
 

 

 

 

Public Facility Planning Models 

with Single and Multiple Services: 

Models, Solution Methods and Applications 

 

 

Doctoral thesis 

Thesis submitted to the Faculty of Sciences and Technology of 

the University of Coimbra in partial fulfillment of the requirements for 

the degree of Doctor of Philosophy in the field of Civil Engineering, 

with specialization in Spatial Planning and Transportation. 

 

Author 

João Carlos Vicente Teixeira 

 

Supervisors 

António Pais Antunes (University of Coimbra, Portugal) 

Laurence A. Wolsey (Catholic University of Louvain, Belgium) 

 

 

 

Coimbra, June 2012 

 

 





iii 

Financial support 

This work had the financial support of Fundação para a Ciência e a Tecnologia (FCT, 

Portugal) through doctoral degree grant SFRH/BD/12672/2003, which was co-financed 

by the European Social Fund under the Third Community Support Framework, 

Knowledge Society Operational Programme (POSC), Measure 1.2 – Advanced training. 

 

 

 

 

 

 

European Union
European Social Fund   

 

 





v 

Acknowledgements 

I would like to thank all the people who contributed to make this thesis possible and to 

make my PhD experience rewarding. I first thank my supervisors, António Pais Antunes 

and Laurence Wolsey, for their guidance, availability and encouragement, and for the 

opportunity to learn from their knowledge and experience. 

I also thank all colleagues and friends with whom I worked and socialized for making 

my PhD experience much more rewarding and enjoyable. For this I thank my 

colleagues at the Spatial Planning and Transportation Engineering Group (Department 

of Civil Engineering, University of Coimbra) and at CORE (Catholic University of 

Louvain). I also thank my former colleagues at the Figueira da Foz branch of the 

Portuguese Catholic University, where I was a lecturer when I started the thesis. 

Finally, I thank my parents, my brother and other close friends for their continued 

support during the long period to complete the thesis. 





vii 

Abstract 

This thesis addresses the planning problem of reorganizing an existing network of 

public facilities, such as schools, hospitals or courts of justice, in response to structural 

changes in the demand for public services and to the need of improving the cost-

effectiveness of service provision. “Public facility planning” is here understood as the 

activity consisting in making decisions on the number, location, type (in terms of the 

mix of services offered), and capacity of facilities supplying public services, and on 

their catchment areas (i.e. the population centers served by each facility). 

Public facility planning problems are addressed in this thesis with mathematical 

programming (or optimization) models that aim to help decision makers arrive at 

efficient solutions in terms of costs to service providers and of quality of service to 

users in key components such as accessibility to facilities. More specifically, the 

optimization models studied here are discrete facility location models, formulated as 

mixed-integer linear programming (MILP or MIP) models. This thesis focuses on the 

following basic, single-service model and on extensions of it. The geographic setting is 

represented by a discrete set of population centers with known demands, a discrete set 

of sites where facilities can be located, and given travel distances (or times, or costs) 

between centers and sites. The problem is to locate facilities and assign centers to those 

facilities, so that each center is assigned to the closest facility, each facility satisfies 

minimum and maximum capacity constraints, and the total travel distance is minimized, 

i.e. accessibility to facilities is maximized. 

The basic model described above, called the capacitated median model, captures 

relevant ingredients of public facility planning problems, but it has received little 

attention in the literature, particularly no hierarchical extension considering multiple 

services and multiple facility types has been presented, and no specialized exact 

solution method has been proposed. 

The contributions of this thesis to the discrete facility location literature are the 

following: 

 Formulation of optimization models combining multiple services, minimum and 

maximum capacity constraints, and constraints on the spatial pattern of 

assignments of users to facilities, extending previous hierarchical facility 

location models; 
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 Description of applications of models with single and multiple services to real-

world problems of reorganizing networks of schools and courts of justice in 

Portugal; 

 Development of new valid inequalities for the MIP formulation of the single 

service capacitated median model and proposal of an exact solution method, 

composed of a priori reformulation and branch-and-cut, that reduces solution 

times relatively to a generic MIP optimizer; 

 Presentation of computational experiments on solving single service models 

with a modern generic MIP optimizer, including the fixed-charge capacitated 

facility location problem and the capacitated median model, in order to identify 

the most efficient formulation, among variants known from the literature, to 

solve these models to optimality without resorting to a specialized algorithm. 
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Resumo 

Esta tese aborda o problema de planeamento de reorganizar uma rede existente de 

equipamentos colectivos, tais como escolas, hospitais ou tribunais, em resposta a 

alterações estruturais da procura de serviços públicos e à necessidade de melhorar a 

relação custo-eficácia da prestação de serviços. “Planeamento de equipamentos 

colectivos” entende-se aqui como a actividade que consiste na tomada de decisões sobre 

o número, localização, tipo (em termos do conjunto de serviços oferecidos) e 

capacidade dos equipamentos que fornecem serviços públicos, e sobre as suas áreas de 

influência (isto é, os aglomerados populacionais servidos por cada equipamento). 

Os problemas de planeamento de equipamentos colectivos são abordados nesta tese com 

modelos de programação matemática (ou de optimização) que têm o propósito de ajudar 

os decisores a chegar a soluções eficientes em termos de custos para os prestadores de 

serviços e de qualidade de serviço para os utilizadores em componentes fulcrais como a 

acessibilidade aos equipamentos. Mais especificamente, os modelos de optimização 

aqui estudados são modelos de localização discreta de equipamentos, formulados como 

modelos de programação linear inteira mista. Esta tese foca-se no seguinte modelo 

básico com um único serviço e em extensões dele. O contexto geográfico é representado 

pelos seguintes dados: um conjunto discreto de centros de população com procura 

conhecida, um conjunto discreto de locais onde podem ser localizados equipamentos, e 

distâncias (ou tempos, ou custos) de viagem entre centros e locais. O problema consiste 

em localizar equipamentos e afectar os centros a esses equipamentos, de forma a que 

cada centro seja afectado ao equipamento mais próximo, cada equipamento satisfaça 

restrições de capacidade mínima e máxima, e a distância de viagem total seja 

minimizada, i.e. a acessibilidade aos equipamentos seja maximizada. 

O modelo básico acima descrito, denominado modelo da mediana com capacidades, 

captura ingredientes relevantes dos problemas de planeamento de equipamentos 

colectivos mas tem recebido pouca atenção na literatura, nomeadamente não foram 

propostas extensões hierárquicas considerando múltiplos serviços e múltiplos tipos de 

equipamentos, e não foram propostos métodos exactos especializados para a sua 

resolução. 

As contribuições desta tese para a literatura sobre localização discreta de equipamentos 

são as seguintes: 

 Formulação de modelos de optimização combinando múltiplos serviços, 

restrições de capacidade mínima e máxima e restrições à configuração espacial 
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da afectação de utilizadores a equipamentos, que são extensões de anteriores 

modelos hierárquicos de localização de equipamentos; 

 Descrição de aplicações de modelos com serviços únicos e múltiplos a 

problemas reais de reorganização de redes de escolas e de tribunais em Portugal; 

 Desenvolvimento de novas desigualdades válidas para a formulação do modelo 

da mediana com capacidades com um único serviço, e proposta de um método 

exacto de resolução, composto de reformulação a priori e de branch-and-cut, 

que reduz os tempos de resolução relativamente a um optimizador genérico; 

 Apresentação de experiências computacionais usando um optimizador genérico 

moderno para resolver modelos com serviços únicos, incluindo o problema de 

localização de equipamentos com custos fixos e capacidades e o modelo da 

mediana com capacidades, de forma a identificar a formulação mais eficiente, de 

entre variantes conhecidas da literatura, para resolver estes modelos até à 

optimalidade sem recorrer a um algoritmo especializado. 
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Chapter 1  
 

Introduction 

 

1.1 Context and objectives 

This thesis addresses the planning problem of reorganizing an existing network of 

public facilities, such as schools, hospitals or courts of justice, in response to structural 

changes in the demand for public services and to the need of improving the cost-

effectiveness of service provision. “Public facility planning” is here understood as the 

activity consisting in making decisions on the number, location, type (in terms of the 

mix of services offered), and capacity of facilities supplying public services, and on 

their catchment areas (i.e. the population centers served by each facility). These 

decisions are strategic in nature, as they are set in a large region (a municipality or 

larger region), will endure in a large temporal horizon (10 years or more), and influence 

other, more operational decisions, e.g. to deploy human resources and to organize 

public transportation networks. “Network of public facilities” is here defined as the set 

of facilities jointly providing public services to a region. The facilities are inter-related 

because they must provide the geographic coverage for the whole region and they may 

be of different types and need to coordinate the provision of multiple services (for 

example, health centers and hospitals offering primary and specialized health care, 

respectively). 

Public facility planning problems are addressed in this thesis with mathematical 

programming (or optimization) models that aim to help decision makers arrive at 

efficient solutions in terms of costs to service providers and of quality of service to 

users in key components such as accessibility to facilities. More specifically, the 

optimization models studied here are discrete facility location models, formulated as 

mixed-integer linear programming (MILP or MIP) models. A large research effort has 

been dedicated to this type of models in the literature of operations research and other 

fields, as they have been shown to be flexible enough to incorporate fundamental 

components of many real-world planning problems, while at the same time being 

computationally tractable. 
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This thesis focuses on the following basic, single-service model and on extensions of it. 

The geographic setting is represented by a discrete set of population centers with known 

demands, a discrete set of sites where facilities can be located, and given travel 

distances (or times, or costs) between centers and sites. The problem is to locate 

facilities and assign centers to those facilities, so that each center is assigned to the 

closest facility, each facility satisfies minimum and maximum capacity constraints, and 

the total travel distance is minimized, i.e. accessibility to facilities is maximized. 

The basic model described above captures relevant ingredients of public facility 

planning problems, but it has received little attention in the literature, particularly no 

hierarchical extension considering multiple services and multiple facility types has been 

presented, and no specialized exact solution method has been proposed. 

In this context, the objectives of this thesis are as follows: 

 Describe the application of single and multi-service models with the ingredients 

described above to real-world public facility planning problems. Three case 

studies are presented, addressing secondary schools, primary schools and courts 

of justice. 

 Study formulations of these models that allow them to be solved efficiently 

using a general purpose MIP optimizer. 

 Develop specialized exact solution methods for the single and multiple-service 

models that are able to solve large instances to optimality faster than current 

general purpose MIP optimizers. In the case of the single service model, the aim 

is to solve instances with 100 centers within 1 hour, and preferably much less. 

The contributions of this thesis therefore relate, on the one hand, to the formulation of 

models extending previous models in the literature and the description of their 

application to real-world problems; and, on the other hand, to the development of 

efficient exact solution methods. The contributions are detailed in the conclusion of the 

thesis, together with a discussion of the degree of accomplishment of the objectives 

above. 

1.2 Review of facility location models 

A brief general literature review of facility location models and solution methods is now 

given, before discussing the basic assumptions of the models studied in this thesis in 

greater detail. 
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Facility location models are optimization models that determine the location of facilities 

in order to serve demands with known locations, according to some objective, such as 

minimizing the costs of serving all the demand or maximizing the quantity of demand 

served. Many applications exist in the public and private sectors. Examples in the public 

sector include the location of schools, hospitals, postal offices, waste treatment plants, 

emergency vehicle depots (e.g. ambulances or fire engines); examples in the private 

sector include the location of factories, warehouses and retail stores in supply chain 

networks, and the location of concentrators or antennas in telecommunications 

networks. 

This thesis focuses on discrete location models, which assume a discrete set of demand 

locations and a discrete set of sites where facilities can be located. When applied in a 

geographic setting, these models require the following three preprocessing steps: i) 

partition the geographic territory into population centers or demand centers, represented 

by a point where demand is assumed to be concentrated; ii) enumerate the discrete sites 

where facilities can be located; iii) define the transportation cost (distance, time or 

monetary cost) relating each demand center and each site. Sites and centers in the model 

may represent the same or distinct geographic entities, depending on the chosen 

geographic level of aggregation and on legal, technical or other constraints that apply to 

the location of facilities. Transportation costs are assumed to be independent of the 

location decisions to be determined by the model. For example, they may be obtained 

by computing shortest paths on a representation of an underlying transportation 

network. In this case, the arcs existing in the network and their associated costs are 

taken as given, and it is assumed that changes in network flows induced by changes in 

facility locations do not influence network congestion significantly. 

There are other types of location models, distinguished by the space where facilities can 

be located: continuous models, which allow locations at any point in a continuous space 

(e.g. the plane); and network models, which assume an underlying network of nodes 

and arcs and allow locations at any point in the network (nodes and interior points of 

arcs). However, discrete models are more suitable for practical applications of the type 

studied in this thesis. Two important reasons are (as also discussed by Hansen et al., 

1987): i) while discrete models are apparently less general regarding candidate facility 

locations, in a practical application this can be overcome by an appropriate choice of 

geographic level of aggregation; moreover, candidate locations may indeed be restricted 

to a discrete set, e.g. due to zoning regulations; ii) many discrete models can be 

formulated as MIP models, which makes them flexible, allowing the incorporation of 

many economic and geographic features (e.g. fixed and variable costs, constraints on 
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feasible locations, capacity constraints) while remaining computationally tractable, 

which might not be the case with continuous or network models. 

Location models have been extensively studied since the 1960s in the operational 

research, management science, industrial engineering, economic geography and spatial 

(urban and regional) planning literatures. Among the many existing reviews and 

introductory references on facility location, the following were useful when developing 

the present thesis. ReVelle and Eiselt (2005) present a concise classification and review 

of continuous, network and discrete location models. Hansen et al. (1987) provide an 

extensive review of continuous, network and discrete location models. They present 

formulations, properties and solution methods and offer insights on the relationships 

between different basic models and on the economic interpretation of location models. 

Daskin (1995) provides a didactic textbook on modeling and solving discrete location 

models. Current et al. (2002) provide a large review of discrete location models, 

including formulations, properties, applications and heuristic solution methods. ReVelle 

(1987), Marianov and Serra (2002) and Peeters et al. (2002) discuss discrete models for 

public facility location, giving examples of practical applications and distinguishing 

models for public and private facility planning. Labbé and Louveaux (1997) present an 

annotated bibliography focusing on solution methods for several basic and extended 

discrete location models. 

Public vs. Private facility planning 

Models for public and private facility planning can be distinguished by the way they 

represent the trade-off between costs and benefits of location decisions, as discussed 

e.g. by ReVelle (1987), Hansen et al. (1987), and Eiselt and ReVelle (2005). 

In models for private facility planning, typical objectives are to maximize profits 

(revenues minus the total fixed costs of installing facilities and variable operation and 

transportation costs) or to minimize total costs (equivalent to the previous objective if 

the total revenue is fixed). This is possible when both costs and benefits can be 

measured in monetary units and they are commensurable, which is the case when they 

fall on the same entity (a private company). 

In models for public facility planning, usually no attempt is made to express costs and 

benefits in a single measure. First, benefits fall on users while facility costs fall on 

public entities. Second, it may be difficult or undesirable to measure benefits in 

monetary units (such as the value of increased accessibility or the value of lives saved 

by emergency vehicles). Thus, in models for public facility planning usually surrogate 
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measures of benefits are used, not expressed in monetary units, and the trade-off 

between costs and benefits is represented with benefits in the objective and costs in 

constraints (or the converse). Additionally, defining the objective is less obvious in the 

public sector than in the private sector, as different decision makers may focus on 

different objectives, such as efficiency or equity. Different objectives are discussed 

further below. 

Basic models 

Basic discrete location models are presented next, in order to illustrate the 

representation of trade-offs discussed above, and to introduce ingredients common to 

more complex models. Different travel cost measures are used (distance, time or 

monetary cost), according to the classic definitions of these models. 

 Uncapacitated facility location problem (UFLP): the problem is to locate 

facilities and to assign all demand centers to those facilities, in order to minimize 

the sum of fixed costs of installing facilities with variable costs of operation and 

transportation. 

 p-median problem (PMP): the problem is to locate a given number (p) of 

facilities and to assign all demand centers to those facilities, in order to minimize 

the total demand-weighted travel distance. 

 p-center problem (PCP): the problem is to locate a given number (p) of facilities 

and to assign all demand centers to those facilities, in order to minimize the 

maximum demand-weighted travel distance. 

 Location set covering problem (LSCP): the problem is to locate facilities that 

cover all demand centers within a given time limit, in order to minimize the 

number of facilities (this problem becomes equivalent to the general set covering 

problem if facilities have distinct fixed costs and the objective is to minimize the 

total fixed cost).  

 Maximal covering location problem (MCLP): the problem is to locate a given 

number (p) of facilities, in order to maximize the demand covered within a given 

time limit (not requiring all demand centers to be covered). 

The UFLP can be considered a prototype for location models in the private sector. Both 

fixed facility costs and variable assignment costs are given and the number of facilities 

is endogenous to the model, resulting from the trade-off between the two types of cost. 

The other models can be considered prototypes for location models in the public sector. 

They represent trade-offs between non-commensurable user benefits and facility costs 

(expressed by the number of facilities). 
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The PMP and PCP are distinguished by their objectives: the PMP focuses on efficiency 

(minimize the total distance), while the PCP focuses on equity (minimize the maximum 

distance). The LCSP and MCLP are covering models and have applications in the 

location of depots for emergency vehicles, such as ambulances and fire engines. A 

demand center is said to be covered if at least one facility is installed within a given 

travel time limit. These models consider only facility location decisions, while the other 

models consider center-to-facility assignment decisions as well. This means that if a 

center is covered by more than one facility, a covering model does not distinguish 

which one provides the service. 

Hierarchical models 

Extended models considering multiple services and multiple facility types are 

particularly relevant for this thesis and are reviewed next. Facility location models are 

termed hierarchical when they involve the location of multiple types of facilities, jointly 

providing products or services to demand centers. 

Two types of hierarchical models may be distinguished: 

 Multiple service models, arising in applications to public facilities: centers have 

independent demands for multiple services, and there are multiple facility types, 

each type being defined by the mix of services offered; demand centers require 

an individual assignment to (or coverage by) a facility for each service type. 

An example is a two-level extension of the p-median model set in a health care 

context, where users have known demands for two service types, primary and 

specialized, and there are two facility types or levels with a nested service 

hierarchy: health centers for primary care only, hospitals for both primary and 

specialized care. The aim is to locate given numbers of the two facility types and 

assign users to facilities for each demand level, in order to satisfy all demand 

and minimize the total travel distance weighted by demand of both levels. 

 Multi-level flow models, arising in applications to supply chains, 

communications networks, or solid waste disposal systems: centers have 

demands for one or more products, and there are multiple facility types 

organized into levels and installed in a network, such that products flow 

sequentially from each level to the next; each demand center requires 

assignment (for each product type) only to the facility level directly supplying it, 

but flows must be defined between all consecutive facility levels. 
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An example is a two-level extension of the UFLP set in a supply chain context, 

where retail stores have known demands for a single product, and the aim is to 

locate factories and warehouses and define product flows from factories to 

warehouses and then to retail stores, in order to satisfy all demand and minimize 

total costs, including fixed facility costs, variable operation costs and 

transportation costs in the two levels of the supply chain. 

Hierarchical models presented in this thesis are of the first type, and thus this is the most 

relevant here. Models of the first type have been formulated as extensions of the p-

median and maximal covering models. Typically, service and facility types are 

organized into levels with a nested hierarchy, as in the example above – level-1 

facilities supply level-1 services and are located relatively close to demand centers, 

while higher level facilities supply a matching high-level service and lower level ones, 

but few can be installed, requiring larger travel distances. Most applications reported in 

the literature refer to problems in the health care sector with 2 or 3 service levels. 

Narula (1986) and Church and Eaton (1986) review models of the first type, with 

minisum (as in the p-median model) and covering objectives, respectively. Klose and 

Drexl (2005) and Melo et al. (2009) review models of the second type. Sahin and Sural 

(2007) review models of both types, updating the first two reviews above regarding 

models for public sector applications. The two types of models above correspond, 

respectively, to models with parallel and serial services in the classification of Church 

and Eaton (1986), and to multi-flow and single-flow models in the classification of 

Sahin and Sural (2007). 

Static vs. Dynamic models, Deterministic vs. Stochastic models 

Location models can also be distinguished by the way of treating time and uncertainty. 

Location models can be classified as static (or single-period) or dynamic (or multi-

period) if, respectively, data and decisions are represented in a single point in time (e.g. 

10 years into the future) or they are represented in multiple periods in a time horizon 

(e.g. periods of 1 or 5 years in a 10 year horizon). For single-period models, assuming a 

given model solution is to be implemented in practice, the timing of implementing 

changes to an existing public facility network is left outside the scope of the model, 

taking into account additional information not incorporated in the model, such as trends 

of demand evolution and budget availability. Multi-period location models consider the 

timing of facility locations relatively to the temporal evolution of demand, costs and 

budget availability. Decisions can include opening, expanding capacity or closing 

facilities. A typical objective in the private sector is to minimize the present value of 
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total costs. Multi-period location models are reviewed by Owen and Daskin (1998) and 

Melo et al. (2009). 

The models studied in this thesis are static, single period models with a time horizon of 

10 years. This was judged to be appropriate for the applications studied since the time 

horizon is still relatively short, so that it is practical to devise the timing of changes to 

the existing public facility network outside the scope of the model. In addition, this 

avoided the need for reliable forecasts of the temporal evolution of demand and budget 

availability.  

Location models can also be classified as deterministic or stochastic. Deterministic 

models assume demand and other data to be known with certainty. Stochastic models 

incorporate information on the uncertainty of data and aim to determine solutions that 

perform well under all possible data realizations, according to an objective derived from 

the objective of the deterministic version of the model, such as maximizing the expected 

performance or minimizing the worst-case performance. Stochastic facility locations 

models are reviewed by Owen and Daskin (1998) and Snyder (2006). It is useful to 

distinguish two types of uncertainty represented in stochastic location models: i) 

uncertainty in the operation of the system being modeled; ii) uncertainty in the data 

collected for use in the model, whether or not the system itself can be assumed to 

operate deterministically. Two examples of the first type that have received attention in 

the literature are congestion of facilities and failure or disruption of facilities (Snyder, 

2006). 

In this thesis only deterministic models are studied and the applications use data of a 

single scenario. This approach was judged to be appropriate for both applications 

studied (schools and courts of law) since decision makers were generally averse to 

commit to facility closure decisions unless this was shown to be reasonable even under 

optimistic demand forecasts. Therefore, an optimistic scenario of demand evolution in a 

10 year horizon was adopted in both cases (as further discussed in the relevant 

chapters). 

1.3 Solution methods 

Most facility location models of practical interest, including all the basic models above, 

belong to the computational complexity class of NP-hard problems, which means that in 

the worst case computation times grow exponentially with instance size, and particular 

instances may be intractable (due to their size or to the type of data they contain). 

Nevertheless, many instances of location models of practical interest can be solved 
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efficiently to optimality or near optimality with a careful choice of solution method 

among the several available ones. Next, we present a general classification of 

algorithms for solving MIP models, adapted from the classifications in sections II.4 and 

II.5 of Nemhauser and Wolsey (1988) and chapter 12 of Wolsey (1998). 

Algorithms for solving MIP models may be classified as follows: 

 Exact algorithms 

 Approximate algorithms or heuristics 

o Providing a performance measure 

o Not providing a performance measure 

An exact algorithm provides upon termination a provably optimal solution to any 

feasible instance. Exact algorithms may be further divided into general and special 

purpose algorithms. General purpose algorithms can be applied to any model that can be 

formulated as a MIP. An example is branch-and-bound based on linear programming 

(LP) relaxations (chapter 7 of Wolsey, 1998). Special purpose algorithms are dedicated 

to a particular model and exploit its structure in order to reduce the solution time or 

increase the size of instances that can be solved within a given time limit. An example is 

the DUALOC algorithm for the UFLP (Erlenkotter, 1978). Another example is a 

branch-and-cut algorithm (section 9.6 of Wolsey, 1998) embedding cutting-plane 

generation procedures dedicated to a particular model structure. 

An approximate algorithm, or heuristic, provides a feasible but possibly non-optimal 

solution. Heuristics are designed to provide good solutions quickly, when exact 

algorithms have prohibitively large computation times. Heuristics can also be embedded 

into an exact algorithm based on branch-and-bound, in order to reduce its running time, 

by finding feasible solutions quicker and reducing the size of the search tree. Most 

heuristics are special purpose algorithms according to the definition above. Heuristics 

may be further divided into two types, according to whether or not they provide a 

performance measure for the particular instance being solved, that is, a bound on the 

deviation of the solution value relatively to the optimal solution value. Examples of 

heuristics providing a performance measure include Lagrangian-based heuristics 

(section 10.4 of Wolsey, 1998) and MIP-based heuristics (section 12.5 of Wolsey, 

1998). 

Heuristics not providing a performance bound can be classified into the following types 

(Blum and Roli, 2003): construction or greedy heuristics (that build a solution from 

scratch), improvement or local search heuristics (that take a solution given by a 
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construction heuristic and find a better, locally optimal solution with respect to a given 

neighborhood structure), and metaheuristics (a framework composed of one or several 

construction heuristics, one or several improvement heuristics, and one or several 

mechanisms to explore the solution space more extensively and avoid focusing on a 

single local optimum). Metaheuristics include simulated annealing, tabu search, genetic 

algorithms, ant colony optimization, variable neighborhood search, and greedy 

randomized adaptive search procedures (GRASP). 

Some heuristics have a known worst-case performance guarantee, which is an a priori 

bound on the deviation to the optimal value applicable to all instances (section 12.4 of 

Wolsey, 1988). In particular, “approximation algorithms” are polynomial time 

algorithms with a performance guarantee, and several of these have been proposed for 

facility location problems (Williamson and Shmoys, 2011). Although performance 

guarantees are of theoretical interest for the analysis of models and algorithms, their 

practical interest for solving a particular instance may be limited, since worst case 

deviations are generally large (e.g. 50% of the optimal value or more). 

Branch-and-cut 

Branch-and-cut based on LP relaxations is the method of choice in most generic MIP 

software packages, which justifies further discussion of this method. A branch-and-cut 

algorithm (described in section 9.6 of Wolsey, 1998) combines a branch-and-bound 

algorithm with cutting plane (or cut) generation throughout the branch-and-bound tree. 

It involves a trade-off between increasing the effort spent at each node (generating cuts 

and solving larger LP models) and reducing the number of nodes explored. 

The ingredients of modern branch-and-cut algorithms include: 1) efficient and robust 

LP solvers; 2) presolve procedures to reduce and tighten the formulation (e.g. by 

dropping redundant constraints, fixing variables, tightening coefficients); 3) cut 

generation procedures using a variety of general purpose cut types (e.g. Gomory cuts) 

and structure-specific cut types (e.g. lifted knapsack cover cuts) to improve the dual 

bound; 4) heuristics to find and improve feasible solutions; 5) sophisticated strategies 

for branching node selection (e.g. hybrids of depth first and best-bound first strategies), 

for branching variable selection (e.g. strong branching), and for searching the tree in 

parallel, making use of the multiple cores or CPUs available in modern computers. All 

ingredients contribute to reducing the time to find good feasible solutions and the time 

to prove optimality. 
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General descriptions of MIP software implementing branch-and-cut algorithms are 

given by Atamturk and Savelsbergh (2005) and Lodi and Linderoth (2011). State-of-

the-art commercial MIP software packages include: Xpress (Ashford, 2007; Laundy et 

al. 2009), CPLEX (Bixby et al., 2000; Bixby and Rothberg, 2007) and Gurobi (Bixby, 

2011). The references cited describe the components of MIP solvers and their historical 

performance evolution. 

The models studied in this thesis were solved exclusively with exact solution methods, 

either directly through the generic branch-and-cut algorithm implemented in a 

commercial MIP solver or with a specialized method extending that algorithm, e.g. 

through cut generation procedures for particular model structures. This has the 

advantage, relatively to other specialized exact algorithms, of leveraging the several 

components of generic MIP solvers, by benefiting from performance improvements in 

newer versions and by reducing development effort (e.g. presolve and branch-and-

bound routines do not have to be duplicated). Next we further discuss the advantages of 

using exact rather than approximate methods. 

Benefits of optimal vs. approximate solutions 

It can be argued that it is reasonable to accept an approximate, near optimal solution, 

say within 1% of optimality, in a practical application where the computation effort is 

significantly higher to obtain an optimal solution. Since the data (demand, costs, etc.) 

almost inevitably will have an error larger than 1%, this renders the error in the 

objective function value larger than the optimality gap. Such an argument is made by 

Cordeau et al. (2006) in the context of solving a location model for supply chain 

network design. 

On the other hand, in the case of models for strategic public facility planning, optimal 

solutions have advantages relatively to approximate ones beyond the gains measured by 

the objective function. Two arguments can be offered: 

 In an application to strategic facility planning, the model typically has to be 

solved with different data for different scenarios and for sensitivity analysis. If 

solutions are approximate, the impact of different data may be difficult to 

distinguish from the effect of arbitrary or random choices in algorithm 

execution. This is especially important given that discrete location models may 

have feasible solutions with relatively close objective values but widely varying 

spatial configurations, in terms of the selected facility locations and assignments 

of users to facilities. If these objective values are within the optimality gap 
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provided by the algorithm, it will be difficult to interpret the causal relation 

between model parameters and spatial configuration of solutions. 

 In an application to strategic facility planning, typically there are stakeholders 

with different and possibly conflicting objectives. The purpose of the model, 

which is a simplified representation of reality, is to provide reference solutions 

and insights to be discussed by decision makers, in order to arrive at a solution 

to be adopted in practice. In this context, the discussion can be perturbed if 

approximate solutions are used rather than the best possible solutions under the 

model’s assumptions. 

The first argument was also made by Geoffrion and Powers (1980), in the context of 

facility location models for supply chain network design, and by ReVelle et al. (1970), 

in an early review of facility location models. 

1.4 Modeling assumptions 

In this section, we discuss the modeling assumptions of the basic, single-service model 

studied in this thesis, which also apply to multiple service models extending it. We also 

provide a more focused literature review. 

First we recall the definition of the basic, single-service model, called here the 

capacitated median model due to its relationship with the p-median model, discussed 

below. The following data is given: a discrete set of centers where demand is 

concentrated; a discrete set of sites where facilities can be located; demand of each 

center; travel distances (or times, or costs) between centers and sites; minimum and 

maximum capacities of each facility, i.e. lower and upper bounds on the total demand 

served by each facility. The problem is to locate facilities and to assign centers to those 

facilities, with the objective of minimizing the total travel distance, and satisfying the 

following constraints: all demand of all centers is satisfied; each center is assigned to 

the closest facility, or to a single one of the closest facilities if several are equidistant; 

each facility satisfies the minimum and maximum capacity bounds. The problem can 

also include existing facilities, in which case location decisions determine both the 

installation of new facilities and the maintenance or closure of existing ones. 

Optionally, additional constraints may be included to impose: a maximum travel 

distance allowed for any center; a maximum number of new facilities to open; a 

maximum number of existing facilities to close. 



 

13 

In the discussion below, we assume a public facility planning context where demand 

centers correspond to population centers and users travel to facilities where service is 

provided. The single service in the model represents either a specific service or a group 

of services that can be aggregated for planning purposes. Demand is measured as the 

quantity of service in a given period of time (e.g. number of students attending school in 

a typical day; number of trips to a health care facility per year). Typically, the locations 

of demand centers represent places of residence, and travel costs are represented by 

distances or times computed with shortest paths on a model of the transport network. 

We next discuss the assumptions of the model. 

Location decision maker 

There is a single, public authority responsible for defining facility locations, i.e. there is 

no competition between facilities located by distinct decision makers. This assumption 

does not rule out that distinct facilities may be financed and operated by distinct public 

and private entities. 

Demand 

Demand quantity is known (exogenous to the model) and is inelastic with respect to 

travel cost, which is assumed to be supported by users. If costs are charged to users at 

facilities, they are assumed to be equal at all facilities and demand quantities are 

assumed to already reflect them, and thus they are not represented in the model. 

All the given demand has to be satisfied. Thus the model is appropriate for essential 

services, for which universal coverage is sought, such as mandatory education, as well 

as health care and justice services. 

Single and closest assignment 

The model considers two types of assignment constraints: 1) single assignment – all the 

demand from each center is assigned to the same facility, that is all the demand of each 

user is served by a single facility (e.g. a student does not attend different schools in the 

same year) and all users from a center are assigned to the same facility; 2) closest 

assignment – users from each center are assigned to the closest facility (or least-cost 

facility). 

To be applicable, these constraints assume the following: 1) user preferences for 

facilities depend only on travel cost, while other attributes of facilities related to quality 

of service (or surrogates such as facility size) are perceived as indifferent; 2) all users 
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within a center have homogeneous travel costs (and thus also homogeneous preferences 

for facilities, given the previous assumption); 3) assignment decisions are made by users 

according to their preferences or by a public entity taking user preferences into account; 

4) for planning purposes, all users from a center are assigned to a single facility, even if 

several exist that are equally preferred. 

Expanding on the third assumption, two cases regarding the assignment decision maker 

may be distinguished (as also discussed by Wagner and Falkson, 1975, and Hanjoul and 

Peeters, 1987): i) free choice by users (this is the case e.g. of post offices); ii) mandated 

assignment by a public authority (e.g. through a legal requirement based on place of 

residence; this is the case of health centers in Portugal). In the latter case, using closest 

assignment constraints guarantees that decisions by the public authority meet user 

preferences, in order to make assignments acceptable for the users. 

Regarding the fourth assumption, note that closest assignment constraints imply single 

assignment if there is a single closest facility, but allow dividing users among 

equidistant facilities if they exist. Adding single assignment constraints avoids 

discriminating users from the same center in all cases. 

Objective 

The objective stated above is to minimize the total demand-weighted travel distance, 

which is equivalent to minimizing the average distance since all demand has to be 

satisfied. 

This objective can be interpreted as the maximization of accessibility, if accessibility to 

facilities is defined as the average travel cost perceived by users to obtain service at 

facilities (alternative definitions of accessibility have been proposed, see e.g. Talen and 

Anselin, 1998). The objective function exactly measures accessibility with this 

definition under the model assumptions above (users patronize a single facility; users 

distinguish facilities only by travel cost and not by other facility attributes; travel costs 

are homogenous for all users from the same center; travel costs are represented by a 

measure of distance or time). However, the objective function is only a surrogate or 

proxy for the true accessibility (still with the definition given) in the sense that: i) users 

are aggregated into discrete centers in the model, thus there is a spatial aggregation error 

in the objective function; ii) the measure of travel cost used in the model represents only 

approximately the total perceived costs, including out-of-pocket costs and opportunity 

costs of time spent in travel, which in reality vary between different transport modes 

and different socio-economic population groups; iii) travel costs may be relative not 
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only to the place of residence and the location of the service under analysis (as assumed 

in the model) but also to other destinations in multi-purpose trips (e.g. a school trip may 

be part of a trip chain home-school-work). 

The objective focuses on efficiency and does not guarantee equity: users at large centers 

in central areas will be favored, while users at small centers in remote areas may be 

much worse off. To address equity, one approach is to limit the worst case possible for 

any user by adding a constraint on the maximum allowed travel cost. Such was the 

approach followed on this thesis. Another approach is to use an equity objective instead 

of the efficiency objective, or both in conjunction in a multi-objective model. Eiselt and 

Laporte (1995) and ReVelle and Eiselt (2005) discuss equity objectives, including the 

minimax objective of the p-center problem and so-called balancing objectives of 

minimizing travel cost deviations between centers. 

Maximum capacity 

Maximum capacity constraints represent either limited space availability to build new 

facilities or to expand existing ones, or a threshold to avoid diseconomies of scale in the 

operation of facilities (e.g. due to coordination-related management costs increasing 

with the quantity of services produced). 

Minimum capacity 

Minimum capacity constraints may be included for two reasons: i) technical 

requirements related to quality of service; ii) economic feasibility of individual 

facilities. 

Regarding the first reason, in some applications a link can be established between 

providing at least a minimum quantity of service and the quality of that service. 

 In the case of the health care sector, a minimum quantity of service may be 

required to guarantee diversity of experience and maintain the training level of 

professionals. In an example regarding mammogram screening centers cited by 

Vedat and Verter (2002), the U.S. Food and Drug Administration requires a 

radiologist to interpret at least 960 mammograms and a radiology technician to 

perform at least 200 mammograms in 24 months in order to retain their 

accreditations. In another example in Portugal, the guidelines of the Ministry of 

Health for planning cardiology services in hospital networks (DGS, 2001) 

indicate that a Heart Surgery Center should have a total activity of at least 650 
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surgical procedures per year, and each surgeon should perform at least 100 

procedures per year in order to maintain competence. 

 In the case of schools, a minimum number of students may provide benefits for 

student achievement and school environment. In Portugal, Council of Ministers 

Resolution 44-2010 (June 2010) defines criteria for reorganizing the school 

network. It states that primary schools with 20 students or less shall be closed 

and presents the following arguments: very small schools have lower student 

achievement scores than the national average; very small schools offer fewer 

opportunities for student education and teacher development due to limited 

opportunities for group work and social interaction; small schools usually are 

not equipped with a canteen, library and computer room.  Additionally, the 

Ministry of Education established guidelines (MinEdu, 2000) defining minimum 

and maximum sizes for new primary and secondary schools, in terms of number 

of classrooms per school and number of students per classroom. These 

guidelines reflect concerns both with education quality and with cost efficiency. 

Regarding the second reason, a minimum amount of service may be required for a 

facility to cover its fixed costs. This can be illustrated by a simplified break even 

analysis: assuming that a facility has annualized fixed costs (related to investment and 

operation), variable operation costs, and variable revenues, such that the government 

defines a maximum revenue per unit of service transferrable from public funds (possibly 

complemented by revenues charged to users; and such that unit revenues exceed unit 

variable costs), then there will be a minimum quantity of service for the facility to break 

even. Beyond this quantity, the unit revenue transferred would be decreased, so that the 

facility does not become profitable. In this setting, imposing a minimum capacity 

guarantees the economic feasibility of an individual facility, i.e. the facility is justified 

by being able to cover its fixed costs. 

In the interpretation above, if fixed costs include the amortization of investment costs, 

the minimum capacity for new facilities will be higher than for existing ones whose 

investment is already amortized. On the other hand, if only fixed operation costs are 

considered (excluding amortizations), the minimum capacity may be equal for new and 

existing facilities. In the latter case, investment costs may be subject to a separate 

budget constraint, e.g. imposing a maximum number of new facilities. 
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Comparison with the p-median model 

The capacitated median (CM) model shares with the p-median (PM) model the basic 

assumptions above regarding the location decision maker, demand, single and closest 

assignment, and the objective. 

The PM model differs in that the number of facilities is a parameter and facility capacity 

is unrestricted. In comparison, in the CM model the number of open facilities is a model 

output (assuming no explicit constraints fixing that number are included as well), since 

the minimum and maximum capacity bounds impose implicit upper and lower bounds 

(respectively) on the number of facilities, with the accessibility-maximization objective 

driving solutions towards the upper bound. Additionally, in the PM model solutions 

naturally have the so-called single assignment and closest assignment properties 

(Krarup and Pruzan, 1990), that is, centers are fully assigned to a single, closest facility. 

In the CM model, due to the presence of capacity constraints, these properties must be 

enforced through explicit constraints. Thus, we can say that capacity constraints and 

explicit single and closest assignment constraints are the defining features of the CM 

model relatively to the PM model. 

Previous applications and solution methods 

The CM model, unlike the PM model, has rarely been dealt with in the literature. 

Carreras and Serra (1999) use the model without the maximum capacity constraints to 

address a pharmacy location problem in a rural region, and solve it through a tabu 

search heuristic. Kalcsics et al. (2002) use the model with minimum and maximum 

capacity constraints and a constraint on the number of facilities for designing balanced 

and compact sales territories, and solve it through a variable neighborhood search 

heuristic. Bigotte and Antunes (2007) present several heuristics to solve the model with 

minimum capacity constraints, including construction and improvement heuristics, a 

genetic algorithm and a tabu search heuristic. Related models, considering a given 

maximum distance for demand to be covered and not requiring all demand centers to be 

served, have also been proposed combining minimum capacity and closest assignment 

constraints. Verter and Lapierre (2002) present a model for locating preventive health 

care facilities with the objective of maximizing population coverage, and solve it with a 

commercial optimizer. Smith et al. (2009) present a model for locating primary health 

care facilities with the objective of maximizing the number of facilities satisfying 

minimum capacities, and solve it with a commercial optimizer. 
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1.5 Organization of the thesis 

This thesis contains 5 chapters, besides the introduction and conclusion. These may be 

divided into two groups: chapters 2, 3 and 4 focus on the formulation and application of 

single and multiple-service variants of the capacitated median model; chapters 5 and 6 

focus on solution methods for basic facility location models. 

Chapter 2 describes an application of the basic, single-service capacitated median model 

to the location of secondary schools. The model is solved with a generic MIP optimizer. 

This chapter also describes how a Geographic Information System (GIS) was used in 

the practical implementation of the model, for data preparation and solution 

visualization. This implementation can be seen as the prototype of a Decision Support 

System embedding the model. 

Chapter 3 describes an application of a hierarchical extension of the capacitated median 

model to the location of primary schools. The model is solved with a generic MIP 

optimizer. 

Chapter 4 describes an application of hierarchical extensions of the capacitated median 

model to the districting and location of courts of justice. The models are solved with a 

generic MIP optimizer. 

Chapter 5 presents a specialized exact solution method for the basic, single-service 

capacitated median model, consisting of a priori reformulation and branch-and-cut, 

exploiting previously known and new valid inequalities. The aim is to accelerate the 

solution of larger scale instances (of 100 centers or more) that still require relatively 

long computation times with a generic MIP optimizer (1 hour or more on a standard 

personal computer). Computational results are presented for a set of generated (abstract) 

instances. 

Chapter 6 presents computational experiments on solving basic, single-service models 

with a modern MIP optimizer implementing a generic branch-and-cut algorithm. The 

models include the classic fixed-charge capacitated facility location problem and the 

capacitated median model. The aim is to test the effectiveness of well-known 

formulation variants, originally studied for the fixed-charge location problem. 

Regarding the order of chapters, the following is remarked: 

 Chapters 2, 3 and 4 are in chronological order of their development. 

Additionally, chapters 3 and 4 contain higher modeling complexity than chapter 

2. 
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 Chapter 5 appears after the chapters with practical applications for the following 

reasons. First, instances addressed in chapters 2, 3 and 4 turned out to be 

relatively easy to solve with a generic MIP optimizer, and thus the specialized 

method of chapter 5 was not required. Second, the work in chapter 5 was 

developed after or in parallel with the previous chapters, aiming to provide an 

efficient solution method for larger instances that may arise in other 

applications. 

 Chapter 6 appears last in the thesis for the following reasons. First, it includes 

results of computational experiments with fixed-charge facility location models, 

unrelated to the applications of public facility planning studied in the first 

chapters. Second, the formulations of the capacitated median model used in the 

previous chapters already reflect the results of this chapter, following 

preliminary tests of formulation variants with a small set of instances, which are 

corroborated in this chapter with more extensive tests. 

The chapters were developed as stand-alone articles. The advantage is that the chapters 

are self-contained, including their own introduction, literature review, contributions and 

conclusions. The disadvantage is that some repetition can occur between chapters, 

especially in literature reviews. In addition, the nomenclature used in model 

formulations is not always homogeneous. In the presentation of the thesis, the following 

was adopted: chapters 2 and 3, which were published before completing subsequent 

work, are included as published, except that the titles were renamed to better fit the 

structure of the thesis, the expression “this article” was replaced by “this chapter”, and 

some footnotes were added to comment on relevant repetitions, inconsistencies and later 

developments; headings, equations, tables and figures are numbered globally; references 

are consolidated in a single section of the thesis. 

Due to the time lapse between completing the original work and the final presentation 

of the thesis (see the next section), chapters 3 and 5 contain appendices written for the 

thesis. The appendix to chapter 3 contains an alternative formulation and a 

complementary literature review of path assignment constraints. A first appendix to 

chapter 5 compares computational results between Xpress 2005B, the MIP optimizer 

used for obtaining the original results, and Xpress 7.2, the latest version available when 

the thesis was completed (results with both versions were retained because they also 

illustrate the performance evolution of a generic MIP optimizer). A second appendix to 

chapter 5 discusses alternative formulations of closest assignment constraints (this 

discussion is complementary, but not essential, to the main content of the chapter). 
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1.6 Chronology, collaborations and publications 

The work in this thesis was carried out in the periods October 2003 - July 2007 and 

August 2011 - June 2012. In the first period the large majority of the work was carried 

out and most results were obtained. In the intervening period the author interrupted 

work on the thesis. In the last period some results were finished and the remainder of 

the thesis was written. 

In the course of the thesis, the following periods were spent at the Center for Operations 

Research and Econometrics (CORE) of the Catholic University of Louvain, at Louvain-

la-Neuve, Belgium: 2,5 months in 2004 (1-Jun to 15-Aug); 2,5 months in 2005 (15-Aug 

to 31-Oct); 2 months in 2006 (23-Jul to 16-Sep). In these periods the author worked 

with Laurence Wolsey, and also with Dominique Peeters (mainly regarding chapter 2). 

The applied work described in chapters 2, 3 and 4 was developed in parallel with and 

inspired by the following two studies. 

