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ABSTRACT  

 

              Amongst the waste management strategies composting is gaining interest as a 

suitable method with economic and environmental profits. The mixture of wastes used in 

composting must be potentially biodegradable to favor biologically catalyzed breakdown of 

organic matter in aerobic conditions and drive the composting process into thermophilic 

temperatures required for pathogen reduction. Thus, this work aimed firstly to predict the 

biodegradability of an initial waste mixture and to investigate how this property determines 

the changes in organic matter characteristics during the composting process. A second 

objective for this work was to develop a dynamic mathematical model for aerobic composting 

process and its validation by fitting the experimental data. 

 The initial mixtures tested were made from potato-peel industrial waste, grass 

clippings and sawdust in four different proportions. These blends were composted in self 

heating reactors (SHR) with 120 L of internal volume and well isolated. During composting, a 

data acquisition system for on-line monitoring of temperature and oxygen concentration was 

used, and feed air flow rate was measured with rotameters. The waste mixtures were sampled 

in pre-determined times along the period of composting. Biodegradability of each sample was 

assessed by measuring lignin content, by using the Klason method, which involves the 

gravimetric measurements after extracting the sample with sulphuric acid.  

Regarding the biodegradability of the mixtures the results indicated that independently 

of the initial mixture composition, there is an increase in lignin content that can be related to 

the decrease of the potential for biodegradation of the mixtures. The initial samples with the 

lower and higher lignin content showed a greater and smaller mass reduction, at the end of 

composting period, respectively. Therefore, higher lignin content of an initial mixture led to 

lower biodegradation. The mathematical model developed showed good fitting to 

experimental data, namely for temperature of substrate, organic matter conversion and water 

loss in the composting system. Thus, the proposed pseudohomogeneous model can be used 

for future prediction purpose.  
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RESUMO 

De entre as estratégias de gestão de resíduos, a compostagem tem vindo a ganhar 

interesse e com benefícios económicos e ambientais. Os resíduos submetidos a compostagem 

devem ser potencialmente biodegradáveis para favorecer a degradação biológica da matéria 

orgânica em condições aeróbias que conduzam a manutenção de temperaturas termofílicas no 

sistema de compostagem, necessárias para a higienização do composto.  

Este trabalho teve como objectivos principais prever a biodegradabilidade de uma 

mistura inicial de resíduos e desenvolver e avaliar um modelo matemático em regime 

dinâmico para o processo de compostagem.  

As misturas testadas foram obtidas a partir de casca de batata, aparas de relva e 

serradura, em quatro proporções diferentes. Estas misturas foram submetidas a compostagem 

em reactores de auto-aquecimento com 120 L de volume e adequadamente isolados. Durante 

a compostagem, a temperatura e o oxigénio foram medidos a partir de um sistema de 

aquisição de dados com monitorização on-line e a taxa de alimentação de ar foi medida com 

rotâmetros. Diversas amostras foram recolhidas em tempos pré-determinados durante todo o 

processo de compostagem. A avaliação da biodegradabilidade de cada amostra foi realizada a 

partir da determinação do teor de lenhina, utilizando o método de Klason, que envolve 

medições gravimétricas após a extracção da amostra com ácido sulfúrico.  

Em relação a biodegradabilidade, os resultados obtidos indicaram que, 

independentemente da composição da mistura inicial, durante o processo de compostagem há 

um aumento no teor de lenhina que pode ser relacionado com a diminuição do potencial de 

biodegradação das misturas testadas. As amostras iniciais com os teores de lenhina inferior e 

superior mostraram uma redução de massa maior e menor, respectivamente, no final do 

período de compostagem. Os resultados permitem concluir que o alto teor de lenhina de uma 

mistura inicial leva a um baixo potencial de biodegradação da mesma.  

 A comparação entre os resultados da simulação numérica e os resultados 

experimentais mostraram que o modelo desenvolvido prevê com sucesso o comportamento 

das principais variáveis de compostagem. Nomeadamente, o perfil de temperatura no 

substrato, a conversão da matéria orgânica e a perda de água no sistema de compostagem são 

razoavelmente previstos com a proposta de abordagem pseudohomogênea. 
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1. INTRODUCTION   

The decomposition of organic materials in fertilizers is considered a practice as old as 

the emergence of agriculture. In this scope, the process of composting, which refers to the 

controlled decomposition of organic materials, has been used by humans since prehistoric 

times to recycle wastes and make them useful for plant growth. In the nature, composting 

process occurs when leaves pile up and begin to decay with some of them returning to the 

soil, where living roots reclaim their nutrients. Since prehistoric times, composting has been 

used for the benefit of agriculture. However, research studies, as well as the development of 

this technology has just begun in the early 20
th

 century with the first attempt to give a 

scientific basis occurring in 1924-1926 by Howard and Wad 
[1,2]

. 

Since the Second World War, as the growing fields have become larger and the work 

became mechanized, the use of fertilizers and other traditional means of improving soil 

productivity decreased. Recently, a renewed attention in the composting process has been 

observed. Restrictive legislation in many environmental areas have been responsible for 

encouraging this interest, which led to the development of a new generation of composting 

facilities throughout Europe
 [3]

. 

The amount and diversity of solid wastes (SW) produced around the world has been 

increased in recent decades, mainly due to the growth of the population, industrialization and 

use of disposables. These residues must be then managed under appropriate disposal practices 

to avoid negative impacts on the environment becoming difficult for governmental agencies 

to face the challenge of handling such enormous quantities produced worldwide. Composting 

cannot be considered a new technology, but amongst the waste management strategies it is 

gaining interest as a suitable method with economic and environmental profits. The finished 

composts are mainly used in agriculture as soil improvers to increase organic matter that is 

important for plant growth and decrease of the risk of erosion. Nowadays, there is an intensive 

research in order to obtain scientific information for building more efficient composting 

systems
 [4-6]

. 

This work has two main objectives. The first one is to predict the biodegradability of 

an initial waste mixture and to investigate how this property progresses during the composting 
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process in a pilot-scale reactor. The biodegradability assessment in the starting materials 

seems to be an important parameter in order to determine the self heating capabilities of a 

blend, enabling thus to foresee if a specific mixture is adequate to be further composted. The 

second objective is to develop a dynamic mathematical model for the aerobic composting 

process under analysis and its validation by using experimentally measured dynamic state 

variables.  

  The initial mixtures that were tested were made from potato-peel industrial waste (PP), 

grass clippings (GC) and sawdust (SD) in four different proportions. These blends were 

composted in isolated self heating reactors (SHR) with 120 L of internal volume. During 

composting, a data acquisition system was used for on-line monitoring of temperature and 

oxygen concentration, and feed air flow rate was measured with rotameters. The waste 

mixtures were sampled in pre-determined times along the period of composting and 

biodegradability of each sample was assessed by measuring lignin content, through the 

Klason lignin method. 

This work is organized into seven chapters. Chapter 1 is the introductory part. In 

chapter 2 an overview of the composting process is made and the substrates usually used are 

characterized. The existing composting systems were also described in this chapter.  

In Chapter 3 a full description of the mathematical model developed is provided, and 

all variables and parameters are defined. Chapter 4 focus the state of the art with reference 

to studies that have been made in assessing the biodegradability of solid wastes, as well 

as those related with the development of models that describe the composting 

process. The experimental methodology used, monitoring strategies and quantification 

of various parameters are described in Chapter 5.  

Finally, Chapter 6 presents the analysis and discussion of the results obtained during 

the work and Chapter 7 summarizes the main conclusions and prospects for future work.
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2.  THEORETICAL FOUNDATIONS OF COMPOSTING 

An approach to the composting technology is given in this section, including the 

analysis of important process factors and microbiological aspects. 

 

2.1. Composting process   

Composting can be defined as the aerobic microbial decomposition of organic matter 

of vegetable and animal origin, under conditions that allow the development of thermophilic 

temperatures as a result of the heat produced by biological reactions. Involving the 

mineralization and partial humification of the organic matter, this process will lead to a 

stabilized and hygienized final product (i.e. free of pathogens and seeds) commonly known as 

compost. Thus, this technique permits waste stabilization under special conditions of mixing 

and aeration in order to reach the required thermophilic temperatures responsible for 

microbial growth, weed seeds elimination,  pathogen inactivation and helminthes kill, 

avoiding generation of noxious gases as well 
[7,8]

. 

Composting is thus a microbiological process based on the activity of various bacteria, 

actinomycetes and fungi. The main product is rich in humus and plant nutrients such as 

nitrogen and phosphorous, and the foremost reaction by-products are carbon dioxide, water, 

ammonium and heat (equation (2.1)). The CO2 and water losses can amount to half the weight 

of the initial materials, thereby reducing the volume and mass of the final product.  In this 

procedure, aerobic microorganisms use organic matter as energy source by decomposing 

substrates, turning them into simpler compounds. This transformation is conditioned by the 

nature of the initial substances and its degradability character, an important property that 

affects decomposition rates, gas emissions, process duration and oxygen requirements. The 

labile organic compounds such as simple carbohydrates, fats and amino acids are quickly 

transformed (oxidized) through successive activities of different microbes. Meanwhile, the 

residual organic matter as cellulose, hemicellulose and lignin become more and more resistant 

to microbial biodegradation and are partially converted into stable organic matter, which 

chemically and biologically resembles humic substances. The extent of these changes depends 

on the available substrates and the process variables used to control the composting 
[1,4,9]

. 
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                                                 (2.1) 

During composting, mineralization and humification occur simultaneously and are the 

main processes causing the degradation of the fresh organic matter. The humified fraction 

(humus) is the principal responsible for the organic fertility functions in the soil as it is the most 

resistant to microbial degradation, being considered a major reservoir of organic carbon in soil. 

Humus is then the final product of the humification process, in which natural materials are 

partially transformed into humic substances nearly inert mainly formed of lignin, 

polysaccharides and nitrogenous species. Thus, these compounds are not totally mineralized 

during composting. In fact, the humification of the organic matter during composting is revealed 

by the formation of humic acids with increasing molecular weight, aromatic characteristics, 

oxygen and nitrogen concentrations and functional groups, in agreement with the generally 

accepted humification theories of soil organic matter. During composting, humic substances are 

produced and humic acid-like organic increases, while fulvic acid-like organic and water-

extractable organic decrease due to microbial degradation
 [4]

. 

The chemical steps of organic matter to form humus are very complex and involve a 

number of degradative and condensation reactions. Lignin is degraded by extracellular enzymes 

to smaller units, which are then absorbed into microbial cells partially converted further into 

phenols and quenones. When placed into soil, these substances along with the oxidative enzymes 

polymerize by a free radical mechanism. The structure of humic compounds is not yet well 

known, being usually divided into three groups based on chemical fractionation: humin 

(insoluble in water at any pH), humic acids (insoluble in water under acidic conditions) and 

fulvic acids (soluble in water under all pH conditions)
 [10]

.  

The objective of composting has traditionally been to convert biologically degradable 

organic materials to a stable and hygienized form also characterized by reduced odor because of 

the low rate of decomposition of such resistant compounds. This compost may finally serve as a 

source of organic matter with beneficial effects when applied to land either as fertilizer (source 

of nitrogen or phosphorus), soil corrector (transfer of specific physical properties), or as crop 

substrate to agricultural lands, green areas, forests and home gardening. When used as soil 

corrector, it improves the drainage of water, increases water and nutrients retention capacity and 

acts as pH regulator. It also allows adjust temperature, control erosion, improve aeration, slowly 

release nutrients to the soil, increase the cation exchange capacity of sandy soils, and prevent 

desertification and floods 
[11]

. 
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In general, composts may contain important nutrients including nitrogen, phosphorus, 

potassium, and a variety of small quantities of other essential elements. This nutrient content is 

mainly related to the quality of the original substrates and operating process conditions. 

However, most of the composts are poor in nutrients to be classified as fertilizers so, their main 

applications are as soil conditioners and landfill cover 
[7]

. Compost may also help to increase the 

effectiveness of chemical fertilizers and consequently, emissions of CO2 and other green houses 

gases related to fertilizers production may be indirectly decreased. Finally, it is important to note 

that organic material in soil may have a key role in the global warming control. Indeed, there is a 

good interaction between land use, optimization of waste management and carbon sequestration. 

The organic matter stability, along with other characteristics, may be essential to achieve this 

positive interaction and for the maximization of soil carbon fixation, and thus, for the reduction 

of the emission of CO2 to the atmosphere
 [6]

.  

 

2.2.  Composting substrates 

Composting is usually applied to any biodegradable organic solid and semi-solid 

material, and thus, the amount of substrates potentially suitable for composting is really huge. 

However, it is important to stress that the optimum feedstock for it should be mainly from 

source separated organic materials. The main categories of composting substrates include 

municipal solid waste (MSW), industrial and agricultural waste
 [11]

. 

 

2.2.1.  Waste management 

The Decreto-Lei n. ° 73/2011 established the general regime of waste management in 

Portugal, by repealing the previous diploma, the Decreto-Lei n. ° 178/2006 of September 9
th

. 

This legislation defines waste as ―any substance or object which the holder discards or intends 

to or is obliged to discard, particularly those indentified in the European Waste List.‖ It also 

defines the general principles of waste management, the hierarchy of waste management 

operations, which state that the landfill should be the last management option, only justified 

when others are technically and financially inviable. In fact, it is well known that the waste 

disposal in landfill has negative impacts on the environment. The legislation issued during the 

past few years has a key role in addressing this situation by imposing targets on the 
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elimination of organic waste  and simultaneously encouraging waste management based on a 

hierarchy in which  are privileged solutions to waste reduction, recycling, recovery energy 

instead of disposal in landfill. Requiring a progressive reduction of the quantities deposition 

of biodegradable waste in landfills, Decreto-Lei n. °152/2002 of May 23
th

 concerning the 

disposal of waste into landfills, presents an important challenge. This law aims to improve the 

general conditions of landfill operation, preventing or reducing as far as possible the adverse 

environmental effects of disposing waste in landfills. In this context, all types of depositions, 

including water monitoring and leachate management, protection of soil and groundwater and 

gas monitoring were regulated. It also requires the implementation of strategies in order to 

gradually reduce the amount of organic waste going to landfill. Thus, the total amount (by 

weight) of biodegradable municipal land filled in 1995 was expected to decrease to 75% in 

2006, 50% in 2009 and 35% in 2016. Decreto-Lei n. ° 152/2002 of May 23
th

 was recently 

repealed by Decreto-Lei n. ° 183/2009 of August10
th

, which delays in four years the time 

limits specified in the previous draft, imposing tough new targets to reduce landfill disposal of 

biodegradable municipal waste, also in relation to 1995 data is expected to decrease to 50% in 

2013 and  35% in 2020. Limiting the amount of biodegradable waste going to landfill implies 

the diversion of this waste towards appropriate treatment options such as composting. This 

waste treatment technology will clearly have an important role in processing much of the 

biodegradable waste, which in future will have to be diverted from landfill 
[2]

.  

 

2.2.2.   Municipal solid waste 

The quantity and diversity of MSW produced around the world has increased in recent 

decades. There are several factors that have contributed to this growing production of waste, 

such as the population explosion and economic growth.  In mainland Portugal, the production 

of municipal waste was approximately 5.184 million tons in 2009.  With regard to the amount 

of MSW generated per capita, 511 kg/(hab.year) were produced in 2009, which corresponds 

to a daily production of 1.4 kg of MSW per capita. Figure 2.1 shows the amount of MSW 

produced between 2005 and 2009
[12]

. 
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Figure 2.1- Evolution of the total production and annual per capita MSW between 2005 and 

2009 (redrawn from [12]).   

