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Resumo 

A modelação numérica constitui uma ferramenta fundamental para o 

desenvolvimento da engenharia do mar e de dispositivos conversores da energia das ondas. 

Nesta tese demonstra-se que o software OpenFOAM tem potencial para ser usado na 

modelação de ondas num tanque, passo preliminar fundamental à modelação futura de 

objectos flutuantes. 

 

 Neste trabalho o software de dinâmica de fluídos computacional 

OpenFOAM é utilizado para modelar ondas computacionalmente. São geradas ondas 

regulares à entrada de um tanque com recurso às equações de segunda ordem de Stokes. A 

onda resultante é comparada com valores experimentais reais, em diversos locais ao longo 

do tanque, obtendo-se uma boa concordância geral. As ondas reais são geradas para o caso 

em que existe um obstáculo colocado no fundo do canal. Os resultados das simulações 

apresentam uma boa concordância com os dados experimentais, em especial na zona a 

montante do obstáculo. Na zona de jusante, a precisão é inferior devido à produção de 

harmónicos elevados. Constata-se ainda que o software OpenFOAM não permite simular 

ondas regulares com um declive H/L acima de 0.05. 

 

 A simulação dinâmica de ondas mostra que é possível modelar diferentes 

tipos de ondas (spilling, plunging e surging breaking waves) sobre uma superfície 

inclinada, e constata-se que a extensão da zona de espraiamento simulada coincide com a 

previsão teórica. Mostra-se ainda que o software OpenFOAM possui capacidades para 

simular objectos flutuantes que interagem com as ondas geradas através da simulação de 

um caso simplificado.  

 

 

Palavras-chave: OpenFOAM, simulação numérica de ondas, ondas 

regulares, comprimento de espraiamento; formas de 

ondas; objecto flutuante 
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Abstract 

Numerical modelling has become a valuable tool for the ocean enginneering 

and wave energy industries. This thesis demonstrates that OpenFOAM has the potential to 

be used to model the formation and propagation of waves, and a floating coastal structure 

or wave energy device.  

 

 In this work a numerical wave tank is developed using the computational fluid 

dynamic software OpenFOAM. Regular waves are generated at the inlet of the wave tank 

according to the Stokes second order theory. The resulting wave tank is verified against 

experimental data of regular waves propagating over a submerged bar. The simulation is 

shown to replicate the experimental values within a good degree of accuracy, although 

higher harmonic waves released after the submerged bar lead to minor disagreement in 

results after the submerged bar. In addition to these conclusions, it is found that 

OpenFOAM is unable to simulate regular waves with a steepness H/L above 0.05. 

 

The numerical wave tank is then shown to be able to simulate spilling, 

plunging and surging breaking waves over a sloped surface, with simulated run-up 

agreeing with the theoretical run-up range. OpenFOAM is also shown to be able to 

simulate a floating object that moves in response to regular waves.  

 

 

Keywords OpenFOAM, numerical wave tank, regular waves, breaking 

wave, wave run-up, floating object 
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SYMBOLS AND ACRONYMS 

Symbols 

 � – Sea state parameter  

�  - Acceleration of gravity [m s-2] 

ℎ - Average water depth [m] 

� – Wave height [m] 

�� – Deepwater wave height [m] 

� – Wave number [radian m-1] 

	 – Wave length  [m] 

	� – Deepwater wavelength [m] 


 – Pressure [Pa] 

� – Wave run-up [m] 

��% - Wave run-up exceeded 2% of the time [m] 

� – Time [s] 

� – Period  [s] 

� – Velocity component of � axis [m s-1] 

� – Velocity field (�, �, �)  

� – Velocity component of y axis [m s-1] 

� – Velocity component of z axis 

� – Distance along �-axis 

� – Coordinate axis to describe wave motion 

[m s-1] 

[m] 

[m] 

� – Volume fraction of water  

β – Angle of sloped wall of numerical wave tank [degrees] 

�� – Surf similarity parameter  

� - Wave frequency [radian s-1] 

� – Density [kg m-3] 

�� – Density of air 1.2 kg m-3 



 

 

Development of a numerical wave tank using OpenFOAM Symbols and Acronyms 

 

 

Rosebud Jasmine Lambert  xiv 

 

�� – Density of water 1000 kg m-3 

� - Wave surface elevation [m] 

� – Dynamic viscosity [Pa s]  

� – Velocity potential   

 

Acronyms 

CFD – Computational Fluid Dynamics 

ENONDAS – Energia das Ondas Sociedade Anonima  

IEA – International Energy Agency 

NWT – Numerical Wave Tanks 

OpenFOAM – Open Source Field Operation and Manipulation 

PCG – Preconditioned Conjugate Gradient 

PISO – Pressure Implicit Split Operator 

STL – Stereolithography 

SWL – Still Water Level 

VOF – Volume of Fluid method 
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1. INTRODUCTION 

1.1. Goals and Objectives 

Numerical models are a valuable tool for the coastal and ocean engineering 

community, allowing the simulation and determination of forces and wave actions before 

physical construction takes place. This work aims to demonstrate that numerical models 

could be used to aid development of marine renewable energy technologies, such as wave 

energy, by providing a means to simulate regular and breaking waves, as well as floating 

objects under wave action. 

 

The main goal of this work is to develop a numerical model, known as a 

numerical wave tank, which can replicate the behaviour of waves in an experimental wave 

tank. This numerical wave tank will be created within a computational fluid dynamics 

(CFD) software known as OpenFOAM (version 1.7.1).  

 

While numerical wave tanks have been created previously in OpenFOAM 

(Yong & Mian, 2010; Morgan et al., 2010; Afshar, 2010) this Master thesis will 

demonstrate that not only is OpenFOAM able to produce a numerical wave tank that can 

closely replicate experimental results but that the numerical wave tank can also correctly 

predict the nature of breaking waves. 

 

Within the primary objective of creating a numerical wave tank there are 

several sub-objectives. The first sub-objective is to produce regular waves within 

OpenFOAM by utilising a periodic boundary condition at the inlet of the wave tank. 

Secondly, the behaviour of waves within this numerical wave tank is validated against the 

analytical results of the implemented wave theory and also against experimental data 

measured by Dingemans (1994). 

 

Once the numerical wave tank is validated the capabilities of OpenFOAM are 

then demonstrated by showing that OpenFOAM is capable of simulating breaking waves 
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on a sloped beach, including wave run-up, and correctly predicting the type of breaking 

wave. A final demonstration is given of a floating object subject to wave motion, with the 

use of a dynamic mesh. 

 

1.2. Motivation 

The world’s increasing demand for energy and fossil fuels has led to a search 

for more sustainable technologies than conventional fuels such as coal or crude oil. Less 

polluting renewable energy technologies are playing an increasing role in the world’s 

energy mix due to this reason. While technologies such as photovoltaics and wind energy 

have been successfully commercialized, they are unable to meet the world’s energy needs 

on their own. This has led to an interest in other renewable energy technologies such as 

wave energy. 

 

In recent years there has been an increasing commercial and academic interest 

in wave energy technology. Wave energy has a high theoretical potential with an estimated 

8000-80,000 TWh per annum (Bhuyan, 2008). This high potential can be attributed to 

strong winds that occur between 30 and 60° latitude and the occurrence of powerful storms 

in the southern latitudes that cause high energy waves (Bhuyan, 2008).  

 

The high theoretical potential for wave energy has led to the development of 

countless designs and prototypes of wave energy converters, with no single technology yet 

to emerge as the market leader. Yet no matter what design wave energy devices have, they 

must all be able to survive the tough conditions of the marine environment. Robustness of 

components and survivability against the power of the ocean has proved difficult to 

achieve. 

 

The difficulty of installing reliable wave energy devices was recently 

demonstrated off the coast of Portugal, which has an estimated overall resource of 10 GW, 

with half of that potentially available for exploitation (Mollison & Pontes, 1992). In 2008 

Portugal became the first country in the world to host an experimental wave farm located 
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north of Porto.1 The Aguçadoura Wave Farm consisted of three 750 kW Pelamis wave 

energy converters, each 120 m long and grid connected to a substation at Aguçadoura. A 

photograph of the Pelamis wave energy converter in operation is shown in Figure 1. 

 

 

Figure 1. A Pelamis wave energy converter in the water (Pelamis Wave Power, 2011a) 

 

Unfortunately, the Pelamis devices were removed only months after the 

opening of the wave farm due to damage from large waves caused by a storm (Beirão, 

2010). The Pelamis wave energy converters have until the present moment not been re-

installed at Aguçadoura. A second-generation model of the Pelamis, the P2, was recently 

installed close to the Orkney Islands in Scotland (Pelamis Wave Power, 2011b). 

