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ABSTRACT 

Tapered thin-walled bars are extensively used in the fields of civil, mechanical and aeronautical 

engineering. The competitiveness of tapered structural members is hindered by the fact 

that their spatial behaviour is still poorly understood and by the lack of rational and 

efficient methods for their analysis and design. The present thesis aims at providing a 

contribution to overcome these drawbacks, by (i) developing one-dimensional models (i.e., 

models having a single independent spatial variable) to perform linear static, dynamic and 

lateral-torsional buckling analyses of tapered thin-walled bars with open cross-sections, 

(ii) supplying physical interpretations for the key behavioural features implied by these 

models and (iii) offering a detailed examination of several illustrative examples that will be 

useful for benchmarking purposes. 

The first part of the thesis is devoted to bars whose shape allows them to resist biaxial 

bending by the membrane action of their walls (I-section or C-section bars, for instance). It 

starts with the development, based on the induced-constraint approach, of a linear one-

dimensional model for the stretching, bending and twisting of tapered thin-walled bars with 

arbitrary open cross-sections under general static loading conditions. A two-dimensional 

linearly elastic membrane shell model is adopted as parent theory. The Vlasov assumptions, 

extended to the tapered case in such a way as to retain an intrinsic geometrical meaning, are 

treated consistently as internal constraints, that is, a priori restrictions, of a constitutive 

nature, on the possible deformations of the middle surface of the bar. Accordingly, (i) the 

membrane forces are decomposed additively into active and reactive parts, and (ii) the 

constitutive dependence of the active membrane forces on the membrane strains reflects 

the maximal symmetry compatible with the assumed internal constraints. 

For a large class of tapered thin-walled bars with open cross-sections, the membrane strain 

and force fields implied by the internal constraints do not have the same form as in 

Vlasov’s prismatic bar theory – they feature an extra term, involving the rate of twist. 

Consequently, the torsional behaviour (be it uncoupled or coupled with other modes of 

deformation) predicted by our tapered model is generally at odds with that obtained using a 
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piecewise prismatic (stepped) approach. The discrepancies may be significant, as illustrated 

through examples. 

The developed linear model is then extended into the dynamic range. The contributions of 

rotatory inertia and torsion-warping inertia are fully taken into account. The inclusion of a 

viscous-type dissipative mechanism is briefly addressed. 

Subsequently, we derive a model for the elastic lateral-torsional buckling of singly symmetric 

tapered thin-walled beams with arbitrary open cross-sections, loaded in the plane of 

greatest bending stiffness. The adopted kinematical description rules out any local or 

distortional phenomena. Moreover, the effect of the pre-buckling deflections is ignored. 

Since isolated beams with idealised support conditions are seldom found in actual design 

practice, an archetypal problem is used to show how the presence of out-of-plane restraints 

can be accommodated in the one-dimensional buckling model. The restraints may (i) have 

a translational, torsional, minor axis bending and/or warping character, and (ii) be either 

linearly elastic or perfectly rigid. 

The second part of the thesis is concerned with strip members (i.e., members with a narrow 

rectangular cross-section) exhibiting constant thickness and varying depth. It deals with 

three problems of increasing complexity: 

(i) the elastic lateral-torsional buckling of cantilevered beams with linearly varying depth, 

acted at the free-end section by a conservative point load; 

(ii) the elastic lateral-torsional buckling of cantilevers (ii1) whose depth varies according to a 

non-increasing polygonal function of the distance to the support and (ii2) which are 

subjected to an arbitrary number of independent conservative point loads; 

(iii) the elastic flexural-torsional buckling of linearly tapered cantilever beam-columns, 

acted by axial and transverse point loads applied at the free-end section. 

These three problems are tackled analytically – we obtain exact closed-form solutions to 

the governing differential equations and, thereby, establish exact closed-form characteristic 

equations for the buckling loads. However, in the third problem, the analytical approach is 

successful only for certain values of the ratio between the minimal and maximal depth of the 

strip beam-column – in the remaining cases, it is necessary to resort to a numerical procedure. 
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RESUMO 

Modelos Unidimensionais para o Comportamento Espacial de Barras 

Não Prismáticas com Secção de Parede Fina Aberta – Análises Estática, 

Dinâmica e de Encurvadura 

As barras não prismáticas de parede fina são largamente utilizadas em engenharia civil, 

mecânica e aeronáutica. A competitividade destes elementos estruturais é prejudicada pelo 

facto de o seu comportamento espacial ser ainda mal compreendido e pela falta de métodos 

eficientes para a sua análise e dimensionamento. Esta tese visa dar um contributo para superar 

estas dificuldades, através (i) do desenvolvimento de modelos unidimensionais (isto é, modelos 

com uma única variável espacial independente) para efectuar análises lineares, em regime 

estático ou dinâmico, e de encurvadura lateral por flexão-torção de barras com secção de 

parede fina aberta continuamente variável, (ii) da interpretação física dos aspectos essenciais 

do comportamento destas barras, tal como previsto por estes modelos, e (iii) do exame 

detalhado de alguns exemplos ilustrativos, com utilidade para efeitos de verificação e validação. 

A primeira parte da tese é dedicada às barras cuja forma lhes permite resistir a flexão biaxial 

por acção de membrana das suas paredes (barras com secção em I ou em C, por exemplo). 

Começa com o desenvolvimento de um modelo linear unidimensional para a flexão e torção 

de barras não prismáticas com secção de parede fina aberta arbitrária, submetidas a 

carregamentos estáticos genéricos. Como ponto de partida, adopta-se um modelo 

bidimensional de membrana. As hipóteses de Vlasov, generalizadas ao caso não prismático de 

forma a manterem um significado intrínseco, são tratadas como constrangimentos internos, 

isto é, restrições de natureza constitutiva às possíveis deformações da superfície média da 

barra. Assim, (i) as forças de membrana são decompostas em parcelas activa e reactiva e (ii) a 

relação constitutiva entre as forças de membrana activas e as deformações de membrana 

reflecte a simetria máxima compatível com os constrangimentos internos impostos. 

Em geral, os constrangimentos internos admitidos implicam que as expressões analíticas 

que definem os campos de deformações e forças de membrana em barras não prismáticas 

incluem uma parcela adicional, associada à torção, em relação às da teoria de Vlasov para 

barras prismáticas. Assim, o comportamento torsional previsto pelo modelo unidimensional 



iv 

desenvolvido contrasta, em geral, com o obtido através de uma modelação “em escada”, 

em que uma barra não prismática é aproximada por uma sequência de segmentos 

prismáticos. Os exemplos ilustrativos apresentados permitem concluir que as diferenças 

podem ser significativas. 

O modelo linear desenvolvido é depois generalizado para o caso da análise dinâmica. As 

contribuições das inércias de rotação e de empenamento de torção são tomadas em 

consideração. Discute-se também a inclusão de um mecanismo de dissipação do tipo 

viscoso. 

Em seguida, estabelece-se um modelo unidimensional para a encurvadura lateral por 

flexão-torção de vigas monossimétricas não prismáticas com secção de parede fina aberta 

arbitrária. A descrição cinemática adoptada exclui a consideração de fenómenos locais ou 

distorcionais. O efeito dos deslocamentos de pré-encurvadura é também ignorado. Uma 

vez que, na prática, é raro encontrar vigas isoladas e com condições de apoio ideais, 

mostra-se ainda, através de um problema arquétipo, como se pode ter em consideração a 

presença de elementos de contraventamento. Estes elementos podem (i) restringir a 

translação, a torção, a rotação em torno do eixo de menor inércia e/ou o empenamento por 

torção e (ii) ser rígidos ou exibir um comportamento elástico linear. 

A segunda parte da tese diz respeito a elementos com secção rectangular fina de espessura 

constante e altura variável. São estudados três problemas de complexidade crescente: 

(i) a encurvadura lateral por flexão-torção de consolas com altura linearmente variável e 

submetidas a uma carga pontual transversal aplicada na extremidade livre; 

(ii) a encurvadura lateral por flexão-torção de consolas (ii1) com variação poligonal da altura 

e (ii1) submetidas a um número arbitrário de cargas pontuais transversais independentes; 

(iii) a encurvadura por flexão-torção de colunas-viga em consola com altura linearmente 

variável, actuadas por uma carga pontual axial e outra transversal, ambas aplicadas na 

extremidade livre. 

Estes três problemas são resolvidos analiticamente – obtêm-se soluções exactas para as 

equações diferenciais que os regem, o que permite estabelecer, também de forma exacta, as 

equações características para determinar as cargas de encurvadura. No entanto, no terceiro 

dos problemas elencados, a abordagem analítica só dá frutos numa determinada gama de 

relações entre as alturas mínima e máxima, sendo necessário recorrer a um procedimento 

numérico nos restantes casos.  
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Chapter 1 

GENERAL INTRODUCTION 

They say that the first sentence in any speech is always the hardest. 
Well, that one’s behind me. 

WISLAWA SZYMBORSKA 

1.1 THE CLASSIFICATION OF STRUCTURAL ELEMENTS 

ACCORDING TO THEIR SPATIAL CHARACTER 

It is a fitting tribute to Vlasov that we should name the opening section of this thesis, 

so much inspired by his work, after the opening section of his monumental treatise on 

thin-walled bars (VLASOV 1961). 

Structural elements are commonly divided into four broad groups according to their 

spatial character (VLASOV 1961, ch. 1, § 1, or TRABUCHO & VIAÑO 1996, Introduction): 

(i) massive bodies, whose dimensions in all three spatial directions are of the same order 

of magnitude; 

(ii) plates and shells, which exhibit one characteristic dimension (the thickness) that is 

much smaller than the other two; 

(iii) bars with solid cross-section, which are bodies with two characteristic dimensions of 

comparable magnitude (the cross-sectional dimensions), both much smaller than the 

third one (the length); 

(iv) thin-walled bars, distinguished by the fact that their characteristic dimensions are all of 

different orders of magnitude – the wall thickness is small compared with the diameter 

of the cross-section, which, in turn, is small compared with the length. 

Loosely speaking, a bar can be thought of as a three-dimensional solid occupying the 

volume obtained by attaching a cross-section to each point of a simple regular curve, the 

bar axis. Each cross-section is a planar connected region, perpendicular to the axis and 

whose diameter is much smaller than the length of the axis. If every cross-section can be 
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viewed as the slight thickening of a planar curve, then the bar is thin-walled; otherwise, it 

exhibits a solid cross-section. A bar is said to be prismatic whenever its axis is a straight line 

segment and the cross-section is uniform. Bars with a continuously varying cross-section 

are called tapered bars. 

From the point of view of mechanical behaviour, the distinctive feature of a thin-

walled bar is the fact that it resists torsion as a spatial system: the cross-sections undergo 

out-of-plane warping and, since this warping generally varies along the length of the bar, 

there arise non-negligible longitudinal normal stresses, in addition to the cross-sectional 

shear stresses. This challenges the validity of both Bernoulli’s law of plane sections and 

Saint-Venant’s torsion theory. 

The above classification is of necessity a rather qualitative one and no sharp 

boundaries can be drawn between groups. “The same structure can be classified differently 

depending on the external loading conditions, on the manner in which the structure is to 

be employed in the given structural problem, and on the degree of accuracy demanded 

from the calculation.” For instance, “a thin-walled beam which has a rigid closed cross-

section can, in many cases, be considered as belonging to the class of solid beams insofar as 

its behaviour under combined flexure and torsion is concerned” (VLASOV 1961, p. 5). 

1.2 NATURE AND PURPOSE OF ONE-DIMENSIONAL BAR MODELS 

The sciences do not try to explain, they hardly even try to interpret, 
they mainly make models. By a model is meant a mathematical construct which, 

with the addition of certain verbal interpretations, describes observed phenomena. 
The justification of such a mathematical construct is solely and precisely 

that it is expected to work. 

JOHN VON NEUMANN 

That is, in a specific example, the best material model of a cat is another, 
or preferably the same, cat … The situation is the same with the theoretical models. 

ARTURO ROSENBLUETH & NORBERT WIENER 

The equations describing the mechanics of a three-dimensional continuum are 

formidable to solve. Even in this day and age of powerful numerical techniques and high-

speed, large-capacity computers, it is not feasible to treat every solid body as a three-

dimensional continuum, at least in routine applications. This dictates the need for tractable 
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and accurate lower-dimensional models – two-dimensional models for plates and shells, 

one-dimensional models for bars, either with solid cross-section or thin-walled, according 

to their distinctive spatial character. Massive bodies, on the other hand, are the province of 

the three-dimensional theories. 

One-dimensional bar models, or theories of bars, can therefore be defined as 

characterisations of particular aspects of the mechanical behaviour of a specified class of bars 

by a finite set of equations having the parameter of a certain curve and, possibly, time as the 

only independent variables (ANTMAN 1972, § 1). Moreover, the variables entering these 

equations are required to have a relatively simple physical interpretation. Of course, one 

should not forget that any one-dimensional bar model is necessarily approximate – 

paraphrasing KOITER (1969, p. 93), an exact one-dimensional theory of bars cannot exist, 

because the actual body we have to deal with, slender as it may be, is always three-

dimensional. In fact, every model is an idealisation, and thus only approximate in relation to 

the physical phenomena under consideration. In this respect, the difference between three-

dimensional and lower-dimensional models, when formulated consistently and logically, is 

one of degree rather than of kind, as acutely observed by MALVERN (1969, pp. 2-3). 

In the long and successful history enjoyed by one-dimensional bar models,1 two main 

approaches can be discerned (ANTMAN 1972, ch. B, parts I and II): (i) the intrinsic or direct 

approach, often associated with the name of the brothers E. and F. Cosserat, in which the 

bar is conceived ab initio as a one-dimensional continuum endowed with some additional 

structure, and (ii) the induced approach from some parent higher-dimensional model, 

which can proceed either via asymptotic methods or by constraining the displacement, 

strain or stress fields to take on some particular analytical form. 

One example of the use of the induced-constraint approach, of particular importance 

to the object of the present thesis, is the one-dimensional model derived by VLASOV (1961) 

for analysing the spatial behaviour of prismatic thin-walled bars with open cross-sections. 

In the words of TRABUCHO & VIAÑO (1996, pp. 500-501), “it is an elegant and powerful 

combination of mathematical analysis and mechanics [...] based on a more general and 

                                                 
1 For a detailed history of the early one-dimensional bar models, see TRUESDELL 1960. A much more 

succinct account, which also spans the nineteenth century and the first half of the twentieth century, is 
given by ERICKSEN & TRUESDELL 1958, § 1. 
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more natural a priori hypotheses than Bernoulli-Navier’s assumption of plane sections” – 

invariance of the cross-sectional shape and negligible shear deformations on the middle 

surface. Indeed, one can only marvel at the insight that led Vlasov to conceive his model 

out of purely mechanical and geometrical intuitions. 

1.3 AIMS, SCOPE AND OUTLINE OF THE THESIS 

Tapered thin-walled bars are extensively used in the fields of civil, mechanical and 

aeronautical engineering because of their unique ability to combine efficiency, economy 

and aesthetics – the three ideals of structural art, according to BILLINGTON (1985). The 

competitiveness of tapered structural members, however, is hindered by the fact that their 

spatial behaviour is still poorly understood and by the lack of consistent and efficient 

methods for their analysis and design – on the one hand, the piecewise prismatic (“stepped”) 

approach, which replaces a tapered bar by a sequence of prismatic segments (whose 

number is increased until convergence is achieved), while intuitively plausible at first sight, 

at least for a mild taper, cannot withstand closer scrutiny (as we shall see in chapter 2) and 

its unqualified applicability is thus questionable;2 on the other hand, the computational 

effort and post-processing difficulties implied by the use of shell or solid finite element 

models is prohibitive for routine applications. The present thesis aims at providing a 

contribution to overcome these drawbacks, by (i) developing consistent one-dimensional 

models to perform linear static, dynamic and lateral-torsional buckling analyses of tapered 

thin-walled bars with open (i.e., simply connected) cross-sections, and (ii) supplying physical 

interpretations for the key behavioural features implied by these models, which shed light 

into the roles played by the various geometrical and mechanical parameters, with particular 

emphasis on those that are peculiar to the tapered case. 

                                                 
2 As illustration of one deficiency in the stepped approach, we offer the following simple example, in 

anticipation of the discussion in § 2.11. Consider a doubly symmetric I-section cantilever. When twisted, its 
flanges bend in opposite directions. In any given cross-section, the bending moments in the flanges form a 
self-equilibrating pair if the web depth is uniform. However, if the web depth varies continuously, these 
bending moments, being orthogonal to the flanges, exhibit an axial resultant – such a contribution to the 
total torque cannot be accounted for by a stepped model, regardless of the number of prismatic segments it 
comprises. 
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The main body of the thesis can be divided into two largely independent parts. The 

first, comprising chapters 2 through 4, is devoted to bars whose shape allows them to resist 

biaxial bending by the membrane action of their walls (I-section or C-section bars, for 

instance). Members with narrow rectangular cross-section are therefore excluded. 

In chapter 2, we construct a linear one-dimensional model for the stretching, bending 

and twisting of tapered thin-walled bars with open cross-sections under general static 

loading conditions. We follow mainly the induced-constraint approach, deemed the most 

versatile and physically meaningful, as well as being entirely consistent with the engineering 

quantities of interest. As parent theory, we adopt a two-dimensional linearly elastic 

membrane shell model. The Vlasov assumptions, extended to the tapered case in such a 

way as to retain an intrinsic geometrical meaning, are treated consistently as internal 

constraints, that is, a priori restrictions, of a constitutive nature, on the possible deformations 

of the middle surface of the bar. Accordingly, (i) the membrane forces are decomposed 

additively into active and reactive parts, and (ii) the constitutive dependence of the active 

membrane forces on the membrane strains reflects the maximal symmetry compatible with 

the assumed internal constraints. Despite our acknowledged debt to the work of WILDE 

(1968), we consider these developments and their physical interpretation new in the main.  

Vlasov’s model for prismatic bars is obtained as a particular case. However, for a 

large class of tapered thin-walled bars with open cross-sections, the membrane strain and 

force fields implied by the assumed internal constraints do not have the same form as in 

Vlasov’s theory – they feature an extra term, involving the rate of twist. This result is 

absolutely central to this chapter and carries over to the developments in chapters 3 and 4. 

It explains why the torsional behaviour (be it uncoupled or coupled with other modes of 

deformation) predicted by our tapered model is generally at odds with that obtained with 

the stepped approach. The discrepancies may be significant, as illustrated through examples, 

and, in view of the stepped models several deficiencies (whose physical significance is 

pointed out in the discussion of these examples), their use to simulate the spatial behaviour 

of tapered thin-walled bars with open cross-sections is inadequate except in special cases. 

In chapter 3, the linear static one-dimensional model is extended into the dynamic 

range. The contributions of rotatory inertia and torsion-warping inertia are fully taken into 

account. Although we shall deal mainly with undamped motions, the inclusion of a viscous-

type dissipative mechanism is also briefly addressed. The chapter closes with an illustrative 
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example concerning the undamped free torsional motions of doubly symmetric web-

tapered I-section cantilevers. The technique of separation of variables leads to an 

eigenproblem that provides the natural torsional frequencies and the corresponding 

vibration modes. A so-called “paradox” (CYWINSKI 2001) is elucidated. 

Chapter 4 deals with the elastic lateral-torsional buckling of singly symmetric tapered 

thin-walled beams (flexural members) with open cross-sections, loaded in the plane of 

greatest bending stiffness (symmetry plane). Lateral-torsional buckling is a bifurcation-type 

instability in which (i) the fundamental equilibrium path corresponds to shapes that are 

symmetric with respect to the plane of loading and (ii) the buckled states are associated 

with non-symmetric shapes – the beam deflects laterally (out-of-plane) and twists. Due to 

their typically low lateral bending and torsional rigidities, thin-walled bars with open cross-

sections are particularly susceptible to this phenomenon. We derive anew, in a simpler and 

more direct manner, the one-dimensional model originally proposed by ANDRADE & 

CAMOTIM (2005). The adopted kinematical description precludes the model from capturing 

any local or distortional phenomena. Moreover, the effect of the pre-buckling deflections is 

ignored. It has been shown elsewhere that the predictions of this one-dimensional model – 

critical buckling loads and corresponding buckling modes – correlate well with the results 

of shell finite element analyses (ANDRADE et al. 2007, ASGARIAN et al. 2012, ZHANG & 

TONG 2008). In actual design practice, beams are usually connected to other elements that 

may contribute significantly to their buckling strength, even when they are not primarily 

intended for that specific purpose. Using an archetypal problem, it is shown how the 

presence of out-of-plane restraints can be accommodated in the one-dimensional buckling 

model. The restraints may (i) have a translational, torsional, minor axis bending and/or 

warping character and (ii) be either linearly elastic or perfectly rigid. A parametric study is 

then conducted to examine in some detail (i) the effectiveness of different types of 

restraint, (ii) the importance of the restraint stiffness and (iii) the interplay between these 

two aspects and the effects of tapering. This parametric study once again highlights the 

differences between the predictions of tapered and stepped (piecewise prismatic) models. 

The second part of the thesis, which consists of chapter 5, is concerned with strip 

members (i.e., members with narrow rectangular cross-section) exhibiting constant thickness 

and varying depth (prismatic members are considered as a particular case). It deals with 

three problems of increasing complexity: 
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(i) the elastic lateral-torsional buckling of cantilevered beams with linearly varying depth, 

acted at the free-end section by a conservative point load; 

(ii) the elastic lateral-torsional buckling of cantilevers (ii1) whose depth varies according to a 

non-increasing polygonal function of the distance to the support and (ii2) which are 

subjected to an arbitrary number of independent conservative point loads, all acting in 

the same “downward” direction; 

(iii) the elastic flexural-torsional buckling of linearly tapered cantilever beam-columns, 

acted by axial and transverse point loads applied at the free-end section. 

These three problems are tackled analytically – we aim at obtaining exact closed-form 

solutions to the governing differential equations and, thereby, at establishing exact closed-

form characteristic equations for the buckling loads (even if  these characteristic equations are 

transcendental and do not have closed-form solutions). For the third problem, however, 

the analytical approach is fruitful only for certain values of the ratio between the minimal 

and maximal depth of the strip beam-column; in the remaining cases, one resorts to a 

numerical procedure. At the expense of some unavoidable repetitions, this chapter was 

written as a self-contained unit within the thesis. 

Variational principles are used throughout – the principle of stationary total potential 

energy in chapter 2, Hamilton’s principle in chapter 3, the criterion of Trefftz in chapters 4 

and 5. In favour of the use of variational principles, the following reasons are commonly 

adduced (TRUESDELL & TOUPIN 1960, § 231, FUNG 1965, p. 270): 

(i) They are statements about a system as a whole, rather than the parts that it comprises. 

(ii) They imply the field equations (ordinary or partial differential equations) for the 

problem under consideration, as well as the corresponding boundary and jump 

conditions. 

(iii) They automatically include the effects of constraints, without requiring the corresponding 

reactions to be known. 

(iv) The direct method of solution of variational problems is one of the most powerful 

tools for obtaining numerical solutions. 

The first three items will be put to good use in this thesis. A fifth reason, the elegance that 

variational principles usually exhibit, is often added to the list, but may be largely viewed as 

a subjective expression of taste. 
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Chapters 2 through 4 rely rather heavily on a number of elementary notions from the 

differential geometry of curves and surfaces. Moreover, chapter 5 requires some familiarity 

with the rudiments of the theory of analytic maps of a real or complex variable. For the 

benefit of the reader, the needed prerequisites, which have been kept to a minimum, are 

briefly expounded at the beginning of chapters 2 and 5, making the thesis largely self-

contained in this respect. 

We have made an effort to keep the arguments rigorous, the word “rigour” being 

here understood in the sense defined by André Weil: “it does not consist in proving 

everything, but in maintaining a sharp distinction between what is assumed and what is 

proved, and in endeavouring to assume as little as possible at every stage” (apud 

TRUESDELL 1984, p. 112). In particular, it should always be clear what has to be done to 

check an argument, and this dictates small, explicit steps. 

Some will undoubtedly reproach us with too much abstract and useless formalism. 

Nevertheless, the treatment is intended to illuminate the physical aspects of the theory, not 

merely in the narrow sense of predicting numerical results for comparison with experiments 

(or with simulations involving higher-dimensional models), but first and foremost for 

grasping a global, coherent and intelligible picture of the behaviour implied by the models. 

Moreover, we try to clarify the underlying structure of these models and to fit them into a 

unifying framework, shared with other models of structural mechanics and, indeed, of 

mathematical physics at large. In the same vein, the examples, which are presented in 

considerable detail, were chosen not as much for their immediate practical significance as 

for their usefulness in illustrating some of the peculiar aspects of the general models (and, 

therefore, for their usefulness as benchmarks). With the possible exception of the fifth 

chapter, it is fair to say that technique, important as it may be, never takes precedence over 

concept. 

* * * 

Each chapter is divided into a number of sections and subsections, and includes an 

introduction with the pertinent literature review. Moreover, each chapter has its own list of 

references. Equations, figures and tables are consecutively numbered within each section; 

footnotes are consecutively numbered within each chapter. 
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1.4 GENERAL REMARKS ON MATHEMATICAL NOTATION AND 

TERMINOLOGY 

…mais qu’on ne s’y trompe pas: dans les Sciences mathématiques, 
une bonne notation a la même importance philosophique 

qu’une bonne classification dans les Sciences naturelles. 

HENRI POINCARÉ 

… for a good notation has a subtlety and suggestiveness which 
at times make it seem almost like a live teacher. 

BERTRAND RUSSELL 

Throughout this thesis, E  denotes a three-dimensional Euclidean point space and V  

its associated real inner-product space, oriented in one of the two possible ways.3 The term 

“point” is reserved for elements of E , the term “vector” for elements of V . A Cartesian 

frame for E  consists of a fixed origin OE  and a fixed positive orthonormal ordered 

basis  1 2 3, ,e e e  for V . We denote by 3ˆ :x E  the coordinate system associated with a 

given Cartesian frame for E , that is, the field that assigns to each point X  in E  the 

ordered triplet 1 2 3( , , )x x x  defined by ( )i ix X O  e , 1, 2, 3i  . The scalar fields 

ˆ :ix E  ( 1, 2, 3i  ) such that  1 2 3ˆ ˆ ˆ ˆ( ) ( ), ( ), ( )x X x X x X x X , for every X  in E , are 

called the coordinate functions of x̂ . The inner product and the cross product of two 

vectors x , y  in V  are denoted by x y  and x y , respectively. The Euclidean norm or 

length of a vector x  is written  x x x . 

Unless otherwise indicated, the range of a Latin index (subscript or superscript) is the 

set  1, 2 , 3 , that of a Greek index is the set  1, 2 . For the sake of notational brevity, 

Einstein’s summation convention is adopted – when an index appears twice, and only 

twice, in the same term, a summation over the range of that index is implied (EINSTEIN 

1916, § 5). A systematic exception to these rules is the index n , which is specifically used 

for indexing sequences and families. 

The words “function”, “map” and “transformation” are used as synonymous. “The 

all important (and characteristic) property of a map is that it associates to any «value» of the 

                                                 
3 On the concept of finite-dimensional Euclidean point space, see, e.g., BERGER (1987, § 9.1), BOWEN & 

WANG (1976, § 43), NOMIZU (1966, ch. 10) or SATAKE (1975, supplement, § 4). The orientation of a real 
finite-dimensional vector space is discussed at length in BERGER (1987, § 2.7.2) and GREUB (1981, ch. 4, 
§ 8, and ch. 7, § 3). 
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variable a single element; in other words, there is no such thing as a «multiple-valued» 

function, despite many books to the contrary” (DIEUDONNÉ 1960, p. 1). We consider a 

map as a single object, just as a point or a number, and make a careful distinction between 

the map :f X Y , from X  into Y  – also written simply as f  or ( )x f x  when the 

domain and codomain are clear from the context –, and the value ( )f x Y  that it takes at 

the argument x X . However, a constant map is often identified with its value. 

As a rule, when it comes to concepts of mathematical analysis (differential calculus, 

in particular), we adopt the notational conventions of DIEUDONNÉ (1960). Accordingly, 

the (total) derivative of the map f  at 0x , if it exists, is written 0( )f x  or, less frequently, 

0( )Df x . Higher-order derivatives at 0x  are denoted by 0( )f x , ... , ( )
0( )pf x  or by 

2
0( )D f x , ... , 0( )pD f x . Suppose now that the map f  is defined on a subset of a product 

of n  normed spaces. The partial of f  at 1( , , )nx x  with respect to the i th variable, if it 

exists, is written 1( , , )i nD f x x .4 Higher-order partial derivatives at 1( , , )nx x  are 

written 1( , , )p q
i j nD D f x x  . 

  

                                                 
4 As remarked by DIEUDONNÉ (1960, p. 171), the usual notations 1( , , )

ix nf x x   or 1/ ( , , )i nx f x x    for 

1( , , )i nD f x x  lead to hopeless confusion when substitutions are made (“what does ( , )yf y x  or 
( , )xf x x  mean?”). 
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Chapter 2 

A LINEAR ONE-DIMENSIONAL MODEL FOR THE 

STRETCHING, BENDING AND TWISTING OF 

TAPERED THIN-WALLED BARS WITH OPEN 

CROSS-SECTIONS 

THE STATIC CASE 

We shall not cease from exploration 
And the end of all our exploring 

Will be to arrive where we started 
And know the place for the first time. 

T.S. ELIOT 

Car on sait par l’expérience, que lorsqu’une recherche est fort épineuse, 
les premiers efforts nous en éclaircissent ordinairement fort peu; 

& ce n’est que par des efforts réitérés, & envisageant la même chose 
sous plusieurs points de vûe, qu’on parvient à une connoissance accomplie. 

LEONHARD EULER 

As I read the works on the foundations of mechanics by Euler, his teacher John Bernoulli, 
and John Bernoulli’s teacher James Bernoulli, I discern a simple pattern. 

[…] 
(5) Never rest content with an imperfect or incomplete argument. If you cannot 

complete and perfect it yourself, lay bare its flaws for others to see. 
(6) Never abandon a problem you have solved. There are always better ways. Keep searching 

for them, for they lead to fuller understanding. While broadening, deepen and simplify. 

CLIFFORD TRUESDELL 
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2.1 INTRODUCTION 

2.1.1 An historical sketch of the development of linear one-dimensional 

models for prismatic thin-walled bars with open cross-section 

It is appropriate to start this chapter by discussing the various engineering approaches 

used heretofore to construct linear one-dimensional models for the bending and twisting of 

prismatic thin-walled bars with open cross-section.1 Indeed, such a discussion provides the 

background against which the developments for tapered bars can best be assessed. From 

an historical viewpoint, we can distinguish three different, though closely related (in fact, 

largely equivalent), approaches, which we shall name after their initiators. 

Timoshenko’s approach 

Only rarely can we assign an exact date to the origin of a particular question. In the 

case of non-uniform torsion, we can for once identify just where, when, how and by whom 

the problem was first stated – the place was Göttingen, the year was 1905 and the author 

was S.P. Timoshenko. At the suggestion of Ludwig Prandtl, Timoshenko began working 

on the lateral-torsional buckling of I-beams. He realised that a doubly symmetric I-beam 

subjected to constant torque displays markedly different behaviours, depending on whether 

it is free to warp (uniform torsion) or whether one of its ends is restrained from warping 

(non-uniform torsion or warping torsion) – see figure 2.1.1. In the latter case, torsion is 

accompanied by bending of the flanges in opposite directions and the beam is significantly 

stiffer – Saint-Venant’s torsion theory is not applicable. As Timoshenko recollects in his 

autobiography (TIMOSHENKO 1968), 

it took me about two weeks to figure out how to allow for this bending, 

to realize that the torque is counterbalanced by the same stresses as in 

ordinary [uniform] torsion, added to the moment produced by the shear 

forces resulting from the buckling [bending] of the I-beam’s flanges. 

Once this was understood, writing an equation for the torsion was no 

longer difficult. 

                                                 
1 We will not delve into the (relatively recent) mathematical work on this subject, based on asymptotic 

expansion methods and -convergence theory – BÉCHET et al. (2010), FREDDI et al. (2007), GRILLET et al. 
(2000, 2005), HAMDOUNI & MILLET (2011) and RODRIGUEZ & VIAÑO (1995, 1997). 
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The total torque is thus the sum of two parts, denoted in TIMOSHENKO (1913) as 1M  and 

2M . The torque 1M  is proportional to the rate of twist φ : 

 1M C φ  , (2.1.1) 

where C  is the classical Saint-Venant torsional rigidity of the cross-section. To find the 

second part of the torque, Timoshenko establishes, by appealing to symmetry 

considerations, that each cross-section rotates about the centroidal axis of the bar. The 

lateral deflections of the central lines of the flanges are therefore 

  
1

2
y h φ  , (2.1.2) 

where h  is the distance between middle lines of the flanges. If the flanges are individually 

regarded as planar Euler-Bernoulli beams, then the curvatures  1
2 h φ  that they acquire due 

to restrained warping give rise to bending moments 

  
1

2fM D h φ  (2.1.3) 

and shear forces 

  
1

2fQ D h φ  , (2.1.4) 

where D  is the major-axis flexural rigidity of each flange. The shear forces in the two 

flanges have the same magnitude but are oppositely directed. They thus form the couple 

   2
2

1

2
M D h φ  . (2.1.5) 

The equation for non-uniform torsion of a doubly symmetric I-beam then becomes 

      2
1 2

1

2
M M M C φ D h φ  . (2.1.6) 

 

Figure 2.1.1: Uniform and non-uniform torsion of a doubly symmetric I-beam, as 

schematically shown in TIMOSHENKO (1913) 
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Today, the mechanical property 21
2 D h  is called the warping rigidity of the cross-section. 

Timoshenko’s work, originally published in Russian, was later reported in German and 

French (TIMOSHENKO 1910, 1913). 

Further progress along these lines had to wait for the introduction of the concept of 

shear centre (EGGENSCHWYLER 1920a, 1920b, 1921a, 1921b and MAILLART 1921a, 1921b, 

1924a, 1924b), a surprisingly latecomer into structural mechanics,2 and the identification of 

shear and twist centres by WEBER (1924), using Maxwell’s theorem.3 With this conceptual 

apparatus in place, WEBER (1926) extended Timoshenko’s approach to the linear analysis 

of non-uniform torsion in prismatic bars with arbitrary (i.e., singly symmetric, point 

symmetric or asymmetric) double-flanged open cross-sections – see figure 2.1.2. It should 

be noted that, in general, restrained warping gives rise to longitudinal normal stresses in all 

plated components (flanges and web). Moreover, in each component, these normal stresses 

are, in general, statically equivalent to a bending moment and an axial force. The theoretical 

results of Weber were found to be in agreement with the experiments performed by BACH 

(1909, 1910) on C-section steel bars. 

  

Figure 2.1.2: Two examples of double-flanged open cross-sections addressed by WEBER (1926), 

showing the distribution of longitudinal normal stresses due to restrained warping 

                                                 
2 See BILLINGTON (1997, pp. 104-107), KURRER (2008, § 7.3.2) and REISSNER (1973) for the broader 

context surrounding the discovery of the shear centre. 
3 This has since become a textbook example of the application of Maxwell’s theorem (e.g., MASSONNET 

1968, pp. 474-475, and DIAS DA SILVA 2006, p. 478). 



A Linear 1D Model for Tapered Thin-Walled Bars with Open Cross-Sections – The Static Case 

17 

The line of attack initiated by Timoshenko culminated with the development, by F. 

& H. BLEICH (1936),4 of a general linear theory of bending and twisting of prismatic bars 

with open cross-section composed of an arbitrary number of thin flat plates (see figure 

2.1.3). These authors assumed that the Euler-Bernoulli theory of bending remains valid for 

each individual plate and enforced the continuity of the longitudinal strain at the junctions 

between contiguous plates. As a result, “the cross-section of each plate between two 

consecutive corners will remain plane, although the planes may be different for two 

adjoining plates and the cross-section of the entire bar will be warped” (BLEICH 1952, 

p. 108). Unlike the preceding authors, who relied on direct equilibrium considerations, the 

Bleiches formulated a general expression for the total potential energy and derived the 

governing differential equations from the principle of stationary total potential energy. 

Wagner’s approach 

In Saint-Venant’s torsion theory, the axial displacements are given by the product of 

a warping function defined over the cross-section – the solution to a Neumann problem in 

potential theory (e.g., SOKOLNIKOFF 1956, § 34) – and the (constant) rate of twist. To develop 

a theory of non-uniform torsion for thin-walled bars with open cross-section, WAGNER (1929) 

 

Figure 2.1.3: In-plane displacement of the cross-section of a prismatic bar composed of 

several thin flat plates, as considered by F. & H. BLEICH (1936) 

                                                 
4 See also BLEICH (1952, ch. 3, §§ 35-38). 
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adopted an axial displacement field of the same form as in Saint-Venant’s theory, except that 

the rate of twist is no longer constant.5 Moreover, Wagner approximated Saint-Venant’s warping 

function by a “unit warping” that is the sum of two components, uw  and nw , the former 

pertaining to the middle line of the cross-section and the latter to the wall thickness.6 Wagner’s 

work, which does not make for easy reading, was further developed by KAPPUS (1937). 

Vlasov’s approach 

A comprehensive theory of combined bending and twisting of thin-walled open bars 

was developed during the 1930s by V.Z. Vlasov and published in Russian in 1940 (see the 

historical sketch and literature survey in VLASOV 1961, pp. 464-472, and NOWINSKI 1959). 

The theory 

is based on the “lumping” of a two-dimensional continuous elastic 

system [membrane shell] [...] into a discrete-continuous system, i.e., a 

system possessing a finite number of degrees of freedom in the 

transverse directions and an infinite number of degrees of freedom in 

the direction of the generator of the shell (VLASOV 1961, p. 47). 

This dimensional reduction process is achieved by means of the following kinematical 

assumptions (VLASOV 1961, p. 7): 

a) a thin-walled beam of open section can be considered as a shell of 

rigid (undeformable) section;7 

b) the shearing deformation of the middle surface (characterizing the 

change in the angle between the coordinate lines z const , and 

s const ) can be assumed to vanish [the coordinate systems adopted 

by Vlasov – a left-handed Cartesian system on the 3-dimensional 

ambient space and a Gaussian system on the middle surface of the 

beam – are shown in figure 2.1.4]. 

                                                 
5 See also WAGNER & PRETSCHNER (1934). 
6 The component uw  coincides with Vlasov’s sectorial area with pole at the shear centre and origin at a 

sectorial zero-point (these concepts are defined below). The component nw  is associated with secondary, 
or through-the-thickness, warping (e.g., ODEN & RIPPERGER 1981, § 7.8). It can be shown that Saint-
Venant’s warping function for thin-walled open sections may indeed be approximated by uw  as the 
thickness t  tends to zero, up to ( )O t  terms (MULLER 1983). 

7 In fact, this assumption is tacitly adopted by all the previously mentioned authors. 
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Figure 2.1.4: Coordinate systems adopted by VLASOV (1961, p. 11) 

From these assumptions, Vlasov derives his “law of sectorial areas” (VLASOV 1961, p. 17): 

The longitudinal displacements ( , )u z s  in the section z const  of a thin-

walled open shell of cylindrical or prismatic shape are made up of 

displacements linear [affine] in the Cartesian coordinates of the point on 

the profile line and displacements proportional to the sectorial area [see 

figure 2.1.5], providing there are no bending deformations of the cross-

section and the middle surface is free of shear [i.e., providing the 

assumptions a) and b) stated above hold]. 

The latter represent “the part of the displacement that does not obey the law of plane 

sections [warping] and which arises as a result of torsion.” In fact, Vlasov finds that “the 

longitudinal displacement of any point M  on the middle surface through torsional 

deformation only is equal to minus the product of ( )θ z  [rate of twist] and the sectorial 

area ( )ω s ”, thus obtaining, as a proposition, Wagner’s hypothesis (restricted to the middle 

line of the cross-section). Vlasov also proves the following statement concerning bars with 

open section that consist of “one or more interconnected bundles of narrow rectangular 

plates”, which establishes a link with the work of the Bleiches (see figure 2.1.6): “the 

sectorial diagram varies according to the law of plane sections within the limits of [each] 

bundle” (VLASOV 1961, p. 26). 

Since the wall thickness of a thin-walled bar is, by definition, very small compared 

with the other cross-sectional dimensions, of all the stresses that arise in a cross-section, 

Vlasov considers “only the normal stresses [σ ] in the direction of the generator of the 

middle surface and the tangential stresses in the direction of the tangent to the profile line 
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Figure 2.1.5: Sectorial area ω  (VLASOV 1961, pp. 16-17) 

 

Figure 2.1.6: Sectorial area ω  for beams with open cross-section consisting of narrow 

rectangular plates (VLASOV 1961, pp. 26) 

[middle line of the cross-section]” (see figure 2.1.7(a, b)). Moreover, he assumes that “the 

normal stresses are constant over the thickness of the beam wall and that the tangential 

stresses over the beam wall vary according to a linear [affine] law”, with average value τ  

(VLASOV 1961, p. 27). These stresses are developed owing to two distinct modes of 

deformation – a pure twisting of the bar, during which all sections are free to warp, and 

bending of the bar coupled with non-uniform warping. The first mode of deformation 

leads to the tangential stresses shown in figure 2.1.7(d), which vary linearly over the 

thickness and are zero at the middle line; the additional tangential stresses due to the 

second mode of deformation are uniform over the thickness, as shown in figure 2.1.7(c). 
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Figure 2.1.7: Cross-sectional state of stress (VLASOV 1961, p. 28) 

Corresponding to the warping of the cross-section, Vlasov introduces a new cross-

sectional stress resultant 

 
F

B σ ω dF   , (2.1.7) 

which he calls the bimoment. “In contrast to the moment, the bimoment is a generalized 

balanced force system, i.e., a force system statically equivalent to zero” (VLASOV 1961, p. 48).8 

The work of Vlasov did not become generally known outside the Soviet Union until 

the (posthumous) second edition of his treatise was translated into English and French in 

the early 1960s. By then, a general theory based on similar assumptions had been 

independently worked out by TIMOSHENKO (1945).9 

2.1.2 One-dimensional models for tapered thin-walled bars with open 

cross-sections 

Naturally enough, the first attempts to develop one-dimensional models for the 

torsional behaviour of tapered thin-walled bars with open cross-sections were restricted to 

I-section bars and adopted Timoshenko’s approach – LEE (1956) and LEE & SZABO (1967). 

The same approach was used later by KITIPORNCHAI & TRAHAIR (1972, 1975). These 

works, which exhibit some shortcomings, are critically examined in § 2.11 (see the remarks 

following equation (2.11.21)). 

BAZANT (1965) and WILDE (1968) treated tapered bars of arbitrary open cross-

sections under a general loading. Bazant develops his analysis by analogy with Vlasov’s and 

                                                 
8 This is why GJELSVIK (1981, p. v) writes that “the bimoment is particularly obscure and a feeling for what 

it is takes time to develop.”  

9 See also TIMOSHENKO & GERE (1961, § 5.3). 
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assumes that “the distribution of the longitudinal normal strains and stresses in the section 

can be regarded as similar to the distribution for a bar with constant section.” In fact, the 

one-dimensional model thus obtained is tantamount to replacing the actual tapered member 

by an assembly of prismatic segments obeying Vlasov’s theory (stepped or piecewise 

prismatic model) and making the length of these segments tend to zero. Wilde, on the other 

hand, adopts a much more consistent approach. He regards a tapered bar as a membrane 

shell subjected to two kinematical constraints, which adapt to the tapered case the classical 

assumptions of Vlasov. However, in spite of these constraints, the membrane shell is treated 

as isotropic. WEKEZER (1984, 1990) developed a finite element formulation for Wilde’s theory. 

 * * * 

In the present chapter, we revisit Wilde’s work, which is truly remarkable, and we do 

so in the light of the “method of internal constraints”, introduced by PODIO-GUIDUGLI 

(1989).10 We adopt, as parent theory, a two-dimensional linearly elastic membrane shell 

model. The Vlasov assumptions, suitably extended to the tapered case (as in WILDE 1968), 

are treated consistently as internal constraints, that is, a priori restrictions, of a constitutive 

nature, on the possible deformations of the middle surface of the bar.11 Accordingly, (i) the 

membrane forces are decomposed additively into active and reactive parts, and (ii) the 

constitutive dependence of the active membrane forces on the membrane strains is such as 

to reflect the maximal symmetry compatible with the assumed internal constraints.12 As 

PODIO-GUIDUGLI (1989) remarks, failure to consider the reactive forces (i.e., the forces 

required to maintain the constraints) and an undue assumption of isotropy would lead to 

contradictions. 

                                                 
10 Not to be confused with the method proposed by VOLTERRA (1955, 1956, 1961), in which the constraints 

have merely a kinematical character, without constitutive implications. This was shown to be generally 
incorrect by GREEN et al. (1967). 

11 GURTIN (1981, pp. 115-116) considers three types of constitutive assumptions, namely: (i) constraints on 
the possible deformations the body may undergo, (ii) assumptions on the form of the stress tensor and 
(iii) constitutive equations relating the stress to the motion. 

12 The method of internal constraints has been applied to obtain linear plate, shell and rod models by DAVÍ 
(1992, 1993), DICARLO et al. (2001), LEMBO (1989), LEMBO & PODIO-GUIDUGLI (1991, 2001, 2007), 
NARDINOCCHI & PODIO-GUIDUGLI (1994, 2001) and PODIO-GUIDUGLI (1989, 2003, 2006). A brief 
history of the method of internal constraints is included in PODIO-GUIDUGLI (2008). For similar ideas, 
developed along a somewhat different line, see MASSONNET (1982, 1983), who considers an orthotropic, 
transversely rigid material. In all these works, the parent theory is three-dimensional linear elasticity. 
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The developed one-dimensional model, which is restricted to bars whose shape allows 

them to resist biaxial bending by membrane action of their walls (strip members, for instance, 

are excluded), has one far-reaching consequence: it is shown, both analytically and per exempla, 

that the torsional behaviour predicted for a large class of tapered thin-walled bars with open 

cross-sections, whether uncoupled or coupled with other modes of deformation, cannot be 

reproduced using a stepped model, regardless of the number of prismatic segments 

considered. Indeed, Bazant’s fundamental assumption, that “the distribution of the 

longitudinal normal strains and stresses in the section can be regarded as similar to the 

distribution for a bar with constant section”, is found to be untenable within the framework 

of the adopted internal constraints (except in special cases). In the closing illustrative 

examples, we also discuss the correct use of Timoshenko’s approach in the tapered case, 

which is shown to be entirely compatible with ours. 

2.2 THE REFERENCE SHAPE OF THE BAR 

2.2.1 General description 

Let B E  be the shape of a tapered thin-walled open-section bar in its unloaded 

state, which is taken as the reference shape.13 The region B  is assumed to be generated by 

the translation along a straight line segment, of length L , of a smoothly varying planar 

region, orthogonal to the said line segment, which can be viewed as the thickening of a 

smooth, simple and open curve. The length L  is much larger than the length of this curve, 

which, in turn, is much larger than its thickening. Henceforth, the bar is identified with its 

reference shape B . The middle surface of B , denoted by S , is identified with the middle 

surface of the bar (see figure 2.2.1). 

Choose a Cartesian frame for E , consisting of an origin OE  and a positive 

orthonormal ordered basis  1 2 3, ,e e e  for V , in such a way that (i) 1e  is parallel to the 

straight line segment used to generate B  and (ii)    1ˆ 0,x LB . The intersection of B  

(resp. S ) and the plane  1 1ˆ ( )X x X x E , with 10 x L  , is denoted by 
1xA  (resp. 

1xL ) and is identified with a cross-section (resp. cross-section middle line) of the bar (see 

figure 2.2.1). We call 0A  and LA  the end sections of the bar. 

                                                 
13 On the concept of shape of a body, see TRUESDELL (1991, ch. 1, § 7, and ch. 2, §§ 1 and 3). 
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Figure 2.2.1: Reference shapes of a tapered thin-walled bar with open cross-sections and 

its middle surface 

Clearly, this framework is not sufficiently general to include such important special 

cases as I-section or C-section bars. Nevertheless, it allows us to develop the one-dimensional 

model without being distracted by accessory details, which are best dealt with at a later 

stage – vide infra, § 2.10. 

In the above description of the reference shape of a thin-walled tapered bar, we have 

carefully avoided any reference to a line of centroids or a line of shear centres. In general, 

B
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“it is not evident how to define [these] curve[s] conveniently and unambiguously. Were 

such a definition possible [..., their] actual construction from geometrical data would 

remain a formidable practical task” (ANTMAN 1972, p. 647).14 

2.2.2 The parametrisation of S  

Et quia per naturam superficierum quaelibet 
coordinate debet esse functio binarum variabilium. 

LEONHARD EULER 

Mathematically, the reference shape S  of the middle surface of the bar is the image 

of the closure Ω  of a regularly open,15 bounded, simply connected and Jordan measurable16 

subset Ω  of  2  under an injective and smooth enough immersion17 :F Ω E : 

   F ΩS  .18 (2.2.1) 

The map F  is called a parametrisation of S . The expression “smooth enough” is just a 

convenient way of saying that the smoothness of F  is such that a given definition or 

argument makes sense. As a consequence, the required degree of smoothness may vary 

from place to place. Throughout §§ 2.2-2.5, it is assumed that  2 ;F C Ω E .19 

For each point X S , there exists a unique ordered pair 1 2( , )θ θ Ω  such that 

 1 2( , )X F θ θ  – the real numbers 1θ  and 2θ  are called the Gaussian coordinates of X  in 

the parametrisation F . The first coordinate curve passing through  1 2( , )X F θ θ S  is 

                                                 
14 See also VILLAGGIO (1997, p. 62). 

15 A subset of a topological space is said to be regularly open if it coincides with the interior of its closure (e.g., 
NOLL & VIRGA 1988, p. 12, or WILLARD 1970, p. 29). 

16 The concept of Jordan measurability is discussed, e.g., in DUISTERMAAT & KOLK (2004, § 6.3) and LIMA 
(1989, ch. 6, § 3). If  2Ω  is bounded and Jordan-measurable, then so is its closure Ω  and a continuous 
real-valued function defined on Ω  is Riemann integrable over Ω  (DUISTERMAAT & KOLK 2004, corollary 
6.3.3 and th. 6.3.5 – vide infra, § 2.2.4). 

17 An immersion is a differentiable map whose derivative is everywhere injective (e.g., BERGER & GOSTIAUX 
1987, def. 0.2.23). The requirement that :F Ω E  be an injective immersion guarantees the existence of 
the tangent plane to S  at each of its points (vide infra, § 2.2.3) 

18 Following KELLEY (1985, p. 85), square brackets are used in the designation of subsets of the range or 
domain of a map, while parentheses occur in the designation of elements belonging to those sets. 

19 This ensures the injectivity of the canonical extension of F  (vide infra, § 2.2.5). It also ensures the 
applicability of Leibniz rule to compute the partial derivative 1Dω  of the map :ω Ω , to be defined in 
§ 2.3 – vide infra, equation (2.3.16) and note 24. 
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the image under F  of   2θ Ω   – in other words, it is the set consisting of all points 

in S  having the same second Gaussian coordinate 2θ  as X . The second coordinate curve 

passing through X  is similarly defined – see figure 2.2.2. The maps 

   ˆ :i ix x F Ω  , (2.2.2) 

which have the same degree of smoothness as F , assign to each 1 2( , )θ θ Ω  the Cartesian 

coordinates of the point 1 2( , )F θ θ S . 

Of course, there is a great deal of freedom in choosing one particular parametrisation 

for S . In the present work, we adopt a parametrisation :F ΩE  with the following 

specific features (see figure 2.2.2): 

(i) Ω  is a vertically simple region of  2  of the form 

  1 2 2 1 1 2 1
1 2( , ) 0 and ( ) ( )Ω θ θ θ L g θ θ g θ       , (2.2.3) 

where 1g  and 2g  are real-valued continuous functions on  0, L  satisfying the conditions 
1 1

1 2( ) ( )g θ g θ  and 1 1
1 20 ( ) , ( )g θ g θ     for every  1 0,θ L . 

(ii) For fixed  1 0,θ L , the partial map 2 1 2( , )θ F θ θ  defined on the interval 
1 1

1 2( ) , ( )g θ g θ    is an arc-length parametrisation of 1θL  (hence 1 2 1
1( , )x θ θ θ  

everywhere on Ω ). 

 

Figure 2.2.2: Parametrisation of S  
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2.2.3 The tangent planes to S  

For each 1 2( , )θ θ Ω , define the vectors 

 1 2 1 2
α α( , ) ( , )θ θ D F θ θa  .20 (2.2.4) 

Since  2 ;F C Ω E , the maps  1 2 1 2
α( , ) ( , )θ θ Ω D F θ θ V  thus defined are 

continuously differentiable on Ω  (e.g., ABRAHAM et al. 1988, prop. 2.4.12, which can be easily 

extended to functions whose domain is the closure of an open subset of 2 ). The vectors 
1 2

α ( , )θ θa  are tangent to the coordinate curves passing through the point 1 2( , )F θ θ S . 

Moreover, since F  is an immersion, they are linearly independent and span a two-dimensional 

subspace of V , called the tangent plane to S  at 1 2( , )F θ θ  and denoted 1 2( , )F θ θT S  (e.g., 

BLOCH 1997, § 1.3, CARMO 1976, § 2.4, KÜHNEL 2005, p. 57, or MONTIEL & ROS 2005, 

§ 2.5) – see figure 2.2.3.21 The ordered basis  1 2 1 2
1 2( , ), ( , )θ θ θ θa a  for 1 2( , )F θ θT S  is called 

the covariant basis at 1 2( , )θ θ Ω  associated with the parametrisation F  – e.g., CIARLET 

(2000, p. 68), CIARLET (2005, p. 59), or the classic work of GREEN & ZERNA (1968, p. 33). 

 

Figure 2.2.3: The tangent plane to S  at 1 2( , )F θ θ  and the covariant basis at 1 2( , )θ θ Ω  

associated with the parametrisation F  

                                                 
20 The partial derivatives   1 2

α ( , ) ,D F θ θ L V , where  ,L V  is the space of all linear transformations 
from   into V , have been identified with the vectors  1 2

α ( , ) 1D F θ θ V  (e.g., AVEZ 1983, th. A.4.1, 
BERGER & GOSTIAUX 1987, remark 8.2.1.2, or DIEUDONNÉ 1960, p. 149). 

21 We are committing here a convenient abus de langage – the tangent plane to S  at a point X  S  is in fact the 

affine plane  XX T  E Sv v . 
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In terms of the Cartesian ordered basis  1 2 3, ,e e e , the covariant base vectors are 

given by 

 1 2 1 2
α α( , ) ( , )i iθ θ D x θ θa e  . (2.2.5) 

For our specific choice of parametrisation, we have 1 2 1 1 2
1( , ) , ( , )x θ θ θ θ θ Ω   , and 

hence the preceding equation specialises into 

   1 2 1 2 1 2
1 1 2 2 3 31 1( , ) ( , ) ( , )θ θ D x θ θ D x θ θa e e e  (2.2.6) 

  1 2 1 2 1 2
2 2 2 3 32 2( , ) ( , ) ( , )θ θ D x θ θ D x θ θa e e  . (2.2.7) 

Moreover, for fixed 1θ , the partial map 2 1 2( , )θ F θ θ  is an arc-length parametrisation of 

1θL , and so it follows that 1 2
2 ( , )θ θa  is a unit vector tangent at 1 2( , )F θ θ  to 1θL  – recall 

the second feature characterising our choice of parametrisation and see, e.g., BERGER & 

GOSTIAUX (1987, § 8.3), KÜHNEL (2005, lemma 2.2) or MONTIEL & ROS (2005, § 1.3). 

2.2.4 The first fundamental form of S  

Given a point X  in S E , the tangent plane XT S  is a two-dimensional subspace 

of V . The restriction to XT S  of the inner product on V  is clearly an inner product on 

XT S  (i.e., a positive definite, symmetric bilinear form on XT S  – e.g., HOFFMAN & KUNZE 

1971, p. 368). To this inner product there corresponds a quadratic form  I :X XT S  

given by    2
I ( )X v v v v , called the first fundamental form of S  at X S . The first 

fundamental form of S  is the map  IXX  that assigns to each point X  in S  the 

quadratic form IX . Therefore, the first fundamental form is merely the expression of how 

the surface S  inherits the inner product on V . 

The first fundamental form was defined above with no reference to a particular 

choice of parametrisation. Now, let :F Ω E  be a parametrisation of S  and let 

 1 2( , )X F θ θ , 1 2( , )θ θ Ω . With respect to the covariant basis at 1 2( , )θ θ , 

 1 2 1 2
1 2( , ), ( , )θ θ θ θa a , the quadratic form IX  is entirely determined by the so-called 

metric coefficients 

 1 2 1 2 1 2
αβ α β( , ) ( , ) ( , )a θ θ θ θ θ θ a a  . (2.2.8) 

Indeed, for  1 2α
α( , ) Xv θ θ T Sv a , one has 

    1 2 1 2 1 2 1 2β βα α
α β α βI ( ) ( , ) ( , ) ( , ) ( , )X v θ θ v θ θ v v θ θ θ θ   v a a a a  

 1 2βα
αβ( , )v v a θ θ  . (2.2.9) 
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The metric coefficients satisfy 

 1 2 1 2
αβ βα( , ) ( , )a θ θ a θ θ  (2.2.10) 

  
21 2 1 2

11 1( , ) ( , ) 0a θ θ θ θa  (2.2.11) 

  
21 2 1 2

22 2( , ) ( , ) 0a θ θ θ θa  (2.2.12) 

   
21 2 1 2 1 2

11 22 12( , ) ( , ) ( , ) 0a θ θ a θ θ a θ θ  , (2.2.13) 

the last property being a direct consequence of the Cauchy-Schwartz inequality (e.g., 

HOFFMAN & KUNZE 1971, pp. 277-278), together with the fact that the vectors 1 2
1( , )θ θa  

and 1 2
2 ( , )θ θa  are linearly independent. In brief, the matrix 

 
1 2 1 2

11 121 2
1 2 1 2

21 22
αβ

( , ) ( , )
( , )

( , ) ( , )

a θ θ a θ θ
a θ θ

a θ θ a θ θ

 
     

 
 (2.2.14) 

is symmetric and positive definite (e.g., MAGALHÃES 2003, th. 6.32). Moreover, if  2 ;F C Ω E , 

then the real-valued maps 1 2 1 2
αβ( , ) ( , )θ θ a θ θ  and 1 2 1 2 1 2

αβ( , ) ( , ) det ( , )θ θ a θ θ a θ θ     

are of class 1C . Specifically, in view of (2.2.6)-(2.2.7), 

      
2 21 2 1 2 1 2

11 2 31 1( , ) 1 ( , ) ( , )a θ θ D x θ θ D x θ θ  (2.2.15) 

   1 2 1 2 1 2 1 2 1 2 1 2
12 21 2 2 3 31 2 1 2( , ) ( , ) ( , ) ( , ) ( , ) ( , )a θ θ a θ θ D x θ θ D x θ θ D x θ θ D x θ θ  (2.2.16) 

      
2 21 2 1 2 1 2

22 2 32 2( , ) ( , ) ( , ) 1a θ θ D x θ θ D x θ θ  (2.2.17) 

    
21 2 1 2 1 2 1 2 1 2

2 3 2 31 2 2 1( , ) 1 ( , ) ( , ) ( , ) ( , )a θ θ D x θ θ D x θ θ D x θ θ D x θ θ  . (2.2.18) 

The first fundamental form allows us to make measurements on the surface – length 

of curves, angles between intersecting curves, areas of regions – without referring back to 

the ambient space E  where the surface lies. For instance, the angle between the coordinate 

curves at  1 2( , )X F θ θ S  is defined to be the angle between the vectors 1 2
1( , )θ θa  and 

1 2
2 ( , )θ θa  and, therefore, is given by 

 
1 2

1 2 12

1 2 1 2
11 22

( , )
cosα( , )

( , ) ( , )

a θ θ
θ θ

a θ θ a θ θ
 . (2.2.19) 

Accordingly, the coordinate curves are orthogonal at X  if and only if 1 2
12 ( , ) 0a θ θ . In 

view of (2.2.16), this is not necessarily the case for our specific choice of parametrisation, a 

fact that cannot be overemphasised. 

The area form ( )dS X  at  1 2( , )X F θ θ S  is defined as (CIARLET 2000, th. 2.1-1, or 

CIARLET 2005, th. 2.3-1) 
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  1 2 1 2( ) ( , )dS X a θ θ dθ dθ  . (2.2.20) 

The integrals of continuous real-valued functions defined on S  can now be computed by 

referring them back to Ω : 

   1 2 1 2 1 2( ) ( ) ( , ) ( , )
Ω

f X dS X f F θ θ a θ θ dθ dθ  
S

 . (2.2.21) 

Observe that the integrand on the right-hand side of (2.2.21) is continuous on the compact 

(i.e., closed and bounded) and Jordan measurable set  2Ω , and is thus Riemann 

integrable over Ω  (vide supra, note 16). In particular, the area of S  is 

   1 2 1 2( ) ( , )
Ω

dS X a θ θ dθ dθ
S

 . (2.2.22) 

Moreover, Ω  was specifically chosen as a vertically simple region of  2 , and consequently 

the integral on the right-hand side of (2.2.21) can be written as an iterated integral 

(DUISTERMAAT & KOLK 2004, th. 6.4.5): 

    
1

2

1
1

( )1 2 1 2 1 2 1 2 1 2 2 1

0 ( )
( , ) ( , ) ( , ) ( , )

L g θ

Ω g θ
f F θ θ a θ θ dθ dθ f F θ θ a θ θ dθ dθ         .(2.2.23) 

* * * 

Given a point X  in S , the tangent space XT S  can be written as the direct sum of 

(i) the subspace XT  of all vectors tangent at X  to the cross-section middle line passing 

through that point and (ii) the orthogonal complement of XT , denoted by 
XT : 

  X X XT S T T  . (2.2.24) 

This direct-sum decomposition of XT S  has an intrinsic geometrical meaning (independent 

of the choice of parametrisation for S ). It is therefore natural to consider an orthonormal 

basis for XT S  with one member in XT  and the other in 
XT . 

If we insist on viewing S  through the parametrisation :F ΩE , the point X S  

is identified with its Gaussian coordinates 1 2( , )θ θ Ω  (relative to F ) and 

   1 2
2span ( , )X θ θT a  . (2.2.25) 

For definiteness, the desired orthonormal ordered basis for 1 2( , )F θ θT S , which we shall 

denote by  1 2 1 2
I II( , ), ( , )θ θ θ θo o ,22 is constructed so as to exhibit the following properties: 

                                                 
22 To distinguish between the two ordered bases for 1 2( , )F θ θT S ,  1 2 1 2

1 2( , ), ( , )θ θ θ θa a  and  1 2 1 2
I II( , ), ( , )θ θ θ θo o , 

we shall employ upper-case Greek letters and Roman numerals for the indices pertaining to the 

orthonormal basis, which therefore take values in the set  I, II . The summation convention applies, as 

usual, to twice-repeated upper-case Greek indices. 
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(i) 1 2 1 2
II 2( , ) ( , )θ θ θ θo a  and (ii) the new basis and the covariant basis have the same 

orientation. A trivial application of the Gram-Schmidt process (e.g., HOFFMAN & KUNZE 

1971, pp. 280-281) yields 

  α1 2 1 2 1 2
α( , ) ( , ) ( , )Σ Σθ θ C θ θ θ θo a  , (2.2.26) 

with 

 
 

 
 

1 1 2
I 21 2 1 2 1 2 1 2

2 3 2 31 2 2 1

1
( , )

1 ( , ) ( , ) ( , ) ( , )
C θ θ

D x θ θ D x θ θ D x θ θ D x θ θ
  

 
1 2

1

( , )a θ θ
 (2.2.27) 

 
 

 
 

 

1 2 1 2 1 2 1 2
2 1 2 2 2 3 3

I 21 2 1 2 1 2 1 2
2 3 2 3

1 2 1 2

1 2 2 1

( , ) ( , ) ( , ) ( , )
( , )

1 ( , ) ( , ) ( , ) ( , )

D x θ θ D x θ θ D x θ θ D x θ θ
C θ θ

D x θ θ D x θ θ D x θ θ D x θ θ
  

  
1 2

12

1 2

( , )

( , )

a θ θ

a θ θ
 (2.2.28) 

  1 1 2
II ( , ) 0C θ θ  (2.2.29) 

  2 1 2
II ( , ) 1C θ θ  . (2.2.30) 

2.2.5 Through-the-thickness description 

To each 1 2( , )θ θ Ω  we can easily assign a unit vector 1 2
3( , )θ θa  orthogonal to 

1 2( , )F θ θT S  by setting 

 
1 2 1 2 1 2 1 2

1 2 1 2 1 2
3 1 2 1 2 1 2

1 2

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

θ θ θ θ θ θ θ θ
θ θ

θ θ θ θ a θ θ

 
 


a a a a

a
a a

  

 1 2 1 2
I II( , ) ( , )θ θ θ θ o o  . (2.2.31) 

Except for negligible inaccuracies near the end sections 0A  and LA , the reference 

shape B E  of the tapered thin-walled bar with open cross-sections can now be 

described as the image of the set   31 1
2 2,Ω    under the map given by 

 1 2 3 1 2 3 1 2 1 2
3( , , ) ( , ) ( , ) ( , )θ θ θ F θ θ θ t θ θ θ θ  aF  , (2.2.32) 

where the map 1 2 1 2( , ) ( , )θ θ Ω t θ θ    , assumed to be continuous, defines the wall 

thickness at each point 1 2( , )F θ θ  of the middle surface S . The map  1 1
2 2: ,Ω   EF  

given by equation (2.2.32) is called the canonical extension of the parametrisation F  

(CIARLET 2000, p. 144) and the coordinate  3 1 1
2 2,θ    is called the transverse variable. 
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Since  2 ;F C Ω E , it can be shown that its canonical extension F  is injective provided 

that  1 2
1 2

max ( , )max ( , )θ θ Ωt t θ θ  is small enough (CIARLET 2000, th. 3.1-1), a fact that will 

be taken for granted. The geometrical description of B  embodied in equation (2.2.32) is 

therefore a meaningful one, in the sense that to each point X B  there corresponds a 

unique ordered triplet  1 2 3 1 1
2 2( , , ) ,θ θ θ Ω    such that 1 2 3( , , )X θ θ θ F . 

2.3 KINEMATICS 

The one-dimensional model developed in this chapter rests upon regarding a tapered 

thin-walled bar with open cross-sections as a membrane shell that is subjected to the 

following internal constraints: 

(V1) To within the first-order, each cross-section middle line does not deform in its own plane. 

(V2) On the middle surface of the bar, the linearised shear strain I II II Iγ γ   vanishes. 

These constraints are clearly an extension to the tapered case of the hypotheses 

underpinning the classical theory of Vlasov for prismatic thin-walled open beams (VLASOV 

1961, p. 7). 

Let the smooth enough map :ΩU V  represent a displacement field of the 

middle surface  F ΩS  of the bar, i.e., for each 1 2( , )θ θ Ω , the vector 1 2( , )θ θU  is the 

displacement of the (material) point (whose reference place is) 1 2( , )F θ θ S .23 In this 

section, we shall examine the restrictions placed on U  by the constraints (V1)-(V2). 

According to (V1), the displacement of an arbitrary cross-section middle line 1θL , 

 1 0,θ L  – that is, the restriction to  1 1 1
1 2( ), ( )θ g θ g θ     of :ΩU V  – can be 

broken down into (i) an infinitesimal rigid displacement (GURTIN 1972, pp. 30-32, GURTIN 

1981, pp. 55-56) 

    1 1 1 2 1 2
2 2 3 3( ) ( ) ( , ) ( , )θ θ x θ θ x θ θW Φ e e  , (2.3.1) 

specified by the vectors 1 1( ) ( )i iθ W θW e  and 1 1( ) ( )i iθ Φ θΦ e , (ii) followed by an out-

of-plane warping displacement 1 2( , )f θ θ  normal to the plane of the rotated middle line 

(i.e., along 1
1 1( )θ e Φ e ), which, upon retaining only first-order terms, reduces to 

                                                 
23 This approach is not entirely intrinsic, since we are viewing the displacement field U  through the 

parametrisation F  and not as an object defined on the surface S  itself. With the usual identification of 

 ,L V  with V  (vide supra, note 20), the partial derivatives αD U  are again maps from Ω  into V . We 
will loosely refer to maps defined on Ω  as fields. 
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 1 2
1( , )f θ θ e  . (2.3.2) 

Therefore, a displacement field :ΩU V  consistent with the constraint (V1) admits the 

representation (cf. SIMO & VU-QUOC 1991, eq. 10) 

      1 2 1 1 1 2 1 2 1 2
2 2 3 3 1( , ) ( ) ( ) ( , ) ( , ) ( , )θ θ θ θ x θ θ x θ θ f θ θU W Φ e e e  (2.3.3) 

or, in terms of Cartesian components, 

 1 2 1 2 1 1 2 1 1 2 1 1 2
1 1 1 3 2 2 3( , ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )U θ θ θ θ W θ x θ θ Φ θ x θ θ Φ θ f θ θ     U e  (2.3.4) 

 1 2 1 2 1 1 2 1
2 2 2 3 1( , ) ( , ) ( ) ( , ) ( )U θ θ θ θ W θ x θ θ Φ θ   U e  (2.3.5) 

 1 2 1 2 1 1 2 1
3 3 3 2 1( , ) ( , ) ( ) ( , ) ( )U θ θ θ θ W θ x θ θ Φ θ   U e  . (2.3.6) 

In the representation (2.3.4) for the displacement component along 1e , the sum 
1 1 2

1( ) ( , )W θ f θ θ  is well-defined, but the individual terms 1
1( )W θ  and 1 2( , )f θ θ  are not. 

This undesirable feature is circumvented by appending the condition 

  1 1( , 0) 0, 0,f θ θ L    . (2.3.7) 

We now turn to the examination of the constraint (V2). Let γ  denote the linearised 

membrane strain tensor field (or linearised change of metric tensor field) associated with a 

given (smooth enough) displacement field U . The corresponding covariant component fields 

are given by (BLOUZA & LE DRET 1999, lemma 2, CIARLET 2000, th. 2.4-1, CIARLET 2005, 

th. 4.2-1) 

  1 2 1 2 1 2 1 2
α α( , ) ( , ) ( , ) ( , )β βγ θ θ θ θ θ θ θ θa γ a  

     1 2 1 2 1 2 1 2
α α

1
( , ) ( , ) ( , ) ( , )

2 β βθ θ D θ θ θ θ D θ θa U a U  . (2.3.8) 

The substitution of (2.2.6)-(2.2.7) and (2.3.5)-(2.3.6) into this definition yields, after routine 

calculations, 

  1 2 1 2 1 2 1 1 2 1
11 1 1 1 2 2 3 1( , ) ( , ) ( , ) ( ) ( , ) ( )γ θ θ D U θ θ D x θ θ W θ x θ θ Φ θ     

  1 2 1 1 2 1
1 3 3 2 1( , ) ( ) ( , ) ( )D x θ θ W θ x θ θ Φ θ    (2.3.9) 

  1 2 1 2 1 2 1 2 1 1 2 1
12 21 2 1 2 2 2 3 1

1
( , ) ( , ) ( , ) ( , ) ( ) ( , ) ( )

2
γ θ θ γ θ θ D U θ θ D x θ θ W θ x θ θ Φ θ       

  1 2 1 1 2 1
2 3 3 2 1( , ) ( ) ( , ) ( )D x θ θ W θ x θ θ Φ θ      (2.3.10) 

 1 2
22 ( , ) 0γ θ θ  . (2.3.11) 
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In view of (2.2.26), the components of 1 2( , )θ θγ  with respect to the orthonormal 

ordered basis  1 2 1 2
I II( , ), ( , )θ θ θ θo o  are related to the above covariant components via 

 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )ΣΛ Σ Λγ θ θ θ θ θ θ θ θ o γ o  

 α 1 2 1 2 1 2
α( , ) ( , ) ( , )β

Σ Λ βC θ θ C θ θ γ θ θ   . (2.3.12) 

In particular, one finds 

 1 2 2 11 2 1 2 1 2 1 2 1 2 1 2 1 2
I II II I I II I II 12( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )γ θ θ γ θ θ C θ θ C θ θ C θ θ C θ θ γ θ θ   
    ,(2.3.13) 

and hence the constraint (V2), requiring that 1 2 1 2
I II ( , ) 0, ( , )γ θ θ θ θ Ω    , is in fact 

equivalent to 1 2 1 2
12 ( , ) 0, ( , )γ θ θ θ θ Ω   . 

