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Resumo 

Pretende-se com este trabalho demonstrar que o processo de interacção e 

programação de um robô industrial não se restringe somente à elaboração de um programa 

abstracto que define o modus operandi do robô. De facto, programar um robô é ainda um 

processo moroso e que requer conhecimentos técnicos. Assim, cada vez mais se tem 

procurado encontrar formas “diferentes” de interagir com robôs, mas com um objectivo 

bem definido: tornar a interface homem – robô mais intuitiva. 

Uma área que tem sido amplamente estudada ao longo dos anos prende-se com 

a capacidade de um utilizador receber feedback de força de um robô virtual ou real, ao 

mesmo tempo que este executa uma determinada tarefa. Vulgarmente esta interacção 

homem – máquina é feita através dos denominados dispositivos haptics. Estes dispositivos 

apresentavam como grande desvantagem o seu elevado custo, no entanto em 2008 foi 

lançado no mercado um dispositivo haptics concebido para a indústria dos videojogos: o 

Novint Falcon. Este apresenta um preço cerca de 100 vezes inferior relativamente aos seus 

congéneres até à data existentes. 

No âmbito desta tese é desenvolvido e implementado um sistema de controlo 

que gere todo um sistema robótico composto por um dispositivo haptics, um robô 

industrial e um sensor de força. Desse modo, um qualquer utilizador é capaz de controlar 

um robô e ao mesmo tempo receber feedback das forças que estão a ser exercidas no end-

effector do robô. 

O sistema foi validado através de vários testes experimentais envolvendo 

contacto entre o robô e diversos objectos constituídos por materiais das mais diversas 

características físicas. 
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Abstract 

The aim of this work is to demonstrate that the process of programming and 

interacting with an industrial robot is not only restricted to the definition of an abstract 

robot program that defines the robot modus operandi. In fact, programming an industrial 

robot is still a hard process that requires technical expertise. So increasingly, there is a 

demand for “different” ways to interact with robots, but with a well defined goal: to make 

the interface human – robot more intuitively. 

An area of knowledge that has been widely studied over the last years is related 

to the ability of a user to receive force feedback from a virtual or real robot whereas it 

performs a certain task. Commonly, this human – machine interaction is made through a 

special type of devices called haptic devices. These devices had as its major disadvantage 

their high cost, however, in 2008 was launched on the market a haptic device designed for 

the video game industry: the Novint Falcon. This device has a price about 100 times lower 

than its counterparts in present date. 

This thesis presents a control system that manages a robotic platform based on 

haptic technology. This system is composed by a haptic device, an industrial robot and a 

Force/Torque sensor. Thus, using this platform any user should be able to control a robot 

while receiving feedback of forces being exerted on the robot end-effector. 

The system was validated by several experimental tests involving contact 

between the robot and the most varied objects made of materials with very different 

physical properties. 
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1. INTRODUCTION  

In the never-ending effort to “simplify” their existence, human beings are 

constantly searching for new concepts and technologies that may improve their living 

conditions. The capability of having machines doing the work of humans is undoubtedly an 

asset for human development. It is interesting to verify that the countries with better living 

conditions are those with a higher level of automation in their companies, which is a 

strategic issue, influencing economic success worldwide. In Figure 1 it is possible to see 

the estimated number of industrial robots in each country worldwide. Through its analysis 

it is easily observed that the countries with a better Human Development Index (HDI) are 

those where the number of robots is higher. 

Industrial automation is described as the ability to fabricate a product without 

or with minor human intervention, allowing companies to produce faster, accurately, with 

high quality standards and more cost-effectively [Pires, 2007]. The level of automation of a 

company is the key element for its competitiveness, especially to face companies from 

regions where the costs of labour are much lower. 

 
Figure 1 – Estimated number of industrial robots worldwide [IFR, 2009].  
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As above mentioned, industrial robots play an important role in the world of 

industrial automation. However, programming an industrial robot by the typical teaching 

process is a tedious and time-consuming task that requires some technical expertise, and 

hence new approaches to robot programming are required [Neto et al., 2010].  

The purpose of this thesis is to present a robotic system that allows users to 

instruct, program and receive force feedback from an industrial robot, all of this with a 

high-level of abstraction from the specific robot programming language. To achieve the 

thesis goals the potentialities of a recent technology in expansion will be explored; the 

haptic technology (Section 2.1). Thereunto, a new and low cost haptic device will be 

explored, the Falcon from Novint (usually designated by Novint Falcon) (Section 3.1.1). 

Until now, the consumer market haptic devices were fairly basic and often labeled “force 

feedback” controllers. Examples, we may point out the “rumble” on most modern 

videogames controller and joysticks like the Microsoft Sidewinder. Most of the 

sophisticated haptic devices are expensive and reserved for professional applications such 

as medical training.  

The appearance of the Novint Falcon has allowed an increase of use and 

diffusion of haptic technology in many different fields, including industry. Since the 

beginning of Falcon’s production, haptics technology has been experienced by a larger 

audience. It is possible to say through a research, that the great advantage of the Falcon is 

its price. The Falcon has limited control capabilities compared to a more professional 

device such as SensableOmni or Omega7. However as a research tool the Falcon is a 

relatively good device. The developed techniques for the Falcon can easily be implemented 

in the other haptic devices. 

Concerning the robotics field and the work here presented, the Novint Falcon 

will enable the control of a robot movement at the same time that the user receives force 

feedback through the Novint Falcon grip (the force values come from a 6 DoF 

Force/Torque (F/T) sensor attached to the robot wrist). Thus, any user without technical 

knowledge in the robotics field should be able to control the robot, save robot poses and by 

this way define step by step a robot program. Moreover, force feedback is a very important 

issue that allows a user to feel the forces exerted on the robot end-effector. This is the key 

point to remember: using this system the user can control and program a robot without the 

need to be a specialist in robotics, on the contrary, the user can focus only on the correct 

definition of the robotic task (welding, painting, machining, etc.). 
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The above mentioned system requires work on advanced robotic concepts such 

as teleoperation, telepresence, force control and robot pose control. All of these areas of 

knowledge will be subject of study in this dissertation. 

Several experimental tests were carried out to verify the reliability and 

effectiveness of the system. These tests had shown good results and proved that the system 

is reliable. In a near future this type of robotic platform could be a reality in industrial 

environments. 

1.1. Organization of the Rest of the Thesis 

Chapter 2 describes haptic technology, how and where this technology has 

been used and current applications. Several different types of haptic devices are presented. 

Moreover, it is also presented a general overview about the evolution of robotics. 

Chapter 3 presents an overview of the proposed system, including a 

description of all equipment used. It is also shown how the equipments communicate with 

each other. 

Chapter 4 gives details about the implemented control methodologies, ballistic 

control, the virtual spring concept, force control and robot pose control. The architecture of 

the software application that manages the system is analysed.  

Chapter 5 presents the experimental setup, practical tests, results and 

discussion of results. Four different types of practical tests are performed: free robot 

movement, robot end-effector contact with a sponge and with a paper box, object 

manipulation and a final test exploring the system capabilities in a cutting operation. 

Chapter 6 concludes the thesis and discusses future directions of research in 

this area. Future applications are also mentioned. 
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2. STATE OF THE ART 

2.1. Haptics 

Haptics is a term derived from the Greek verb “haptesthai” that means “to 

touch”, referring to the act of detection and manipulation through touch. The word haptics 

is also pointed as the science of the touch, which is devoted to study and to simulate the 

pressure, texture, vibration and other biological sensations related with the touch [Eid et 

al., 2007]. In relation to humans, this sense (the touch) possesses two independent 

components: cutaneous and kinetic. The cutaneous component is linked to the “sensors” 

located in the surface of the skin, which are responsible for sensations as pressure, 

temperature, vibration and pain. The kinetic component is connected to the sensors located 

in the muscles, tendons and joints. This component is related to the sensations of 

movement and force [Carneiro, 2003]. 

Through the use of special input/output devices (joysticks, data gloves, haptic 

devices, etc.) the human beings can receive feedback from computer applications in the 

form of felt sensations in the hand or other parts of the body. For example, when combined 

with computer graphics, haptic technology can be used to train people for tasks requiring 

hand-eye coordination such as surgery or space ship maneuvers [Salisbury et al., 2004]. 

Haptic technology embraces multiple disciplines such as biomechanics, 

neuroscience, psychophysics, robot design, robot control, mathematical modelling, 

simulation and engineering software. This extensive variety of disciplines could instigate a 

complex bibliographic research, so it is useful to define sub-areas of knowledge in the 

haptics field: human haptics, machine haptics, computer haptics and multimedia haptics: 

 

(I) Human haptics refers to the study of human sensing and manipulation 

through tactile and kinaesthetic sensations. It comprises human haptic 

perception, cognition and neurophysiology brought together to contribute 

to the study of human touch and physical interaction with external 

environments. 

(II) Machine haptics involve design, construction and development of 

mechanical devices that “replace” or augment human touch. 
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(III) Computer haptics is an emerging area of research that concernes the 

development of algorithms and software to generate and render the “touch” 

of virtual environment objects – somehow analogous to computer graphics. 

Essentially, computer haptics deals with modelling and rendering virtual 

objects for real-time display. It includes the software architecture for haptic 

interactions and the synchronisation with other display modalities such as 

audio or visual media.  

(IV) Multimedia haptics consists in integrating and coordinating the 

presentation of haptic interface data and other types of media in multimedia 

applications, allowing the utilization of gesture recognition and receive 

force feedback. 

2.1.1. History 

Haptics was introduced at the beginning of the 20th century through research in 

the field of experimental psychology, aiming the understanding of human touch perception 

and manipulation.  

In order to better understand the importance of haptics, one can draw an 

analogy between the concept radio-television and video-haptics. In the heyday of radio it 

was unimaginable that someday the television would come to replace the radio, but in fact 

that was what happened. Since the sense of touch contains much more information than an 

image or a video by itself, it is expected that in the future we may have a much more strong 

presence of haptic systems in our lives. Haptic technology will not appear by itself but 

associated with video technology and several types of machines [Eid et al., 2007; Salisbury 

et al., 2004; Gillespie, 2005]. 