Besides the waste production, is also important to know their composition, which 

often varies depending on a number of factors: geographical location, seasons, urban or rural 

area, cultural and dietary habits, standards of living, characteristics of collection services 

offered and the level of promotion of home composting. According to its composition MSW 

may be grouped by type and the quantity is expressed as percentages. Figure 2.2 shows the 

composition of MSW in Portugal, where the major fractions correspond to fermentable 

materials often referred to as ―kitchen waste‖ and paper and paperboard. Kitchen waste is 

usually rich in organic that may have more than 90% of biodegradability. The paper is also 

part of the biodegradable fraction. Although, it is often assumed that paper recycling is a 

better option than the use of biological treatment, depending on local conditions and 

availability of infrastructure and outlets for the paper recycling, waste paper and paperboard 

can sometimes serve as a valuable source of carbon, allowing the composting of food waste 

[13,11]
. 

 

Figure 2.2 - Composition of the municipal solid waste in Portugal in 2008 (redrawn from [13]). 
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Figure 2.2 confirms that the organic matter often represents the most significant 

fraction of the waste stream.  

The main options for the treatment of biodegradable MSW are composting, anaerobic 

digestion, incineration, gasification and pyrolysis. In the last decades composting has gained 

an important role on MSW management, and it can be applied both to mixed MSW and to 

separately collected biodegradable fraction. When the substrate is mixed MSW, the 

infrastructure for its treatment is called a mechanical–biological treatment (MBT) plant. This 

includes a combination of mechanical, other physical and biological processes that are mainly 

used to reduce the volume and weight and stabilize the fermentable fraction of MSW 
[14]

. 

In Europe the concept of large-scale municipal composting was originated in Holland 

in 1929, and the facility was used to dispose of the refuse from several cities to produce 

compost. However, the first serious attempts to use large-scale composting to treat mixed 

MSW in Europe began in the 1970s and extended into the 1980s, at which time it was 

expected that these plants could treat approximately 35% of the total MSW
 [2]

. 

 

2.3.  Composting systems 

Today, different composting technologies are used depending on the location, the 

substrate, the scale of operation, time required to reach compost stability and maturity, the 

availability of land, and the skills and the machinery available. Among the composting 

technology, the most basic distinction is between reactor and non reactor systems, Figure 2.3. 

Reactor technology is often termed ―in-vessel‖, whereas non reactors are open systems.  The 

―non reactors‖ includes the ones used from prehistoric times to the windrows, static pile, and 

household systems used in the present days. 

―Non reactor‖ systems may be categorized on the basis of the aeration method. Thus, 

these systems are divided in agitated solids bed and static bed. An agitated solid bed means 

that the composting mixture is disturbed or broken up in some manner to introduce oxygen as 

well as to (and accordingly) control the temperature, and effect mixing of the material during 

the composting cycle. The agitation may be by periodic turning, tumbling, or other methods 

of agitation. The windrow and the static pile processes are examples of the agitated and the 

static bed aeration systems, respectively
 [1,7]

. 
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Figure 2.3 - Classification of composting systems. 

In the windrow composting, mixed feeds stocks are placed in parallel rows and turned 

periodically, usually by mechanical equipment, which aerates and homogenizes the materials, 

leading to a more uniform breakdown as new surfaces are exposed to the degradation process. 

Oxygen is supplied primarily by natural ventilation resulting from the buoyancy of hot gases 

in the windrow system, and to a lesser extent, by gas exchange during turning. Therefore, the 

size of a windrow that can be effectively aerated is determined by its porosity, and the oxygen 

transfer into the windrow is aided by forced or induced aeration from blowers. 

Windrows require large areas of land and can cause odor problems especially during 

the turning operations. If the windrow is too large, mechanical turning cannot control compost 

temperatures precisely, and unless the material is turned frequently, anaerobic conditions are 

unavoidable, interfering with the composting. On the other hand, small windrows lose heat 

quickly and may not attain temperatures high enough to kill pathogens and weed seeds
 [1,7]

. 

In the static pile composting, like windrows, the material is in parallel rows, but as its 

name suggests, no agitation or turning of the static bed during compost cycle. The substrate is 

mixed with a bulking agent such as wood chips, and formed into a large pile. Bulking agent is 

a material, organic or inorganic, of sufficient size to provide structural support and maintain 

air spaces within the composition matrix. So it provides structural stability to the material and 

maintains air voids without the need of periodic agitation. Although "non-reactors" 

composting systems are easy to manage, they require large areas of land and can cause odor 

because anaerobic zones may occur during the process. 
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―Reactor‖ systems are design according to engineering principles and may be 

categorized according to the manner of solids flow as either vertical flow reactors (towers) or 

horizontal flow reactors. In these systems the waste is made to undergo decomposition within 

an enclosed space, which makes possible to be rigorously controlled. Various forced aeration 

and mechanical turning devices are used to optimize aeration in these systems. 

Vertical flow reactors systems are further defined according to bed conditions in the 

reactor and are divided into those that allow agitation of solids during transit down the 

reactor, which are termed moving agitated  bed reactors and those that where the composting 

mixture occupies the entire bed volume and is not agitated. These systems are termed moving 

packed bed. 

 Horizontal flow includes a number of reactors types in which the reactor is inclined 

slightly from the horizontal to promote solids flow. This horizontal flow reactors fall into 

three categories: tumbling solids bed reactors, which employ a rotating or rotary drum; 

agitated solids bed reactors, which use a bin structure with agitation; and static solids bed 

reactor, which also use a bin structure but with a static solid bed. 

The ―reactor‖ systems enable composted larger masses of waste within much shorter 

land spaces than conventional composting methods. But the use of machinery and power 

places significant cost burden on in-vessel systems, making them more expensive than the 

conventional systems
 [1,2,7]

. 

 

   

2.4. Stages of composting process 

Although the technologies described above may utilize different configurations, there 

are three basic components to the composting process: Pre-processing, composting and post-

processing (Figure 2.4). Pre-processing of the waste usually is implemented prior to the 

composting stage, and may include particle size reduction, screening, and the addition of 

amendments and bulking agents. The goal of this phase is to create a more homogeneous 

input into the system, to exclude undesirable material (such as metals, plastics and glass) and 

to control several factors in the composting operation to avoid nuisance problems such as 

odors and dust, and also for obtaining a quality agricultural product
 [15]

. Amendment is a 
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material added to other substrates to condition the feed mixture and is divided into two types: 

structural or drying amendment, which is an organic material added to reduce bulk weight and 

increase air voids allowing for proper aeration and energy or fuel amendment, which is an 

organic material added to increase the quantity of biodegradable organics in the mixture and, 

thereby, increase the energy content of the mixture.  

 

Figure 2.4 - Generalized diagram for composting process stages. 

Once the pre-processing is complete, the organic waste is loaded into the composting 

system, and the process may begin as soon as the raw materials are mixed together. 

Composting stage can be divided into three phases, based on the temperature of the system: 

(1) a mesophilic, or moderate-temperature phase (up to 40 °C), which typically lasts for a 

couple of days; (2) a thermophilic, or high temperature phase (over 40 °C), which can last 

from a few days to several months; and (3) a several-month mesophilic curing or maturation 

phase (Figure 2.5). The length of the composting phases depends on the composition of the 

organic matter being composted and the efficiency of the process, which is determined for 

example by the degree of aeration, agitation, and the size of the system
 [3]

. 

At the start, the raw materials are at ambient temperature and usually slightly acidic.  

During the initial stages of the process, oxygen and soluble, easily degradable components of 

the materials are rapidly consumed by the microorganisms. Firstly, mesophilic bacteria 

actinomycetes, fungi, and protozoa colonize the biodegradable solid waste. These 

microorganisms grow between 10 and 45˚C and break down easily degradable components 

such as monosaccharides, starch and lipids. Due to the oxidative action of microorganisms, 

the temperature increases and there is a drop in pH at the very beginning of composting, 

caused by the formation of fatty acids from the biodegradable compounds during degradation. 
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Once temperatures exceed 40°C, the mesophilic microorganisms become less competitive and 

are replaced by thermophilic ones. At this thermophilic phase, high temperatures accelerate 

the breakdown of proteins and fatty acids formed at the mesophilic phase, resulting in the 

liberation of ammonium and an increase in the pH. After the easily degradable carbon sources 

have been consumed, more resistant compounds such as cellulose, hemicellulose and lignin 

are partly degraded. The optimum temperature for thermophilic micro-fungi and 

actinomycetes which mainly degrade lignin is 40–50˚C. Above 60˚C, these microorganisms 

cannot grow and lignin degradation is slowed down. After the thermophilic phase the 

microbial activity decreases, and mesophilic microorganisms once again take over for the 

final phase of ―curing‖ or maturation. Although the compost temperature is close to the 

ambient, this last phase is important because, chemical reactions continue to occur that make 

the remaining organic matter become more stable and additional humus-like substances are 

produced to form mature compost 
[1,3,9,10]

. Once the compost is finished in the curing or 

maturation phase, it may be post- processed according to the feedstock characteristics and 

desired product quality. 
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Figure 2.5 - Temperature and pH variation during composting process [redrawn from [3]]. 

 

2.5.  Factors affecting the composting process 

While composting occurs naturally, for guarantee that efficient thermophilic 

composting is attained optimal microbial growth conditions are required for organic matter 

degradation and thus good quality compost. The control of some variables and parameters 

may significantly affect the composting efficiency. Recently, research has been focused on 

the study of the interaction between physical, chemical and biological factors. Some of the 

more important factors in the composting operation are: aeration, temperature, nutrient 

balance, pH of materials, moisture content, surface area and particle size, size of compost 

system, porosity, bulk density, free air space (FAS), electrical conductivity (EC) and the 

microorganisms itself. Nutritional balance is mainly defined by the Carbon: Nitrogen ratio (C: 

N) 
[4,16]

. 

 

Aeration  

Aeration is a key variable for composting as oxygen is essential for the metabolism 

and respiration of aerobic microorganisms and thus for oxidizing the various organic 

molecules present in the waste material. Indeed, composting consumes large amounts of 

oxygen, particularly during the initial stages of most vigorous activity. Proper aeration 
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controls the growth of adequate aerobic microbe populations, the development of stabilizing 

temperature and removes excess moisture and CO2 as well. If oxygen supply is limited, the 

composting process may turn anaerobic, which is a much slower and odorous process.  The 

aeration flow rate must supply the depleted oxygen to the composting mixture and carries 

away excess heat from the system with fresh air. A minimum oxygen concentration of 5% 

within the pore spaces of the compost is necessary for aerobic composting. However, the 

optimum O2 concentration is between 15% and 20% and the air flow rate should maintain 

temperatures below 60–65 ˚C. Therefore, compost systems need to be designed to provide 

adequate air flow using either passive or forced aeration systems
 [3,4,9]

 . 

 

Temperature  

The temperature at any point during composting depends on the balance between the 

heat produced by microorganisms as they decompose organic material and the lost through 

conduction, convection, and radiation (Figure 2.6).  

Conduction refers to energy that is transferred from atom to atom by direct contact. If 

the ―reactor‖ or ―non reactor‖ system of composting is smaller, the surface area-to-volume 

ratio is greater, and therefore, the degree of heat loss due to conduction is larger. Insulation 

helps to reduce this loss in small compost ―reactors‖ systems. 

 Convection is the movement of molecules within fluids. When compost gets hot, occur 

the buoyancy of hot gases within the system, and the resulting convective currents cause a 

slow but steady movement of heated air upward through the compost and out the top. In 

addition to this natural convection, some composting systems use ―forced convection‖ driven 

by blowers or fans. 

Radiation refers to a process in which energetic particles or energy or waves travel 

through a medium or space. Radiation is a negligible loss of heat from compost because of the 

relatively small difference in temperature between the outer edges of the compost and the 

surrounding air
 [3,9,16]

. 

 

 

http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Energy
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Figure 2.6 - Three mechanisms of heat loss from a composting pile 
[3]

. 

Composting will essentially take place within two temperature ranges known as 

mesophilic (10-40 °C) and thermophilic (over 40 °C). The temperature of the compost is a 

good indicator of the microbial activity. Temperatures greater than 60 °C reduce the activity 

of many of the active organisms. Therefore, the optimum temperature range is between 32 °C 

and 60 °C. There is a direct relation between temperature and rate of oxygen consumption. 

Higher temperature led to greater oxygen uptake and faster rate of decomposition. 

Temperatures of composting materials characteristically follow a pattern of rapid increase to 

55 – 60 °C and remain near this thermophilic level for several days or weeks. Temperatures 

gradually drop to 38°C and finally drop to ambient air temperature.  

It is important to note that for destroying pathogenic microorganism the temperature 

should reach at last 55 °C for some hours to a few days. 

 

Carbon: Nitrogen ratio (C:N) 

Carbon, nitrogen, phosphorous, and potassium are the primary nutrients required by 

the microorganisms involved in composting.  The optimum value of the carbon-to-nitrogen 

ratio (C:N ratio) is also an essential factor for microorganisms decompose of organic wastes 

during composting processes, as it usually ensures that the other required nutrients are present 

in adequate amounts. Carbon serves primarily as energy source for the microorganisms, while 

a small fraction of the carbon is incorporated into the microbial cells. Nitrogen is essential for 

microbial population growth, as it is a constituent of protein that forms over 50% of dry 

bacterial cell mass. 
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Raw materials blended to provide a C:N ratio of 25:1 to 30:1 are ideal for active 

composting, but initial C:N ratios from 15:1 up to 40:1 consistently give good composting 

results. High C:N ratios make the process very slow as there is not  enough N  available for 

the growth of microorganisms which results in a longer time for composting process. But with 

a low C:N ratio there is an excess of N per degradable C which can mineralize into ammonia 

it can be lost through ammonia volatilization, leaching from the composting mass and 

denitrification producing unpleasant odors. Denitrification can occur as a result of the 

development of anaerobic micro sites within the material. Thus, the aerobic conditions of the 

compost should be ensured throughout the process. 

Most materials available for composting do not fit the ideal C:N ratio, so different 

materials must be blended to meet the required ratio. The carbon sources for microorganisms 

usually come from bulking agents such as sawdust and wood chip. Green wastes, such as 

foliage and manure, contain relatively high proportions of nitrogen and thus can be used as 

nitrogen sources 
[1,4,8,9,17]

. 

 

pH of materials 

Another parameter that greatly affects the composting process is the pH of the blend. 

During the course of composting, the pH in general varies between 5.5 and 8.5. The range of 

pH values suitable for bacterial development is 6.0–7.5, while fungi prefer an environment in 

the range of pH 5.5–8.0. 

Composting itself leads to major changes in materials and in pH as well. In the early 

stages of composting, organic acids accumulate as a by-product of the organic matter 

degradation by bacteria and fungi and may, temporarily or locally, lower the pH (increase 

acidity). Usually, the organic acids break down further during the composting process, and the 

production of ammonia from nitrogenous compounds may raise the pH (increase alkalinity). 