 Educational Charter of the municipality of Coimbra – Planning models and 

solutions: study made in Jul-2003 to Oct-2006 at the Department of Civil 

Engineering of the University of Coimbra under contract with the Municipal 

Council of Coimbra. The authors were António Pais Antunes (coordinator) and 

João Teixeira. The reference of the final report is: 

Antunes, A. P. (Coord.), “Carta educativa do município de Coimbra 2006-

2015”, Câmara Municipal de Coimbra e Departamento de Engenharia Civil da 

Universidade de Coimbra, Outubro 2006. (In Portuguese). 

 Proposal of revision of the Judiciary Map of Portugal: study made in Aug-2006 

to Mar-2007 at the Department of Civil Engineering of the University of 

Coimbra under contract with the Ministry of Justice of the Portuguese 

government. The authors were António Pais Antunes (coordinator) and the PhD 

students João Bigotte, Hugo Repolho, and João Teixeira. The reference of the 

final report is: 

Antunes, A. P. (Coord.), “Proposta de revisão do mapa judiciário”, 

Departamento de Engenharia Civil da Universidade de Coimbra, Março 2007. 

(In Portuguese). 

The author of this thesis was responsible for the implementation of the facility location 

models used in both studies. Chapters 2 and 3 correspond to a work-in-progress report 

of the first study. The same models were used for the final report, although there were 
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some changes in the data, scenarios analyzed, and model solutions. Chapter 4 

corresponds to the final report of the second study. 

Regarding chapter 6, the author also worked with Joaquim Júdice (University of 

Coimbra) and Pedro Martins (Polytechnic Institute of Coimbra). They had performed 

some computational experiments with the classic capacitated facility location problem 

(CFLP), finding that it was solved faster by a modern generic MIP optimizer using the 

so-called weak formulation rather than the strong one. These apparently surprising 

results were discussed with António Pais Antunes and then the author of this thesis was 

involved to perform further computational experiments, addressing the CFLP and also 

the capacitated median model. 

Below is a list of publications and communications of the work carried out in the thesis. 

All communications were presented by the author of this thesis, except the one at 

ISOLDE XI, which was presented by António Pais Antunes. 

Peer-reviewed publications: 

 (Chapter 2) Teixeira, J., Antunes A. P., Peeters, D. (2007), “An optimization-

based study on the redeployment of a secondary school network”, Environment 

and Planning B 34 (2), 296-315. 

 (Chapter 3) Teixeira, J. and Antunes, A. P. (2008), “A hierarchical location 

model for public facility planning”, European Journal of Operational Research 

185 (1), 92-104. 

Communications in conferences: 

 (Chapter 3) Teixeira, J., and Antunes, A. P. (2005), “School network planning – 

a case study”, CUPUM’05 – Computers in Urban Planning and Urban 

Management, London, UK, July 2005. 

 (Chapter 3) Teixeira, J., and Antunes, A. P. (2006), “Coupling GIS and 

optimization software in public facility planning”, DMUCE 5 – Decision 

Making in Urban and Civil Engineering, Montreal, Canada, June 2006. 

 (Chapter 4) Teixeira, J., Antunes, A. P. e Bigotte, J. (2008), “Aplicação de 

modelos de localização de equipamentos à revisão do mapa judiciário 

português”, IO2008 – 13º Congresso da APDIO, Vila Real, Portugal, Março 

2008. (In Portuguese). 
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 (Chapter 4) Antunes, A. P., Teixeira, J., Bigotte, J., Repolho, H. (2008), 

“Districting and location in the courts: the making of the new judiciary map of 

Portugal”, ISOLDE  XI – 11th International Symposium on Locational 

Decisions, Santa Barbara, CA, USA, June 2008. 

 (Chapter 5) Teixeira, J., and Antunes, A. P. (2005), “The public facility 

planning problem: valid inequalities and computational experience”, ISOLDE X 

– 10th International Symposium on Locational Decisions, Sevilla, Spain, June 

2005. 

 (Chapter 5) Teixeira, J., and Antunes, A. P. (2006), “Solving the capacitated 

median problem by a priori reformulation and branch-and-cut”, Iberian 

Conference in Optimization, Coimbra, Portugal, November 2006. 

 (Chapter 6) Teixeira, J., Antunes, A. P., Júdice, J., Martins, P. (2006), 

“Resolução de modelos de localização com software de optimização moderno: 

as formulações forte e fraca revisitadas”, IO2006 – 12º Congresso da APDIO, 

Lisboa, Portugal, Outubro 2006. (In Portuguese). 
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Chapter 2  
 

Application of the capacitated median model to 

the location of secondary schools 

 

2.1 Introduction 

In this chapter, we report the results of a study on secondary school planning in 

Coimbra, a medium size municipality of 320 km2 and 150,000 inhabitants located in the 

center-littoral region of Portugal (Figure 2.1). The study was developed at the 

University of Coimbra within the framework of Coimbra’s Educational Charter, a 

document currently being prepared to integrate the Municipal Development Plan for the 

period 2005-2015. The Educational Charter specifies the infrastructure, equipment, 

human and financial resources necessary for pre-school, primary and secondary 

education. 
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Figure 2.1: Municipality and communities of Coimbra 
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The importance of the Educational Charter derives from two reasons. First, current 

aggregate school capacity is excessive because of the strong decline of school-age 

population in the last two decades. Second, school typology needs to be changed 

according to a recent reorganization of the Portuguese educational system. Specifically, 

starting in 2005, the current nine- and three-year cycles of primary and secondary 

education will be converted to two six-year cycles. Within the reorganization, 

mandatory education will be expanded from primary to secondary education.1  

The planning problem to be solved within the study consisted of defining the location, 

type and size of the schools composing Coimbra’s secondary school network in 2015, 

the planning horizon of the Municipal Development Plan. A solution to the problem 

should meet a set of constraints imposed by the guidelines of the Ministry of Education 

for redeploying the school network, including: maximum travel distance of students to 

schools, maximum and minimum number of students per classroom, and maximum and 

minimum number of classrooms per school. These constraints seek to guarantee 

adequate accessibility, good pedagogical conditions (in terms of class size) and 

economic efficiency, that is, school occupation should justify operation costs and 

investments in equipment (laboratories, libraries, sports buildings, etc.).  

The main tool used for the development of the study was a discrete facility location 

model based on the p-median model. The model is aimed at maximizing the 

accessibility of students to schools, and includes constraints to ensure that the students 

living in each population center are exclusively assigned to the closest school. 

The contributions of our work are, first, the formulation of a model with some 

ingredients not previously found in the facility location literature addressing school 

network planning (specifically, the combination of maximum and minimum capacities 

and closest assignment constraints). Second, the use of this model for a practical 

application in Portugal. As far as we know, this is the first model incorporating all 

quantitative constraints present in the guidelines of the Ministry of Education regarding 

capacity and accessibility requirements. 

This chapter is organized as follows. Sections 2 and 3 contain a presentation of the 

situation of the municipality of Coimbra with regard to educational demand, school 
                                                 
1 Chapters 2 and 3 correspond to a non-final stage of the study. The reorganization described was 
envisioned by the reform of the education system according to proposal of law 74/IX of July 2003. Later 
in the study period, the government abandoned the changes to primary and secondary education cycles, 
but mandatory education was still expanded to secondary education and school typology changes were 
still considered in Coimbra. 
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facilities, and their expected long-term evolution. In Section 4, the planning problem to 

be solved within the study is presented in detail. In Section 5, the discrete facility 

location model developed to represent the planning problem is introduced, after a 

review of previous studies on school network planning. In Section 6, the results 

obtained with this model are presented and discussed. In Section 7, the GIS used for 

data handling and result analysis is concisely described. Finally, Section 8 contains a 

summary of the main conclusions of the study and a presentation of work to be 

developed in the near future within the framework of Coimbra’s Educational Charter.  

2.2 Current situation 

In Portugal, non-higher education is composed of nine years of primary education (for 

ages 6-14) and three years of secondary education (for ages 15-17). Primary education 

(B) consists of three consecutive levels: B1, B2 or B3. Secondary education (S) is 

further divided in regular education and professional education. The latter is offered at 

specialized schools and was not included in the study. In the municipality of Coimbra, 

between 1998/99 and 2003/04, enrollments in primary and secondary education have 

decreased by 17% and 32%, respectively (Table 2.1). However, this decrease is smaller 

in the first levels, suggesting that the decline is slowing. 

Table 2.1: Evolution of student enrollments in Coimbra in recent years 

Level of education Ages 
Duration 
(years) 

Number of students 

1998/99 2003/04 Variation 

B1 6-9 4 7331 6669 -9% 

B2 10-11 2 4334 3990 -8% 

B3 12-14 3 7667 5429 -29% 

Primary 6-14 9 19332 16088 -17% 

Secondary 15-17 3 8642 5876 -32% 

Total 6-17 12 27974 21964 -21% 

 

Coimbra’s primary and secondary school network is composed of 102 public schools 

and 16 private schools. Currently, public schools are of types EB1, EB23 and ES 

(designations refer to education levels offered, see Table 2.2), while private schools 

may have other types, in general offering more levels than public schools (some of them 

offer the four levels). In Table 2.2, it can be seen that the EB1 type represents about 

85% of the number of public schools, since they generally are small schools located 

very close to their students. However, their capacity is clearly smaller than that of EB23 
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or ES type schools, which are large schools that, in the past, served students from both 

Coimbra and neighboring municipalities. 

As shown in Table 2.3, existing aggregate capacity is excessive for the current needs of 

the municipality (occupation of 75%), particularly in the case of secondary schools 

(occupation of 57%). 

Table 2.2: Existing schools in Coimbra2 

Type of 
school 

Levels of 
education 

Number of schools Capacity (students) 

Public Private Public Private Total 

EB1 B1 86 
7 EB1 + 

9 EB23/ES

6350 1800 8150 

EB23 B2+B3 9 6450 4360 10810 

ES S 7 8910 1380 10290 

Total 102 16 21710 7540 29250 

Note: the 9 EB23/ES private schools have mixed types: 

1 EB1+EB23, 4 EB1+EB23+ES, 4 EB23+ES. 

 

Table 2.3: Current aggregate school occupation in Coimbra 

Type of school 
Capacity 

(students) 

Number of 
students 
(2003/04) 

Occupation rate 

EB1 8150 6669 82% 

EB23 10810 9419 87% 

ES 10290 5876 57% 

Total 29250 21964 75% 

 

 

                                                 
2 Public school capacity considers a maximum of 25 students per classroom for EB1 and EB23, and 30 
for ES. Private school capacity was considered equal to occupation in 2003/04 (complete data on the 
number of classrooms became available only later in the study, after chapters 2 and 3 were written). 

Some data in Table 2.2 was changed relatively to the published article to improve consistency with other 
data in chapters 2 and 3 (excluded small EB1 schools that had been closed in the previous year but that 
remained in the database; excluded 3 small, special-purpose schools not considered in the study; changed 
the maximum number of students per classroom in public EB23 schools from 30 to 25, as considered for 
the new type EB12). Table 2.3 and values cited in the text were updated accordingly. All other data in 
chapters 2 and 3 remains unchanged. 
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2.3 Future situation 

For students entering school in 2004/05, there will be two cycles of primary education 

(B1 and B2) instead of three, and two cycles of secondary education (S1 and S2) instead 

of one. According to our forecast, the number of students in primary and secondary 

education in the year 2015 is expected to decrease by 11% and 18% relative to the 

present values of 2003/04 (Table 2.4). 

Table 2.4: Number of students in 2015 (forecast) 

Level of Education Number of Students 

Current Future 2003/04 2015 Variation 

B1 B1 6669 6278 -6% 

B2 B2 3990 3168 -21% 

B1+B2  B1+B2 10659 9446 -11% 

B3 S1 5429 4796 -12% 

S S2 5876 4475 -24% 

B3+S S1+S2 11305 9271 -18% 

The number of students was forecast using communities (“freguesias”), the smallest 

level of administration in Portugal, as the geographic unit of analysis. The municipality 

of Coimbra comprises 31 communities (as shown in Figure 2.1). 

The forecasting procedure used was as follows. First, the total population of the 

municipality was estimated for 2015 assuming that the annual demographic growth rate 

for the period 2001-2015 would be equal to the rate observed in 1991-2001. Second, the 

future population was distributed by communities taking into account their demographic 

evolution in the recent past and current trends in housing construction. Third, the 

school-age population for the municipality was estimated assuming that the percentage 

of 0-4 years old population would remain constant in the period 2001-2015, which 

means that the percentage of 0-19 population in 2015 would be approximately four 

times the current percentage of 0-4 population. This assumption meets the long-term 

optimistic (regarding the evolution of the birth rate) population forecast of the 

Portuguese Bureau of Statistics for the whole country (INE, 2003). Since in the last 

decade the demographic evolution of Coimbra exhibited a strong correlation with that 

of the whole country, the trend forecast for Portugal was adopted for the municipality of 

Coimbra. Fourth, at the community level, it was assumed that the proportion of young 

population (and in particular school-age population) would remain at the current level in 

2015. This assumption was based on the observation that in both the Census of 1991 
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and the Census of 2001 the proportion of young population did not vary significantly 

across communities. Finally, the number of students for each community was calculated 

through the application of expected students/school-age population ratios. These ratios 

account for repetition and attendance of professional education in specialized schools, 

and were estimated according to the goals set out by education experts for the next 

decade in a study commissioned by the Ministry of Education (São Pedro et al., 2000). 

The reorganization of primary and secondary education will be accompanied by a 

change in school typology. In the future, new schools and (adapted) existing schools 

should match types EB12 (primary schools, offering levels B1 and B2) and ES12 

(secondary schools, offering levels S1 and S2, that correspond to current levels B3 and 

S, respectively). 

For Coimbra, it was decided that existing public schools are to be converted to the new 

typology according to the following rules. Current ES schools are converted to ES12 

(offering six instead of three years of education); current EB23 schools are converted to 

EB12 (offering six instead of five years); current EB1 schools remain dedicated to the 

first four years of primary education (i.e. level B1), if they have four or more 

classrooms. Smaller EB1 schools (about two thirds of existing schools, concentrating 

40% of total EB1 capacity), which do not offer adequate pedagogic conditions, will 

either be closed or converted to kindergartens, to expand coverage of pre-school 

education. With regard to existing private schools, it was assumed that their typology 

will change to EB12, ES12 or EB12+ES12 depending on whether they currently offer 

primary education, secondary education, or both. 

Because of this typology conversion, the aggregate occupation rate of existing schools 

in 2015 will be around 70% for both primary and secondary education (Table 2.5). That 

is, existing capacity will remain excessive in the future, in spite of the fact that small 

EB1 schools will be closed and that ES12 schools will offer two three-year cycles 

instead of one.3 

                                                 
3 Later in the study period, the reorganization of education cycles was abandoned, as noted before. 
However, following a decision by the Municipal Council of Education of Coimbra, the study continued to 
consider a school typology conversion to EB12 (B1+B2) and E3S (B3+S) types, homologous to the EB12 
and ES12 types, in order to use the existing school capacity more efficiently. With the typology 
conversion, the aggregate occupations of primary and secondary schools would become more balanced 
(Table 2.3 vs. Table 2.5), by using the capacity slack in secondary schools to compensate the capacity 
deficit experienced in some primary schools, while also allowing small EB1 schools to be closed. 
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Table 2.5: Capacity and expected occupation of existing schools after typology conversion4 

Type of school 
Capacity of schools (students) Number of 

students     
(2015) 

Occupation 
rate Public Private Total  

EB1+EB12 10175 3700 13875 9446 68% 

ES12 8910 3840 12750 9271 73% 

 

2.4 Planning problem 

The planning problem addressed in this chapter regards the secondary school network. 

This problem was given priority because the spatial distribution of secondary schools is 

less balanced than that of primary schools (Figure 2.2). 
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Figure 2.2: Location of existing schools5 

 

 

                                                 
4 In Table 2.5, the capacity of private schools with both EB12 and ES12 types was allocated to each type 
according to the occupation in 2003/04 of the corresponding education levels. 
5 Figure 2.2 shows only schools included in the study, as discussed below (i.e. excludes public EB1 
schools with less than 4 classrooms and non-subsidized private schools). 
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Given the existing school network and the typology conversion required by the 

reorganization of primary and secondary education, the planning problem to be solved 

consisted of defining the location, type and size of the schools composing Coimbra’s 

secondary school network in 2015. The problem included decisions of closing existing 

schools and, possibly, building new schools. Indeed, despite the existing excess 

capacity, it could be advantageous to build new schools either to adjust the location of 

schools to recent housing developments or to replace existing small schools by larger 

ones, provided with better equipment (laboratories, libraries, sports buildings, etc.). 

A solution to the problem should meet a set of constraints prescribed by the guidelines 

of the Portuguese Ministry of Education (MinEdu, 2000) for redeploying the school 

network. These constraints include maximum travel distance of students to schools and 

maximum and minimum numbers of students per classroom and classrooms per school. 

Three objectives were pursued by the education authorities. First, all the population 

should be covered by either public schools or subsidized private schools. Second, the 

accessibility of students to schools should be maximized. Third, the changes to the 

existing network should be minimized, either because of scarce public budgets to build 

new schools or to avoid public reactions against school closure (particularly from 

parents and teachers). These objectives may of course be conflicting. 

With regard to the first objective, existing schools included in the study were all current 

public schools and private schools subsidized by the Government, where students do not 

pay tuition fees. Other private schools, located in areas covered by public schools, 

which compete with public schools and are not subsidized, were left out of the study 

(currently there are three schools of this type, representing 10% of existing capacity).6 

Finally, students should be exclusively assigned to the school nearest to their place of 

residence. Although not formally a part of the problem constraints, this rule was 

adopted because it leads to solutions that are easier to explain and to implement in a 

public facility planning context (see Section 2.5.3). What is more, as revealed through a 

survey carried out within the framework of Coimbra’s Educational Charter (Canavarro 
                                                 
6 More specifically, the existing 7 EB1 and 9 EB23/ES private schools would be converted to 7 EB1, 1 
EB12, and 8 EB12+ES12 schools with the new typology. Of these, only 5 EB12+ES12 schools are 
subsidized. The Municipal Council of Education decided that the capacity of non-subsidized private 
schools would not be considered for planning purposes, that is, public and subsidized private schools 
should cover the total demand. The excluded private schools represent 15% of total EB1+EB12 capacity 
(excluding public EB1 schools with less than 4 classrooms) and 10% of total ES12 capacity as defined in 
Table 2.5. 
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et al., 2004), proximity to residence is, today, by far, the most important factor parents 

take into account when they choose schools for their children. 

2.5 Optimization model 

2.5.1 Literature review 

The problem described in the previous section was represented by a mixed-integer 

linear optimization model, more specifically a discrete facility location model. 

Comprehensive surveys of facility location models are provided by Hansen et al. 

(1987), covering both continuous and discrete models and giving an economic 

interpretation of location models, Krarup and Pruzan (1990), focusing on discrete 

models, Labbé and Louveaux (1997), reviewing the specialized heuristic and exact 

solution procedures available for a range of model variants, and, more recently, Current 

et al. (2002), giving a broad review of recent discrete location model developments, 

applications, and heuristic solution procedures. References specifically discussing 

facility planning in the public sector include ReVelle (1987), Eiselt and Laporte (1995), 

and Marianov and Serra (2002). 

The usual setting for the application of discrete facility location models is the following. 

Demand for the services provided by the facilities is measured in number of users (e.g., 

students) and is assumed to be concentrated in points named centers, which may 

represent regions, municipalities, towns or neighborhoods. Supply of facilities (e.g. 

schools) is assumed to be possible at specified points, named sites, which represent 

either one of the above geographical entities or specific plots of land. Centers and sites 

are connected by a transportation network. 

We now present a brief review of previous optimization approaches to school network 

planning and management problems, applying discrete location or closely related 

models. Table 2.6 presents a summary of representative models in the literature since 

1987, including model “ingredients”, solution method (exact or heuristic), and practical 

application reported. 

Models for school planning problems may be divided in two groups, based on the type 

of decisions considered. The first group addresses the management problem of 

assigning students to schools on a yearly basis. An existing school network is assumed 

and location decisions either are not considered or focus on school closure. On the other 

hand, assignment decisions are modeled in a detailed way, for instance taking into 

account student race (maintaining a racial balance across schools is an important issue 
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in the USA). Examples are the models proposed by Schoepfle and Church (1991), a 

network flow model for minimizing travel distance, and by Church and Schoepfle 

(1993), a multiple-knapsack model for maximizing the assignments of students to 

schools of their choice. Church and Murray (1993) propose a multi-objective location 

model, including the minimization of travel distance, maximization of school district 

compactness and minimization of the number of students changing school from year to 

year. The model allows closing existing schools and includes constraints for balancing 

capacity occupation across open schools that improve on the formulation proposed in 

previous studies. 

The second group of models addresses the planning problem of determining the location 

and capacity of schools in the medium to long term. These models include both location 

decisions (open/close schools) and assignment decisions (of students to schools). 

Antunes and Peeters (2001) and Greenleaf and Harrison (1987) propose multi-period 

location models seeking to optimize the schedule of network changes, that is, when to 

open/close schools and to expand/reduce capacity, so that total discounted costs 

(infrastructure, transportation, operation) are minimized. Multi-period models are 

useful, for example, when capacity requires expansion to meet short-term demand while 

medium-term demand is expected to decrease (Antunes, 1994), but involve a larger 

number of integer variables than single-period models and are considerably more 

difficult to solve. Pizzolato and Silva (1997) and Pizzolato et al. (2004) use a clustering 

approach to school planning based on the p-median model. Rather than determining the 

exact locations of new schools or the existing schools to close, a p-median model is first 

solved to find ideal school locations and the centers assigned to them. For each cluster 

formed in this way, aggregate demand is compared with existing capacity (of schools 

located in any of the centers of the cluster). In the first reference, the p-median model 

does not include capacity constraints, while in the second the total demand in each 

cluster may be at most the capacity of a standard school. Densham and Rushton (1996) 

present an interactive system to locate regional centers serving school districts, where 

regional centers are imposed a minimum capacity occupation. First, a p-median model 

is solved to locate regional centers and districts are allocated to their closest regional 

center, disregarding capacities. In a second phase, districts are reallocated (by user input 

or with the help of a heuristic) so that minimum capacities are satisfied. 
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Table 2.6: Representative examples of previous optimization approaches to school planning 

Reference Decisions Model type and 
ingredients 

Capacity 
constraints

Solution 
technique 

Application 

Antunes and 
Peeters 
(2001) 

Location, 
Assignment 

Multi-period location 
model, minimize costs, 
open/close facilities, 
capacity 
expansion/reduction 

Maximum 
and 
minimum 
capacity 

Heuristic 
(Simulated 
Annealing) 

Primary and secondary 
school networks in 
Portugal with up to 29 
centers, 38 sites and 3 
time periods 

Greenleaf 
and 
Harrison 
(1987) 

Location, 
Assignment 

Multi-period location 
model, minimize costs, 
open/close facilities 

Maximum 
and 
minimum 
capacity 

Heuristic 
(truncated 
search using 
an optimizer) 

Primary and Secondary 
school networks in 
Pennsylvania (USA) 
with 16 centers, 11 
schools and 5 time 
periods 

Pizzolato 
and Silva 
(1997) 

Location, 
Assignment 

p-median model used to 
compare existing and ideal 
school locations 

No capacity 
constraints 

Heuristic 
(Interchange) 

Primary school networks 
in Rio de Janeiro (Brazil) 
with up to 389 centers 
and 59 schools  

Pizzolato et 
al. (2004) 

Location, 
Assignment 

As above, considering 
school capacities 

Maximum 
capacity 

Heuristic 
(Lagrangian) 

Primary school network 
in Victoria (Brazil) with 
271 centers and 51 
schools 

Densham 
and Rushton 
(1996) 

Location, 
Assignment 

p-median model, minimize 
travel distance 

Minimum 
capacity 

Heuristic 
(Interchange) 
plus 
interactive 
procedure 

Define regional centers 
to serve school districts 
in Iowa (USA) with 480 
school districts and 12 
regional centers 

Church and 
Murray 
(1993) 

Location, 
Assignment 

Multi-objective location 
model (minimize travel 
distance and others), 
allows school closure, 
balance capacity 
occupation and racial mix 
across schools 

Maximum 
capacity 

Exact 
(commercial 
optimizer) 

Hypothetical network 
with 75 centers and 9 
schools 

Church and 
Schoepfle 
(1993) 

Assignment Multiple-knapsack model, 
maximize assignments of 
students to schools of their 
choice, balance capacity 
occupation and racial mix 
across schools 

Maximum 
and 
minimum 
capacity 

Exact 
(commercial 
optimizer) 

No application reported. 

Schoepfle 
and Church 
(1991) 

Assignment Network-flow model, 
minimize travel distance, 
balance race mix across 
schools 

Maximum 
capacity 

Exact 
(commercial 
optimizer) 

Hypothetical network 
with 75 centers and 9 
schools 
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The model proposed in our study includes location and assignment decisions and 

combines capacity and assignment constraints. Previous models in the school planning 

literature often include capacity constraints (in addition to maximum school capacities, 

minimum capacities may be imposed to ensure economic efficiency and/or balancing 

occupation across schools). However, unlike previous models, both single assignment 

and closest assignment constraints are included to ensure desirable properties of 

solutions, that is, all students in the same center must be assigned to the closest open 

school (discussed in detail in Section 2.5.3). We note that similar models have been 

proposed in other contexts: Carreras and Serra (1999) and Verter and Lapierre (2002) 

for the location of health care facilities, and Kalcsics et al. (2002) for designing sales 

territories. Regarding solution techniques, the harder location models reviewed above 

were solved with heuristic techniques, which provide only approximate solutions. 

Closest assignment constraints make location models much larger and much harder to 

solve. Fortunately, progress in mixed-integer linear optimization software in the last two 

decades has been very rapid (Atamturk and Savelsbergh, 2005), and it is now possible 

to solve exactly (to optimality) models large enough to be useful in practical 

applications, as is the case reported here. 

2.5.2 Model formulation 

The formulation of the model is based on the well-known p-median model (see 

Marianov and Serra (2002) for a recent survey). The objective of the model is to 

maximize the accessibility of students to schools, that is, to minimize the aggregate 

distance students need to travel to reach the school to which they are assigned. 

Consider the following notation for data: I is the set of centers; J is the set of sites; 
0J J  is the subset of sites with existing schools; iu  is the number of students 

originating from center i; ijd  is the travel distance between center i and site j; 0 jZ  is the 

capacity of existing schools at site j (in number of students); min0 jZ  and max0 jZ  are the 

minimum occupied capacity and maximum expanded capacity of existing schools at site 

j; min
jZ and max

jZ  are the minimum and maximum capacities of a new school installed at 

site j; p is the maximum number of new schools to open; q the maximum number of 

existing schools to close. 

There are three sets of decision variables: assignment variables ijX , location variables 

jYE  and jYN , and capacity occupation variables jZE  and jZN . They are defined as 

follows: ijX  equals 1 if center i is assigned to site j, and equals zero otherwise; jYE  

equals 1 if existing schools at site j remain open, and equals zero otherwise; jYN  equals 
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1 if a new school is open at site j, and equals zero otherwise; jZE  and jZN  is the 

demand served at site j by existing and new schools, respectively. 

The model is formulated as follows: 

Minimize ij i ij
i j

D d u X  (2.1) 

Subject to: 

1ij
j

X  , i  (2.2) 

ij j jX YE YN  , ,i j  (2.3) 

j j i ij
i

ZE ZN u X  , j  (2.4) 

min0j j jZE Z YE , j  (2.5a) 

max0j j jZE Z YE , j  (2.5b) 

min
j j jZN Z YN , j  (2.6a) 

max
j j jZN Z YN , j  (2.6b) 

0j j jZE Z YN , 0j J   (2.7) 

ij

ik j
k N

X YE


 ,   |ij ik ijN k J d d   , 0,i j J    (2.8a) 

ij

ik j
k N

X YN


 ,   |ij ik ijN k J d d   , ,i j J    (2.8b) 

j
j

YN p  (2.9) 

0

0
j

j J

YE J q


   (2.10) 

 0,1ijX  , ,i j  (2.11) 

 , 0,1j jYE YN  , j  (2.12) 

The objective (2.1) expresses the minimization of aggregate travel distance. Constraints 

(2.2) guarantee that all students are assigned to schools. Constraints (2.3) ensure that 

students will not be assigned to sites where there are no schools (neither existing nor 

new). Constraints (2.4) define the occupied capacity of existing and new schools. 

Constraints (2.5a) and (2.5b) imply that, should existing facilities remain open, their 
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occupation must satisfy maximum and minimum bounds. Constraints (2.6a) and (2.6b) 

define maximum and minimum capacity occupation for new schools. Constraints (2.7) 

imply that new capacity can only be added if existing capacity is used ( j jYN YE  is 

implied, which prevents opening a new school at a site where existing schools were 

closed). Constraints (2.8a) and (2.8b) are closest assignment constraints, i.e. they force 

students to be served by the closest open school, either existing or new. Constraints 

(2.9) and (2.10) bound the number of new schools to be opened and existing schools to 

be closed, respectively, where 0J  is the current number of sites with schools. 

Constraints (2.11) define assignment variables as binary, thus enforcing the single 

assignment property, i.e. each population center must be served by only one site. 

Constraints (2.12) define location variables as binary. 

The differences between the model presented above and the p-median model are as 

follows: (i) new facilities can either be open at sites currently with no facilities or be co-

located with an existing facility (in this way, significant capacity expansion can occur, 

should it be necessary); (ii) facilities have minimum and maximum capacities; (iii) 

single and closest assignment constraints are included (they are redundant in the p-

median model). 

The formulation of closest assignment constraints (2.8) was first introduced by Wagner 

and Falkson (1975). It has the advantage of remaining valid if a given center has two or 

more equidistant sites with open facilities. If this situation does not occur, single 

assignment is implied by closest assignment and the integrality constraints (2.11) could 

be linearly relaxed. Alternative formulations of closest assignment are analyzed by 

Gerrard and Church (1996). 

2.5.3 Effect of single and closest assignment 

Closest assignment constraints were included in the formulation since, in the presence 

of capacity constraints (maximum and/or minimum), optimum solutions do not have the 

so-called “closest assignment property”. This means that, in order to minimize total 

travel distance or transportation cost, it may not be optimal to assign all demand centers 

to the closest open facility. We consider a small example to illustrate the relevance of 

this property in the context of public facility planning and to show why it should be 

explicitly enforced. 

A random instance with 20 population centers was generated to correspond to an 

average municipality in Portugal. Centers were uniformly generated in a circle with a 9 

km radius. The total number of users was set at 10,000 (10% of a total population of 
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100,000), distributed according to Zipf’s Law with calibration parameter equal to one 

(Zipf, 1949; Brakman et al., 2001). Sites are coincident with centers and distances were 

computed in kilometers rounded to one decimal place. Minimum capacity was set to 

2,000 (thus, the maximum number of facilities is five). In this example there are no 

existing facilities. 

This instance was solved with three variants of model (2.1)-(2.12): (i) without single 

assignment and closest assignment, that is, with the integrality constraints (2.11) relaxed 

and constraints (2.8) removed, respectively; (ii) with single assignment only, that is, 

with (2.8) removed; (iii) the full model with both sets of constraints. The optimum 

solutions are presented in Figure 2.3. Without single and closest assignment (panel i), 

the users of some centers are split between several facilities and small centers are served 

by distant facilities in order to guarantee minimum capacities. This happens for instance 

with the center with 556 users located on the left, which is partly served by the nearest 

site with an open facility and two further sites. Even with single assignment (panel ii) 

this situation is not eliminated, as the users of small centers might pass near to an open 

facility while traveling to the facility to which they are assigned, so that the minimum 

capacity of that facility is satisfied. The center with 556 users is now fully served by a 

facility in the middle of the region (at the center with 463 users), in spite of a nearby 

facility being open (at the center with 2780 users). 

Introducing both single and closest assignment constraints eliminates undesirable 

configurations of assignments (panel iii). However, the objective function increases by 

25% (Table 2.7). Furthermore, in this example, the number of facilities decreases when 

closest assignment constraints are added. This can be expected to occur in general 

because the number of feasible solutions diminishes. That is, single and closest 

assignment constraints prevent disadvantageous assignments of small centers for the 

sake of the global optimum. The resulting solutions are easier to interpret and to explain 

in a planning context, therefore being more easily accepted by the users. 
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Figure 2.3: Solutions with and without single and closest assignment: (i) no assignment constraints, 

(ii) single assignment only, (iii) single and closest assignment 

 

Table 2.7: Optimal value and number of facilities with and without single and closest assignment 

Model 
Number of 
facilities 

Aggregate distance (km)  

Value Difference to 
minimum 

No assignment constraints 4 14 482.7 0% 

Single assignment only 4 16 237.4 12% 

Single + Closest assignment 3 18 068.6 25% 

Center
Center + Facility
Center
Center + Facility
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2.5.4 Model data 

The model of Section 2.5.2 was applied to Coimbra’s secondary schools by considering 

the number of students forecast for 2015 and the existing network of public and 

subsidized private schools. Students were assumed to be concentrated in 43 centers 

(Figure 2.4), corresponding to the 31 communities of the municipality of Coimbra, of 

which the five more densely populated were divided into three to four areas each. 

Existing schools, as well as possible new schools, were assumed to be located in 43 

sites, coincident with the centers. For one particular site (Sé Nova-Combatentes) two 

existing schools were aggregated into a single school in the model, since they are 

located 500 meters from each other. Distances between centers were measured along the 

road network planned for 2015 (Figure 2.4). 
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Figure 2.4: Population centers considered and road network used to compute distances 

Minimum and maximum capacity occupation limits are presented in Table 2.8. For new 

schools these limits are set by the Ministry of Education. For existing ES schools it was 

assumed a minimum of 20 students per classroom, for both public and private schools. 

Public schools, which are all of large capacity, should contain at least 18 classes (three 

classes per year). For private schools it was assumed that the minimum number of 

classes they will offer is six (one class per year). 
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Table 2.8: Capacity and occupation parameters 

Type of school 

Maximum capacity  Minimum occupation 

Number of 
rooms 

Students 
per room 

Students 
Number of 

rooms 
Students 
per room 

Students 

New public schools 39 30 1170 18 24 432 

Existing public schools current NR 30 - 18 20 360 

Existing private schools current NR 30 - 6 20 120 

The maximum coverage distance was set to 12.5 km (to ensure travel time is below 30 

minutes, at an average speed of 25 km/h by public transportation). This was considered 

in the model by setting to zero the assignment variables corresponding to pairs of 

centers and sites whose distance exceeded this limit. 

2.6 Study Results 

In this section, we present the results obtained for Coimbra’s secondary school network 

with the model formulated in Section 2.5. Despite its large size (43 centers and sites, 

2021 decision variables, of which 1935 are binary, and 5850 constraints), the model was 

solved with a commercial optimizer (XPRESS-MP version 2003G; Dash Optimization, 

2002). Five alternative solutions were obtained by varying the number of new schools 

(parameter p) from zero to four, thus representing different trade-offs between school 

accessibility improvements and school network changes. Table 2.9 reports the resulting 

number of schools and aggregate accessibility. The chart in Figure 2.5 shows how 

aggregate accessibility improves as the number of schools increases. Solutions with less 

than two new schools were obtained by removing closest assignment constraints from 

the model, otherwise no feasible solutions could be found. It turned out that, in all 

solutions, the maximum number of school closures (parameter q) had no influence. 

With two or less new schools it is actually desirable to keep all schools open. With more 

than two new schools, no feasible solutions could be found without closing one school. 
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Table 2.9: Number of schools and accessibility of model solutions 

Number of schools Aggregate distance (km) 

New (p) Closed (q) Total Value 
Difference to 

maximum 

0 0 11 21 098 0% 

1 0 12 14 715 -23% 

2 0 13 13 816 -39% 

3 1 13 12 518 -48% 

4 1 14 10 861 -51% 

Note: solutions for p=0 and p=1 do not satisfy closest assignment constraints 
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Figure 2.5: Aggregate distance as a function of the number of new schools (p) 

School locations and student to school assignments for all solutions are represented in 

Figure 2.6. Solutions have the desirable property of being coherent (i.e. when adding 

one new school, the previously added schools remain in the same place)7. In the 

solution with two new schools (p=2), communities in the southwest of the municipality 

travel to a new school located in São Martinho do Bispo because that area of the 

municipality does not have enough students to justify a dedicated school there. 

Future occupation of schools is summarized in Table 2.10. Public school occupation is 

high or at least acceptable (over 60%) in solutions with less than two new schools, 

except in the Sé Nova-Combatentes area (where two schools exist). In this area it would 

be possible to close one of the existing schools, guaranteeing 80% occupation for the 

school remaining open (instead of 40% for both). 

                                                 
7 In chapter 4, the term coherency is employed with a different definition, applying to hierarchical 
models. 
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Figure 2.6: Model solutions obtained by varying the number of new schools (p) 
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For two or more new schools occupation is reduced to 40% in the Santa Clara school, 

and, for three or more, the school in Santa Cruz-Conchada is closed. Private school 

occupation was computed considering the capacity currently allocated to level B2 

(which represents about 30% of total ES12 capacity in all schools). This explains the 

low occupation (under 40%) of some private schools in some solutions. With less than 

two new schools, occupation of existing private schools at S.P.Frades-Lordemão and 

São Martinho do Bispo is close to 100%.8 

In conclusion, the largest improvement is obtained by adding one school to the current 

network. In this scenario, all existing schools guarantee sufficient occupation to remain 

open. Adding more schools will bring diminishing returns in terms of aggregate 

accessibility. 

Table 2.10: Capacity occupation in model solutions 

School Status 
Existing 

Capacity

Capacity Occupation (students) 

p=4 p=3 p=2 p=1 p=0 

Value % Value % Value % Value % Value % 

Almalaguês Private 870 199 23 286 33 286 33 286 33 286 33

Assafarge New - 458 - - - - - - - - -

Cernache Private 1620 228 14 599 37 599 37 599 37 599 37

Eiras-Pedrulha Public 1260 1143 91 1029 82 1114 88 1114 88 1224 97

Olivais-Vale das Flores Public 1260 917 73 917 73 917 73 917 73 917 73

S.P.Frades-Lordemão Private 1260 382 30 277 22 582 46 582 46 1215 96

S.P.Frades-S.Apolónia New - 892 - 1111 - - - - - - -

Santa Clara Public 1500 641 43 641 43 626 42 976 65 976 65

São Martinho do Bispo 1 Private 1020 917 90 917 90 917 90 999 98 999 98

São Martinho do Bispo 2 New - 432 - 432 - 432 - - - - -

São Silvestre New - 620 - 620 - 808 - 808 - - -

Sé Nova-A.Henriques Public 1440 1032 72 1032 72 895 62 895 62 895 62

Sé Nova-Combatentes Public 2760 1040 38 1040 38 1040 38 1040 38 1040 38

Souselas Private 1290 369 29 369 29 571 44 571 44 571 44

Santa Cruz-Conchada Public 690 0 0 0 0 483 70 483 70 548 79

 

                                                 
8 These results were obtained with non-final data on private school capacity. First, the number of 
classrooms was estimated by dividing occupation in 2003/04 by 20 students per room (this over-estimated 
capacity and was revised later in the study). Second, the capacity of modeled private schools, all with 
both EB12 and ES12 types (considered separately in the models for primary and secondary schools), was 
assumed to be wholly available for the ES12 type. Later in the study, each of the EB12 and ES12 types 
was allocated 50% of the total number of classrooms. The new solutions had the same school locations, 
but some assignments were changed. In particular, some centers assigned to the S.P.Frades-Lordemão 
school were re-assigned to neighboring schools in scenarios with p<2; the demand of center São Martinho 
do Bispo, which became higher than the capacity of the school located there, was allowed (by disabling 
single and closest assignment constraints for this center) to be partly assigned to the neighboring, large 
school in Santa Clara. 
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2.7 Applying the model with a Geographic Information 

System 

The study reported in this chapter relied heavily on a Geographic Information System 

(GIS) for data handling and result analysis. Geographic data available for the 

municipality of Coimbra included community boundaries and population centers, 

census tracts, the road network, and existing school locations. 

The GIS was used to compute a distance matrix for Coimbra and to display the 

solutions obtained with the optimizer (XPRESS-MP) on a map. This was made through 

a prototype system based on Arcview GIS version 3.2 (ESRI, 2000). The system 

consists of a set of programs implemented with Arcview’s scripting language (Avenue), 

and is available from the authors on request. Figure 2.7 shows the steps for applying the 

model in practice by using the GIS and the optimizer. Typically, the model is run using 

different model parameters (number of schools to open, etc.), and possibly different data 

(e.g. school capacities), for analyzing different scenarios. 
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Figure 2.7: Applying the model by using the GIS and the Optimizer 
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The distance matrix consists of all shortest path lengths between centers and sites and 

was computed over the main road network projected for 2015. This road network will 

comprise around 1,400 links and 1,000 intersections. The computation was made by 

scripting Arcview’s Network Analyst extension, which includes built-in functions for 

finding shortest paths on networks. Although computing all shortest paths is an easily 

solvable problem (for which there are efficient methods, e.g. Floyd’s algorithm), using a 

GIS is still convenient and saves burdensome work. For instance, it is not necessary to 

export the road network, which must include nodes for all road intersections, and to 

track the correspondence between network nodes and centers or sites. 

The display of model solutions on a map largely facilitates the diagnosis of model errors 

and the interpretation of model results. Within the prototype system, solutions are 

exported from the optimizer as text files and read by a script in the GIS, where they are 

displayed as school locations and center assignments. In addition, all solution data (such 

as school occupation) can easily be displayed and inspected in tabular form (Figure 2.8). 

 

 

Figure 2.8: Cartographic solution display and values of non-zero model variables 
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2.8 Conclusion 

In this chapter, we presented a study on secondary school planning made within the 

framework of Coimbra’s Educational Charter. The main tool used for the study was a 

discrete facility location model based on the well-known p-median model. The model 

includes constraints on maximum and minimum capacity occupation, single assignment 

and closest assignment. Although models containing these ingredients were used before 

for other applications, such as the location of health services, the combination of 

capacity and assignment constraints had not been reported before in an application to 

school network planning. In addition, it was shown that a modern commercial optimizer 

is capable of solving models large enough to be useful in practice. The solutions found 

through the model clearly suited the needs of a real-world decision-making process 

about the future development of a school network, and were extremely helpful in the 

discussions held within Coimbra’s Educational Council. This council involves the 

municipal administration, school administrations, parents’ organizations and teacher 

unions, and is responsible for the approval of the Educational Charter. The multiple 

interests of all parties involved, often conflicting, make this decision-making process 

complex. The merit of the model presented here is to provide rational solutions as a 

basis for discussion. Specifically, it was found that, with only the existing schools, it 

cannot be guaranteed that students can be served by the closest school. To accommodate 

both the forecast demand and the school typology change (secondary schools will 

receive two three-year cycles of education instead of one), the best trade-off between 

accessibility improvement and network changes was found to be a single new school. 

The study focused on secondary education, for which in Portugal a single type of school 

exists. In the near future, a similar study regarding primary education needs to be made. 

The model will have to be extended to take into account the existence of two types of 

school: EB1 (dedicated to the first cycle) and EB12 (offering the two cycles of primary 

education). This leads to a so-called hierarchical facility location model (Narula, 1986), 

with two demand levels and two facility levels. Most of previous models (e.g. Weaver 

and Church, 1991, and Galvão et al., 2002) do not consider facility capacities. Those 

that do (e.g. Eitan et al., 2001, and Galvão et al., 2006) do not include assignment 

constraints, such as closest assignment. Our future research will be directed towards the 

development of hierarchical models coupling capacity and assignment constraints, and 

the development of specialized solution procedures for solving large-scale hierarchical 

and non-hierarchical models still out of reach of current state-of-the-art commercial 

optimizers.
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Chapter 3  
 

Application of a hierarchical model to the 

location of primary schools 

 

3.1 Introduction 

During the last two decades, planning processes involving public facilities such as 

schools or hospitals became increasingly more complex, especially because of the 

participatory mechanisms they started to involve. Indeed, in the presence of 

stakeholders with different viewpoints and interests, planning solutions can only be 

widely agreed upon if they are the result of transparent, rational planning processes. 

When the number of possible planning solutions is very large, optimization models are 

indispensable decision-aid tools. Location models certainly are among the main 

optimization models to be used within public facility planning processes. These models 

are basically aimed at determining the most efficient locations for all types of facilities 

according to some objective or objectives (cost minimization, accessibility 

maximization, etc.). They are classified as continuous or discrete depending on whether 

the facilities can be located anywhere on the plane or in some points of the plane, 

specified in advance. In practical applications, planners often resort to discrete location 

models. 

Location models have been extensively studied since the 1960s, in the operational 

research, management science, industrial engineering, economic geography and spatial 

planning literatures. ReVelle and Eiselt (2005) present a concise review of the main 

classes of continuous and discrete location models. ReVelle (1987) and Marianov and 

Serra (2002) discuss discrete models for public facility location. Daskin (1995) presents 

a didactic textbook on modeling and solving discrete location models. Labbé and 

Louveaux (1997) review specialized solution methods for basic and extended discrete 

location models. 

In this chapter, we present a discrete hierarchical location model for public facility 

planning, considering several levels of demand and several types of facilities. The 

model is an extension of the well-known p-median model, which applies to facility 
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location problems where the objective is to maximize the accessibility of users to 

facilities. 

