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Resumo 

O dia-a-dia das pessoas está dependente de máquinas que interpretam o mundo 

real e que devem fazê-lo com a máxima precisão. Dos sensores raramente se obtém valores 

fixos, isto devido a fenómenos externos, complexos e de difícil previsão. Aqui, as técnicas 

de processamento de sinal são usadas para “recriar” a realidade, permitindo uma análise 

posterior de maior confiança. No mundo da informação, onde tudo é optimizado através de 

processos digitais, a indústria não é excepção e a sua eficiência económica da maior 

importância. 

Em ambiente industrial, a análise de lubrificantes é um procedimento indirecto 

de diagnóstico técnico que avalia a condição da máquina e os seus componentes, bem 

como o próprio estado do óleo. O método offline tem sido geralmente utilizado para a 

avaliação dos mesmos – as amostras são retiradas de um reservatório para análise em 

ambiente laboratorial. Uma avaliação em tempo real permitiria a implementação da 

manutenção condicionada nesta área, de tal forma que o planeamento e os custos das 

intervenções possam ser reduzidos através da detecção precose das falhas. 

Hoje em dia, a mais fidedigna acção de monitorização depende do julgamento 

humano e até sem o conhecimento do que está para vir. Com este trabalho, pretende-se 

desenvolver um algoritmo de detecção de alterações em sinal capaz de avaliar 

quantitativamente e qualitativamente amostras adquiridas para monitorização em tempo 

real de vários parametros associados aos lubrificantes. 

No futuro, para atingir uma monitorização autónoma, é necessário obter-se um 

método que seja leve, independente da grandeza da medição e tão isento de falhas quanto 

possível. Deste modo, um processo de análise sem supervisão humana constante pode ser 

implementado, permitindo um prognóstico do tempo disponível para a intervenção. 

Foi desenvolvido em MatLab um algoritmo baseado na técnica de soma 

cumulativa linear e testado em sinais adquiridos de diferentes parâmetros de lubrificantes, 

obtidos a partir de uma unidade de monitorização independente desenvolvida no Centro de 

Tribologia e Diagnósticos Técnicos da Universidade de Liubliana. 

 

Palavras-chave Detecção de mudanças, soma cumulativa (CUSUM), 
linearização, estado estável e transiente, tendência. 
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Abstract 

Everyday people‟s way of life is dependent on machines that interpret the real 

world and must do it with the maximum accuracy. Sensor readings are not absolute and 

often fail to maintain level with a fixed value. This is due to complex external phenomena 

that cannot be predicted by easy means. Here, signal processing techniques play their part 

to “recreate” what is being read, allowing for more assured further analysis. In the world of 

information, where all is progressively optimized through digital procedures, industry is no 

exception and its economic efficiency of the highest importance. 

In industrial environments, oil monitoring is a technical diagnosis indirect 

procedure to evaluate a machine‟s and its parts current condition, as well as the lubricant‟s 

condition itself. The offline method has been the generally implemented one for lubricant 

condition assessment - samples are taken from a reservoir and for analysis in laboratory. 

On-line evaluation would grant the possibility for predictive maintenance implementation 

in this field, in a way that scheduling and costs can be reduced through early detection of 

faults occurring. 

Presently, the safest monitoring action depends on human judgment, and even 

then without knowledge on what is to come. The aim of this work here presented is the 

development of a change-detection algorithm capable of evaluating quantitatively and 

qualitatively sensor readings for on-line monitoring of various oil properties. 

To achieve a multi-parameter oil diagnosis in the future it is necessary to reach 

a detection and evaluation method that is light, value-independent and as much fault-free 

as possible. With it, an automated persistent analysis process without constant human 

supervision can be implemented and prognostics made to determine how much time is 

available for repair interventions. 

A linear CUSUM-based algorithm was developed in MatLab and tested in 

acquired data from different oil parameters retrieved from a standalone monitoring unit 

developed in the Center for Tribology and Technical Diagnosis, University of Ljubljana. 

 

Keywords Change-detection, CUSUM, linearization, steady and non-
steady state, trend. 
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NOTATION AND ACRONYMS 

Notation 

     – Decision quadrant‟s reference 

       – Current trend output 

       – Reference trend output 

   – Origin for linear regression function 

       – Normalized current window LR origin 

       - Normalized abnormal values window LR origin 

   – Slope for LR function 

       – Normalized current window LR slope 

       – Normalized abnormal values window LR slope 

  – Coefficient of smoothed signal 

  – Coefficient of detail signal (WT modulus) 

  – CUSUM value 

   – Likelihood estimator 

  – Error value 

  – Time function 

 ̃ – Approximated time function 

   – “No change” hypothesis  

   –  Step-change identification factor 

  – General time index 

  – Internal module index 
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     – Abnormal values window length 

  ,    – Factors for slope weighting 

  – Likelihood 

  – Predicting abscissa index 
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  – General window length 

  – Normalized value 

  – Probability 

  – Quadrant array 

  ,   ,    – Evolution state limits 

  – Relative change 

     – Ration of mean-square deviations 

    – Root-mean-square 

       – Root-mean-square of the current window 

  – Wavelet characteristic scale 

  – Wavelet scale 

    - Evolution quadrant‟s relative threshold 

     – Reference time 

    - “Stable” state threshold 

    – CUSUM “warning” condition threshold 

    – CUSUM “critical” condition threshold 

  – Time 

  – Length of discretized scaling function 

  – Scaling function index 

  – Length of discretized wavelet function 

  – Wavelet function index 

  – First-order wavelet transform 

   – Second-order wavelet transform 

  – Set of acquired data 

   – Set of filtered data 

 ̅ – Average of acquired data 

  – General ordinate/Acquired value 

   – Predicted value 

    
  - Reference-predicted point 

    
  – Current-predicted point. 

  – Average of values 
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  – General abscissa 

Z – Slope evolution zone 

     – Slope evolution zone for current window 

     – Slope evolution zone for reference window 

   – Mean-square deviation (2
nd

 estimate for MSD-based algorithm) 

  
  – Filtered mean-square deviation (2

nd
 estimate for MSD-based algorithm) 

  ,   ,    – Filter factors 

  - Average value 

   – Contaminant Viscosity 

   – Mean-square deviation (1
st
 estimate for variance-based algorithm) 

  
  – Filtered mean-square deviation (1

st
 estimate for MSD-based algorithm) 

     – Reference viscosity 

   – Variance 

  – Scaling function 

  – Wavelet function 

 

Acronyms 

ANN – Artificial Neural Network 

CDA – Change-Detection Algorithm 

CDP – Change-Detection Problem 

CTD – Center for Tribology and Technical Diagnosis 

CUSUM – Cumulative Sum 

ELL – Expected Log-Likelihood 

LCC – Life Cycle Cost 

LR – Linear Regression 

Lr – Likelihood Ratio 

MSD – Mean-Square Deviation 

OL – Observation Likelihood 

PPM – Post-Processing Module 

pdf – probability density function 
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SMU – Standalone Monitoring Device 

SOM – Self-Organizing Map 

WT – Wavelet Transform 
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1. INTRODUCTION 

In modern day industry, equipment life-cycle cost (LCC) is thoroughly planned 

to ensure maximum profit in production. LCC considers all costs inherent to an asset since 

its acquisition to the time of its disposal and, in between, the costs of stoppage time (Riggs 

1982). This way, the optimization concept cannot be without a chosen maintenance 

strategy among three main (Zhao et al. 2005): 

1. Corrective – the maintenance intervention is only performed upon failure; 

2. Preventive – the maintenance intervention in performed on regular time 

spans, generally determined by statistical data; 

3. Predictive – interventions are decided based on operating condition. 

The focus of the work here presented lies in predictive maintenance. It can 

have high initial costs in comparison to the previous two, namely because of monitoring 

expenses (personnel training, equipment acquisition, etc.). On the other hand, it can reduce 

significantly the number undesired and unpredicted setbacks during the machine‟s 

operating time which lead to a reduction in later maintenance expenses. 

