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Resumo

O dia-a-dia das pessoas esta dependente de maquinas que interpretam o mundo
real e que devem fazé-lo com a maxima precisdo. Dos sensores raramente se obtém valores
fixos, isto devido a fendmenos externos, complexos e de dificil previsdo. Aqui, as técnicas
de processamento de sinal sdo usadas para “recriar” a realidade, permitindo uma analise
posterior de maior confian¢a. No mundo da informacéo, onde tudo é optimizado através de
processos digitais, a inddstria ndo é excepcdo e a sua eficiéncia econdmica da maior
importancia.

Em ambiente industrial, a anélise de lubrificantes € um procedimento indirecto
de diagndstico técnico que avalia a condicdo da maquina e 0s seus componentes, bem
como o proprio estado do 6leo. O meétodo offline tem sido geralmente utilizado para a
avaliacdo dos mesmos — as amostras sdo retiradas de um reservatério para analise em
ambiente laboratorial. Uma avaliagdo em tempo real permitiria a implementacdo da
manutencdo condicionada nesta &rea, de tal forma que o planeamento e os custos das
intervencgdes possam ser reduzidos através da deteccao precose das falhas.

Hoje em dia, a mais fidedigna accdo de monitorizacdo depende do julgamento
humano e até sem o conhecimento do que estd para vir. Com este trabalho, pretende-se
desenvolver um algoritmo de deteccdo de alteracbes em sinal capaz de avaliar
quantitativamente e qualitativamente amostras adquiridas para monitorizacdo em tempo
real de varios parametros associados aos lubrificantes.

No futuro, para atingir uma monitorizagdo auténoma, é necessario obter-se um
método que seja leve, independente da grandeza da medicdo e tdo isento de falhas quanto
possivel. Deste modo, um processo de analise sem supervisdo humana constante pode ser
implementado, permitindo um prognostico do tempo disponivel para a intervencao.

Foi desenvolvido em MatLab um algoritmo baseado na técnica de soma
cumulativa linear e testado em sinais adquiridos de diferentes parametros de lubrificantes,
obtidos a partir de uma unidade de monitorizacao independente desenvolvida no Centro de

Tribologia e Diagnosticos Técnicos da Universidade de Liubliana.

Palavras-chave  Deteccdo de mudangas, soma cumulativa (CUSUM),
linearizacdo, estado estavel e transiente, tendéncia.

José Salgueiro ii



On-line Oil Condition Monitoring Abstract

Abstract

Everyday people’s way of life is dependent on machines that interpret the real
world and must do it with the maximum accuracy. Sensor readings are not absolute and
often fail to maintain level with a fixed value. This is due to complex external phenomena
that cannot be predicted by easy means. Here, signal processing techniques play their part
to “recreate” what is being read, allowing for more assured further analysis. In the world of
information, where all is progressively optimized through digital procedures, industry is no
exception and its economic efficiency of the highest importance.

In industrial environments, oil monitoring is a technical diagnosis indirect
procedure to evaluate a machine’s and its parts current condition, as well as the lubricant’s
condition itself. The offline method has been the generally implemented one for lubricant
condition assessment - samples are taken from a reservoir and for analysis in laboratory.
On-line evaluation would grant the possibility for predictive maintenance implementation
in this field, in a way that scheduling and costs can be reduced through early detection of
faults occurring.

Presently, the safest monitoring action depends on human judgment, and even
then without knowledge on what is to come. The aim of this work here presented is the
development of a change-detection algorithm capable of evaluating quantitatively and
qualitatively sensor readings for on-line monitoring of various oil properties.

To achieve a multi-parameter oil diagnosis in the future it is necessary to reach
a detection and evaluation method that is light, value-independent and as much fault-free
as possible. With it, an automated persistent analysis process without constant human
supervision can be implemented and prognostics made to determine how much time is
available for repair interventions.

A linear CUSUM-based algorithm was developed in MatLab and tested in
acquired data from different oil parameters retrieved from a standalone monitoring unit

developed in the Center for Tribology and Technical Diagnosis, University of Ljubljana.