 

In recent years, strong governmental support of renewable energy in Portugal 

has also led to the introduction of legislation that promotes wave energy. Decree Law 

225/2007 of 31 May 2007 (Ministério da Economia e da Inovação, 2007) specifies feed-in 

tariffs for renewable energy technologies, including wave energy. The feed-in tariff for 

demonstration wave projects (up to 4 MW) is approximately 0.26 €/kWh. Tariffs also exist 

for pre-commercial and commercial wave energy projects. 

 

In addition to the feed-in tariff the Portuguese government also introduced 

Decree Law 5/2008 (Ministério da Defesa Nacional, 2008) which establishes a pilot zone 

for testing wave energy devices off the coast of Portugal. The pilot zone aims to attract 

                                                 
1 Readers wishing to learn more about the current state of wave energy in Portugal are encouraged to read the latest 
Annual Report of the IEA Implementing Agreement on Ocean Energy Systems. At the time of writing the most recent 
report was the 2010 Annual Report (Brito-Melo & Huckerby, 2011) 
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demonstration and industrial wave energy projects to Portugal. The 261 km2 pilot zone is 

located off the coast of São Pedro de Moel, situated between Peniche and Figueira da Foz 

(see Figure 2). The site was chosen for its proximity to a suitable electricity grid (allowing 

connection to the grid), suitable bathymetry and electricity generating potential of up to 10 

TWh/y (where there is a depth of 50 m) (Brito, 2009). In 2010 a company called 

ENONDAS (Energia das Ondas Sociedade Anonima) was created to manage the Pilot 

Zone. 

 

 

Figure 2. The São Pedro de Moel Pilot Zone (Brito, 2009) 

 
This Master thesis seeks to contribute to the field of wave energy by producing 

a numerical wave tank that closely replicates the behaviour of how waves interact with the 

seabed and demonstrates how a wave energy device behaves under the influence of waves. 

The development of a numerical wave tank using freely available open-source software (in 

this case OpenFOAM) demonstrates one possible method in which wave energy converters 

may be tested in the future before reaching the prototype stage, potentially preventing 

device failures, as demonstrated by the Pelamis. Given the positive governmental support 
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of wave energy in Portugal, and the high theoretical potential of wave energy along the 

Portuguese coastline it is hoped that this Master thesis will be an illustration of how 

OpenFOAM may be used to assist in the development of wave energy converters. 

 

1.3. Outline of the thesis 

This dissertation is divided into seven chapters. The first and current chapter 

outlines the objectives and motivation underlying the work.  

 

The second chapter introduces literature related to numerical wave tank 

research and outlines the experiments that are used to validate the developed numerical 

wave tank. 

 

The third chapter summarizes OpenFOAM, the open source software used to 

develop the numerical wave tank. Governing equations of the source code are presented as 

well as an outline of how the program functions.  

 

Chapter four presents the governing wave theory employed for this work, 

including Stokes theory, employed to generate the waves at the inlet. The cause of 

breaking waves and wave run-up is also discussed and the various types of breaking waves 

are introduced. 

 

Chapter five presents the methodology used to create the numerical wave tank. 

The modelled geometry is presented, along with simulation parameters, wave parameters 

and detailed discussion of creating the inlet boundary condition and preventing reflection 

of waves from the outlet. Mesh independency is also discussed in this chapter. 

 

Chapter six presents the results of the various simulations outlined in chapter 

five. Analytical and experimental validation of the numerical wave tank is presented as 

well as the limitations of OpenFOAM discovered during the work. The simulation and 
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results of breaking waves is presented as well as the results of the demonstration of a 

floating object under the influence of regular waves. 

 

Chapter seven concludes the written work with a summary of how the thesis 

objectives have been met and suggestions for future work. 
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2. AN INTRODUCTION TO NUMERICAL WAVE 

TANKS 

 
The accurate modelling of the behaviour of water waves is an important subject 

for the field of coastal and ocean engineering. As computational power has increased 

numerical models, and numerical wave tanks (NWT), have become an increasingly viable 

option for the modelling of surface gravity water waves. 

 

Numerical wave tanks can be achieved through the creation of a numerical 

model or with an existing program, such as OpenFOAM, as was done for this Master 

thesis. The use of an existing program such as OpenFOAM is arguably more accessible for 

working professionals and less time consuming compared to the creation of a new 

numerical model. 

 

Numerical models2 typically implement one of two types of equations to model 

the hydrodynamics of waves, Stokes theory (discussed in detail in 4.1) and Boussinesq-

type equations. Stokes equations can be appropriate for a variety of depths while 

Boussinesq-type equations are used for shallow water. Boussinesq-type equations are more 

complex and difficult to implement than Stokes theory.  

 

Numerical models based on Boussinesq-type equations face some limitations 

as they cannot model the breaking of waves without additional modification to model 

energy dissipation (Orszaghova et al., 2012) and the largest wave height that can be 

accurately modelled is limited (Chazel et al., 2010). Some attempts have been made to 

expand the applicability of Boussinesq based models by creating hybrid numerical models. 

Orszaghova et al. (2012) developed a hybrid numerical model, based on Boussinesq 

equations that are capable of simulating breaking and non-breaking waves by applying a 

different set of equations for pre- and post-breaking. Chazel et al. (2010) and Bai & 

                                                 
2 Only numerical wave tanks implementing regular waves are considered within this literature review. There are 
numerous studies that implement solitary waves but the production of solitary waves was outside the scope of this thesis. 
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Cheung (2011) have both employed a two-layer approach, solving for two layers of fluid, 

reducing the complexity of the Boussinesq-type equations.  

 

Stokes theory is easier than Boussinesq-type equations to implement 

numerically and has previously been successfully implemented in OpenFOAM to create a 

numerical wave tank (Afshar, 2010; Morgan et al., 2010; Yong & Mian, 2010). Afshar 

(2010) focussed on the calculation of the error of the wave tank’s ability to produce Stokes 

second order waves but was unable to validate his wave tank against experimental results. 

Yong & Mian (2010) aimed to model a floating object using OpenFOAM and validated 

their work by comparing the calculated drift force on the floating object with the force 

measured in a set of experiments. Morgan et al. (2010) completed the work most similar to 

this Master thesis by modelling the experimental case of Dingemans (1994) (discussed 

below) and comparing the surface elevation of the water to experimental results. Stokes 

second order theory has also been implemented in custom-made numerical models such as 

Senturk (2011) and Koo & Kim (2007). 

 

Regardless of the underlying equations of the numerical wave tank, it is 

important to validate the results. This can be done by comparison with the analytical 

(theoretical) results, comparison with other numerical model results, comparison against 

experimental data or a mixture of these methods. Comparison against experimental results 

gives the most accurate indication of how well the wave tank can simulate physical 

conditions. 

 

Experiments are rarely conducted by the developer of the numerical wave tank, 

with developers usually relying on existing experimental results. Three experimental sets 

of data have been the most commonly referenced in the literature related to numerical 

wave tanks. Yong & Mian (2010) and Koo & Kim (2007) validated their results of the 

force on a floating object in a numerical wave tank against the experiments of Nojiri & 

Murayama (1975). A more common method of validation is to compare the surface 

elevation of the waves in a numerical wave tank containing a submerged bar. This tests the 

ability of the wave tank to model higher harmonic waves that are released after the bar. 

Two sets of such experimental data have been commonly referenced, Dingemans (1994) 



 

 

Development of a numerical wave tank using OpenFOAM An introduction to numerical wave tanks  

 

 

Rosebud Jasmine Lambert  9 

 

and Ohyama et al. (1995). The Dingemans (1994) experiments are considered a classical 

set of experiments that are routinely referenced (Chazel et al., 2010; Zhao & Duan 2010; 

Bai & Cheung, 2011; Morgan et al., 2010). Unlike most authors, Morgan et al. (2010) used 

the unscaled results of Dingemans (1994). 

 

The Dingemans (1994) experiments, also referenced as Luth et al. (1994), were 

based on experiments first performed by Beji & Battjes (1993). Dingemans (1994) 

repeated the experiments at twice the scale of Beji & Battjes (1993) but the results are 

often presented at the scale of the experiments conducted by Beji & Battjes (1993). In this 

present work all geometry, wave parameters and results are modelled and presented at the 

scale of Beji & Battjes (1993). 