In the 1970s and 1980s, significant research efforts were conducted in the 

robotics field, including studies in manipulation and perception by touch. These studies 

were very important since many of them were intended to be part of a long-term goal, the 

construction of autonomous robots inspired by human abilities. Soon researchers found 

that the development and construction of these types of machines was much more complex 

and subtle than their initial hopes had suggested. Meanwhile, terms such as teleoperation, 

telepresence and telerobotics became common in the robotics community. From those 

terms, two were especially important to the development of haptic technology, 

Teleoperation and Telepresence: 



 

Interaction with Real Environments: an 

Approach Based on Haptic Systems  STATE OF THE ART 

 

 

Nélio Ricardo Sebastião Mourato  6 

 

  

(I) Teleoperation refers to the extension of a person’s sensing and 

manipulation capabilities to a remote location.  

(II) Telepresence can be described as a realistic way that an operator can feel 

physically present at a remote site.  

(III) Telerobotics is the area of robotics concerned with the control of robots 

from a distance. It is the combination of Teleoperation and Telepresence. 

 

In the early 1990s, the use of the word haptics in the context of computer was 

introduced. Much like computer graphics, computer haptics is concerned with the 

techniques and processes of generating and displaying haptic stimulus to the user in an 

interactive manner [Srinivasan and Basdogan, 1997]. However, computer haptics uses a 

display technology through which objects can be physically palpated. This new modality 

provides information to the user’s hand or other parts of the body, by exerting controlled 

forces through the haptics interface. These forces depend on the mechanical contact and 

are delivered to the user according to the physical properties of the objects that can be 

perceived.  

Recently, haptic technologies have been integrated with high-end workstations 

for Computer-Aided Design (CAD) and on home PCs and consoles, expanding the human-

computer interaction. Effectively, this implies opening a new mechanical channel between 

humans and computers so that data can be accessed and manipulated through haptic 

interfaces. 

Nowadays, with the evolution of computers, haptic systems can “display” 

objects with sophisticated complexity and behaviour. This is possible due to the 

availability of high-performance force-controllable haptic interfaces and affordable 

computational modelling tools.  

The commercial availability of haptic interfaces, software toolkits and haptics-

enabled applications gave this field an experiencing exciting and exponential growth. 

2.1.2. Haptic Interaction and Devices  

In this section, some of the most relevant haptic interaction techniques, 

interfaces and devices will be presented, some of them still under development. 
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Through the physical simulation of a virtual environment it is possible to 

calculate in real time the contact forces between the various virtual objects. These forces 

can then be sent to the mechanical actuators of a haptic device (typically motors and 

vibrators), creating in the user the sensation of being in contact with a real object. 

Depending on the actuators, haptic devices can be reactive or tactile [Eid et al., 2007; 

Salisbury et al., 2004; Anderson et al., 2007]. 

Haptic technology has been implemented through different types of interaction 

with haptic devices. These interaction types are usually classified into the following 

different types of touch sensations: force feedback, tactile feedback, proprioception and 

kinaesthesia. 

 

(I) Force feedback: a human can feel the forces applied to its body through the 

movements of a haptic device; these movements are sensed primarily 

through musculoskeletal forces and also through the skin that touches the 

physical interface of the haptic device. This is often accomplished by a 

user’s hand grasping a handle connected within the haptic device, for 

example, 3D haptic devices (like the Novint Falcon), 2D haptic devices and 

force-feedback joysticks [Anderson et al., 2007], Figure 2. Nevertheless, 

these touch sensations can also be achieved through the use of a haptic 

glove (Figure 2–b), through the vibration of the motors of a haptic device 

that the user is holding (for example, a game controller or a force-feedback 

mouse), through the vibration or movement of an object where the user sits 

or through any other mechanical system that can give adequate sensations 

of force and/or touch to the user.  

Haptics is often accomplished through the use of electrical motors, 

although there are other methods and techniques to create force and/or 

touch sensations: 

(i) Pneumatic devices (air controlled). 

(ii) Hydraulic devices (fluid controlled). 

(iii) Piezoelectric materials (expand or contract with electric current). 

(iv) Electric stimulation (sending electric currents directly to a user’s 

skin or nervous system). 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 2 – Haptic devices. (a) SideWinder Joystick; (b) DataGlove Cyberglove; (c) WingMan Mice; (d) 

Omega.7 from Force Dimension; (e) Delta Haptic devices (Force Dimension Delta and Novint Falcon); (f) 

Phantom from SensAble. 

(II) Tactile feedback: The forces applied directly on the human skin are 

detected by “sensors” within the skin called mechanoreceptors. Tactile 

feedback can also be sensed by a user through electrical currents applied on 

the skin or using objects that can vary in temperature when touching the 

skin [Anderson et al., 2007]. 

In general, tactile sensations include pressure, texture, puncture, thermal 

properties, softness, wetness and friction-induced phenomena such as slip, 

adhesion and micro failures. Local features of objects such as shape, edges, 

embossing and recessed features also may cause tactile sensations. For 

example, tactile feedback can be accomplished with pin arrays on a haptic 

device that the user places a hand or finger on it [Carneiro, 2003]. The pins 
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within the pin array can slightly raise or lower as the haptic device moves, 

giving the sensation that the user’s finger or hand is moving across a virtual 

object with texture. These devices are related only with the cutaneous 

component of the touch. As example of such devices, it can be mentioned 

the pantograph, Braille displays and the Smart Finger (Figure 3). 

  

(a) (b) (c) 

Figure 3 – Tactile feedback devices. (a) Pantograph; (b) Rotary Braille display; (c) Smart Finger. 

(III) Proprioception: This is the sense that refers to the body’s ability within 

joints and joint position. For example, if you move your arm out to the side, 

even if your eyes are closed you know where it is. The human sense of 

proprioception derives from the force that our muscles exert within our 

body. 

Generally, force feedback has a proprioceptive component, as the user’s 

movements on a haptic device in correlation with an application that create 

the forces he feels. Even computer input devices that are generally not 

considered haptic devices use our sense of proprioception, such as mice and 

keyboards [Anderson et al., 2007]. 

(IV) Kinaesthesia: This is similar to proprioception but in this case other 

internal feelings are included, for example the feeling of a full stomach.  

2.1.3. Applications 

Haptics research and development has been focused on designing and 

evaluating several prototypes of different characteristics and capabilities, especially for 

applications to interact with virtual environments. Applications of haptic technology have 

been spreading rapidly in several areas: video game industry, multimedia publishing, 

scientific discovery and visualization, arts and creation, edition of sound and images, 



 

Interaction with Real Environments: an 

Approach Based on Haptic Systems  STATE OF THE ART 

 

 

Nélio Ricardo Sebastião Mourato  10 

 

vehicle industry, engineering, manufacturing, telerobotics and teleoperations, education 

and training, as well as medical simulation and rehabilitation [Eid et al., 2007; Salisbury et 

al., 2004], Figure 4. Recently, some haptic based prototypes have become commercially 

available. 

  

(a) (b) 

Figure 4 – (a) Sensable Phanton used for the training of dentists; (b) DaVinci, the medical and teleoperated 

robot. 

The haptics application’s spectrum is quite vast and its trend of expansion is 

promising to increase. Nevertheless, haptic interfaces are not yet ready to become a regular 

device such as computer in today’s society. These interfaces confront computational 

challenges that become considerably demanding, as the realistic experience has to result 

from the collaboration of three processes: the coordination of the visual system, the 

position tracking and the update of the forces that actuate the haptic device (these forces 

can be delivered or simulated). 

The Novint Falcon is being applied primarily in the video game industry, but 

its applications do not stop here. It can also be applied in medical training, as a design and 

architectural tool, in automotive modelling, tire modelling, programming and control of 

manipulators, etc. [Anderson et al., 2007; Chotiprayanakul, 2009; Schill et al., 2008; El 

Far et al, 2008], Figure 5. An interesting work presents the use of the Falcon as a force 

feedback teleoperation device whilst present a mechanical linkage and additional software 

that allow the Falcon to be used as a pantograph for robot-assisted repetitive motion 

training [Palsbo et al., 2008; Streng, 2008]. 

As mentioned, nowadays, haptic technology is applied mainly to interaction 

with virtual environments (Figure 5-a, 5-b and 5-d), however, exists a development 
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tendency in researching to use this technology for interaction with real environments 

(Figure 5-c). 

  

(a) (b) 

  

(c) (d) 

Figure 5 – (a) Tire modeling; (b) Eye surgery training; (c) Control of military robots; (d) video game industry. 

2.2. Industrial Robotics  

Robotics is the engineering science and technology of robots, their design, 

manufacture, application and structural disposition. Robotics is related to electronics, 

mechanics and software.  

The term “robotics” is derived from the word “robot” introduced by the Czech 

writer Karel Capek in 1920. To put it in a simple way, a robot is a machine capable of 

independent actions; it means that a robot is a machine which could execute a specific task 

without human supervision [Hägele et al, 2008]. In fact, robots have revolutionized the 

industrial workplace and today thousands of manufacturers rely on the productivity, high-
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performance and savings provided by modern-day industrial automation where the robot is 

a key element.  

The history of industrial robotics begins in 1954 with the invention of the first 

programmable robot by George Devol (considered the father of robotics). In 1956 Devol 

and Joseph F. Engelberger created the first robot company, the UNIMATION [Hunt, 1983; 

Nof, 1999]. The first industrial robot was online in a General Motors automobile factory in 

1961, New Jersey. It was a Devol and Engelberger's UNIMATE (Figure 6-a).  

In 1969 Victor Scheinman at Stanford University invented the Stanford arm 

(Figure 6-b), which was the first electrically powered computer-controlled robot arm with 

6-axis articulated. 

  

(a) (b) 

Figure 6 – (a) Unimate robot; (b) Stanford arm. 

In 1973, the Swedish company ASEA (now ABB) introduced the first 

microcomputer-controlled all-electric industrial robot, the IRB-6 (Figure 7-a), which 

allowed continuous path motion, a precondition for arc-welding or machining robotic 

operations [Hägele et al, 2008]. 

In 1978, the selective compliance assembly robot arm (SCARA) (Figure 7-c) 

was invented by Hiroshi Makino of Yamanashi University, in Japan. The ground-breaking 

four-axis low-cost design was perfectly suited for small parts assembly as the kinematic 

configuration allows fast and compliant arm motions.  

