectively, of the eluate was tested in an attempt to determine the 

respective median effective dilutions (EC50 values). 

 

7.2.7 Microalgae growth tests (Ecotoxicological LoE) 

 The 72-h P. subcapitata (Koršhikov) Hindak growth tests were conducted on eluates 

prepared from all soils as described in Chapter 3 (Niemeyer et al. 2010); using distilled water. 

The  tests were carried out following standard guidelines (OECD 1984a; Environmental Canada 

1992), on 24-well sterile microplates, at 21°C to 23°C and under continuous cool-white 

fluorescent illumination (8000 lx). Woods Hole MBL growth medium (Stein 1973) diluted 2.5 

times, to keep the required N/P levels, was used as control medium. To exclude the potential 

confounding effect of differences in nutrients levels across eluates on algae growth, all tests 

were performed on eluates supplemented with the same amounts of nutrients as in the 

control medium. Three and six 900-µl replicate cultures were set up per each soil eluate (only 

tested at 100%) and control, respectively, and each was inoculated with 100 µl of algal 

inoculum, so that cell concentration at the start of the tests was 104 cells/ml. For further 

details on testing procedures see Rosa et al. (2010). At the end of the 72-h exposure, algal 

growth was estimated as the mean specific growth rate per day. Conductivity and pH were 

measured at the start of the test.  
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7.2.8 Surface dwelling invertebrates (Ecological LoE) 

 Surface dwelling invertebrates were sampled using pitfall traps, which consisted of 

plastic cups (8 cm in diameter and 11 cm deep) filled with alcohol (at 50%) and a few drops of 

neutral detergent. Three replicate traps were set up at each sampling point, distant from each 

other by 5 m in a triangular arrangement, during one week. After collection, specimens were 

brought to the laboratory and preserved in alcohol (at 70%). Collected invertebrates were 

identified at morphospecies level. For each Order, invertebrate abundance was estimated as 

the total number of individuals and invertebrate richness as the total number of taxa 

(morphospecies), after summing the results of the three replicates. Details are shown in 

Chapter 6 (Niemeyer et al. submitted). 

 

7.2.9 Soil microbial parameters (Ecological LoE) 

Details about soil sampling and determination of soil microbial parameters are 

outlined in Niemeyer et al. (2012) (Chapter 5). The following parameters, involving microbial 

biomass, enzymes activities, and nitrogen transformation rates were determined and used in 

the risk calculation: microbial biomass of carbon (µg/g), microbial biomass of nitrogen (µg/g), 

asparaginase activity (μg N-NH4
+/g/h), dehydrogenase activity (µg PNP/g/d), acid phosphatase 

activity (ug PNF/g/h), ammonification rate (ug N/g/d), and nitrification rate (%). 

 

7.2.10 Organic material decomposition rate (litter mass loss) (Ecological LoE) 

 Litter bags were used to measure litter mass loss. Nylon bags with a size of 30 cm × 20 

cm and a mesh size of 1.0 cm × 0.2 cm were used to allow the decomposition activity both by 

macro- and microorganisms (Cortez 1998). Dried leaves of Schinus terebinthifolius Raddi 

(Anacardiaceae), a native tree species, were collected in a non-contaminated area and used as 

substrate in the litter bags (4 g in each bag). This species is quite frequent at the study site and 

is palatable to the soil macrofauna (Podgaiski and Rodrigues 2010). Litter bags were placed on 

the soil surface. At each sampling point 4 areas (4 m apart on a quadrangular arrangement) 

were defined and 4 bags were placed in each area (a total of 16 bags per sampling site). Four 

litter bags per sampling point (one per area) were collected randomly after exposure periods 

of 15, 43, 83, and 131 d, and processed immediately. The material was dried at 60°C and 
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weight was recorded. Afterwards, the ash-free dry weight (AFDW) was calculated by 

subtracting the mass of the ignited residue at 600°C for 1 h. Litter mass loss was calculated by 

subtracting the AFDW of the remaining litter from the AFDW of the initial input, and using soil 

and litter correction factor according to EPFES protocol (Römbke et al. 2003). The monthly 

decay rate constant was calculated by using the single negative exponential decay model 

mt/m0 = e –kt, where mt/m0 is the proportion of mass remaining at time t, and t is the time 

elapsed in days (months), and k is the derived daily (monthly) decay constant. The 

methodology followed the recommendations of OECD (2006) and Römbke et al (2003). Details 

about methodology and calculations are described in Chapter 6 (Niemeyer et al. submitted). 

This parameter was not evaluated in points P20T1 and P20T3 due to the the short proximity 

with P0 and P50T1 and P50T3. 

 

7. 2.11 Data analysis 

7. 2.11.1 Ecotoxicological and ecological evaluations 

To avoid repetition with data analysis sections in previous chapters, in this section, the 

detailed analyses comparing the performance of indicators at each site with the respective 

reference (basically using ANOVA, T-tests, or ANOSIM approaches according to the 

parameters) was only performed for results that were not presented previously. This is the 

case for sub-lethal tests with aquatic organisms and the plant assays. However, even not 

describing in this section the detailed analyses of the other ecotoxicological and ecological 

parameters used in this chapter, they are described in the corresponding previous chapters 

(Chapter 4 for soil invertebrate ecotoxicological tests; Chapter 5 for microbial parameters, 

Chapter 6 for ecological parameters). Of course all these parameters were used in this chapter 

for the calculation of risk values for each LoE and integrated risk values (see section 7.2.11.2). 

For the ecotoxicological tests (plant growth, cladoceran reproduction and microalgae 

growth), differences among contaminated soils and the respective reference soil were 

evaluated by one-way analysis of variance (ANOVA), followed by one-tailed Dunnet’s test 

when necessary; organic matter content was used as covariable when analysin plant biomass 

and shoot length . For the cladoceran reproduction tests on a range of eluate dilutions the 

median and 20% effective dilutions (EC50 and EC20, respectively) and respective 95% 

confidence limits (CL) were obtained by fitting organism responses to a logistic model using the 

least squares method (OECD 1998). 
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Prior to all analysis, normality and homoscedasticity were checked via the Kolmogorof-

Smirnov and Bartlet tests, respectively. When homoscedasticity was not fulfilled, an equivalent 

non-parametric tests was used, namely the Kruskal-Wallis ANOVA followed by Dunn’s multiple 

comparisons test. All statistical analyses were carried out using the Statistica 7.0 software (Staf 

Soft). 

 

7.2.11.2 Risk calculations 

 Risk calculations followed the approach proposed by Janssen and Mesman (2006), 

where risk values are expressed in a scale ranging from zero (“no risk”) to one (“highest risk”). 

This method assumes that the risk value of reference soils is zero, thus the risk of test soils is 

always given in relation to the value of the respective reference soil. It implies that all results 

from the different tests should be made comparable (expressed the same scale) across the 

various lines of evidence (LoEs).  

For each sampling point, risk values were calculated following three steps: (1) scale the 

results (between 0 and 1) of each test/evaluation within each LoE; (2) integrate all scaled 

information of all parameters within each LoE to calculate the risk derived from each LoE; (3) 

integrate the information from the three LoE and calculate the integrated risk. In the present 

study, the integrated risks to the soil habitat and retention function were calculated 

separately. 

In the first step, the results of all tests/evaluation within each LoE were scaled 

between 0 and 1. For the chemical LoE of the habitat function, the total content of each metal 

was used to calculate the specific Toxic Pressure (PAF - Potential Affected Fraction of species) 

at each sampling point, in the same way as done in tier 1 (see Chapter 3). Benchmarks 

(HC50EC50 values) and model parameters used for each metal in these calculations can be 

found in Rutgers et al. (2008). For the chemical LoE of retention function, results from each 

extractable metal were compared to water quality objectives extracted from VROM (2000) and 

then scaled against metal values from eluates from the respective reference soils according to 

Jensen and Mesman (2006).  

For the ecotoxicological LoE (EcLoE) of both the habitat and retention function, results 

of the ecotoxicological tests were used and scaled between 0 and 1. Negative values were set 

to zero. For habitat function, data on reproduction of E. andrei, E. crypticus and F. candida, and 

on growth, both as shoot length and biomass, of A. sativa and B. rapa were scaled; negative 
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values (increase relatively to reference) were also set to zero. For the retention function, the 

EC50 values of D. magna reproduction and P. subcapitata growth, expressed as the percentage 

of dilution of the eluates, were used. 

For the ecological line of evidence (ELoE), only the risk to the habitat function was 

calculated, by scaling the data on surface dwelling invertebrates, soil microbial parameters and 

organic matter decomposition relatively to the overall reference value. Data on abundance 

and morphospecies richness of the most frequently soil surface dwelling groups (Araneae, 

Hymenoptera, Coleoptera, Orthoptera) were used separately, while data on other groups, 

including Isopoda, Dermaptera, Hemiptera, Diplopoda and Mantodea, were pooled. In this 

case, since both abundance and number of morphospecies are the result of a the same survey, 

the BKX_Triad method (Jensen and Mesman, 2006) was used. This method allows integrating 

information from different ecological observations into a single risk value, even if the original 

data has different units. 

In the second step, the risk from each LoE was calculated by integrating the respective 

scaled information for each parameter. In the chemical LoE for the habitat function this was 

achieved by integrating the individual metal risk according to a response addition model 

described by De Zwart and Posthuma (2005). For the retention function this was done 

according the calculations suggested by Jensen and Mesman (2006).  

Finally, in step three, the integrated risk (IR) for habitat function and retention function 

was calculated for each tested soil (sampling point) independently and using the risk values 

from each LoE (chemical, ecotoxicological and ecological LoEs in the case of habitat function, 

but only chemical and ecotoxicological LoEs in the case of retention function). To evaluate 

whether the different lines of evidence contributed differently to the total risk, the standard 

deviation associated to each IR value was also calculated. More details on the calculation 

involved in each of the three steps (including formulas for each type of data used) can be seen 

in Jensen and Mesman (2006). 
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7.3 Results and discussion 

 

7.3.1 Sites characterization and metal concentrations 

A full physico-chemical characterization of all sampling points and details on the 

establishment of three main soil groups according to the three reference points are shown in 

Niemeyer et al. (2010) (Chapter 3). Overall, soils from the study sites showed high clay 

percentages (above 30%, except for group 2 soils with values close to 10%) low (<2%) to 

medium (2 to 6%) organic matter content (according to USEPA 2004), a cation exchange 

capacity (CEC) mostly between 30 and 40 meq/100 g, and pH values near to neutral, with the 

exception of sites P1000T1 and Ref. 2 with a low pH of 3.7 and 4.9, respectively (Table 1). 