The model was developed within the framework of the Coimbra Educational Charter 

2006-2015, to help making decisions on the redeployment of the primary school 

network of the municipality of Coimbra, Portugal. By law, all Portuguese municipalities 

must have an educational charter where the infrastructure, equipment, human, and 

financial resources necessary for pre-school, primary and secondary education are 

specified. The preparation of the educational charter of a municipality is advised by the 

education council of the municipality. This body integrates, among others, 

representatives of the local administration, the Ministry of Education, private school 

owners, public school administrations, teacher unions, and student parents, which often 

have different viewpoints and interests with regard to the evolution of school networks. 

This chapter is organized as follows. In Section 2, we present the basic location models 

applicable when the objective is to maximize the accessibility of users to facilities. 

These models consider a single level of demand and a single type of facility. In Section 

3, we discuss different user-to-facility assignment constraints, including a new type of 

constraints called path-assignment constraints. In Section 4, we present the hierarchical 

location model. In Section 5, we discuss the results obtained with this model for 

Coimbra’s primary school network. Finally, in Section 6, we summarize the main 

contributions of the chapter, reflect on the application of the model in Coimbra, and 

identify some research needs to be fulfilled in the future. 

3.2 Basic models 

In this section, we present the basic location models upon which the hierarchical model 

is built. The simplest of these models is the p-median model (ReVelle and Swain, 

1970), which can be stated as follows. We are given a set of demand centers 

 1,...,I n , where each center i has a demand iu  (number of users), a set of sites 

 1,...,J m , and travel costs ijc  for serving all the demand from center i at site j. Travel 

costs are defined as ij i ijc u d  , where ijd  is the unit travel cost between center i and site 

j (or distance, if the unit cost is constant). The problem is to find the set of p facilities 

that should be open, and to determine which centers should be served from which 

facilities, so that the travel costs of serving all the demand from all centers is 

minimized. For formulating the model, we define two sets of decision variables: binary 

location variables jy , where 1jy   if a facility is located (or “open”) at site j J , and 

0jy   otherwise; and assignment variables ijx  representing the fraction of the demand 
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from center i I  served at site j J . The formulation of the p-median model is as 

follows: 

(PM): 

Minimize ij ij
i I j J

c x
 
  (3.1) 

Subject to: 1ij
j J

x


 , i I   (3.2) 

 ij jx y , ,i I j J    (3.3) 

 j
j J

y p


  (3.4) 

 0 1ijx  , ,i I j J    (3.5) 

 {0,1}jy  , j J   (3.6) 

The objective function (3.1) of this mixed-integer optimization model expresses the 

minimization of travel costs, which can be seen as a proxy for accessibility 

maximization. Constraints (3.2) state that all centers have to be fully served. Constraints 

(3.3) link location and assignment decisions by stating that centers can only be assigned 

to an open facility. Constraint (3.4) sets the number of open facilities equal to parameter 

p. Finally, constraints (3.5) and (3.6) define decision variables. 

Optimal solutions of (PM) have the so-called single assignment and closest assignment 

properties (Krarup and Pruzan, 1983), that is, centers are fully served by the closest 

open facility (or, if travel cost is not monotonically dependent on distance, the least 

travel cost facility). This happens because, as there are no capacity constraints, nothing 

is gained by splitting the demand from a given center across several facilities, and the 

objective forces centers to be assigned to the closest (least cost) facility. 

The second basic model is derived from (PM) by adding constraints on the minimum 

and maximum capacity of facilities and deleting the constraint on the number of open 

facilities. Note that, with the capacity constraints, the number of open facilities becomes 

an output of the model rather than a parameter. Let jb  and jB  be the minimum and 

maximum capacity for a facility to be open at site j. This model, denoted capacitated 

median model, is formulated as follows: 

(CM): 

Minimize ij ij
i I j J

c x
 
  (3.7) 
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Subject to: 1ij
j J

x


 ,  i I   (3.8) 

 ij jx y ,  ,i I j J    (3.9) 

 i ij j j
i I

u x b y


 ,  j J   (3.10) 

 i ij j j
i I

u x B y


 ,  j J   (3.11) 

 
| ik ij

ik j
k J d d

x y
 

 ,  ,i I j J    (3.12) 

  0,1ijx  ,  ,i I j J    (3.13) 

  0,1jy  ,  j J   (3.14) 

Expressions (3.10) and (3.11) are, respectively, the minimum and maximum capacity 

constraints. As the closest assignment and single assignment properties of solutions do 

not hold for capacitated models, they are enforced explicitly with constraints (3.12) and 

(3.13), respectively. Closest assignment constraints (3.12) work as follows. For any 

center i and site j, if 0jy   then the constraint has no effect; if 1jy   then center i must 

be fully served from the facility located at site j or from a facility at the same or lower 

distance. Gerrard and Church (1996) thoroughly review formulations and applications 

of closest assignment constraints in several location models arising in the public and 

private sectors. Although the authors note that a different formulation, the so-called 

Rojeski-ReVelle (RR) constraints, is frequently used in the literature, we opted for 

constraints (3.12) for two reasons. First, unlike RR constraints, constraints (3.12) 

remain valid if a given center has two or more equidistant facilities that are the closest. 

Second, constraints (3.12) provide a tighter linear relaxation, as RR constraints are 

implied by (3.12) together with (3.9); thus, the model can be solved more efficiently 

with an integer optimization algorithm based on linear relaxations. Finally, constraints 

(3.13) force assignment variables to be binary. We remark that if all centers have a 

single closest facility then constraints (3.12) will force assignment variables to be 

integer, even if (3.13) is relaxed. Otherwise, if a center has two or more equidistant 

facilities that are the closest, constraints (3.12) allow demand to be freely distributed 

among those facilities and (3.13) is necessary to impose single assignment. 

Unlike the p-median model, the capacitated median model has rarely been dealt with in 

the literature. Carreras and Serra (1999) use it without the maximum capacity 

constraints to represent a pharmacy location problem in a rural region, and solve it 

through a tabu search heuristic. Verter and Lapierre (2002) employ a similar model for 

locating preventive health care facilities with the objective of maximizing population 
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coverage, and solve it with a commercial optimizer. Kalcsics et al. (2002) use model 

(CM) with constraint (3.4) for designing balanced and compact sales territories, and 

solve it through a variable neighborhood search heuristic.  

3.3 Assignment constraints 

In this section, we analyze the spatial pattern of user-to-facility assignments resulting 

from different assignment constraints. As noted previously, solutions to location models 

including capacity constraints do not have the single and closest assignment properties. 

This may happen because facilities have limited capacity, and thus users are diverted to 

other facilities, or users are “captured” to ensure the minimum capacity of a facility. In a 

public facility planning context, it should be prevented that users from the same center 

are split among different facilities; that users from neighboring centers are assigned to 

different facilities; that users are assigned to a distant facility when there are closer open 

facilities; that the path traveled by users to the facility they are assigned to crosses a 

center assigned to a different facility. If these conditions are violated, solutions are 

difficult to interpret by decision-makers and to explain to users, and will certainly be 

difficult to implement in practice. Gerrard and Church (1996) make a similar argument 

in their article, where they recommend the use of closest assignment constraints in 

capacitated location models for public facility planning because they are likely to 

improve public confidence in and acceptance of the corresponding solutions. 

Our analysis focuses on three types of constraints: the closest assignment constraints 

(3.12); the single assignment constraints (3.13); and a new type of constraints 

designated as path assignment constraints (3.15). The latter are an alternative to closest 

assignment constraints. Although they do not require centers to be assigned to the 

closest facility, they guarantee that, if a center is assigned to a given facility, all centers 

“near” the “path” traveled by the users to reach the facility must also be assigned to it. 

The definition of “near” depends on the context of application of the model. The 

formulation of path assignment constraints is as follows: 

 
ij

kj ij ij
k P

x P x


  , ,i I j J    (3.15) 

where ijP  is the subset of centers k I  that are “near” the shortest path from i to j, and 

ijP  is the cardinality of this set. Expression (3.15) states that if 1ijx   then 1kjx   for all 

ijk P . 

Some constraints used in districting models are similar to the path assignment 

constraints. These models apply to the partitioning of a set of spatial units (i.e. city 
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blocks, census tracts, or other geographic entities) into subsets, called districts, 

according to some objective. Like with location models, spatial units are represented 

with discrete centers connected through an underlying network. Desired properties of 

districts often include compactness and contiguity, i.e. they should be round shaped 

rather than spread out, and should be connected. Kalcsics et al. (2002) use model (CM) 

for sales districting, including closest assignment in order to produce connected 

districts. Zoltners and Sinha (1983) formulate a model for sales districting, where 

district centers (i.e. the seed units for the districts) are predefined. Considering binary 

decision variables 1ijx   if unit i is assigned to district j, and zero otherwise, contiguity 

is enforced with constraints 

 
ij

ij kj
k A

x x


  , ,i I j J    (3.16) 

where ijA  is the set of units k I  that immediately precede unit i on a shortest path from 

district center j to unit i. Expression (3.16) states that unit i can be assigned to district j 

only if at least another unit, adjacent to i on a path connecting to the district center, is 

also assigned to j. In order to reduce the “rigidity” of assignments (as building districts 

along shortest paths guarantees contiguity but rules out some contiguous 

configurations), the authors propose augmenting sets ijA  by either considering the 

second, third, etc. shortest paths, or by manual modification by an expert user. A strict 

shortest-path approach is adopted by Mehrotra et al. (1998) to ensure contiguity in a 

political districting model. Caro et al. (2004) present a model for school districting (with 

predefined school locations) including constraints similar to (3.16), where sets ijA  are 

defined as the set of units k I  that are adjacent to unit i and are closer to district center 

j than to unit i (but not necessarily on the shortest path). 

The impact of including the different assignment constraints in a location model will be 

illustrated with one of the random instances used to test model (CM).9 The instances 

were built as follows. First, a set of 20n   centers was generated uniformly in the unit 

square and their coordinates scaled by 1000. Sites were assumed coincident with 

centers. Then a planar network was created by computing the Delaunay triangulation 

(Weisstein, 1999), with edge length set equal to the Euclidean distance. Distances ijd  

were computed by finding all shortest paths on the resulting network. Demands iu  were 

generated uniformly in the interval 5 to 95. Minimum capacities jb  were set to 200 for 

all sites. Maximum capacities jB  were set to the total demand (i.e. they are not binding). 
                                                 
9 This example partly repeats a similar one in chapter 2, but uses an instance built in a different way, more 
suitable to illustrate path assignment constraints. 
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Finally, path assignment sets ijP  were created by adding all centers in the shortest path 

from i to j, plus all centers within a radius of 100 from any node in this path. Panel (i) of 

Figure 3.1 shows the network and demands of the test instance. As the total demand is 

809, at most four facilities can satisfy the minimum capacity of 200. 

This instance was solved with four variants of model (CM): without assignment 

constraints, i.e. (3.12) removed and (3.13) relaxed; with single assignment only, i.e. 

(3.12) removed; with single+path assignment, i.e. (3.12) replaced by (3.15); and with 

single+closest assignment, i.e. the full model (CM). Solutions are shown in Figure 3.1 

(where numbers in panels (ii)-(vi) refer to capacity). The p-median model (PM) solution 

is included for comparison, with p=4. In this solution, centers are fully assigned to the 

closest facility, but one of the facilities does not satisfy the minimum capacity 

constraints. On the other hand, all solutions of variants of model (CM) satisfy minimum 

capacities, but some undesirable user-to-facility assignments occur if path or closest 

assignment constraints are not imposed. Without any assignment constraints, the 

demand from some centers is split among two facilities. With single assignment only, 

split demands are eliminated but some centers are assigned to a facility much further 

than the closest. Adding path or closest assignment constraints eliminates these 

undesirable patterns (although with path assignment one of the centers is not assigned to 

the closest facility). As expected, adding more constraints degrades the optimal 

objective value (Table 3.1). In addition, in this example, solutions with path or closest 

assignment constraints have fewer open facilities. This can be expected to occur 

frequently because the number of feasible solutions diminishes. That is, path and closest 

assignment constraints prevent disadvantageous assignments of some small centers for 

the sake of the global optimum. The resulting solutions are easier to interpret and to 

explain in a planning context, therefore being more likely to be accepted by the users. 

Table 3.1: Solutions for random instance 

Model 
Number of open 

facilities 
Relative objective 

value 

p-median 4 83% 

(CM), no assignment constraints 4 91% 

(CM), single assignment only 4 100% 

(CM), single+path assignment 3 138% 

(CM), single+closest assignment 3 146% 
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Figure 3.1: Solutions for random instance 
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3.4 Hierarchical model 

In this section we present a hierarchical version of the capacitated median problem of 

Section 2, considering several levels of demand and several types (or levels) of 

facilities. Specifically, the demand of centers is discriminated in levels, which must be 

separately assigned to facilities capable of providing them. We consider a nested (or 

successively inclusive) hierarchy of facilities where a level-s facility (s=1, 2, …, ns) can 

serve demands of level 1, …, s. Examples of nested hierarchical facilities arise in the 

context of public facility planning. A typical example is a health care network 

composed of local health care units, providing basic services, and central hospitals 

providing both basic and specialized services. Another example is an education 

network, composed of kindergartens, primary schools and secondary schools, in which 

a higher level of education can only be located at a site if all lower-levels are also 

located there. As noted by Weaver and Church (1991), the various levels of facilities 

may or may not be physically distinct (in the example of schools, these could be 

separate buildings located in the same community). Other examples of hierarchical 

facilities arising in postal and banking services are described by Daskin (1995). 

Reviews and classifications of hierarchical models are provided by Narula (1986) and 

Church and Eaton (1987), focusing on models with distance minimization and with 

coverage maximization objectives, respectively. Before introducing our model, we will 

briefly describe some representative examples of hierarchical extensions of the p-

median model. Weaver and Church (1991) formulate a model with a nested facility 

hierarchy with any number of levels. The model does not include capacity constraints, 

thus an optimal solution can always be found with the single and closest assignment 

properties. The model is solved with Lagrangian relaxation combined with an 

interchange heuristic, and results are reported for two test networks, with two and three 

levels. Galvão et al. (2006) formulate a model with a nested facility hierarchy with 

three-levels, addressing a real-world health care application. The model allows service 

referrals (that is, a fraction of demand served at a lower-level facility may be referred 

directly to a higher-level facility) and includes capacity constraints (however, single-

assignment is not enforced and split assignments can occur). The authors propose a 

Lagrangian heuristic to solve the model. Eitan et al. (1991) formulate a model with 

nested or more general facility hierarchies (with any number of levels), capacity 

constraints, and service referrals. The model is applied to several problems appearing in 

the literature and is solved with a commercial integer optimizer. 
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Relatively to hierarchical models in the literature, the model we present here is the first 

to combine capacity constraints (minimum and maximum) with assignment constraints 

such as closest- or path-assignment (in addition to single-assignment). Consider the 

following additional or revised notation for data:  1,...,S ns  is the set of demand 

levels (and of facility types); uis is level-s demand of center i; Bjs and bjs are the 

maximum and minimum capacities of a type-s facility at site j; 0
sJ  is the set of sites with 

existing type-s facilities; sp  is the maximum numbers of new type-s facilities to open; 

sq  is the maximum numbers of existing type-s facilities to close; sD  is the maximum 

user-to-facility distance for demand level s. Decision variables are defined as follows: 

ijsx  is the fraction of the level-s demand of center i satisfied by a facility located at site j; 

1jsy   if a type-s facility is located at j, and equals zero otherwise; jstz  is the capacity 

occupied with demand level s of a level-t facility located at j. The hierarchical 

capacitated median model is formulated as follows: 

(HCM): 

Minimize  ij is ijs
i I j J s S

d u x
  
  (3.17) 

Subject to: 1ijs
j J

x


 , ,i I s S    (3.18) 

 
|

ijs jt
t S t s

x y
 

  , , ,i I j J s S     (3.19) 

 
|

jst is ijs
t S t s i I

z u x
  

  , ,j J s S    (3.20) 

 
|

jst jt jt
s S s t

z b y
 

 , ,j J t S    (3.21) 

 
|

jst jt jt
s S s t

z B y
 

 , ,j J t S    (3.22) 

 
| ik ij

iks jt
k J d d

x y
 

 ,  , ,i I j J s S    , |t S t s    (3.23) 

 
0\ s

js s
j J J

y p


 , s S   (3.24) 

 
0

0

s

js s s
j J

y J q


  , s S   (3.25) 

 0ijsx  ,  , ,i I j J s S    | ij sd D  (3.26) 

  0,1ijsx  ,  0,1jsy  , 0jstz  , , , ,i I j J s S t S      (3.27) 
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Constraints (3.18) ensure that all demands of all levels from all centers are satisfied. 

Constraints (3.19) impose that a given level of demand can only be satisfied by a 

facility of equal or higher level. Constraints (3.20) define capacity variables jstz  by 

stating that the demand of each level assigned to a site has to be served by some facility 

of equal or higher level located there. Constraints (3.21) and (3.22) impose maximum 

and minimum limits on capacity, according to facility type. With this formulation, 

capacity is shared by all demand levels. Additional constraints could easily be added to 

impose separate capacity limits per demand level, as the model already includes 

capacity variables jstz  discriminating the demand levels. Note that constraints (3.19) are 

redundant for the integer formulation (that is, the same set of integer solutions is 

obtained if they are removed), as constraints (3.20) and (3.21) allow a variable ijsx  for a 

given s S  to be non-zero only if there is a variable jty  equal to one for some t s . 

However, (3.19) are kept in the formulation as they strengthen the linear relaxation. 

Closest assignment constraints (3.23) are written separately per demand level and state 

that each demand level must be assigned to the closest facility of equal or higher level. 

Constraints (3.24) and (3.25) limit the number of new facilities to open and existing 

facilities to close. Constraints (3.26) limit the maximum travel distance between centers 

and facilities. Finally, constraints (3.27) define decision variables and enforce single 

assignment. 

Closest assignment constraints (3.23) may be replaced by path assignment constraints, 

stated separately per demand level: 

 
ij

kjs ij ijs
k P

x P x


  , , ,i I j J s S     (3.28) 

Note that in constraints (3.28) the assignments of different levels are independent, while 

in constraints (3.23) the location of higher-level facilities influences lower-level 

assignments.  

The formulation of model (HCM) given above allows facility co-location, i.e. the 

location of different types of facilities at the same site. This can be advantageous to 

satisfy maximum capacity constraints. If co-location is not allowed then the following 

constraint should be added to the model: 

 1jt
t S

y


 , j J   (3.29) 

In addition, if co-location is not allowed, capacity constraints (3.20)-(3.22) can be 

replaced with the following simpler constraints: 
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 jt is ijs
t S s S i I

z u x
  

  , j J   (3.30) 

 jt jt jtz b y , ,j J t S    (3.31) 

 jt jt jtz B y , ,j J t S    (3.32) 

where constraints (3.30) define variables jtz  as the total demand of all levels served at 

site j by a type-t facility, and constraints (3.31) and (3.32) impose minimum and 

maximum capacities. If (3.30)-(3.32) are used, constraints (3.19) are not redundant for 

the integer formulation and are needed to impose the nested facility hierarchy. 

3.5 Case study 

In this section, we present a study on the redeployment of Coimbra’s primary school 

network. Coimbra is a municipality located in the center-littoral region of Portugal with 

a population of 150,000 inhabitants (Figure 3.2). The primary school network of the 

municipality is composed of 96 schools (Table 3.2). 

 

#

#
#

#
#

# #

#

## #
#

##
#
#

#

#
#

##
#
# #

##

##

##

#
#

#

##

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#
#

#
#

#

#

#

#

#

#

#

River Mondego

#

City of
Coimbra

N

0 5 Kilometers

 

Figure 3.2: Municipality of Coimbra, demand centers and road network 
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Table 3.2: Coimbra’s school network 10 

School Type 
Number of 

schools 
Number of 
classrooms 

Fraction of 
capacity 

Public EB1 (<4 classrooms) 43 90 12% 

Public EB1 (4+ classrooms) 28 149 20% 

Private EB1 7 49 6% 

Public EB12 9 258 34% 

Private EB12 9 210 28% 

Total 96 756 100% 

Most of these schools are public, but there is a significant number of private schools. 

Some of them are fully subsidized by the government because they are located in areas 

not covered by public schools. There are two types of primary schools: EB1, for the first 

cycle of education; and EB12, for the first and the second cycles. The first cycle of 

education comprises four years and is attended by children aged 6 to 9. The second 

cycle comprises two years and is attended by children aged 10 and 11. The EB1 school 

network consists of 78 schools with a total capacity of 288 classrooms (or 7200 

students, assuming a maximum of 25 students per classroom). A large number of these 

schools has less than four classrooms, which means that students of different years must 

share the same classrooms. The EB12 network consists of 18 schools with a total 

capacity of 468 classrooms (or 11700 students). Following a period of fast decline in 

school age population, in 2004 the total number of enrollments in the primary schools of 

the municipality was 10659 students. Since the aggregate capacity of these schools is 

18900 students, the aggregate occupation rate of the existing network was 56%.11 

 

                                                 
10 Table 3.2 differs from Table 2.2 (chapter 2) in some of the data: (i) 15 public EB1 schools with only 1 
classroom are excluded (in the next academic year they were to be closed or converted to kindergartens); 
(ii) private school capacity is measured differently: the number of classrooms was estimated by dividing 
occupation in 2003/04 by 20 students per room (this over-estimated capacity and was revised later in the 
study); for schools with both EB12 and ES12 types, each type was allocated 50% of the total number of 
classrooms. 
11 The EB1+EB12 capacity of 18900 differs from EB1+EB23 capacity in Table 2.2 (chapter 2) because 
the latter uses different private school capacities (as noted before) and includes public EB1 schools with 1 
classroom. It also differs from EB1+EB12 capacity in Table 2.5 (chapter 2) because the latter uses 
different private school capacities and excludes all public EB1 schools with less than 4 classrooms. 

The EB1+EB12 current occupation of 56% is not comparable to the EB1 and EB23 occupations higher 
than 80% in Table 2.3 (chapter 2) because the latter includes demand level B3 (and also uses different 
private school capacities). 
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The study was made using the hierarchical capacitated median (HCM) model 

introduced in the previous section. Applications of location models to school network 

planning are numerous and we cite only some representative, relatively recent 

examples. Church and Murray (1993) present a multi-objective model considering 

school openings and closures and capacity balancing between schools. Pizzolato and 

Silva (1997) and Pizzolato et al. (2004) use a p-median model for clustering population 

centers. The clusters thus found are then analyzed by confronting total existing school 

capacity and population. Antunes and Peeters (2001) develop a dynamic location model 

where schools can be opened or closed, and their capacity can be expanded or reduced 

over time, with the objective of minimizing total discounted costs. Related models, 

where location decisions are not involved, address the short-term school network 

management problem of assigning students to existing schools. Church and Schoepfle 

(1993) describe a multi-objective model considering student preferences for schools and 

balancing of school capacity occupation and racial mix across schools. Caro et al. 

(2004) present a model for school districting contemplating several desired properties of 

school districts, including capacity balancing and contiguity. As far as we know, no 

school network planning study (or other public facility planning study) reported in the 

literature relied on a hierarchical model with capacity and assignment constraints. 

Three objectives were pursued by the education authorities. First, school capacity 

should be adjusted to education demand (as noted above, current aggregate occupation 

rate is just 56%). Second, accessibility of students to schools should be maximized. 

Third, changes to the existing network should be small, either because of scarce public 

budgets to build new schools or to avoid public reactions against school closure 

(particularly from parents and teachers). These objectives may of course be conflicting. 

With regard to the first objective, following a decision by the education authorities, 

existing schools included in the study were current public schools with four classrooms 

or more and subsidized private schools. Other private schools, located in areas covered 

by public schools, which compete with public schools and are not subsidized, were left 

out of the study. Small public EB1 schools with less than four classrooms were also left 

out of the study, assuming these will be phased out in favor of larger, better equipped 

schools. In aggregate terms, the study included 25 EB1 schools with 4 to 10 classrooms 

and 14 EB12 schools with 15 to 36 classrooms, giving a total capacity of 149 and 367 

classrooms, respectively.12 As projected demand in 2015 for the two cycles of education 
                                                 
12 The 25 EB1 schools with 4+ classrooms correspond to the 28 in Table 3.2, with 3 pairs of these having 
been aggregated into a single school in the model since they were located in the same discrete center. 
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is 6300 and 3150 students, the aggregate occupation rate of the resulting school network 

would be 73% 13. 

The municipality of Coimbra was discretized in 68 population centers (Figure 3.2). 

Sites were assumed to be coincident with centers. For this level of aggregation, eight 

centers contain both EB12 and EB1 schools. Travel was assumed to be made along the 

main road network, which is fully served by public transportation. 

Three scenarios for the redeployment of the school network were considered. In 

Scenario 1, the minimum occupation of EB1 and EB12 schools was set to 40 and 120 

students, respectively, to meet the guidelines of the Ministry of Education for school 

capacity (MinEdu, 2000). In Scenario 2, the minimum occupation of schools was 

increased to 80 students for EB1 schools and to 75% of current maximum capacity for 

EB12 schools. Scenario 3 is the same as Scenario 2, but allowing a new EB12 school to 

be opened, with a capacity between 360 and 600 students. The purpose of Scenarios 2 

and 3 was to find the best way of adjusting the existing capacity to forecast demand, 

while keeping schools with good occupation. The maximum student-to-school travel 

distance was set to 8 km in all scenarios, also to meet the guidelines of the Ministry of 

Education. 

We first solved model (HCM) with closest assignment constraints (3.23). For this 

model, no feasible solutions could be found for any one of the three scenarios, as these 

constraints are too “rigid” given the spatial distribution of existing capacity versus 

forecast demand. Then model (HCM) was used with path assignment constraints (3.28) 

replacing (3.23). The computation of data for these constraints was carried out in two 

main steps (recall that the path-assignment set ijP  for a given center i and site j contains 

all centers “near” the travel path between i and j). First, buffers around each center were 

created with a radius of half the distance to the nearest neighbor, truncated to a 

maximum of 1 km, measured along the road network. Second, all centers whose buffer 

is intersected by the shortest path (on the road network) from i to j were added to set ijP . 

In the example of Figure 3.3,  38,8 38,36,8P  , which means that if center 38 is 

assigned to school 8, then center 36 must be assigned to the same school. 

                                                 
13 The EB1+EB12 future occupation of 73% differs from similar data in Table 2.5 (chapter 2) because the 
latter includes non-subsidized private schools and uses different private school capacities. 
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Figure 3.3: Detail of path assignment 

The models were implemented with Dash Optimization’s XPRESS-MP package. The 

modeling environment was XPRESS Mosel 1.4 (Dash, 2004) and the solver was 

XPRESS Optimizer version 15.30 (Dash, 2005), running under Windows XP on a 

computer with a Pentium-M 1.3 GHz CPU and 512 MB of memory. All model runs 

took less than three minutes, as in this study the number of schools to open or close is 

relatively small. Arcview GIS 3 (ESRI, 2000) was used in conjunction with the 

optimizer for data handling and result analysis. Three programs were developed in 

Arcview’s scripting language for the following purposes: (i) computing the distance 

matrix between all centers using the road network; (ii) computing sets ijP  to be used 

with path assignment constraints; (iii) importing and displaying the solution output by 

the optimizer. The first two make use of Arcview’s Network Analyst extension. In 

particular, the practical usefulness of path assignment constraints is closely tied to the 

ability to compute data with a real road network, and thus the use of a GIS is 

fundamental for this purpose. Church (2002) discusses the link between GIS and the 

development and application of location models.  

The solutions obtained for the three scenarios are summarized in Table 3.3, where 

parameters q1 and p2 are the maximum number of EB1 schools to close and EB12 

schools to open, respectively (for all scenarios, no new EB1 schools could be open and 

any number of EB12 schools could be closed). The existing school network is sufficient 

for the future needs of the municipality (Scenario 1), with around 30% of slack capacity. 

Three EB1 schools do not meet the minimum occupation requirements and are closed. 

A seemingly awkward assignment occurs for centers 36 and 38 (shown in Figure 3.4, 
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expanded in detail in Figure 3.3), which are sent south to center 8. However, the 

existing schools at centers 35 and 32 do not have enough capacity, and center 8 is less 

than one kilometer further away than those schools. If the minimum occupation is 

augmented (Scenario 2), average occupation increases but total travel distance is 

degraded by 15%, mainly because of the closure of one EB12 school in the south-east 

of the municipality (Figure 3.5). In this scenario, 12 EB1 schools are closed. If a new 

school is allowed (Scenario 3), high average occupations are still guaranteed and travel 

distance is only 5% higher than in Scenario 1 (Figure 3.6). The main beneficiaries are 

centers 36 and 38, located in a fast growth area currently not covered satisfactorily. 

Table 3.3: Summary of solutions for the three scenarios 14 

Scenario 

Model 
parameters 

Total travel 
distance 

Aggregate school 
occupation 

Number of schools 

Total New Closed 

q1 p2 km Relative EB1 EB12 Total EB1 EB12 EB1 EB12 EB1 EB12

1 3 0 12527 100% 63% 79% 74% 22 14 0 0 3 0 

2 Unlim. 0 14391 115% 78% 90% 88% 13 13 0 0 12 1 

3 Unlim. 1 13183 105% 75% 87% 85% 12 14 0 1 13 1 

 

 

                                                 
14 The model may have alternative optimal solutions with distinct assignments to co-located EB1 and 
EB12 schools. In scenarios 2 and 3, model solutions were post-processed to give priority to the 
occupation of EB12 schools: demand was transferred from EB1 schools to co-located EB12 schools while 
capacity allowed; EB1 schools were closed if all their demand was transferred. 

We also note that, in Figure 3.4 and others below, when level-1 assignments are not visible, they coincide 
with superimposed level-2 assignments. 
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Figure 3.4: Solution for Scenario 1 
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Figure 3.5: Solution for Scenario 2 
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Figure 3.6: Solution for Scenario 3 

 

3.6 Conclusion 

In this chapter, we presented a discrete hierarchical location model for public facility 

planning. The main features of the model are: an accessibility-maximization objective; 

several levels of demand; several types (or levels) of facilities; a nested hierarchy of 

facilities (i.e., a facility of a given level can serve demand of equal and lower levels); 

maximum and minimum capacity (or occupation) constraints; and user-to-facility 

assignment constraints. The latter include single-assignment and closest-assignment 

constraints, as well as a new type of constraints called path-assignment constraints. 

They are used to enforce some desirable properties for the spatial pattern of 

assignments. The resulting solutions are easier to interpret and to explain in a public 

facility planning context, therefore being more likely to be accepted by the users. As far 

as the authors know, a model with this set of features has never been dealt with in the 

literature. 
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The hierarchical location model was developed to help in a real-world school network 

planning process conducted for the municipality of Coimbra, Portugal. At present, most 

public planning processes include complex participatory mechanisms. These 

mechanisms started to be introduced in the late 80s, as a reaction to the alleged failure 

of rational, model-based approaches to public planning (Chadwick, 1978). According to 

many planning theorists, a new type of approach was needed focusing on participation 

and debate rather than on rationality and modeling (Healey, 1992). This new type of 

approach was progressively adopted and now underlies many real-world planning 

processes. What we clearly realized from our involvement in the preparation of the 

Coimbra Educational Charter is that debate and modeling, instead of being substitutes, 

are close complements. Indeed, in the presence of stakeholders with different 

viewpoints and interests, like those represented in the education council of the 

municipality, objectives can be debated and agreed upon, but solutions that are not 

rational for the objectives retained are too fragile to prevail. When the number of 

possible solutions is very large, the only way of finding the rational solutions for a 

planning problem involves the application of optimization models. Without the 

hierarchical location model we developed, it would have been extremely difficult to 

arrive at planning solutions widely accepted by the Education Council. 

The hierarchical location model was solved with a modern commercial optimizer rather 

easily. The use of a GIS package in conjunction with the optimization program was 

extremely valuable. In addition to simplify the analysis of results, the GIS was used for 

computing data for path assignment constraints, using features such as finding shortest 

paths and create buffers, or areas of influence, around centers with distances measured 

on the road network. The model was easy to solve because Coimbra, though being one 

of the largest municipalities in Portugal outside the metropolitan areas of Lisbon and 

Porto, still is a small-size municipality by European standards, and also because small 

changes in the number of schools were allowed. If any one of these conditions were not 

met, the optimization program would have been unable to do the job. Our future 

research will be directed towards the development of specialized solution procedures for 

solving large-scale hierarchical and (non-hierarchical) capacitated models with user-to-

facility assignment constraints still out of reach of current modern commercial 

optimizers. 
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3.7 Appendix – Path assignment constraints 

Introduction 

In this appendix, we provide a better formulation of path assignment constraints, and 

cite references to previous work using such constraints that came to our attention only 

after publishing a journal article based on this chapter. 

Alternative formulation of path assignment constraints 

In this chapter, path assignment constraints were formulated as follows: 

 
ij

kj ij ij
k P

x P x


  , ,i I j J    (3.15) 

This expression states that if 1ijx   then 1kjx   for all ijk P , where ijP  is the subset of 

centers k I  that are “near” the shortest path from i to j (including i and also j if I = J). 

An alternative formulation is as follows: 

 ij kjx x , , , iji I j J k P     (3.15b)  

Formulation (3.15b) follows directly from the definition above and it is stronger than 

(3.15), which is obtained by summing (3.15b) over all k. Formulation (3.15b) was not 

used in the chapter since it apparently requires O(n3) constraints instead of O(n2) as 

(3.15). However, on closer analysis, (3.15b) may not actually increase formulation size, 

as discussed next. 

In expression (3.15b), sets ijP  may be replaced by ijP  defined as follows, in order to 

keep only non-dominated constraints: 

    \ \ : :ij ij ij ij kj sj ij kj sj ijP P i k P s P P P P P P P s i             

Example 1: If I = J and sets ijP  are defined by shortest paths on a network, ijP  contains a 

single node for i j , which is the successor of node i on the path between i and j, 

and is empty for i j . For each j J , formulation (3.15b) using sets ijP  requires 

n-1 constraints, the same as (3.15) (the constraint for i = j is redundant). 

Additionally, (3.15b) involves fewer non-zero elements. 

Example 2: Consider I = {1,2,3,4} and some j J  such that 

1 2 {1,2,3,4}j jP P  , 3 {3,4}jP  , 4 {4}jP  , and 

1 {2}jP  , 2 {1,3}jP  , 3 {4}jP  , 4 jP   . 
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In this example, (3.15b) using sets ijP  requires 4 constraints, while (3.15) requires 

3 (the one for 4 jP  is redundant). 

Additional simplifications would be possible with formulation (3.15b). If ij kjP P  for 

some ,i k I  and j J , then it results ij kjx x ; one of the variables is redundant and 

can be replaced and removed from the model (this occurs in example 2). When 

inequality ij kjx x  is added, the variable upper bound constraint ij jx y  becomes 

redundant and can be removed. Although we do not offer here a preprocessing 

procedure to produce a minimal formulation given the sets ijP , we observe that even if 

(3.15b) is used with sets ijP  instead of ijP , all the simplifications above will likely be 

automatically performed by the presolve routines of a generic MIP optimizer. 

To summarize, we expect that a location model formulated with constraints (3.15b) 

instead of (3.15) is likely to be solved faster with a generic MIP optimizer, since the 

formulation is stronger and its size may not increase significantly, or may even 

decrease. This is likely to apply even using sets ijP  instead of ijP , due to the automatic 

simplifications performed by presolve routines. 

Previous work using path assignment constraints 

It is stated in this chapter that path assignment constraints are a new type of assignment 

constraints, since we were unaware of previous work using them (although we cite 

related constraints to enforce contiguity in districting models). However, here we cite 

references to previous work using exactly the same constraints that came to our 

attention only after publishing a journal article based on this chapter. 

Shulman and Vachani (1993) and Balakrishnan et al. (1995) study network design 

models for local-access telecommunication networks (copper and fiber-optic). These 

models consider a set of demand nodes, a tree network connecting nodes to a switching 

center, and binary decision variables for locating concentrator on nodes, assigning 

nodes to concentrators and expanding capacity on arcs. 

Both models include contiguity requirements, stated as follows by Balakrishnan et al. 

(1995): “if a concentrator at node j serves node i, then it also serves all other nodes 

(including node j) on the path Pij connecting nodes i and j”. The path ijP  is unique in 

these models, since a tree network is assumed. Nevertheless, given a set of elements ijP , 

this definition is equivalent to the definition of path assignment constraints used in this 

chapter. 
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Using the notation of this chapter, contiguity constraints were formulated by Shulman 

and Vachani (1993) as: 

 ij kjx x , , , : iji j k I k P    

and by Balakrishnan et al. (1995) as: 

 
ijij k jx x , ,i j I   

where kij is the node adjacent to node i on path ijP . 

The first formulation is the same as (3.15b) given above, while the second formulation 

corresponds to the simplification using the sets ijP  defined above when these sets 

contain at most one element. Thus, “path assignment constraints” as defined in this 

chapter had been proposed before by other authors. However, as far as we know, they 

had not been used before in a public facility location model with the paths ijP  being 

defined as in this chapter (and computed with a GIS) for the purposes discussed in 

section 3 of the chapter. 
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Chapter 4  
 

Application of hierarchical models to the 

districting and location of courts of justice 

 

4.1 Introduction 

Throughout the years, location modeling techniques have been applied to an extremely 

wide variety of public facilities (see, for example, Current et al., 2002). However, their 

application to one of the most ubiquitous public facilities – courts of justice – is very 

rare (and, to the best of our knowledge, has never been described before in a refereed 

journal). A possible explanation for this situation is the principle of separation of 

powers, which leads governments to avoid interferences with judicial systems (in 

democratic countries). However, in Portugal, the judicial system has been going through 

a severe crisis and, under the pressure of the public opinion, the government was forced 

to take action, launching a vast judicial reform. One of the main constituents of this 

reform is a new judiciary map – that is, a new spatial organization for the judicial 

system. Indeed, the previously existing map was the result of an evolution with deep 

roots in the 19th century. It was based on very small territorial jurisdictions, called 

comarcas, which did not favor the specialization of justice. Moreover, in many cases, 

the comarcas were not consistent with the jurisdictions of institutions such as local 

administration, police, social security, and tax collection, thus contributing to efficiency 

losses in the judicial system. 

In this chapter, we describe a study made in the University of Coimbra under contract 

with the Ministry of Justice of Portugal to define a proposal for the new judiciary map 

addressing the following main goals: (1) replace comarcas with larger districts, making 

judicial jurisdictions compatible with those of related institutions, and enabling more 

effective management of human and material resources; (2) promote the specialization 

of the judicial system (through the increase of the number of courts dedicated to specific 

litigation types); (3) promote a better balance of supply and demand (judicial litigation); 

(4) guarantee a good level of accessibility to courts. For tackling the problems involved 

in the accomplishment of these objectives, we developed two optimization models – a 

districting model, to determine the borders of new, large judicial districts; and a location 
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model, to determine the location, type, size (measured in number of judges), and 

coverage area of the courts included in each new district. The study was carried out in 

close cooperation with a task force set up within the Ministry of Justice to accompany 

its preparation. 

The chapter is organized as follows. We start by describing the context and objectives 

of the study, and by presenting the work plan developed to meet these objectives. Next, 

we explain how we have determined the reference values used within the study of 

judicial litigation and judicial productivity (that is, the number of cases entering and 

leaving the courts of justice, respectively). Then, we present the optimization models 

developed in the study and describe the results obtained through their application. In the 

conclusion, we describe events of the judiciary map reform occurred since the 

publication of the study, and summarize the contributions of this chapter. 

4.2 Study context 

The judicial system of Portugal is seen by many people as one of the country’s greatest 

problems. This is the reason why justice was the object of the first and only pact ever 

made between the two parties that have alternated in government since the Carnation 

Revolution in 1974 – the center-left Socialist Party and the center-right Social 

Democratic Party. The pact was signed in September 2006 and involved several issues, 

including the reform of the judiciary map as one of the most important. 

With respect to this reform, the provisions contained in the pact were the corollary of a 

process that started in 2002 when the Government commissioned the Observatório 

Permanente da Justiça Portuguesa (OPJP) – a research organization specialized in 

judicial affairs – with a study on the spatial organization of the Portuguese judicial 

system (OPJP, 2002). After that, many prominent personalities and institutions within 

the justice system emitted their opinions on the subject. These opinions were 

summarized in a new study of the OPJP released in 2006, where the main problems 

faced by the judicial system were plainly identified and the principles to be followed in 

the reform of the judiciary map were clearly established (OPJP, 2006). During this 

process, many pages of reflections were written. However, six months before the 

deadline established in the pact of justice there was still no map: the document 

specifying the type, location, size, and coverage area of the courts of justice of Portugal. 

One problem identified by the OPJP as being related with the spatial organization of the 

justice system was the lack of specialization of courts. The basic courts in Portugal are 

the comarca courts, which are generic courts handling all types of cases except the ones 
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for which there is a specialized court with jurisdiction in the area of the comarca. 

Before the ongoing reform there were 213 comarcas – and as many comarca courts 

(Figure 4.1). Some of the comarca courts (typically the largest ones) had separate civil 

and criminal sections, which intervened depending on the nature of the law violations to 

process. The specialized courts consisted of labor courts, family and juvenile courts, 

civil enforcement courts (dealing essentially with minor debt collection), and commerce 

courts. The area of jurisdiction of labor courts covered almost all the country, therefore 

comarca courts rarely had to take care of cases involving labor law. The situation was 

quite different with respect to the other specialized courts, whose area of jurisdiction is 

relatively small. This means that, in large parts of the country, judges in comarca courts 

had to deal with a wider variety of cases, and particularly with cases involving the 

complex family and commerce laws, with very negative implications for their 

productivity. 

 

 

 Generic Labor Family Enforcement Commerce 
 (213) (45) (16) (5) (2) 

Figure 4.1: Number and territorial jurisdiction of generic and specialized courts 

(mainland Portugal) 

A second problem pointed out by the OPJP was the lack of capacity of the courts for 

dealing with the increasing volume of litigation observed in the most developed areas of 

Portugal. Indeed, in some comarcas of the Littoral (the 50km wide stretch of land 

located between the metropolitan areas of Lisbon and Porto), the number of cases 

entered in courts was above 1,200 per judge in 2005 (the latest year for which this 

information was available when the study was made), when the expected productivity of 

a judge is 800 cases per year. The main implication of this has been a steady increase of 

the backlog of cases. In contrast, in a large number of comarcas of the Interior (the rest 
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of the country with the exception of the southern province of The Algarve and the 

archipelagos of Madeira and Azores), the number of cases entered each year was below 

800, and even below 500 (Figure 4.2). Since all comarcas had at least one judge, it is 

obvious that there was an excess of capacity in a large part of the country in parallel 

with the lack of capacity experienced in the Littoral. 

 

#
#

#

#

#
#

#

#

# #

#

##

#

#

#

#

#

#

#

Beja

Faro

Braga

Porto

Évora

ViseuAveiro
Guarda

Leiria

Lisboa

Coimbra

Setúbal

Bragança

Santarém

Vila Real

Portalegre

Castelo Branco

Viana do Castelo

Ponta Delgada

Funchal
<500
500 - 1000
1000 - 2000
2000 - 4000
>4000

 

Figure 4.2: Judicial demand – Number of cases entered into generic courts in 2005 

A third problem highlighted by the OPJP was the lack of coincidence between the 

territorial jurisdiction of courts and those of closely related services, such as local 

administration, police, social security, and tax collection. This problem was not felt in 

the northern part of the country but was severe in the southern part, with some 

comarcas being spread across as much as five municipalities, the geographic units in 

terms of which most other services are organized. 

All these problems were addressed by the Pact of Justice. The main principles of the 

pact related with the reform of the judiciary map were as follows: 

 The new jurisdictions will be organized in terms of the NUTS 3 regions (Figure 

4.3), by promoting the aggregation of the existing comarcas, while trying to 

avoid splitting the territorial units within the existing comarcas. 

 The new jurisdictions will be the geographic setting for the creation of new 

specialized courts, when justified, with a special emphasis on enforcement 
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courts (the specific reference to these courts reflects the belief that courts of this 

type, which had been introduced recently and were still rare in the country, 

would greatly help at fighting the slowness of justice). 

 The new jurisdictions will be the setting for the joint management of human 

resources (judges, prosecutors, and other staff) and material resources. Each 

jurisdiction will be managed by a judge president and will have a support office 

providing technical legal assistance to judges within all courts. 

 

 

Figure 4.3: NUTS 2 and NUTS 3 regions of Portugal 

The problems mentioned above refer to first instance courts. The judicial system of 

Portugal is a three-level system. No similar problems were identified with respect to 

higher-level courts (the five judicial courts of second instance, with jurisdiction over 

NUTS 2 regions, and the Supreme Court of Justice, with jurisdiction over the whole 

country), and they were left out of the study. Also out of the study were left the 

maritime court and the intellectual property court, because, despite being first instance 

courts, their jurisdiction covers the whole country. 