The 6 axis robot PUMA (programmable universal machine for assembly) came 

close to the dexterity of a human arm (Figure 7-b). After its launch in 1979 by 

UNIMATION it became one of the most popular arms and was used as a reference in 

robotics research for many years. 
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(b) 

 

(a) (c) 

Figure 7 – (a) ASEA IRB-6; (b) Puma robot arm; (c) Hirata Scara Robot. 

In modern days, two handled dexterous manipulation can be critical for 

complex assembly tasks, simultaneous handling, processing of work pieces and the 

handling of large objects. The first commercial robot for synchronized, two-handed 

manipulation was introduced by MOTOMAN in 2005 (Figure 8-a). This dual-arm robot 

imitates the reach and dexterity of human arms and can be put on a place that previously 

accommodated human workers, reducing labour costs. It features 13 axes of motion, six 

axes per arm plus a single axis for the base rotation. 

In 2006 the German company KUKA Robotics release a compact 7 DoF 

lightweight robot arm with advanced force control capabilities (Figure 8-b). The joint 

speed and weight of this robot have led to a new kinematic and transmission design. The 7 

axis arm which is suited for human-robot cooperation imitates the dexterity of a human 

arm.  
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(a) (b) 

Figure 8 – (a) MOTOMAN DA20; (b) KUKA Light-Weight robot arm (7 DoF). 

It is expected that in the future the robots we commonly see in science fiction 

can be a reality (Figure 9-a). This can be evidenced by the humanoid robot Justin, 

equipped with two lightweight arms and two four-finger hands (Figure 9-b). In future, 

humanoid robots are envisioned in household applications as well as in space environments 

[Borst, 2008] 

 
 

(a) (b) 

Figure 9 – (a) Robot model NS-5 from the science-fiction film “I Robot”; (b) A futuristic-real robot Justin 

made by DLR and KUKA. 
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3. SYSTEM ARCHITECTURE AND EQUIPMENTS 

All the equipments belonging to the robotic platform, developed by the author, 

are presented in this chapter with an adequate level of detail. Moreover, the way the 

equipments interact with each other will also be analysed.  

The interaction with the robot is carried out through a haptic device, the Novint 

Falcon, allowing to teleoperate and monitoring the forces being exerted on the robot end-

effector. The position data sent by the haptic device are received in a computer running a 

software application that manages the entire platform. After being analysed and treated 

these data will be used to control the robot (teleoperation). Simultaneously, force and 

torque data sent by the F/T sensor is received by the application interface, treated and then 

sent the appropriate force commands to the haptic device (Figure 10). 

 

Figure 10 – System Architecture. 

3.1. Equipments  

3.1.1. Novint Falcon 

Novint Falcon is a relatively inexpensive 3 DoF haptic device, which has a 

configuration similar to a delta-robot [Clavel, 1989] (Figure 11). This specific type of 

robot (delta configuration) has proven itself to be an excellent platform for high-speed 

pick-and-place operations due to the mechanism's low actuated inertia, high power to 

weight ratio, high stiffness and high payload capability when compared to serial 

counterparts [Olsson, 2009].  
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Novint Falcon was the first haptic device that made high-fidelity three-

dimensional interactive touch possible and practical for consumer computing applications 

at a low cost. It is essentially a small robot that lets users feel weight, shape, texture, 

dimension, dynamics and force effects when playing games. Using the Falcon, users 

experience a full range of realistic touch sensations that allows them to interact with an 

environment (real or virtual) more naturally and intuitively.  

This device was initially used as a computer game controller however its 

application was rapidly expanded to other areas. The Falcon provides highly accurate 

tracking and extremely realistic force feedback sensation, allowing a user to interact and 

learn muscle memory, as much as games and sports are played in real life [Anderson et al, 

2007]. 

 
Figure 11 – Novint Falcon. 

The product name comes from one of nature’s best flying predators, the falcon. 

Because like the falcon, this controller can move freely in the three dimensional space, 

providing a realistic 3D sense of touch and an immersive experience that surpasses existing 

point and click technology. So, it is natural that Novint Falcon has been described as the 

predator of the computer mouse. 

The Novint Falcon was launched in 2007 and pioneered a new category of 

touch products for the consumer market. In the past, the cost of 3D-touch haptic hardware 

made the technology impractical for consumer applications (from tens of thousands to 

hundreds of thousands of USD). The Novint Falcon costs less than 200 USD (Table 1) and 

can be compared with other similar devices [Inition, 2010]. 
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Table 1 – Comparison of Novint Falcon with other haptic devices and game controllers; RL – Right-Left, FB – 

Front-Back, UD – Up-Down. 

 
Novint 

Falcon 
Omega Delta 

SensAble 

Phanton 

Nintendo 

Wii remote 
PS3 

Degrees of 

Freedom 

3 + 3 with 
special 
handle 

3 + 3 with 
special 
handle 

3 + 3 with 
special 
handle 

6 6 3 

Movements 

Directions 

RL 

FB 

UD 

With special 

handle: 

Roll 

Pitch 

Yaw 

RL 

FB 

UD 

With special 

handle: 

Roll 

Pitch 

Yaw 

RL 

FB 

UD 

With special 

handle: 

Roll 

Pitch 

Yaw 

RL 

FB 

UD 

Roll 

Pitch 

Yaw 

RL 

FB 

UD 

Roll 

Pitch 

Yaw 

Roll 

Pitch 

Yaw 

Rumble/Vibr

ation Force 

Feedback 

Yes Yes Yes Yes Yes No 

3D shape 

exploration 
Yes Yes Yes Yes No No 

High-fidelity 

Force 

Feedback, 

Textures, 

and 

Interactions 

at a 

consumer 

price point 

Yes No No No No No 

Real 

Dynamics 

Modeling 

Yes Yes Yes Yes No No 

Workspace 

[mm] 

100 x 100 x 
100 

160 x 160 x 
120 

360 x 360 x 
300 

160 x 120 
x 70 

- - 

Forces Máx 

[N] 
8,9 12 20 3,3 - - 

Price USD <200$ 
33000$ to 

53000$ 

40000$ to 

60000$ 

2000$ to 
10000$ 

50$ >200$ 

3.1.1.1. Interface 

The Falcon uses a USB interface to send and receive data to/from a computer 

application. Received data is interpreted by an onboard firmware and sensory data from 
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encoders is transmitted back to the controlling computer. Novint has released a Windows 

SDK to make easier the process of interaction with the device. 

This USB interface uses a 1kHz update rate with commanded forces 

maintained by the firmware for 10Hz unless overwritten [Martin and Hillier, 2009]. Some 

authors refer that the haptics force rates must exceed 1kHz to obtain acceptable results 

[Choi and Tan, 2004]. It was found that a 1kHz update rate was unable to be sustained over 

the USB interface and typically missed commands or reads resulted in a real-world 

communication rate between 800Hz and 1kHz, depending on the controlling computer's 

load. This interface also resulted in a noticeable (2-5 samples) delay between force 

commands being issued and changes in the encoder measurements being received by the 

controlling computer. The exact cause of this delay is still unknown. It is possible that 

some of these delays may be eliminated with custom firmware on the Falcon's internal 

controller chip [Martin and Hillier, 2009]. 

3.1.1.2. Workspace 

The most common criticism of the delta-robot configuration is its limited 

workspace. The three limbs of the Falcon work in kinematic concert to actuate the end-

effector, but each leg is limited by the reach of the connected linkages. This results in a 

workspace bounded by warped tri-hemispherical regions overlapping along the 

longitudinal Z axis. To quantify this volume several tests have been done. In such way, a 

number of random points were generated in cartesian space and tested to see if they were 

kinematically realizable. As the numbers of random points were increased, so a better 

estimate of the workspace volume was formed. 

Similarly, by simple application of limit theory, it is also possible to estimate 

the enclosing volume, approximately 7.90x10-5m3. Figure 12 shows the resultant calculated 

plots of the workspace [Martin and Hillier, 2009]. 
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Figure 12 – Novint Falcon's achievable workspace. The units are in meters [Martin and Hillier, 2009]. 

3.1.1.3. Force Models 

The manufacturer of Falcon haptic devices provides some general 

specifications on workspace size and forces that the device is able to support, but they do 

not present detailed values. Concluded that the torques required to produce a certain force 

increases as the actuators are near to the end of their stroke. The largest forces can be 

produced in the centre of the workspace [Martin and Hillier, 2009]. 

Haptics calculation is mainly based on applied physics. There are only two 

physics relationships needed to provide a huge percentage of haptic effects, mass-

acceleration model (1) and basic damped spring (2). 

 

 F M a= ×  (1) 

 F k X c V= × + ×  (2) 
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Where F is the force, M the mass, a the acceleration, k the spring constant, X the mass 

displacement, c the damping coefficient and V the mass velocity. 

The mass-acceleration model can be used for example when we are shoting a 

basketball, in this case the primary force calculation is based on the mass of the basketball 

and the force required to produce the desired acceleration. The other model, spring-mass-

damper (Figure 13), finds application in very easily visualized examples, such as a ball 

bouncing at the end of a rubber band. 

 

Figure 13 – Basic spring-mass-damper model. 

3.1.2. Robot Manipulator 

The selected robotic arm is a MOTOMAN HP6 (Figure 14) equipped with an 

NX100 controller also from MOTOMAN. This is a high speed robotic arm that presents 

high reliability and repeatability. This robot has been applied in different industrial 

applications, such as material handling and packaging. The characteristics of the robot are 

given in Table 2. 

Table 2 – Robot Characteristics. 

MOTOMAN HP6 

Controlled Axes 6 

Robot Mass 130 kg 

Payload 6 kg 

Vertical Reach 2403 mm 

Horizontal Reach 1378 mm 

Repeatability ±0,08 mm 
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Figure 14 – Reaching volume of MOTOMAN HP6. 

3.1.3. Force Sensor 

The selected F/T sensor, 85M35A from JR3 (Figure 15-a), is instrumented with 

metal foil strain gages which sense the loads imposed on the sensor. The strain gage 

signals are amplified and combined to become an analogue representation of the force and 

torque loads along the three axes of the sensor. In most models, the analogue data is 

converted to digital format by electronic systems contained within the sensor [JR3 

Manual’s].  

The coordinate system on standard JR3 sensors is oriented with the X and Y 

axes in the plane of the sensor body and the Z axis perpendicular to X and Y (Figure 15-b). 