 

Three cases were modelled by Beji & Battjes (1993) and Dingemans (1994), 

and are given in Table 1. Only Case A is presented and discussed in this Master thesis. 

 

Table 1. Wave parameters used in the Dingemans (1994) experiments, given in scale of Beji & Battjes 

(1993) 

Case Period � [s] Wave Height   [m] Wave Length ! [m] 
A 2.02 0.02 3.738 
B 2.525 0.029 4.791 
C 1.01 0.041 1.488 
 

 

This Master thesis builds on the work of previous authors such as Morgan et al. 

(2010) and Afshar (2010) but also presents detail about the limitations of using 

OpenFOAM to create a numerical wave tank. The Dingemans (1994) experiments are used 

to validate the numerical wave tank. The ability of OpenFOAM to model breaking waves 

is also investigated. 
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3. OPENFOAM 

3.1. Introduction to OpenFOAM 

The OpenFOAM (Open Source Field Operation and Manipulation) software is 

an open source computational fluid dynamic software that was first released in 2004. 

OpenFOAM is essentially a C++ library that is used to create applications. Applications 

can be solvers or utilities. Solvers are designed to solve a specific physical problem in 

continuum mechanics and utilities are used to perform tasks that involve data manipulation 

(OpenFOAM, 2010). OpenFOAM comes pre-equipped with many solvers and utilities. 

 

OpenFOAM comes with a large number of preset solvers but the open source 

nature of OpenFOAM also means that the user can write their own solvers, although a 

solid understanding of the physics and underlying method of the problem is needed. While 

OpenFOAM lacks a graphical user interface, the customisable nature of the software has 

made it a popular choice for users wishing to have a degree of control over the physics and 

calculation of a solution to a problem. Users of OpenFOAM often make their custom 

solvers and utilities available to others. OpenFOAM is used by many commercial and 

academic organisations and has been used in many peer-reviewed papers.  

 

OpenFOAM release version 1.7.1 for the Ubuntu operating system was used 

for the work of this Master thesis. 
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3.2. Governing equations 

3.2.1. Navier-Stokes equations 

The fundamental equations used by OpenFOAM are the Navier-Stokes 

equations for an incompressible, constant viscosity fluid. In Cartesian coordinates these 

equations are: 

 

� "#�
#� + � #�

#� + � #�
#% + � #�

#�& = − #

#� + � )#��

#�� + #��
#%� + #��

#��* + ��+ 

 

 
(1) 

� "#�
#� + � #�

#� + � #�
#% + � #�
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#% + � )#��

#�� + #��
#%� + #��

#��* + ��, 

 

 
(2) 

� "#�
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#� + � #�
#% + � #�

#� & = − #

#� + � )#��

#�� + #��
#%� + #��

#�� * + ��- 

 

 
(3) 

 

where � is the density of the fluid mixture [kg m-3], 
 is the pressure [Pa], � is the 

acceleraration of gravity [m s-2], � is the fluid dynamic viscosity [Pa s]  and  �,  �,  and � 

are the velocity components of the  �, y and z axes, respectively, while � represents the 

time. 

 

Because the flow is assumed as incompressible, � is constant and the following 

form of the continuity equation must be satisfied: 

 

#�
#� + #�

#% + #�
#� = 0 (4) 

 

Together with the boundary conditions (described in 5.3.4), Equations (1) - (4) 

describe the motion of an incompressible viscous fluid flow. 
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3.2.2. Volume of Fluid method 

OpenFOAM uses the Volume of Fluid method (VOF) to track the movement of 

the free surface (the air-water interface). This method determines the fraction of each fluid 

that exists in each cell of the computation mesh (known as the volume fraction). The 

equation for the volume fraction is: 

 

#�
#� + ∇. (��) = 0 (5) 

 

where � is the velocity field composed of �, �, and � and � is the volume fraction of 

water. � will vary between 0 and 1. If a cell is completely full of water, � = 1, if it is full 

of air then � = 0. 
 

The volume fraction (also known as the phase fraction) � is used to determine 

the density of the mixture inside each cell of the mesh, (the density that is used to solve the 

Navier-Stokes equations). The density of the mixture is determined by: 

 
 � = ��� +  (1 − �)�� (6) 
 
 
where �� is the density of water and  �� is the density of the air. 
 



 

 



 

 

Development of a numerical wave tank using OpenFOAM Governing wave theory 

 

 

Rosebud Jasmine Lambert  15 

 

4. GOVERNING WAVE THEORY 

4.1. Stokes second order theory 

The accurate production of waves at the inlet of the wave tank is integral to 

accuracy of the wave tank. Many wave equations exist although a review of the literature 

of numerical wave tanks revealed that Stokes second order equations have been frequently 

implemented. Stokes theory is a non-linear theory for modelling regular waves.  

 

Higher orders of Stokes theory do exist, such as the fifth order. Due to the 

added complexity of the fifth order equations, the second order form was implemented. 

This form has shown to be sufficiently accurate for the scenarios modelled. 

 

Studies utilising Stokes second order equation include Yong & Mian (2010), 

Koo & Kim (2007) and Senturk (2011). Among these papers, Stokes second order equation 

is presented in different forms. The form that will be used in this Master thesis is taken 

from Dean & Dalrymple (1984). 

 

4.1.1. Particle velocity under the wave 

The particle velocity according the Stokes second order theory can be broken 

into horizontal and vertical components, where � represents the particle velocity in the 

longitudinal direction (Equation (7)) and � represents the particle velocity in the vertical 

direction (Equation (8)). 

 

� = − #�
#�    = �

2  ��
�  cosh �(ℎ + �)

cosh �ℎ cos(�� − ��)
+ 3

16 ���� cosh 2�(ℎ + �)
sinh= �ℎ cos 2 (�� − ��) 

(7) 
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� = − #�
#�    = �

2  ��
�  sinh �(ℎ + �)

cosh �ℎ sin(�� − ��)
+ 3

16 ���� sinh 2�(ℎ + �)
sinh= �ℎ sin 2 (�� − ��) 

(8) 

 
 

Both � and � are partial derivatives of the velocity potential �. � is the height 

of the wave from crest to trough [m], � is the gravitational acceleration [m s-2], ℎ is the 

average water depth and � is the coordinate axis to describe wave motion [m] (where � = 0 

is the still water level (SWL)). � is the time [s] and � [m] is the distance along the 

longitudinal direction. � is the wave frequency [radian s-1] (determined by Equation (9)) 

and � is the wave number [radian m-1] (determined with Equation (10) where 	 is the 

wavelength [m]):  

 

� =  >�� tanh �ℎ 
(9) 

 

� = 2A
	  

(10) 

 
 

4.1.2. Confirmation of validity of Stokes second order waves 

As noted in Dean & Dalrymple (1984), Stokes equation in the second order is 

not a very good approximation for high waves in shallow water (shallow water is defined 

as h/	 < 1/20, deep water waves are defined as h/	 ≥ 1/2). To address this issue a simple 

method, known as the Ursell parameter was developed by Ursell (1953). The Ursell 

parameter indicates the nonlinearity of long surface gravity waves in a fluid and can be 

used to determine if Stokes second order theory is valid. The Ursell parameter can be 

shown to be reduced to Equation (11) as shown by Dean & Dalrymple (1984). 

 

	��
ℎC < 8AC

3  (11) 

 

If the Ursell parameter is satisfied, it is appropriate to use Stokes equations in 

the second order. All scenarios modelled in this thesis satisfied the Ursell parameter. 
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4.1.3. Surface elevation of the waves 

 For Stokes second order waves the distance the water surface is displaced 

from the still water level is described by Equation (12) for the surface elevation � (also 

known as the water surface displacement). 

 
 

� =  �
2 cos(�� − ��) +  ���

16  cosh �ℎ
sinhC �ℎ (2 +  cosh 2�ℎ) cos 2(�� − ��) 

 

(12) 

 

This equation was used to verify if the surface elevation of waves in the 

numerical wave tank agreed with the theoretical surface elevation for Stokes second order 

waves (shown in sections 6.1.1, 6.2.1 and 6.2.2). 

 

A graphical summary of the physical wave parameters used in the governing 

equations is given in Figure 3.  

 

 
Figure 3. Variables of a wave used in the governing wave theory 
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4.2. Breaking waves 

The breaking of waves can occur in both shallow and deep water although each 

is due to different mechanisms. In shallow water the change in the water depth as waves 

approach a shallow region or beach causes shoaling, refraction and diffraction (Vincent et 

al., 2002). Breaking waves in shallow water are classified into different breaker categories, 

as discussed in 4.3.1. 