These characteristics agree with those reported by Anjos (2003), who identified basic pH, high 

CEC, high clay percentage, and high organic matter content as characteristics of soils from the 

study area. 

Total and extractable metal concentrations are shown in Table 2. For at least one 

among four metals (Pb, Cd, Cu, and Zn), soils from three sampling points, within group 2 soils, 

presented levels exceeding by far the benchmark HC50cor values. However, low metal 

concentrations, the vast majority below detection levels, were found in 0.01 M CaCl2 extracts 

(Table 2), indicating a probable high metal adsorption to soil particles, which is in accordance 

to the type of expansive clay (montmorillonite) of high plasticity found in this region (Machado 

et al. 2002), which probably has increased by ageing (since the smelter ended its activities in 

1993). 

 

7.3.2 Soil invertebrates reproduction tests (Ecotoxicological LoE) 

All three soil invertebtates showed to be suitable test organisms to be used in tests 

with soils from that region and at 25°C, since in all three reference soils selected within the 

study area fulfilled the validity criteria established in the test guidelines for control soils. 

Results on the reproduction of E. crypticus, E. andrei and F. candida are shown in Table 3. 
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Table 7.1 Physico-chem
ical characteristics of the three groups of soils sam

pled at the Santo Am
aro (BA, Brazil) study area and respective reference 

soils. U
SD

A – U
nited States D

epartm
ent of A

griculture; CEC – Cation Exchange Capacity; W
H

C – W
ater H

olding Capacity. 

(1) 
Soil m

oisture in the sam
ples used for m

icrobial assessm
ents. 

 

Table 7.2 Total and extractable m
etal concentrations in the three groups of soils sam

pled at the Santo Am
aro (BA, Brazil) study area and respective reference soils. 

 

Soil group 
Coarse 

sand (%
) 

Fine 
sand (%

) 
Sand 

(total) (%
) 

Silt 
(%

) 
Clay 
(%

) 
Texture 
(U

SD
A) 

CEC (m
eq 

100g) 
pH

 (KCl 
1:5 v:v) 

P 
(m

g/kg) 
O

rganic 
m

atter (%
) 

M
ineral N

 
(m

g/kg) 

W
ater 

content (%
) 

(1) 

W
H

C 
(g/100g) 

G
roup 1 

 
 

 
 

 
 

 
 

 
 

 
 

 

Ref 1 
2.3 

8.5 
10.9 

42.1 
47.0 

Silty Clay 
34.16 

7.1 
72 

1.1 
42 

19.54 
53.78 

P1000T1 
2.5 

21.8 
24.3 

19.9 
55.8 

Clay 
43.20 

3.7 
35 

2.0 
56 

28.74 
59.95 

P20T3 
11.4 

30,0 
41.4 

22.3 
36.3 

Clay Loam
 

42.16 
6.8 

106 
1.9 

42 
35.04 

67.73 

P400T3 
6.5 

8.6 
15.1 

52.4 
32.5 

Silt Clay Loam
 

35.84 
7.1 

1 
1.9 

70 
45.48 

56.67 

G
roup 2 

 
 

 
 

 
 

 
 

 
 

 
 

 

Ref 2 
50.9 

38.5 
89.4 

2.8 
7.7 

Loam
y Sand 

37.60 
4.9 

1 
1.0 

42 
13.21 

27.53 

P0 
43.2 

31.3 
74.5 

11.9 
13.6 

Sandy Loam
 

38.56 
6.7 

47 
0.3 

70 
31.04 

44.12 

P20T1 
48.0 

13.8 
61.8 

19.0 
19.3 

Sandy Loam
 

37.28 
7.1 

58 
0.2 

42 
32.67 

46.40 

P150T1 
56.2 

21.1 
77.4 

12.3 
10.3 

Sandy Loam
 

21.28 
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>200 
2.1 
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29.41 

28.55 

P50T3 
69.2 

9.1 
78.3 

10.4 
11.3 

Sandy Loam
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>200 
2.8 
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39.48 

22.05 

G
roup 3 

 
 

 
 

 
 

 
 

 
 

 
 

 

Ref 3 
22.2 

15.0 
37.2 

11.1 
51.7 

Clay 
36.48 

6.1 
52 

3.9 
56 

47.20 
60.75 

P50T1 
25.2 

13.4 
38.6 

29.0 
32.4 

Clay Loam
 

38.16 
6.7 

63 
1.1 

56 
28.59 

54.51 

P400T1 
19.6 

23.9 
43.5 

20.2 
36.3 

Clay Loam
 

37.44 
6.8 

>200 
5.1 

56 
24.43 

58.93 

P150T3 
8.4 

15.2 
23.5 

21.4 
55.1 

Clay 
49.20 

6.8 
16 

2.5 
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40.71 
61.76 

P1000T3 
10.3 

19.5 
29.8 

29.8 
40.4 

Clay Loam
 

42.72 
7.0 

>200 
5.7 

42 
n.d. 

57.57 
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Reproduction tests (m

ean num
ber of juveniles) 

 
Shoot length of plants (cm

) 
 

Biom
ass of plants (g; dry w

eight) 

Soil groups 
E. crypticus 

n=4 

E. andrei 

n=5 

F. candida 

n=5 

 
A. sativa 

n=4 

B. rapa 

n=4 

 
A

. sativa 

n=4 

B. rapa 

n=4 

Ref 1 
583.0 ± 121.1 

70.3 ± 9.5 
662 ± 161.3 

 
31.7 ± 1.8 

3.3 ± 0.2 
 

0.17 ± 0.01 
0.17 ± 0.04 

P1000T1 
121.8 ± 34.9**  

5.3 ± 7.1*** 
642 ± 91.9 

 
39.5 ± 5.3 

2.7 ± 0.2** 
 

0.31 ± 0.04 
0.07 ± 0.02*** 

P20T3 
896.0 ± 263.5  

53.8 ± 12.5 
408 ± 185.9* 

 
18.4 ± 1.0*** 

2.7 ± 0.2** 
 

0.11 ± 0.01** 
0.07 ± 0.01*** 

P400T3 
599.3 ± 180.0 

71.0 ± 17.5 
377 ± 89.3** 

 
23.0 ± 1.9** 

2.3 ± 0.3*** 
 

0.16 ± 0.01 
0.06 ± 0.01*** 

Ref 2 
1089.3 ± 86.4 

132.3 ± 24.7 
224 ± 61.8 

 
25.2 ± 3.9 

2.7 ±0.2 
 

0.17 ± 0.02 
0.09 ± 0.02 

P0 
536.5 ± 144.6*** 

91.0 ± 15.4** 
760 ± 124.1 

 
26.3 ± 2.1 

3.7 ±0.4 
 

0.23 ± 0.02 
0.24 ± 0.02 

P20T1 
452.0± 36.0*** 

97.3 ± 20.5* 
494 ± 105.1 

 
25.2 ± 2.3 

2.9 ± 0.0 
 

0.20 ± 0.03 
0.14 ± 0.01 

P150T1 
7.3 ±0.5*** 

10.3 ± 1.7*** 
613 ± 55.4 

 
19.8 ± 1.9* 

2.7 ± 0.2 
 

0.14 ± 0.04 
0.04 ± 0.01** 

P50T3 
450.8 ± 64.6***  

45.5 ± 8.3*** 
411 ± 135.8 

 
19.5 ± 3.3* 

2.9 ± 0.2 
 

0.17 ± 0.01 
0.06 ± 0.01 

Ref 3 
854.7 ± 421.3 

122.5 ± 25.0 
890 ± 103.2 

 
34.8 ± 3.7 

4.7 ±1.2 
 

0.26 ± 0.05 
0.45 ± 0.17 

P50T1 
560.0 ± 164.3 

97.0 ± 11.2* 
351 ± 141.5*** 

 
25.3 ± 2.9** 

4.3 ±0.2 
 

0.17 ± 0.03* 
0.32 ± 0.05 

P400T1 
773.5 ± 175.4  

103.0 ± 12.8 
831 ± 87.9 

 
42.7 ± 3.0 

7.3 ± 0.4 
 

0.29 ± 0.05 
0.91 ± 0.08 

P150T3 
615.8 ± 196.1 

20.3 ± 5.7*** 
344 ± 42.9*** 

 
28.9 ± 1.0* 

3.1 ± 0.1** 
 

0.16 ± 0.03* 
0.16 ± 0.02*** 

P1000T3 
555.0 ± 34.5 

85.3 ± 4.6** 
577 ± 121.9*** 

 
30.9 ± 5.3 

4.8 ± 0.2 
 

0.24 ± 0.05 
0.30 ± 0.04* 
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Concerning the reproduction of E. crypticus, significant effects were observed in soils 

P1000T1, P0, P20T1, P150T1, and P50T3 (all belonging to the second soil group , except P1000T1) 

when compared to the respective natural reference soil. The higher mean (± SD) number of juveniles 

was found in Ref 2, 1089 (±86), while the most toxic soil was P150T1, with just 7 (±0.5) 

juveniles/adult. Significant effects on reproduction of E. andrei were observed in the soils P1000T1, 

P20T1, P0, P50T3, P150T1, P50T1, P150T3 and P1000T3. The higher mean (± SD) number of juveniles 

was found in Ref 2, 132 (±25); while the most toxic soil was P1000T1, where just 5  organisms were 

observed.  

The inhibition of the reproduction of both oligochaete species in soils P0, P150T1 and P50T3 

was highly expected, as these are the most metal contaminated soils, exceeding not only the 

benchmark HC50cor values, but also the reported EC50 values that inhibit the reproduction of 

oligochaetes (see Chapter 4). However, the impairment of reproduction in soil P1000T1, not 

contaminated by metals, can most likely be related to properties of the soil acting as limiting factors 

for these species, namely low pH (3.7) combined with low OM (2.0%) and high clay (55.8%) contents. 