It now follows from (2.3.10) that 

  1 2 1 2 1 1 2 1
2 1 2 2 2 3 1( , ) ( , ) ( ) ( , ) ( )D U θ θ D x θ θ W θ x θ θ Φ θ     

  1 2 1 1 2 1
2 3 3 2 1( , ) ( ) ( , ) ( )D x θ θ W θ x θ θ Φ θ    (2.3.14) 

and, after integration with respect to the second Gaussian coordinate, one finds 

 1 2 1 1 1 1 1
1 1 2 2 3 3( , ) ( , 0 ) ( , 0 ) ( ) ( , 0 ) ( )U θ θ U θ x θ W θ x θ W θ     

 1 2 1 1 2 1 1 2 1
2 2 3 3 1( , ) ( ) ( , ) ( ) ( , ) ( )x θ θ W θ x θ θ W θ ω θ θ Φ θ      , (2.3.15) 

with 

   
2

1 2 1 1 1 1
2 2 3 3 2 20

( , ) ( , ) ( , ) ( , ) ( , )
θ

ω θ θ x θ s D x θ s x θ s D x θ s ds  . (2.3.16) 

For fixed  1 0,θ L , the restriction of ω  to      
1 1 1

1 2( ) , ( )θ g θ g θ  represents a sectorial 

coordinate on 1θL  (viewed through the parametrisation F , of course), with origin at 
1( , 0 )F θ  and pole at  1

1O θ e  (VLASOV 1961, p. 16) – see figure 2.3.1 for a geometrical 

interpretation. Moreover, by definition,  1 1( , 0) 0, 0,ω θ θ L   . The field :ω Ω   is 

continuous on Ω , with continuous partial derivative 1D ω .24
 

                                                 
24 Let 1 2( , )θ θ Ω . Using Leibniz rule to differentiate under the integral sign (e.g., BARTLE 1967, th. 23.10), 


2

1 2 1 1 1 1
1 1 2 2 3 2 1 2 30

( , ) ( , ) ( , ) ( , ) ( , )
θ

D ω θ θ D x θ s D x θ s x θ s D D x θ s   

 1 1 1 1
1 3 2 2 3 1 2 2( , ) ( , ) ( , ) ( , )D x θ s D x θ s x θ s D D x θ s ds   . 

Since the integrand is continuous and bounded on Ω , this result extends continuously to Ω  – the 
extended map is also written as 1D ω . The author is indebted to Prof. Isabel N. Figueiredo for suggesting 
the use of Leibniz rule. 
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Figure 2.3.1: Restriction of ω  to      
1 1 1

1 2( ) , ( )θ g θ g θ  – Geometrical interpretation 

Bearing in mind (2.3.7), the comparison of (2.3.4) with (2.3.15) provides 

 1 1 1 1 1 1
1 1 2 2 3 3( ) ( , 0 ) ( , 0 ) ( ) ( , 0 ) ( )W θ U θ x θ W θ x θ W θ     (2.3.17) 

 1 1
2 3( ) ( )Φ θ W θ   (2.3.18) 

 1 1
3 2( ) ( )Φ θ W θ  , (2.3.19) 

 1 2 1 2 1
1( , ) ( , ) ( )f θ θ ω θ θ Φ θ   (2.3.20) 

and so we may write 

 1 2 1 1 2 1 1 2 1 1 2 1
1 1 2 2 3 3 1( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )U θ θ W θ x θ θ W θ x θ θ W θ ω θ θ Φ θ       . (2.3.21) 

The constraint (V2) is thus seen to place the following restrictions on a displacement 

field of the form (2.3.3): 

(i) The (infinitesimal) rotations 2Φ  and 3Φ , about axes parallel to 2e  and 3e , are identified 

with the derivatives of 3W  and 2W  (up to sign), as in the Euler-Bernoulli beam theory.25 

(ii) For each cross-section middle line (i.e., for fixed 1θ  in the interval  0, L ), the out-of-

plane warping displacements are given by the product of (ii1) minus the rate of twist 
1

1( )Φ θ , which defines the warping amplitude, by (ii2) the sectorial coordinate 

                                                 
25 Observe that 

 1 1
2 1 3( ) ( )Φ θ θ   Φ e e  

 1 1
3 1 2( ) ( )Φ θ θ  Φ e e  . 

1
2( , )x θ s  

1
3( , )x θ s  

1 1
2 3( , )sinβ ( , )cosβx θ s x θ s  

β

1( , )F θ s  

3e  

2e  

1
2( , )θ sa  

1θ
L  

1( ,0)F θ  
1

1O θ e  

1 2( , )F θ θ  

3e  

2e  

2θ

1θL  

1 21
2 ( , )ω θ θ  

1
1O θ e  

1
2 3sinβ= ( , )D x θ s  

1
2 2cosβ= ( , )D x θ s  
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 1 1 1
1 2( ) , ( )ω θ g θ g θ    , of a purely geometrical character, which provides the unit-

amplitude distribution of warping displacements over the middle line 1θL . 

In other words, Vlasov’s “law of sectorial areas” for the longitudinal displacement 1U  

(VLASOV 1961, p. 17) remains valid in the case of tapered members. 

A displacement field :ΩU V  of the middle surface is called admissible if it can 

be represented in the form 

  1 2 1 1 1 2 1 2 1 2 1
2 2 3 3 1 1( , ) ( ) ( ) ( , ) ( , ) ( , ) ( )θ θ θ θ x θ θ x θ θ ω θ θ Φ θ    U W Φ e e e  , (2.3.22) 

 1 1( ) ( )i iθ W θW e  (2.3.23) 

 1 1 1 1
1 1 3 2 2 3( ) ( ) ( ) ( )θ Φ θ W θ W θ   Φ e e e  , (2.3.24) 

with (i) 1W  continuously differentiable on  0, L  and (ii) 2W , 3W  and 1Φ  twice continuously 

differentiable on the same interval. The maps iW  ( 1, 2, 3i  ) and 1Φ  are collectively called 

the generalised displacements. In the same vein, a linearised membrane strain tensor field 

γ  associated with an admissible displacement field U  is labelled “admissible” as well. In 

the light of the previous discussion, the only non-vanishing covariant component field of 

an admissible γ  is given by 

 1 2 1 1 2 1 1 2 1 1 2 1
11 1 2 2 3 3 1( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )γ θ θ W θ x θ θ W θ x θ θ W θ ω θ θ Φ θ        

 1 2 1
1( , ) ( )ψ θ θ Φ θ  , (2.3.25) 

where 

   1 2 1 2 1 2 1 2 1 2 1 2
1 3 1 2 2 1 3( , ) ( , ) ( , ) ( , ) ( , ) ( , )ψ θ θ D ω θ θ x θ θ D x θ θ x θ θ D x θ θ  . (2.3.26) 

The real-valued field ψ  defined on Ω  by (2.3.26) is continuous,26 and so is the field 

11 :γ Ω  . Introducing the generalised strains 

 1 1
1( ) ( )ε θ W θ  (2.3.27) 

 1 1
1 1( ) ( )θ Φ θ   (2.3.28) 

 1 1
2 3( ) ( )θ W θ    (2.3.29) 

 1 1
3 2( ) ( )θ W θ    (2.3.30) 

 1 1
1( ) ( )Γ θ Φ θ   , (2.3.31) 

equation (2.3.25) becomes 
  

                                                 
26 Vide supra, note 24. 
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 1 2 1 1 2 1 1 2 1 1 2 1
11 2 3 3 2( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )γ θ θ ε θ x θ θ θ x θ θ θ ω θ θ Γ θ      

 1 2 1
1( , ) ( )ψ θ θ θ  . (2.3.32) 

The generalised strains have a clear physical meaning: (i) ε , 2  and 3  are the linearised 

extension and curvature components of the line segment    1 1
1 , 0O θ θ Le  – which, in 

general, is not identifiable with a material line –, upon being carried into 

 1 1 1
1 ( ), 0O θ θ θ L   e W , (ii) 1  is the rate of twist and (iii) Γ  is the derivative of the 

warping amplitude (i.e., the derivative of the rate of twist). 

Finally, using (2.3.12) and (2.2.27), one finds that 

    
  

21 1 21 2 1 2 1 2 1 2 1 2 1 2
I I I 11 I I 12( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )γ θ θ C θ θ γ θ θ C θ θ C θ θ γ θ θ  

  
22 1 2 1 2

I 22( , ) ( , )C θ θ γ θ θ  

   
1 2

21 1 2 1 2 11
I 11 1 2

( , )
( , ) ( , )

( , )

γ θ θ
C θ θ γ θ θ

a θ θ
 

 
 

1 1 2 1 1 2 1 1 2 1 1 2 1
2 3 3 2 1

21 2 1 2 1 2 1 2
1 2 2 3 2 2 1 3

( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

1 ( , ) ( , ) ( , ) ( , )

ε θ x θ θ θ x θ θ θ ω θ θ Γ θ ψ θ θ θ

D x θ θ D x θ θ D x θ θ D x θ θ

     


 
 (2.3.33) 

is the only non-vanishing component field of an admissible γ  with respect to the 

orthonormal ordered basis field  1 2 1 2 1 2
I II( , ) ( , ), ( , )θ θ Ω θ θ θ θ  o o . Clearly, I I :γ Ω   

is continuous and can be thought of as the superposition of five basic strain modes, namely 

 1
a

 2x
a

 3x

a
 ω

a
 

ψ
a

 , (2.3.34) 

whose amplitudes are modulated by the generalised strains. 

2.4 MEMBRANE FORCES, ACTIVE AND REACTIVE. 

CONSTITUTIVE EQUATION 

As shown in the preceding section, the internal constraints (V1)-(V2) restrict the 

value at 1 2( , )θ θ Ω  of the linearised membrane strain tensor field γ  to lie in the space 

      1 2 1 2
1 2 1 2

I I( , ) ( , )
span ( , ) ( , )

θ θ F θ θ
θ θ θ θ Sym To oC S  ,27 (2.4.1) 

                                                 
27 Let U  be a n-dimensional Euclidean vector space and write  L U  for the real vector space of all linear 

transformations from U  into itself, with addition and multiplication by scalars defined in the usual 
pointwise manner. The elements of  L U  are identified with (second-order) tensors. When there is no 
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called the constraint space (PODIO-GUIDUGLI 2000, § 17.2, PODIO-GUIDUGLI & VIANELLO 

1992). The value at 1 2( , )θ θ Ω  of the membrane force tensor field n  is then split into 

active (or determinate) and reactive (or latent) parts, denoted ( ) 1 2( , )A θ θn  and ( ) 1 2( , )R θ θn , 

as follows:28 

 1 2 ( ) 1 2 ( ) 1 2( , ) ( , ) ( , )A Rθ θ θ θ θ θ n n n  (2.4.2) 

  1 2
( ) 1 2

( , )
( , )A

θ θ
θ θn C  (2.4.3) 

                                                                                                                                               
danger of confusion, the value of A  at x  is written multiplicatively as A x . Composition of tensors is 
also denoted multiplicatively: 

( ) ( ) ,  AB a A Ba a U . 

To each ordered pair ( , ) U Uu v  there corresponds a tensor   L Uu v , called the tensor product 
or dyad of u  and v , which sends each Ua  to ( ) v a u U : 

( ) ( ) ,    u v a v a u a U  . 

Given a basis  1 , , nu u  for U , the set  , , 1, ,i j i j n  u u  is a basis for  L U . 

The transpose of   L UA  is the tensor TA  uniquely defined by 

, ,T    UAu v u A v u v  . 

In particular, 

( )T  u v v u  . 

A tensor S  is said to be symmetric if TS S . The set 

    TSym   U L US S S  

forms a 1
2 ( 1)n n  -dimensional subspace of  L U . Given a basis  1 , , nu u  for U , then a basis for 

 Sym U  is provided by 

,i j j i i j   u u u u  . 

The trace is the linear functional on  L U  that assigns to each tensor A  the scalar tr( )A  satisfying 

tr( ) , ,    u v u v u v U  . 

This definition implies that the trace of a tensor is equal to the sum of the diagonal entries of its matrix 
representation with respect to an arbitrarily chosen ordered basis for U . 

The inner product on U  induces an inner product on  L U , denoted by two dots, via 

( ) : ( ) ( )( ), , , ,      u v w x u w v x u v w x U  , 

so that 

: tr( ) tr( )T T A B A B A B  . 
With this definition,  L U  becomes an Euclidean vector space in its own right. 

The norm corresponding to the induced inner product on  L U , often called the Frobenius norm, is 
defined in the usual way as 

: tr( )T
F  A A A A A  . 

28 Cf. the “principle of determinism for simple materials subjected to internal constraints” laid down in 
TRUESDELL (1991, ch. 4, § 7) or TRUESDELL & NOLL (2004, § 30). Cf. also ANTMAN & MARLOW (1991). 
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   1 2
( ) 1 2 1 2 1 2

II II( , )
( , ) span ( , ) ( , ) ,R

θ θ
θ θ θ θ θ θn o oC   

 1 2 1 2 1 2 1 2
I II II I( , ) ( , ) ( , ) ( , )θ θ θ θ θ θ θ θ  o o o o  . (2.4.4) 

In (2.4.4), 
1 2( , )θ θC  denotes the orthogonal complement of 1 2( , )θ θC  in  1 2( , )F θ θSym T S . The 

reactive part ( ) 1 2( , )R θ θn , being orthogonal to 1 2( , )θ θC , performs no work in any admissible 

deformation. Its role is that of maintaining the constraints. Assuming that the reference 

placement corresponds to a natural state (CIARLET 1988, p. 118), the active part 
( ) 1 2( , )A θ θn  is obtained from the strain 1 2( , )θ θγ  through a linearly elastic constitutive 

equation of the form 

 ( ) 1 2 1 2 1 2( , ) ( , ) ( , )A θ θ θ θ θ θ n γ  , (2.4.5) 

where the elasticity tensor 1 2( , )θ θ  is a linear transformation from 1 2( , )θ θC  into itself. 

Our immediate task is to obtain a suitable definition for 1 2( , )θ θ . We start by 

associating with the constraint space 1 2( , )θ θC  the subgroup of all rotations   1 2( , )F θ θSO Tρ S  

such that 

  1 2
1 2

( , )
( , ) T

θ θ
θ θρ ργ C  (2.4.6) 

whenever  1 2
1 2

( , )( , ) θ θθ θγ C  (i.e., that leave 1 2( , )θ θC  invariant).29 This subgroup specifies the 

maximal material symmetry that is compatible with the constraint space 1 2( , )θ θC  (PODIO-

GUIDUGLI 2000, § 18, PODIO-GUIDUGLI & VIANELLO 1992). Since 

        1 2 1 2 1 2 1 2
I I I I( , ) ( , ) ( , ) ( , )Tθ θ θ θ θ θ θ θρ ρ ρ ρo o o o  , (2.4.7) 

ρ  must be either the identity or the central inversion in order to meet the requirement 

(2.4.6). Therefore, the maximal material symmetry compatible with the constraints (V1)-(V2) 

is that of an orthotropic membrane, with orthotropy directions 1 2
I( , )θ θo  and 1 2

II ( , )θ θo  at 
1 2( , )F θ θ S .30 Then, a straightforward application of the constrained representation 

                                                 
29 Let U  and  L U  be as in note 27. A (second-order) tensor   L UQ  is orthogonal if it preserves the inner 

product of vectors, that is to say 

    , ,    UQ u Q v u v u v  . 

It can be shown that a tensor Q  is orthogonal if and only if 1 T Q Q , from which follows that 
 det 1 Q . If  det 1Q , the orthogonal tensor Q  is called a rotation. The set of all rotations in 

 L U  forms a group under composition, called the special orthogonal group  SO U . 

30 This is a particular case of curvilinear anisotropy, a kind of anisotropy discussed by SAINT-VENANT (1865) 
– see also LEKHNITSKII (1963, § 9) and LOVE (1944, § 110). We are thus able to assign a precise meaning to 
Wilde’s rather cryptic remark that “the membrane is not isotropic under the assumed approximations 
[(V1)-(V2)]”, made just after having used an isotropic constitutive relation (WILDE 1968). 
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theorem of PODIO-GUIDUGLI & VIANELLO (1992) to the elasticity tensor of an unconstrained 

orthotropic membrane (LEKHNITSKII 1963, ch. 1) yields 

 
 

 



1 2

1 2 1 2 1 2I
I I

I II II I

( , )
( , ) ( , ) ( , )

1 ν ν

E t θ θ
θ θ θ θ θ θP P  

   1 2 1 2 1 2
I I( , ) ( , ) ( , )E t θ θ θ θ θ θP P  , (2.4.8) 

where IE  is the Young modulus relative to the direction 1 2
I( , )θ θo , I IIν  and II Iν  are the 

Poisson ratios relative to the ordered pairs  1 2 1 2
I II( , ), ( , )θ θ θ θo o  and  1 2 1 2

II I( , ), ( , )θ θ θ θo o  

of mutually orthogonal directions, and 

  1 2 1 2 1 2
I I I( , ) ( , ) ( , )θ θ θ θ θ θP o o  (2.4.9) 

is the perpendicular projection onto the span of 1 2
I( , )θ θo  (e.g., TRUESDELL 1991, pp. 314-315). 

It is assumed that the modified elastic modulus 

 
 




 I

I II II I1 ν ν

E
E  (2.4.10) 

is independent of the point in S  under consideration.31 

From (2.4.5) it now follows 

 ( ) 1 2 ( ) 1 2 1 2 1 2
I I I I( , ) ( , ) ( , ) ( , )A Aθ θ n θ θ θ θ θ θ n o o  

 1 2 1 2 1 2 1 2
I I I I( , ) ( , ) ( , ) ( , )E t θ θ γ θ θ θ θ θ θ  o o  (2.4.11) 

and the field ( )
I I :An Ω   is clearly continuous. 

2.5 TOTAL POTENTIAL ENERGY 

2.5.1 Strain energy 

Let :ΩU V  be an admissible displacement field of the middle surface 

  F ΩS , specified by the generalised displacements   1, : 0,iW Φ L , and let γ  and 

 ( )An γ  be the associated membrane strain and active membrane force tensor fields. 

The membrane strain energy corresponding to U  is defined as (recall equation (2.2.20)) 

   ( ) 1 2 1 2 1 2 1 21
( , ) : ( , ) ( , )

2
A

m Ω
U θ θ θ θ a θ θ dθ dθn γ  , (2.5.1) 

                                                 
31 This assumption is obviously not essential and it would have been a simple matter to consider E  as a 

function of the Gaussian coordinates 1θ , 2θ . 
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where  ( ) 1 2 1 2 ( ) 1 2 1 2( , ) : ( , ) tr ( , ) ( , )A A Tθ θ θ θ θ θ θ θn γ n γ  and 1 2( , )a θ θ  is given by equation 

(2.2.18).32 In view of our previous results concerning the components of ( ) 1 2( , )A θ θn  and 
1 2( , )θ θγ , mU  reduces to 

 ( ) 1 2 1 2 1 2 1 2
I I I I

1
( , ) ( , ) ( , )

2
A

m Ω
U n θ θ γ θ θ a θ θ dθ dθ    . (2.5.2) 

Then, using the constitutive equation (2.4.11), relating ( ) 1 2
I I ( , )An θ θ  to 1 2

I I ( , )γ θ θ , and 

equations (2.3.33), (2.3.27)-(2.3.31), relating 1 2
I I ( , )γ θ θ  to the generalised displacements 

iW  and 1Φ , one obtains 

  1 1 2 1 1 2 1
1 2 2 3 3( ) ( , ) ( ) ( , ) ( )

2m Ω

E
U W θ x θ θ W θ x θ θ W θ    


  

 21 2 1 1 2 1 * 1 2 1 2
1 1( , ) ( ) ( , ) ( ) ( , )ω θ θ Φ θ ψ θ θ Φ θ t θ θ dθ dθ    , (2.5.3) 

where 

 
 


1 2

* 1 2

31 2
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( , )

( , )

t θ θ
t θ θ

a θ θ
 

 
 


  
 

3
2

1 2

21 2 1 2 1 2 1 2
2 3 2 31 2 2 1

( , )

1 ( , ) ( , ) ( , ) ( , )

t θ θ

D x θ θ D x θ θ D x θ θ D x θ θ
 (2.5.4) 

can be thought of as a reduced wall thickness – indeed, * 1 2 1 20 ( , ) ( , )t θ θ t θ θ  , 
1 2( , )θ θ Ω  , with equality holding if and only if 1 2( , ) 1a θ θ  . 

The integral in equation (2.5.3) is well-defined and can be written as an iterated 

integral (vide supra, § 2.2.4): 

 
1

2

1
1

( ) 1 1 2 1 1 2 1
1 2 2 3 30 ( )
( ) ( , ) ( ) ( , ) ( )

2

L g θ

m g θ

E
U W θ x θ θ W θ x θ θ W θ      


  

 21 2 1 1 2 1 * 1 2 2 1
1 1( , ) ( ) ( , ) ( ) ( , )ω θ θ Φ θ ψ θ θ Φ θ t θ θ dθ dθ   

 (2.5.5) 

Introducing the continuous33 real-valued maps defined on  0, L  by 

 
1

2

1
1

( )* 1 * 1 2 2

( )
( ) ( , )

g θ

g θ
A θ t θ θ dθ   (2.5.6) 

 
1

2

1
1

( )* 1 1 2 * 1 2 2
2 3( )
( ) ( , ) ( , )

g θ

g θ
S θ x θ θ t θ θ dθ   (2.5.7) 

                                                 
32 Vide supra, note 27. 

33 See DUISTERMAAT & KOLK (2004, proof of th. 6.4.5). 



Chapter 2 

42 

 
1

2

1
1

( )* 1 1 2 * 1 2 2
3 2( )
( ) ( , ) ( , )

g θ

g θ
S θ x θ θ t θ θ dθ   (2.5.8) 

 
1

2

1
1

( )* 1 1 2 * 1 2 2

( )
( ) ( , ) ( , )

g θ

ω g θ
S θ ω θ θ t θ θ dθ   (2.5.9) 

 
1

2

1
1

( )* 1 1 2 * 1 2 2

( )
( ) ( , ) ( , )

g θ

ψ g θ
S θ ψ θ θ t θ θ dθ   (2.5.10) 

 
1

2

1
1

( ) 2* 1 1 2 * 1 2 2
2 3( )
( ) ( , ) ( , )

g θ

g θ
I θ x θ θ t θ θ dθ   (2.5.11) 

 
1

2

1
1

( ) 2* 1 1 2 * 1 2 2
3 2( )
( ) ( , ) ( , )

g θ

g θ
I θ x θ θ t θ θ dθ   (2.5.12) 

 
1

2

1
1

( )* 1 2 1 2 * 1 2 2

( )
( ) ( , ) ( , )

g θ

ω g θ
I θ ω θ θ t θ θ dθ   (2.5.13) 

 
1

2

1
1

( )* 1 2 1 2 * 1 2 2

( )
( ) ( , ) ( , )

g θ

ψ g θ
I θ ψ θ θ t θ θ dθ   (2.5.14) 

 
1

2

1
1

( )* 1 1 2 1 2 * 1 2 2
23 2 3( )

( ) ( , ) ( , ) ( , )
g θ

g θ
I θ x θ θ x θ θ t θ θ dθ   (2.5.15) 

 
1

2

1
1

( )* 1 1 2 1 2 * 1 2 2
2 3( )

( ) ( , ) ( , ) ( , )
g θ

ω g θ
I θ x θ θ ω θ θ t θ θ dθ   (2.5.16) 

 
1

2

1
1

( )* 1 1 2 1 2 * 1 2 2
3 2( )

( ) ( , ) ( , ) ( , )
g θ

ω g θ
I θ x θ θ ω θ θ t θ θ dθ   (2.5.17) 

 
1

2

1
1

( )* 1 1 2 1 2 * 1 2 2
2 3( )

( ) ( , ) ( , ) ( , )
g θ

ψ g θ
I θ x θ θ ψ θ θ t θ θ dθ   (2.5.18) 

 
1

2

1
1

( )* 1 1 2 1 2 * 1 2 2
3 2( )

( ) ( , ) ( , ) ( , )
g θ

ψ g θ
I θ x θ θ ψ θ θ t θ θ dθ   (2.5.19) 

 
1

2

1
1

( )* 1 1 2 1 2 * 1 2 2

( )
( ) ( , ) ( , ) ( , )

g θ

ωψ g θ
I θ ω θ θ ψ θ θ t θ θ dθ   , (2.5.20) 

mU  is finally brought into the form 

  2* 1 1 * 1 1 1 * 1 1 1
1 3 1 2 2 1 30

( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )
2

L

m

E
U A θ W θ S θ W θ W θ S θ W θ W θ       


 

  2* 1 1 1 * 1 1 1 * 1 1
1 1 1 1 3 22 ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( )ω ψS θ W θ Φ θ S θ W θ Φ θ I θ W θ        

 * 1 1 1 * 1 1 1
23 2 3 3 2 12 ( ) ( ) ( ) 2 ( ) ( ) ( )ωI θ W θ W θ I θ W θ Φ θ      

  2* 1 1 1 * 1 1 * 1 1 1
3 2 1 2 3 2 3 12 ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )ψ ωI θ W θ Φ θ I θ W θ I θ W θ Φ θ        

  2* 1 1 1 * 1 1
2 3 1 12 ( ) ( ) ( ) ( ) ( )ψ ωI θ W θ Φ θ I θ Φ θ     

  2* 1 1 1 * 1 1 1
1 1 12 ( ) ( ) ( ) ( ) ( )ωψ ψI θ Φ θ Φ θ I θ Φ θ dθ      . (2.5.21) 
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Notice that the integrands in (2.5.6)-(2.5.20) consist of products of pairs of the basic strain 

modes (2.3.34), multiplied by the additional factor t a . 

So far, the bar has been treated as a membrane shell, that is, it has been reduced to its 

middle surface, on which the shear strain  I II II Iγ γ  is constrained to vanish. In order to 

account, in an approximate way, for a variation of shear deformation over each cross-

section (with a zero value at the middle line), the term 

  21 1 1
SV 10

( ) ( )
2

LG
U J θ Φ θ dθ   , (2.5.22) 

where G  is the shear modulus34 and 1( )J θ  is the torsion constant of a prismatic bar with 

cross-section 1θA  (FÖPPL 1917a, 1917b), is added to the membrane strain energy.35 

Therefore, the total strain energy stored in the bar is 

 SVmU U U   . (2.5.23) 

2.5.2 Work of the external loads 

The middle surface of the bar is subjected to a system of dead surface and edge 

loads,36 which are referred to as shell loads (GJELSVIK 1981, pp. 15-16). This load system is 

deemed smooth enough so that there exist (i) continuous maps  , : 0, L Vq m  and 

  : 0,b L , (ii) vectors 0Q , LQ , 0M , and LM  and (iii) real numbers 0B  and LB , 

collectively referred to as bar loads (GJELSVIK 1981, pp. 25-27), such that the work 

performed in an admissible displacement field :ΩU V  of the middle surface (defined 

in equations (2.3.22)-(2.3.24)) can be written in the form 

  1 1 1 1 1 1 1
10

( ) ( ) ( ) ( ) ( ) ( )
L

eW θ θ θ θ b θ Φ θ dθ     q W m Φ  

        0 0(0) ( ) (0) ( )L LL LQ W Q W M Φ M Φ  

 0 1 1(0) ( )LB Φ B Φ L    . (2.5.24) 

In terms of Cartesian components, we write 

 1 1( ) ( )i iθ q θq e  (2.5.25) 

 1 1( ) ( )i iθ m θm e  (2.5.26) 

                                                 
34 As remarked by MASSONNET (1982, 1983), there is no reason to adopt different shear moduli. 
35 A more consistent model, without this ad hoc approximation, would require more sophisticated constraints 

on the displacement field (of the whole bar and not merely of the middle surface) – in so far as only prismatic 
bars are concerned, see GJELSVIK (1981, ch. 1). 

36 On the concept of dead loads, see CIARLET (1988, § 2.7). 
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 0 0 . i iQQ e  (2.5.27) 

 .L L i iQQ e  (2.5.28) 

 0 0 . i iMM e  (2.5.29) 

 .L L i iMM e  (2.5.30) 

and equation (2.5.24) becomes 

     1 1 1 1 1 1
1 1 2 30

( ) ( ) ( ) ( ) ( ) ( )
L

e i iW q θ W θ m θ Φ θ m θ W θ  

 1 1 1 1 1
3 2 1( ) ( ) ( ) ( )m θ W θ b θ Φ θ dθ     

 0 . .(0) ( )i i L i iQ W Q W L   

 0 .1 1 0 . 2 3 0 . 3 2(0) (0) (0)M Φ M W M W      

 .1 1 . 2 3 . 3 2( ) ( ) ( )L L LM Φ L M W L M W L      

 0 1 1(0) ( )LB Φ B Φ L    . (2.5.31) 

The physical significance of the bar loads is clear: (i) the maps q , m  and b  

represent the applied distributed force, moment and bimoment per unit length of the line 

segment    1 1
1 , 0O θ θ Le , while (ii) 0Q , 0M , 0B  and LQ , LM , LB  are applied 

concentrated forces, moments and bimoments at the end points O  and  1O L e . The 

bimomental loads are directly tied to the warping of the cross-sections37 and depend only 

on the shell loads acting along 1e . 

It should be noticed that the longitudinal shell loads cannot merely be replaced by a 

statically equivalent system of bar loads, an observation that applies to tapered and 

prismatic bars alike. Indeed, the condition of static equivalence is not sufficient to 

characterise fully the system of bar loads – this system must also be complete, in the sense 

that the equality between the work performed by the shell loads and the work performed 

by the bar loads, as expressed in equations (2.5.24) or (2.5.31), is required to hold for every 

admissible displacement field of the middle surface. This point, which is missed by 

MURRAY (1986, § 2.3.1), is clearly illustrated by the example in figure 2.5.1, taken from 

VLASOV (1961, pp. 10-11).38 The applied longitudinal force in (a) is statically equivalent to 

the sum of the systems of forces shown in (b), (c) and (d), which cause stretching (b) and 

bending in the principal planes of inertia (c, d). The system (e) is statically equivalent to zero 

                                                 
37 In fact, they are called warping loads by GJELSVIK (1981, p. 27). 

38 For a similar example, see ODEN & RIPPERGER (1981, § 7.1). 
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Figure 2.5.1: I-section cantilever acted by eccentric longitudinal force (VLASOV 1961, p. 10) 

force and zero moment (i.e., it is self-equilibrating), but nevertheless causes bending of the 

flanges in opposite directions – this effect is not just local, instead it exhibits a slow rate of 

decay with increasing distance from the section where the self-equilibrating external forces 

are applied.39 As a result, the thin-walled bar is twisted. 

2.5.3 Total potential energy 

The total potential energy Π  of the bar-load system is now given by the sum of the 

strain energy U  and the potential of the external loads, the latter being the negative of the 

work eW  they perform: 

                                                 
39 According to Saint-Venant’s principle, or “principle of the elastic equivalence of statically equipollent 

systems of load”, the strains and stresses that are produced in a body by the application, to a small part of 
its surface, of a system of forces statically equivalent to zero force and zero couple, are of negligible 
magnitude at distances which are large compared with the linear dimensions of the part (LOVE 1944, § 89). 
The justification of this principle is largely empirical and, as such, its applicability is not entirely clear. 
However, as FUNG (1965, p. 309) remarks, “Saint-Venant’s principle works only if there is a possibility for it 
to work; in other words, only if there exist paths for the internal forces to follow in order to balance one 
another within a short distance of the region at which a group of self-equilibrating external forces is applied”. 
This is generally not the case in thin-walled open bars, and certainly not the case in the example of figure 2.5.1. 
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 SVe m eΠ U W U U W      . (2.5.32)
 

Inserting (2.5.21), (2.5.22) and (2.5.31) into the above equation, one obtains the total 

potential energy Π  as a quadratic functional defined on some appropriate subset of the 

linear space          1 2 2 20, 0, 0, 0,C L C L C L C L  of all ordered quadruplets 

1 2 3 1( , , , )W W W Φ  – henceforth shortened to 1( , )iW Φ  – of generalised displacements. 

2.6 THE BOUNDARY VALUE PROBLEM FOR THE GENERALISED 

DISPLACEMENTS 

Cum enim Mundi universi fabrica sit perfectissima, 
atque a Creatore sapientisssimo absoluta, nihil omnino in mundo contingit, 

in quo non maximi minimive ratio quaepiam eluceat: 
quamobrem dubium prorsus est nullum, quin omnes Mundi effectus ex causis finalibus, 

ope Methodi maximorum & minimorum aeque feliciter determinari queant, 
atque ex ipsis causis efficientibus. 

LEONHARD EULER 

With a view to establishing the Euler-Lagrange equations associated with the total 

potential energy functional (2.5.32), we make the following smoothness assumptions on the 

data (geometry and loading): 

(i) The maps *A , *
ψS , *

ψI  and J , as well as 2m , 3m  and b , are continuously differentiable 

on  0, L . 

(ii) *
2S , *

3S , *
ωS , *

2I , *
3I , *

ωI , *
23I , *

2ωI , *
3ωI , *

2ψI , *
3ψI  and *

ωψI  are twice continuously 

differentiable on  0, L . 

Moreover, the domain D  of the functional   is specified to be the set of all ordered 

quadruplets 1( , )iW Φ  of real-valued maps defined on the interval  0, L  that satisfy: 

(i) The smoothness requirements 

   3
1 0,W C L , 

   4
2 3 1, , 0,W W Φ C L . 

(ii) The essential (i.e., kinematical) boundary conditions prescribed for the particular 

problem under consideration.40 

                                                 
40 The rule for distinguishing between essential and natural boundary conditions is the following: if 

derivatives of order up to k  of a given dependent variable are involved in the definition of the functional 
Π , then the essential boundary conditions on that variable are those that involve only derivatives of order 
less that k ; those involving derivatives of order k  or higher, up to 2 1k , are natural boundary conditions 
(e.g., AXELSSON & BARKER 1984, ch. 2, or STRANG & FIX 1973, ch. 1). 
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Let 1( , )iδW δΦ  denote the difference between two members of D  – the maps 

  1, : 0,iδW δΦ L  are then collectively called admissible variations of the generalised 

displacements. Notice that these admissible variations (i) exhibit the same degree of 

smoothness as the generalised displacements themselves and (ii) satisfy the homogeneous 

form of the essential boundary conditions – they are thus elements of a linear space. The 

first variation of Π  at 1( , )iW Φ D  in the direction of 1( , )iδW δΦ  is defined as 

 1 1 1 1
0

( , )[ , ] ( , )i i i i
a

d
δΠ W Φ δW δΦ Π W a δW Φ a δΦ

da 

     ( a   ) . (2.6.1)
 

Using Leibniz rule to differentiate under the integral sign (e.g., BARTLE 1967, th. 23.10), one gets 

 1 1( , )[ , ]i iδΠ W Φ δW δΦ   

            * 1 1 * 1 1 * 1 1 * 1 1
1 3 2 2 3 10

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
L

ωEA θ W θ ES θ W θ ES θ W θ ES θ Φ θ   

    * 1 1 1
1 1( ) ( ) ( )ψES θ Φ θ δW θ   

            * 1 1 * 1 1 * 1 1 * 1 1
3 1 3 2 23 3 3 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ωES θ W θ EI θ W θ EI θ W θ EI θ Φ θ   

    * 1 1 1
3 1 2( ) ( ) ( )ψEI θ Φ θ δW θ   

            * 1 1 * 1 1 * 1 1 * 1 1
2 1 23 2 2 3 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ωES θ W θ EI θ W θ EI θ W θ EI θ Φ θ   

    * 1 1 1
2 1 3( ) ( ) ( )ψEI θ Φ θ δW θ   

            * 1 1 * 1 1 * 1 1 * 1 1
1 3 2 2 3 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ω ω ω ωES θ W θ EI θ W θ EI θ W θ EI θ Φ θ   

    * 1 1 1
1 1( ) ( ) ( )ωψEI θ Φ θ δΦ θ   

            * 1 1 * 1 1 * 1 1 * 1 1
1 3 2 2 3 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ψ ψ ψ ωψES θ W θ EI θ W θ EI θ W θ EI θ Φ θ   

 1 1 * 1 1 1 1
1 1 1( ) ( ) ( ) ( ) ( )ψGJ θ Φ θ EI θ Φ θ δΦ θ dθ    

   

     1 1 1 1 1 1 1 1
1 1 2 2 3 3 1 10
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

L
q θ δW θ q θ δW θ q θ δW θ m θ δΦ θ   

 1 1 1 1 1 1 1
2 3 3 2 1( ) ( ) ( ) ( ) ( ) ( )m θ δW θ m θ δW θ b θ δΦ θ dθ       

    0 .1 1 0 . 2 2 0 . 3 3 0 .1 1(0) (0) (0) (0)Q δW Q δW Q δW M δΦ   

 0 . 2 3 0 . 3 2 0 1(0) (0) (0)M δW M δW B δΦ      

    . 1 1 . 2 2 . 3 3 .1 1( ) ( ) ( ) ( )L L L LQ δW L Q δW L Q δW L M δΦ L   

 . 2 3 . 3 2 1( ) ( ) ( )L L LM δW L M δW L B δΦ L      . (2.6.2) 
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Integration by parts, which is permissible in view of the smoothness of the maps involved 

(e.g., CAMPOS FERREIRA 1987, ch. 5, § 1, th. 18), now yields41 

 1 1( , )[ , ]i iδΠ W Φ δW δΦ   

  * * * * * 1 1 1 1
1 3 2 2 3 1 1 1 10

( ) ( ) ( )
L

ω ψEA W ES W ES W ES Φ ES Φ θ q θ δW θ dθ                     

  * 1 1 * 1 1 * 1 1 * 1 1
1 3 2 2 3 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ωEA θ W θ ES θ W θ ES θ W θ ES θ Φ θ       

      

 * 1 1 1
1 1 0 . 1 1 . 1 1

0
( ) ( ) ( ) (0) ( )

L

ψ LES θ Φ θ δW θ Q δW Q δW L  
   

  * * * * * 1
3 1 3 2 23 3 3 1 3 10

( )
L

ω ψES W EI W EI W EI Φ EI Φ θ          
       

 1 1 1 1
2 3 2( ) ( ) ( )q θ m θ δW θ dθ      

  * 1 1 * 1 1 * 1 1 * 1 1
3 1 3 2 23 3 3 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ωES θ W θ EI θ W θ EI θ W θ EI θ Φ θ        

      

 * 1 1 1
3 1 2 0 . 3 2 . 3 2

0
( ) ( ) ( ) (0) ( )

L

ψ LEI θ Φ θ δW θ M δW M δW L     
   

   * * * * * 1 1 1
3 1 3 2 23 3 3 1 3 1 3 2

0
( ) ( ) ( )

L

ω ψES W EI W EI W EI Φ EI Φ θ m θ δW θ
             

       

 0 . 2 2 . 2 2(0) ( )LQ δW Q δW L    

  * * * * * 1
2 1 23 2 2 3 2 1 2 10

( )
L

ω ψES W EI W EI W EI Φ EI Φ θ
          

       

 1 1 1 1
3 2 3( ) ( ) ( )q θ m θ δW θ dθ      

  * 1 1 * 1 1 * 1 1 * 1 1
2 1 23 2 2 3 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ωES θ W θ EI θ W θ EI θ W θ EI θ Φ θ        

      

 * 1 1 1
2 1 3 0 . 2 3 . 2 3

0
( ) ( ) ( ) (0) ( )

L

ψ LEI θ Φ θ δW θ M δW M δW L     
   

   * * * * * 1 1 1
2 1 23 2 2 3 2 1 2 1 2 3

0
( ) ( ) ( )

L

ω ψES W EI W EI W EI Φ EI Φ θ m θ δW θ
             

       

 0 . 3 3 . 3 3(0) ( )LQ δW Q δW L    

  

                                                 
41 To assist in the reading of the lengthy expression that follows, an increased line spacing is used to separate 

the terms pertaining to the variation of different generalised displacements. 
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  * * * * * 1
1 3 2 2 3 1 10

( )
L

ω ω ω ω ωψES W EI W EI W EI Φ EI Φ θ          


       

  * * * * * 1
1 3 2 2 3 1 ( )ψ ψ ψ ωψ ψES W EI W EI W EI Φ GJ EI Φ θ

            
       

 1 1 1 1
1 1( ) ( ) ( )m θ b θ δΦ θ dθ    

  * 1 1 * 1 1 * 1 1 * 1 1
1 3 2 2 3 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ω ω ω ωES θ W θ EI θ W θ EI θ W θ EI θ Φ θ        

      

 * 1 1 1
1 1 0 1 1

0
( ) ( ) ( ) (0) ( )

L

ωψ LEI θ Φ θ δΦ θ B δΦ B δΦ L     
   

  * * * * * 1
1 3 2 2 3 1 1 ( )ω ω ω ω ωψES W EI W EI W EI Φ EI Φ θ

          
       

 * 1 1 * 1 1 * 1 1
1 3 2 2 3( ) ( ) ( ) ( ) ( ) ( )ψ ψ ψES θ W θ EI θ W θ EI θ W θ         

   * 1 1 1 * 1 1 1 1
1 1 1

0
( ) ( ) ( ) ( ) ( ) ( ) ( )

L

ωψ ψEI θ Φ θ GJ θ EI θ Φ θ b θ δΦ θ      
    

  0 .1 1 .1 1(0) ( )LM δΦ M δΦ L  . (2.6.3) 

By the principle of stationary total potential energy (e.g., MASON 1980, §§ 8.1.1 and 

8.2.1), the ordered quadruplet of generalised displacements 1( , )iW Φ D  specifies the 

actual equilibrium shape of the bar if and only if 

 1 1( , )[ , ] 0i iδΠ W Φ δW δΦ   (2.6.4) 

for every admissible variations iδW , 1δΦ . By virtue of the fundamental lemma of the 

calculus of variations (e.g., DACOROGNA 2004, th. 1.24), this variational identity leads to the 

classical or strong form of the structural problem, which may be phrased as follows: 

Find real-valued maps 1W , 2W , 3W  and 1Φ  defined on the interval  0, L , with 

   3
1 0,W C L  and 

   4
2 3 1, , 0,W W Φ C L , 

satisfying the differential equations 

  * * * * * 1 1
1 3 2 2 3 1 1 1( ) ( ) 0ω ψEA W ES W ES W ES Φ ES Φ θ q θ               (2.6.5) 

  * * * * * 1 1 1
3 1 3 2 23 3 3 1 3 1 2 3( ) ( ) ( ) 0ω ψES W EI W EI W EI Φ EI Φ θ q θ m θ                 (2.6.6) 

  * * * * * 1 1 1
2 1 23 2 2 3 2 1 2 1 3 2( ) ( ) ( ) 0ω ψES W EI W EI W EI Φ EI Φ θ q θ m θ                 (2.6.7) 
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 * * * * * 1
1 3 2 2 3 1 1 ( )ω ω ω ω ωψES W EI W EI W EI Φ EI Φ θ              

  * * * * * 1
1 3 2 2 3 1 1 ( )ψ ψ ψ ωψ ψES W EI W EI W EI Φ GJ EI Φ θ

            
       

 1 1
1( ) ( ) 0b θ m θ    (2.6.8) 

on the open interval  0, L ,42 together with the appropriate boundary conditions 

at 1 0θ  and 1θ L , to be selected from table 2.6.1 (from each row of the table, 

select one, and only one, boundary condition).43 

2.7 CROSS-SECTIONAL STRESS RESULTANTS, ACTIVE AND 

REACTIVE. EQUILIBRIUM 

The natural boundary conditions in table 2.6.1 prompt the following definitions for 

the cross-sectional stress resultants (or generalised stresses) – see figure 2.7.1: 

(i) Normal force 

       1 * 1 1 * 1 1 * 1 1
1 3 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )N θ EA θ W θ ES θ W θ ES θ W θ  

    * 1 1 * 1 1
1 1( ) ( ) ( ) ( )ω ψES θ Φ θ ES θ Φ θ  . (2.7.1) 

(ii) Shear forces 

  1 * * * * * 1 1
2 3 1 3 2 23 3 3 1 3 1 3( ) ( ) ( )ω ψV θ ES W EI W EI W EI Φ EI Φ θ m θ               (2.7.2) 

  1 * * * * * 1 1
3 2 1 23 2 2 3 2 1 2 1 2( ) ( ) ( )ω ψV θ ES W EI W EI W EI Φ EI Φ θ m θ               . (2.7.3) 

(iii) Bending moments (relative to the axes through 1
1O θ e  and spanned by 2e  and 3e ) 

       1 * 1 1 * 1 1 * 1 1
2 2 1 23 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )M θ ES θ W θ EI θ W θ EI θ W θ  

    * 1 1 * 1 1
2 1 2 1( ) ( ) ( ) ( )ω ψEI θ Φ θ EI θ Φ θ  (2.7.4) 

       1 * 1 1 * 1 1 * 1 1
3 3 1 3 2 23 3( ) ( ) ( ) ( ) ( ) ( ) ( )M θ ES θ W θ EI θ W θ EI θ W θ  

    * 1 1 * 1 1
3 1 3 1( ) ( ) ( ) ( )ω ψEI θ Φ θ EI θ Φ θ  . (2.7.5) 

 

                                                 
42 These are the Euler-Lagrange equations associated with the functional  , which form a mixed-order 

system of linear ordinary differential equations. 

43 Therefore, there are exactly seven boundary conditions at each end of the bar. 



 

 

 

 Natural boundary conditions  Essential boundary conditions 

Either 

* * * * *
1 3 2 2 3 1 1 0 .1(0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 )ω ψEA W ES W ES W ES Φ ES Φ Q               

or 

1(0)W  prescribed (i.e., 1(0 ) 0δW ) 

* * * * *
1 3 2 2 3 1 1 .1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ω ψ LEA L W L ES L W L ES L W L ES L Φ L ES L Φ L Q              

1( )W L  prescribed (i.e., 1( ) 0δW L ) 

  

 * * * * *
3 1 3 2 23 3 3 1 3 1 3 0.2(0) (0)ω ψES W EI W EI W EI Φ EI Φ m Q                2 (0 )W  prescribed (i.e., 2 (0) 0δW ) 

 * * * * *
3 1 3 2 23 3 3 1 3 1 3 .2( ) ( )ω ψ LES W EI W EI W EI Φ EI Φ L m L Q               2 ( )W L  prescribed (i.e., 2 ( ) 0δW L ) 

  

* * * * *
3 1 3 2 23 3 3 1 3 1 0 .3(0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 )ω ψES W EI W EI W EI Φ EI Φ M              

2 (0 )W  prescribed (i.e.,  2 (0) 0δW ) 

* * * * *
3 1 3 2 23 3 3 1 3 1 .3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ω ψ LES L W L EI L W L EI L W L EI L Φ L EI L Φ L M               

2 ( )W L  prescribed (i.e.,  2 ( ) 0δW L ) 

  

 * * * * *
2 1 23 2 2 3 2 1 2 1 2 0.3(0) (0)ω ψES W EI W EI W EI Φ EI Φ m Q                3(0 )W  prescribed (i.e., 3(0 ) 0δW ) 

 * * * * *
2 1 23 2 2 3 2 1 2 1 2 .3( ) ( )ω ψ LES W EI W EI W EI Φ EI Φ L m L Q               

 
3( )W L  prescribed (i.e., 3( ) 0δW L ) 

Table 2.6.1: Natural and essential boundary conditions 
 

 



 

 

 

 Natural boundary conditions  Essential boundary conditions 

Either 

* * * * *
2 1 23 2 2 3 2 1 2 1 0 . 2(0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 )ω ψES W EI W EI W EI Φ EI Φ M               

or 


3(0 )W  prescribed (i.e.,  3(0 ) 0δW ) 

* * * * *
2 1 23 2 2 3 2 1 2 1 . 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ω ψ LES L W L EI L W L EI L W L EI L Φ L EI L Φ L M              

3( )W L  prescribed (i.e.,  3( ) 0δW L ) 

  

 * * * * *
1 3 2 2 3 1 1 (0)ω ω ω ω ωψES W EI W EI W EI Φ EI Φ              

* * *
1 3 2 2 3(0) (0) (0) (0) (0) (0)ψ ψ ψES W EI W EI W        

 * *
1 1 0 .1(0) (0) (0) (0) (0) (0)ωψ ψEI Φ GJ EI Φ b M         

1(0 )Φ  prescribed (i.e., 1(0) 0δΦ  ) 

 * * * * *
1 3 2 2 3 1 1 ( )ω ω ω ω ωψES W EI W EI W EI Φ EI Φ L             

* * *
1 3 2 2 3( ) ( ) ( ) ( ) ( ) ( )ψ ψ ψES L W L EI L W L EI L W L        

 * *
1 1 .1( ) ( ) ( ) ( ) ( ) ( )ωψ ψ LEI L Φ L GJ L EI L Φ L b L M        

1( )Φ L  prescribed (i.e., 1( ) 0δΦ L  ) 

  

* * * * *
1 3 2 2 3 1 1 0(0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 )ω ω ω ω ωψES W EI W EI W EI Φ EI Φ B               

1(0 )Φ   prescribed (i.e., 1(0) 0δΦ   ) 

* * * * *
1 3 2 2 3 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ω ω ω ω ωψ LES L W L EI L W L EI L W L EI L Φ L EI L Φ L B              

1( )Φ L  prescribed (i.e., 1( ) 0δΦ L  ) 

Table 2.6.1 (continued): Natural and essential boundary conditions 
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(iv) Torque (about the line    1 1
1 , 0O θ θ Le ) 

  1 * * * * * 1
1 1 3 2 2 3 1 1( ) ( )ω ω ω ω ωψM θ ES W EI W EI W EI Φ EI Φ θ               

 * 1 1 * 1 1 * 1 1
1 3 2 2 3( ) ( ) ( ) ( ) ( ) ( )ψ ψ ψES θ W θ EI θ W θ EI θ W θ         

  * 1 1 1 * 1 1 1
1 1( ) ( ) ( ) ( ) ( ) ( )ωψ ψEI θ Φ θ GJ θ EI θ Φ θ b θ       . (2.7.6) 

(v) Bimoment (represented by a three-headed arrow in figure 2.7.1 – GJELSVIK 1981, p. 25) 

       1 * 1 1 * 1 1 * 1 1
1 3 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )ω ω ωB θ ES θ W θ EI θ W θ EI θ W θ   

    * 1 1 * 1 1
1 1( ) ( ) ( ) ( )ω ωψEI θ Φ θ EI θ Φ θ  . (2.7.7) 

Indeed, with these definitions, the natural boundary conditions amount to prescribing the 

stress resultants at the bar ends as follows: 

 0 . 1(0 )N Q   . 1( ) LN L Q  (2.7.8) 

 2 0 . 2(0 )V Q   2 . 2( ) LV L Q  (2.7.9) 

 3 0 . 3(0 )V Q   3 . 3( ) LV L Q  (2.7.10) 

 1 0 . 1(0 )M M   1 . 1( ) LM L M  (2.7.11) 

 2 0 . 2(0 )M M   2 . 2( ) LM L M  (2.7.12) 

 3 0 . 3(0 )M M  3 . 3( ) LM L M   (2.7.13) 

 0(0 )B B   ( ) LB L B  . (2.7.14) 

 

Figure 2.7.1: Cross-sectional stress resultants 

O

3e  

2e  

1θ

1e  

1( )B θ  

1( )N θ  1
1( )M θ  

1
3( )M θ  

1
2( )M θ  1

3( )V θ  

1
2( )V θ  
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According to the smoothness assumptions stated at the beginning of § 2.6, the real-

valued maps 1 1( )θ N θ , 1 1
2 ( )θ V θ , 1 1

3( )θ V θ  and 1 1
1( )θ M θ  are continuously 

differentiable on  0, L , while 1 1
2 ( )θ M θ , 1 1

3( )θ M θ  and 1 1( )θ B θ  are twice 

continuously differentiable on the same interval. 

As in the case of the membrane forces, the cross-sectional stress resultants (2.7.1)-

(2.7.7) are divided into active and reactive categories. The normal force, bending moments 

and bimoment are clearly active, as they can be obtained from the sole active membrane 

force ( )
I I

An   through integration over the interval 1 1
1 2( ) , ( )g θ g θ    (i.e., over 1θL , viewed 

through the parametrisation F ): 

 
1

2

1
1

( )1 ( ) 1 2 1 2 2
I I I 1( )

( ) ( , ) ( , )
g θ A

g θ
N θ n θ θ θ θ dθ  o e  (2.7.15) 

 
1

2

1
1

( )1 1 2 ( ) 1 2 1 2 2
2 3 I I I 1( )
( ) ( , ) ( , ) ( , )

g θ A

g θ
M θ x θ θ n θ θ θ θ dθ  o e  (2.7.16) 

 
1

2

1
1

( )1 1 2 ( ) 1 2 1 2 2
3 2 I I I 1( )
( ) ( , ) ( , ) ( , )

g θ A

g θ
M θ x θ θ n θ θ θ θ dθ  o e  (2.7.17) 

 
1

2

1
1

( )1 1 2 ( ) 1 2 1 2 2
I I I 1( )

( ) ( , ) ( , ) ( , )
g θ A

g θ
B θ ω θ θ n θ θ θ θ dθ  o e  . (2.7.18) 

On the other hand, the shear forces are obviously reactive, being related to the active cross-

sectional stress resultants by 

 1 1 1
2 3 3( ) ( ) ( )V θ M θ m θ   (2.7.19) 

 1 1 1
3 2 2( ) ( ) ( )V θ M θ m θ   . (2.7.20) 

As for the torque 1
1( )M θ , it can be split into an active part ( ) 1

1 ( )AM θ  and a reactive part 
( ) 1
1 ( )RM θ . The active part is given by 

 
1

2

1
1

( )( ) 1 1 2 ( ) 1 2 1 2 2 1 1
1 I I I 1 1( )

( ) ( , ) ( , ) ( , ) ( ) ( )
g θA A

g θ
M θ ψ θ θ n θ θ θ θ dθ GJ θ Φ θ     o e  

        * 1 1 * 1 1 * 1 1
1 3 2 2 3( ) ( ) ( ) ( ) ( ) ( )ψ ψ ψES θ W θ EI θ W θ EI θ W θ  

      * 1 1 1 * 1 1
1 1( ) ( ) ( ) ( ) ( )ωψ ψEI θ Φ θ GJ θ EI θ Φ θ  . (2.7.21) 

The reactive part is simply 

 ( ) 1 1 1
1 ( ) ( ) ( )RM θ B θ b θ   

  * * * * * 1 1
1 3 2 2 3 1 ( ) ( )ω ω ω ω ωψES W EI W EI W EI Φ EI Φ θ b θ               . (2.7.22) 



A Linear 1D Model for Tapered Thin-Walled Bars with Open Cross-Sections – The Static Case 

55 

With this distinction between active and reactive cross-sectional stress resultants, the 

strain energy functional (2.5.23) can be rewritten concisely in the form 

      1 1 ( ) 1 1 1 1
1 1 2 20

1
( ) ( ) ( ) ( ) ( ) ( )

2

L AU N θ ε θ M θ θ M θ θ  

 1 1 1 1 1
3 3( ) ( ) ( ) ( )M θ θ B θ Γ θ dθ   , (2.7.23) 

where ε , 1 , 2 , 3  and Γ  are the generalised strains introduced in (2.3.27)-(2.3.31), which 

are thus seen to be conjugate to the active stress resultants. The reactive cross-sectional stress 

resultants, that is, the forces maintaining the constraints (V1)-(V2), do no work in any 

deformation satisfying these constraints and are thereby absent in equation (2.7.23). 

The incorporation of the definitions (2.7.1) and (2.7.4)-(2.7.6) into the differential 

equations (2.6.5)-(2.6.8) yields the classical local form of the equilibrium equations on  0, L : 

   1 1
1( ) ( ) 0N θ q θ  (2.7.24) 

 1 1 1
3 3 2( ) ( ) ( ) 0M θ m θ q θ     (2.7.25) 

 1 1 1
2 2 3( ) ( ) ( ) 0M θ m θ q θ     (2.7.26) 

   1 1
1 1( ) ( ) 0M θ m θ  . (2.7.27) 

Concerning the second term on the left-hand side of equations (2.7.25)-(2.7.26), we remark 

that a continuously differentiable moment distribution 1 1
3 3( )θ m θ e  (resp. 1 1

2 2( )θ m θ e ) 

per unit length of the line segment    1 1
1 , 0O θ θ Le  is statically equivalent to (i) a 

distributed force 1 1
3 2( )θ m θ e  (resp. 1 1

2 3( )θ m θ e ) per unit length of the same line 

segment plus (ii) concentrated forces  3 2(0)m e  and 3 2( )m L e  (resp. 2 3(0)m e  and 

 2 3( )m L e ) at the end points O  and  1O L e . Finally, notice that equation (2.7.27) may be 

written exclusively in terms of active cross-sectional stress resultants as 

 ( )1 1 1 1
1 1( ) ( ) ( ) ( ) 0AB θ M θ b θ m θ      . (2.7.28) 

2.8 A SUMMARY OF THE FIELD EQUATIONS OF THE 

ONE-DIMENSIONAL MODEL 

At this point, it is convenient to present a systematic summary of the field equations 

of the one-dimensional model developed in this chapter. The objective is threefold: 

(i) To offer an overall, sweeping view of the model, which was admittedly difficult to 

convey so far due to the considerable amount of detail involved in the derivations. 
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(ii) To underscore the basic ingredients – the building blocks, so to speak – and mathematical 

structure of the one-dimensional model, which are shared with other linear models of 

structural mechanics (of bars, plates and shells alike), as well as with linear elastostatics 

and many other physical theories, concerning widely different physical contents (TONTI 

1972a, 1972b). 

(iii) To draw attention to some particular features of the model that stem from the 

constraints that are imposed on the higher-dimensional parent theory, which have not 

yet received the appropriate emphasis. 

In the one-dimensional model, we can single out the following four sets of 

dependent variables (which are all real-valued maps of a single real variable, defined on the 

interval  0, L ): 

(i) The generalised displacements, grouped in the column vector 

  

 
 
 
 
 
  

1

2

3

1

W

W
d

W

Φ

=  . (2.8.1) 

(ii) The generalised strains, collected in the column vector 

  




 
 
  
 
 
 
  

1

2

3

ε

e

Γ

=  . (2.8.2) 

(iii) The active cross-sectional stress resultants, which are conjugate to the generalised 

strains, arranged in the column vector 

  

 
 
  
 
 
 
  

( )
1

( )
2

3

A

A

N

M

s M

M

B

=  , (2.8.3) 

so that the strain energy stored in the bar is 

     ( ) 1 1 1

0

1
( ) ( )

2

L TAs θ e θ dθ  . (2.8.4) 
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(iv) The distributed bar loads corresponding to the generalised displacements  d , 

arranged in the column vector 

  

1

3 2

2 3

1

q

m q
q

m q

b m

 
   
   
   

=  . (2.8.5) 

This definition, which may seem odd at first sight, stems from the requirement that the 

work of the distributed bar loads – i.e., the integral on the right-hand side of (2.5.24) or 

(2.5.31) – be equal to 

      1 1 1

0
( ) ( ) boundary terms

L T
q θ d θ dθ  . (2.8.6) 

It should be noted that the bar loads 2m , 3m  and b  are associated with derivatives of 

generalised displacements and not with independent generalised displacements in their 

own right. This is a direct consequence of the internal constraints upon which the one-

dimensional model is based and which imply the conditions (2.3.18)-(2.3.20). 

The generalised displacements  d  and the generalised strains  e  are connected by 

the compatibility equation 

     e L d  , (2.8.7) 

where 

  

   
    
     
 
    

     

2

2

2

D

D

L D

D

D

 (2.8.8) 

is a formal linear differential operator.44 

The active cross-sectional stress resultants  ( )As  are given in terms of the 

generalised strains  e  by the constitutive relation 

     ( )As K e  , (2.8.9) 

where  K  is the (symmetric) stiffness matrix 

                                                 
44 The word “formal” just means that the domain of the operator is not specified. 
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* * * * *
2 3

* * * * *
2 3

* * * * *
2 2 2 23 2

* * * * *
3 3 23 3 3

* * * * *
2 3

ψ ω

ψ ψ ψ ψ ωψ

ψ ω

ψ ω

ω ωψ ω ω ω

EA ES ES ES ES

ES GJ EI EI EI EI

K ES EI EI EI EI

ES EI EI EI EI

ES EI EI EI EI

 , (2.8.10) 

whose entries are known real-valued maps defined on  0, L . 

The distributed bar loads  q  are related to the active cross-sectional stress resultants 

 ( )As  via the equilibrium conditions 

      † ( )AL s q  , (2.8.11) 

where 

  

     
      
     
 
      

2
†

2

2

D

D
L

D

D D

 (2.8.12) 

is the formal adjoint differential operator of  L  (e.g., LANCZOS 1996, §§ 4.10-4.12, or 

SEWELL 1987, § 3.3). 

The three equations (2.8.7), (2.8.9) and (2.8.11) can be combined to yield 

        †
L K L d q  , (2.8.13) 

which are none other than the governing equations (2.6.5)-(2.6.8), written in compact matrix 

form. The process is summarised in figure 2.8.1 by means of a Tonti diagram (TONTI 

1972a, 1972b, 1975, 1976). 

To the four sets of dependent variables already described, one now adds the reactive 

cross-sectional stress resultants, collected in the column vector 

  
 
   
 
 

2
( )

3
( )
1

R

R

V

s V

M

 . (2.8.14) 

These reactive cross-sectional stress resultants satisfy the equilibrium conditions 

 
2 3 3

3 2 2
( )
1

R

V M m

V M m

M B b

     
           
         

 , (2.8.15) 
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Figure 2.8.1: Tonti diagram (Tonti’s usual terminology is given between square brackets) 

and can therefore be thought of as arising from internal causes (constraints) and external 

causes (loading) – see GJELSVIK 1981, p. 30. Moreover, observe that 2m , 3m  and b  are 

precisely the bar loads whose derivatives appear in the definition of the column vector  q . 

Finally, equations (2.7.2), (2.7.3) and (2.7.22) are recovered after inserting the constitutive 

and compatibility equations (2.8.9) and (2.8.7) into the equilibrium equation (2.8.15): 

 

1

* * * * *
12 3 3 23 3 3 3

* * * * *
33 2 2 2 23 2 2

( ) * * * * *
21 2 3

1

ψ ω

ψ ω
R

ω ωψ ω ω ω

W

ΦV ES EI EI EI EI m

WV ES EI EI EI EI m

WM ES EI EI EI EI b

Φ

  
                                            

    
    
    

 . (2.8.16) 

[definition equation] 
Compatibility 

    e L d  

[configuration variables] 
Generalised 

displacements 

 

1

2

3

1

W

W
d

W

Φ

 
 
 
 
 
  

=  

[variables of 1st kind] 
Generalised strains 

 




 
 
  
 
 
 
  

1

2

3

ε

e

Γ

=  

Constitutive equation 

    ( )As K e  

[variables of 2nd kind] 
Active cros-sectional 

stress resultants 

 

 
 
  
 
 
 
  

( )
1

( )
2

3

A

A

N

M

s M

M

B

=  

[source variables] 
Distributed bar loads 

 

1

3 2

2 3

1

q

m q
q

m q

b m

 
   
   
   

=  

[balance equation] 
Equilibrium 

     † ( )AL s q  

[fundamental equation] 

       †
L K L d q  
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2.9 A STUDY OF SOME PARTICULAR CASES 

2.9.1 Bars with a longitudinal plane of symmetry 

Let the reference shape B  of the bar be symmetric with respect to the plane passing 

through the origin O  and spanned by the Cartesian base vectors 1e  and 3e . The reference 

shape S  of the middle surface of the bar is itself symmetric with respect to the said plane 

and it is thus possible to choose Ω  with  1 2g g , so that the region Ω  is symmetric with 

respect to the 1θ -axis (see figure 2.9.1). The image of    0, 0L  under the 

parametrisation F  is the intersection of S  with the symmetry plane. Moreover, for each 

1 2( , )θ θ Ω , one has  1 2 1 2( , ) ( , )t θ θ t θ θ . 

For fixed  1 0,θ L , the map 2 1 2
2 ( , )θ x θ θ  (resp. 2 1 2

3 ( , )θ x θ θ ) from 

  
1 1

2 2( ), ( )g θ g θ  into   is odd (resp. even), i.e., 

   1 2 1 2
2 2( , ) ( , )x θ θ x θ θ  (2.9.1) 

  1 2 1 2
3 3( , ) ( , )x θ θ x θ θ ) , (2.9.2) 

 

Figure 2.9.1: Bars with a longitudinal plane of symmetry – Parametrisation of the 

reference shape S  of the middle surface 

  

O

L
2Ω  

1

S EF

1e  

1( ,0)F θ  

3e  

2e  

2(0)g  

1( ,0)θ  

2  

2(0)g  

0  

1 1
2( , ( ))θ g θ  

1 1
2( , ( ))θ g θ  
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2 1 1

2 2( ), ( )θ g θ g θ . Consequently, the map 2 1 2
2 2 ( , )θ D x θ θ  (resp. 2 1 2

2 3( , )θ D x θ θ ) 

is even (resp. odd), i.e., 

  1 2 1 2
2 2 2 2( , ) ( , )D x θ θ D x θ θ  (2.9.3) 

   1 2 1 2
2 3 2 3( , ) ( , )D x θ θ D x θ θ  , (2.9.4) 

    
2 1 1

2 2( ), ( )θ g θ g θ . It now follows from the definition (2.3.16) that, for each 

 1 0,θ L , 2 1 2( , )θ ω θ θ  is an odd map – indeed, by the change of variable theorem (e.g., 

CAMPOS FERREIRA 1987, th. 19, § 5.1.2), one has 

  
  

2
1 2 1 1 1 1

2 2 3 3 2 20
( , ) ( , ) ( , ) ( , ) ( , )

θ
ω θ θ x θ s D x θ s x θ s D x θ s ds  

        
2

1 1 1 1
2 2 3 3 2 20
( , ) ( , ) ( , ) ( , ) ( 1)

θ
x θ t D x θ t x θ t D x θ t dt  

    
2

1 1 1 1
2 2 3 3 2 20
( , ) ( , ) ( , ) ( , )

θ
x θ t D x θ t x θ t D x θ t dt  

   1 2( , )ω θ θ  . (2.9.5) 

Consider now an arbitrary point 1 2( , )θ θ  in Ω . The first coordinate lines through the 

points 1 2( , )F θ θ  and 1 2( , )F θ θ  are symmetric with respect to the plane defined by O  

and  1 3,e e . Therefore, 

         1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )D x θ θ θ θ θ θ D x θ θa e a e  (2.9.6) 

       1 2 1 2 1 2 1 2
1 3 1 3 1 3 1 3( , ) ( , ) ( , ) ( , )D x θ θ θ θ θ θ D x θ θa e a e  . (2.9.7) 

By continuity, these identities extend to Ω  (see the “principle of extension of identities” in 

BOURBAKI 2007, p. 53, or DIEUDONNÉ 1960, th. 3.15.2). Together with previous results, 

they imply  * 1 2 * 1 2( , ) ( , )t θ θ t θ θ ,  1 2( , )θ θ Ω . Likewise, one has 

   1 2 1 2
1 1( , ) ( , )D ω θ θ D ω θ θ  (2.9.8) 

   1 2 1 2( , ) ( , )ψ θ θ ψ θ θ  (2.9.9) 

on Ω . 

In the light of the above, it is obvious that *
3S , *

ωS , *
ψS , *

23I , *
2ωI  and *

2ψI  are 

identically zero. The governing differential equations (2.6.5)-(2.6.8) on the interval  0, L  

then reduce to 

  * * 1 1
1 2 3 1( ) ( ) 0EA W ES W θ q θ      (2.9.10) 

  * * * 1 1 1
3 2 3 1 3 1 2 3( ) ( ) ( ) 0ω ψEI W EI Φ EI Φ θ q θ m θ            (2.9.11) 
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  * * 1 1 1
2 1 2 3 3 2( ) ( ) ( ) 0ES W EI W θ q θ m θ        (2.9.12) 

    * * * 1 * * * 1
3 2 1 1 3 2 1( ) ( )ω ω ωψ ψ ωψ ψEI W EI Φ EI Φ θ EI W EI Φ GJ EI Φ θ

              
        

 1 1
1( ) ( ) 0b θ m θ    , (2.9.13) 

while the cross-sectional stress resultants (2.7.1)-(2.7.7) become simply 

    1 * 1 1 * 1 1
1 2 3( ) ( ) ( ) ( ) ( )N θ EA θ W θ ES θ W θ  (2.9.14) 

  1 * * 1 * 1 1
2 3 2 3 1 3 1 3( ) ( ) ( ) ( )ω ψV θ EI W EI Φ θ EI Φ θ m θ          (2.9.15) 

  1 * * 1 1
3 2 1 2 3 2( ) ( ) ( )V θ ES W EI W θ m θ      (2.9.16) 

    1 * 1 1 * 1 1
2 2 1 2 3( ) ( ) ( ) ( ) ( )M θ ES θ W θ EI θ W θ  (2.9.17) 

        1 * 1 1 * 1 1 * 1 1
3 3 2 3 1 3 1( ) ( ) ( ) ( ) ( ) ( ) ( )ω ψM θ EI θ W θ EI θ Φ θ EI θ Φ θ  (2.9.18) 

  1 * * * 1 * 1 1
1 3 2 1 1 3 2( ) ( ) ( ) ( )ω ω ωψ ψM θ EI W EI Φ EI Φ θ EI θ W θ             

  * 1 1 1 * 1 1 1
1 1( ) ( ) ( ) ( ) ( ) ( )ωψ ψEI θ Φ θ GJ θ EI θ Φ θ b θ       (2.9.19) 

        1 * 1 1 * 1 1 * 1 1
3 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )ω ω ωψB θ EI θ W θ EI θ Φ θ EI θ Φ θ  . (2.9.20) 

Note the couplings (i) between 1W  and 3W , introduced by  *
2ES , and (ii) between 2W  and 

1Φ , introduced by  *
3ωEI  and  *

3ψEI . 

2.9.2 Prismatic bars 

For a prismatic bar, the reference shape S  of the middle surface is a cylindrical surface. 

Therefore, it admits a parametrisation of the form (OPREA 2007, p. 75) 

    : 0, ,F Ω = L a b  E  ,  1 2 2 1
1( , ) ( )F θ θ C θ θ  e  , (2.9.21) 

where  : ,C a b  E  is an arc-length parametrisation of the middle line 0L  (which is a 

directrix of S ) and it is required that  0 ,a b . For such a parametrisation, the coordinate 

curves form an orthogonal grid (see figure 2.9.2) and the identities 

 1 2 1 2 1 2
I 11 1( , ) ( , ) ( , )θ θ D F θ θ θ θ  a o e  (2.9.22) 

 1 2 1 2 1 2
αβ α β αβ( , ) ( , ) ( , )a θ θ θ θ θ θ δ  a a  (2.9.23) 

 1 2 1 2
αβ( , ) det ( , ) 1a θ θ a θ θ     , (2.9.24) 

where αβδ  denotes the Kronecker delta, hold everywhere on the rectangle    0, ,Ω = L a b . 