Thus, the pH is very relevant factor for controlling N-losses by ammonia volatilization, which 

can be particularly high at pH >7.5. Later in the composting process, the pH tends to become 

neutral as a result of humus formation with its pH buffering capacity at the end of composting 

activity. Finished compost should have  pH within the range of 5.0 to 8.0 to be compatible with 

plant growth and to avoid odors
 [1,3,4,16]

. 
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Moisture  

Moisture plays an essential role in the metabolism of microorganisms and indirectly in 

the supply of oxygen, as it provides a medium for the transport of dissolved nutrients required 

for the metabolic and physiological activities of microorganisms. The optimum water content 

for composting varies with the waste to be composted, but an initial moisture content of 40–

75% by weight is generally considered optimum because it provides sufficient water to 

maintain microbial growth but not so much that air flow is blocked. When the moisture 

content is too high (over 75%) nutrients may be leached, air volume is reduced and will close 

the air pores, reduce the oxygen content and consequently turns composting into an anaerobic 

process. Experience has shown that the bacterial activity will slow down when the moisture 

content is below 40%, and will cease entirely below 15 % 
[1,3,16,17]

. 

  

Particle size and surface area  

Microbial activity occurs at the interface of particle surfaces and air. Therefore, the 

rate of aerobic decomposition increases with smaller particle size, because high surface areas 

allows microorganisms to digest more material, and generate more heat, and so improve the 

biological activity and rate of composting.  Smaller particles, however, may reduce the 

effectiveness of oxygen movement within the composting system, and thus the oxygen 

available to microorganisms decreases. Optimum composting conditions are usually obtained 

with particle sizes ranging from 5 to 12.5 cm of average diameter
 [3,9,16]

. 

 

Size of compost system 

The system volume can have great influence on the degradation rate of the material. 

The system must be large enough to prevent rapid dissipation of heat and moisture, yet small 

enough to allow good air circulation for the microbial activity
 [3]

.  

Porosity and free air space 

Substrate porosity carries a great influence on composting performance since 

appropriate conditions of the physical environment for air distribution must be maintained 
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during the process. Porosity refers to the spaces between particles in the compost system. If 

the material is not saturated with water, these spaces are partially filled with air that can 

supply oxygen to decomposers and provide a path for air circulation. As the material becomes 

water saturated, the space available for air decreases
 [4,16]

. 

Free air space (FAS) is a representation of the available air filled voids in a 

composting matrix. This parameter is very important as it is intrinsically related to the 

availability of water and oxygen, which are determinant factors for the biological activity of 

the microorganisms. The maintenance of optimum oxygen concentration is important to 

remove carbon dioxide and excess moisture, as well as to avoid or prevent an excessive heat 

accumulation, which depends on the air content and its movement trough composting 

material. Thus, maintaining adequate FAS levels satisfies the oxygen concentration required 

to achieve desired composting conditions. Minimum FAS requirements were established at 

35% while maximum FAS levels recommended in order to avoid heat losses varies according 

to the wastes composition
 [19]

. 

 

Bulk density 

Bulk density is a property of particulate materials, and corresponds to the mass of 

many particles of the material per unit of bed volume, including the pore space. It is a useful 

indicator of materials compaction and so must be controlled 
[18]

. 

 

Electrical conductivity (EC) 

Electrical conductivity (EC) is expression of the ability of an aqueous solution to carry 

an electrical current. It is generally related to the total solute concentration and can be used as 

a quantitative measure of dissolved salt concentration, even though it is also affected by the 

mobility, charge and relative concentration of each individual ion present in the solution. 

Generally, EC increases during composting as volatile solids(VS) are degraded and the 

amount of water-soluble salts increases on a total solids (TS) basis
[1,20]

. 

 

Microorganisms 
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Organic matter decomposition is carried out by many different groups of microbial 

populations. The microorganisms involved in composting develop according to the 

temperature of the mass, which defines the different steps of the process. Naturally occurring 

microorganisms and invertebrates are the primary decomposers that accomplish composting. 

These microorganisms include bacteria, fungi, actinomycetes and protozoa. Different 

decomposers prefer different organic materials and temperatures and therefore, the microbial 

populations should be diverse. Changing operating conditions during the composting process 

lead to an ever-changing ecosystem of decomposition organisms. Among all microorganisms, 

aerobic bacteria are the most important initiators of decomposition and temperature increase 

within the compost system. Fungi are present during all the process but predominate at water 

levels below 35% and are not active at temperatures over 60 °C. Actinomycetes predominate 

during stabilization and curing, and together with fungi are able to degrade resistant polymers. 

The ability of microorganisms to assimilate the organic matter depends on its capacity 

to produce enzymes necessary for degradation of specific substrate. The more complex the 

substrate, more varied enzymes system is needed. Through the synergic action of 

microorganisms, complex organic compounds are degraded to smaller molecules that can be 

used by microbial cells 
[4,10,16]

. 

 

2.6.  Finished compost Properties 

The aim of composting should be to yield consistent product quality. However, the 

effectiveness of compost with regard to beneficial effects on soil depends on its quality, 

whose properties vary widely, as a function of the initial ingredients, the process used, and the 

age of the compost. Physical characteristics such as color, odor and temperature give a 

general idea of the decomposition stage reached, but give little information about the quality 

of the compost. In fact, the quality criteria for compost are usually established in terms of: 

nutrient content humified and stabilized organic matter, the maturity degree, the hygienization 

and the presence of certain toxic compounds such as heavy metals and soluble salts. The 

principal requirement for it safe use in soil is a high degree of stability and maturity, which 

implies stable organic matter content and the absence of phytotoxic compounds and 

pathogens. Phytotoxicity is mainly attributed to the presence of fatty acids but may also be 

caused by salinity, heavy metal, NH3 and some toxic trace elements.. 
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 The terms stability and maturity are both commonly used to define the degree of 

decomposition of organic matter during the composting process even if they are conceptually 

different. Compost stability refers to a specific stage of decomposition during composting, 

which is related to the types of organic compounds remaining and the resultant biological 

activity that can be measured, for example, by respiration rates. When compost is unstable, 

microbial activity is high and the substrates pass through rapid changes. Maturity is the 

degree or level of completeness of composting and implies improved qualities resulting from 

‗ageing‘ or ‗curing‘ of a product. Therefore, it is related to suitability in final use and crop 

growing. The use of immature compost is adverse to soil as anaerobic conditions develop as 

the microorganisms in soil use oxygen to decompose the compost, letting plant roots without 

oxygen and potentially generating toxic intermediates. Stability and maturity usually go hand 

in hand, since phytotoxic compounds are produced by the microorganisms in unstable 

composts. 

Several variables have been proposed for monitoring the composting process and 

evaluating the stability of the compost. These variables may include physical, chemical, and 

biological parameters of the organic material, such as temperature, degree of self-heating 

capacity, oxygen consumption, biochemical parameters of microbial activities, analysis of 

biodegradable constituents, phytotoxicity assays, organic matter nutrient content, C/N ratio, 

and humus content and quality 
[1,4,6,10]

. 

 

2.7.  Biodegradability of organic matter  

The definition of the criteria by which a material can be considered as compostable is 

a topical issue for the use of composting as a feasible waste management treatment. Among 

other criteria mentioned above, the biodegradability of materials in composting conditions is a 

key property. However, the practice to determine the biodegradability of waste is not very 

common, and the composting systems are usually designed based on assumed 

biodegradability of the waste reported on previous studies.  

 

 

Biodegradability is defined as the biologically catalyzed breakdown of organic matter 

carried out by microorganisms. As in the natural environment or in technical facilities, there 
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are a number of parameters which affect the level of biodegradation. The biodegradability of 

substances depends primarily but not only on their molecular structure. In general, 

biodegradable substances can be decomposed into carbon dioxide or water methane as the 

final products. In practice, only biodegradable organic material can be converted in products 

by its reaction with oxygen (aerobic processes), or without oxygen (anaerobic reactions). The 

main constituents of a composting feed mixture (m0) and product (m) is shown in Figure 2.7, 

where it is defined a biodegradability index (β) as the fraction of the volatile solids (VS) 

(organic matter) that is susceptible of being decomposed during typical composting 

conditions. Thus, from the total mass of composting exist an inorganic solid fraction (IS), 

biodegradable volatile solid fraction (βVS) and non-biodegradable volatile solid fraction (1-β) 

VS. 

The inorganic and non-biodegradable volatile solid fractions should behave as 

conservative substances through the process. Therefore, the mass of inorganic and non-

biodegradable volatile solids entering the process should be equal to the mass of these leaving 

the process at steady state. 

 

Figure 2.7 - Generalized bar diagram showing the components for substrate mixture and 

compost product (redrawn from [21]). 

 

 

Aerobic and anaerobic biodegradation 
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Aerobic biodegradation is the breakdown of an organic compound by microorganisms 

in the presence of oxygen into carbon dioxide, water and mineral salts of any other elements 

present (mineralization) plus new biomass. Therefore, the chemistry of the system, 

environment, or organism is characterized by oxidative conditions. Aerobic bacteria use 

oxygen as an electron acceptor, and breakdown organic chemicals into smaller organic 

compounds, often producing carbon dioxide and water as the final product. 

Aerobic biodegradation is also known as aerobic respiration.  

Anaerobic digestion occurs when microorganisms breakdown biodegradable material 

in the absence of oxygen. Generally the breakdown in anaerobic conditions proceeds 

sequentially from the complex to the simple molecules. The process begins with bacterial 

hydrolysis of complex particulate materials in order to break down insoluble organic 

polymers such as proteins, carbohydrates and lipids to yield monomers like amino acids, 

sugars, and high molecular fatty acids and make them available for other bacteria. Amino 

acids and sugars are converted into acids, carbon dioxide, hydrogen, ammonia, and organic 

acid. The resulting organic acids are converted into acetic acid, along with additional 

ammonia, hydrogen, and carbon dioxide. Finally these products may be converted to methane 

and carbon dioxide
 [22-25]. 

 

2.7.1.  Methods to assess the biodegradability of organic matter 

Test methods used to estimate biodegradability are an important part of organic waste 

characterization as they can be used to predict the biodegradation behavior of a test material 

and to assess the effectiveness of a certain treatment process, including composting. The 

degradation processes can occur in very different environmental situations. Thus, there are 

several biological and non-biological testing methods available for assessing this propertiy.  

Biodegradability tests typically involve incubation of the organic waste in the presence of live 

microorganisms that decompose the organic matter (biological test methods). The basic 

principle of these tests is to assess how much of the carbon can be mineralized and how 

quickly it will be degraded. Therefore, the degree to which the rate of biodegradability of the 

waste is reduced, and the extent of decomposition achieved, can both be used as an indication 

of the performance and efficiency of the treatment process. The biodegradability tests may be 

carried out under anaerobic or aerobic conditions and are monitored by measuring biogas   

 

http://toxics.usgs.gov/definitions/electron_acceptor.html
http://toxics.usgs.gov/definitions/biodegradation.html
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production (CH4 and CO2) in anaerobic tests and either O2 consumption or CO2 production in 

aerobic tests
 [6,26].

 

 

Anaerobic methods 

Anaerobic test methods measure the biodegradability of a material in the absence of 

oxygen by measuring the amount of biogas released (CO2 and CH4) resulting from the 

decomposition of organic materials carried out by methanogenic bacteria. An example of this 

decomposition for cellulose and hemicellulose is shown in Eqs. (2.2a) and (2.2b), 

respectively. 

                               (2.2a) 

                                (2.2b) 

The Bio Methane Potential (BMP) test is one method that can be used to estimate the 

amount of methane that could be produced from anaerobically digesting organic matter in a 

temperature controlled system
 [26]

. 

 

Aerobic methods  

Aerobic test methods measure the biodegradability of a material in the presence of oxygen by 

measuring the O2 consumption or CO2 production of a test material. The aerobic 

biodegradation of cellulose and hemicelluloses are shown as example in equations (2.3a) e 

(2.3b), respectively. 

                             (2.3a) 

                            (2.3b) 

There are several aerobic waste biodegradability test methods as well as different monitoring 

techniques and ways of expressing results. They can be classified as ‗dynamic‘ or ‗static‘ 

depending on whether or not the sample is aerated, respectively. Oxygen uptake rate (OUR) 

and dynamic respiration index (DRI) are examples of static and dynamic test method, 



 

24 

 

respectively, and both were developed and designed to assess the degree of biological stability 

of waste derived materials.  

Biological methods are referred in literature as the most suitable stability 

determination and are also proposed as a biodegradability measure. Although, the BMP 

method has been reported to show good reproducibility it has the disadvantage of require long 

periods to be complete, thereby not providing rapid feedback on routine monitoring. Aerobic 

methods including the DRI test have other disadvantages such as preferentially decomposing 

the readily biodegradable components of the material and therefore may not indicate potential 

long-term biodegradability. Therefore most of current microbial based biodegradability test 

methods have limitations and none of them is suitable for the whole range of biodegradability 

testing requirements
 [26]

. 

 Since biological tests are time consuming and costly it is desirable to have simpler, 

rapid and cheaper methods that may be a useful surrogate for biological tests. 

 

Alternative method 

A large proportion of MSW consists of biopolymers (proteins, fats, polysaccharides 

and lignin). Lignin-containing materials are often referred as poorly biodegradable, so as a 

general rule, the higher the lignin content, the lower biodegradable is the substrate. On other 

hand, lignin is also the main precursor for humic substances and it is mainly humified (not 

mineralized) during degradation in compost or soil. Therefore, the assessment of the material 

lignin content may provide a non-biological test method of assessing biodegradability [7]. 

Lignin is a natural composite material in all vascular plants, which provides plant 

strength and resistance to microbial degradation by decreasing water permeation across the 

cell wall. It is an amorphous, aromatic, water insoluble, heterogeneous, three-dimensional, 

and cross-linked polymer (Figure 2.8). 
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Figure 2.8 - Lignin polymer of softwood. The figure is a part of lignin macromolecule, a 

schematic example which is qualitative, not quantitative
 [27].

 

The macromolecular properties and structural characteristics of lignin make 

biodegradation studies difficult. The best isolation method of lignin would allow the 

collection of chemically unmodified lignin with quantitative recovery and free of non-lignin 

contaminants. A suitable method to isolate lignin would allow predicting substrate 

biodegradability by using, for example, the empirical formula shown in Eq. (2.4), which is a 

correlation between volatile solids biodegradation and lignin content. This empirical formula 

was developed by Chandler that used procedures developed by Van Soest to partition certain 

substrates such as wheat straw, corn stalks, corn leaves, and so on, into detergent soluble 

fractions, including cell soluble constituents, hemicelluloses, cellulose and lignin. The 

degradability of the selected substrates tested was assessed during anaerobic digestion at 35 

°C 
[7]

. 

                   (2.4) 

where β is the biodegradable fraction of the volatile solids and LC is lignin content (% of VS). 

The Eq. (2.4) suggests that materials without lignin only achieve a maximum degradability of 

83%.  

 The methods used for isolating lignin can be classified into two main categories: 

gravimetric and non-gravimetric methods. The first group can be further classified into 

methods where lignin is selectively removed and recovered from the final solution, and 

methods in which lignin is left as an insoluble residue. Determination of Kappa number and 

Klason lignin are the most common methods used to analyze lignin quantitatively and both 
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are gravimetric. The non-gravimetric methods include spectroscopy such as Fourier transform 

infrared (FTIR) and those based on optical properties of lignin. 