The reference point for all loading data is the geometric centre of the sensor.  

The selected sensor is 85mm in diameter and 35mm in thickness, and load 

rating 63N [JR3 Datasheets].  
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(a) (b) 

Figure 15 – (a) F/T sensor JR3 6 DoF; (b) Sensor coordinate system. 

3.1.4. Computer 

The computer used in this work served both to develop the interface 

application that manages the whole system and to run that application. The main features 

of the computer are listed in Table 3. 

Table 3 – Main features of the computer.  

Processor Intel® Core™2 Duo CPU E8400 @ 3,00 GHz 

Memory 1,75 GB of RAM 

System Microsoft Windows XP Professional 

3.2. Data Transfer 

One of the main tasks of this work was to put all the hardware to communicate 

with each other. The way the various components of the system communicate and interact 

with each other is represented in a simplified scheme in Figure 16. 

It was developed an application interface which controls/manages the whole 

system, in other words, the application acquires data, interprets it (robot pose control, force 

control and haptic interface) and sends control commands to the robot and Novint Falcon. 

This application interface was implemented on the development platform Visualstudio 

from Microsoft and coded in C++ [Soulié, 2007]. 
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Figure 16 – System data transfer. 

In order to acquire motion data from the Novint Falcon it was used a free tool 

named HDAL SDK [Novint Technologies Incorporated, 2008]. This motion data 

represents the position vector of the Novint Falcon’s grip, XN = (xN, yN, zN).  

The data from the F/T sensor is acquired using an ActiveX named JR3PCI, 

these data include forces, Fc = (fcx, fcy, fcz), and torques, Tc = (tcx, tcy, tcz). 

Adding the MotomanLib component to the application interface it is possible 

to control and monitor the robot, in other words, it will enable the application to receive 

information about the pose of the robot end-effector Xe* = (xe*, ye*, ze*, rxe*, rye*, rze*), 

and send pose commands to the robot Xa = (xa, ya, za, rxa, rya, rza). 

 Finally, the Falcon receives force commands, Fd = (fdx, fdy, fdz), from the 

application interface through the HDAL SDK. 
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4. TELEOPERATION APPROACH BASED ON HAPTICS 

Haptic teleoperation provides telepresence since it allows a user to remotely 

operate a slave robot through a master device and at the same time “fell” the remote 

environment. The potential of this type of system is enormous, but the connection of 

master/slave stations in a coherent way is still a challenging task. Whereas the master 

station is controlled by a human operator, the slave station often interacts with an unknown 

and dynamic environment. The nature of this interaction greatly influences overall system 

performance [Park and Khatib, 2006; Chotiprayanakul et al, 2008]. 

In this study, the teleoperation approach is realized by integrating three 

different components: a virtual spring to connect the master and the slave, positional robot 

control (ballistic approach) and force control (robot reaction and Falcon force feedback). 

To a better understand of the applied concepts it will be described how to 

acquire force data on the robot wrist. Then, with this data it is possible to limit the 

movement of Falcon and therefore the movement of the robot. 

4.1. Robot Position Control (Ballistic Control) 

Concerning to haptics, position control is one of the most common control 

paradigms. Usually, it refers to a mapping in which the displacement of an object in 

physical space directly dictates displacement of another different object. In our specific 

study, the displacement of the Falcon grip will produce a displacement on the robot end-

effector. It is important to note that the workspace of a haptic device is normally different 

from the workspace of a robot. The volume ratio between a haptic workspace and a robotic 

arm workspace is usually less than one tenth [Chotiprayanakul, 2009].  

In this study the robot accuracy depends on the robot motion which in turn is 

controlled by the speed with which the user’s hand moves the Falcon grip (ballistic 

approach). Generally speaking, the ballistic approach makes the mapping between the 

displacement produced on the haptic device and the resulting robot motion. Ballistics 

refers to the technique of varying the scaling between the motion of a physical device (the 

Falcon) and the motion of a displayed avatar (in this case a real robot) depending upon the 

velocity of the device in its workspace [Conti and Khatib, 2005]. Making an analogy, one 
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can consider that the real robot end-effector behaves as an avatar. The ballistic approach 

provides an accurate control of the avatar, videlicet, performing the same hand trajectory 

the user could control the avatar with a large or small movement (depend on the speed of 

the hand movement). More specifically, if the user wants the avatar travel a great distance 

he needs to perform a rapid movement (moving the grip of the Falcon), on the contrary, if 

the user is performing small movements the avatar will travel a short distance (Figure 17). 

This last situation can be useful when it is necessary to control the robot with precision.  

 
Figure 17 – Ballistic control; Novint Falcon’s grip large motions are translated into larger displacements on 

the slave robot end-effector. 

4.1.1. Ballistic Control I 

It is necessary to achieve the motion to send to the robot: displacement 

Xa=(xa,ya,za,0,0,0) and velocity va. These data come from the motion produced by the user 

on the Falcon’s grip. Thus, Xa can be calculated as: 
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Where VN,0=(vN,x,0, v N,y,0, v N,z,0,0,0,0) is the initial velocity which the Falcon is 

moved along the three Cartesian axes, ∆t=tn–t0 is the time variation from the beginning of 

the Falcon movement to the end of the movement (time instant n); and Am=(am,x, am,y, 

am,z,0,0,0) is the average acceleration with which the Falcon is moved. So, to calculate Xa, 

first it is necessary to calculate V0 and Am. In order to simplify the explanation of the 

process it will be analyzed only motion along the X axis. For Y and Z axes the process is 

similar. The system is constantly acquiring motion data from the Falcon, an example is 

presented in Figure 18, where four different points (along X axis) acquiring at four 

different time interval are represented. 

 
Figure 18 – Position points acquired along the X axis from the Falcon. 

From the acquired points it is possible to calculate velocity and acceleration of 

Falcon’s grip. In basic physics velocity is the change rate of position in an interval of time, 

v=dx/dt. In the same way, acceleration is the change of velocity over time, a=dv/dt. Figure 

19 explains how to calculate velocity and acceleration from the motion data acquired from 

the Falcon. 
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Figure 19 – Calculating velocity and acceleration from motion data. 

The velocity along the X axis for a generic interval of time n can be calculated as: 
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In the same line of thought and from (4), acceleration can be calculated as: 

 

 
, , 1 , , 2

, , 2

2

N x n N x n

N x n

n n

v v
a

t t

− −
−

−

−
=

−
 (5) 

From (5), Am=(am,x, am,y, am,z,0,0,0)where the average acceleration along the X axis can be 

calculated as: 
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The above mentioned method was implemented and tested (Table 4). It was 

done six different tests, extracting different number of position data from the Falcon. It is 

important to refer that each test was executed with different motions, calculating the 

normal displacement of the Falcon grip and the displacement using the ballistic approach. 
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Table 4 – Experimental tests for Falcon grip displacement calculation, normal displacement and 

displacement calculation using the ballistic approach. 

BALLISTIC APPROACH I 

Test 1 - 5 position elements Test 2 - 5 position elements 

xN [mm] yN [mm] zN [mm] Time [ms] 
 

xN [mm] yN [mm] zN [mm] Time [ms] 

-2,46 -38,10 -12,47 1765 
 

-6,50 -37,54 27,61 6703 

2,46 -33,81 -7,62 1875 
 

12,70 -33,32 28,55 6812 

9,14 -27,64 -2,26 1968 
 

29,90 -30,58 24,59 6921 

14,81 -22,00 1,37 2078 
 

37,54 -23,32 20,04 7015 

16,1036 -15,265 2,1336 2171 
 

40,79 -12,19 16,10 7125 

Normal Displacement (Xn(4)– Xn(0))   
Normal Displacement (Xn(4)– Xn(0))  

∆xN [mm] ∆yN [mm] ∆zN [mm] 
  

∆xN [mm] ∆yN [mm] ∆zN [mm] 
 

18,57 22,83 14,61 
  

47,29 25,35 -11,51 
 

Ballistic control 
  

Ballistic control 
 

xa [mm] ya [mm] za [mm]   
xa [mm] ya [mm] za [mm]  

14,01 20,36 13,05 
  

53,13 25,57 -2,41 
 

         

Test 3 - 4 position elements 
 

Test 4 - 4 position elements 

xN [mm] yN [mm] zN [mm] Time [ms] 
 

xN [mm] yN [mm] zN [mm] Time [ms] 

-35,00 2,90 3,61 3093 
 

-47,02 7,52 -7,87 17078 

-36,37 -12,12 6,83 3203 
 

-45,64 -1,09 -2,97 17171 

-27,76 -31,09 12,57 3312 
 

-41,61 -15,04 2,51 17281 

-11,48 -38,30 22,10 3406 
 

-37,69 -26,37 5,18 17390 

Normal Displacement (Xn(3)– Xn(0)) 
  

Normal Displacement (Xn(3)– Xn(0)) 
 

∆xN [mm] ∆yN [mm] ∆zN [mm] 
  

∆xN [mm] ∆yN [mm] ∆zN [mm] 
 

23,52 -41,20 18,49 
  

9,32 -33,88 13,06 
 

Ballistic control 
  

Ballistic control 
 

xa [mm] ya [mm] za [mm]   
xa [mm] ya [mm] za [mm] 

 
17,69 -35,18 17,66 

  
7,14 -30,45 13,28 

 
         

Test 5 - 3 position elements 
 

Test 6 - 3 position elements 

xN [mm] yN [mm] zN [mm] Time [ms] 
 

xN [mm] yN [mm] zN [mm] Time [ms] 

0,51 29,16 -15,98 13968 
 

28,63 7,72 -16,61 10109 

-9,14 25,25 -16,00 14078 
 

27,18 18,03 -24,69 10218 

-20,07 18,72 -12,04 14171 
 

20,96 28,45 -31,80 10312 

Normal Displacement (Xn(2)– Xn(0)) 
  

Normal Displacement (Xn(2)– Xn(0)) 
 

∆xN [mm] ∆yN [mm] ∆zN [mm] 
  

∆xN [mm] ∆yN [mm] ∆zN [mm] 
 

-20,57 -10,44 3,94 
  

-7,67 20,73 -15,19 
 

Ballistic control 
  

Ballistic control 
 

xa [mm] ya [mm] za [mm]   
xa [mm] ya [mm] za [mm] 

 
-20,83 -10,73 4,30 

  
-8,07 20,85 -15,20 
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Throughout the tests, it was observed that the ballistic approach complies with 

the planed, but its results were not commensurate with the expected. In reality the obtained 

values do not give a concrete result, for example, in test number four, when we have a 

medium variation of displacement along the Y axis the displacement calculated by the 

ballistic control decreases and for a small variation along Z axis its value augments. The 

more acceptable results were obtained from the tests when was extracted five position 

measurements but even so those values diverge from the desired. 