Keywords Change-detection, CUSUM, linearization, steady and non-
steady state, trend.
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NOTATION AND ACRONYMS

Notation

A1 o — Decision quadrant’s reference

A1 cur — Current trend output

A1 rer — Reference trend output

a, — Origin for linear regression function

ao cur — NOrmalized current window LR origin
ag rer - Normalized abnormal values window LR origin
a; — Slope for LR function

aq cur — NOrmalized current window LR slope
ay rer — Normalized abnormal values window LR slope
¢ — Coefficient of smoothed signal

d — Coefficient of detail signal (WT modulus)
E — CUSUM value

E; — Likelihood estimator

e — Error value

f — Time function

f — Approximated time function

Hy — “No change” hypothesis

h — Step-change identification factor

i — General time index

Jj — Internal module index

K — Current window length

K,,n — Abnormal values window length

k., k, — Factors for slope weighting

L — Likelihood

m — Predicting abscissa index
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N — General window length

n — Normalized value

P — Probability

Q — Quadrant array

Q4, Q,, Q5 — Evolution state limits

R — Relative change

Ry sp — Ration of mean-square deviations
rms — Root-mean-square

rmsg, — ROOt-mean-square of the current window
S — Wavelet characteristic scale

s — Wavelet scale

Thg - Evolution quadrant’s relative threshold
T,y — Reference time

Thy - “Stable” state threshold

Th, — CUSUM “warning” condition threshold
Th, — CUSUM *“critical” condition threshold
t—Time

U — Length of discretized scaling function

u — Scaling function index

IV — Length of discretized wavelet function

v — Wavelet function index

W — First-order wavelet transform

WW — Second-order wavelet transform

Y — Set of acquired data

Y — Set of filtered data

Y — Average of acquired data

y — General ordinate/Acquired value

y* — Predicted value

yref - Reference-predicted point

Yeur — Current-predicted point.

y — Average of values
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x — General abscissa
Z — Slope evolution zone
Z .. — Slope evolution zone for current window

Zy¢5 — Slope evolution zone for reference window

82 — Mean-square deviation (2" estimate for MSD-based algorithm)

6f2 — Filtered mean-square deviation (2" estimate for MSD-based algorithm)
A1, Ay, A3 — Filter factors

u - Average value

1y — Contaminant Viscosity

v2 — Mean-square deviation (1* estimate for variance-based algorithm)

v]? — Filtered mean-square deviation (1% estimate for MSD-based algorithm)
Urer — Reference viscosity

a2 — Variance

¢ — Scaling function

1 — Wavelet function

Acronyms

ANN — Artificial Neural Network
CDA — Change-Detection Algorithm
CDP — Change-Detection Problem
CTD - Center for Tribology and Technical Diagnosis
CUSUM - Cumulative Sum

ELL — Expected Log-Likelihood
LCC — Life Cycle Cost

LR — Linear Regression

Lr — Likelihood Ratio

MSD — Mean-Square Deviation

OL — Observation Likelihood

PPM — Post-Processing Module

pdf — probability density function
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SMU - Standalone Monitoring Device
SOM - Self-Organizing Map
WT — Wavelet Transform
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1. INTRODUCTION

In modern day industry, equipment life-cycle cost (LCC) is thoroughly planned
to ensure maximum profit in production. LCC considers all costs inherent to an asset since
its acquisition to the time of its disposal and, in between, the costs of stoppage time (Riggs
1982). This way, the optimization concept cannot be without a chosen maintenance
strategy among three main (Zhao et al. 2005):

1. Corrective — the maintenance intervention is only performed upon failure;

2. Preventive — the maintenance intervention in performed on regular time

spans, generally determined by statistical data;

3. Predictive — interventions are decided based on operating condition.

The focus of the work here presented lies in predictive maintenance. It can
have high initial costs in comparison to the previous two, namely because of monitoring
expenses (personnel training, equipment acquisition, etc.). On the other hand, it can reduce
significantly the number undesired and unpredicted setbacks during the machine’s
operating time which lead to a reduction in later maintenance expenses.

So, when choosing predictive maintenance strategy, diagnosis techniques play
a decisive part in its efficiency. According to Robin (2006), the operating lubricant
analysis can be used to assess its own health or the general mechanical condition of the
machine components, by looking at the wear particles count. Other relevant oil parameters
include viscosity, temperature, dielectricity and moisture. The target parameter can be
monitored permanently (on-line) or at regular time intervals (off-line).