Moreover, the maps 2 3, :x x Ω    do not depend on the Gaussian coordinate 1θ  – indeed, 
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      1 2 1 2 2 1 2
2 2 1 2 2ˆ( , ) ( , ) ( ) ( )x θ θ x F θ θ C θ θ O C θ O         e e e  (2.9.25) 

      1 2 1 2 2 1 2
3 3 1 3 3ˆ( , ) ( , ) ( ) ( )x θ θ x F θ θ C θ θ O C θ O         e e e  . (2.9.26) 

It follows at once that ω  also does not depend on 1θ  and ψ  is identically zero on Ω  

(recall the definitions (2.3.16) and (2.3.26)). In view of (2.9.24), the reduced wall thickness 
*t , defined by (2.5.4), coincides with the actual thickness t , which is also a function of 2θ  

alone. Throughout the remainder of the analysis of the prismatic case, we will regard 2x , 

3x , ω  and t  as maps defined on the interval  ,a b , a very convenient and harmless 

notational abuse. 

From the above discussion, one concludes that the real-valued maps defined by 

(2.5.6)-(2.5.20) are constant maps. In particular, *
ψS , *

ψI , *
2ψI , *

3ψI  and *
ωψI  are identically 

zero. The constant values of the remaining ones are denoted by the same symbol as the 

map itself, but without the asterisk. They represent standard cross-sectional geometrical 

properties – area A , first moments of area 2S  and 3S , first sectorial moment ωS , second 

moments of area 2I , 3I  and 23I  and second sectorial moments ωI , 2ωI  and 3ωI  –, under the 

usual simplifying assumption of considering the wall thickness as if “collapsed” on the cross-

section middle line.45 Similarly, the map 1 1( )θ J θ  is constant and, for the sake of 

convenience, the same symbol is used to denote the map and its constant value. 

 

Figure 2.9.2: Prismatic bars – Parametrisation of the reference shape S  of the middle surface 

                                                 
45 GJELSVIK (1981, eqs. (1.64)) presents more accurate expressions for the second area and sectorial 

moments, which take proper account of the wall-thickness. 
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Suppose now that the Cartesian frame   1 2 3, , ,O e e e  is chosen so that 

 2 3 0S S   (2.9.27) 

 23 0I   (2.9.28) 

(i.e., (i) the centroidal line of the bar B  lies on the axis defined by the origin O  and 1e  and 

(ii) the axes defined by O  and 2e  and by O  and 3e  are principal central axes for the cross-

section 0A ). The governing differential equations (2.6.5)-(2.6.8) on the interval  0, L  then 

simplify to 

 1 1 1
1 1 1( ) ( ) ( ) 0ωEAW θ ES Φ θ q θ      (2.9.30) 

 ( 4 ) 1 (4 ) 1 1 1
3 2 3 1 2 3( ) ( ) ( ) ( ) 0ωEI W θ EI Φ θ q θ m θ       (2.9.31) 

 ( 4 ) 1 (4 ) 1 1 1
2 3 2 1 3 2( ) ( ) ( ) ( ) 0ωEI W θ EI Φ θ q θ m θ       (2.9.32) 

1 ( 4 ) 1 ( 4 ) 1 ( 4 ) 1 1 1 1
1 3 2 2 3 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) 0ω ω ω ωES W θ EI W θ EI W θ EI Φ θ GJΦ θ b θ m θ            , (2.9.33) 

while the cross-sectional stress resultants (2.7.1)-(2.7.7) are given simply by 

 1 1 1
1 1( ) ( ) ( )ωN θ EA W θ ES Φ θ     (2.9.34) 

 1 1 1 1
2 3 2 3 1 3( ) ( ) ( ) ( )ωV θ EI W θ EI Φ θ m θ       (2.9.35) 

 1 1 1 1
3 2 3 2 1 2( ) ( ) ( ) ( )ωV θ EI W θ EI Φ θ m θ       (2.9.36) 

 1 1 1
2 2 3 2 1( ) ( ) ( )ωM θ EI W θ EI Φ θ      (2.9.37) 

 1 1 1
3 3 2 3 1( ) ( ) ( )ωM θ EI W θ EI Φ θ      (2.9.38) 

 1 1 1 1 1 1 1
1 1 3 2 2 3 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )ω ω ω ωM θ ES W θ EI W θ EI W θ EI Φ θ GJΦ θ b θ              (2.9.39) 

 1 1 1 1 1
1 3 2 2 3 1( ) ( ) ( ) ( ) ( )ω ω ω ωB θ ES W θ EI W θ EI W θ EI Φ θ           . (2.9.40) 

This is not, however, the “simplest form” in which the equations for prismatic bars 

can be written – the one in which they usually appear in the literature. To arrive at such 

“simplest form” – in essence, a process of orthogonalisation –, we keep the above choice 

of Cartesian frame and rewrite the admissible displacement field of the (cylindrical) middle 

surface as 

 1 2 1 2 1 2 1 2 1
1 1 2 .2 3 .3 1

ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )S S SU θ θ W θ x θ W θ x θ W θ ω θ Φ θ       (2.9.41) 

    1 2 1 2 1
2 .2 3 3 1( , ) ( ) ( ) ( )S

SU θ θ W θ x θ x Φ θ  (2.9.42) 

    1 2 1 2 1
3 .3 2 2 1( , ) ( ) ( ) ( )S

SU θ θ W θ x θ x Φ θ  , (2.9.43) 

where the coordinates 
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  2
2

2

S ωI
x

I
 (2.9.44) 

   3
3

3

S ωI
x

I
 (2.9.45) 

define the line of shear centres (TREFFTZ 1935, WEINSTEIN 1947, VLASOV 1961, ch 1, § 9)46, 

  1 1 1
.2 2 3 1( ) ( ) ( )S

SW θ W θ x Φ θ  (2.9.46) 

  1 1 1
.3 3 2 1( ) ( ) ( )S

SW θ W θ x Φ θ  (2.9.47) 

are the displacements, along 2e  and 3e , of the line of shear centres, 

          
2

2
2 2 3 3 3 20

( ) ( ) ( ) ( ) ( )
θ

S S
Sω θ x s x x s x s x x s ds  

        2 2 2
3 2 2 2 3 3( ) ( ) (0) ( ) (0)S Sω θ x x θ x x x θ x  (2.9.48) 

is the sectorial coordinate on 1θL  with pole at the shear centre and origin at 1
1(0)C θ e  

(for arbitrary 1θ  in  0, L ),47 and 

  1 1 1
1 1 3 2 2 3 1

ˆ ( ) ( ) (0) (0) ( )S SW θ W θ x x x x Φ θ    . (2.9.49) 

The smoothness requirements on the new generalised displacement  1
ˆ : 0,W L   (resp. 

 .2 .3, : 0,S SW W L  ) are the same as those previously placed on 1W  (resp. 2W , 3W ). 

The first and second sectorial moments evaluated with Sω  are given by 

  2 2 2
3 2 2 3( ) ( ) (0) (0)

S

b
S S

ω S ωa
S ω θ t θ dθ S x x x x A     (2.9.50) 

 2 2 2 2
2 3 2 2 2( ) ( ) ( ) 0

S

b
S

ω S ωa
I ω θ x θ t θ dθ I x I     (2.9.51) 

 2 2 2 2
3 2 3 3 3( ) ( ) ( ) 0

S

b
S

ω S ωa
I ω θ x θ t θ dθ I x I     (2.9.52) 

    2 2 2 2 2 2 2 2
2 2 3 3 3 2( ) ( ) ( ) (0) ( ) (0)

S

b
S S

ω S ωa
I ω θ t θ dθ I x I x A x I x A       

  2 3 3 2 2 3 2 32 (0) 2 (0) 2 (0) (0)S S S S
ω ω+ x x S x x S x x x x A  . (2.9.53) 

If the origin of the sectorial coordinate Sω  is chosen so that the condition 

 0
Sω

S   (2.9.54) 

                                                 
46 See also REISSNER & TSAI (1972) and REISSNER (1979). For an elementary discussion of the concept(s) of 

shear centre, see FUNG (1993, app. 1). 

47 Hence Sω  and ω  have different poles – the cross-section shear centre and the centroid, respectively –, but 
the same origin. 
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is fulfilled (that is, if the origin of Sω  is placed at a sectorial centroid48), then equation 

(2.9.53) reduces to 

 
2

2 2
2 2 3 3( ) ( )

S

S S ω
ω ω

S
I I x I x I

A
     (2.9.55) 

and one obtains from (2.9.30)-(2.9.33) the uncoupled differential equations 

 1 1
1 1

ˆ ( ) ( ) 0EAW θ q θ    (2.9.56) 

 ( 4 ) 1 1 1
3 .2 2 3( ) ( ) ( ) 0SEI W θ q θ m θ     (2.9.57) 

 ( 4 ) 1 1 1
2 .3 3 2( ) ( ) ( ) 0SEI W θ q θ m θ     (2.9.58) 

 (4 ) 1 1 1 1
1 1 .1( ) ( ) ( ) ( ) 0

Sω S SEI Φ θ GJΦ θ b θ m θ       . (2.9.59) 

In the last-written equation, 

 1 1 1 1
.1 1 3 2 2 3( ) ( ) ( ) ( )S S

Sm θ m θ x q θ x q θ    (2.9.60) 

is the applied distributed torque about the line of shear centres and 

 1 1 1 1 1
1 2 2 3 3( ) ( ) ( ) ( ) ( )S Sω

S

S
b θ b θ q θ x m θ x m θ

A
     (2.9.61) 

is the distributed bimomental load evaluated with the sectorial coordinate Sω . As for the 

cross-sectional stress resultants, the normal force (2.9.34), shear forces (2.9.35)-(2.9.36) and 

bending moments (2.9.37)-(2.9.38) are given in terms of the new generalised displacements 

simply by 

 1 1
1

ˆ( ) ( )N θ EAW θ   (2.9.62) 

 1 1 1
2 3 .2 3( ) ( ) ( )SV θ EI W θ m θ    (2.9.63) 

 1 1 1
3 2 .3 2( ) ( ) ( )SV θ EI W θ m θ    (2.9.64) 

 1 1
2 2 .3( ) ( )SM θ EI W θ    (2.9.65) 

 1 1
3 3 .2( ) ( )SM θ EI W θ    . (2.9.66) 

The bimoment, when evaluated with the sectorial coordinate Sω , reduces to 

 1 2 1 2 2 1
I I 1( ) ( ) ( , ) ( )

S

b

S S ωa
B θ ω θ n θ θ dθ EI Φ θ

     . (2.9.67) 

It is related to the bimoment of equation (2.9.40), evaluated with the sectorial coordinate ω , 

through the relationship 

                                                 
48 This is the terminology adopted by ODEN & RIPPERGER (1981, p. 217). VLASOV (1961, p. 45) uses instead 

the expression “sectorial zero-point”. 
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  1 1 1 1 1
3 2 2 3 2 2 3 3( ) ( ) (0) (0) ( ) ( ) ( )S S S S

SB θ B θ x x x x N θ x M θ x M θ      . (2.9.68) 

Finally, the torque about the line of shear centres is 

 1 1 1 1
.1 1 1( ) ( ) ( ) ( )

SS ω SM θ EI Φ θ GJΦ θ b θ      , (2.9.69) 

which is obviously related to the torque about the line of centroids of equation (2.9.39) by 

(see figure 2.9.3) 

 1 1 1 1
.1 1 3 2 2 3( ) ( ) ( ) ( )S S

SM θ M θ x V θ x V θ    . (2.9.70) 

(Since the torque .1SM  is referred to the line of shear centres, the shear forces 2V  and 3V  

act through this line.) 

The boundary conditions that complement the differential system (2.9.56)-(2.9.59) 

are indicated in table 2.9.1 (once again, select one, and only one, boundary condition from 

each row of the table). 

Except for the definition of the elastic modulus E , the above prismatic bar 

equations are in agreement with those presented by GJELSVIK (1981, eqs. (1.68) and (1.89), 

tables 1.4-1.5) and VLASOV (1961, ch. 1, §§ 7-8).49 

 

Figure 2.9.3: Prismatic bars – Cross-sectional stress resultants 

                                                 
49 Concerning the latter reference, there is also the difference in the definitions of the second area and 

sectorial moments mentioned in note 45. 
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Natural boundary conditions  

Essential boundary 
conditions 

Either 

1 0.1
ˆ (0)EAW Q    

or 

1
ˆ (0 )W  prescribed 

1 .1
ˆ ( ) LEAW L Q   1

ˆ ( )W L  prescribed 

3 .2 3 0.2(0) (0)SEI W m Q     .2 (0)SW  prescribed 

3 .2 3 .2( ) ( )S LEI W L m L Q    .2 ( )SW L  prescribed 

3 .2 0.3(0)SEI W M   .2 (0)SW   prescribed 

3 .2 .3( )S LEI W L M    .2 ( )SW L  prescribed 

2 .3 2 0.3(0) (0)SEI W m Q     .3(0)SW  prescribed 

2 .3 2 .3( ) ( )S LEI W L m L Q    .3( )SW L  prescribed 

2 .3 0.2(0)SEI W M    .3(0)SW   prescribed 

2 .3 .2( )S LEI W L M   .3( )SW L  prescribed 

1 1 0.1(0) (0) (0)
Sω SEI Φ GJΦ b M     

 
3 0.2 2 0.3
S Sx Q x Q   

1(0 )Φ  prescribed 

1 1 .1( ) ( ) ( )
Sω S LEI Φ L GJΦ L b L M    

 
3 .2 2 .3
S S

L Lx Q x Q   
1( )Φ L  prescribed 

 1 0 3 2 2 3 0.1(0) (0) (0)
S

S S
ωEI Φ B x x x x Q    

 
2 0.2 3 0.3
S Sx M x M   

1(0 )Φ   prescribed 

 1 3 2 2 3 .1( ) (0) (0)
S

S S
ω L LEI Φ L B x x x x Q   

 
2 .2 3 .3
S S

L Lx M x M   
1( )Φ L  prescribed 

Table 2.9.1: Prismatic bars – Natural and essential boundary conditions 

* * * 

One now turns to the discussion of the main differences between the full one-

dimensional model for tapered thin-walled bars with open-sections and its prismatic special 

case. Clearly, the main qualitative difference resides in the map ψ , of a geometrical nature, 

which is identically zero for prismatic bars, but not necessarily so when dealing with a 

tapered bar. This map has a dual role. On the kinematics side, it provides an additional 

basic strain mode (recall (2.3.34)), whose amplitude is the rate of twist 1 1Φ   and without 
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which the strain field I Iγ   cannot fully incorporate the taper effect whenever torsion is 

involved. On the statics side, it provides, by means of equation (2.7.21), the contribution of 

the membrane forces ( )
I I

An   to the torque 1M  (this contribution obviously vanishes in 

prismatic bars, whose middle surface is cylindrical). It gives rise to a number of non-

standard geometrical properties – equations (2.5.10), (2.5.14) and (2.5.18)-(2.5.20) – in the 

membrane strain energy and in the boundary value problem for the generalised 

displacements. In prismatic bars, these non-standard properties vanish. 

A second difference between the full model and its prismatic special case, more of a 

quantitative character, lies in the field a , the determinant of the matrix (2.2.14) of metric 

coefficients of S , which is everywhere equal to one for prismatic bars, but generally not so 

for tapered ones. The field a  appears in the area form on S , given by (2.2.20), and in the 

definition of the five basic strain modes (2.3.34). Ultimately, it leads to the use of a reduced 

wall thickness *t  in the definition of the geometrical properties (2.5.6)-(2.5.20). In 

prismatic bars, the reduced wall thickness *t  and the actual wall thickness t  coincide. 

Of course, it is perfectly possible to have a tapered bar with 1 2( , ) 0ψ θ θ   and 
1 2( , ) 1a θ θ   everywhere on Ω , as when the middle surface of the tapered bar is cut out 

from a cylindrical surface. 

Consider a tapered bar for which 0ψ  . In a stepped (i.e., piecewise prismatic) model 

for such a bar, it would be a simple matter to use the reduced wall thickness *t  to compute 

the (standard) cross-sectional rigidities of the prismatic segments. Moreover, the torsional 

rigidity GJ  could easily be replaced by *
ψGJ EI  . However, the effects associated with the 

remaining (non-standard) rigidities cannot be accommodated in the stepped model. It 

follows that the torsional behaviour of the tapered bar, whether uncoupled or coupled with 

other modes of deformation, cannot be adequately predicted by the stepped model, 

regardless of the number of segments considered and even if its properties are modified 

according to the above indications.50 
  

                                                 
50 YAU (2008) has recently proposed the use of stepped models in the predictor phase of an iterative strategy 

for the torsional analysis of web-tapered I-beams. The corrector phase, however, requires the accurate 

computation of the cross-sectional stress results, taking the effects of taper in due account. 
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2.10 BARS WITH IRREGULAR MIDDLE SURFACE 

In § 2.2, we considered bars whose middle surface reference shape S  was given by a 

single, smooth enough parametrisation :F Ω E . This too restrictive framework is now 

extended to what we shall call irregular middle surfaces, made up of several surface elements, 

each defined via a single, smooth enough parametrisation, joined along longitudinal edges. 

Let us consider, as a prototypical example, the case depicted in figure 2.10.1, where 

the middle surface S  is made up of two surface elements, 1S  and 2S , rigidly joined along 

the longitudinal edge J : 

 1 2 S S S  (2.10.1) 

 1 2 J S S  (2.10.2) 

    1ˆ 0,x LJ  . (2.10.3) 

The surface elements 1S  and 2S  are parametrised by the maps 1 1:F Ω  E  and 

2 2:F Ω  E , each satisfying the conditions laid down in § 2.2.2. In particular, 1F  and 2F  

are smooth injective immersions and their domains 1Ω  and 2Ω  are vertically simple 

regions of 2  of the form 

  1 2 2 1 1 2 1
1. 2.( , ) 0 and ( ) ( )n n nΩ θ θ θ L g θ θ g θ       ,  1, 2n   , (2.10.4) 

where 1.ng  and 2.ng  are real-valued continuous functions on  0, L , with 1 1
1. 2.( ) ( )n ng θ g θ  

and 1 1
1. 2.0 ( ) , ( )n ng θ g θ     for every  1 0,θ L . Without loss of generality, we assume that 

(see figure 2.10.1) 

 1 1 1 1
1 2.1 2 1.2( , ( )) ( , ( ))F θ g θ F θ g θ  ,   1 0,θ L   . (2.10.5) 

That being the case, we make the additional requirement that 2.1g  and 1.2g  have the same 

minimum degree of smoothness as 1F  and 2F  – i.e., we require that 2.1g  and 1.2g  be at least 

twice continuously differentiable on  0, L . 

Since 1Ω  and 2Ω  are vertically simple regions, their interiors can be “juxtaposed” as 

follows (see figure 2.10.2): 

 1 1Ω Ω


 (2.10.6) 

  1 2 2 1 1 2 1 1 1
2 2.1 2.1 2.2 1.2( , ) 0 and ( ) ( ) ( ) ( )Ω θ θ θ L g θ θ g θ g θ g θ       


 (2.10.7) 

 1 2Ω Ω Ω 
  

 . (2.10.8) 
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Figure 2.10.1: Irregular middle surface made up of two surface elements, 1S  and 2S , 

rigidly joined along the longitudinal edge J  

The restrictions of 1F  and 2F  to the interior of their domains can be similarly 

“juxtaposed” to form the single map :F Ω 
 

E  defined by 

 
1 2 1 2

1 11 2

1 2 1 1 1 2
2 2.1 1.2 2

( , ) if ( , )
( , )

( , ( ) ( )) if ( , )

F θ θ θ θ Ω
F θ θ

F θ θ g θ g θ θ θ Ω

  
  






 . (2.10.9) 

Clearly, the restrictions of F


 to 1Ω
 and 2Ω

 are injective immersions with the same 

minimum degree of smoothness as 1F  and 2F . Moreover, for fixed  1 0,θ L , the map 
2 1 2( , )θ F θ θ


 is a piecewise arc-length parametrisation of the (reference shape of the) 

cross-section middle line 1θL  minus the end points 1 1
1 1.1( , ( ))F θ g θ  and 1 1

2 2.2( , ( ))F θ g θ  and 

the junction point 1 1 1 1
1 2.1 2 1.2( , ( )) ( , ( ))F θ g θ F θ g θ . 

1S  

O

3e  
2e  

2F  

1e  

L0  

1 1
2 2.2( , ( ))F θ g θ  

2
1Ω   
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Figure 2.10.2: Bars with irregular middle surface – “Juxtaposition” of 1Ω  and 2Ω  to form 

the open set 1 2Ω Ω Ω 
  

 

We can now define the underscored counterparts of the maps (2.2.2), (2.2.4), (2.2.8) 

and (2.2.18) in the obvious way: 

 ˆ :i ix x F Ω  
 

 (2.10.10) 

 α α :D F Ω 
 

Va  (2.10.11) 

 αβ α β :a Ω   
  

a a  (2.10.12) 

 αβdet :a a Ω     
 

 . (2.10.13) 

Moreover, for each 1 2( , )θ θ Ω


, we define the orthonormal ordered basis 

 1 2 1 2
I II( , ), ( , )θ θ θ θ
 
o o  for 1 2( , )F θ θT


S  such that (i) it exhibits the same orientation as the 

covariant basis  1 2 1 2
1 2( , ), ( , )θ θ θ θ
 
a a  associated with F


 and (ii) 1 2 1 2

II 2( , ) ( , )θ θ θ θ
 
o a . 

The wall thickness is given by the continuous maps :n nt Ω   , 1, 2n  , with small 

enough  1 2
1 2

.max ( , )max ( , )
nn nθ θ Ωt t θ θ .51 We introduce the map :t Ω  


 defined by 

 
1 2 1 2

1 11 2

1 2 1 1 1 2
2 2.1 1.2 2

( , ) if ( , )
( , )

( , ( ) ( )) if ( , )

t θ θ θ θ Ω
t θ θ

t θ θ g θ g θ θ θ Ω

  
  






 . (2.10.14) 

                                                 
51 It is not required that 1 1 1 1

1 2.1 2 1.2( , ( )) ( , ( ))t θ g θ t θ g θ , 10 θ L  . 

L

1 1Ω Ω


1

1 1
1.1( , ( ))θ g θ  

1θ

2  

0  

1 1
2.1( , ( ))θ g θ  

1 1 1 1
2.1 2.2 1.2( , ( ) ( ) ( ))θ g θ g θ g θ   

2Ω
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With the obvious replacements of non-underscored symbols with their underscored 

counterparts,52 the kinematic and constitutive developments in §§ 2.3-2.4 remain entirely 

valid. Only the adaptation of the definition (2.3.16) requires some elaboration – it is 

generalised as follows: 

  
2

1 2 1 1 1 1
2 2 3 3 2 20

( , ) ( , ) ( , ) ( , ) ( , )
θ

ω θ θ x θ s D x θ s x θ s D x θ s ds     
 (2.10.15) 

if 1 2
(1)( , )θ θ Ω


 and 

  
1

2.1 ( )1 2 1 1 1 1
2 2 3 3 2 20

( , ) ( , ) ( , ) ( , ) ( , )
g θ

ω θ θ x θ s D x θ s x θ s D x θ s ds     
  

  
2

1
2.1

1 1 1 1
2 2 3 3 2 2( )
( , ) ( , ) ( , ) ( , )

θ

g θ
x θ s D x θ s x θ s D x θ s ds     

 . (2.10.16) 

if 1 2
2( , )θ θ Ω


. Observe that the integrand is continuous and bounded on Ω


, since its 

restriction to 1Ω
 (resp. 2Ω

) admits a continuous extension to 1Ω
 (resp. 2Ω


) – e.g., 

DIEUDONNÉ (1960, th. 3.17.10). Therefore, the above definition is a meaningful one (see 

LIMA 1989, ch. 6, § 3).53 

The membrane strain energy can now be obtained as in (2.5.1), replacing the integral 

over Ω with an integral over Ω


 (hence, by the sum of two integrals, over 1Ω
 and over 2Ω

). 

Once again, we remark that the integrand is continuous and bounded on Ω


. Then, mutatis 

mutandis, the remainder of the discussion in §§ 2.5-2.9 retains its validity.54 

The above ideas can be readily extended to more general situations. In particular, we 

may consider more junctions, as in the case of tapered I-section bars to which we now turn. 

For the sake of notational simplicity, the underscored notation is dropped, since it will always 

be clear from the context when we are dealing with irregular middle surfaces. 
  

                                                 
52 It is understood that the underscored counterpart of the closed set Ω  is the open set 1 2Ω Ω Ω 

  
. 

Observe that the boundary of a bounded and Jordan measurable subset of 2 , such as Ω  or Ω


, is 
negligible (DUISTERMAAT & KOLK 2004, th 6.3.2). 

53 A more general version of Leibniz rule than the one used in note 24 is now required to obtain a formula 
for 1D ω  – see, e.g., BARTLE (1967, th. 23.11). 

54 For instance, in the geometrical properties (2.5.6)-(2.5.20), the integrals over 1 1
1 2( ) , ( )g θ g θ    are replaced 

with the sum of two integrals, over  1 1
1.1 2.1( ) , ( )g θ g θ  and over  1 1 1 1

2.1 2.1 2.2 1.2( ), ( ) ( ) ( )g θ g θ g θ g θ  . 
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2.10.1 An important special case: I-section bars with linearly varying web 

depth and/or flange width 

Research in engineering science cannot be considered 
to be completed until […] the results have been presented 

in a form accessible to other engineers. 

WARNER T. KOITER 

Tapered I-section bars with linearly varying web depth and/or flange width can be 

fabricated by (i) reassembling split rolled profiles or (ii) welding flat plates cut to 

trapezoidal form (KREFELD et al. 1959). If the web of a rolled I-section profile having the 

desired span length is cut diagonally and the separated parts are reversed, the depth will be 

increased at one end and decreased at the other. Split rolled bars provide constant flange 

width and tapered web depth. The fabrication consists of a web weld at mid-depth of the 

tapered bar. The built-up bars assembled from plates cut to provide the desired taper of the 

web and/or flanges require flange-to-web welds. 

Figure 2.10.3 shows (i) the reference shape of the most general I-section bar that we 

shall consider and (ii) the adopted Cartesian reference frame, with the plane containing the 

origin O  and spanned by  1 3,e e  being a plane of symmetry for the reference shape. The 

width of the flanges and the depth of the web (measured between flange middle lines) are 

described by the affine maps (from  0, L  into  ) 

  . 1 1
1 .0 .0

.0

( ) 1 1 1 1 αt L
t t t t

t

b x x
b x b b

b L L

                
 ,  .

.0

α t L
t

t

b

b
  (2.10.17) 

  . 1 1
1 .0 .0

.0

( ) 1 1 1 1 αb L
b b b b

b

b x x
b x b b

b L L

                
 ,  .

.0

α b L
b

b

b

b
  (2.10.18) 

  1 1
1 0 0

0

( ) 1 1 1 1 αL
w

h x x
h x h h

h L L

                
 ,  

0

α L
w

h
h

 (2.10.19) 

(the subscripts 0 and L indicate dimensions at 1 0x   and 1x L , respectively). These 

plated components exhibit constant thicknesses tt , bt  and wt . The 3x -coordinate of the 

top flange middle plane is given by 

 
3 . 3 .0

3 1 3 .0 1( ) t L t
t t

x x
x x x x

L


   . (2.10.20) 

 



 

 

 

 

Fig. 2.10.3: Tapered I-section bar – Reference shape 
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Accordingly, the 3x -coordinate of the bottom flange middle plane reads 

 3 . 3 .0 0
3 1 3 1 1 3 .0 0 1

( ) ( )
( ) ( ) ( ) ( ) t L L t

b t t

x h x h
x x x x h x x h x

L

  
      . (2.10.21) 

The inclinations of the top and bottom flanges with respect to the planes spanned by 

 1 2,e e  are 

 3 . 3 .0arctan t L t
t

x x
φ

L


  (2.10.22) 

 3 . 3 .0arctan b L b
b

x x
φ

L


  ; (2.10.23) 

observe that π 2 , π 2t bφ φ   . 

The scheme adopted for the parametrisation of (the reference shape of) the middle 

surface is summarised in figure 2.10.4 and in table 2.10.1. The latter also provides all the 

geometrical features that are required to compute the properties (2.5.6)-(2.5.20). One 

obtains: 

 

Fig. 2.10.4: Tapered I-section bar – Parametrisation of the middle surface 

 

1( )tb θ  

1( )bb θ  

1
3 ( )tx θ  

1( )

2

h θ
 

1( )

2

h θ
 1

3 ( )bx θ  
1( ,0)F θ  

1
1O θ e  

(1) (5)

(2)  (4)

(3)

2e  

3e

1θ
L  



 

 

 

 

 range of 2θ  
1 2

2( , )x θ θ  1 2
3( , )x θ θ  1 2( , )a θ θ  * 1 2( , )t θ θ  

1Ω  
1 1 11 1

2( ) ( ) ( )( ) ( )

2 2 2 2 2
t b bb θ b θ b θh θ h θ

θ       
11

2 ( )( )

2 2
bb θh θ

θ
 

   
 

 1
3 ( )tx θ  21 tan tφ  3cost tt φ  

2Ω  
11 1

2( )( ) ( )

2 2 2
bb θh θ h θ

θ     
1

2 ( )

2

h θ
θ
 

  
 

 1
3 ( )bx θ  21 tan bφ  3cosb bt φ  

3Ω  
1 1

2( ) ( )

2 2

h θ h θ
θ    0  

1
2 1

3

( )
( )

2t

h θ
θ x θ   1  wt  

4Ω  
11 1

2 ( )( ) ( )

2 2 2
bb θh θ h θ

θ    
1

2 ( )

2

h θ
θ
 

  
 

 1
3 ( )bx θ  21 tan bφ  3cosb bt φ  

5Ω  
1 1 11 1

2( ) ( ) ( )( ) ( )

2 2 2 2 2
b t bb θ b θ b θh θ h θ

θ      
11

2 ( )( )

2 2
bb θh θ

θ
 

   
 

 1
3 ( )tx θ  21 tan tφ  3cost tt φ  

Table 2.10.1: Tapered I-section bar – Geometrical features 

 

 

 



 

 

 

 

 range of 2θ  
1 2( , )ω θ θ  1 2( , )ψ θ θ  

1Ω  
1 1 11 1

2( ) ( ) ( )( ) ( )

2 2 2 2 2
t b bb θ b θ b θh θ h θ

θ       
11

1 2
3

( )( )
( )

2 2
b

t

b θh θ
x θ θ

 
  

 
 

11
2 ( )( )

2 tan
2 2

b
t

b θh θ
φ θ
 

  
 

 

2Ω  
11 1

2( )( ) ( )

2 2 2
bb θh θ h θ

θ     
1

1 2
3

( )
( )

2b

h θ
x θ θ

 
 

 
 

1
2 ( )

2 tan
2b

h θ
φ θ
 

 
 

 

3Ω  
1 1

2( ) ( )

2 2

h θ h θ
θ    0  0  

4Ω  
11 1

2 ( )( ) ( )

2 2 2
bb θh θ h θ
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1

1 2
3

( )
( )

2b

h θ
x θ θ

 
 

 
 

1
2 ( )

2 tan
2b

h θ
φ θ
 

 
 

 

5Ω  
1 1 11 1

2( ) ( ) ( )( ) ( )

2 2 2 2 2
b t bb θ b θ b θh θ h θ

θ      
11

1 2
3

( )( )
( )

2 2
b

t

b θh θ
x θ θ

 
  

 
 

11
2 ( )( )

2 tan
2 2

b
t

b θh θ
φ θ
 

  
 

 

Table 2.10.1 (continued): Tapered I-section bar – Geometrical features 

 

 



A Linear 1D Model for Tapered Thin-Walled Bars with Open Cross-Sections – The Static Case 

79 

 * 1 1 1 3 1 3( ) ( ) ( ) cos ( ) cosw t t t b b bA θ h θ t b θ t φ b θ t φ    (2.10.24) 

 
1

* 1 1 1 1 1 3
2 3 3

( )
( ) ( ) ( ) ( ) ( ) cos

2 t w t t t t

h θ
S θ x θ h θ t x θ b θ t φ

 
   
 

  

 1 1 3
3 ( ) ( ) cosb b b bx θ b θ t φ  (2.10.25) 

 
21 3 1

* 1 1 1 1 2 1 3
2 3 3

( ) ( )
( ) ( ) ( ) ( ) ( ) cos

12 2
w

t w t t t t

h θ t h θ
I θ x θ h θ t x θ b θ t φ

 
    

 
  

 1 2 1 3
3 ( ) ( ) cosb b b bx θ b θ t φ  (2.10.26) 

 * 1 1 3 3 1 3 3
3

1 1
( ) ( ) cos ( ) cos

12 12t t t b b bI θ b θ t φ b θ t φ   (2.10.27) 

 * 1 1 2 1 3 3 1 2 1 3 3
3 3

1 1
( ) ( ) ( ) cos ( ) ( ) cos

12 12ω t t t t b b b bI θ x θ b θ t φ x θ b θ t φ   (2.10.28) 

 * 1 1 3 2 3 1 3 2 31 1
( ) ( ) tan cos ( ) tan cos

3 3ψ t t t t b b b bI θ b θ φ t φ b θ φ t φ   (2.10.29) 

 * 1 1 1 3 3 1 1 3 3
3 3 3

1 1
( ) ( ) ( ) cos ( ) ( ) cos

12 12ω t t t t b b b bI θ x θ b θ t φ x θ b θ t φ    (2.10.30) 

 * 1 1 3 3 1 3 3
3

1 1
( ) ( ) tan cos ( ) tan cos

6 6ψ t t t t b b b bI θ b θ φ t φ b θ φ t φ    (2.10.31) 

 * 1 1 1 3 3 1 1 3 3
3 3

1 1
( ) ( ) ( ) tan cos ( ) ( ) tan cos

6 6ωψ t t t t t b b b b bI θ x θ b θ φ t φ x θ b θ φ t φ   . (2.10.32) 

Due to symmetry, *
3S , *

ωS , *
ψS , *

23I , *
2ωI  and *

2ψI  are identically zero (vide supra, § 2.9.1). 

Moreover, 

 
3 3

1 1 3 1 11
( ) ( ) ( ) ( )

3 cos cos
t b

w t b
t b

t t
J θ h θ t b θ b θ

φ φ

    
      

     
 . (2.10.33) 

This formula for J  is approximate and presupposes that each plated component (web and 

flanges) exhibits a sufficiently large width-to-thickness ratio throughout the whole length of 

the bar (e.g., TIMOSHENKO & GOODIER 1970, §§ 108-109). 

Finally, figure 2.10.5 gives schematic representations of the maps ω  and ψ . 



Chapter 2 

80 

 

Fig. 2.10.5: Tapered I-section bar – Schematic representations of the maps ω  and ψ 

2.11 ILLUSTRATIVE EXAMPLES 

Man muss immer mit den einfachsten Beispielen anfangen. 

DAVID HILBERT 

Illustrative example 1 

As a first illustration of the one-dimensional model developed in this chapter, 

consider the family of doubly symmetric web-tapered I-section cantilevers whose reference 

shape is shown in figure 2.11.1. The adopted Cartesian reference frame is also shown in 

this figure and is such that the planes containing the origin O  and spanned by  1 2,e e  and 

by  1 3,e e  are the longitudinal planes of symmetry of the reference shape. The flanges are 

uniform, with thickness  and width . The web has constant thickness wt  and its depth 

h , measured between flange middle lines, varies according to the affine law 

 1
1 0( ) 1 (1 α)

x
h x h

L
    
 

 , (2.11.1) 

with 0 α 1  . The parameter α  will be called the web taper ratio (or simply the taper 

ratio). Observe that α 1  corresponds to a prismatic beam. The flanges exhibit 

symmetrical slopes tanφ  with respect to the planes spanned by  1 2,e e , where 

0tan (1 α ) / (2 )φ h L  . The cantilever is clamped at its larger end ( 0A ) and free at the 

smaller end ( LA ), where a concentrated torque .1LM  is applied. 

ft fb
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Figure 2.11.1: Illustrative example 1 – Reference shape, support conditions and applied torque 

From the analysis in § 2.9.1, applied to each of the two longitudinal symmetry planes, 

or by appropriate specialisation of the results given in § 2.10.1, one readily concludes that 

the boundary value problem for the generalised displacements of § 2.6 is entirely uncoupled. 

In view of the applied loading, it follows at once that 1W , 2W  and 
3W  are all identically 

zero and we are just left with the following problem: 

Illustrative example 1. 

Find  1 : 0,Φ L  , with  4
1 0,Φ C L , satisfying the ordinary differential 

equation 

    * * 1 * * 1
1 1 1 1( ) ( ) 0ω ωψ ωψ ψEI Φ EI Φ θ EI Φ GJ EI Φ θ           

     (2.11.2) 

on the open interval  0, L , together with the boundary conditions 

 1(0) 0Φ   (2.11.3) 

 1(0) 0Φ   (2.11.4) 

  * * *
1 1 1( ) ( ) ( )ω ωψ ωψEI Φ EI Φ L EI L Φ L         

  *
1 .1( ) ( ) ( )ψ LGJ L EI L Φ L M    (2.11.5) 

 * *
1 1( ) ( ) ( ) ( ) 0ω ωψEI L Φ L EI L Φ L     . (2.11.6) 

In these equations, 
  

0h  

L  

0αh  

ft  

.1LM  

wt  

fb  

1e  

3e  3e  

2e  O 
0h  

ft  

φ  

φ  

.1LM  
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21

* 1 1 2 3 3 2 3 3
0

1 1
( ) ( ) cos 1 (1 α) cos

24 24ω f f f f

θ
I θ h θ b t φ h b t φ

L

 
    

 
  

 
21

*1 (1 α) (0)ω

θ
I

L

 
   
 

 (2.11.7) 

 
1

* 1 1 3 3 2 3 3
0

1 1 α
( ) ( ) tan cos 1 (1 α) cos

6 12ωψ f f f f

θ
I θ h θ b φ t φ h b t φ

L L

 
      

 
 

 
1

*2
(1 α) 1 (1 α) (0)ω

θ
I

L L

 
     

 
 (2.11.8) 

2
* 1 3 2 3 2 3 3 2 *

0 2

2 1 1 α 4
( ) tan cos cos (1 α) (0)

3 6ψ f f f f ωI θ b φ t φ h b t φ I
L L

     
 

 (2.11.9) 

 
3 1 3 3 1

1 0
2 ( )

( ) 1 (1 α) (0)
3 cos 3 3 (0)

f f w w
b t h θ t h t θ

J θ J
φ J L

   
       

   
 .55 (2.11.10) 

Observe that the differential equation (2.11.2) has polynomial coefficients (which become 

constant coefficients when α 1 ). The coefficient *
ωEI  of the leading term does not 

vanish on  0, L . Moreover, it should be noticed that 

 ** 1 1( ) ( )ωψ ωI θ I θ  (2.11.11) 

 ** 1 1 * 1( ) 2 ( ) 2 ( )ψ ω ωψI θ I θ I θ    (2.11.12) 

(it goes without saying that the validity of these identities is restricted to the particular bar 

geometry considered in this illustrative example). 

In an effort to gain further understanding of the nature of the tapered one-

dimensional model, we contrast in figures 2.11.2-2.11.7 the warping-torsion behaviours of 

prismatic (α 1 ) and linearly depth-tapered ( 0 α 1  ) doubly symmetric I-section bars 

(ANDRADE et al. 2010). The following facts are worthy of notice: 

(i) In both cases, the internal constraints (V1)-(V2), together with symmetry considerations, 

imply qualitatively similar displacement fields for the cross-section middle line at a distance 
1θ  from the origin (figure 2.11.2): (i1) the middle line rotates about the centroidal axis 

through an angle 1
1( )Φ θ  and (i2) the flanges warp out of the plane by rotating 

1( ) 1
2 1( )h θ Φ θ  

about their major axes. However, one must not forget that in the web-tapered case the 

displacements along 
3e  are obviously not orthogonal to the middle planes of the flanges. 

                                                 
55 The order of the differential equation (2.11.2) and the number of accompanying boundary conditions could have been 

lowered from 4 to 3. We chose not to do so to keep a more direct link with the general boundary value problem of § 2.6. 
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 3 2 2 3 1 1 1x x Φ ωΦ   U e e e  

Figure 2.11.2: Contrasting the warping-torsion behaviours of prismatic and web-tapered 

doubly symmetric I-section bars – Displacement field of cross-section middle line 

(ii) The displacement fields discussed above can now be used to find the membrane 

strains I Iγ   in the flanges by direct computation (figure 2.11.3). Comparing the ensuing 

strain-displacement relations for prismatic and web-tapered bars, one readily sees that 

the latter contains an additional term and a scaling factor ( 2cos φ ).56 Now, by 

specialising the results summarised in table 2.10.1 and figure 2.10.5, one readily sees 

that this additional term is none other than 1ψ Φ   and the scaling factor is 1
a  (recall 

                                                 
56 This particular strain distribution is identical to that one obtained by CYWINSKI & KOLLBRUNNER (1971, 

§ 3, eq. 13). However, in subsequent developments, these authors adopted the approximation 2cos 1φ  . 
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I I 1γ ωΦ     1
I I 1 1aγ ωΦ ψΦ      

Figure 2.11.3: Contrasting the warping-torsion behaviours of prismatic and web-tapered 

doubly symmetric I-section bars – Membrane strains I Iγ   

 
 

I I 1n Et ωΦ      1
I I 1 1an Et ωΦ ψΦ      

Figure 2.11.4: Contrasting the warping-torsion behaviours of prismatic and web-tapered 

doubly symmetric I-section bars – Membrane forces I In   (active) 

the basic strain modes (2.3.34)). These remarks also apply to the (active) membrane 

forces I In   in the flanges, as shown in figure 2.11.4. 

(iii) The membrane forces I IIn   shown in figure 2.11.5, which have a reactive character, 

may be found by considering the equilibrium of a “flange slice” acted by the previously 

obtained membrane forces I In  , as ordinarily done in standard textbooks on strength 

of materials (e.g., MASSONNET 1968, §§ 7.3-7.4, or DIAS DA SILVA 2006, §§ 8.2 and 8.3.c). 
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Figure 2.11.5: Contrasting the warping-torsion behaviours of prismatic and web-tapered 

doubly symmetric I-section bars – Membrane forces I IIn   (reactive) 

  

Figure 2.11.6: Contrasting the warping-torsion behaviours of prismatic and web-tapered 

doubly symmetric I-section bars – Bending moments fM  in the flanges 

(iv) The membrane forces  (resp. ) are statically equivalent to a bending moment 

 (resp. shear force ) in each flange (figures 2.11.6-2.11.7). In the web-

tapered case, the modified warping stiffness , calculated with the reduced 

flange thickness , and the non-standard mechanical property  arise 

naturally in this process: 

  

  (2.11.13) 

I In  I IIn 

1( )fM θ 1( )fV θ
* 1( )ωEI θ

3cosft φ * 1( )ωψEI θ

1
1 3 2 1 1

1 1

( )1( ) cos ( ) tan ( )
6 4f f f

h θ
M θ Eb t φ Φ θ φΦ θ

    
 



 * 1 1 * 1 1
1 11

1
( ) ( ) ( ) ( )

( )cos ω ωψEI θ Φ θ EI θ Φ θ
h θ φ

   

2

116
fh b

fE t Φ   

 
2

3 3
1 14 4 2cos tanfb h

fE t φ Φ φΦ    

1e  2e  

3e  

O  
φ  

1e  2e  

3e  

O

1e  2e  

3e  

O  

φ  

1e  2e  

3e  

O

1
1f ωhM EI Φ 

3

1
1 124

fh b
f f ωhM E t Φ EI Φ     

 
 
3 21

1 16 4

* *1
1 1cos

cos tanh
f f f

ω ωψh φ

M E b t φ Φ φΦ

EI Φ EI Φ

  

  



 
 

φ  

φ  

 * *1
1 1cosf ω ωψh φM EI Φ EI Φ     



Chapter 2 

86 

  

Figure 2.11.7: Contrasting the warping-torsion behaviours of prismatic and web-tapered 

doubly symmetric I-section bars – Shear forces fV  in the flanges 
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Observe that 
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1( ) cos ( )

12 2
f f

f

b t h
M θ E φ Φ θ

   
 

  . (2.11.15) 

 1 1( ) cos ( )f fV θ φM θ   . (2.11.16) 

We can thus look at each flange as an Euler-Bernoulli beam undergoing deflections 

12
hΦ . However, a word of caution is in order: when dealing with web-tapered bars, 

one must carefully distinguish between derivatives with respect to 1θ  and derivatives 

with respect to the arc length of the flange centroidal lines, whence the appearance of 

cosφ  in equations (2.11.15)-(2.11.16).57 

(v) In web-tapered bars, the flange bending moments have an axial component, featuring 
*
ωψEI  and *

ψEI , which totals 
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57 Clearly, a stepped model, regardless of the number of prismatic segments it comprises, cannot capture the 

second term on the right-hand side of   1 1 1 1 11 1
1 1 12 2( ) ( ) ( ) ( ) ( )hΦ θ h θ Φ θ h θ Φ θ     , nor can it capture the 

factor cosφ . 
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In complete agreement with the general definition (2.7.6), the torque is thus given by 

 1 1 1 1 1 1
1 1( ) 2sin ( ) ( ) ( ) ( ) ( )f fM θ φM θ V θ h θ GJ θ Φ θ     

 * 1 1 * 1 1 1 * 1 1
1 1 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2ω ωψ ψEI θ Φ θ EI θ Φ θ GJ θ EI θ Φ θ        
 

    . (2.11.18) 

Obviously, the contribution of the flange bending moments to the torque (i) is absent 

in prismatic bars and (ii) cannot be captured by stepped models. Finally, notice that 

  
1

1 * 1 1 * 1 1
1 11 1

1 ( )
cos ( ) ( ) ( ) ( ) ( )

( ) ( )f ω ωψ

B θ
φM θ EI θ Φ θ EI θ Φ θ

h θ h θ
       . (2.11.19) 

(vi) The splitting of the torque (2.11.18) into active and reactive parts is rather subtle. By 

plugging (2.11.19) into (2.11.16), one obtains 

 1 1 1
1 1

2 tan1
( ) ( ) ( )

( ) ( )f

φ
V θ B θ B θ

h θ h θ
   
 

 . (2.11.20) 

Then, the active and reactive parts of the torque are 

 ( ) 1 1 1 1 1
1 11

2 tan
( ) 2sin ( ) ( ) ( ) ( )

( )
A

f

φ
M θ φM θ B θ GJ θ Φ θ

h θ
      

  * 1 1 1 * 1 1
1 1( ) ( ) ( ) ( ) ( )ωψ ψEI θ Φ θ GJ θ EI θ Φ θ      (2.11.21) 

  ( ) 1 1 * * 1
1 1 1( ) ( ) ( )R

ω ωψM θ B θ EI Φ EI Φ θ        , (2.11.22) 

in accordance with the general definitions (2.7.21)-(2.7.22). 

LEE (1956) and KITIPORNCHAI & TRAHAIR (1972) have also provided a physical 

explanation for the warping-torsion behaviour of doubly symmetric web-tapered I-section 

bars, by regarding each flange as an individual Euler-Bernoulli beam in bending, with 

deflections 12
hΦ . However, their analysis is marred by the fact that they fail to distinguish 

between derivatives with respect to the longitudinal coordinate of the bar and derivatives 

with respect to the arc length of the flange centroidal lines. This prevents them from 

arriving at the reduced flange thickness 3cosft φ . Moreover, Kitipornchai and Trahair 

allow for doubly symmetric I-section bars with curved flanges (that is, bars whose depth is 

described by a smooth non-affine map), in which case the equation used to relate bending 

moments in the flanges to the rotation about the beam axis – equation (14) in the cited 

paper – is incomplete. In particular, it leads to the conclusion that a rigid infinitesimal 

rotation of the beam about its axis causes bending moments in the flanges, which is 
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obviously absurd. The term responsible for this conclusion, which features 1h Φ  and is 

“neglected as being small [...] for most structural beams”, would not have arisen in the first 

place if the complete equation for a curved rectangular beam (e.g., equation (7.2.28) in 

YANG & KUO 1994, p. 400) had been used. The same kind of oversight is present in LEE 

& SZABO (1967). 

After this brief, and hopefully enlightening, digression, let us now return to the 

boundary value problem (2.11.2)-(2.11.10). By an appropriate change of independent 

variable, this problem may be posed on a fixed reference domain (i.e., independent of the 

cantilever length L ) and written in non-dimensional form. Indeed, consider the real 

analytic diffeomorphism    : 0, 0,1f L   defined by 
11 θ

Lθ   and let 1( )s f θ  denote 

the associated change of independent variable. Moreover, define  : 0,1Φ    such that 

1Φ Φ f    (that is, 1
1Φ Φ f   ). Clearly, 1Φ  is four times continuously differentiable on 

 0, L  if and only if Φ  is four times continuously differentiable on  0,1 , with the chain 

rule yielding (e.g., RUDIN 1976, th. 5.5) 

 ( ) 1 ( )
1

1
( ) ( )n n

n
Φ θ Φ s

L
   ,  1, , 4n    . (2.11.23) 

Then, with the introduction of the non-dimensional ratios 

 
*

0

(0)

(0)
ω

ω

EIπ

L GJ
 


 (2.11.24) 

 
3

0
0 3 (0)

w
J

h t

J
   (2.11.25) 

 .1

(0)
LM L

μ
GJ

  , (2.11.26) 

the illustrative example 1 is brought into the following form: 

Illustrative example 1 (non-dimensional version). 

Find  : 0,1Φ   , with  4 0,1Φ C , satisfying the ordinary differential equation 

    
2 2

2 ( 4 )0 01 (1 α) ( ) 4 (1 α) 1 (1 α) ( )ω ωs Φ s s Φ s
π π

              
   

    

  0 01 (1 α) ( ) (1 α) ( ) 0J Js Φ s Φ s          (2.11.27) 

on the open interval  0,1 , together with the boundary conditions 
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 (0) 0Φ   (2.11.28) 

 (0) 0Φ   (2.11.29) 

 
2 2

2 0 0α (1) 2α(1 α) (1)ω ωΦ Φ
π π

          
   

    

 
2

2 0
01 2(1 α) (1 α) (1)ω

J Φ μ
π

 
          

  
  (2.11.30) 

 α (1) 2(1 α) (1) 0Φ Φ      . (2.11.31) 

We remark that  0 0α , , ,ω J μ   constitutes a complete set of independent non-

dimensional parameters characterising the linear torsional behaviour of the family of 

cantilevers depicted in figure 2.11.1. This conclusion could also have been reached through 

Vaschy-Buckingham’s theorem (VASCHY 1892, 1896, ch. 0, §§ 11-12, and BUCKINGHAM 

1914, 1915, 1921), the fundamental result that “summarizes the entire theory of 

dimensional analysis” (LANGHAAR 1951, p. 19).58 Moreover, observe that the parameter 

0J  is not required in the analysis of prismatic bars, as it always appears in the governing 

equations multiplied by (1 α) . In design practice, 0ω  ranges from 0.1  to 2.5 , with low 

(resp. high) values of this parameter corresponding to long (resp. short) cantilevers and/or 

compact (resp. slender) cross-sections at the support (KITIPORNCHAI & TRAHAIR 1980). 

As for 0J , which measures the relative contribution of the web to the Saint-Venant 

torsional rigidity of the clamped cross-section, it lies in the open interval  0,1  – the 

limiting values 0 0J   and 0 1J  , not addressed here, are associated with two degenerate 

cases: webless and narrow rectangular beams, respectively. 

In the prismatic case (α 1 ), the solution to the non-dimensional version of the 

illustrative example 1 is (e.g., CHEN & ATSUTA 1977, p. 48) 

 0

0 0 0

( ) tanh tanh coshω

ω ω ω

π π π
Φ s μ s

π


  

              
     

  

 
0 0

sinh
ω ω

π π
s s

 
    

  
 ,  0 1s   . (2.11.32) 

                                                 
58 Several different proofs of this theorem, with varying degrees of generality and complexity, can be found in 

BIRKHOFF (1960, §§ 63-64), BLUMAN & ANCO (2002, § 1.2), BOYLING (1979), BRAND (1957), BRIDGMAN (1931, 
ch. 4), CORRSIN (1951), CURTIS et al. (1982), GIBBINGS (2011, ch. 3) LANGHAAR (1951, ch. 4), LOGAN 
(2006, § 1.1), MENDOZA (1996), POBEDRYA & GEORGIEVSKII (2006) and SEDOV (1993, ch. 1, § 6). 
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In the tapered case ( 0 α 1  ), no closed-form solution is available. The mathematical 

software package Mathematica (WOLFRAM RESEARCH, INC. 2006) was used to obtain 

numerical solutions for selected values of the parameters 0ω  and α  – since the parameter 

 is found to be relatively unimportant, we always set 0 0.1J  .59 These solutions are 

plotted in figure 2.11.8. For prismatic cantilevers, it can be seen that the non-dimensional 

“twistature”60 ( )s Φ s  is a strictly decreasing map that vanishes at 1s  , as required by 

the boundary condition (2.11.31). For web-tapered bars, on the other hand, the non-

dimensional “twistature” Φ  exhibits an increase near the free end – this boundary effect is 

all the more noticeable as 0ω  increases and as α  decreases. 

Another interesting difference in the warping-torsion behaviours of prismatic and 

web-tapered cantilevers is revealed in figure 2.11.9, which displays the lateral deflection 

1 / 2Φ h  of the top flange centroidal line per unit torque .1LM , rendered non-dimensional by 

the factor 0(0)/( )GJ L h : 

   1

.1 0

( ) ( )( ) (0)
1 (1 α)

2 2 L

Φ s L h s LΦ s GJ
s

μ M L h
  


 . (2.11.33) 

Regarded as Euler-Bernoulli beams, the flanges in a prismatic bar exhibit single curvature 

bending, while in a tapered bar they undergo double curvature bending. In the latter case, 

the inflection point moves to the left, i.e., away from the free end and towards the support, 

as the taper ratio α  decreases. Such a behavioural feature is also clearly visible in figure 

2.11.10, which displays the non-dimensional bimoment distribution 

 
( )

( )
(0)

B s L
s β s

GJ
  

    
2 2

2 0 01 (1 α) ( ) 2(1 α) 1 (1 α) ( )ω ωs Φ s s Φ s
π π

               
   

   (2.11.34) 

per unit non-dimensional torque μ  – the reader should bear in mind the identity (2.11.19), 

relating the bending moment in the flanges to the bimoment. Inspection of the graphs in 

figure 2.11.10 also shows that, for low 0ω , the bimoment distribution is essentially 

localised in a small region adjacent to the support; for high 0ω ,, on the contrary, it has 

appreciable values over the entire length of the bars – this observation applies to prismatic 

and tapered bars alike. 

                                                 
59 As an indication, members with 0 2h b  and 2f wt t  exhibit 0 0.1J  . 

60 A neologism coined by TRAHAIR (1993, p. 39). 

0 J
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Fig. 2.11.8: Illustrative example 1 ( 0 0.1J  ) – Solutions ( )s Φ s  to the non-dimensional 

version of the boundary value problem per unit non-dimensional torque μ  
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Fig. 2.11.9: Illustrative example 1 ( 0 0.1J  ) – Lateral deflections of the top flange 

centroidal line per unit torque in non-dimensional form 
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Fig. 2.11.10: Illustrative example 1 ( 0 0.1J  ) – Non-dimensional bimoment distributions 

( )s β s  per unit non-dimensional torque μ  

0 0.5ω   

0 1.0ω   

0 2.0ω   

( )β s

μ
 

( )β s

μ
 

( )β s

μ
 

s  

s  

s  

α 1.0  

α 0.6  

α 0.4  

α 0.2  

α 1.0  
α 0.6  
α 0.4  
α 0.2  

α 1.0  
α 0.6  
α 0.4  
α 0.2  



Chapter 2 

94 

Figure 2.11.11 shows the non-dimensional flange shear force distribution 

  (2.11.35) 

per unit non-dimensional torque . We can notice here another boundary effect. For most 

of their length, there are no significant differences between prismatic and tapered bars 

(especially for low ). However, near the free end, the shear forces in the flanges of 

tapered bars change sign and, as  decreases, their absolute value exhibits a gradually 

sharper increase. For , in particular, we have , with the difference 

becoming larger as  increases. 

The differences in warping-torsion behaviour between prismatic and web-tapered I-

section cantilevers can be further illustrated by considering the non-dimensional torsional 

stiffness / (1)μ Φ , plotted in figure 2.11.12 versus the taper ratio α  (solid lines, labelled 

“tapered model”). Contrary to intuition (which is often misleading), / (1)μ Φ  is not a 

monotonic increasing function of α . Instead, it reaches a minimum for an intermediate 

value of α , dependent on 0ω . This is explained by the specific taper effects that were 

discussed in connection with figures 2.11.2-2.11.7 and which are embodied predominantly 

in the field ( 0)ψ   and, to a much lesser extent, in the field ( 1)a   of the general one-

dimensional model. Indeed, if one sets 0ψ   and 1a   – in other words, if one represents 

a tapered bar by an assembly of prismatic segments obeying Vlasov’s theory and makes the 

length of the segments tend to zero –, then one obtains the dashed lines shown in figure 

2.11.12 with the label “stepped model”, which are practically straight and have a positive 

slope. The difference between solid and dashed lines (that is, between tapered and stepped 

models) becomes more pronounced as 0ω  increases, reflecting the growing importance of 

restrained warping to torsional stiffness. For reference purposes, figure 2.11.12 also 

presents the non-dimensional torsional stiffness of prismatic cantilevers with the largest and 

the smallest cross-sectional dimensions, i.e., with constant web depth 0h  and 0αh , 

respectively (dotted lines, labelled “prismatic, largest section” and “prismatic, smallest 

section”). As expected, the dotted lines form an envelope within which the solid lines lie 

for α 1  (dotted and solid lines obviously coincide for α 1 ). 
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Fig. 2.11.11: Illustrative example 1 ( 0 0.1J  ) – Non-dimensional flange shear force 

distributions ( )s s  per unit non-dimensional torque μ  
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To shed further light on the peculiar features of the torsional behaviour of web-

tapered bars, we now investigate how the three individual contributions to the total torque 

singled out in equation (2.11.18), namely 2sin fφM , fV h  and 1GJΦ , vary along the 

cantilever length. To this end, we plot in figure 2.11.13, for different values of the taper 

ratio α , the non-dimensional distributions 

 
2sin ( )

( )
(0)f

f
M

φM s L L
s μ s

GJ
   

  
2 2

20 0(1 α) 1 (1 α) ( ) 2(1 α) ( )ω ωs Φ s Φ s
π π

              
   

   (2.11.36) 

 
( ) ( )

( )
(0)f

f
V

V s L h s L L
s μ s

GJ
  

    
2 2

2 0 01 (1 α) ( ) 3(1 α) 1 (1 α) ( )ω ωs Φ s s Φ s
π π

               
   

   (2.11.37) 

  SV 0

( ) ( )
( ) 1 (1 α) ( )

(0) J

GJ s L Φ s L
s μ s s Φ s

GJ


    

   (2.11.38) 

per unit non-dimensional torque μ  (needless to say, fMμ  is identically zero in prismatic 

bars). We restrict attention to the case 0 2.0ω  , for which the differences between 

tapered and stepped models are significant. For tapered bars, and in very broad strokes, we 

see that (i) close to the clamped end, the negative contribution of the axial component of 

the bending moments in the flanges is matched by an increase in the positive contribution 

of the shear forces in the flanges and (ii) near the free end, the sharp rise in the 

contribution of the Saint-Venant component is compensated by an equally sharp fall in the 

contribution of the shear forces in the flanges, which eventually becomes negative. 

Illustrative example 2 

Consider now the family of singly symmetric web-tapered C-section cantilevers 

whose reference shape is shown in figure 2.11.14. The adopted Cartesian reference frame, 

also shown in this figure, is such that (i) the plane containing the origin  and spanned by 

 is the longitudinal plane of symmetry for the reference shape and (ii) the web 

middle surface lies in the plane through  and spanned by . The flanges are 

uniform, with thickness  and width  (measured from their tip to the web middle line). 

O

 1 2,e e

O  1 3,e e

ft fb
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Fig. 2.11.12: Illustrative example 1 ( 0 0.1J  ) – Non-dimensional torsional stiffness / (1)μ Φ  

versus the taper ratio α  
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Fig. 2.11.13: Illustrative example 1 ( 0 2.0ω  , 0 0.1J  ) – Non-dimensional distributions 

( )fMs μ s , ( )fVs μ s  and SV( )s μ s  per unit non-dimensional torque μ  

The web has constant thickness wt  and its depth h , measured between flange middle lines, 

varies according to the affine law (2.11.1), with 0 α 1  . Once again, the parameter α  is 

called the (web) taper ratio. The flanges exhibit symmetrical slopes tanφ  with respect to 

the planes spanned by  1 2,e e , where 0tan (1 α) /(2 )φ h L  . The cantilever is clamped 

at its larger end ( 0A ) and free at the smaller end ( LA ), where a point load .3 3LQ e  is 

applied (at the point 1O L e ). 

The middle surface is made up of three surface elements, numbered as shown in 

figure 2.11.15. The scheme adopted for its parametrisation is also indicated in this figure. 

All the required geometrical features are summarised in table 2.11.1. Moreover, the maps 

ω  and ψ  are plotted schematically in figure 2.11.16, directly upon the middle line of a 

generic cross-section, for a better grasp of their significance. 

α 1.0  

s

α 0.4

s  

( )/
fVμ s μ  

SV( )/μ s μ  

α 0.6  

( )/
fVμ s μ  

SV( )/μ s μ  

( )/
fMμ s μ  

( )/
fVμ s μ  

SV( )/μ s μ  

( )/
fMμ s μ  

s

α 0.2  

s

( )/
fVμ s μ  

SV( )/μ s μ  

( )/
fMμ s μ  
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Figure 2.11.14: Illustrative example 2 – Reference shape, support conditions and applied load 

 

Fig. 2.11.15: Illustrative example 2 – Parametrisation of the middle surface 

The geometrical properties (2.5.6)-(2.5.20) are given by 

  (2.11.39) 

  (2.11.40) 

  (2.11.41) 

  (2.11.42) 

  (2.11.43) 

  (2.11.44) 

* 1 1 3( ) ( ) 2 cosw f fA θ h θ t b t φ 

* 1
2 ( ) 0S θ 

* 1 2 3
3 ( ) cosf fS θ b t φ

* 1( ) 0ωS θ 

* 1( ) 0ψS θ 

1 3 1 2
* 1 3
2

( ) ( )
( ) cos

12 2
w

f f

h θ t h θ
I θ b t φ 

0h  

L  

0αh  

ft  

.3 3LQ e  

wt  

fb  

1e  

3e  3e  

2e  O  
0h  

ft  

φ  

φ  
.3 3LQ e  

fb  

1( )

2

h θ
 

1( )

2

h θ
 

1 1
1 ( ,0)O θ F θ e  

(1)

(2)

(3)

2e  

3e  
1θL  
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Fig. 2.11.16: Illustrative example 2 – Schematic representations of the maps ω  and ψ  

  (2.11.45) 

 * 1 1 2 3 31
( ) ( ) cos

6ω f fI θ h θ b t φ  (2.11.46) 

 * 1 3 2 38
( ) tan cos

3ψ f fI θ b φ t φ  (2.11.47) 

 * 1
23( ) 0I θ   (2.11.48) 

 * 1 1 2 2 3
2

1
( ) ( ) cos

4ω f fI θ h θ b t φ   (2.11.49) 

 * 1
3 ( ) 0ωI θ   (2.11.50) 

 * 1 1 2 3
2 ( ) ( ) tan cosψ f fI θ h θ b φ t φ  (2.11.51) 

 * 1
3 ( ) 0ψI θ   (2.11.52) 

 * 1 1 3 32
( ) ( ) tan cos

3ωψ f fI θ h θ b φ t φ   . (2.11.53) 

 

* 1 3 3
3

2
( ) cos

3 f fI θ b t φ

1 1
1+ ( ,0)O θ F θe  

(sectorial origin and pole) 

ω

fb  

1( )

2

h θ
 

1( )

2

h θ
 

ψ 

11
2 ( ) fh θ b  

11
2 ( ) fh θ b  

2 tanfb φ  

2 tanfb φ  (1)  

(2)  

(3) 

(1)

(2)  

(3)

1 1
1+ ( ,0)O θ F θe



 

 

 

 

 

 range of 2θ  1 2
2( , )x θ θ  1 2

3( , )x θ θ  1 2( , )a θ θ  * 1 2( , )t θ θ  1 2( , )ω θ θ  
1 2( , )ψ θ θ  

1Ω  
1 1

2( ) ( )

2 2f
h θ h θ

b θ      
1

2 ( )

2

h θ
θ
 

  
 

1( )

2

h θ
  21 tan φ  3cosft φ  

1 1
2( ) ( )

2 2

h θ h θ
θ
 

  
   

1
2 ( )

2 tan
2

h θ
φ θ
 

 
   

2Ω  
1 1

2( ) ( )

2 2

h θ h θ
θ    0  2θ  1  wt  0  0  

3Ω  
1 1

2( ) ( )

2 2 f
h θ h θ

θ b    
1

2 ( )

2

h θ
θ   

1( )

2

h θ
 21 tan φ  

3cosft φ  
1 1

2( ) ( )

2 2

h θ h θ
θ
 

  
   

1
2 ( )

2 tan
2

h θ
φ θ
 

 
   

Table 2.11.1: Singly symmetric web-tapered C-section bar – Geometrical features 
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Observe that 

  (2.11.54) 

  (2.11.55) 

  . (2.11.56) 

As for , it is assumed that the width-to-thickness ratio of each plated component is 

always sufficiently large for the approximation 

  (2.11.57) 

to be legitimate. 

From the symmetry of the reference shape and support conditions, and from the 

skew-symmetry of the loading, one infers at once, by virtue of Curies’s principle (CURIE 

1894), that 1W  and 2W  are identically zero. We are thus left with the problem of finding 

3W  and 1Φ , which can be phrased as follows: 

Illustrative example 2. 

Find  3 1, : 0,W Φ L  , with  4
3 1, 0,W Φ C L , satisfying the ordinary 

differential equations 

  * * * 1
2 3 2 1 2 1 ( ) 0ω ψEI W EI Φ EI Φ θ        (2.11.58) 

  * * * 1
2 3 1 1 ( )ω ω ωψEI W EI Φ EI Φ θ         

  * * * 1
2 3 1 1 ( ) 0ψ ωψ ψEI W EI Φ GJ EI Φ θ        

    (2.11.59) 

on the open interval  0, L , together with the boundary conditions 

 3(0) 0W   (2.11.60) 

 3(0) 0W    (2.11.61) 

  * * *
2 3 2 1 2 1 .3( )ω ψ LEI W EI Φ EI Φ L Q         (2.11.62) 

 * * *
2 3 2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) 0ω ψEI L W L EI L Φ L EI L Φ L        . (2.11.63) 

 1(0) 0Φ   (2.11.64) 

 1(0) 0Φ   (2.11.65) 

* 1 * 1
2 2( ) ( )ψ ωI θ I θ

** 1 1( ) ( )ωψ ωI θ I θ

** 1 1 * 1( ) 2 ( ) 2 ( )ψ ω ωψI θ I θ I θ  

J

3

1 1 31
( ) ( ) 2

3 cos
f

w f

t
J θ h θ t b

φ
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  * * * *
2 3 1 1 2 3( ) ( ) ( )ω ω ωψ ψEI W EI Φ EI Φ L EI L W L            

  * *
1 1( ) ( ) ( ) ( ) ( ) 0ωψ ψEI L Φ L GJ L EI L Φ L       (2.11.66) 

 * * *
2 3 1 1( ) ( ) ( ) ( ) ( ) ( ) 0ω ω ωψEI L W L EI L Φ L EI L Φ L        . (2.11.67) 

Before addressing the solution of this boundary value problem, it is once again 

enlightening to contrast the flexural-torsional behaviours of prismatic (α 1 ) and linearly 

depth-tapered ( 0 α 1  ) bars: 

(i) By virtue of the constraint (V1), the displacements along 2e  and 3e  of the cross-

section middle line at a distance 1θ  from the origin, for prismatic and web-tapered bars 

alike, are given by the superposition of (i1) an infinitesimal rotation 1
1( )Φ θ  about the 

(oriented) axis defined by the origin O  and the Cartesian base vector 1e , and (i2) a 

translation 1
3 3( )W θ e  (see figure 2.11.17). The constraint (V2) then provides the 

displacements along 1e , which stem from (i3) an infinitesimal rotation 1
3( )W θ  about 

the (oriented) axis defined by the point 1
1O θ e  and the Cartesian base vector 2e , and 

(i4) torsion-warping of the cross-section middle line (again, see figure 2.11.17). 

(ii) By direct computation, one obtains the membrane strains  shown schematically in 

figure 2.11.18. As in the first illustrative example, the strain-displacement relation in 

the web-tapered case exhibits an additional term ( ) and a scaling factor ( ) 

which are absent in the prismatic case. The same is true of the (active) membrane 

forces , as shown in figure 2.11.19. 