 

In deep water, waves break due to hydrodynamic instability. Fenton (1990) has 

developed an expression that can be used to predict when a regular wave in deep water will 

become unstable and break. This expression was based on experiments by Williams (1981) 

who determined the upper limit of the height/depth ratio (H/h). The Fenton expression is 

given by Eqation (13) but has been transformed to give the upper limit of the wave 

steepness, determined by H/L, rather than H/h. 

 

"�
	 &F�+ = 0.141063 + 0.0095721 K	ℎL + 0.0077829 K	ℎL�

1 + 0.0788340 K	ℎL +  0.0317567 K	ℎL� + 0.0093407 K	ℎLC 

 

(13) 

 

4.3. Waves in the surf zone 

In addition to the modelling of Stokes second order waves it will be shown that 

OpenFOAM is also capable of simulating waves in the surf zone, the region where waves 

break close to the shore. Using a parameter known as the surf similarity, the breaker type 

can be predicted. This parameter can also be used to predict the wave run-up, i.e., how far 

waves will move up the slope above the still water level.  

 

4.3.1. Breaker types 

The breaker type is the form of the wave at the time of breaking. Breaker types 

can be classified into four different types (Galvin, 1968). A diagram showing three of the 

types is given in Figure 4. 
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(a) Spilling breaker 

 
(b) Plunging breaker 

 
(c) Surging breaker 

 
Figure 4. Three breaker types – spilling (a), plunging (b) and surging (c). The numbers indicate the stages 

of the breaking process. (Richardson, 1996) 

 
Spilling breakers occur on mildly sloping beaches. Breaking begins with 

aerated water near the top of the wave, which then moves down the front surface. Plunging 

breakers occur on steeper beaches. The crest of the wave curls forward and falls on the 

base of the wave. Surging breakers occur on even steeper beaches. The crest remains 

unbroken and very little breaking occurs. 

 

 A fourth breaker type of wave, the collapsing breaker, was also identified by 

Galvin (1968) and occurs at the water’s edge. This breaker is a combination of plunging 

and surging breakers (Dean & Dalrymple, 1991) and is identified by a crest that never fully 

breaks. The lower face of the wave steepens and falls. A photograph of a collapsing wave 

is shown in Figure 5. 
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Figure 5. A photograph of a collapsing wave (Smith, 2003) 

 

4.3.2. Surf similarity 

The surf similarity parameter �� (Battjes, 1974a), also known as the breaker 

parameter or Iribarren number (Iribarren & Nogales, 1949), indicates the breaker type that 

can be expected. The surf similarity parameter, given by Equation (14), uses the angle M of 

the beach, the deepwater wave height ��, deepwater wavelength 	� or period �:  

 

�� =  tan M
N��	�

=  tan M
N2A�����

 (14) 

 

As discussed by Hughes (2004) it is common to specify the local wave height 

� at or near the toe of the slope, instead of the deepwater wave height, ��. For the work of 

this Master thesis, the local wave height � was used. 

 

The critical values of �� noted by Battjes (1974a) are given in Table 2. 

 

Table 2. Critical values of the surf similarity parameter, OP, used to predict breaker type (Battjes, 1974a) 

Breaker type Critical value of OP 
Surging or collapsing �� > 3.3 

Plunging 0.5 < �� < 3.3 
Spilling �� < 0.5 
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4.3.3. Wave run-up 

Using the surf similarity parameter the wave run-up, can be determined. An 

early empirical formula for wave run-up was developed by Hunt (1959) and was later 

modified by Battjes (1974b). The modified formula (Equation (15) ) gives the run-up that 

will only be exceeded 2% of the time.  

 

��% = ���� (15) 

 

The parameter � depends on sea conditions, ranging between � = 1.49 for 

fully developed seas, and � = 1.87 for young seas (Van der Meer & Stam, 1992). 

Equation (15) can only be applied to plunging waves (see 4.3.1) according to Van der 

Meer & Stam (1992). Figure 6 indicates the run-up of a wave, �,  impacting a slope with 

angle M. SWL is the still water level. 

 

 
Figure 6. Run-up, R, of a wave breaking on a slope with angle β 

 
 

 

 



 

 



 

 

Development of a numerical wave tank using OpenFOAM Modelling Methodology 

 

 

Rosebud Jasmine Lambert  23 

 

5. MODELLING METHODOLOGY 

5.1. Definition of scenarios and geometries to be 

modelled 

All scenarios modelled in this work were two-dimensional cases. OpenFOAM 

always operates in three-dimensional coordinates but was instructed to solve for two 

dimensions (see 5.3). All geometry had a thickness of 0.1 m in the y (transverse) direction. 

The following section describes the geometry of all scenarios modelled.  

 

Four different scenarios were modelled using OpenFOAM: 

Scenario 1: A basic numerical wave tank with flat bottom 

Scenario 2: The verification tank based on the experiments conducted 

by Beji & Battjes (1993) and Dingemans (1994)   

Scenario 3: A demonstration of regular waves hitting a sloped surface 

with angle β 

Scenario 4: A demonstration of implementing a floating object under 

the influence of waves 

 

5.1.1. Scenario 1:  Basic numerical wave tank 

The geometry of the basic numerical wave tank is shown in Figure 7. 

  

Figure 7. Geometry of the basic numerical wave tank, Scenario 1 (not to scale) 
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5.1.2. Scenario 2: Verification tank 

The geometry of the verification tank based on the scaled experimental results 

of Dingemans (1994) is shown in Figure 8. The position of the wave gauges (that recorded 

the surface elevation) are also indicated Figure 8, with the exact position of each gauge 

given in Table 3. Note that the modelled geometry was to the same scale as the Beji & 

Battjes (1993) experiment. The elevation of the bed is described in Table 4. 

 

 
Figure 8. Geometry of the Scenario 2 verification tank including position of the wave gauges (vertical axis 

not to scale) 

 

Table 3. Position of wave gauges for verification wave tank, as used in the Dingemans (1994) experiments 

Wave gauge 
number 

x position 
[m] 

1 2 
2 4 
3 5.2 
4 10.5 
5 12.5 
6 13.5 
7 14.5 
8 15.7 
9 17.3 
10 19 
11 21 
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Table 4. Bed elevation of verification tank (Scenario 2) 

x distance 
[m] 

z distance 
[m] 

0 -0.4 
6 -0.4 
12 -0.1 
14 -0.1 
17 -0.4 

 

Basic verification of this tank was conducted by removing the submerged bar 

at the bottom of the tank and comparing the simulated results to the theoretical results of 

the governing wave equations (see 6.2.1). 

 

5.1.3. Scenario 3: Sloped tank 

Within Scenario 3 three different cases were modelled to simulate the three 

types of breaking waves (see 4.3.1). These cases are named Scenario 3A (spilling breaker), 

Scenario 3B (plunging breaker) and Scenario 3C (surging breaker). Each of the cases 

required different geometry. Scenarios 3B and 3C used modified versions of the same tank. 

The gradient of the slope for Scenario 3B and 3C is 1:6 and 1:2.1, respectively. The 

geometry used for Scenario 3A is given in Figure 9, while scenarios 3B and 3C are 

depicted in Figure 10. The angles of each slope are, respectively, β1=1.5°, β2=9.5° and 

β3=25.4°. 

 

  
Figure 9. Geometry of sloped tank (Scenario 3A) (not to scale) 
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Figure 10. Geometry of scenario 3B (β2) and 3C (β3) (figure not to scale) 

 

5.1.4. Scenario 4: Tank with floating object 

The geometry used for the demonstration case of a floating object under the 

influence of regular waves is given in Figure 11, where the grey box represents the floating 

object. 

 

 
Figure 11. Geometry of floating object scenario (Scenario 4) 
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5.2. Input wave parameters 

The input wave parameters used for each scenario are summarised in Table 5. 

 

Table 5. Input wave parameters for each scenario 

Scenario Wave length ! [m] 
Wave Height   [m] 

Period � [s] 
Water depth R [m] 

Steepness  /! 
1 5 0.1 1.94 1 0.02 
2 3.738 0.02 2.02 0.4 0.00535 
3A 5 0.2 2.05 0.8 0.04 
3B 5 0.2 1.94 1 0.04 
3C 5 0.1 1.94 1 0.02 
4 5 0.2 1.94 1 0.04 

 

5.3. Production of appropriate boundary conditions in 

OpenFOAM 

In order to replicate the behaviour of a physical wave tank the boundary 

conditions of the numerical wave tank need to be chosen to recreate physical behaviour. 