AÇORES

MADEIRA
Alentejo Central

Alentejo Litoral

Alto Alentejo

Alto Trás-os-Montes

Ave

Baixo Alentejo

Baixo Mondego

Baixo Vouga Beira Interior
Norte

Beira Interior
Sul

Cávado

Cova da
Beira

Dão-Lafões

Douro

Entre Douro
e Vouga

Grande Lisboa

Lezíria do
Tejo

Médio Tejo

Minho-Lima

Oeste

Península de Setúbal

Pinhal Interior
Norte

Pinhal Interior
Sul

Pinhal Litoral

Grande Porto

Serra da
Estrela

Tâmega

CENTRO

ALENTEJO

NORTE

ALGARVE

LISBOA

CENTRO

ALENTEJO

NORTE

ALGARVE

LISBOA



76 

4.3 Work plan 

According to the contract signed with the Ministry of Justice, the development of the 

study would involve the following tasks:  

1. Clarification of the problem(s) to be solved through the reform of the judiciary 

map. 

2. Establishment of reference values for judicial litigation (civil, criminal, labor, 

etc.) in the reference year of 2015. 

3. Establishment of reference values for judicial productivity. 

4. Formulation of the optimization model(s) representing the problem(s) to solve.  

5. Establishment of the proposal of the judiciary map – one and only one proposal 

–  based on the solution(s) of the model(s). 

6. Analysis of the sensitivity of the proposal to changes in problem definition. 

7. Definition of implementation stages for the judiciary map. 

The tasks defined are similar to those encountered in many public facility planning 

studies: the decision problem to address is properly stated; the demand for service is 

estimated; a proposal for the location and size of the facilities that meets the demand is 

established based on the solution obtained through an optimization model; a sensitivity 

analysis is performed, to better assess the proposal; finally, implementation stages of the 

proposal are defined, possibly starting with an experimental stage with limited regional 

scale. 

The only aspect that we believe deserves a special mention is the fact that there should 

one and only one proposal. Our initial idea was that there could be several alternatives 

among which to choose. However, the Minister of Justice completely discarded this 

possibility saying that: “I do not want any alternatives; we really need to make this 

reform. If we propose alternatives, after some time no one really knows what exactly is 

being discussed.” 

4.4 Problem statement 

The aim of the judiciary map proposal is to define the location, type, size (measured in 

number of judges), and coverage area (territorial jurisdiction) of first instance judicial 

courts in the whole territory of Portugal (mainland and archipelagos of Madeira and 

Azores). 

The spatial unit adopted both for demand aggregation and for court location was the 

municipality, the basic local administration unit in Portugal, of which there are 278 in 
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the mainland plus 30 in the archipelagos. The temporal unit of demand and court 

capacity was defined to be one year. The planning horizon was chosen to be the year 

2015, which is sufficiently close for judicial litigation to be forecast with acceptable 

reliability, but also sufficiently distant for important planned road network expansions 

to be completed, according to the National Road Plan 2000, having direct influence on 

court accessibility. 

The territory is to be partitioned into large districts, each aggregating the jurisdictions of 

several existing courts. Within each district, a municipality is selected to become the 

seat of the district, based on accessibility and current hierarchical level considerations 

(detailed below). The seat’s court, or main court, is the headquarters of the judge 

president. 

Courts were classified into the following types for the purposes of the study: generic 

and specialized of four types – family, labor, enforcement, commerce. Generic courts 

serve both civil and criminal cases, as well as other types of cases if a corresponding 

specialized court does not exist in the district. Specialized courts serve only cases of the 

corresponding type. A fundamental feature of specialization is that if a district has one 

or more specialized courts of a given type, then all demand of that type is served at 

those courts and not at generic courts. 

The following goals were specified, in accordance with the principles defined in the 

Pact of Justice: (1) adopt NUTS 3 regions (28 in the mainland plus 2 in the  

archipelagos) as the reference for the new districts, keeping municipalities included in 

the same old comarcas together in the new districts; (2) create specialized courts in 

districts where demand is large enough; (3) promote a better balance of demand and 

supply, taking into account given maximum and minimum values of demand per court; 

(4) guarantee a good level of accessibility to courts, taking into account a given 

maximum travel time to courts. 

These goals, together with additional rules for court location and assignment of 

municipalities to courts, were translated into a decision problem with the following 

decisions, objectives, and constraints. 

Decisions: 

 districting decisions: determine the new districts (municipality-based partitions 

of NUTS 3 regions) and select the seat of each district (municipality where the 

main court is located); 
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 location decisions: determine the location, size, and coverage area for generic 

and specialized courts consistent with districting decisions; 

Objectives: 

1. minimize the number of new districts in each NUTS 3 region; 

2. maximize the number of types of specialized courts in the new districts; 

3. minimize aggregate travel time to main court weighted by reference litigation; 

4. minimize aggregate travel time to generic and specialized courts weighted by 

reference litigation; 

General constraints: 

 satisfy all demand (no backlog of cases); 

 maximum travel time to the main court: 60 minutes; 

 maximum total number of judges per district: 75, of average productivity; 

 minimum number of judges in specialized courts: 1, with 80% of the reference 

productivity; 

 minimum number of judges in generic courts: 1, with 50% of the reference 

productivity; 

Constraints on the location of courts: 

 main court: is located at a municipality with highest judicial and administrative 

hierarchical level, considering the following increasing levels – 0, no existing 

court; 1, existing generic court; 2, seat of old judicial circuit (group of old 

comarcas); 3, seat of administrative district (group of municipalities); 4, existing 

court of second instance; 

 generic courts: can exist at any municipality with an existing generic court, that 

is, no new courts are allowed (however, this does not preclude capacity 

expansion of existing courts); 

 specialized courts: can exist only in municipalities where a generic court is also 

located; 

 enforcement and commerce courts: at most one court of each type can exist per 

district, located at the seat of the district; 

 family and labor courts: one or more courts of each type can exist per district, 

located at the seat of the district or at a municipality with an existing specialized 

court of either type; 
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Constraints on the assignment of municipalities to courts: 

 municipalities must be assigned to a single court of each type (i.e. the demand 

may not be split among courts located in different municipalities); 

 municipalities must be assigned to the closest court of each type (in terms of 

travel time), with the possible exception of municipalities not having a generic 

court, for which the following rules prevail; 

 municipalities assigned to the same generic court in an old comarca must be 

assigned to the same generic court in the future (this rule avoids disaggregating 

the old comarcas); 

 municipalities assigned to the same generic court must also be assigned to the 

same specialized courts (this rule establishes coherency between generic and 

specialized assignments; coherency is automatically guaranteed for enforcement 

and commerce courts, since at most one of each type exists in a district); 

 a municipality cannot be assigned to family and labor courts located in different 

municipalities (this implies family and labor courts must be co-located if both 

types exist in a district). 

The four objectives above are ordered by priority, that is, each objective was assumed to 

be much more important than the next. This allowed the problem to be decomposed into 

two sequential sub-problems: 

 a districting sub-problem, considering only the districting decisions and the first 

three objectives;  

 a location sub-problem, considering only the location decisions and the fourth 

objective. 

This decomposition into sub-problems is further discussed in section 4.7.3, after 

presenting model formulations. 

Finally, we remark that location decisions considered that at most one generic court 

exists per municipality, and that specialized courts of each type are co-located with 

generic courts. In reality, depending on jurisdiction size and existing infrastructure, 

generic courts may either be a single unit or be subdivided into specialized civil and 

criminal sections, located in the same or distinct buildings; and specialized courts may 

be located in a single building together with a generic court or in distinct buildings. 

However, the subdivision of generic courts and the precise location of buildings where 

courts should be installed within a municipality were left outside the scope of the study. 
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4.5 Judicial litigation 

Reference values for judicial litigation (measured in number of cases per year) were 

forecast to 2015 using the following method: (1) Stepwise regression of litigation rate 

against demographic, employment, and educational variables (using 2001 data); (2) 

Selection of the best regression equation; (3) Computation of forecasts for the litigation 

rate (from a forecast of the independent variables); (4) Application of litigation rate 

forecasts to population forecasts. 

Regression models 

The following regression models were tested: 

1 1 2 2 3 3n A A AL P P P        

1 1 2 2 3 3n E E EL P P P        

1 1 2 2 3 3n H H HL P P P        

Ln: litigation rate of type n (cases per thousand inhabitants); PA1, PA2, PA3: 

difference from the national average of the percentage of active resident 

population (employed or unemployed) in the primary, secondary and tertiary 

sectors, respectively; PE1, PE2, PE3: difference from the national average of the 

percentage of persons employed in the primary, secondary and tertiary sectors, 

respectively; PH1, PH2, PH3: difference from the national average of the percentage 

of resident population per education level: first level of primary education or less, 

intermediate level, secondary education or higher, respectively. 

The best regression models, obtained through forward stepwise regression (see e.g. 

Draper and Smith, 1998) considering parameters as statistically significant when 

absolute t values were higher than 2, were as follows: 

 2
130.52 0.82 0.249civil HL P R     

 2
1 311.25 0.18 0.19 0.291criminal H HL P P R       

 2
33.54 0.17 0.216family HL P R     

 2
2 36.08 0.28 0.22 0.286labor A AL P P R       

We observe that the explanatory power of these models is low (R2<0.30). Some 

attempts were made to improve them, such as an analysis of the spatial pattern of 
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litigation rates (distinguishing north vs. south, littoral vs. interior, low vs. high 

administrative hierarchical level), but no patterns could be observed and thus no spatial 

dummy variables were included in the models. As we had anticipated, litigation is a 

complex phenomenon that would be difficult to model. In spite of this, the regression 

coefficients have the expected signs: litigation is higher for higher education levels (this 

reflects increased access to justice, since higher educated citizens tend to be better 

informed and have higher incomes, and also increased litigation in more complex 

economic activities, which tend to require higher educated workers); litigation is higher 

for higher weights of the secondary and tertiary sectors (this reflects increased litigation 

in more complex economic activities). Thus we decided to retain the regression models 

above for litigation forecasts, though aware that the forecast would not be very accurate. 

Population forecasts 

The reference value of population in 2015 was obtained with the following method. 

First, the population forecasts of the National Statistics Institute for NUTS 2 regions 

(INE, 2004) were used. Second, regional population growth was distributed by its 

constituent municipalities according to three scenarios: (1) proportionally to the 

population growth in 1991-2001 (the two last census years); (2) proportionally to the 

natural growth rate (births-deaths) in 2004 (the last year of available data); (3) 

proportionally to the population in 2001 (the last census year). The three scenarios favor 

municipalities with different demographics and dynamics: respectively, high recent 

growth, young population, large municipalities with recent population decrease. Finally, 

the population in each municipality was taken to be the maximum of all scenarios. This 

method produces an over-estimation of total population. However, even with this 

optimistic forecast a generalized decrease in the number of generic courts could be 

expected, provoking a negative reaction in the affected municipalities. The method 

chosen was expected to reduce claims that particular municipalities were treated 

unfairly due to the choice of a particular forecast method. 

Regarding the projection of independent variables, the percentage of active population 

per economic sector was assumed to vary proportionally to the variation in 1991-2001 

(a general increase in the tertiary sector was observed, accompanied by a general 

decrease in the primary sector and, in some cases, also in the secondary sector). The 

percentage of population per education level was also assumed to vary proportionally to 

the variation in 1991-2001 (a general decrease in the lower level and an increase in the 

higher levels was observed). According to the regression models adopted, these trends 

will produce an increase in litigation. 
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Litigation forecasts 

In spite of the simplicity of the litigation forecast method, the results were judged to be 

credible when data for particular municipalities were analyzed for the years 2001 (the 

base year for the forecast), 2005 (the last year of available data, used for control) and 

2015 (the forecast year). 

A summary of the litigation forecasts is presented in Table 4.1, representing in 2015 a 

total of about 770,000 cases of the following types: civil 59% (including enforcement 

and commerce); criminal 24%; family 9%; labor 8%. 

The significant increase in criminal and family litigation can be attributed to expected 

increases in education levels (as well as to the optimistic population forecast), while the 

decrease in labor litigation can be attributed to the significant decrease of weight of the 

secondary sector expected in a large proportion of municipalities. 

Table 4.1: Results of litigation forecasts – number of cases per municipality 

  Type of case 

  Civil Criminal Family Labor Total 

Total 2001 414 838 104 768 42 875 67 316 629 797 

Total 2015 453 963 185 151 70 309 62 582 772 005 

Var. 2001-2015 9% 77% 64% -7% 23% 

Minimum 2015 22 7 5 5 39 

Median 2015 594 227 75 85 995 

Average 2015 1 474 601 228 203 2 507 

Maximum 2015 48 075 21 262 8 807 5 852 83 996 

Civil cases are divided into declarative, commerce and enforcement cases. The 

proportions of enforcement and commerce cases in 2005 were 60.0% and 1.4%, 

respectively, and were assumed to remain unchanged in the future and to apply to all 

municipalities. To account for recently introduced legislation that will tend to decrease 

litigation in courts (e.g. decriminalization of some infractions; possibility of extra-

judicial settlements), litigation rates for all case types were multiplied by a factor of 0.9. 

4.6 Judicial productivity 

Reference values for judicial productivity (number of finished cases per judge in one 

year, applying to any judge) adopted in the study for 2015 were as follows: 

 Global productivity (average for all courts in a district, combining all court types 

and case types): 800 cases; 
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 Generic court: 800 cases if the court receives enforcement cases; 550 cases 

otherwise; 

 Enforcement court: 2750 cases; 

 Family court: 800 cases; 

 Labor court: 950 cases; 

 Commerce court: 400 cases. 

For specialized courts, the values above are approximately the national averages 

observed in 2005, and are within the reference productivity intervals used by the 

Supreme Judicial Council in the assessment of judges (according to information 

provided by the Ministry of Justice). For enforcement courts the middle point of this 

interval was adopted, rather than the observed average, since some of these courts had 

been installed only recently and the applicable law had been subject to recent changes. 

For generic courts, the productivity of 800 is approximately the national average 

observed in 2005 (the observed global productivity is similar and the reference value 

was assumed to be equal). A lower productivity is considered if the generic court does 

not receive enforcement cases, which are generally simpler to judge, but no other 

discrimination is made regarding the mix and proportions of case types. 

The latter option resulted from an analysis of productivity of judges in generic courts 

carried out within the study, using the following regression model: 

1 1 2 2 3 3 4 5 6 7 8d ecivil civil criminal family laborF J J J T T T T T                   

F: number of finished cases per judge; J1, J2, J3: difference from the national 

average of the percentage of judges with less than 3 years, between 3 and 6 years, 

and more than 6 years of experience, respectively; Tn: difference from the national 

average of the percentage of cases of type n (civil cases were divided into 

declarative, civild, and enforcement, civile, and commerce cases were excluded 

from the analysis). 

The best regression model, obtained by forward stepwise regression and using 2005 

data only from generic courts under demand pressure (where the number of new cases is 

not smaller than the number of finished cases), was the following: 

 2
1819.63 2.83 6.61 0.290

ecivilF J T R        

As before, the explanatory power is low. Indeed, judicial productivity was expected to 

be difficult to capture in a model. Nevertheless, we considered the model to be useful, 
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since the regression coefficients have the expected signs: productivity is lower in courts 

with higher proportion of younger judges and higher in courts with higher proportion of 

enforcement cases. According to this model, a court not receiving enforcement cases 

has a productivity of 543 cases per judge, while one in which all civil cases are 

enforcement cases has a productivity of 1205 (smaller than the 2750 assumed above for 

a specialized enforcement court). Coefficients of variables related to other case types 

were not retained in the model, i.e. other case types had no statistically significant effect 

on productivity. 

4.7 Optimization models 

4.7.1 Literature overview 

We now briefly overview the relevant literature before introducing the formulations of 

the two optimization models developed in the study. The models presented here are 

discrete facility location models, which assume a discrete set of centers where demand 

is concentrated and a discrete set of sites where facilities can be located. ReVelle and 

Eiselt (2005) and Current et al. (2002) provide general reviews, and ReVelle (1987) and 

Marianov and Serra (2002) provide reviews focusing on public sector applications. 

Basic models 

The models we developed are extensions of a basic model that aims to locate facilities 

and assign demand centers to those facilities so that the total demand-weighted 

assignment distance is minimized, each center is fully assigned to the closest facility (or 

one of the closest, if several are equidistant), and the demand served by each facility 

satisfies given minimum and maximum capacities. 

This model is called the capacitated median model (CM) by Teixeira and Antunes 

(2008), due to its relationship with the classic p-median model (PM), in which facility 

capacities are not imposed and the number of facilities is a parameter (p). In the PM 

model, solutions naturally have the so-called single and closest assignment properties, 

i.e. each center is fully assigned to the closest facility. In the CM model, facility 

capacities are imposed: a minimum capacity, representing a threshold to guarantee 

economic feasibility of individual facilities or to guarantee increased productivity 

through specialization of labor; and a maximum capacity, representing limited space 

availability or a threshold to avoid diseconomies of scale. The minimum and maximum 

capacities have two consequences: i) they imply, respectively, upper and lower bounds 

on the number of facilities, which becomes a model output rather than a parameter; ii) 
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the single and closest assignment properties, if required, must be imposed through 

explicit constraints. The single and closest assignment properties are desirable in a 

public facility planning context where users are assumed to distinguish locations 

through their accessibility, by preferring the closest facility. Hanjoul and Peeters (1987) 

further discuss the representation of user preferences in a location model. Teixeira and 

Antunes (2008) compare spatial patterns of user-to-facility assignments between the PM 

and CM models. 

The CM model, unlike the PM model, has rarely been dealt with in the literature. 

Carreras and Serra (1999) use it in a pharmacy location problem, and solve it through a 

tabu search heuristic. Kalcsics et al. (2002) use it together with a constraint on the 

number of facilities for designing balanced and compact sales territories, and solve it 

with a variable neighborhood search heuristic. Teixeira et al. (2007) apply it to the 

reorganization of a secondary school network, and solve it with a commercial optimizer. 

Bigotte and Antunes (2007) present several heuristics to solve the CM model. Related 

models have been proposed that do not require all demand centers to be served, but 

otherwise combine minimum capacity and closest assignment constraints. Verter and 

Lapierre (2002) present a model for locating preventive health care facilities with the 

objective of maximizing population coverage, and solve it with a commercial optimizer. 

Smith et al. (2009) present a model for locating primary health care facilities with the 

objective of maximizing the number of open facilities, and solve it with a commercial 

optimizer. 

Hierarchical models 

Teixeira and Antunes (2008) present a hierarchical version of the capacitated median 

model, considering demand for multiple services and multiple facility types, both 

classified into n levels, where facilities have a nested service hierarchy: a level n facility 

can serve level n demand and all lower levels. An application to the reorganization of a 

primary school network with two levels is presented, in which the model is solved with 

a commercial optimizer. 

The two models presented here are also multiple-service hierarchical extensions of the 

capacitated median model. Both models consider two levels of facilities, generic (level 

1) and specialized (level 2), organized into a nested hierarchy: level-2 facilities can only 

be installed at locations where level-1 facilities also exist. Hierarchical location models, 

dealing with the location of multiple facility types, are reviewed by Narula (1986), 

Church and Eaton (1987), and Sahin and Sural (2007). 
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Relatively to hierarchical models in the literature, the court location model presented 

here (the second model below) is the first to include so-called coherent assignment 

constraints together with capacity constraints and closest assignment constraints. 

Assignments are said to be coherent if all centers assigned to a given level-1 facility are 

assigned to the same level-2 facility. Explicit constraints enforcing coherency were first 

introduced by Serra and ReVelle (1993) for a model with two facility types and two 

service levels. Other models with the property of coherent assignment are cited in the 

survey by Sahin and Sural (2007). 

Districting models 

We also refer to the related literature on districting models – see e.g. the review by 

Kalcsics et al. (2005). Districting models have the purpose of partitioning of a set of 

spatial units (i.e. city blocks, census tracts, or other geographic entities) into subsets, 

called districts, according to some objective. As in discrete models for facility location, 

spatial units are represented with discrete centers connected through an underlying 

network. Desired properties of districts often include compactness and contiguity, i.e. 

they should be round shaped rather than spread out, and should be connected. The 

capacitated median model, when applied to districting problems, tends to produce 

districts with these properties, as noted by Kalcsics et al. (2002), who use this model for 

designing sales territories: compact districts are promoted by the objective of 

minimizing aggregate travel time together with the closest assignment constraints; also, 

closest assignment constraints tend to produce connected catchment areas. However, it 

should be noted that contiguity is not guaranteed and will depend on the data of 

particular instances. In the application described here, contiguity was always observed. 

In other cases, specific constraints enforcing contiguity may be required, such as those 

reviewed by Duque et al. (2011). 

Applications to the justice sector 

As far as we know, no previous applications of optimization models for the location of 

courts of justice were described or cited in refereed journals. However, there is at least 

one such application. Rømo and Sætermo (2000) report on a project of the research 

center SINTEF in which a discrete location model was developed for defining the 

location and districts of first instance courts in Norway, under contract with the 

Ministry of Justice. The model, which was implemented with XPRESS-MP and 

embedded into a decision support system, is an extension of the p-median model. The 

objective is to minimize total travel distance (optionally to minimize the total 

infrastructure and travel costs) subject to a number of courts to be located, a minimum 
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workload per court, a maximum assignment distance, and optional configuration 

constraints (fixed location and assignment variables). Model data considers the 

municipality as the spatial unit. Relatively to the model presented here, their model does 

not include closest assignment constraints and is non-hierarchical, i.e. considers a single 

service representing all demand types and a single type of court. 

4.7.2 Model formulations 

We now present the formulations of the two models addressing the problem stated in 

section 4.4. The two models are applied sequentially: 

 The districting model is applied to each NUTS 3 region considering all 

specialization types: family, labor, enforcement, and commerce. The solution 

defines one or more districts, the seats of district, and the specialization types 

existing in each district. Enforcement and commerce court locations are implied 

by this solution, since at most one court exists per district and is located at its 

seat. 

 The court location model is then applied to each individual district, considering 

only family and labor specialization types if they exist (one or both). The 

solution defines generic and specialized court locations and the assignments of 

municipalities to those courts. 

Districting model 

Data: 

M set of demand centers and facility sites – municipalities in the NUTS 3 region; 

N set of demand types and court types – 1: generic, 2: family, 3: labor, 4: 

enforcement, 5: commerce; 

jnQ  demand (number of cases) of center j M  of type n N ; 

min
nQ  minimum capacity (number of cases) to justify a court of type n N ; 

max
kQ  maximum capacity (number of cases) of a district with seat in k M ; 

jkD  travel time between centers ,j k M ; 

maxD  maximum travel time between a center and the seat of the district; 

jkC  set of centers as close or closer to j M  than k M :  : jp jkp M D D  ; 

jH  hierarchical level of municipality j M  – 0: no existing court; 1, 2, 3, 4: 

existing court and increasing hierarchical level (as defined in section 4.4); 
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MT set of municipalities ( TM M ) currently without court and that are assigned to 

a generic court located in another municipality within the same NUTS 3 region; 

Tj municipality ( jT M ) with the generic court to which municipality j M  is 

currently assigned. 

Variables (all are binary): 

1
D
kZ  =1 if center k M  has a generic court and is the seat of a district; 

D
knZ  =1 if the district with seat in k M has one or more courts of type  \ 1n N ; 

D
jkX  =1 if center j M  is assigned to the district with seat in k M . 

 

Formulation: 

Min 1 1
D
k

k M

O Z


    (4.1) 

Max 2
D
kn

k M n N

O Z
 
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j M k M n N

O D Q X
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s.t. 1D
jk

k M

X


  j M   (4.4) 

 1
D D
jk kX Z  ,j M k M    (4.5) 

 1
D D
kn kZ Z  , \{1}k M n N    (4.6) 

 max
1

D D
jn jk k k

j M n N

Q X Q Z
 

    k M   (4.7) 
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

   ,k M n N    (4.8) 
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D D
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X Z


  \ ,Tj M M k M    (4.9) 

 0D
jkX   , :j M k M   max

jkD D  (4.10) 

 0D
jkX   , :j M k M   j kH H  (4.11) 

 ,j

D D
jk T kX X  ,Tj M k M    (4.12) 

  0,1D
knZ   ,k M n N    (4.13) 

  0,1D
jkX   ,j M k M    (4.14) 
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The objectives (4.1), (4.2), (4.3) are respectively: to minimize the number of districts; to 

maximize the number of court types existing in districts; to minimize the total travel 

time between centers and seats of district, weighted by the demand of all types. 

A lexicographic ordering of objectives was assumed, that is, (4.1) is infinitely more 

preferable than (4.2), which in turn is infinitely more preferable than (4.3). Since O1 and 

O2 are positive integers, the three objectives were replaced by the following single 

objective (where M1 and M2 are suitable large positive constants satisfying M2>O3 and 

M1>M2O2+O3 for all values of parameters and variables): 

 Min 1 1 2 2 3M O M O O     

The constraints (4.4)-(4.14) have the following meaning: (4.4) requires each center to be 

assigned to one district; (4.5) links the assignment and location variables through the 

standard strong formulation (it states that an assignment can only be made to a center 

defined as seat of district); (4.6) associates specialized courts (n>1) existing in a district 

with the center defined as seat of that district (n=1); (4.7) are maximum capacity 

constraints, stated for the total demand of all types in a district; (4.8) are minimum 

capacity constraints, stated separately for each demand and court type in a district; (4.9) 

are closest assignment constraints; they state that if center k is a seat of district, then any 

center j has to be assigned to a seat of district as close or closer than k; these constraints 

do not apply to centers in set MT; (4.10) defines the maximum travel time to the seat of 

district; (4.11) forbids the assignment of a center to a seat of district with lower 

hierarchical level in the current organization (i.e. the seat is chosen among the 

municipalities with currently highest hierarchical level); (4.12) guarantees that centers 

belonging to the same old comarca have to be assigned to the same new district (i.e. old 

comarcas are not disaggregated); finally, (4.13) and (4.14) define all variables as binary. 

We note that (4.11) and (4.12) are special purpose constraints imposing that the 

reorganization has to take into account the current organization of courts. These 

constraints, and also (4.10), lead to a reduction of the effective model size, performed 

automatically by the presolve routines of a MIP optimizer. 

Location model 

Note: The notation M, N, jnQ , min
nQ  is retained from the previous model, but data is 

redefined, as described below and in the next section. 
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Data: 

M set of demand centers and facility sites – municipalities in the district; 

N set of demand types and court types – 1: generic, 2: family, 3: labor (types 2 and 

3 are only included if they exist in the district); 

jnQ  demand (number of cases) of center j M  of type n N ; 

min
nQ  minimum capacity (number of cases) to justify a court of type n N ; 

kE  =1 if a specialized court (of any type n>1) currently exists at center k M , or 

zero otherwise; 

jH , jkD , maxD , jkC , TM , jT  have the same definitions as in the previous model. 

Variables (all are binary): 

knZ  =1 if a court of type n N  is installed in center k M ; 

jknX  =1 if center j M  is assigned to a court located in center k M  for demand 

type n N . 

 

Formulation: 

Min  jk jn jkn
j M k M n N

D Q X
  
     (4.15) 

s.t. 1jkn
k C

X


  j M  ,n N  (4.16) 

 knjknX Z  ,j M k M   ,n N  (4.17) 

 1kn kZ Z  k M  , \{1}n N  (4.18) 

 min
jn n knjkn

j M

Q X Q Z


   k M  ,n N  (4.19) 

 11
jk

kjp
p C

X Z


  \ ,Tj M M k M    (4.20) 

  11
jk

j jpn kn
p C

Z X Z


    ,j M k M   , \{1}n N  (4.21) 

 1 1 jpnjk kpnX X X    , ,j M k M p M    , \{1}n N  (4.22) 

 0jknX   , , :j M k M n N    max
jkD D  (4.23) 

 2 3jk jkX X  ,j M k M   , if 3N   (4.24) 

 2 3k kZ Z  k M  , if 3N   (4.25) 
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 1 0jkX   , :j M k M   j kH H  (4.26) 

 , ,jjkn T k nX X  ,Tj M M k M    ,n N  (4.27) 

 1 0kZ   : 0kk M H    (4.28) 

 0knZ   1, \{1}: 0 0D
kkk M n N Z E       (4.29) 

  0,1knZ   k M  ,n N  (4.30) 

  0,1jknX   ,j M k M   ,n N  (4.31) 

The objective (4.15) is to minimize the total travel time between centers and courts, 

weighted by demand. Travel times for generic demand (n=1) and for specialized 

demand (n>1) are assumed to be commensurable and are given the same weight. 

The constraints (4.16)-(4.31) have the following meaning: (4.16) requires each demand 

type of each center to be assigned to one court of the corresponding type; (4.17) links 

the assignment and location variables of each type (they state that an assignment can 

only be made to a center where a court of the corresponding type is located); (4.18) 

states that specialized courts (n>1) can only be located in centers where a generic court 

(n=1) is also located (this constraint enforces the nested hierarchy); (4.19) are minimum 

capacity constraints for each court type; (4.20) are closest assignment constraints for 

generic courts; they do not apply to centers in set MT, i.e. without an existing court; 

(4.21) are closest assignment constraints for each specialized type, applying only to 

centers j where a generic court exists (Zj1=1); if no court exists (Zj1=0) the constraint has 

no effect (the inequality is satisfied, irrespective of the values of all other variables) and 

the assignment will be determined only by coherency and other constraints; (4.22) are 

coherency constraints for each specialized type, stating that if a center j is assigned to a 

generic court at k (Xjk1=1) and center k is itself assigned to a specialized court at p 

(Xkpn=1), then center j must also be assigned to the specialized court at p (Xjpn=1); (4.23) 

defines the maximum travel time to a court; (4.24) implies that each center must be 

assigned to family and labor courts located in the same municipality, if both types exist 

(|N|=3); (4.25) implies that family and labor courts have to be co-located, if both types 

exist; (4.26) forbids the assignment of a center to a court in a municipality with lower 

hierarchical level in the current organization; (4.27) guarantees that centers belonging to 

the same old comarca have to be assigned to the same courts of each type; (4.28) 

forbids opening a new generic court in municipalities where no court currently exists; 

(4.29) states that specialized courts cannot be located in municipalities which are not the 

seat of the district and where no specialized court of any type currently exists; finally, 

(4.30) and (4.31) define all variables as binary. 
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Constraints on the maximum capacity of courts are not imposed explicitly since the 

individual courts are assumed to have the same capacity limit as the main court in the 

seat of the district, and this limit is guaranteed by the first model. 

Regarding the combination of assignment constraints, centers where a level 1 facility is 

not installed are subject to coherent assignment but not to closest assignment constraints 

for level 2 assignments, through the term (1-Zj1) in (4.21). This was a planning 

assumption in the present application. If that term was removed the model would 

remain consistent, but the feasible spatial configurations of solutions would be reduced. 

We now comment on particular cases of the model, depending on the number of 

specialized court types that result from the districting model: 

 If no specialized types exist (N={1}), a reduced model is obtained, dedicated to 

a single (generic) demand and court type; in particular, the following constraints 

are excluded: (4.18), (4.21), (4.22), (4.24), (4.25), (4.29). 

 If both family and labor specializations exist (N={1,2,3}), the two types are not 

independent, due to the presence of constraints (4.24) and (4.25). These are 

included since, in the present application, centers cannot be assigned to family 

and labor courts in different municipalities, which in turn implies the co-location 

of family and labor courts (we note that it would suffice to add (4.24), because 

(4.25) are implied by the former together with (4.17), (4.19) and the binary 

constraints). These constraints effectively reduce assignment and location 

decisions to two types – generic (type 1) and specialized (type 2, representing 

both family and labor). The formulation could thus be simplified, retaining only 

the variables and constraints for a single specialized type, except for minimum 

capacity constraints (4.19), which must still be stated separately for each 

specialized subtype (that is, family and labor courts must be co-located, but each 

type must separately guarantee its minimum capacity). However, we opted to 

keep the general formulation above, which can address other applications where 

constraints (4.24) and (4.25) do not apply. Additionally, there is no 

computational burden, since the model will be automatically simplified as 

described above by the presolve routines of a MIP optimizer. 

Similarly to the first model, (4.26)-(4.29) are special purpose constraints imposing that 

the reorganization has to take into account the current organization of courts. These 

constraints, together with (4.23) and, as noted above, (4.24)-(4.25), lead to a reduction 
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of the effective model size, performed automatically by the presolve routines of a MIP 

optimizer. 

Alternative formulations of closest assignment constraints have been proposed in the 

literature – see Gerrard and Church (1996) and Hansen et al. (2004). The latter authors 

show that formulation (4.20) provides a tighter linear programming relaxation than the 

alternatives discussed. The formulation of coherency constraints (4.22) is equivalent to 

the one proposed by Serra and ReVelle (1996). 

Finally, we observe that both models above are hierarchical extensions of the basic, 

single-service capacitated median model. The first model (districting) is a 

straightforward extension, since it considers a single level of assignment (representing 

all demand types). Multiple facility types are considered because of the second 

objective (maximization of the number of facility types). The second model (court 

location) is a multiple-service hierarchical extension considering two levels of 

assignment and two facility levels. Level-1 demand and facilities are of a single type 

(n=1) while level-2 demand and facilities are of multiple types (n>1). 

4.7.3 Model application and discussion 

For applying the models within the study, data was prepared as follows: 

 Demand of municipalities ( jnQ ): is measured in number of cases of each type n 

and was estimated as described in section 4.5. For the generic type ( 1jQ ): in the 

first model, demand includes civil (except enforcement and commerce) and 

criminal cases; in the second model, it also includes other case types for which 

no specialized court exists in the district. 

 Minimum capacity of courts ( min
nQ ): is defined as reference productivity per 

judge (section 4.6) multiplied by a minimum number of judges (section 4.4). For 

the generic type ( min
1Q ): in the first model, a minimum of 1 judge with reference 

productivity of 550 cases was adopted; in the second model, reference 

productivity was set to 550 cases if a specialized enforcement court exists in the 

district, or to 800 cases otherwise. 

 Maximum capacity of a district ( max
kQ ): is defined as the global reference 

productivity for all case and court types (section 4.6) multiplied by a maximum 

number of judges (section 4.4); or is set equal to the total demand in the 

particular municipality k, if higher (in this case, a district composed of a single, 

large municipality will result). 
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 Travel time ( jkD ): is measured in minutes and was computed with a 

representation of the main road network planned for 2015 (according to the 

National Road Plan – PRN 2000). Travel times refer to centroids of 

municipalities, and a time of zero is assumed if a municipality is assigned to a 

court located within it. 

Models were implemented and solved with FICO’s Xpress Optimization Suite version 

2005B (Xpress Mosel 1.6 and Xpress MIP Optimizer 16.10) running on a personal 

computer with a Pentium M 755 2.0 GHz CPU, 1.0 GB of memory and Windows XP 

operating system. All instances were easily solved, within at most a couple of seconds, 

because their initial size was small (instances had 14 centers at most in both models) 

and the constraints limiting changes to the existing network reduced model size even 

further. 

We now comment on the adoption of two separate, sequential models rather than a 

single integrated model involving both districting and location decisions. From the 

application perspective, the districting problem can indeed be seen as separated because 

it was assumed that its three objectives preempt the objective of maximizing 

accessibility to local generic and specialized courts in the second model. The two 

models will lead to a globally optimal solution, unless there is more than one optimal 

solution to the districting model and the one retained leads to a worse objective in the 

second model. However, this was deemed unlikely to occur in the present application, 

due to the third objective of the districting model, of minimizing aggregate travel time 

to the seat of district. 

From the modeling perspective, separating the two models has two advantages. First, it 

makes the global problem easier to solve, as an integrated model would need to consider 

3 levels of assignment decisions (to generic courts, to specialized courts, and to the 

district seat) and would become much larger. Second, once the first model is solved, the 

productivity per judge in generic courts, which underlies the minimum capacity of these 

courts and may depend on which specialized courts are installed in its district, becomes 

exogenous to the second model. On the other hand, an integrated model would have to 

determine an endogenous productivity in generic courts for each district, as a function 

of the combination of specializations installed. This may require a larger model, 

potentially making it much harder to solve. 
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4.8 Study results 

4.8.1 Proposal of the new judiciary map 

The proposal of the judiciary map is now briefly discussed, focusing on mainland 

Portugal (each of the archipelagos, Madeira and Azores, constitutes one additional 

district each). The map proposal is shown in Figure 4.4 to Figure 4.7. Assignments of 

municipalities to specialized courts are not represented explicitly as they are defined by 

district boundaries and, if they exist, by family and labor jurisdiction boundaries. 

The proposal reduces the 213 existing comarcas to 38 districts. Of the 28 NUTS 3 

regions, 20 correspond to a single district and 8 are partitioned into two or more districts 

to avoid excessive district size (occurs in the Lisbon and Porto regions) or excessive 

travel time to the seat of district. In 32 districts the seat is the most populous 

municipality, while in the other 6 districts a municipality with higher accessibility is 

chosen instead. Districts range in size from 1 to 16 courts and from 3 to 113 judges; 

there are two districts with only 1 court (both in the Alentejo region), created because of 

the imposed maximum travel time to the seat of district. 

The number of courts (Table 4.2) is 284 in total. 27 existing generic courts would be 

closed (while no new generic courts would be open) and specialized courts would 

increase by 30 (the net effect of new courts to open and existing courts to close). The 

numbers of enforcement, family and commerce courts have large relative increases, 

while the number of labor courts decreases significantly. The latter is due to the 

significant decrease in labor litigation expected to occur (section 4.5). 

The number of judges (Table 4.2) is 1060 in total, including judges assigned to main 

courts (in seats of district): 1 judge president and a number of assistant judges equal to 

10% of the total number of judges assigned to courts in the district. The proposal 

implies 38 new judges would be necessary, while 97 existing judges would have to 

change to a court in a different district. Generic courts would lose 49 judges, while 

specialized courts would gain 87 judges in total (enforcement courts would gain the 

most, 77 judges, while labor courts would lose 23 judges).  

Regarding accessibility to generic courts (Table 4.3), a generic court exists in about 2/3 

of the municipalities (shown with a travel time of zero in Table 4.3). Among the other 

municipalities, only 7 require a travel time of more than 30 minutes to a generic court. 
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Table 4.2: Number of courts and judges (mainland Portugal) 

  Type of court 

  Generic Family Labor Enforcement Commerce Total 

Number of Courts             

Current (2005) 213 16 45 5 2 281 

Proposal (2015) 186 32 32 30 4 284 

Difference -27 16 -13 25 2 3 

Closed -27 -2 -17 0 0 -46 

New 0 18 4 25 2 49 

Number of Judges             

Current (2005) 866 48 85 16 7 1022 

Proposal (2015) 817 82 62 93 6 1060 

Difference -49 34 -23 77 -1 38 

 

Table 4.3: Travel time to generic courts (mainland Portugal), 

measured between centroids of municipalities 

Travel time 
(min) 

Number of 
municipalities 

% 

0 186 67% 

>0 - 10 32 12% 

>10 - 20 39 14% 

>20 - 30 14 5% 

>30 - 40 7 3% 

>40 0 0% 

Total 278 100% 
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Figure 4.4: Judiciary map proposal – Norte region 
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Figure 4.5: Judiciary map proposal – Centro region 
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Figure 4.6: Judiciary map proposal – Lisbon region 
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Figure 4.7: Judiciary map proposal – Alentejo region (top) and Algarve region (bottom) 
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4.8.2 Sensitivity analysis 

A sensitivity analysis of the judiciary map proposal was carried out by changing 

individual parameters in the problem definition (Table 4.4). These changes can lead to 

significantly different outcomes, as measured by key criteria (Table 4.5). 

Removing the travel time limit to the main court (Alternative I) would decrease the 

number of districts (from 38 to 32) and increase travel time to the main court (by 15%). 

It would produce only slight variations in the numbers of generic and specialized courts. 

Decreasing the maximum number of judges per district (Alternative II) would 

significantly increase the number of districts (from 38 to 48). Consequently, the number 

of specialized courts would also increase (except commerce). While this contributes to 

reducing the number of judges (due to higher productivity), the total number would 

increase considerably (from 38 to 59), due to the additional president and assistant 

judges required in districts. 

Requiring higher minimum workloads in generic courts (Alternatives III and IV) would 

significantly increase generic court closures and travel time to generic courts. However, 

only in Alternative IV the number of new judges would decrease significantly (from 38 

to 10). 

Requiring higher minimum workloads in specialized courts (Alternative V) would 

significantly reduce the number of specialized courts. However, the number of closed 

generic courts (which now receive additional specialized demand) would decrease only 

slightly, and consequently travel time to generic courts would only improve slightly. 

In Alternative VI, districts are now based on the larger NUTS 2 regions (of which there 

are 5 in mainland Portugal: Norte, Centro, Lisboa, Alentejo, Algarve). This alternative 

would lead to fewer districts, better accessibility to general courts, and also fewer new 

judges. While the number of family and labor courts would remain unchanged and one 

additional commerce court would be open, fewer enforcement courts would be 

necessary (because there are fewer districts). 

Overall, we observe that the selected planning parameters have significant impact on the 

judiciary map, in terms of the trade-off between judicial resources (number of districts, 

courts, and judges) and user benefits such as accessibility and availability of specialized 

courts. This highlights why the reform of the judiciary map can generate a long debate 

among decision makers and other stakeholders in the judicial system. 
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Table 4.4: Sensitivity analysis – parameters 

Parameter Proposal 
Alternative  

I II III IV V VI 

Maximum travel time to main court (min) 60 
No 

limit 
60 60 60 60 60 

Maximum number of judges in a district 75 75 40 75 75 75 75 

Minimum workload in a generic court relative 
to the reference productivity of one judge 

50% 50% 50% 80% 180% 50% 50% 

Idem, for specialized courts 80% 80% 80% 80% 80% 100% 80% 

NUTS 3 based districts ? Y Y Y Y Y Y N

 

Table 4.5: Sensitivity analysis – results 

Criterion Proposal 
Alternative 

I II III IV V VI 

Number of districts 38 32 48 38 38 38 31

Average travel time to main court 
(relative to the proposal) 

1.00 1.15 0.82 1.00 1.00 1.00 1.14 

Average travel time to generic court 
(relative to the proposal) 

1.00 1.03 1.00 1.29 2.65 0.97 0.95 

Number of generic courts to close 27 30 27 43 93 25 25

Number of family courts to open (net) 16 18 20 16 16 11 16 

Number of labor courts to close (net) 13 12 11 13 13 20 13 

Number of enforcement courts to open 25 23 34 25 24 19 19

Number of commerce courts to open 2 2 1 2 2 0 3

Number of new judges 38 27 59 36 10 34 26 

Number of judges changing court 97 95 99 98 109 96 103 

 

4.9 Conclusion 

The study described here was released in March 2007, as a contribution to the 

discussion about the reform of the judiciary map of Portugal then being carried out by 

the Ministry of Justice and institutions within the judicial system. 

The Government later prepared Proposal of Law 124/2008, specifying the reform of the 

organization and functioning of courts of justice, including the reform of the judiciary 

map, with a preamble where the contribution of our study was explicitly acknowledged. 

The Proposal of Law specifies the territories of districts, while the location of generic 

and specialized courts of justice of first instance and their territorial jurisdictions were 
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left to subsequent legislation. The Proposal of Law followed the solutions proposed in 

the study with some changes. In particular, the two small districts with a single court (in 

the Alentejo region) were merged into neighboring districts (accepting larger maximum 

travel times), and two districts with large demand (with seats in Porto and Penafiel, in 

the Norte region) were divided into two districts each. 

In May 2008, the Proposal of Law was voted and approved by the Parliament, 

becoming Law 52/2008. After that, the Government started preparing the law’s 

implementation process, which will proceed in stages. The first stage started in April 

2009, with the launching of three districts (with seats in Santiago do Cacém, Aveiro and 

Sintra, in the Alentejo, Centro and Lisbon regions, respectively), while the final stage is 

expected to finish in 2015. In those first three districts, the solution adopted for the 

location of specialized courts differs from that in the study, following the final set of 

planning criteria adopted after the discussion between the Ministry of Justice and other 

stakeholders. In particular, the implemented solution has a higher number and 

distribution of specialized courts among the municipalities composing a district, since 

the co-location of specialized courts and the preference given to the seat of district were 

de-emphasized. 

At this point in time the true benefits of the reform are still uncertain, but we are certain 

that our study has given a contribution for making them possible, by helping to discuss 

relevant planning criteria and offering a complete and detailed proposal based on a 

particular set of plausible and clearly identified criteria. 

The contributions of this chapter to the facility location literature can be outlined as 

follows. First, a multiple-service hierarchical version of the capacitated median model is 

formulated, combining features that appeared separately in previous models – 

capacitated facilities, closest assignment and coherent assignment. Second, an 

application of facility location models to courts of justice is described. To the best of 

our knowledge, no such application has been described before in a refereed journal, 

although we could find a research report on a similar application in Norway (Rømo and 

Sætermo, 2000). 
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Chapter 5  
 

Solving the capacitated median model by a priori 

reformulation and branch-and-cut 

 

5.1 Introduction 

In this chapter we address a discrete facility location model, called the capacitated 

median (CM) model, which is related to the classic p-median (PM) model. In both 

models, we are given a set of demand centers with known demand quantities, a set of 

sites where facilities can be located, and travel distances (or costs) between centers and 

sites. 

In the CM model, the aim is to locate facilities and assign demand centers to those 

facilities so that the total travel distance (or cost) is minimized, the demand served by 

each facility satisfies given minimum and maximum capacity bounds, and each center is 

fully served by the closest (or least cost) facility. This model is useful in the context of 

public facility location problems where facilities such as schools or hospitals should 

guarantee a minimum workload (e.g. a minimum number of users per year) in order to 

be economically feasible, and users minimize their costs by attending the closest 

facility. 