(iii) Figure 2.11.20 shows a force system statically equivalent to the membrane forces  

in the web and in the flanges. It comprises a web bending moment 

  (2.11.68) 

and, in each flange, a bending moment-normal force pair 

  

  (2.11.69) 

I Iγ 

1ψΦ 1
a

I In 

I In 

1 3
1 1

3

( )
( ) ( )

12
w

w

h θ t
M θ E W θ 

1 1
1 2 2 3 2 1 1

3 1 1

( ) 2 ( )
( ) cos cos ( ) tan ( )

4 3 4f f f f f

h θ h θ
M θ E b t φW Eb t φ Φ θ φΦ θ

       
 

 

 * 1 1 * 1 1 * 1 1
2 3 1 11

1
( ) ( ) ( ) ( ) ( ) ( )

( )cos ω ω ωψEI θ W θ EI θ Φ θ EI θ Φ θ
h θ φ
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   3 3 1 1 3 1 2 3 2 1 3x W ωΦ x Φ W x Φ      U e e e  

Figure 2.11.17: Contrasting the flexural-torsional behaviours of prismatic and web-tapered 

singly symmetric C-section bars – Displacement field of cross-section middle line 

  

  

  , (2.11.70) 

1 1
1 2 1 2 2 1 1

3 1 1

( ) ( )
( ) cos ( ) cos ( ) tan ( )

2 4f f f f f

h θ h θ
N θ E b t φW θ Eb t φ Φ θ φΦ θ

      
 

 

1
2 1

3

( )
cos ( )

2 f f

h θ
E b t φW θ 

 * 1 1 * 1 1
2 1 2 11

1
( ) ( ) ( ) ( )

( )cos ω ψEI θ Φ θ EI θ Φ θ
h θ φ

   

φ

1e  2e  

3e  

O  
1 22

hΦ e  

3 12
h W e  

3 3W e  
1 22

hΦ e  

3 1 3( )fW b Φ e  

3 1 12 ( )h
fW b Φ  e  

1 22
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3 3W e  

3 12
h W  e  3 1 3( )fW b Φ e  

3 1 12 ( )h
fW b Φ   e  
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O  
1 22

hΦ e  

3 12
h W e  

3 3W e  
1 22

hΦ e  

3 1 3( )fW b Φ e  

3 1 12 ( )h
fW b Φ  e  
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3 3W e  

3 12
h W  e  3 1 3( )fW b Φ e  
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 I I 3 3 1γ x W ωΦ      

 

 1
I I 3 3 1 1aγ x W ωΦ ψΦ        

Figure 2.11.18: Contrasting the flexural-torsional behaviours of prismatic and web-tapered 

singly symmetric C-section bars – Membrane strains I Iγ   

with  acting along the junctions between the web and the flanges. Observe that 

  

  (2.11.71) 

  . (2.11.72) 

fN

1 1 1 * 1 1 * 1 1 * 1 1
2 3 2 1 2 1( ) cos ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )w f ω ψM θ φN θ h θ EI θ W θ EI θ Φ θ EI θ Φ θ       

1
2( )M θ 

3
1 2 1 1

1( ) cos ( ) ( )
12 2 2
f f f

f f

b t bh
M θ E φ Φ θ N θ

   
 



φ

1e  2e  

3e  

O

   3 12
h

fW b Φ  

1e  2e  

3e  

O  

  3 12
h

fW b Φ  

32
h W  

 32
h W

       
2

3 1 12cos 2 tanh
f fφ W b Φ b φΦ  

      
2

3 1 12cos 2 tanh
f fφ W b Φ b φΦ  

32
h W  

2
32 cosh φW  

 2
32 cosh φW  

 32
h W
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 I I 3 3 1n Et x W ωΦ      

 

 1
I I 3 3 1 1an E t x W ωΦ ψΦ        

Figure 2.11.19: Contrasting the flexural-torsional behaviours of prismatic and web-tapered 

singly symmetric C-section bars – Membrane forces I In   (active) 

(iv) The shear forces developed in the web and in each flange can now be found by 

equilibrium considerations. Indeed, one must have (see figure 2.11.21) 

  (2.11.73) 

  , (2.11.74) 

whence 

1 1 1 1
3 2( ) 2sin ( ) ( ) ( )w fV θ φN θ V θ M θ  

1 1( ) cos ( )f fV θ φM θ

φ

1e  2e  

3e  

O  

 3 12
h

f fE t W b Φ    

1e  2e  

3e  

O  

 3 12
h

f fE t W b Φ   

32
h

wE t W   

32
h

wE t W    

 2
3 1 12cos 2 tanh

f f fE t φ W b Φ b φΦ      
  

 2
3 1 12cos 2 tanh

f f fE t φ W b Φ b φΦ     
  

32
h

wE t W   

2
32 cosh

fE t φW   

2
32 cosh

fE t φW    

32
h

wE t W    

32
h

fE t W   

32
h

fE t W    
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Figure 2.11.20: Contrasting the flexural-torsional behaviours of prismatic and web-tapered 

singly symmetric C-section bars – Force system statically equivalent to the membrane 

forces I In   in the web and in the flanges 

 
1 2

1 * 1 1 1 3 1
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1e  2e  

3e  

O

    1
2 3 1f ω ωhM EI W EI Φ  

 
   

  

 

 

2 3

3 14 6

1
2 3 1

f fh b h b
f f f

ω ωh

M E t W E t Φ

EI W EI Φ
 

  3

312
h

w wM E t W  

  

  

 

 

2

3 12 4

1
3 2 12

f f

f

h b h b
f f f

h b
f ωh

N E t W E t Φ

E t W EI Φ
 

  3

312
h

w wM E t W  

   1
3 2 12

fh b
f f ωhN E t W EI Φ  

 

  



    

 



  

2
2 2

3 12 4

2 2
1

2 * *1
3 2 1 2 12 cos

cos cos

tan cos

cos

f f

f

h b h b
f f f

f f

h b
f ω ψh φ

N E t φW E t φΦ

Eb φ t φΦ

E t φW EI Φ EI Φ

 

       2 * *1
3 2 1 2 12 coscosfh b

f f ω ψh φN E t φW EI Φ EI Φ  



Chapter 2 

108 

 

 

Figure 2.11.21: Contrasting the flexural-torsional behaviours of prismatic and web-tapered 

singly symmetric C-section bars – Shear forces in the flanges ( fV ) and in the web ( wV ) 

  

  

  

  . (2.11.76) 

  

1
1 2 3 1 1

3 3

1 ( )
( ) cos ( ) tan ( )

2 2f f f

h θ
V θ Eb t φ W θ φW θ

     
 



1
3 3 1 1

1 1

( )
cos ( ) tan ( )

6f f

h θ
Eb t φ Φ θ φΦ θ

    
 



 * 1 1 * 1 1
2 3 2 31

1 1( ) ( ) ( ) ( )
2( ) ω ψEI θ W θ EI θ W θ

h θ
   

* 1 1 * 1 1
1 1

3( ) ( ) ( ) ( )
2ω ωψEI θ Φ θ EI θ Φ θ   

φ

1e  2e  

3e  

O  

   
 

2 3 3 31
3 3 1 12 2 6

* * * *31 1
2 3 2 3 1 12 2

cos costan tanh h
f f f f f

ω ψ ω ωψh

V φ W φ Φ Φ

Φ Φ

Eb t W φ Eb t φ

EI W EI W EI EI

  

 

   

   

 

   
 

 * * * *31 1
2 3 2 3 1 12 2f ω ψ ω ωψhV Φ ΦEI W EI W EI EI         

1e  2e  

3e  

O  

 
 





 

 

 

2 3

3 14 6

1
2 3 1

f fh b h b
f f f

ω ωh

V E t E t Φ

Φ

W

EI W EI
 

   1
2 3 1f ω ωhV ΦEI W EI  

    
2 3 2 1w ωV EI W ΦEI  

 2* 3
2 3 32

* *3
2 1 2 12

tan tan cosh
w w f f

ω ψ

V

Φ Φ

EI W E φ t h b φ t φ W

EI EI

 

 

  



 

 
 



A Linear 1D Model for Tapered Thin-Walled Bars with Open Cross-Sections – The Static Case 

109 

(v) In web-tapered bars, the flange bending moments have an axial component that totals 

 1 * 1 1 * 1 1 * 1 1
1 2 3 1 1 11

2 tan
2sin ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )f ω ω ωψ

φ
φM θ EI θ W θ EI θ Φ θ EI θ Φ θ

h θ
        e e  

  * 1 1 * 1 1 * 1 1
2 3 1 1 1

1
( ) ( ) ( ) ( ) ( ) ( )

2 ψ ωψ ψEI θ W θ EI θ Φ θ EI θ Φ θ        e .(2.11.77) 

In complete agreement with the general definition (2.7.6), the torque is thus given by 

 1 1 1 1 1 1
1 1( ) 2sin ( ) ( ) ( ) ( ) ( )f fM θ φM θ V θ h θ GJ θ Φ θ      

 * 1 1 * 1 1 * 1 1
2 3 1 1( ) ( ) ( ) ( ) ( ) ( )ω ω ωψEI θ W θ EI θ Φ θ EI θ Φ θ          

 1 * 1 1
1

1
( ) ( ) ( )

2 ψGJ θ EI θ Φ θ    
 

  . (2.11.78) 

Obviously, the contribution of the flange bending moments to the torque is absent in 

prismatic bars. Finally, notice that 

  1 * 1 1 * 1 1 * 1 1
2 3 1 11

1
cos ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )f ω ω ωψφM θ EI θ W θ EI θ Φ θ EI θ Φ θ
h θ

        

 
1

1

( )

( )

B θ

h θ
   , (2.11.79) 

exactly as in the first illustrative example. 

(vi) To split the torque (2.11.78) into active and reactive parts, we start by plugging 

(2.11.79) into (2.11.74), thus obtaining 

 1 1 1
1 1

2 tan1
( ) ( ) ( )

( ) ( )f

φ
V θ B θ B θ

h θ h θ
    
 

 . (2.11.80) 

The active and reactive parts of the torque are then given by 

 ( ) 1 1 1 1 1
1 11

2 tan
( ) 2sin ( ) ( ) ( ) ( )

( )
A

f

φ
M θ φM θ B θ GJ θ Φ θ

h θ
      

  * 1 1 * 1 1 1 * 1 1
2 3 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )ψ ωψ ψEI θ W θ EI θ Φ θ GJ θ EI θ Φ θ         (2.11.81) 

  ( ) 1 1 * * * 1
1 2 3 1 1( ) ( ) ( )R

ω ω ωψM θ B θ EI W EI Φ EI Φ θ           , (2.11.82) 

in accordance with the general definitions (2.7.21)-(2.7.22). 

Let us now return to the boundary value problem (2.11.58)-(2.11.67). From the 

differential equation (2.11.58), one obtains by successive integration 
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  * * * 1
2 3 2 1 2 1 1( )ω ψEI W EI Φ EI Φ θ c        (2.11.83) 

 * 1 1 * 1 1 * 1 1 1
2 3 2 1 2 1 1 2( ) ( ) ( ) ( ) ( ) ( )ω ψEI θ W θ EI θ Φ θ EI θ Φ θ c θ c         , (2.11.84) 

with 10 θ L   and 1 2,c c . Since 3W  and 1Φ  are required to be four times 

continuously differentiable on  0, L , it follows from the “principle of extension of 

identities” (BOURBAKI 2007, p. 53, or DIEUDONNÉ 1960, th. 3.15.2) that these equations 

hold at the end points 1 0θ   and 1θ L  as well. The boundary conditions (2.11.62)-

(2.11.63) then imply 

 1 .3Lc Q   (2.11.85) 

 2 .3Lc L Q  . (2.11.86) 

Consequently, we may write 

  1 * 1 1 * 1 1 1
3 2 1 2 1 .3* 1

2

1
( ) ( ) ( ) ( ) ( ) ( )

( ) ω ψ LW θ EI θ Φ θ EI θ Φ θ Q θ L
EI θ

       
 , 10 θ L  ,(2.11.87) 

Similarly, from (2.11.59) and (2.11.66), together with continuity considerations, we conclude 

that 

  * * * 1 * 1 1
2 3 1 1 2 3( ) ( ) ( )ω ω ωψ ψEI W EI Φ EI Φ θ EI θ W θ            

  * 1 1 1 * 1 1
1 1( ) ( ) ( ) ( ) ( ) 0ωψ ψEI θ Φ θ GJ θ EI θ Φ θ       ,  10 θ L   . (2.11.88) 

In fact, these two equations are merely the specialisation of (2.7.4) and (2.7.6). In particular, 

equation (2.11.87) puts us in a position to eliminate 3W  and formulate the illustrative 

example in terms of the single dependent variable 1Φ . Bearing in mind (2.11.54)-(2.11.56), 

we have: 

Illustrative example 2 (reduced version). 

Find  1 : 0,Φ L  , with  4
1 0,Φ C L , satisfying, on the open interval  0, L , 

the ordinary differential equation 

  * 1 * * 1
2 2 1 2 1 2*

2

1
( ) ( )ω ω ψEI θ EI Φ EI Φ M θ

EI

     
  

   

 * 1 1 * 1 1 1 * 1 1
1 1 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

2ω ωψ ψEI θ Φ θ EI θ Φ θ GJ θ EI θ Φ θ        
 

    (2.11.89) 

where 1 1
2 .3( ) ( )LM θ Q θ L  , together with the boundary conditions 

 1(0) 0Φ   (2.11.90) 

 1(0) 0Φ   (2.11.91) 
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*

* *2
2 1 2 1*

2

( )
( ) ( ) ( ) ( )

( )
ω

ω ψ

EI L
EI L Φ L EI L Φ L

EI L
  

  
  

 * *
1 1( ) ( ) ( ) ( ) 0ω ωψEI L Φ L EI L Φ L      . (2.11.92) 

Once 1Φ  is known, 3W  can be obtained by solving the initial value problem defined by 

(2.11.87) and (2.11.60)-(2.11.61). 

In the prismatic case (α 1 ), the solution to the illustrative example 2 is (e.g., CHEN 

& ATSUTA 1977, p. 48) 

 
2 2

.31 1
1( ) tanh tanh coshS

S S S

L ω

ω ω ω

Q d EI GJ L GJ L GJ
Φ θ θ

GJ GJ EI EI EI

      
                  


    

 1 1sinh
S Sω ω

GJ GJ
θ θ

EI EI

 
      

   (2.11.93) 

 
1

.31 1 2 1
3 1

2

( ) 1 ( ) ( )
2 3

LQ L θ
W θ θ dΦ θ

EI L

 
   

   ,  10 θ L   , (2.11.94) 

where 

 
2

0

3

6
f f

w f f

b t
d

h t b t



 (2.11.95) 

is the distance from the web middle line to the shear centre and 

 
2 3
0 0

0

2 3

12 6S

f f w f f
ω

w f f

h b t h t b t
I

h t b t





 (2.11.96) 

is the sectorial moment of inertia for the sectorial coordinate Sω  with pole at the shear 

centre and origin at the corresponding sectorial centroid (midpoint of the web middle line) 

– e.g., ODEN & RIPPERGER (1981, table 7.1) or VLASOV (1961, p. 61). 

In the tapered case ( ), no closed-form solution is available. We considered 

 4500 mmL   0 500 mmh   12 mmwt   150 mmfb   18 mmft   

 210 GPaE   80.77 GPaG    

and used the mathematical software package Mathematica (WOLFRAM RESEARCH, INC. 2006) 

to obtain numerical solutions for selected values of the web taper ratio α , ranging from 0.4  

to 1.0 . The results are plotted in figure 2.11.22 (solid lines). For comparison purposes, the 

results obtained by adopting a stepped model are also presented (dashed lines). 

0 α 1 
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Fig. 2.11.22: Illustrative example 2 – Vertical deflections 1 1
3( )θ W θ  and twists 

1 1
1( )θ Φ θ  per unit load .3LQ  

For fixed  in the interval , the tapered model yields decreasing values of 

 with decreasing  – this is the most striking feature about the plots in figure 

2.11.22. In particular, the stiffness  is a strictly decreasing function of , as 

shown in figure 2.11.23, and falls outside the dotted-line envelope corresponding to prismatic 

1θ  0, L
1

1 .3( )/ LΦ θ Q α

.3 1/ ( )LQ Φ L α

1
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(m /kN)
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W θ

Q
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Fig. 2.11.23: Illustrative example 2 – Stiffnesses .3 3/ ( )LQ W L  and .3 1/ ( )LQ Φ L  

versus the taper ratio α  

cantilevers with the largest and the smallest cross-sectional dimensions, i.e., with web depth 

 and , respectively. This surprising, if not paradoxical, result can be explained by 

observing that , which provides the warping amplitude per unit load , 

also decreases with decreasing  over a considerable length – a reversal in this trend is only 

noticeable near the tip of the cantilever. In fact, for , we have  – 

i.e., warping is effectively prevented – over the first quarter-span. The depth taper thus acts 

as an internal warping restraint over much of the span, the effectiveness of which increases 

as the flanges become more steeply inclined. Such a physical interpretation is consistent 

with the bimoment distributions per unit load  shown in figure 2.11.24, which exhibit 

0h 0α h
1

1 .3( )/ LΦ θ Q .3LQ

α

α 0.4 1
1 .3( )/ 0LΦ θ Q 

.3LQ

.3

3

(kN/ m)
( )
LQ

W L
 

.3

1

(kN/ rad)
( )
LQ

Φ L
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Fig. 2.11.24: Illustrative example 2 – Bimoment distributions 1 1( )θ B θ  per unit load .3LQ  

a marked increase at the clamped end as  decreases. The stepped model is notoriously 

incapable of capturing this internal warping restraint. Indeed, near the clamped end, the 

twist  and its derivative  per unit  as provided by the stepped model are 

practically independent of  and coincident with the prismatic solution ( ). 
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1
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Chapter 3 

A LINEAR ONE-DIMENSIONAL MODEL FOR THE 

STRETCHING, BENDING AND TWISTING OF 

TAPERED THIN-WALLED BARS WITH OPEN 

CROSS-SECTIONS 

THE DYNAMIC CASE 

3.1 INTRODUCTION 

The linear dynamic behaviour of prismatic thin-walled bars with open cross-section 

has been extensively studied since the pioneering works of FEDERHOFER (1947), GERE 

(1954a, 1954b), GERE & LIN (1958) and VLASOV (1961, ch. 9), and is by now well 

understood. However, the same cannot be said about the tapered bar case. 

When attempting to extend Vlasov’s (or Gere’s) dynamic equations to tapered bars, 

some authors merely replace constant dimensions with variable ones in the expressions for 

the relevant geometrical properties, without adding any extra terms (e.g., EISENBERGER 

1997). The works of AMBROSINI et al. (1995, 2000) and AMBROSINI (2009), which include 

the effect of shear flexibility (not considered in Gere’s or Vlasov’s models), also fall in this 

category as far as the cross-section variation is concerned. As seen in the preceding chapter, 

taper affects the stiffness in ways that cannot be accounted for, in general, by such a 

perfunctory procedure. 

RAO & MIRZA (1988) investigated the torsional vibration behaviour of doubly 

symmetric tapered I-section cantilevers.1 To this end, they combined d’Alembert’s principle 

with what we have dubbed “Timoshenko’s approach” in chapter 2. Their analysis fails to 

                                                 
1 Oddly enough, these authors took the clamped end to be the smaller one. 
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include the inertia torque due to warping of the cross-sections (that is, the term 
2

1 1 2 1ρ ( )ωD I D D Φ  in equations (3.4.7) and (3.9.1) below). They also fail to distinguish 

between derivatives with respect to the longitudinal coordinate of the bar and derivatives 

with respect to the arc length of the flange centroidal lines – a common oversight when 

applying Timoshenko’s approach to tapered bars, as we have seen before, in the static case. 

Building on previous work by WILDE (1968), WEKEZER (1987) formulated the 

eigenproblem providing the natural frequencies and corresponding vibration modes of 

tapered thin-walled bars with generic open cross-sections. The bars are regarded as 

membrane shells subjected to internal constraints, but these constraints have a mere 

kinematical character, with no constitutive repercussions. Moreover, Wekezer seems not to 

have grasped the peculiar torsional behavioural features implied by the constraints in tapered 

bars, for in a subsequent paper he writes: “Regardless of the number of finite elements 

chosen, the present method, which was developed for constant cross-sectional elements, does 

not seem capable of predicting torsional frequencies for variable cross-sections and should 

be used cautiously” (WEKEZER 1989). 

Due to this state of affairs, it is worthwhile to extend into the dynamic range the 

linear static one-dimensional model developed in the preceding chapter. Accordingly, the 

proposed model rests upon regarding the bars under consideration as membrane shells 

subjected, at each time instant, to the internal constraints (V1)-(V2) stated at the beginning 

of § 2.3. The constitutive implications of these internal constraints are consistently dealt 

with by resorting to Podio-Guidugli’s method. The (undamped) equations of motion and 

the general form of the boundary conditions are derived by means of Hamilton’s principle, 

taking into account the contributions of rotatory inertia and torsion-warping inertia. 

Moreover, the inclusion in the proposed model of a viscous-type dissipative mechanism, 

with damping force proportional to the velocity, is also briefly addressed. As in the static case 

addressed in the preceding chapter, the tapered nature of the bars, in general, gives rise to 

non-standard stiffness terms associated with the torsional behaviour (whether uncoupled 

or coupled with other modes of deformation). The presence of these additional, non-

standard terms renders the use of stepped models inadequate whenever torsional effects 

are involved, regardless of the number of prismatic segments considered. The chapter 

closes with an illustrative example concerning the undamped free torsional motions of two 

series of doubly symmetric web-tapered I-section cantilevers (one series with narrow 
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flanges and the other with wide flanges). The technique of separation of variables leads to 

an eigenproblem, consisting of an ordinary differential equation and the accompanying 

boundary conditions, which provides the natural torsional frequencies and the 

corresponding vibration modes. 

Some remarks on notation and terminology 

Throughout this chapter, the symbol τ  will always denote time. By a time interval we 

mean an interval of the form  00, τ  or  00, τ , with 0τ 0 . If f  is a map on the Cartesian 

product    00, 0, τL  , we write ( , τ)f   for the partial map 1 1( , τ)θ f θ  on  0, L  

obtained by holding  0τ 0, τ  fixed, and 1( , )f θ   for the partial map 1τ ( , τ)f θ  on 

 00, τ  obtained by holding  1 0,θ L  fixed (see DIEUDONNÉ 1960, ch. 1, § 5). Let M  

and N  be non-negative integers. Following GURTIN (1972, § 9), we say that the map f  is 

of class ,M NC  on the open set    00, 0, τL   if f  is continuous on    00, 0, τL   and 

the partial derivatives 

 1 2
m nD D f  ,   0,1, ,m M   ,   0,1, ,n N   ,  max ,m n M N   ,  (3.1.1) 

exist and are continuous on    00, 0, τL  . We say that f  is of class ,M NC  on 

   00, 0, τL   if it is continuous on    00, 0, τL  , of class ,M NC  on    00, 0, τL   and 

each of the partial derivatives 1 2
m nD D f  has a continuous extension to    00, 0, τL   – in 

this case, we also write 1 2
m nD D f  for the extended map. Finally, we write NC  for ,N NC . 

3.2 MOTIONS 

Ainsi, tout modèle comporte a priori deux parties: 
une cinématique, dont l’objet est de paramétrer les formes ou les états du processus considéré; 

une dynamique, dont l’objet est de d’écrire l’évolution temporelle entre ces formes. 

RENÉ THOM 

Let us consider a tapered thin-walled bar with open cross-sections and regular middle 

surface, as described in § 2.2. The generalisation to bars with irregular middle surfaces can 

be done along the lines indicated in § 2.10 and warrants no further explanation. Moreover, 

let us choose a fixed Cartesian frame for E  (inertial frame) as in § 2.2.1. 

An admissible motion of the middle surface of the bar in the time interval  00, τ  is a 

map  0: 0, τΩ  VU  of the form 
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 1 2 1 2( , ,τ) ( , ,τ)i iθ θ U θ θU e   

  1 1 1 2 1 2 1 2 1
2 2 3 3 1 1 1( ,τ) ( ,τ) ( , ) ( , ) ( , ) ( ,τ)θ θ x θ θ x θ θ ω θ θ DΦ θ    W Φ e e e  , (3.2.1) 

 1 1( , τ) ( , τ)i iθ W θW e  (3.2.2) 

 1 1 1 1
1 1 1 3 2 1 2 3( , τ) ( , τ) ( , τ) ( , τ)θ Φ θ D W θ D W θ  Φ e e e  , (3.2.3) 

with (i) 1W  of class 1,2C  on    00, 0, τL   and (ii) 2W , 3W  and 1Φ  of class 2C  on 

   00, 0, τL  . The map :ω Ω   appearing in equation (3.2.1) is defined by (2.3.16). 

Vector 1 2( , ,τ)θ θU  is the displacement, at time τ , of the (material) point (whose reference 

place is) 1 2( , )F θ θ S . Therefore, an admissible motion of the middle surface is a smooth 

one-parameter family of admissible displacement fields (as defined in § 2.3), time τ  being 

the parameter. Consequently, in an admissible motion the constraints (V1)-(V2), defined at 

the beginning of § 2.3, are satisfied for all τ  in  00, τ . With the usual identification of 

 ,L V  with V  (vide supra, ch. 2, note 20), the velocity 3D U  and acceleration 2
3D U  are 

vector fields on  00, τΩ . 

As in § 2.3, the maps iW  ( 1, 2, 3i  ) and 1Φ , from    00, 0, τL   into  , are 

collectively called the generalised displacements. For later convenience, we define the 

generalised velocities to be the real-valued maps defined on    00, 0, τL   by 

 1 1
2( , τ ) ( , τ )i iv θ D W θ  (3.2.4) 

 1 1
1 2 1( , τ ) ( , τ )Ξ θ D Φ θ  (3.2.5) 

 1 1
2 1 2 3( , τ ) ( , τ )Ξ θ D D W θ   (3.2.6) 

 1 1
3 1 2 2( , τ ) ( , τ )Ξ θ D D W θ  (3.2.7) 

 1 1
1 2 1( , τ ) ( , τ )ωv θ D D Φ θ   . (3.2.8) 

While the iΞ  are angular velocities, ωv  can be fittingly called the warping velocity – it is the 

derivative, with respect to time, of the warping amplitude 1 1D Φ . 

To an admissible motion  0: 0, τΩ  VU  of the middle surface there corresponds 

a one-parameter family γ  of admissible linearised membrane strain tensor fields, whose 

single non-vanishing covariant component is given by 

1 2 1 2 1 2 1 2
11 11( , , τ ) ( , ) ( , , τ ) ( , )γ θ θ θ θ θ θ θ θ a γ a  

 1 1 2 2 1 1 2 2 1
1 1 2 1 2 3 1 3( , τ ) ( , ) ( , τ ) ( , ) ( , τ )D W θ x θ θ D W θ x θ θ D W θ    

 1 2 2 1 1 2 1
1 1 1 1( , ) ( , τ ) ( , ) ( , τ )ω θ θ D Φ θ ψ θ θ D Φ θ   . (3.2.9) 
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The map :ψ Ω    appearing in this equation is defined by (2.3.26). The generalised strains 

 1 1
1 1( , τ ) ( , τ )ε θ D W θ  (3.2.10) 

 1 1
1 1 1( , τ ) ( , τ )θ D Φ θ   (3.2.11) 

 1 2 1
2 1 3( , τ ) ( , τ )θ D W θ    (3.2.12) 

 1 2 1
3 1 2( , τ ) ( , τ )θ D W θ    (3.2.13) 

 1 2 1
1 1( , τ ) ( , τ )Γ θ D Φ θ   , (3.2.14) 

whose physical significance was discussed in § 2.3, enable us to rewrite (3.2.9) in the form 

 1 2 1 1 2 1 1 2 1
11 2 3 3 2( , , τ ) ( , τ ) ( , ) ( , τ ) ( , ) ( , τ )γ θ θ ε θ x θ θ θ x θ θ θ     

 1 2 1 1 2 1
1( , ) ( , τ ) ( , ) ( , τ )ω θ θ Γ θ ψ θ θ θ   . (3.2.15) 

Relative to the orthonormal ordered basis field  1 2 1 2 1 2
I II( , ) ( , ), ( , )θ θ Ω θ θ θ θ  o o , we 

have 

 1 2 1 2 1 2 1 2
I I I I( , , τ) ( , , τ) ( , ) ( , )θ θ γ θ θ θ θ θ θ γ o o  (3.2.16) 

 
1 2

1 2 11
I I 1 2

( , , τ)
( , , τ)

( , )

γ θ θ
γ θ θ

a θ θ   , (3.2.17) 

where 1 2( , )a θ θ  is the determinant of the symmetric and positive definite matrix (2.2.14) of 

metric coefficients. 

3.3 THE LAGRANGIAN 

3.3.1 Kinetic energy 

For a given admissible motion  0: 0, τΩ  VU  of the middle surface, the kinetic 

energy of the bar at time  0τ 0, τ  is given by 

 
21 2 1 2 1 2 1 2

3

ρ
( , , τ ) ( , ) ( , )

2 Ω
T D θ θ t θ θ a θ θ dθ dθ  U  , (3.3.1) 

where ρ  is the mass density over the reference shape (TRUESDELL 1991, ch. 2, § 2), 

assumed to be constant.2 

                                                 
2 For each τ  in  00, τ , the map 1 2 1 2

3( , ) ( , , τ)θ θ D θ θ U  is continuous on Ω  (on the continuity of 
1 2 1 2

3( , ) ( , , τ)θ θ D θ θ U , see DIEUDONNÉ 1960, th. 3.20.14; on the continuity of the norm, see ABRAHAM 
et al. 1988, p. 45; finally, on the continuity of the composition of continuous maps, see DIEUDONNÉ 1960, 
th. 3.11.5). The integral in equation (3.3.1) is thus well-defined. 

The assumption of a constant mass density ρ  is obviously not essential and it would have been a simple 
matter to consider ρ  as a function of the Gaussian coordinates 1θ , 2θ . 
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Inserting (3.2.1)-(3.2.3) into (3.3.1) and writing the integral over Ω  as an iterated 

integral, one obtains 

  1
2

1
1

( ) 1 1 2 1 1 2 1
2 1 2 1 2 2 3 1 2 30 ( )

ρ
( , τ) ( , ) ( , τ ) ( , ) ( , τ)

2

L g θ

g θ
T D W θ x θ θ D D W θ x θ θ D D W θ     

   2 21 2 1 1 1 2 1
1 2 1 2 2 3 2 1( , ) ( , τ) ( , τ) ( , ) ( , τ)ω θ θ D D Φ θ D W θ x θ θ D Φ θ    

   21 1 2 1 1 2 1 2 1 2
2 3 2 2 1( , τ) ( , ) ( , τ) ( , ) ( , )D W θ x θ θ D Φ θ t θ θ a θ θ dθ dθ  

 . (3.3.2) 

Then, introducing the continuous real-valued maps defined on  0, L  by 

 
1

2

1
1

( )1 1 2 1 2 2

( )
( ) ( , ) ( , )

g θ

g θ
A θ t θ θ a θ θ dθ   (3.3.3) 

 
1

2

1
1

( )1 1 2 1 2 1 2 2
2 3( )
( ) ( , ) ( , ) ( , )

g θ

g θ
S θ x θ θ t θ θ a θ θ dθ   (3.3.4) 

 
1

2

1
1

( )1 1 2 1 2 1 2 2
3 2( )
( ) ( , ) ( , ) ( , )

g θ

g θ
S θ x θ θ t θ θ a θ θ dθ   (3.3.5) 

 
1

2

1
1

( )1 1 2 1 2 1 2 2

( )
( ) ( , ) ( , ) ( , )

g θ

ω g θ
S θ ω θ θ t θ θ a θ θ dθ   (3.3.6) 

 
1

2

1
1

( ) 21 1 2 1 2 1 2 2
2 3( )
( ) ( , ) ( , ) ( , )

g θ

g θ
I θ x θ θ t θ θ a θ θ dθ   (3.3.7) 

 
1

2

1
1

( ) 21 1 2 1 2 1 2 2
3 2( )
( ) ( , ) ( , ) ( , )

g θ

g θ
I θ x θ θ t θ θ a θ θ dθ   (3.3.8) 

 
1

2

1
1

( )1 2 1 2 1 2 1 2 2

( )
( ) ( , ) ( , ) ( , )

g θ

ω g θ
I θ ω θ θ t θ θ a θ θ dθ   (3.3.9) 

 
1

2

1
1

( )1 1 2 1 2 1 2 1 2 2
23 2 3( )

( ) ( , ) ( , ) ( , ) ( , )
g θ

g θ
I θ x θ θ x θ θ t θ θ a θ θ dθ   (3.3.10) 

 
1

2

1
1

( )1 1 2 1 2 1 2 1 2 2
2 3( )

( ) ( , ) ( , ) ( , ) ( , )
g θ

ω g θ
I θ x θ θ ω θ θ t θ θ a θ θ dθ   (3.3.11) 

 
1

2

1
1

( )1 1 2 1 2 1 2 1 2 2
3 2( )

( ) ( , ) ( , ) ( , ) ( , )
g θ

ω g θ
I θ x θ θ ω θ θ t θ θ a θ θ dθ   ,3 (3.3.12) 

                                                 
3 Observe that 1 1 1 1( , ) ( , )t θ θ a θ θ  is the wall thickness at 1 1( , )F θ θ S  measured in the plane of the cross-

section 1θA . Indeed, the orthogonal projection of 1 1
3( , )θ θa  on the subspace spanned by  2 3,e e  is 

(SANTANA & QUEIRÓ 2010, th. 10.16) 

      
2 3

1 1 1 1 1 1
3 3 2 2 3 3 3span ,proj ( , ) ( , ) ( , )θ θ θ θ θ θ   e e a a e e a e e  

  1 1 1 1
2 3 2 2 2 31 1

1
( , ) ( , )

( , )
D x θ θ D x θ θ

a θ θ
  e e  . 

The angle 1 1( , )θ θ  between 1 1
3( , )θ θa  and  2 3span ,e e  is therefore defined by 
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the kinetic energy is cast in the form 

       2 2 21 1 1 1
2 1 2 2 2 30

ρ
( ) ( , τ ) ( , τ ) ( , τ )

2

L
T A θ D W θ D W θ D W θ       

  1 1 1 1 1
3 2 1 1 2 2 2 3 2 12 ( ) ( , τ ) ( , τ ) ( , τ ) ( , τ )S θ D W θ D D W θ D W θ D Φ θ   

  1 1 1 1 1
2 2 1 1 2 3 2 2 2 12 ( ) ( , τ ) ( , τ ) ( , τ ) ( , τ )S θ D W θ D D W θ D W θ D Φ θ   

 1 1 1
2 1 1 2 12 ( ) ( , τ ) ( , τ )ωS θ D W θ D D Φ θ  

    2 21 1 1
3 1 2 2 2 1( ) ( , τ ) ( , τ )I θ D D W θ D Φ θ    

 

    2 21 1 1
2 1 2 3 2 1( ) ( , τ) ( , τ )I θ D D W θ D Φ θ    

 

  21 1 1 1 1
1 2 1 23 1 2 2 1 2 3( ) ( , τ) 2 ( ) ( , τ) ( , τ)ωI θ D D Φ θ I θ D D W θ D D W θ   

 1 1 1
3 1 2 2 1 2 12 ( ) ( , τ ) ( , τ )ωI θ D D W θ D D Φ θ  

 1 1 1 1
2 1 2 3 1 2 12 ( ) ( , τ) ( , τ)ωI θ D D W θ D D Φ θ dθ  . (3.3.13) 

Notice that there is no conflict between the notation in (3.3.3)-(3.3.12) and that adopted in 

§ 2.9.2 for prismatic bars – in the latter case, 1 2( , ) 1a θ θ   everywhere on Ω . For the 

special case of the tapered I-section bars discussed in § 2.10.1 (see, in particular, figure 

2.10.3 and table 2.10.1), one has 

 1 1 1 1( ) ( ) ( ) ( )
cos cos

t b
w t b

t b

t t
A θ h θ t b θ b θ

φ φ
    (3.3.14) 

 
1

1 1 1 1 1 1 1
2 3 3 3

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 cos cos
t b

t w t t b b
t b

t th θ
S θ x θ h θ t x θ b θ x θ b θ

φ φ

 
    
 

 (3.3.15) 

 
21 3 1

1 1 1 1 2 1
2 3 3

( ) ( )
( ) ( ) ( ) ( ) ( )

12 2 cos
w t

t w t t
t

h θ t th θ
I θ x θ h θ t x θ b θ

φ

 
    

 
  

 1 2 1
3 ( ) ( )

cos
b

b b
b

t
x θ b θ

φ
  (3.3.16) 

                                                                                                                                               

  
 

2 3

2 3

2
1 1 1 1

3 3span ,1 12
2 1 1

1 1
3span ,

( , ) proj ( , ) 1
cos ( , )

( , )proj ( , )

θ θ θ θ
θ θ

a θ θθ θ



 

e e

e e

a a

a
  , 1 1 π

0 ( , )
2

θ θ   . 

This gives 
1 1

1 1 1 1
1 1

( , )
( , ) ( , )

cos ( , )

t θ θ
t θ θ a θ θ

θ θ
  

for the wall thickness at 1 1( , )F θ θ  measured in the plane of 1θA , as asserted above. 
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 1 1 3 1 3
3

1 1
( ) ( ) ( )

12 cos 12 cos
t b

t b
t b

t t
I θ b θ b θ

φ φ
   (3.3.17) 

 1 1 2 1 3 1 2 1 3
3 3

1 1
( ) ( ) ( ) ( ) ( )

12 cos 12 cos
t b

ω t t b b
t b

t t
I θ x θ b θ x θ b θ

φ φ
   (3.3.18) 

 1 1 1 3 1 1 3
3 3 3

1 1
( ) ( ) ( ) ( ) ( )

12 cos 12 cos
t b

ω t t b b
t b

t t
I θ x θ b θ x θ b θ

φ φ
    , (3.3.19) 

which makes perfect sense, while, due to symmetry, 3S , ωS , 23I  and 2ωI  are identically zero. 

A more elegant and compact expression for the kinetic energy can be achieved if one 

defines the linear momentum density 

 
1

2

1
1

( )1 1 2 1 2 1 2 2 1
3( )

( , τ ) ρ ( , , τ) ( , ) ( , ) ( , τ )
g θ

i ig θ
θ D θ θ t θ θ a θ θ dθ p θ p U e  (3.3.20) 

 
1

2

1
1

( )1 1 2 1 2 1 2 2
1 3 1( )
( , τ) ρ ( , , τ ) ( , ) ( , )

g θ

g θ
p θ D U θ θ t θ θ a θ θ dθ   

  1 1 1 1
2 1 3 1 2 2ρ ( ) ( , τ ) ( ) ( , τ )A θ D W θ S θ D D W θ   

 1 1 1 1
2 1 2 3 1 2 1( ) ( , τ ) ( ) ( , τ )ωS θ D D W θ S θ D D Φ θ   (3.3.21) 

 
1

2

1
1

( )1 1 2 1 2 1 2 2
2 3 2( )
( , τ ) ρ ( , , τ ) ( , ) ( , )

g θ

g θ
p θ D U θ θ t θ θ a θ θ dθ   

  1 1 1 1
2 2 2 2 1ρ ( ) ( , τ ) ( ) ( , τ)A θ D W θ S θ D Φ θ   (3.3.22) 

 
1

2

1
1

( )1 1 2 1 2 1 2 2
3 3 3( )
( , τ ) ρ ( , , τ) ( , ) ( , )

g θ

g θ
p θ D U θ θ t θ θ a θ θ dθ   

  1 1 1 1
2 3 3 2 1ρ ( ) ( , τ ) ( ) ( , τ )A θ D W θ S θ D Φ θ   , (3.3.23) 

the angular momentum density (relative to 1
1O θ e ) 

  
1

2

1
1

( )1 1 2 1 2 1 2 1 2 1 2 2
2 2 3 3 3( )

( , τ ) ρ ( , ) ( , ) ( , , τ ) ( , ) ( , )
g θ

g θ
θ x θ θ x θ θ D θ θ t θ θ a θ θ dθ  l e e U  

 1( , τ )i il θ e  (3.3.24) 

   
1

2

1
1

( )
1 1 2 1 2 1 2 1 2 1 2 1 2 2

1 2 3 3 3 3 2( )
( , τ ) ρ ( , ) ( , , τ ) ( , ) ( , , τ ) ( , ) ( , )

g θ

g θ
l θ x θ θ D U θ θ x θ θ D U θ θ t θ θ a θ θ dθ  

        
1 1 1 1 1 1 1

2 2 2 3 2 3 2 3 2 1ρ ( ) ( , τ) ( ) ( , τ) ( ) ( ) ( , τ)S θ D W θ S θ D W θ I θ I θ D Φ θ  (3.3.25) 

  



A Linear 1D Model for Tapered Thin-Walled Bars with Open Cross-Sections – The Dynamic Case 

135 

 
1

2

1
1

( )1 1 2 1 2 1 2 1 2 2
2 3 3 1( )
( , τ ) ρ ( , ) ( , , τ) ( , ) ( , )

g θ

g θ
l θ x θ θ D U θ θ t θ θ a θ θ dθ   

  1 1 1 1
2 2 1 23 1 2 2ρ ( ) ( , τ ) ( ) ( , τ )S θ D W θ I θ D D W θ   

 1 1 1 1
2 1 2 3 2 1 2 1( ) ( , τ ) ( ) ( , τ )ωI θ D D W θ I θ D D Φ θ   (3.3.26) 

 
1

2

1
1

( )1 1 2 1 2 1 2 1 2 2
3 2 3 1( )
( , τ) ρ ( , ) ( , , τ ) ( , ) ( , )

g θ

g θ
l θ x θ θ D U θ θ t θ θ a θ θ dθ    

  1 1 1 1
3 2 1 3 1 2 2ρ ( ) ( , τ ) ( ) ( , τ )S θ D W θ I θ D D W θ    

 1 1 1 1
23 1 2 3 3 1 2 1( ) ( , τ ) ( ) ( , τ )ωI θ D D W θ I θ D D Φ θ   (3.3.27) 

and the warping momentum density 

 
1

2

1
1

( )1 1 2 1 2 1 2 1 2 2
3 1( )

( , τ ) ρ ( , ) ( , , τ ) ( , ) ( , )
g θ

ω g θ
p θ ω θ θ D U θ θ t θ θ a θ θ dθ   

  1 1 1 1
2 1 3 1 2 2ρ ( ) ( , τ ) ( ) ( , τ )ω ωS θ D W θ I θ D D W θ   

 1 1 1 1
2 1 2 3 1 2 1( ) ( , τ ) ( ) ( , τ)ω ωI θ D D W θ I θ D D Φ θ   . (3.3.28) 

With these definitions, together with the generalised velocities (3.2.4)-(3.2.8), the kinetic 

energy becomes simply 

  1 1 1 1 1 1 1

0

1
( , τ) ( , τ) ( , τ) ( , τ) ( , τ) ( , τ)

2

L

i i i i ω ωT p θ v θ l θ Ξ θ p θ v θ dθ    .4 (3.3.29) 

3.3.2 Strain energy 

Let  0: 0, τΩ  VU  be an admissible motion of the middle surface and γ  be the 

corresponding one-parameter family of admissible linearised membrane strain tensor fields. 

Then, the membrane strain energy at time  0τ 0, τ  is 

  1 2 1 2 1 2 1 2 1 21
( , ) ( , , τ) : ( , , τ) ( , )

2m Ω
U θ θ θ θ θ θ a θ θ dθ dθ   γ γ  , (3.3.30) 

where 1 2( , )θ θ  is the elasticity tensor defined in equation (2.4.8). Using previous results, 

one obtains 

                                                 
4 If the kinetic energy T  is regarded as a quadratic functional of the generalised velocities iv , iΞ  and ωv , then 

 1

0

L

i
i

T
p dθ

v




   1

0

L

i
i

T
l dθ

Ξ




   1

0

L

ω
ω

T
p dθ

v




   . 

This is consistent with the usual definition of generalised momenta in the classical mechanics of point 
masses (for a velocity-independent generalised potential) – e.g., GREENWOOD (1997, p. 39) and LANCZOS 
(1970, pp. 120-122). 



Chapter 3 

136 

  1 1 2 2 1 1 2 2 1
1 1 2 1 2 3 1 3( , τ ) ( , ) ( , τ ) ( , ) ( , τ )

2m Ω

E
U D W θ x θ θ D W θ x θ θ D W θ  


  

 21 2 2 1 1 2 1 * 1 2 1 2
1 1 1 1( , ) ( , τ) ( , ) ( , τ) ( , )ω θ θ D Φ θ ψ θ θ DΦ θ t θ θ dθ dθ   , (3.3.31) 

where * 1 2( , )t θ θ  is the reduced wall thickness (2.5.4). Writing the integral over Ω  as an 

iterated integral and using the geometrical properties (2.5.6)-(2.5.20), one obtains 

   
 2* 1 1 * 1 1 2 1

1 1 3 1 1 1 20
( ) ( , τ ) 2 ( ) ( , τ ) ( , τ )

2

L

m

E
U A θ D W θ S θ D W θ D W θ  

  * 1 1 2 1 * 1 1 2 1
2 1 1 1 3 1 1 1 12 ( ) ( , τ ) ( , τ ) 2 ( ) ( , τ ) ( , τ )ωS θ D W θ D W θ S θ D W θ D Φ θ  

   
2* 1 1 1 * 1 2 1

1 1 1 1 3 1 22 ( ) ( ,τ) ( , τ) ( ) ( ,τ)ψS θ D W θ DΦ θ I θ D W θ  

  * 1 2 1 2 1 * 1 2 1 2 1
23 1 2 1 3 3 1 2 1 12 ( ) ( ,τ) ( ,τ) 2 ( ) ( ,τ) ( ,τ)ωI θ D W θ D W θ I θ D W θ D Φ θ  

   
2* 1 2 1 1 * 1 2 1

3 1 2 1 1 2 1 32 ( ) ( ,τ) ( ,τ) ( ) ( ,τ)ψI θ D W θ DΦ θ I θ D W θ  

  * 1 2 1 2 1 * 1 2 1 1
2 1 3 1 1 2 1 3 1 12 ( ) ( ,τ) ( ,τ) 2 ( ) ( ,τ) ( ,τ)ω ψI θ D W θ D Φ θ I θ D W θ DΦ θ  

   
2* 1 2 1 * 1 2 1 1

1 1 1 1 1 1( ) ( ,τ) 2 ( ) ( ,τ) ( ,τ)ω ωψI θ D Φ θ I θ D Φ θ DΦ θ  

    
2* 1 1 1

1 1( ) ( ,τ)ψI θ DΦ θ dθ  . (3.3.32) 

As in the static case (see § 2.5.1), we make the ad hoc addition of 

  21 1 1
SV 1 10

( ) ( , τ )
2

LG
U J θ D Φ θ dθ   (3.3.33) 

to the membrane strain energy, so that the total strain energy stored in the bar is 

 SVmU U U   . (3.3.34) 

3.3.3 Work of the external loads 

We prescribe a system of monogenic5 bar loads comprising: 

(i) a distributed force 

    0: 0, 0, τL   Vq  , (3.3.35) 

(ii) a distributed moment 

    0: 0, 0, τL   Vm  , (3.3.36) 

                                                 
5 The word “monogenic” (literally, “single-generated”) is used here in the sense of LANCZOS (1970, ch. 1, 

§ 7) – see also ARGYRIS & SYMEONIDIS (1981, § 1.1.2) and GOLDSTEIN et al. (2001, p. 34). MEIROVITCH 
(1970, p. 17) uses instead the word “lamellar”. 
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(iii) a distributed bimomental load 

    0: 0, 0, τb L     , (3.3.37) 

defined per unit length of the line segment    1 1
1 , 0O θ θ Le , and 

(iv) concentrated forces 

  0 0, : 0, τL  VQ Q  , (3.3.38) 

(v) concentrated moments 

  0 0, : 0, τL  VM M  , (3.3.39) 

(vi) concentrated bimoments 

  0 0, : 0, τLB B    (3.3.40) 

at the end points O  and  1O L e . All the above maps are assumed to be continuous. In 

terms of Cartesian components, we write 

 1 1( , τ ) ( , τ )i iθ q θq e  (3.3.41) 

 1 1( , τ ) ( , τ )i iθ m θm e  (3.3.42) 

 0 0 .(τ ) (τ )i iQQ e  (3.3.43) 

  .(τ ) (τ )L L i iQQ e  (3.3.44) 

 0 0 .(τ ) (τ )i iMM e  (3.3.45) 

  .(τ ) (τ )L L i iMM e  . (3.3.46) 

In a given admissible motion  0: 0, τΩ  VU  of the middle surface (recall 

(3.2.1)-(3.2.3)), the (time-dependent) work performed by these bar loads is 

  1 1 1 1 1 1 1
1 10

( , τ) ( , τ) ( , τ) ( , τ) ( , τ) ( , τ)
L

eW θ θ θ θ b θ DΦ θ dθ     q W m Φ  

 0 0(τ) (0, τ) (τ) ( , τ) (τ) (0, τ) (τ) ( , τ)L LL L       Q W Q W M Φ M Φ  

 0 1 1 1 1(τ) (0, τ) (τ) ( , τ)LB DΦ B DΦ L   (3.3.47) 

or, alternatively, 

  1 1 1 1 1 1
1 1 2 1 30

( , τ) ( , τ) ( , τ) ( , τ) ( , τ) ( , τ)
L

e i iW q θ W θ m θ Φ θ m θ D W θ    

 1 1 1 1 1
3 1 2 1 1( , τ) ( , τ) ( , τ) ( , τ)m θ D W θ b θ DΦ θ dθ   

 0 . .(τ) (0,τ) (τ) ( ,τ)i i L i iQ W Q W L   

 0 .1 1 0 . 2 1 3 0 . 3 1 2(τ) (0,τ) (τ) (0,τ) (τ) (0,τ)M Φ M DW M DW    

 .1 1 . 2 1 3 . 3 1 2(τ) ( ,τ) (τ) ( ,τ) (τ) ( ,τ)L L LM Φ L M DW L M DW L    

 0 1 1 1 1(τ) (0, τ) (τ) ( , τ)LB DΦ B DΦ L   . (3.3.48) 
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3.3.4 The Lagrangian 

The Lagrangian L  of the bar-load system reads 

 eT U W  L  . (3.3.49)
 

For a given admissible motion of the middle surface, the quantities L , T , U  and eW  are 

functions of time alone – this was the viewpoint adopted in §§ 3.3.1-3.3.3. However, they 

can also be considered functions of the generalised displacements (which completely specify 

the admissible motions of the middle surface) and time. Henceforth, the latter viewpoint 

shall be adopted. 

3.4 THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE 

GENERALISED DISPLACEMENTS 

The unifying quality of a variational principle is truly remarkable. 
Although the modern development of physics deviates essentially from the older course 

on account of relativity and quantum theory, yet the idea of deriving 
the basic equations of nature from a variational principle has never been abandoned, 

and both the equations of relativity and the equations of wave mechanics share  
with the older equations of physics the common feature that they are derivable 

from a “principle of least action.” It is only the Lagrangian function L 
which has to be defined in a different manner. 

CORNELIUS LANCZOS 

Let D  be the set of all ordered quadruplets 1 2 3 1( , , , )W W W Φ  – henceforth shortened 

to 1( , )iW Φ  – of generalised displacements that satisfy the essential boundary conditions for 

the particular problem under consideration and such that: 

(i) 1W  is of class 3, 2C  on    00, 0, τL  . 

(ii) 2W , 3W  and 1Φ  are of class 4 , 2C  on    00, 0, τL  . 

(iii) The partial maps ( , 0)iW  , 0( , τ )iW  , 1( , 0)Φ  , and 1 0( , τ )Φ  , whose domain is  0, L , are 

prescribed. 

The Hamiltonian action is the functional :  S D  defined by 

 0τ

1 10
( , ) ( , , τ ) τi iW Φ W Φ d S L  . (3.4.1) 

Let 1( , )iδW δΦ  denote the difference between two members of D  – the maps 

   1 0, : 0, 0, τiδW δΦ L     are then collectively called admissible variations of the 

generalised displacements. Notice that these admissible variations (i) exhibit the same 
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degree of smoothness as the generalised displacements themselves and (ii) satisfy the 

homogeneous form of the essential boundary conditions. Moreover, the partial maps 

( , 0)iδW  , 0( , τ )iδW  , 1( , 0 )δΦ  , and 1 0( , τ )δΦ   are identically zero. The first variation of S  

at 1( , )iW Φ D  in the direction of 1( , )iδW δΦ  is defined as 

 1 1 1 1
0

( , )[ , ] ( , )i i i i
a

d
δ W Φ δW δΦ W a δW Φ a δΦ

da 

  S S   ( a  ) . (3.4.2) 

By Hamilton’s principle, or principle of stationary action,6 1( , )iW Φ D  specifies the 

actual motion of the bar in the time interval  00, τ  if and only if 

 1 1( , )[ , ] 0i iδ W Φ δW δΦ S  (3.4.3) 

for every admissible variations iδW , 1δΦ  (e.g., ABRAHAM & MARSDEN 1987, § 3.8, FUNG 

1965, §§ 11.1-11.2, GELFAND & FOMIN 1963, § 36, LANCZOS 1970, ch. 5, § 1, LANGHAAR 

1962, § 7.2, LOVE 1944, § 115, MEIROVITCH 1970, § 2.7, TRUESDELL & TOUPIN 1960, 

§ 236, or WASHIZU 1975, pp. 2-3). The partial differential equations of motion and the 

corresponding boundary conditions can now be conveniently obtained from this 

variational statement.7 When these are supplemented by the initial conditions, the resulting 

initial-boundary value problem may be phrased as follows: 

Find real-valued maps 1W , 2W , 3W  and 1Φ  defined on    00, 0,τL  , with 

 1W  of class 3, 2C  on    00, 0, τL   and  

 2W  , 3W , 1Φ  of class 4 , 2C  on    00, 0, τL  , 

satisfying the partial differential equations of motion 

  * * 2 * 2 * 2 * 1
1 1 1 3 1 2 2 1 3 1 1 1 1 ( , τ)ω ψD EA D W ES D W ES D W ES D Φ ES DΦ θ         

 1 2 1 1 2 1 1 2 1
2 1 3 1 2 2 2 1 2 3ρ ( ) ( , τ) ρ ( ) ( , τ) ρ ( ) ( , τ)A θ D W θ S θ D D W θ S θ D D W θ     

 1 2 1 1
1 2 1 1ρ ( ) ( , τ ) ( , τ ) 0ωS θ D D Φ θ q θ    (3.4.4) 

                                                 
6 Not necessarily least action – see GALLAVOTTI (1983, § 2.24 and § 3.4), GRAY & TAYLOR (2007) and 

LANDAU & LIFSCHITZ (2000, p. 2). 

7 This entails (i) the use of Leibniz rule to differentiate under the integral sign (e.g., BARTLE 1967, th. 23.10), 
(ii) the interchange of the order of integration (e.g., BARTLE 1967, th. 23.12), (iii) integration by parts (e.g., 
CAMPOS FERREIRA 1987, ch. 5, § 1, th. 18) and (iv) an appeal to the fundamental lemma of the calculus of 
variations (e.g., DACOROGNA 2004, th. 1.24). It is assumed that the data (geometry and loading) are 
sufficiently smooth so as to render legitimate the use of these theorems. 
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  2 * * 2 * 2 * 2 * 1
1 3 1 1 3 1 2 23 1 3 3 1 1 3 1 1 ( , τ)ω ψD ES D W EI D W EI D W EI D Φ EI DΦ θ          

  2 2 2 2 1
1 3 2 1 3 1 2 2 23 1 2 3 3 1 2 1 3+ ρ ρ ρ ρ ( , τ )ωD S D W I D D W I D D W I D D Φ m θ      

 1 2 1 1 2 1 1
2 2 2 2 1 2ρ ( ) ( , τ ) ρ ( ) ( , τ ) ( , τ ) 0A θ D W θ S θ D Φ θ q θ     (3.4.5) 

  2 * * 2 * 2 * 2 * 1
1 2 1 1 23 1 2 2 1 3 2 1 1 2 1 1 ( , τ)ω ψD ES D W EI D W EI D W EI D Φ EI DΦ θ          

  2 2 2 2 1
1 2 2 1 23 1 2 2 2 1 2 3 2 1 2 1 2ρ ρ ρ ρ ( , τ )ωD S D W I D D W I D D W I D D Φ m θ       

 1 2 1 1 2 1 1
2 3 3 2 1 3ρ ( ) ( , τ ) ρ ( ) ( , τ ) ( , τ ) 0A θ D W θ S θ D Φ θ q θ     (3.4.6) 

  2 * * 2 * 2 * 2 * 1
1 1 1 3 1 2 2 1 3 1 1 1 1 ( , τ )ω ω ω ω ωψD ES D W EI D W EI D W EI D Φ EI DΦ θ          

 * * 2 * 2
1 1 1 3 1 2 2 1 3ψ ψ ψD ES D W EI D W EI D W   

     

  * 2 * 1
1 1 1 1 ( , τ)ωψ ψEI D Φ GJ EI DΦ θ   

    

  2 2 2 2 1
1 2 1 3 1 2 2 2 1 2 3 1 2 1ρ ρ ρ ρ ( , τ)ω ω ω ωD S D W I D D W I D D W I D D Φ b θ       

  1 2 1 1 2 1 1 1 2 1
2 2 2 3 2 3 2 3 2 1ρ ( ) ( , τ ) ρ ( ) ( , τ ) ρ ( ) ( ) ( , τ )S θ D W θ S θ D W θ I θ I θ D Φ θ     

 1
1( , τ) 0m θ   (3.4.7) 

on    00, 0,τL  , together with (i) the appropriate boundary conditions, to be 

selected from table 3.4.1 (from each row of the table, select one, and only one, 

boundary condition), and (ii) the initial conditions 

 1 1
1 1.0( , 0) ( )W θ W θ  1 1

2 1 1.0( , 0) ( )D W θ W θ   (3.4.8) 

 1 1
2 2.0( , 0) ( )W θ W θ  1 1

2 2 2.0( , 0) ( )D W θ W θ   (3.4.9) 

 1 1
3 3.0( , 0) ( )W θ W θ  1 1

2 3 3.0( , 0) ( )D W θ W θ   (3.4.10) 

 1 1
1 1.0( , 0) ( )Φ θ Φ θ  1 1

2 1 1.0( , 0) ( )D Φ θ Φ θ   , (3.4.11) 

where .0iW , .0iW , 1.0Φ  and 1.0Φ  are given real-valued functions on  0, L .8 

 

 

                                                 
8 The superposed dot notation in (3.4.8)-(3.4.11) is symbolic rather than operational. 



 

 

 Natural boundary conditions  Essential boundary 
conditions 

Either 

* * 2 * 2 * 2 *
1 1 3 1 2 2 1 3 1 1 1 1 0 .1(0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (τ)ω ψEA D W ES D W ES D W ES D Φ ES D Φ Q           

or

1(0, τ )W  prescribed 

* * 2 * 2 * 2 *
1 1 3 1 2 2 1 3 1 1 1 1 .1( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) (τ )ω ψ LEA L D W L ES L D W L ES L D W L ES L D Φ L ES L D Φ L Q          

1( , τ )W L  prescribed 

  

 * * 2 * 2 * 2 *
1 3 1 1 3 1 2 23 1 3 3 1 1 3 1 1 (0, τ)ω ψD ES D W EI D W EI D W EI D Φ EI DΦ         

2 2 2 2
3 2 1 3 1 2 2 23 1 2 3 3 1 2 1 3 0.2ρ (0) (0,τ) ρ (0) (0,τ) ρ (0) (0,τ) ρ (0) (0,τ) (0,τ) (τ)ωS D W I D D W I D D W I D D Φ m Q        

2 (0, τ )W  prescribed 

 * * 2 * 2 * 2 *
1 3 1 1 3 1 2 23 1 3 3 1 1 3 1 1 ( , τ)ω ψD ES D W EI D W EI D W EI D Φ EI DΦ L         

2 2 2 2
3 2 1 3 1 2 2 23 1 2 3 3 1 2 1 3 .2ρ ( ) ( ,τ) ρ ( ) ( ,τ) ρ ( ) ( ,τ) ρ ( ) ( ,τ) ( ,τ) (τ)ω LS L D W L I L D D W L I L D D W L I L D D Φ L m L Q       

2 ( , τ )W L  prescribed 

  

* * 2 * 2 * 2 *
3 1 1 3 1 2 23 1 3 3 1 1 3 1 1 0 .3(0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (τ )ω ψES D W EI D W EI D W EI D Φ EI D Φ M          

1 2 (0, τ )D W  prescribed 

* * 2 * 2 * 2 *
3 1 1 3 1 2 23 1 3 3 1 1 3 1 1 .3( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) (τ )ω ψ LES L D W L EI L D W L EI L D W L EI L D Φ L EI L D Φ L M         

1 2 ( , τ )D W L  prescribed 

  

 * * 2 1 * 2 * 2 *
1 2 1 1 23 1 2 2 1 3 2 1 1 2 1 1( ) (0, τ)ω ψD ES D W EI D W θ EI D W EI D Φ EI DΦ         

2 2 2 2
2 2 1 23 1 2 2 2 1 2 3 2 1 2 1 2 0.3ρ (0) (0,τ) ρ (0) (0,τ) ρ (0) (0,τ) ρ (0) (0,τ) (0,τ) (τ)ωS D W I D D W I D D W I D D Φ m Q        

3 (0, τ )W  prescribed 

 * * 2 * 2 * 2 *
1 2 1 1 23 1 2 2 1 3 2 1 1 2 1 1 ( ,τ)ω ψD ES D W EI D W EI D W EI D Φ EI DΦ L         

2 2 2 2
2 2 1 23 1 2 2 2 1 2 3 2 1 2 1 2 .3ρ ( ) ( ,τ) ρ ( ) ( ,τ) ρ ( ) ( ,τ) ρ ( ) ( ,τ) ( ,τ) (τ)ω LS L D W L I L D D W L I L D D W L I L D D Φ L m L Q       

3 ( , τ )W L  prescribed 

Table 3.4.1: Boundary conditions ( 00 τ τ  ) 



 

 

 Natural boundary conditions  Essential boundary 
conditions 

Either 

* * 2 * 2 * 2 *
2 1 1 23 1 2 2 1 3 2 1 1 2 1 1 0 . 2(0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (τ )ω ψES D W EI D W EI D W EI D Φ EI D Φ M           

or

1 3 (0, τ )D W  prescribed 

* * 2 * 2 * 2 *
2 1 1 23 1 2 2 1 3 2 1 1 2 1 1 . 2( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( , τ ) ( ) (τ )ω ψ LES L D W L EI L D W L EI L D W L EI L D Φ L EI L D Φ L M          

1 3 ( , τ )D W L  prescribed 

  

 * * 2 * 2 * 2 *
1 1 1 3 1 2 2 1 3 1 1 1 1 (0, τ)ω ω ω ω ωψD ES D W EI D W EI D W EI D Φ EI DΦ         

 * * 2 * 2 * 2 *
1 1 3 1 2 2 1 3 1 1 1 1(0) (0,τ) (0) (0,τ) (0) (0,τ) (0) (0,τ) (0) (0) (0,τ)ψ ψ ψ ωψ ψES D W EI D W EI D W EI D Φ GJ EI DΦ           

2 2 2 2
2 1 3 1 2 2 2 1 2 3 1 2 1 0.1ρ (0) (0,τ) ρ (0) (0,τ) ρ (0) (0,τ) ρ (0) (0,τ) (0,τ) (τ)ω ω ω ωS D W I D D W I D D W I D D Φ b M        

1(0, τ )Φ  prescribed 

 * * 2 * 2 * 2 *
1 1 1 3 1 2 2 1 3 1 1 1 1 ( , τ)ω ω ω ω ωψD ES D W EI D W EI D W EI D Φ EI DΦ L         

 * * 2 * 2 * 2 *
1 1 3 1 2 2 1 3 1 1 1 1( ) ( ,τ) ( ) ( ,τ) ( ) ( ,τ) ( ) ( ,τ) ( ) ( ) ( ,τ)ψ ψ ψ ωψ ψL L L L L L L L L L LES D W EI D W EI D W EI D Φ GJ EI DΦ           

2 2 2 2
2 1 3 1 2 2 2 1 2 3 1 2 1 .1ρ ( ) ( ,τ) ρ ( ) ( ,τ) ρ ( ) ( ,τ) ρ ( ) ( ,τ) ( ,τ) (τ)ω ω ω ω LS L D W L I L D D W L I L D D W L I L D D Φ L b L M       

1( , τ )Φ L  prescribed 

  

* * 2 * 2 * 2 *
1 1 3 1 2 2 1 3 1 1 1 1 0(0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (0 ) (0, τ ) (τ )ω ω ω ω ωψES D W EI D W EI D W EI D Φ EI D Φ B           

1 1(0, τ )D Φ  prescribed 

* * 2 * 2 * 2 *
1 1 3 1 2 2 1 3 1 1 1 1( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ ) (τ )ω ω ω ω ωψ LES L D W L EI L D W L EI L D W L EI L D Φ L EI L D Φ L B          

1 1( , τ )D Φ L  prescribed 

Table 3.4.1 (continued): Boundary conditions ( 00 τ τ  ) 
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3.5 CROSS-SECTIONAL STRESS RESULTANTS. EQUATIONS OF 

BALANCE 

The natural boundary conditions in table 3.4.1 lead to the following definitions for 

the cross-sectional stress resultants (or generalised stresses) – see figure 2.7.1: 

(i) Normal force 

 1 * 1 1 * 1 2 1 * 1 2 1
1 1 3 1 2 2 1 3( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ )N θ EA θ D W θ ES θ D W θ ES θ D W θ      

 * 1 2 1 * 1 1
1 1 1 1( ) ( , τ) ( ) ( ,τ)ω ψES θ D Φ θ ES θ DΦ θ    . (3.5.1) 

(ii) Shear forces 

  1 * * 2 * 2 * 2 * 1
2 1 3 1 1 3 1 2 23 1 3 3 1 1 3 1 1( , τ) ( , τ)ω ψV θ D ES D W EI D W EI D W EI D Φ EI DΦ θ          

 1 2 1 1 2 1 1 2 1
3 2 1 3 1 2 2 23 1 2 3ρ ( ) ( , τ ) ρ ( ) ( , τ ) ρ ( ) ( , τ )S θ D W θ I θ D D W θ I θ D D W θ    

 1 2 1 1
3 1 2 1 3ρ ( ) ( , τ) ( , τ)ωI θ D D Φ θ m θ   (3.5.2) 

  1 * * 2 * 2 * 2 * 1
3 1 2 1 1 23 1 2 2 1 3 2 1 1 2 1 1( , τ) ( , τ)ω ψV θ D ES D W EI D W EI D W EI D Φ EI DΦ θ          

 1 2 1 1 2 1 1 2 1
2 2 1 23 1 2 2 2 1 2 3ρ ( ) ( , τ ) ρ ( ) ( , τ ) ρ ( ) ( , τ )S θ D W θ I θ D D W θ I θ D D W θ    

 1 2 1 1
2 1 2 1 2ρ ( ) ( , τ ) ( , τ )ωI θ D D Φ θ m θ   . (3.5.3) 

(iii) Bending moments (relative to the axes through 1
1O θ e  and spanned by 2e  and 3e ) 

 1 * 1 1 * 1 2 1 * 1 2 1
2 2 1 1 23 1 2 2 1 3( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ )M θ ES θ D W θ EI θ D W θ EI θ D W θ      

 * 1 2 1 * 1 1
2 1 1 2 1 1( ) ( , τ) ( ) ( ,τ)ω ψEI θ D Φ θ EI θ DΦ θ    (3.5.4) 

 1 * 1 1 * 1 2 1 * 1 2 1
3 3 1 1 3 1 2 23 1 3( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ )M θ ES θ D W θ EI θ D W θ EI θ D W θ      

 * 1 2 1 * 1 1
3 1 1 3 1 1( ) ( , τ) ( ) ( , τ)ω ψEI θ D Φ θ EI θ DΦ θ    . (3.5.5) 

(iv) Torque (about the line    1 1
1 , 0O θ θ Le ) 

  1 * * 2 * 2 * 2 * 1
1 1 1 1 3 1 2 2 1 3 1 1 1 1( , τ) ( , τ)ω ω ω ω ωψM θ D ES D W EI D W EI D W EI D Φ EI DΦ θ          

 * 1 1 * 1 2 1 * 1 2 1
1 1 3 1 2 2 1 3( ) ( , τ) ( ) ( , τ) ( ) ( , τ)ψ ψ ψES θ D W θ EI θ D W θ EI θ D W θ      

  * 1 2 1 1 * 1 1
1 1 1 1( ) ( , τ) ( ) ( ) ( , τ)ωψ ψEI θ D Φ θ GJ θ EI θ DΦ θ     

 1 2 1 1 2 1 1 2 1
2 1 3 1 2 2 2 1 2 3ρ ( ) ( , τ ) ρ ( ) ( , τ ) ρ ( ) ( , τ )ω ω ωS θ D W θ I θ D D W θ I θ D D W θ    

 1 2 1 1
1 2 1ρ ( ) ( , τ) ( , τ)ωI θ D D Φ θ b θ   . (3.5.6) 
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(v) Bimoment (represented by a three-headed arrow in figure 2.7.1) 

 1 * 1 1 * 1 2 1 * 1 2 1
1 1 3 1 2 2 1 3( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ )ω ω ωB θ ES θ D W θ EI θ D W θ EI θ D W θ       

 * 1 2 1 * 1 1
1 1 1 1( ) ( , τ) ( ) ( ,τ)ω ωψEI θ D Φ θ EI θ DΦ θ    . (3.5.7) 

Indeed, with these definitions, the natural boundary conditions amount to prescribing, at 

each time τ  in  00, τ , the stress resultants at the bar ends. 

As discussed in § 2.7, the normal force, bending moments and bimoment have an 

active character. On the other hand, the shear forces are clearly reactive and satisfy the 

equations of balance 

 1 1 1 1
2 1 3 3 2 3( , τ ) ( , τ ) ( , τ ) ( , τ )V θ D M θ m θ D l θ    (3.5.8) 

 1 1 1 1
3 1 2 2 2 2( , τ ) ( , τ ) ( , τ ) ( , τ )V θ D M θ m θ D l θ    , (3.5.9) 

which are the dynamic counterparts of the static equilibrium equations (2.7.19)-(2.7.20). As 

for the torque 1
1( , τ)M θ , it splits additively into an active part 

 ( ) 1 * 1 1 * 1 2 1 * 1 2 1
1 1 1 3 1 2 2 1 3( , τ ) ( ) ( , τ ) ( ) ( , τ ) ( ) ( , τ )A

ψ ψ ψM θ ES θ D W θ EI θ D W θ EI θ D W θ       

  * 1 2 1 1 * 1 1
1 1 1 1( ) ( , τ) ( ) ( ) ( , τ)ωψ ψEI θ D Φ θ GJ θ EI θ DΦ θ     (3.5.10) 

and a reactive part 

 ( ) 1 1 1 1
1 1 2 ω( , τ ) ( , τ ) ( , τ ) ( , τ )RM θ D B θ b θ D p θ    . (3.5.11) 

The incorporation of the definitions (3.5.1) and (3.5.4)-(3.5.6) into the equations of 

motion (3.4.4)-(3.4.7) yields the following equations of balance on    00, 0, τL  : 

  1 1 1
1 1 2 1( , τ ) ( , τ ) ( , τ ) 0D N θ q θ D p θ    (3.5.12) 

    2 1 1 1 1
1 3 1 3 2 3 2 2 2( , τ ) ( , τ ) ( , τ ) ( , τ ) 0D M θ D m D l θ q θ D p θ      (3.5.13) 

    2 1 1 1 1
1 2 1 2 2 2 3 2 3( , τ ) ( , τ ) ( , τ ) ( , τ ) 0D M θ D m D l θ q θ D p θ      (3.5.14) 

  1 1 1
1 1 1 2 1( , τ ) ( , τ) ( , τ ) 0D M θ m θ D l θ    . (3.5.15) 

By virtue of (3.5.11), the last-written equation is equivalent to 

    ( )2 1 1 1 1 1
1 1 1 1 2 1 2 1( , τ ) ( , τ ) ( , τ ) ( , τ) ( , τ ) 0A

ωD B θ D M θ D b D p θ m θ D l θ       , (3.5.16) 

which makes it clear that 2 ωD p  is a distributed inertial bimoment, just as 2 iD p  and 

2 iD l , 1, 2, 3i  , are distributed inertial forces and moments, respectively. 
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3.6 A SUMMARY OF THE FIELD EQUATIONS OF THE 

ONE-DIMENSIONAL MODEL 

This seems a convenient moment to reconsider the one-dimensional model, or at any 

rate its field equations, as a whole. We seek to relate the generalised displacements, arranged 

in the column vector 

  

 
 
 
 
 
  

1

2

3

1

W

W
d

W

Φ

=  , (3.6.1) 

to the distributed bar loads, collected in the column vector 

  

1

3 2

2 3

1

q

m q
q

m q

b m

 
   
   
   

=  . (3.6.2) 

(We recall that this particular definition of  q  stems from the requirement that the work 

of the distributed bar loads be equal to 

    1 1 1

0
( , τ) ( , τ) boundary terms

L T
q θ d θ dθ   .) (3.6.3) 

As shown next, the sought relation arises as the combination of three kinds of basic equations. 

First, one derives two sets of intermediate variables (variables of first kind, according to 

Tonti’s terminology – TONTI 1972) from the generalised displacements – the generalised strains 

  




 
 
  
 
 
 
  

1

2

3

ε

e

Γ

=  (3.6.4) 

and generalised velocities 

  

1

2

3

1

2

3

ω

v

v

v

Ξv

Ξ

Ξ

v

 
 
 
 
 
 
 
 
 
 
 

=  , (3.6.5) 
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by means of the kinematic equations 

     1e L d  (3.6.6) 

     2v L d  , (3.6.7) 

where 

  

1

1
2

1 1
2
1

2
1

D

D

L D

D

D

   
    
     
 
    

     

 (3.6.8) 

  

2

2

2

22

1 2

1 2

1 2

D

D

D

DL

D D

D D

D D

   
    
   
     
    
 
   

     

 (3.6.9) 

are formal linear differential operators. 