The numerical wave tank consists of 5 boundaries: inlet, outlet, atmosphere, bottom and 

frontAndBack. frontAndBack describes the boundary of both the front and back of the 

wave tank but was given an “empty” condition for all parameters to allow OpenFOAM to 

solve for two dimensions only. The location of each boundary is shown in Figure 12. For 

Scenario 2 and Scenario 3, the boundary bottom included the sloped geometry. 

 

 

 
 

Figure 12. Location and name of each boundary of the numerical wave tank 
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Three files are required by OpenFOAM to fully describe the behaviour of each 

boundary. These files are called:  

1. alpha1, used to determine the volume fraction 

2. U, used to determine the velocity  

3. p_rgh, used to determine the dynamic pressure 

 

5.3.1. Producing waves at the inlet  

There are two possible methods for producing waves at the inlet using 

OpenFOAM, the creation of a piston-type wave maker, as is used in physical wave tanks, 

or the use of a moving boundary condition. To create a piston-type wave maker in 

OpenFOAM requires the creation of a dynamic mesh that is computationally expensive. 

For the purposes of this thesis a moving boundary condition was implemented. 

 
A moving boundary condition that allows the Stokes second order particle 

velocity to be specified as an equation (as given in 4.1.1) was needed.  While OpenFOAM 

comes with many pre-existing boundary conditions, such as “fixed pressure” and “moving 

wall”, there is no pre-existing boundary condition that allows the input of x-axis and z-axis 

velocity. 

 

In response to the need to create numerical waves in OpenFOAM, users have 

created a boundary condition known as groovyBC. groovyBC has altered the libraries and 

source code of OpenFOAM to allow a boundary that can be programmed with equations. 

The groovyBC boundary condition was used to implement the Stokes second order particle 

velocity equations (see 4.1.1) to describe the inlet velocity. groovyBC was also used to 

describe the phase (water or air) at the inlet. When the simulated surface was equal to or 

below the theoretical surface elevation (given by Equation (12), see 4.1.3) the phase 

fraction was forced to equal 1. 

 

 Waves created at the inlet using the groovyBC boundary condition are shown 

in Figure 13. The colours in Figure 13 indicate the phase fraction, i.e., red is water, blue is 

gaseous air, green represents the water-air interface.  
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Figure 13. An example of Stokes second order waves created in OpenFOAM using the groovyBC inlet 

condition (inlet located on the left hand side). NB. Whole tank not shown 

 

5.3.2. Preventing reflection of waves at the outlet 

To correctly model waves in a numerical wave tank it is necessary to consider 

the reflection of waves from the boundary of the numerical wave tank. This has caused 

considerable discussion in a number of articles including Senturk (2011), Koo & Kim 

(2007), Yong & Mian (2010) and Morgan et al.  (2010). A number of solutions have been 

attempted to absorb incident wave energy: 

• Numerical damping– a damping coefficient is added to the momentum 

equation of the OpenFOAM solver  

• A beach - a secondary structure is added to the end of the wave tank to 

absorb the energy of the waves 

• A sponge layer – A porous material is placed at the end of the tank to 

absorb the energy 

• Increasing mesh size at the end of the tank to dissipate waves 

 

The last three of these options were attempted by Morgan et al.  (2010) who 

found that all options increased runtime in OpenFOAM and further complicated the model. 

In their study, reflection was avoided simply by increasing the length of the numerical 

flume from 45 m to 90 m. 

 
Based on the experience of Morgan et al.  (2010) reflection of waves from the 

outlet was prevented by extending the wave tank to double the length of the modelled 

geometry. I.e., for the cases of the basic numerical wave tank (Scenario 1), the verification 

wave tank (Scenario 2) and the floating object demonstration (Scenario 4) the length of the 

tank was extended to 40 m, 48 m and 10 m, respectively, for implementation in 
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OpenFOAM. Care was taken to ensure the simulation was not run long enough that waves 

reflected from the outlet affected the region being studied. 

 

5.3.3. Other boundary conditions 

The zeroGradient condition3 was used for alpha1 for the outlet and bottom, to 

allow surface tension effects between the wall and the water-air interface to be ignored.  

 

A no-slip condition was implemented for the velocity U of the outlet and 

bottom by forcing the velocity at the wall to zero (as used in OpenFOAM tutorials 

involving water/air interaction).  

 
The pressure p_rgh at the inlet, outlet, and bottom was set to bouyantPressure, 

which sets the pressure based on the atmospheric pressure gradient. This condition was 

used in examples provided with the OpenFOAM release where water interacts with a wall.  

 

For the atmosphere a combination of boundary conditions was implemented 

that maintains stability while permitting both outflow and inflow according to the internal 

flow (as recommended by OpenFOAM).  The inletOutlet condition was used for alpha1 of 

the atmosphere.  This condition implements zeroGradient when the velocity vector points 

out of the domain, with alpha1 specified to equal a value of zero when the velocity vector 

points into the domain. 

 
The pressureInletOutletVelocity condition was used for U of the atmosphere 

boundary, which applies zeroGradient on all components, except where there is inflow, in 

which case a value of zero is applied to the tangential component. Pressure at the 

atmosphere boundary was set to totalPressure, where pressure is calculated based on 

velocity and total pressure (specified to zero). 

 

                                                 
3 zeroGradient is a generic condition that can be applied to different parameters. zeroGradient means that the gradient of 
the quantity is zero, i.e., the value is constant. In effect zeroGradient sets the same value at the boundary as in the 
neighbouring cell. 
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5.3.4. Summary of boundary conditions 

A summary of all the boundary conditions implemented is given in Table 6. 
 
 

Table 6. Summary of the boundary conditions implemented in OpenFOAM 

Boundary alpha1 U p_rgh 
Inlet groovyBC groovyBC bouyantPressure 
Outlet zeroGradient No-slip bouyantPressure 
Atmosphere inletOutlet pressureInletOutletVelocity totalPressure 
Bottom zeroGradient No-slip bouyantPressure 
frontAndBack empty empty empty 

 

5.4. Choosing the OpenFOAM solver 

It is important to choose or design a solver to match the physical problem of 

water waves moving in a tank. This Master thesis utilised pre-existing solvers that were 

supplied with the OpenFOAM release. 

5.4.1. interFoam 

The interFoam solver takes into account the movement of air and water and is 

specifically designed for solving two incompressible, isothermal immiscible fluids based 

on a volume of fluid phase-fraction approach (OpenFOAM, 2010). This solver captures the 

phase (and therefore shape) of the water at different times. 

 

The interFoam solver has previously been used for problems similar to that 

which is attempted in this thesis. interFoam (formerly known as rasinterFoam in early 

versions of OpenFOAM) was presented as a recommended solver for a surface piercing 

body under wave action at the 4th OpenFOAM Workshop (Paterson et al., 2009). 

interFoam has also been used in a conference working paper (Morgan et al., 2010) to 

produce waves breaking over a submerged bar.  

 

The interFoam solver was used for majority of the work of this Master thesis 

involving production of waves in a basic wave tank and waves moving over a  submerged 

bar. The interFoam solver was also used for the case of waves interacting with a slope. 
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5.4.2. interDyMFoam 

The interDyMFoam is a dynamic solver that performs the same function as 

interFoam with the added ability of the mesh being able to change during the simulation. 

interDyMFoam is capable of producing automatic mesh motion as well as topological 

changes to the mesh such as addition or removal of a cell layer, boundaries that can be 

attached and detached, and a sliding interface, where a pair of detached surfaces move 

relative to each other. 

 

The automatic mesh motion function of interDyMFoam was used for the 

demonstration of a floating object under the influence of waves. The interDyMFoam solver 

calculates the force on the surface of the floating body due to the wave motion and then 

solves the six degrees-of-freedom equation of motion (Jasak et al., 2008).  

 

5.5. Other simulation parameters 

5.5.1. Physical properties of all simulations 

In addition to the boundary conditions given in 5.3 the simulation was 

implemented with other physical properties summarised in Table 7. All simulations 

ignored turbulence effects (laminar simulation was used). 