The PM model is similar, except that the number of facilities is a given parameter 

(denoted p) and facility capacity is unrestricted. In comparison, in the CM model the 

number of open facilities is a model output, since the minimum and maximum capacity 

bounds impose implicit upper and lower bounds (respectively) on the number of 

facilities, with the model objective driving solutions towards the upper bound. 

Additionally, in the PM model solutions naturally have the so-called single assignment 

and closest assignment properties (Krarup and Pruzan, 1990), that is, centers are fully 

assigned to a single, closest facility. In the CM model, due to the presence of capacity 

constraints, these properties must be enforced through explicit constraints. Thus, we can 

say that capacity constraints and explicit single and closest assignment constraints are 

the defining features of the CM model relatively to the PM model. 
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The PM model has been studied extensively – see e.g. ReVelle and Eiselt (2005) and 

Marianov and Serra (2002) – but the CM model has been studied only rarely. Carreras 

and Serra (1999) use the CM model without the maximum capacity constraints for a 

pharmacy location problem, and solve it through a tabu search heuristic. Kalcsics et al. 

(2002) use it with a constraint on the number of facilities for designing balanced and 

compact sales territories, and solve it through a variable neighborhood search heuristic. 

Teixeira et al. (2007) use it to address a secondary school network redeployment 

problem and solve it with a commercial MIP solver. Bigotte and Antunes (2007) present 

several heuristics to solve the CM model without maximum capacity constraints, 

including construction and improvement heuristics, a genetic algorithm and a tabu 

search heuristic. 

Thus, several heuristic methods have been proposed to solve the CM model, but no 

specialized exact method has been proposed, as far as we know. Such a method would 

be useful, as computational experiments with a generic MIP solver on a standard 

personal computer (detailed below) shown that instances with 50 and 70 centers can be 

solved to optimality on average within 1 minute and 10 minutes, respectively, but many 

instances with 100 centers cannot be solved within 1 hour. 

Another relevant model related to the CM model is the uncapacitated facility location 

problem with clients’ preference orderings (UFLPO), introduced by Hanjoul and 

Peeters (1987). The UFLPO is an extension of the classic uncapacitated facility location 

problem where each demand center has given preferences for facilities (independent of 

assignment costs) and must be assigned to the most preferred open facility (rather than 

to the least cost facility). The preferences are enforced by constraints equivalent to the 

closest assignment constraints in the CM model. The feasible set of the UFLPO is a 

relaxation of the feasible set of the CM model, so inequalities valid for the former are 

also valid for the latter. Cánovas et al. (2007) proposed an a priori reformulation 

procedure for the UFLPO that aims to strengthen the formulation and reduce its size (in 

terms of number of variables, constraints and non-zero elements) before applying a 

branch-and-cut algorithm. The procedure is implemented in a preprocessing algorithm 

and depends on the particular data of each instance. 

The contributions of this chapter are the following. First, we extend the reformulation 

procedure of Cánovas et al. (2007) in order to address instances with preference ties 

between two or more locations (strict preference orderings were assumed in the 

original), and propose an additional step that further strengthens and reduces the 

formulation. Second, we propose new valid inequalities for the CM model. Third, we 
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present computational experiments with an exact method to solve this model, composed 

of the reformulation procedure and cut generation procedures embedded within the 

branch-and-cut algorithm of a generic MIP solver, exploiting previously known valid 

inequalities for the UFLPO and the new valid inequalities for the CM model. 

We start by presenting the formulation of the CM model. Next, we present valid 

inequalities and the reformulation procedure for the UFLPO, followed by new valid 

inequalities for the CM model and separation procedures for cut generation. We then 

present computational experiments and offer conclusions. 

5.2 Model formulation 

Consider a set of demand centers  1,...,I n  and a set of sites  1,...,J m  where 

facilities can be located. Each center i has associated a demand iu  and each site j has 

associated lower and upper capacity bounds, jb  and jB , respectively. A cost 0ijc   is 

incurred if the demand of center i is satisfied from site j. We assume ij i ijc u d , where 

ijd  is a given travel distance, time or monetary cost per unit demand between center i 

and site j; in what follows, we use the terms “closest” and “least-cost” interchangeably. 

The problem is to locate facilities and assign centers to those facilities so that the total 

cost is minimized, facilities satisfy the capacity bounds, and centers are fully assigned to 

the least-cost facility. 

Consider the following decision variables: 1jy   if a facility is installed or open at site 

j, and equals zero otherwise; ijx  is the fraction of the demand of center i satisfied from 

site j (if 1ijx  , center i is said to be assigned to site j). The CM model can be 

formulated as follows: 

Min ij ij
i I j J

c x
 
  (5.1) 

Subject to 1ij
j J

x


 ,  i I   (5.2) 

 ij jx y ,  ,i I j J    (5.3) 

 i ij j j
i I

u x b y


 ,  j J   (5.4) 

 i ij j j
i I

u x B y


 ,  j J   (5.5) 

 
ij

ik j
k N

x y


 ,  ,i I j J   ,  |ij ik ijN k J d d    (5.6) 

  0,1ijx  ,  ,i I j J    (5.7) 



106 

  0,1jy  ,  j J   (5.8) 

Constraints (5.2) state that the demand of all centers should be fully served. Constraints 

(5.3) ensure that a center can only be served from a site where a facility is installed, and 

are termed variable upper bound (VUB) constraints. Inequalities (5.4) and (5.5) are, 

respectively, minimum and maximum capacity constraints, imposing lower and upper 

bounds on the demand served from open facilities. Inequalities (5.6) are the so-called 

closest assignment (CA) constraints, and state that if a facility is open at site j then 

center i must be assigned to it, to an equidistant or to a closer facility. Constraints (5.7) 

enforce single assignment, that is, the demand of a center must be fully satisfied from a 

single facility. Note that if there are no “distance ties” (i.e. ij ikd d  for all i I , j J , 

k J  with j k ) then CA constraints (5.6) imply single assignment even if the 

integrality of the ijx  variables is relaxed. Note also that the CM model is obtained from 

the p-median model by replacing the constraint on the number of open facilities 

( jj J y p  ) with the capacity constraints (5.4) and (5.5), thus making the number of 

facilities a model output rather than a parameter, and by adding closest and single 

assignment constraints (5.6) and (5.7), which are redundant in the p-median model. 

Regarding the choice of formulation of CA constraints, we adopted formulation (5.6) as 

it provides a tighter LP relaxation than other alternatives proposed in the literature – see 

the discussions by Hanjoul and Peeters (1987), Gerrard and Church (1996), and Espejo 

et al. (2012). 

We now recall the definitions of two related problems that will be useful later. The 

uncapacitated facility location problem (UFLP) is the problem of minimizing 

ij ij j ji I j J j Jc x f y      subject to (5.2), (5.3), (5.7) and (5.8), where fj is the fixed 

cost of installing a facility at site j. The UFLP with preference orderings (UFLPO) 

requires in addition the satisfaction of constraints (5.6), but these are now termed 

“preference constraints” and dij values represent given preferences, unrelated to costs cij, 

such that: ij ikd d  means that users or clients at center i strictly prefer facility j over k, 

and ij ikd d  means that facilities j and k are indifferent. Thus, the UFLPO is an 

extension of the UFLP where each demand center must be assigned to the most 

preferred open facility (rather than the least cost facility). Note that if cij is strictly 

increasing with dij for all centers i, then constraints (5.6) are redundant and the UFLPO 

reduces to the UFLP. 

In the study of the CM model in this this chapter, we make the following assumptions 

about model data: minimum capacities are constant (bj = b for all sites j); maximum 

capacities are non-binding (Bj for all sites j is greater or equal to the total demand), and 
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thus constraints (5.5) can be dropped from the formulation. Let X LSC denote the feasible 

set of the CM model with those assumptions, i.e. the set of the location model with 

constant lower capacity bounds (L), single assignment (S) and closest assignment (C): 

 X LSC =   {0,1} , {0,1} :n m mx y   (5.2), (5.3), (5.4), (5.6) are satisfied, 

  assuming jb b  for j J  

We will study valid inequalities for the following sets: 

 X UFLPO =   {0,1} , {0,1} :n m mx y   (5.2), (5.3), (5.6) are satisfied   

 X LS =   {0,1} , {0,1} :n m mx y   (5.2), (5.3), (5.4) are satisfied, 

  assuming jb b  for j J  

 X LSI =   {0,1} , {0,1} :n m mx y   (5.2), (5.3), (5.4), ii ix y  for i I  are satisfied, 

  assuming I J , and ib b  for i I  

Sets X UFLPO and X LS are relaxations of (i.e. contain) the set X LSC. Set X LSI is a relaxation 

of a variant of X LSC restricted to: (1) identical sets of centers and sites (I = J); (2) 

ii ix y  for i I , i.e. facilities must serve the centers where they are located. Note that 

when I = J and dij data is such that dii is the unique, minimum distance for i I , then the 

CA constraints (5.6) for i I  and j i  reduce to ii ix y , and combined with (5.3) give 

ii ix y . 

Before continuing, we note that the CM model is NP-hard, since the UFLP, which is 

NP-hard (Cornuejols et al., 1990), can be polynomially reduced to it. An instance of the 

UFLP can be transformed into an instance of the CM model by the following procedure, 

using closest assignment constraints to include fixed costs in the objective function 

through equivalent variable costs. (1) For i  I,  j  J, set cij as in the original UFLP 

data and set dij = 0. (2) Create a set I’ of fictitious centers corresponding to sites in J; for 

i  I’,  j  J, set cij = fj if i = j or equal to zero otherwise, and set dij = 0 if i = j or equal 

to any positive value otherwise. (3) Augment the set I with set I’ and set all other data 

(ui, bj, Bj) to zero. A similar procedure was cited by Hansen et al. (2004) to reduce the 

UFLPO to a restricted UFLPO without fixed costs ( fj = 0 for all sites j), thus showing 

that even this restricted problem is NP-hard. 

5.3 Valid inequalities for X 
UFLPO 

We first introduce additional notation related to the preference (or closest assignment) 

constraints. For i I , j J : 
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 |ij ik ijW k J d d     (worse/farther sites) 

 \ |ij ij ik ijN J W k J d d      (not worse/farther sites) 

 |ij ik ijE k J d d     (indifferent/equidistant sites) 

 \ |ij ij ij ik ijN N E k J d d      (strictly better/closer sites) 

In his PhD thesis, García (2006) studied several valid inequalities for X UFLPO and 

proposed the reformulation procedure cited above, later also published by Cánovas et al. 

(2007). These authors assumed data with no preference ties, i.e. Eij = {j} holds for all i 

and j. Next we review relevant inequalities and discuss the case of data with preference 

ties, i.e. |Eij|  1. 

Dominance inequalities – assuming no preference ties, |Eij| = 1 (Cánovas et al., 2007): 

 1 2i j i jx x , for 1 2, ,i i I j J  : 1 2i j i jW W  (or 1 2i j i jN N )  

 1 2i j i jx x , for 1 2, ,i i I j J  : 1 2i j i jW W  (or 1 2i j i jN N )  

The first inequality states that assigning i1 to j implies also assigning i2 to j if all sites 

better than j for i1 are also better than j for i2. The equality results from combining two 

inequalities. 

Inequality 1 2i j i jx x  dominates the VUB constraint 1i j jx y , since 2i j jx y  is also in 

the model, and can be used to strengthen the formulation. Thus, as noted by Cánovas et 

al. (2007), while all VUB constraints are facet defining for the UFLP polytope 

(Cornuejols et al., 1990), this is not the case for the UFLPO polytope, depending on dij 

data. Next we present a generalization for data with preference ties. 

Dominance inequalities – generalized for preference ties, |Eij|  1: 

 1 2i j i jx x , for 1 2, ,i i I j J  :  1 2 \i j i jN N j   (A) 

 1 2i j i jx x , for 1 2, ,i i I j J  : 1 2i j i jN N   and  1 2i j i jE E j   (Aeq) 

Proof of validity of (A): If 1 0i jx   the inequality is trivially valid. If 1 1i jx   then it must 

be 1jy   and 0ky   for 1i jk N   in order to satisfy (5.3) and (5.6), respectively. Then, 

(5.3) implies 2 0i kx   for 1i jk N  , and, given that  1 2 \i j i jN N j  , (5.6) implies 

2 1i jx  . 

Proof of validity of (Aeq): As ij ij ijN N E  , inequalities (A) hold for both 1 2( , )i i  and 

2 1( , )i i  if  1 2 2 \{ }i j i j i jN N E j    and  2 1 1 \{ }i j i j i jN N E j   , which leads to the 

conditions given. 
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Preference inequalities (Cánovas et al., 2007): 

 1

1

1
i j

i k j
k W

x y


  , for 1 ,i I j J   (C1) 

 1 2

1 2 1\

1
i j i j i j

i k i k j
k W k W W

x x y
 

    , for 1 2, ,i i I j J   (C2) 

 1
1

1
1

2 \

1t
t

i j i j i jt rr

s

i k i k j
k W t k W W

x x y



  

    


, for 1,..., ,si i I j J   (Cs) 

Inequalities (C1) are equivalent to (5.6), as demand constraints (5.2) imply that 

1
ij ijik ikk N k Wx x     for all i I , j J . The two formulations can be interpreted as 

follows: if facility j is open, (C1) forbids assignment to worse facilities, while (5.6) 

forces assignment to better or indifferent facilities. Note that formulation (5.6) implies 

that all centers must be assigned if at least one facility is open, while (C1) is compatible 

with models where not all demand requires satisfaction, i.e. with “=” replaced by “” in 

(5.2). 

Inequalities (C2) and (Cs) are generalizations of (C1). Although inequalities (C1) can be 

dominated by the others, e.g. by (C2) for 1 2, ,i i I j J   such that 2 1\i j i jW W  , 

Cánovas et al. (2007) chose not to replace all such dominated inequalities (C1), since, 

according to their experiments, the improvement of LP bounds would not compensate 

the increase of the number of non-zero elements. However, a particular case is exploited 

in the reformulation: if 1 2i j i jW W , inequality (C2) for 1 2( , , )i i j  dominates the two 

(C1) inequalities for 1( , )i j  and 2( , )i j  while not increasing formulation size (this applies 

similarly to the generalized (Cs) inequalities). Finally, we note that the inequalities 

above remain valid when data has preference ties. 

W inequalities (García, 2006): 

 1 2

1 1i j i j

i k i k
k W k W

x x
 

  , for 1 2, ,i i I j J  . (W) 

 1 2i k i k
k S k S

x x
 

  , for 1 2, , ,i i I j h J  : 1 2i j i hS W W  . (Weq) 

Proof of validity of (W): If the left-hand side is zero, the inequality is trivially valid. If 

11
1

i j i kk W x   then, for 1\ i jk J W , (5.2) implies 1 0i kx  , (5.6) requires 0ky  , and 

(5.3) implies 2 0i kx   for all 2i I . Thus, for all 2i I , 21\ 0
i j i kk J W x   and (5.2) 

requires 21
1

i j i kk W x  . 

Proof of validity of (Weq): The equality follows from combining (W) for 1 2( , , )i i j  and 

for 2 1( , , )i i h . 
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Inequality (W) states that assigning i1 to facilities it prefers less than j implies also 

assigning all other centers to those facilities (since all others must be closed). Equality 

(Weq) states that if sites in set S are the worst for both i1 and i2 (but possibly ordered 

differently), then i1 and i2 must be either both assigned to facilities in S or both not 

assigned to facilities in S. The proof of (W) above uses the same arguments as the one 

by García (2006). We also note that (W) and (Weq) remain valid when data has 

preference ties. 

Inequality (W) for 1 2( , , )i i j  dominates inequality (C1) 11
1

i j i k jk W x y    if 1 2i j i jW W , 

since 1 21 1i j i ji k i kk W k Wx x   22i j i kk W x  1 jy  , following respectively from (W), 

1 2i j i jW W , and (C1) for 2( , )i j . However, Cánovas et al. (2007) do not exploit this in 

the reformulation since replacing all such dominated (C1) inequalities would again not 

be compensated by the increase of the number of non-zero elements.  

Inequalities (W) (actually, slightly less general variants) were independently introduced 

by Belotti et al. (2007) and Vasilyev et al. (2009), and were exploited to generate cuts in 

branch-and-cut algorithms by Belotti et al. (2007) and Vasilyev and Klimentova (2010). 

In this chapter, we exploit (Weq) in an additional step of the reformulation procedure 

and exploit (W) to generate cuts in a branch-and-cut algorithm. Finally, we note that 

García (2006) presented additional new valid inequalities for X UFLPO which are not 

useful for the a priori reformulation but may be useful to generate cuts. However, they 

were not tested by García (2006), nor in later work by any author, as far as we know. 

5.4 Reformulation procedure for X 
UFLPO 

We next present an a priori reformulation procedure for the UFLPO that aims to 

strengthen the formulation and reduce its size (in terms of number of variables, 

constraints and non-zero elements) before applying a branch-and-cut algorithm. The 

procedure depends on the particular data of each instance, specifically on the dij data 

underlying CA constraints (5.6), and makes use of inequalities (Aeq), (A), (Weq), and 

(Cs). This procedure is based on work by Cánovas et al. (2007), and is here extended for 

data with dij ties and with an additional step. 

Step 1 (use (Aeq) to strengthen VUB constraints). For j J  and 1 2, ,..., si i i I , 

1 ... si i  , such that 1 ... si j i jN N    and  1 ... si j i jE E j   : replace constraint ij jx y  

with 1ij i jx x  for 2 ,..., si i i . The variables 2 ,..., si j i jx x  are termed replaced in the next 

step. 
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Step 2 (use (A) to strengthen VUB constraints). For j J  and 1 2,i i I , 1 2i i , such 

that  1 2 \i j i jN N j  : replace constraint 1i j jx y  with 1 2i j i jx x  if (i) both variables 1i jx  

and 2i jx  were not replaced in step 1, and (ii) 1 2i j i jx x  is not dominated, i.e. no 3i I , 

3 1 2,i i i , exists such that 1 3i j i jx x  and 3 2i j i jx x  also hold. In addition, if more than 

one such 2i I  exists, only one inequality is added so as not to enlarge the model. In 

this case, the minimum lexicographic index is chosen. 

Step 3. New step, described further below. 

Step 4 (remove trivially redundant CA constraints). For i I : (1) if a unique j J  

exists such that 1ijN  , remove the CA constraint for (i, j), which reduces to ij jx y , 

and replace VUB constraint ij jx y  with ij jx y ; (2) for j J  such that ijN m , 

remove the CA constraint for (i, j), which reduces to 1 jy . 

Step 5 (use (Cs) to strengthen CA constraints). For j J , let T I  such that 2T  , 

ijW    for all i T  and 1 2i j i jW W   for all 1 2,i i T . Replace CA constraints 

ij ik jk N x y   for i T  with 1
ij ik ji T k W x y     . 

Cánovas et al. (2007) describe the following algorithm to find sets T. For each j J : 

(1) define   : :ij tj ij tjS i I W t I W W W          and construct a graph 

( , )S A  with set of arcs  1 21 2( , ) : i j i jA i i S S W W     ; (2) search a clique T in the 

graph and replace CA constraints for i T  as described above; (3) remove the nodes in 

T from the graph and return to the previous step until no edges remain in the graph. 

García (2006) includes the following further remarks. This procedure does not search 

for all possible cliques, in order to avoid increasing model size. In step (2), the clique is 

selected by adding elements remaining in S in lexicographic order (although alternative 

heuristic rules would be possible). 

Step 6 (reduce the number of non-zero elements in CA constraints). For each CA 

constraint (original or strengthened in the previous step), if ij ijW N  replace 

ij ikk N x  by 1
ij ikW x . This changes formulation (5.6) into (C1). 

Notes: 

 All steps above were part of the original procedure of Cánovas et al. (2007). The 

conditions of steps 1, 2 and 4 were modified to account for ties in dij data. The 

original steps 5 and 6 were valid with such ties, and remain unaltered in this 

respect. In steps 2 and 5, the original rules were retained to select among 

multiple alternative inequalities, when they exist. However, step 5 considers 
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only the CA constraints which are not dropped in step 3, which is described 

below. 

 The presolve routine of a MIP optimizer will automatically perform step 4, so 

this step could be dropped. It will also eliminate redundant variables after steps 

1 and 4 even if they are kept in the initial formulation, which is useful to 

simplify the implementation. 

 Church (2003) proposed a reformulation of the p-median model, called COBRA, 

including a step equivalent to step 1 above. 

We next introduce an additional reformulation step exploiting equalities (Weq). The 

following additional notation is used: 

CA(i, j) denotes CA constraints (5.6) for a particular pair of centers and sites 

(i, j), and 1 2( , , )eqW i i j  is similar notation for (Weq); 

1 2( , , )EQ i i A  := 1 2i k i kk A k Ax x    for 1 2,i i I , A J . 

We start with some preliminary remarks. For 1 2,i i I  and 1 2,j j J : 

Remark 1: If 1 1 2 2i j i jA N N  , then 1 2 1( , , )eqW i i j = 1 2 2( , , )eqW i i j = 1 2( , , \ )EQ i i J A  and, 

given demand constraints (5.2), this equality is equivalent to 1 2( , , )EQ i i A . 

Remark 2: If 1 1 2 2i j i jA N N   and 1 1 2 2i h i hB N N   with 1 2,h h J  and A B , then we 

can write the three equalities 1 2( , , )EQ i i A , 1 2( , , \ )EQ i i B A , and 1 2( , , )EQ i i B . Only two 

are independent and the first two have the least number of non-zero elements. 

Remark 3: If 1 1 2 2i j i jA N N   and equality 1 2( , , )EQ i i A  is added to the formulation, 

then one or more CA constraints become redundant or dominated. In the following, we 

recall that 1 2( , , )EQ i i A := 1 2i k i kk A k Ax x    and ( , )CA i h :=
ih ik hk N x y  . 

i) For 1 1 2 2i j i jh E E  , and thus 1 2i h i hN N A  , 1( , )CA i h  and 2( , )CA i h  are 

equivalent and one can be dropped, e.g. the latter. 

ii) For 1 1 2 2\i j i jh E E , and thus 2 1i h i hN N A  , 1( , )CA i h  is dominated by 

2( , )CA i h  and can be dropped. 

iii) For 2 2 1 1\i j i jh E E , and thus 1 2i h i hN N A  , 2( , )CA i h  is dominated by 

1( , )CA i h  and can be dropped. 

If no dij ties exist, i.e.  1 1 1i jE j  and  2 2 2i jE j , there are two cases: if 

1 2j j , part (i) applies and either 1 1( , )CA i j  or 2 2( , )CA i j  can be dropped; if 
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1 2j j , parts (ii) and (iii) apply and both 1 1( , )CA i j  and 2 2( , )CA i j  can be 

dropped. 

Regarding the number of non-zero elements when 1 2( , , )EQ i i A  is added and 

redundant CA constraints are dropped: it increases if 1 1 2 2 1i j i jE E   and 

1 2j j  and 1A  ; otherwise, it does not increase or decreases. 

The new step uses the remarks above and is as follows. 

Step 3 (add equalities (Weq) and remove redundant CA constraints) 

Step 3.1 (add EQ). For 1 2,i i I | 2 1i i , find ,h hj j J   for 1,...,h s  such that hS   

1 2h hi j i jN N   and 0 1 ... sS S S J     . For 1,...,h s , set 1\h h hT S S   and add 

1 2( , , )hEQ i i T  to the formulation if it is not redundant, i.e. if all of the following are 

false: 

1. hT J . In this case, the only equality that can be written for the pair (i1, i2) is 

dominated by demand constraints (5.2). 

2. 1hT  . In this case, the equality was already added in step 1. 

3. Equalities 1i j ijx x  for some i I  and all hj T  were added in step 1, and 

2( , , )hEQ i i T  was already added in step 3. 

4. Equalities 2i j ijx x  for some i I  and all hj T  were added in step 1, and 

1( , , )hEQ i i T  was already added in step 3. 

5. Equality 1( , , )hEQ i i T  was already added for some i I : 1i i . In this case, 

2( , , )hEQ i i T  was also already added or is implied by other added equalities. 

6. h mT T :  arg max 1,..., : km k s T  . Since one equality will be redundant, 

given demand constraints (5.2), choose one with the maximum number of 

elements (if more than one exists, pick the lexicographic minimum m). 

Step 3.2 (drop CA). For 1 2,i i I , 1 2,j j J | 1 1 2 2i j i jA N N  : drop CA constraints 

according to Remark 3 above. In all cases, 1 2( , , )EQ i i A  is valid and is implied by the 

formulation after step 3.1. Includes the special case 1 1 2 2 1i j i jE E   and 1 2j j , 

corresponding to the equalities added in step 1. 

The computational performance of the reformulated model is presented in the results 

section, including a comparison between the UFLPO and the CM model. 
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5.5 Valid inequalities for X 
LS 

We next present valid inequalities for X LS. All inequalities are of the general form 

  
\

,j ij
j S i I T j S

y m S T x
  

     

where S J  and T I  are given subsets of sites and centers, respectively, and m(S,T) 

is an upper bound on the number of facilities that can be open in S by being assigned all 

the demand centers in T. The inequality states that each additional open facility in S in 

excess of m(S,T) requires the assignment of at least one center not in T. Different upper 

bounds m(S,T) are derived from the minimum capacity and single assignment 

constraints. 

Additional notation is used: a    and a    denote the integer round-down and round-up 

functions, respectively; ( ) ii Tu T u   for T I . 

We start with a simple inequality setting an upper bound on the total number of open 

facilities implied by constant lower capacity bounds. This is a single inequality that can 

be added a priori to the formulation. 

Proposition 1. The following inequality is valid for X LS: 

 
ii I

j
j J

u
y

b




 
  
 

  (5.9) 

Proof. Summing minimum capacity constraints (5.4) gives i ij j ji I j J j Ju x b y     . 

Then using 1ijj J x   for i I  and jb b  for j J  gives  j ij J i Iy u b   . As 

the left-hand side is integral, the right-hand side can be rounded down, giving (5.9).  

Next we introduce a general class of inequalities by using the bin covering problem 

(BCP), also called the dual bin packing problem (Labbé et al., 1995; Csirik et al., 2001). 

In the BCP, there is an unlimited number of bins and indivisible items of given weights, 

and the aim is to pack items into a maximum number of bins so that each bin receives at 

least a given minimum weight, equal for all bins. 

In the context of this chapter, let ( )bc T  be the maximum number of facilities that can be 

open by being assigned only centers in T I , obtained by solving the following BCP: 

( )bc T = max j
j J

y

  

s.t. 1ij
j J

x


 ,  i T   
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 i ij j
i T

u x by


 ,  j J   

  0,1ijx  ,   0,1jy  , ,i T j J    

Proposition 2. Let S J , T I  and ( )bc T  be the optimal value of the bin covering 

problem with demand set T and minimum capacity b. The following bin covering 

inequality is valid for X LS: 

 
\

( )j ij
j S i I T j S

y bc T x
  

     (5.10) 

Proof. Suppose that ( )jj S y bc T k   . If 0k  , the inequality is trivially valid. So 

suppose that 1k  . By definition, at most ( )bc T  open facilities can satisfy the minimum 

capacity constraints (5.4) with only the demand from T. Thus, at least k open facilities 

in S require additional demand from I \ T to satisfy (5.4). Because of single assignment 

constraints (5.7), this implies \ iji I T j S x k    , and thus the inequality is valid.  

We observe that bin covering inequalities are the analogue for constant minimum 

capacities of the bin packing inequalities studied by Deng and Simchi-Levi (1992) and 

by Labbé and Yaman (2006) for the polytope of the capacitated facility location 

problem (CFLP) with single assignment and constant maximum capacities. 

Since there are an exponential number of inequalities (5.10), particular cases that can be 

added to the formulation a priori or as cuts may be useful in practice. To use (5.10) it is 

necessary to choose sets S and T and to compute ( )bc T . We observe that ( )S bc T  

must hold for the inequality not to be redundant, and T should be maximal for the 

inequality to be tight, i.e. T T   such that ( ) ( )bc T bc T   produces a dominated 

inequality. 

If ( )bc T  is replaced in (5.10) by an upper bound ( )U bc T , a weaker but still valid 

inequality is obtained. This is useful to avoid computing ( )bc T  since the BCP is NP-

hard, as noted by Labbé et al. (1995). The same authors present reduction criteria, upper 

bounds, lower bounds and a branch-and-bound algorithm for the BCP. They assume 

first that iu b , i T  . The four upper bounds provided are: 0 2U T    ; 

1 ( )U u T b    ; and two other bounds 2U  and 3U  that can be computed in ( )O n  time 

assuming items are sorted by weight. 2U  dominates the two first bounds, i.e. 

 2 0 1min ,U U U , and the best bound is  2 3min ,U U U . 

Note that by using S = J and T = I  in (5.10) we get the following inequality dominating 

(5.9), whose right-hand side is the upper bound U1: 
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 ( )j
j J

y bc I


  (5.11) 

We now turn our attention to inequalities making use of upper bounds on ( )bc T . 

Proposition 3. Let S J , T I . The following inequality is valid for X LS: 

 
\

( )j ij
j S i I T j S

y u T b x
  

       (LSa) 

Proof. ( )u T b    is an upper bound on ( )bc T , following the arguments used in the proof 

of proposition 1 with I replaced by T. Replacing ( )bc T  by that upper bound, the 

arguments in the proof of proposition 2 remain valid.  

To use (LSa) it is necessary to choose sets S and T. For the inequality not to be 

redundant, it must be ( )S u T b    . For the inequality to be tight, T should be maximal 

subject to  ( ) ( ) 1u T u T b b     . 

Particular cases of non-dominated inequalities (LSa) for a given S with 3S   are: 

 
\

j ij
i I T

y x


  ,  T I  : ( )u T b  (LSa10) 

  1 2 1 2

\

1j j ij ij
i I T

y y x x


    ,  T I  : ( ) 2b u T b   (LSa21) 

  1 2 3 1 2 3

\

1j j j ij ij ij
i I T

y y y x x x


      ,  T I  : ( ) 2b u T b   (LSa31) 

  1 2 3 1 2 3

\

2j j j ij ij ij
i I T

y y y x x x


      ,  T I  : 2 ( ) 3b u T b    (LSa32) 

 

Proposition 4. Let S J , T I , iu b , i T  . The following inequality is valid for 

X LS: 

 
\2

j ij
j S i I T j S

T
y x

  

        (LSb) 

Proof. 2T    is an upper bound on ( )bc T  if iu b  for i T  (Labbé et al., 1995), and 

the arguments in the proof of proposition 2 remain valid with ( )bc T  replaced by that 

bound. An alternative proof is as follows. Suppose that 2jj S y T k     . If 0k  , 

the inequality is trivially valid. So suppose that 1k  . To satisfy minimum capacity 

constraints (5.4) and single assignment constraints (5.7), and given that iu b  for i T , 

each open facility in S must be assigned either (i) at least two centers in T, or (ii) at most 

one center in T and at least one center not in T. The number of open facilities in S 

satisfying (i) is at most 2T   , and satisfying (ii) is at least k. This implies that 

\ iji I T j S x k    , and thus the inequality is valid.  
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To use (LSb) it is necessary to choose sets S and T. For the inequality not to be 

redundant, it must be 2T S . For the inequality to be tight, |T| should be odd (given S 

and T with |T| even, adding an element to T produces a tighter inequality). Comparing 

(LSb) and (LSa), if 2S   then (LSb) is dominated by (LSa), specifically by (LSa10) or 

(LSa21). If 3S  , no inequality always dominates the other. 

Particular cases of inequalities (LSb) for a given S with 3S   and for 3T   are: 

  1 2 3 1 2 3

\

1j j j ij ij ij
i I T

y y y x x x


      ,  T I  : 3T  , iu b , i T   (LSb31) 

Inequality (LSb31) is only useful if ( ) 2u T b , otherwise it is dominated by (LSa31) or 

by a combination of (LSa10) for all elements of S. 

5.6 Valid inequalities for X 
LSI 

We now consider set X LSI, i.e. the restriction of X LS assuming I = J and xii = yi for i I . 

These conditions allow some of the previous inequalities to be strengthened. 

Proposition 5. Let S T I  , iu b , i S  . The following inequality is valid for X LSI: 

 
\

2 j ij
j S i I T j S

y T x
  

     (LSc) 

or, equivalently, 

 
\

2
2

j ij
j S i I T j S

T
y x

  

        
   ,  if T  is even  

 
\

2 1
2

j ij
j S i I T j S

T
y x

  

         
   ,  if T  is odd  

Proof. Suppose that 2jj S y T k     . If 0k  , the inequality is trivially valid. So 

suppose that 1k  . Thus there are 2A T k     centers in S with open facilities, 

assigned to their own facilities, as ii ix y  for i I . Since by assumption iu b  for 

i S , in order to satisfy minimum capacity constraints (5.4) and single assignment 

constraints (5.7), each open facility in S must additionally be assigned either (i) at least 

one other center in T or (ii) at least one center in I \ T. The number of open facilities in S 

satisfying (i) is at most B T A  , and satisfying (ii) is at least 

2 2 2 2A B A T T k T        . This implies that \ 2iji I T j S x k     if T  is 

even, or \ 2 1iji I T j S x k      if T  is odd, and thus the inequality is valid.  

To use (LSc) it is necessary to choose sets S and T and it must be 2T S  for the 

inequality not to be redundant. Comparing (LSc) and (LSb) for given S and T, if T  is 
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even then (LSc) dominates (LSb). If T  is odd, the left-hand side of (LSc) is higher than 

the one of (LSb) when 2 1jj S y T     ; thus, (LSc) is dominated by (LSb) if 

2 1S T     (e.g. 2, 3S T  ) and iu b  for i T  (this condition is required by 

(LSc) only for i S ); otherwise, no inequality always dominates the other. 

Particular cases of inequalities (LSc) for a given S with S 2 or 3 and T = S are: 

    1 2 1 2

\

2 1j j ij ij
i I T

y y x x


    ,  T S I  : iu b , i S   (LSc21) 

    1 2 3 1 2 3

\

2 1 1j j j ij ij ij
i I T

y y y x x x


       ,  T S I  : iu b , i S   (LSc31) 

5.7 Separation procedures 

In this section we present separation procedures for some of the valid inequalities from 

the previous sections in order to exploit them in a branch-and-cut algorithm. The 

separation problem associated with a given family of inequalities F for a formulation P 

is defined as follows. Given a fractional solution ( , ) n m mx y R R  
    obtained by 

solving the LP relaxation of P, find an inequality of family F that is violated by ( , )x y   

or show that no such inequality exists. 

For X LS and X LSI, we restricted our attention to inequalities with sets of small cardinality 

3S  , corresponding to particular cases presented before. It is also assumed that I J  

and that demand and capacity data is integer. 

Separation of inequalities (LSa10). For each j J  such that ju b  and 0jy  , find 

the set T that maximizes iji T x  subject to ( ) 1u T b  , which is a binary knapsack 

problem. If \j iji I T j Sy x 
    , the inequality is violated and is added to the 

formulation. Separation run time is O(n2 log n) if the knapsack problem is solved 

approximately by the standard greedy heuristic (Martello and Toth, 1990), requiring 

O(n log n) time. 

Separation of inequalities (LSa21). For each S J  such that 2S  , ( ) 2u S b  and 

1jj S y  , find the set T that maximizes iji T j S x    subject to ( ) 2 1u T b  , which 

is a binary knapsack problem. If \1j ijj S i I T j Sy x 
      , the inequality is violated 

and is added to the formulation. Separation run time is O(n3 log n) using the greedy 

knapsack heuristic. 

Separation of inequalities (LSa31). For each S J  such that 3S  , ( ) 2u S b  and 

1jj S y  , find the set T as for inequalities (LSa21). If the inequality is violated, add it 
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to the formulation. Separation run time is O(n4 log n) using the greedy knapsack 

heuristic. 

Separation of inequalities (LSb31) and (LSc31). For each S J  such that 3S  , 

iu b  for i S , and 1jj S y  , check if inequality (LSb31) is violated for T S . If so, 

add it to the formulation. If 2jj S y  , then inequality (LSc31) is violated by a larger 

amount and is added instead. Separation run time is O(n3). 

Separation of inequalities (W). The procedure of Belotti et al. (2007) was used. For 

each 1i I , find 2i I  and j J  that most violate inequality (W), and add all found 

violated inequalities to the formulation. Running time is O(n3) and up to n inequalities 

are added per iteration. 

In the computational experiments performed, the greedy knapsack heuristic was 

replaced by the exact procedure MT1 of Martello and Toth (1990), since this was still 

very fast for the instance sizes tested. 

5.8 Computational experiments 

Computational experiments were carried out with the CM model. The objective was to 

compare three solution methods using a generic MIP optimizer implementing a branch-

and-cut algorithm: 

 S – standard formulation; 

 R – a priori reformulation; 

 RC – a priori reformulation and special purpose cuts (or user cuts) in addition to 

automatic cuts. 

The software used was FICO’s Xpress Optimization Suite version 2005B (released in 

Nov. 2005). The model formulation and code for the reformulation and separation (cut 

generation) procedures were implemented with Xpress Mosel 1.6, and the model was 

solved with Xpress MIP Optimizer 16.10. The computer used had a Pentium M 755 2.0 

GHz CPU, 1.0 GB of memory, and Windows XP operating system. 

Formulation (5.1)-(5.8) was used with the following assumptions: identical sets of 

centers and sites (I = J); constant minimum capacities (bj = b for all sites j); non-binding 

maximum capacities (Bj is greater or equal to total demand for all sites j), and thus 

constraints (5.5) were dropped from the formulation. Constraint (5.9) was added a priori 

to the formulation. The simple upper bound in (5.9) could have been replaced by the 

tightest bin covering upper bound of Labbé et al. (2005) mentioned in section 5.5, but 
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this would make no difference in our tests since the two bounds were equal in the 

instances tested. 

Regarding user cuts, after preliminary experiments the following procedure was 

adopted. Cuts are generated from inequalities (W) and (LSa10) only, as the others 

referred to in the previous section led to increased solution times in preliminary 

experiments. Cuts are generated at the top node only (after automatic cut generation). 

Only cuts violated more than a given threshold are added (0.01 was used). In each 

round, cuts of a single type are added. All added cuts remain in the formulation, 

including those that become inactive in later rounds. 

Regarding solver parameters, branching priority was given to y variables (in preliminary 

tests this reduced solution time significantly, by 5-60%). A time limit of 1 hour was 

imposed. All other parameters were left at default values, except for method RC where 

presolve was disabled (to avoid interference of variable elimination with user cut 

generation). 

Test instances were randomly generated as follows. First, for a given size n (number of 

centers), 9 data sets (cij, ui) were created: points representing centers were uniformly 

generated in [0,100][0,100]; ui = 1000/nUniform[0.1,1.9]; cij = uidij, where dij is the 

Euclidean distance between centers i and j. Then, the capacity ratio r, equal to total 

demand divided by the minimum capacity (i.e. the expected maximum number of open 

facilities), was used as a control parameter to derive 4 instances from each data set 

(cij, ui) by setting ii Ib u r   for r = n0.1, 0.2, 0.3, and 0.4. All data was rounded to 

integer values. 

Results are reported in the tables below, with the following definitions: 

 n-r: instance group, defined by size n and capacity ratio r; 

 inst.: number of the individual instance; 

 IP: optimal value; 

 nf: number of facilities in an optimal integer solution; 

 finished: 1 if the instance was solved to optimality within the time limit, 0 

otherwise;  

 time: total solution time in seconds; includes the time for the reformulation 

procedure and user cut generation, if applicable (note: the reported time of 

unfinished instances may exceed the imposed limit of 3600, since this excludes 

time for the a priori reformulation procedure and the first LP relaxation); 

 nodes: number of nodes in the branch-and-bound tree; 
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 gaps: gapLP=(IP-LP)/IP, gapXLP=(IP-XLP)/IP, gap closed=(XLP-LP)/(IP-LP), 

where LP is the value of the first LP relaxation, XLP is the value of the LP 

relaxation at the top node after addition of cuts, and IP is the optimal value; 

 acuts and ucuts: number of cuts added at the top node by the automatic and user 

procedures, respectively; the number of generated automatic cuts may be higher, 

as cuts that become inactive in successive cut generation iterations are deleted; 

Table 5.1 and Table 5.2 summarize results of individual instances in Table 5.3, where: 

 “avg” denotes arithmetic averages of results of individual instances; 

 gap closed with methods S, R and RC is relative to the LP value with method S; 

 time ratio A/B is the time with method A divided by the time with method B, 

computed for individual instances. 

First we observe that instances with smaller capacity ratios (r/n=0.1 and 0.2) are harder 

to solve than those with larger ratios (r/n=0.3 and 0.4). Method R relatively to S solves 

more instances within the time limit and reduces time by about 60% on average and by 

20-90% for different instance groups (Table 5.1). LP and XLP gaps are also reduced 

(Table 5.2) and the number of nodes decreases significantly (Table 5.1), considering 

instance groups with comparable number of finished instances. Method RC relatively to 

R helps at further reducing XLP gaps and the number of nodes (but LP gaps with RC 

are larger, because presolve is disabled). Solution time decreases by about 30% 

relatively to method R for instances with r/n=0.2 (70-14 and 100-20), but for other 

instances time increases or is only slightly reduced. Thus we conclude that the 

reformulation procedure is very effective, while the user cuts are not generally effective. 

The explanation for the poor performance of user cuts is mainly that these cuts are 

relatively weak, i.e. the additional LP gap closed relatively to automatic cuts is small. 

