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Abstract 

We deposited C-based films doped with Cu and tested their sliding properties in olive oil as 

environment-friendly lubricant, which can be used in many mechanical systems, particularly 

in agriculture engineering. The coatings were deposited in a four unbalanced magnetron 

sputtering device combining C and C/Cu targets; argon (hydrogen-free films) and Ar/CH4 

(hydrogenated films) atmospheres were used. Cu content of the films was in the range 5-14 

at.%. The hardness of the films was almost constant whatever the Cu content was. On the 

other hand, hydrogen-free coatings were much harder (about 15 GPa) than hydrogenated ones 

(about 4 GPa). The coatings were oleophilic and their sliding properties were evaluated using 

ball-on-plate tests with 200000 cycles. The non-hydrogenated coating with 6 at.% of copper 

showed the best tribological performance with negligible wear for all olive oil testing 

temperatures (i.e. up to 120 °C). 

Keywords: DLC, Cu, wettability, tribology, olive oil 

 

Introduction 

Carbon-based films can be used as protective coatings for a wide range of tribological 

applications demanding high hardness, low friction coefficient, high wear resistance, chemical 
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inertness, optical transparency, or thermal conductivity [1, 2, 3, 4]. The addition of metallic or 

non-metallic elements can improve the coating tribological properties [5, 6] and the adhesion, 

which can be related to a minimization of the residual stresses [7, 8, 9]. The addition of a soft 

metal which does not form hard carbides, such as Cu, can also be used for the reduction of the 

residual stress [10]. Furthermore, the absence of the carbides and bonds between the alloying 

element and the carbon matrix facilitates the grain–matrix interface sliding [11]. 

Carbon-based films are often used in lubricated contact; however, their tribochemical 

interaction with oils is not well known [12, 13]. It has been shown that the wetting of surfaces is 

a very important property in boundary lubrication conditions, since it determines the slip at 

the solid–liquid interface [14]. Wettability is based on the interfacial energies of the solid–

liquid–vapour system, and it is typically measured by contact angle techniques[15-17]. 

Biodegradable oils are becoming an environmentally friendly alternative to 

conventional lubricants, and are already used in a variety of applications, in particular in the 

machinery used in forests, agriculture, mining, or constructions. Moreover, several 

biodegradable oils possess a good lubricating ability (good anti-wear properties and low 

friction), often much better than mineral or conventional synthetic oils [13, 18] as a result of the 

large amount of unsaturated and polar component; however, their main drawback is the low 

oxidation resistance and thermal stability [18-20]. 

This work deals with the deposition, characterization and tribological analysis of 

carbon-based film with copper deposited by magnetron sputtering. The sliding tests were 

performed in lubricated contact using pure olive oil as lubricant. 

 

Experimental 

The films were deposited on Si wafers (chemical composition analysis), glass 

(wettability tests) and steel, 100Cr6 polished to final roughness of Ra ≤ 30 nm (mechanical 

and tribological evaluation), substrates. After deposition of a thin titanium interlayer (~300 

nm) from a Ti target, the C-based films were prepared by magnetron sputtering in argon 
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atmosphere or in argon and methane atmosphere from two carbon targets and one carbon 

target embedded with 14 pellets of copper with a diameter of 20 mm. The substrate bias 

voltage was set at -50 V. The discharge pressure varied between 1.4-4.0 Pa and the deposition 

time was in the range of 3-4 hours. The film structure was studied by X-ray diffraction 

(XRD—Philips diffractometer, Co Kα radiation with λ = 0.178897 nm) and the chemical 

composition was determined by electron probe micro-analysis (EPMA - Cameca SX 50). The 

hardness (H) and Young’s modulus (E) of the coatings were measured by nanoindentation 

using a Micro Materials Nanotest platform. 

The friction and wear tests have been performed in an Optimol SRV high frequency test 

device using a steel ball (100Cr6) oscillating against the test disc. The tests were carried out 

with a load of 50 N and a number of cycles of 200000; the following testing temperatures 

were used: 25, 70, 100, and 120°C. Olive oil (Gallo – Grande Escolha, Portugal) was used as 

lubricant. The wear rate was determined at the end of the test using optical microscopy and 

3D white light profilometer (Zygo NewView 7200). The thickness of the films was evaluated 

by ball-cratering tests (Calotest, CSM Instruments) whereas a conventional scratch test 

(CSEM Revetest), load 0-50 N and Rockwell indenter, was used for assessing the adhesion / 

cohesion of the coatings. 

To study the wettability, the coated slide glass was used. A drop (7 µL) of olive oil was 

placed on the coated surface for contact angle measurements. Two temperatures were used: 

25 and 74° C. 