Second, two further sets of intermediate variables (variables of second kind), the 

active stress resultants 

  

 
 
  
 
 
 
  

( )
1

( )
2

3

A

A

N

M

s M

M

B

=  (3.6.10) 

and momentum densities 

  

1

2

3

1

2

3

ω

p

p

p

lp

l

l

p

 
 
 
 
 
 
 
 
 
 
 

=  , (3.6.11) 
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are obtained from the generalised displacements and velocities by means of the constitutive 

equations (TONTI & ZARANTONELLO 2010) 

     ( )As K e  (3.6.12) 

     p I v  , (3.6.13) 

where  K  is the (symmetric) stiffness matrix 

  
 

 
 
     
 
  
 
 
 
  

    

    

    

    

    

* * * * *
2 3

* * * * *
2 3

* * * * *
2 2 2 23 2

* * * * *
3 3 23 3 3

* * * * *
2 3

ψ ω

ψ ψ ψ ψ ωψ

ψ ω

ψ ω

ω ωψ ω ω ω

EA ES ES ES ES

ES GJ EI EI EI EI

K ES EI EI EI EI

ES EI EI EI EI

ES EI EI EI EI

 (3.6.14) 

and  I  is the (symmetric) inertia matrix 

    

2 3

2

3

2 3 2 3

2 2 23 2

3 23 3 3

2 3

ρ ρ ρ ρ

ρ ρ

ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ω

ω

ω

ω ω ω ω

A S S S

A S

A S

I S S I I

S I I I

S I I I

S I I I

    
       
     
 

       
    
 
      
     

 , (3.6.15) 

the entries of which are known real-valued maps defined on  0, L . 

Finally, the active stress resultants  ( )As  and momentum densities  p  are related 

to the distributed bar loads  q  via the equations of balance  

          † †( )
1 2

AL s L p q   , (3.6.16) 

where 

  

1
2

† 1
1 2

1
2

1 1

D

D
L

D

D D

     
      
     
 

      

 (3.6.17) 

  

2

† 2 1 2
2

2 1 2

2 1 2

D

D D D
L

D D D

D D D

       
       
       
        

 (3.6.18) 
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are the formal adjoint operators of  1L  and  2L , respectively. 

The kinematic, constitutive and balance equations now combine to yield 

               † †

1 1 2 2L K L L I L d q   , (3.6.19) 

which are none other than the equations of motion (3.4.4)-(3.4.7) written in compact matrix 

form. The process is summarised in figure 3.6.1 by means of a Tonti diagram (TONTI 1972). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.1: Tonti diagram (Tonti’s usual terminology is given between square brackets) 
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To complete the above apparatus, all that remains to be done is to introduce the 

reactive cross-sectional stress resultants, collected in the column vector 

  
 
   
 
 

2
( )

3
( )
1

R

R

V

s V

M

 . (3.6.20) 

These reactive stress resultants satisfy the equations of balance 

 
2 3 3 3

3 1 2 2 2 2
( )
1

R
ω

V M m l

V D M m D l

M B b p

        
                
       

      

 (3.6.21) 

and are thus expressible in terms of the generalised displacements as follows: 

 

1 1
* * * * *

2 3 3 23 3 3 31 1
* * * * * 2

3 1 2 2 2 23 2 21 3
( ) * * * * * 2
1 2 3 1 2

2
1 1

ψ ω

ψ ω
R

ω ωψ ω ω ω

D W

V ES EI EI EI EI mD Φ

V D ES EI EI EI EI mD W

M ES EI EI EI EI bD W

D Φ

  
                                            

    
    
    

 

 

1
3 23 3 3

1 32
2 2 23 2 2

1 2
2 3

1 1

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ω

ω

ω ω ω ω

W
S I I I

D W
S I I I D

D W
S I I I

D Φ

           
      

 . (3.6.22) 

3.7 PRISMATIC BARS 

We now consider a prismatic bar, with its middle surface parametrised as in § 2.9.2. 

Moreover, the inertial frame   1 2 3, , ,O e e e  is chosen to conform with the conditions 

(2.9.27)-(2.9.28). Adopting the notational conventions of the aforementioned section, the 

partial differential equations of motion (3.4.4)-(3.4.7) reduce to 

 2 1 3 1 2 1
1 1 1 1 2 1( , τ) ( , τ) ρ ( , τ)ωEA D W θ ES D Φ θ A D W θ    

 1 2 1 1
1 2 1 1ρ ( ) ( , τ ) ( , τ ) 0ωS θ D D Φ θ q θ    (3.7.1) 

 4 1 4 1 2 2 1 2 2 1
3 1 2 3 1 1 3 1 2 2 3 1 2 1( , τ) ( , τ)+ ρ ( , τ) ρ ( , τ)ω ωEI D W θ EI D Φ θ I D D W θ I D D Φ θ      

 1 2 1 1
1 3 2 2 2( , τ ) ρ ( , τ ) ( , τ ) 0D m θ A D W θ q θ     (3.7.2) 

 4 1 4 1 2 2 1 2 2 1
2 1 3 2 1 1 2 1 2 3 2 1 2 1( , τ) ( , τ) ρ ( , τ) ρ ( , τ)ω ωEI D W θ EI D Φ θ I D D W θ I D D Φ θ       

 1 2 1 1
1 2 2 3 3( , τ ) ρ ( , τ ) ( , τ ) 0D m θ A D W θ q θ     (3.7.3) 
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 3 1 4 1 4 1 4 1
1 1 3 1 2 2 1 3 1 1( , τ) ( , τ) ( , τ) ( , τ)ω ω ω ωES D W θ EI D W θ EI D W θ EI D Φ θ        

 2 1 2 1 2 2 1
1 1 1 2 1 3 1 2 2( , τ) ρ ( , τ ) ρ ( , τ )ω ωGJ D Φ θ S D D W θ I D D W θ    

 2 2 1 2 2 1 1
2 1 2 3 1 2 1 1ρ ( , τ ) ρ ( , τ ) ( , τ )ω ωI D D W θ I D D Φ θ D b θ    

 2 1 1
2 3 2 1 1ρ( ) ( , τ) ( ,τ) 0I I D Φ θ m θ     . (3.7.4) 

The momentum densities (3.3.21)-(3.3.23) and (3.3.25)-(3.3.28) become simply 

 1 1 1
1 2 1 1 2 1( , τ ) ρ ( , τ ) ρ ( , τ )ωp θ A D W θ S D D Φ θ   (3.7.5) 

 1 1
2 2 2( , τ ) ρ ( , τ )p θ A D W θ  (3.7.6) 

 1 1
3 2 3( , τ ) ρ ( , τ )p θ A D W θ  (3.7.7) 

  1 1
1 2 3 2 1( , τ ) ρ ( , τ )l θ I I D Φ θ   (3.7.8) 

 1 1 1
2 2 1 2 3 2 1 2 1( , τ ) ρ ( , τ ) ρ ( , τ )ωl θ I D D W θ I D D Φ θ    (3.7.9) 

 1 1 1
3 3 1 2 2 3 1 2 1( , τ ) ρ ( , τ) ρ ( , τ )ωl θ I D D W θ I D D Φ θ   (3.7.10) 

1 1 1 1 1
2 1 3 1 2 2 2 1 2 3 1 2 1( , τ ) ρ ( , τ) ρ ( , τ) ρ ( , τ) ρ ( , τ)ω ω ω ω ωp θ S D W θ I D D W θ I D D W θ I D D Φ θ    , (3.7.11) 

while the stress resultants (3.5.1)-(3.5.7) read 

 1 1 2 1
1 1 1 1( , τ ) ( , τ ) ( , τ )ωN θ EA D W θ ES D Φ θ    (3.7.12) 

 1 3 1 3 1 2 1
2 3 1 2 3 1 1 3 1 2 2( , τ) ( , τ) ( , τ) ρ ( , τ)ωV θ EI D W θ EI D Φ θ I D D W θ      

 2 1 1
3 1 2 1 3ρ ( , τ) ( , τ)ωI D D Φ θ m θ   (3.7.13) 

 1 3 1 3 1 2 1
3 2 1 3 2 1 1 2 1 2 3( , τ) ( , τ) ( , τ) ρ ( , τ)ωV θ EI D W θ EI D Φ θ I D D W θ      

 1 2 1 1
2 1 2 1 2ρ ( ) ( , τ ) ( , τ )ωI θ D D Φ θ m θ   (3.7.14) 

 1 2 1 2 1
2 2 1 3 2 1 1( , τ ) ( , τ ) ( , τ )ωM θ EI D W θ EI D Φ θ     (3.7.15) 

 1 2 1 2 1
3 3 1 2 3 1 1( , τ ) ( , τ ) ( , τ )ωM θ EI D W θ EI D Φ θ     (3.7.16) 

 1 2 1 3 1 3 1 3 1
1 1 1 3 1 2 2 1 3 1 1( , τ) ( , τ) ( , τ) ( , τ) ( , τ)ω ω ω ωM θ ES D W θ EI D W θ EI D W θ EI D Φ θ        

 1 2 1 2 1
1 1 2 1 3 1 2 2( , τ) ρ ( , τ) ρ ( , τ)ω ωGJDΦ θ S D W θ I D D W θ    

 2 1 2 1 1
2 1 2 3 1 2 1ρ ( , τ ) ρ ( , τ ) ( , τ )ω ωI D D W θ I D D Φ θ b θ    (3.7.17) 

 1 1 2 1 2 1 2 1
1 1 3 1 2 2 1 3 1 1( , τ ) ( , τ ) ( , τ ) ( , τ ) ( , τ )ω ω ω ωB θ ES D W θ EI D W θ EI D W θ EI D Φ θ        .(3.7.18) 

For the purpose of comparison with the literature, it is useful to replace the 

generalised displacements 1W , 2W  and 3W  with (cf. equations (2.9.49) and (2.9.46)-(2.9.47)) 
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  1 1 1
1 1 3 2 2 3 1 1

ˆ ( , τ) ( , τ) (0) (0) ( , τ)S SW θ W θ x x x x DΦ θ    (3.7.19) 

 1 1 1
.2 2 3 1( , τ) ( , τ) ( , τ)S

SW θ W θ x Φ θ   (3.7.20) 

 1 1 1
.3 3 2 1( , τ) ( , τ) ( , τ)S

SW θ W θ x Φ θ   , (3.7.21) 

where 2
Sx  and 3

Sx  are the shear centre coordinates, given by (2.9.44)-(2.9.45). Accordingly, 

the admissible motions      0: 0, , 0, τL a b  U V  of the middle surface are rewritten 

in the form 

 1 2 1 2( , ,τ) ( , ,τ)i iθ θ U θ θU e  (3.7.22) 

1 2 1 2 1 2 1 2 1
1 1 2 1 .2 3 1 .3 1 1

ˆ( , , τ) ( , τ) ( ) ( , τ) ( ) ( , τ) ( ) ( , τ)S S SU θ θ W θ x θ D W θ x θ D W θ ω θ DΦ θ     (3.7.23) 

  1 2 1 2 1
2 .2 3 3 1( , , τ) ( , τ) ( ) ( , τ)S

SU θ θ W θ x θ x Φ θ    (3.7.24) 

  1 2 1 2 1
3 .3 2 2 1( , , τ) ( , τ) ( ) ( , τ)S

SU θ θ W θ x θ x Φ θ    , (3.7.25) 

where Sω  is the sectorial coordinate defined in equation (2.9.48), with pole at the shear 

centre. Moreover, if the origin of Sω  is chosen to coincide with a sectorial centroid, then 

conditions (2.9.54)-(2.9.55) hold and, under such circumstances, the equations of motion 

take on the form 

 2 1 2 1 1
1 1 2 1 1

ˆ ˆ( , τ) ρ ( , τ) ( , τ) 0EA D W θ A D W θ q θ    (3.7.26) 

 4 1 2 2 1 2 1
3 1 .2 3 1 2 .2 2 .2( , τ)+ρ ( , τ) ρ ( , τ)S S SEI D W θ I D D W θ A D W θ   

 2 1 1 1
3 2 1 1 3 2ρ ( , τ ) ( , τ ) ( , τ ) 0Sx A D Φ θ D m θ q θ     (3.7.27) 

 4 1 2 2 1 2 1
2 1 .3 2 1 2 .3 2 .3( , τ)+ρ ( , τ) ρ ( , τ)S S SEI D W θ I D D W θ A D W θ   

 2 1 1 1
2 2 1 1 2 3ρ ( , τ ) ( , τ ) ( , τ ) 0Sx A D Φ θ D m θ q θ     (3.7.28) 

2 1 2 1 4 1 2 2 1
3 2 .2 2 2 .3 1 1 1 2 1ρ ( , τ) ρ ( , τ) ( , τ) ρ ( , τ)

S S

S S
S S ω ωx A D W θ x A D W θ EI D Φ θ I D D Φ θ     

  2 1 2 2 2 1
1 1 2 3 2 3 2 1( , τ) ρ ( ) ( ) ( , τ)S SGJ D Φ θ I I x A x A D Φ θ      

 1 1
1 .1( , τ) ( , τ) 0S SD b θ m θ    (3.7.29) 

In the last equation, 

 1 1 1 1
.1 1 3 2 2 3( , τ) ( , τ) ( , τ) ( , τ)S S

Sm θ m θ x q θ x q θ    (3.7.30) 

is the applied distributed torque about the line of shear centres and 

 1 1 1 1 1
1 2 2 3 3( , τ) ( , τ) ( , τ) ( , τ) ( , τ)S Sω

S

S
b θ b θ q θ x m θ x m θ

A
     (3.7.31) 

is the distributed bimomental load evaluated with the sectorial coordinate Sω . Moreover, 
2 2

2 3 2 3( ) ( )S SI I x A x A    is the cross-section polar second moment of area relative to the 
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shear centre. Observe that the partial differential equations of motion (3.7.27)-(3.7.29) 

become uncoupled if 2 3 0S Sx x  , that is, if the centroid and shear centre coincide. 

The above prismatic equations coincide with those obtained by PROKIC (2005), using 

the principle of virtual displacements. When specialized to the free vibration problem, they 

are also in full agreement with those derived by VLASOV (1961, ch. 9, § 1), using 

d’Alembert’s principle.9 In equations (3.7.27)-(3.7.28), the terms 2 2 1
3 1 2 .2ρ ( , τ)SI D D W θ  and 

2 2 1
2 1 2 .3ρ ( , τ)SI D D W θ  represent the distributed transverse inertial forces due to the bending 

rotations of the cross-sections. As for the term 2 2 1
1 2 1ρ ( , τ)

SωI D D Φ θ  in equation (3.7.29), it 

represents the distributed inertial moment about the line of shear centres due to the torsion 

warping of the cross-sections. If these three terms are neglected, as often done in structural 

applications, then equations (3.7.27)-(3.7.29) reduce to those obtained by GERE (1954a) – 

see also GERE & LIN (1958) and TSO (1964, ch. 1). 

In terms of the new set of generalised displacements ( 1Ŵ , .2SW , .3SW  and 1Φ ), the 

components, in the ordered basis  1 2 3, ,e e e , of the linear momentum density are given by 

 1 1
1 2 1

ˆ( , τ ) ρ ( , τ )p θ A D W θ  (3.7.32) 

 1 1 1
2 2 .2 3 2 1( , τ ) ρ ( , τ ) ρ ( , τ)S

Sp θ A D W θ x A D Φ θ   (3.7.33) 

 1 1 1
3 2 .3 2 2 1( , τ ) ρ ( , τ ) ρ ( , τ )S

Sp θ A D W θ x A D Φ θ   , (3.7.34) 

while the transverse components, 2l  and 3l , of the angular momentum density relative to 
1

1O θ e  read 

 1 1
2 2 1 2 .3( , τ ) ρ ( , τ)Sl θ I D D W θ   (3.7.35) 

 1 1
3 3 1 2 .2( , τ ) ρ ( , τ)Sl θ I D D W θ  . (3.7.36) 

The warping momentum density, when evaluated with the sectorial coordinate Sω , reduces to 

 1 1
1 2 1( , τ ) ρ ( , τ )

S Sω ωp θ I D D Φ θ   . (3.7.37) 

It is related to the warping momentum density of equation (3.7.11), evaluated with the 

sectorial coordinate ω , through the relationship 

 1 1 1 1 1
1 2 2 3 3( , τ) ( , τ) ( , τ) ( , τ) ( , τ)

S

S Sω
ω ω

S
p θ p θ p θ x l θ x l θ

A
     . (3.7.38) 

Finally, the axial component of the angular momentum density relative to 
1

1 2 2 3 3
S SO θ x x  e e e  reads 

                                                 
9 ARPACI et al. (2003) do not include the term 2 2 1

1 2 1ρ ( , τ)
SωI D D Φ θ  in equation (3.7.29). 
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   1 2 1 2 2 1 2 2 2
.1 2 2 3 3 3 2 3 2( , τ ) ρ ( ) ( , , τ ) ( ) ( , , τ ) ( )

b S S
S a

l θ x θ x D U θ θ x θ x D U θ θ t θ dθ       

 1 1
3 2 .2 2 2 .3ρ ( , τ ) ρ ( , τ )S S

S Sx A D W θ x A D W θ    

  2 2 1
2 3 2 3 2 1ρ ( ) ( ) ( , τ)S SI I x A x A D Φ θ     (3.7.39) 

and is related to the axial component 1l  of the angular momentum density relative to 
1

1O θ e  (defined in equation (3.7.8)) through 

 1 1 1 1
.1 1 3 2 2 3( , τ) ( , τ) ( , τ) ( , τ)S S

Sl θ l θ x p θ x p θ    . (3.7.40) 

As for the stress resultants, the normal force (3.7.12), shear forces (3.7.13)-(3.7.14) 

and bending moments (3.7.15)-(3.7.16) are given in terms of the new generalised displacements 

simply by 

 1 1
1 1

ˆ( , τ ) ( , τ )N θ EA D W θ   (3.7.41) 

 1 3 1 2 1 1
2 3 1 .2 3 1 2 .2 3( , τ) ( , τ) ρ ( , τ) ( , τ)S SV θ EI D W θ I D D W θ m θ     (3.7.42) 

 1 3 1 2 1 1
3 2 1 .3 2 1 2 .3 2( , τ) ( , τ) ρ ( , τ) ( , τ)S SV θ EI D W θ I D D W θ m θ     (3.7.43) 

 1 2 1
2 2 1 .3( , τ ) ( , τ )SM θ EI D W θ    (3.7.44) 

 1 2 1
3 3 1 .2( , τ ) ( , τ )SM θ EI D W θ    . (3.7.45) 

The bimoment, when evaluated with the sectorial coordinate Sω , reduces to 

 1 2 1
1 1( , τ ) ( , τ )

SS ωB θ EI D Φ θ    (3.7.46) 

and is related to the bimoment of equation (3.7.18), evaluated with the sectorial coordinate 

ω , through the relationship 

  1 1 1 1 1
3 2 2 3 2 2 3 3( , τ) ( , τ) (0) (0) ( , τ) ( , τ) ( , τ)S S S S

SB θ B θ x x x x N θ x M θ x M θ      . (3.7.47) 

Finally, the torque about the line of shear centres is 

 1 3 1 1 2 1 1
.1 1 1 1 1 1 2 1( , τ) ( , τ) ( , τ) ρ ( , τ) ( , τ)

S SS ω ω SM θ EI D Φ θ GJDΦ θ I D D Φ θ b θ      (3.7.48) 

and the relation 

 1 1 1 1
.1 1 3 2 2 3( , τ) ( , τ) ( , τ) ( , τ)S S

SM θ M θ x V θ x V θ    , (3.7.49) 

where 1M  is the torque about the line of centroids defined in equation (3.7.17), holds. 

For the sake of completeness, the boundary conditions that complement the 

differential system (3.7.26)-(3.7.29) are indicated in table 3.7.1 (once again, select one, and 

only one, boundary condition from each row of the table). The initial conditions are 

entirely analogous to (3.4.8)-(3.4.11) and read 
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 1 1
1 1.0

ˆ ˆ( , 0) ( )W θ W θ  1 1
2 1 1.0

ˆ ˆ( , 0) ( )D W θ W θ 
 (3.7.50) 

 1 1
.2 .2.0( , 0) ( )S SW θ W θ  1 1

2 .2 .2.0( , 0) ( )S SD W θ W θ   (3.7.51) 

 1 1
.3 .3.0( , 0) ( )S SW θ W θ  1 1

2 .3 .3.0( , 0) ( )S SD W θ W θ   (3.7.52) 

 1 1
1 1.0( , 0) ( )Φ θ Φ θ  1 1

2 1 1.0( , 0) ( )D Φ θ Φ θ   , (3.7.53) 

with the right-hand sides consisting of given real-valued functions on  0, L . 

 
Natural boundary conditions  Essential boundary 

conditions 

Either 

1 1 0.1
ˆ (0,τ) (τ)EA D W Q   

or

1
ˆ (0, τ )W  prescribed 

1 1 .1
ˆ ( ,τ) (τ)LEA D W L Q  

1
ˆ ( , τ )W L  prescribed 

3 2
3 1 .2 3 1 2 .2 3 0.2(0, τ) ρ (0, τ) (0, τ) (τ)S SEI D W I D D W m Q      

.2 (0, τ )SW  prescribed 

3 2
3 1 .2 3 1 2 .2 3 .2( , τ) ρ ( , τ) ( , τ) (τ)S S LEI D W L I D D W L m L Q     

.2 ( , τ )SW L  prescribed

2
3 1 .2 0.3(0,τ) (τ)SEI D W M   1 .2 (0, τ )SD W  prescribed

2
3 1 .2 .3( ,τ) (τ)S LEI D W L M    1 .2 ( , τ )SD W L  prescribed

3 2
2 1 .3 2 1 2 .3 2 0.3(0, τ) ρ (0, τ) (0, τ) (τ)S SEI D W I D D W m Q      

.3 (0, τ )SW  prescribed 

3 2
2 1 .3 2 1 2 .3 2 .3( , τ) ρ ( , τ) ( , τ) (τ)S S LEI D W L I D D W L m L Q     

.3 ( , τ )SW L  prescribed

2
2 1 .3 0.2(0,τ) (τ)SEI D W M    1 .3 (0, τ )SD W  prescribed

2
2 1 .3 .2( , τ) (τ)S LEI D W L M   1 .3 ( , τ )SD W L  prescribed

3 2
1 1 1 1 1 2 1(0,τ) (0,τ) ρ (0,τ)

S Sω ωEI D Φ GJDΦ I D D Φ    

0.1 3 0.2 2 0.3(0,τ) (τ) (τ) (τ)S S
Sb M x Q x Q      

1(0, τ )Φ  prescribed 

3 2
1 1 1 1 1 2 1( ,τ) ( ,τ) ρ ( ,τ)

S Sω ωEI D Φ L GJDΦ L I D D Φ L    

.1 3 .2 2 .3( ,τ) (τ) (τ) (τ)S S
S L L Lb L M x Q x Q   

1( , τ )Φ L  prescribed 

 2
1 1 0 3 2 2 3 0.1(0,τ) (τ) (0) (0) (τ)

S

S S
ωEI D Φ B x x x x Q    

 
2 0.2 3 0.3(τ) (τ)S Sx M x M   

1 1(0, τ )D Φ  prescribed 

 2
1 1 3 2 2 3 .1( ,τ) (τ) (0) (0) (τ)

S

S S
ω L LEI D Φ L B x x x x Q   

 
2 .2 3 .3(τ) (τ)S S

L Lx M x M   
1 1( , τ )D Φ L  prescribed 

Table 3.7.1: Prismatic bars – Boundary conditions ( 00 τ τ  ) 
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3.8 VISCOUS DAMPING 

The dynamic response of structural systems is inevitably affected by damping. 

However, due to the variety and complexity of the energy-dissipating mechanisms that may 

be present, damping is not as easily definable a characteristic as the elastic and inertial 

forces in a body.10 As a result, damping is usually described mathematically in a highly 

idealised manner. Indeed, quoting SCANLAN (1970), “we do not in general pretend that a 

given mathematical model for damping is more than a poor crutch, yielding perhaps 

acceptable results in limited ranges, but certainly not implying any detailed explanation of 

the underlying physics”, which is often only qualitatively or superficially understood. 

A viscous-type dissipative mechanism, with damping force proportional to the velocity, 

can be readily accommodated in the one-dimensional model. To this end, the first variation 

(3.4.2) of the Hamiltonian action S  is augmented by the velocity-dependent term 

 0τ 1 2 1 2 1 2 1 2 1 2
30

ρ ( , , τ) ( , , τ) ( , ) ( , ) τd Ω
μ D θ θ δ θ θ t θ θ a θ θ dθ dθ d   U U  , (3.8.1) 

where dμ  is the viscous damping coefficient, taken to be constant,11 and 

 1 2 1 2( , , τ) ( , , τ)i iδ θ θ δU θ θU e  (3.8.2) 

 1 2 1 1 2 1
1 1 2 1 2( , , τ) ( , τ) ( , ) ( , τ)δU θ θ δW θ x θ θ D δW θ    

 1 2 1 1 2 1
3 1 3 1 1( , ) ( , τ) ( , ) ( , τ)x θ θ D δW θ ω θ θ D δΦ θ   (3.8.3) 

 1 2 1 1 2 1
2 2 3 1( , , τ ) ( , τ ) ( , ) ( , τ )δU θ θ δW θ x θ θ δΦ θ   (3.8.4) 

 1 2 1 1 2 1
3 3 2 1( , , τ ) ( , τ ) ( , ) ( , τ )δU θ θ δW θ x θ θ δΦ θ   . (3.8.5) 

                                                 
10 In broad terms, structural damping mechanisms can be divided into three classes (e.g., ARGYRIS & 

MLEJNEK 1991, p. 243, VAN KOTEN 1977 or WOODHOUSE 1998): 
(i) Energy dissipation distributed throughout the bulk material making up the structure (material 

damping). 
(ii) Dissipation associated with junctions or interfaces between parts of the structure (boundary damping). 
(iii) Dissipation associated with a fluid in contact with the structure, involving either local viscous effects or 

radiation away into the fluid. 

11 It has long been recognised that linear viscous damping models generally have their most correct application 
in small, restricted frequency ranges. In these ranges, the damping coefficient is usually taken at that 
constant value which yields an energy loss-per-cycle equivalent, in some sense, to that of the actual 
structural system being modelled. As observed by SCANLAN (1970), “in overall use, then, the damping 
coefficient must be considered only as an average «local constant», which is appropriately changed for 
different frequency ranges of the system under study. No single constant is really appropriate for a 
response covering a large range of frequencies.” 
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Such a dissipative mechanism is often referred to in the literature as mass-proportional 

viscous damping (SIMO & VU-QUOC 1986) or viscous air damping (BANKS & INMAN 1991). 

The additional term (3.8.1) may be rewritten in the form 

  0τ 1 1 1 1 1 1 1
1 10 0

( , τ) ( , τ) ( , τ) ( , τ) ( , τ) ( , τ) τ
L

d d dθ δ θ θ δ θ b θ D δΦ θ dθ d     f W m Φ  

 0τ 1 1 1 1 1 1
. .1 1 .2 1 30 0
( , τ) ( , τ) ( , τ) ( , τ) ( , τ) ( , τ)

L

d i i d df θ δW θ m θ δΦ θ m θ D δW θ      

 1 1 1 1 1
.3 1 2 1 1( , τ) ( , τ) ( , τ) ( , τ) τd dm θ D δW θ b θ D δΦ θ dθ d   , (3.8.6) 

where 

 1 1 1 1 1
.1 2 1 3 1 2 2( , τ ) ρ ( ) ( , τ ) ( ) ( , τ )d df θ μ A θ D W θ S θ D D W θ    

 1 1 1 1
2 1 2 3 1 2 1( ) ( , τ ) ( ) ( , τ )ωS θ D D W θ S θ D D Φ θ    

 1
1( , τ)dμ p θ   (3.8.7) 

  1 1 1 1 1
.2 2 2 2 2 1( , τ ) ρ ( ) ( , τ) ( ) ( , τ )d df θ μ A θ D W θ S θ D Φ θ    

 1
2 ( , τ )dμ p θ   (3.8.8) 

  1 1 1 1 1
.3 2 3 3 2 1( , τ ) ρ ( ) ( , τ ) ( ) ( , τ )d df θ μ A θ D W θ S θ D Φ θ    

 1
3( , τ )dμ p θ   (3.8.9) 

 1 1 1 1 1
.1 2 2 2 3 2 3( , τ ) ρ ( ) ( , τ ) ( ) ( , τ )d dm θ μ S θ D W θ S θ D W θ     

  1 1 1
2 3 2 1( ) ( ) ( , τ)I θ I θ D Φ θ     

 1
1( , τ )dμ l θ   (3.8.10) 

 1 1 1 1 1
.2 2 2 1 23 1 2 2( , τ ) ρ ( ) ( , τ ) ( ) ( , τ)d dm θ μ S θ D W θ I θ D D W θ    

 1 1 1 1
2 1 2 3 2 1 2 1( ) ( , τ ) ( ) ( , τ )ωI θ D D W θ I θ D D Φ θ   

 1
2 ( , τ )dμ l θ   (3.8.11) 

 1 1 1 1 1
.3 3 2 1 3 1 2 2( , τ ) ρ ( ) ( , τ ) ( ) ( , τ )d dm θ μ S θ D W θ I θ D D W θ     

 1 1 1 1
23 1 2 3 3 1 2 1( ) ( , τ ) ( ) ( , τ )ωI θ D D W θ I θ D D Φ θ   

 1
3( , τ )dμ l θ   (3.8.12) 

are the components, relative to the ordered basis  1 2 3, ,e e e , of the viscous force and 

moment, which are proportional to the corresponding components of the linear and 

angular momentum densities, and 
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 1 1 1 1 1
2 1 3 1 2 2( , τ ) ρ ( ) ( , τ ) ( ) ( , τ )d d ω ωb θ μ S θ D W θ I θ D D W θ    

 1 1 1 1
2 1 2 3 1 2 1( ) ( , τ ) ( ) ( , τ)ω ωI θ D D W θ I θ D D Φ θ   

 1( , τ )d ωμ p θ   (3.8.13) 

is the viscous bimoment, which is proportional to the warping momentum density. 

With the inclusion of the viscous loads, the equations of balance become 

  1 1 1 1
1 1 2 1 1( , τ ) ( , τ ) ( , τ ) ( , τ ) 0dD N θ q θ D p θ μ p θ     (3.8.14) 

  2 1 1 1
1 3 1 3 2 3 3( , τ ) ( , τ ) ( , τ )dD M θ D m D l μ l θ θ     

  1 1 1
2 2 2 2( , τ) ( , τ) ( , τ) 0dq θ D p θ μ p θ     (3.8.15) 

  2 1 1 1
1 2 1 2 2 2 2( , τ ) ( , τ ) ( , τ )dD M θ D m D l μ l θ θ     

  1 1 1
3 2 3 3( , τ) ( , τ) ( , τ) 0dq θ D p θ μ p θ     (3.8.16) 

  ( )2 1 1 1 1
1 1 1 1 2( , τ) ( , τ ) ( , τ) ( , τ )A

ω d ωD B θ D M θ D b D p μ p θ θ      

  1 1 1
1 2 1 1( , τ) ( , τ) ( , τ) 0dm θ D l θ μ l θ     , (3.8.17) 

which should be compared with their undamped counterparts (3.5.12)-(3.5.14) and (3.5.16). 

Alternative dissipative mechanisms typically involve inelastic (e.g., viscoelastic) 

constitutive behaviour and are beyond the scope of this thesis. 

3.9 ILLUSTRATIVE EXAMPLE 

Vibrations are everywhere … and so too are the eigenvalues associated with them. 

BERESFORD N. PARLETT 

As a simple (and partial) illustration of the model developed in this chapter, we will 

look at the undamped free motion of the family of doubly symmetric web-tapered I-section 

cantilevers whose reference shape is shown in figure 3.9.1 (identical with the one analysed 

in § 2.11). The chosen inertial frame, also shown in this figure, is such that the planes 

containing the origin O  and spanned by  1 2,e e  and by  1 3,e e  are the longitudinal 

planes of symmetry of the reference shape. The bar is clamped at its larger end ( 0A ) and 

free at the smaller end ( LA ). 
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Figure 3.9.1: Illustrative example – Reference shape and support conditions 

In this particular example, the initial-boundary value problem for the generalised 

displacements of § 3.4 is entirely uncoupled due to symmetry and we will restrict attention 

to the torsional motion, i.e., we will be dealing with the following problem: 

Illustrative example (initial-boundary value problem). 

Find    1 0: 0, 0, τΦ L    , with    4 ,2
1 00, 0, τΦ C L  , satisfying the partial 

differential equation 

   2 * 2 * 1 * 2 * 1
1 1 1 1 1 1 1 1 1 1( , τ) ( , τ)ω ωψ ωψ ψD EI D Φ EI DΦ θ D EI D Φ GJ EI DΦ θ      
      

    2 1 1 1 2 1
1 1 2 1 2 3 2 1ρ ( , τ) ρ ( ) ( ) ( , τ ) 0ωD I D D Φ θ I θ I θ D Φ θ     (3.9.1) 

on    00, 0, τL  , together with the boundary conditions 

 1(0, τ ) 0Φ   ,  00 τ τ   (3.9.2) 

 1 1(0, τ ) 0D Φ   ,  00 τ τ   (3.9.3) 

 * 2 * 1 * 2
1 1 1 1 1 1 1( , τ) ( ) ( , τ)ω ωψ ωψD EI D Φ EI DΦ θ EI L D Φ L       

  * 2
1 1 1 2 1( ) ( ) ( , τ) ρ ( ) ( , τ) 0ψ ωGJ L EI L DΦ L I L D D Φ L     ,  00 τ τ   (3.9.4) 

 * 2 *
1 1 1 1( ) ( , τ ) ( ) ( , τ ) 0ω ωψEI L D Φ L EI L D Φ L     ,  00 τ τ   (3.9.5) 

and the initial conditions 

 1 1
1 1.0( , 0) ( )Φ θ Φ θ  ,  10 θ L   (3.9.6) 

 1 1
2 1 1.0( , 0) ( )D Φ θ Φ θ   ,  10 θ L   . (3.9.7) 

0h  

L  

0αh  

ft  

wt  

fb  

1e  

3e  3e  

2e  O  
0h  

ft  

φ  

φ  
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In these equations, *
ωI , *

ωψI , *
ψI  and J  are given by (2.11.7)-(2.11.10), and, by 

specialisation of (3.3.16)-(3.3.18), 

 
3 2 231 1

01 0
2( ) 1 (1 α) 1 (1 α)

12 2 cos
f fw

h b th tθ θ
I θ

L L φ

   
        
   

 (3.9.8) 

 
3

1
3( )

6cos
f fb t

I θ
φ

  (3.9.9) 

 
2 2 31

01( ) 1 (1 α)
24 cos

f f

ω

h b tθ
I θ

L φ
    
 

 . (3.9.10) 

The physical significance of the inertial terms 2
1 2 1ρ ωI D D Φ  and 2

2 3 2 1ρ( )I I D Φ   in 

equation (3.9.1) – a distributed bimoment and a distributed torque, both defined per unit 

length of the line segment    1 1
1 , 0O θ θ Le  – is detailed in figures 3.9.2-3.94. 

In the following, we shall ignore the initial conditions and look for a very specific 

type of (non-trivial) solution, namely a product of two functions, one depending only on 
1θ  and four times continuously differentiable, and the other depending only on τ  and 

twice continuously differentiable: 

 1 1
1( , τ ) ( ) (τ )Φ θ θ f  ,  10 θ L   ,  00 τ τ   . (3.9.11) 

 

Figure 3.9.2: Illustrative example – Acceleration field 2
3D U  of cross-section middle line 

1e

2e  

3e  

O  
2
2 1 22

h D Φ e  

2
2 1 22

h D Φ e  

2
2 1 22

h D Φ e  

2
2 1 32

fb
D Φ e  

2
2 1 32

fb
D Φ e  

2
2 1 32

fb
D Φ e  

2
2 1 32

fb
D Φ e  

2
2 1 22

h D Φ e  

2
1 2 1 14

fh b
D D Φ e  

2
1 2 1 14

fh b
D D Φ e  

2
1 2 1 14

fh b
D D Φ e  2

1 2 1 14
fh b

D D Φ e  

φ
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Figure 3.9.3: Illustrative example – Inertial forces 2
3ρD a t U  in the web 

and in the flanges 

2
2 1 32 cosρ f fb t

φ D Φ e  

2
2 1 32 cosρ f fb t

φ D Φ e  

2
2 1 32 cosρ f fb t

φ D Φ e  

2
2 1 32 cosρ f fb t

φ D Φ e  

1e  2e  

3e  

O  

2
1 2 1 14 cosρ f fh b t

φ D D Φ e  

2
1 2 1 14 cosρ f fh b t

φ D D Φ e  

2
1 2 1 14 cosρ f fh b t

φ D D Φ e  

2
1 2 1 14 cosρ f fh b t

φ D D Φ e  
1e  2e  

3e  

O  
cos

ft

φ  

cos
ft

φ  

wt

φ

1e  2e  

3e  

O  

2
2 1 22ρ

h
wt D Φ e  

2
2 1 22ρ

h
wt D Φ e  

1e2e

3e

O

2
2 1 22 cosρ fth

φ D Φ e  

2
2 1 22 cosρ fth

φ D Φ e  
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Figure 3.9.4: Illustrative example – Resultants of the inertial forces, defined per unit 

length of the line segment    1 1
1 , 0O θ θ Le  

(In other words, we apply the technique of separation of variables – e.g., BOYCE & 

DIPRIMA 2009, ch. 10, EVANS 2010, § 4.1, MYINT-U & DEBNATH 2007, ch. 7, STRAUSS 

1992, ch. 4, or WEINBERGER 1965, § 14.) The physical implication of (3.9.11) is that the bar 

undergoes a synchronous motion (MEIROVITCH 1980, p. 239). 

Substituting (3.9.11) into equation (3.9.1) and bearing in mind (2.11.11)-(2.11.12), one 

obtains 

 * 1 ( 4 ) 1 * 1 1 1 1 1 1( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) (τ)ω ωEI θ θ EI θ θ GJ θ θ GJ θ θ f           
 
    

  1 1 1 1 1 1 1
2 3ρ ( ) ( ) ρ ( ) ( ) ρ ( ) ( ) ( ) (τ ) 0ω ωI θ θ I θ θ I θ I θ θ f             . (3.9.12) 

Similarly, the boundary conditions (3.9.2)-(3.9.5) become 

 (0) (τ ) 0f   ,  00 τ τ   (3.9.13) 

 (0) (τ ) 0f   ,  00 τ τ   (3.9.14) 

 * * *1
( ) ( ) ( ) ( ) ( ) ( ) ( ) (τ)

2ω ω ψEI L L EI L L GJ L EI L L f             
     

 ρ ( ) ( ) (τ) 0ωI L L f    ,  00 τ < τ  (3.9.15) 

  * *( ) ( ) ( ) ( ) (τ ) 0ω ωψEI L L EI L L f       ,  00 τ τ   (3.9.16) 

From equation (3.9.12), we find 

2
2 3 2 1 1ρ( )I I D Φ  e  

21
1 2 1 3ρ ωh I D D Φ e  

21
1 2 1 3ρ ωh I D D Φ e  

1e2e  

3e  

O
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* 1 ( 4 ) 1 * 1 1 1 1 1 1

1 1 1 1 1 1 1
2 3

( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) (τ)

(τ)ρ ( ) ( ) ρ ( ) ( ) ρ ( ) ( ) ( )
ω ω

ω ω

EI θ θ EI θ θ GJ θ θ GJ θ θ f

fI θ θ I θ θ I θ I θ θ

   
  

       


    

 
 (3.9.17) 

for all  1 0,θ L  and  0τ 0, τ  such that 

  1 1 1 1 1 1 1
2 3ρ ( ) ( ) ρ ( ) ( ) ρ ( ) ( ) ( ) (τ ) 0ω ωI θ θ I θ θ I θ I θ θ f           . (3.9.18) 

Clearly, the left-hand side of (3.9.17) depends only on 1θ , while the right-hand side 

depends only on τ . Hence, the two sides of (3.9.17) are equal to a real constant (called the 

separation constant), say 

 
 

* 1 ( 4 ) 1 * 1 1 1 1 1 1

1 1 1 1 1 1 1
2 3

( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) (τ)

(τ )ρ ( ) ( ) ρ ( ) ( ) ρ ( ) ( ) ( )
ω ω

ω ω

EI θ θ EI θ θ GJ θ θ GJ θ θ f
λ

fI θ θ I θ θ I θ I θ θ

   
  

       
  

    

 
 .12(3.9.19) 

Therefore, the partial differential equation (3.9.1) separates into the following pair of 

ordinary differential equations: 

 * 1 ( 4 ) 1 * 1 1 1 1 1 1( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )ω ωEI θ θ EI θ θ GJ θ θ GJ θ θ             

  1 1 1 1 1 1 1
2 3ρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0ω ωλ I θ θ I θ θ I θ I θ θ            ,  10 θ L   (3.9.20) 

 (τ ) (τ ) 0f λ f    ,  00 τ τ   . (3.9.21) 

The latter equation is linear and homogeneous, with constant coefficients, and so it can be 

readily solved for any value of λ : 

(i) If 0λ  , its general solution is of the form 

 1 2(τ ) τf c c   ,  with 1 2,c c   . (3.9.22) 

(ii) If 0λ  , the general solution is 

 τ τ
1 2(τ ) λ λf c e c e     ,  with 1 2,c c   . (3.9.23) 

(iii) If 0λ  , we set 2λ k  and the general solution of (3.9.21) takes on the form 

 τ τ
1 2(τ ) i k i kf c e c e    ,  with 1 2,c c   . (3.9.24) 

Moreover, since (τ )f  must be real, it follows that 2 1c c . 

Only case (iii), which corresponds to a harmonic oscillation with angular frequency k , is 

consistent with vibration in the neighbourhood of stable equilibrium. Hence we conclude 

that if synchronous motion is possible, then the time dependency is harmonic. 

                                                 
12 It will be seen presently that the separation constant λ  must be negative and it is convenient to exhibit 

the minus sign explicitly. 



A Linear 1D Model for Tapered Thin-Walled Bars with Open Cross-Sections – The Dynamic Case 

163 

Now, for the boundary conditions (3.9.13)-(3.9.16) to be satisfied with 0f  , we 

must require that 

 (0) 0   (3.9.25) 

 (0) 0   (3.9.26) 

 * * * 21
( ) ( ) ( ) ( ) ( ) ( ) ρ ( ) ( ) 0

2ω ω ψ ωEI L L EI L L GJ L EI L k I L L           
 

    (3.9.27) 

 * *( ) ( ) ( ) ( ) 0ω ωψEI L L EI L L       . (3.9.28) 

These conditions, together with the ordinary differential equation (3.9.20), form an 

eigenproblem, which can be phrased as follows: 

Illustrative example (eigenproblem). 

Find 2 0λ k   and  : 0, L   , with  4 0,C L   and 0  , satisfying 

equations (3.9.20) and (3.9.25)-(3.9.28). 

The eigenvalues are the squares of the torsional natural frequencies of the bar; the 

corresponding eigenfunctions are the torsional vibration modes. 

Among the structural engineering community, the finite element method, in one of its 

several versions, is unquestionably the most popular choice for solving such an 

eigenproblem. The finite element method is based on a variational (or weak) form of the 

problem, which involves derivatives of lower order than those appearing in the classical (or 

strong) form and, therefore, poses less stringent smoothness requirements. Moreover, the 

finite element procedures are very simple and flexible when it comes to (i) describe irregularly 

shaped multi-dimensional domains and (ii) specify boundary conditions. However, these two 

features, responsible for the key role played by the finite element method in solving boundary 

value problems for partial differential equations, are not essential in the case of ordinary 

differential equations: the construction of a high-order B-spline basis, for instance, is more or 

less straightforward (e.g., DE BOOR 1978 or SCHUMAKER 2007) and no particular geometrical 

flexibility is required. In fact, the method of choice advocated for abstract one-dimensional 

eigenproblems in the numerical analysis literature, particularly when only a small number of 

eigenvalues and eigenfunctions is sought, consists in their reformulation so that they can be 

solved using a general-purpose code for boundary value problems in ordinary differential 

equations (ASCHER et al. 1995, BRAMLEY et al. 1991 and KELLER 1984). As SEYDEL (2010, 

p. 263) puts it, we “stay in the «infinite-dimensional space» of ODEs [ordinary differential 
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equations] and let standard software take care of the transition to the finite-dimensional 

world of numerical approximation.” This approach was successfully applied to prismatic 

beam vibration problems by YUAN (1991) and will be adopted next. 

The basic idea is to convert the original eigenproblem, defined by the differential 

equation (3.9.20) and the boundary conditions (3.9.25)-(3.9.28), into an inhomogeneous 

two-point boundary value problem exhibiting the “standard” form required by the software, 

for which the desired eigenpair corresponds to an isolated solution. This conversion can be 

achieved in a variety of ways. Our choice was to supplement the original problem with the 

first-order differential equations 

 1 2
0( ) ( ) 0θ k     (3.9.29) 

 1 1 2( ) ( )θ θ   ,  10 θ L   , (3.9.30) 

and the boundary conditions 

 (0) 0   (3.9.31) 

 ( ) 1L   . (3.9.32) 

The first additional differential equation is just an implicit statement of the fact that each 

eigenvalue 2k , formally interpreted as a function of 1θ , is a constant. The second one, 

together with the added boundary conditions, is equivalent to the normalisation condition 

 1 2 1

0
( ) 1

L
θ dθ   (3.9.33) 

and makes the eigenfunctions unique (up to sign). It should be noticed that (i) the enlarged 

boundary value problem is non-linear and (ii) the boundary conditions remain separated. 

The problem can now be solved using standard software developed for two-point 

boundary value problems. In this work, we use the collocation code COLNEW (BADER & 

ASCHER 1987), ranked among the state-of-the-art codes for the numerical solution of non-

linear multi-point boundary value problems for mixed-order systems of ordinary 

differential equations and separated boundary conditions (CASH 2004, CASH & MAZZIA 

2011). It is an improved version of the package COLSYS (ASCHER et al. 1981) and both 

codes are freely available from the ODE library at the NETLIB repository, managed by the 

University of Tennessee at Knoxville and the Oak Ridge National Laboratory (the current 

URL is http://www.netlib.org). A brief overview of COLNEW and COLSYS is given in 

Appendix 1, at the end of this chapter. 
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Numerical results were obtained for the first (lowest) and second torsional natural 

frequencies and corresponding normalised vibration modes of two series of cantilevers that 

share the geometrical and material properties 

 4572 mmL   0 554.2 mmh   11.4 mmwt   17.8 mmft    

 206.8 GPaE   79.5 GPaG   3ρ 7997.4 kg / m  

and differ in the width of the flanges: the cantilevers in the first series exhibit 203 mmfb   

(narrow flanges), while those in the second series exhibit 350 mmfb   (wide flanges). In 

both series, the web taper ratio α  varies between 0.2  and 1.0 . It is worth pointing out that 

one has 0 1.1   and 0 2.0   for the cantilevers in the first series and second series, 

respectively – recall the definition of the non-dimensional ratio 0ω  in (2.11.24). 

The first torsional natural frequency, denoted 1k , is shown in figure 3.9.5 as a 

function of α  (solid lines, labelled “tapered model”). The result for 203 mmfb   and 

α 0.378 , namely 1 125.1rad / sk  , is in perfect agreement with the one reported by 

WEKEZER (1989) – RAJASEKARAN (1994) obtained the slightly lower value of 120.3 rad / s , 

which amounts to a 3.8%  relative difference. If one represents the tapered cantilevers by 

an assembly of prismatic segments obeying Vlasov’s theory and then makes the length of 

the segments tend to zero (that is, if one sets 0ψ   and 1a   in the general one-

dimensional model), one obtains the dashed lines shown in figure 3.9.5 with the label 

“stepped model”. For the first series ( 203 mmfb  ), the solid and dashed lines are close to 

each other. In contrast, the two lines deviate considerably from each other in the second 

series ( 350 mmfb  ), with the stepped model delivering higher frequencies for 

0.3 α 1.0  . Indeed, tapered and stepped models share the same inertial characteristics but 

exhibit different stiffnesses and, as seen in the first illustrative example of chapter 2 (see 

figure 2.11.12 in particular), the differences in stiffness increase with 0ω . For reference 

purposes, figure 3.9.5 also presents the first torsional frequencies of prismatic cantilevers 

with the same length and material properties and with the largest or smallest cross-sectional 

dimensions, i.e., with constant web depth 0 554.2 mmh   or 0αh , respectively (dotted lines, 

labelled “prismatic, largest section” and “prismatic, smallest section”). It can be seen that 

the frequencies 1k  of tapered cantilevers fall outside the envelope defined by the dotted 

lines. According to CYWINSKI (2001), this fact “goes against the conventional engineering 

intuition, thus becoming a «paradox»”. However, one must also observe that the frequencies 
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yielded by the stepped model also fall outside the said envelope (except for α 0.3  in the 

first series). In fact, since the natural frequencies depend on the relation between stiffness 

and inertia, it cannot be anticipated that the frequency 1k  of a tapered cantilever will always 

be located in-between the values obtained for similar prismatic cantilevers with the largest 

and smallest cross-sectional dimensions. If sometimes it does not, there is nothing necessarily 

“paradoxical” about it. 
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Fig. 3.9.5: Illustrative example – First (lowest) torsional natural frequency 1k  

versus the taper ratio α  
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Figure 3.9.6 is analogous to figure 3.9.5 but it concerns the second torsional natural 

frequency 2k . Finally, figure 3.9.7 illustrates the shapes of the first and second torsional 

vibration modes of prismatic and tapered cantilevers (drawn with the mathematical 

software package Mathematica – WOLFRAM RESEARCH, INC. 2006). In the first mode, each 

flange of the prismatic bar exhibits a single curvature, whereas the flanges of the tapered 

bar exhibit double curvature. For prismatic and tapered bars alike, the second vibration 

modes exhibit one node in the open interval  0, L , whereas the first modes exhibit none. 
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Fig. 3.9.6: Illustrative example – Second torsional natural frequency 2k  

versus the taper ratio α  
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Fig. 3.9.7: Illustrative example – Shapes of the first and second torsional vibration modes 

of prismatic (α 1 ) and tapered (α 0.4 ) cantilevers with 203mmfb   

  

1st torsional mode, prismatic cantilever 1st torsional mode, tapered cantilever 

2nd torsional mode, prismatic cantilever 2nd torsional mode, tapered cantilever 
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APPENDIX 1 

The code COLSYS, developed by Ascher, Christiansen and Russell, and its newer 

version COLNEW, written by Bader and Ascher, are general-purpose codes capable of 

solving linear and non-linear multi-point boundary value problems comprising a mixed-

order system of ordinary differential equations and separated boundary conditions. The 

improvements incorporated into COLNEW – a different basis representation and several 

modifications in the linear algebraic equation solver and in the control of the damped 

Newton iteration process – resulted in a code somewhat more efficient and robust than 

COLSYS, although the gains in performance vary widely from problem to problem. Both 

codes have enjoyed considerable success. In this appendix, the numerical techniques used 

in COLSYS and COLNEW are briefly described. A thorough discussion of the relevant 

mathematical background and implementation issues can be found in ASCHER (1980), 

ASCHER et al. (1979a, 1979b, 1981, 1995), BADER & ASCHER (1987) and references therein. 

Problem specification 

The general class of boundary value problems handled by COLSYS and COLNEW 

consists of: 

(i) A system of d  non-linear ordinary differential equations of orders   1 4dm m  

      1 1 1
1 1 1; , , , , , , , , dj m mm

j j d d dD y F x y Dy D y y Dy D y  

   ; ( )jF x z y  ,   a x b  ,   1, ,j d  , (A1.1) 

where D  denotes differentiation with respect to the independent variable x , 

   1 , ,
T

dy yy  (A1.2) 

is the sought solution vector and 

          1 2( 1) ( 1) ( 1)
1 1 1 2 2 2( ) , , , , , , , , , , , , d

Tm m m
d d dy y y y y y y y yz y  (A1.3) 

is the vector of unknowns that would stem from converting (A1.1) into a first-order 

system. 

(ii)  *
1

d
jjm m  non-linear separated boundary conditions of the form 

  ; ( ) 0p pg s z y  ,  *1, ,p m   , (A1.4) 

where ps  is the location of the thp  boundary condition, with 1 2 *ma s s s b     . 
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Solution of linear problems 

The numerical method used in COLSYS and COLNEW is piecewise polynomial 

collocation at Gaussian points  given a mesh 1 2 1Π : na x x x b      and an 

integer  1max , , dM m m  , the collocation approximation to the solution of (A1.1) and 

(A1.4) is a vector-valued function  Π Π.1 Π., ,
T

dy y y  such that: 

(C1) Π. jy  is a polynomial of order jM m  (degree jM m  ) on each sub-interval 

 1,i ix x  ; 

(C2) Π. jy  and its first 1jm   derivatives are continuous on  ,a b ; 

(C3) Πy  satisfies the d  differential equations (A3.1) at the n M  collocation points 

  1 ρi r i i i rx x x x    ,  1, ,r M   ,  1, ,i n   , (A1.5) 

where ρr  are the Gauss-Legendre points in  0,1 ; 

(C4) Πy  satisfies the *m  boundary conditions (A1.4). 

Since any representation of Π. jy  satisfying (C1) contains  jn M m  free parameters, there 

are a total of  *n M d m  unknowns, which are determined by imposing the 

 *n M d m  linear conditions (C2)-(C4), either explicitly or implicitly. In COLSYS, the 

piecewise polynomial approximate solution is expressed in terms of a B-spline basis (e.g., 

DE BOOR 1978 or SCHUMAKER 2007), in which the continuity conditions are already 

embedded – only conditions (C3)-(C4) need to be explicitly satisfied. COLNEW, on the 

other hand, adopts a local monomial Runge-Kutta basis representation, for which 

continuity is not built in. 

Solution of non-linear problems 

The solution of non-linear problems is based on a modified (damped) Newton iteration 

with quasi-linearisation. Specifically, given an approximation ly  to an isolated solution of 

(A1.1) and (A1.4), a new (and hopefully better) approximation 1l y  is defined by 

 1 ζl l l
l

  y y w  , (A1.6) 

where (i) the Newton correction lw  is the collocation solution of the linear problem 

 
   

*

1

; ( )
( ) ; ( )j j

lm
jm ml l l l

j r j j
r r

F x
D w z F x D y

z


  


z y

w z y  , 

 a x b   ,  1, ,j d   (A1.7) 
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*

1

; ( )
( )( ) ; ( ) 0

lm
p p l l

r p p p
r r

g s
z s g s

z


 


z y

w z y  ,  *1, ,p m   (A1.8) 

and (ii) ζ l  is the relaxation (or damping) factor ( 0 ζ 1l  ), which is chosen dynamically to 

improve convergence. 

If the problem is specified by the user as “regular” (instead of “sensitive”) and 

convergence on a given mesh is achieved, then the cautious procedure described above is 

dropped on the subsequent mesh and the computation proceeds with full Newton steps 

and holding the Jacobian fixed, provided that the norm of the residual decreases 

monotonically at a sufficiently rapid rate. Indeed, the converged solution on the former 

mesh usually constitutes a very good initial approximation, and it is found that the damped 

Newton method, with careful control of the relaxation factor, is often used only for the 

first mesh  typically, no adequate initial approximation is then available. 

Error estimation and mesh selection 

Given a user-specified set of tolerances jtol  and pointers jltol  ( *1 jltol m  , 
*1, ,j ntol m  ), COLSYS and COLNEW seek to ensure that 

 Π Π( ) ( )
( ) ( ) ( )l l j l ji i

z z tol z tol  y y y  , 

 jl ltol  ,  1, ,j ntol   ,  1, ,i n   , (A1.9) 

a mixed absolute/relative control where, for any appropriate function f , the norm 

    


1,
max ( )

i i
i x x x

f f x  (A1.10) 

is evaluated approximately. Therefore, the problem is solved on a sequence of meshes until 

(A1.9) is deemed satisfied. The codes incorporate reliable algorithms for error estimation 

and adaptive mesh selection (essentially the same in both versions), with the aim of 

generating an acceptable solution with the least possible number of mesh points. 

Finally, it is important to note that the error estimation algorithm attempts to control 

the error in a continuous solution, i.e., everywhere within the domain of integration and not 

only at the mesh points. 
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Chapter 4 

ONE-DIMENSIONAL MODEL FOR THE 

LATERAL-TORSIONAL BUCKLING OF SINGLY 

SYMMETRIC TAPERED THIN-WALLED BEAMS 

WITH OPEN CROSS-SECTIONS 

Todo o mundo é composto de mudança, 
Tomando sempre novas qualidades. 

Continuamente vemos novidades, 
Diferentes em tudo da esperança. 

LUÍS VAZ DE CAMÕES 

4.1 INTRODUCTION 

Beams (that is, slender flexural members) loaded in the plane of greatest bending 

stiffness may buckle out of that plane by deflecting laterally and twisting, a bifurcation-type 

instability known as lateral-torsional buckling (LTB). Due to their typically low lateral 

bending and torsional rigidities, thin-walled bars with open cross-sections are particularly 

susceptible to this phenomenon. 

The first tapered beams whose LTB behaviour was investigated were the strip ones 

(i.e., those having narrow rectangular cross-sections with varying depth and/or thickness). 

The discussion of this subject is postponed to the next chapter. Then came the I-section 

beams with varying web depth and/or flange width. CULVER & PREG (1968) investigated the 

elastic LTB behaviour of doubly symmetric I-beams with linear homothetic tapering and 

acted by unequal end moments. They used Bernoulli-Euler’s bending theory and Lee’s non 

uniform torsion equation (LEE 1956) to establish adjacent equilibrium equations and 

presented some numerical results, obtained by means of a finite difference approach. A 

similar analysis was undertaken by DUBAS (1984) for doubly symmetric I-beams with linearly 



Chapter 4 

178 

varying depth. His numerical results, however, are not to be trusted, due to the unjustified 

neglect of certain terms – precisely those that are peculiar to web-tapered I-beams. 

KITIPORNCHAI & TRAHAIR (1972) also addressed the buckling of doubly symmetric I-beams, 

but they considered more general tapering configurations and loading conditions. A few years 

later, they extended the analysis to singly symmetric I-beams (KITIPORNCHAI & TRAHAIR 

1975). The numerical results reported by the last-mentioned authors, obtained by means of 

the finite integral method, were shown to correlate rather well with experimental values. 

More recently, BRAHAM (1997) employed the method of Galerkin to solve the buckling 

equations derived by Kitipornchai and Trahair. We recall that the cited works of Lee and 

Kitipornchai & Trahair were critically examined in § 2.11. Those criticisms carry over, word 

by word, to the LTB case. 

Finite element formulations to perform linear buckling analyses of tapered I-beams 

were developed by YANG & YAU (1987), for doubly symmetric beams, and by BRADFORD 

& CUK (1988) and BOISSONNADE & MUZEAU (2001), for singly symmetric web-tapered I-

beams. These investigations adopt (more or less) hidden assumptions and unstated 

approximations. 

WEKEZER (1985) appears to have been the first researcher to study the LTB of thin-

walled tapered beams with arbitrary cross-section and loading. He used a finite element 

formulation, in which (i) the walls are treated as membranes and (ii) both the in-plane 

cross-section deformations and the middle surface shear strains are neglected. However, 

this formulation is not fully consistent, partly because the internal constraints have only a 

kinematical character, without constitutive implications, and partly because the cross-

section shear centre locations are not properly handled (in general, the location of the shear 

centre varies along the beam longitudinal axis). About a decade later, RAJASEKARAN 

(1994a) derived non linear equilibrium equations also valid for tapered beams with arbitrary 

cross-section, which were then solved by means of the finite element method 

(RAJASEKARAN 1994b). However, his derivation of the non linear strain-displacement 

relations is inconsistent, since it omits terms having the same order of magnitude as others 

which are retained. 
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Finally, RONAGH et al. (2000a, b) developed a general theory that can be used to 

obtain the expressions of the first and second variations of the total potential energy of 

thin-walled tapered beams, again with arbitrary cross-section and loading. Once again, 

constraints are imposed upon a membrane shell model, but these constraints are not 

treated as having a constitutive character. Moreover, it is not clear that the constraints have 

an intrinsic geometrical meaning, independent of the choice of parametrisation for the 

middle surface. 

For the sake of completeness, this brief literature review on the LTB of tapered thin-

walled beams with open cross-sections must also include a reference to the investigations 

that used either (i) the prismatic beam strain-displacement relationships to analyse tapered 

beams (as Bazant had done in the linear static case – recall § 2.1.2) or (ii) a discretisation 

with prismatic beam finite elements (i.e., stepped models) – e.g., BAZANT & EL NIMEIRI 

(1973), BRAHAM & HANIKENNE (1993), BROWN (1981), CHAN (1990), GALÉA (1986), 

GUPTA et al. (1996), NETHERCOT (1973) and TEBEDGE (1972). As mentioned earlier, these 

procedures are, in general, conceptually incorrect, because they fail to capture relevant 

aspects of the torsional behaviour that stem from the cross-section variation. 

In this chapter, we derive anew, in a simpler and more direct manner, the one-

dimensional model originally proposed by ANDRADE & CAMOTIM (2005) for the elastic 

lateral-torsional buckling of singly symmetric tapered thin-walled beams with open cross-

sections. The adopted kinematical description precludes the model from capturing any 

local or distortional phenomena. Moreover, the effect of the pre-buckling deflections is 

ignored. The classical model of VLASOV (1961, ch. 6, § 3) for singly symmetric prismatic 

beams is obtained as a special case. It is then shown, using an archetypal problem, how the 

presence of out-of-plane restraints can be accommodated in the one-dimensional buckling 

model. The ensuing parametric study once again highlights the differences between the 

predictions of tapered and stepped (piecewise prismatic) models, which are given a physical 

explanation. 
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4.2 THE LINEARISED LATERAL-TORSIONAL BUCKLING 

PROBLEM 

4.2.1 Statement of the problem 

Let us consider a tapered thin-walled bar with open cross-sections, a regular middle 

surface and a longitudinal plane of symmetry, as described in § 2.9.1. The generalisation to bars 

with irregular middle surfaces can be done along the lines proposed in § 2.10 and warrants no 

further elaboration. Moreover, let us choose a fixed Cartesian frame for E  and a parametrisation 

for the middle surface as in § 2.9.1. In particular, the reader should bear in mind that 

   1 2 1 2
2 2( , ) ( , )x θ θ x θ θ  (4.2.1) 

  1 2 1 2
3 3( , ) ( , )x θ θ x θ θ ) (4.2.2) 

 * 1 2 * 1 2( , ) ( , )t θ θ t θ θ   (4.2.3) 

 1 2 1 2( , ) ( , )ω θ θ ω θ θ    (4.2.4) 

   1 2 1 2( , ) ( , )ψ θ θ ψ θ θ  (4.2.5) 

for every 1 2( , )θ θ  in Ω . Consequently, the geometrical properties *
3S , *

ωS , *
ψS , *

23I , *
2ωI  

and *
2ψI  are all identically zero. 

The longitudinal plane of symmetry of the bar – the plane through the origin O  and 

spanned by  1 3,e e  – is assumed to be its plane of greatest bending stiffness. We prescribe 

a system of conservative bar loads, initially acting in this plane and comprising: 

(i) a distributed force, described by the continuous map  3 3 : 0,q L q e V , applied at 

the (constant) level 3 3
qx x ;1 

(ii) concentrated forces 0 0.3 3QQ e  and .3 3L LQQ e , applied at the points 0

3 3
QO x e  

and 1 3 3
LQO L x e e , respectively; 

(iii) concentrated moments 0 0.2 2MM e  and .2 2L LMM e  at the end sections 0A  and 

LA , respectively. 

The magnitudes of all these loads are deemed proportional to a single load factor λ , 

and so we write 3 refq λ q , 0.3 0.refQ λ Q , .3 .L L refQ λ Q , 0.2 0.refM λ M  and .2 .L L refM λ M , 

where the subscript “ref” indicates a reference magnitude. When 1λ  , we speak of the 

reference load system. 

                                                 
1 The assumption of a constant 3

qx  is not essential and it would have been a simple matter to consider it as a 

continuous (or even piecewise continuous) real-valued function on  0, L . 
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The specific nature of the conservative applied end moments (i.e., their generating 

mechanism) needs to be specified (e.g., ANDRADE et al. 2010a or SIMITSES & HODGES 2006, 

§ 9.2). For definiteness, both end moments are taken to be of the quasi-tangential type,2 

each being generated by a pair of opposite conservative forces, parallel to 1e  and applied to 

the ends of a rigid lever, rigidly attached to the bar. These levers are initially parallel to 3e  

and lie in the plane defined by the origin O  and  1 3,e e , as shown in figure 4.2.1. 

In a fundamental equilibrium state, the beam is subjected solely to bending in its 

plane of greatest flexural stiffness and the corresponding shape is symmetric with respect 

to this plane. The lateral-torsional buckled states, on the other hand, are associated with 

non-symmetric shapes – the beam deflects laterally (out-of-plane) and twists. It is required 

to find those values of λ , called buckling load factors, for which LTB occurs and the 

associated buckling modes. 

4.2.2 Non-linear kinematics 

For a given load factor λ , let the fundamental equilibrium shape of the middle 

surface be specified by the admissible displacement field 1 2 1 2( , ) ( , , )fθ θ Ω θ θ λ U V . 

Moreover, let :i iu Ω Vu e  specify the transition from this fundamental state to an 

adjacent state, at the same load level λ . 

 

Figure 4.2.1: Quasi-tangential applied moment 

                                                 
2 This is the terminology adopted by ARGYRIS et al. (1978a, b). ZIEGLER (1952, 1953, 1956, 1968) uses instead 

the term “pseudo-tangential”. 

1e  
3e  

2e  O

1
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With the aim of linearising the LTB problem, we ignore the change in shape between 

the reference and the fundamental equilibrium states, i.e., we introduce the hypothesis that 

the pre-buckling displacements are negligible (PIGNATARO et al. 1991, p. 230).  

Following ATTARD (1986), GHOBARAH & TSO (1971) and DE VILLE DE GOYET (1989, 

§ 4.3), the fact that each cross-section middle line is constrained not to deform in its own 

plane3 is approximately interpreted as implying expressions of the form 

  1 2 1 1 2 1 1 2 1
2 2 2 1 3 1( , ) ( ) ( , ) 1 cos ( ) ( , )sin ( )u θ θ w θ x θ θ θ x θ θ θ      (4.2.6) 

  1 2 1 1 2 1 1 2 1
3 3 2 1 3 1( , ) ( ) ( , )sin ( ) ( , ) 1 cos ( )u θ θ w θ x θ θ θ x θ θ θ      (4.2.7) 

for the 2e - and 3e -components of the incremental displacement field u . These components 

are thus completely determined by the generalised displacements  2 3 1, , : 0,w w L   , 

which, for the moment, are taken to be twice continuously differentiable. The assumption of 

small deflections, combined with the possibility of a large twist, are implicit in (4.2.6)-(4.2.7).4 

The covariant components of the Green membrane strain tensor field associated 

with the displacement field u  are given by (CIARLET 2000, th. 9.1.1) 

 1 2 1 2 1 2 1 2
α α( , ) ( , ) ( , ) ( , )β βG θ θ θ θ θ θ θ θ a G a  

  1 2 1 2 1 2 1 2
α α

1
( , ) ( , ) ( , ) ( , )

2 β βθ θ D θ θ θ θ D θ θ   a u a u   

 1 2 1 2
α ( , ) ( , )βD θ θ D θ θ u u  . (4.2.8) 

Neglecting 1 2
1 1( , )D u θ θ  in the presence of unity (in accordance with the assumption of 

small deflections – e.g., ARANTES E OLIVEIRA 1999, § 3.4), we have 

  1 2 1 2 1 2 1 1 1 1 1
11 1 1 2 2 1 3 1 1( , ) ( , ) ( , ) ( )sin ( ) ( )cos ( ) ( )G θ θ D u θ θ x θ θ w θ θ w θ θ θ        

  1 2 1 1 1 1 1
3 2 1 3 1 1( , ) ( )cos ( ) ( )sin ( ) ( )x θ θ w θ θ w θ θ θ       

  1 2 1 1 1 1 1 2 1
1 2 2 1 3 1 3 1( , ) ( ) cos ( ) ( )sin ( ) ( , ) ( )D x θ θ w θ θ w θ θ x θ θ θ        

  1 2 1 1 1 1 1 2 1
1 3 2 1 3 1 2 1( , ) ( )sin ( ) ( )cos ( ) ( , ) ( )D x θ θ w θ θ w θ θ x θ θ θ        

       2 2 21 1 1 2 2 1 2 2 1
2 3 2 3 1

1
( ) ( ) ( , ) ( , ) ( )

2
w θ w θ x θ θ x θ θ θ        

 (4.2.9) 

                                                 
3 It cannot be overemphasised that this constraint precludes the present one-dimensional model from capturing 

any local or distortional phenomena – the beam is “forced” to buckle in a pure global mode. 

4 In terms of simplicity of subsequent calculations, there is nothing to be gained from the adoption of the 

second-order approximations 21
1 12cos 1    and 1 1sin  , which would be entirely adequate for the 

purpose of lateral-torsional buckling analysis (e.g., PI & BRADFORD 2001). 
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  1 2 1 2 1 2 1 1 1 1
12 2 1 2 2 2 1 3 1

1
( , ) ( , ) ( , ) ( ) cos ( ) ( )sin ( )

2
G θ θ D u θ θ D x θ θ w θ θ w θ θ       

  1 2 1 1 1 1
2 3 2 1 3 1( , ) ( )sin ( ) ( )cos ( )D x θ θ w θ θ w θ θ     

  1 2 1 2 1 2 1 2 1
2 2 3 3 2 2 1( , ) ( , ) ( , ) ( , ) ( )x θ θ D x θ θ x θ θ D x θ θ θ     . (4.2.10) 

Moreover, 

  21 2 1 2
22 2 1

1
( , ) ( , )

2
G θ θ D u θ θ  , (4.2.11) 

but we shall regard this result as spurious, stemming from the approximate nature of 

(4.2.6)-(4.2.7), and consider throughout 22 II IIG G   as being identically zero. Accordingly, 

 
1 2

1 2 1 2 1 2 1 2 11
I I I I 1 2

( , )
( , ) ( , ) ( , ) ( , )

( , )

G θ θ
G θ θ θ θ θ θ θ θ

a θ θ   o G o  (4.2.12) 

 
1 2

1 2 1 2 1 2 1 2 1 212
I II I II II I1 2

( , )
( , ) ( , ) ( , ) ( , ) ( , )

( , )

G θ θ
G θ θ θ θ θ θ θ θ G θ θ

a θ θ
    o G o  , (4.2.13) 

where 1 2( , )a θ θ  is the determinant of the matrix (2.2.14) of metric coefficients on the 

middle surface S . 

The shear strain field I II II IG G   is now constrained to vanish. In view of (4.2.13), 

this amounts to equating to zero the right-hand side of (4.2.10). Integration with respect to 

the second Gaussian coordinate then yields 

  1 2 1 1 2 1 1 1 1
1 1 2 2 1 3 1( , ) ( ) ( , ) ( )cos ( ) ( )sin ( )u θ θ w θ x θ θ w θ θ w θ θ      

  1 2 1 1 1 1 1 2 1
3 2 1 3 1 1( , ) ( )sin ( ) ( )cos ( ) ( , ) ( )x θ θ w θ θ w θ θ ω θ θ θ        , (4.2.14) 

where :ω Ω   is the field defined in (2.3.16) and (recall that 1
2( , 0) 0x θ  , as implied 

by (4.2.1)) 

  1 1 1 1 1 1 1
1 1 3 2 1 3 1( ) ( , 0) ( , 0) ( )sin ( ) ( )cos ( )w θ u θ x θ w θ θ w θ θ      (4.2.15) 

is an additional generalised displacement, which is taken to be continuously differentiable. 