 

Table 7. Summary of physical properties of all scenarios modelled 

Parameter Value 
Gravity 9.81 m s-2 

Water Density 1000 kg m-3 

Kinematic Viscosity 1.0x10-6 m2s-1 

Air Density 1.2 kg m-3 

 Kinematic Viscosity 1.48x10-5 m2s-1 

Surface tension 0.07 Nm-1 

 

The value of surface tension implemented was used in OpenFOAM examples 

with a water-air interface. 
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5.5.2. Simulation control properties 

All simulations were initialised to begin each simulation with water below the 

still water level and air above the still water level. The air-water interface was calculated at 

each time step using the Volume of Fluid method. Time steps of 0.001s were used for each 

simulation with results written every 0.1s. 

 

OpenFOAM allows the user to control which numerical scheme is used to 

solve for terms, such as derivatives, that appear in the implemented applications. In this 

work, the default option was used for all numerical schemes except for the solution of 

divergence terms. As suggested in the OpenFOAM user manual (OpenFOAM, 2010) for 

use with the interFoam solver, the following options were chosen for the divergence terms: 

 

Table 8. Numerical schemes used for solution of divergence terms 

Divergence Term Numerical Scheme Notes 
div(rho*phi,U) 
 

limitedLinearV 1 Produces good accuracy when 
used with interFoam,  

div(phi, alpha) vanLeer Van Leer flux limiter  
div(phirb,alpha) interfaceCompression Specialised scheme for 

producing a smoother interface 
 

 

OpenFOAM also allows flexibility in determining how each solver is run. The 

PISO (pressure-implicit split-operator) algorithm for use with transient problems was 

implemented for all modelled scenarios. The preconditioned conjugate gradient (PCG) 

linear solver was used to solve for velocity and pressure. 

 

5.5.3. Properties of floating object scenario 

In order for a floating object to be modelled in OpenFOAM the mass, centre of 

mass, density and moments of inertia need to be determined. Based on the geometry of the 

box given in 5.1.4 and assuming a density of 888 kg m-3 and a centre of mass in the centre 

of the box, the characteristics given in Table 9 were determined. 
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Table 9. Properties of floating object 

Mass 8.889 kg 
Moment of Inertia Ix 0.037 kg m-2 

Moment of Inertia Iy 0.215 kg m-2 
Moment of Inertia Iz 0.193 kg m-2 

 

5.6. Production of an appropriate mesh 

5.6.1. Generation of mesh 

The OpenFOAM utility, blockMesh, was used to generate the base mesh for 

each scenario. The base mesh did not contain any obstructions or sloped bottom. The 

number of cells in the mesh was specified as well as any grading of the cells in a given 

direction. All scenarios were generated with a single cell in the y direction with a thickness 

of 0.1 m. 

 

After the base mesh was created the snappyHexMesh utility was implemented. 

This utility adjusts the base mesh to match the desired geometry. The shape of the desired 

geometry (such as the bottom for the verification tank) was defined using a 

Stereolithography (STL) file created in Solidworks.  All cells outside the desired geometry 

were removed by snappyHexMesh and the cells around the edge were deformed to follow 

the shape of the desired geometry.  

 

5.6.2. Testing mesh independency for Scenarios 1 and 2 

To test the validity of the generated mesh, independency was tested using the 

numerical wave tank of Scenario 2. This scenario was used for mesh independency 

because it requires the highest quality mesh due to the behaviour of waves after the 

submerged bar. Several meshes were tested including grading around the water surface 

(cells at water surface were five times smaller than at the atmosphere and bottom 

boundaries) and extra cells inserted to cover gauge 6 to 11 (between 13 and 22 m, known 

as Section B). Section B is highlighted in Figure 14. 
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Figure 14. Mesh shape for Scenario 2. Section B, given extra refinement for Mesh D, is highlighted in red 

 

The details of each mesh tested are given in Table 10. Note that the average 

cell size is determined before cells are removed by snappyHexMesh. Representative 

sections of each mesh are shown in Figure 15 and Figure 16. In these figures, the blue line 

represents the SWL. 

 

Table 10. Mesh parameters for mesh independency test 

Mesh Average cell size 
x  direction [m] 

Average cell size z  
direction [m] 

Notes 

Base 
Mesh 

Section 
B 

Base 
Mesh 

Section 
B 

A 0.04 - 0.02 - Uniform grading throughout tank 
B 0.02 - 0.01 - Uniform grading throughout tank 
C 0.02 - 0.008 - Vertical grading around the still water 

level 
D 0.02 0.01 0.008 0.004 Vertical grading around the still water 

level with additional refinement in 
Section B 

E 0.01 - 0.004 - Vertical grading with very high 
refinement throughout 

F 0.02 - 0.01 - Uniform grading throughout; 
snappyHexMesh altered to create a 
smoother slope 
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Mesh A 
0-1 m 14-15 m 

 

 
 

 

 

Mesh B 
0-1 m 14-15 m 

 

 
 

 

 

Mesh C 
0-1 m 14-15 m 

 

 
 

 

 

Figure 15. Close-up of representative sections of Mesh A, B and C  
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Mesh D 
0-1 m 14-15 m 

 

 
 

 

 

Mesh E 
0-1 m 14-15 m 

 

 
 

 

 

Mesh F 
0-1 m 14-15 m 

 

 
 

 

 

Figure 16. Close-up of representative sections of Mesh D, E and F  
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Figure 17 to Figure 27 presents the results of the mesh independency tests. It 

can be seen that little difference is seen between the meshes for the earlier gauges. After 

gauge 5, Mesh A shows a reduction in the simulated surface elevation compared to the 

other meshes (due to Mesh A’s poorer resolution). Meshes B, C, D, E, and F show very 

little variation between them after gauge 5. Due to the quicker processing time of Mesh B, 

this mesh quality was chosen for Scenario 1 and 2. Note that there are two sets of 

experimental results for gauge 3 (named 3(A) and 3(B)). Only the results for gauge 3(A) 

are shown for the mesh independency results. 

 

 

 

Figure 17. Mesh independency results for gauge 1 
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Figure 18. Mesh independency results for gauge 2 

 

 

 

Figure 19. Mesh independency results for gauge 3A 
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Figure 20. Mesh independency results for gauge 4 

 

 

 

Figure 21. Mesh independency results for gauge 5 
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Figure 22. Mesh independency results for gauge 6 

 

 

 
Figure 23. Mesh independency results for gauge 7 
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Figure 24. Mesh independency results for gauge 8 

 

 

 

Figure 25. Mesh independency results for gauge 9 
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Figure 26. Mesh independency results for gauge 10 

 

 

 

Figure 27. Mesh independency results for gauge 11 
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5.6.3. Mesh size for Scenarios 3 and 4 

The mesh quality for Scenario 3 and Scenario 4 is given in Table 11. For both 

scenarios, grading was uniform throughout the tank. 

 

Table 11. Mesh size for scenarios 3 and 4 

Scenario Cell size x direction [m] Cell size z direction [m] 
3A 0.02 0.01 
3B 0.015 0.01 
3C 0.015 0.01 
4 0.02 0.06 

 

Given the accuracy of the results of Mesh B in the mesh independency test this 

was considered the minimum quality needed for Scenario 3 and 4, for which there was no 

experimental data to verify the results. In Scenario 3B and Scenario 3C cell size in the x 

direction was increased to 0.015 m. 

 

Scenario 4 implemented interDyMFoam and required more computational time 

than interFoam. It was found that the size of the cells affected the ability of 

interDyMFoam to simulate. The longest simulation was achieved by reducing the 

resolution in the z direction to 0.06 m.  

 

5.7. Post-processing and analysis of simulation results 

After each simulation is completed, the results are written to a folder 

containing the physical properties of the model for each time step (of 0.1s). This data can 

be analysed using ParaView, a post-processing program included with the OpenFOAM 

1.7.1 release.  

 

ParaView is an open source program for data analysis and visualisation that 

can be used to visualise the results of simulation in OpenFOAM. ParaView is specifically 

designed to handle large datasets and while not specifically designed for OpenFOAM it is 

the recommended program for post-processing of OpenFOAM simulations. Results can be 

manipulated in similar ways as commercial programs such as Fluent. ParaView was used 
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for all post-processing of simulation results of this Master thesis, including production of 

graphics and animations.  
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6. MODELLING RESULTS AND DISCUSSION 

6.1. Scenario 1: Basic numerical wave tank 

6.1.1. Basic verification 

 
The behaviour of the basic flat bottomed numerical wave tank was verified by 

comparing the simulation results with the expected ideal surface elevation determined by 

Equation (12). Using the wave parameters listed in 5.2, Scenario 1 was simulated with the 

results shown in Figure 28. It can be seen that the simulated results using OpenFOAM 

closely match the expected results. The use of a finer mesh did not improve the results. 