Finally, it is necessary to calculate the velocity magnitude for the robot 

displacement va, from (3): 
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This method unfortunately does not give the expected results, but it has much 

potential, for example to differentiate the movements of the controller, videlicet, with a 

good algorithm it is possible by a similar method to send the information to the robot about 

the motion executed by the user. In these cases the robot will know if it has to execute a 

straight line or a curvilinear motion. 

4.1.2. Ballistic Control II 

Since the ballistic approach presented in previous section does not give the 

expected results it is necessary to implement a new approach that can provide the desired 

position variation. To achieve the purpose of this dissertation it was created a new method 

(Figure 20) where Xa depends on the velocity magnitude from the master device vnov and 

the positional difference in the Falcon grip Xnov in two consecutive time interval, tn and tn-1 

is given by: 

 

 , , -1n n= −nov N NX X X  (8) 
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This means that for the same position variation of the master device the movement of the 

slave robot will directly change with the master velocity vnov; if it increases the 

displacement for the slave robot will also increase, and vice versa. 

 

 ( )novf v  = ×a novX X  (9) 

From equations (8) and (9): 

 

 ( ), , 1= nov n nf(v )× −−a N NX X X  (10) 

The approximate scalar velocity magnitude of the master device can be calculated as: 
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Figure 20 – Teleoperation approach. The robot displacement, Xa, depends on the positional difference from 

the Falcon grip, Xnov and its velocity vnov  
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In order to select what type of velocity function is needed some tests were 

carried out (Table 5). It was done six different tests extracting different number of motion 

data from the Falcon. Each test was executed with different motions. For each test was 

calculated the velocity magnitude vnov. 

Table 5 – Experimental tests for Falcon grip velocity calculation using a ballistic approach. 

Ballistic Approach II 

Test 1 
 

Test 2 

xN [mm] yN [mm] zN [mm] Time [ms] 
 

xN [mm] yN [mm] zN [mm] Time [ms] 

-20,06 18,72 -12,04 14171 
 

-2,46 -38,10 -12,47 1765 

-27,58 8,33 -8,33 14281 
 

2,46 -33,80 -7,62 1875 

vnov [mm/s]= 121,36 
 

vnov [mm/s]= 73,99 

        
Test 3 

 
Test 4 

xN [mm] yN [mm] zN [mm] Time [ms] 
 

xN [mm] yN [mm] zN [mm] Time [ms] 

49,05 -11,13 6,05 6703 
 

-79,32 -0,66 -15,42 19140 

33,21 -6,02 2,38 6812 
 

-79,37 -0,43 -15,57 19250 

vnov [mm/s]= 156,28  
vnov [mm/s]= 2,54 

         
Test 5 

 
Test 6 

xN [mm] yN [mm] zN [mm] Time [ms] 
 

xN [mm] yN [mm] zN [mm] Time [ms] 

34,57 24,54 6,96 8765 
 

-78,89 12,24 -18,49 11671 

7,98 41,63 2,56 8875 
 

33,21 13,13 -18,87 11781 

vnov [mm/s]= 290,11 
 

vnov [mm/s]= 1019,181 

 

By analysing results it is possible to observe that the achieved velocity values 

are relatively high when compared with the desired values for robot motion. By this way it 

is necessary to achieve a function of the velocity magnitude of the master device f(vnov) to 

compensate this situation. In a more detailed analysis of Table 5, there are two tests that 

overhang (test 4 and 6), with completely different speed values. A slow movement on test 

4 and a quick movement on test 6. The goal is to avoid high speeds. Therefore, some 

methods were studied to “achieve” a function f(vnov) which complies with the desired 

values (moderated speeds). After some research, it is got an approach that gave good 

results, using roots functions. These functions when applied to data reducing the high 

values considerably and for the low values the change is not so high. Figure 21 graphically 

represents five root functions x1/b where b is the degree of the root. 
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Figure 21 – Graphics of the square, cubic, fourth, fifth and sixth roots functions. 

The proposed function is: 

 

 ( )  ,  =  ]0,1]b
nov nov nov novf v k v k cta= × ∈ℝ  (12) 

Where, knov is a Falcon velocity scale factor. Some tests are made with knov=1 and changing 

b between 2 and 8. For the case of the square root the results were not the best because the 

movements of the slave robot were large and fast, giving a poor control. The cubic, fourth 

and the fifth root have provided a good control of the robot (these three values give the 

best results). After the fifth root the robot control did not change much, but did not cease to 

be able to be used. 

After this implementation it was done a table identical to the Table 5 (Table 6), 

with the same test, but with the function of the velocity and the displacement for the slave 

robot. These test were done with knov=1 and b=4. Analysing the table results it is possible 

to conclude that the implementation of function f(vnov) smooth Xa data.  
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Table 6 – Experimental tests for Falcon grip velocity calculation using a ballistic approach.  

Ballistic Approach II 

Test 1 Test 2 

xN [mm] yN [mm] zN [mm] Time [ms] xN [mm] yN [mm] zN [mm] Time [ms] 

-20,07 18,72 -12,04 14171 -2,46 -38,10 -12,47 1765 

-27,58 8,33 -8,33 14281 2,46 -33,81 -7,62 1875 

vnov [mm/s]= 121,36 vnov [mm/s]= 73,99 

f(vnov) = 3,32 f(vnov) = 2,93 

xa [mm] ya [mm] za [mm]   xa [mm] ya [mm] za [mm]   

-24,95 -34,48 12,31   14,45 12,59 14,23   

Test 3 Test 4 

xN [mm] yN [mm] zN [mm] Time [ms] xN [mm] yN [mm] zN [mm] Time [ms] 

49,05 -11,13 6,05 6703 -78,89 12,24 -18,49 19140 

33,21 -6,02 2,39 6812 33,21 13,13 -18,87 19250 

vnov [mm/s]= 156,28 vnov [mm/s]= 3,88 

f(vnov) = 3,54 f(vnov) = 1,40 

xa [mm] ya [mm] za [mm]   xa [mm] ya [mm] za [mm]   

-55,98 18,05 -12,93   0,11 0,53 -0,25   

Test 5 Test 6 

xN [mm] yN [mm] zN [mm] Time [ms] xN [mm] yN [mm] zN [mm] Time [ms] 

34,57 24,54 6,96 8765 -78,8924 12,2428 -18,4912 11671 

7,98 41,63 2,57 8875 33,2133 13,1318 -18,8722 11781 

vnov [mm/s]= 290,11 vnov [mm/s]= 1019,18 

f(vnov) = 4,13 f(vnov) = 5,65 

xa [mm] ya [mm] za [mm]   xa [mm] ya [mm] za [mm]   

-109,73 70,55 -18,14   633,42 5,02 -2,15   

 

Finally the robot velocity magnitude va is given by: 
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4.2. Virtual Spring 

In the proposed teleoperation approach, a virtual spring connects the master 

and slave devices. When the positions of the master and slave do not match, the virtual 

spring produces a force proportional to the difference in positions. This force acts as a 
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desired contact force which will be affected by local force control. Therefore, this 

approach provides the human operator with contact forces within the bandwidth of the 

force sensor. Even in the free space operation of the slave system, the controller assumes 

that the robot is in contact with a very compliant environment [Park and khatib, 2006; 

Colgate et al, 1995]. 

 
Figure 22 – Teleoperation approach with virtual spring. The robot end-effector position, Xe*, is transformed 

to Falcon coordinate system, Xe,nov.  

The virtual force (Fvir) come from a virtual spring with a constant elastic 

modulus kvir and is proportional to a distance between the actual vector position of the 

master device Xac and the slave robot end-effectors position in the master device 

coordinate system (Xe,nov). Thus, the virtual force could be described by the following 

equation: 

 

 vir ,( )k= × −vir ac e novF X X  (14) 
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Figure 23 – Teleoperation approach with virtual spring. The virtual force, Fvir, is based on the position 

difference between the master grip and the slave robot end-effector. 

The vector position of the slave robot end-effectors in the master device 

coordinate system Xe,nov could be achieved by (15). To achieve it, there are two distinct 

cases; the first is when the user begins the operation to move the robot, in this case we do 

not have a pair of position vector measurements. Therefore the function of velocity 

magnitude of the master device f(vnov) cannot be calculated and in this case the vector 

position will be equal to the first vector position of the measurements XN,0. The other case 

is a global one, where the coordinate system of the slave robot was transformed to the 

master device coordinates. 

 

The actual robot displacement, Xe, is the difference between the actual vector position of 

the slave robot, Xe*, and the robot vector position Xe,n-1* corresponding to the position 

vector of the Falcon, XN,n-1.  

 

 1n−= −e e e,X X * X *  (16) 

The concept implemented in this study can be designated as a “fake” virtual 

spring, that is, in the concept of virtual spring exist a pair of forces action-reaction, in other 

words, the master device receives a force to pull the operator hand to the robot's position 
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and the robot receives a force in the opposite direction. In this case this last force does not 

exist, because the robot does not allow that situation. 

The virtual force gives the sensibility to the operator feel “where the robot is”, 

and with this the operator has a better idea about the robot motion. Although, this force 

cannot be too high or it could be confuse with a real contact force. With the virtual spring 

the connection human-machine become more than an abstract and empty operation, and 

gives the robot a more human aspect. 

4.3. Force Control 

The local force control is a very important part, otherwise the more important 

when we are dealing with haptic interaction with real environments. So the forces sent by 

the F/T sensor are used to create reactions in the master device and in the slave robot. 