So, when choosing predictive maintenance strategy, diagnosis techniques play 

a decisive part in its efficiency. According to Robin (2006), the operating lubricant 

analysis can be used to assess its own health or the general mechanical condition of the 

machine components, by looking at the wear particles count. Other relevant oil parameters 

include viscosity, temperature, dielectricity and moisture. The target parameter can be 

monitored permanently (on-line) or at regular time intervals (off-line). 

Traditionally, oil analysis is done off-line by the lubricant‟s seller using 

randomly collected samples which might not be representative of the machine‟s actual 

condition. In this sense, on-line oil monitoring sets a state-of-the-art technique for 

predictive maintenance, which the Center for Tribology and Technical Diagnosis (CTD) is 

thriving to achieve through its already built standalone oil monitoring device unit (SMU). 

The focus of this thesis is then set on on-line diagnosis and software processing 

of data. It is intended for the processing software to reach the maximum autonomy possible 

in issuing warnings signals, eliminating the need for constant monitoring by an operator. It 
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should be capable to output the rates of change for all targeted parameters and accurately 

detect their points of trend alteration. The challenge here lies on data analysis and its 

complex processing, mainly due to the different nature of acquired signals (cumulative and 

stochastic), producing the minimum number of false warnings. As it will also become 

clearer along this report, the small variations in the surrounding environment or in the 

machine‟s operating conditions will have impact on the ideal readings in the sensor and on 

the data analysis process. 

In short, a true state-of-the-art monitoring and assessment process will allow 

for maintenance managers to schedule only the necessary interventions with appropriate 

intervention, therefore cutting off repair costs. In this work, a data analysis procedure is 

presented as the first step to achieve this. 

1.1.  Objectives 

In the train of thought of what was described before, the following objectives 

were established for this thesis: 

1. To develop a software for condition monitoring and diagnosis of lubricants, 

including: 

a. Detect oil condition variations through appropriate detection algorithm - 

to be developed on MatLab® (The MathWorks™) programming 

environment with obtained data from experiments; 

b. Indicate both signal trend and evolution state based on set thresholds. 

2. Test the software after its completion by performing contamination 

experiments on the in situ test machine - this also includes the establishment 

of an appropriate protocol for the following contaminators: 

a. Water; 

b. Fuel; 

c. Different lubricant; 

d. Cooling fluid; 

e. Solid ferrous and non-ferrous particles. 

3. Final validation of the software. 
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2. LITERATURE REVIEW 

In the context of automated on-line supervision in industrial environment, 

signal assessment represents the greatest of challenges. Even to a human observer, 

decisions have to be taken without knowledge of what is to come (Kalai and Vempala 

2004). This non-deterministic process has been propelling the need to search and develop 

faster and more solid change-detection algorithms in the field of Technical Diagnosis. 

In essence, change-detection problems (CDP) are divided in two types – Bayes 

and minimax (Isom 2009). They differ according to the information that is available on the 

change-time distribution. The first, associated with English mathematician Thomas Bayes 

(1701 - 1761), takes a policy of minimizing false alarms (also called “cost”) by accepting 

future uncertainty as a stochastic distribution with reflection in prior data (Onatski 2000).  

Minimax criterion, on the other hand, does not look at new values as another 

statistical function but simply unknown, therefore minimizing the expected change 

detection delay. This decision-making policy is met be applying the cumulative sum 

(CUSUM) procedure, which will be discussed in 2.4. 

So far, the problem presented is where to mark the end of a steady state that is, 

the beginning of a transient state in the acquired data, and how well can the trend be 

evaluated. 

2.1. Wavelet-based Algorithm 

Jiang et al. (2002) suggest a method to identify steady states in stochastic 

signals based on the use of wavelets. Wavelets are cyclic oscillations with an impulse-like 

response. Commonly used in data processing, these have very particular properties 

depending on their defining parameters (impulse frequency, impulse duration, etc.). 
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Figure 1. Example of a wavelet (Morlet type). 

This method starts by denoising/filtering incoming data using a wavelet 

transform (WT) to approximate the analyzed data window: 

 ̃( )   ∑     

   

 ∑     

   

  
(1) 

If the wavelet function  ( ) (Figure 1) is the first-order derivate of a scaling 

function  ( ): 

 ( )   
  

  
 

(2) 

Then the wavelet transform ( ) of a general function  ( ) at scale   is given 

by the convolution: 

   ( )      ( ) (3) 

With this in mind, denoise operation starts by thresholding the WT modulus 

( ). It identifies the so-called “abnormalities” – a peak value of short duration. This 

concept must not be confused with “abnormal values”, described in Charbonnier et al. 

(2004) as being acquired values that ceased to follow a previously established prediction 

model. Also, it should not be confused with step-changes, which are on the focus of this 

work and imply a change in the signal‟s actual average. 

This process of peak search and elimination uses wavelet transformations just 

until a scale of 2. Afterwards, it is raised until a pre-determined characteristic scale ( ) and 

steady state search starts, thresholding first and second-order (   ) wavelet transforms: 
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Figure 2. Wavelet transformation results. (Jiang et al. 2002). 

According to Figure 2, the position for each    and     in relation to their 

respective thresholds will define their “degree of stability“. The incoming signal finds 

itself in a “more transient” state if both surpass their limits. 

Because of the symmetry inside the wavelet window (Figure 1), this method 

naturally operates with some time delay. Jiang et al. (2002) overcame this by applying a 

symmetric extent technique – mirroring past data around the latest time instant  . 

2.2. ANN-based Algorithm 

Tambouratzis and Antonopoulos-Domis (2004) suggested a non-linear 

statistical data modeling method for on-line trend identification in nuclear power plants 

neutron density supervision. It is based on an artificial neural network (ANN) to establish 

non-linear patterns which will test the signal‟s evolution. 

ANNs are adaptive systems that change their structure according to the 

information acquired that is, during the so-called “learning phase”. The connection 

between the input and output is done through an interconnected group of neurons or nodes 

(Figure 3). 