The limitations on the use of E. andrei in strongly acid soils or soils with low organic matter content 

has been previously reposted (Jansch et al. 2005; Römbke et al. 2006; Chelinho et al. 2011). Although 

E. crypticus presents a broader tolerance than E. andrei to different soil properties (e.g. range of 4.2–

7.7 for pH, 0.6–4.8% for OM, and 3–49% for clay) (Chelinho et al. 2011), the characteristics of 

P1000T1 soil were out of its range of tolerance. Also, the effects on the reproduction of both 

oligochaete species observed in P20T1 soil could be related to the low OM content in this soil (0.2%). 

A different trend was observed for the reproduction of F. candida. Significant effects on its 

reproduction were observed in soils P20T3, P400T3 (both from Ref 1 group), P50T1, P150T3, and 

P1000T3 (all from Ref 3 group), when compared to the respective natural reference soil. The highest 

and lowest mean (±SD) number of juveniles was found in Ref 3, 890 (±103) and Ref 2, 224 (±62). The 

latter low mean was probably one of the reasons for the absence of significant effects on the 

reproduction of F. candida in the most metal contaminated soils in the study area (Ref 2 group: P0, 

P150T1 and P50T3). In effect, in these soils at least one metal (Pb, Cd, Cu, or Zn) exceeded in its 

concentration the reported EC50 values that cause negative effects on reproduction of F. candida 

(see Chapter 4).  

In general, F. candida appeared to be less sensitive to metal contamination than E. andrei 

and E. crypticus. Similar results were also found by Schultz et al. (2004), reporting Enchytraeus sp. to 

be more sensitive than F. candida in metal-contaminated soils. Van Gestel et al. (2001) observed that 
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collembolan appeared to be less sensitive than earthworms and plants to assess soils toxicity with oil 

and metal contamination. Differences in the sensitivity of collembolans and oligochaetes on metal 

contaminated soils could be explained in part by differences in exposure (Achazi 2002), since soil 

solid phases are more important for uptake process of collembolans, while soft-body oligochaete 

species are more influenced by porewater characteristics (Vijver et al. 2001). It is also suggested that 

Collembola can avoid contaminated food, and are able to excrete assimilated metals at moulting 

(Fountain and Hopkin 2001), which can be related to their low sensitivity to metal contaminantion.  

A more detailed discussion on the effects of metal loadings on the reproduction of soil 

invertebrates is shown in Chapter 4. In brief, a decline on the reproduction of these organisms in 

metal contaminated sites suggests impacts on habitat function for these groups, which can affect soil 

functions related to fertility, as cycling of soil organic matter and aeration.  

 

7.3.3 Soil plants growth tests (Ecotoxicological LoE) 

The growth results, both as shoot length and biomass, of A. sativa and B. rapa in all tested 

soils and respective references are shown in Table 3. Species and endpoints were affected 

differently, though generally soils from the first group were found to be more toxic. Significant 

negative effects on plant growth were observed in soils P1000T1, P20T3 and P400T3 (from the first 

group of soils), soils P150T1 and P50T3 (from the second group) and soils P50T1, P150T3 and 

P1000T3 (from the third group). These were expected results since total concentrations for some of 

the metals in all these soils exceeded several metal Eco-SSL for plants (Table 2). 

However, although a few metal Eco-SSLs were also exceeded for soils from P0, P20T1 and 

P400T1 no toxic effects on plant growth were observed. These results highlight the fact that 

exceedence of Eco-SSL does not necessarily mean risk, most likely due to modifications in the 

bioavailability of metals by the soil properties and to the complex effect of mixtures of contaminants 

(Weeks et al. 2004). In effect, as shown also by the present results, these benchmark values aim to 

be protective, indicating that below these concentrations risk is not expected. 

The results of the present study also show that the combined effects of metals were specie-

specific. This finding is in agreement with the study of An (2006) investigating the toxicity of Pb and 

Cu to four plant species, Sorghum bicolor, Cucumis sativus, Triticum aestivum, and Zea mays. The 

latter author found that Pb and Cu showed either antagonistic or synergistic toxic effects depending 
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on the plant species. Also Ben Ghnaya et al. (2009) stated detrimental effects of the metals Zn and Cd 

on the growth, chlorophyll and carotenoid content and metal accumulation on four varieties of 

Brassica napus depending on the metal and plant variety.  

Nevertheless, it should be pointed out that toxic effect on plants can be related not only to 

metal contamination, but also to a lack of soil nutrients and/or modified soil physical properties, 

which are common problems in mined areas and tail deposits. For instance, Gong et al. (2001), 

evaluating four plant species in 15 soils including five mineral oil-contaminated soils, concluded that 

soil nutrient status rather than soil texture significantly affected both seedling emergence and shoot 

biomass. Also, results obtained by Alvarenga et al. (2008) showed that negative effects on the growth 

of Lepidium sativum in mine soils were probably due not only to metals and soil acidity, but also to 

the lack of porosity and proper soil structure. Thus, in the present study, the low organic matter 

content and low WHC at most sampling points combined with metal levels, could well be responsible 

for the observed detrimental effects on plant growth. 

 

7.3.4 Cladoceran reproduction and microalgae growth tests (Ecotoxicological LoE) 

All tests conducted with the eluates from all the soils fulfilled the validity criteria established 

in the guidelines for cladoceran and microalgae control performance. For the cladoceran tests, 

significant effects on reproduction were only found with eluates from soils P1000T1 and P150T1, for 

which mortality at the 100% dilution was 100 and 30%, respectively; in all other tested dilutions of 

the latter eluates and 100% dilution of all the remaining soil eluates mortality was below the validity 

criterion of 20%. For P1000T1 eluate EC20 and EC50 values were much higher than the 100% 

dilution, whereas for the eluate from P150T1 soil the EC50 value was also higher than 100% and the 

EC20 value was 88% (95%CL: 60 – 115). Given that tier 1 results showed 48 h LC50 values of 91 and 

68% for P1000T1 and P150T1 eluates, respectively (see Chapter 3; Niemeyer et al. 2010), in general 

the acute toxicity of both eluates appeared to be lower in the reproduction than in the lethal test. 

This fact could be explained by the adsorption of metals to the surface of microalgae cells in the 

reproduction test, where food (microalgae) is added daily, while in the lethal test no food is provided 

during exposure. In a study on the influence of algal biomass on metal adsorption, Roy et al. (1993) 

demonstrated that the green alga Chlorella minutissima adsorbed at a fast rate more than 90% of the 

initial Pb concentration, with the Pb concentration in solution reached the equilibrium within 

minutes. Kaulbach et al. (2005) described the adsorption of Cd onto the cell wall of P. subcapitata, 
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showing the importance of microalgae in the control of transport and fate of metals in the 

environment. 

Concerning effects on microalgae growth, P. subcapitata showed increases in cell density by 

at least a 40-fold factor with coefficients of variation of the mean specific growth rate lower than 4%, 

in all tested eluates, suggesting the absence of toxicity. However, when growth rates in eluates of 

tested soils were compared to those of the respective reference, significant inhibitions in growth 

(higher than a 10% acceptable threshold) were observed in 1000T1 and P150T1 eluates (16 and 20% 

inhibition, respectively). These results corroborate those of the lethal and reproduction tests with D. 

magna in tier 1 (Niemeyer et al. 2010) and tier 2 (present chapter), respectively, pointing to the 

toxicity of both eluates. For P150T1 eluate these were expected results since extracted metal loads 

were the highest in P150T1. However, as already pointed for tier 1 (Chapter 3; Niemeyer et al. 2010), 

since the P1000T1 was not classified as contaminated, the toxic responses observed in its eluate 

were most likely related either to the low soil pH (3.7), or even to other not quantified contaminants, 

as this sampling point was located in a pasture area.  

In general, there was a lack of toxic responses in aquatic tests, suggesting that the metals 

were not bioavailable and, thus, that the retention function of soils at most sampling points was 

enough to prevent the mobilization of metals via the water pathway, especially to groundwater. Such 

finding is in agreement with the results of the chemical LoE reporting low amounts of extractable 

metals.  

 

7.3.5 Surface dwelling invertebrates (Ecological LoE) 

A total of 1,277 individuals, separated into 72 morphospecies of soil invertebrates were 

collected in the pitfall traps. From these individuals, Hymenoptera, Coleoptera and Orthoptera were 

found at 100% of the total of 13 sampling points were pitfalls were used, Araneae at 92%, while the 

group including the pooling of Isopoda, Dermaptera, Hemiptera, Diplopoda, and Mantodea was also 

found at all sampling points (Table 4; for more detailed results please see Chapter 6).  

Araneae presented the highest abundance (139 individuals) and number of taxa (7 

morphospecies) in P1000T3 soil, but its abundance and richness was generally low at all other 

sampling points and no organisms from this Order were found in P150T3 soil. For both Coleoptera 

and Orthoptera as well as for the Others grouping, the lowest abundance and richness were found in 
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P150T1 soil (2 and 1, 4 and 2, and 1 and 1, respectively). On the contrary, Hymenoptera presented 

the highest abundance (76 individuals) inside the smelter area, at point P50T1, though the number of 

taxa (6) was registered at point P400T3. The lowest abundance and richness within this Order was 

found at point P400T1. For the latter three groups the highest invertebrate abundance and richness 

were found either in transect T1 but far from the smelter area or in transect T3. Overall, more 

abundance of Araneae, Coleoptera and Orthoptera was observed outside rather than inside the 

smelter area, while the loweest values were found at contaminated sites inside the smelter area, 

especially in transect T1. Additional analysis and more details are shown in Chapter 6 (Niemeyer et 

al. submitted). 

 

7.3.6 Soil microbial parameters (Ecological LoE) 

Microbial community was highly impaired by metal contamination, since all microbial 

parameters inside the smelter area were significantly affected relatively to the overall reference 

value, whereas outside the smelter area such effects were rarely observed; except potential 

nitrification which increased within the smelter area (Table 5). In effect, the observed significant 

negative correlations between all except one of the microbial parameters and the metal loadings 

(details shown in Chapter 5; Niemeyer et al. 2012) illustrated the detrimental effects of metal 

contamination on the soil microbial community, and, thus, the essential role they play on 

biogeochemical cycles. Therefore, in general the present results of tier 2 corroborate those found in 

tier 1, where the soil basal respiration rate was lowest in the metal contaminated soils inside the 

smelter area (Chapter 3; Niemeyer et al. 2010) and correlated negatively with total soil metal 

concentrations (Chapter  5; Niemeyer et al. 2012). 