 

Results and discussions 

The copper content in the films was controlled by the power applied to the carbon target 

with Cu pellets. Due to the much higher sputtering yield of copper compared to that of 

carbon, only a very limited power was used in the puzzled target. As expected, a linear 

increase of the deposition rate with the (C+Cu) target power was observed (Table 1). The 
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difference between the deposition rates of hydrogenated and non-hydrogenated films cannot 

be attributed exclusively to the additional carbon originated from the methane, since the 

power to the copper target had to be increased on order to maintain a similar final copper 

content in the coating. Table 1 shows the chemical composition, the thickness, deposition rate, 

hardness and reduced elastic modulus of the deposited C-based films. Relatively high oxygen 

content, particularly in the case of hydrogenated films, was measured originated from the 

residual atmosphere. 

The C-based films exhibited amorphous-like XRD patterns, see Figure 1. The only 

visible peaks belong to the titanium interlayer (ICDD card. N 44-1288 and 44-1294). When 

copper was added, a very broad peak appeared at the position of Cu phase (ICDD card. N 85-

1326). Scherrer equation gave a rough estimate for the copper grain size of 3-5 nm. Since 

copper carbides peaks were not observed and the copper carbide was not formed under similar 

deposition conditions [21], the film could be considered as nanocomposite consisting of copper 

nanograins embedded into an amorphous carbon matrix. 

The adhesion of the a-C film (i.e. non-hydrogenated film), evaluated through the 

measurement of the critical load by scratch testing, was approximately 45 N. When Cu was 

added, the critical load decreased to 35 N, which can be still considered as a sufficient value 

for further mechanical testing. Thus, contrary to the literature[22], the incorporation of Cu into 

the films did not improve the adhesion. In the case of a-C:H coatings (i.e. hydrogenated films 

deposited in Ar/CH4 atmosphere), with and without Cu alloying, a further decrease of the 

critical load (28 N) was observed which, as it will be shown later, impeded the evaluation of 

the tribological performance of the coatings.  

The hardness and reduced elastic modulus determined by nanoindentation are 

summarized in Table 1. The decisive factor controlling the hardness was the presence of 

hydrogen, whereas copper content played only a minor role. The hardness and the reduced 

elastic modulus of hydrogen-free coatings, with and without Cu alloying, were about 15 and 

130 GPa, respectively. On the other hand, the hydrogenated films exhibited extremely low 
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hardness values close to 4 GPa (reduced elastic modulus 30 GPa). The hydrogen content was 

measured only in the case of the pure hydrogenated film (i.e. the film without copper) by 

elastic recoil detection analysis; the high hydrogen content, 36 at.%, could be responsible for 

the low hardness due to polymerization[23]. Moreover, a high amount of hydrogen can be 

responsible for a reduction of the residual stress with the consequent drop of the hardness. 

The tribological properties in the lubricated contact depend largely on the surface 

characteristics, i.e., material properties, roughness, wettability and surface energy. Since olive 

oil is not a typical lubricant, the sessile drop wettability tests were carried out measuring the 

contact angles and evaluating the oleophobic and oleophilic nature of the coating surface. 

The contact angles of olive oil on coatings are shown in Figure 2. The roughness of the 

films deposited on glass substrates was identical and the sessile drops tests were carried out 

under temperatures of 25 and 74 °C. When the wettability tests were carried out at 25 °C, the 

value of the contact angle increased with the copper content whatever the hydrogen content. 

Such a result would be expected, since Cu decomposes oils catalytically leading to 

compounds with low affinity to the coatings. As a consequence, the increase of contact angles 

should occur with the increase of the content of this metal [24, 25]. For high temperature, 

generally the contact angle of hydrogenated coatings was lower than for hydrogen-free ones. 

However, it is not clear whether the decrease of the contact angle is exclusively related to 

hydrogen. In fact, the hydrogenated coatings with Cu showed higher content of oxygen 

which, due to its high electronegativity, can easily establish bonds with oil contributing to the 

decrease of wettability. Obviously, the viscosity of the oil and thus the contact angle was 

lower at 74 °C. Since the values of contact angles are lower than 60°, the coatings can be 

considered oleophilic [26]. 

Fig. 3 shows the friction coefficient of the a-C, a-C:Cu and uncoated steel substrates in 

the presence of olive oil as lubricant. At the highest temperatures, the analysis of the wear 

track revealed the total coating penetration and thus the friction of these films was not 

presented. Hydrogenated films were worn through after the tests clearly due to the low 
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adhesion to the steel substrate; therefore, the friction coefficient and the wear rate are not 

presented. 