 Klason lignin is determined gravimetrically after extracting the sample with sulphuric 

acid 72% to dissolve out the other components. Kappa number is usually used in the pulp and 

paper industry and it is determined by oxidizing lignin selectively from pulp using a solution 

of potassium permanganate. So Kappa number represents the amount of permanganate 

consumed by the pulp sample
 [10, 28]

. 
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3.  MATHEMATICAL MODELING OF COMPOSTING PROCESS 

Composting is a process that involves many coupled physical, chemical and biological 

mechanisms that are challenging to analyze both empirical and theoretically. Kinetics 

behavior is an example of a major issue in the study of composting facilities, as well as, to 

know how operating factors affect process rate.  Mathematical modelling has been widely 

used in science and engineering in order to allow an integration of knowledge on the 

considered phenomena, resulting on an  improved understanding of the behavior of systems, 

to orientate experimental design, explore new theoretical concepts, predict system 

performance and test hypothesis. Mathematical modelling may be particularly important to 

reduce, or even replace, the need for physical experimentation when exploring new material 

and/or process options
 [29]. 

 

3.1.  Description of model   

The system under analyses is heterogeneous and involves solid, liquid and gaseous 

phases. However, in this study the modelling approach is pseudo-homogeneous. Thus, the 

basic approach used to model composting processes is to couple derived substrate degradation 

kinetics with mass and energy balances for the physical state variable such as temperature (T), 

water content (mW) and oxygen concentration (   
). These state variables are the most 

important ones for representing the compost process dynamics. In this work, the mathematical 

model involves three parts based on basic principle of chemical reaction engineering: organic 

matter biodegradation kinetics, energy balance equation and mass balance equation. 

Through mass and energy balances, transport processes and thermodynamics, a set of 

equations describing a composting process were derived. The general form adopted for 

analysis is as shown in Eq. (3.1). 

                                                      (3.1) 

At the beginning of the process, the material of composting consists of inorganic part, 

organic part and water. The Organic part is degraded by biochemical exothermic reactions 

with consumption of oxygen and generation of carbon dioxide, water and ammonia as shown 

in Eq. (3.2) 
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(3.2) 

where v, y, z and w are indexes which describe the molar fraction of carbon, hydrogen, 

oxygen and nitrogen, respectively, in the organic part of substrate. These indexes are useful to 

calculate the stoichiometric coefficients of the consumed and produced gases. 

 The system is supplied with a constant composition air to ensure adequate levels of 

oxygen concentration to maintain aerobic condition for organic matter oxidation and to 

remove the excess of moisture from the substrate. The mass and heat transfer phenomena 

included in the model are shown in Figure 3.1. 

 

Figure 3.1- Mass and heat transfer phenomena included in the model. 

 

Model assumptions and simplifications 

To simplify the equations and numerical calculation, several assumptions and 

simplifications were taken into account while developing the model: 

- Complete mixing of material in terms of O2 concentration is achieved by efficient 

aeration; 

- The system maintains a constant pressure; 

- Gas mixture is saturated with water vapor; 

- The system has a uniform temperature; 
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- The temperature of compost, water and air is equal in each point of the reactor; 

- The temperature of the outlet air is equal to the composting material temperature; 

- The  mass of air flow rate remains constant; 

- The composting material is a homogeneous mixture of uniform composition; 

- All heat specific capacities are constant; 

- The gaseous phase behaves as ideal gas. 

 

3.1.1.  Process kinetic 

The composting reaction is described by the organic matter degradation rate, through 

the kinetic Eq. (3.3)
 [29] 

    

  
      

  
(3.3) 

where mOM is the mass of organic matter in the substrate (kg), t the time (h), k the rate 

constant (kg
1-n

h
-1

) and n the reaction order. 

 Reaction rate constant is dependent on the system design, the type of material under 

treatment, and other factors that may affect the overall system performance. In our work , this 

constant is defined as a function of temperature, oxygen concentration, moisture and free air 

space as shown in Eq. (3.4) 
[7]

 

                         (3.4) 

where F(T), F(O2), F(W), and F(FAS) are the correction factors for temperature, oxygen 

concentration, moisture content and free air space, respectively.   

 There is an extensive set of equations in literature to describe the dependence of the 

reaction rate on temperature.  In our study, the Eq. (3.5) was used 
[29]

. 

                        (3.5) 

where a, b and c are constants determined empirically through an optimization method. 

 The dependence of reaction rate constant on oxygen concentration is estimated using 

the Eq. (3.6) 
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(3.6) 

where    
is oxygen concentration (kgO2 m

-3
) and    

is oxygen saturation constant (kgO2 m
-3

)  

For modelling the effect of moisture content on the reaction rate the correction factor 

developed by Haug (Eq. 3.7)  was used 
[7]

. 

      
 

                         
 

(3.7) 

where Sm is fractional solids content of the mixture solids. The model equation used for FAS 

correction is shown in Eq. (3.8) 

        
 

                      
 

(3.8) 

Fractional free air space of the composting material was calculated using the Eq. (3.9) 
[7]

 

      
    

    
 

        

  
 

(3.9) 

   
 

  
 

(3.10) 

 

  
 

  

  
 

      

  
 

(3.11) 

where Vs is volatile fraction of substrate solids, ρs is specific gravity of substrate solids 

(kg/m
3
), ρV is specific gravity of the volatile fraction of the substrate solids, ρf is specific 

gravity of the fixed fraction of the substrate (inorganic fraction), ρm is unit bulk weight of the 

mixed material to be composted, (kg/m
3
), ρw is density of water (kg/m

3
), C  is bulk weight 

coefficient for the substrate, range from 0.15 to 0.4. The specific gravity of the volatile solids 

normally is about 1.0 and that of fixed solids about 2.5. 

 

3.1.2.  Mass balance 

The mass changes of oxygen and moisture in the substrate were estimated based on the 

principle of mass conservation. 
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Water mass balance  

 The water mass balance in composting material is shown in Eq. (3.12) and it relates 

water transport by the air flow throughout the reactor and the water formed in the composting 

reaction. 

   

  
 

       

   
   

    

  
 

      

  
 

(3.12) 

where Ps0 and Ps are saturation water vapor pressure (Pa) at initial temperature of inlet air and 

at temperature of the composting mixture, respectively; T0 is the initial temperature of inlet air 

(K); Q the volumetric air flow (m
3
 h

-1
);    the stoichiometric coefficient of water; R the 

universal gas constant (J kmol
-1

 K
-1

) and Mrw is water molecular weight (mol kg
-1

). 

 

 Oxygen mass balance  

The oxygen concentration in the compost was estimated by Eq.(3.13) 

    

  
 

  

    
       

        
      

    

  

 

  
 

(3.13) 

where    
 is the concentration of oxygen in the reactor (kgO2 m

-3
), Ma the air flow (kg h

-1
); 

Vr is the working volume of the reactor (m
3
);    

 the stoichiometric coefficient of oxygen; and 

ρa the density of air (kg m
-3

), which was calculated based on psychometric relationships from 

the temperature and humidity ratio 
[30]

 . 

 

3.1.3.  Energy balance 

As aforementioned the heterogeneous nature of the system under analysis was 

modeled assuming pseudo-homogeneous approach. Thus, the temperature of solid, liquid and 

gaseous phase is the same inside the reactor. The overall heat capacity was calculated from 

the heat content of the organic matter, inorganic matter, water and dissolved gas in interstitial 

water. The temperature variation in the system along time was calculated by Eq. (3.14) 
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(3.14) 

where cpa, cpw,cpOM,cPIM are specific heat capacities of air, water, organic matter and inorganic 

matter, respectively, (J kg
-1

 K
-1

); Ta the air Temperature (K),       is the reaction enthalpy 

(      
  ); U the overall heat transfer coefficient (J h

-1
m

-2
 K

-1
); A the area of heat transfer (m

2
), 

ma the mass of air and Tamb is ambient temperature (K). 

  The specific heat capacities and overall heat transfer coefficient used in the model are 

from the literature. The reaction enthalpy is calculated by Eq. (3.15)
 [7]

 

                  
 

 
                 

(3.15) 

where C, H, O, S and N are the weight percentages of carbon, hydrogen, oxygen, sulfur and 

nitrogen, respectively, on an ash-free basis. The Eq. (3.15) is known as the modified Dulong 

formula and is useful in estimating gross heating values from the composting feed 

composition. This equation requires an ultimate analysis of composting mixture to determine 

the percentages of C, H, O, S and N.  

 

3.1.4. Initial conditions 

For solving the differential equations of the model, Eqs.(3.3), (3.12), (3.13) and (3.14) it is 

necessary to establish the initial conditions (IC). In our simulations, the IC used are the ones 

indicated in Eq. (3.16) to (3.19). 

               (3.16) 

             (3.17) 

   
            (3.18) 

          (3.19) 

The initial mass values of water and organic matter were calculated using the experimental 

data. The initial oxygen concentration was calculated using the equations of ideal gases at  
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ambient temperature. The initial temperature in the composting system was considered as 

equal to ambient temperature. 

 

3.1.5.  Inputs of mathematical model  

The data required in the model are categorized in three groups: constants (physical, 

thermodynamic and stoichiometric), kinetic parameters and operational conditions. Table 3.1 

and Table 3.2 show some constants values used in other works and in the present model, 

respectively. The operational conditions such as air flow rate were given in the experimental 

procedure. The molecular formula, C20 H35O10N, of the compost mixture is obtained using the 

elemental composition of initial mixture shown in Appendix B. 

 

Table 3.1 - Constants values used in composting mathematical models. 

 

Ref. 

 

Substrate 

Parameters 

U 

(J h-1K-1 m2) 

     

(J kg-1) 

Cpw 

(J kg-1K-1) 

Cpa 

(J kg-1K-1) 

CPdrymatter 

(J kg-1K-1) 

CpOM 

(J kg-1K-1) 

CPIM 

(J kg-1K-1) 

[32] Sewage 

sludge and 

wheat straw 

                                        ni ni 

[29] Poultry 

manure and 

wheat straw 

                         ni ni         848 

[35] Synthetic 

food waste 

ni                                 ni ni 

[33] Domestic 

solid waste 

ni                  ni         ni ni 

[36] Manure and 

wheat straw 

ni ni                 ni         840 

[7] Sludge 

solids 

ni                                 ni ni 

[34] ni ni          
     

ni ni ni ni ni 

ni – not indicated 
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Table 3.2 - Physical, thermodynamic and stoichometric constants used in the model. 

Description of the constant Symbol Value Unit References 

Specific heat capacity for water in composting 

mixture 

cpw 4200 J kg
-1

K
-1 

[7] 

Specific heat capacity for air cpa 1013 J kg
-1

K
-1

 [7] 

Specific heat capacity for organic matter cpOM 1320 J kg
-1

K
-1

 [29] 

Specific heat capacity for inorganic matter cpIM 848 J kg
-1

K
-1

 [29] 

Overall heat transfer coefficient U 11580 J h
-1

m
-2

 K
-1

 Assumed 

 

Reaction enthalpy  

C20 H35O10N 
ΔHrx 2.27x10

7
       

   Calculated using 

Dulong formula 

Oxygen saturation constant     0.07     
    

   [29] 

Stoichiometric coefficient for oxygen    
 0.705     

    
   [29] 

Stoichiometric coefficient for water    0.360        
   [29] 
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4.  STATE OF THE ART  

The increasing amount of organic solid wastes generated has become a worldwide 

problem, and thus, the number of treatment facilities based on biological processes has been 

increasing the last years. These installations are receiving municipal and industrial organic 

wastes with the common main goal of reducing their biodegradable organic matter content. 

Among the available biological technologies to treat and recycle organic wastes, composting 

is referred as one of the most useful options to recycle organic materials to obtain a valuable 

organic fertilizer or amendment known as compost. The proper knowledge of the 

characteristics of the wastes to be composted is essential to carry out the process in a 

favorable way to obtain the desirable compost quality. The measurement of biodegradable 

organic matter content is of most importance for the proper analysis and design of the 

composting treatment facilities. However, consensus has not been reached about which shall 

be the most suitable method measuring biodegradability organic matter content in a solid 

organic waste. In fact, a wide range of biological and non biological test methods are now 

available. Table 4.1 provides a summary of the key aspects of number studies of 

biodegradability test methods which can be correlated with the stability assessment. 

Suitability factors of the test methods include the timescale, applicability to a wide 

range of materials and ability to indicate the long-term biodegradability of organic materials 

samples. Among the methodologies suggested, aerobic respiration indices have been 

highlighted as the most suitable tool for biodegradability assessment. However, these test 

methods are time consuming and costly. Thus, it is desirable to have efficient, simpler, rapid 

and cheaper methods, as the assessment of lignin content, which may be a useful surrogate for 

aerobic method. The evaluation of lignin content to assess the substrate biodegradability can 

be useful when long term biodegradability studies cannot be performed, which is the approach 

used in our work. 
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Table 4.1- Studies of biodegradability test methods 

Reference Objectives Methods Conclusions 

Wagland  et 

al., (2009) Evaluation of  test 

methods for 

assessing waste 

treatment process 

performance and 

monitoring the 

diversion of 

biodegradable 

municipal waste 

(BMW) from 

landfill 

Respirometric; Anaerobic tests 

(BMP), Temperature increase; 

Spectrographic; Enzymatic 

hydrolysis 

The anaerobic methods produce reliable results 

but take long time to complete; Aerobic 

methods offer a significantly improved 

timescale compared with anaerobic test 

methods, however, do not measuring the full 

extent of sample biodegradability;  

Temperature increase methods are not suitable. 

For the purpose of monitoring BMW diversion 

from landfill, FT-IR is not suitable; For the 

enzymatic  method there is a necessity to 

perform several measurements which is a 

disadvantage of this approach. 

Ponsá et al., 

(2010) Evaluation of 

different indices to 

express 

biodegradability in 

organic solid wastes 

Dynamic respiration indices 

expressed as average oxygen 

uptake at 1 and 24 h of 

maximum activity (DRI1h, 

DRI24h); Cumulative oxygen 

consumption in 24 h of 

maximum activity and 4 days  

(AT24h, AT4) 

The combined analysis of DRI 24h and AT4 is 

presented  as the best tool for biodegradable 

organic matter content characterization and 

process requirements estimation 

 

Godley  et al., 

(2004) 

 

Evaluation of 

methods for 

biodegradability 

determination of 

municipal 

waste 

Gravimetric; Elemental 

composition;  Anaerobic 

biochemical methane potential  

(BMP); Respirometric DRI, 

SOUR, SRI); Water extractable 

dissolved organic carbon 

(DOC), BOD and COD; 

Cellulose and lignin content; 

Cellulase hydrolysis 

The gravimetric and elemental tests do not 

characterize the relative biodegradability of the 

waste. 

The DRI and BMP are promising tests methods 

and cellulase enzymatic hydrolysis method may 

provide a rapid surrogate measure of relative 

biodegradability. 

Wagland et 

al., (2008) Comparison of   

enzymatic; 

biodegradability test 

method with 

microbial 

degradation 

methods 

Dynamic respiration over 4 

days (DR4); Biochemical 

methane potential over 100 

days (BM100); Enzymatic 

hydrolysis (EHT) 

The EHT is a suitable alternative routine 

biodegradability test method, offering a 

reduction on the timescales and cost of the DR4 

and BM100 test methods. However, further 

research is needed to improve the versatility 

and validity of the EHT method. 

 

Ylijoki et al., 

(2004) 
Biodegradability 

testing of the 

municipal solid 

waste 

Gas formation (GB21), 

Respiration activity 

(AT4),ASTM D 5210-92, DOC 

at neutral pH, Selective 

dissolution method 

No single test method was found to be 

completely sufficient for routine 

biodegradability analysis suitable for 

monitoring the municipal solid waste. 