According to the authors, the self-organizing map (SOM) is a standard type of 

ANN for “unsupervised learning”, meaning that no knowledge about the density 
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probability distribution (pdf) of future data is available or assumed. The SOM network is 

particularly useful to reduce data storage – by creating a “map” (a discretized 

representation of the input space), high-dimensional data is reduced to a bi-dimensional 

array that conserves the information about past topological relationships. In this array, 

information about the connection weights are kept in a way that, during the decision 

process, a “winner” node is chosen if the inter-nodal weights that originated it are the most 

similar to the feature values of the input test pattern. 

 
Figure 3. SOM’s training patterns (Tambouratzis and Antonopoulos-Domis 2004). 

As shown in Figure 3, 61 training patterns where established and the signal 

must be scaled accordingly to meet pre-defined limits. This scaling (or normalization) is 

done by subtracting the first signal value (here marked as SV1) from the following. This 

method takes seven signal values equally spaced to reach a decision, involving six inter-

nodal weights to reach a semi-qualitative evaluation of the acquired signal. In the end, the 

trend is classified into one of these temporal shapes. 
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2.3. MSD-based Algorithm 

Traditionally, steady-state identification relies on the T-test (from a T-student 

distribution - Figure 4) of a given data window and in the comparison of its variance (  ) 

with an expected noise contribution reflected on the mean-square deviation (MSD -   ), 

also called variance estimator: 

   
 

   
∑(    ̅) 

 

   

 (4) 

   
 

   
∑(         )

 

 

   

 (5) 

These estimators in (4) and (5) differ in the use of the mean value of data inside 

the window ( ̅) and the previously filtered value (      ). 

Cao and Rhinehart (1995) present a method for on-line steady-state 

identification based in the statistical F-test of a stochastic signal rather than T-test. As it 

can be seen in Figure 4 and Figure 5, F-distributions are pdf distributions that take into 

consideration the null hypothesis. 

 
Figure 4. T-Student distribution probability density function (Borghers and Wessa 2011). 
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Figure 5. F-Distribution probability density function (Borghers and Wessa 2011). 

The method depends on three weight parameters (  ,    and   ), referred in 

documentation as filter factors, and relies on thresholding a ratio (    ) of 2 estimates of 

variance (   and   ) defined by: 

     
(    )      

 

    
  (6) 

Where the filtered MSDs are calculated according to: 

    
      (         )

 
 (     )        

  (7) 

    
      (       )

  (    )        
  (8) 

The filtered data window is also done by weighting the contributions of past 

values: 

            (    )         (9) 

The results achieved on temperature and pH readings, are interesting but it 

became clear that the choosing of   ,    and    can have some undesired effect. If these 

factors are too small, noise influences are reduced, making the pdf of both steady and non-

steady states to fall apart. On the other hand, the fast identification of state change can be 

compromised due to the great influence of past data. 
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Figure 6. Demonstration of the steady-state identifier (λ1=0.2, λ2= λ3=0.1) (Cao and Rhinehart 1995). 

The results presented (Figure 6) show mainly step-changes with following 

close-to-zero trends. In the focus of this work, constant increase/decrease is considered to 

be a steady-state, so it is necessary to know how well the algorithm works when confronted 

to this situation, but the weighting of past data information is an idea that will be later used 

for qualitative evaluation, described in section 3.7.2. 

2.4. Linear CUSUM-based Algorithm 

CUSUM is a sequential analysis technique used to detect changes in a given 

time series. The calculation process involves the consecutive sum of error values, 

according to equation (15). The primary assumptions is that the acquired data‟s statistical 

distribution is of Gaussian-type with an average ( ) of 0 and variance (  ) equal to 1 

(Basseville and Nikiforov 1993). T-distributions (Figure 4) are closely shaped to Gaussian 

but with heavier tails that is, with more probability of outliers occurrence. 

This is the approach that sets the basis for the trend extraction algorithm 

presented by Charbonnier et al. (2004), which was tested in industrial and biological 

monitoring processes, and also for the one presented in this work. 

This method does not require pre-filtering. The justification for it is that 

filtering would lead to a masking effect, also known as “aliasing”, on important high-

frequency features such as step-changes. 

 



 

 

On-line Oil Condition Monitoring  Literature Review 

 

 

José Salgueiro  10 

 

The method involves the establishment of successive linear models and 

consequent extrapolation of values, as shown in Figure 7. This process will become clearer 

on the algorithm‟s explanation in chapter 3. 

 
Figure 7..Linear model extrapolation (Charbonnier et al. 2004). 

The decision process for qualitative evaluation, on its turn, is similar to the one 

presented here in section 3.7 and is based in the comparison of segments of data and their 

slopes. The difference though, lies in the usage of more information to reach a qualitative 

assessment not so prone to false alarms, as it will be discussed later. 

2.5. Non-Linear CUSUM-based Algorithm 

Vaswani (2005) presents a more complex method by applying two different 

likelihood functions – Expected (negative) Log Likelihood (ELL) and Observation 

Likelihood (OL) – which are suitable to slow and fast changes, respectively. In a discrete 

set of data  , likelihood can be defined as the probability of    given the already output set 

    : 

 (  |    )     
(      ) (10) 

ELL confronts this by estimating the negative logarithm of the previous 

likelihood of the state (at time  ) under the “no change” hypothesis (  ): 

   (    )            (  )|         (11) 

OL is defined as being the negative log-likelihood of the current observation 

conditioned on past observations under the “no change” hypothesis: 

        (  |         ) (12) 
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The likelihood ratio (Lr) will then compare consecutive values of ELL or OL 

and substitute the error value in equation (15). The identification process of changes is 

common in all CUSUM-based algorithms and will be detailed later in 3.6. Vaswani (2005) 

tested this idea on simulated results to observe the method‟s response towards fast and 

slow changes. 

Other variations of the CUSUM technique are available in Basseville and 

Nikiforov (1993) with proper theoretical justification. 
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3. CHANGE-DETECTION ALGORITHM 

The change-detection algorithm (CDA) represents the pivotal part of this work. 

Within this software, all acquired data is to be properly processed and from it the important 

change features retrieved, that is the signal‟s trend and its evolution status. 

The CDA‟s process relies on the linearization of important segments of data 

which are representative of a system‟s condition change, as shown in Figure 8. 

 

Figure 8. Linearization of a data window. 

The red line in Figure 8 plots the points predicted by the LR parameters 

retrieved from the window, according to the following equation: 

           (13) 

With    being the ordinate at the axis‟ origin and    its slope. 

The method to retrieve these parameters is fully explained in section 3.4.3. 

3.1. The CUSUM Computation 

The CUSUM computation, introduced in section 2.4, can be applied this way: 

Given the general index   at the latest instant  , if we consider the difference 

between the acquired value (  ) and a predicted one (  
 ), the error (  ) is defined by: 
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  (14) 

The cumulative sum (  ) is then computed by summing consecutive error 

values: 

            (15) 

In this work, the mathematical principles applied for change-detection are the 

same as in Charbonnier et al. (2004), but the method for error computation has some 

differences which will be thoroughly detailed in 3.5. 