The only microbial parameter that increased significantly among the most contaminated sites 

inside the area was potential nitrification. Although being considered one of the most sensitive soil 

microbial processes regarding metal stress (Broos et al. 2005), some studies have shown adaptation 

of nitrifying populations at metal-contaminated sites (Mertens et al. 2006), which may be the case in 

the present study. Nevertheless, high nitrification rates may indicate an unbalance in the N-cycling, 

which may result in losses of N from the system by leaching or denitrification. Recently disturbed 

ecological systems tend to show greater nitrification rates, which decreases along the successional 

status (Montagnini et al. 1989).  
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Although some authors (e.g., Kapustka 1999) do not recommend the inclusion of microbial 

parameters for ecological assessments, because microbial communities present strong functional 

redundancy, rapid changes across small spatial scales, and are highly influenced by confounding 

factors (e.g., moisture, nutrients), the present study is in agreement with reports on decreases in 

microbial enzyme activity (Gülser and Erdogan 2008), carbon biomass and basal respiration (Gülser 

and Erdogan 2008; Zimakowska-Gnoinska et al. 2000; Jian et al. 2010) in impacted soils, strongly 

point these parameters as useful tools for assessing metal effects on microbial functions in 

contaminated areas.  

On the other hand, soil microbial communities and the key biological processes they mediate 

are closely related to vegetation and soil use (Nogueira et al. 2006; Zak et al. 2003). The failure in the 

vegetation establishment inside the smelter area, especially in the tailing deposits, due not only to 

metal toxicity but also to inappropriate soil physical and chemical properties, may also contribute to 

the observed decreases in microbial activity and biomass. Given that key microbial processes on C, N 

and P cycling have most likely been impaired due to such conditions as well as to the high metal 

contents, the maintenance of vegetation in these heavily-contaminated sites will be progressively 

more difficult, leading to the intensification of erosive processes and dispersion of pollutants (Broos 

et al. 2005). 

 

7.3.7 Organic material decomposition (Ecological LoE) 

When evaluating litter breakdown, the validity criterion of 60% mass loss in the reference 

treatment at the end of the study (Römbke et al. 2003) was fulfilled. As for the decomposition of the 

organic material, the monthly decay rate in the contaminated sites within the smelter area was 

significantly lower than in the overall reference (Table 5). Only sites located 1000 m away from P0 

presented significantly higher monthly decay rates than the overall reference. Moreover, a significant 

negative correlation was found between the monthly decay rate and metal contamination (details 

shown in Chapter 6). Considering the threshold value proposed by Römbke et al. (2003) of more than 

25% difference in mass loss between reference and contaminated sites to signal the presence of risk, 

all sites within the smelter area showed an unacceptable risk; differences in mass loss relatively to 

the overall reference ranged between 31% and 64% after 131 d of exposure.  

The present results corroborate those reported in previous studies revealing significant 

effects of metal (e.g., Creamer et al. 2008) or pesticide contamination (Förster et al. 2006) on the 
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monthly decay rate of organic material in soil, even though other studies showed transient or no 

effects under some stressors, (e.g., Dinter et al. 2008; van Gestel et al. 2009; Podgaiski and Rodrigues 

2010). 

Also, the reduced microbial activity, faunal feeding activity and density of detritivores, allied 

to the low moisture and high temperatures at the more exposed sites than at those distant from the 

smelter area, due to the low vegetation cover, may have contributed to reduce litter decomposition 

within the smelter area (Zak et al. 2003). Thus, the effects on litter decomposition observed in the 

present study may be attributed not only to a direct toxic effect caused by metal contamination on 

microbial and faunal communities, but also to indirect effects leading to non-suitable habitat 

conditions for soil fauna and microbial communities. 
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Table 7.4 N
um

ber of individuals and m
orphospecies (show

n in brackets) of surface dw
elling invertebrates caught in pitfall traps (N

=3). M
ain O

rders are presented 
individually w

hile other less abundant orders (Isopoda, D
erm

aptera, H
em

iptera, D
iplopoda and M

antodea) w
ere pooled.  

 
Ref 1 

Ref 2 
O

verall 
reference 

 
P0 

P20T1 
P20T3 

P50T1 
P50T3 

P150T1 
P150T3 

P400T1 
P400T3 

P1000T1 
P1000T3 

O
rders 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Araneae (Ar) 
73 (5) 

9 (4) 
41 (5) 

 
4 (3) 

2 (2) 
7 (4) 

2 (1) 
3 (1) 

5 (4) 
0 (0) 

14 (4) 
5 (5) 

2 (2) 
139 (7) 

H
ym

enoptera (H
y) 

15 (5) 
15 (5) 

15 (5) 
 

31 (3) 
26 (3) 

48 (4) 
76 (3) 

57 (5) 
33 (2) 

52 (4) 
15 (3) 

16 (6) 
45 (5) 

30 (3) 

Coleoptera (Co) 
11 (4) 

13 (6) 
12 (5) 

 
8 (4) 

2 (2) 
28 (7) 

16 (5) 
32 (7) 

2 (1) 
14 (5) 

88 (4) 
13 (3) 

7 (4) 
31 (4) 

O
rthoptera (O

rt) 
14 (3) 

10 (3) 
12 (3) 

 
16 (4) 

8 (3) 
21 (3) 

13 (2) 
21 (6) 

4 (2) 
9 (2) 

10 (2) 
16 (2) 

24 (2) 
23 (4) 

O
thers 

3 (1) 
8 (5) 

6 (3) 
 

1 (1) 
3 (3) 

11 (3) 
6 (2) 

4 (1) 
1 (1) 

7 (2) 
14 (5) 

23 (5) 
15 (4) 

3 (3) 

        

208



Ti
er

 2
 –

 D
et

ai
le

d 
as

se
ss

m
en

t 

Ta
bl

e 
5.

 S
oi

l m
ic

ro
bi

al
 p

ar
am

et
er

s 
an

d 
or

ga
ni

c 
m

at
er

ia
l d

ec
om

po
si

tio
n 

(a
ve

ra
ge

 v
al

ue
s 

± 
st

an
da

rd
 d

ev
ia

tio
n)

 f
or

 t
he

 a
ss

es
se

d 
sa

m
pl

in
g 

po
in

ts
. T

he
 v

al
ue

s 
fo

r 
th

e 
th

re
e 

re
fe

re
nc

e 
po

in
ts

 w
er

e 
ge

om
et

ri
ca

lly
 a

ve
ra

ge
d 

to
 g

iv
e 

an
 o

ve
ra

ll 
re

fe
re

nc
e 

va
lu

e.
  A

st
er

is
ks

 in
di

ca
te

 s
ig

ni
fic

an
t 

di
ff

er
en

ce
s 

(*
 p

<0
.0

5;
 *

* 
p<

0.
01

; *
**

 p
<0

.0
01

) 
fo

r 
a 

on
e-

ta
ile

d 
hy

po
th

es
is

 o
f a

 D
un

ne
t’

s 
te

st
 b

et
w

ee
n 

ea
ch

 s
am

pl
in

g 
po

in
t a

nd
 th

e 
ov

er
al

l r
ef

er
en

ce
 v

al
ue

 (a
ss

um
in

g 
th

at
 R

ef
 v

al
ue

 h
ig

he
r 

th
an

 s
am

pl
in

g 
po

in
t v

al
ue

 
an

d 
lo

w
er

 f
or

 P
ot

en
tia

l 
N

itr
ifi

ca
tio

n)
. 

In
 t

he
 A

N
O

V
A

 f
or

 s
oi

l 
m

ic
ro

bi
al

 p
ar

am
et

er
s,

 s
oi

l 
m

oi
st

ur
e,

 s
oi

l 
or

ga
ni

c 
ca

rb
on

 a
nd

 s
oi

l 
ni

tr
og

en
 c

on
te

nt
s 

w
er

e 
us

ed
 a

s 
co

va
ri

ab
le

s 
(f

or
 d

et
ai

ls
, s

ee
 C

ha
pt

er
 5

; N
ie

m
ey

er
 e

t a
l 2

01
2)

. n
 - 

nu
m

be
r 

of
 r

ep
lic

at
es

. 

So
il 

gr
ou

ps
 

M
BC

  

(µ
g/

g)
 

n=
3 

M
BN

 

(µ
g/

g)
  

n=
3 

As
pa

ra
gi

na
se

 

(μ
g 

N
-N

H
4

+ /g
/h

) 

n=
3 

D
eh

yd
ro

ge
na

se
 

(µ
g 

PN
P/

 g
/ 

d)
 

n=
3 

Ac
id

 p
ho

sp
ha

ta
se

 

(u
g 

PN
F/

g/
h)

 

n=
3 

A
m

m
on

ifi
ca

tio
n 

(u
g 

N
 g

-1
 d

ay
-1 ) 

n=
3 

N
itr

ifi
ca

tio
n 

(%
) 

n=
3 

D
ec

om
po

si
tio

n 
ra

te
 a  

k 
(m

on
th

ly
) 

n=
4 

O
ve

ra
ll 

re
fe

re
nc

e 
64

2.
4 

± 
41

6.
1 

50
.1

 ±
 1

6.
2 

84
.9

 ±
 5

3.
2 

7.
2 

± 
2.

3 
61

7.
1 

± 
23

3.
2 

0.
7 

± 
0.

3 
3.

9 
± 

2.
2 

0.
26

56
 ±

 0
.1

43
8 

P0
 

17
8.

1 
± 

55
.1

**
* 

5.
4 

± 
2.

8*
**

 
53

.8
 ±

 2
9.

5 
0.

7 
± 

0.
4 

**
 

26
9.

0 
± 

22
.1

**
 

1.
7 

± 
0.

2 
15

.2
 ±

 9
.6

**
 

0.
04

66
7*

**
 

P2
0T

1 
25

2.
4 

± 
14

2.
3*

* 
12

.8
 ±

 4
.6

**
* 

15
.9

 ±
 1

8.
4*

**
 

1.
3 

± 
1.

9*
* 

19
6.

4 
± 

33
.9

**
* 

1.
1 

± 
0.

5 
12

.4
 ±

 2
.1

* 
n.

d.
 

P2
0T

3 
17

0.
3 

± 
17

4.
1 

**
* 

18
.6

 ±
 3

.5
**

* 
71

.0
 ±

 1
2.

7 
1.

4 
± 

1.
0*

* 
44

3.
4 

± 
9.