For most instance groups, this gap reduction is not compensated by the increase in 

number of rows and non-zero elements. It was verified that positive time differences 

between methods RC and R are not explained by presolve being disabled in RC (if it is 

also disabled in R, differences are still positive), nor by user cut generation time being 

excessive (it is lower than those differences). Also, if inactive cuts are deleted in user 

cut generation routines (instead of being managed automatically by the solver), the 

solution time is similar. 
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Table 5.1: Summary of results – nodes and time 

n-r total finished avg nodes avg time avg time ratios 

  S R RC S R RC S R RC R/S RC/S RC/R 

70-7 9 9 9 2035 1529 1195 661 262 409 0.45 0.74 1.64 

70-14 8 9 9 9423 3106 1080 1771 383 228 0.27 0.18 0.70 

70-21 9 9 9 1430 279 170 241 47 51 0.29 0.32 1.14 

70-28 9 9 9 309 13 8 64 17 22 0.41 0.51 1.26 

70 total 35 36 36 3300 1232 613 685 178 178 0.36 0.44 1.18 

100-10 1 3 2 1430 3728 1776 3495 2956 2951 0.83 0.83 0.96 

100-20 1 6 8 2236 6022 1969 3344 2261 1323 0.64 0.38 0.67 

100-30 4 9 9 3618 949 184 2819 292 192 0.11 0.09 0.90 

100-40 8 9 9 4275 101 63 1723 80 95 0.10 0.12 1.22 

100 total 14 27 28 2889 2700 998 2845 1397 1140 0.42 0.35 0.94 

 

Table 5.2: Summary of results – gaps 

n-r avg gapLP (%) avg gapXLP (%) avg gap closed (%) 

  S R RC S R RC S R RC 

70-7 5.6 5.6 5.6 4.8 4.5 3.6 19 25 39 

70-14 9.9 9.7 9.7 6.4 4.9 3.3 36 52 68 

70-21 13.7 12.7 13.5 4.4 2.5 1.7 70 83 88 

70-28 15.5 13.5 20.6 3.1 1.0 0.8 80 94 95 

70 total 11.2 10.3 12.3 4.7 3.2 2.4 51 64 73 

100-10 6.9 6.7 6.7 6.2 5.5 4.3 12 21 38 

100-20 11.4 10.9 10.9 7.0 4.4 2.8 39 62 77 

100-30 16.3 14.0 16.1 6.0 3.0 2.0 64 82 88 

100-40 18.6 14.5 23.5 5.7 1.6 1.3 70 92 93 

100 total 13.3 11.5 14.3 6.2 3.6 2.6 46 64 74 
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Table 5.3: Detailed results 

n-r inst. IP nf ucuts
S R RC S R RC S R RC S R RC S R RC S R RC RC

1 15 389 7 1 1 1 29 23 55 21 21 182 1.5 1.4 1.4 0.8 0.6 0.5 25 30 24 65
2 14 525 6 1 1 1 96 32 41 236 105 104 1.7 1.6 1.6 1.3 1.2 1.1 20 24 24 49
3 15 298 6 1 1 1 743 184 544 2 418 1 081 2 053 7.8 7.8 7.8 6.9 6.5 5.4 30 69 78 233
4 14 776 6 1 1 1 1 321 530 561 3 458 3 549 2 263 6.9 6.9 6.9 6.1 5.9 4.6 48 59 64 238
5 15 146 6 1 1 1 945 434 814 3 139 2 044 2 163 9.1 9.0 9.0 8.0 6.9 5.3 51 104 116 354
6 15 100 6 1 1 1 1 631 644 906 5 323 4 348 2 127 8.9 8.8 8.8 8.2 7.4 5.5 65 48 95 381
7 16 337 6 1 1 1 85 35 41 278 175 71 3.3 3.2 3.2 2.5 2.3 1.8 15 23 26 86
8 15 567 6 1 1 1 130 76 75 325 400 183 3.1 3.0 3.0 2.6 2.6 2.4 21 25 31 105
9 14 896 6 1 1 1 971 400 645 3 121 2 034 1 606 8.1 8.1 8.1 7.1 6.8 5.6 54 83 84 281
1 10 377 14 1 1 1 1 037 316 130 5 855 2 651 280 9.9 8.9 8.9 6.5 4.7 2.2 107 138 162 231
2 9 245 13 1 1 1 116 74 62 373 350 56 5.1 5.1 5.1 2.9 2.0 0.7 95 94 138 153
3 9 792 13 1 1 1 225 44 41 1 030 101 15 6.2 5.9 5.9 3.5 2.6 1.4 95 115 143 179
4 9 887 12 1 1 1 2 267 245 345 12 152 1 903 2 387 9.6 9.5 9.5 6.3 4.4 3.8 158 149 140 119
5 9 579 13 1 1 1 1 755 345 186 8 916 2 793 649 12.3 12.2 12.2 8.1 6.7 5.0 108 146 175 173
6 9 716 12 1 1 1 2 886 635 341 15 584 5 291 1 406 12.1 12.1 12.1 7.2 5.0 4.1 147 177 174 200
7 10 162 11 0 1 1 3 601 535 429 17 645 4 066 2 282 13.3 13.0 13.0 9.2 7.3 5.0 113 154 168 213
8 9 382 12 1 1 1 667 215 97 2 562 1 607 235 10.4 10.0 10.0 6.9 5.6 3.5 111 100 103 182
9 10 023 12 1 1 1 3 386 1 037 424 20 694 9 190 2 407 10.3 10.2 10.2 7.0 5.5 4.2 114 143 138 191
1 7 137 21 1 1 1 26 18 21 36 23 13 10.4 9.6 10.7 1.3 0.7 0.7 110 78 102 27
2 7 188 17 1 1 1 146 57 49 750 197 26 10.7 9.7 10.5 3.5 2.1 0.9 157 153 166 90
3 7 933 18 1 1 1 178 44 42 1 017 93 17 17.4 15.4 17.3 4.5 1.8 0.8 153 129 151 102
4 7 725 17 1 1 1 350 42 71 2 053 67 209 13.8 13.0 13.2 4.5 1.9 1.5 142 155 149 131
5 6 624 18 1 1 1 132 21 25 741 42 7 13.9 13.2 13.7 5.4 1.9 1.1 88 71 81 54
6 7 156 18 1 1 1 137 24 31 991 43 66 9.8 9.1 9.8 2.8 1.4 1.1 122 112 126 63
7 7 456 17 1 1 1 372 98 68 2 561 1 000 259 17.9 17.8 18.1 8.3 6.5 5.6 118 107 111 124
8 6 862 17 1 1 1 43 19 22 57 5 5 12.0 9.6 11.5 1.8 0.5 0.4 140 98 82 36
9 7 655 18 1 1 1 789 100 129 4 667 1 037 927 17.1 16.6 17.1 7.2 5.4 3.7 130 116 121 119
1 5 999 25 1 1 1 22 13 13 23 25 7 13.4 11.8 23.3 1.5 0.9 0.6 83 56 97 15
2 5 979 23 1 1 1 59 20 35 240 17 7 16.7 14.5 20.7 4.4 0.7 0.4 127 99 130 39
3 6 090 24 1 1 1 38 18 20 97 1 1 15.9 12.9 19.9 3.1 0.1 0.1 113 76 110 29
4 6 179 23 1 1 1 60 20 26 253 25 27 17.3 17.0 21.3 3.2 2.5 2.3 127 89 116 11
5 5 448 22 1 1 1 21 13 17 33 13 3 14.2 11.3 17.8 3.7 0.7 0.9 64 55 58 25
6 6 430 22 1 1 1 267 27 32 1 829 13 8 20.1 17.4 27.6 5.1 0.9 0.9 147 113 144 72
7 5 815 21 1 1 1 36 13 18 83 5 1 14.6 13.1 19.7 2.0 0.4 0.7 119 54 96 40
8 5 090 22 1 1 1 25 10 10 62 1 1 11.3 8.4 14.3 1.9 0.0 0.0 85 50 87 0
9 5 953 22 1 1 1 51 19 25 160 19 19 16.1 15.5 20.8 3.4 2.4 1.7 119 93 100 48
1 25 848 10 0 0 0 3 609 3 637 3 634 1 326 4 578 1 920 8.8 8.8 8.8 7.9 7.6 6.3 41 69 92 298
2 22 292 9 1 1 1 2 592 898 655 1 770 1 676 541 3.1 3.0 3.0 2.8 2.5 2.1 32 40 75 155
3 23 295 9 0 0 0 3 610 3 636 3 634 1 469 4 449 2 042 7.6 7.3 7.3 6.9 5.9 5.0 59 106 101 272
4 23 207 10 0 1 1 3 607 554 463 1 777 805 345 4.0 3.9 3.9 3.2 2.7 2.2 52 113 125 263
5 22 356 9 0 0 0 3 607 3 637 3 635 1 035 2 570 1 365 9.5 9.3 9.3 9.1 8.4 5.4 55 111 108 430
6 22 892 8 0 1 0 3 607 3 329 3 632 1 460 6 443 2 975 5.7 5.7 5.7 4.8 4.6 3.7 47 80 90 244
7 25 621 10 0 0 0 3 607 3 637 3 633 1 317 4 947 2 646 8.2 8.1 8.1 6.9 5.9 4.3 76 108 132 335
8 24 455 9 0 0 0 3 609 3 638 3 635 1 455 4 014 2 086 7.6 7.0 7.0 6.8 5.6 4.3 56 82 95 304
9 24 949 9 0 0 0 3 608 3 638 3 635 1 259 4 072 2 068 8.0 7.7 7.7 7.4 6.6 5.6 75 101 115 358
1 15 492 18 0 0 1 3 604 3 634 1 181 2 281 10 848 1 920 11.8 11.3 11.3 7.4 5.3 3.8 198 177 203 177
2 14 341 16 0 1 1 3 604 994 950 2 470 2 197 820 9.9 9.6 9.6 6.5 4.1 2.6 179 218 234 238
3 14 687 17 0 1 1 3 604 2 136 875 2 037 5 785 1 018 11.9 11.5 11.5 7.1 4.6 2.5 263 236 257 234
4 15 324 19 0 1 1 3 604 3 248 2 046 3 395 12 151 5 239 12.1 11.8 11.8 7.0 5.2 3.5 208 185 180 202
5 14 076 16 0 1 1 3 605 1 629 601 2 092 2 348 177 10.2 9.8 9.8 7.2 3.6 0.9 208 280 294 381
6 15 181 17 0 0 1 3 605 3 635 1 893 1 662 7 825 2 073 9.7 9.4 9.4 6.2 4.6 3.1 247 251 255 291
7 16 812 19 0 0 0 3 604 3 634 3 631 2 466 8 682 5 870 19.0 18.0 18.0 12.8 7.5 5.7 249 230 234 264
8 13 959 17 1 1 1 1 263 151 208 937 23 9 7.2 6.7 6.7 2.6 0.7 0.3 195 210 179 92
9 14 506 18 0 1 1 3 604 1 288 520 2 780 4 341 592 10.3 10.2 10.3 6.5 4.3 3.0 193 172 243 117
1 11 750 26 0 1 1 3 604 250 225 4 943 818 349 16.4 13.8 16.7 5.6 3.4 2.5 181 147 175 76
2 11 161 24 0 1 1 3 604 331 231 2 420 659 53 17.8 13.7 16.7 7.7 4.1 2.0 214 175 228 117
3 10 432 24 1 1 1 1 667 74 75 2 924 25 15 15.0 12.8 15.0 3.8 1.0 1.0 206 125 132 27
4 11 188 28 1 1 1 1 901 138 166 3 734 209 205 15.1 12.4 15.7 4.7 2.8 2.7 210 146 158 43
5 10 481 22 0 1 1 3 603 1 054 307 2 568 4 568 245 19.5 18.5 19.5 10.1 4.6 2.9 237 171 209 131
6 11 204 24 1 1 1 3 357 141 173 3 813 45 19 11.9 9.9 10.9 4.5 1.5 0.7 261 204 245 94
7 11 619 26 0 1 1 3 604 344 259 8 268 1 995 721 19.9 17.9 19.7 8.3 5.2 3.5 173 126 176 95
8 11 017 23 0 1 1 3 604 177 165 3 416 132 39 16.1 14.4 15.7 5.6 2.0 1.9 255 205 209 51
9 10 998 25 1 1 1 427 116 129 474 93 11 15.1 12.2 14.9 3.9 2.3 0.8 186 110 173 55
1 9 160 33 1 1 1 629 110 95 1 807 328 135 19.3 16.7 21.6 4.8 3.7 3.3 145 65 94 30
2 9 219 30 0 1 1 3 604 96 132 7 138 69 5 20.9 15.5 26.7 9.3 1.3 0.5 189 157 178 33
3 8 942 32 1 1 1 2 300 77 87 6 329 82 44 19.2 16.0 24.2 7.9 1.6 0.7 144 97 131 19
4 9 050 33 1 1 1 2 209 94 110 10 372 288 135 18.2 14.3 26.7 5.6 2.7 2.1 141 70 109 29
5 7 992 29 1 1 1 2 380 65 88 4 814 9 7 19.3 15.1 22.0 7.2 0.8 0.7 144 80 127 0
6 9 618 30 1 1 1 3 402 114 125 6 247 37 38 19.1 14.8 23.6 6.7 2.0 0.7 182 126 158 83
7 9 170 32 1 1 1 282 55 83 617 92 201 17.6 13.1 24.2 3.3 2.2 3.0 123 48 90 8
8 8 661 31 1 1 1 492 55 53 885 1 1 18.4 13.7 22.0 4.1 0.0 0.0 175 107 122 0
9 8 736 31 1 1 1 211 51 77 264 3 5 15.7 10.8 20.4 2.5 0.2 0.3 164 70 122 11

100-40

gapLP (%) gapXLP (%) acuts

70-7

70-14

70-21

70-28

finished time nodes

100-10

100-20

100-30
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We now turn to a more detailed discussion of the a priori reformulation procedure. 

Statistics are presented in Table 5.4, comparing our results for the CM model and the 

results of Cánovas et al. (2007) for the UFLPO (which refer to averages of sets of 

instances of sizes 50x50, 75x50 and 100x75). Statistics for the CM model are 

homogeneous for all capacity ratios (the reformulation does not depend on capacity 

data), except solution time, which is an average of all capacity ratios. 

Recall that in the CM model the coefficients dij underlying the closest assignment 

constraints represent distances or costs (and objective function coefficients cij depend 

monotonically on them), while in the UFLPO they represent arbitrary preferences. In 

spite of this difference, for the instances tested, the two models have similar percentages 

of tightened VUB constraints (80-90%) and reductions of the number of non-zero 

elements (about 45%). The reformulation is very effective at reducing solution time for 

both models: 50-60% for the UFLPO, about 60% for the CM model. 

Adding step 3 to the reformulation of the CM model further reduces the number of non-

zero elements (while equalities are added in this step, many CA constraints are 

removed) and further reduces solution time (by 5-20% depending on capacity ratio and 

relatively to the reformulation, as shown in data further below). 

The run time of the reformulation procedure for the CM model was 7 seconds for size 

n=70 and 28 seconds for n=100 (about 1% of the average total solution time with the 

standard formulation). 

Table 5.4: Statistics of the reformulation procedure 

 CM model (size 
n=70) 

UFLPO (Cánovas et 
al., 2007) 

Percentage of variable upper bound 
constraints (5.3) tightened in steps 1,2 

93% 83-91% 

Percentage of closest assignment constraints 
(5.6) tightened in step 5 

7% not reported 

Number of equalities added in step 3 relative 
to the original number of closest assignment 
constraints 

9% not applicable 

Percentage of closest assignment constraints 
(5.6) removed in steps 3, 4 and 5 

9% without step 3, 
28% with step 3 

15-19% (without step 
3) 

Reduction of the number of non-zero 
elements (before LP presolve) 

44% without step 3, 
48% with step 3 

43-45% 

Reduction of total solution time 
57% without step 3, 

64% with step 3 
49-58% 
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In Table 5.5 and Table 5.6 the following methods are compared: 

 S: standard formulation; 

 R12: reformulation with steps 1+2 only; 

 R-35: reformulation with steps 1+2+4+6 (i.e. all steps except 3, 5); 

 R-5: reformulation with steps 1-6 except 5; 

 R-3: reformulation with steps 1-6 except 3; 

 R: reformulation with all steps 1-6. 

It can be seen that steps 1+2 (dedicated to VUB constraints) contribute the most to the 

overall performance of the reformulation. Step 6 in addition is also very effective at 

reducing time (R12 vs. R-35 in Table 5.5, assuming step 4 has negligible effect, since 

the MIP optimizer’s presolve performs it automatically). Step 3 further reduces time by 

about 15% on average (R/R-3 in Table 5.5; about 20% for R-5/R-35). 

Step 5 generally degrades the performance of the reformulation (R-3 vs. R-35 or R vs. 

R-5 in Table 5.5). This result was unexpected, but its cause was not analyzed. Thus, for 

the CM model and the type of data tested, step 5 should be excluded, i.e. method R-5 

should be used. Unfortunately, the individual impact of step 5 was not assessed in our 

preliminary experiments (we had tested only R12, R-3 and R), and for this reason all the 

results with methods R and RC presented above included step 5 (however, this does not 

change any of the conclusions given before). 

LP gaps with the reformulation are reduced only slightly, but XLP gaps (after adding 

cuts) are reduced more significantly. Step 3 helps to slightly reduce XLP gaps (R-3 vs. 

R in Table 5.6). An unexpected increase of LP gap is observed when step 3 is added for 

instance group 70-28. This is due to the operation of the automatic LP presolve (if 

disabled, LP gaps with step 3 are never higher than without it), but the precise cause 

was not further analyzed. Also, some unexpected increases of XLP gaps are observed 

when step 3 or step 5 are added; the increases are small and were not further analyzed. 
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Table 5.5: Reformulation steps – nodes and time 

n-r avg time avg time ratios 

  S R12 R-3 R R-35 R-5 R12/S R-3/S R/S R-35/S R-5/S R/R-3 R-5/R-35 

70-7 661 446 302 262 263 249 0.70 0.50 0.45 0.43 0.40 0.95 0.95 

70-14 1771 831 498 383 540 342 0.54 0.32 0.27 0.32 0.23 0.83 0.75 

70-21 241 82 72 47 59 39 0.39 0.36 0.29 0.28 0.21 0.78 0.72 

70-28 64 23 23 17 17 12 0.52 0.53 0.41 0.36 0.25 0.77 0.70 

70 total 685 345 224 178 220 160 0.54 0.43 0.36 0.35 0.27 0.83 0.78 
 

Table 5.6: Reformulation steps – gaps 

n-r avg gapLP (%) avg gapXLP (%) 

  S R12 R-3 R R-35 R-5 S R12 R-3 R R-35 R-5 

70-7 5.6 5.6 5.6 5.6 5.6 5.6 4.8 4.5 4.6 4.5 4.5 4.4 

70-14 9.9 9.8 9.8 9.7 9.8 9.7 6.4 5.2 5.4 4.9 5.3 4.8 

70-21 13.7 13.0 13.0 12.7 13.0 12.6 4.4 2.8 2.9 2.5 2.9 2.5 

70-28 15.5 12.9 12.9 13.5 12.9 13.8 3.1 1.3 1.3 1.0 1.3 1.0 

70 total 11.2 10.3 10.3 10.3 10.3 10.4 4.7 3.4 3.5 3.2 3.5 3.2 

 

5.9 Conclusion 

In this chapter we presented a specialized solution method for the CM model, composed 

of an a priori reformulation procedure and cut generation within a branch-and-cut 

algorithm using previously known and new valid inequalities. The reformulation 

procedure is very effective at reducing solution times relatively to a generic MIP 

optimizer (average reductions of 20-90% depending on capacity data). New valid 

inequalities were presented for the CM model, but these and the other known 

inequalities exploited to generate cuts turned out not to be effective at further reducing 

solution time in general, i.e. for all types of capacity data. 

The reformulation procedure was based on previous work by Cánovas et al. (2007), but 

it was here extended in two ways: it was adapted to cope with distance or preference 

ties; a new step was added that further strengthens and reduces the formulation. The 

extended procedure may be applied to solve the UFLPO or any other model with a 

feasible set contained in that of the UFLPO. 

The computational experiments reported in this chapter assumed a CM model variant 

with constant capacity lower bounds and no capacity upper bounds. We now comment 

on the generalization of these assumptions. The reformulation procedure is independent 

of capacity constraints and we expect it to remain effective for other capacity data, 

although this was not tested. Among the inequalities used to generate user cuts, (W) and 
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(LSa10) were found to be the most useful and both can be used with variable capacity 

lower bounds – the first is independent of capacities; the second relies on the capacity of 

a single facility. Regarding upper capacity bounds, if these are added all inequalities 

presented here remain valid and the solution method can be applied unaltered. If the 

upper capacity bounds are not tight, they may have little influence on computation time 

and on solutions, since the objective function generally improves with an increasing 

number of facilities (whose upper bound is determined by the lower capacity bounds). 

Otherwise, with tight upper capacity bounds, the branch-and-cut procedure may also 

benefit from the generation of cuts developed for the capacitated facility location 

problem – see e.g. Aardal (1998a), Labbé and Yaman (2006), Avella (2009). 

We remark that there are location models related to CM not requiring all demand 

centers to be satisfied, i.e. “=” is replaced by “” in demand constraints (5.2), but that 

otherwise include constraints on minimum capacity, closest assignment (with 

formulation (C1) or an equivalent instead of (5.6)) and single assignment. Such is the 

case of the models of Verter and Lapierre (2002) and Smith et al. (2009), both applied 

to the location of health care facilities. The reformulation procedure for the UFLPO is 

not valid for those models since it relies on inequalities for which constraints (5.2) must 

hold with “=” (except step 5, which remains valid). On the other hand, inequalities for 

relaxation X LS remain valid for such models and may be useful to generate cuts. 

Possible future work includes developing other separation procedures for the 

inequalities proposed for relaxation X LS, to better exploit them. Additional possible 

future work is to adapt the reformulation procedure and valid inequalities for a multiple-

service hierarchical extension of the CM model, such as the one presented by Teixeira 

and Antunes (2008). In this model, centers have demands for multiple services, with 

each service type requiring independent assignment to facilities and being subject to 

closest assignment constraints. At least the adaptation of the reformulation procedure 

should be relatively straightforward, since valid inequalities for the UFLPO can be 

applied to each service type separately. However its computational effectiveness 

remains to be tested. 
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5.10 Appendix – Results with Xpress 7.2 

The results reported before were obtained with Xpress suite version 2005B (released in 

Nov. 2005 and including Xpress MIP Optimizer 16.10), the latest available to us when 

the original experiments were carried out. Here we report results obtained with the more 

recent Xpress suite version 7.2 (released in May 2011 and including Xpress MIP 

Optimizer 22.01) in order to check if the previous conclusions on the relative 

performance of methods S, R and RC remain valid. 

Tests with Xpress 7.2 were run on the same computer as before, thus solution times are 

comparable between solver versions. As before, all solver parameters were left at 

default values, except that branching priority was given to variables y. While method 

RC had been run with presolve disabled in version 2005B (to avoid interference of 

variable elimination with user cut generation), it was run with presolve enabled in 

version 7.2, as this version automatically presolves user cuts. 

Table 5.7 to Table 5.9 below correspond to the previous Table 5.1 to Table 5.3. 

Considering the standard formulation (method S), it can be seen that the performance of 

Xpress 7.2 has increased significantly relatively to 2005B: average solution time (Table 

5.7 vs. Table 5.1) decreases by 20-90% for different instance groups (although several 

instances in groups 100-10 and 100-20 still cannot be solved to optimality within 1 

hour). Automatic cuts are much more effective and certainly give a key contribution, as 

the average XLP gap is halved with Xpress 7.2 relatively to 2005B (Table 5.8 vs. Table 

5.2), and is especially reduced for instances with large capacity ratios (r/n=0.3 and 0.4). 

Improvements in other solver components (presolve, heuristics, branching variable and 

node selection strategies, LP re-optimization) may also have contributed. By analyzing 

solver logs of particular instances, it is clear that MIP presolve at the top node (called 

“root presolve”) is much more effective at reducing and tightening the formulation, and 

heuristics are much more effective at reducing the primal bound at the top node. 

Method R, relatively to method S, reduces time (Table 5.7) by 20-30% on average (was 

60% with Xpress 2005B) and by 0-50% for particular capacity ratios (was 20-90% with 

Xpress 2005B). Although reductions are smaller with Xpress 7.2 than with 2005B, they 

remain significant in absolute terms for the harder instances (r/n=0.1 and 0.2). 

Method RC, relatively to method R, reduces time by about 10% for instances with 

r/n=0.2 (70-14 and 100-20), but for other instances solution time does not decrease or 
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even increases (as happened with Xpress 2005B). On average, for all capacity ratios, 

method RC does not improve on method R. 

Additional remarks: 

 The additional gap closed at the top node with method RC relatively to R is now 

smaller with Xpress 7.2 than it was with 2005B (Table 5.8 vs. Table 5.6), 

possibly due to the much greater effectiveness of automatic cuts. 

 Most instances with large capacity ratios (70-21, 70-28, 100-40) are now solved 

by Xpress 7.2 at the top node with method R (value 1 in column nodes of Table 

5.9). Thus user cut generation in method RC is not invoked (value 0 in column 

ucuts). 

 Comparing LP gaps between Xpress 7.2 and 2005B (Table 5.8 vs. Table 5.6), 

with method S gaps are equal or slightly lower in version 7.2, but with method R 

they are higher in version 7.2 for instances with r/n=0.3 and 0.4. This is due to 

differences in LP presolve (if disabled, LP gaps are exactly the same in the two 

versions), but the precise cause was not further analyzed. 
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Table 5.7: Summary of results – nodes and time (Xpress 7.2) 

n-r total finished avg nodes avg time avg time ratios 

  S R RC S R RC S R RC R/S RC/S RC/R

70-7 9 9 9 1472 1311 745 353 221 256 0.71 0.76 1.10 

70-14 9 9 9 1563 925 468 346 129 106 0.52 0.48 0.91 

70-21 9 9 9 74 46 29 38 30 30 0.81 0.82 1.01 

70-28 9 9 9 6 2 2 20 20 20 1.06 1.04 1.00 

70 total 36 36 36 779 571 311 189 100 103 0.78 0.78 1.00 

100-10 2 4 3 4087 6822 2474 2912 2613 2676 0.88 0.83 0.98 

100-20 8 8 9 3442 2399 1651 1341 803 727 0.55 0.51 0.90 

100-30 9 9 9 1338 318 252 623 128 127 0.61 0.62 1.02 

100-40 9 9 9 44 8 5 96 69 70 0.76 0.77 1.01 

100 total 28 30 30 2228 2387 1095 1243 903 900 0.70 0.68 0.98 

 

Table 5.8: Summary of results – gaps (Xpress 7.2) 

n-r avg gapLP (%) avg gapXLP (%) avg gap closed (%) 

  S R RC S R RC S R RC 

70-7 5.6 5.6 5.6 4.0 3.8 3.3 38 40 49 

70-14 9.9 9.7 9.7 3.4 2.8 2.4 68 74 78 

70-21 13.6 13.2 13.2 1.0 0.5 0.5 94 97 97 

70-28 15.3 14.8 14.8 0.4 0.3 0.2 98 98 99 

70 total 11.1 10.8 10.8 2.2 1.9 1.6 74 77 81 

100-10 6.9 6.7 6.7 5.3 5.2 4.3 25 26 38 

100-20 11.4 10.9 10.9 3.7 3.3 2.6 69 73 79 

100-30 16.3 15.5 15.5 2.6 2.0 1.7 85 89 90 

100-40 18.5 17.3 17.3 2.0 0.0 0.0 89 100 100 

100 total 13.3 12.6 12.6 3.4 2.6 2.2 67 72 77 
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Table 5.9: Detailed results (Xpress 7.2) 

n-r inst. IP nf ucuts
S R RC S R RC S R RC S R RC S R RC S R RC RC

1 15 389 7 1 1 1 40 27 28 1 1 1 1.5 1.4 1.4 0.0 0.0 0.0 17 224 224 0
2 14 525 6 1 1 1 55 42 47 203 21 11 1.7 1.6 1.6 1.0 1.0 0.7 57 26 19 80
3 15 298 6 1 1 1 449 286 237 1 812 2 398 1 503 7.8 7.8 7.8 6.0 5.7 5.2 213 57 30 205
4 14 776 6 1 1 1 503 293 294 2 026 1 595 1 797 6.9 6.9 6.9 5.1 5.1 4.3 160 88 21 245
5 15 146 6 1 1 1 932 336 338 3 348 1 687 1 093 9.1 9.0 9.0 6.1 5.5 4.5 84 95 40 357
6 15 100 6 1 1 1 620 497 539 5 489 2 279 2 644 8.9 8.8 8.8 7.3 6.6 5.8 97 99 34 294
7 16 337 6 1 1 1 46 49 50 127 153 31 3.3 3.2 3.2 1.8 1.7 1.6 43 31 31 70
8 15 567 6 1 1 1 61 84 94 273 399 85 3.1 3.0 3.0 2.2 2.2 1.8 69 51 24 151
9 14 896 6 1 1 1 609 342 384 2 411 1 453 1 573 8.1 8.1 8.1 6.1 6.2 5.7 80 106 30 236
1 10 377 14 1 1 1 205 76 76 1 022 207 55 9.9 8.9 8.9 2.8 2.3 1.9 189 165 165 196
2 9 245 13 1 1 1 50 66 65 29 61 9 5.1 5.1 5.1 1.0 0.7 0.6 147 114 114 154
3 9 792 13 1 1 1 50 19 19 17 1 1 6.2 5.9 5.9 0.9 0.0 0.0 160 73 73 0
4 9 887 12 1 1 1 283 236 179 1 497 1 298 551 9.6 9.5 9.5 3.6 3.4 3.2 182 153 153 166
5 9 579 13 1 1 1 432 196 175 873 1 051 466 12.3 12.2 12.2 5.6 4.0 3.8 216 160 160 167
6 9 716 12 1 1 1 549 148 143 1 441 1 216 577 12.1 12.1 12.1 4.0 3.3 2.9 229 146 146 223
7 10 162 11 1 1 1 539 257 175 3 693 1 618 383 13.3 13.0 13.0 5.2 5.0 4.4 217 167 167 186
8 9 382 12 1 1 1 164 93 77 805 349 139 10.4 10.0 10.0 3.7 3.5 2.1 174 147 79 179
9 10 023 12 1 1 1 707 251 186 2 079 1 359 706 10.3 10.2 10.2 3.8 3.3 3.2 243 142 142 154
1 7 137 21 1 1 1 40 16 15 1 1 1 10.3 10.1 10.1 0.0 0.0 0.0 66 79 79 0
2 7 188 17 1 1 1 43 37 38 1 1 1 10.6 10.3 10.3 0.0 0.0 0.0 126 123 123 0
3 7 933 18 1 1 1 48 44 45 1 1 1 16.9 16.3 16.3 0.0 0.0 0.0 101 169 169 0
4 7 725 17 1 1 1 50 41 42 5 1 1 13.8 13.2 13.2 0.5 0.0 0.0 128 137 137 0
5 6 624 18 1 1 1 49 19 19 1 1 1 13.9 13.7 13.7 0.0 0.0 0.0 207 0 0 0
6 7 156 18 1 1 1 36 44 45 15 15 9 9.8 9.6 9.6 0.6 0.7 0.6 86 71 71 33
7 7 456 17 1 1 1 99 51 53 227 35 41 17.9 17.8 17.8 4.3 1.6 1.5 192 105 105 44
8 6 862 17 1 1 1 42 19 19 1 1 1 12.0 11.4 11.4 0.0 0.0 0.0 0 0 0 0
9 7 655 18 1 1 1 90 61 64 495 159 103 17.0 16.8 16.8 3.6 2.5 2.3 187 127 127 108
1 5 999 25 1 1 1 12 19 16 1 1 1 12.9 13.2 13.2 0.0 0.0 0.0 94 78 78 0
2 5 979 23 1 1 1 36 26 26 1 1 1 16.4 16.0 16.0 0.0 0.0 0.0 177 120 117 0
3 6 090 24 1 1 1 29 19 20 1 1 1 15.9 14.8 14.8 0.0 0.0 0.0 130 80 80 0
4 6 179 23 1 1 1 57 49 50 21 17 13 17.3 16.8 16.8 2.2 1.6 1.6 118 82 82 12
5 5 448 22 1 1 1 16 13 13 1 1 1 14.0 11.5 11.5 0.0 0.0 0.0 104 0 0 0
6 6 430 22 1 1 1 48 41 41 5 1 1 20.1 19.7 19.7 0.4 0.0 0.0 201 190 190 0
7 5 815 21 1 1 1 39 19 19 1 1 1 14.0 14.0 14.0 0.0 0.0 0.0 133 74 74 0
8 5 090 22 1 1 1 15 13 13 1 1 1 11.3 11.1 11.1 0.0 0.0 0.0 0 54 54 0
9 5 953 22 1 1 1 59 30 33 5 7 13 16.1 15.9 15.9 1.2 0.7 0.6 89 69 69 34
1 25 848 10 0 0 0 3 600 3 627 3 627 2 346 4 893 3 279 8.8 8.8 8.8 7.0 7.1 6.3 128 68 22 328
2 22 292 9 1 1 1 1 016 159 168 1 235 239 246 3.1 3.0 3.0 2.2 2.2 1.9 204 78 38 132
3 23 295 9 0 0 0 3 600 3 627 3 627 2 467 4 780 2 639 7.6 7.3 7.3 5.9 5.2 4.4 598 77 77 349
4 23 207 10 1 1 1 426 146 172 493 235 162 4.0 3.9 3.9 2.6 2.7 2.6 153 72 72 138
5 22 356 9 0 1 0 3 600 3 081 3 627 1 740 4 241 5 138 9.5 9.3 9.3 7.5 7.3 5.1 124 91 19 455
6 22 892 8 0 1 1 3 600 1 565 1 947 4 014 7 776 5 550 5.7 5.7 5.7 4.3 4.4 3.6 187 59 24 271
7 25 621 10 0 0 0 3 600 3 628 3 628 2 446 5 811 3 008 8.2 8.1 8.1 5.5 6.0 4.8 121 93 93 347
8 24 455 9 0 1 1 3 600 2 451 2 876 4 245 5 401 8 180 7.6 7.0 7.0 5.9 5.4 4.5 66 80 26 245
9 24 949 9 0 1 0 3 600 3 558 3 628 2 592 7 368 4 565 8.0 7.7 7.7 6.5 6.6 5.7 120 85 82 331
1 15 492 18 1 1 1 2 044 440 298 2 351 1 615 709 11.8 11.3 11.3 4.1 3.9 3.4 292 277 277 157
2 14 341 16 1 1 1 858 357 319 2 876 899 347 9.9 9.6 9.6 3.8 2.4 2.2 230 209 209 228
3 14 687 17 1 1 1 1 023 292 200 2 900 732 559 11.9 11.5 11.5 3.8 4.1 2.1 285 175 124 255
4 15 324 19 1 1 1 2 894 1 372 608 12 163 6 565 2 193 12.1 11.8 11.8 3.3 3.5 3.2 303 194 194 140
5 14 076 16 1 1 1 2 590 165 147 2 039 147 1 10.2 9.8 9.8 3.4 2.1 0.0 337 196 165 352
6 15 181 17 0 1 1 3 600 987 812 2 541 2 212 1 278 9.7 9.4 9.4 3.7 3.4 3.0 352 191 191 254
7 16 812 19 0 0 1 3 600 3 628 2 964 1 608 5 951 5 290 19.0 18.0 18.0 7.3 7.0 6.4 350 200 200 254
8 13 959 17 1 1 1 161 115 116 1 1 1 7.2 6.7 6.7 0.0 0.0 0.0 400 155 155 0
9 14 506 18 1 1 1 1 370 295 299 4 517 1 166 741 10.3 10.3 10.3 3.9 3.4 3.3 262 176 176 115
1 11 750 26 1 1 1 128 111 120 179 7 1 16.3 15.7 15.7 2.0 0.8 0.0 250 101 101 14
2 11 161 24 1 1 1 581 232 225 225 93 63 17.7 16.3 16.3 3.5 2.9 2.6 459 181 181 152
3 10 432 24 1 1 1 140 92 94 51 123 45 15.0 14.1 14.1 1.4 0.8 0.8 198 124 124 9
4 11 188 28 1 1 1 171 104 109 431 57 15 15.1 14.8 14.8 2.8 1.4 1.3 246 127 127 46
5 10 481 22 1 1 1 627 383 229 2 955 2 643 955 19.5 19.2 19.2 4.6 4.4 3.9 303 160 160 118
6 11 204 24 1 1 1 184 91 91 19 1 1 11.9 10.7 10.7 1.2 0.0 0.0 238 135 135 0
7 11 619 26 1 1 1 951 263 263 4 796 813 583 19.9 19.3 19.3 5.3 4.4 3.9 234 164 164 95
8 11 017 23 1 1 1 185 265 250 245 465 269 16.1 15.2 15.2 2.5 3.0 3.0 261 156 156 65
9 10 998 25 1 1 1 149 113 115 1 1 1 14.8 13.9 13.9 0.0 0.0 0.0 241 191 191 0
1 9 160 33 1 1 1 88 98 99 63 1 1 18.8 17.8 17.8 2.1 0.0 0.0 146 31 31 0
2 9 219 30 1 1 1 186 108 108 13 1 1 20.7 19.3 19.3 1.7 0.0 0.0 148 187 187 0
3 8 942 32 1 1 1 150 81 80 243 1 1 19.2 18.6 18.6 3.9 0.0 0.0 261 151 151 0
4 9 050 33 1 1 1 133 96 102 673 3 1 18.2 17.6 17.6 3.1 0.4 0.0 198 49 49 1
5 7 992 29 1 1 1 116 81 82 53 1 1 19.3 17.5 17.5 3.0 0.0 0.0 228 114 114 0
6 9 618 30 1 1 1 140 121 121 35 1 1 19.1 17.5 17.5 1.4 0.0 0.0 191 133 133 0
7 9 170 32 1 1 1 62 72 72 71 1 1 17.6 16.4 16.4 3.1 0.0 0.0 101 48 48 0
8 8 661 31 1 1 1 69 52 53 1 1 1 18.3 16.7 16.7 0.0 0.0 0.0 224 110 110 0
9 8 736 31 1 1 1 61 103 103 1 1 1 15.5 14.5 14.5 0.0 0.0 0.0 175 142 142 0

100-40

gapLP (%) gapXLP (%) acuts

70-7

70-14

70-21

70-28

finished time nodes

100-10

100-20

100-30
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Regarding the a priori reformulation procedure, step 6 is now performed automatically 

by the LP presolve procedure of Xpress 7.2 in most of the closest assignment 

constraints. Because of this, the reformulation procedure contributes much less to 

reducing the number of non-zero elements. The average reductions of the number of 

non-zero elements due to the reformulation procedure were as follows (for n=70): 

 Before LP presolve with both versions: 44% without step 3, 48% with step 3; 

 After LP presolve with Xpress 2005B: 45% without step 3, 49% with step 3; 

 After LP presolve with Xpress 7.2: 8% without step 3, 16% with step 3. 

Accordingly, the contribution of step 6 to reduce solution times with Xpress 7.2 is 

almost negligible, as seen in Table 5.10 by comparing R12 vs. R-35 (i.e. steps 1+2 vs. 

1+2+4+6).  

Adding step 3 to the reformulation procedure still reduces solution times with Xpress 

7.2, by about 15% on average (R/R-3 or R-5/R-35 in Table 5.10), similar to the 

reduction with Xpress 2005B. Adding step 5 generally degrades performance, as had 

occurred with Xpress 2005B (R-3 vs. R-35 or R vs. R-5 in Table 5.10). 

Table 5.10: Reformulation steps – nodes and time (Xpress 7.2) 

n-r avg time avg time ratios 

  S R12 R-3 R R-35 R-5 R12/S R-3/S R/S R-35/S R-5/S R/R-3 R-5/R-35

70-7 368 277 223 217 253 203 0.82 0.76 0.76 0.81 0.66 1.01 0.89 

70-14 331 251 296 149 247 143 0.89 0.90 0.56 0.82 0.51 0.68 0.67 

70-21 55 44 47 37 37 33 0.82 0.90 0.69 0.71 0.63 0.76 0.99 

70-28 35 28 30 25 29 22 0.81 0.91 0.81 0.79 0.63 0.91 0.87 

70 total 197 150 149 107 142 100 0.83 0.87 0.70 0.78 0.61 0.84 0.86 

Table 5.11: Reformulation steps – gaps (Xpress 7.2) 

n-r avg gapLP (%) avg gapXLP (%) 

  S R12 R-3 R R-35 R-5 S R12 R-3 R R-35 R-5 

70-7 5.6 5.6 5.6 5.6 5.6 5.6 4.0 3.9 4.0 3.8 4.0 3.8

70-14 9.9 9.8 9.8 9.7 9.8 9.7 3.4 2.8 3.1 2.8 3.2 2.8

70-21 13.6 13.5 13.4 13.2 13.4 13.2 1.0 0.6 0.9 0.5 0.7 0.8

70-28 15.3 14.7 14.7 14.8 14.7 14.8 0.4 0.3 0.2 0.3 0.2 0.2

70 total 11.1 10.9 10.9 10.8 10.9 10.8 2.2 1.9 2.1 1.9 2.0 1.9
 

In conclusion, results with Xpress 7.2 corroborate those with 2005B, specifically the 

reformulation is generally effective at reducing solution times but user cuts are not 

generally effective. Time reductions relatively to the standard formulation are smaller 

with Xpress 7.2 than they were with 2005B, because the generic optimizer improved 

very significantly. 
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5.11 Appendix – Closest assignment constraints 

1. Introduction 

Some location models require closest assignment (CA) constraints or equivalent 

preference constraints – applications are discussed by Hanjoul and Peeters (1987) and 

by Gerrard and Church (1996). 

In this text, we provide recommendations on selecting a formulation of CA constraints, 

among the several alternatives proposed in the literature, regarding expected 

computational performance with a generic MIP optimizer. For this purpose, we consider 

five commonly used alternative formulations, summarize previous results on their 

properties (including strength of LP relaxations), and report on computational 

experiments with the CM model. 

Note: When a first version of this text was written, it contributed to previous literature 

with a comparison between the CA constraints denoted (WBR) below, which is adopted 

in some recent articles, with previous alternatives. However, Espejo et al. (2012) 

published a recent article providing a comprehensive comparison of CA constraints, 

including the contribution above and additional new results. Thus, this text loses some 

relevance, but it was still kept in the thesis (although revised to consider the results of 

that recent article) since it contains computational results and additional 

recommendations, complementing previous literature. 

2. Formulations 

The notation used here is the same as before: I and J are the sets of centers and sites, 

respectively, yj are the location variables, xij are the assignment variables, dij are the 

distances between centers and sites. We also introduce the following notation for 

demand and variable upper bound constraints used in location models: 

 1ij
j J

x


 ,  i I   (D=) 

 1ij
j J

x


 ,  i I   (D) 

 ij jx y ,  ,i I j J    (V) 
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We will consider the following two feasible sets of locations models: 

  ={0,1} , {0,1} : (D ); (V); (CA)nm mX x y     

  {0,1} , {0,1} : (D ); (V); (CA)nm mX x y     

where (CA) denotes a formulation of CA constraints stating that each center cannot be 

assigned to a facility farther than the closest open facility (determined by dij data). In set 

X  , all centers must be fully served by a single, closest facility. In set X  , centers may 

be either fully served from a single, closest facility or not served by any facility. The 

definition of CA constraints above is compatible with both sets, as it allows centers not 

to be served. 

It is useful to distinguish the two sets because both arise in location problems studied in 

the literature. Note that CA constraints valid for these sets are also valid for restrictions 

of them, considering e.g. capacity constraints or a fixed number of facilities. We 

introduce notation for particular restrictions that will be useful later: 

pX  : denotes a restriction of X  with the additional constraint jj J y p  , 

with p being a parameter. 

In Table 5.12, we cite references studying models with different feasible sets. For set 

X   and restrictions of it, the list is not exhaustive of the literature. For set X   and 

restrictions of it, no additional references are known to the author, particularly none are 

known for set pX  . 

Table 5.12: References to location models with different feasible sets including CA constraints 

 Without capacity constraints With capacity constraints 

X   Hanjoul and Peeters (1987) 
Carreras and Serra (1999), 

Berman et al. (2006) 

pX   
Belotti et al. (2007), 

Scaparra and Church (2008) 

Kalcsics et al. (2002), 

Berman et al. (2009) 

X   Wagner and Falkson (1975) 
Vedat and Verter (2002), 

Smith et al. (2009) 
 

In formulations below, we retain the notation used before for sets of not farther sites, 

equidistant sites, and strictly closer sites, as follows:  |ij ik ijN k J d d   , 

 |ij ik ijE k J d d   ,  \ |ij ij ij ik ijN N E k J d d     . 
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We now present alternative formulations of closest assignment constraints: 

 
ij

ij j k
k N

x y y


   ,  ,i I j J    (RR) 

 
ij

ik j
k N

x y


 ,  ,i I j J    (CC) 

 
\

1
ij

ik j
k J N

x y


  ,  ,i I j J    (WF) 
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d x d y M y


   ,  maxi k J ikM d , ,i I j J    (WBR) 

Formulations (RR), (CC), (WF), and (DK) were introduced in the 70s and 80s, as 

discussed by Gerrard and Church (1996), and are denoted here by the initials of the 

original authors. Formulation (WBR) is here credited to Wang et al. (2002), the earliest 

reference known to us (Berman et al., 2006, used the same formulation in a related 

model developed independently). 

The constraints above can be described as follows, for a given center iI and a given 

site jJ. If facility j is closed (yj = 0), the constraints have no effect. If facility j is open 

(yj = 1) then: (WF), (DK) and (WBR) state that i cannot be assigned to a facility k 

farther than j (xik = 0); (CC) states that i must be assigned to a facility k not farther than j 

(xik = 1); (RR) states that i must be assigned to j (xij = 1) if all facilities k closer than j 

are closed (yk = 0). 

Formulations (CC) and (WF) were adopted in the present chapter, and by Cánovas et al. 

(2007) in their reformulation of the UFLPO. All formulations were adopted or tested in 

recent work by other authors, for example: (CC) by Scaparra and Church (2008), (WF) 

by Belotti et al. (2007), (DK) by Smith et al. (2009), (WBR) by Berman et al. (2006) 

and Berman et al. (2009), (RR) by Berman et al. (2006) and Scaparra and Church 

(2008) (tested as an alternative formulation in both cases). 

Previous work comparing alternative formulations of CA formulations is outlined next, 

with details being presented further below in this text. 

Gerrard and Church (1996) discuss applications of models with CA constraints and 

provide a detailed comparison of properties of alternative formulations (CC), (WF), 

(RR), and (DK), although not covering the strength of LP relaxations and not including 

computational experiments. Regarding recommendations on computational 

performance, no formulation was singled out as being clearly better or worse than all 
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others for all models. However, the authors emphasized that (RR) was the most widely 

cited and has a particular property (redundancy of VUB constraints) offering a potential 

computational advantage. 

More recently, Espejo et al. (2012) provide an updated and thorough comparison of 

alternative CA formulations including all the commonly used ones: (CC), (WF), (RR), 

(DK), (WBR) (or BDTW in their notation), (C2) (or CGLM in their notation, the 

inequalities proposed by Cánovas et al. (2007) that generalize (WF) and were presented 

before in this chapter), and four additional formulations valid for set pX   but not for 

X  . The authors provide a complete analysis of formulation strength, allowing any two 

CA formulations to be compared, and give formal proofs of properties previously noted 

by Gerrard and Church (1996). Regarding recommendations on computational 

performance, the authors favor two formulations leading to the strongest LP relaxations 

(as detailed further below). However, computational experiments are not reported. 

Note: In the present text we do not analyze some of the CA formulations above: (C2) 

because it requires O(n3) constraints; the four formulations dedicated to set pX   

because they are not valid for the more general set X  . 

Before the previous article, the strength of LP relaxations of the UFLPO with 

alternative CA formulations had been compared by Hanjoul and Peeters (1987) and by 

Hansen et al. (2004), as detailed below. 

Computational experiments comparing alternative CA formulations have rarely been 

reported. In experiments with particular models and using a generic MIP optimizer, 

Scaparra and Church (2008) compared (CC) and (RR), and Berman et al. (2006) 

compared (WBR) and (RR). In both cases, (RR) was found to perform worse. 

3. Properties 

All the alternative formulations of CA constraints presented above lead to equivalent 

definitions of set X  . However, they differ on suitability for different model and data 

assumptions, and on other properties influencing computational performance. 

 Suitability for models with different demand constraints: For models 

requiring all centers to be assigned (set X ), all CA formulations above are 

valid. For models allowing centers not to be assigned (set X ), only (WF), (DK) 

and (WBR) are valid. Formulations (CC) and (RR), even if demand constraints 

are relaxed from “=” to “≤”, force all centers to be assigned when at least one 

facility is open. 
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 Suitability for data with distance ties: All CA formulations above, except 

(RR), are valid when data has distance ties, i.e. dij = dih for a center i and distinct 

sites j and h. If a center has two or more equidistant closest facilities, then it can 

be assigned to any one of them. On the other hand, (RR) is not generally valid 

with distance ties, as it rules out some feasible solutions: if two or more 

equidistant facilities were the closest, then (RR) would require full assignment 

to each of them; therefore at most one can be open. Generalizations of (RR) to 

deal with distance ties are presented in a section below. 