Finally, inserting (4.2.9) and (4.2.14) into (4.2.12) provides 

  1 2 1 1 2 1 1 1 1
I I 1 2 2 1 3 11 2

1
( , ) ( ) ( , ) ( ) cos ( ) ( )sin ( )

( , )
G θ θ w θ x θ θ w θ θ w θ θ

a θ θ
        

  1 2 1 1 1 1
3 2 1 3 1( , ) ( )sin ( ) ( ) cos ( )x θ θ w θ θ w θ θ     

       2 2 21 1 1 2 2 1 2 2 1
2 3 2 3 1

1
( ) ( ) ( , ) ( , ) ( )

2
w θ w θ x θ θ x θ θ θ        

 

 1 2 1 1 2 1
1 1( , ) ( ) ( , ) ( )ω θ θ θ ψ θ θ θ     , (4.2.16) 

where :ψ Ω   is the taper function defined in (2.3.26). 
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4.2.3 The eigenproblem for the buckling load factors and buckling modes 

The second-order term of the change in total potential energy of the system between 

(i) the (trivial) fundamental equilibrium state corresponding to λ  and (ii) an adjacent state 

specified by the incremental displacement field u  is given by (COMO 1969, DUPUIS 1969, 

KOITER 1965, PIGNATARO et al. 1991, p. 230, REIS 1977, § 2.3) 

  ( 0 ) (1)
2 2 2. 2.ref e refΠ Π λ Π W    . (4.2.17) 

In this expression, ( 0 )
2Π , (1)

2.refΠ  and 2.e refW  are homogeneous functionals of degree 2, with 

the following significance: 

(i) ( 0 )
2Π  is the strain energy of the linear theory, corresponding to the displacement field 

u . Recalling (2.5.21)-(2.5.23), we have 

 ( 0 )
2 1 2 3 1 1 2 3 1( , , , ) ( , , , )Π w w w U w w w   

  2* 1 1 * 1 1 1
1 2 1 30

1
( ) ( ) 2 ( ) ( ) ( )

2

L
EA θ w θ ES θ w θ w θ        

  2* 1 1 * 1 1 1
3 2 3 2 1( ) ( ) 2 ( ) ( ) ( )ωEI θ w θ EI θ w θ θ      

  2* 1 1 1 * 1 1
3 2 1 2 32 ( ) ( ) ( ) ( ) ( )ψEI θ w θ θ EI θ w θ      

  2* 1 1 * 1 1 1
1 1 1( ) ( ) 2 ( ) ( ) ( )ω ωψEI θ θ I θ θ θ       

   2* 1 1 1 1
1( ) ( ) ( )ψEI θ GJ θ θ dθ   

  , (4.2.18) 

with the by now familiar non-standard geometrical properties *
3ψI , *

ωψI  and *
ψI . 

(ii) (1)
2.refΠ  represents the work of the active membrane forces in the fundamental state 

corresponding to the reference load system ( 1λ  ), denoted by ( )
I I.

A f
refn  , due to the 

second-order part of the strain I IG  , denoted by 2
I I

nd orderG  : 

 
1

2

1
2

( ) ( ) 2(1) 1 2 1 2 1 2 2 1
2. 2 1 I I. I I0 ( )

( , ) ( , ) ( , ) ( , )
ndL g θ A f order

ref refg θ
Π w n θ θ G θ θ a θ θ dθ dθ  

       . (4.2.19) 

In view of (4.2.16), we have 

 2 1 2 1 2 1 1 1 2 1 1
I I 2 3 1 3 2 11 2

1
( , ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , )

nd orderG θ θ x θ θ w θ θ x θ θ w θ θ
a θ θ

       

    2 21 1
2 3

1
( ) ( )

2
w θ w θ   

 

    21 2 2 1 2 2 1
2 3 1( , ) ( , ) ( )x θ θ x θ θ θ   

 . (4.2.20) 
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Moreover, since the normal force is identically zero in any fundamental state, one 

obtains 

 
 

11 2 * 1
2.( ) 1 2 1 2 2

I I . 3 21 2 * 1 * 1
2* 1

2 * 1

( )( , ) ( )
( , ) ( , )

( , ) ( ) ( )
( )

( )

f
refA f

ref

M θt θ θ S θ
n θ θ x θ θ

a θ θ A θ S θ
I θ

A θ



 
  

 


 , (4.2.21) 

where 1 1
2. ( )f

refθ M θ  is the first-order bending moment distribution associated with 

the reference load system. Equation (4.2.19) therefore becomes 

  2(1) 1 1 1 * 1 1 1
2. 2 1 2. 2 1 2 10

1
( , ) ( ) ( ) ( ) β ( ) ( )

2

L f
ref refΠ w M θ w θ θ θ θ dθ         , (4.2.22) 

where  *
2β : 0, L   is a geometrical property of the reference shape related to its 

asymmetry with respect to the plane passing through the origin O  and spanned by 

 1 2,e e . This property is given by the somewhat clumsy expression 

 
 

 
1

2

1
2

( )* 1 1 2 2 1 2 2 1 2 * 1 2 2
2 2 3 32 ( )* 1

2* 1
2 * 1

1
β ( ) ( , ) ( , ) ( , ) ( , )

( )
( )

( )

g θ

g θ
θ x θ θ x θ θ x θ θ t θ θ dθ

S θ
I θ

A θ



 


   

  
* 1

* 1 * 12
2 3* 1

( )
( ) ( )

( )

S θ
I θ I θ

A θ


  


 .5 (4.2.23) 

(iii) 2.e refW  is the second-order part of the work performed by the reference load system in 

the displacement u , given by 

 
0

1 1 2 1 2 23 3 3
2. 2 1 1 0 . 1 . 10

( , ) ( ) ( ) (0) ( )
2 2 2

LQ Qq L

e ref ref ref L ref

x x x
W w q θ θ dθ Q Q L         

 0 . 2 1 . 2 1(0) (0) ( ) ( )ref L refM w M w L L     . (4.2.24) 

With a view to establishing the Euler-Lagrange equations, the admissible generalised 

displacements in the functional 2Π  are required to satisfy: 

                                                 
5 In particular, for the I-section beam whose reference shape is shown in figure 2.10.3, the integral on the 

right-hand side of equation (4.2.23) reads 

    
1

2

1
2

( ) 1 2 2 1 2 2 1 2 * 1 2 2 1 4 1 4
2 3 3 3 3( )
( , ) ( , ) ( , ) ( , ) ( ) ( )

4

g θ w
b tg θ

t
x θ θ x θ θ x θ θ t θ θ dθ x θ x θ


    

 
1 2

1 2 1 1 3
3 3

( )
( ) ( ) ( ) cos

12
t

t t t t t

b θ
x θ b θ x θ t φ

 
  
 

 

 
1 2

1 2 1 1 3
3 3

( )
( ) ( ) ( ) cos

12
b

b b b b b

b θ
x θ b θ x θ t φ

 
  
 

 . 
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(i) The smoothness conditions 

  3
1 0,w C L , 

  4
2 3 1, , 0,w w C L  . 

(ii) The homogeneous form of the essential boundary conditions prescribed for the 

particular problem under consideration. 

Let δwi  and 1δ  denote admissible variations of iw  ( 1, 2, 3i  ) and 1 . As usual, 

the first variation of 2Π  at 1 2 3 1( , , , , )w w w λ  in the direction of 1 2 3 1( , , , , 0)δw δw δw δ  is 

defined as 

 2 1 2 3 1 1 2 3 1( , , , , )[ , , , , 0]δΠ w w w λ δw δw δw δ    

 2 1 1 2 2 3 3 1 1
0

( , , , , )
a

d
Π w a δw w a δw w a δw a δ λ

da
 



       ( a  ) . (4.2.25) 

Upon using Leibniz rule to differentiate under the integral sign, integrating by parts and 

appealing to the fundamental lemma of the calculus of variations, the vanishing of 2δΠ  for 

all admissible δwi  and 1δ  – often referred to in the literature as the criterion of Trefftz 

(TREFFTZ 1930, 1933)6 – leads to the classical or strong form of the LTB problem, which 

may be phrased as follows: 

Find λ  and real-valued maps 

  3
1 0,w C L  

  4
2 3 1, , 0,w w C L  , 

with 2 0w  or  1 0 , satisfying the differential equations 

  * * 1
1 2 3 ( ) 0EA w ES w θ     (4.2.26) 

    * * * 1 1
3 2 3 1 3 1 2. 1( ) ( ) 0f

ω ψ refEI w EI EI θ λ M θ            (4.2.27) 

  * * 1
2 1 2 3 ( ) 0ES w EI w θ     (4.2.28) 

    * * * 1 * * * 1
3 2 1 1 3 2 1 1( ) ( )ω ω ωψ ψ ωψ ψEI w EI EI θ EI w EI EI GJ θ                 

        

  1 1 * 1 1 1
2. 2 2. 2 1 3 1( ) ( ) β ( ) ( ) ( ) 0f f q

ref ref refλ M θ w θ M θ x q θ θ        
 (4.2.29) 

on the open interval  0, L , together with the appropriate boundary, to be 

selected from table 4.2.1. 

                                                 
6 See also KOITER (1963, pp. 257-259) and WEMPNER (1972). 



1D Model for the Lateral-Torsional Buckling of Singly Symmetric Tapered Beams 

187 

 
Natural boundary conditions  

Essential boundary 
conditions 

Either 

* *
1 2 3(0) (0) (0) (0) 0EA w ES w   

or

1(0) 0w   

* *
1 2 3( ) ( ) ( ) ( ) 0EA L w L ES L w L   

1( ) 0w L   

   * * *
3 2 3 1 3 1 2. 1(0) (0) 0f

ω ψ refEI w EI EI λ M            2 (0) 0w   

   * * *
3 2 3 1 3 1 2. 1( ) ( ) 0f

ω ψ refEI w EI EI L λ M L            2 ( ) 0w L   

* * *
3 2 3 1 3 1(0) (0) (0) (0) (0) (0) 0ω ψEI w EI EI         2 (0) 0w    

* * *
3 2 3 1 3 1( ) ( ) ( ) ( ) ( ) ( ) 0ω ψEI L w L EI L L EI L L         2 ( ) 0w L   

 * *
2 1 2 3 (0) 0S w EI w    3(0) 0w   

 * *
2 1 2 3 ( ) 0S w EI w L   3( ) 0w L   

* *
2 1 2 3(0) (0) (0) (0) 0S w EI w   3(0) 0w    

* *
2 1 2 3( ) ( ) ( ) ( ) 0S L w L EI L w L  

3( ) 0w L   

 * * * *
3 2 1 1 3 2(0) (0) (0)ω ω ωψ ψEI w EI EI EI w             

 * *
1 1(0) (0) (0) (0) (0)ωψ ψEI GJ EI       

 *
0. 2 1 2β (0) (0) (0)refλ M w     

0

3 0. 1(0) 0Q

refx Q     

1(0 ) 0   

 * * * *
3 2 1 1 3 2( ) ( ) ( )ω ω ωψ ψEI w EI EI L EI L w L             

 * *
1 1( ) ( ) ( ) ( ) ( )ωψ ψEI L L GJ L EI L L       

 *
. 2 1 2β ( ) ( ) ( )L refλ M L L w L    

3 . 1( ) 0LQ

L refx Q L    

1( ) 0L   

* * *
3 2 1 1(0) (0) (0) (0) (0) (0) 0ω ω ωψEI w EI EI         1(0 ) 0    

* * *
3 2 1 1( ) ( ) ( ) ( ) ( ) ( ) 0ω ω ωψEI L w L EI L L EI L L         1( ) 0L    

Table 4.2.1: Lateral-torsional buckling of singly symmetric tapered beams – Natural and 

essential boundary conditions 
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The equations involving 1w  and 3w  can be solve separately and are irrelevant for the 

purpose of obtaining the buckling load factors. They need not be considered further. We 

are then left with a Steklov-type eigenproblem (BABUSKA & OSBORN 1991, p. 649). The 

eigenvalues are the buckling load factors ( )n
bλ , with  \ 0n , which are labelled so as to 

have ( 2) ( 1) (1) ( 2 )0b b b bλ λ λ λ       . The associated eigenfunctions are the buckling 

modes ( ) ( )
2. 1.( , )n n

b bw   and we put forward the conjecture (reminiscent of a classical result in 

Sturm-Liouville theory – e.g., BIRKHOFF & ROTA 1989, ch. 10, th. 5, or CODDINGTON & 

LEVINSON 1955, ch. 8, th. 2.1) that ( )
1.

n
b  has exactly 1n   zeros in the open interval  0, L . 

In particular, the lowest positive eigenvalue is termed the critical load factor and we use the 

special notation (1)
b crλ λ  – accordingly, the corresponding buckling mode is denoted by 

2. 1.( , )cr crw   and is termed critical as well. We also speak of the critical moment, defined as 

  1 1
2.max ( ) , 0f

cr cr refM λ M θ θ L    . (4.2.30) 

* * * 

An assessment of the performance of the proposed one-dimensional LTB model was 

carried out in ANDRADE et al. (2007a). The study involved the critical load factors and modes 

of several prismatic and linearly web-tapered I-section cantilevers and simply supported 

beams, with equal or unequal uniform flanges, acted by point loads applied at various 

locations of the free end (cantilevers) or mid-span section (simply supported beams). The 

predictions of the one-dimensional model were compared with the results of shell finite 

element analyses, performed with the commercial code ABAQUS. It was found that, as long 

as the beams are not too short, the one-dimensional model yields reasonably accurate 

estimates of the critical load factors and modes. Moreover, the accuracy of these estimates 

gradually increases with the beam length, a trend that reflects the decreasing relevance of 

cross-sectional distortion (in-plane deformations). As for the considerable differences 

between the one-dimensional and shell finite element models recorded for the shorter beams, 

it was found that they are mainly due to either (i) significant web and/or flange distortion or 

(ii) a localised web buckling phenomenon, which occurs in the neighbourhood of the load 

point of application  as stressed above, none of these phenomena can be captured by the one-

dimensional model. Indeed, the addition of transverse stiffners to the shell models 

significantly reduced the gap between the shell and the one-dimensional models. The shell 

finite element results reported by ASGARIAN et al. (2012) and ZHANG & TONG (2008), which 
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concern web-tapered I-section beams as well, were also found to be in good agreement 

with the predictions of the present one-dimensional model. 

4.3 SINGLY SYMMETRIC PRISMATIC BEAMS AS A SPECIAL CASE 

Let us now pause to consider in some detail the prismatic special case. The Cartesian 

frame and the parametrisation of the middle surface are assumed to combine the features 

stipulated in §§ 2.9.1 and 2.9.2. Moreover, we adhere to the notational conventions and 

abuses of § 2.9.2. 

Under the above circumstances, the line of shear centres is defined by the coordinates 

 2 0Sx   (4.3.1) 

   3
3

3

S ωI
x

I
 . (4.3.2) 

We introduce the sectorial coordinate 

  
2

2
2 3 3 3 20

( ) ( ) ( ) ( ) ( )
θ

S
Sω θ x s x s x s x x s ds       

 2 2
3 2( ) ( )Sω θ x x θ   , (4.3.3) 

with pole at the shear centre and origin at the intersection of the cross-section middle line 

with the longitudinal plane of symmetry. By specialisation of (2.9.50)-(2.9.53) – or by direct 

computation –, one finds 

 2 2 2( ) ( ) 0
S

b

ω S ωb
S ω θ t θ dθ S


    (4.3.4) 

 2 2 2 2
2 3 2( ) ( ) ( ) 0

S

b

ω S ωb
I ω θ x θ t θ dθ I


    (4.3.5) 

 2 2 2 2
3 2 3 3 3( ) ( ) ( ) 0

S

b
S

ω S ωb
I ω θ x θ t θ dθ I x I


     (4.3.6) 

 2 2 2 2 2
3 3( ) ( ) ( )

S

b
S

ω S ωb
I ω θ t θ dθ I x I


    . (4.3.7) 

This completes the setting of the stage. 

To obtain the prismatic beam equations in their usual form, one starts by rewriting 

the Cartesian components of the incremental displacement field :ΩVu  as 

  1 2 1 2 1 1 1 1
1 1 2 .2 1 .3 1( , ) ( ) ( ) ( )cos ( ) ( )sin ( )S Su θ θ w θ x θ w θ θ w θ θ      

  2 1 1 1 1 2 1
3 .2 1 .3 1 1( ) ( )sin ( ) ( )cos ( ) ( ) ( )S S Sx θ w θ θ w θ θ ω θ θ        (4.3.8) 
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    1 2 1 2 1 2 1
2 .2 2 1 3 3 1( , ) ( ) ( ) 1 cos ( ) ( ) sin ( )S

Su θ θ w θ x θ θ x θ x θ       (4.3.9) 

   1 2 1 2 1 2 1
3 .3 2 1 3 3 1( , ) ( ) ( )sin ( ) ( ) 1 cos ( )S

Su θ θ w θ x θ θ x θ x θ       , (4.3.10) 

where the new generalised displacements .2Sw  and .3Sw , which replace 2w  and 3w , are 

referred to the line of shear centres: 

 1 1 1
.2 2 3 1( ) ( ) sin ( )S

Sw θ w θ x θ   (4.3.11) 

  1 1 1
.3 3 3 1( ) ( ) 1 cos ( )S

Sw θ w θ x θ    . (4.3.12) 

Using (4.3.8)-(4.3.10), the strain field I I 11G G   reads 

  1 2 1 2 1 1 1 1
I I 1 2 .2 1 .3 1( , ) ( ) ( ) ( ) cos ( ) ( )sin ( )S SG θ θ w θ x θ w θ θ w θ θ        

  2 1 1 1 1 2 1
3 .2 1 .3 1 1( ) ( )sin ( ) ( ) cos ( ) ( ) ( )S S Sx θ w θ θ w θ θ ω θ θ        

         2 2 2 21 1 2 2 2 1
.2 .3 2 3 3 1

1
( ) ( ) ( ) ( ) ( )

2
S

S Sw θ w θ x θ x θ x θ         
 

  1 1 1 1 1
3 .2 1 .3 1 1( )cos ( ) ( )sin ( ) ( )S

S Sx w θ θ w θ θ θ       . (4.3.13) 

Identical expressions were derived by ATTARD (1986, eq. 34) and DE VILLE DE GOYET 

(1989, eq. 4.15), while ACHOUR & ROBERTS (2000, eq. 21) obtained an extra term, namely 

 2 1 1 1 1
.2 .3 .2 .3( ) ( ) ( ) ( ) ( )S S S S Sω θ w θ w θ w θ w θ     , which stems from a second-order contribution 

to the rate of twist (the adoption of (4.3.8)-(4.3.10) automatically precludes the emergence 

of such a contribution). 

In terms of the new set of generalised displacements ( 1w , .2Sw , .3Sw  and 1 ), the 

energy functionals ( 0 )
2Π , (1)

2.refΠ  and 2.e refW  are given by 

 ( 0 ) 1 2 1 2 1 2
2 1 .2 .3 1 1 3 .2 2 .30

1
( , , , ) ( ) ( ) ( )

2

L

S S S SΠ w w w EA w θ EI w θ EI w θ           

 1 2 1 2 1
1 1( ) ( )

Sω
EI θ GJ θ dθ     (4.3.14) 

 (1) 1 1 1 1 2 1
2. .2 1 2. .2 1 2 10

1
( , ) ( ) ( ) ( ) β ( )

2

L f
ref S ref SΠ w M θ w θ θ θ dθ      

   (4.3.15) 

 1 1 2 13 3
2. .2 1 10

( , ) ( ) ( )
2

q S L

e ref S ref

x x
W w q θ θ dθ 

     

 
0

2 23 3 3 3
0 . 1 . 1(0) ( )

2 2

LQ QS S

ref L ref

x x x x
Q Q L  

    

 0 . .2 1 . .2 1(0) (0) ( ) ( )ref S L ref SM w M w L L     , (4.3.16) 
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where 

  22 2 2 2 2 2
2 2 3 3 3

2

1
β ( ) ( ) ( ) ( )

b S

b
x θ x θ x x θ t θ dθ

I 
       . (4.3.17) 

Accordingly, the Euler-Lagrange equations associated with 2Π  simplify to 

 1
1( ) 0EA w θ   (4.3.18) 

  ( 4 ) 1 1
3 .2 2. 1( ) ( ) 0f

S refEI w θ λ M θ    (4.3.19) 

 (4 ) 1
3 .3 ( ) 0SEI w θ   (4.3.20) 

 (4 ) 1 1 1 1
1 1 2. .2( ) ( ) ( ) ( )

S

f
ω ref SEI θ GJ θ λ M θ w θ     

   

    1 1 1
2 2. 1 3 3 1β ( ) ( ) ( ) 0f q S

ref refM θ x x q θ θ       . (4.3.21) 

The accompanying boundary conditions are indicated in table 4.3.1. 

Once again, the equations involving 1w  and .3Sw  can be solve separately and are 

irrelevant for the purpose of obtaining the buckling load factors. They need not be 

considered further.7 Except for the definition of the elastic modulus E , the remaining 

equations are in agreement with the ones derived by GJELSVIK (1981, § 7.5), TRAHAIR 

(1993, §§ 2.8.4 and 17.4), DE VILLE DE GOYET (1989, § 4.8) and VLASOV (1961, ch. 6, § 3).8 

In particular, the terms featuring the asymmetry property 2β  reflect an effective change in 

the Saint-Venant rigidity, from GJ  to 2 2.β f
refGJ λ M , brought about by the pre-buckling 

membrane forces ( )
I I.

A f
refλ n  . They are commonly named after H. Wagner, who described an 

analogous effect in connection with the torsional and flexural-torsional buckling of thin-

walled columns (WAGNER 1929, WAGNER & PRETSCHNER 1934). Wagner’s analysis was 

later extended to beam-columns by GOODIER (1942) – for a detailed discussion of Wagner’s 

                                                 
7 An assumption analogous to that of inextensional column buckling (e.g., TRAHAIR 1993, p. 354) is thus seen 

to be unwarranted. 

8 None of these authors considers the action of quasi-tangential moments 0M  and LM  applied at the end 
sections. Trahair does consider applied end moments, but assumes that they “remain parallel to their 
original directions” (TRAHAIR 1993, p. 348) – such axial moments are generally non-conservative, and may 
only be considered conservative for particular constraint conditions imposed at the member ends 
(ZIEGLER 1968, p. 119). Moreover, GJELSVIK (1981, eq. (6.6b)) presents a slightly different expression for 
the cross-sectional property 2β  ( xK  in this author’s notation), in which the wall thickness is more 
accurately taken into account. 
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Natural boundary conditions  

Essential boundary 
conditions 

Either 

1(0) 0EA w   

or

1(0) 0w   

1( ) 0EA w L   1( ) 0w L   

 3 .2 2. 1(0) (0) 0f
S refEI w λ M      .2 (0) 0Sw   

 3 .2 2. 1( ) ( ) 0f
S refEI w L λ M L     .2 ( ) 0Sw L   

3 .2(0) 0SEI w   .2 (0) 0Sw    

3 .2( ) 0SEI w L   .2 ( ) 0Sw L   

2 .3(0) 0SEI w 
 .3(0) 0Sw   

2 .3( ) 0SEI w L 
 .3( ) 0Sw L   

2 .3(0) 0SEI w 
 .3(0) 0Sw    

2 .3( ) 0SEI w L 
 .3( ) 0Sw L   

 1 1 0. 2 1 .2(0) (0) β (0) (0)
Sω ref SEI GJ λ M w        

  

 0

3 3 0. 1(0) 0Q S
refx x Q      

1(0 ) 0   

 1 1 . 2 1 .2( ) ( ) β ( ) ( )
Sω L ref SEI L GJ L λ M L w L        

  

 3 3 . 1( ) 0LQ S
L refx x Q L     

1( ) 0L   

1(0) 0
Sω

EI    1(0 ) 0    

1( ) 0
Sω

EI L   1( ) 0L    

Table 4.3.1: Lateral-torsional buckling of singly symmetric prismatic beams – Natural and 

essential boundary conditions 

effect in beam LTB problems, including an assessment of the available experimental 

evidence, see ANDERSON & TRAHAIR (1972) and TRAHAIR (2011).9 

                                                 
9 The correctness of Wagner’s terms has been repeatedly questioned by OJALVO (1981, 1983, 1987, 1989, 

1990a, 1990b, 2002, 2007). This stirred a lively debate, the outcome of which was the convincing rebuttal 
of Ojalvo’s objections and the universal acceptance (Ojalvo excepted) of the classical Wagner-Goodier-
Vlasov theory (ALWIS & WANG 1996, GOTO & CHEN 1989, KANG et al. 1992, KITIPORNCHAI & DUX 
1982, KITIPORNCHAI et al. 1987, SILVA 1990, TRAHAIR 1982). 
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4.4 RESTRAINED BEAMS 

Up to this point, only isolated beams with idealised support conditions have been 

considered. Such circumstances are seldom found in actual design practice – indeed, beams 

are usually connected to other elements that may contribute significantly to their buckling 

strength, even when they are not primarily intended for that specific purpose. 

Since the pioneering work of FLINT (1951) (see also KERENSKY et al. 1956 and 

AUSTIN et al. 1957), there have been extensive studies on the effect of restraints on the 

elastic lateral-torsional buckling behaviour of prismatic beams. Broad surveys on this 

subject, as well as detailed references to the literature, can be found in LINDNER (1996), 

TRAHAIR (1993), TRAHAIR & NETHERCOT (1984), YURA (2001) and ZIEMIAN (2010). On 

the contrary, there is little information available on the lateral-torsional buckling behaviour 

of tapered beams with elastic or rigid restraints. In fact, to the author’s best knowledge the 

only publications on this subject are due to BUTLER (1966) and to BRADFORD (1988). The 

former reported an experimental investigation aimed at studying the influence of lateral and 

torsional braces on the elastic buckling strength of tip-loaded tapered cantilever I-beams – 

unfortunately, these experiments are insufficiently documented to be of any real value. The 

latter extended the tapered beam-column finite element formulation of BRADFORD & CUK 

(1988) to include the effects of continuous elastic restraints. 

Using an archetypal problem that is intended to “contain all the germs of generality” 

(to quote David Hilbert), it is shown in this section how the presence of out-of-plane 

restraints can be accommodated in the one-dimensional LTB beam model. The archetypal 

problem consists of a perfectly straight doubly symmetric web-tapered I-section cantilever, 

acted by a tip load and exhibiting end restraints that may (i) have a translational, torsional, 

minor axis bending and/or warping character, and (ii) be either linearly elastic or perfectly rigid. 

The resulting eigenproblem is cast in non-dimensional form over a fixed reference 

domain, and a complete set of independent non-dimensional parameters is identified. For 

its numerical solution, we use the collocation package COLNEW  this requires, as we have 

already seen in chapter 3, the previous reformulation of the eigenproblem as a standard 

inhomogeneous boundary value problem. A parametric study is then conducted in order to 

examine in some detail (i) the effectiveness of different types of restraint, (ii) the 

importance of the restraint stiffness and (iii) the interplay between these two aspects and 
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the degree of web tapering. Some seemingly paradoxical results are given a physical 

explanation. 

Although only doubly symmetric web-tapered I-beams with discrete restraints are 

dealt with in this work, the consideration of other beam geometries (possibly with a single 

plane of symmetry) and the inclusion of continuous restraints are straightforward matters. 

Finally, we are not concerned with the forces developing in the restraining elements, which 

are always assumed to have adequate strength – such an analysis would necessarily require 

the consideration of the imperfections of the restrained beam. 

This work was reported in ANDRADE et al. (2010b). 

4.4.1 The archetypal problem  

As an archetypal problem, we consider the lateral-torsional buckling of a perfectly 

straight doubly symmetric web-tapered I-section cantilever, with length L  and acted by 

point load applied at the tip  see figure 4.4.1. The Cartesian frame, also shown in this 

figure, is chosen so that the reference shape of the cantilever is symmetrical relative to the 

planes passing through the origin O  and spanned by  1 3,e e  and  1 2,e e . The flanges are 

uniform, with thickness ft  and width b . The web has constant thickness wt  and its depth 

h , measured between flange middle lines, varies along the length according to the affine 

law, expressed in terms of the web taper ratio 
0

( )α h L
h , reads 

 1
1 0( ) 1 (1 α)

x
h x h

L
    
 

 , (4.4.1) 

with 0 α 1  . As usual, the parameter 
0

( )α h L
h  will be referred to as the web taper ratio (or 

simply the taper ratio); α 1  is associated with a prismatic beam. The flanges exhibit 

symmetrical slopes tanφ  with respect to the planes spanned by  1 2,e e , where 

0tan (1 α) /(2 )φ h L  .  

The cantilever, supported at its larger end ( 0A ), is acted by a conservative point load 

3QQ e  applied to the material point whose reference place is 1 3 3
QO L x e e . The 

magnitude Q  of the applied load is deemed proportional to a single factor λ  – we thus 

write refQ Q λ , where refQ  is a positive reference magnitude. The load remains parallel 

to 3e  throughout the whole deformation process. 
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Figure 4.4.1: Archetypal problem – Reference shape, support conditions and applied load 

More often than not, in actual engineering practice, such a cantilever exhibits some 

kind of bracing at the tip. While the actual bracing arrangement may vary significantly 

(figure 4.4.2(a) shows some typical details), it can usually be modelled by means of (i) a 

translational spring with stiffness Tk  ( 0 Tk   ), parallel to 2e  and located at the level 

3 3
Tx x , and/or (ii) a torsional spring with stiffness 1Rk  ( 10 Rk   ). On the other 

hand, a cantilever is frequently just the overhanging portion of a beam extending beyond 

an end support, as illustrated in figure 4.4.2(b). In such case, the assumption of a built-in 

support may lead to a considerable overestimation of the buckling strength (see the 

prismatic beam results reported by ANDRADE et al. 2007b and TRAHAIR 1983) – a more 

realistic description of the actual support conditions is achieved by considering, in each 

flange, equal rotational springs about 3e , with stiffness Rfk  ( 0 Rfk   ). They simulate 

the warping and lateral bending restraints provided by the adjacent span, while the torsional 

rotation (about 1e ) and the lateral displacement are kept fully prevented. In fact, this very 

simple and physically meaningful procedure is closely related to the warping spring concept 

introduced by YANG & MCGUIRE (1984) to analyze space frames made of prismatic 

members with partial warping restraint. If 0Rf Tk k  , the cantilever may rotate freely 

about 3e  in a rigid-body mode – in order to rule out this possibility, Rfk  and Tk  are 

required to satisfy 20 Rf Tk k L     (i.e., they cannot be simultaneously zero). 

Our aim is to compute the buckling load factors and the corresponding buckling 

modes for this beam-load structural system. 

0h  

L  

0αh  wt  

fb  

1e  
3e  

3e  

2e  O

0 /2h  

ft  φ

0 /2h  2e  

refλ Q L  

3refλ Q e  

3
Qx  3

Tx  
Tk

1Rk

Rfk  

Rfk  
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(a) 

 
(b) 

Figure 4.4.2: Some typical bracing and support details (adapted from BRITISH STANDARDS 

INSTITUTION 2001) 

4.4.2 Mathematical formulation of the archetypal problem  

In the absence of elastic restraints, the energy functional for the lateral-torsional 

buckling analysis of this particular beam-load system is given by10 

 * 1 1 2 1 * 1 1 2 1
2 2 1 3 2 10 0

1 1
( , , ) ( ) ( ) ( ) ( )

2 2

L L

ωΠ w λ EI θ w θ dθ EI θ θ dθ       

  * 1 1 1 1 1 * 1 1 2 1
1 1 10 0

1
( ) ( ) ( ) ( ) ( ) ( )

2

L L

ωψ ψEI θ θ θ dθ GJ θ EI θ θ dθ          

 1 1 1 1 2
2. 2 1 3 10

1
( ) ( ) ( ) ( )

2

L f Q
ref refλ M θ w θ θ dθ x λ Q L    , (4.4.2) 

where the first-order bending moment distribution associated with the reference load 

3refQ e  is 

 1 1
2. ( ) ( )f

ref refM θ L θ Q    (4.4.3) 

and the geometrical properties *
3I , *

ωI , *
ωψI , *

ψI  and J  of the reference shape are defined by 

 * *1 3 3
3 3

1
( ) cos (0)

6 f fI θ b t φ I   (4.4.4) 

and (2.11.7)-(2.11.10). 

We still have to consider the end restraints and, in particular, to distinguish between 

the elastic (non-rigid) and rigid cases. In order to account for the presence of elastic restraints 

(see figure 4.4.1), the energy functional (4.4.2) must be supplemented with the terms 
  

                                                 
10 Since 1w  and 3w  are known to be irrelevant, they were dropped. 
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2 2

0 0
2 1 2 1

1 1
(0) (0) (0) (0)

2 2 2 2Rf Rf

h h
k w k w            

   
 

  22
1 1 2 3 1

1 1
( ) ( ) ( )

2 2
T

R Tk L k w L x L     

  
2

22 2 20
2 1 1 1 2 3 1

1 1
(0) (0) ( ) ( ) ( )

4 2 2
T

Rf R T

h
k w k L k w L x L  

       
 

 , (4.4.5) 

which provide the strain energy stored in the restraints during buckling – it follows from 

the kinematical hypotheses underlying the one-dimensional model that the flange rotations 

about an axis parallel to 3e  are given by 2 12
hw    (regarding the term 12

h  , recall figure 

2.11.2). Of course, when a restraint is taken as perfectly rigid, it does not store any strain 

energy and thus there is no additional contribution to consider in the energy functional – 

however, relative to the unrestrained or elastically restrained cases, the admissible functions 

must satisfy additional essential boundary conditions, as will be seen presently. 

The first term on the right-hand side of (4.3.5) can be rewritten in the form 

 2 2
3 2 1

1 1
(0) (0)

2 2R ωk w k    , (4.4.6) 

where 

 3 2R Rfk k  (4.4.7) 

 
2
0 2
4ω Rf

h
k k  . (4.4.8) 

This rearrangement clearly suggests the possibility of considering independently the minor 

axis bending and warping elastic restraints – simply replace the first term on the right-hand 

side of (4.4.5) with (4.3.6) and adopt two unrelated parameters, 3Rk  and ωk , instead of the 

single parameter Rfk . In fact, such a generalization is needed to deal with several situations 

of practical interest. For instance, if the warping restraint is “internal” to the beam – 

provided by such devices as end plates (LINDNER & GIETZELT 1983, PI & TRAHAIR 2000, 

VACHARAJITTIPHAN & TRAHAIR 1974), batten plates (HOTCHKISS 1966, TAKABATAKE 

1988, VACHARAJITTIPHAN & TRAHAIR 1974, PI & TRAHAIR 2000) or box stiffeners 

(OJALVO 1975, OJALVO & CHAMBERS 1977, PI & TRAHAIR 2000, PLUM & SVENSSON 

1993) –, then it is not coupled with a minor axis bending restraint (we would have 0ωk  , 

but 3 0Rk  ). 
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Suppose now that 1, ,Rf R Tk k k    and let 2δw  and 1δ  be admissible variations of 

2w  and 1 . Upon integration by parts, the first variation of the energy functional 2Π , 

defined by (4.4.2)+(4.4.5), at 2 1( , , )w λ  and in the direction of 2 1( , , 0)δw δ , reads 

 2 2 1 2 1( , , )[ , , 0]δΠ w λ δw δ    

  * (4 ) 1 1 1 1 1 1
3 2 1 1 20
(0) ( ) ( ) ( ) 2 ( ) ( )

L

refEI w θ λ Q L θ θ θ δw θ dθ           

 
21 1

* (4 ) 1 * 1
1 10

4
1 (1 α) (0) ( ) (1 α) 1 (1 α) (0) ( )

L

ω ω

θ θ
EI θ EI θ

L L L
 

             
   

    

 
3 31

1 10 0
1 1

1 α
1 (1 α) (0) ( ) (0) ( )

3 (0) 3 (0)
w wh t h tθ

GJ θ GJ θ
J L J L

 
       
 

 

 1 1 1 1
2( ) ( ) ( )refλ Q L θ w θ δ θ dθ     

  *
3 2 1 2(0) (0) ( (0) (0)) (0)refEI w λ Q L δw      

  *
3 2 2 2(0) (0) 2 (0) (0) (0)Rf refEI w k w L λ Q δw       

 * * 2 *
1 1 1 12

2 2
(0) (0) (1 α) (0) (0) (1 α) (0) (0) (0) (0)ω ω ωEI EI EI GJ δ

L L
                

    

 
2

* * 0
1 1 1

2
(0) (0) (1 α) (0) 2 (0) (0)

4ω ω Rf

h
EI EI k δ

L
  

          
  

   

  *
3 2 2 3 1 1 2 3 1(0) ( ) ( ( ) ( )) ( ) ( ( ) ( ))T T

T refEI w L k w L x L λ Q L δ w L x L         

 *
3 2 2(0) ( ) ( )EI w L δw L    

  * 2 * *
3 3 2 1 1

2
(0) ( ) α (0) ( ) α(1 α) (0) ( )T

ω ωx EI w L EI L EI L
L

           

 
3

2 * 0
12

2
(1 α) (0) 1 (1 α) (0) ( )

3 (0)
w

ω

h t
EI GJ L

L J


  
      

  
   

   3 3 1 1 1( ) ( ) ( )Q T
ref Rλ Q x x k L δ L     

 2 * *
1 1 1

2
α (0) ( ) α(1 α) (0) ( ) ( )ω ωEI L EI L δ L

L
        

 
   . (4.4.9) 

The particular grouping criterion that led to the writing of the underlined boundary terms in 

equation (4.4.9) warrants an explanation. By considering the variation  2 3 1( ) ( )Tδ w L x L  of 
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the lateral displacement at the level of the translational restraint ( 3 3
Tx x ), it is ensured that the 

natural boundary condition corresponding to 1( )δ L  involves only the torsional restraint 

stiffness 1Rk , instead of both 1Rk  and Tk . Viewed from a complementary standpoint, this 

means that when Tk    (see below), the values at 1θ L  of the admissible variations 

2 3 1( )Tδ w x   and 1δ  are independent – on the contrary, if the variations 2δw  and 1δ  were 

used, they would have to be related through 2 3 1( ) ( )Tδw L x δ L . 

Now, by virtue of the fundamental lemma of the calculus of variations, the vanishing 

of the first variation of 2Π  for all admissible 2δw  and 1δ  – i.e., the criterion of Trefftz – 

leads us to the classical or strong form of the LTB archetypal problem, which may be 

phrased as follows (recall that, for the moment, we are assuming 1, ,Rf R Tk k k   ; 

moreover, Rfk  and Tk  are not simultaneously zero): 

Archetypal problem. 

Find λ  and real-valued functions  4
2 1, 0,w C L  , with 2 0w   or 1 0  , 

satisfying the differential equations 

  * (4 ) 1 1 1 1
3 2 1 1(0) ( ) ( ) ( ) 2 ( ) 0refEI w θ λ Q L θ θ θ       (4.4.10) 

 
21 1

* (4 ) 1 * 1
1 1

4
1 (1 α) (0) ( ) (1 α) 1 (1 α) (0) ( )ω ω

θ θ
EI θ EI θ

L L L
 

            
   

   

 
3 31

1 10 0
1 1

1 α
1 (1 α) (0) ( ) (0) ( )

3 (0) 3 (0)
w wh t h tθ

GJ θ GJ θ
J L J L

 
       
 

  

 1 1
2( ) ( ) 0refλ Q L θ w θ    (4.4.11) 

in the open interval  0, L , together with the boundary conditions 

 2 (0) 0w   (4.4.12) 

 *
3 2 2 1(0) (0) 2 (0) (0) 0Rf refEI w k w λ Q L     (4.4.13) 

 1(0) 0   (4.4.14) 

 
2

* * 0
1 1

2
(0) (0) (1 α) (0) 2 (0) 0

4ω ω Rf

h
EI EI k

L
 

      
 

   (4.4.15) 

  *
3 2 2 3 1 1(0) ( ) ( ) ( ) ( ) 0T

T refEI w L k w L x L λ Q L       (4.4.16) 

 2( ) 0w L   (4.4.17) 
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 * 2 * *
3 3 2 1 1

2
(0) ( ) α (0) ( ) α(1 α) (0) ( )T

ω ωx EI w L EI L EI L
L

         

 
3

2 * 0
12

2
(1 α) (0) 1 (1 α) (0) ( )

3 (0)
w

ω

h t
EI GJ L

L J


  
      

  
  

  3 3 1 1( ) ( ) 0Q T
ref Rx x λ Q k L     (4.4.18) 

 * *
1 1

2
α (0) ( ) (1 α) (0) ( ) 0ω ωEI L EI L

L
       . (4.4.19) 

In the above list of boundary conditions, (4.4.12) and (4.4.14) are essential, while all the 

remaining ones are natural. 

The modifications that must be incorporated into the strong form of the archetypal 

problem to account for rigid restraints are now discussed. 

(i) If Rfk   , the cantilever is fully built-in at the support and the natural boundary 

conditions (4.4.13) and (4.4.15) should be replaced by the corresponding essential ones: 

 2 (0) 0w    (4.4.20) 

 1(0) 0   . (4.4.21) 

(ii) Similarly, if Tk   , equation (4.4.16) should be replaced by 

 2 3 1( ) ( ) 0Tw L x L   . (4.4.22) 

(iii) Finally, if 1Rk   , the boundary condition (4.4.18) should be replaced by 

 1( ) 0L   (4.4.23) 

and, in this particular case, the buckling problem clearly becomes independent of both 

3
Qx  and 3

Tx . 

The not unusual case of 1N   translational restraints at one cross-section, placed at 

the levels .
3 3

T nx x  and with stiffnesses .T nk , with 1, ,n N  , possibly combined with a 

torsional restraint with stiffness 1Rk , can always be reduced to a single translational 

restraint with stiffness *
Tk , placed at the level *

3 3
Tx x , together with a torsional restraint 

with stiffness *
1Rk . If none of the restraints is rigid, then 

 *
.

1

N

T T n
n

k k


  (4.4.24) 

 

.
3 .

* 1
3

.
1

N
T n

T n
T n

n

T n
i

x k
x

k









 (4.4.25) 
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  . * .*
1 1 3 3 3 .

1

N
T n T T n

R R T n
n

k k x x x k


    . (4.4.26) 

If one, and only one, of the N  translational restraints is perfectly rigid, say .T mk   , 

then, with the customary algebraic conventions for the extended real line   (e.g., 

BOURBAKI 2007, ch. 4, § 4), equation (4.4.24) gives *
Tk    and, after removing the 

  

indeterminacy, equation (4.4.25) yields * .
3 3
T T mx x . If two (or more) translational restraints 

are rigid, then * *
T Rxk k    and *

3
Tx  becomes irrelevant. 

Suppose that Tk   . Upon integrating twice the differential equation (4.4.10) and 

using the boundary conditions (4.4.16) and (4.4.17), together with the continuity properties 

of 2w , 1  and their derivatives, we get 

  * 1 1 1
3 2 1 2 3(0) ( ) ( ) ( ) ( ) ( ) 0T

ref TEI w θ L θ λ Q θ k w L x L        
  ,  10 θ L   . (4.4.27) 

In particular, 

  *
3 2 1 2 3 1(0) (0) (0) ( ) ( ) 0T

ref TEI w λ Q L k L w L x L       . (4.4.28) 

Now, suppose, in addition, that Rfk   . It follows at once from (4.4.13) that 

  2 2 3 12 (0) ( ) ( ) 0T
Rf Tk w k L w L x L     . (4.4.29) 

The last-written equation, which involves only boundary terms, has a clear physical 

meaning – it is the global moment equilibrium equation about the axis through the origin 

O  and along 3e . We mention two immediate consequences: 

(i) If 0Tk  , then 0Rfk   implies 2 (0) 0w    – in the absence of a lateral translational 

restraint at the tip, any lateral bending restraint at the support ensures 2(0) 0w   , as 

observed by TRAHAIR (1993, § 9.6.1.1). 

(ii) If 0Rfk  , then 0Tk   implies 2 3 1( ) ( ) 0Tw L x L   – in the absence of a lateral 

bending restraint at the support, any translational restraint at the tip precludes the 

lateral deflection at its location. 

By an appropriate change of variable, the above LTB problem may be converted into 

an equivalent one, posed on a fixed reference domain (i.e., independent of the cantilever 

length) and written in non-dimensional form, which is a particularly adequate setting for 

carrying out systematic parametric studies – within the context of the archetypal problem 

being addressed, we cannot possibly agree with the assertion that it is “virtually impossible 

to non-dimensionalize the many parameters in tapered sections [members]” found in 

GALAMBOS (1998, p. 83). 
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Choosing the closed unit interval  0,1  as the fixed reference domain, the change of 

variable is defined by the map    : 0, 0,1f L  , 1 1( ) /f θ θ L s  . Moreover, we set 

  : 0,1w    ,  
*
3

2

(0)1
( ) ( )

(0)

EI
w s w s L

L GJ



  (4.4.30) 

  : 0,1    ,  1( ) ( )s s L   . (4.4.31) 

Finally, we introduce the map 

 3
3 3

0

2
ζ( )

α

x
x x

h
  , (4.4.32) 

which defines a non-dimensional vertical ordinate referred to (half) the cross-sectional 

depth at the tip, 0αh . The non-dimensional version of the archetypal problem is then 

stated as follows: 

Archetypal problem (non-dimensional version). 

Given the non-dimensional parameters 

 
2

*
3 (0) (0)
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 3
3
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α
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T
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h
   (4.4.39) 

 3
3

0

2
ζ ζ( )

α

Q
Q

Q

x
x

h
   , (4.4.40) 

where (i) 1, ,Rf R Tσ σ σ    and (ii) Rfσ  and Tσ  are not simultaneously zero, find 

γ   and  4, 0,1w C  , with 0w   or 0  , satisfying the differential equations 
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  ( 4 )( ) (1 ) ( ) 0w s γ s s     (4.4.41) 

    
2 2

2 (4 )0 01 (1 α) ( ) 4 (1 α) 1 (1 α) ( )ω ωs s s s
π π

              
   

   

  0 01 (1 α) ( ) (1 α) ( ) (1 ) ( ) 0J Js s s γ s w s                (4.4.42) 

in the open unit interval  0,1 , together with the boundary conditions 

 (0) 0w   (4.4.43) 

 (0) (0) (0) 0Rfw σ w γ      (4.4.44) 

 (0) 0   (4.4.45) 

  (0) 2(1 α) (0) 0Rfσ        (4.4.46) 

 0(1) (1) αζ (1) (1) 0ω
T Tw σ w γ

π

        
 

    (4.4.47) 

 (1) 0w    (4.4.48) 
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Q T Rγ σ
π

      
 

  (4.4.49) 

 α (1) 2(1 α) (1) 0       . (4.4.50) 

The following non-dimensional counterparts of equations (4.4.20)-(4.4.23) should be used 

when Rfσ , 1Rσ  and/or Tσ  are infinitely large: 

 (0) 0w    (4.4.51) 

 (0) 0   (4.4.52) 

 0(1) αζ (1) 0ω
Tw

π

    (4.4.53) 

 (1) 0   . (4.4.54) 
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The ordinary differential equations (4.4.41), (4.4.42) and the boundary conditions 

(4.4.44), (4.4.46)-(4.4.50) are the Euler-Lagrange equations and natural boundary conditions 

associated with the vanishing of the first variation of the functional 
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1
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ω
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π

       . (4.4.55) 

For later convenience, we write (4.4.55) in the abbreviated form 

 ( , , ) ( , ) ( , )Π w γ A w γ B w           , (4.4.56) 

that is, ( , )A w    stands for the sum of the material terms in (4.4.55) (independent of γ ), 

while ( , )B w    is the sum of the geometrical terms per unit value of γ . 

In view of (4.4.30), it would have been more natural or, at any rate, more immediate 

to define the map 

 
*

3 3
3 3

(0)
( )

(0)

x EI
x ε x

L GJ



  (4.4.57) 

instead of 3 3ζ( )x x  given by (4.4.32). Our choice was dictated by practical reasons, since 

(4.4.32) is easily visualised and conveys a clear perception of position (in relation to the 

cross-sectional depth at the tip). On the contrary, (4.4.57) is far from being intuitive. 

However, we shall have the occasion to use (4.4.57). Note the relationship 

 0
3 3( ) α ζ( )ωε x x

π


  . (4.4.58) 

4.4.3 Numerical solution 

As in the illustrative example of the preceding chapter, the non-dimensional version of 

the archetypal problem is first converted into an inhomogeneous two-point boundary value 
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problem, which is then solved using the general-purpose code COLNEW,11 an approach that 

was successfully applied to the LTB analysis of prismatic beams by REISSNER et al. (1987). 

The conversion is achieved by supplementing the original eigenproblem with the first-order 

ordinary differential equations 

 0( ) 0s γ    (4.4.59) 

  
2

22 201 1
( ) ( ) 1 (1 α) ( )

2 2
ωs w s s s
π
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02(1 α) 1 (1 α) ( ) ( )ω s s s
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2 20
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J s s
π

  
            

  (4.4.60) 

and the boundary conditions 
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2 20
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(0) (0) (0)
2
Rf ω
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π

 
 
    

 
  (4.4.61) 

 
2

2 01(1) 1 (1) (1) αζ (1)
2 2

ωR T
T

σ σ
w

π

       
 

   . (4.4.62) 

The first additional differential equation is just a statement of the fact that an eigenvalue, 

formally regarded as a function of s , is a constant. The second differential equation, 

together with the added boundary conditions, is equivalent to imposing the normalisation 

 ( , ) 1A w     (4.4.63) 

and makes the eigenfunctions unique, up to sign. (Of course, when writing the boundary 

conditions (4.4.61)-(4.4.62) it was tacitly assumed that 1, ,Rf R Tσ σ σ   ; the modifications 

required to deal with an infinitely large σ  are obvious.) It should be noticed that (i) the 

augmented boundary value problem is non-linear, even though the original eigenproblem is 

linear, and (ii) the boundary conditions remain separated. 

Since the parametric study reported in the next subsection requires the solution of 

chains of “nearby problems” (known as “homotopy chains” – DEUFLHARD 1979, p. 65), a 

relatively crude, but very effective, continuation strategy was implemented: the solution of 

a previous problem is used as the initial guess for the next one, having the same data except 

for a small increment in a single parameter, a possibility that is already encoded in COLNEW. 

                                                 
11 A brief overview of COLNEW and its predecessor COLSYS is given in Appendix 1, at the end of chapter 3. 
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4.4.4 Parametric study 

Richard Hamming summed up his views on scientific computing with the motto “the 

purpose of scientific computing is insight, not numbers” (HAMMING 1962). In the 

parametric study presented next, we will try to live up to Hamming’s words and shed some 

light on the behaviour of restrained tapered I-beams. Each type of restraint is addressed 

separately – more specifically, we consider in succession the cases (i) 0Tσ  , with 0Rxσ   

and Rfσ   , (ii) 0Rxσ  , with 0Tσ   and Rfσ   , and (iii) 0Rfσ  , with 0T Rxσ σ  . 

In order to focus on the effect of the restraints and its interplay with the degree of web 

tapering, the parametric study is restricted to the centroidal loading case ( ζ 0Q  ). 

Moreover, having previously remarked that the parameter 0J  is relatively unimportant, we 

always set 0 0.1J   (vide supra, chapter 2, note 58). 

Built-in cantilevers ( Rfσ = + ) with a translational restraint at the tip ( > 0Tσ , 1 0Rσ = ) 

For selected values of the web taper ratio 
0

( )α h L
h  and for 

* ( 0 )
0 ( 0 )0.1 2.5ωEI

ω L GJ
  

, 

figure 4.4.3 shows: 

(i) The non-dimensional buckling loads 2 *
3/ (0) (0)cr cr refγ λ Q L EI GJ   and 2

bγ
( ) , 

corresponding to the first (critical) and second buckling modes of cantilevers that are 

entirely free at the tip ( 3 *
3/( (0)) 0T Tσ k L EI  ) – these results are presented for 

reference purposes; 

(ii) The non-dimensional critical loads of cantilevers with a rigid translational tip restraint 

( Tσ   ), located at the top flange ( 3 0ζ 2 /(α ) 1T
T x h   ), mid-depth ( ζ 0T  ) and 

bottom flange ( ζ 1T  ); 

(iii) The percentage increase of the critical load factor, relative to the free-end case, due to 

the rigid restraint, 

 100%
rigidly restrained free end
cr cr

free end
cr

λ λ
Δ

λ


   . (4.4.64) 

The results presented in this figure unveil the importance of the restraint location. Indeed, 

the effectiveness of the restraint in increasing the elastic buckling strength relative to the 

free-end case is greatest when it is located at the top flange (ζ 1T   ). Moreover, the 

effectiveness of a top-flange restraint increases with the web-taper ratio α . It is also visible 

in figure 4.4.3 that the benefit of a top-flange restraint generally increases with 0ω  for a 

sufficiently large α . On the other hand, for moderate-to-high 0ω  values, a bottom flange 
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restraint is almost completely ineffective, especially when the taper is not very pronounced. 

The main issue in explaining these behavioural features is the distance, when buckling sets 

off, between the rotation centre of the tip cross-section in the free-end case (i.e., without 

any restraint) and the location where the translational restraint is placed – the greater this 

distance, the more effective is the restraint. In order to back this assertion, we plot in figure 

4.4.4, for selected values of α  and 0ω , the percentage increase Δ  defined by equation 

(4.4.64) versus 
*
3 ( 0 ). .1

3 3 3 3( 0 )( ) ( )EIRC free end RC free endT T
L GJε x x x x  

, where .
3
RC free endx  is the 3x -

coordinate of the rotation centre in the free-end case and is given by 

 . 2.
3

1.

( )

( )

free end

RC free end cr

cr

w L
x

L
 

  
 

 . (4.4.65) 

Observe that: 

(i) Δ  always increases with .
3 3( )RC free end Tε x x . 

(ii) For a given 0ω , the variation of Δ  with .
3 3( )RC free end Tε x x  is only mildly sensitive to 

the web taper ratio α . For a given α , the dependence of these plots on 0ω  is more 

pronounced, although this is not immediately perceived in figure 4.4.4. 

Finally, notice that the critical load of a cantilever with a rigid translational restraint (even if 

located at the top flange) is always well below the second-mode buckling load of the same 

cantilever without the restraint – this is easily understood if the conjecture concerning the 

zeros of ( )
1.

n
b  proves to be true. 

Let us now turn to the influence of the restraint stiffness parameter 3 *
3/( (0))T Tσ k L EI  . 

We restrict ourselves to the case of a top-flange restraint ( ζ 1T   ). As shown in figure 

4.4.5, there is a well-defined threshold beyond which a further increase in Tσ  causes a 

negligible raise in buckling strength. Moreover, the ratio 

 100 %
elastically restrained free end
cr cr

rigidly restrained free end
cr cr

λ λ
r

λ λ


 


 (4.4.66) 

is practically independent of α  and 0ω , and this is perhaps the dominant feature in this 

figure. It is therefore possible to state, with generality, that 10Tσ   and 50Tσ   guarantee 

60%r   and 90%r  , respectively. These figures provide useful quantitative guidelines for 

designing the tip translational restraint as far as its stiffness is concerned. 
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Figure 4.4.3: Effect of a rigid translational restraint at the tip 
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in the free-end case and the location of the translational restraint 
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Figure 4.4.5: Effect of a linearly elastic top-flange translational restraint at the tip 
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Built-in cantilevers ( = +Rfσ  ) with a torsional restraint at the tip ( 1 >0Rσ , = 0Tσ ) 

We now investigate the effect of a torsional restraint located at the tip of a built-in 

cantilever. The examination of figure 4.4.6, which concerns a perfectly rigid restraint (that 

is, 1 1 /( (0))R Rσ k L GJ   ), prompts the following observations: 

(i) The critical load of a cantilever with a rigid torsional restraint is always well below the 

second-mode buckling load of the same cantilever with the tip entirely free – recall that 

the same was found in the case of a rigid translational restraint. 

(ii) The critical load factor percentage increase ( )/rigidly restrained free end free end
cr cr crΔ λ λ λ   due to the 

rigid torsional restraint generally grows with 0ω . However, the rate of growth 

gradually diminishes as the web-taper ratio α  decreases. For α 0.2 , the percentage 

increase Δ  remains comparatively constant. 

The influence of the restraint stiffness parameter 1Rσ  is depicted in figure 4.4.7. 

Once again, there is a limit value beyond which further increases in 1Rσ  lead to imperceptible 

gains in buckling strength. As for the ratio (4.4.66), it now exhibits some sensitivity with 

respect to both α  and 0ω . Nevertheless, it can be safely said that 1 10Rσ   and 1 60Rσ   

guarantee at least 60%r   and 90%r  , respectively. 

Overhanging beam segments free at the tip ( 1 = = 0R Tσ σ ), with linearly elastic 

warping and minor axis bending restraints at the support ( 0 < <Rfσ + ) 

Figure 4.4.8 shows the influence of the stiffness parameter *
32 /( (0))Rf Rfσ k L EI   

in overhanging beam segments. For large 0ω  (segments with short span and/or slender 

cross-section at the support) and fixed Rfσ , the non-dimensional critical load crγ  does not 

increase monotonically with the web taper ratio α . As a matter of fact, for low values of 

Rfσ , the trend is the opposite: crγ  decreases as α  increases. For large values of Rfσ , crγ  

reaches a minimum at an intermediate value of α . At first glance, these findings seem to 

defy our intuition, even more so because the stepped model yields a steady increase of crγ  

with α  (see the dashed lines in the bottom graphs of figure 4.4.8). However, this seeming 

paradox has an explanation, which is addressed next. The buckling strength of 

cantilevers/segments with large 0ω  (for illustration, we take 0 2.0ω   as reference 

throughout the discussion) depends to a large extent on the warping torsion (i.e., torsion 

due to non-uniform warping) generated when buckling occurs. Non-uniform warping 

reflects itself in the membrane strains shown in figure 2.11.3 – in web-tapered I-beams, 
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Figure 4.4.6: Effect of a rigid torsional restraint at the tip 

these strains comprise two terms, one associated with 1h  (also present in prismatic 

members) and the other depending on 1tanφ  (peculiar to tapered members). For warping 

to be uniform, it is required that 

  
1

1 1 1
1 1

( )
( ) tan ( ) 0 , 0,

4

h θ
θ φ θ θ L       (4.4.67) 

or, in non-dimensional terms, 

    1 (1 α) ( ) 2(1 α) ( ) 0 , 0,1s s s s           . (4.4.68) 
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Figure 4.4.7: Effect of a linearly elastic torsional restraint at the tip 
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Figure 4.4.8: Effect of linearly elastic warping and minor axis bending restraints at the support 

In prismatic beams, (4.4.67) and (4.4.68) become simply 

  1 1
1( ) 0 , 0,θ θ L     (4.4.69) 

  ( ) 0 , 0,1s s     . (4.4.70) 
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Let us examine first the low Rfσ  case (say, 210Rfσ
 ), corresponding to a practically 

non-existent warping restraint at the support, and see how the preceding interpretative key 

applies. The graphs on the left-hand side of figure 4.4.9, concerning cantilevers with 

0 2.0ω  , provide the basis for the ensuing discussion – they display (i) the critical 

buckling modes ( , )cr crw   associated with selected values of α , normalised so as to have 

( , ) 1cr crA w    , and (ii) the corresponding non-dimensional lateral deflections 

  01 (1 α) ω

cr crπw s       of the flange centroidal lines. The careful consideration of these 

graphs prompts the following observations: 

(i) One need not be concerned with the lateral bending of the cantilevers, since crw  is 

practically independent of α . 

(ii) In a prismatic member (α 1 ), the  -component of the critical buckling mode is 

almost linear (the 2L  norm of its second derivative,  2

1/21 2
0

( )cr crL
s ds     , is very 

small, as shown in figure 4.4.10), indicating that warping is nearly uniform – this was 

already noted by TRAHAIR (1983) and leads to a low buckling strength. 

(iii) Now, decrease α , starting from α 1 . Up to a certain point (roughly α 0.4 0.5  ), 

the  -components of the critical buckling modes remain almost linear, and their 

(practically constant) slope gradually decreases (e.g., see the case α 0.6  in figure 4.4.9). 

However, in view of (4.4.68), a linear cr  no longer means that warping is uniform, 

since the second term on the left-hand side of this equation, intrinsically associated 

with the web depth variation, does not vanish – notice the difference in lateral bending 

curvature between the top and bottom flange centroidal lines for α 0.6 , which is 

clearly higher than in the prismatic case. There is thus some amount of warping torsion 

generated during buckling, responsible for the gradual increase in crγ  with decreasing 

α  observed in figure 4.4.8 (bottom left-hand corner). 

(iv) When α  drops below 0.4  (a situation typified by α 0.2  in figure 4.4.9), the 

normalised critical buckling modes cr  exhibit a more noticeable, even if still mild, 

curvature (as reflected in a higher 2L  norm of cr  – see figure 4.4.10), so that both 

terms on the left-hand side of (4.4.68) are clearly non-zero. In the central portion of 

the span, these two terms have the same sign ( cr  and cr  have opposite signs), thus 

reinforcing each other and leading to larger warping strains. Near the ends, on the 

contrary, they tend to cancel each other out ( cr  and cr  have the same sign). The net 

effect, in this case, is to further increase crγ  as α  decreases. 
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Figure 4.4.9: Critical buckling modes ( , )cr crw  , normalised so as to have ( , ) 1cr crA w    , 

and corresponding non-dimensional lateral deflections of the flange centroidal lines 
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Figure 4.4.10: 2L  norm squared of cr  per unit value of ( , )cr crA w    

A closer look at the value at ( , )cr crw   of the material part of the non-dimensional 

energy functional (4.4.55) – i.e., at ( , )cr crA w    – corroborates the above analysis. This 

functional is disassembled in its individual terms and, for ease of reference, the following 

notation is adopted: 
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In figure 4.4.11, the percentage contribution of these individual terms to the aggregate total 

( , )cr crA w    is plotted as a function of α . The observation of the top graph shows that: 
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(i) The ratio 3( )/ ( , )cr cr crA w A w     is independent of α  and equal to 50%. In fact, this 

result can be easily proven. Since 0Tσ  , one has 

 ( ) (1 ) ( )w s γ s s     ,  0 1s   , (4.4.77) 

which is just the non-dimensional version of equation (4.4.27). Therefore (recall that 

we are taking ζ 0Q  ), 

 
1 1 2

30 0
( , ) (1 ) ( ) ( ) ( ) 2 ( )γ B w γ s w s s ds w s ds A w             . (4.4.78) 

The desired result now follows at once from the identity (LANGHAAR 1962, § 6.4) 

 ( , ) ( , )cr cr cr cr crA w γ B w      . (4.4.79) 

Note that this reasoning does not rest on any particular value or order of magnitude 

assumed for Rfσ . 

(ii) The ratio ( )/ ( , )ω cr cr crA A w      is always small, never exceeding 5%, and its 

dependence on α  is very mild. 

(iii) As α  decreases, one notices a steady decay in the ratio SV( )/ ( , )cr cr crA A w      associated 

with Saint Venant torsion, which is compensated by an increase in 

 ( ) ( ) / ( , )ωψ cr ψ cr cr crA A A w         (i.e., an increase in the contribution of the terms 

involving the non-standard mechanical properties). The latter is mainly due to ( )ψ crA  , 

whilst ( )/ ( , )ωψ cr cr crA A w      remains always very small, oscillating between 0 and 3%. 

Suppose now that Rfσ  is large (say, 610Rfσ  ), so that warping at the support is 

effectively prevented. Again, we may focus exclusively on the torsional behaviour at 

buckling, since lateral bending is unaffected by the web-taper ratio α . Near the support, 

and for the entire range of variation of α , the  -component of the critical buckling modes 

exhibits a substantial curvature and the flanges bend in opposite directions, as shown on 

the right-hand side of figure 4.4.9. Further away from the support, the shape of cr  

depends on α : for moderate-to-high values of α  (including the prismatic case), it is almost 

a straight line; for smaller α , however, the cr  display some curvature (this trend is 

reflected in figure 4.4.10). We therefore conclude that: 

(i) In a prismatic member, warping is clearly non-uniform near the support, but nearly 

uniform throughout the remaining portion of the beam. 

(ii) In a tapered member, both terms on the left-hand side of equation (4.4.68) are non-

zero near the support, but since cr  and cr  have the same sign, they tend to cancel each 
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Figure 4.4.11: Contribution of the individual material terms (4.3.71)-(4.3.76), with crw w   

and cr   , to the aggregate total ( , )cr crA w    
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other out, leading to the generation of a smaller amount of warping torsion in this 

beam segment, when compared with the prismatic case. 

(iii) On the remaining portion of the beam, away from the support, the first term on the 

left-hand side of (4.4.68) is practically zero when α  takes on moderate-to-high values; 

the effect of the second term (the one associated with the height variation), which is 

non-zero, turns out to be insufficient to compensate for item (ii), and the net result is a 

gradual decrease in crγ  with decreasing α , at a slightly faster rate than predicted by the 

piecewise prismatic model (see figure 4.4.8). 

(iv) For sufficiently low α , both terms on the left-hand side of (4.4.68) are non-zero away 

from the support, with cr  and cr  sharing the sign near the tip and having opposite 

signs in the central portion of the span. The overall effect is to raise the non-

dimensional buckling load crγ  as α  decreases in the range α 0.6 , as shown in figure 

4.4.8. 

The plot at the bottom of figure 4.4.11 corroborates the above analysis – indeed: 

(i) The ratio ( )/ ( , )ω cr cr crA A w      is practically independent of α , but its contribution is 

now substantial, in stark contrast with the low Rfσ  case. 

(ii) The ratio ( )/ ( , )ωψ cr cr crA A w      is always negative for 0.2 α 1.0  . The sum 

 ( ) ( ) / ( , )ωψ cr ψ cr cr crA A A w         reaches a minimum at α 0.6  (which virtually 

coincides with the minimum in the graph crγ  vs. α  for 0 2.0ω   shown in figure 4.4.8) 

and is positive for 0.2 α 0.4   (roughly agreeing with the domain where the values of 

crγ  for 0 2.0ω  , yielded by the tapered model, are above those predicted by the 

stepped model). 
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Chapter 5 

LATERAL-TORSIONAL BUCKLING OF STRIP 

BEAMS WITH LINEARLY TAPERED DEPTH 

A SIMPLE PROBLEM, NOT SO SIMPLE (ANALYTICAL) ANSWER 

Was du ererbt von deinen Vätern hast, 
Erwirb es, um es zu besitzen. 

JOHANN WOLFGANG VON GOETHE 

I think that if in some case it is permissible to use unclear considerations, it is 
when one ought to establish a new principle, that does not logically follow from 

what is accepted already, and which is not in logical contradiction with other principles 
of science, but one cannot set this way when one has to solve a determined problem 

(of mechanics or of physics), which is posed mathematically in fully exact manner. 
This problem then becomes a problem of pure analysis and should be solved as such.1 

ALEKSANDR MIKHAILOVICH LYAPUNOV 

5.1 INTRODUCTION 

Strip beams – that is, slender flexural members with narrow rectangular cross-section 

– are extensively used in civil, mechanical and aeronautical engineering. Owing to the ever 

present need to save weight and material in structural design, the use of tapered strip beams 

(i.e., strip beams with a continuously varying depth and/or thickness) is particularly 

attractive. “Form ever follows function”, as architect Louis Sullivan proclaimed.2 

When loaded in the plane of greatest bending stiffness and if not adequately braced, 

a strip beam, either prismatic or tapered, is highly susceptible to lateral-torsional buckling 

(LTB), a bifurcation-type instability in which (i) the fundamental equilibrium path corresponds 

to shapes that are symmetric with respect to the plane of loading and (ii) the buckled states 

                                                 
1 Translation from the Russian by Isaac Elishakoff (ELISHAKOFF 2005, p. 625). 
2 To put it more elaborately, function does not dictate form, it rather provides the discipline within which 

the designer finds the freedom to invent form (BILLINGTON 1997, p. 118). 
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are associated with non-symmetrical shapes – the beam deflects laterally (out-of-plane) and 

twists. The elastic LTB behaviour of prismatic strip beams has been extensively 

investigated since the pioneering studies of MICHELL (1899), PRANDTL (1899) and 

REISSNER (1904).3 On the contrary, the LTB of tapered strip beams has received 

comparatively little attention, particularly if  the focus is placed on analytical studies, i.e., 

those that aim at obtaining exact closed-form solutions to the governing differential 

equations and, thereby, at establishing exact closed-form characteristic equations for the 

buckling loads (even if  these characteristic equations are transcendental and do not admit 

closed-form solutions).4 In fact, to the author’s best knowledge, only FEDERHOFER (1931) 

and LEE (1959) have approached the subject from an analytical viewpoint. Federhofer 

considered cantilevers with constant thickness whose depth at a distance x  from the 

clamped end is given by 

 0( ) 1
n

x
h x h

L
   
 

  , with 0 1n   , (5.1.1) 

where L  is the cantilever length and 0h  is the (maximum) depth at the clamped end – see 

figure 5.1.1. Observe that 0n   defines a prismatic member, while 1n   corresponds to a 

wedge-shaped one. Three types of transverse loading were addressed: (i) an uniformly 

distributed load, (ii) a point load applied at the free end and (iii) a distributed load whose 

magnitude q  varies according to the same power law as the depth, that is, 

 0( ) 1
n

x
q x q

L
   
 

 . (5.1.2) 

In all three cases, the loads were applied at mid-depth. Federhofer showed that the 

governing differential equations are reducible to Bessel’s equation, whose order depends on 

the parameter n  and on the type of loading. Finding the buckling loads then amounts to 

finding the positive roots of certain Bessel functions of the first kind. As for Lee, he 

studied strip beams with constant thickness and linearly tapered depth under uniform moment. 

                                                 
3 The strive for transparency in architectural design has led in recent years to an increasing use of glass panes 

as load-bearing elements and, consequently, to a renewed interest in this problem, as attested by LINDNER 
& HOLBERNDT (2006) and LUIBLE & CRISINEL (2005, 2006). 

4 It is generally believed that analytical solutions (in the above sense) exist for only relatively few, very simple 
buckling problems involving columns, beams and plates. The monographs by ELISHAKOFF (2005) and 
WANG et al. (2005) prove that there are, in fact, not just a few such solutions. However, as far as the LTB 
of tapered strip beams is concerned, the general belief is entirely warranted. 
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Figure 5.1.1: A sample of the class of strip beams investigated by FEDERHOFER (1931) – 

Side elevation 

The beams were simply supported in the two principal bending planes, with the twist 

rotation prevented at both ends. The governing differential equation can be cast in the 

form of an Euler differential equation (e.g., CODDINGTON & CARLSON 1997, § 6.3.2), whose 

general solution is expressible in terms of trigonometric and logarithmic functions. The 

buckling moments are then given by a closed-form expression. 