3 
1.

5 
± 

0.
3 

13
.3

 ±
 3

.5
* 

n.
d.

 

P5
0T

1 
41

2.
9 

± 
31

.4
 

11
.0

 ±
 4

.2
**

* 
11

.2
 ±

 1
9.

5*
**

 
1.

2 
± 

2.
0*

* 
23

5.
7 

± 
50

.3
**

 
1.

8 
± 

0.
3 

17
.1

 ±
 4

.9
**

* 
0.

06
32

**
* 

P5
0T

3 
46

1.
7 

± 
20

.1
 

22
.0

 ±
 4

.5
* 

32
.5

 ±
 3

5.
1*

* 
2.

1 
± 

0.
5*

 
45

0.
3 

± 
45

.4
 

1.
8 

± 
0.

3 
13

.5
 ±

 4
.5

* 
0.

04
12

**
* 

P1
50

T1
 

11
5.

5 
± 

 8
7.

0*
**

 
9.

3 
± 

1.
3*

**
 

22
.8

 ±
 1

1.
8*

**
 

3.
3 

± 
0.

5 
35

5.
3 

± 
16

6.
0*

 
0.

4 
± 

0.
2 

8.
7 

± 
2.

8 
0.

04
35

**
* 

P1
50

T3
 

54
3.

6 
± 

16
0.

8 
26

.6
 ±

 3
.1

**
 

37
.0

 ±
 1

2.
4*

 
2.

1 
± 

1.
1*

 
65

1.
2 

± 
15

0.
7 

1.
5 

± 
0.

3 
10

.2
 ±

 0
.5

 
0.

02
48

**
* 

P4
00

T1
 

79
7.

3 
± 

19
3.

3 
83

.0
 ±

 2
1.

2 
91

.7
 ±

 3
2.

9 
16

.8
 ±

 3
.7

 
57

3.
1 

± 
13

3.
3 

0.
8 

± 
0.

1 
-0

.2
 ±

 5
.9

 
0.

16
6*

 

P4
00

T3
 

80
5.

3 
± 

21
6.

2 
59

.7
 ±

 2
6.

5 
97

.8
 ±

 1
6.

6 
1.

5 
± 

1.
1*

* 
79

2.
0 

± 
34

.5
 

0.
4 

± 
1.

0 
-3

.3
 ±

 3
.1

7 
0.

04
23

**
* 

P1
00

0T
1 

10
98

.1
 ±

 1
84

.1
 

51
.1

 ±
 2

2.
0 

71
.5

7 
± 

18
.8

 
4.

8 
± 

6.
2 

51
5.

6 
± 

35
3.

5 
0.

6 
± 

1.
8 

1.
9 

± 
7.

4 
0.

45
15

 

P1
00

0T
3 

n.
d.

 
n.

d.
 

n.
d.

 
n.

d.
 

n.
d.

 
n.

d.
 

n.
d.

 
0.

38
26

 

M
BC

 –
 M

ic
ro

bi
al

 b
io

m
as

s 
Ca

rb
on

, M
BN

 –
 M

ic
ro

bi
al

 b
io

m
as

s 
ni

tr
og

en
 

n.
d.

 - 
no

t d
et

er
m

in
ed

 
a 

af
te

r 
lo

g 
of

 p
er

ce
nt

ag
es

 

209



Tier 2 – Detailed assessment 

7.3.8 Lines of evidence and integrated risk 

 

7.3.8.1 Risk to retention function 

Table 6 shows the individual contribution and the combined calculated risk values from each 

LoE (chemical and ecotoxicological) for the soil retention function. Low risk values were found from 

the Chemical LoE, except at sampling points P1000T1 and P150T1. However, no risk was indicated by 

the Ecotoxicological LoE, most likely due to the low metal contents in the soil extracts from all except 

the latter two soils. As a result, a risk for the retention function of the soil was only found at sampling 

points P150T1 and P1000T1. P150T1 was the most contaminated point, and the metal bioavailabity 

at this point associated to the low soil retention function was previously demonstrated in tier 1 

through the D. magna lethal test.  In the case of sampling point P1000T1, although levels of 

extractable metals were low, by being in the middle of a pasture area outside the smelter area, the 

presence of another type of contamination (e.g., fertilizers, pesticides) causing effect on aquatic tests 

should not be ruled out.  

Low risk for the retention function indicates low mobility of metals from soil to water. This 

may be favored by the type of soil in the region, which is rich in expansive clay (montmorillonite) 

(Machado et al. 2002) with a probable high adsorption potential, accentuated by neutral pH values 

and ageing. Also, Anjos (1998) pointed out that soil characteristics in this smelter area were efficient 

in the capture of the metals, especially in a wetland zone, not allowing their mobilization into 

groundwater.  

Furthermore, the low metal extractability could be related to the metal form, as pointed out 

by Andrade Lima and Bernardez (2011). These authors, studying the leaching of the slag in the 

Plumbum smelter area in Santo Amaro, found that the Pb, Zn, Cd, and other potentially toxic 

elements were relatively stable in a weak acidic environment for short contact times, which can be 

explained by the low leachability of the metallic Pb and the Zn-bearing species.  

However, in some sites inside the area, or in neighboring areas where groundwater could be 

used for human consumption, a groundwater monitoring would be advisable, especially on those 

sites where metal concentrations are very high and where soil characteristics could be more 

permeable. 
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7.3.8.2 Risk to habitat function 

 

Tables 7 and 8 show the individual contribution and the combined calculated risk values for 

each LoE in habitat function. Sampling points presenting very high habitat function risk values (above 

0.75) or moderate risk values (between 0.50 and 0.75) were those where the metal concentrations 

exceeded the HC50cor values (P0, P150T1 and P50T3) or were near that threshold (P150T3) as 

pointed in tier 1. 

The high risk values in the chemical LoE were related to the high total metal concentrations 

in soil. Regarding the ecotoxicological LoE, the differences in sensitivity of the test species and 

endpoints were clearly visible. Reproduction tests with Oligochaeta species E. andrei and E. crypticus 

were the most sensitive tests. Both oligochaete species indicated high risk values (>0.75) in points 

P150T1 and P1000T1, and moderated risks in P50T3. High risks could be expected in P150T1 and 

P50T3, once they are the most metal contaminated soils and exceeded the reported EC50 values that 

cause negative effects on reproduction of oligochaetes (see Chapter 4). However, the 

ecotoxicological LoE integrating these results with reproduction of F. candida and plants endpoints 

presented low risk values (≤0.50), except in P150T1 and P1000T1, which showed moderate 

ecotoxicological risk. The highest risk value was found in P150T1, the most contaminated soil and a 

sandy soils (sampling point from group 2). In the case of sampling point P1000T1, these results also 

indicated (as in retention function and in avoidance tests on tier 1) a possible presence of another 

type of contamination.   

 Among the parameters from the ecological LoE, some microbial parameters, namely BMC, 

BMN, acid phosphatase, , asparaginase, and nitrification rate were the most sensitive endpoints in 

discriminating contaminated sites (this statement was also based on previous analyses made on 

chapters 5 and 6). Bacterial growth/biomass was highly rated by Critto et al. (2007) as parameters to 

be assessed in all Triad tiers, mainly due to their rapidity and low cost. 

Regarding soil surface dwelling invertebrates, high risk values (>75) were indicated only by 

Araneae in points P0, 20T1, 50T1, 50T3 and 1000T1, and Others (pooled data of other groups) in 

points P0 and P150T1. In general, these soil fauna parameters did not present the same level of 

sensitivity of the others ecological parameters. Abundance and morphospecies richness of main 

groups of surface running invertebrates were not sensitive parameters to discriminate metal 

contaminated sites. Similarly to our findings, abundance and number of taxa, as far as diversity 
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indices (see also Chapter 6; Niemeyer et al. submitted), were also not sensitive to contamination in 

Semenzin et al. (2008). This can be explained by the high mobility of surface dwelling organisms in 

comparison to soil dwelling invertebrates, not presenting a relation with properties of a particular 

site but rather with characteristics of a larger area around the point. More elaborated conclusions 

could be taken, namely in terms of effects to particular functional groups and to find better cause-

effect relationships, if identification would to be done at family level or at lower taxonomic level. 

Besides being more detailed this could also lead to look for specific traits that could help understand 

better possible effects on these groups of organisms.  

 The low risk (IR≤0.50) pointed by tier 1 in sampling points P50T1, P400T1, P1000T1, P20T3, 

P400T3, and P1000T3, all clay based soils, was confirmed in tier 2. On points P400T1, P20T3, P400T3, 

and P1000T3 all the lines of evidence pointed into the same direction, a general low risk, as also 

indicated in tier 1. However, in P50T1, both chemical and ecotoxicological LoEs pointed no risk, which 

did not agree with the moderate risk pointed by ecological LoE. 

In P150T3, the same level of moderate risk (0.51≤IR≤0.75) indicated in tier 1 was observed in 

tier 2, but with a lower standard deviation than in tier 1, which means a reduction of uncertainties. 

The difference with results from tier 1 is that the ecotoxicological tests used in tier 2 revealed to be 

more sensitive (EcLoE). The opposite response was obtained in the ecological LoE (ELoE). As in 

P150T3, sampling point P20T1 showed a moderate risk (0.51≤IR≤0.75) in tier 1, also with a slightly 

higher level of uncertainty, while in tier 2 it was considered as low risk (IR 0.4), but the same level of 

uncertainty remained. This can be explained by the low risk indicated both by the chemical LoE and 

the ecotoxicological LoE in tier 2, which did not agree with the moderate risk pointed by ecological 

LoE. The higher risk pointed in tier 1 could be related to the type of tests used, especially the risk 

value obtained with the avoidance test with Eisenia andrei. Despite using corrected values for soil 

properties (check Chapter 3), this could result in an overestimation of ecotoxicological risk, which did 

not occur in results obtained with tests used in tier 2. 

As in tier 1, the risk at sampling point P1000T1 was just indicated by the ecotoxicological LoE, 

as the chemical and ecological LoE indicated no risk. High toxicity was indicated by reproduction test 

with oligochaete species (0.9), and moderate risk by B. rapa dry weight (0.6), which can either be 

related to the low pH value of the soil or to the presence of contaminants not analyzed in this study. 