3.2. General View 

The on-line change-detection algorithm developed can be perceived as a cycle 

of operations which include five main modules (Figure 9): 

 Step-Changes Identification; 

 Quantitative evaluation of the current data window (Window Analysis Module); 

o Current trend output (      ); 

 New point prediction (Predicting Module); 

 Quantitative evaluation of the abnormal values‟ window (Post-CUSUM Module); 

o Reference trend output (      ); 

 Qualitative evaluation (Post-Processing Module); 

o Evolution “State”. 

Figure 9 represents the general flowchart of the algorithm. Each line color 

indicates the origin of the variable that is being routed in between modules: 

 Green – Data array writing process; 

 Orange – Step Identification process; 

 Blue – Window Analysis module; 

 Cyan – Predicting module; 

 Red – Post-CUSUM module; 

 Yellow – Post-Processing module. 

Notice that the ending tips of some flow lines are different. The square tip 

indicates that the variable is being used as a trigger for a specific process or entire module. 
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This aspect is of the uttermost importance when dealing with information that is processed 

in different time periods. 

 

 

Figure 9. CDA’s general view. 

3.3. Step-Changes Identification 

During the planning of the CDA it was established that one of the important 

features that must be identified are the step-changes. These kind events are important 

because they might happen due to a sensor reading fail or an actual change in the mean of 

the read parameter (Figure 10). 

These kinds of events were clearly seen during the relative moisture readings in 

the water contamination experiment (4.4.2.1) and indicate an abrupt change on the system. 
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Consider this figure: 

 

Figure 10. Step-change occurrence after contamination with water. 

The step-change in Figure 10 occurred in a span of three samples, where the 

read parameter increased its value by 90% of its previous mean. 

The high-frequency fluctuations make it difficult for a correct identification of 

step-changes. A simple way to do it would be to fix a threshold for the relative change 

occurred between neighboring points. If so, the calculation for the relative change ( ) 

would be: 

  
        

  
 (16) 

But this method presents two main problems: 

 If the absolute value of    is too close to zero, then   tends to infinity which means 

that false step-change warnings would be sent permanently. 

 The algorithm should be independent from the signal-to-noise ratio, so the typical 

relative change can have very different values depending on the source of the read 

data, making it impossible to fix a threshold. 

The magnitude of variation of a signal around its mean can be calculated 

considering the definition of the root-mean-square (   ): 

     √
∑   

  
 

 
 (17) 

Applying this equation to a data window with a length of   samples, 

identification of a step change becomes: 
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     {
  |        |        

  |        |       
 (18) 

The value of   can be set depending on the sensitivity CDA should have 

towards finding these step-changes. In the version of this work,   was set to 20 after 

several run tests performed on obtained data. 

As it can be seen in Figure 9 (Orange flow lines), the algorithm will send the 

information of this occurrence to different modules, changing its general behavior. 

3.4. Window Analysis Module 

Here is where the algorithm begins to differ from the approach suggested by 

Charbonnier et al. (2004). For this group, three sub-modules were established, as shown in 

Figure 11: 

 Current window array writing; 

 Window normalization; 

 Window linearization (Retrieve LR parameters). 

 

Figure 11. Window Analysis Module. 

3.4.1. The Current Window 

This data window is a fixed-length time series, much as the one in Figure 8. It 

has a span of   samples, correspondent to a pre-chosen reference time –     . 

This reference time is one of the most important input parameters for the CDA. 

If we see the window linearization process that follows as a low-pass filter for incoming 

data, attenuating high-frequency events then      is its cutoff period. 
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The cutoff period would be the inverse of the cutoff frequency, which is 

defined as being the boundary in a system's frequency response at which energy levels start 

to be attenuated. This means that short-time fluctuations in the acquired data are damped 

which happens to be a standard procedure in signal processing methods. 

According to Figure 11, this current window is rewritten each time a new 

sample arrives. 

3.4.2. Window normalization 

On the beginning of the algorithm’s development, one idea that was settled was 

that it should be independent of the readings amplitude. Being so, normalization of the data 

window became a regular process. This way, the quantitative evaluation of trend changes 

is merely relative and value-independent. 

In this sub-module both the average –  , defined in (19) – and the root-mean-

square of the current window, here called        (17), are calculated. 

   
∑   

 
 

 
 (19) 

The window is normalized when all its points are normalized according to the 

following equation: 

   
    

      
         (20) 

 

Being    the normalized value correspondent to the j
th

 sample inside. 

3.4.3. Window linearization 

The LR model is set according to (13). The determination of    and    is done 

through the least-squares method. Considering the j
th

 sample (  ) and its correspondent 

abscissa   , the LR parameters are retrieved following the next equations: 

   
∑      

 
  

 
 

∑   
 
  ∑   

 
 

∑   
  

  
 
 

(∑   
 
 )

 
         (21) 

    ̅      (22) 
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Notice that, in Figure 11, there are two slopes being output.        is the 

immediate trend of the original signal, updated at the same rate of sample writing and 

displayed to the user. The variable        is the slope of the normalized window which is 

used only for internal calculation the same way as       . 

3.5. Predicting Module 

In this module the process of predicting a new point is quite straightforward. In 

the approach by Charbonnier et al. (2004), the error is calculated between the real acquired 

value and a predicted one (section 3.1). Here, the error is calculated using two predicted 

points, which means two sets of LR parameters from distinct data windows. 

 

Figure 12. Predicting Module. 

The calculation of predicted points uses a shared internal abscissa (  ) to 

obtain the following: 

       
  – reference-predicted point. 

       
  – current-predicted point. 

The index     should be not confused with the one used in the CDA‟s input 

parameter     . The variables        and        come from a reference LR model obtained 



 

 

On-line Oil Condition Monitoring  Change-Detection Algorithm 

 

 

José Salgueiro  19 

 

in the Post-CUSUM module and will be explained in 3.6. They are calculated the same 

way as        and       , using equations (21) and (22). 

The newly predicted points are determined by adapting the LR parameters 

mentioned to the linear equation (13). 

The error and CUSUM are computed from equations (14) and (15), 

respectively. 

In Figure 13, the difference between both predicted points is shown: 

 

Figure 13. Reference and current-predicted points. 

The difference between both plotted functions is justified by the rate of the LR 

parameter‟s update. Since        and        are computed every time a new sample is 

acquired, the current-predicted points‟ evolution is more “unstable” than the reference-

predicted, whose parameters are obtained after longer periods, as described in the next 

section. 

3.6. Post-CUSUM Module 

In Figure 13 there are stretches where the current-predicted points deviate 

considerably from the reference-predicted ones. According to (15), this will have a direct 

impact on CUSUM‟s calculation, making it grow. 
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The standard CUSUM algorithm‟s approach needs to set two thresholds –     

and     (Figure 14). This way, for each raw value    there is a correspondent CUSUM 

condition towards the established LR model: 

          – Acceptable. 