Given that the wave tank was validated (within a certain criteria, see 6.1.2) for a basic 

wave tank with no sloped bottom, modelling of Scenario 2 was attempted (see 6.2). 

 

 
Figure 28. Comparison of simulated surface elevation and theoretical surface elevation for Scenario 1 

numerical wave tank 
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6.1.2. Limitations of modelling regular waves in OpenFOAM 

During the computational simulation, it was found that OpenFOAM does not 

correctly simulate waves with steepness of 0.05 and above, despite being correctly 

generated by the inlet boundary condition. Incorrect simulation was found to manifest 

itself in three different ways: 

1. Waves are continuous but do not match ideal surface elevation, 

2. Damping of waves, 

3. Regular waves with a steepness below the critical breaking value (see 

4.2)  are shown to break. 

 
Two of the simulation limitations are discussed in further detail in this section. 

Given the limitations of generating waves with steepness above 0.05, it is recommended 

that only waves with steepness lower or equal to 0.05 are simulated in OpenFOAM. 

 

6.1.2.1. Damping of waves 

Damping of waves was visible with a steepness of 0.1, the example given uses 

wave parameters of 	 = 1 m, ℎ = 1 m and � = 0.1 m. The damping of the waves can be 

seen in Figure 29, which illustrates the difference between the simulated waves and the 

expected ideal surface elevation based on equation (12). The damping of the wave can be 

attributed to a high horizontal velocity of air close to the interface, as seen in Figure 30. 

 

 

Figure 29. Ideal and simulated surface elevation along the basic numerical wave tank at t=25s. Damping 

of the simulated waves is visible 
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Figure 30. Damping of waves with steepness = 0.1. The phase fraction (alpha1) and velocity (U) at t=25s 

are shown. Axes are x[m]. 

 
 

Afshar (2010) has also noted the effect of unwanted air velocity in 

OpenFOAM. Afshar (2010) noted that an anomalous horizontal velocity is generated close 

to the interface, increasing the error of waves that are propagating in the wave tank. This 

behaviour can be attributed to the VOF (Volume of Fluid) scheme used by the interFoam 

solver for free surface modelling. This method uses the difference in density between air 

and water to determine where the air-water interface is located.  Given that the density of 

water is approximately 1000 times the density of air, this leaves a region of air near the 

interface with a velocity far greater than the velocity of the water (Afshar, 2010). 

 

To combat the effects of the unwanted air velocity Afshar (2010) suggests 

“relaxation” of the air velocity by modifying the source code to replace the unwanted high 

velocity with a velocity of zero at each time step. Afshar (2010) demonstrated that this 

method could reduce the error of the air velocity. Another method suggested by Paterson 

(2008) is to modify air convection in the governing equations (see 3.2) by multiplying the 

convective term by the phase fraction value. 
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Neither of these methods was implemented for this Master thesis as the 

steepness of the waves for the experimental validation tank had a steepness well below the 

limit where the effects of the unwanted air velocity are seen. All of the scenarios modelled 

were simulated using a steepness less than 0.05 where OpenFOAM was shown to correctly 

model the waves. 

 

6.1.2.2. Breaking waves 

In addition to damping waves, OpenFOAM was also shown to cause breaking 

waves at less than the theoretical limit discussed in 4.2. This behaviour was only witnessed 

above a steepness of 0.05. An example of a regular wave breaking at less than the 

theoretical limit is shown in Figure 31 and can again be attributed to the production of 

unwanted air velocity (see 6.1.2.1).  This wave, with parameters 	 = 2 m, ℎ = 1 m and 

� = 0.2 m, �/	 = 0.1, should only break at a steepness of �/	 = 0.14, according to 

Equation (13). 

 

 
Figure 31. Example of a regular wave breaking below the theoretical limit. The parameters used are L=2 

m, h=1 m, H=0.2 m, and H/L=0.1 m. The theoretical breaking limit of this wave is H/L=0.14 m 

 

6.2. Scenario 2: Verification of numerical wave tank 

against experimental data  

The experimental results of the Dingemans (1994) experiment (see Chapter 2) 

were used to verify that the numerical wave tank could simulate results that closely 

replicate physical behaviour. Only Case A of the experiments was modelled: � = 2.02 s, 

� = 0.02 m and 	 = 3.738 m. 
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For the purposes of comparison between the experiments and simulation results 

only data from 38-45s is shown. At this time, all wave gauges experienced a fully 

developed wave and no reflection from the outlet had reached gauge 11. 

6.2.1. Basic verification of tank for experimental comparison 

Before analysing the surface elevation at each wave gauge the behaviour of the 

wave tank was tested to verify that the numerical wave tank behaves correctly with the 

given dimensions. The submerged bar (see geometry in 5.1.2) was replaced with a flat 

bottom and the parameters of Case A (see Chapter 2, Table 1) inserted into the inlet 

boundary condition. 

 

The wave pattern across the tank at � = 35 s is shown in Figure 32 and 

compared to the ideal surface elevation at that time (calculated using Equation (12)). It can 

be seen that tank behaves correctly for the given geometry and waves used for Scenario 2. 

 
 

 

Figure 32. Surface elevation at t=35s along Scenario 2 experimental verification tank without submerged 

bar  
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6.2.2. Surface elevation results at each wave gauge 

Comparisons of the simulation with the experimental results of Dingemans 

(1994) are given from Figure 33 to Figure 44. Note that two experimental measurements 

have been taken at gauge 3, labelled 3(A) and 3(B). The single simulation results for gauge 

3 has been compared to both measurements.  

 

 

Figure 33. Comparison of experimental and ideal surface elevation for gauge 1, Scenario 2 

 

 

 

Figure 34. Comparison of experimental and ideal surface elevation for gauge 2, Scenario 2 
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Figure 35. Comparison of experimental and ideal surface elevation for gauge 3(A), Scenario 2 

 

 

 

Figure 36. Comparison of experimental and ideal surface elevation for gauge 3(B), Scenario 2 
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Figure 37. Comparison of experimental and ideal surface elevation for gauge 4, Scenario 2 

 

 

 

Figure 38. Comparison of experimental and ideal surface elevation for gauge 5, Scenario 2 
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Figure 39. Comparison of experimental and ideal surface elevation for gauge 6, Scenario 2 

 
 
 

 

Figure 40. Comparison of experimental and ideal surface elevation for gauge 7, Scenario 2 
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Figure 41. Comparison of experimental and ideal surface elevation for gauge 8, Scenario 2 

 

 

 

Figure 42. Comparison of experimental and ideal surface elevation for gauge 9, Scenario 2 
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Figure 43. Comparison of experimental and ideal surface elevation for gauge 10, Scenario 2 

 
 
 

 

Figure 44. Comparison of experimental and ideal surface elevation for gauge 11, Scenario 2 

 

  

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

38 39 40 41 42 43 44 45

S
u

rf
a

ce
 E

le
v

a
ti

o
n

 η
 (

m
)

Time (s)

Gauge 10

Simulation Experiment

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

38 39 40 41 42 43 44 45

S
u

rf
a

ce
 E

le
v

a
ti

o
n

 η
 (

m
)

Time (s)

Gauge 11

Simulation Experiment



 

 

Development of a numerical wave tank using OpenFOAM Modelling Results and Discussion 

 

 

Rosebud Jasmine Lambert  58 

 

It can be seen that results for the wave gauges located in front of the bar 

(gauges 1 to 4) closely match the surface elevation measured during the Dingemans (1994) 

experiments. Gauges 5 and 6 match the magnitude of the surface elevation but have some 

difficulty matching the secondary crest that develops from gauge 5. 

 

Results begin to show variation that is more significant from gauge 7, located 

after the submerged bar. It has been noted by other authors, (including Morgan et al. 

(2010), Bai & Cheung (2011), Chazel et al. (2010)) that these gauges are the most difficult 

to reproduce by numerical models due to dispersive effects that become more pronounced 

by super-harmonics released after the submerged bar (Chazel et al., 2010).  

 

The discrepancy between experimental results and numerical simulations of 

wave evolution behind the bar was the focus of a study by Shen & Chan (2011) who noted 

that numerical models keep a regular wave profile in front of the bar as higher harmonics 

stay in phase with the primary wave. Once the water begins to deepen (i.e. after the bar), 

the higher harmonics propagate as free waves. It is these free harmonic waves after the bar 

that the numerical model developed for this Master thesis has difficulty in modelling.  