As this point is located in the middle of a pasture area outside the smelter area, the presence of 

another type of contamination (e.g., fertilizers, pesticides) should not be ruled out. This hypothesis 

was raised in tier 1 because the avoidance response of E. andrei observed in this test soil. 
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The habitat function integrated risk on tier 2 confirmed the spatial heterogeneity of the risk 

along the study area, pointed by results of tier 1. In the same way, high levels of risk were found at 

sampling points within the smelter area, particularly in soils with a coarse texture (soils from group 2; 

Fig. 2). Very high integrated risk values (IR>0.75) were calculated for sampling points P150T1 and 

P50T3, corresponding to tail deposits. According to the Dutch limit acceptable values to land use 

(Jensen and Mesman 2006), these high risk values restrict the use of the area even to industrial 

activities, requiring sealed soils. The relatively large deviation found in the final risk number for the 

habitat function in some points is related to the high risk pointed by chemical analysis, to the low 

toxicity indicated in plant endpoints and reproduction of F. candida, and the inability of some 

ecological parameters, namely those related to surface dwelling invertebrates, in discriminating 

ecological risk levels. These results confirm the added value of not only integrating information from 

different lines of evidence, but also in using different indicators inside each LoE. This will provide 

more detailed information about the risk and the inability of the chemical analysis alone in predicting 

the true risk of a contaminated site. Moreover, these results reinforce that information from the 

Triad can be used as a basis to take decisions about remediation actions and management 

concerning the future of the site. 
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Table 7.6 Individual and combined risk values from the chemical and ecotoxicological lines of evidence for the 
soil retention function. 
 
 

 

Chem LoE 
(Extractable 

metals) 
 

Growth P. 
subcapitata 

Reprod. D. 
magna 

Combined 
EcLoE 

 IR 
Retention 
Function 

Group 1 
  

       

1000T1 0.99 
 

0.00 0.00 0.00  0.88 

20T3 0.00 
 

0.00 0.00 0.00  0.00 

400T3 0.00 
 

0.00 0.00 0.00  0.00 

   
         

Group 2 
  

         

P. Zero 0.00 
 

0.00 0.00 0.00  0.00 

20T1 0.00 
 

0.00 0.00 0.00  0.00 

150T1 1.00 
 

0.00 0.00 0.00  0.99 

50T3 0.44 
 

0.00 0.00 0.00  0.25 

   
         

Group 3 
  

         

50T1 0.00 
 

0.00 0.00 0.00  0.00 

400T1 0.00 
 

0.00 0.00 0.00  0.00 

150T3 0.00 
 

0.00 0.00 0.00  0.00 

1000T3 0.00 
 

0.00 0.00 0.00  0.00 
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Table 8. Individual and com
bined risk values from

 the chem
ical and ecotoxicological lines of evidence for the soil habitat function. 

  

  
Chem

 LoE 
(total m

etals) 

 
Reprod. F. 

candida 
Reprod. E. 
crypticus 

Reprod. E. 
andrei 

Shoot 
lenght of 
A

. sativa 

Shoot 
lenght of 
B. rapa 

D
ry W

 A
. 

sativa 
D

ry W
 B. 

rapa 
Com

bined 
EcLoE 

G
roup 1 

 
 

  
  

  
  

  
  

  
  

1000T1 
0.01 

 
0.03 

0.96 
0.93 

0.00 
0.17 

0.00 
0.58 

0.63 

20T3 
0.56 

 
0.38 

0.00 
0.23 

0.42 
0.15 

0.32 
0.59 

0.32 

400T3 
0.27 

 
0.43 

0.00 
0.00 

0.28 
0.28 

0.08 
0.63 

0.28 

  
 

 
  

  
  

  
  

  
  

 
G

roup 2 
 

 
  

  
  

  
  

  
  

 
P0 

0.98 
 

0.00 
0.39 

0.31 
0.00 

0.00 
0.00 

0.00 
0.12 

20T1 
0.58 

 
0.00 

0.59 
0.26 

0.00 
0.00 

0.00 
0.00 

0.16 

150T1 
1.00 

 
0.00 

0.99 
0.92 

0.17 
0.00 

0.14 
0.53 

0.71 

50T3 
1.00 

 
0.00 

0.59 
0.66 

0.14 
0.00 

0.00 
0.27 

0.29 

  
 

 
  

  
  

  
  

  
  

 
G

roup 3 
 

 
  

  
  

  
  

  
  

 
50T1 

0.35 
 

0.04 
0.00 

0.21 
0.27 

0.09 
0.36 

0.17 
0.17 

400T1 
0.86 

 
0.00 

0.00 
0.16 

0.00 
0.00 

0.00 
0.00 

0.02 

150T3 
0.96 

 
0.06 

0.00 
0.83 

0.17 
0.33 

0.29 
0.58 

0.41 

1000T3 
0.18 

 
0.61 

0.00 
0.30 

0.11 
0.00 

0.00 
0.21 

0.21 
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Fig. 7.2 Integrated ecological risk values for habitat function (+ standard deviation) (Min, 0; Max, 1) for each 

sampling point, combining information from the chemical, ecotoxicological, and ecological lines of evidence. 

Points with grey bars are located inside of the smelter area. Different bands indicate limits of accepted risk 

values for different soil uses (A agriculture, R residential, I industrial; asterisks indicate necessity of sealed soils) 

according to Jensen and Mesman (2006). Triangles on top of each bar represent the contribution of each LoE 

for the integrated risk value being an indicator of the weight of evidence (on the top right the example with the 

length of each axis of the triangle representing maximum risk (1) from each LoE). 
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7.4 Conclusions 

In general, results on tier 2 confirmed the risk pointed by tier 1, with points outside the 

smelter area presenting low or environmentally acceptable risk values, and points inside the smelter 

area presenting high, or very high risk values, especially in sites associated with tail deposits. In the 

same way as in tier 1, the low toxicity in eluate tests indicated high adsorption of metals in soil, 

probably favored by neutral pH, content and type of clay, and ageing, and consequently no risk on 

retention function in most of points. Results of chemical analysis of extracts confirmed the low 

mobility of metals from soil to water.  

In general, the present results indicated that the failed recovery of the area by covering tails 

deposits with soil from another site, and the consequently failure in revegetating the area, created 

inappropriate conditions for the establishment of plant, microbial and animal communities in some 

of the sites inside the area. So, besides the direct effects of metal contamination seen on 

ecotoxicological effects, also indirect effects are visible from the presence of these contaminants, 

compromising the functioning of the ecosystem inside the smelter area. 

High risk values in habitat function above 0.75 inside the smelter area indicate the need to 

proceed with some remediation action, such as encapsulation of tailing and recovery of vegetation of 

the smelter area. These actions not only could improve soil conditions and ecosystem functioning, 

but they could mainly avoide the transport of contaminants to other environmental compartments, 

namely via dust dispersal to outside the area, or via surface runoff to the existing temporary ponds 

and the Subaé river. 
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General discussion 

 

8.1 Initial risk assessment phases 

 

Chapter 2 aimed to present the conceptual site model and the analysis plan of the site-

specific ecological risk assessment (ERA), following a tiered framework and adopting the Triad 

approach integrating three lines of evidence (LoE): chemical, ecotoxicological and ecological. 

The conceptual site model described what is already known about the site and the likely 

source-pathway-receptor linkages, based on published and unpublished works and by a visit to 

the site. The primary contamination source identified was soil contaminated by furnace slag 

deposition and by aerial deposition (wind-blow of dusts mainly from past chimney emissions), 

possibly linked to primary ecological receptors through the pathways of ingestion, cellular 

absorption, aerial deposition (wind-blow particles) and root uptake. 

The analysis plan for the site-specific risk assessment was focused on the soil 

compartment and its potential risk to primary ecological receptors, such as plants, soil 

invertebrates and soil microorganisms. Potential risks to groundwater and indirect risks to 

freshwater systems (namely the temporary lagoons inside the area and the Subaé river) were 

also addressed by evaluating the soil retention function, i.e., the ability of contaminants to be 

mobilized via the soil water pathway. Although no direct assessment was done on water 

bodies, information about the retention function gave some hints on possible contamination 

of groundwater (via leaching) and surface water (via runoff events). 

The analysis plan included two tiers using the triad approach: tier 1, the screening 

phase (Chapter 3), and tier 2, the detailed risk assessment (Chapter 7). Chemical data at tier 1 

showed a high level of metal contamination in the study area caused by the smelting activities. 

Although moderate to high levels of some metals (namely Pb and Zn) could also be found in 

the vicinity of the smelting area, due to the deposition of smelting residues and aerial 

deposition of contaminated dusts, the very high levels of contamination are located within the 

smelting area. No clear contamination gradient could be found along the two transepts due to 

the spatial heterogeneity originated, not only by the uneven deposition of residues during 

smelting activities, but also by the current status of the (pseudo) rehabilitated residue piles. In 

some cases the layer of soil used to encapsulate the residues was removed by erosion and 

made the pile exposed, showing a depleted habitat. 
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In the tier 1 ecotoxicological LoE, avoidance behavior tests with earthworms were 

generally more sensitive to metal contamination and presented a less variable response than 

those with collembolans. Avoidance tests on soil organisms induced a higher risk (again at sites 

inside the smelter and with sandy soils) than tests on eluates (V. fischeri luminescence and D. 

magna lethal tests), suggesting a high retention of metals on the soil in most areas. Regarding 

the tier 1 ecological LoE, soil respiration, bait lamina and vegetation cover revealed a 

concordant response, despite the lower sensitivity of this last parameter.  

Usually in ERA schemes, tier 1 comprises basically a comparison between 

concentrations of potential contaminants present in soil against thresholds for individual 

chemicals, concentrations below which no adverse effects are expected on receptors. 

However, one challenge to assess exposure and effects of contaminants in multi-contaminated 

areas is the interactions between them (Renella et al. 2002). Some contaminants act 

additively, others act independently of each other, or have antagonistic or synergistic actions. 

In this study we have followed Rutgers et al. (2008) and assumed that each metal had an 

independent toxic mode of action. So, the content of each metal was used to calculate the 

specific Toxic Pressure (Potential affect fraction of species – PAF) for each metal individually 

and then the msPAF (multi-substance PAF) of the mixture was calculated using the response 

addition model described by De Zwart and Posthuma (2005). In this way we could grasp 

potential risks posed by the metal mixtures  

Even so, such chemical analysis per se do not incorporate contaminants not analyzed 

or for which threshold values do not exist, neither the join effects of mixtures. Thus, results 

obtained here at tier 1 showed the added value of using different LoE and different indicators 

inside each LoE covering different sensitivities and exposure routes to have a better perception 

of the potential risks. The parameters selected seemed promising to be used in such screening 

phase. 