This chapter can be roughly divided into three parts. The first part, comprising 

§§ 5.2-5.5, is a deeply revised and greatly expanded version of selected parts of the paper 

CHALLAMEL et al. (2007). It presents an analytical study on the elastic LTB of homogeneous 

strip beams with constant thickness and linearly tapered depth (prismatic beams being a 

special case). The beams are cantilevered and acted at the free end by a conservative point 

load, whose point of application may be vertically offset from the cross-section centroid. In 

§ 5.2, the LTB problem is formulated as a Steklov-type eigenvalue problem, written in terms 

of a single dependent variable, namely the twist rotation of the cross-sections. The 

prismatic case is dealt with in § 5.3 – the specialised eigenproblem is cast in non-dimensional 

form, the general solution of the governing differential equation is found in terms of Bessel 

functions and the characteristic equation is obtained in closed-form. The tapered case 

(properly speaking) is the object of § 5.4. Once again, the eigenproblem is first cast in non-

dimensional form. The general solution of the governing differential equation is now given 

in terms of Kummer’s confluent hypergeometric function. The buckling loads correspond 

to the roots of the determinant of a 4 4  real matrix, whose entries are obtained in closed-

L

0h  

0n  1n   1
2n   1

4n   3
4n   
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form. Section 5.5 addresses, in the restricted context of centroidal loading, the following 

question: of all tip-loaded, homogeneous and linearly tapered strip cantilevers with prescribed 

length, thickness, volume and elastic properties, which has the largest critical load? 

In the second and third parts of the chapter, the problem described in § 5.2 is 

generalised along two different lines. First, in § 5.6, the analysis is extended to cantilevers 

(i) whose depth varies according to a non-increasing polygonal function of the distance to 

the support and (ii) which are subjected to an arbitrary number of independent conservative 

point loads, all acting in the same “downward” direction. However, instead of dealing with 

this extended problem in such general terms, a special case that “contains all the germs of 

generality” (to quote David Hilbert) is considered – a two-segment cantilever acted by two 

transverse loads, one applied at the free end and the other at the junction between 

segments. It is shown that the governing differential equations, cast in non-dimensional form, 

can be integrated in terms of confluent hypergeometric functions (Kummer and Tricomi 

functions) or Bessel functions, themselves special cases of confluent hypergeometric functions. 

It thus becomes possible to establish the exact characteristic equation for this structural system, 

which implicitly defines its stability boundary in the load-parameter space. This investigation 

was reported in the paper ANDRADE et al. (2012). 

A beam-column that is bent in its plane of greatest stiffness and lacks adequate 

bracing may also experience out-of-plane buckling – the phenomenon is now called 

flexural-torsional buckling (FTB). The purpose of § 5.7 is the study of the elastic FTB 

behaviour of linearly tapered and cantilevered strip beam-columns acted by axial and 

transverse point loads applied at the centroid of the free-end section. For prismatic 

members, the governing differential equation can be integrated in closed-form by means of 

Kummer’s confluent hypergeometric function. In the tapered case (strictly speaking), the 

analytical approach is fruitful only for certain ratios between the minimal and maximal 

depth of the beam-column. Indeed, the solution to the eigenproblem is obtained in the 

form of a Frobenius series, which is shown to converge in the interior of the domain and at 

the boundary if and only if 1
2 1h

h min

max
. If such is the case, then the series solution can be 

used to set up the characteristic equation for the cantilever beam-column. Otherwise, the 

problem is solved numerically by means of a collocation procedure. The contents of this 

section, along with other material not included here, were published in the paper 

CHALLAMEL et al. (2010). 
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At this point, the sceptical reader might question the purpose of analytical 

investigations in this day and age of powerful numerical techniques and high-speed, large-

capacity computers. At a philosophical level, the answer is found in Lyapunov’s quotation 

at the beginning of the chapter. At a more utilitarian level, it is remarked that there are a 

number of important uses for analytical solutions: 

(i) to gain physical insight into the roles played by the various geometrical and mechanical 

parameters; in particular, to elucidate those features of the solution that remain obscured 

in numerical analyses (a single numerical solution, based on assigned values of the 

parameters involved, does not reveal the whole physical and mathematical structures 

of the problem, nor does a collection of such solutions); 

(ii) for preliminary design; 

(iii) as benchmark solutions for verifying computational models.5 

* * * 

Since this chapter requires some familiarity with the rudiments of the theory of 

analytic maps of a real or complex variable, the following paragraphs contain a terse 

summary of the necessary prerequisites on this subject. For a systematic treatment, 

reference is made to KRANTZ & PARKS (2002) and CARTAN (1992). 

A real or complex-valued (resp. complex-valued) map f  defined on an open subset 

D  of   (resp. of  ) is said to be real analytic (resp. complex analytic or holomorphic) on 

D  if, for each point 0x D , there exists an open interval (resp. an open disk) centred at 

0x , with positive radius 0( )r x  and contained in D  such that, on this interval (resp. disk), 

( )f x  may be represented by a convergent series in powers of 0x x : 

 0
0

( ) ( )n
n

n

f x a x x




    for 0 0( )x x r x   . (5.1.3) 

If such a representation exists, then it is unique. A map is said to be (real or complex) 

analytic at a point if it is (real or complex) analytic on some neighbourhood of that point. If 

f  is defined on an arbitrary subset A of   or  , not necessarily open, then f  is said to 

be (real or complex) analytic on A if it is the restriction to A of an analytic map on an 

                                                 
5 Verification is here understood as “the process of determining if a computational model obtained by 

discretizing a mathematical model of a physical event and the code implementing the computational model 
can be used to represent the mathematical model of the event with sufficient accuracy” (BABUSKA & 
ODEN 2004). 
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open set containing A (LANG 1999, p. 69). A complex analytic map on the whole of   is 

called an entire map. 

It is true, but not immediately obvious, that the map defined by a convergent power 

series is (real or complex) analytic on the interior of the domain of convergence. Polynomials 

are therefore analytic maps on the whole of the real line or on the whole of the complex 

plane, and so is the exponential map xx e , defined for real or complex x  by 

 
0

1

!
x n

n

e x
n





  .6 (5.1.4) 

Let f  be the (real or complex) map defined by the power series 00 ( )n
nn a x x

  , with 

radius of convergence 0r  . Then f  is differentiable (hence continuous) for 0x x r   

and its derivative may be obtained by term-wise differentiation of the power series: 

 1
0

1

( ) ( )n
n

n

f x n a x x






    . (5.1.5) 

The derived series (5.1.5) has the same radius of convergence r  as the original series. It 

follows that a (real or complex) analytic map on D  is infinitely differentiable on D  and all 

its derivatives are analytic on D . 

The sum and product of two analytic maps on D  are also analytic on D . Moreover, 

if f  is analytic on D  and 1D  is the set of points in D  where f  does not vanish, then 

1/ f  is analytic on 1D . In particular, rational maps are analytic on the complement of the 

set of zeros of the denominator. Finally, if f  is analytic on D  and takes its values in F  

and if g  is analytic on F , then the composition g f  is analytic on D . 

Every map of a complex variable that is differentiable on an open set  D  is in 

fact analytic on D , and hence infinitely differentiable on D . The situation is entirely 

different in the case of a real variable: there exist differentiable maps whose derivatives are 

not differentiable; moreover, there exist infinitely differentiable maps which are not analytic 

(a classic example is given in CAMPOS FERREIRA 1987, pp. 417-418). 
  

                                                 
6 The fundamental properties z w z we e e   and ( )z ze e   of the exponential remain valid for every complex 

numbers z  and w . 
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5.2 THE PROBLEM AND ITS MATHEMATICAL FORMULATION 

We consider the LTB of a homogeneous and perfectly straight elastic strip cantilever, 

whose depth tapers linearly. The beam is clamped at its larger end and free at the smaller 

end, where a transverse point load is applied  see figure 5.2.1. 

The beam is identified with its unloaded shape B E , which is taken as the reference 

shape. To facilitate the geometrical description of B , a fixed rectangular Cartesian frame 

  1 2 3, , ,O e e e  is adopted. The reference shape B  is symmetrical relative to the planes 

passing through the origin O  and spanned by  1 3,e e  and  1 2,e e . The beam axis lies on 

the intersection of these two planes and the cross-sections are orthogonal to it. Let 

 3ˆ :x E  denote the coordinate system associated with the adopted frame, that is, the 

map that assigns to each point X  in E  the ordered triplet 3
1 2 3( , , )x x x   defined by 

( )i ix X O  e , 1, 2, 3i  . The image of B  under x̂  is (see figure 5.2.1) 

             3 1 1
1 2 3 1 2 3

( ) ( )
ˆ ( , , ) 0 , ,

2 2 2 2

t t h x h x
x x x x x L x xB  . (5.2.1) 

Here, L  is the length of the cantilever and t  its (uniform) thickness. The map  : 0,h L    

that describes the longitudinal variation of the cantilever depth is an affine map, defined by 

 1
1 0( ) 1 (1 α)

x
h x h

L
    
 

 , (5.2.2) 

 

Figure 5.2.1: Linearly tapered strip cantilever – Reference and buckled shapes; applied load 

0h  

L

0αh  
3
Qx  

3refλ Q e  

t  

2( )w L  

1( )L  

1e  

3e  3e  
2e  O  

3refλ Q e  
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with 0 α 1  . It is assumed that 0t h L  . The parameter α  will be called the taper 

ratio. Observe that α 1  defines a prismatic beam. Moreover, for fixed 0h  and L , the 

larger the taper ratio, the less pronounced the taper. 

The elastic material constituting the beam is homogeneous and isotropic and the 

reference (unloaded) placement is assumed to correspond to a natural sate (CIARLET 1988, 

p. 118). This implies that, to within the first order with respect to the Green strain tensor, the 

behaviour of the material is governed by only two constants, e.g., the Young modulus E  and 

the shear modulus G  (CIARLET 1988, th. 3.8-1). 

The cantilever is acted at its free end by a conservative point load 3QQ e  applied 

to the material point whose reference place is 1 3 3
QO L x e e . (If 0α

3 2
Q hx  , the point of 

application of the load is assumed to be connected to the end cross-section by a rigid rod, 

initially parallel to 3e .) The magnitude Q  of the applied load is deemed proportional to a 

single factor λ , and therefore one writes refQ λ Q , where refQ  is a positive reference 

magnitude. As shown schematically in figure 5.2.1, the load remains parallel to 3e  throughout 

the deformation process. 

It is required to find those values of λ , called buckling load factors, for which there 

exist, in addition to the fundamental equilibrium state (which corresponds to bending of 

the cantilever in its plane of greatest flexural rigidity), adjacent equilibrium states involving 

out-of-plane bending and torsion. It is further required to characterise the difference 

between adjacent and fundamental equilibrium shapes, i.e., the buckling mode associated 

with a given buckling load factor. 

Let 2Π  denote the second-order term of the change in total potential energy of the 

beam-load system from a fundamental equilibrium state (at constant load level λ ). With 

2 1( )w x  (resp. 1 1( )x ) representing the incremental displacement along 2e  of the centroid 

(resp. the incremental twist rotation) of the cross-section at a distance 1x  from the support 

in the reference placement, one takes 2Π  in the form 

 2 2
2 2 1 3 1 2 1 1 1 1 1 10 0

1 1
( , , ) ( ) ( ) ( ) ( )

2 2

L L
Π w λ EI x w x dx GJ x x dx       

       
  21

2 1 1 1 1 3 10

1
1 ( ) ( ) ( )

2

L Q
ref ref

x
λ Q L w x x dx λ Q x L

L
 , (5.2.3) 

where the lateral bending and torsional rigidities vary with 1x  according to 
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3 3

1 0 1 1
3 1 3

( )
( ) 1 (1 α ) (0) 1 (1 α)

12 12

E h x t E h t x x
EI x EI

L L
            
   

 (5.2.4) 

 
3 3

1 0 1 1
1

( )
( ) 1 (1 α ) (0) 1 (1 α )

3 3

G h x t G h t x x
GJ x GJ

L L
            
   

 . (5.2.5) 

The first and second terms in the functional (5.2.3) represent the change in strain energy as 

given by the linear theory; the third term is the work of the stresses acting in the 

fundamental state due to the second-order components of the incremental deformation; 

finally, the fourth term is the negative of the second-order part of the work of the external 

loads (PIGNATARO et al. 1991, p. 230). 

Observe that the effect of taper is accounted for merely by replacing a constant 

depth with a variable one in equations (5.2.4)-(5.2.5). It is thus assumed that taper does not 

further influence the computation of the cross-sectional rigidities 3EI  and GJ . There is 

theoretical (NADAI 1925, p. 203, and TRABUCHO & VIAÑO 1996, p. 799) and experimental 

(COLEMAN 1939 and LEE 1956) evidence in support of such an assumption. Nevertheless, 

it must be acknowledged that a recent asymptotic investigation of the linear in-plane 

bending behaviour of tapered strip beams (HODGES et al. 2008) showed that a correction 

for taper that explicitly involves h   should be included in the cross-sectional properties 

(axial and major bending rigidities) – see also BOLEY (1963). 

A number of additional assumptions and simplifications are implicit in equations 

(5.2.3)-(5.2.5), namely: 

(i) Transverse shear deformations are negligible. An analysis of the effects of transverse 

shear deformations on the lateral-torsional buckling of end-loaded prismatic strip 

cantilevers is given by REISSNER (1979). 

(ii) The effect of restrained torsion warping may be ignored. In the case of prismatic strip 

beams, this assumption was shown to be legitimate by VOLOVOI et al. (1999). 

(iii) Even discarding the influence of taper, the formula for 1( )GJ x  used in equation (5.2.5) 

is approximate and presupposes that the strip beam exhibits throughout its whole 

length a sufficiently large depth-to-thickness ratio (a similar remark was made in 

§ 2.10.1 – for details, see TIMOSHENKO & GOODIER 1970, §§ 108-109). 

(iv) The effect of bending curvature in the plane of greatest flexural rigidity prior to 

buckling is neglected. For end-loaded prismatic strip cantilevers, this effect is 

thoroughly discussed by HODGES & PETERS (1975) and REISSNER (1979, 1981). 
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The complete definition of the functional 2Π  still requires the specification of its 

domain. In particular, the class of admissible maps 2w  and 1  needs to be addressed, and 

this entails the characterisation of the following two properties: (i) the smoothness these 

maps must exhibit and (ii) the boundary conditions they must satisfy. For the integrals in 

(5.2.3) to make sense, an adequate smoothness requirement is that 2w  (resp. 1 ) be square-

integrable on the interval  0, L  and possess square-integrable first and second derivatives 

(resp. first derivative) on that interval.7 However, with a view towards establishing the Euler-

Lagrange equations associated with 2Π , one makes the more stringent requirement that 

2w  (resp. 1 ) be four times (resp. twice) continuously differentiable on  0, L  (e.g., 

AXELSSON & BARKER 1984, ch. 2). In addition, 2w  and 1  must satisfy the essential 

boundary conditions 

 2(0) 0w  (5.2.6) 

  2(0) 0w  (5.2.7) 

  1(0) 0  . (5.2.8) 

The domain of the functional 2Π  is thus taken to be 1 2  D D D , with 

      4
1 2 2 20, (0) 0 , (0) 0w C L w wD  (5.2.9) 

      2
2 1 10, (0) 0C LD  . (5.2.10) 

Clearly, 1D  and 2D  are real linear spaces, with addition and multiplication by scalars 

defined in the usual point-wise manner. 

Let 2δw  and 1δ  be admissible variations of 2w  and 1  (that is, differences between 

any two admissible maps 2w  or 1 ).8 The first variation of 2Π  at 2 1( , , )w λ  in the direction 

of 2 1( , , 0 )δw δ , defined as 

 2 2 1 2 1 2 2 2 1 1
0

( , , )[ , , 0] ( , , )
a

d
δΠ w λ δw δ Π w a δw a δ λ

da
   



     ( a  ) , (5.2.11) 

reads (Leibniz rule – e.g., BARTLE 1967, th. 23.10 – is used to differentiate under the 

integral sign) 

                                                 
7 By virtue of Sobolev’s imbedding theorem, these conditions of square integrability imply that 2w  is 

continuously differentiable on  0, L  and 1  is continuous on  0, L  – e.g., BREZIS 2011, pp. 213 and 217, 

or DACOROGNA 2004, remark 1.44(vii). 

8 Observe that the set of all admissible variations 2δw  (resp. 1δ ) is the linear space 1D  (resp. 2D ) itself. 
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        2 2 1 2 1 3 1 2 1 2 1 1 1 1 1 10
( , , )[ , , 0] ( ) ( ) ( ) ( ) ( ) ( )

L
δΠ w λ δw δ EI x w x δw x GJ x x δ x  

             
1

1 1 2 1 2 1 1 1 11 ( ) ( ) ( ) ( )ref

x
λ Q L x δw x w x δ x dx

L
 

   3 1 1( ) ( )Q
refλ Q x L δ L  . (5.2.12) 

Since the admissible maps 2w  and 1  (as well as their admissible variations) are smooth 

enough to allow integration by parts (e.g., CAMPOS FERREIRA 1987, ch. 5, § 1, th. 18), one gets 

   
             

 1
2 2 1 2 1 3 1 2 1 1 1 2 1 10
( , , )[ , , 0 ] ( ) ( ) 1 ( ) ( )

L

ref

x
δΠ w λ δw δ EI x w x λ Q L x δw x dx

L
 

             1
1 1 1 2 1 1 1 10

( ) ( ) 1 ( ) ( )
L

ref

x
GJ x x λ Q L w x δ x dx

L
 

   
            

1
3 1 2 1 1 1 2 1

0

( ) ( ) 1 ( ) ( )

L

ref

x
EI x w x λ Q L x δw x

L
 

          
1

3 1 2 1 1 1 2 1

0

( ) ( ) 1 ( ) ( )
L

ref

x
EI x w x λ Q L x δw x

L
 

     1 1 1 1 1 3 1 10
( ) ( ) ( ) ( ) ( )

L Q

refGJ x x δ x λ Q x L δ L  . (5.2.13) 

By virtue of the fundamental lemma of the calculus of variations (e.g., DACOROGNA 

2004, th. 1.24), the vanishing of 2δΠ  for all admissible 2δw  and 1δ  – often referred to in 

the literature as the criterion of Trefftz (TREFFTZ 1930, 1933)9 – leads to the classical or 

strong form of the LTB problem, which may be phrased as follows: 

Problem 5.1. 

Find λ  and real-valued maps 2w , 1  defined on the interval  0, L , with 

   4
2 0,w C L , 

    2
1 0,C L  and 

 2 0w  or  1 0 , 

satisfying the differential equations 

 1 1
3 2 1 1 1(0) 1 (1 α) ( ) 1 ( ) 0ref

x x
EI w x λ Q L x

L L


              
 (5.2.14) 

                                                 
9 See also KOITER (1963, pp. 257-259) and WEMPNER (1972). 
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 1 1
1 1 2 1(0) 1 (1 α) ( ) 1 ( ) 0ref

x x
GJ x λ Q L w x

L L


                
 (5.2.15) 

on the open interval  0, L ,10 together with the boundary conditions 

 2(0) 0w  (5.2.16) 

  2(0) 0w  (5.2.17) 

  1(0) 0  (5.2.18) 

 3 2α (0) ( ) 0EI w L   (5.2.19) 

 3 2 3 2 1

1 α
α (0) ( ) (0) ( ) ( ) 0refEI w L EI w L λ Q L

L
     (5.2.20) 

 1 3 1α (0) ( ) ( ) 0Q
refGJ L λ Q x L     . (5.2.21) 

From a mathematical viewpoint, Problem 5.1 is a Steklov-type eigenproblem 

(BABUSKA & OSBORN 1991, p. 649) – the buckling load factors and the corresponding 

buckling modes are its eigenvalues and eigenfunctions. The characteristic space associated 

with a given buckling load factor λ  is the set of all solutions 2 1( , )w  of (5.2.14)-(5.2.21) for 

the given λ , including the trivial solution  2 1( , ) (0, 0)w . It is a subspace of the real vector 

space    0 00, 0,C L C L . 

In fact, it suffices to consider eigenpairs with positive eigenvalues. Indeed, zero is not 

an eigenvalue (unloaded cantilevers do not buckle), as easily seen by direct inspection, and 

the eigenpairs with negative eigenvalues can be obtained from those with positive eigenvalues 

by symmetry considerations. For suppose that we are given two particular instances of 

Problem 5.1, labelled A and B, specified by the same 3(0)EI , (0)GJ , L , α  and refQ , but 

having symmetrical 3
Qx . Then  2 1,( , )λ w  is an eigenpair of A if and only if 

   2 1,( , )λ w  is an eigenpair of B. Therefore, we may replace “ λ ” with “ λ  ” 

in the statement of Problem 5.1 without loss of generality. 

From an engineering viewpoint, the lowest positive eigenvalue is of particular 

interest. It is called the critical load factor and denoted by crλ . The corresponding buckling 

                                                 
10 These are the Euler-Lagrange equations associated with 2Π . They form a mixed-order system of 

homogeneous linear ordinary differential equations with polynomial coefficients (of degree 1 ). The first 

equation can be solved for ( 4 )
1( )v x  since the corresponding coefficient does not vanish on  0, L  – it is a 

positive constant if α 1  and a first-degree polynomial with root 1 / (1 α)x L L    if 0 α 1  . 

Similarly, the second equation can be solved for 1( )x . 
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mode is labelled critical as well and written 2. 1.( , )cr crw  . One also speaks of the critical load 

and critical moment, defined as cr ref crQ Q λ  and cr ref crM Q L λ . 

Integrating twice the differential equation (5.2.14), one obtains, for every 1x  in  0, L , 

 1 1
3 2 1 1 1 1(0) 1 (1 α) ( ) 1 ( )ref

x x
EI w x λ Q L x c

L L


              
 (5.2.22) 

 1 1
3 2 1 1 1 1 1 2(0) 1 (1 α) ( ) 1 ( )ref

x x
EI w x λ Q L x c x c

L L
             

 , (5.2.23) 

with 1 2,c c . Since it is required that   4
2 0,w C L  and    2

1 0,C L , it follows from 

the “principle of extension of identities” (BOURBAKI 2007a, p. 53, or DIEUDONNÉ 1960, 

th. 3.15.2) that these equations hold at 1 0x   and 1x L  as well. The boundary conditions 

(5.2.19)-(5.2.20) then imply  1 2 0c c  and lead to the conclusion that 2w  and 1  are related 

through 

 

1

2 1 1 1
1

3

1
( ) ( )

(0) 1 (1 α)

ref

x
λ Q L

Lw x x
x

EI
L



  
   

   
 

 (5.2.24) 

on the interval  0, L . Moreover, when taken together with (5.2.16) and (5.2.17), this 

equation shows that  1 0  implies 2 0w . We are thus in a position to eliminate 2w  and 

write the buckling problem in terms of the single dependent variable 1  – in this sense, equation 

(5.2.24) may be regarded as a holonomic constraint (LANCZOS 1970, ch. 1, § 6). Problem 5.1 

is thereby replaced with the following, which takes the form of a quadratic eigenproblem: 

Problem 5.2. 

Find λ   and   1 : 0, L , with    2
1 0,C L  and  1 0 , satisfying the 

differential equation 

 
2

1 1
3 1 1 3 1 1

1 α
(0) (0) 1 (1 α) ( ) (0) (0) 1 (1 α) ( )

x x
EI GJ x EI GJ x

L L L
            

   
 

         

2

1
1 11 ( ) 0ref

x
λ Q L x

L
 (5.2.25) 

on the open interval  0, L , together with the boundary conditions 

  1(0) 0  (5.2.26) 

 1 3 1α (0) ( ) ( ) 0Q
refGJ L λ Q x L     . (5.2.27) 
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Once a buckling load factor λ  and a corresponding buckling mode component 1  are 

known, the remaining buckling mode component 2w  can be obtained by solving the initial 

value problem defined by (5.2.24) and (5.2.16)-(5.2.17). 

5.3 THE PRISMATIC CASE (α 1 ) 

The specialisation of Problem 5.2 to the prismatic case (α 1 ) reduces to: 

Problem 5.3. 

Find λ   and    1 : 0, L , with    2
1 0,C L  and  1 0 , satisfying the 

differential equation 

 
2

1
3 1 1 1 1(0) (0) ( ) 1 ( ) 0ref

x
EI GJ x λ Q L x

L
          

 (5.3.1) 

on the open interval  0, L , together with the boundary conditions 

  1(0) 0  (5.3.2) 

 1 3 1(0) ( ) ( ) 0Q
refGJ L λ Q x L     . (5.3.3) 

By an appropriate change of independent variable, this problem may be posed on a 

fixed reference domain (i.e., independent of the cantilever’s length L ) and written in non-

dimensional form. Indeed, consider the map    : 0, 0,1f L  defined by 1

1 1 x
Lx   and 

let 1( )s f x  denote the associated change of independent variable.11 Moreover, define 

   : 0,1  such that    1 f  (that is,     1
1 f ). Clearly, 1  is twice continuously 

differentiable on  0, L  if and only if   is twice continuously differentiable on  0,1 , with 

the chain rule yielding (e.g., RUDIN 1976, th. 5.5) 

          
1 1 1 1

1
( ) ( ) ( ) ( )x f x f x s

L
 (5.3.4) 

          
1 1 1 1 2

1 1
( ) ( ) ( ) ( )x f x f x s

L L
 . (5.3.5) 

Replace these results into equations (5.3.1)-(5.3.3). In addition, introduce the non-dimensional 

ratios 

                                                 
11 Observe that f  is a real analytic diffeomorphism. In particular, note that 1( ) 0f x   for every 1x  in  0, L , 

and this ensures that the leading coefficient in the transformed differential equation does not vanish on 

 0, 1  – vide infra, equation (5.3.8). 
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2

3(0) (0)
refλ Q L

γ
EI GJ

  (5.3.6) 

 3 3(0)

(0)

Qx EI
ε

L GJ
  , (5.3.7) 

which will be referred to as the non-dimensional load and the load position parameter. In 

so doing, Problem 5.3 is brought into the following form: 

Problem 5.4. 

Find γ   and  : 0, 1   , with    2 0,1C  and 0  , satisfying the 

differential equation 

 2 2( ) ( ) 0s γ s s      (5.3.8) 

on the open interval  0,1 , together with the boundary conditions 

 (0) (0) 0ε γ      (5.3.9) 

 (1) 0   . (5.3.10) 

The deceptively simple-looking differential equation (5.3.8) is a transformed version 

of Bessel’s equation of order 1
4 , as first discussed systematically by LOMMEL (1871).12 Its 

general solution on  0,1  is 

               


1 1
4 4

2 2
1 2( )

2 2

γ γ
s s c J s c Y s   , with 0γ   and 1 2,c c  , (5.3.11) 

                                                 
12 Suppose that 0γ  . First, consider the change of dependent variable defined by ( ) η( )s s s  , (0,1)s  . 

Then, consider the map 2: (0,1) (0, )γg  , 2
2
γs s  and let ( )z g s  denote the associated change of 

independent variable. Moreover, define 2η : (0, )γ    such that η η g   . Therefore, on (0,1) , 

 ( ) η ( ) η( )s s g s s z      and 

3/2 1/21
( ) η ( ) η( )

2
s γ s z s z       

2 5/2 1/2 3/21
( ) η ( ) 2 η ( ) η( )

4
s γ s z γ s z s z          . 

Substituting these expressions into equation (5.3.8) and simplifying, one arrives at Bessel’s equation 
2 2 2η ( ) η ( ) ( ν )η( ) 0z z z z z z        , 

with 1
4ν   . It’s general solution on 2(0, )γ  is 

1/4 1/41 2η( ) ( ) ( )z c J z c Y z    , with 1 2,c c  . 

Transforming back to the original variables s  and   leads to (5.3.11). On the positive real axis, 1/4J  and 

1/4Y  form a numerically satisfactory fundamental pair of solutions of Bessel’s equation in the sense of 
MILLER (1950) – see OLVER (1974, ch. 7, § 5.1) and OLVER & MAXIMON (2010, 10.2(iii)). 
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where 1/4J  and 1/4Y  are the Bessel functions of the first and second kinds of order 1
4  (Bessel 

functions of the second kind are also known as Weber’s or Neumann’s functions). 

* * * 

It is convenient at this point to make a brief digression, the purpose of which is to 

define the Bessel functions of the first and second kinds and to establish the properties of 

these functions that will be needed below. It begins with a preliminary study of the gamma 

function. 

For x  , the gamma function Γ  can be defined by Euler’s integral of the second 

kind: 

 1

0
Γ( ) x sx s e ds

     . (5.3.12) 

Clearly, the above definition makes sense if and only if the improper integral converges – 

hence the restriction 0x   (e.g., CAMPOS FERREIRA 1987, pp 610 and 606). 

Integrating by parts the second member of 

 
0

Γ( 1) x sx s e ds
     (5.3.13) 

yields 

  1

00 0
Γ( 1) lim lim

b bbx s x s x s

b b
x s e ds s e x s e ds   

 
          

 1

0
Γ( )lim

b x s

b
x s e ds x x 


   , (5.3.14) 

since 0x bb e   as b  . Then, observing that 

 
0

Γ(1) 1se ds
    , (5.3.15) 

one concludes that Γ( 1) !n n   for every non-negative integer n . The gamma function is 

thus seen to be an extension of the factorial function. (For a characterisation of Γ  as an 

extension of the factorial function, see ANDREWS et al. 1999, th. 1.9.3, ARTIN 1931, th. 2.1, 

or BEALS & WONG 2010, th. 2.4.2. This characterisation was made the basis for the 

development of the theory of the gamma function in BOURBAKI 2007b, ch. 7.) 

The functional equation Γ( 1) Γ( )x x x   can be used to assign a meaning to Γ( )x  

when < 0x , provided x  is not a negative integer. Indeed, given < 0x , let N  be the 

positive integer such that +1N x N    . Then 0x N   and Γ( )x  is defined in 

terms of Γ( )x N  by 
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Γ( )

Γ( )
( 1) ( 1)

x N
x

x x x N




  
 ,  (5.3.16) 

if 1x N   . The gamma function is not defined for 0x  . The reciprocal 1/Γ( )x  is 

defined for every x   if one agrees to set 1/ Γ( ) 0x   when 0x  , since this is the 

limiting value of 1/Γ( )x  at these points (see figure 5.3.1). 

This discussion of the gamma function followed closely CODDINGTON & CARLSON 

(1997, p. 199) and SIMMONS (1991, pp. 351-353). More detailed treatments, which include 

the extension to the complex domain, are given in ANDREWS et al. (1999, ch. 1), BEALS & 

WONG (2010, ch. 2), BOURBAKI (2007b, ch. 7), ERDÉLYI at al. (1953a, ch. 1), HOCHSTADT 

(1971, ch. 3), LEBEDEV (1965, ch. 1), LUKE (1969, ch. 2), OLVER (1974, ch. 2, § 1), TEMME 

(1996, ch. 3), WANG & GUO (1989, ch. 3) or WHITTAKER & WATSON (1963, ch. 12). For a 

historical perspective on the gamma function, the interested reader is referred to DAVIS 

(1959) and DUTKA (1991). 

In order to introduce the Bessel function of the first kind, consider the real power series 

 
2

0

( 1)

!Γ( ν 1) 2

nn

n

x

n n





  
    

  , (5.3.17) 

where ν  is an arbitrary real number. Using d’Alembert’s test (e.g., CAMPOS FERREIRA 1987, 

pp. 180-181) and the functional equation (5.3.14) of the gamma function, this series is easily 

seen to be absolutely convergent for every real number x  – indeed, for arbitary 0x  , the 

  

Figure 5.3.1: Gamma and reciprocal gamma functions 
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ratio of the absolute value of the ( 1)n th term to that of the n th term, 

 
2

4 ( 1) ν 1

x

n n  
 , (5.3.18) 

tends to zero as n  . It follows that the map assigning to each x  in   the sum of the 

power series (5.3.17) is real analytic on the whole of  . The Bessel function of the first 

kind of order ν  is now defined to be the map ν :J     determined by 

 
ν 2

ν
0

( 1)
( )

2 !Γ( ν 1) 2

nn

n

x x
J x

n n





           
  . (5.3.19) 

Being the product of two analytic maps, νJ  is itself a real analytic map on its domain. The 

particular case 1/4J  is plotted in figure 5.3.2. 

For non-integer order ν , the canonical Bessel function of the second kind is defined as 

the following linear combination of νJ  and νJ : 

 
 ν ν

ν

( ) cos(νπ) ( )
( )

sin(νπ)

J x J x
Y x   , ν , x  . (5.3.20) 

Clearly, the map so defined is real analytic on  . (If ν  is an integer, a case that is of no 

concern here, the expression on the right-hand side of (5.3.20) is meaningless, a difficulty 

that is circumvented by replacing it with its limiting value, which is well-defined.) The 

graph of the particular case 1/4Y  is shown in figure 5.3.2, side by side with the graph of 1/4J . 

The standard reference on Bessel functions is Watson’s monumental treatise 

(WATSON 1944), but virtually every book dealing with special functions contains a chapter 

on Bessel functions – e.g., ANDREWS et al. (1999, ch. 4), BEALS & WONG (2010, §§ 7.1), 

ERDÉLYI at al. (1953b, ch. 7), HOCHSTADT (1971, ch. 8), LEBEDEV (1965, ch. 5), OLVER 

 

Figure 5.3.2: Bessel functions of the first and second kinds of order 1
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(1974, ch. 2, §§ 9-10 and ch. 7, §§ 4-8), TEMME (1996, ch. 9), WANG & GUO (1989, ch. 7) 

or WHITTAKER & WATSON (1963, ch. 17). The recently published NIST Handbook of 

Mathematical Functions includes an extensive collection of formulae on Bessel functions, 

presented in a readily accessible format (OLVER & MAXIMON 2010). The historical sketch in 

WATSON (1944), which concentrates primarily on the mathematical developments, is 

profitably supplemented by the account in DUTKA (1995) of the physical problems that 

motivated those developments. 

* * * 

Let us now return to Problem 5.4. Our present position is this: the general solution 

to the differential equation (5.3.8) on the interval  0,1  has been found. The next step will 

be to set up the characteristic equation for the eigenvalues. 

The definitions (5.3.19) and (5.3.20) make it possible to rewrite (5.3.11) in the form 
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c s

n nγ
 , (5.3.21) 

with 0 1s  , 0γ   and 1 2,c c . The two power series appearing on the right-hand 

side of (5.3.21) converge absolutely for every s  in  . Consequently, the right-hand side of 

(5.3.21) defines a family of real analytic maps of the variable s  on the whole of  . Since 

  is required to be continuous on  0, 1 , the “principle of extension of identities” implies 

that equation (5.3.21) must also hold at 0s   and 1s  . This equation therefore defines 

the family of maps  0, 1    that (i) are twice continuously differentiable on  0, 1  – in 

fact, real analytic on  0, 1  – and (ii) satisfy the differential equation (5.3.8) on  0,1 . 

Moreover, term-by-term differentiation of the right-hand side of (5.3.21) yields 
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3
42

4 3
2 7

0 4

( 1)
2

!Γ 4

nn
n

n

γ
γ c s

n n
 , (5.3.22) 

with 0 1s  , 0γ   and 1 2,c c . 

The boundary conditions (5.3.9) and (5.3.10) can now be written as 
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31
4 4

1 2 2 31
4 4

2 2 2
0

Γ Γ

γ ε γ
c c c  (5.3.23) 

        
   

1 1
4 4

1 2 0
2 2

γ γ
c J c Y  (5.3.24) 

and form a homogeneous linear system in the unknowns 1c  and 2c . For   not to be identically 

zero, 1c  and 2c  cannot be simultaneously zero. Therefore, the determinant of the coefficient 

matrix of the system (5.3.23)-(5.3.24) must vanish: 

 

     

1 1
4 4

31 1
4 4 4

31 1
4 4 4

2 2
det 0

2 2 2 2 2

Γ Γ Γ

γ γ
J Y

γ γ ε γ

    
    

      
 
  

 . (5.3.25) 

This is the characteristic equation for the eigenvalues of Problem 5.4 – for a given load 

position parameter ε , a positive real number γ  is an eigenvalue of Problem 5.4 if and only 

if it is a root of equation (5.3.25). In particular, one is primarily interested in the lowest 

positive root of (5.3.25), called the non-dimensional critical load and denoted by crγ , which 

yields the critical load factor crλ  via (5.3.6). 

For ε  restricted to the range 0.1 0.1ε    of practical interest, the numerical 

computation of crγ  was carried out with the mathematical software package Mathematica 

(WOLFRAM RESEARCH, INC. 2006). The starting point was the case 0ε   (centroidal 

loading), already treated by MICHELL (1899) and PRANDTL (1899), which amounts to 

finding the lowest positive root of 1/4J  and leads to (0) 4.013cr crγ γ  . This value was 

found to be an adequate initial guess for all subsequent computations with 0ε  . The 

results are summarised in table 5.3.1 and figure 5.3.3. The latter also shows the affine 

approximation 4.013 (1 )ε ε   proposed by Timoshenko in 1910 (see TIMOSHENKO & 

GERE 1961, eq. 6.24). This approximation, whose background is unknown to the author, 

practically coincides with the tangent line to the curve crγ  vs. ε  at the point (0)( , ) (0, )crε γ γ . 

Indeed, consider the map :H      defined by 

 
     

31 1
4 4 4

1 1
4 431 1

4 4 4

2 2 2 2 2
( , )

Γ Γ 2 Γ 2

γ ε γ γγ γ
H ε γ J Y

                  
 

 
   

3 1
4 4

1 1
4 43 1

4 4

2 4

Γ 2 Γ 2

ε γ γγ γ
J J
       
   

 , (5.3.26) 



Lateral-Torsional Buckling of Strip Beams with Linearly Tapered Depth 

251 

so that ( , ) 0H ε γ   is just a restatement of the characteristic equation (5.3.25). The map H  

is continuously differentiable on its domain, since the partial derivatives 1D H  and 2D H , 

given by 
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1
4

1 3
4

2
( , )

Γ 2

γ γ
D H ε γ J    

 
 (5.3.27) 
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1 5 33
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44

1

2 Γ 2 2Γ

γ γ γ γ
J J J

γ
 

                    
 , (5.3.28) 

exist and are continuous at each point ( , )ε γ  in    (e.g., AVEZ 1983, ch. 2, § 3, or 

DIEUDONNÉ 1960, th. 8.9.1). Moreover, (0)(0, ) 0crH γ   and (0)
2 (0, ) 0crD H γ  . It then follows 

from the implicit function theorem (e.g., AVEZ 1983, ch. 3, § 5, or DIEUDONNÉ 1960, 

th. 10.2.1) that the tangent to the curve crγ  vs. ε  at the point (0)( , ) (0, )crε γ γ  exists and its 

slope is (0 ) (0 )
1 2(0, )/ (0, ) 4.115cr crD H γ D H γ  , which is very close to 4.013. 

One further conclusion can be drawn from the foregoing analysis: if a given ε  and a 

corresponding eigenvalue 0γ   are inserted into the system (5.3.23)-(5.3.24), the nullity of 

the resulting coefficient matrix is equal to 1. All the eigenvalues of Problem 5.4 are thus 

seen to be simple (i.e., the associated characteristic space is one-dimensional). 

3 3 ( 0 )
( 0 )

Qx EI
L GJε   

2

3 ( 0) ( 0 )

cr refλ Q L

cr EI GJ
γ   

0.100  3.542  

0.075  3.669  

0.050  3.791 

0.025  3.906  

0.000  4.013 

0.025  4.111 

0.050  4.202  

0.075  4.285  

0.100  4.361 

Table 5.3.1: Prismatic strip cantilevers – Non-dimensional critical loads crγ  
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Figure 5.3.3: Prismatic strip cantilevers – Non-dimensional critical loads crγ  

5.4 THE TAPERED CASE (0 < α<1) 

In Problem 5.2, we now restrict the taper ratio α  to lie in the open interval  0, 1 . 

To cast this restricted version of Problem 5.2 in non-dimensional form, consider the map 

   : 0, α, 1f L  , 1

1 1 (1 α) x
Lx    and let 1( )s f x  denote the associated change of 

independent variable.13 Moreover, define  : α, 1    such that    1 f . Clearly, 

   2
1 0,C L  if and only if    2 0,1C  and one gets by the chain rule 

          
1 1 1 1

1 α
( ) ( ) ( ) ( )x f x f x s

L
 (5.4.1) 

           
2

1 1 1 1 2

1 α (1 α)
( ) ( ) ( ) ( )x f x f x s

L L
 . (5.4.2) 

Introducing the non-dimensional load 

 
2

3(0) (0)
refλ Q L

γ
EI GJ

  , (5.4.3) 

which is identical with (5.3.6), and the load position parameter 

                                                 
13 Once again, observe that (i) f  is a real analytic diffeomorphism and, consequently, (ii) 1( ) 0f x   for every 

1x  in  0, L . 

c rγ γ  

 4.013 1γ ε    

γ

ε  
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 3 3(0)

α (0)

Qx EI
ε

L GJ
  , (5.4.4) 

which generalises (5.3.7), Problem 5.2, restricted so as to have 0 α 1  , is brought into the 

following form: 

Problem 5.5. 

Find γ   and  : α, 1   , with  2 α,1C   and 0  , satisfying the 

differential equation 

 
2 2

4 2

2α1 α
( ) ( ) 1 ( ) 0

(1 α)

γ
s s s

s s s
  

         
    (5.4.5) 

on the open interval  α,1 , together with the boundary conditions 

 (α) (α) 0
1 α

ε γ   


   (5.4.6) 

 (1) 0   . (5.4.7) 

Equation (5.4.5) is a second-order homogeneous linear differential equation with a 

regular singular point at 0s   (which does not belong to the problem’s domain of 

definition).14 It is now shown that this equation is reducible to the canonical form known 

as Kummer’s equation by means of elementary changes of variables. First, consider the 

change of dependent variable determined by 

    τ log( ) τ( ) η( ) η( )s σ s sσs s e s e s   ,  α,1s ,  (5.4.8) 

where σ  and τ  are complex constants. It should be noticed that the map log( ) τσ s ss e   is 

real analytic and non-zero on  α,1 . If   is twice continuously differentiable on  α,1 , then 

so is η ; the converse is also true and 

 τ τ τ1( ) η( ) τ η( ) η ( )s s sσ σ σs σ s e s s e s s e s      (5.4.9) 

  τ τ τ2 1 2( ) ( 1) 2 τ τ η( )s s sσ σ σs σ σ s e σ s e s e s        

      τ τ τ12 2 τ η ( ) η ( )s s sσ σ σσ s e s e s s e s  . (5.4.10) 

                                                 
14 The point 0x x  is said to be a singular point of the second-order homogeneous linear differential 

equation ( ) ( ) ( ) ( ) ( ) 0y x p x y x q x y x     if either of the coefficient functions ( )x p x , ( )x q x  is 
not analytic at 0x x . The singular point 0x x  is said to be regular if the functions 0( ) ( )x x x p x  
and 2

0( ) ( )x x x q x  are analytic at 0x x  (e.g., CODDINGTON & CARLSON 1997, p. 185, KRISTENSSON 
2010, def. 2.4, OLVER 1974, ch. 5, § 4.1, SÁNCHEZ 1968, p. 145, SIMMONS 1991, pp. 184-185, TEMME 1996, 
def. 4.1, WANG & GUO 1989, p. 56, or WHITTAKER & WATSON 1963, pp. 194 and 197). 
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Substituting these expressions into equation (5.4.5) and simplifying, one gets 

 0 1 1
0 1 2

η ( ) η ( ) η( ) 0
B B C

s A s A s
s s s

           
  

 , (5.4.11) 

with 

 0 2τA   (5.4.12) 

  0 1 2B σ  (5.4.13) 

 
2

2
1 4

τ
(1 α)

γ
A  


 (5.4.14) 

    


2

1 4

2α
2 τ τ

(1 α)

γ
B σ  (5.4.15) 

  


2 2
2

1 4

α

(1 α)

γ
C σ  . (5.4.16) 

Observe that equations (5.4.5) and (5.4.11) have essentially the same form. Next, choose 

 
 2

α

(1 α)

γ
σ i  (5.4.18) 

 
2

τ
(1 α)

γ
i 


 , (5.4.17) 

so as to have  1 1 0A C . Finally, consider the change of independent variable defined by 

the analytic homeomorphism (recall that  0γ , hence 0 0A ) 

    0 0 2 2

2α 2
: α,1 α, ,

(1 α) (1 α)

γ γ
g A A i i

 
       

 ,15  0 2

2

(1 α)

γ
s z A s i s  


  (5.4.19) 

and let  η :O , where O  is an open subset of   containing   0 0α,A A , be a 

differentiable (and hence analytic) map such that η η g   . Then, on  0 0α,A A  , η  

must satisfy the differential equation 

 η ( ) ( )η ( ) η( ) 0z z b z z a z        , (5.4.20) 

with 

 1

0

1

2

B
a

A
   (5.4.21) 

 0 2

2α
1

(1 α)

γ
b B i  


 . (5.4.22) 

                                                 
15 In this context, the symbol  ,a b , with ,a b  , stands for the set  (1 ) , 0 1z z x a x b x      . 
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Equation (5.4.20) is known as Kummer’s equation (KUMMER 1837), with parameters a  and 

b . It is also known as the confluent hypergeometric equation, since it can be derived from 

the hypergeometric equation of Gauss by merging two of the latter’s three regular singular 

points (see BUCHHOLZ 1953, § 1.1, or SLATER 1960, pp. 2-3). 

The general solution of equation (5.4.20) is found by applying the method of 

Frobenius (FROBENIUS 1873, but see also BENDER & ORSZAG 2010, § 3.3, HENRICI 1977, 

§ 9.6, INCE 1956, ch. 16, KRISTENSSON 2010, § 2.4, OLVER 1974, ch. 5, §§ 4-5, TEMME 

1996, § 4.2.5, SÁNCHEZ 1968, app. A, and WHITTAKER & WATSON 1963, § 10.3). 

Accordingly, one seeks a formal solution of (5.4.20) near 0z   in the form of a series of 

ascending powers of z  (Frobenius series), say 

 




 
  

 


1

η( ) 1m n
n

n

z z d z  , (5.4.23) 

where the exponent m  and the coefficients nd  are to be determined.16 Assuming for the 

moment that term-by-term differentiation of the power series is permissible, the first and 

second derivatives of (5.4.23) are given by 

 






     
 

 1

1

η ( ) ( )m n
n

n

z z m d m n z  (5.4.24) 

 






        
 

 2

1

η ( ) ( 1) ( )( 1)m n
n

n

z z m m d m n m n z  . (5.4.25) 

Then, substituting (5.4.23)-(5.4.25) into the left-hand side of (5.4.20) and equating to zero 

the coefficient of each separate power of z , one obtains the indicial equation17 

 ( 1) 0m m b    , (5.4.26) 

                                                 
16 Let w  be a fixed complex number. Unless indicated otherwise, the map wz z  of the complex variable 

z  denotes the principal branch of the thw -power function, defined on the slit complex plane  \ ,0  
(e.g., CONWAY 1978, ch. 3, § 2, or REMMERT 1991, ch. 5, particularly § 5). This principal branch is an 
analytic map on its domain, with derivative 

  1w wz wz    . 

Moreover, it satisfies 
1 2 1 2w w w wz z z   

for every 1w  and 2w  in  . 

17 The name “indicial equation” was coined by CAYLEY (1886). One also speaks of the indicial polynomial 

   ( ) 1P m m m b . 
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with roots 
 1 0m  (5.4.27) 

 2 1m b   , (5.4.28) 

and the recurrence relation (with 0 1d  ) 

 1( )( 1) ( 1) 0n nm n m b n d a m n d            ,  1, 2,n  . (5.4.29) 

The root 1 0m  of the indicial equation leads to the following formal solution of 

equation (5.4.20): 

 
2 3

1

( 1) ( 1)( 2) ( 1) ( 1)
η ( ) 1

( 1) 2! ( 1)( 2) 3! ( 1) ( 1) !

na a a a a a a a na z z z
z z

b b b b b b b b b n n

     
      

     
  


 (5.4.30) 

(note that b  is neither zero nor a negative integer). Using Pochhammer’s symbol for the 

rising factorial, defined as 

 0( ) 1a   
1

0

( ) ( 1) ( 1) ( )
n

n
k

a a a a n a k




        ,  n   , (5.4.31) 

equation (5.4.30) is rewritten in the compact form 

 1
0

( )
η ( )

( ) !

n
n

n n

a z
z

b n





  . (5.4.32) 

By d’Alembert’s test, the above series is readily seen to be absolutely convergent for every 

z  ,18 and so term-by-term differentiations are legitimate. Consequently, the formal 

solution 1η  is an actual solution of (5.4.20). 

The entire function of the complex variable z  defined by the series (5.4.32) is named 

after KUMMER (1836) and denoted ( , , )z M a b z .19 The complex numbers a  and b  (with 

0b  ), which are independent of z , are called the parameters of the function (for 

obvious reasons, a  is the numeratorial parameter and b  the denominatorial parameter) – 

in the present case, they are given by (5.4.21)-(5.4.22). Kummer’s function belongs to the 

                                                 
18 Indeed, set 

( )

( ) !

n
n

n
n

a z
u

b n
  . 

Then, for arbitrary 0z  , the ratio 

1 ( )

( 1)( )
n

n

a n zu

u n b n
 


 

 

tends to zero as n   . 

19 The reader should be aware that several other notations are commonly used for this function – see 
DAALHUIS (2010, p. 322), ERDÉLYI et al. (1953a, p. 248) and SLATER (1960, p. 2). 
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class of confluent hypergeometric functions, which arise in a wide variety of fields of 

mathematical physics and probability theory20 – for applications in structural mechanics, 

see LIU & XI (2002, ch. 2), MILISAVLJEVIC (1988), PANAYOTOUNAKOS (1995), POLIDORI & 

BECK (1996) and RAJ & SUJITH (2005). The theory of confluent hypergeometric functions 

is discussed at great length and detail in the monographs by BUCHHOLZ (1953), SLATER (1960) 

and TRICOMI (1954). More concise and selective treatments can be found in ANDREWS et 

al. (1999, ch. 4), BEALS & WONG (2010, ch. 6), ERDÉLYI et al. (1953a, ch. 6), HOCHSTADT 

(1971, ch. 7), KRISTENSSON (2010, ch. 7), LEBEDEV (1965, ch. 9, §§ 9-13), LUKE (1969, 

ch. 4), MEIXNER (1956, § 5), OLVER (1974, ch. 7, §§ 9-11), TEMME (1996, ch. 7), WANG & 

GUO (1989, ch. 6) or WHITTAKER & WATSON (1963, ch. 16). DAALHUIS (2010), POLYANIN 

& ZAITSEV (2003, Supplement S.2.7) and TRICOMI (1955) provide useful summaries of the 

theory. 

Since b  is not an integer, the root 2 1m b   of the indicial equation leads to a 

second independent solution of equation (5.4.20) of the form 

 
2

1
2

(1 )(2 )1
η ( ) 1

2 (2 )(3 ) 2!
b a b a ba b z

z z z
b b b

      
      

  

 
(1 )(2 ) ( )

(2 )(3 ) ( 1 ) !

na b a b n a b z

b b n b n

     
      

 


 

 1

0

(1 )

(2 ) !

n
b n

n n

a b z
z

b n






 


  

    1 (1 , 2 , )bz M a b b z  . (5.4.33) 

The general solution of (5.4.20) is thus 

                                                 
20 Moreover, many transcendental functions that occur frequently enough to be given names can be 

expressed in terms of confluent hypergeometric functions. In view of the solution given for the prismatic 
case in the preceding section, the following relationship between Kummer’s function and the Bessel 
function of the first kind (of arbitrary complex order ν ) is particularly noteworthy (ERDÉLYI et al. 1953a, 
p. 265, HENRICI 1977, pp. 136-137, KRISTENSSON 2010, § 7.1.1, LEBEDEV 1965, p. 274, LUKE 1969, 
p. 213, OLVER & MAXIMON 2010, p. 228, TRICOMI 1954, p. 34): 

ν

ν

1 1
( ) ν , 1 2 ν , 2

Γ(1 ν) 2 2
i zz

J z e M i z          
  ,  \ ,0z   . 

The right-hand side of the above identity is real-valued when ν  and z  , as it should (see the 
proposition in Appendix 2, at the end of this chapter). 
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      1
1 2η( ) ( , , ) (1 , 2 , )bz c M a b z c z M a b b z   , with 1 2,c c  . (5.4.34) 

It should be noted that (5.4.32) and (5.4.33) form a numerically satisfactory fundamental 

pair of solutions in the sense of MILLER (1950) – see DAALHUIS (2010, 13.2(v)) and OLVER 

(1974, ch. 5, § 7.2).21 

In turn, the general solution of (5.4.5) on the real interval  α,1  is 

 
2 2

α

(1 α ) (1 α )
1 2 2

2α 21
( ) , 1 ,

2 (1 α) (1 α)

γ γ
i i s γ γ

s s e c M i i s


    
     

  

 
2

2α

(1 α )

2 2 2 2 2

2 2α 2α 21
, 1 ,

(1 α) 2 (1 α) (1 α) (1 α)

γ
i

γ γ γ γ
c i s M i i i s





              

 , (5.4.35) 

with 1 2,c c . The right hand side of (5.4.35) defines a family of real analytic maps of the 

variable s  on  \ 0 . Arguing by continuity as in the paragraph following equation 

(5.3.21), one concludes that the above identity must also hold at αs   and 1s  . 

The differentiation of  , being a straightforward task that leads to a rather lengthy 

expression, is omitted – it suffices to say that use is made of the rule 

 
1

1

1 0 01

( ) ( ) ( 1)
( , , )

( ) ( 1)! ( ) ! ( 1) !

n n n
n n n

n n nn n n

a a ad z z a z
M a b z

dz b n b n b b n

  


  


  

     

 ( 1, 1, )
a

M a b z
b

     , 0b   , z   . (5.4.36) 

                                                 
21 In CHALLAMEL et al. (2007), an alternative fundamental pair of solutions of (5.4.20) was tacitly used, namely 

1η ( ) ( , , )z M a b z  (as above) and 2η ( ) ( , , )z U a b z , where U  denotes the principal branch of Tricomi’s 
function (TRICOMI 1947). For non-integer values of b , ( , , )U a b z  is defined to be the following linear 
combination of ( , , )M a b z  and    1 (1 , 2 , )bz M a b b z : 

1Γ(1 ) Γ( 1)
( , , ) ( , , ) (1 , 2 , )

Γ(1 ) Γ( )
bb b

U a b z M a b z z M a b b z
a b a

 
    

 
  ,  \ ,0z    . 

Unless a  is a non-positive integer (which would imply 1/ Γ( ) 0a  ), ( , , )M a b z  and ( , , )U a b z  are linearly 
independent. 

The right-hand side of the above equation is meaningless when b  is an integer. Indeed, 
(i) if 0b  , ( , , )M a b z  is undefined; 
(ii) if 1b  , Γ(1 )b  and Γ( 1)b   are undefined; 
(iii) if 2, 3,b   , (1 , 2 , )M a b b z    is undefined. 
However, a limiting process, the details of which can be found in LEBEDEV (1965, § 9.10), yields a well-
defined result, and this fact may be used to assign a meaning to ( , , )U a b z  whenever b  is an integer. 

According to OLVER (1974, ch. 7, § 10.5), ( , , )M a b z  and ( , , )U a b z  form a numerically satisfactory pair of 
solutions of Kummer’s equation (5.4.20) for 0, 1, 2,a     , Re( ) 1b   and Re( ) 0z  . 
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The boundary conditions (5.4.6) and (5.4.7) now yield the homogeneous system of 

linear equations 

  0kl la c   ( , 1, 2)k l  , (5.4.37) 

where 

 11 2 2

2α 21
, 1 ,

2 (1 α) (1 α)

γ γ
a M i i

 
    

 (5.4.38) 
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 (5.4.39) 
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 (5.4.40) 
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 . (5.4.41) 

Since both the coefficients ( kla ) and the unknowns ( lc ) in this system are complex, we 

replace it with an equivalent one, with real coefficients and unknowns but twice the size: 

 
 

  

Re( )Re( ) Im( )Im( ) 0

Im( )Re( ) Re( )Im( ) 0
kl l kl l

kl l kl l

a c a c

a c a c
  ( , 1, 2)k l  , (5.4.42) 

where Re( )z  and Im( )z  stand for the real and imaginary parts of the complex number z . 

For Problem 5.5 to have solutions 0  , the determinant of the coefficient matrix of 

the system (5.4.42) must vanish. This condition provides the characteristic equation for the 

eigenvalues of Problem 5.5. In particular, given α  (with 0 α 1  ) and ε , the corresponding 

non-dimensional critical load crγ  is the lowest positive value of γ  that makes the 

determinant vanish. Results for crγ , obtained with the mathematical software package 

Mathematica (WOLFRAM RESEARCH, INC. 2006), are presented in table 5.4.1 and plotted in 
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figure 5.4.1. These results were successfully benchmarked against shell finite element 

analyses – see CHALLAMEL et al. (2007) for details. It is also worth mentioning that the 

numerical results obtained by BAKER (1993) and MASSEY & MCGUIRE (1971) for the 

centroidal loading case ( 0ε  ) are in close agreement with those stemming from (5.4.42). 

ε  
crγ  

α 0.1  α 0.2  α 0.3  α 0.4 α 0.5 α 0.6 α 0.7 α 0.8  α 0.9

0.100  2.637  2.804  2.941 3.059  3.162  3.255  3.337  3.412  3.480  

0.075  2.646  2.823  2.972  3.101 3.218  3.323 3.420  3.509  3.592  

0.050  2.656  2.843  3.001 3.142  3.270  3.388  3.498  3.602  3.699  

0.025  2.665  2.861 3.030  3.182  3.321 3.451 3.573 3.689  3.800  

0.000  2.674  2.879  3.058  3.219  3.369  3.510  3.643 3.771 3.894  

0.025  2.682  2.897  3.084  3.255  3.415  3.565  3.709  3.848  3.982  

0.050  2.691 2.914  3.110  3.290  3.458  3.618  3.771 3.919  4.063 

0.075  2.699  2.930  3.134  3.322  3.499  3.667  3.829  3.985  4.137  

0.100  2.708  2.946  3.158  3.354  3.538  3.714  3.883 4.047  4.206  

Table 5.4.1: Linearly tapered strip cantilevers – Non-dimensional critical loads crγ  
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Figure 5.4.1: Linearly tapered strip cantilevers – Non-dimensional critical loads crγ  
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5.5 THE STRONGEST TIP-LOADED, LINEARLY TAPERED STRIP 

CANTILEVER 

Throughout this section, the point load Q  is taken to be applied at the centroid of 

the free-end section, i.e., 3
Qx  (and hence ε ) is set equal to zero. With this restriction, we 

shall answer the following question: of all homogeneous linearly tapered strip cantilevers 

with prescribed length, thickness, volume and elastic properties, which has the largest 

critical load? 

Let h  denote the depth of the prismatic cantilever having the prescribed length, 

thickness and volume. Consider now a linearly tapered cantilever of equal length, thickness 

and volume, characterised by the taper ratio α . Its maximum depth ĥ  is given by 

 
2ˆ

1 α

h
h 


 . (5.5.1) 

For equal elastic constants, the ratio between the critical loads of the tapered and prismatic 

cantilevers, denoted by ˆ
crQ  and crQ , is 

  


ˆ ˆ ˆ ˆ2

(1 α)
cr cr cr

cr cr cr

Q h γ γ

Q h γ γ
 , (5.5.2) 

where ˆcrγ  and      1/4min 0 / 2 0 4.013crγ γ J γ  are the non-dimensionl critical loads 

corresponding to ˆ
crQ  and crQ , respectively. Figure 5.5.1 shows the variation of ˆ /cr crQ Q  
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Figure 5.5.1: Variation of ˆ /cr crQ Q  with the taper ratio α  (for 0ε  ) 
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with α , in the range 0 α 1  . This variation is not monotonic, with ˆ /cr crQ Q  reaching a 

maximum of  1.213 at α 0.071. Therefore, as far as the elastic lateral-torsional buckling 

strength is concerned, this value of α  defines the most efficient linearly tapered cantilever, 

whose critical load is 21.3%  larger than that of its prismatic counterpart. Moreover, observe 

that ˆ / 1cr crQ Q   for α 1 . 

5.6 GENERALISATION 1: POLYGONALLY DEPTH-TAPERED 

CANTILEVERS WITH MULTIPLE TRANSVERSE POINT LOADS 

Having solved a problem, one should not fail to look back at the completed solution, 

to re-examine the result and the path that led to it, to disentangle their essential features 

and to ask the question: “Can you use the result, or the method, for some other problem?” 

(POLYA 1973). In so doing, the author was led to consider the following generalisation of 

the problem discussed in §§ 5.2-5.4 – to describe analytically the elastic LTB behaviour of 

strip cantilevers (i) whose depth is given by a monotonically decreasing polygonal (i.e., 

continuous and piecewise linear) function of the distance to the support and (ii) which are 

subjected to an arbitrary number of independent conservative point loads, all acting in the 

same “downward” direction. 

The key to this generalised problem is the observation that there exists a positive 

integer N  and a partition 1.0 1. 1 1.0 Nx x x L      of the interval  0, L  such that: 

(i) on each closed interval 1. 1 1.,n nx x    ( 1, ,n N  ), the depth of the cantilever is given 

by an affine function, and 

(ii) there are no loads applied at the cross-sections with abscissa in the open intervals 

 1. 1 1.,n nx x  ( 1, ,n N  ). 

The new problem thus appears to be tractable by the methods used in §§ 5.2-5.4 – to wit, 

the elimination of the dependent variable 2w  and the reduction of the governing differential 

equation to a known canonical form by means of appropriately chosen changes of variables. 

In this section, we shall discuss the special case depicted in figure 5.6.1, concerning a 

two-segment cantilever acted by two loads, one applied at the free end and the other at the 

junction between segments. This specialisation “contains all the germs of generality” (to 

quote David Hilbert). 
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To be precise, equation (5.2.1) remains valid, but the function  : 0,h L    that 

describes the variation of the cantilever’s depth along its length is now defined by 

 

1
0 1

1

1
0 1

1 (1 β) if 0 ρ
ρ

( )
ρ

β (β α) if ρ
(1 ρ)

x
h x L

L
h x
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h L x L
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 , (5.6.1) 

with 0 ρ 1   and 0 α β 1   . Accordingly, the lateral bending and torsional rigidities of 

the cross-sections are given by 
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 (5.6.2) 
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 (5.6.3) 

The cantilever is acted by two conservative point loads, 1 1 3refλ QQ e  and 

2 2 3refλ QQ e , where refQ  is again a positive reference magnitude and 1λ , 2λ  are independent 

load factors, restricted to non-negative values. These loads are applied to the material 

points whose reference places are 1
1 3 3

QO L x e e  and 2
1 3 3ρ QO L x e e , as shown in 

figure 5.6.1, and remain parallel to 3e  throughout the deformation process. The bending 

moment distribution in a fundamental equilibrium state is the real-valued map 

 1 1 2 1 1

2 1 1 2
1 1 1

( ) ( ρ ) if 0 ρ
( , , )

( ) if ρ
ref reff

ref

λ Q x L + λ Q x L x L
M x λ λ

λ Q x L L x L

   
    

 . (5.6.4) 
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Figure 5.6.1: Two-segment strip cantilever acted by independent point loads applied at the 

free end and at the junction between segments 

In the following, given a map defined on  0, L , the subscripts “ ” and “ ” are 

used to indicate its restrictions to  0,ρL  and  ρ ,L L , respectively. Similarly, 2
fM   and 

2
fM   denote the restrictions of the partial map 1 2 1 1 2( , , )fx M x λ λ , obtained by holding 

1λ  and 2λ  fixed, to  0,ρL  and  ρ ,L L . With these notational conventions, the 

functional 2Π , which represents, as the reader may recall, the second-order term of the 

change in total potential energy of the structural system from a fundamental equilibrium 

state at constant load, is given by 
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ref refλ Q x L λ Q x L  . (5.6.5) 

Regarding the domain of this functional, we require on physical grounds that 2w  (resp. 1 ) 

be continuously differentiable (resp. continuous) on  0, L . Moreover, with a view towards 
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establishing the Euler-Lagrange equations associated with 2Π , 2w  (resp. 2w ) is required 

to be four times continuously differentiable on  0,ρL  (resp.  ρ ,L L ) and  1  (resp.  1 ) 

is required to be twice continuously differentiable on  0,ρL  (resp.  ρ ,L L ). The 

essential boundary conditions to be satisfied are again (5.2.6)-(5.2.8). The domain of the 

functional 2Π  is thus taken to be 1 2 0 0
    D D , with 

              1 4 4
1 2 2 2 2 20, 0, ρ , ρ , , (0) 0 , (0) 0w C L w C L w C L L w wD  (5.6.6) 

               0 2 2
2 1 1 1 10, 0, ρ , ρ , , (0) 0C L C L C L LD  . (5.6.7) 

Let 2δw  and 1δ  denote admissible variations of 2w  and 1  and form the first 

variation of 2Π  at 2 1 1 2( , , , )w λ λ  in the direction of 2 1( , , 0, 0 )δw δ . Then, integration by 

parts yields 

   2 2 1 1 2 2 1( , , , )[ , , 0, 0 ]δΠ w λ λ δw δ  
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The criterion of Trefftz, combined with the fundamental lemma of the calculus of 

variations, now leads to the following classical statement of the problem of finding the 

buckling load factors and the buckling modes for the cantilever shown in figure 5.6.1: 

Problem 5.6. 

Find non-negative real numbers 1 2,λ λ  and functions   2 1, : 0,w L , with 

 2w  continuously differentiable on  0, L , 

  2 2 0,ρw w L   (resp.  2 2 ρ ,w w L L  ) four times continuously 

differentiable on  0,ρL  (resp.  ρ ,L L ), 

 1  continuous on  0, L , 

  1 1 0,ρL    (resp.  1 1 ρ ,L L   ) twice continuously differentiable on 

 0,ρL  (resp.  ρ ,L L ) and 

 2 0w  or  1 0 , 

satisfying the differential equations 

    3 1 2 1 2 1 1 2 1 1( ) ( ) ( , , ) ( ) 0fEI x w x M x λ λ x     (5.6.9) 

  1 1 1 2 1 1 2 2 1( ) ( ) ( , , ) ( ) 0fGJ x x M x λ λ w x     (5.6.10) 

on each open interval  0 , ρL  and  ρ ,L L , together with the boundary conditions 

 2 (0) 0w  (5.6.11) 

  2 (0) 0w  (5.6.12) 

  1(0) 0  (5.6.13) 

 3 2α (0) ( ) 0EI w L   (5.6.14) 

 3 2 3 2 1 1

β α
α (0) ( ) (0) ( ) ( ) 0

(1 ρ) refEI w L EI w L λ Q L
L

   


 (5.6.15) 

 1
1 1 3 1α (0) ( ) ( ) 0Q

refGJ L λ Q x L     (5.6.16) 

and the jump conditions 

  3 2 2β (0) (ρ ) (ρ ) 0EI w L w L     (5.6.17) 

  3 2 2 3 2 2

β α 1 β
β (0) (ρ ) (ρ ) (0) (ρ ) (ρ )

(1 ρ) ρ
EI w L w L EI w L w L

L L   
         

 

          1 1 1 2 1(1 ρ) (ρ ) (ρ ) (ρ ) 0ref refλ Q L L L λ Q L  (5.6.18) 

   2
1 1 2 3 1β (0) (ρ ) (ρ ) (ρ ) 0Q

refGJ L L λ Q x L        . (5.6.19) 
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From a mathematical viewpoint, Problem 5.6 is a two-parameter eigenproblem – an 

eigenvalue is an ordered pair    1 2 0 0( , )λ λ  for which there exist functions 2w  and 1  

with the specified smoothness, not both identically zero, that satisfy (5.6.9)-(5.6.19). In fact, 

we shall consider only eigenvalues with 1 0λ . Indeed, (i) it can be seen by direct 

inspection that (0, 0)  is not an eigenvalue and (ii) eigenvalues of the form 2(0, )λ , with 

2 0λ , can be found by ignoring the unloaded segment, which merely undergoes a rigid-

body displacement – the problem reduces itself to that of a tip-loaded, linearly tapered 

cantilever with length ρL  and taper ratio β , already discussed. 

The question now arises whether it is again possible to eliminate 2w  from the 

buckling problem. We shall see that the answer is affirmative. From (i) the differential 

equation (5.6.9), which holds on  0 , ρL  and  ρ ,L L , (ii) the smoothness required of 

the functions 2w  and 1 , (iii) the boundary conditions (5.6.14)-(5.6.15) and (iv) the jump 

conditions (5.6.17)-(5.6.18), one infers that 2w  is twice continuously differentiable on 

 0, L  and, on this interval, 2w  is related to 1  through 

 2 1 1 2
2 1 1 1

3 1

( , , )
( ) ( )

( )

fM x λ λ
w x x

EI x
    . (5.6.20) 

Moreover, when taken together with (5.6.11)-(5.6.12), this equation shows that  1 0  

implies 2 0w . Therefore, as in § 5.2, the buckling problem can be written in terms of the 

single dependent variable 1 . 

The above considerations lead to the replacement of Problem 5.6 with: 

Problem 5.7. 

Find 1λ , 2 0λ  and   1 : 0, L , with 

 1  continuous on  0, L ,  

  1 1 0,ρL    (resp.  1 1 ρ ,L L   ) twice continuously differentiable on 

 0,ρL  (resp. on  ρ ,L L ) and 

  1 0 , 

satisfying the differential equation 

  
2

2 1 1 2
1 1 1 1 1

3 1

( , , )
( ) ( ) ( ) 0

( )

fM x λ λ
GJ x x x

EI x
     (5.6.21) 

on each open interval  0 , ρL  and  ρ ,L L , together with the boundary conditions 

  1(0) 0  (5.6.22) 
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 1
1 1 3 1α (0) ( ) ( ) 0Q

refGJ L λ Q x L     (5.6.23) 

and the jump condition 

   2
1 1 2 3 1β (0) (ρ ) (ρ ) (ρ ) 0Q

refGJ L L λ Q x L        . (5.6.24) 

Once an eigenvalue 1 2( , )λ λ  and a corresponding eigenfunction component 1  are known, 

the remaining eigenfunction component 2w  can be obtained by solving the initial value 

problem formed by (5.6.20) and (5.6.11)-(5.6.12). 

Four different cases can be distinguished in Problem 5.7 according to the shape of 

the cantilever (that is, according to the type of function h ): 

(i) prismatic cantilever (  α β 1); 

(ii) cantilever whose depth is a strictly decreasing function of the distance to the support   

( 0 α β 1   ); 

(iii) cantilever consisting of a depth-tapered segment adjacent to the support, followed by a 

prismatic segment ( 0 α β 1   ); 

(iv) cantilever consisting of a prismatic segment adjacent to the support, followed by a 

depth- tapered segment ( 0 α β 1   ). 

Case (i) was thoroughly analysed in CHALLAMEL & WANG (2010) and will not be addressed 

here. Case (ii) will be discussed in detail. It includes, as a special instance, the case of a 

linearly tapered cantilever subjected to intermediate and tip forces – β  ceases to be an 

independent parameter, being given in terms of α  and ρ  by β 1 (1 α)ρ   . For cases (iii) 

and (iv), only a brief sketch of the solution will be presented. 

5.6.1 The case   0 α β 1  

We begin by casting Problem 5.7, restricted so as to have   0 α β 1 (see figure 5.6.1), 

in non-dimensional form. To this end, consider the homeomorphism    : 0, α, 1f L   

defined by 

 

          
 

1
1

1
1

1

1 (1 β) if 0 ρ
ρ

( )
ρ

β (β α) if ρ
(1 ρ)

x
x L

L
f x

x L
L x L

L

 (5.6.25) 

and let 1( )s f x  denote the associated change of independent variable. Observe that the 

restriction of f  to  0, ρL  (resp. to  ρ ,L L ) is a real analytic diffeomorphism onto 
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 β, 1  (resp.  α, β ). Define  : α, 1    such that    1 f  and let   (resp.  ) denote 

the restriction of   to  α, β  (resp.  β, 1 ).22 Clearly, 1  is continuous on  0, L  if and only 

if   is continuous on  α, 1 . Moreover,  1 1 0,ρL    (resp.  1 1 ρ ,L L   ) is twice 

continuously differentiable on  0, ρL  (resp.  ρ ,L L ) if and only if  β, 1     (resp. 