4.3.1. Robot Reactions 

The present study aimed that the robot changes its displacement vector 

according to the local force, in other words, when the slave robot comes in contact with an 

object it is intended that the displacement of the robot is corrected. This assures to the user 

that the robot movements will be short and with precision, guarantee that he could be focus 

on the task. Starting from this concept  the corrected robot displacement vector, Xa,c, 

decrease with the augment of the contact force Fc and when the contact force reaches a 

maximum value Fmáx it is pretended that the slave robot stops its movement and, of course, 

when there are no contact forces the robot must execute the normal displacement, Xa 

(Figure 24). 
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From (17) and having only two boundary conditions, it was selected a simple method to 

calculate Xa,c: 
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máxF

= − a
a,c a c

X
X X ×F  (18) 

Follow by the condition:  

 

 1n−< −a,c e e,X X * X *  (19) 

If the condition (19) is true then the slave robot stops its movement imediatly. 

 
Figure 24 – Teleoperation approach with contact force. The contact force, Fc, will decrease the robot 

displacement, Xa, to a new and corrected robot displacement, Xa,c. 

4.3.2. Novint Falcon Force Feedback 

The Falcon force feedback system based on the third Newton law (action-

reaction). In this method the contact forces vector Fc from the F/T sensor, are multiplied by 

a scale kcmd, to achieve a contact force vector to be applied on the master device Fcmd: 

 

 cmdkcmd cF =F ×  (20) 
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As mentioned before, the method of the virtual spring is implemented to 

provide the user to always stay in contact with forces know by his senses “where the robot 

is”. So in this effect, the desired force Fd sent to the master device could be described as 

the sum of the virtual force Fvir and the contact force to the master device Fcmd: 

 

 d vir cmdF =F +F  (21) 

 
Figure 25 – Teleoperation approach with a virtual spring and force control. The desired force, Fd, is 

produced by the virtual spring based upon the position difference between the master and slave robot end-

effectors. Fd was enforced by the contact force, Fc. 

4.4. Control System 

A block diagram representing the control methods applied on the system is 

present in (Figure 26). This diagram has been widely studied on this disertation and 

contains contributions from recent and largely reported papers in literature 

[Chotiprayanakul and Liu, 2009; Park and khatib, 2006; Cortesão et al., 2006; Cortesão et 

al, 2003]. 
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Figure 26 – A block diagram of the teleoperation control system. 

4.5. System Interaction 

In this section, it will be analysed “how all the system interact”, in other words, 

how the system was implemented in practice. Advanced programming concepts like thread 

and multithreading were applied on the development of the software application that 

manages the system. 

A thread (or thread of execution) is the smallest unit of processing that can be 

scheduled by an operating system. It generally results from a split of a computer program 

into two or more running tasks [Fraser, 2006]. 

The multithreading concept, is also named as multitasking, is the concurrently 

running threads. The easy way to explain is by an example, imagining a program executing 

itself, the program has two options: 

 

(I) The program runs itself in one thread of execution. In this method the 

program follows the logic of the program from start to end in a sequential 

fashion. It possible to see this method as a single threaded.  
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(II) The program can break itself into multiple threads of execution or, in other 

words, split the program into multiple segments (with beginning and end 

points) and run some of them concurrently (at the same time). 

 

The multithread system work by split the code and run each part at different 

time, in other words, the processor switch between different threads, it is like when 

executing two concurrently threads the processor first runs a part of the first thread, next it 

runs a part of the second, subsequently run the next part of the first thread, going on a loop 

[Fraser, 2006].  

The multithreads gives good results when it is necessary to have some routines 

running at the same time, but like all methods it has advantages and disadvantages. The 

biggest concern of using simultaneous running threads is because each thread divides the 

clock processor, that means, each thread is running according is priority and as the process 

are always switching, could turn all the system slow. 

Through the concepts explained previously it was built a first version of the 

system interaction (Figure 27). 
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Figure 27 – System interaction (first version). 

In order to a better understand the implemented system on Figure 27, it will be 

explained how the system interacts in a simple manner. The main application initialises the 

form application, and with its commands also starts the Clock, Timer 1 and Force Sensor 

Application. The Clock is a functionality to get the CPU clock time, this way it is possible 

to acquire concrete times from the CPU. The Timer 1 is responsible for activating the force 

system, to get the position of the Falcon, to calculate the displacement Xa and furthermore 

send it to the robot. The Force Sensor Application communicates with the force sensor and 

send information to the force system. The Force System has the heaviest part of the job, 

communicate with the robot in order to know in what position it was, do the calculus of the 

virtual force and the desired force and send this information to the Falcon. Moreover the 

force system also adjusts the robot position. 

Unfortunately, this first version does not work well, mainly because the Falcon 

and the force sensor have different and incompatible C++ compilers. The Novint Falcon 

uses a compilation model /clr (Common Language Runtime), and the force sensor uses a 
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compilation model /clr:pure. Normally it is possible to mix compilation models but these 

two models cannot be combined [Heege, 2007].  

After some study about the problem, it was decided to use a socket UDP 

client/server connection, allowing by this way to have the F/T sensor to interact with the 

Falcon. A socket represents a single connection between two network applications. These 

two applications normally run on different computers, but sockets can also be used for 

inter process communication on a single computer. Applications can create multiple 

sockets to communicate with each other. Sockets are bidirectional, meaning that either side 

of the connection is capable of both sending and receiving data [Mitchell, 2010]. The UDP 

(User Datagram Protocol) is a simple OSI (Open System Interconnection) transport layer 

protocol for client/server network applications based on Internet Protocol (IP). In the 

client/server application there really is not much difference between the server and the 

client except that the server is waiting for packages from someplace, and a client is 

initiating the conversation and expecting some type of action from the server [Fraser, 

2006]. 

In the first version of the developed interaction method exists another problem, 

related to the communication with the robot, lets rephrase, in the first run the application 

send the vector displacement to the robot and it executed the movement without any 

problem, but the time communication between the two displacements was too high for the 

proposal approach. Because of this it existed an empty time between robot displacements, 

which turned all the operation slow (for example sometimes the time-delay is superior to 

300ms). Then there is a need to try a new approach to lose the empty times. One of the 

approaches that gave better results was using two threads (timers) to acquire the Falcon 

data and send the displacement vector to the robot. In this method the first timer acquire 

the position, does the calculus and before it begins the communication with the robot it 

sends information to the second timer to begin the cycle (the second timer is identical to 

the first timer). After established the communication with the robot, the first timer stay 

waiting for an instruction of the second timer to repeat the cycle. 
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Figure 28 – System interaction (second version) 

So, like it was done before in the first version, it will be explained how the 

second version of the system interacts (Figure 28). In this case it is necessary two main 

applications, the C++ application and the C# application. The C++ application starts the 

C++ form application and with its commands starts the Clock, Timer 1, Timer 2 and the 

UDP communication. The Clock is a functionality to get the CPU clock time, this way it is 

possible to acquire concrete times from the CPU. The Timer1 is responsible for activate 

the force system, get the position of the Novint Falcon, calculate the displacement Xa, 

activate the Timer2 and furthermore send the displacement to the robot. The Timer2 is 

similar to the Timer1. The C# main application load form C# application and activates the 

UDP communication. The C# F/T Client communicates with the F/T sensor and starts the 
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communication with the server (sending information to it). The C++ F/T Server accepts the 

communication with the client and begins receiving forces and sends it to the Force 

System. The Force System has the heaviest part of the job, communicate with the robot to 

know in what position it is, doing the calculus for the virtual force and the desired force 

and send this information to the Falcon. Finally, the robot’s position is adjusted. 
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5. EXPERIMENTS AND RESULTS 

The experience lived in practice is very important for the human being, 

because he has an intrinsic need to the experiment. All technological developments must 

be tested in order to be known the need for evolution.  

Along the evolution of this study existed the necessity to improve the human-

machine interaction, essentially through the introduction of tactile sense on a robotic 

platform. The haptic interface provides to the user the ability to sense the robot motion, 

through the resistance that the controller exerts on the hand. Thus, several experiments 

were made to better understand the way the system works and to verify its advantages and 

disadvantages (Experiment1). 

Taking into account all possible objects that a robot end-effector can contact 

and knowing that these objects are from materials with the most different stiffness values, 

it is important to perform tests involving contact with different materials. It is important 

understand how the robot reacts to contact and how the forces are “transported” to the 

haptic controller, so that the operator can “feel” the resistance that the robot has 

encountered on its movement (Experiment 2). A simple manipulation tasks was also tested 

(Experiment 3). 

The challenge is part of life, there is the notion that the existing limitations 

occur for those who refuse to develop. Given the constant evolution of technology and 

constant connection that we share "side by side", so “why don’t go beyond”. Since we can 

feel what the robot “feels”, why not put the robot doing some tasks that we also do in our 

daily life. It was proposed to demonstrate the ability of the robot to show us a human face 

by making a simple task like peeling a banana (Experiment 4). 

To perform these experiments the user has to hold the grip of the Falcon 

(Figure 29), press the button1 and move it in the direction that he wants the robot moves, if 

the user releases the button1 the robot automatically stops its movement (stand in hold 

position), until the user presses again the button1 and execute hand movements. The 

button2 allows the user to turn ON/OFF the vacuum system on the robot end-effector, 

which is required when the user wants to pick up some or release an object. The button3 is 

used to save the actual position of the robot end-effector and can be applied when it is 
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wanted to repeat operations as, for example an operation identical to the experiment 3 (see 

section 5.3). The button4 allows the user to hold the robot in an emergency situation. 

 

 
Figure 29 – Novint Falcon Grip. Each balloon represents the number of the button.  

In order to execute the mentioned experiments, the user has the possibility of 

changing some parameters on the robotic platform: 

 

(I) The variation of two consecutive time intervals (tn-tn-1). 

(II) Scale factor of the velocity magnitude of the master device (knov); this factor 

will be used when the user wishes to navigate the slave robot to the work 

area (knov=1) or when he needs to perform a precision task (knov=1/4). 

(III) Work with or without the virtual spring, in case of the user employing the 

virtual spring he will feel a force proportional to the difference between the 

robot end-effector position and the actual position of the master device. 

(IV) Constant elastic modulus of the virtual spring (Kvir) in case of being selected 

the virtual spring option. 

(V) Virtual force limit (Fvir,lim); in case of being selected the virtual spring 

option. If the virtual force passes a certain limit it can be confused with real 

contact forces. 

(VI) Maximum contact force (Fmáx); in case of unselect the virtual spring option 

the system will not change the correction displacement vector, because on 

this method it is intended to reduce the communication channels with the 

robot. The robot is repositioned when it goes beyond a maximum force, in 

this case the robot takes the control of the operation and moves to a new 

position to reduce the contact force. 