 

López et al., 

(2010) 
Approaching 

compost stability 

from Klason lignin 

modified method 

Chemical stability degree (SD); 

Klason method for lignin 

determination 

SD is an useful method to determine the 

stability because it is not affected by certain 

sample conditions such as temperature, water 

content and particle size, as observed in 

respirometric techniques or self-heating test. 

Haug  

(1993) Evaluation of 

composting 

substrates  

biodegradability 

Lignin content Good predictive model for substrate 

biodegradability. 
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Mass and energy balances have been developed for the composting process and 

translated into a number of mathematical models since 1976 
[29]

 and from that time a number 

of  models have been further investigated. Recently, the model developed by Haug has been 

used as the basis for subsequent studies of mathematical model for composting process. The 

models developed so far showed more or less success in predicting the profiles of 

temperature, water content, substrate degradation and oxygen concentration.  Table 4.2 

provides a summary of the key aspects of number of mathematical models developed, namely 

the kinetic model considered. 

As shown in Table 4.2, the authors of several mathematical models have used first-

order substrate degradation kinetics, Monod-type expressions or empirical substrate 

degradation equations in modelling biological energy production. The first-order kinetic 

relationships have been based mostly on the volatile solids (VS) degradation and with 

correction of the rate constant for some state variables. The major differences in the model 

developed so far are the assumptions regarding heat and mass transport mechanisms. In the 

review of mathematical modelling of composting process, Mason (2006) concluded that 

models incorporating either empirical expressions or first order kinetic were generally more 

successful in predicting the evolution of dynamic state variables than models incorporating 

Monod-type kinetic expressions. Thus, in this work the new process kinetic developed by 

Petric et al. (2007), was combined with the mass and energy balance developed here. 
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Table 4.2 - General overview of composting kinetic  models. 

Reference Objectives Kinetics Conclusions 

Petric  et 

al., 

(2007) 
Development and 

validation of mathematical 

model for aerobic 

composting process 

    

  
      

  

 

Comparisons of experimental and 

simulation results for temperature, 

organic matter conversion, carbon 

dioxide concentration and oxygen 

concentration, showed good 

agreement during the whole 

process. 

 

Baptista  

et al., 

(2010) 

Test a kinetic model based 

on VS content change for 

describing the composting 

process in MBT plants, 

and to identify the model 

parameters that affected 

the estimation of the 

reaction rate constant. 

 

           
 

                          

The kinetic model satisfactorily 

described the experimental data for 

the plants. Sensitivity analysis 

showed that the model parameters 

that most affected the estimation of 

k were the initial βVS, the 

maximum temperature for 

biodegradation and the MC 

 

Zhang et 

al., 

(2010) 

Simulation of substrate 

degradation in composting 

of sewage sludge. 

      

  
         

Simulation was a good fit compared 

with experimental values. 

 

Xi  et al 

(2010) 

Dynamic simulation for 

domestic Solid waste 

composting processes 

  

  
        

  

     
  

 

 

 

The simulation results were well 

consistent with the experimental 

results. Tthe model showed that the 

efficiency of composting processes 

could be raised and aeration 

requirements could be reduced by 

controlling the oxygen 

concentration in the exhaust air 

within a proper range. 

 

Mason  

(2006) 
Evaluation of the 

mathematical models of  

composting process 

 The most successful models in 

predicting temperature profiles were 

those which incorporated either 

empirical kinetic expressions for VS 

degradation or CO2 production, or 

which utilized a 1st order model for 

VS degradation, with empirical 

corrections for temperature and 

moisture variations. Models 

incorporating Monod-type kinetic 

expressions were less successful.  

 

Higgins 

et al., 

(2001) 

Validation of a new model 

for aerobic organic solids 

decomposition 

     
                 

  
   

            
  

In all the observations the model 

tended to over predict values of the 

state variables. 

 

Yu  et al., 

(2009) 
Influence of free air space 

on microbial kinetics in 

passively aerated compost 

  

  
        

The result from this study 

demonstrates a new method for 

describing the relationship between 

microbial kinetics and substrate 

FAS, which could be used to 

improve the design, optimization, 

and management of passively 

aerated composting facilities. 

 

Haug 

(1993) 

Development  of 

simulation model of 

composting process  

      

  
         

Simulation may be a good fit 

compared with experimental values. 
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5.  EXPERIMENTAL METHODS 

5.1.  Experimental apparatus 

Experiments were performed in a system of four self-heating reactors (SHR) with 120 

L of internal volume and isolated with a rubber based elastomeric material (Aeroflex MSR) 

arranged in parallel. The experimental reactors system is shown schematically in Figure 5.1. 

where  

1- Compressed air inlet                                    7-  Temperature sensor 

2- On/off valve                                                 8 - Gases outlet 

3- Air moisture regulator                                 9 - Condensate retention system  

4- Rotameter                                                   10- Oxygen sensor 

5- Insulation layer (Aeroflex MSR)                11- Data acquisition system 

6- Perforated  plate                                          12- Computer  

 Figure 5.1 - Schem of the pilot-scale experimental apparatus. 

The reactors have a side hole that allowed the entry of compressed air that is 

uniformly distributed across a perforated Perspex plate. On the top of the reactors there are 

two openings for the introduction of a temperature sensor and another to allow the release 

of gases generated in the biological reactions along the process, as well as the release of 

the excess air. 
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5.2.  Materials  

The components used to experiments were from different sources and included potato-

peel industrial waste (PP) from a Portuguese industry of potato chips, grass clippings (GC) 

from a garden centre and a football stadium, and sawdust (SD). Potato-peel is classified as 

waste and its identification according to the European Waste List is 020399. These individual 

raw materials were blended in four different formulations. The initial mixtures tested were 

formulated in order to ensure proper conditions, such as nutrient balance (C:N ratio), moisture 

content (MC) and FAS, for optimal microbial growth and organic matter degradation. For 

achieve the specification concerning to C: N ratio (15:1 to 40:1) and MC (40-75%) for the 

composting mixture is only necessary to know the nitrogen, carbon and moisture content  of 

the individual ingredients as it is shown in the mass balance Eqs. (5.1) and (5.2) for C:N ratio 

and moisture content, respectively. These equations were solved exactly for the considered 

mixture of three materials.  

     
                                            

                                            
 

(5.1) 

 

     
                    

        
 

(5.2) 

where C:Nm is the C:N ratio of compost mixture, MCm the moisture content of composting 

mixture (%),  mi  the mass fraction of material i (i=1,2,3), Ci is carbon fraction of material i, 

Ni the nitrogen fraction of material i and MCi is moisture content of material i (a fraction in 

equation (5.1) and a percentage in Eqs.( 5.2)). 

The approach described above for C:N ratio and MC is not applicable for FAS because 

this parameter depends on the structural characteristics of the material and not on its 

elemental composition. Therefore, appropriated method for this purpose such as Mixture 

Design was used. 

 

5.2.1.  Mixture design  

Mixture design is statistical methodology that allows varying the proportions of two or 

more ingredients of a mixture to study the influence of individual proportions of the 

components tested in a measured response, which is dependent on the ingredient composition. 
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Then, the method use response surface approach to identify the area (mixture region) where 

all specifications can be achieved. The effect of composition in a response variable, Y, can be 

described by the polynomial shown in Eq. (5.3) 
[31] 

        

 

   

         

 

 

                                               

   

   

 

(5.3) 

where xi represent the independent variable i , γj correspond to the polynomial coefficients j, q 

is number of the mixture components and ε is the variable response estimative error.  

The experimental design was obtained by using Design-Expert
®
 version 8.0.4 software 

using the simplex-centroid mixture design augmented. The working strategy for mixture 

design applied to the present work materials (potato peel, grass clippings and sawdust) was 

according to Eriksson (1998)
[31]

.  After defining the factors and bounds for the mixture design 

map and also the experimental objective and mixture model (quadratic), a simple-centroid 

design was generated. The design points correspond to all permutations of the pure blends 

(e.g., 1 0 0; 0 1 0; 0 0 1), the permutations of the binary blends (½ ½ 0; ½ 0 ½; 0 ½ ½), the 

permutations of the blends involving three components, and so on, given a total of thirteen 

experiments. Each blend was characterized experimentally including the determination of the 

desired parameter (FAS). Then, the software analyzed these data and evaluated the best model 

that described the composition effects of the individual materials fractions in the FAS. 

 

5.3.  Monitoring of composting process 

The reactors are equipped with a data acquisition system for on-line monitoring of 

temperature and oxygen concentration, and feed air flow rate was measured with rotameters. 

The air flow rate was controlled in order to firstly maintain the oxygen concentration of the 

outlet gas in the range of 5 to 15% (v/v) and at the same time control the temperature of the 

composting material in the reactor. The mixtures were sampled in pre-determined times (once 

a week) along the period of composting after revolving the reactors to ensure the 

representativeness of the samples. The samples were obtained from a set of sub-samples 

randomly collected at several different points for each of the reactors. The mass of each 

sample was on average 500 g. To quantify some parameters, the samples were pre-dried and 

milled. Characterization of the samples at each time included the determination of moisture 
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content, organic matter content, pH, elemental composition, bulk density, FAS and 

biodegradability. Biodegradability of each sample was assessed by measuring lignin content 

using the Klason lignin method .All the determinations were performed in triplicates except 

the lignin content that was in duplicate due to the method time scale. 

 

5.3.1.  Temperature and air flow rate  

Temperature monitoring was performed by inserting a probe into the geometric 

center of each of the reactors, and the data acquisition was made by an online system. 

Aeration of the reactors was made through a compressed air line linked on the bases 

of the reactors. Measurement of air flows rates for each reactor was made using rotameters 

(Figure 5.2). 

 

Figure 5.2 - Feed air flow measuring. 

 

5.3.2.  Moisture content  

1. Weigh a small container; 

2. Weigh about 20 g of compost into the container; 

3. Dry the sample for 24 h in a 105 °C oven; 

4. After drying, cool the sample in a desiccator and reweigh. 

The percentage of moisture is calculated using Eq. (5.4). 
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(5.4) 

 

5.3.3.  Organic matter content  

1. Weigh a porcelain crucible; 

2. Weigh about 2.5 g of compost into the porcelain crucible; 

3. Calcinate the sample in a muffle furnace for 4 h at 550 °C; 

4. After calcination, cool the sample in a desiccator and weigh. 

The percentage of organic matter is calculated by Eq. (5.5) 

      
                                                         

                        
 

(5.5) 

 

5.3.4.  Bulk density  

The bulk density was determined according to the method described in TMECC (Test 

methods of the examination of composting and compost). 

1. Weigh the tare of a graduated beaker; 

2. Transfer a 600 cm
3
 aliquot of compost into the graduated beaker through a funnel; 

3. To ensure uniform packing of compost throughout the graduated beaker, allow beaker 

to fall freely onto an adequate support from height of 15 cm;  

4. Repeat the filling with 600 mL and free falling operation, two more times (three times 

total). After the third free-fall drop, fill the graduated beaker to volume with sample 

material, 1800 mL;  

5. Weigh and record gross weight of the filled graduated beaker containing 1800 mL of 

compost. 

The bulk density is calculated by Eq. (5.6) 

   
                        

                                                      
 

(5.6) 
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5.3.5.  pH  

1. Weigh an amount of sample equivalent to 20 mL, estimated from the bulk density of 

the mixture, into a flask; 

2. Add 100 mL of distilled water to the flask; 

3. Agitate the suspension for 2 h; 

4. Measure the pH using the specific equipment. 

 

5.3.6.  Elemental composition  

The elemental composition of the samples was determined by using the EA1108 

CHNS-O – Fisons equipment that measured the total amount of C, H, N, S and O. 

 

5.3.7.  Free air space  

The free air space depends on the bulk density (BD) and the density of substrate solids 

(ρp) and was determined using Eq. (5.7) 

 The determination of the density of substrate solids, ρp, was as follow: 

1. Using a clean and dry graduate beaker of known mass, measure the density of 

kerosene by adding a specific volume and weighing the beaker; 

2. Using another clean and dry graduate beaker of known mass, add some particulate 

matter of compost and weigh its mass in the graduate beaker; 

3. Add kerosene until all the particles are covered and read the total volume as well as 

weigh the graduate beaker and its content; 

4. From the kerosene mass added, compute the volume from the density in step 1; the 

difference in volume is that of the particles; 

5. Calculate the particles density using the mass and volume calculated in the steps 

above. 

                                  
  

  
   

(5.7) 
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5.3.8. Biodegradability  

The biodegradable fraction of the volatile solids, β, is defined as the biodegradable 

amount of VS (βVS) divided by the total VS input to the process. The biodegradable amount 

of VS is determined by measuring lignin content (LC) in percentage of VS, which means it is 

considered that the lignin content represent the non biodegradable fraction. The biodegradable 

amount of VS is calculated by Eq. (5.8) and the biodegradable fraction by Eq. (5.9) 

                                          (5.8) 

                           
   

  
 

(5.9) 

The lignin content (L) is determined using the Klason method. 

1. Weigh 0.5 g of dry compost into a beaker; 

2.  Add gradually to the beaker containing the compost 7.5 mL of 72% sulfuric acid in 

small increments while stirring the suspension; 

3. Keep the beaker in a bath at 20 °C during dispersion of the material. After the material 

is dispersed keep the beaker in the bath for 2 h and stir the material frequently during 

this time to ensure complete dissolution; 

4. Add about 150 mL of water to a flask and transfer the material from the beaker to the 

flask. Rinse and dilute with water to 3% concentration of sulfuric acid, to total volume 

of 287.5 mL; 

5. Boil the solution for 4 h, maintaining constant volume by addition of hot water; 

6. Allow the insoluble material (lignin) to settle ―overnight‖; 

7. Without stirring up the precipitate, filtering the supernatant solution. Then transfer the 

lignin quantitatively to the filter and wash it with hot water; 

8. Transfer the filter with lignin and dry in an oven at 105 °C during 4 h. Cool in a 

desiccator and weigh; 

9. Take the sample to a muffle furnace for 4 hours at 550 °C; 

10. After the 4 h in the muffle, cool the sample in desiccators and weigh. 

The lignin content is determined by Eq. (5.10). 

              
                                                 

  
         

(5.10) 
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6.  ANALYSIS AND DISCUSSION OF RESULTS  

This work has two main objectives: assess biodegradability during the composting 

process in pilot-scale reactors and develop a new dynamic mathematical model for predicting 

the behavior of aerobic composting. In this chapter, it is shown how the initial mixtures were 

formulated, the monitoring strategies during operation and the validation of the proposed 

model with experimental data. 

 

6.1.  Formulation of mixtures for composting 

The raw materials used in our experiments included potato-peel industrial waste (PP), 

grass clippings (GC) and sawdust (SD), and Table 6.1 shows some of their most important 

properties for composting operation.  

 

Table 6.1 - Characterization parameters of the raw materials used in this work. 

Parameter potato-peel (PP) grass clippings (GC) sawdust (SW) 

Moisture content (MC) (%) 80.9 73.3 12.2 

Organic matter content (OM) (%) 85.8 75.8 76.8 

Bulk density (BD)(kg m
-3

) 749 154 238 

pH 4.7 8.4 5.5 

C (%) 48.5 52.4 54.2 

N (%) 1.9 5.8 0.8 

C:N ratio 26 9.0 68 

Free air space (FAS) (%) 26.2 85.7 72.3 

 

The individual materials were blended in four different formulations. The initial 

mixtures tested were prepared in order to ensure proper conditions, such as carbon-nitrogen 

(C:N) ratio, moisture content (MC) and free air space (FAS), for optimal microbial growth 

and organic matter degradation. The models which describe the effects of the components 

mixture on the C:N ratio, MC and FAS are shown in equations (6.1), (6.2) and (6.3), 

respectively.  