 Formulation size: (DK) and (WBR) have disadvantages in terms of formulation 

size. All CA formulations above require O(n2) constraints, except (DK) which 

requires O(n3). Formulation (WBR) requires a larger number of non-zero 

elements than (RR), (CC), and (WF), as the first involves all sites k J  in all 

constraints, while the others involve only a subset. 

 Formulation strength: The alternative CA formulations lead to models with 

different LP relaxations. This is discussed in the next section. 

 Property of single assignment: All CA formulations above have the property 

that they suffice to guarantee single assignment in the definition of set X  , that 

is, if all variables y take 0-1 binary values, variables x will also take 0-1 binary 

values, even if they are defined as continuous. However, this applies only to 

pairs (i, j) without distance ties (Eij={j}); for pairs (i, j) with distance ties 

(|Eij|>1), all CA formulations (except (RR), as noted above) allow demand to be 

freely distributed among equidistant, closest facilities with fractional 

assignments. Thus, this property allows reducing the number of integer variables 

in the formulation of X  . 

 Property of redundancy of constraints (V): Formulation (RR) has the property 

that constraints (V) are redundant in the definition of set X   restricted to at least 

one open facility ( 1jj J y  ), e.g. to set pX  . That is, if all variables y take 

binary values 0-1, constraints (V) are automatically satisfied. Thus, constraints 

(V) may be dropped, giving a smaller but still valid integer formulation of X  , 

although leading to a weaker LP relaxation. The other formulations do not have 

this property. 

All of the properties above were noted in the literature before, particularly in the 

thorough discussions by Gerrard and Church (1996) and Espejo et al. (2012). Here we 

provide only a compact summary and clarify the suitability for sets X   and X   
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(Gerrard and Church (1996) discussed both sets but did not include (WBR), Espejo et 

al. (2012) included (WBR) but focused on sets X   and pX  ). 

4. Formulation strength 

In the text below, given alternative formulations A and B of CA constraints valid for a 

set X formulated with integer variables, A is said to dominate B if the continuous 

relaxations of X defined with A and B, denoted PA and PB, are such that PA  PB. In this 

case, A leads to stronger LP relaxations of problems with feasible set X, i.e. providing 

bounds at least as tight. 

The strength of LP relaxations of the UFLPO (which has feasible set X ) with 

alternative CA formulations was discussed by Hanjoul and Peeters (1987), who note 

that (CC) dominates (RR), and by Hansen et al. (2004), who show that (CC) and (WF) 

are equivalent and dominate (DK) and (RR). Here we summarize these results and also 

analyze (WBR). We assume the feasible integer set is X   unless otherwise noted. 

(WF) is equivalent to (CC): It is immediate to verify that one formulation can be 

converted into the other using demand constraints 1ijj J x   for i I . 

(CC) dominates (RR): We assume there are no distance ties. For a given (i, j), (RR) 

can be re-written as 

 
ij

j ij k
k N

y x y


   . 

Combining (CC) and (V), we get 

 
ij ij ij

j ik ij ik ij k
k N k N k N

y x x x x y
   

       . 

Thus, (CC) implies (RR) if constraints (V) hold. The converse is not true, as shown by 

the following example. Given a center i and sites 1, 2, 3, 4 in increasing distance to i, 

the point y1=y2=0.5, y3=y4=1, xi1=0.5, xi2=xi3=0 and xi4=0.5 satisfies (RR) for j=1, 2, 3, 4, 

but violates (CC) for j=3. 

(WF) dominates (DK): It is immediate to verify that (WF) implies (DK) in the forms 

given above, as the left-hand side of (WF) is greater than or equal to the one of (DK). 

The converse is not true, as shown by the following example. Given a center i and sites 

1, 2, 3 in increasing distance to i, the point y1=y2=y3=0.5, xi1=0, xi2=xi3=0.5 satisfies 

(DK) but violates (WF) for j=1. 
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(WF) dominates (WBR): We assume 0i ijM d   for all i and j. For a given (i, j), 

(WBR) can be re-written as follows, by separating the sum over set J: 

 
\

(1 )
ij ij

ik ik ik ik ij j i j
k N k J N

d x d x d y M y
 

     . 

Now considering that demand constraints imply 

 
\

1
ij ij

ik ik
k N k J N

x x
 

    

and that constraints (WF) are 

 
\

1
ij

ik j
k J N

x y


  , 

summing the first multiplied by ijd  with the second multiplied by i ijM d , we get: 

  
\

1
ij ij

ij ik i ik ij j i j
k N k J N

d x M x d y M y
 

     . 

This inequality dominates (WBR) as, in the left-hand sides, ik ijd d  for ijk N  and 

ik id M  for \ ijk J N . Thus, (WF) implies (WBR) if demand constraints hold. The 

converse is not true, as shown by the following example. Given a center i and sites 1, 2, 

3 such that di1=1, di2=2, di3=3, Mi=3, the point y1=0.5, y2=y3=1, xi1=0.5, xi2=0 and 

xi3=0.5 satisfies (WBR) for j=1, 2, 3, but violates (WF) for j=2. 

The arguments above also show that (WF) dominates (DK) and (WBR) in the case of 

feasible set X  . 

Espejo et al. (2012) show in addition that (DK) dominates (WBR). They also show 

through particular examples that no domination relation exists between (RR) and 

(WBR), or between (RR) and (DK). They also analyze the strength of four additional 

CA formulations valid for set pX  . 

5. Generalizations of (RR) to deal with distance ties 

Here we propose the following generalization of (RR) to deal with distance ties, which 

was also proposed by Espejo et al. (2012): 

 
ij ij

ik j k
k E k N

x y y
 

   ,  ,i I j J    (RR2) 

If Eij ={j}, (RR2) reduces to (RR). If |Eij|>1, (RR2) states that if facility j is open and all 

strictly closer facilities are closed then i must be assigned to j or to an equidistant site 

(kEij). These constraints now work properly if more than one facility in Eij is open. We 

note that (CC) dominates (RR2), by a similar argument as used above for (RR). 
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Other generalizations of (RR) to deal with distance ties have been proposed: 

 
\

1

| |
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ik k k k
k S k S k N k E S
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ij ij ij

ik k k
ijk E k E k N

x y y
E   

    , , ii I j J    (RR4) 

Formulation (RR3) was proposed by Gerrard and Church (1996), who call it MAC1, 

and (RR4) was proposed by Berman et al. (2006). The set Ji contains only one element 

from each distinct set Eik for kJ. For a given (i, j) such that |Eij|>1, (RR2) requires |Eij| 

constraints, while (RR3) requires a higher number (e.g. 3 constraints if |Eij|=2, 7 

constraints if |Eij|=3), and (RR4) requires only one – actually, (RR4) corresponds to 

(RR3) written only for maximal sets S = Eij. Gerrard and Church (1996) note that 

(RR3), like the original (RR), remains valid if (V) are dropped from the model. On the 

other hand, we note that (RR2) and (RR4) require (V) or equivalent constraints 

forbidding assignments to closed facilities for pairs (i, j) such that |Eij|>1. 

We note that (RR2) dominates (RR3): summing (RR2) for all j S  and dividing by |S|, 

an expression is obtained that dominates (RR3) if (V) holds. (RR2) also dominates 

(RR4): summing (RR2) for all ijj E  and dividing by |Eij|, (RR4) is obtained. Thus, 

(RR2) leads to stronger LP relaxations than the other generalizations, and in our 

computational experiments we considered only (RR2). 

6. Computational experiments with the CM model 

Four formulations of the CM model were tested: CC denotes our standard formulation 

(5.1)-(5.8) and (5.9), which uses CA formulation (CC); WBR, RR, DK denote 

formulations where (CC) was replaced by (WBR), (RR2) and (DK), respectively. 

Note: In addition to the formulations above, we did preliminary experiments with a 

variant of RR without constraints (V), obtained by: using (RR2) instead of (CC), 

dropping (V) for all pairs (i, j) such that |Eij|=1, and adding the constraint 1jj J y   (at 

least one open facility). This formulation had a very weak initial LP relaxation, 

violating many constraints (V) and even many of the weaker constraints ij ji I x n y    

for j J , and a very large time was required even for generating cuts at the top node. 

Thus, this formulation was dropped from consideration. 

Instances of sizes n=50 and n=70 were tested, generated as described before. All 

instances have a significant number of distances ties. 
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Results were obtained for two versions of the Xpress solver: 2005B (MIP Optimizer 

16.10) and 7.2 (MIP Optimizer 22.01). We show results with the two versions because 

some interesting observations can be made regarding the evolution of different solver 

components. Solution times are comparable between the two versions since the same 

computer was used, as described before. The time limit was set to 1 hour and solver 

parameters were set as before: branching priority was given to variables y; other 

parameters were left at default values. 

The results reported below are the same as before and additionally: 

 time XLP: time (in seconds) spent in cut generation and heuristics at the top 

node; 

 htop gap 0%: number of instances where heuristics at the top node found an 

optimal solution (whether or not optimality was proven at the top node); 

 htop gap 5%: number of instances where heuristics at the top node found a 

feasible solution with a value within 5% of the optimal value; 

Note: Results for DK with n=70 are not reported since cut generation at the top node 

required more than the physical memory available in the computer used. 

Note: Some of the results below, regarding solver components such as presolve, cut 

generation and heuristics, were surprising. Explaining such results is not always 

immediate, given that the operation of solver components is not fully documented. 

Formulation size (Table 5.13) 

Formulations CC and RR have the same number of non-zero elements before LP 

presolve, and WBR has many more (each CA constraint involves all sites, not only the 

closer or equidistant sites). LP presolve in Xpress 7.2 significantly reduces the number 

of non-zero elements of CC and WBR. With CC, it performs an equivalent 

simplification to step 6 of the reformulation procedure presented before. With WBR, it 

is even more effective than with CC. This latter result was surprising, but was not 

analyzed further. 

DK is much larger than CC and RR (it has n3 CA constraints instead of n2). LP presolve 

in Xpress 2005B performs a large reduction of the model, while Xpress 7.2 reduces it 

only slightly (for reasons that are unclear). 
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Table 5.13: Formulation size (n=50, average for all capacity ratios r) 

  LP presolve CC WBR RR DK 

rows before 5 101 5 101 5 101 63 190 

 after - Xpress 2005B 4 947 5 047 5 001 21 092 

  after - Xpress 7.2 4 947 5 047 5 001 60 639 

non-zero before 77 011 135 046 77 011 131 277 

elements after - Xpress 2005B 74 030 132 422 76 761 89 179 

  after - Xpress 7.2 46 269 44 962 76 760 128 727 

 

Solution time (Table 5.14) 

Solution times are lowest with CC and WBR, and are much higher with RR and DK, by 

a factor of 5 or more (considering RR/CC for size n=70, DK/CC for size n=50, and any 

of the solver versions). 

Comparing CC with WBR, using Xpress 2005B, CC is solved faster than WBR for all 

instance groups, except for n-r = 70-14 (note: the time ratio WBR/CC is 1.0 even 

though WBR has lower average time than CC; this is due to the fact that the best 

formulation varies for individual instances). Using Xpress 7.2, CC is solved faster than 

WBR for smaller capacity ratios and slower for larger capacity ratios; although the 

global average time ratio WBR/CC is 1.0 for n=70, CC can be considered more 

effective as it is solved faster for instances with lower capacity ratios, which are harder. 

As noted before, Xpress 7.2 is much faster than 2005B. The improvement occurs for all 

formulations (except for DK, which performs worse, for reasons that are unclear). 

LP and XLP gaps (Table 5.14) 

The LP gaps of CC are the lowest, as expected. The difference relative to other 

formulations is small for smaller capacity ratios and increases for larger ones. 

However, it turns out that the XLP gaps of CC are not the lowest: they are generally the 

highest among all formulations with Xpress 2005B; they are only the second lowest 

with Xpress 7.2. In both Xpress versions, WBR consistently has the lowest gaps across 

all capacity ratios. These results were surprising, but their causes were not analyzed 

further, particularly which cut types are responsible for closing the XLP gap of WBR 

(this task is made difficult since Xpress logs do not discriminate the types of added 

cuts). 
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Table 5.14: Main results (n=50 and 70) 

      Xpress 2005B   Xpress 7.2 
total finished n-r   CC WBR RR DK  CC WBR RR DK
 50-5  9 9 9 9 9 9 9 9
 50-10  9 9 9 9 9 9 9 9
 50-15  9 9 9 9 9 9 9 9
 50-20  9 9 9 9 9 9 9 9
 50 total  36 36 36 36 36 36 36 36
 70-7  9 9 6 - 9 9 8 -
 70-14  8 9 2 - 9 9 4 -
 70-21  9 9 6 - 9 9 9 -
 70-28  9 9 9 - 9 9 9 -
 70 total  35 36 23 - 36 36 30 -
avg time n-r   CC WBR RR DK  CC WBR RR DK
 50-5  28 56 68 87 32 35 58 188
 50-10  52 67 183 146 33 26 116 242
 50-15  43 51 153 127 22 15 75 189
 50-20  9 19 31 65 10 7 10 98
 50 total  33 48 109 106 24 21 65 179
 70-7  661 988 1838 - 368 450 1135 -
 70-14  1771 1347 2996 - 331 360 2554 -
 70-21  241 250 1650 - 55 38 473 -
 70-28  64 98 768 - 35 23 116 -
  70 total  685 671 1813 - 197 218 1070 -
avg time ratios n-r   CC WBR RR DK  CC WBR RR DK
 50-5  1.0 1.8 1.9 5.3 1.0 1.8 1.7 16.6
 50-10  1.0 1.6 3.3 3.5 1.0 0.8 3.3 8.4
 50-15  1.0 1.5 3.1 3.6 1.0 0.7 3.0 8.3
 50-20  1.0 2.3 3.5 9.3 1.0 1.0 1.2 12.0
 50 total  1.0 1.8 2.9 5.4 1.0 1.1 2.3 11.3
 70-7  1.0 2.3 2.5 - 1.0 1.2 2.6 -
 70-14  1.0 1.0 3.1 - 1.0 1.2 8.3 -
 70-21  1.0 1.6 6.9 - 1.0 0.7 6.3 -
 70-28  1.0 2.0 9.4 - 1.0 0.8 3.0 -
  70 total  1.0 1.7 5.5 - 1.0 1.0 5.1 -
avg gapLP (%) n-r   CC WBR RR DK  CC WBR RR DK
 50-5  4.6 4.6 4.6 4.7 4.6 4.6 4.6 4.8
 50-10  10.2 10.2 10.3 10.3 10.2 10.2 10.3 10.3
 50-15  16.1 16.3 16.2 16.3 16.0 16.3 16.0 16.3
 50-20  14.5 20.9 14.9 20.7 14.1 20.8 14.4 20.8
 50 total  11.3 13.0 11.5 13.0 11.2 13.0 11.3 13.0
 70-7  5.6 5.6 5.6 - 5.6 5.6 5.6 -
 70-14  9.9 9.9 10.0 - 9.9 9.9 10.0 -
 70-21  13.7 13.9 13.8 - 13.6 13.8 13.8 -
 70-28  15.5 21.3 15.9 - 15.3 21.2 15.6 -
  70 total  11.2 12.7 11.3 - 11.1 12.7 11.2 -
avg gapXLP (%) n-r   CC WBR RR DK  CC WBR RR DK
 50-5  3.9 2.8 3.5 3.1 3.0 2.8 3.4 3.1
 50-10  6.2 3.3 5.3 4.1 1.9 1.8 3.0 2.4
 50-15  6.1 2.9 4.9 3.9 0.9 0.7 2.1 0.7
 50-20  3.3 1.4 2.5 3.0 0.0 0.1 0.2 0.2
 50 total  4.9 2.6 4.1 3.5 1.4 1.3 2.2 1.6
 70-7  4.8 3.9 4.7 - 4.0 3.7 4.5 -
 70-14  6.4 3.9 5.9 - 3.4 3.1 4.2 -
 70-21  4.4 2.1 4.2 - 1.0 0.6 1.5 -
 70-28  3.1 1.4 4.0 - 0.4 0.2 0.6 -
  70 total   4.7 2.8 4.7 - 2.2 1.9 2.7 -
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With Xpress 2005B, the small XLP gaps of WBR are obtained at the cost of a large 

number of cuts and a large cut generation time at the top node (Table 5.15) relatively to 

CC. However, with Xpress 7.2 both are similar relatively to CC. 

As noted before, XLP gaps with Xpress 7.2 are much smaller than with 2005B. The 

improvement occurs for all formulations. 

Heuristics (Table 5.15) 

Formulation WBR also has the advantage that automatic heuristics find good solutions 

more frequently at the top node than with CC and RR, and this applies to both solver 

versions. In the same respect, CC is better than RR. 

The lower XLP gaps and good heuristic solutions with formulation WBR help to 

explain the lower number of nodes relatively to CC (Table 5.15). 

Table 5.15: Additional results (n=70) 

      Xpress 2005B   Xpress 7.2 
avg nodes n-r   CC WBR RR  CC WBR RR 
 70-7  2035 1618 2721 1743 1103 2289 
 70-14  9423 2644 5397 1273 1103 2840 
 70-21  1430 279 3880 83 36 560 
 70-28  309 39 2487 4 2 105 
 70 total 3300 1145 3621 776 561 1448 
avg time XLP n-r   CC WBR RR  CC WBR RR 
 70-7  18 192 27 41 52 44 
 70-14  23 192 32 66 57 76 
 70-21  18 147 29 47 34 67 
 70-28  14 76 23 34 23 47 
 70 total 19 152 27 47 42 58 
avg acuts n-r   CC WBR RR  CC WBR RR 
 70-7  37 159 60 91 141 62 
 70-14  116 264 174 195 203 210 
 70-21  129 228 184 121 126 160 
 70-28  109 217 152 116 122 143 
 70 total 98 217 142 131 148 144 
total htop gap 0% n-r   CC WBR RR  CC WBR RR 
 70-7  1 1 0 1 5 0 
 70-14  0 1 0 1 3 0 
 70-21  0 2 0 6 6 2 
 70-28  2 3 0 7 9 5 
 70 total 3 7 0 15 23 7 
total htop gap 5% n-r   CC WBR RR  CC WBR RR 
 70-7  3 5 0 5 9 3 
 70-14  3 5 0 8 6 0 
 70-21  5 9 0 9 9 3 
 70-28  2 8 0 9 9 5 
  70 total 13 27 0 31 33 11 
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7. Conclusion 

Our computational experiments with the CM model can be summarized as follows: 

formulation (CC) was the most efficient, (WBR) was competitive (with Xpress 7.2), 

while (RR) and (DK) had much higher solution times (by a factor of 5 or more). 

In our experiments, we also observed that the relative performance of formulations can 

be influenced not only by the strength of the initial LP relaxation but also by the effect 

of the several components of a generic branch-and-cut solver, such as presolve, cut 

generation and heuristics. Indeed, our results with formulation (WBR) were surprising: 

the number of non-zero elements was the smallest after LP presolve (while it was the 

largest before) in Xpress 7.2; the LP gap after adding cuts at the top node was smaller 

than with (CC) (while it was larger before); heuristic solutions at the top node were 

better or found more frequently than with all other formulations. Thus, for models other 

than CM, or with other solvers, it may also be worthwhile trying (WBR). 

The performance of alternative formulations of CA constraints may vary for different 

location models, depending e.g. on the type of objective function and on the presence of 

minimum and/or maximum capacity constraints. Nevertheless, on the basis of previous 

results in the literature and of our work in this chapter, we can offer some general 

observations and recommendations. 

First, we observe that (DK) should not be used since it is clearly dominated by (WF). 

Both have the flexibility of being applicable to X   in addition to X  , but (DK) leads to 

a weaker and much larger formulation. In our experiments with the CM model, (DK) 

had clearly the worst performance of all formulations. 

We start with recommendations for solving a standard formulation with a generic MIP 

optimizer, without additional development effort. For models with feasible set X   (or a 

restriction of it): 

 All the formulations (CC), (WF), (WBR), (RR), and (DK) are applicable. 

 (CC) or its equivalent (WF) should be the first choice, as it leads to a stronger 

LP relaxation, while not requiring a larger formulation. It performed best in our 

experiments with the CM model. 

 (WBR) may also be worthwhile to try. Even though (WBR) seems a poor choice 

relatively to (CC), because the initial formulation is weaker and has more non-

zero elements, in practice it can perform well, as shown in our experiments on 

the CM model with Xpress 7.2.  
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 (RR) (and its generalization (RR2) to deal with distance ties) is less promising, 

as it leads to a weaker LP relaxation than (CC) and was found to perform worse 

in some particular models. In our experiments with the CM model, it performed 

significantly worse than (CC). In previous experiments with particular models, 

Scaparra and Church (2008) and Berman et al. (2006) found that (RR) 

performed worse than (CC) and (WBR), respectively. 

 (DK) should not be used, as noted above. 

 For set pX   (which is a restriction of X  , so all the above applies), it may also 

be worthwhile to experiment with the new formulation EMR of CA constraints 

proposed by Espejo et al. (2012). This formulation also has O(n2) constraints 

and is not dominated by (CC) (nor dominates it). No computational results have 

been reported with this formulation. 

For models with feasible set X   (or a restriction of it still allowing centers not to be 

assigned to any facility): 

 Only formulations (WF), (WBR), (DK) are applicable. 

 (WF) should be the first choice, as it leads to the strongest LP relaxation. 

 (WBR) may also be worthwhile to try; however, as far as we know, no previous 

experiments have been reported. 

 (DK) should not be used, as noted above. 

We now comment on using the a priori reformulation procedure proposed in this 

chapter, based on a previous one by Cánovas et al. (2007). For models with feasible set 

X  : 

 This procedure is recommended since it requires only moderate implementation 

effort and reduces solution times significantly, according to our experiments and 

those of Cánovas et al. (2007). 

 Steps 1-4 can be used with all CA formulations considered here. Note that steps 

1, 2, 3.1, and 4 are valid with any constraints that enforce CA. Step 3.2 (drop 

CA constraints made redundant by equalities (Weq) added in step 3.1) was 

shown to be valid for (WF). Since constraints (WF) dominate the alternative 

constraints considered here, step 3.2 can also be applied to the latter. 

 For set pX   using formulation EMR, step 3.2 may no longer apply or may 

weaken the formulation, since (WF) does not dominate EMR (Espejo et al., 

2012). We did not further analyze this issue. 

 Steps 5-6 apply only to formulations (WF) and (CC). 
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For models with feasible set X  : 

 Only step 5 is valid for set X  , and only if formulation (WF) is used. No 

computational results have been reported for this case. The other steps rely on 

inequalities that are valid only when all centers must be assigned (demand 

constraints hold with “=”). 

Finally, we offer some comments on other recommendations in the literature: 

 Relax the integrality of variables x: All CA formulations allow the integrality 

of variables x to be relaxed in the definition of set X   (for pairs (i, j) without 

distance ties). Gerrard and Church (1996) and Espejo et al. (2012) suggest that 

such reduction in the number of integer variables might improve the 

performance of a branch-and-bound algorithm, but no computational results are 

offered or cited. 

In our experiments, we chose to leave variables x defined as binary and to give 

branching priority to variables y (the rationale is that assignments are subsidiary 

to location decisions, especially when CA applies). This priority suffices to 

render variables x innocuous for the branch-and-bound tree (except when 

equidistant closest facilities occur), and indeed significantly reduced solution 

times, as noted before in this chapter. Additionally, leaving variables x defined 

as binary may be useful to help reduce or tighten the formulation through 

automatic presolve and cut generation procedures relying on that information. 

However, we did not perform experiments with continuous variables x to verify 

whether performance was improved or degraded. 

 Drop constraints (V) when using (RR): Formulation (RR) allows constraints 

(V) to be dropped from the definition of set X   (restricted to guarantee at least 

one open facility), although at the cost of a weaker LP relaxation. Gerrard and 

Church (1996) suggest that reducing model size by dropping all or a subset of 

(V) might improve computational performance, but no computational results are 

offered or cited. 

We observe that this approach does not seem very promising in general, since it 

is well known that constraints (V) are crucial to strengthen the formulations of 

many location models. That is, dropping (V) will likely only improve 

performance for particular models in which the objective function and 

constraints other than (V) and (RR) promote LP solutions that naturally tend to 

satisfy (V). In those cases, all CA formulations may also perform better if (V) is 
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replaced by the weaker but smaller set of constraints ij ji I x n y    for j J . In 

the case of the CM model, dropping (V) leads to very weak LP relaxations and 

degrades performance very significantly, as verified in experiments described 

above. 

 Other CA formulations: In the conclusion of their recent article, Espejo et al. 

(2012) focus their recommendations on using formulations providing the tightest 

LP relaxations. The authors suggest using (C2) instead of (WF) but restricted to 

O(n2) constraints (by picking a single additional center for each pair of centers 

and sites), which would still provide a tighter formulation. For set pX  , the 

authors suggest using (C2) as above, or the new formulation EMR proposed by 

the authors (which also requires O(n2) constraints, and is neither dominated by 

nor dominates (C2)), or both in conjunction with one set of constraints included 

a priori and the other set used to generate cuts. The authors leave 

implementation details and experiments to future work. Thus, while these 

approaches may be computationally effective, they have not been tested before. 
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Chapter 6  
 

Solving facility location models with modern 

optimization software: the weak and strong 

formulations revisited 

 

6.1 Introduction 

The classic fixed-charge facility location problems – uncapacitated, capacitated, and 

capacitated with single-sourcing, denoted UFLP, CFLP and CFLPSS, respectively – 

consider decisions of locating facilities (such as plants or warehouses in supply chain 

networks or concentrators in telecommunications networks) in a discrete set of potential 

sites and assigning discrete demand centers to those facilities, with the objective of 

minimizing the total costs of satisfying all demand, composed of fixed costs of 

installing facilities and variable costs of operation and transportation. Formulations, 

model extensions, solution methods and applications are reviewed by Klose and Drexl 

(2005) and Gourdin et al. (2002). 

Right from the first studies of these models, the so-called weak and strong variants of 

mixed-integer linear programming (MIP) formulations have been considered, differing 

in the constraints linking assignment and location variables, and involving a trade-off 

between model size and linear programming (LP) relaxation bounds. For the UFLP, it is 

well known that, for many instances of practical interest, the LP relaxation of the strong 

formulation gives integer or close to integer solutions, requiring no or very few 

additional nodes of branch-and-bound (Krarup and Pruzan, 1983). The same happens 

with other uncapacitated location models, such as the p-median problem (ReVelle, 

1993). Capacitated models such as the CFLP are harder to solve, but still the strong 

formulation produces smaller LP gaps (Cornuejols et al., 1991). Although many early 

LP-based branch-and-bound algorithms were based on the weak formulation (Sridharan, 

1995), the strong formulation of the CFLP is used frequently by several authors 

proposing different solution approaches. These include branch-and-cut (Aardal, 1998b; 

Avella and Boccia, 2009) and Lagrangian relaxation (Sridharan, 1995). Díaz and 

Fernández (2001) solve the strong formulation of the CFLPSS with a generic MIP 

optimizer to provide a benchmark for a specialized exact algorithm. 



152 

In this chapter we present computational experiments on solving the CFLP and CFLPSS 

(and also the UFLP for comparison) with a modern MIP optimizer implementing a 

generic branch-and-cut algorithm. The aim is to compare the computational 

performance of well-known formulation variants, combining the weak and strong 

variants, and additional constraints involving facility capacities that are redundant for 

the LP relaxation but help the optimizer recognize certain model relaxations and 

generate strong cutting planes, as recommended by Aardal (1998b).  

Our empirical investigation is motivated by previous, more restricted computational 

experiments done by the authors with the CFLP, where surprisingly the weak 

formulation was found to be solved faster than the strong one with a generic MIP 

optimizer. Trick (2005) discusses a similar result with a particular instance of the CFLP. 

Here we aim to: (i) identify instance data types, including different levels of capacity 

and fixed costs, for which the weak formulation may be solved faster than the strong 

one; (ii) identify the most effective formulation, among the variants referred to above; 

(iii) check whether results for the CFLP also apply to the related CFLPSS, as well as to 

an unrelated facility location model, the capacitated median model, which does not 

involve fixed location costs and involves minimum rather than maximum capacity 

constraints. 

We point out that using a generic MIP optimizer, even with the most effective 

formulation possible, may not be suitable for every application. There are efficient 

specialized algorithms that are able to solve large instances to optimality or near 

optimality. Exact algorithms include those of: Körkel (1989) for the UFLP; Avella and 

Boccia (2009), Görtz and Klose (2012) for the CFLP; Díaz and Fernández (2001), 

Avella et al. (2011) for the CFLPSS. Heuristic algorithms include those of: Barahona 

and Chudak (2005) for the UFLP and CFLP; Ahuja et al. (2004) for the CFLPSS. 

Nevertheless, our results can be useful to practitioners wishing to solve models 

efficiently with minimal modeling effort, or to researchers using a generic MIP 

optimizer to provide a benchmark for specialized solution algorithms. 

In our experiments we use FICO’s Xpress MIP optimizer. General descriptions of MIP 

software implementing branch-and-cut algorithms are given by Atamturk and 

Savelsbergh (2005) and Lodi and Linderoth (2011). State-of-the-art commercial MIP 

software packages include: Xpress (Ashford, 2007; Laundy et al. 2009), CPLEX (Bixby 

et al., 2000; Bixby and Rothberg, 2007), and Gurobi (Bixby, 2011). The references cited 

describe the components of MIP solvers and their historical performance evolution. 
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The remainder of this chapter is organized as follows: section 2 addresses fixed-charge 

location problems; section 3 addresses the capacitated median model; section 4 offers 

overall conclusions. 

6.2 Fixed-charge location problems 

6.2.1 Formulations 

We start by presenting mixed-integer linear programming formulations of the UFLP, 

CFLP and CFLPSS. We are given a set of demand centers  1,...,I n , a set of sites 

where facilities can be installed  1,...,J m , and the following data, for i I  and 

j J : id  is the demand of center i; js  is the maximum capacity of site j; jf  is the fixed 

cost of installing and operating a facility at site j; ijc  is the variable cost of serving all 

the demand of center i from site j. Decision variables are: 1jy   if a facility is installed 

(or open) at site j J , and equals zero otherwise; ijx  is the fraction of the demand of 

center i I  served from site j J . 

The uncapacitated facility location problem, UFLP, is the problem of finding which 

facilities to open, and assigning centers to those facilities, in order to minimize the total 

cost of serving all the demand. Capacities are assumed to be as large as necessary. The 

weak formulation of the UFLP is 

(W-UFLP): 

Min ij ij j j
i I j J j J

c x f y
  

    

Subject to 1ij
j J

x


 , i I   (D) 

 ij j
i I

x n y


  , j J   (U) 

 {0,1}jy  , j J   (I) 

 0ijx  , ,i I j J    (N) 

In this formulation and those following, constraints are identified by letters using a 

notation similar to the one of Cornuejols et al. (1991). Constraints (D) state that all 

demand has to be served. Constraints (U) link x and y variables, and state that if a 

facility is open it can serve any number of centers, otherwise no center can be assigned 

to it. Expressions (I) and (N) are integrality and non-negativity constraints on variables. 

Note that (N) and (D) imply 0 1ijx   for all i and j. 
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The m constraints (U) can be replaced with the n m  variable upper-bound constraints 

 ij jx y , ,i I j J    (B) 

which state that center i can only be served by a facility at j if it is open. By doing this, 

we obtain the strong formulation of the UFLP: 

(S-UFLP): 

Min ij ij j j
i I j J j J

c x f y
  

    

Subject to (D), (B), (I), (N) 

The strong and weak integer formulations are equivalent, i.e. define the same set of 

integer solutions. However, their LP relaxations, obtained by replacing (I) with 

0 1jy   for j J , are not equivalent. Formulation (S-UFLP) is said to be stronger or 

tighter, as the set of solutions to its LP relaxation is strictly contained in the one of (W-

UFLP). Moreover, constraints (B) have the property of being facet-defining for the 

UFLP polytope (Cornuejols et al., 1990). It is well known that, in many instances of 

practical interest, the LP relaxation of (S-UFLP) gives integer or close to integer 

solutions, requiring no or very few additional nodes of branch-and-bound (Krarup and 

Pruzan, 1983). 

The capacitated facility location problem, CFLP, is obtained from the UFLP by 

imposing maximum capacities on facilities. Its weak formulation is 

(W1-CFLP): 

Min ij ij j j
i I j J j J

c x f y
  

    

Subject to 1ij
j J

x


 , i I   (D) 

 i ij j j
i I

d x s y


 , j J   (C) 

 {0,1}jy  , j J   (I) 

 0ijx  , ,i I j J    (N) 

where (C) are the capacity constraints. The strong formulation is obtained by adding 

constraints (B): 

(S1-CFLP): 

Min ij ij j j
i I j J j J

c x f y
  

    
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Subject to (D), (C), (B), (I), (N) 

While constraints (B) are redundant for the integer formulation, they strengthen the LP 

relaxation (Cornuejols et al., 1991) and were shown (by Aardal, cited by Avella and 

Boccia, 2009) to be facet-defining for the CFLP polytope for all i I  and j J  such 

that i jd s . Constraints (B) can also strengthen Lagrangian relaxations (Cornuejols et 

al., 1991; Sridharan, 1995). For these reasons, the strong formulation appears frequently 

in the literature, as was noted in the introduction. 

Additional redundant constraints have been proposed in the literature, based on 

aggregate capacity and demand expressions. They are redundant even for the LP 

relaxation, but strengthen Lagrangian relaxations or help branch-and-cut solvers 

recognize particular model relaxations for which strong cutting planes can be generated. 

First, we recall the total capacity constraint 

 j j i
j J i I

s y d
 

  , (T) 

which states that the total capacity of open facilities should cover total demand. Note 

that (T) is redundant both for the integer formulation and the LP relaxation of the CFLP, 

as it can be obtained from constraints (C) and (D). However, Cornuejols et al. (1991) 

show the theoretical and practical advantages of adding (T) to strengthen Lagrangian 

relaxations. 

Second, we recall the constraint set 

 j i ij
i I

z d x


 , j J   (Z) 

 j j jz s y , j J   (C )  

 j i
j J i I

z d
 

   (F) 

 0jz  , j J   (Nz) 

where (Z) define auxiliary occupied capacity variables, (C )  replaces (C), and (F) 

establishes the flow equilibrium between total occupied capacity and total demand. 

Aardal (1998b) proposes a formulation obtained from (S1-CFLP) and using the 

constraint set above. While not improving the LP relaxation bound, this formulation 

enables a MIP optimizer to recognize the surrogate knapsack set, X K, and the single-

node flow set, X SNF, 
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 {0,1} : (T)K mX y   

 , {0,1} : (F), (C )SNF m mX z R y     

and to generate lifted cover cuts and flow cover cuts, developed for X K and X SNF, 

respectively, which are facet-defining inequalities for the CFLP polytope under some 

conditions (Aardal, 1998b). In the experiments of Aardal, using the MINTO branch-

and-cut solver, significant time reductions were obtained (on average 20-80% for 

groups of instances with varying capacity data). 

Note that (T) was not explicitly added to the formulation proposed by Aardal, but 

presumably it was recognized by MINTO automatically by combining (C )  and (F). In 

our experiments using the Xpress solver (described below), we noticed that explicitly 

adding (T) as well led to some variation in cut generation (in terms of number of cuts 

and LP bound at the top node) and systematically reduced solution time (only slightly or 

by up to 30%, both for the weak and strong formulations of the CFLP and CFLPSS 

models). For this reason, (T) was also added to the formulation in our experiments. 

To summarize, we consider the following CFLP formulation variants: 

 (W1-CFLP) denotes Min ij ij j ji I j J j Jc x f y     , s.t. (D), (C), (I), (N); 

 (W2-CFLP) denotes (W1-CFLP) with (T) added; 

 (W3-CFLP) denotes (W1-CFLP) with (C) removed, (Z), (C ) , (F), (Nz) added, 

and (T) also added; 

 (S1-CFLP) denotes (W1-CFLP) with (B) added; 

 (S2-CFLP) denotes (W2-CFLP) with (B) added; 

 (S3-CFLP) denotes (W3-CFLP) with (B) added; 

We call W1 and S1 the standard formulations, and the others aggregate formulations. 

Finally, the CFLPSS is the capacitated facility location problem with single sourcing (or 

single assignment), in which each center’s demand cannot be split and must be served 

from a single facility. For the UFLP, an optimal solution can be found where variables x 

are either zero or one without explicitly requiring them to be integer (Krarup and 

Pruzan, 1983). This property does not hold for capacitated models and, if required, must 

be enforced with integrality constraints: 

  0,1ijx  , ,i I j J    (SS) 

We consider six variants of CFLPSS formulations, obtained by replacing (N) with (SS) 

in the CFLP formulations above. 
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6.2.2 Instances 

The test instances were randomly generated using the procedure of Cornuejols et al. 

(1991), which was devised for the CFLP. Their main features include variable costs 

depending on Euclidean distances, fixed costs reflecting economies of scale, and 

varying capacity levels. We opted for this procedure as these features can be considered 

representative of real-world problems and it has been used by several other authors for 

benchmarking algorithms for the CFLP, e.g. Aardal (1998b), Barahona and Chudak 

(2005), Avella and Boccia (2009), and Görtz and Klose (2012). 

The procedure is the following, for a given size n m :  

 points representing centers and sites are randomly generated in    0,1 0,1 ; 

 demands id  are generated from a uniform distribution  5,35U ; 

 variable costs are set to 10ij i ijc d e   , where ije  is the Euclidean distance 

between center i and site j; 

 capacities js  are generated from  10,160U ; 

 fixed costs are generated with the formula    0,90 100,110j jf U U s  ; 

 capacities js  are then scaled to obtain instances with different capacity levels 

Cap = j ij J i Is d    (note that fixed costs are not affected by this scaling). 

Cornuejols et al. (1991) used this procedure for varying sizes with m/n = 1, 2/3 and 1/3. 

Five instances of each size and capacity level were generated with Cap = 1.5, 2, 3, 5 and 

10. Fixed costs were then multiplied by two for Cap = 1.5 and 2. 

For our experiments, we opted for capacity levels spanning a wider range, and to 

generate instances with varying fixed costs, obtained by applying a multiplier, denoted 

Fix. We consider only one instance size for each of the CFLP and CFLPSS models, in 

order to reduce the amount of results to report and analyze here. We chose sizes that 

were neither too easy nor too hard to solve with the computer hardware used. We 

generated 10 instances of each of size, capacity level and fixed cost level as follows: 

 Size 200x200, Cap = 2, 5, 10, 20, 50, and Fix = 0.2, 1, 5 for the CFLP; 

 Size 50x50, Cap = 2, 3, 5, and Fix = 0.2, 1, 5 for the CFLPSS. 

For the CFLPSS a smaller size was considered, as the model is much harder to solve for 

tight capacity levels, and a smaller maximum capacity level, as for higher levels the 

model becomes much easier to solve (it tends to reduce to the CFLP). 

For the UFLP, we used the same instances as for the CFLP, although only the 10 basic 

instances for each fixed cost level, as capacities are not defined. 
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As shown in Table 6.1 and Table 6.2, the capacity and fixed cost levels considered 

cover wide variations of fixed cost weight and number of open facilities in optimal 

solutions. 

Table 6.1: CFLP and UFLP instances – characteristics of optimal solutions  

(averages for 10 instances of size 200x200) 

  Optimal value (IP) % Fixed costs in IP Open facilities % Open facilities 

Cap \ Fix 0.2 1 5 0.2 1 5 0.2 1 5 0.2 1 5 

2 18 610 81 233 391 685 85% 96% 99% 65 62 62 32% 31% 31% 

5 9 443 33 649 151 740 67% 89% 97% 26 23 23 13% 12% 11% 

10 7 253 19 711 78 119 50% 76% 93% 17 12 11 9% 6% 6% 

20 6 321 14 050 43 987 45% 58% 84% 19 7 6 10% 4% 3% 

50 5 623 11 265 26 101 36% 46% 63% 18 7 3 9% 3% 2% 

Uncap. 5 519 9 390 16 166 33% 34% 38% 16 7 3 8% 3% 1% 
 

Table 6.2: CFLPSS instances – characteristics of optimal solutions  

(averages for 10 instances of size 50x50) 

  Optimal value (IP) % Fixed costs in IP Open facilities % Open facilities 

Cap \ Fix 0.2 1 5 0.2 1 5 0.2 1 5 0.2 1 5 

2 5 837 22 534 104 678 75% 91% 98% 18 17 17 36% 33% 33% 

3 4 292 15 323 68 669 67% 88% 97% 12 11 11 24% 21% 21% 

5 3 295 10 030 41 754 57% 80% 94% 8 6 6 17% 13% 13% 
 

6.2.3 Software 

All experiments were carried out with FICO’s Xpress Optimization Suite version 7.2 

(released in May 2011). Models were implemented with Xpress Mosel 3.2 and were 

solved with Xpress MIP Optimizer 22.01, running on a computer with a Pentium M 755 

2.0 GHz CPU, 1.0 GB of memory, and Windows XP operating system. 

A maximum computing time of 30 minutes was imposed for solving each instance. 

Optimizer parameters for presolve, cut generation, primal heuristics, and branch-and-

bound were left at their default values, except the ones described next. 

Cut generation parameters were set as follows: cutfactor = 100, covercuts = 50, 

cutstrategy = -1 (automatic). These parameters have the following meaning: 

 cutfactor: sets a limit on the number of cuts and non-zero cut elements the 

optimizer is allowed to add to the formulation, relative to the size of the initial 

formulation (a value of 1 allows the number of rows and elements to double). 
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 covercuts: sets the maximum number of rounds of lifted cover cuts and other 

special purpose cut types (all types except Gomory and lift-and-project cuts). 

 cutstrategy: specifies the aggressiveness of cut generation, from 1 to 3, with 

more cuts being generated with a higher level (no further details are provided in 

the documentation). 

By default the solver sets these parameters automatically, depending on the model and 

instance being solved. In preliminary experiments with the UFLP, CFLP and CFLPSS, 

it was verified that automatic parameters were too conservative. The settings above 

enlarge the default limits and benefitted all formulations (strong and weak, standard and 

aggregate) of the three models and all data types (Cap, Fix), but particularly weak 

formulations with large capacity ratios (which have the largest LP gaps). Note: a 

cutfactor of 100 essentially removes the limit set by this parameter; covercuts by default 

was limited to 20, while the new limit of 50 was hit in less than 5% of CFLP instances 

tested and in less than 30% of CFLPSS instances tested; cutstrategy was left at the 

default, after verifying in preliminary tests that it is equivalent to setting 1 and that 

increasing it to 2 or 3 slightly increased solution times. 

For the CFLPSS, branching priority was given to y variables over x variables. In 

preliminary experiments this reduced solution time significantly (total solution time 

decreased by 20-70% for formulations W2 and S2 and instances with Fix=1 and Cap=2 

or 3). 

Finally, we note that modern MIP solvers are able to automatically recognize the 

validity of variable upper bound constraints (B) when a weak formulation is used, e.g. 

using (U), and add them as cuts if they are violated. Such cuts are called implication 

cuts in Xpress (Ashford, 2007) and implied bound cuts in CPLEX (Bixby et al., 2000). 

In our experiments with Xpress 7.2, it was verified (by inspecting the formulation after 

the top node) that indeed all violated (B) constraints are added to the weak UFLP and 

CFLP formulations (as long as cut parameters limiting the number of cuts that can be 

added are suitably modified as indicated above; also not considering rounds of Gomory 

and lift-and-project cuts in Xpress, which are generated after all other cut types and may 

lead to a new fractional solution violating some of the (B) constraints). In the case of the 

CFLP, this means that the solver recognized (B) given (C) and (D). Thus, at the top 

node the solver can add to the weak formulation all (or most) of the (B) constraints that 

would be active in the strong formulation. However, the same will not occur at tree 

nodes, since cut generation is not invoked at all nodes. 
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6.2.4 Presentation of computational results 

We present results disaggregated by capacity and fixed cost level, since results and the 

relative performance of formulations vary widely with these parameters. Results are not 

presented for individual instances, for the sake of brevity, and are aggregated for the 10 

instances of each capacity and fixed cost level. 

Arithmetic averages of the following results are reported: 

 Time: computation time in seconds; 

 Nodes: number of nodes in the branch-and-bound tree; 

 Gap LP = (IP-LP)/IP: gap of the first LP relaxation value, LP, relative to the 

optimal value IP; 

 Gap XLP = (IP-XLP)/IP: gap of the LP relaxation value at the top node after 

adding cuts, XLP, relative to the optimal value IP; 

 Cuts: number of cuts added to the formulation at the top node (the total number 

of cuts generated may be higher, as cuts that become inactive in successive cut 

generation iterations are deleted); 

 Gap H = (IP1-XLP)/XLP: gap of the heuristic solution value at the top node, 

IP1, relative to the best lower bound at that node (XLP); 

In column “Optimal” we also report the number of instances solved to optimality within 

the time limit. For instances not solved to optimality, we considered the values of time 

and nodes observed at the time limit. 

In addition, we compare solution times between pairs of formulations with two 

measures: 

 Ratio of total time: ratio between the total solution times (or equivalently the 

average times) with the two formulations. This ratio assesses the relative 

performance to solve a batch of instances. 