  In general, in tier 1, very high risk levels, associated with sandy soils and residue 

deposits inside the smelter area, suggested the need to proceed with remediation actions, 

while the uncertainties associated with the contradictory information given by certain LoEs for 

certain sampling points showed the need to confirm potential risks in a tier 2 analysis. In this 

case, being an academic study, tier 2 analysis was done at all sampling points. 
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8.2 Detailed risk assessment 

 

The results of the chemical analysis of tier 2 (Chapter 7) demonstrated that, despite 

the high total metal concentrations in several areas, the extractable fractions were very small, 

which is reported by other authors in soils contaminated with mine tailings (Alvarenga et al. 

2008). And is in accordance with previews works carried out in the study area, e.g., Andrade 

Lima and Bernardez (2011) that characterized the slag disposed on the smelter site in Santo 

Amaro in a campaign performed in 2002. In the latter work, the results of the leaching study, 

using TCLP, SPLP and SWEP, showed that the slag was stable at a pH greater than 2.8, and only 

in an extremely acid environment was the solubilization of the Pb enhanced significantly. 

These results can be explained by the limited leachability of the metallic Pb and Zn-bearing 

compounds. However, the authors pointed that the long-term stability of slag cannot be 

ensured. 

One open issue in ERA is how bioavailability can be properly included in the Triad 

approach (Swartjes et al. 2008). The availability of metals tends to decrease with the duration 

of its contact with soil (Naidu et al. 2003), and it is controlled by some factors mainly pH, 

cation exchange capacity, organic matter content, etc. Weak extractions have been suggested 

as a way to take bioavailability into account in chemical analysis, considering that the uptake 

from the water phase is most important for soil organisms (van Gestel and Koolhaas 2004). In 

the present study, the 0.01M CaCl2 extractions showed low extractability of metals, in 

accordance to preview works carried out at the site (e.g. Andrade Lima and Bernardes 2011). 

However, these extractions did not foresee the ecological risks neither reduced the 

uncertainties. This may be related to the additional uptake from ingestion of soil particles (e.g., 

by earthworms), ingestion of food (e.g., by arthropods), and changes in bioavailability in 

earthworm gut or in plant rizosphere, not predicted by these type of traditional testing 

approaches.  

In fact, the ability of soil invertebrate reproduction tests to assess the metal 

contamination is demonstrated in Chapter 4. The tests with Collembola and Oligochaeta 

species were carried out at 25 °C and showed to fulfill the validity criteria recommended by 

the respective ISO guidelines, which indicate that, while novel studies are under development 

with autochthones species, the standard species can be used in these tropical conditions in 
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schemes of risk assessment. Some points presented extreme conditions to tested species (e.g., 

1000T1, 20T1; low pH and low organic matter content), as discussed in Chapter 4, which 

should be taken into account when planning and/or interpreting results from a site-specific 

ERA. Results on reproduction tests reinforced the importance of using ecotoxicological 

information obtained from different test organisms, covering different sensitivities and 

exposure routes, as the tested species were affected in a different way. E. andrei and E. 

crypticus reported significant reproduction effects for eight and five soil samples, respectively, 

both including all Soil Group 2 (highest risk values pointed by tier 1), while F. candida showed 

significant reproduction effect for five soils, not included in the Soil Group 2. The lack of 

significant effects to F. candida in Group 2 can be related to the low reproduction in Ref 2, 

used to perform the statistical comparisons of this group. Although fulfilling the validity 

criteria, reproduction on Ref 2 was lower than in the contaminated soils from Group 2. In 

general, results indicated impairment of soil invertebrates reproduction across the area 

sampled, mainly in sites corresponding to the deposition of tailings inside the smelter area, 

indicating the possible bioavailability of the metals and consequently posing some risk to 

ecosystem functioning. Declines in the reproduction of these organisms in metal contaminated 

sites suggests impact of metals on abundance and diversity of these groups (Spurgeon and 

Hopkin 1996), which can affect soil functions related to fertility, as cycling of soil organic 

matter and aeration. 

Results from ecotoxicological tests with plants (Chapter 7) confirmed the negative 

effects of all tested soils (except P0, 20T1 and 400T1) on plant growth and/or biomass, 

affecting the tested species A. sativa and B. rapa in a different way. These effects can be 

related both to metal contamination and lack of organic matter and nutrients, as discussed in 

Chapter 7. We considered that germination of A. sativa and B. rapa was not a good endpoint 

because it takes a longer time in some reference soils than in contaminated soils, which can be 

related to soil properties (e.g., high clay content) as pointed by Saterbak et al. (1999).  

Results of some microbial parameters (Chapter 5) showed that vegetation cover and 

plant species composition, indicators commonly used in the monitoring of terrestrial 

ecosystems (Godínez-Alvarez et al. 2009), were correlated with some soil functions, such as 

nutrient cycling and organic material breakdown. All points where microbial biomass or 

microbial activities were affected are located inside the smelter area. Several microbiological 

parameters were positively correlated with vegetation cover (soil respiration, biomass C, 

biomass N, dehydrogenase activity, acid phosphatase activity, asparaginase and 

ammonification rate), and negatively correlated with metal loadings (all cited except 
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dehydrogenase and ammonification rate). However, nitrification rate and metabolic quotient 

were positively correlated with metal contamination, suggesting favorable conditions for N 

loss and microbial stress, respectively.   

Vegetation enhances favorable conditions to soil biota, such as maintenance of 

microclimate, availability of habitat structure, and supply of resources to biota (through litter 

input). The decomposition process, mainly carried out by microorganisms and soil fauna, is the 

gateway for the soil system, releasing nutrients for plants and supporting a plethora of soil 

organisms and their food-webs. Therefore, Impacts that alter plant community structure and 

abundance can induce changes in soil food webs and decomposition rates. In former mine or 

smelting areas, besides elevated levels of total metals, mine tailings often contain low levels of 

nutrients and organic matter, and are subject to wind and water erosion, being a difficult 

medium for plant establishment (Clark and Hutchinson 2005), and consequently the natural 

succession processes is generally very slow, requiring many years for changes to become 

apparent (Shu et al. 2005).  

Results on litter bags tests (Chapter 6) showed the impairment of leaf-litter 

decomposition, which is probably occasioned by the absence of favorable conditions to soil 

biota, reducing microbial activity (showed by soil respiration), faunal feeding activity (showed 

by bait lamina) and the density of detritivores, allied to the low moisture content and higher 

temperature in the more exposed sites (caused by a low vegetation cover). Environments with 

metal contamination show decreases in litter decomposition rates (Giller et al. 1998; McEnroe 

and Helmisaari 2001) mainly due to inhibited abundance, the diversity and feeding 

performance of soil detritivores and the microbial activity (Filzek et al. 2004; Loureiro et al. 

2006). As pointed by Hooper et al (2005), alterations of biota can modify ecosystem goods and 

services, which are very difficult to revert. In our work, results on pitfall traps showed that, 

directly or indirectly, contamination inside the smelter area seemed to had selected distinct 

communities of soil macroinvertebrates. This is agreement with Podgaiski and Rodrigues 

(2010) that found the existence of differences in invertebrate community composition in coal 

ash disposal sites in south of Brazil, due mainly to singular environmental conditions causing 

the loss of habitat quality in a long term polluted environment. In the present study, besides a 

significant decrease in the total number of morphospecies richness in the points inside the 

smelting area, changes in community composition were also significant. Community outside 

the area was characterized by a higher abundance and morphospecies richness of spiders and 

opilionids, whereas the community from inside the area presented higher abundance of 

Hymenoptera.  
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Regarding ecotoxicity tests on eluates, in general there was a lack of toxic response in 

aquatic tests, suggesting that the metals were not bioavailable in extracts, in spite of the high 

metal concentrations in soil. Thus, results indicated that the retention function of soils at most 

of the sampling points was enough to prevent the mobilization of metals via the water 

pathway, which is in agreement with the ICP-AES analysis that reported a low amount of 

extractable metals. However, a recent study carried out in a channel linking the smelter area 

to Subaé River, draining the excess of water of smelter area in raining season, presented metal 

contaminated sediment, indicating a present route of transport of contaminated material to 

the river (Niemeyer et al. unpublished). In addition, tier 1 aquatic tests showed lethal toxicity 

towards D. magna in two sites of Group 2 corresponding to tailing deposits, and in tier 2 

eluates from both sites inhibited the growth of microalgae when compared to the respective 

reference, even though the observed lack of a marked toxic effect on the D. magna 

reproduction test can be related to metal adsorption by algae (see discussion in Chapter 7). 

These findings should be considered in future decisions about the site. 

 

8.3 Comparing tier 1 and tier 2 results  

 

The integrated risk (IR) on tier 2 confirmed the spatial heterogeneity of the risk along 

the study area, pointed by results of tier 1, as well as high levels of risk at sampling points 

within the smelter area, particularly in soils with a coarse texture (soils from Group 2), with 

P150T1 and P50T3 (corresponding to tailing deposits) showing an IR>0.75. According to the 

Dutch limit acceptable values for land use (Jensen and Mesman 2006), these high risk values 

restrict the use of the area even to industrial activities, requiring sealed soils. Results on 

integrated risk suggest the need to proceed with remediation actions in the smelter area. The 

relatively large deviation found in the final risk values in some points is related to the high risk 

pointed by chemical analysis, to the lack of toxicity in tests with eluates (indicating low 

mobility of metals), and the inability of some ecological parameters, namely the indexes from 

surface dwelling invertebrates, to identify the ecological risk. 

The high risk values in the chemical LoE were related to the high total metal 

concentrations in soil, once low metal concentrations were detected in the soil extracts. The 

exceptions were points P150T1 and P1000T1. P150T1 is the most contaminated point, and 

such bioavailabity of metals and compromise of retention function was demonstrated in 
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immobilization Daphnia test in Tier 1.  In the case of sampling point P1000T1, by being in the 

middle of a pasture area outside the smelter area, the presence of another type of 

contamination (e.g., pesticides) causing effect on aquatic tests should not be ruled out. This 

hypothesis was raised in Tier 1 because the avoidance response of E. andrei and F. candida 

observed in this test soil. 