(VII) Scale factor for the contact force of the master device (kcmd). 
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(VIII) In all tests was used the fourth root degree (b=4), but this value can be 

changed. 

5.1. Experiment 1 – Free Movement 

This experience consists in testing the teleoperation system (and telepresence 

with the virtual force), videlicet, testing the movement of the robot when controlled by the 

master device and without contact forces. In this test the Novint Falcon haptic capabilities 

will not be fully exploited and only used as a motion controller (like a joystick). For this 

specific test it is pretend that the user moves the robot to a close position of the paper box 

(these types of box was also called as cardboard box). 

Paper Box

 
Figure 30 – Experiment 1 apparatus. The Objective of this experiment is to put position the robot end-

effector to a close position of the paper box 

In this specific experiment the control of robot movement is tested, changing of 

some system parameters like: 

 

(I) The variation of two consecutive time interval (tn-tn-1); for this test this value 

is changed between 100 and 1000 ms 

(II) Scale factor of the velocity magnitude of the master device (knov); for this 

test this factor take the values 1 and 0,25. 
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(III) Work with virtual spring or without it, in case of the user employes the 

virtual spring he will feel a force proportional to the difference between the 

robot end-effector position and the master device actual position. 

(IV) Constant elastic modulus of the virtual spring (Kvir); the system will be 

tested with the values of 30 and 50 N/m  

(V) Virtual force limit (Fvir,lim) will take the value of 2 N.  

5.1.1. Results and Discussion 

Generally speaking, the system works well, indeed it permit to control the 

robot in an easy and intuitive way, even for an inexperienced person in robotics (Figure 

31). It is worth mentioning that the possibility to vary the velocity factor scale turn in to an 

advantage to perform accuracy movements. This experiment shows also some 

disadvantages and some aspect that need to be improved: 

 

(I) There is a need to constantly repositioning the grip of the master device. 

This is due to the small workspace of the Novint Falcon, which does not 

allow large displacements (Figure 31). 

 

    
(1) (2) (3) (4) 

    
(5) (6) (7) (8) 

Figure 31 – The images show the repositioning of the Falcon; (1) button1 is pressed and the user begins to 

move the Falcon; (2) (3) and (4) movement of the Falcon until the user reaches the end of the controller 

workspace; (5) the user depress the button1; (6) reposition the Falcon and the user press the button1; (7) 

and (8) user moving the controller grip. 

(II) When the coordinate system of both master and slave devices are 

misaligned the user feels uncomfortable with it and he takes some time to 

adapt to the new conditions (Figure 32). 



 

Interaction with Real Environments: an 

Approach Based on Haptic Systems  EXPERIMENTS AND RESULTS 

 

 

Nélio Ricardo Sebastião Mourato  49 

 

  
(a) (b) 

Figure 32 – (a) Falcon coordinate system aligned with the robot coordinate system; (b) Falcon coordinate 

system misaligned with robot coordinate system. 

(III) The time-delay between the beginning of the displacement of the Falcon 

(pressing button1) and the beginning of the movement of the robot is a little 

high, but acceptable four our applications. Four trials were performed, for 

each one was make a film and the films were studied and analysed frame 

by frame in order to calculate the time-delay (Figure 33). It was achieved 

that the time-delay is approximately 140ms. 

 

    
(1) (2) (3) (4) 

Figure 33 – Images from one of the videos performed to get the time belay; (1) the user begins to press the 

button1; (2) the user is pressing button1 and begins to move the Falcon grip; (3) the robot begins to move; 

(4) robot motion is visible.  

(IV) The virtual spring system works well and gives the feeling of “where the 

robot is”, but unfortunately makes the system a little bit slow when 

compared with the same system but without using the virtual spring 

concept. This problem is due to the fact that when the virtual spring method 

is used it is necessary an extra communication channel with the robot. The 

system with virtual spring normally fails when the time intervals is less 

than 600 ms and for time intervals inferior to 400 ms the system break in a 

few seconds. 

(V) The variation of time intervals change the robot motion and for the user is 

complicate to move the robot if he is always changing the rate of time 
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intervals. Also, were observed three different major cases for the variation 

of time intervals: 

(i) For time intervals of 100 and 200 ms, it was detected a strange 

motion of the robot, the motion is fast and unstable. It is also 

verified that the robot fails to follow the movements of the 

controller, that is, the robot lost some motion commands. 

(ii) For the time intervals between 300 and 600 ms, the system presents 

a good control, however for a haptics approach these times are too 

high. 

(iii) The time intervals between 700 and 1000 ms present also a good 

control but the system reaction is very poor. It is good for the user 

to adapt to the system, in an experimental phase. 

5.2. Experiment 2 – Objects Contact  

This experience consists in testing the system with teleoperation and 

telepresence, videlicet, the robot will be remotely controlled by the master device and at 

the same time the operator can feel the remote environment. In this situation, the aim is to 

extend as far as the sensitivity of the force sensor reacts when the robot is touching an 

object, and how it brings these forces to the master device. This way the operator can feel 

the resistance that the robot found on their motion. Then, to execute this test were chosen 

two objects with different stiffness properties, a sponge and a rigid paper box. In both 

experiments it is tested the contact with the referred objects. The user has the possibility to 

change some system parameters: 

 

(I) The variation of two consecutive time interval (tn-tn-1); for these tests this 

value was approximately 800 ms. 

(II) Scale factor of the velocity magnitude of the master device (knov); for these 

test this factor take the value 0,25 (knov=1/4). 

(III) Maximum contact force (Fmáx) is 15 N. 

(IV) Work with or without virtual spring.  

(V) Constant elastic modulus of the virtual spring (Kvir); for these test it was 

used the value 30 N/m. 
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(VI) Virtual force limit (Fvir,lim) will take the value of 2 N.  

(VII) Scale factor for the contact force of the master device (kcmd). This factor has 

the value of 1/2. 

5.2.1. Test with Sponge 

For the first test with contact forces was selected a sponge as a contact object. 

This choice was due to the physical properties of the sponge, because it allows contact with 

the robot without damaging the object and allows us to get interesting conclusions about 

the reaction of the Falcon. This test also allows the user to adapt to the system (Figure 34). 

  

    
(1) (2) (3) (4) 

    
(5) (6) (7) (8) 

Figure 34 – Images from contact with sponge.  

The test executed in Figure 34 shows the test with the sponge. It is possible to 

observe on the sequence of images that: 

 

(1) The user is grabbing the Falcon grip. 

(2) The user starts pressing button1. 

(3) The user is moving the robot through the Falcon, and the robot end-

effector begins contact with the sponge.  

(4) The robot goes down 3mm in the sponge and it is possible to feel the 

forces on the Falcon grip. 

(5) The user releases the button1 and grabs the Falcon grip. 

(6)  The user releasing the grip and it rises due to the force feedback. 

(7) The user begins a new movement. 
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(8) The user deepened into the sponge until reaches the maximum force 

and cannot go further. 

5.2.1.1. Results and Discussion 

The main purpose of this experiment is to study the contact with the 

surrounding robot environment (just focusing on it). The user receives force feedback from 

Falcon and perceives the forces acting on the robot end-effector (Figure 35). When the 

robot is in contact with the sponge it is interesting to note that the haptic device gives the 

feeling of pushing the hand up. The possibility of being able to “feel” objects is a good 

advantage because this sensation is increasingly necessary in robotics field. 

 

(a) (b) 

Figure 35 – Graphics of forces along Z axis in the sponge tests; (a) without virtual spring; (b) with virtual 

spring. 

Figure 35 shows the graphics of forces along the Z axis for the sponge test. On 

both graphics it is possible to see the characteristic of the sponge. During the impact the 

sponge gave a hard reaction, but after the impact the sponge reduces the reaction forces. 

When the contact forces start decreasing the reaction is on the opposite direction. On 

Figure 35-b it can be seen that the virtual spring is an advantage because when the robot 

goes against an object the force feedback increases and when the user wants to relieve the 

forces that the robot is subject the virtual spring gives a “help”. 

The option of work with velocity scale factor (knov) equal to 0,25 gave us a 

good mobility when it is necessary to execute tasks accurately, just as in this case. 
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As mentioned before with the virtual spring implemented on the system, it is 

possible to feel "where the robot is" and at the same time feel the forces being exerted on 

it. Unfortunately the system is a bit slower compared with the same test without the virtual 

spring. The real-time concept becomes more difficult when the virtual spring is 

applied.This test shows also some disadvantages and some aspects that needs to be 

improved: 

 

(I) The Novint falcon does not allow high rates of force feedback. When 

the frequency of sending forces is greater than 10Hz sometimes causes 

the Novint Falcon to reboot its system and it takes time to become 

operational again 

(II) The Flacon has sometimes vibrations due to the frequency of the 

received force feedback. 

5.2.2. Test with a Rigid Paper Box 

For the second test with contact forces it was selected a rigid paper box as a 

contact object. It is pretended to test the system with a rigid object with different properties 

from the sponge. This way it is possible understand how the Falcon reacts when the robot 

contacts with a more rigid object (Figure 36). 

 

    
(1) (2) (3) (4) 

    
(5) (6) (7) (8) 

Figure 36 – Images from the contact test with a rigid paper box.  

Figure 36 shows the contact test with the paper box. It is possible to observe on 

the sequence of images: 
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(1) The user repositions the robot end-effector. 

(2) The user depresses button1when the robot almost reach the paper box. 

(3) The beginning of a new movement. 

(4) The robot end-effector is already touching the box. 

(5) The user goes deepened into the box. 

(6) The user releases the grip and it rises due to the force feedback. 

(7) The user takes the grip down to the maximum position that the force 

feedback of the controller allows.  

(8) The user executes an upward move to relieve the force. 

5.2.2.1. Results and discussion 

The user receives force feedback in the Falcon grip and the forces that the 

robot is subject are perceptible. One difference that was found, from the contact with the 

sponge, was that when the robot was in contact with the box it was interesting to realize 

that the haptics device gives a hard push up in the user hand (Figure 37). 
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(a) (b) 

Figure 37 – Graphics of the forces along Z axis in the contact test with a paper box; (a) without virtual 

spring; (b) with virtual spring. 