     
                                        

                                         
 

 
                      

                      
 

(6.1) 
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                                   (6.2) 

                                                 

                    

(6.3) 

The best models that described the composition effects of the individual materials 

fractions in the C:N ratio and moisture content were obtained from the mass balance 

equations (5.1) and (5.2), respectively, and the FAS model was gathered up through the 

mixture design method described in  Chapter 5. The correlation coefficient (R
2
) for FAS was 

0.9975. After determining these models, simple-centroid mixture designs were drawn 

showing the effects of the individual materials fractions on each parameter, as shown in Fig. 

6.1.  

 

 

 

Figure 6.1- Effects of the individual materials fractions on a) moisture content, b) C:N ratio c) 

FAS. 

As observed, PP (potato peel) is the material that presents the highest moisture content 

and the lowest FAS. The SD (sawdust) has the highest C:N ratio which makes this substrate a 

carbon source for the composting process and also a good corrector for the excess moisture of 
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PP since its moisture content is low. Sawdust allows a well aerated process because of its high 

free air space character. Due to the low C:N ratio of GC (grass clippings this material is a 

good nitrogen source. According to this evaluation it is possible to conclude that the three 

substrates selected for making the composting mixture are adequate, since their properties are 

complementary.  

 The contour plot representing the models obtained for each of the three desired 

responses was overlaid to identify the area (mixture region) where all specifications can be 

achieved to easily choose suitable compositions for composting (Figure 6.2). 

 

Figure 6.2 - Overlaid contour plots for blend with PP, GC and SD imposing 40%≤MC≤75%, 

15≤C:N≤40 and 55%≤FAS≤70% (the upper limit for FAS is determined by the SD). 

The four formulations were then selected according the points represented in the 

painted area and the initial compositions for each reactor are shown in Table 6.2.  

 

Table 6.2 - Initial composition mixtures of composting. 

 Mixture proportions Weight Predicted responses 

Reactor PP 

(%w/w) 

GC 

(%w/w) 

SD 

(%w/w) 

Total 

(kg) 

PP 

(kg) 

GC 

(kg) 

SD 

(kg) 

C: N H 

(%) 

FAS 

(%) 

1 53.0 39.8 7.2 34.8 18.4 13.9 2.51 16.2 72.9 66.9 

2 66.0 28.0 6.0 34.9 23.0 9.80 2.09 17.9 74.7 58.1 

3 38.7 53.0 8.3 35.3 13.7 18.7 2.93 14.6 71.2 73.7 

4 34.3 51.6 14.1 33.4 11.5 17.2 4.71 16.7 67.3 74.3 
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Firstly, an experimental characterization of the initial blends was done and some of the 

most important properties are shown in Table 6.3.  

The error values indicated in this table were obtained by comparing C:N ratio, FAS 

and MC contents with their predictions shown in table 6.2. The FAS and moisture content 

calculated for the formulation blends are a good approximation of the real values measured 

analytically. The difference between the actual and the predicted C:N ratios is mainly due to 

the variability of the individual materials and the uncertainty associated to the analytical 

measurements of the elemental composition of the materials. 

 

 

 Table 6.3 – Characterization of initial composting mixtures.  

Parameter Reactor 1 Reactor 2 Reactor 3 Reactor 4 

C:N ratio Real 20.2 17.6 18.7 19.6 

Error (%) 24.8 2 27.9 17.5 

Free air space (%) Real 70.3 63.1 73.1 71.1 

Error (%) 5.08 9.0 1.0 4 

Moisture content (%) Real 73.9 74.2 71.6 71.4 

Error (%) 1.35 0.05 0.62 6.2 

Organic matter (%) 90.8 92.3 91.0 88.6 

Biodegradable matter (%) 76 78.7 73.5 73.4 

Bulk density (BD)(kg m
-3

) 318 388 269 268 

pH 6.17 6.02 6.01 5.53 

Total mass (kg) 34.8 34.9 35.3 33.4 

Total volatile solids (VS) (kg) 8.2 8.2 9.1 8.5 

Biodegradable volatile solids (βVS) (kg) 6.3 6.4 6.71 6.2 

Non- biodegradable volatile solids  ((1-β)VS) (kg) 1.9 1.7 2.4 2.2 

 

 

6.2.  Monitoring the composting process 

During the composting process several parameters were monitorized  and the results 

are discussed in the following sections. 

 

6.2.1.  Temperature profiles 

The temperature profiles observed during the composting process are illustrated in 

Figure 6.3a) - b) for the Reactors 1 to 4.  
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Figure 6.3 - Temporal profile of temperature in the a) Reactor 1 and 2,  b) Reactor 3 and 4. 

Analyzing the temperature profiles illustrated in Figure 6.3, it can be seen that the 

composting process in the four reactors essentially take place within two temperature ranges 

known as mesophilic (20-40˚C) and thermophilic (over 40˚C) as expected. At the start of 

composting, the mass in the four reactors is near ambient temperature. Due to the oxidative 

action of microorganisms, the temperatures of the composting mixtures follow a pattern of 

rapid increase to about 75˚C, and remain in thermophilic level for 7 days in reactor 1 and 

reactor 2, and 10 days in reactor 3 and reactor 4. Thus, it can be concluded that the 

hygienization of the mixtures was achieved, since there was the maintenance of thermophilic 

temperatures for several days in the four reactors. After the thermophilic phase the microbial 

activity decreases, and so the temperatures gradually drop to ambient air temperature. At this 

last phase, although the compost temperature is close to ambient, chemical reactions continue 

to occur that make the remaining organic matter more stable. 

The ―oscillations‖ observed of the temperature are related with the fact that it 

is difficult to maintain homogeneity of the mixture throughout the composting 

process, despite the aeration and the homogenization of mixtures at least once a week. As 

shown in Figure 6.3, the times when the temperature rises (except for the first phase of 

rapid increase in temperature corresponding to intense microbial activity) are the moments 

after revolving the reactors. 

 

a) b) 
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6.2.2.  Composting material profile 

During composting there is a significant reduction of weigh due to the microbial 

decomposition of the biodegradable organic matter (according to Eq. 2.1) as shown in Figure 

6.4.  
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Figure 6.4 Temporal evolution of the percentage of dry matter, volatile solids and the 

conversion of volatile solids in the a)  Reactor 1, b)  Reactor 2, c)  Reactor 3, d) Reactor 4. 

The percentage mass in each reactor (Wm) is computed over the composting process as 

the ratio between the mass of mixture at the sampling time and the mass at the beginning 

of the composting process. As shown in Figure 6.4 this parameter is calculated for both 

the total dray mass and the volatile solids (VS) in each reactor. There is, as expected, a 

significant reduction of the composting mass in the four reactors due to microbial degradation 

of organic matter present in compost mixtures. However, the conversion of organic matter in 

the reactor 4 was lower, about 36%, compared to the conversions observed in the other 

reactors, which exceed 60%. This can be justified by the unpredictable nature of the 

microorganisms activity and the availability of biodegradable organic matter due to non-

  a)   b) 

  d)   c) 
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homogeneity of the mixture. The dry mass loss during the composting process, in quantitative 

terms, is shown in Figure 6.5 for each reactor. 
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Figure 6.5 - Composting mass during the process in the a) Reactor 1, b) Reactor 2, c) Reactor 

3, d) Reactor 4. 

As shown in Figure 6.5 the mass loss in the reactor 4 is much smaller compared 

to other reactors. The reactor 4 begins with a mass of 9.5 kg and at the end of composting 

remaining  5.4 kg, while in reactor 3, for example, despite starting with a relatively greater 

 mass (10 kg), at the end of composting the amount of material mixture is lower (3.6 kg) 

compared to the reactor 4. Figure 6.5 also shows that the mass loss in the composting 

process is due only to the degradation of biodegradable volatile solids (βVS), which is 

calculated using equation (5.11). In Table 6.4 it is shown the mass that is biodegradable at the 

beginning and the end of composting and the fraction that it represents in relation to the total 

dry mass. 
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Table 6.4 - Biodegradable material in the initial and final blends. 

  Reactor 1 Reactor 2 Reactor 3 Reactor 4 

Biodegradable mass (kg] At the beginning of composting 6.3 6.4 6.7 6.2 

At the end of  composting 1.6 1.4 1.6 2.5 

Biodegradable fraction (%) At the beginning of composting 76 78.7 73.5 73.4 

At the end of  composting 19.8 17.4 17.2 29.5 

 

It is important to note, from Table 6.4 and Figure 6.5, that not 

all biodegradable mass was degraded by the end of the composting period analyzed. The 

remaining biodegradable mass could still be degraded (mainly in the reactor 4 which still 

has a high proportion of material capable of be degraded) if the compost period was 

extended.  

 

6.2.3.  Organic matter biodegradation by lignin assessment  

From the measurement of lignin content of the initial composting mixtures for 

each reactor, it was possible to predict the conversion of organic matter that would be 

obtained if all biodegradable organic matter was degraded, resulting in the maximum 

conversion of organic matter (xmax).  The conversion of organic matter for each instant t is 

calculated by Eq. (6.4). 

 

   
            

     
     

(6.4) 

The lignin content was also monitored throughout the composting process and 

consequently the conversion of organic matter in the process was also estimated from this 

determination. Figure 6.6 shows the comparison of the conversion of organic matter 

obtained experimentally with the conversion measured from the quantification of lignin in 

each sampling periods prescribed. It also shows the maximum conversion of organic 

matter predicted for each reactor. 
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Figure 6.6- Conversion of organic matter obtained experimentally and by measured from 

the quantification of lignin in a) Reactor 1, b) Reactor 2, c) Reactor 3, d) Reactor 4. 

Figure 6.6 shows that the evolution of the conversion of biodegradable organic matter 

assessed by measurement of lignin content, xlignin, is very close to one observed 

experimentally by assessing organic matter conversion (xVs). In the four reactors, it is verified 

that the conversion of organic matter stays below the maximum conversion predicted by 

lignin content measurement.  

In summary, the results indicated that independently of the initial mixture 

composition, there is an increase in lignin content that can be related to the decrease of the 

potential for biodegradation of the tested mixtures. The initial samples with the lower and 

higher lignin content (Reactor 2 and Reactor 4) showed a greater and smaller mass reduction, 

respectively, at the end of composting period. These results showed that higher lignin content 

of an initial mixture led to lower biodegradation of the mixture. 

 

  a)   b) 

  c)   d) 
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6.2.4.  Water content profile 

Water content is very important factor to be controlled during composting as it 

influences the structural and thermal properties of the material, as well as the rate of 

biodegradation and metabolic process of the microorganisms.  In Figure 6.7 it is shown the 

water content profile in the composting mixture during the process.   
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Figure 6.7- Water content profile in the composting material during the process a) mass 

content, b) percentage content.  

The water in compost comes from either the initial feedstock or the metabolic water 

produced by microbial activity. However, during aerobic composting, some heat energy is 

released, which vaporize water in composting material. This water loss is further coupled with 

losses due to aeration. As shown in the Figure 6.7, the loss of water in the four reactors during 

the composting process follows the same profile. In the Figure 6.7 b) it is clear that, in 

percentage terms, reactors 1 and 2 lost the same amount of water as well as Reactors 3 and 4 

when compared with each other. Reactors 1 and 2 lost more water at the end of composting 

because they were opened before the end of the period prescribed for compost analysis. 

 

6.2.5.  C:N ratio 

The C:N ratio is an important factor to take into account at the beginning and 

 throughout  the composting process and Figure 6.8 shows the evolution of this parameter 

during the process. 

  a)   b) 
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Figure 6.8 - Evolution of the C:N ratio in the a) Reactors 1 and 2, b) Reactors 3 and 4. 

Usually the C:N ratio gradually  decreases during composting, because of the loss of 

CO2 from the starting materials. The amount of carbon lost during composting usually 

exceeds the nitrogen loss. However, in this experiments the starting C:N ratios are relatively 

low in the four reactors, less than 21:1 , thus the nitrogen losses may have been large to cause 

little change in the C:N ratio in the four reactors. On the other hand, the uncertainty in the 

quantification of N (see Appendix B) also enhances the differences of the results of the C:N 

ratio obtained since this is quantified in total basis and is N present in various forms. In 

addition, the homogeneity of the sample is a relevant aspect of these measurements, which are 

made with very low amounts (a few milligrams). It is worth to emphasize that the 

measurement of N is done after the sample is dry which potentiates the loss of N as ammonia. 

Thus, the uncertainties in the measurement of N strongly influence the profile of the C: N 

ratio. 

 

6.2.6.  Monitoring of other parameters 

During the composting, other parameters were also evaluated to obtain a better 

understanding of the process evolution. Figure 6.9 shows the evolution of bulk density (BD) 

and free air space (FAS) in the four reactors.  

  a)   b) 
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Figure 6.9 - Evolution of bulk density, a) and b), and the free air space, c) and d), during the 

composting process in Reactor 1 to 4.  

Substrate FAS and BD carry a great influence on composting performance since 

appropriate conditions of the physical environment for air distribution must be maintained 

during the process. Usually during composting, the material tends to be more compacted, as 

the particulate material become more homogeneous. Thus, The evolution of the BD and FAS 

in the Reactors 3 e 4 (Figure 6.9 b) and Figure 6.9d)) follow the expected pattern. On the 

other hand, in Reactors 1 and 2, the bulk density (Figure 6.9 c)) increases dramatically, which 

indicate the increase of the materials compaction and so the decrease of the space available 

for air (Figure 6.9 a)). As high bulk density does not allow the air movement through the 

mixtures these reactors (Reactor 1 and Reactor 2) may had some areas of the reaction 

mixture under anaerobic conditions, which generated unpleasant odors. 

 Although not essential, periodic pH measurements are useful in monitoring the 

conditions in the reactors, and Figure 6.10 shows the evolution of this parameter along time. 

  a)   b) 

  c)   d) 
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Figure 6.10 - Evolution of the pH during the process in a) Reactor 1 and 2, b) Reactors 3 and 4. 

As can be seen in Figure 6.10, the composting mixtures start slightly acid. As 

composting process proceeds, the high temperatures accelerate the breakdown of proteins and 

fatty acids formed at the beginning of composting, resulting in the release of ammonium and 

an increase in the pH, which reach values exceeding 9.0 in the four reactors. Then the pH is 

expected to stabilize or drop slightly again to near neutral as a result of humus formation with 

its pH buffering capacity at the end of composting activity.  

 

6.3.  Stability analysis of the finished compost 

The finished compost aims to have beneficial effects on soil, but this depends on its 

quality.  In this work, the quality criteria for composts are established based on the assessment 

of the stabilized organic matter. Physical characteristics such as color and odor were also 

taken in account. 

The establishment of a generally accepted stability index suitable to be used as a 

routine test at a large-scale composting facility is still a major area of research in waste 

management. According to Haug (1993), compost is sufficiently stabilized when the rate of 

oxygen consumption is reduced to the point in which anaerobic or malodorous conditions are 

not created such that they interfere with the storage, marketing and use of the end product. 