Ultimately, in this study, results from tier 2 revealed a similar picture than the one 

shown from tier 1. With a few exceptions, especially the reduction of some uncertainties, the 

ranking of risk values among the sampling points was similar. This confirms the added value of 

integrating, even at early stages of an ERA investigation, information from different lines of 

evidence and in getting more detailed information about the true potential risks in 

contaminated sites, and not to put all the investment only in chemical analysis. Information 

from the Triad can be used as a basis to take decisions about remediation actions and 

management concerning the future of the site. Of course each site specific ERA is case 

dependent and results from a tier 2 can give better insights about the real risks in the area. 

Although not by any means we are advocating to stop an ERA process after tier 1, as indicated 

above, in this study area, however, both tiers gave similar trends. 

 

8.4 Sensitivity of ecotoxicological and ecological parameters for risk assessment 

 

Aiming at evaluating how sensitive and cost-effective the different ecotoxicological 

and ecological parameters in the risk assessment could be, a sensitivity analysis was conducted 

taking into account not only the ability of each parameter to detect differences between 

contaminated and non-contaminated points (outside the area), but also their ability to detect 

a gradient of contamination (Tables 8.1 and 8.2).  The time necessary to obtain the parameter 

was also estimated. 

The ability of the avoidance behavior (Chapter 3) to detect toxicity within a short test 

period and at low costs makes this type of tests suitable for use in decision processes, as 

pointed by several works in the literature. The results obtained were quite promising since, in 

general, the risk values pointed by them in tier 1 were confirmed in tier 2 with the sub-lethal 

(reproduction) ecotoxicological tests. However, some care should be taken in the choice of 

reference soils (similar in properties except contamination) and it is recommended the use of 

at least one oligoquete and one collembolan species. If finding matching reference soils 
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becomes a difficult task, models are available to correct for the influence of soil properties 

(Chelinho et al. 2011).  

Chapter 4 demonstrated the high sensitivity of oligochaeta reproduction tests to 

evaluate the contaminated sites; however, results obtained with F.candida were not sufficient 

for an adequate assessment of metal contaminated soils. As soil invertebrates species were 

affected in a different way, it is recommended the use of several species from different 

ecological groups, representing distinct routes of exposure to contaminants is crucial for a 

suitable evaluation of the risk.  

Microbial community was highly impaired by metal contamination. Most microbial 

parameters presented significant partial correlations (using soil moisture, soil organic carbon, 

and mineral nitrogen as covariables) with metal loading given by the Widianarko’s metal 

pollution index (W). Negative relations were found for basal respiration, microbial biomass (C 

and N), phosphatase and asparaginase activities, and number of ammonifiers, whereas a 

significant positive relation was observed for nitrification rate, which can be related to 

adaptation of nitrifying populations in metal-contaminated sites (see discussion in Chapters 5 

and 6). However, only basal respiration, microbial biomass (C),acid phosphatase activity and 

nitrification presented a high to medium capacity to distinguish the level of soil contamination.  

Since the two first parameters were highly correlated (r=0.82, p<0.001), assessing only one is 

enough to give information relative to microbial activity. Bacterial parameters related to 

community structure (not assessed in this study) and bacterial growth/biomass were highly 

rated by Critto et al. (2007) as parameters to assess in all Triad tiers, mainly due to their 

rapidity and low cost. Based on these findings only one parameter seems not to be sufficient 

to give information about general microbial activity, and it should be complemented with 

other parameters related to microbial genetic diversity (e.g., DGGE) or metabolic diversity 

(e.g., Biolog) and with other specific activity parameters if processes involving particular 

nutrients are of interest. 

The high sensitivity of feeding activity of soil fauna, allied to the fact that several 

studies showed the relation between bait-lamina data and abundance of several 

microarthropod groups and lumbricids (Birkhofer et al. 2011), make the bait-lamina test a 

definitive parameter to include in the ecological LoE in site specific assessments. Due to its 

ease and practicability, allowing to process the information from a large number of sampling 

points over a short time, it is a parameter to use in tier 1 of a Triad approach. Regarding 

abundance and normal biodiversity descriptors of surface dwelling arthropods, results did not 

show very promising results in distinguishing different levels of contamination. However, as 
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shown in Chapter 6, community composition could be a more promising parameter. Although 

not performed in this study, identification to family and/or trophic group, including the use of 

vulnerability traits, could be more useful to better decipher the true risks to this group of 

organisms. Another aspect, also not contemplated in this study is to sample not only surface 

dwelling organisms but true soil dwelling organisms, that could have a completely different 

response (as also mentioned in Chapter 6). 

 Vegetation cover and changes in plant composition were able to detect differences 

between points inside and outside the smelter area. However, their ability to detect gradients 

of contamination was not met in this case. Critto et al. (2007) presented a low rank for 

vegetation surveys related parameters in tier 1, mainly due to their cost. However, in higher 

tiers (tiers 2 and 3) these parameters presented higher ranking mainly related to their site 

specific relevance. In this case, we consider relevant the measured parameters on vegetation 

since they were able to show/explain important derived effects from contamination, namely 

those related to habitat disruption. So, at different levels, both assessed parameters should be 

incorporated in the ecological LoE.  

Plant litter decomposition showed a high sensitivity to contamination and derived 

habitat disruption, but presented a low capacity to differentiate the level of contamination. In 

this case, it gave a similar information as the bait lamina test (r=0.83, p<0.01), thus not being a 

priority parameter to integrate in a tiered scheme (also due to the long time needed to obtain 

results). 
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Table 8.1 Valuation of the sensitivity of each ecotoxicological param
eter assessed at the sm

elter area. D
ark grey - param

eters selected based on sensitivity criteria (see text 
for details). 
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8.5 Final conclusion about the ecological risk at Santo Amaro 

 

The ecological parameters indicated a clear distinction between sites inside and 

outside the smelter area, indicating an ecological risk to soil system even 17 years after the 

end of smelting activities. The deposit of highly contaminated tailings within the area and the 

failed attempt to encapsulate them have impaired the proper establishment of the vegetation, 

leading to changes and simplifications of the habitat structure. Allied to direct toxic effect of 

metals, the limitation of plant reestablishment resulted in low amounts of organic matter 

inputs into the soil to act as source of C and energy for microbial growth and for acting as 

protection for microbial community against high levels of heavy-metals in soil. Moreover, 

these changes in the microclimatic conditions at the ground level, and in the amount and 

quality of the potential of organic matter inputs, caused negative impacts on microbial activity 

and on soil organisms (feeding activity and species composition of surface dwelling organisms), 

consequently affecting the ecosystem services and underlying processes carried out by them. 

 

8.6 Recommendations for future actions on site 

 

The suitable encapsulation of the tailing deposits, with the concomitant re-

establishment of a vegetation cover, seems to be essential to improve the ecological 

conditions at this site. The improvement of the vegetation cover can be effective in providing 

the necessary surface stability to prevent wind-blow of contaminated soil particles, preventing 

erosion, and reducing water pollution by interception of a substantial proportion of incident 

precipitation (Tordoff et al. 2000, Wong 2003). Furthermore, the choice of appropriate 

vegetation is crucial to remediate the adverse physical and chemical properties of the site and 

to reestablish the ecosystem functioning (Wong 2003), besides the aesthetical improvement of 

the site. Organic matter, soil nutrients and species diversity generally increase with community 

development during succession (Wang et al. 2011). It is important to consider the use of locally 

adapted species which are tolerant not only of physical and chemical conditions of tailings, but 

also to the climatic conditions of the site (Clark and Hutchinson 2005). Furthermore, plant 

species with different traits can increment the heterogeneity of soil habitats (Podgaiski and 
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Rodrigues 2010), thus can support soil communities that demand different requirements of 

food and shelters (Wardle et al. 2004, 2006). A study developed by Sydner and Hendrix (2008) 

shown that soil fauna development at a deraded site, especially of detritivorous species, has 

brought clear benefits to the ecological restoration processes because these organisms greatly 

affect soil structure and chemistry, and facilitate the ecosystem processes. 

Habitat preservation and restoration should be the first priority for conservation of 

ecosystem, considering the whole landscape (Akçakaya 2001, Fahrig 2001). Considering the 

ecosystem complexity, besides the complexity involving the landscape use, the ERA should 

include both structure and functions ecosystem indicators (Burger e Gochfeld 2007). The aims 

of the ERA should be the protection of populations rather than individuals (European 

Comission 2002). For this purpose, as pointed by Filser et al. (2008), ecotoxicologists should 

make better use of basic ecology when establishing new tests or risk assessment schemes and 

convince regulatory authorities of the necessity of such approach. According to Rutgers and 

Jensen (2010), these approaches led the Dutch regulators to become less hesitant with respect 

to interpreting Triad approach-based results.  

In Brazil, the resolution 420/2009 of CONAMA (BRAZIL 2009) states target and 

intervention values of chemical substances in soils, including guidelines for management of 

contaminated areas by anthropic activities.  In contaminated areas under intervention or areas 

under monitoring for restoration, the risk management can be based on results of an ERA, 

depending on environmental authorities’ criterion. In this sense, environmental authorities 

should establish procedures and actions for preliminary investigations of soil quality in 

suspected areas, and actions to eliminate or reduce the human and ecological risk in sites 

posing some risk. Experience can be acquired with the system by testing the basic approach in 

practical situations at a number of characteristic sites, as proposed by Rutgers et al. (2000) and 

as done in the present work, aiming to provide important information to help the regular 

utilization of the risk assessment process to support site restoration and reclamation decisions 

in Brazil. 

To conclude, regarding the foreseeable future actions for the area, although the area 

of Santo Amaro is not large, a clear strategy of which areas should be a priority for 

rehabilitation is necessary. For that it is crucial to construct a risk map that can help identify 

those priority areas. The information gathered with this study, by relating the level of effects 

on selected ecological receptors with the level of contamination and some soil properties 

(mainly texture, pH and organic matter content), can provide crucial information for the 
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development of spatial models with the goal to produce such risk map. In fact, ongoing 

activities in the area (Niemeyer, personal information) already collected spatially based 

information on metal contamination and on soil properties on over 60 points on the entire 

smelter area. The mechanistic relation between these variables and effect/risk values will be 

done in a near future. 
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