 α, β    ) is twice continuously differentiable on  β, 1  (resp.  α, β ), with the chain 

rule yielding 
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Then, with the introduction of the non-dimensional loads 

 
2

1
1

3(0) (0)
refλ Q L

γ
EI GJ

  
2

2
2

3(0) (0)
refλ Q L

γ
EI GJ

  , (5.6.30) 

the load position parameters 

 
1

3 3
1

(0)

α (0)

Qx EI
ε

L GJ
  

2
3 3

2

(0)

β (0)

Qx EI
ε

L GJ
  (5.6.31) 

and the shorthand symbol 

 


 
1 β

β 1
ρ

 ,23 (5.6.32) 

Problem 5.7, with   0 α β 1, is brought into the following form: 
  

                                                 
22 The subscripts “  ” and “  ” have therefore slightly different meanings (but the same underlying spirit) 

when applied to functions defined on different intervals. This is unlikely to cause confusion. 

23 Recall that the continuous function 1 1( )x h x  is defined in equation (5.6.1) by two expressions, one valid 
for  10 ρx L  and the other for  1ρL x L . Suppose now that the domain of validity of the former 
expression is extended to the whole interval  0, L  (and the codomain of h  is extended to  ) – then one 
would have  0( ) βh L h . Clearly, it is possible to have β 0 . 
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Problem 5.8. 

Find scalars 1γ , 2 0γ  and functions    : α, β ,    : β, 1 , with 

  2 α,βC  , 

  2 β,1C   and 

   0  or   0 , 

satisfying 

     

         
  

24 2
1

4 2

(1 ρ) 2α1 α
( ) ( ) 1 ( ) 0

(β α)

γ
s s s

s s s
 (5.6.33) 

on  α , β , 

   

      
 

4
2 1 2 1 2

1 24

2( )(β β )1 ρ
( ) ( ) ( )

(1 β)

γ γ γ γ
s s γ γ

s s
 

 


 


2
1 2

2

(β β )
( ) 0

γ γ
s

s
 (5.6.34) 

on  β , 1  and 

   
  


 1 1(1 ρ)
(α) (α) 0

β α

ε γ
 (5.6.35) 

   (1) 0  (5.6.36) 

     (β) (β) 0  . (5.6.37) 

 2 2

β α
(1 β ) (β) (β) (β) 0

1 ρ
ε γ    

    


    . (5.6.38) 

Observe that (5.6.37) ensures that the function   defined by piecing together   and   

(that is,    : α, 1  is defined by setting   ( ) ( )s s  if   α, βs  and   ( ) ( )s s  if 

  β, 1s ) is meaningful. Moreover, it is continuous (see the “pasting lemma” in MUNKRES 

2000, pp. 108-109). 

The differential equations (5.6.33) and (5.6.34) are of the same form as (5.4.5) and 

they are likewise reducible to Kummer’s equation (5.4.20) in the manner described in the 

paragraph following equation (5.4.7). The parameters involved in the relevant changes of 

variables are given in table 5.6.1, using the notation of the said paragraph. Since the 

parameter 0A  in both columns of this table is never zero, the reduction processes for 

equations (5.6.33) and (5.6.34) are always well-defined. 
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Reduction of (5.6.33) to Kummer’s equation Reduction of (5.6.34) to Kummer’s equation






2
1

2

(1 ρ) α

(β α)

γ
σ i  






2
1 2

2

ρ (β β )

(1 β)

γ γ
σ i  


  



2
1

1 2

(1 ρ)
τ

(β α)

γ
B i  


  



2
1 2

1 2

ρ ( )
τ

(1 β)

γ γ
B i  


 



2
1

0 2

2(1 ρ)

(β α)

γ
A i    ( 0)  


 



2
1 2

0 2

2ρ ( )

(1 β)

γ γ
A i    ( 0)  


  



2
1

0 2

2(1 ρ) α
1

(β α)

γ
b B i    0( )  


  



2
1 2

0 2

2ρ (β β )
1

(1 β)

γ γ
b B i    0( )  

 1 1 0A C   1 1 0A C  


1

2
a  

1

2
a  

Table 5.6.1: Parameters involved in the reduction of equations (5.6.33) and (5.6.34) to 

Kummer’s equation 

One now turns to the general solution of Kummer’s equation with parameters a  and 

b  as given in the above table. As in § 5.4, Kummer’s function ( , , )z M a b z  is always 

well-defined (since 0b ) and can be adopted for member of a fundamental pair of 

solutions. However, unlike the situation in § 5.4, we may have  1b  in the second column 

of table 5.6.1 (when  1 2β β 0γ γ ), in which case    1 (1 , 2 , )bz M a b b z  fails to provide 

a suitable second independent solution – indeed,    1( , , ) (1 , 2 , )bM a b z z M a b b z  if 

 1b . In order to treat every possible case in a unified manner, the principal branch 

( , , )z U a b z ,  \ ,0z   , of Tricomi’s function is chosen as the second 

independent solution to Kummer’s equation (vide supra, note 21) – on the one hand, the 

definition of ( , , )U a b z  places no restriction whatsoever on the complex parameters a  and 

b ; on the other hand, ( , , )M a b z  and ( , , )U a b z  are linearly independent when 

0, 1, 2,a      and, in addition, they form a numerically satisfactory pair of solutions 

when Re( ) 1b   and Re( ) 0z   (OLVER 1974, p. 259), which is always the case. 

The general solutions of the differential equations (5.6.33) and (5.6.34), on  α, β  

and  β, 1 , respectively, can therefore be written as 
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2 2

1 1
2 2

(1 ρ) α (1 ρ) 2 2
(β α ) (β α ) 1 1

1 2 2

2(1 ρ) α 2(1 ρ)1
( ) , 1 ,

2 (β α) (β α)

γ γ
i i s γ γ

s s e c M i i s  

 
  

     

2 2
1 1

2 2 2

2(1 ρ) α 2(1 ρ)1
, 1 ,

2 (β α) (β α)

γ γ
c U i i s  (5.6.39) 

 
 


 



   
     


2 2

1 2 1 2
2 2

ρ (β β ) ρ ( ) 2 2
(1 β) (1 β) 1 2 1 2

3 2 2

2ρ (β β ) 2ρ ( )1
( ) , 1 ,

2 (1 β) (1 β)

γ γ γ γ
i i s γ γ γ γ

s s e c M i i s  

 
  

     

2 2
1 2 1 2

4 2 2

2ρ (β β ) 2ρ ( )1
, 1 ,

2 (1 β) (1 β)

γ γ γ γ
c U i i s  , (5.6.40) 

with kc ,  1, , 4k . 

By continuity, it is easily seen that equation (5.6.39) (resp. (5.6.40)) must also hold at 

αs   and βs   (resp. βs   and 1s  ). It thereby defines the family of functions on  α, β  

(resp.  β, 1 ) whose members (i) are twice continuously differentiable on  α, β  (resp.  β, 1 ) 

– in fact, real analytic on  α, β  (resp.  β, 1 ) – and (ii) satisfy the differential equation 

(5.6.33) (resp. (5.6.34)) on  α, β  (resp.  β, 1 ). The differentiation formulae (5.4.36) and 

(e.g., DAALHUIS 2010, eq. (13.3.22)) 

 ( , , ) ( 1, 1, )
d

U a b z aU a b z
dz

      ,  \ ,0z    , (5.6.41) 

now yield 

 
 


 



                    


2 2
1 1

2 2

(1 ρ) α (1 ρ)2 2 2
(β α ) (β α )1 1 1

12 2 2

(1 ρ) 2(1 ρ) α 2(1 ρ)α 1
( ) 1 , 1 ,

(β α) 2 (β α) (β α)

γ γ
i i sγ γ γ

s i s e c M i i s
s

 

 
  

      
 

2 2
1 1

2 2 2
1

2

2(1 ρ) α 2(1 ρ)1 3
, 2 ,

2(1 ρ) α 2 (β α) (β α)
1

(β α)

γ γ
M i i s

γ
i

 

 
             

2 2
1 1

2 2 2

2(1 ρ) α 2(1 ρ)α 1
1 , 1 ,

2 (β α) (β α)

γ γ
c U i i s

s
 

 
2 2

1 1
2 2

2(1 ρ) α 2(1 ρ)3
, 2 ,

2 (β α) (β α)

γ γ
U i i s

         
  , α βs   . (5.6.42) 
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2 2

1 2 1 2
2 2

ρ (β β ) ρ ( )2
(1 β ) (1 β )

2

ρ
( )

(1 β)

γ γ γ γ
i i s

s i s e
 


 

 


  

 
                 

2 2
1 2 1 21 2

3 1 2 2 2

2ρ (β β ) 2ρ ( )β β 1
( ) , 1 ,

2 (1 β) (1 β)

γ γ γ γγ γ
c γ γ M i i s

s
 

 
  

      
 

2 2
1 2 1 21 2

2 2 2
1 2

2

2ρ (β β ) 2ρ ( )3
, 2 ,

22ρ (β β ) (1 β) (1 β)
1

(1 β)

γ γ γ γγ γ
M i i s

γ γ
i

 

 
     

          

2 2
1 2 1 2 1 2

4 1 2 2 2

β β 2ρ (β β ) 2ρ ( )1
( ) , 1 ,

2 (1 β) (1 β)

γ γ γ γ γ γ
c γ γ U i i s

s
 

 
           

2 2
1 2 1 2

1 2 2 2

2ρ (β β ) 2ρ ( )3
( ) , 2 ,

2 (1 β) (1 β)

γ γ γ γ
γ γ U i i s   , β 1s   . (5.6.43) 

The substitution of (5.6.39)-(5.6.40) and (5.6.42)-(5.6.43) into the boundary and jump 

conditions (5.6.35)-(5.6.38) leads to the linear system 

  0kl la c     ( , 1, , 4)k l  (5.6.44) 

with coefficients 

 
2 2

1 1
11 2 2 2

1
2

2(1 ρ) α 2(1 ρ) α1 3
, 2 ,

2(1 ρ) α 2 (β α) (β α)
(β α)

γ γ
a M i i

γ
i

  
     



 

 
2 2

1 1 1
2 2

(β α) 2(1 ρ) α 2(1 ρ) α1
, 1 ,

1 ρ 2 (β α) (β α)

ε γ γ
M i i
   

     
 (5.6.45) 

 
2 2

1 1
12 2 2

2(1 ρ) α 2(1 ρ) α3
, 2 ,

2 (β α) (β α)

γ γ
a i U i i

  
     

 

 
2 2

1 1 1
2 2

(β α) 2(1 ρ) α 2(1 ρ) α1
, 1 ,

1 ρ 2 (β α) (β α)

ε γ γ
U i i
   

     
 (5.6.46) 

 13 14 21 22 0a a a a     (5.6.47) 

 
2 2

1 2 1 2
23 2 2

2ρ (β β ) 2ρ ( )1
, 1 ,

2 (1 β) (1 β)

γ γ γ γ
a M i i

  
    

 (5.6.48) 

 
2 2

1 2 1 2
24 2 2

2ρ (β β ) 2ρ ( )1
, 1 ,

2 (1 β) (1 β)

γ γ γ γ
a U i i

  
    

 (5.6.49) 

 

2 2
1 1

2 2

(1 ρ) α (1 ρ) β 2 2
(β α ) (β α ) 1 1

31 2 2

2(1 ρ) α 2(1 ρ) β1
β , 1 ,

2 (β α) (β α)

γ γ
i i γ γ

a e M i i
 


    

    
 (5.6.50) 
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2 2
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2 2
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(β α ) (β α ) 1 1

32 2 2

2(1 ρ) α 2(1 ρ) β1
β , 1 ,

2 (β α) (β α)

γ γ
i i γ γ

a e U i i
 


 

        
 (5.6.51) 
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γ γ γ γ
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a e M i i
 


    

     
 (5.6.52) 
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 (5.6.53) 
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 (5.6.55) 
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(1 β)
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2 2

1 2 1 2
2 2

2ρ (β β ) 2ρ β( )3
, 2 ,

2 (1 β) (1 β)

γ γ γ γ
M i i
  

    
 (5.6.56) 

 

2 2
1 2 1 2

2 2

ρ (β β ) ρ β( ) 2 2
(1 β) (1 β) 1 2 1 21 2

44 2 2

2ρ (β β ) 2ρ β( )ρ( ) 3
β , 2 ,

1 β 2 (1 β) (1 β)

γ γ γ γ
i i γ γ γ γγ γ

a i e U i i
 


 

        
 . (5.6.57) 

As in § 5.5, the system (5.6.44), with complex coefficients and unknowns, is unfolded into 

 
 

  

Re( )Re( ) Im( )Im( ) 0

Im( )Re( ) Re( )Im( ) 0
kl l kl l

kl l kl l

a c a c

a c a c
    ( , 1, , 4)k l  . (5.6.58) 

The characteristic equation for the eigenvalues of Problem 5.8 is now obtained by 

equating to zero the determinant of the coefficient matrix of (5.6.58), which is a necessary 

and sufficient condition for this system to have non-trivial solutions – and thus for having 
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  0  or   0 . Given α , β , ρ , 1ε  and 2ε , the characteristic equation defines a family 

of curves in (the first quadrant of) the non-dimensional load plane  1 2,γ γ . Amongst these 

curves, the most important from a practical standpoint is that which is first intersected by a 

ray emanating from the origin, called the “stability boundary” (HUSEYIN 1970, 1978, § 2.5) 

or “buckling envelope” (CHILVER 1972, p. 54). 

The stability boundary of linear, conservative systems such as those under 

examination in this work cannot have convexity towards the origin. This general result, 

which was first established independently by PAPKOVITCH (1934) and SCHAEFER (1934), is 

based on the extremum properties of the Rayleigh quotient and applies to finite-dimensional 

and continuous systems alike.24 Its usefulness lies in the ability to construct polygonal lower 

bounds to the stability boundary once a number of points on it are known. 

5.6.2 The case   0 α β 1 

The scope of Problem 5.7 is now limited by the restriction 0 α β 1   . We will thus 

be looking at cantilevers consisting of a depth-tapered segment adjacent to the support and 

a prismatic segment, with forces applied at the tip and at the junction between the two 

segments (see figure 5.6.2). 

 

Figure 5.6.2: Two-segment strip cantilever with 0 α β 1    

                                                 
24 It can also be viewed as a corollary to a theorem obtained by HUSEYIN & ROORDA (1971) for finite-

dimensional dynamical systems and extended to continuous systems by MASUR (1972). 
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Consider the homeomorphism    : 0, 0, 1f L   defined by 

 

1
1

1
1

1

1 (1 β) if 0 ρ
ρ

( )
ρ

β β if ρ
(1 ρ)

x
x L

L
f x

x L
L x L

L

         
 

 (5.6.59) 

and let 1( )s f x  denote the associated change of independent variable. Moreover, define 

 : 0, 1    such that    1 f  (that is,     1
1 f ) and denote its restrictions to  0, β  

and to  β, 1  by   and  , respectively. Finally, define the parameters 1γ , 2γ , 1ε , 2ε  and β  

as in (5.6.30)-(5.6.32) – with α β , of course. It is then a simple matter to see that the 

restricted Problem 5.7 can be cast in the following non-dimensional form: 

Problem 5.9. 

Find scalars 1γ , 2 0γ  and functions  : 0, β   ,    : β, 1 , with 

  2 0, βC  , 

   
2 β, 1C  and 

   0  or   0 , 

satisfying 

 
24

21
6

(1 ρ)
( ) ( ) 0

β

γ
s s s  

     (5.6.60) 

on  0 , β , 

 
4

2 1 2 1 2
1 24

2( )(β β )1 ρ
( ) ( ) ( )

(1 β)

γ γ γ γ
s s γ γ

s s
  

      
    

 
2

1 2
2

(β β )
( ) 0

γ γ
s

s



 

  (5.6.61) 

on  β , 1  and 

 1 1(1 ρ)
(0) (0) 0

β

ε γ  

     (5.6.62) 

 (1) 0   (5.6.63) 

     (β) (β) 0  . (5.6.64) 

 2 2

β
(1 β ) (β) (β) (β) 0

1 ρ
ε γ    

 
      
    . (5.6.65) 
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Equation (5.6.60) is of the same form as (5.3.8). Its general solution on  0, β  is 

 
     

          


1 1
4 4

2 2
2 21 1

1 23 3

(1 ρ) (1 ρ)
( )

2β 2β

γ γ
s s c J s c Y s  , (5.6.66) 

with 1 0γ   and 1 2,c c . Using (5.3.19) and (5.3.20), this can be rewritten as 

    








  
     


1
422

4 11
1 2 35

0 4

( 1) (1 ρ)
( )

!Γ 4β

nn
n

n

γ
s c c s

n n
 

 
   





           


13 44

1
4

22
41

2 333
1 414

2 β ( 1) (1 ρ)
2

!Γ 4βΓ 1 ρ

nn
n

n

γ
c s

n nγ
 . (5.6.67) 

Equation (5.6.61) is identical with (5.6.34) and its general solution on  β , 1  is therefore 

given by (5.6.40). 

The remainder of the solution process follows a now familiar path and warrants no 

further elaboration. 

5.6.3 The case   0 α β 1 

In order to deal with the case 0 α β 1   , shown schematically in figure 5.6.3, 

consider the change of variable 1( )s f x  determined by the homeomorphism 

   : 0, α, 1 ρf L   , 

 

1
1

1
1

1

1 ρ if 0 ρ

( )
ρ

1 (1 α) if ρ
(1 ρ)

x
x L

L
f x

x L
L x L

L

          
 

 . (5.6.68) 

 

Figure 5.6.3: Two-segment strip cantilever with 0 α β 1    
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As usual, define  : α, 1 ρ     such that    1 f  and denote its restrictions to  α, 1  

and to  1, 1 ρ  by   and  , respectively. Defining the parameters 1γ , 2γ , 1ε  and 2ε  as in 

(5.6.30)-(5.6.31) – with β 1 , of course –, it is easily seen that Problem 5.7, under the 

restriction 0 α β 1   , is brought into the following form: 

Problem 5.10. 

Find scalars 1γ , 2 0γ  and functions  : α, 1   ,  : 1, 1 ρ    , 

with 

  2 α, 1C  , 

  2 1, 1 ρC    and 

   0  or   0 , 

satisfying 

 
24 2

1
4 2

(1 ρ) 2α1 α
( ) ( ) 1 ( ) 0

(1 α)

γ
s s s

s s s
    

         
    (5.6.69) 

on  α , 1 , 

  21 2 1 2( ) ρ ( ) ( ) 0s γ γ γ γ s s          (5.6.70) 

on  1, 1 ρ  and 

 1 1(1 ρ)
(α) (α) 0

1 α

ε γ  
  


   (5.6.71) 

 (1 ρ) 0    (5.6.72) 

 (1) (1) 0      . (5.6.73) 

 2 2

1 α
(1) (1) (1) 0

1 ρ
ε γ    

      
    . (5.6.74) 

Equation (5.6.69) is identical with (5.6.33) (with β 1 , of course). As for equation 

(5.6.70), it can be reduced to the same form as (5.3.8) or (5.6.60). Indeed, perform the shift 

 1 2

1 2

ργ γ
s z s

γ γ


 


  (5.6.75) 

and define, on the interval  1 1 2

1 2 1 2

(1 ρ ) ρ,γ γ γ
γ γ γ γ
 
  , a new real-valued function η  such that 

( ) η( )s z  . Then η  satisfies on its domain the differential equation 

 2 2
1 2η ( ) ( ) η( ) 0z γ γ z z     , (5.6.76) 

whose general solution is given by (vide supra, note 12) 
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 1 1
4 4

2 21 2 1 2
3 4η( )

2 2

γ γ γ γ
z z c J z c Y z

              
  , with 3 4,c c  . (5.6.77) 

The general solution of (5.6.70) on  1, 1 ρ  is therefore 

 
 

    
       


1
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2

1 2 1 21 2
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1 2 1 2

ρ ( )ρ
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γ γ γ γ sγ γ
s s c J
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1
4

2

1 2 1 2
4

1 2

ρ ( )

2( )

γ γ γ γ s
c Y

γ γ
  , with 3 4,c c . (5.6.78) 

The remainder of the solution process is now an uneventful repetition of known 

techniques. 

5.6.4 Illustrative examples 

Illustrative example 1 

As a first illustration of the foregoing theory, consider the family of strip cantilevers 

shown in figure 5.6.4, whose depth tapers linearly between 0h  at the support ( 1 0x  ) and 

0αh  at the free end ( 1x L ) and which are subjected to conservative loads applied to the 

centroids of the free-end section and of an intermediate section defined by the abscissa 

1 ρx L . The depth of the latter section is 0βh , with β 1 (1 α)ρ   . For reference 

purposes, the prismatic case (α 1.0 ) is also included (see CHALLAMEL & WANG 2010). 

 

 α 0.2, 0.4, 0.6, 0.8, 1.0  

 ρ 0.2, 0.4, 0.6, 0.8
 

β 1 (1 α)ρ    

β α  

1 2
3 3 0Q Qx x   ( 1 2 0ε ε  )

Figure 5.6.4: Illustrative example 1 
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Each combination of values assigned to the parameters α  and ρ  determines a 

specific non-dimensional LTB problem and, in particular, a specific stability boundary in 

(the first quadrant of) the non-dimensional load plane  1 2,γ γ . To obtain (a number of 

points on) such a stability boundary, the following procedure was adopted: 

(i) First, set 2 0γ   and compute the critical value of the non-dimensional load 1γ , which 

shall be denoted 1.uγ  (the subscript “u” stands for “uncoupled load case” and, for the 

sake of notational simplicity, the subscript “cr” is omitted). This provides the point 

1.( , 0)uγ  where the stability boundary intersects the positive 1γ  semi-axis. 

(ii) Repeat the previous step with the roles of 1γ  and 2γ  reversed, so as to obtain the point 

2.(0 , )uγ  where the stability boundary intersects the positive 2γ  semi-axis.25 

(iii) For fixed values of 1γ  in the open interval  1.0 , uγ , compute the lowest positive value 

of 2γ  that satisfies the characteristic equation. Each combination thus obtained 

corresponds to a point on the stability boundary. 

(iv) As a check, reverse the roles of 1γ  and 2γ  in the previous step. 

All the computations were carried out with the mathematical software package 

Mathematica (WOLFRAM RESEARCH, INC. 2006). The values 1.uγ  and 2.uγ  are collected in 

table 5.6.2 – observe that 1.uγ  is obviously independent of ρ . The stability boundaries are 

sketched in figure 5.6.5 on the basis of 41 points with equally spaced abscissas. Notice that 

the 1γ - and 2γ -axes were normalised through division by 1.uγ  and 2.uγ , respectively. As 

theoretically predicted, the stability boundaries do not exhibit convexity towards the origin. 

The Dunkerley-type lower bounds (e.g., TARNAI 1995, 1999) 

 1 2

1. 2.

1
u u

γ γ

γ γ
   ,  1 1.0 uγ γ   ,  2 2.0 uγ γ   , (5.6.79) 

are also shown in figure 5.6.5 (dashed lines). For fixed α , these lower bounds become 

more accurate as ρ  increases – in fact, Dunkerley’s line (5.6.79) would be exact in the 

limiting case ρ 1  (both loads applied at the free-end section). For low values of ρ  

(intermediate load applied relatively close to the support), the accuracy of Dunkerley’s line 

as an approximation to the stability boundary is poor. In the limiting case ρ 0  

(“intermediate” load applied at the support), 2.uγ  would become infinitely large and the 

stability boundary would degenerate into the vertical line 1 1.uγ γ . For fixed ρ , the normalised 

                                                 
25 Recall the remark made in the paragraph following the statement of Problem 5.6. 
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Fig. 5.6.5: Illustrative example 1 – Stability boundaries 
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α  1.uγ  
2.uγ  

ρ= 0.2  ρ= 0.4  ρ= 0.6  ρ= 0.8  

0.2  2.879  95.52  22.61 9.438  4.931 

0.4  3.219  96.75  23.25  9.900  5.309  

0.6 3.510  97.95  23.88  10.34  5.652  

0.8  3.771 99.14  24.49  10.75  5.970  

1.0  4.013 100.3  25.08  11.15  6.270  

Table 5.6.2: Illustrative example 1 – Non-dimensional critical loads 1.uγ  and 2.uγ  for the 

uncoupled load cases 

stability boundaries corresponding to decreasing values of α  are arranged in order, from the 

inner-most to the outer-most, and closely grouped together (particularly so if ρ  is large). 

Illustrative example 2 

The second illustrative example concerns two-segment cantilevers acted by a single 

load applied at the centroid of the free-end section ( 2 0γ  , 1 0ε  ) – see figure 5.6.6. The 

length of the first segment (adjacent to the support) relative to the total length of the 

cantilever takes on the values ρ 0.3 , ρ 0.5  and ρ 0.7 . For each ρ , the parameter α  

characterising the depth of the free-end section is assigned the fixed value 0.2 , while the 

parameter β  defining the depth at the junction between segments varies from 0.2  ( α ) to 

1.0 . We will thus be looking at a gradual transition between the two extreme cases 

discussed in §§ 5.6.2-5.6.3. 

The non-dimensional critical loads 1.uγ  are graphically displayed in figure 5.6.7(a). 

These graphs are indeed continuous at β α 0.2   and β 1.0 . Moreover, for 

β 1 ρ(1 α)   , when the cantilevers reduce to a single linearly tapered segment loaded at 

the tip, we obtain 1. 2.879uγ  , in perfect agreement with the result reported in § 5.4. As 

expected, for fixed ρ  (resp. fixed β ), the non-dimensional critical load 1.uγ  is an increasing 

function of β  (resp. of ρ ). Figure 5.6.7(b) is far more interesting – it displays, for each ρ , 

the ratio between the critical load 1.u refλ Q  and the cantilever volume V , non-dimensionalised 

by the multiplicative factor 3 23 /( )L t EG , versus the parameter β . The ratio 1. /u refλ Q V  

is a measure of the efficiency of each cantilever geometry with respect to LTB. The maximum 
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Figure 5.6.6: Illustrative example 2 

achievable efficiency is found to be practically independent of ρ  (for the three values of ρ  

considered in this study). However, as ρ  increases, this maximum occurs for progressively 

lower values of β . These β  values are always larger than those corresponding to a single 

linearly tapered segment (i.e., larger than 1 (1 α)ρ  ), even if marginally so for ρ 0.7 , 

which means that the optimal shape is always convex. 
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Figure 5.6.7: Illustrative example 2 – Non-dimensional (a) critical loads and 

(b) critical load-to-volume ratios 

  

α 0.2

1.uγ  

β

ρ 0.5

ρ 0.7

ρ 0.3  

β

3
1.

2

3u refλ Q L

V t EG
  

ρ 0.3  

ρ 0.5  

ρ 0.7  

L

0h  

1 3refλ Q e  
3e  

1e  O  

ρL  

0αh  

β 1.0

β α

α β 1.0 



Chapter 5 

284 

* * * 

In both examples, some of the analytical solutions were compared with the results of 

shell finite element analyses. An excellent agreement was found in all cases, thus 

corroborating the mathematical model described at the beginning of this section and 

confirming the correctness of the analytical results. The details of the comparison are given 

in the paper ANDRADE et al. (2012). 

5.7 GENERALISATION 2: CANTILEVERED BEAM-COLUMNS 

In this section, we turn once again to the linearly tapered strip cantilevers described 

in § 5.2, which are now acted by two conservative point loads (see figure 5.7.1) – a 

transverse load 1 3refλ QQ e  and an axial compressive load 2 1refλ P P e , where refQ , 

refP  are positive reference magnitudes and 1λ , 2λ  are independent load factors, restricted to 

non-negative values.26 As shown in figure 5.7.1, these loads are applied at the centroid of 

the free-end section and always retain their original direction. Our purpose is to study 

analytically (to the extent that the analytical approach is feasible) the flexural-torsional 

buckling (FTB) behaviour of such a class of beam-columns. 

The functional 2Π  is now defined by 

     2 2
2 2 1 1 2 3 1 2 1 1 1 1 1 10 0

1 1
( , , , ) ( ) ( ) ( ) ( )

2 2

L L
Π w λ λ EI x w x dx GJ x x dx  

       
   21

1 2 1 1 1 1 2 2 1 10 0

1
1 ( ) ( ) ( )

2

L L

ref ref

x
λ Q L w x x dx λ P w x dx

L
 , (5.7.1) 

where 3 1( )EI x  and 1( )GJ x  are given by (5.2.4)-(5.2.5). This definition neglects both the 

amplification of the in-plane bending moments by the axial load and the effect of the in-plane 

bending curvature on the FTB strength. The domain of 2Π  is taken as 1 2 0 0
    D D , with 

      4
1 2 2 20, (0) 0 , (0) 0w C L w wD  (5.7.2) 

      2
2 1 10, (0) 0C LD  . (5.7.3) 

                                                 
26 Due to symmetry, reversing the direction of the load Q  does not change the problem, and so the 

condition 1 0λ   is no restriction at all. As for the condition 2 0λ  , it is not essential for the ensuing 
analysis (as the reader may easily verify) and could very well be omitted – however, in the case 2 0λ  , we 
would no longer be dealing with a beam-column, strictly speaking, but with a “tensioned beam”, less 
susceptible to buckling. 
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Figure 5.7.1: Linearly tapered cantilevered strip beam-column – Reference and buckled 

shapes; applied loads 

Within this framework, it is straightforward to see that the criterion of Trefftz and 

the fundamental lemma of the calculus of variations jointly lead to the following classical 

statement of the beam-column FTB problem: 

Problem 5.11. 

Find non-negative real numbers 1 2,λ λ  and functions   2 1, : 0,w L , with 

   4
2 0,w C L , 

    2
1 0,C L  and 

 2 0w  or  1 0 , 

satisfying the differential equations 

1 1
3 2 1 2 2 1 1 1 1(0) 1 (1 α) ( ) ( ) 1 ( ) 0ref ref

x x
EI w x λ P w x λ Q L x

L L


                 
 (5.7.4) 

 1 1
1 1 1 2 1(0) 1 (1 α) ( ) 1 ( ) 0ref

x x
GJ x λ Q L w x

L L


                
 (5.7.5) 

on the open interval  0, L , together with the boundary conditions 

 2 (0) 0w  (5.7.6) 

  2(0) 0w  (5.7.7) 

  1(0) 0  (5.7.8) 

0h  

L

0αh  

1 3refλ Q e  

t  

2( )w L  

1( )L  

1e  

3e  3e  

2e  O  

1 3refλ Q e  

2 1refλ P e  2 1refλ P e  
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 3 2 3 2 2 2 1 1

1 α
α (0) ( ) (0) ( ) ( ) ( ) 0ref refEI w L EI w L λ P w L λ Q L

L
       (5.7.9) 

 3 2α (0) ( ) 0EI w L   (5.7.10) 

 1α (0) ( ) 0GJ L   . (5.7.11) 

This is again a two-parameter eigenproblem, just as Problem 5.6. 

The integration of equations (5.7.4)-(5.7.5), together with the use of the boundary 

conditions (57.9)-(5.7.11), leads to 

  1 1
3 2 1 2 2 1 2 1 1 1(0) 1 (1 α) ( ) ( ) ( ) 1 ( ) 0ref ref

x x
EI w x λ P w x w L λ Q L x

L L
            

   
 (5.7.12) 

  1 1
1 2 1 1 2 1 2 1 11 ( ) ( ) ( ) (0) 1 (1 α) ( ) 0ref ref

x x
λ Q L w x λ Q w x w L GJ x

L L
             

   
 .(5.7.13) 

Consider now the map    : 0, 0,1f L   defined by 1

1 1 x
Lx   and let 1( )s f x  denote 

the associated change of independent variable. Moreover, introduce the functions 

   , : 0,1w  such that    2w L w f  and    1 f . Equations (5.7.12)-(5.7.13) are 

thereby brought into the form 

    
2 2

2 1

3 3

α (1 α) ( ) ( ) (0) ( ) 0
(0) (0)

ref refλ P L λ Q L
s w s w s w s s

EI EI
         (5.7.14) 

    
2

1 ( ) ( ) (0) α (1 α) ( ) 0
(0)
refλ Q L

s w s w s w s s
GJ

        
    . (5.7.15) 

The former equation shows that ( )s  is given by 

 
   2

3 2

2
1

(0) α (1 α) ( ) ( ) (0)
( ) ref

ref

EI s w s λ P L w s w
s

λ Q L s


   


    (5.7.16) 

on the open interval  0,1 . The incorporation of this result into equation (5.7.15) yields the 

third-order linear differential equation 

    23 3
2 2

(0) (0)
α (1 α) ( ) α α (1 α) ( )

EI EI
s s w s s w s

L L
        

    
2 2 2
1 2

2 α (1 α) ( ) ( ) (0) 0
(0)
ref

ref

λ Q L
s λ P s s w s w s w

GJ

 
          

  
    . (5.7.17) 

Then, by defining  η : 0,1  ,   η( ) ( ) (0)s w s w  and the non-dimensional loads27 

                                                 
27 Observe that (5.7.18) is identical with (5.3.6) and (5.6.301). 
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2

1
1

3(0) (0)
refλ Q L

γ
EI GJ

  (5.7.18) 

 
2

2
2

3(0)
refλ P L

γ
EI

  , (5.7.19) 

equation (5.7.17) is reduced to the non-dimensional form 

    2
α (1 α) η ( ) α α (1 α) η ( )s s s s s        

    2 2
1 2 α (1 α) η ( ) η( ) 0γ s γ s s s s         . (5.7.20) 

This equation suggests one further manipulation: with the introduction of the function 

 η : 0,1    defined by η( ) η ( ) η( )s s s s  , one obtains the second-order differential 

equation 

      2 1
α (1 α) η ( ) 2α (1 α) α (1 α) η ( )s s s s s

s
          

  2 2
1 2 α (1 α) η( ) 0γ s γ s s         . (5.7.21) 

It remains to specify the two boundary conditions to which equation (5.7.21) is 

subjected. At 0s   (i.e., at the cantilever’s tip), one has, by definition, η(0) 0  and hence 

η(0) 0 . At 1s   (i.e., at the clamped end), the condition   (1) 0w  yields η (1) 0   and, 

consequently, η(1) η (1) η(1) η(1)    . Moreover, by virtue of equation (5.7.16) and 

continuity considerations, the condition (1) 0   implies       2(1) (1) (0) 0w γ w w  or, 

which is the same, 2η (1) η(1) 0γ   . Therefore, one concludes that 2η (1) η(1) 0γ    . 

To sum up, the non-dimensional version of the two-parameter eigenproblem 

governing the FTB of the strip beam-columns of figure 5.7.1 may be phrased as follows: 

Problem 5.12. 

Find 1 2 0,γ γ   and  η : 0,1   , with   3η 0,1C  and η 0 , satisfying 

     2 1
α (1 α) η ( ) 2α (1 α) α (1 α) η ( )s s s s s

s
          

  2 2
1 2 α (1 α) η( ) 0γ s γ s s         . (5.7.22) 

on the open interval  0,1 , together with the boundary conditions 

 η(0) 0  (5.7.23) 

 2η (1) η(1) 0γ     . (5.7.24) 
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An eigenvalue is an ordered pair 2
1 2 0 0( , )γ γ      for which the boundary value problem 

(5.7.22)-(5.7.24) admits non-trivial (i.e., not identically zero) solutions   3η 0,1C . 

5.7.1 Prismatic beam-columns ( α 1 ) 

For prismatic beam-columns (α 1 ), the uncoupled load cases offer no difficulty 

whatsoever: 

(i) When 2 0λ   (or, equivalently, when 2 0γ  ), we have the lateral-torsional buckling 

problem investigated in § 5.3, with 0Qε  . The buckling values of the non-

dimensional transverse load 1γ  are twice the positive roots of the Bessel function of 

the first kind of order 1
4 , 1/4J . 

(ii) When 1 0λ   (or, equivalently, when 1 0γ  ), we have the well-known Euler problem 

of column buckling (EULER 1744, 1759).28 The buckling values of the non-dimensional 

compressive load 2γ  are 
2

4
n π , where n  is a positive integer. 

One is therefore left with: 

Problem 5.13. 

Find 1 2, 0γ γ   and  η : 0,1   , with   3η 0,1C  and η 0 , satisfying the 

differential equation 

 2 2
1 2

2
η ( ) η ( ) ( )η( ) 0s s γ s γ s

s
        (5.7.25) 

on the open interval  0,1 , together with the boundary conditions 

 η(0) 0  (5.7.26) 

    2η (1) η(1) 0γ  . (5.7.27) 

It is possible to bring equation (5.7.25) into a familiar form through a judiciously 

chosen change of independent variable. Indeed, consider the map    : 0,1 0,1g  , 

 2s s  and let  ( )z g s  denote the associated change of variable. Moreover, define 

 : 0,1y   such that, on  0,1 ,  η y g . The differential equation (5.7.25) is thereby 

transformed into 

 
2
1 21

( ) ( ) ( ) 0
2 4 4

γ γ
y z y z y z

z z

 
     

 
 ,    0,1z  , (5.7.28) 

                                                 
28 See TRUESDELL (1960, § 28 and ch. 4F) for an excellent analysis of Euler’s work on column buckling. 
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which is of the same form as equation (5.4.5). It is then a simple matter to see that the 

general solution of equation (5.7.25) on  0,1  may be written as 

 
   

   
 


1 2

23 22
1 1

1

5 5
η( ) , ,

4 4 2

γ
i s γ

s s e c M i i γ s
γ

 

 
3

22 22
2 1 1

1

1 1
( ) , ,

4 4 2

γ
c i γ s M i i γ s

γ

  
     

 
 , (5.7.29) 

with 1 2,c c . By continuity, this solution extends to  0s  and 1s  . 

The boundary condition (5.7.26) implies 2 0c  and one then concludes from the 

proposition in Appendix 2 (at the end of this chapter) that the constant 1c  must be real-

valued for all positive values of 1γ . The boundary condition (5.7.27) now leads to the 

characteristic equation 

 
1

22
2 1 1

1

5 5
(3 ) , ,

4 4 2

γ
i γ

e γ i γ M i i γ
γ

   
    

 
 

 2 2
1 1

1

9 7
, , 0

5 4 4 2

γ γ
i γ M i i γ

γ

        
   

 , (5.7.30) 

which may be written in the more compact form 

 
1

22
1

1

1 1
, , 0

4 4 2

γ
i γ

e M i i γ
γ

  
  

 
 . (5.7.31) 

A detailed proof of the equivalence between equations (5.7.30) and (5.7.31), which is by no 

means obvious, is given in Appendix 3, at the end of this chapter. Moreover, it follows once 

again from the proposition in Appendix 2 that left-hand side of equation (5.7.31) is real-

valued for all positive values of 1γ . It is worth noting that MILISAVLJEVIC (1988) arrived at 

exactly the same characteristic equation using a direct equilibrium approach. 

As in § 5.6, the characteristic equation (5.7.31) defines a family of curves in the first 

quadrant of the  2
1 2,γ γ  half-plane, the first of which is (part of) the beam-column’s 

stability boundary. This stability boundary intersects the 2
1γ  semi-axis and the positive 2γ  

semi-axis at the points 2
1.( , 0)uγ  and 2.(0 , )uγ , with 2

1. 16.101uγ   (the square of twice the 

lowest positive root of 1/4J ) and 
2

2. 4
π

uγ  . To obtain additional points on the stability 

boundary, choose a fixed value for 2γ  in the open interval  2

40, π  and solve the 
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characteristic equation for its the lowest positive root 1γ .29 The results of these calculations 

are presented in table 5.7.1 and plotted in figure 5.7.2. The comparison with the numerical 

results reported by MARTIN (1951) shows an excellent agreement. Moreover, it can be seen 

that Dunkerley’s line 

 

2

1 2

1. 2.

1
u u

γ γ

γ γ

 
   

 
 ,  22

1 1.0 uγ γ   ,  2 2.0 uγ γ   , (5.7.32) 

provides a rather accurate lower bound for the stability boundary. In view of the quite 

good accuracy of equation (5.7.32), as well as of its simplicity and elegance, the use of 

additional correction factors or exponents, as suggested for instance by DIMAGGIO et al. 

(1952, eq. (15)30), seems hardly justifiable. 

2
2

3.02
refλ P L

EIγ   

22 4
1

3.0 0

2
1

refλ Q L

EI GJγ 
 

Present work MARTIN (1951)

0.000  16.101 16.101 
0.290  14.458  14.478  
1.012  10.108  10.125  
1.568  6.475 6.355

1.942  3.878  3.885  
2.174  2.200  2.176  
2.311 1.184  1.156  
2.389  0.597  0.598  
2.436  0.240  0.244  

2π
4  0.000  0.000

Table 5.7.1: Prismatic cantilevered strip beam-columns – Non-dimensional critical loads 

                                                 
29 Of course, the roles of 1γ  and 2γ  can be reversed in this procedure, if only for verification purposes. 

30 The cited equation is patently misprinted – the symbols p  and q  should be interchanged. 
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Figure 5.7.2: Prismatic cantilevered strip beam-column – Stability boundary 

5.7.2 Tapered beam-columns (  0 α 1) 

Frobenius series solution 

In Problem 5.12, we now restrict the taper ratio α  to lie in the open interval  0, 1 . 

Equation (5.7.22) can then be cast in the form 

 

2
2 21

2

2

1 α2 1 (1 α)
η ( ) η ( ) η( ) 0

α αα
1 α 1 α1 α

γγ
s

s s s
s s ss

 
                       

    , (5.7.33) 

making it clear that 0s   and α
1 αs    are regular singular points (vide supra, note 14) – 

while the latter falls outside the domain of the problem, the former coincides with one of 

the boundary points. Although the above equation cannot be solved in closed-form, it is 

possible (i) to obtain an explicit series representation for its general solution, relative to the 

singularity at the origin, and (ii) to show that it converges for sufficiently small s  (e.g., 

CODDINGTON & CARLSON 1997, ch. 6, or INCE 1956, ch. 16). If the boundary point 1s   

lies in the domain of convergence, this series solution can be used to set up the 

characteristic equation for the tapered beam-column. 

For the sake of convenience, we rewrite equation (5.7.33) in the more concise form 

 1 2η ( ) ( ) η ( ) ( , , ) η( ) 0s F s s G s γ γ s       . (5.7.34) 

Dunkerley's line

Stability boundary

2
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γ

γ
 
 
 

 

2

2.u

γ

γ
 



Chapter 5 

292 

At 0s  , the functions ( )s s F s  and 2
1 2( , , )s s G s γ γ  may be expanded in the power 

series 

 
2

2

0

1 α 1 α
( ) 2

α α
n

n
n

s F s f s s s




        
 

   (5.7.35) 

 
22

2 2 22 2 3 41
1 2 1 2 2 2 3

0

(1 α) (1 α)
( , , ) ( , )

α α α α
n

n
n

γ γ γγ
s G s γ γ g γ γ s s s s





  
     

   

 
32

2 51
3 4

(1 α)2(1 α)

α α

γγ
s

 
   
 

  . (5.7.36) 

Using d’Alembert’s test (e.g., CAMPOS FERREIRA 1987, pp. 180-181), their radius of 

convergence is found to be 

 1 2

1 1 1 2

( , ) α
lim lim

( , ) 1 α
nn

n n

g γ γf
R

f g γ γ 

  


 (5.7.37) 

(i.e., the radius of convergence is determined by the distance between the two regular 

singular points). 

The indicial equation of (5.7.33), relative to 0s  , is given by 

 2
0 0( 1) 0m f m g     , (5.7.38) 

with 0 2f    and 0 0g  , as can be seen from (5.7.35)-(5.7.36) by direct inspection. Its roots 

are 1 3m   and 2 0m  . Since 1 2( )m m  is a positive integer, equation (5.7.33) has two 

independent solutions of the form 

 1

1
1

η ( ) 1m n
n

n

s s a s




 
  

 
  (5.7.39) 

 




    2

2 1
0

η ( ) η ( ) log( ) m n
n

n

s c s s s b s  (5.7.40) 

on the interval α
1 α0 s R    , and the series converge for α

1 αs R    (CODDINGTON & 

CARLSON 1997, th. 6.10). The real constant c  in (5.7.40) may happen to be zero, in which 

case 2η  will have the same form as 1η . The general solution of (5.7.33) on  0,1  is then 

   1 1 2 2η( ) η ( ) η ( )s c s c s , with 1 2,c c . 

Let us first compute 1η  by applying the method of Frobenius (vide supra, § 5.4, 

particularly the paragraph including equations (5.4.23) through (5.4.29)). We simply insert 

equation (5.7.39) into equation (5.7.33) and equate to zero the coefficient of each power of s . 

This leads to the recursive relation (with 0 1a  ) 
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1

2
1 0 1 0 1

0

( ) ( 1)( ) ( )
n

n n k n k k
k

m n f m n g a m k f g a


 


               ,  1, 2,n  , (5.7.41) 

which can be rewritten as 

 
1

1 1
0

( ) ( )
n

n n k n k k
k

P m n a m k f g a


 


        , (5.7.42) 

where 

 2
0 0( ) ( 1)P m m f m g     (5.7.43) 

is the indicial polynomial. Since 1( ) 0P m n   for all n , one obtains from (5.7.42) the 

coefficients na  ( 1, 2, )n    of the series (5.7.39), expressed in terms of α , 1γ  and 2γ . As a 

matter of fact, the first three coefficients are given by 

 


 1

3(1 α)

4α
a  (5.7.44) 

 
2

2
2 2

6(1 α) α

10α

γ
a

 
  (5.7.45) 

 
 2

2

3 3

4 (1 α) α (1 α)

8α

γ
a

  
   (5.7.46) 

and, for 4n  , one has the recursion relation (with 0 1a  ) 

  2 2
1 2 2α ( 3) α(1 α)( 2)(1 2 ) (1 α) (1 )(1 ) αn n nn n a n n a n n γ a            

 2 3 1 4α n nγ a γ a    . (5.7.47) 

We now turn to the solution 2η  and we tentatively apply once again the method of 

Frobenius – that is, we set  0c  and 0 1b   in equation (5.7.40) and repeat the procedure 

of the foregoing paragraph. Since this turns out to be successful,31 there is a second 

independent Frobenius series solution to equation (5.7.33). However, this second solution 

will not be needed in the following. Indeed, because 11η ( ) 0s   and 2 0η ( ) 1s b   when 

0s  , the boundary condition η(0) 0  implies 2 0c  and we are left solely with 

 1 1η( ) η ( )s c s . 

                                                 
31 Because 2( 3) 0P m   , it is generally impossible to obtain 3b  from the equation 

 
2

2 3 2 3 3
0

( 3) ( ) k k k
k

P m b m k f g b 


      , 

in which case the recursive determination of the coefficients nb  of the second Frobenius series breaks 

down. However, in the particular problem under examination, the right-hand side of the above equation 

vanishes. It follows that 3b  can be assigned any value whatsoever and the remaining coefficients 4 5, ,b b   

can be computed without any further difficulties. As BENDER & ORSZAG (2010, p. 72) suggestively put it, 

“the recursion relation has successfully jumped the hurdle” at 1 2 3n m m   . 
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If α
1 α 1R    (i.e., if 1

2α  ), then 1η  converges at 1s  , and so does its derivative. It 

is therefore legitimate to introduce  1 1η ηc  into the boundary condition (5.7.24), a 

procedure that yields the characteristic equation 

 2
1 1

(3 ) 1 0n n
n n

n a γ a
 

 

 
    

 
   , (5.7.48) 

valid for tapered beam-columns with 1
2 <α 1 . Since no closed-form expression can be 

found for the sum of the two series appearing in this equation, one is forced, for all 

practical purposes, to replace them by the partial sums corresponding to a number N  of 

terms chosen so as to ensure the desired accuracy of the computed solutions. In other 

words, equation (5.7.48) is replaced by 

 2
1 1

(3 ) 1 0
N N

n n
n n

n a γ a
 

 
    

 
   . (5.7.49) 

For sufficiently high values of α  (say, α 0.6 ), the stability boundary can be obtained with 

good accuracy – say, at least four correct significant digits in the computation of one of the 

non-dimensional loads, for a given value of the other – with a moderate number N  of terms 

( 80N  , to be specific). A typical example of the observed oscillatory convergence 

behaviour is presented in figure 5.7.3. When α  is close to (but above) 1
2 , convergence 

becomes extremely slow and a similar level of accuracy requires N  in the thousands. Figure 

5.7.4 shows the stability boundaries for selected values of α , computed with the number N  

of terms indicated. For reference purposes, the prismatic case (α 1.0 ) is also displayed. 

Numerical solution by a collocation-based procedure 

For 1
20 α  , the characteristic equation (5.7.48) ceases to be valid and one is forced 

to use a numerical approach.32 As in previous chapters, the eigenproblem (5.7.22)-(5.7.24) is 

converted into an inhomogeneous two-point boundary value problem, which is then 

solved using the general-purpose code COLNEW (BADER & ASCHER 1987),33 an approach 

that has been successfully applied to the lateral-torsional buckling analysis of prismatic and 

                                                 
32 Needless to say, the numerical approach can also be used when 1

2 α 1  . 

33 A brief overview of COLNEW and its predecessor COLSYS is given in Appendix 1, at the end of chapter 3. 
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Figure 5.7.3: Convergence of the Frobenius series solution – α 0.75 , 1
1 2 1.1.854 ( )uγ γ   
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Figure 5.7.4: Linearly tapered cantilevered strip beam-columns – Stability boundaries 
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tapered beams (REISSNER et al. 1987 and ANDRADE et al. 2006, 2010). The required 

conversion is achieved in the following way: 

(i) For the computation of the critical value of nγ  ( 1n   or 2n  ), corresponding to a 

given fixed value of the other non-dimensional load, the differential equation 

 0η ( ) ( ) 0ns γ    (5.7.50) 

is added to the original problem. It is readily recognized that (5.7.50) is just an implicit 

statement of the fact that nγ , formally interpreted as a function of s , is a constant. 

(ii) In order to have a unique eigenfunction η  (up to sign), one adds the differential 

equation 

 2( ) η( )s s    ,  0 1s   (5.7.51) 

and the boundary conditions 

 (0) 0   (5.7.52) 

 (1) 1   . (5.7.53) 

This is equivalent to imposing the normalisation condition 

 
1 2

0
η( ) 1s ds    (5.7.54) 

upon the eigenfunctions. 

It should be noticed that (i) the enlarged boundary value problem is non-linear and (ii) the 

boundary conditions remain separated. Another important feature to appreciate is the fact 

that there is no need to modify COLNEW in order to deal with the regular singularity at the 

boundary point 0s  , as the discretisation method involves collocation at Gaussian points 

and so the left-hand side of equation (5.7.22) is never evaluated at an end point (AUZINGER 

et al. 2006). 

Since the construction of stability boundaries for different values of the taper ratio α  

requires the solution of chains of “nearby” problems (known as “homotopy chains” – 

DEUFLHARD 1979, p. 65), a simple continuation strategy was implemented: mγ  ( m n ) and 

α  are taken as the continuation parameters and the solution of a previous problem is 

adopted as the initial guess for a subsequent one, having the same data except for a small 

increment in a single continuation parameter, a possibility that is already encoded in 

COLNEW. The continuation process can start with one of the uncoupled load cases and 

α 1 , for which there are known analytical solutions. The results obtained for 1
20 α   
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are plotted in figure 5.7.4. For 1
2 α 1  , the collocation and Frobenius series solutions 

virtually coincide with one another. 

* * * 

The analytical and numerical solutions presented above were compared with the 

results of shell finite element analyses and an excellent agreement was found in all cases – 

the details can be found in CHALLAMEL et al. (2010). Moreover, (i) the results concerning 

2 0γ   (beam lateral-torsional buckling) are in perfect agreement with those obtained 

previously in § 5.4 and (ii) the results concerning 1 0γ   (column flexural buckling) are in 

perfect agreement with those presented by DINNIK (1932), who obtained the general 

solution to the governing differential equation in terms of Bessel functions. 

In accordance with the theorem of Papkovitch-Schaefer, the stability boundaries in 

in the first quadrant of the  2
1 2,γ γ  half-plane, shown in figure 5.7.4, never exhibit 

convexity towards the origin. They are therefore bounded from below by the 

corresponding Dunkerley’s lines (5.7.32), which can be seen to be quite accurate. In fact, 

equation (5.7.32) is precisely the approximation proposed by GATEWOOD (1955) for this 

problem. Moreover, the ratio 

 1. 1. 3.0

2. 2. 0

u u ref

u u ref

γ λ Q EI

γ λ P GJ
  (5.7.55) 
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is practically independent of α  over the range 0.2 α 1.0  , as shown in figure 5.7.5. We 

can take 2. 1./ 0.612u uγ γ   (with relative errors less than 0.6% ) and approximate Dunkerley’s 

line by 

 

2

1 2

1. 1.

1
0.612u u

γ γ

γ γ

 
   

 
 ,  2 2

1 1.0 uγ γ   ,  2 1.0 0.612 uγ γ   , (5.7.56) 

which requires the sole knowledge of 1.uγ . 
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APPENDIX 2 

In this appendix, one proves the following result: 

Proposition. Let there be given a function :u    and real numbers A  and B , with 

02 A  . The function defined on   by 

  ( )( ) , 2 , 2 ( )i u tf t e M A i B A i u t   (A2.1) 

is real-valued. 

Proof. First, observe that for every ,a z   and b  (excluding 0 , 1, 2 ,b     ), one 

has 

 ( , , ) ( , , )M a b z M a b z  , (A2.2) 

where the superposed bar denotes complex conjugation. Indeed, by definition, ( , , )M a b z  

is given by the sum of the absolutely convergent series (recall equations (5.4.30) and (5.4.32)) 

 
2 3( 1) ( 1)( 2)

( , , ) 1
( 1)2! ( 1)( 2)3!

a a z a a a za
M a b z z

b b b b b b

  
    

  
  . (A2.3) 

Therefore, using the basic properties of complex conjugation, one finds 

 
2 3( 1) ( 1)( 2)

( , , ) 1
( 1)2! ( 1)( 2)3!

a a z a a a za
M a b z z

b b b b b b

  
    

  
  

 
2 3( 1) ( 1)( 2)

1 ( , , )
( 1)2 ! ( 1)( 2)3!

a a z a a a za
z M a b z

b b b b b b

  
     

  
  . (A2.4) 

The application of this result, together with the identity z ze e , to the conjugate of ( )f t  

yields 

  ( )( ) , 2 , 2 ( )i u tf t e M A i B A i u t    . (A2.5) 

Finally, using Kummer’s first theorem (e.g., DAALHUIS 2010, eq. (13.2.39)), one obtains 

  ( ) 2 ( )( ) 2 ( ) , 2 , 2 ( )i u t i u tf t e e M A A i B A i u t    

  ( ) , 2 , 2 ( ) ( )i u te M A i B A i u t f t    (A2.6) 

and the conclusion ( )f t   follows immediately. 

The above proof is a minor generalisation of an unpublished note by B.M. Milisavlevich. 
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APPENDIX 3 

In this appendix, one shows that equations (5.7.30) and (5.7.31) are equivalent. 

Indeed, by setting 

 2

1

1

4 4

γ
a i

γ
   (A3.1) 

 
3

2
b  (A3.2) 

 1z i γ  (A3.3) 

in the recurrence relation (e.g., DAALHUIS 2010, eq. (13.3.13)) 

 ( 1) ( 2, 2, ) ( 1)( ) ( 1, 1, ) ( 1) ( , , ) 0a z M a b z b b z M a b z b b M a b z            , (A2.4) 

one finds 

  2 2 2
1 1 1 1

1 1

9 7 5 5
, , 3 2 , ,

5 4 4 2 4 4 2

γ γ γ
i γ M i i γ i γ M i i γ

γ γ

             
     

 

 2
1

1

1 3
3 , , 0

4 4 2

γ
M i i γ

γ

 
   

 
 (A3.5) 

and the insertion of this result into equation (5.7.30) leads to 

 
1

2 22
2 1 1 1

1 1

5 5 1 3
( ) , , 3 , , 0

4 4 2 4 4 2

γ
i γ γ

e γ i γ M i i γ M i i γ
γ γ

     
         

    
 . (A3.6) 

Using the recurrence relation (A3.4) once again, now with 

 2

1

3

4 4

γ
a i

γ
    (A3.7) 

 
1

2
b  (A3.8) 

 1z i γ  (A3.9) 

one obtains 

 2 2
2 1 1 1 1

1 1

5 5 1 3
( ) , , (3 6 ) , ,

4 4 2 4 4 2

γ γ
γ i γ M i i γ i γ M i i γ

γ γ

   
        

   
 

 2
1

1

3 1
3 , , 0

4 4 2

γ
M i i γ

γ

 
    

 
 (A3.10) 

and equation (A3.6) is thus brought into the form 
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1

2 22
1 1 1

1 1

1 3 3 1
6 , , 3 , , 0

4 4 2 4 4 2

γ
i γ γ

e i γ M i i γ M i i γ
γ γ

     
        

    
 . (A3.11) 

Finally, the recurrence relation (e.g., DAALHUIS 2010, eq. (13.3.4)) 

 ( , , ) ( 1, , ) ( , 1, ) 0b M a b z b M a b z z M a b z      , (A3.12) 

with 

 2

1

1

4 4

γ
a i

γ
   (A3.13) 

 
1

2
b  (A3.14) 

 1z i γ  , (A3.15) 

gives 

 2 2
1 1

1 1

1 1 3 1
, , , ,

4 4 2 4 4 2

γ γ
M i i γ M i i γ

γ γ

   
      

   
 

 2
1 1

1

1 3
2 , , 0

4 4 2

γ
i γ M i i γ

γ

 
   

 
 . (A3.16) 

The incorporation of this identity into equation (A3.11) yields the desired result: 

 
1

22
1

1

1 1
, , 0

4 4 2

γ
i γ

e M i i γ
γ

  
  

 
 . (A3.17) 
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Chapter 6 

SUMMARY AND CONCLUSIONS. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

What we call the beginning is often the end 
And to make an end is to make a beginning. 

The end is where we start from. 

T. S. ELIOT 

Hofstadter’s Law: It always takes longer than you expect, 
even when you take into account Hofstadter’s Law. 

DOUGLAS R. HOFSTADTER 

6.1 SUMMARY AND CONCLUSIONS 

The object of the present thesis was the development of one-dimensional models for 

the linear static, dynamic and lateral-torsional buckling analysis of tapered thin-walled bars 

with open cross-sections. Moreover, we endeavoured to supply physical interpretations for 

the key behavioural features implied by these models, in order to shed light into the roles 

played by the various geometrical and mechanical parameters, with particular emphasis on 

those that are peculiar to the tapered case. Bearing this in mind, one now presents an outline 

of the contents of the thesis and a statement of conclusions, emphasizing the main original 

findings reported and how they contribute to further the state-of-the-art knowledge. 

In chapter 2, a linear one-dimensional model for the stretching, bending and twisting 

of prismatic thin-walled bars with open cross-sections under general static loading 

conditions was presented. Its most distinctive and novel features may be summarised as 

follows: 

(i) Thin-walled bars are basically regarded as internally constrained membrane shells. 



Chapter 6 

314 

(ii) The internal constraints extend to the tapered case the classical assumptions of Vlasov’s 

prismatic bar theory. This extension is achieved in such a way as to retain an intrinsic 

geometrical meaning, i.e., independent of the choice of parametrisation. 

(iii) The internal constraints are treated consistently as a priori restrictions, of a constitutive 

nature, on the possible deformations of the middle surface of the bar. The membrane 

forces are decomposed additively into active and reactive parts, and the constitutive 

dependence of the active membrane forces on the membrane strains reflects the 

maximal symmetry compatible with the assumed internal constraints. Stress resultants 

are likewise split into active and reactive categories: while the normal force, bending 

moments and bimoment are purely active, the shear forces are purely reactive and the 

torque is partly active and partly reactive. 

(iv) In tapered bars, and from the point of view of kinematics, the constraints give rise to 

an additional (non-standard) basic membrane strain mode, which is absent in 

prismatic bars – its amplitude is the rate of twist. As a consequence, the model 

features additional stiffness terms associated with the torsional behaviour, whose 

physical significance was illustrated through examples. 

(v) From the point of view of statics, the counterpart of the preceding item is the 

contribution of the active membrane forces to the total torque, which is absent in 

prismatic bars. 

(vi) There are exceptions to the statements in items (iv) and (v) – for instance, the 

additional basic strain mode and the contribution of the membrane forces to the total 

torque vanish in tapered bars whose middle surface is cut out from a cylindrical one. 

(vii) The classical model of Vlasov for prismatic bars is obtained as a special case. 

By virtue of the above peculiar traits, there are some striking contrasts with stepped 

(i.e., piecewise prismatic) models in dealing with restrained torsion warping. As a 

consequence, whenever torsional effects are involved, the structural behaviour predicted by 

our model is generally at odds with that obtained using an assembly of prismatic segments 

obeying Vlasov’s theory, regardless of the number of segments (i.e., even when their length 

tends to zero). The physical causes at the root of these discrepancies were illustrated 

through concrete examples, showing that stepped models exhibit several important 

mechanical shortcomings. Moreover, since the discrepancies may be significant, one 
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concludes that the use of stepped models to simulate the spatial behaviour of tapered thin-

walled bars with open cross-sections is inadequate except in special cases. 

The illustrative examples also showed that the approach to non-uniform torsion 

pioneered by Timoshenko (and further developed by Weber and the Bleiches) – i.e., 

regarding each plated component of the bar as an Euler-Bernoulli member undergoing 

stretching and bending –, when correctly applied to the tapered case, is entirely compatible 

with ours. 

One further point deserves to be mentioned. It was shown that the developed one-

dimensional model fits nicely into the unifying framework of a Tonti diagram. Indeed, the 

field equations relating the generalised displacements to the applied bar loads can be 

viewed as the combination of three sets of equations, arguably of a more fundamental 

nature: kinematical equations (connecting generalised displacements and strains), 

constitutive equations (relating the active stress resultants to the generalised strains) and 

equilibrium equations (establishing the final link between the active stress resultants and the 

applied bar loads). 

The above remarks and conclusions carry over, almost word by word, to the 

dynamical case addressed in chapter 3, in which the contributions of rotatory inertia and 

torsion-warping inertia were fully taken into account. Moreover, fitting the model into the 

framework of a Tonti diagram required the definition of generalised velocities and 

momentum densities – with these quantities, the kinetic energy can be written in a very 

simple and compact form. 

In chapter 4, we derived a linearised one-dimensional model for the elastic lateral-

torsional buckling of singly symmetric tapered thin-walled beams with open cross-sections, 

loaded in the plane of greatest bending stiffness (symmetry plane). The adopted kinematical 

description precludes the model from capturing any local or distortional instability 

phenomena. Moreover, the effect of the pre-buckling deflections was ignored. Using an 

archetypal problem that “contains all the germs of generality”, it was shown how the 

presence of linearly elastic or rigid discrete restraints, which may have a translational, 

torsional, minor axis bending and/or warping nature, can be accommodated in the one-

dimensional lateral-torsional buckling model. Once again, it was concluded that it is 

generally incorrect to replace a tapered thin-walled beam with a piecewise prismatic model. 
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The discrepancies are particularly striking when warping torsion plays an important role in 

resisting buckling. Indeed, in the analysis of overhanging segments free at the tip and with 

linearly elastic warping and minor axis bending restraints at the support, it was found that 

for a large 
* ( 0 )

0 ( 0 )
ωEI

L GJ


  
 (short span and/or slender cross-section at the support) and a 

fixed restraint stiffness parameter *
32 /( (0))Rf Rfσ k L EI  , the non-dimensional critical load 

2 *
3/ (0) (0)cr cr refγ λ Q L EI GJ   does not increase monotonically with the web-taper ratio 

0α ( )/h L h . For low values of Rfσ , the non-dimensional critical load crγ  decreases as α  

increases. For large values of Rfσ , on the other hand, crγ  reaches a minimum at an 

intermediate value of α . The lateral-torsional buckling behaviour of built-in cantilevers 

with a translational or a rotational restraint at the tip was also the object of a detailed 

parametric investigation, whence the following conclusions were drawn: 

(i) The critical load of a cantilever with a rigid restraint at the tip (either translational or 

torsional) is well below the second-mode buckling load of the same cantilever without 

the restraint. 

(ii) The main factor in explaining the effectiveness of a rigid translational restraint in 

increasing the buckling strength is the distance between the rotation centre of the 

cross-section in the free-end case and the location of the translational restraint – the 

greater the distance, the more effective is the restraint. 

(iii) There is a well-defined threshold beyond which the outcome, in terms of buckling 

strength, of further increases in the stiffness of the restraints is negligible. 

In Chapter 5, there was a change of tone. The focus shifted from the construction 

and understanding of models, together with the analysis of illuminating special cases, to the 

analytical treatment of problems that are formulated from the onset in precise 

mathematical terms. The ordinary differential equations governing the lateral-torsional 

buckling of strip beams with varying depth were integrated exactly, in closed form, using 

confluent hypergeometric functions (Kummer and Tricomi functions). It was then possible 

to establish exact characteristic equations for the buckling loads, even though these 

characteristic equations are transcendental and do not have closed-form solutions. For strip 

beam-columns, the analytical approach, by means of the method of Frobenius, was found 

to be successful only in the range 1
2 1h

h min

max
. 

On several occasions, scattered throughout the thesis, we had to choose a numerical 

method for solving eigenproblems in ordinary differential equations. In this choice, we 
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departed from the usual approach adopted among the structural engineering community, 

which consists in the use of the finite element method in one of its many versions. Instead, 

the eigenproblems were first reformulated as standard inhomogeneous two-point boundary 

value problems, which were then solved using the easily available, widely documented, 

reliable and efficient general-purpose code COLNEW. The possibility of combining the use of 

COLNEW with a simple continuation strategy greatly facilitated the solution of chains of 

“nearby” problems (homotopy chains). In the buckling problems involving strip beam-

columns, the presence of a regular singularity in the governing differential equation posed no 

difficulty whatsoever. 

6.2 PUBLICATIONS 

Part of the research work reported in this thesis has already been disseminated 

among the scientific community through the following publications: 

(I) Research articles and discussions in international scientific journals 

1. Challamel N., Andrade A. and Camotim D. (2007). An analytical study on the lateral-

torsional buckling of linearly tapered cantilever strip beams. International Journal of 

Structural Stability and Dynamics, 7(3), 441-456. 

2. Andrade A., Camotim D. and Providência P. (2010). Discussion on the paper “Elastic 

flexural-torsional buckling of thin-walled cantilevers” by Lei Zhang and Geng Shu Tong 

[Thin-Walled Structures, 46(1), 2008, 27–37]. Thin-Walled Structures, 48(2), 184-186. 

3. Challamel N., Andrade A., Camotim D. and Milisavlevich B.M. (2010). On the flexural-

torsional buckling of cantilever strip beam-columns with linearly varying depth. Journal 

of Engineering Mechanics – ASCE, 136(6), 787-800. 

4. Andrade A., Providência P. and Camotim D. (2010). Elastic lateral-torsional buckling of 

restrained web-tapered I-beams. Computers & Structures, 88(21-22), 1179-1196. 

5. Andrade A., Challamel N., Providência P. and Camotim D. (2012). Lateral-torsional 

stability boundaries for polygonally depth-tapered strip cantilevers under multi-

parameter point load systems – An analytical approach. Journal of Applied Mechanics – 

Transactions of the ASME, in press. 
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(II) Communications at international conferences, published in the corresponding proceedings 

1. Andrade A., Providência P. and Camotim D. (2006). Lateral-torsional buckling analysis 

of web-tapered I-beams using finite element and spline collocation methods. Book of 

Abstracts of the 3rd European Conference on Computational Mechanics – Solids, Structures and 

Coupled Problems in Engineering, C.A. Mota Soares et al. (Eds.), Lisbon, 5-9 June, Springer, 

680 (full paper in CD-ROM Proceedings). 

2. Andrade A., Providência P. and Camotim D. (2008). Lateral-torsional buckling of 

elastically restrained web-tapered I-beams. Book of Abstracts of the Inaugural International 

Conference of the ASCE Engineering Mechanics Institute (EM 2008), Minneapolis, 18-21 May, 

47 (full paper in USB flash drive Proceedings). 

3. Andrade A., Challamel N., Providência P. and Camotim D. (2012). An analytical study 

on the elastic lateral-torsional buckling of polygonally depth-tapered strip cantilevers 

under multi-parameter point load systems. USB key drive Proceedings of the 2012 Joint 

Conference of the Engineering Mechanics Institute and the 11th ASCE Joint Specialty Conference on 

Probabilistic Mechanics and Structural Reliability (EMI/PMC 2012), Notre Dame University, 

Indiana, 17-20 June. 

Additional publications, dealing mostly with the material presented in chapters 2 and 

3, are currently under preparation. 

6.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

One immediate task lies ahead: to perform a more extensive comparison between the 

predictions of the developed one-dimensional models and the results of higher-

dimensional finite element analyses (and, desirably, of experimental investigations as well) 

other than the (fairly limited) ones indicated at the end of § 4.2. This would allow a more 

comprehensive assessment of the merits, limitations and range of applicability of the one-

dimensional models. 

Once this task is completed, there is a wealth of challenging open problems for 

future research. One possible direction in which the models of chapters 2-4 can be 

extended, or modified, is to consider tapered thin-walled bars with closed cross-sections or 

with cross-sections combining closed cells and open branches. The extension into the 
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materially non-linear range can also be envisaged. With specific reference to chapter 4, the 

development of torsional and/or flexural-torsional buckling models for thin-walled 

columns and beam-columns is also particularly relevant. While the column case seems fairly 

straightforward and should not entail major theoretical developments beyond those 

presented in this thesis, the analysis of tapered beam-columns will require careful 

consideration of the effects of the pre-buckling deflections, namely (i) the amplification, 

due to the axial compressive force, of the primary bending moments and deflections, and 

(ii) the influence of the in-plane curvature on the flexural-torsional buckling strength. 

The starting point in the development of the one-dimensional models of chapters 2 

through 4 was a membrane shell theory (the parent theory in the induced-constraint 

approach, as we have called it). A significant contribution would be to investigate the 

consequences of starting from a more general shell theory, including both membrane and 

flexural behaviours – for instance, Koiter’s shell theory. The need for the ad hoc addition of 

the term SVU  to the membrane strain energy would most likely disappear, thus increasing 

the inner consistency of the models. Moreover, the rather artificial gap currently existing 

between chapters 2-4 and chapter 5 would probably be bridged.  

One of the fundamental assumptions (internal constraints) underpinning the one-

dimensional models developed in chapters 2-4 is the absence of in-plane cross-sectional 

deformations (distortion). However, when the cross-sections are very slender or when 

there is incomplete cross-sectional support, significant distortion may occur unless 

adequate stiffening is provided. The extension of the models to account for this added 

behavioural complexity would be of major interest. 

In a one-dimensional frame model, a joint is usually regarded as the locus where 

certain continuity conditions between the bars are to be specified. Therefore, the modelling 

of joints is inextricably interwoven with the modelling of the connected bars. Regarding the 

specification of the aforementioned continuity conditions, the incorporation of out-of-

plane warping and in-plane cross-sectional deformations in the bar model poses major 

difficulties. Therefore, one further possible avenue of research is the investigation of the 

warping transmission and distortion at joints connecting non-aligned tapered thin-walled 

bars and exhibiting different stiffening configurations. 
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The analytical solutions obtained in chapter 5 should find an interesting and rather 

useful field of application in shape optimisation studies. 

Finally, the development of rational design guidelines for tapered thin-walled 

members (columns, beams and beam-columns) is a subject of great practical relevance and, 

therefore, well worthy of a considerable research effort. 
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