Several indicator variables have been proposed for monitoring the process and 

evaluating the stability of the compost In our study it was made the analysis of biodegradable 

constituents and organic matter nutrient content, C:N ratio. 

  a)   b) 
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 In terms of nutrient content, Reactor 3 presents the best results as the C:N ratio during 

compost tends to decrease as expected. The composted raw mixture C:N ratio was reduced 

from  19 to 14 (on average basis), which is a good indicator of the stable humified organic 

matter in the finished compost product (Figure 6.8 b)). The dark color observed in composted 

material of the Reactor 3, (Figure 6.11c)), further supported this premise. The C:N ratio of 

finished compost is reported to be in range of 10 to 17, depending on the initial compost 

mixture
[1]

. Although the C:N ratio in the Reactor 2 increases at the start of composting, 

this parameter returns to decrease and reaches a low value (C:N=14) in the established range  

for stable compost, which is not verified in the Reactors 1 and 4.  

  

 

  

 

Figure 6.11 - Products at 46 days of the composting process a) Reactor 1, b) Reactor 2, c) Reactor 

3),d) Reactor 4. 

The analysis of biodegradable constituents of the end products for each reactor is 

made by the calculation of the stability degree of the organic matter (SD). Stability degree is 

related to Klason method of lignin content determination, which was enhanced and applied by 

López (2010). This method allows determination of the stability of organic matter through 

resistant organic matter (equation (6.4)) 

  a)   b) 

  c)   d) 
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                           (6.5) 

where βend is the fraction of biodegradable organic matter at the end of compost. The SD of 

the four reactors were calculated using the Eq. (6.1) and the results are shown in Table 6.5.  

 

Table 6.5 - Stability degree of the finished composts. 

 Reactor 1 Reactor 2 Reactor 3 Reactor 4 

Stability degree SD (%) 80.2 82.6 82.8 70.5 

 

As shown in Table 6.5, the Reactors 2 and 3 achieved the highest stability degree of 

the organic matter at end of composting. Reactor 4, on the other hand, reached the lowest 

degree of stability since the percentage biodegradable organic matter available at end was 

high. The determination of lignin content was based on two replicates in each sample; 

therefore, the values  indicated in Table 6.5 are mean values between the two determinations. 

 

6.4.  Model evaluation  

The model presented in Chapter 3 was used simulate profiles of temperature, VS and 

water for each reactor along time. A simple sensitivity analysis was also performed to 

evaluate the relative importance of selected model parameters. All the calculations and 

simulations were made in Matlab R2009b. 

 

6.4.1.  Model Simulations 

By comparing model prediction with experimental data, the mathematical model may 

be validated and a quantitative measure of performance was calculated. The quality of the 

model fitting to the experimental data was evaluated by the average percentage deviation of 

the estimates (AD), which was calculated using Eq. (6.6). 

   
 

 
  

               

      
 

 

   

     

 

(6.6) 
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where        and          are the individual values obtained experimentally and by 

simulation, respectively, at each process time analyzed. N is the number of individual values 

considered. 

Comparisons of temperature between simulations and experimental results were 

performed for the first 408 h for each reactor as shown in Figure 6.12. 
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Figure 6.12 -  Comparison of experimental data and model predictions for temperature in a) 

Reactor 1 b)  Reactor 2, c)  Reactor 3, d) Reactor 4. 

By comparing simulated and experimental results of the temperature profile in the 

reactors showed that the best fitting results were observed for Reactor 2 as the calculated 

average percentage deviation for this reactor was the lowest comparing with other reactors. In 

fact, the average percentage deviations (AD) between simulation and experimental results are 

12%, 9%, 19% and 18 % for Reactor 1, Reactor 2, Reactor 3 and Reactor 4, respectively. It is 

important to note that maximum differences between modeled and experimental temperature 

profiles occurred in the times after revolving the reactors in the experiments. This difference 

in the temperature profiles can be explained by the fact that the model has been 

  a) 

  d) 

  b) 

  c) 
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constructed assumed perfect mixing conditions, which was not observed in the experiments, 

hence the need for periodic revolving of the reactors. 

Regarding volatile solids conversion, the simulations and experimental results were 

performed for 1104 h for each reactor as shown in Figure 6.13. 
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Figure 6.13 - Comparison of experimental data and model predictions for volatile solids 

conversion in a) Reactor 1 b) Reactor 2, c) Reactor 3, d) Reactor 4. 

During the 1104 h of composting process, the predicted values of volatile solid 

conversion in the Reactor 1 to 4 were 76%, 73%, 78% and 77% respectively.  Experimentally 

the results for xVS were 62 %, 66%, 61% and 36% for Reactor 1 to 4, respectively, and the 

corresponding average percentage deviation, AD, were 13%, 9%, 21% and 92%. Taking the 

AD values into consideration, the simulation of mathematical model for volatile solids 

conversion gives a reasonable prediction for Reactor 1 to 3, but not for Reactor 4. This high 

deviation in Reactor 4 is due to the weak substrate degradation observed experimentally. 

  a)   b) 

  c)   d) 
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Comparisons of water profile between the simulations and experimental results were 

performed for the first 432 h as shown in Figure 6.14. 
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Figure 6.14 -  Comparison of experimental data and model predictions for water loss in a) 

Reactor 1 b) Reactor 2, c) Reactor 3 and d) Reactor 4. 

 These periods of comparison between the simulations and experimental data was 

because at this moment the reactors were maintained opened and significant water losses 

occurred. The average percentage deviation, AD, between the predicted and experimental 

water profile values for Reactor 1 to 4 are 6%, 13%, 14% and 20%, respectively. 

 

6.4.2.  Analysis of sensitivity 

Sensitivity analysis of state variables to some key parameters that were held constant 

during simulation was performed to assess the robustness of the model. The parameters 

examined were the overall heat transfer coefficient (U) and the reaction enthalpy (    ), and 

in these simulations all other parameters were set at their default values (Table 3.2). Both 

  a)   b) 

  c)   d) 
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parameters were varied to   60% and     20% of its default values, and simulations were 

done over a 400 h simulation period. All parameter values used are shown in Table 6.6. As an 

example, temperature, conversion of organic matter and water profiles in Reactor 1 were the 

output values examined during a simulation period of 400 h. Results from this analysis are 

shown graphically in Figures 6.15 and Figures 6.16  

In this work, the sensitivity of the model is evaluated by calculating the average 

percentage deviation between the profile obtained by using the default values and the profile 

obtained with variations of the parameters analyzed based on Eq. (6.6). 
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Figure 6.15 - Effect of overall heat transfer coefficient, U, variation on the a) temperature, b) 

organic matter conversion and c) water.  

  a)  b) 

  c) 
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Figure 6.16 - Effect of reaction enthalpy     , variation on the a) temperature, b) organic 

matter conversion and c) water. 

 

Table 6.6 - Parameter values in sensitivity analysis. 

Parameter Unit Percentage change in 

parameter analysis (%) 

Value Average percentage deviation (%) 

T X VS M w 

U J h
-1

m
-2

 K
-1

 -60          39 34 45 

-20          12 6 16 

Default          na na na 

+20          6 4 14 

+60          12 11 35 

           
   -60          21 23 58 

-20          7 8 16 

Default          na na na 

+20          10 7 12 

+60          33 21 27 

*na- not applicable 

The effect of U and      on state variables are significant, and thus, their real values 

should be assessed carefully while developing a mathematical compost model. According 

 c) 

 a)  b) 
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average percentage deviations indicated in Table 6.6, the most sensitive state variable seems 

to be the water content while the organic matter conversion, xVS, showed in general the 

smallest influence. 

 As expected, the increase or decrease of U and      has opposite consequences on the 

objective functions, since U is related with the lost of heat in the system and the      with the 

generation heat on the system. The deviations observed on T, xVS and Mw when U and        

change by    60 % functions are very high (Table 6.6). Therefore, it should be concluded that 

the values of U and      are far away from the real one 

Still for the sensitivity analysis, the importance of each of the correction factors (F(T), 

F(W), F(O2) and F(FAS)) on the reaction rate constant (Eq. (3.4)) was assessed. Figure 6.17 

shows the profile of reaction rate constant, k, along time, for Reactor 1. 
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Figure 6.17 - Sensitivity analysis with the effect of the correction factors (F(T), F(W), F(O2) 

and F(FAS)) on the reaction rate constant. 

These results show that the reaction rate constant was only affected by temperature 

and oxygen concentration. During first 30 h, k first decreased from           to      

     kg
1-n 

h
-1

 (n=2.89), and then increased sharply to             kg
1-n 

h
-1

. From 150 to 200 

h k decrease rapidly to            kg
1-n 

h
-1

.  

The effect of the variation of inorganic initial content on the temperature and organic 

matter conversion was also assessed and thus, the mass of organic matter in the initial mixture 

was examined. The inorganic material is incorporated in 10%, 20%, 40%, 60% and 80% 

(w/w). Results of this analysis are shown graphically in Figure 6.18, for Reactor 1. 
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Figure 6.18 - Analysis of the effect of initial inorganic matter content variation on the a) 

temperature   and b) organic matter conversion. 

 

The results obtained from the composting simulation indicate that the process 

temperature and organic matter conversion are sensitive to the organic matter content as 

expected. As shown in Fig. 6.18 a) the decrease of organic matter content leads to a decrease 

on the maximum temperature achieved and on the time of maintenance of thermophilic 

temperature which is not suitable in terms of hygienization because it narrows the safety 

margin for deactivation. This premise is supported by the calculation of safety margins  (SM) 

for total die-off of pathogens that represents the number of times limit (t) of no viable 

pathogens is achieved, supposing a 12 log10 inactivation at temperature (T) above 55 º C
 [41] 

 

(Eq. (6.7)) 

   
 

     
 

(6.7) 

 where Ed is the time for total die-off at temperature above  55 ºC during the time interval t. 

Calculated from Eq.(6.8) for Salmonella inactivation. 

 

                         (6.8) 

In our experiments safety margins achieved for Salmonella inactivation were 108, 97, 66, 46 

and 23 for 10%, 20%, 40%, 60% and 80% of incorporated inorganic matter, respectively. 

Independently of the % of inorganic matter incorporated in the mixture, composting process 

can be driven successfully until thermophilic temperatures superior to 55 ºC. Only 

incorporation up to 80% (w/w) does not fulfill the criteria of maintaining temperatures 

superior to 55 ºC during 3 consecutive days for pathogen reduction, achieving 55 ºC during 

2.5 days 
[42]

.
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7.  CONCLUSIONS AND PROSPECTS FOR FUTURE WORK 

This work had two main objectives. The first one was to predict the biodegradability 

of initial waste mixtures and to investigate how this property progresses during the 

composting process in pilot-scale reactors. The second objective was to develop a dynamic 

mathematical model for aerobic composting process and its validation by fitting experimental 

data. 

The experimental apparatus consisted in four self heating reactors with 120 L of 

internal volume and isolated where four different blends made from potato-peel industrial 

waste, grass clippings and sawdust were composted. 

The process monitoring included temperature, mass content, moisture content, pH, 

bulk density, free air space, biodegradability of organic matter and other parameters. 

Concerning to the temperature monitoring, it was found that the four reactors quickly reached 

thermophilic temperatures and remained in this range for several days, which allowed the 

compost hygienization. The organic matter conversion was above 60% except for Reactor 4, 

which only reached the maximum organic matter conversion of 36%.  

The assessment of biodegradability of organic matter by determining of lignin content 

proved to be an appropriate methodology for this purpose since the predictions for the 

biodegradation of organic matter were consistent with those obtained experimentally. The 

estimation of the maximum biodegradation of organic matter was made considering that all 

biodegradable organic matter present in the initial mixture will be degraded. In practice, the 

degradation of organic matter is not complete, which explains the difference between the 

maximum biodegradation estimated from the determination of lignin and the one observed 

experimentally. The great disadvantage of this methodology is related to the time scale to 

determine the lignin content in each sample (approximately 2 days). Reducing the time 

required for lignin determination is a challenge to be evaluated in future work   because it 

would allow the suitability of this method in cases of full-scale composting. In terms of 

compost characterization, Reactors 2 and 3 present the best results as the finished compost 

had good level of stabilized humified and organic matter.  

By comparing simulation and experimental results it was concluded that the developed 

model could be used for simulating solid waste composting processes. Namely, temperature 



 
 

70 

 

of substrate, organic matter conversion and water profile in the composting system fitting well 

the experimental data. The model was described by a set of 4 differential equations state 

variables (3 corresponding to mass balances and 1 related with energy balance. Since the 

model showed good results, it could be used for explaining and demonstrating the complex 

interactions which occur in the composting process and also to simulate the efficiency and 

cost of compost processes under different operation conditions. Adjusting operation 

conditions by changing key factors (eg. Overall heat transfer coefficient), optimal operation 

condition could be determined. For future work in this area, the overall heat transfer 

coefficient and reaction enthalpy should be determined specifically for the system analyzed, 

since both have significant effect on the model predictions. Other important aspect to be 

improved in future is the fact that the model could take in account the heterogeneous nature of 

the system. 
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A- Characteristics of the equipment used 

Characteristics of the reactors isolation:  

- Product Brand: MSR Manta Aeroflex; 

- Type of material: foam rubber; 

- Thickness: 19 mm; 

- Number of layers to be applied in each reactor: two layers, a total of 38mm thick; 

- Electrical conductivity: 0.035 W / m.K. 

 

Characteristics of the temperature sensors 

 -Product reference : Bresimar.T.K.1.8.500.S5 

- Thermocouple, Type: K; 

- conductors combination: Nickel-Chromium-Nickel; 

- Sheath diameter: 8 mm; 

- Length of sheath: 500 mm; 

-  sheath coating : stainless steel AlSl316; 

- Thermocouple cable length: 5 m; 

- Thermocouple temperature range: 0 to 1100 ° C; 

- Coating connecting cable: silicone (supports up to 200 ºC) 

 

 

Characteristics of the oxygen sensors 

 

- Product reference: Oxygen gas sensor XLS1047;  

- Percentage concentration range: 0 to 100% oxygen; 

- Resolution: 0.03% (12bit); 

- Response time: 90% - 30 seconds; 

- Relative humidity: 0-95%; 

- Temperature range: 0 to 50 ° C 
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B- Elemental composition of the samples 

The elemental composition of the each sample collected in Reactor 1 to 4 was 

determined during the composting time and analyzed in a EA1108- Fisons  

The operating principle for determining C, H, N and S is based on the instantaneous 

oxidation of all organic and inorganic substances and their conversion to combustion products 

(N2, NxOy, CO2, H2O, SO2, SO3, etc.) using high purity oxygen. The combustion gases are 

then reduced or oxidized to N2, CO2, H2O and SO2 and these compounds are introduced into 

a chromatography column, where they are separated and subsequently detected in 

a conductivity detector, which produces a signal proportional to the concentration of 

components in the mixture. In the analysis of oxygen, the sample undergoes flash 

combustion in an atmosphere of He, and O2 is released as CO that reaches the 

chromatographic column and is detected in a specific conductivity detector. The 

Concentration of S is lower than the detection limit (DL) for all samples, which is 100 ppm. 