            – Warning. 

        – Critical. 

 

Figure 14. CUSUM evolution. 

According to the Figure 14, when    reaches the critical state it is reset so that 

a new LR model can be established. The model is set according to the procedure detailed 

in section 3.4, with a difference – the length of the data window is variable (    ). 

Following Charbonnier et al. (2004) method, the values used for establishing 

the new model are the ones that pair with CUSUM when it evolves between “warning” and 

“critical” conditions – therefore the plotted abnormal values in Figure 14 which are 

coincident with    going through this area. 

With this in mind, the Post-CUSUM Module‟s flowchart is presented in Figure 

15: 
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Figure 15. Post-CUSUM Module. 

Once    surpasses its second threshold the abnormal values array is “released” 

for normalization and linearization. 

Notice that, in the upper decision block, the abnormal values array is reset 

upon transition to “warning” condition. This is an internal procedure only to ensure that 

former abnormal values that never reached     are not incorporated in the new window. 

Again,        represents the window‟s real slope to be displayed,        and 

       the LR parameters from the normalized window. These two will be used to establish 

a new model inside the Predicting Module, as referred. 

The occurrence of this change in CUSUM‟s condition also triggers another set 

of events, mainly two: 

 The resetting of the Predicting Module‟s abscissa (  ); 

 The setting of Post-Process access (“PPM trigger”). 

At this point all quantitative evaluation of the signal has been performed. Further 

considerations about this are done later in section 3.8. 
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3.7. Post-Processing Module 

This is the module responsible for the qualitative evaluation of the signal. After 

its process, the algorithm should be able to output an evolution state differed in eight 

levels, as presented in the results annexed – “Step Down”, “Changing (Decreasing)”, “No 

Change (Decreasing)”, “Stable”, “Stabilizing”, “No Change (Increasing)”, “Changing 

(Increasing)” and “Step Up”. 

To simplify this analysis, the signal‟s trend sign will be ignored for now since, 

for the most part of its operation, the module works with absolute slope values. Therefore, 

we can define five main evolution states: 

1. Step;  

2. Changing; 

3. No Change; 

4. Stabilizing; 

5. Stable. 

3.7.1. Decision Quadrant 

The update of the signal‟s evolution state can be done using a quadrant as 

shown in the figures below. In this quarter of a circle, a maximum of 4 evolution states can 

be defined but, depending on the previous state, one or more state zones can be suppressed. 

As mentioned before, at this point only the absolute value of the incoming 

reference slope, retrieved from the previous module, is being looked at. Considering the 

example of a high slope signal that will stabilize after some time, all possibilities can be 

explored. 

The next figure relates to the quadrant‟s phase that is applied after both 

“Changing” and “No Changing” state. 
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Figure 16. “Changing”/”No Change” state quadrant. 

At first instance, the quadrant‟s reference (     - Figure 19) is set and all state 

limits defined, according to the diagram in Figure 16. The “No Change” zone lies between 

limits 2 (  ) and 3 (  ), which are defined through a relative threshold (   ): 

{
    |    |                 

    |    |  (     )
          (23) 

According to (23),     defines the limits for the “Stabilizing” state, also 

meaning that the next processed slope value can be considered in an “unchanged” if inside 

an interval of            (     ). 
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Figure 17. “Stabilizing” state quadrant. 

From the state shown in Figure 16, a “Changing” warning will be issued if the 

slope leaves the zone delimited by    and   . In this example, it will deviate to the 

previous “Stabilizing” area. 

As is seen in Figure 17, the previous quadrant‟s reference changed and the state 

limits redefined according to (23). Because now the signal state is “Stabilizing”, the 

“Stable” zone becomes available to access.    is simply defined as being equal to the 

stable threshold (   ) and this is the only parameter in CDA that is value-dependent. 

Notice that if the trend continues to drop eventually    will fall below   . In 

this case the “Stabilizing” zone will be narrowed, having    as its lower limit. 



 

 

On-line Oil Condition Monitoring  Change-Detection Algorithm 

 

 

José Salgueiro  25 

 

 

Figure 18. “Stable” state quadrant. 

When the signal reaches a “Stable” state, its only options are to remain 

“Stable” or return to a “Changing” status, therefore all other zones in the quadrant are 

suppressed, as shown in Figure 18. 

These state limits define the quadrant array (  – Figure 19) that retains the 

information about their position every time the Post-Processing Module is called to into 

process. 

Notice that no case for step-change has been mentioned so far. The fact is that 

step-changes occur faster than regular reference slope analysis, which means that a change 

to “Step” state overcomes any other and it redefines the same quadrant display as in 

“Changing”/“No Change” state (Figure 16). 

As referred before, the quadrant only works with absolute slope values but its 

analysis is only valid as long as the general data trend (negative/positive) remains the 

same. If two consecutive reference slopes are different in sign, then the decision quadrant 

is reset, that is the signal is brought back to a “Changing” state (Figure 16). 

In the following section the effective determination of      is fully explained. 
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3.7.2. Quadrant’s Reference 

One could think that the quadrant‟s reference could be the same as the 

reference slope (      ) determined previously in the Post-CUSUM Module. Theoretically 

that would be true, but run tests have proved that another criterion has to be established in 

order to avoid incorrect state evaluations. 

The main problem concerns the fact that sometimes current and reference 

trends are too different. Knowing that one is based on a fixed-length window and the other 

on a variable and unpredictable one, this event mostly happens due to the frequent irregular 

shape of acquired signals, so the issues stands in deciding which one to choose. 

Figure 19 shows the flowchart of the Post-Processing Module: 

 

Figure 19. Post-Processing Module. 

Inside this module, a decision block compares the position of both slopes in the 

quadrant (     and     ). If their position match, then the reference slope (      ) is set as 

the new     . Otherwise, the quadrant‟s reference must be a weighted value between        

and       : 

                         (24) 
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The values of the    and    weights should then reflect the amount of points – 

  and      – used for the calculation of their respective slopes: 

{
   

 

      

            

 (25) 

With this method the proper contribution of each data window (reference and 

current) is taken into account. This way, if either        and        were retrieved from a 

small number of samples in comparison to the other, its effect, considered to be a punctual 

abnormality in trend, will be minimized in the final state evaluation. 

In case of a recent step-change occurrence, this process has to be skipped and 

       chosen as the quadrant‟s reference. This happens because the current window still 

contains the step-change points which increase the magnitude of the current slope after 

linearization, therefore leading to an erroneous      value if determined by (24). 

3.8. Input/Output Parameters 

Having into consideration what was exposed previously, the following tables 

set some considerations about the input and output parameters of the Change-Detection 

Algorithm: 
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Table 1. CDA’s input/output parameters. 

Parameter Meaning Remarks 

Input 

     
Reference time length 

(For the current window). 

This value sets the time span of the 

current window. Except for step-

changes, no target events should be 

shorter than this. 