Figure 37 shows the graphics of forces along Z axis for contact with the paper 

box. In both graphics it is possible to observe that the characteristic of the paper box are 

different from the sponge. In this case the forces rise or decrease quickly when the robot 

end-effector enter or leaves the contact with the box. In Figure 37-b can be seen that the 

virtual spring is an advantage (like in the sponge test), because when the robot goes against 
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an object the force feedback increases and when the user wants to relieve the forces that 

the robot is subject the virtual spring gives a “help”.  

In this test, besides the disadvantages mentioned for the sponge test, it shows 

another problem. Owing to the time delay sometimes the system can not react promptly 

when the maximum force (Fmáx) is exceed. 

5.3. Experiment 3 – Object Manipulation 

This experience consists in testing the system with teleoperation and 

telepresence and in this case it will be a mix of Experiment 1 and 2. Therefore, the aim of 

this experiment is to carry a small paper box to the interior of a big paper box and close the 

big paper box (Figure 38). In this test were used as system parameters: 

 

(I) The variation of two consecutive time interval (tn-tn-1), for this test this value 

is approximately 800 ms 

(II) Scale factor of the velocity magnitude of the master device (knov) in this 

cases this factor take the values of 1 and 0,25. 

(III) Contact force maximum (Fmáx), in this test this value is 20 N. 

(IV) Work with or without virtual spring.  

(V) Constant elastic modulus of the virtual spring (Kvir), for this test was used 

the value 30N/m. 

(VI) Virtual force limit (Fvir,lim) has the value of 2 N.  

(VII) Scale factor for the contact force of the master device (kcmd). This factor has 

the value of 1/2. 

 

Figure 38 shows the images of the object manipulation test. It is possible to observe on 

image: 

(1) Experiment apparatus. 

(2) The user moves the robot to a close position to the small box. 

(3) The robot end-effector is in contact with the small paper box and the 

vacuum is turned on. 

(4) Lifting up of the small box. 

(5) The small box is on the top of the big box. 
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(6) The small box is being placed inside the big box  

(7) The vacuum is turned off and the robot drops the box.  

(8) Reposition of the robot end-effector, to close the big box. 

(9), (10) and (11) robot end-effector closing the box. 

(9)  The big paper box is closed. 

 

    
(1) (2) (3) (4) 

    
(5) (6) (7) (8) 

    
(9) (10) (11) (12) 

Figure 38 – Images of the object manipulation test. 

5.3.1. Results and Discussion 

The purpose of this test is to study how the system interacts and works with 

different tasks. The results are similar to the previous tests. It is intended to note that when 

the robot was grabbing the small box the controller was being pushed down, giving even 

the notion that the user was carrying something. 

Figure 39 shows the graphics of forces along Z axis for the manipulation 

objects test. In both graphics it is visible when the robot end-effector is touching an object 

and when is carrying it. For carrying objects, the virtual force option do not gave as good 

results as without it. It is perceptible in Figure 39-b that when the robot is carrying an 

object, the forces which go to the controller are always oscillating, confounding the users. 

For this case the virtual spring do not provide such good results as when the contact simple 

with objects.  
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(a) 

 
(b) 

Figure 39 - Graphics of the forces along Z axis in the test of object manipulation; (a) without virtual spring; 

(b) with virtual spring. 

5.4. Experiment 4 – Cutting Operation 

This experience consists in testing the system with teleoperation and 

telepresence but with a more challenging task, like it was mentioned before peeling a 

banana. In this situation the aim is to extend as far as the system can go to execute a more 

difficult task. In this test were used as system parameters: 

 

(I) The variation of two consecutive time interval (tn-tn-1), for this test this value 

is approximately 300[ms]. 

(II) Scale factor of the velocity magnitude of the master device (knov), in this 

cases this factor will be use to perform a precision task (knov=1/4). 
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(III) Contact force maximum (Fmáx); in this test this value is 20[N]. 

(IV) Work without virtual spring option.  

(V) Scale factor for the contact force of the master device (kcmd). This factor has 

the value of 1/2. 

 

    
(1) (2) (3) (4) 

    
(5) (6) (7) (8) 

    
(9) (10) (11) (12) 

Figure 40 – Images from the cutting operation - peeling a banana;  

The cutting operation is showed on Figure 40 and is possible to observe on image: 

 

(1) Experiment apparatus. 

(2) Positioning of the robot. 

(3) The blade has entered into the banana peel and the cutting operation 

begins. 

(4) End of the first cut. 

(5) The robot end-efector is repositioned 

(6) The robot end-efector rotate 90 degrees around Z axis  

(7) Beginning of the second cut. 

(8) End of second cut. 

(9) The robot end-effector is positioned to the third cut. 

(10) End of the third cut.  
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(11) The robot end-effector is positioned to remove the banana peel.  

(12) The banana is partially peeled. 

5.4.1. Results and Discussion 

The main purpose of this experiment is to study how the system behaves with 

an “unusual” task (for a robot). The user receives force feedback from Falcon and 

perceives the forces acting on the robot end-effector when cutting the banana peel. In this 

test there were not found significant differences in relation to what was mentioned in the 

previously tests.  

 
Figure 41 – Graphics of the forces along Z axis in the Cutting test. 

Figure 41 shows the graphics of forces acting along Z axis for the cutting 

operation test. The graphic shows four different groups of peaks where is noticeable the 

cutting opperation. The three first groups of peaks are effective cuts and the fourth group is 

where the banana peel is removed. In each cut is visible that is not a continuous cut 

because this task is difficult and sometimes instead of doing a continuous cut the tool gets 

off the banana peel and the cut is almost executed by cuts up. The third cut is shorter 

because it is executed a quick cut. 

5.5. Overall Results and Discussion 

At my standpoint, all the tests have gone well. The biggest problem is to work 

with the virtual spring option which made the system a little slow. For the cases when the 

time intervals are smaller than 600 ms the system became slower (and the program 

sometimes crash). For real-time operations this values are inadmissible because for this 
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type of operations the system should work with time response of at least less than 10ms. 

As it was mentioned before this slowlyness was due to the communications with the robot 

taking much time (at least 140 ms for each communication). 

In order to be able to verify if the system was intuitive and easy to use, it was 

requested the help of five persons outside the robotics area (Figure 42): three male students 

in mechanical engineering and two female students, one studying in mechanical 

engineering and the other studying anthropology. These five persons have realized the 

experiments 1, 2 and 3. 

 

   
(a) (b) (c) 

 

  
(d) (e) 

Figure 42 – Users testing the system. 

At the end of the tests, were asked to the users "what they think of the 

system?". In general, all reported that the system is easy to work and very intuitive. They 

also reported that the interaction with the device receiving force feedback is much more 

interactive and intuitive. Just to mention that the female student of anthropology have 

presented more difficulties than the others to adapt to the system, which in my standpoint, 

this can be explained through the lack of contact with technology. Overall they all were 

able to perform these experiments in less than 10 minutes, and only needed a quick 

explanation (about 2-3 minutes) of how the system worked. 

Finally, it is possible to say that this system is functional and could be applied 

in industry, but it still presents some issues that have to be solved in future works. 
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6. CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

The work presented had as starting point the interaction with real environments 

using a haptic device. This system allows the user to control the robot without any 

technical knowledge while feeling the forces that the robot wrist is subjected. The use of a 

haptic device allows the control of an industrial robot in a simple and intuitive way, 

without requiring from the user advanced knowledge in programming of robots. Thus, the 

number of potential users of robotics can be expanded.  

The first step of this work was to study the best control architecture for this 

system. Then, it was established and how all the components interact with each other. 

Some issues concerning to time-delays in the communication process were reported and 

analysed.  

The second step of this study was to create a teleoperation system that would 

allow an operator to control a robot and feel the contact forces being exerted on the robot 

end-effector. Thus, was built a system that integrate three components; a ballistic control to 

provide the user a dynamic control of the robot, a virtual spring to connect the haptic 

device and the robot, and a recognition system of contact forces. After these three 

components were implemented, some tests were carried to see how all the system works. 

These tests indicate that: 

 

(I) Two different ballistic control systems were tested. The first method 

did not give as good results as expected, but this system can still be 

used. This method requires a detailed analysis because it showed 

potential like, for example, to differentiate movements. In other words, 

through algorithms it was possible to know if the operator had done a 

straight move or if he had done a curve. However at this stage of the 

study we were unable to advance further in this method and explore its 

full potential. The second method showed good results, allowing the 

user to easily control the robot, but this process still needs to be 

improved in future. 
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(II) The concept of virtual spring as it has been mentioned before allows the 

operator to feel the motion of the robot. As result it gives the operator a 

direct sense of the whole operation that is taking place, which will lead 

to a more sensitive interaction with the objects. Thanks to this 

approach, any robot task does not become an abstract operation and 

without sensitivity. Unfortunately, the concept of virtual spring does 

not give as good results as without it, partly due to excessive time-delay 

in the robot communications, making all the system slow. 

(III) The contact force system works as expected, allowing the user to know 

the forces that the robot wrist was subjected. The only drawback of this 

system was the communication with the robot, which delayed the whole 

system.  

 

In general the system works well for a first approach to the haptics 

teleoperation, as is possible to observe in the performed tests, with different operation and 

objects. 

Finally, the Novint Falcon for a low cost device is a very good haptic device. It 

allows working with teleoperation and telepresence, permitting the user to remotely control 

a slave robot while feeling the remote environment. This device has a lot of potential in 

applications like educating and training people, and in a near future it is expected that 

systems like the one tested in this work, can be applied in industry. 

6.2. Future Work 

The purpose of this thesis was to gather as much information as possible. 

However, there are still many tasks to be performed before this project reaches an 

industrial level. Some suggestions about future work: 

(I) Have a computer running an operating system that allows real-time 

control, for example Linux-RT. 

(II) Try to put out the UDP Server/Client system to acquire the F/Tdata and 

use only the main application to do that. 

(III) Improve the ballistic control, for example by the variation of knov with 

the velocity of the master device. 
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(IV) Implement a recognizing movement trajectory forms system, to the 

robot execute the same movement as the user, and not only straight 

moves. 

(V) Using a robot which allows low-level control. 

(VI) Implement a control system that allows the motion of the robot in 6 

DoF. 

(VII) Apply the Kalman Active Observers filter (AOB), to estimate the 

system state and disturbances. 
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