The friction coefficient for steel/steel contact was lower compared to a-C or a-C:Cu 

films. It was surprising, since metals typically decompose carbohydrates of oil producing 

polar species such as carboxylic acid, which are absorbed at the surface and forms metallic 

compounds [24, 25]. These compounds should increase the friction coefficient. Nevertheless, the 

friction coefficient in the range 0.09 - 0.11 was relatively low [27] demonstrating the potential 

of this bio-lubricant. 

Table 2 shows the worn volume of the a-C and a-C:Cu coatings together with the 

uncoated substrate. At room temperature, the worn volume was very small in the case of the 

a:C film and negligible (i.e. the wear track is not distinguishable from surface roughness) for 

a-C:Cu films. The worn volume increased with the oil temperature and all films were worn 

out at 100 °C except for a-C:Cu-6, which did not show any measurable wear even at 120 °C. 

The ball wear rate was very limited at room temperature and significantly increased when the 

oil was heated. Fig. 4 shows the optical micrographs of the ball and the wear track coupled 

with 3D profile of the wear track and its cross-section in the centre perpendicular to the 

sliding direction. At room temperature, the scratches from the original ball polishing are still 

visible in the ball scar (Fig. 4 a), whereas a much higher wear, with deep scratches parallel to 

the sliding movement, can be observed after the test at 75ºC (Fig. 4 e). The images for all the 

other a-C and a-C:Cu films are similar to those presented in Fig. 4; the only exception is the a-

C:Cu film with 6 at.% of copper which shows 3D profiles almost identical to that of Fig. 4a 

whatever the testing temperature used. 

 

Conclusions 

Carbon-based coatings containing copper were deposited by magnetron sputtering from 

composite carbon-copper and carbon targets in argon or argon/methane atmosphere. 

Moreover, pure carbon films prepared under the same conditions, using exclusively the 
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carbon targets, were deposited as reference. The power of composite target was varied in 

order to obtain three copper contents in the range 5-14 at.%. The hydrogen-free coatings 

showed a hardness of about 15 GPa, while those with hydrogen were significantly softer. The 

low hardness together with the limited adhesion caused the failure of the hydrogenated films 

during tribological testing. a-C:Cu films showed a slightly higher friction coefficient 

compared to steel-to-steel contact; however, their wear was negligible at room temperature. 

We could conclude that the a-C:Cu coating with 6 at.% of copper was the best candidate for 

further investigation, since the coating wear was negligible whatever the testing temperature 

was. The synergy between the a-C:Cu films and the olive oil seems to be an interesting 

ecological approach for sliding contacts. 
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Table I – Chemical composition, thicknesses and deposition rate of the coatings. 

Coating 
at. % Thickness 

(µm) 

Deposition 
rate 

(nm/min) 

 

Hardness Reduced 
elastic 

modulus 
C Cu O (GPa) (GPa) 

a-C 94 0 6 0.7 4.2 13.0 ± 1.6 137 ± 9 

a-C:H 91 0 9 2.6 10.8 4.0 ± 0.1 17.0 ± 0.3 

a-C:Cu-6 90 6 4 1.1 4.6 15.7 ± 1.0 129 ± 4 

a-C:Cu-11 83 11 6 1.1 6.0 14.6 ± 0.9 134 ± 5 

a-C:Cu-13 83 13 4 1.5 6.3 14.1 ± 1.1 130 ± 8 

a-C:H:Cu-5 81 5 14 1.8 10.8 3.8 ± 0.2 37.9 ± 0.8 

a-C:H:Cu-10 76 10 14 2.1 12.6 3.6 ± 0.9 33.4 ± 4.6 

a-C:H:Cu-14 80 14 6 2.3 12.8 2.9 ± 0.1 27.4 ± 0.7 
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Table II – Worn volumes of  DLC and DLC-Cu films compared with uncoated sample. 

 

Coating 
Olive oil temperature (ºC) 

25 70 100 120 
a-C 2.6 µm3 5.8 µm3 worn out worn out 

a-C:Cu-6 very low very low very low very low 

a-C:Cu-11 very low 22 µm3 worn out not realized 

a-C:Cu-13 very low 8.3 µm3 worn out not realized 

uncoated 5.6 µm3 419 µm3 539 µm3 869 µm3 
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Figure captions 

 

Figure 1 –XRD patterns of the deposited coatings. 

Fig. 2 – Contact angle of the coatings measured at 25ºC and 70ºC. 

Fig. 3 – Friction coefficient of steel, a-C and a-C:Cu coatings sliding against 100Cr6 ball with 

olive oil lubrication (* - coating worn through). 

Fig. 4 – Optical micrographs of the a-C:Cu-11 coating wear tracks, a) and e). and ball wear 

scars, b) and f), 3D profile of the wear track, c) and g), and the wear track cross-section, d) 

and h), after SRV tests in olive oil for two tested temperatures: a-d 25°C, e-h 70°C. 
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Figure 2 
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