    
Evolution quadrant‟s 

relative threshold 

According to section 3.7.1, this 

parameter is used to define the 

“unchanged” area where the signal‟s 

trend can dwell. 

    “Stable” state threshold 

It is an absolute value and the only 

value-dependent parameter. that 

defines the trend limit from below 

which the signal is considered to be 

stable. It should be set to avoid 

unnecessary warnings small signal 

fluctuations. 

    
CUSUM‟s “warning” 

condition threshold. 

These parameters set the regions of 

CUSUM‟s condition development 

(Figure 14). The larger these are, the 

longer the cumulative sum needs to 

mark a new reference, meaning that 

evaluation will be performed less often. 
    

CUSUM‟s “critical” 

condition threshold. 

Output 

       Current Trend 

This is the slope retrieved from the 

current window. It can be displayed as 

“the trend in the last      time period” 

       Reference Trend 

This is the slope retrieved from the 

analysis of the abnormal values‟ It is 

always reflective of the true change 

occurred in the system. 

State Signal‟s state 

This is the variable responsible for the 

issuing of warnings. Warnings are sent 

upon step-change occurrence, 

“changing” and also “stabilizing” 

states. 
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4. EXPERIMENTAL RESULTS 

In order to diagnose correctly oil changes during machine work, it is necessary 

to relate monitored parameters with a specific known occurrence. The algorithm described 

before will be tested with the data retrieved from some experiments that were conducted in 

a laboratorial environment, using (for every case) a reference oil with the following 

description: 

 Olma d.d. Olmaredol VG-68 – reference viscosity (    ) = 68 mm
2
/s at 40 ºC. 

4.1. Experimental Setup Description 

Figure 20 is an actual image of the experimental assembly: 

 
Figure 20. The experimental assembly. 

On this experimental setup, torque is transmitted from the Synchronous 

Electric Motor to a Brake-Generator. The Gearbox connected to the SMU (described in 

4.1.1), will be duly sealed after 2 liters of unchanged oil are poured inside. The Sensors’ 

Block (Figure 21) will be outputting an analog signal to the DAQ Card (Figure 21) which 

will convert it to a digital one, ready to be registered by the already implemented LabView 

interface. 

Regarding the components of the experimental setup, the following table 

shows their main characteristics: 
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Table 2. Experimental setup components characteristics. 

Component Main Characteristics 

Synchronous Electric Motor 
Rated Power 12.7 kW 

Rated/Maximum Speed 1470/1700 rpm 

Brake-Generator 
Rated Power 20.2 kW 

Maximum Torque 110 N.m 

DAQ 

Card 

NI USB 6215 

(Isolated Multifunction I/O) 

16 Analog Input Channels (250 kS/s) 

(with 16-bit analog-to-digital converter) 

4.1.1. SMU’s Description 

The Standalone Monitoring Unit is responsible for providing data for the 

analyzed parameters. Figure 21 is a schematic drawing of the experimental setup: 

 
Figure 21. Schematic assembly of the experimental setup. 
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Designed and developed at CTD, the SMU takes oil from the gearbox and 

pumps it towards the sensor‟s block, through the filter and back to the oil container. For 

on-line assessment of the oil condition, the sensor‟s block incorporates the following three 

sensors: 

 HYDACLab® AquaSensor AS 1000 (temperature compensated) – for measuring 

water content relative to saturation point and oil temperature: 

1. Relative moisture content (0 to 100%); 

2. Temperature (-25 to 100 ºC). 

 HYDACLab® Fluid Condition Sensor (temperature compensated) – for 

measuring multiple parameters, including: 

1. Relative change in viscosity (-30 to 30%); 

2. Relative change in dielectric constant (-30 to 30%); 

3. Relative moisture content (0 to 100%); 

4. Temperature (-25 to 100ºC). 

 KITTIWAKE GmbH Metallic Particle Sensor – to measure and classify (by 

size) wear metal particles concentration. Size categories include: 

1. Ferrous bins: 

a. 40 to 60 µm; 

b. 61 to 100 µm; 

c. 101 to 200 µm; 

d. 201 to 300 µm; 

e. Larger than 300 µm. 

2. Non-ferrous bins: 

a. 135 to 150 µm; 

b. 151 to 250 µm; 

c. 251 to 350 µm; 

d. 351 to 450 µm; 

e. Larger than 450 µm. 

 

According to the described sensors, two main groups of experiments were 

performed. These are detailed in the following sections 4.2 and 0. 
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4.2. Pitting Experiments 

The pitting phenomenon is one type of mechanical fault with most interest in 

the field of technical diagnosis. Due to its frequent occurrence in industrial environments, 

it is on the interest of maintenance departments to detect the start of this event as soon as 

possible. 

In this sense, two pitting experiments were conducted at CTD with different 

load conditions – at constant (Figure 22) and variable load (Figure 23). The load values in 

Figure 22 and Figure 23 come as a percentage of the generator‟s maximum torque, shown 

in Table 2. 

. 

 
Figure 22. Pitting experiment from 04/02/2011: Temperature and load conditions (Axis: Temperature [ºC], 

Load [%]) (Peršin, G. 2011a). 

 

 

Figure 23. Pitting experiment from 04/02/2011: Temperature and load conditions (Axis: Temperature [ºC], 
Load [%]) (Peršin, G. 2011b). 
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Comparing both figures, it can be seen that load variation has a direct impact 

on oil temperature. Concerning the metal particles count associated with pitting, oil 

temperature has no impact, but load variation does and it is visible on the CDA‟s run 

results. 

These load conditions were established and uploaded into the generator‟s 

control unit and the motor put to run via remote connection. The motor‟s speed was set to 

1296 rpm in both cases. 

The objective was to drive the mounted gears into a fault state and register the 

important changes in the read signals, that include the ones discussed in 4.1.1. 

For this there were used two sets of spur gears, both pairs with a transmission 

ratio of 1.5 (24 to 16 teeth). The gears are from steel according to designation DIN 

42CrMo4. 

A change in the nitration process influenced the outer layer thickness. This was 

determined visually after the tests, through microphotography. 

Table 3. Measured outer layer thickness. 

Experiment Date Outer Layer Thickness 

04/02/2011 20 µm 

03/03/2011 2 – 3 µm 

 

4.3. Contamination Experiments 

Oil contamination by alien agents can be most important in cases where 

equipment cleanliness greatly affects its reliability and life cycle extent. Also, it can be 

indicative of oil aging status, in case of increased viscosity, or an existent leak in 

surrounding modules (i.e. coolant/fuel contamination, etc.). Knowing that the presence of 

these agents mostly affects the lubricant‟s viscosity, the contamination‟s response profile 

for each should be determined. 

Water contamination test was divided in three sessions, each starting with 

contamination of the running oil with different amounts of water – 1ml, 2ml and 5ml. 

The 8
th

 of August experiment (section 0) is a repetition of the one performed 

on the 24
th

 of March where all 3 sessions where complied. Unfortunately, undetected 
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crash-downs in the acquisition LabView modules lead to the loss of great stretches of data, 

causing visible discontinuities in registered values. In this sense, it was decided that the 

previous experiment should be disregarded and a new one performed. 