 

Table B1. Elemental composition 

Sample  Sampling time  % C (w/w) % N (w/w) % H (w/w) % O (w/w) 

Reactor 1 15.04.2011 42.538 1.995 6.173 28.451 

42.646 2.444 6.238 28.036 

41.836 1.931 5.995 28.131 

19.04.2011 44.303 2.592 5.486  

45.988 2.522 6.019  

45.868 2.409 6.400  

03.05.2011 44.738 2.690 4.956  

45.175 2.690 5.251  

44.172 2.631 5.841  

31.05.2011 47.127 2.455 6.086  

47.040 2.411 5.655  

46.051 2.306 5.356  

Reactor 2 15.04.2011 43.503 2.606 6.720 29.053 

43.217 2.239 6.425 29.562 

43.184 2.554 6.558 29.043 

19.04.2011 47.702 3.142 6.802  

48.669 3.266 6.752  

49.171 3.250 6.656  

03.05.2011 49.757 2.232 5.736  

49.756 2.262 5.695  

49.874 2.145 5.867  

31.05.2011 

 

 

 

41.854 2.986 5.727  

41.721 2.704 5.791  

41.475 2.937 6.047  
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Sample  Sampling time  % C (w/w) % N (w/w) % H (w/w) % O (w/w) 

Reactor 3 15.04.2011 46.214 2.210 6.825 28.085 

45.313 2.669 6.771 27.158 

45.249 2.471 6.672 27.060 

19.04.2011 48.197 2.352 6.738  

47.873 2.439 6.863  

47.850 2.620 6.524  

03.05.2011 47.919 2.832 6.207  

46.508 3.099 6.539  

47.777 3.033 6.290  

10.05.2011 53.549 3.061 6.457  

53.503 2.587 4.787  

53.822 3.223 5.855  

31.05.2011 41.734 2.696 5.608  

42.045 2.997 5.728  

42.423 3.211 4.947  

Reactor 4 15.04.2011 44.246 2.358 6.639 26.077 

44.930 2.091 6.592 26.093 

44.976 2.412 6.280 26.198 

19.04.2011 47.478 2.173 6.403  

47.755 2.058 6.371  

47.076 2.270 6.119  

03.05.2011 39.860 2.200 5.222  

41.213 1.706 5.652  

41.289 2.125 5.472  

10.05.2011 55.610 1.884 6.295  

55.024 1.743 6.459  

55.470 2.253 6.135  

31.05.2011 36.045 1.576 5.396  

36.686 2.029 4.574  

37.877 1.903 5.413  
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C-  Mathematical model program in Matlab 

The mathematical model established for the system under analysis was solved by 

using some Matlab functions, as indicated in the following script. 

 

function dx = mathematicalmodel(t, x) 

  

global par 

global u 

  

 % state variables 

  

 T = x(1);    % temperature 

 mMO = x(2);  % organic matter mass 

 CO =x(3);    % oxygen concentration 

 mW=x(4);     % water mass  

 C=x(5);      % bulk weight coefficient for the substrate, range from 0.15 to 0.4 

  

% input variables 

F0 = u(1);    % volumetric air flow rate 

Ta0= u(2);    % initial air temperature  

m0= u(3);     % total subtrate mass  

ms0=u(4);     % dry substrate mass 

fMO=u(5);     % organic matter fraction 

mMO0 = u(6);  % inial organic matter mass 

mMI= u(7);    % inorganic matter mass 

T0=u(8);      % initial substrate temperature 

CO0=u(9);     % initial oxygen concentration 

  

% model parameters 

 

a = par(1);   % constant 

b = par(2);   % constant 

c = par(3);   % constant 

k_o = par(4); % oxygen saturation constant 

FAS= par (5); % Free air space 

mDHR= par(6); % reaction entalpy 

n= par(7);    % reaction order 

UA= par(8);   % overall heat coefficient * area of heat exchange 

Tamb=par (9); % ambient temperature 
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YW= par(10);  % Stoichiometric coefficient for water 

Vr= par (11); % reactor volume 

MrW=par(12);  % water molar mass 

R= par(13);   % universal gases constant   

Patm=par(14); 

Mra= par(15); % air molar mass; 

MrMO = par(16);% organic matter molar mass 

MrMI= par(17); % massa molar da matéria inorgânica  

C1=par(18);   % contsant  

C2=par(19);   % constant 

C3=par(20);   % constant 

C4=par(21);   % constant 

C5=par(22);   % constant 

  

% -------------------------------------------------- 

% Mathematical model 

% -------------------------------------------------- 

  

%% mass balance 

  

m = mW+mMO+mMI;  

ms=m-mW; 

Sm = ms./m; % fractional solids content of the mixture solids 

rho = C/Sm; % unit bulk weight of the mixed material to be composted 

Vm = m/rho;         

Vg= Vr-Vm;  % gas volume 

rhoW=1;     % density of water 

Vs=mMO/ms;  % voltalite solids fraction  

Gv=1;       % specific gravity of the volatile fraction of the substrate solids 

Gf=2.5;     % specific gravity of the fixed fraction of the substrate (inorganic fraction) 

Gs= 1/((Vs/Gv)+(1-Vs)/Gf); % specific gravity of substrate solids 

FAS1= 1-((rho/1000)*Sm/(Gs*rhoW))- ((rho/1000)*(1-Sm)/rhoW); 

  

% cinética da degradação do substrato 

  

kT = a*(b^(T-273.15-20)-c^(T-273.15-60));  % temperature correction function 

kO = CO/(k_o + CO);                        % oxygen correction function 

kW = 1/(exp(-17.684*(1-Sm)+7.0622)+1);     % moisture correction function  

kF = 1/(exp(-23.67*FAS1+3.4945)+1);        % free air space correction function 

 k= kT*kO*kW*kF;                            % reaction rate constant 

 rMO= -k*mMO^n; 
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dmMO = rMO;  

  

% water balance 

Pvs = exp(C1 + (C2/T) + C3*log(T)+ C4*T^C5); water % saturation pressure at temperature T 

Pvs0 = exp(C1 + (C2/Ta0) + C3*log(Ta0)+ C4*Ta0^C5);% saturation pressure at temperature T0 

  

Mar0=(Patm-Pvs0)*F0*Mra/(R*Ta0); % mass air flow rate at temperature  

Mar=(Patm-Pvs)*F0*Mra/(R*T); 

  

rW=Pvs0*F0*MrW/(R*Ta0)-YW*rMO-Pvs*F0*MrW/(R*T); 

dmW= rW;  

  

% Oxygen balance 

rhoa0=1.18;   % air specif gravity 

rhoa =Mra*(Patm-Pvs)/(R*T); 

  

dCO =CO0*Mar0/(Vr*rhoa0) -(CO*Mar0/(Vr*rhoa))+0.705*rMO/Vr; 

  

dC=0.01; 

%% enthalpy balance 

  

cpai= 1009;      % air specific heat 

cpW= 4200;       % water specific heat 

cpMO= 1320;      % organic matter specific heat  

cpMI=  848;      % inorganic matter specific heat 

              

Var= FAS1*Vm;    % air volume 

mar= rhoa*Var;   % mass volume 

                 

dT = (F0*cpai*rhoa0*(Ta0-T)+ mDHR*rMO-UA*(T-Tamb)) / 

(cpW*mW+cpMO*mMO+cpMI*mMI+cpai*mar);   

  

dx = [dT;dmMO;dCO;dmW;dC]; 

 

end 

 

 

 

clc 

clear 

global par % parameters vector 
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global u   % input variables vector  

 

%   Reactor 1 

%% inputs variables 

F0  =  0.56 ;                % m^3/h    

Ta0 = 20+273.15;       % K     

 m0  = 34.8;                % kg 

 ms0= 9.0954;             % kg 

 fMO= 0.908;     

 mMO0 =fMO*ms0 ;            % kg 

 mMI= (1-fMO)*ms0;           % kg 

 T0= 20+273.15;                    % K 

 CO0 =0.2609 ;                    % kg_O2*m^-3    

 u   =  [F0;Ta0;m0;ms0;fMO;mMO0;mMI;T0;CO0]; % input variable inputs 

 

 % state variables on steady state 

  

T   = 30.4 +273.15;         % K   

mMO= mMO0;              % kg 

CO =  0.2609;               % kg_O2*m^-3  

mW= 25.7046;              % kg_O2*m^-3 

C=83; 

  x=[T;mMO;CO;mW;C]; % state variables vectors 

  

  % model parameters 

a = 0.0000883;                  % kg^(1-n)*h^-1 

b = 1.0533;      

c= 1.2247;      

k_o = 0.07;                         % kg_O2*m^-3 

FAS= 0.5322; 

mDHR= -2.27*10^7;          % J*kg_MO^-1 

n= 2.8944; 

UA= 12800;                       % J*h^-1*K^-1 

Tamb=25+273.15;             % K 

 mMI= mMI ;                      % kg 

 YW= 0.360 ;                       % kg_H2O*kg^-1 

 kLW= 1*10^-4;                 % kg*h^-1*Pa^-1 

 Vr= 0.12;                           % m^3 

 MrW=18*10^-3;               % kg/mol 

R= 8.314;                           % J*mol^-1*K 

Patm= 101325;                   % Pa 
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Mra= 28.96*10^-3;            % kg/mol 

MrMO = 449*10^-3;          % kg/mol usando a fórmula C20H35105N 

MrMI= 60.07*10^-3;         % kg/mol usando a fórmula SiO2 

C1=73.649; 

C2=-7258.2; 

C3=-7.3037; 

C4=4.1653*10^-6; 

C5=2; 

  

% vector parameters 

par = 

[a;b;c;k_o;FAS;mDHR;n;UA;Tamb;mMI;YW;kLW;Vr;MrW;R;Patm;Mra;MrMO;MrMI;C1;C2;C3;C4;C5]; 

  

%outros parâmetros do modelo 

cpai= 1009;      % J mol^-1 K^-1 

cpW= 4200;     % J mol^-1 K^-1   

cpMO= 1320;   % J mol^-1 K^-1  

cpMI=  848;    % J mol^-1 K^-1   

m = mW+mMO+mMI; % kg 

ms=m-mW;        %kg 

Sm = ms./m;  

rho = C/Sm;      % kg/m^3 

Vm = m/rho;      % m^3 

Vg= Vr-Vm;      % m^3 

rhoW=1;            % kg/m^3 

Vs=mMO/ms; 

Gv=1; 

Gf=2.5; 

Gs= 1/((Vs/Gv)+(1-Vs)/Gf); % kg/m^3 

FAS1= 1-((rho/1000)*Sm/(Gs*rhoW))- ((rho/1000)*(1-Sm)/rhoW); 

kT = a*(b^(T-273.15-20)-c^(T-273.15-60));                 

kO = CO/(k_o + CO);                          

kW = 1/(exp(-17.684*(1-Sm)+7.0622)+1);  

kW0=1/(exp(-17.684*(1-(ms0/m))+7.0622)+1); 

kF = 1/(exp(-23.67*FAS1+3.4945)+1);          

k= kT*kO*kW*kF; 

rMO= -k*mMO^n; 

Pvs = exp(C1 + (C2/T) + C3*log(T)+ C4*T^C5);        % Pa 

Pvs0 = exp(C1 + (C2/Ta0) + C3*log(Ta0)+ C4*Ta0^C5); % Pa 

  

Mar0=(Patm-Pvs0)*F0*Mra/(R*Ta0);                    % kg h^-1   
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Mar=(Patm-Pvs)*F0*Mra/(R*T);                        % kg h^-1   

rhoa=Mra*(Patm-Pvs)/(R*T);                          % kg/m^3 

rW=Pvs0*F0*MrW/(R*Ta0)-YW*rMO-Pvs*F0*MrW/(R*T); 

Var= FAS1*Vm;  % m^3                      

mar= rhoa*Var; % m^3 

 

%-------------------------------------------------------------------------- 

      sampling time 

%------------------------------------------------------------------------- 

dt =5; % h 

% initial time 

t = 0; % h 

imax =250; 

  

tres = zeros (1, imax); 

xres = zeros (length (x), imax); 

ures = zeros (length (u), imax); 

Cres= zeros (1, imax); 

  

 for i=1:imax 

 % F0 perturbance 

 if ( i == 7) 

 F0 = 0.56; 

 u( 1 ) = F0; 

 elseif (i==8) 

 F0=0.59; 

  u( 1 ) = F0; 

  elseif (i==10) 

 F0=0.52; 

  u( 1 ) = F0; 

  elseif (i==20) 

 F0=0.52; 

  u( 1 ) = F0; 

 elseif (i==24) 

 F0=0.37; 

  u( 1 ) = F0; 

  elseif (i==39) 

 F0=0.24; 

  u( 1 ) = F0; 

  elseif (i==58) 

 F0=0.27; 
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 u( 1 ) = F0; 

  elseif (i==75) 

 F0=0.27; 

  u( 1 ) = F0; 

end 

  

tres(:,i) = t; 

xres(:,i) = x; 

ures(:,i) = u; 

tnew = t + dt; 

 

[tsol,xsol] = ode45('mathematicalmodel',[t tnew],x); 

x = xsol(end,:)'; 

t = tsol(end); 

 end 

  

% organic matter conversion 

 y= ((xres(2,1)-xres(2,:))/xres(2,1))*100; 

  

%% Figures  

figure (1) 

subplot(2,1,1) 

plot(tres,xres(1,:)-273.15); 

title ('Temperature profile') 

ylabel('T / ºC') 

xlabel('t / h') 

axis([0 415 20 80]); 

hold off 

  

subplot(2,1,2) 

plot(tres,xres(2,:)); 

title ('organic matter mass') 

ylabel('mMO / kg') 

xlabel('t / h') 

hold off; 

 

figure  (2) 

subplot(2,1,1) 

plot(tres,xres(3,:)); 

title('oxygen concentration ') 

ylabel('CO /kg_O2*m^-3 ') 
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xlabel('t / h') 

hold off; 

  

subplot(2,1,2) 

plot(tres,O); 

title ('oxygen percentage') 

ylabel('O/ %') 

xlabel('t / h') 

hold off; 

  

figure  (3) 

subplot(2,1,1) 

plot(tres,y); 

title('organic matter conversion ') 

ylabel('x_V_S / %') 

xlabel('t / h') 

axis([0 1120 0 80]) 

hold off; 

  

subplot(2,1,2) 

plot(tres,xres(4,:)); 

title ('water mass') 

ylabel('mW / kg') 

xlabel('t / h') 

axis([0 440 0 30]) 

hold off; 

  

figure (4) 

subplot(2,1,1) 

plot(tres,k); 

title('reaction rate constant ') 

ylabel('k / ') 

xlabel('t / h') 

hold off; 

  

subplot(2,1,2) 

plot(tres,kT); 

title(' kT ') 

ylabel('kT / ') 

xlabel('t / h') 

hold off; 
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figure (5) 

subplot(2,1,1) 

plot(tres,kW); 

title(' kW ') 

ylabel('kW / ') 

xlabel('t / h') 

hold off; 

  

subplot(2,1,2) 

plot(tres,kO); 

title(' kO ') 

ylabel('kO / ') 

xlabel('t / h') 

hold off; 

  

figure (6) 

subplot(2,1,1) 

plot(tres,YFAS1); 

title (' FAS') 

ylabel('FAS/ % ') 

xlabel('t / h') 

axis([0 440 0 100]) 

hold off; 

  

subplot(2,1,2) 

plot(tres,kF); 

title('kF ') 

ylabel('kF / ') 

xlabel('t / h') 

hold off; 

  

figure (7) 

subplot(3,1,1) 

plot(tres,ures(1,:)); 

title('evolução do caudal de entrada no reactor ') 

ylabel('F0 / m3/h') 

xlabel('t / h') 

hold off; 