 

This limitation of the developed numerical model is evident in the results from 

gauge 7, where a delay of approximately 0.1 s can be seen. This may be due to incorrect 

simulation of the celerity (wave speed) of the harmonics that have been released after the 

slope. The results of gauges 7 to 9 display the 0.1 s time delay but the amplitude of the 

simulated surface elevation closely matches the experimental measurements. A delay in the 

simulated surface elevation of wave gauges behind the bar was also seen in Bai & Cheung 

(2011).  

 

Gauge 10 and 11 exhibit the most significant variation from the experimental 

results with difficulty matching the surface elevation of the secondary crests as well as 

displaying the 0.1 s delay. 

 

The mesh sensitivity test (see 5.6.2) indicates that improving the quality of the 

mesh by reducing cell volume and increasing the number of cells in the region after the 
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submerged bar did not improve the simulated results. This is particularly evident through 

Meshes D, E and F. Additional refinement in the region behind the bar  (Mesh D) made 

little difference to the results, as did improving refinement throughout the tank (Mesh E). 

In addition to this, improving the smoothness of the downward slope (Mesh F), also did 

not improve the results. Therefore, the delay of the simulated results cannot be attributed to 

the mesh. 

 

The surfaces in the numerical model were assumed to be smooth, an 

assumption resulting from the use of the laminar simulation option. Roughness of the 

surface can be specified using the turbulence model, which was not included within the 

scope of this work. It is possible that the lack of specification of roughness and/or 

turbulence may have contributed to the discrepancy between the simulation and 

experimental results of wave gauges after the submerged bar.  

 

6.3. Scenario 3: Simulation of regular waves against a 

slope 

6.3.1. Production of various breaker types 

 
Using the moving inlet boundary with OpenFOAM it was possible to produce 

three types of breakers that exist in the surf zone, spilling, plunging and surging (see 4.3.1). 

These three breaker types represent the three ranges of the surf similarity that can predict 

the breaker type (see 4.3.2). The surf similarity parameter of each breaker simulated is 

given Table 12 (based on geometry and input wave parameters). Snapshots of the breakers 

created are shown in Figure 45, Figure 46 and Figure 47. Note that in the figures only part 

of the wave tank is shown. In the figures the progression of the wave is marked by 

numbers, as was also shown in Figure 4. 
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Table 12. Surf similarity parameters of simulated breakers 

Scenario Breaker type Surf similarity parameter OP 
3A Spilling (Figure 45) 0.15 
3B Plunging (Figure 46) 0.91 
3C Surging (Figure 47) 3.64 
 

 

Figure 45, Figure 46 and Figure 47 demonstrate that OpenFOAM is capable of 

simulating the correct type of breaking wave within the surf zone. In Figure 45, the spilling 

breaker, from step 4 aerated water can be seen from the top of the wave, followed by 

movement of this aerated water down the front face (seen in step 6). The continued 

movement of aerated water from steps 6 to 8 shows a similar behaviour to that displayed in 

the example spilling breaker in Figure 4 (4.3.1). The plunging breaker in Figure 46 

displays the distinctive curling characteristic of a plunging breaker. Figure 47 demonstrates 

a surging breaker with no breaking of the crest of the wave. 
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Figure 45. Scenario 3A:  Formation of a spilling breaker using OpenFOAM 
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Figure 46. Scenario 3B: Formation of a plunging breaker using OpenFOAM 
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Figure 47. Scenario 3C: Formation of a surging breaker using OpenFOAM  
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6.3.2. Run-up of plunging breaker 

 
Based on a simulation of 25 s using the wave parameters given in section 5.2 

the average run-up simulated by OpenFOAM for Scenario 3B was determined. The first 

three run-ups were ignored to allow the simulation to ramp up. The measured run-up 

values are given in Table 13. 

 

Table 13. Simulated run-up levels of plunging breaker, Scenario 3B 

Run-up 
number 

Run-up above SWL [m] 

4 0.32 
5 0.34 
6 0.28 
7 0.31 
8 0.35 
9 0.25 
AVERAGE 0.31 

 
 

These simulated run-up levels can be compared to the calculated theoretical 

range of 0.27 m to 0.34 m calculated using Equation (14), Equation (15) and the minimum 

and maximum sea state parameters. The results of the OpenFOAM simulation of Scenario 

3B demonstrate that OpenFOAM can simulate wave run-up within the theoretical expected 

range. 

 

6.4. Scenario 4: Demonstration of a floating object 

impacted by regular waves                                                

 
Using the dynamic mesh option of OpenFOAM, as explained in 5.4.2, a 

floating object, with properties as defined in 5.5.3, was simulated to demonstrate that 

OpenFOAM can model a floating object under the action of regular waves. The results of 

Scenario 4 are shown as series of snapshots in Figure 48. Figure 48 clearly illustrates that 

the mesh moves with the floating object. The object is subject to action from the wave and 

is carried along in the x direction.  
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Figure 48. Floating object with dynamic mesh under the influence of regular waves. Red represents 

water, blue represents air and the black line identifies the air-water interface. The axes are in metres. 

 

The cell size in the mesh used is quite large because of the difficulty of 

simulating a dynamic mesh. Any improvement in the mesh affected the ability of 

interDyMFoam to simulate. Furthermore, this simulation failed once the floating object 

attempted to overturn.  

 

Nonetheless, Scenario 4 demonstrates that OpenFOAM is capable of 

simulating a floating object and the action resulting from regular waves. With further 

refinement of the mesh (for example using a sliding interface allowing the box to rotate 

360°) and improvements of simulation parameters, OpenFOAM may be used to simulate 

and measure impacts on floating objects, as was achieved by Yong & Mian (2010). 
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7. CONCLUSIONS AND RECOMMENDATIONS 

This work has demonstrated that OpenFOAM can be a valuable tool for the 

ocean engineering and wave energy industries. It has been shown that OpenFOAM can be 

used to successfully model a numerical wave tank if conditions and parameters of 

OpenFOAM are appropriately set. 

 

This work determined that OpenFOAM should only be used to model regular 

waves with a steepness (�/	) less than or equal to 0.05. Above this steepness, waves may 

not match the ideal surface elevation, may be damped out along the tank and have been 

shown to break below the critical breaking value. This behaviour is due to an unwanted 

high air velocity that is caused by the VOF free surface tracking method. Possible solutions 

outlined by Afshar (2010) and Paterson (2008) are suggested for future work that aims to 

model waves with a steepness above 0.05. 

 

The numerical wave tank developed was only used to model waves below the 

critical steepness of 0.05 and was shown to simulate within a good degree of accuracy 

when compared to the experimental results. Results in front of the submerged bar showed 

the strongest agreement with the experimental results. The results of wave gauges behind 

the submerged bar showed some minor disagreement compared to experimental results due 

to the higher harmonic waves that are released after the bar, a common issue for numerical 

models. The quality of the mesh was shown not be responsible for the delay exhibited in 

the simulation. 

 

In addition to generating the behaviour of regular waves with a submerged bar 

it was also shown that OpenFOAM can simulate spilling, plunging and surging breaking 

waves over a smooth sloped beach. OpenFOAM was also able to simulate the wave 

correctly as predicted by the surf similarity parameter, which indicates what type of 

breaker will form. The run-up of a plunging wave was also simulated within the theoretical 

range of sea conditions. The ability of OpenFOAM to perform these tasks has not been 

demonstrated before. 
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Finally, OpenFOAM was shown to be able to model a floating object that 

moves in response to regular waves. While the simulation had some limitations, this is an 

important step towards modelling more complex scenarios, such as a wave energy device 

that can react in response to waves. 

 

Based on the achievements and work of this Master thesis the author 

recommends some areas of improvement that may be targeted for future work. The 

numerical wave tank could be improved by developing a time independent method of 

preventing reflection, allowing longer simulation times. Further attention may also be 

given to improving the simulation of harmonics after the submerged bar. The ability of 

OpenFOAM to model turbulence should be investigated and the ability to model floating 

objects should also be improved, possibly by using a sliding interface to allow the floating 

object to overturn. Further experimental validation of the behaviour of the numerical wave 

tank may be possible if solitary waves are simulated and compared to existing 

experimental data sets (e.g. Hsiao et al., 2008). 

 

In conclusion, this work has shown that OpenFOAM can be used to create a 

numerical wave tank that generates regular waves, that those waves are generated correctly 

and can interact with submerged bars and sloped beaches to a good degree of accuracy. It 

was also shown that a floating object can be modelled using a dynamic mesh. With further 

development of this work, this author believes that OpenFOAM has the potential to be 

used to model a floating wave energy device or floating coastal structure. 
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