 Geometric mean of time ratios: geometric mean of the ratios between solution 

times of individual instances with the two formulations. This ratio assesses the 

relative performance to solve a single instance, and may differ from the previous 

ratio, which can be dominated by a large individual time. The geometric mean 

was chosen instead of the arithmetic mean since it is less sensitive and more 

conservative when large individual time ratios occur (it was also used e.g. by 

Bixby et al., 2000). 



 

161 

6.2.5 UFLP results 

We start by presenting results for the UFLP (Table 6.3). The strong formulation is 

solved clearly faster. Although results of individual instances are not shown, the LP gap 

is positive in only 5 of the 30 instances tested, and in those cases it is closed at the top 

node with few cuts and no branching is required. 

The weak formulation is solved more than 10 times slower, even though the solver is 

able to close the LP gap at the top node in most instances. It can also be observed that 

instances with higher fixed costs are harder to solve. 

Note: For solving the weak formulation, cut generation parameters were set differently 

than indicated in section 6.2.3: only “implication cuts” enabled (cutselect = 4096), 

increased maximum number of cut rounds (covercuts = m = 200), and other parameters 

as before (cutfactor = 100, default for others). With this setting, only violated variable 

upper bound constraints (B) are added to the formulation, until no such violations 

remain at the top node. With the cut settings of section 6.2.3, with all cut types enabled 

by default, solution time was much higher (the solver wastes time generating cuts that 

are not as effective). We also tested the weak formulation with the default cut 

generation parameters of Xpress 7.2, which drastically limit the number of cut rounds 

and the number of cuts and cut elements that can be added. Branch-and-bound would be 

initiated with a large LP gap at the top node and instances could not be solved to 

optimality within the time limit. 

In conclusion, the strong formulation is clearly better for the UFLP (assuming it fits the 

available computer memory), confirming well-known results from the literature. 

Table 6.3: UFLP results (size 200x200) 

Formul. Fix Optimal Time Nodes 
Gap LP 

(%) 
Gap XLP 

(%) 
Cuts 

S 

0.2 10 1 1 0.01 0.00 1 

1 10 2 1 0.04 0.00 3 

5 10 4 1 0.07 0.00 2 

W 

0.2 10 10 1 70.57 0.00 2213 

1 10 70 1 75.08 0.01 4935 

5 10 246 8 67.40 0.05 9371 
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6.2.6 CFLP results 

Results for the CFLP are presented in Table 6.4 and Table 6.5. We first note that 

solution times vary widely with capacity and fixed cost levels. Focusing first on 

formulation S1, instances are harder to solve for lower capacity levels (for higher levels 

the CFLP tends to reduce to the UFLP) and for higher fixed costs. Other formulations 

show similar trends, except that with aggregate formulations (strong or weak) instances 

become easier with higher fixed costs for lower capacity levels, particularly for the 

lowest level (Cap=2). 

Regarding the relative performance of formulations: 

 Aggregate formulations (W2, W3, S2, S3) can be solved much faster than the 

respective standard ones (W1, S1) for lower capacity levels and higher fixed 

cost levels. In the case of capacity levels, we observe that fewer cover 

inequalities are likely to be violated when facility capacity is less tight. 

 Comparing formulations 3 and 2, although 3 would be expected to perform at 

least as well as 2, some variations are observed. S2 and S3 have similar 

performance, and no one dominates the other for all capacity and fixed cost 

levels. W2 is solved systematically faster than W3, particularly for higher 

capacity ratios (W3 can be solved slower by a factor of 2; although this could be 

perhaps changed with different solver cut parameters, this issue was not further 

analyzed as strong formulations are anyway solved faster in those cases, as 

discussed below). 

 Weak formulations are solved faster than the respective strong ones for lower 

capacity levels and higher fixed costs, but are solved slower for other data 

levels. The precise transition capacity level depends on the fixed cost level; 

however, for the instances we tested, weak formulations were solved as fast 

(within 10%) or faster than strong ones for capacity levels up to 10 with all fixed 

cost levels. 

 The good performance of weak formulations can be attributed to the following 

factors: (i) with lower capacity and higher fixed cost levels, fewer variable upper 

bound constraints (B) tend to be violated by LP relaxations (see Table 6.6); (ii) 

the smaller formulation size allows faster re-optimization of LP relaxations at 

branch-and-bound nodes (even if many more nodes are required than with strong 

formulations, as shown in Table 6.4). 



 

163 

 The summary in Table 6.5 (where W3 and S3 are omitted for simplicity) shows 

that, for Cap 10 or less and Fix 1 or more, formulation 2 relatively to 1 is solved 

faster by a factor of 2-10 or more, and weak formulations relative to strong ones 

are solved faster by a factor of 2 or more. 

 The last panel of Table 6.5 (S1/W2) shows that if one adopts the standard strong 

formulation (S1) rather than the best formulation (W2) for lower capacity levels, 

solution times can be much higher, up to a factor of more than 100 for high fixed 

cost levels. 

Other observations: 

 Gaps LP and XLP: The weak formulation has much higher initial LP gap than 

the strong one (especially for higher capacity levels), but after adding cuts at the 

top node the gap is similar to the one of the strong formulation. It can also be 

observed that aggregate formulations are especially effective at reducing the top 

node LP gap for lower capacity levels and higher fixed costs (for which solution 

times also decrease the most, as noted above). 

 Gap H: A high quality solution is found already at the top node by the solver’s 

heuristic procedures. Such solution (which was found in all instances tested) had 

a small gap (Gap H) of less than 1% on average (when using an aggregate strong 

formulation, or an aggregate weak formulation for low capacity levels). 

In conclusion, on the basis of our experiments, the following formulations are 

recommended for the CFLP: W2 or W3 for lower capacity ratios (Cap=10 or less); S2 

or S3 for higher capacity ratios. 

Note: In the original procedure of Cornuejols et al. (1991) to generate test instances, 

capacity levels varied up to 10, which is also the range for which we found the weak 

formulation to be competitive. However, we also note that those authors also generated 

instances with m<n, while here we test only m=n. If m is decreased (holding n, total 

demand and total capacity fixed) then fewer facilities will have to be open to satisfy all 

demand. If fixed costs per site remain at the same level (i.e. are not affected by capacity 

scaling, as is the case in this generation procedure), the importance of fixed costs in 

objective values will decrease. This tends to make the weak formulation less 

competitive, as noted above. Still, with m=n/2 or m=n/3 we expect the weak formulation 

to perform better than the strong one for a capacity level up to 10 and for a fixed cost 

level of 1 or more (in our test, the weak formulation was still competitive for m=n and 

Fix=0.2). 
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Table 6.4: CFLP results (size 200x200) 

    Optimal Nodes 

Fix Cap W1 W2 W3 S1 S2 S3 W1 W2 W3 S1 S2 S3 

0.2 

2 10 10 10 10 10 10 1960 956 1343 1761 1375 1253

5 9 9 9 8 8 9 6224 4192 4517 1678 1749 1736

10 10 10 10 10 10 10 1071 1166 1453 276 342 306

20 10 10 9 10 10 10 542 623 789 150 147 127

50 10 10 10 10 10 10 53 43 21 1 1 2

1 

2 10 10 10 9 10 10 3841 43 52 2066 50 56

5 8 10 10 6 10 10 10574 1673 1904 2791 1031 1266

10 10 10 10 9 10 10 3102 726 1147 881 426 495

20 10 10 8 10 10 10 1105 770 575 147 102 126

50 10 10 9 10 10 10 213 240 188 26 28 25

5 

2 6 10 10 5 10 10 12555 1 1 3317 4 2

5 6 10 10 2 10 10 17511 129 113 779 122 178

10 6 10 10 2 10 10 13865 118 93 464 73 65

20 6 10 10 1 10 10 10815 249 319 312 59 49

50 10 10 4 9 10 10 838 69 33 112 6 10

 
    Time Ratio of total time (relative to W2) 

Fix Cap W1 W2 W3 S1 S2 S3 W1 W2 W3 S1 S2 S3 

0.2 

2 140 94 104 324 307 267 1.5 1.0 1.1 3.4 3.3 2.8

5 665 520 603 937 1002 929 1.3 1.0 1.2 1.8 1.9 1.8

10 247 272 477 232 273 264 0.9 1.0 1.8 0.9 1.0 1.0

20 181 216 361 72 72 77 0.8 1.0 1.7 0.3 0.3 0.4

50 60 55 53 5 7 9 1.1 1.0 1.0 0.1 0.1 0.2

1 

2 222 10 10 494 30 26 22.0 1.0 1.0 48.9 3.0 2.6

5 653 164 186 1382 554 547 4.0 1.0 1.1 8.4 3.4 3.3

10 341 174 307 844 348 423 2.0 1.0 1.8 4.8 2.0 2.4

20 400 442 884 394 236 265 0.9 1.0 2.0 0.9 0.5 0.6

50 318 384 968 79 69 80 0.8 1.0 2.5 0.2 0.2 0.2

5 

2 813 5 6 1159 27 19 162.6 1.0 1.2 231.8 5.4 3.8

5 997 20 22 1551 108 94 50.3 1.0 1.1 78.3 5.5 4.7

10 935 37 38 1571 87 95 25.5 1.0 1.0 42.9 2.4 2.6

20 1026 134 241 1783 240 235 7.7 1.0 1.8 13.3 1.8 1.8

50 715 370 1388 957 228 236 1.9 1.0 3.8 2.6 0.6 0.6

Bold – Fastest or within 10% of the fastest 
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Table 6.4 (continued) 

    Gap LP (%) Gap XLP (%) 

Fix Cap W1 W2 W3 S1 S2 S3 W1 W2 W3 S1 S2 S3 

0.2 

2 0.5 0.5 0.5 0.2 0.2 0.2 0.10 0.10 0.11 0.11 0.11 0.10

5 9.2 9.2 9.2 0.6 0.6 0.6 0.49 0.50 0.50 0.48 0.49 0.48

10 27.6 27.6 27.6 0.4 0.4 0.4 0.33 0.33 0.34 0.31 0.31 0.31

20 44.9 44.9 44.9 0.4 0.4 0.4 0.29 0.30 0.30 0.22 0.20 0.21

50 58.7 58.7 58.7 0.2 0.2 0.2 0.17 0.15 0.16 0.02 0.01 0.03

1 

2 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.02 0.02 0.05 0.02 0.02

5 1.6 1.6 1.6 0.3 0.3 0.3 0.29 0.24 0.25 0.30 0.25 0.25

10 8.9 8.9 8.9 0.5 0.5 0.5 0.47 0.39 0.39 0.46 0.39 0.40

20 27.6 27.6 27.6 0.4 0.4 0.4 0.40 0.36 0.36 0.39 0.35 0.35

50 53.4 53.4 53.4 0.3 0.3 0.3 0.24 0.23 0.24 0.21 0.20 0.20

5 

2 0.1 0.1 0.1 0.1 0.1 0.1 0.10 0.00 0.00 0.09 0.00 0.00

5 0.3 0.3 0.3 0.2 0.2 0.2 0.21 0.07 0.06 0.21 0.07 0.07

10 1.6 1.6 1.6 0.7 0.7 0.7 0.66 0.17 0.16 0.66 0.18 0.18

20 8.1 8.1 8.1 1.8 1.8 1.8 1.74 0.30 0.31 1.73 0.31 0.31

50 31.2 31.2 31.2 1.3 1.3 1.3 1.31 0.20 0.23 1.25 0.18 0.18

 
    Cuts Gap H (%) 

Fix Cap W1 W2 W3 S1 S2 S3 W1 W2 W3 S1 S2 S3 

0.2 

2 92 98 82 31 29 32 0.2 0.1 0.2 0.2 0.2 0.2

5 390 391 381 20 21 21 1.5 0.9 1.1 0.7 0.8 0.7

10 1014 1011 941 15 15 18 1.3 1.1 0.9 0.4 0.4 0.4

20 1536 1532 1280 20 19 20 1.2 1.7 0.9 0.2 0.2 0.2

50 1499 1478 1243 12 12 15 2.3 1.5 0.3 0.0 0.0 0.0

1 

2 37 59 52 18 26 23 0.3 0.0 0.0 0.2 0.0 0.0

5 183 239 217 19 21 21 1.0 0.3 0.4 1.1 0.6 0.5

10 572 691 617 11 14 14 1.3 0.9 0.9 0.9 0.5 0.6

20 1848 1871 1482 13 12 11 2.3 3.8 1.8 0.5 0.5 0.6

50 3982 3900 2207 12 12 9 2.5 2.6 1.3 0.2 0.2 0.2

5 

2 12 54 47 11 25 20 0.5 0.0 0.0 0.6 0.0 0.0

5 79 166 166 19 20 18 0.9 0.1 0.1 1.3 0.2 0.1

10 191 362 348 12 17 16 2.2 0.5 0.2 2.6 0.2 0.2

20 680 1119 929 9 11 11 3.7 0.8 0.7 4.3 0.7 0.4

50 3972 4298 3099 11 15 18 4.2 1.9 1.5 2.9 0.2 0.2
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Table 6.5: CFLP results (size 200x200) – summary of time ratios 

 

Ratio of total time Geometric mean of time ratios 

      

S vs. W S1/W1 S2/W2  S vs. W S1/W1 S2/W2 

Cap \ Fix 0.2 1 5 0.2 1 5  Cap \ Fix 0.2 1 5 0.2 1 5 

2 2.3 2.2 1.4 3.3 3.0 5.4  2 2.8 4.3 4.3 3.0 3.1 5.4 

5 1.4 2.1 1.6 1.9 3.4 5.5  5 1.6 3.3 3.1 2.2 3.4 5.2 

10 0.9 2.5 1.7 1.0 2.0 2.4  10 1.0 3.0 3.9 1.0 1.9 2.3 

20 0.4 1.0 1.7 0.3 0.5 1.8  20 0.4 1.0 2.5 0.3 0.5 1.9 

50 0.1 0.2 1.3 0.1 0.2 0.6  50 0.1 0.3 1.3 0.1 0.2 0.6 

               

1 vs. 2 W1/W2 S1/S2  1 vs. 2 W1/W2 S1/S2 

Cap \ Fix 0.2 1 5 0.2 1 5  Cap \ Fix 0.2 1 5 0.2 1 5 

2 1.5 22.0 162.6 1.1 16.3 43.3  2 1.2 5.9 42.5 1.2 8.2 33.9

5 1.3 4.0 50.3 0.9 2.5 14.3  5 1.3 3.1 25.2 0.9 3.0 14.8

10 0.9 2.0 25.5 0.8 2.4 18.2  10 0.9 1.5 12.1 0.9 2.4 20.6

20 0.8 0.9 7.7 1.0 1.7 7.4  20 0.8 0.9 5.8 1.0 1.8 7.8 

50 1.1 0.8 1.9 0.7 1.1 4.2  50 1.0 0.8 2.0 0.8 1.1 4.2 

               

Combined S1/W2    Combined S1/W2   

Cap \ Fix 0.2 1 5     Cap \ Fix 0.2 1 5    

2 3.4 48.9 231.8     2 3.5 25.7 182.5    

5 1.8 8.4 78.3     5 2.1 10.2 77.0    

10 0.9 4.8 42.9     10 0.9 4.5 47.2    

20 0.3 0.9 13.3     20 0.3 0.9 14.6    

50 0.1 0.2 2.6     50 0.1 0.2 2.6    

 

 

 

 

Table 6.6: CFLP instances – average number of violated variable upper bound constraints (B) by 

the first LP relaxation of the weak formulation, relatively to the number of centers (n) 

Cap \ Fix 0.2 1 5 

2 25% 6% 2% 

5 96% 69% 23% 

10 100% 100% 73% 

20 100% 100% 100%

50 100% 100% 100%
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6.2.7 CFLPSS results 

CFLPSS results are presented in Table 6.7 and Table 6.8. We first note that instances 

are harder to solve for lower capacity ratios and higher fixed costs, similarly to what 

was observed for the CFLP (however, for the CFLPSS this applies also to aggregate 

formulations with low capacity levels, which was not the case for the CFLP). For the 

instances tested, the CFLPSS becomes much easier to solve for capacity level 5 or 

higher. The explanation is that, with larger facility capacities, more centers satisfy 

single sourcing constraints even if these are omitted (solving a CFLP with the same 

instances we observed that the proportion of centers assigned to more than one facility 

in optimal solutions were 27%, 17%, 10% and 5% for capacity levels of 2, 3, 4 and 5, 

respectively, in the case of fixed cost level 1). 

We find, like for the CFLP, that aggregate formulations are generally solved faster than 

the standard ones (except with fixed cost level 0.2, for which instances are relatively 

easy and standard formulations are slightly faster) and weak formulations are generally 

solved faster than the corresponding strong ones. Comparing aggregate formulations 3 

and 2, the best one varies for different data, both for the strong and weak variants. 

In Table 6.8 we summarize the relative performance of formulations (we omit Cap=5, 

as instances are easily solved in under 20 seconds on average with aggregate 

formulations; we consider formulation 3 instead of 2 like for the CFLP, since S3 is 

solved about twice as fast as S2 for the harder instances with Cap=2 and Fix=1 and 5). 

Weak formulations are solved faster than strong ones by a factor of up to about 1.5 for 

Fix=1. Aggregate formulations 3 are solved faster than the standard ones by a factor of 

about 1.5-3 times for Fix=1. The last panel (S1/W3) shows that if one adopts the 

standard strong formulation (S1) rather than the more effective W3, solution times can 

be higher by a factor of 4 or more for Fix=1 or 5. 

Unlike for the CFLP, the relative performance of formulations for individual instances 

(tables show only aggregate results) is not systematic, i.e. one formulation with higher 

average time may be solved faster in particular instances. For this reason, in Table 6.8 

the ratio of total time may be less than 1 but the geometric mean of time ratios may be 

higher than 1 (or vice versa). 

In conclusion, on the basis of our experiments, the W2 or W3 formulations are 

recommended for the CFLPSS for capacity levels of up to 5 (and possibly higher). 

Although we did not test much higher capacity levels (say of more than 10), the 
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CFLPSS can be expected to reduce to the CFLP and formulations S2 or S3 are likely to 

perform better, as for the CFLP. 

Table 6.7: CFLPSS results (size 50x50) 

    Optimal Nodes 

Fix Cap W1 W2 W3 S1 S2 S3 W1 W2 W3 S1 S2 S3 

0.2 

2 10 10 10 10 10 10 3664 3503 5118 5564 5135 7613

3 10 10 10 10 10 10 1139 1527 1262 1146 1303 1140

5 10 10 10 10 10 10 371 355 538 378 162 361

1 

2 7 9 10 6 9 9 25963 20174 11181 22482 18420 12294

3 9 10 10 10 10 10 98336 7788 8395 15889 9185 8600

5 10 10 10 10 10 10 2641 1255 1224 3462 1231 1152

5 

2 8 9 9 5 8 10 30249 16633 104725 50250 20939 9224

3 10 10 10 7 10 10 74783 25966 11038 162461 16857 15548

5 10 10 10 10 10 10 16449 3056 1440 24674 2551 2188

 
    Time Ratio of total time (relative to W2) 

Fix Cap W1 W2 W3 S1 S2 S3 W1 W2 W3 S1 S2 S3 

0.2 

2 80 76 88 111 151 128 1.1 1.0 1.2 1.5 2.0 1.7

3 18 28 25 23 28 25 0.6 1.0 0.9 0.8 1.0 0.9

5 5 6 9 8 7 8 0.8 1.0 1.5 1.3 1.1 1.3

1 

2 751 362 257 1025 610 357 2.1 1.0 0.7 2.8 1.7 1.0

3 284 69 89 211 121 129 4.1 1.0 1.3 3.1 1.8 1.9

5 18 12 16 29 14 13 1.5 1.0 1.3 2.4 1.2 1.1

5 

2 852 364 473 1235 630 284 2.3 1.0 1.3 3.4 1.7 0.8

3 289 164 93 915 170 240 1.8 1.0 0.6 5.6 1.0 1.5

5 31 11 9 86 16 18 2.8 1.0 0.8 7.7 1.4 1.6

Bold – Fastest or within 10% of the fastest 

    Gap LP (%) Gap XLP (%) 

Fix Cap W1 W2 W3 S1 S2 S3 W1 W2 W3 S1 S2 S3 

0.2 

2 6.0 6.0 6.1 5.0 5.0 5.1 0.58 0.56 0.51 0.57 0.56 0.61

3 7.5 7.5 7.5 3.6 3.6 3.6 0.75 0.78 0.83 0.70 0.70 0.78

5 16.0 16.0 16.0 2.7 2.7 2.7 0.81 0.80 0.87 0.76 0.71 0.86

1 

2 2.1 2.1 2.1 2.1 2.1 2.1 0.66 0.27 0.25 0.66 0.27 0.25

3 2.4 2.4 2.4 1.8 1.8 1.8 0.82 0.55 0.55 0.82 0.54 0.54

5 5.5 5.5 5.5 2.2 2.2 2.2 1.56 1.11 1.08 1.52 1.08 1.09

5 

2 1.1 1.1 1.1 1.1 1.1 1.1 0.68 0.06 0.06 0.70 0.06 0.05

3 1.1 1.1 1.1 1.0 1.0 1.0 0.82 0.09 0.08 0.77 0.10 0.09

5 1.9 1.9 1.9 1.7 1.7 1.7 1.52 0.19 0.19 1.41 0.18 0.19
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Table 6.7 (continued) 

    Cuts Gap H (%) 

Fix Cap W1 W2 W3 S1 S2 S3 W1 W2 W3 S1 S2 S3 

0.2 

2 182 235 148 249 166 148 3.7 2.5 2.8 1.9 2.3 5.3

3 127 143 152 93 95 91 2.6 3.2 3.6 1.9 2.6 2.6

5 150 153 169 52 52 46 1.7 2.1 3.2 2.5 1.0 3.6

1 

2 147 225 216 168 206 188 4.1 5.2 7.3 3.9 5.0 8.2

3 136 184 130 92 93 91 4.0 6.2 8.2 4.0 5.8 8.6

5 97 140 152 36 32 38 4.9 6.3 8.0 5.0 6.1 7.4

5 

2 172 236 238 176 190 192 4.4 5.2 7.6 5.1 4.9 7.5

3 81 114 222 63 90 109 4.2 4.8 8.2 4.3 5.7 8.8

5 58 119 104 27 36 37 5.7 4.5 6.0 4.2 4.1 3.5

 

 

 

 

Table 6.8: CFLPSS results (size 50x50) – summary of time ratios 

 

Ratio of total time Geometric mean of time ratios 

      

S vs. W S1/W1 S3/W3  S vs. W S1/W1 S3/W3 

Cap \ Fix 0.2 1 5 0.2 1 5  Cap \ Fix 0.2 1 5 0.2 1 5 

2 1.4 1.4 1.4 1.5 1.4 0.6  2 1.2 1.6 1.8 1.6 1.1 1.0 

3 1.3 0.7 3.2 1.0 1.4 2.6  3 1.2 1.2 2.8 1.2 1.4 2.5 

               

1 vs. 3 W1/W3 S1/S3  1 vs. 3 W1/W3 S1/S3 

Cap \ Fix 0.2 1 5 0.2 1 5  Cap \ Fix 0.2 1 5 0.2 1 5 

2 0.9 2.9 1.8 0.9 2.9 4.3  2 1.1 2.7 2.9 0.9 4.0 5.3 

3 0.7 3.2 3.1 0.9 1.6 3.8  3 0.8 1.5 2.3 0.8 1.3 2.6 

               

Combined S1/W3    Combined S1/W3   

Cap \ Fix 0.2 1 5     Cap \ Fix 0.2 1 5    

2 1.3 4.0 2.6     2 1.4 4.4 5.2    

3 0.9 2.4 9.8     3 0.9 1.8 6.4    
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6.3 Capacitated median model 

6.3.1 Formulations 

In the capacitated median (CM) model the aim is to locate facilities and assign all 

demand centers to those facilities so that the total travel distance (or time) is minimized, 

centers are assigned to the closest facility, and facilities satisfy minimum and maximum 

capacity bounds.  

Fixed costs are not considered in this model but, like in the previous models, the 

number of facilities is a model output, resulting from the upper and lower bounds 

imposed by the minimum and maximum capacity constraints, respectively. The model 

is called the capacitated median model due to its relation with the classic p-median 

model – see the discussion by Teixeira and Antunes (2008), who also review 

applications, mostly dedicated to the location of health care and education facilities. 

Here we consider a restricted version of this model with non-binding maximum 

capacity bounds, thus no maximum capacity constraints are included, and with constant 

minimum capacity bounds. We consider the same notation as in the previous models 

and additionally: jb b  is the minimum facility capacity for site j J ; tij is the travel 

distance (or time) between center i I  and site j J ; ij ij ic t d  for i I , j J . 

The strong formulation of the CM model is as follows: 

(S1-CM): 

Min ij ij
i I j J

c x
 
   

Subject to 1ij
j J

x


 , i I   (D) 

 ij jx y , ,i I j J    (B) 

 i ij j j
i I

d x b y


 , j J   (C) 

 
: ik ij

ij j
k J t t

x y
 

 , ,i I j J    (CA) 

 {0,1}jy  , j J   (I) 

 {0,1}ijx  , ,i I j J    (SS) 

where (C) are minimum capacity constraints and (CA) are closest assignment 

constraints, stating that if a facility is installed at j, then center i has to be assigned to a 

facility at a travel distance of tij or less. 
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The weak formulation of the CM model, (W1-CM), is obtained from (S1-CM) by 

replacing (B) with (U). 

If the CM model is augmented with maximum capacity constraints (C), the aggregate 

constraints with redundant information discussed for the CFLP can also be added. We 

now discuss analogous constraints for the case of minimum capacities. The constraint 

analogous to (T) is 

 j j i
j J i I

b y d
 

  . (T) 

Since jb b  for j J  is assumed, this constraint can be reduced to 

 j ii I
j J

y d b




      (T )  

which now is not redundant for the LP formulation since the integer round-down 

function was applied. The constraints analogous to (C )  are 

 j j jz b y , j J   (C )  

Let (S2-CM) denote (S1-CM) with (T )  added. 

Let (S3-CM) denote (S2-CM) with (C) replaced by (C )  and (Z), (F), (Nz) added. 

Let (W2-CM) and (W3-CM) denote, respectively, (S2-CM) and (S3-CM) with (B) 

replaced by (U). 

Note: Van Roy and Wolsey (1986) first introduced a variant of flow cover inequalities 

considering lower capacity bounds as well as upper bounds, which would apply to the 

single node flow structure in formulations S3 and W3 above. Even though Xpress can 

generate flow cover cuts, the documentation does not make clear if they include the 

variant for lower capacity bounds. 

6.3.2 Instances 

Test instances for the CM model were randomly generated and assumed identical sets of 

centers and sites (I = J). First, for a given size n (number of centers), 9 data sets (cij, ui) 

were created: points representing centers were uniformly generated in [0,100][0,100]; 

ui = 1000/nUniform[0.1,1.9]; cij = uidij, where dij is the Euclidean distance between 

centers i and j. Then, the capacity ratio r, equal to total demand divided by the minimum 

capacity (i.e. the expected maximum number of open facilities), was used as a control 

parameter to derive 4 instances from each data set (cij, ui) by setting ii Ib u r   for 
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r = n0.1, 0.2, 0.3, and 0.4. All data was rounded to integer values. Here we consider 

instances of a single size n = 70. 

6.3.3 Software 

The same MIP optimizer and computer were used as in the other models. All solver 

parameters were left at default values, except that branching priority was given to y 

variables. All instances were solved to optimality (in less than 30 minutes). 

6.3.4 Results 

Regarding weak formulations for the CM model, W2 was tested first and was verified 

not to be competitive with S2. Thus other weak formulations were not tested. 

Results are shown in Table 6.9 and the following can be observed: 

 S2 can be considered better than S1 and W2 as it is solved significantly faster 

for one or both of the harder, smaller capacity ratios r=7 and 14, while being 

similar or not much worse for other ratios r. 

 S3 has an overall performance similar to S2 and no formulation seems to 

dominate the other. 

Based on these results, we conclude that it is indifferent to choose either S2 or S3, and 

both are preferable to S1 and W2. 

We also observe that the solver closes the XLP gaps of W2 to values similar to those of 

S2. Some surprising XLP gaps are observed (but were not further analyzed): the XLP 

gap of W2 is the smallest among all formulations for r=7; the XLP gap of S1 is smaller 

than the one of S2 for r=14 and 28.  
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Table 6.9: CM model results (size 70x70) 

n-r Optimal Nodes 

  S1 S2 S3 W2 S1 S2 S3 W2 

70-7 9 9 9 9 2509 1743 1259 2154 

70-14 9 9 9 9 1055 1273 1451 1824 

70-21 9 9 9 9 96 83 83 136 

70-28 9 9 9 9 4 4 3 6 

70 total 36 36 36 36 916 776 699 1030 

         

n-r Time Ratio of total time 

  S1 S2 S3 W2 S1 S2 S3 W2 

70-7 652 368 325 724 1.8 1.0 0.9 2.0 

70-14 283 331 355 422 0.9 1.0 1.1 1.3 

70-21 50 55 64 49 0.9 1.0 1.2 0.9 

70-28 35 35 28 29 1.0 1.0 0.8 0.8 

70 total 255 197 193 306 1.3 1.0 1.0 1.6 

         

n-r Gap LP (%) Gap XLP (%) 

  S1 S2 S3 W2 S1 S2 S3 W2 

70-7 8.3 5.6 5.6 49.1 6.3 4.0 4.2 3.8 

70-14 10.7 9.9 9.9 30.8 3.2 3.4 3.8 3.3 

70-21 13.9 13.6 13.8 23.1 1.0 1.0 0.7 1.0 

70-28 15.3 15.3 21.1 26.6 0.2 0.4 0.2 0.4 

70 total 12.1 11.1 12.6 32.4 2.7 2.2 2.2 2.1 

         

n-r Cuts Gap H (%) 

  S1 S2 S3 W2 S1 S2 S3 W2 

70-7 108 91 61 529 12.7 9.1 6.4 7.9 

70-14 198 195 188 365 6.9 9.5 7.3 9.2 

70-21 133 121 147 205 1.3 1.3 3.1 1.2 

70-28 117 116 63 112 0.3 1.0 0.3 0.5 

70 total 139 131 115 303 5.3 5.2 4.3 4.7 
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6.4 Conclusion 

We presented an empirical investigation of solving the CFLP with a generic MIP 

optimizer, comparing several formulation variants. Test instances, generated with a 

procedure often used for benchmarking purposes, cover a wide range of capacity levels 

(total potential capacity divided by total demand) and fixed cost levels, since solution 

times and the relative performance of formulations strongly depend on these parameters. 

Our results show that the CFLP can be solved faster with a generic MIP optimizer by 

considering: (i) a formulation with additional constraints to help the solver detect 

certain model relaxations, which may not be recognized automatically and for which 

strong cutting planes can be generated; (ii) the weak variant of the formulation instead 

of the strong one, for lower capacity levels (up to 10 in our tests and for a wide range of 

fixed cost levels). 

The first recommendation follows the one by Aardal (1998b), who reported significant 

solution time reductions with the research-oriented MINTO optimizer. Here we confirm 

the same applies to a modern commercial optimizer, with time being reduced by a factor 

of 2-10 or more, depending on the capacity level. 

Using the weak variant of the formulation reduces time further by a factor of 2 or more. 

Time reductions increase for higher fixed cost levels and lower capacity levels. The 

good performance of weak relative to strong formulations can be attributed to the fact 

that fewer variable upper bound constraints are required to strengthen the LP relaxation 

when capacities are tighter, and to faster re-optimization of the smaller formulations at 

branch-and-bound nodes (even though more nodes may be explored). For higher 

capacity levels, as the CFLP tends to reduce to the UFLP, the strong formulation 

becomes more effective, since variable upper bound constraints are essential to tighten 

LP bounds. 

For the CFLPSS similar results were obtained, although with lower time reductions. For 

the capacitated median model, an unrelated model, similar results were not obtained and 

the strong formulation was more effective. 

The results of our experiments can be useful for practitioners wishing to solve the CFLP 

or CFLPSS model with a generic MIP optimizer, with minimal effort without resorting 

to a specialized algorithm. They can also be useful for obtaining a benchmark for 

comparing with a specialized algorithm, by using the most effective formulation 

available in a generic MIP optimizer. 



 

175 

In out experiments we used the Xpress optimizer. We expect that similar results are 

likely to be obtained with other software, such as CPLEX or Gurobi, but this was not 

tested. 

With the particular version of Xpress used, we verified that performance increased (for 

all formulations of all models) by changing default cut generation parameters to a less 

conservative one (in terms of the number of cuts the solver is allowed to add). However, 

we did not aim to optimize solver parameters for the location models tested (e.g. by 

switching off the generation of ineffective cut types or by tuning tree search strategies), 

and the conclusions above implicitly assume such optimization, if possible, would not 

change the relative performance of formulations significantly. 
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Chapter 7  
 

Conclusion 

 

7.1 Discussion of applications 

Model applications in chapters 2, 3 and 4 were presented independently. This section 

offers a comparison of these applications, in order to further clarify the modeling 

assumptions adopted, and to further discuss the adequacy and limitations of the models. 

Model assumptions 

Inelastic demand: Both the school and court location applications assumed exogenous 

and inelastic demand with respect to travel costs (any other user-supported costs are 

assumed not to vary by location and to be already reflected in the demand forecasts). In 

the case of schools, this assumption is reasonable since primary and secondary 

education are mandatory (however, for extra-curricular education activities, such as 

music or sports, demand is likely to be elastic and the models used would not be 

representative). In the case of justice, it was deemed reasonable to assume most 

litigation demand is inelastic with respect to travel costs. 

Minimum capacity: In applications to schools, minimum capacity bounds were set 

according to the guidelines on school size by the Ministry of Education, in the case of 

new schools, and were set for the purposes of the study in agreement with the Municipal 

Council of Coimbra, in the case of existing schools. These bounds reflect concerns both 

with student achievement in too small schools and with financial sustainability. In the 

application to courts, minimum capacity bounds were set for the purposes of the study 

in agreement with the Ministry of Justice and reflect concerns with financial 

sustainability, as well as with guaranteeing diversity of experience for judges in 

specialized courts. 

Closest assignment: In all applications, assignment of demand centers to the closest 

facility was a planning assumption. In the case of courts, this assumption can be 

considered appropriate, since assignment to courts is mandated by the responsible 

public authority, taking into account proximity to the defendant’s location. In this 
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context, assuming closest assignment is likely to increase public confidence and 

acceptance of solutions. 

In the case of schools, the appropriateness of the closest assignment assumption can be 

debated, since school assignment is not strictly mandated in Portugal: when applying 

their children to a new school, parents can specify a preference ordering of up to 5 

schools (until 2011 primary schools had to be chosen within the home or work area of 

one of the parents; since 2012 any school can be chosen). 

On the one hand, it is observed that proximity to home is, by far, the most important 

factor parents take into account when choosing a school for their children, as already 

stated in chapter 2. According to a survey carried out for Coimbra’s Educational Charter 

(Canavarro et al., 2004), the two most frequent factors identified by parents were 

proximity to home (63% of respondents) and teacher quality (38%); proximity to 

workplace was much less frequent (18%). In addition, when the number of applicants 

for a school exceeds its capacity, proximity to home is by law one of the primary factors 

school directors take into account for approving applications. On the other hand, it 

should be acknowledged that proximity to home is not the only or the most important 

preference factor for all people. 

To further discuss this issue, we outline two alternative approaches for a school network 

planning problem, differing in the treatment of user preferences (the two approaches 

were also discussed and exemplified in the literature review of chapter 2): 

(1) Assume that accessibility is the main factor in school choice, and use a model that 

maximizes accessibility and assumes closest assignment. This was the approach 

followed in this thesis, with accessibility being defined in relation to the place of 

residence. 

(2) Assume that preferences for schools include accessibility and other factors such as 

perceived teaching quality, and use a model that maximizes the preferences met. This 

approach requires describing and measuring the attractiveness of facilities and the 

preferences of users, and weighting preferences into a single measure. 

It can be argued that the first approach is more appropriate for strategic planning 

problems that focus on defining the location and capacity of facilities in the long-term 

(e.g. in a horizon of 10 years). User preferences are considered only approximately by 

focusing on accessibility. The closest assignment assumption is also compatible with 

stated principles of education and spatial planning policies, of providing high education 

quality across all schools (according to the Basic Law of the Education System in 
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Portugal) and of providing education services in proximity to residential areas (as stated 

in Coimbra’s Educational Charter). 

In contrast, the second approach is more appropriate for operational problems of 

managing installed capacity in the short-term (e.g. on a yearly basis) that focus on 

defining assignments of users to facilities once user preferences are declared. If such an 

approach is used for a strategic planning problem, it requires forecasting the 

attractiveness of facilities and the preferences of users into the future (including in 

relation to potential new facilities), with results that are likely to be very inaccurate and 

to generate controversy among decision makers. 

To conclude, assuming that closest assignment applies to all users is debatable in the 

case of schools. This was a planning assumption deemed reasonable in the applications 

in this thesis, but it may not be suitable for all school planning applications, e.g. if 

schools are expected in the future to have widely varying perceived education quality 

and parents can freely choose schools regardless of proximity to home. 

Data preparation 

Aggregation of population centers: In chapter 2 (secondary schools), the municipality of 

Coimbra was discretized into 43 population centers, while in chapter 3 (primary 

schools) the same region was discretized into 68 centers. The more detailed 

discretization is justified by the fact that proximity is a greater concern for primary 

schools, particularly for the first level schools (EB1), which exist in a larger number and 

have smaller catchment areas. 

Travel distances or times: In all applications, travel distances or times were computed 

using a representation of the main road network. In the applications to schools, travel 

distances were used, which assumes that a constant average travel speed is 

representative of both private and public transportation under average congestion levels. 

This was considered acceptable since the spatial context is a municipality with moderate 

congestion levels and served by an extensive bus network. In the application to courts, 

travel times were used. Since the spatial context is a larger region, different average 

speeds were considered according to the hierarchical level of roads. 

Model ingredients 

Single vs. multiple services: in both secondary and primary school applications, 

education demand comprises two education levels. For secondary schools (chapter 2), a 

single service model is used, with demand for a single service representing two 
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education levels (S1 and S2), being offered at a single facility type (ES12 schools). This 

could be assumed because both education levels should be assigned to the same school, 

and school capacity is shared by the two levels. For primary schools (chapter 3), a two-

level service model is used, since two facility types are to be located – EB1 schools for 

B1 education and EB12 schools for both B1 and B2 education. 

Co-location of existing and new facilities: In the secondary school model (chapter 2), 

the formulation allows the co-location of up to one existing facility and one new 

facility. This choice is justified because the spatial aggregation level is high and in some 

central population centers existing capacity is tight. 

In the primary school model (chapter 3) the formulation allows the co-location of level-

1 and level-2 facilities but not of new and existing facilities of the same type. In this 

application, the spatial aggregation level is smaller, but still level-1 and level-2 facilities 

exist in very close proximity in some centers. On the other hand, the existing capacity of 

level-2 facilities is generally not tight.  

Path assignment: Path assignment (PA) constraints are introduced in chapter 3, where it 

is stated that they are an alternative to closest assignment (CA) constraints. Here we 

make two observations. First, in a model with PA replacing CA constraints, assignments 

may no longer be compatible with free choices of users that aim to minimize their 

individual travel costs. Thus, such model assumes that the public authority has the 

power to mandate assignments. In this context, PA constraints help by producing a 

spatial configuration of assignments that may be more easily accepted by users. 

Second, PA and CA constraints may be used in combination if CA constraints are 

retained in the model but their data is modified so that they now forbid assignments 

further than a given tolerance relatively to the closest facility. As an example of such 

tolerance, model solutions in chapter 3 (primary schools) would remain the same if CA 

constraints were retained but given an absolute tolerance of 2.5 km. 

Coherent assignment: This type of constraints was used in the application to courts 

(chapter 4), but not in the application to primary schools (chapter 3), where a two-level 

nested hierarchical model is also used. In the latter, the problem statement did not 

require coherent assignment constraints. However, if required, such constraints could be 

added to the model. 

Hierarchical models: The applications to primary schools (chapter 3) and to courts 

(chapter 4) both consider models with a two-level nested hierarchy of facilities: low-

level facilities serving only level-1 demand, and high-level facilities serving both level-
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1 and level-2 demand. However, the formulation of the nested hierarchy is different in 

the two models, reflecting differences in problem statements. In the primary school 

location model, a level-2 facility corresponds to a single school that serves the two 

demand levels and capacity is shared by the two levels; the nested hierarchy is enforced 

by constraints (3.19) linking assignment and location variables. In the court location 

model, level-1 and level-2 facilities may be physically distinct, each one serves only the 

corresponding demand level and is subject to independent capacity constraints; the 

nested hierarchy is enforced by constraints (4.18) linking location variables. 

7.2 Overall conclusion and contributions 

An overall conclusion of the thesis is now presented, complementing the individual 

conclusions of previous chapters. 

The discrete facility location models studied in this thesis provided a useful contribution 

to real-world public facility planning problems of reorganizing networks of schools and 

courts of justice. While the basic, single-service model had been previously presented in 

the literature, multiple-service (hierarchical) variants had not been presented before, 

combining hierarchical facilities, minimum capacity constraints and different types of 

constraints on the spatial pattern of user-to-facility assignments: closest assignment, 

path assignment, and coherent assignment. 

Regarding solution methods, modern generic MIP optimization software proved to be 

robust and efficient to deal with the public facility planning applications in this thesis. 

Model instances in these applications turned out to be relatively easy to solve, since 

significant constraints were imposed on planning decisions in the context of 

reorganizing existing facility networks, such as limiting the numbers of new facilities to 

open and of existing facilities to close, or restricting assignments to existing 

administrative boundaries, thereby reducing the number of free decision variables. 

The performance of generic MIP optimizers has been improving remarkably, as 

discussed in the references cited in section 1.3 and as illustrated by the results reported 

with Xpress versions 2005B and 7.2 in chapter 5. Nevertheless, a careful choice of 

model formulation is still recommended in order to take full advantage of modern MIP 

optimizers. For example, the alternative formulations of closest assignment constraints 

tested in chapter 5 (second appendix) lead to widely varying solution times. For the 

CFLP model, adding constraints with redundant information to help cut generation 

(following advice from the literature), and using the so-called weak formulation if 

capacity data is tight, can significantly reduce solution times, as tested in chapter 6. 
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The specialized solution method developed in chapter 5 for the single-service 

capacitated median model reduces the solution time of relatively large instances with 

100 centers by 20-50% (with Xpress 7.2) relatively to the standard formulation. This 

reduction is mainly due to the a priori reformulation procedure adapted from previous 

work. Some new valid inequalities were presented, but they turned out not to be 

effective at further reducing solution times when used to generate cuts in a branch-and-

cut algorithm. 

Regarding the objectives outlined in the introduction, it can be said that they were 

generally accomplished, with some exceptions related to the development of specialized 

solution methods. First, for the single service model, the original work developed in this 

thesis gave only a modest improvement in solution times, as mentioned above. Second, 

while the development of specialized methods for multiple service models was an 

objective of the thesis, this work was not carried out and is left for future work. 

The contributions of this thesis to the discrete facility location literature are the 

following: 

 Formulation of optimization models combining multiple services, minimum and 

maximum capacity constraints, and constraints on the spatial pattern of 

assignments of users to facilities, extending previous hierarchical facility 

location models; 

 Description of applications of models with single and multiple services to real-

world problems of reorganizing networks of schools and courts of justice in 

Portugal; 

 Development of new valid inequalities for the MIP formulation of the single 

service capacitated median model and proposal of an exact solution method, 

composed of a priori reformulation and branch-and-cut, that reduces solution 

times relatively to a generic MIP optimizer; 

 Presentation of computational experiments on solving single service models 

with a modern generic MIP optimizer, including the fixed-charge capacitated 

facility location problem and the capacitated median model, in order to identify 

the most efficient formulation, among variants known from the literature, to 

solve these models to optimality without resorting to a specialized algorithm. 
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7.3 Future work 

Possible future work arising from the work in this thesis can be outlined as follows: 

 Adapt the reformulation procedure and specialized cuts of chapter 5 to the 

hierarchical models. Such an adaption should be relatively straightforward, since 

the valid inequalities can be applied to each service level separately. However its 

effectiveness to reduce solution times remains to be tested. 

 Develop other separation procedures for the new valid inequalities proposed in 

chapter 5, to better exploit them in a branch-and-cut algorithm. 

 Study the single and multiple-service models under uncertainty in the model 

data. Uncertainty in demand, rather than in travel costs, is deemed the most 

relevant for the types of applications studied in this thesis. The deterministic 

model can be used to solve independently a limited number of scenarios of data 

realizations (say, pessimistic, reference and optimistic scenarios of demand), but 

in this case comparing the solutions and selecting a final solution are left outside 

the scope of the model. In order to model uncertainty, and obtain a solution that 

“performs well” under all possible data realizations, a possible approach is 

scenario planning (Owen and Daskin, 1998; Current et al., 2002). 

 Study alternative formulations of the hierarchical model with coherency 

constraints (the second model in chapter 4). A large number of coherency 

constraints is required (number of centers cubed) with the adopted formulation 

and its strength was not analyzed in this thesis (nor in previous work, as far as 

we know). Computational experiments with larger instances than those of the 

practical application in chapter 4 were also not performed. If such instances turn 

out to be hard to solve, an improved formulation would be useful. 
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