The driving motor was put to work at a speed of 1000 rpm and the torque set to 

33% of its maximum torque (Table 2). Contaminants were introduced through an access 

conduit welded to the covering top of the oil container, allowing for this process to take 

place without stopping the machine‟s running. 

The obtained results are discussed in detail on section 4.4.2. 

4.4. Results 

Concerning what was described in sections 4.2 and 0, the results here presented 

were taken from the KITTIWAKE Metallic Particle Sensor, for metallic particle count 

(Pitting Experiments), and from the HYDACLab AquaSensor AS 1000 for relative 

moisture reading (Contamination Experiments). 

Although tests with other contaminants were performed, faults in the 

HYDACLab Fluid Condition Sensor did not allow for viscosity variations to be observed, 

a setback that will be discussed in section 4.4.2.2 and chapter Error! Reference source 

ot found.. 

4.4.1. Pitting Experiments 

The pitting phenomenon can be observed in the trends of particle count that is, 

the velocity of newly released particles to the operating fluid – especially in large-sized 

ones (above 200 µm). Wear, on the other hand, is mostly expressive in particle sizes below 

200 µm and its evolution is more logarithmic-shaped rather than exponential. The two 

phenomena are visible on both sets of signals obtained. 

The input parameters for particle count signals are shown in Table 4. 
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Table 4. Input parameters for pitting experiments. 

Parameter Value 

     8 hours 

    40 % 

    5 particles/hour 

    50 

    500 

4.4.1.1. Wear Confirmed 

The test that started on the 4
th

 of February (Figure 24) shows a high rate of 

initial wear, followed by stabilization as shown by the progress of both output trends.

 

Figure 24. Quantitative evaluation: Number of ferrous particles (101 to 200 µm) (Pitting experiment from 
04/02/2011). 
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Figure 25. Qualitative evaluation: Number of ferrous particles (101 to 200 µm) (Pitting experiment from 

04/02/2011). 

Similar results are shown in appendixes from A.1 to A.4. 

In line with the CDA‟s description and its intended progress, a “Changing” 

state was marked after 20 hours (Figure 25) from the test start and final stabilization 

reached after 96 hours. This corresponds to an initial rate of more than 30 particles 

generated per hour before reaching stagnant level below 2. Also, two transitions to 

“Stabilizing” state were obtained in between, the first marking a small change in trend and 

the second spotting the end of the initial wear phase. 

In this experiment, pitting did not occur, mainly due to the large thickness of 

the outer layer (20 µm - Table 3). In the next section, the test discussed uses gears with a 

layer thickness ten times smaller, and this will influence greatly the general particle count. 

4.4.1.2. Pitting Confirmed 

In the 3
rd

 of March experiment, according to the reports produced at CTD, 

pitting was confirmed after 72 hours of the test start and the algorithm should pinpoint this 

with a “Changing” warning. 
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Figure 26. Quantitative evaluation: Number of ferrous particles (101 to 200 µm) (Pitting experiment from 

03/03/2011). 

The current trend/slope is changing in a cyclic mode due to the load variation 

(Figure 23), showing peaks which are coincident with the highest stretches of load, as 

shown in Figure 26. This reflects later on the reference slope output that clearly changed in 

average after 78 hours. The values registered that followed remained with similar peak 

values – from 110 to 130 particles/hour, approximately – and keeping the same varying 

profile as before. 

 
Figure 27. Qualitative evaluation: Number of ferrous particles (101 to 200 µm) (Pitting experiment from 

03/03/2011). 
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The trend‟s high fluctuations make it difficult to find the pitting start point. In 

any case, between 60 and 80 hours, two “Changing (Increasing)” warnings were issued 

(Figure 27), confirming that a real changing in the system‟s condition was occurring. The 

same phenomenon can be seen in similar results in appendixes B.1 to B.4, the latest 

concerning non-ferrous particles.  

4.4.2. Contamination Experiments 

The results presented in this section have very interesting features from step-

changes to high slope fluctuations. Moreover, the signals obtained are not cumulative-type 

like the previous but stochastic, which reflects on the noisy readings obtained. 

Because the reference time is intentionally smaller than the one input on the 

pitting experiments, state issuing will be more frequent. 

For the signals analyzed, the CDA‟s input parameters are: 

Table 5. Input parameters for contamination experiments. 

 
Relative 

Moisture 
Temperature 

Parameter Value 

     4 hours 4 hours 

    75 % 75 % 

    0.01 %/hour 0.15 ºC/hour 

    50 50 

    500 500 

 

Notice that the CUSUM thresholds values (    and     - Table 5) are similar 

for input parameters used in pitting experiments (Table 4), proving that value-

independency has been achieved. 

For these contamination parameters, only the “Stable” state threshold is 

different between both analyses. That is clearly the obvious change in parameters because 

it is the only one which is value-dependent. 
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Furthermore, the reference time chosen the same for both comes from the 

assumption that changes in their condition occur within the same time range and faster in 

comparison to particles count. 

4.4.2.1. Relative Moisture 

The contamination of the operating lubricant with water produced immediate 

“spikes” in the signal‟s readings, identified right away with a “Step Up” warning issue and 

followed by a low-paced decrease. This happens because of the long period that even the 

smallest amount of water (1 ml) needs to disperse completely inside the oil container. 

If ideal conditions had been matched, the readings should have stabilized into a 

new value, but variations in the room‟s temperature did not allow for this feature to be 

registered, an aspect which will be discussed further. Even so, in the first 100 hours after 

the contamination mostly “Stabilizing” states were output, preceded with a “Changing 

(Decreasing)” warning after the step-change (Figure 29). 

 
Figure 28. Quantitative evaluation: Relative moisture (Water contamination experiment from 01/08/2011). 
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Figure 29. Qualitative evaluation: Relative moisture (Water contamination experiment from 01/08/2011). 

After 170 hours of running experiment a permanent “No Change” state was 

achieved, being only disturbed briefly at the 285
th

 hour before the signal continued its 

constant descent. Although the rate of change is very low (0.2 %/hour - Figure 28), it is 

clear on this graph that the signal is still decreasing, therefore this state should be 

maintained. 

4.4.2.2. Temperature 

As it was referred on the beginning of the previous section, temperature 

fluctuations inside the room had an impact in relative moisture readings. These can be seen 

now in the following Figure 30 and Figure 31: 
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Figure 30. Quantitative evaluation: Temperature (Water contamination experiment from 01/08/2011). 

After the initial temperature rising and stabilization a high decrease was 

registered (Figure 30). At this time, it was decided that the increasing heat could jeopardize 

the safety of the running machine, therefore measures were taken to ensure proper cooling 

flow in the room. Later, new problems concerning readings stability were brought by the 

natural day temperature variations. 

 
Figure 31. Qualitative evaluation: Temperature (Water contamination experiment from 01/08/2011). 

Figure 31 shows how unstable trend evolution can be when dealing with these 

daily temperature variations. A “Stable” set of states was correctly issued, but 220 hours 

after the experiment‟s start, cycle amplitudes became larger causing alternate “Changing” 

states to be output. 
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In Appendix C, the temperature readings and results from the 4
th

 of April 

experiment – contamination with different oil - are presented. This test lasted for little 

more than 41 hours, moment when the test was put to stop. 

The contaminator, Olma d.d. Gear Oil SAE 80W-90 (   = 90 mm
2
/s at 40 ºC), 

was not producing any variation in viscosity readings and for this reason, even after an 

attempt to recalibrate the sensor, is was concluded that it was unable to deliver the 

necessary parameters. 

In any case, the data retrieved was kept for testing the algorithm‟s run progress 

and to compare with the results from the 8
th

 of August experiment.
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5. CONCLUSIONS 

In line with the proposed objectives detailed in chapter 1, a change-detection 

algorithm was developed, capable of outputting trend and evolution state from obtained 

signals on-line. In its development process, value-independency was achieved which made 

it possible to reduce the number of input parameters, simplifying future implementation in 

a multi-parameter diagnosis unit. 

The algorithm was tested with retrieved data from different lubricant 

parameters with very distinguished behavior. Despite the setbacks already referred, enough 

data was obtained to validate its consistency. 

It performed particularly well when confronted with cumulative-type signals in 

metal particles count, identifying all stages in initial wear evolution (4
th

 of February 

experiment) and spotting in definite the occurrence of pitting 8 hours after the moment it 

was confirmed by observation of the progress of gear-mesh frequency amplitude (3
th

 of 

March experiment). 

Run tests were performed on vibrational features but only to assess the 

consistency of the algorithm. In order to evaluate CDA‟s performance in pitting detection, 

it would be necessary to achieve this fault with constant load conditions, which was not 

possible. The high variations in load, especially in gear-mesh frequency amplitude which is 

indicative of pitting phenomenon, did not allow for the signal to have a continuous 

evolution. In this sense, it would be wise develop a programmed module to shift between 

historical data arrays every time the load conditions change. If these changes are not 

scheduled that is, consequence of a malfunction, then the algorithm should naturally issue 

the appropriate warning. 

New tests regarding oil contamination parameters should be performed in a 

properly controlled environment in order to register the signal‟s evolution in full. On the 

other hand, it must be kept in mind that in industrial environment the influence of external 

factors is always present, something that the diagnosis process should be prepared to deal 

with. 
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Concerning the faults occurred in the experiments of 24
th

 of March and 4
th

 of 

April, the most decisive was the loss of viscosity readings. Without this parameter, the 

presence of fuel, wrong lubricant or cooling fluid in the reference oil could not be 

observed. Consequently, the initially pretended variety of contamination response profiles 

wasn‟t obtained. 

Here, at Center for Tribology and Technical Diagnosis, we feel that the 

developed algorithm is solid and ready to be integrated in automated signal diagnosis. The 

fact that it uses simple mathematical operations makes it light, as intended to be, and 

therefore suitable to be implemented in a multi-parameter evaluation process. Although 

trend is an important feature, its interpretation is dependent on experience and needs tests 

to establish appropriate critical thresholds. Still, the combination of states between 

different parameters can be indicative of a specific fault, from which the final assessment 

would be refined with confirmation through the rates of evolution.
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APPENDIX A.1 

Figure 32. Quantitative evaluation: Number of ferrous particles (40 to 60 µm) (Pitting experiment from 
04/02/2011). 

 

 
Figure 33. Qualitative evaluation: Number of ferrous particles (40 to 60 µm) (Pitting experiment from 

04/02/2011). 
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APPENDIX A.2 

 
Figure 34. Quantitative evaluation: Number of ferrous particles (61 to 100 µm) (Pitting experiment from 

04/02/2011). 

 

 
Figure 35. Qualitative evaluation: Number of ferrous particles (61 to 100 µm) (Pitting experiment from 

04/02/2011). 
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APPENDIX A.3 

 
Figure 36. Quantitative evaluation: Number of non-ferrous particles (135 to 150 µm) (Pitting experiment 

from 04/02/2011). 

 

 
Figure 37. Qualitative evaluation: Number of non-ferrous particles (135 to 150 µm) (Pitting experiment 

from 04/02/2011). 
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APPENDIX A.4 

 
Figure 38. Quantitative evaluation: Number of non-ferrous particles (151to 250 µm) (Pitting experiment 

from 04/02/2011). 

 

 
Figure 39. Qualitative evaluation: Number of non-ferrous particles (151 to 250 µm) (Pitting experiment 

from 04/02/2011). 
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APPENDIX B.1 

 
Figure 40. Quantitative evaluation: Number of ferrous particles (40 to 60 µm) (Pitting experiment from 

03/03/2011). 

 

 
Figure 41. Qualitative evaluation: Number of ferrous particles (40 to 60 µm) (Pitting experiment from 

03/03/2011). 
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APPENDIX B.2 

 
Figure 42. Quantitative evaluation: Number of ferrous particles (61 to 100 µm) (Pitting experiment from 

03/03/2011). 

 

 
Figure 43. Qualitative evaluation: Number of ferrous particles (61 to 100 µm) (Pitting experiment from 

03/03/2011). 
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APPENDIX B.3 

 
Figure 44. Quantitative evaluation: Number of ferrous particles (201 to 300 µm) (Pitting experiment from 

03/03/2011). 

 

 
Figure 45. Qualitative evaluation: Number of ferrous particles (201 to 300 µm) (Pitting experiment from 

03/03/2011). 
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APPENDIX B.4 

 
Figure 46. Quantitative evaluation: Number of ferrous particles (larger than 300 µm) (Pitting experiment 

from 03/03/2011). 

 

 
Figure 47. Qualitative evaluation: Number of ferrous particles (larger than 300 µm) (Pitting experiment from 

03/03/2011). 
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APPENDIX B.5 

 
Figure 48. Quantitative evaluation: Number of non-ferrous particles (135 to 150 µm) (Pitting experiment 

from 03/03/2011). 

 

 
Figure 49. Qualitative evaluation: Number of non-ferrous particles (135 to 150 µm) (Pitting experiment 

from 03/03/2011). 

  



 

 

On-line Oil Condition Monitoring  Appendix B.6 

 

 

José Salgueiro  56 

 

 

APPENDIX B.6 

 
Figure 50. Quantitative evaluation: Number of non-ferrous particles (151 to 250 µm) (Pitting experiment 

from 03/03/2011). 

 

 
Figure 51. Qualitative evaluation: Number of non-ferrous particles (151 to 250 µm) (Pitting experiment 

from 03/03/2011). 
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APPENDIX C 

 
Figure 52. Quantitative evaluation: Temperature (Different oil contamination experiment from 

04/04/2011). 

 

 
Figure 53. Qualitative evaluation: Temperature (Different oil contamination experiment from 04/04/2011). 

 