Traditionally, oil analysis is done off-line by the lubricant’s seller using
randomly collected samples which might not be representative of the machine’s actual
condition. In this sense, on-line oil monitoring sets a state-of-the-art technique for
predictive maintenance, which the Center for Tribology and Technical Diagnosis (CTD) is
thriving to achieve through its already built standalone oil monitoring device unit (SMU).

The focus of this thesis is then set on on-line diagnosis and software processing
of data. It is intended for the processing software to reach the maximum autonomy possible

in issuing warnings signals, eliminating the need for constant monitoring by an operator. It

José Salgueiro 1
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should be capable to output the rates of change for all targeted parameters and accurately
detect their points of trend alteration. The challenge here lies on data analysis and its
complex processing, mainly due to the different nature of acquired signals (cumulative and
stochastic), producing the minimum number of false warnings. As it will also become
clearer along this report, the small variations in the surrounding environment or in the
machine’s operating conditions will have impact on the ideal readings in the sensor and on
the data analysis process.

In short, a true state-of-the-art monitoring and assessment process will allow
for maintenance managers to schedule only the necessary interventions with appropriate
intervention, therefore cutting off repair costs. In this work, a data analysis procedure is

presented as the first step to achieve this.

1.1. Objectives

In the train of thought of what was described before, the following objectives

were established for this thesis:

1. To develop a software for condition monitoring and diagnosis of lubricants,
including:

a. Detect oil condition variations through appropriate detection algorithm -
to be developed on MatLab® (The MathWorks™) programming
environment with obtained data from experiments;

b. Indicate both signal trend and evolution state based on set thresholds.

2. Test the software after its completion by performing contamination
experiments on the in situ test machine - this also includes the establishment
of an appropriate protocol for the following contaminators:

a. Water,;

b. Fuel;

c. Different lubricant;

d. Cooling fluid,;

e. Solid ferrous and non-ferrous particles.

3. Final validation of the software.

José Salgueiro 2
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2. LITERATURE REVIEW

In the context of automated on-line supervision in industrial environment,
signal assessment represents the greatest of challenges. Even to a human observer,
decisions have to be taken without knowledge of what is to come (Kalai and Vempala
2004). This non-deterministic process has been propelling the need to search and develop
faster and more solid change-detection algorithms in the field of Technical Diagnosis.

In essence, change-detection problems (CDP) are divided in two types — Bayes
and minimax (Isom 2009). They differ according to the information that is available on the
change-time distribution. The first, associated with English mathematician Thomas Bayes
(1701 - 1761), takes a policy of minimizing false alarms (also called “cost”) by accepting
future uncertainty as a stochastic distribution with reflection in prior data (Onatski 2000).

Minimax criterion, on the other hand, does not look at new values as another
statistical function but simply unknown, therefore minimizing the expected change
detection delay. This decision-making policy is met be applying the cumulative sum
(CUSUM) procedure, which will be discussed in 2.4.

So far, the problem presented is where to mark the end of a steady state that is,
the beginning of a transient state in the acquired data, and how well can the trend be

evaluated.

2.1. Wavelet-based Algorithm

Jiang et al. (2002) suggest a method to identify steady states in stochastic
signals based on the use of wavelets. Wavelets are cyclic oscillations with an impulse-like
response. Commonly used in data processing, these have very particular properties

depending on their defining parameters (impulse frequency, impulse duration, etc.).
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Figure 1. Example of a wavelet (Morlet type).

This method starts by denoising/filtering incoming data using a wavelet
transform (WT) to approximate the analyzed data window:

FO =) cuput ) du, (1

ueu VeV

If the wavelet function y(x) (Figure 1) is the first-order derivate of a scaling
function ¢ (x):
d (2)
Y = —
Then the wavelet transform (W) of a general function f(t) at scale s is given
by the convolution:
Wef(t) = f * os(t) (3)
With this in mind, denoise operation starts by thresholding the WT modulus
(d). It identifies the so-called “abnormalities” — a peak value of short duration. This
concept must not be confused with “abnormal values”, described in Charbonnier et al.
(2004) as being acquired values that ceased to follow a previously established prediction
model. Also, it should not be confused with step-changes, which are on the focus of this
work and imply a change in the signal’s actual average.
This process of peak search and elimination uses wavelet transformations just
until a scale of 2. Afterwards, it is raised until a pre-determined characteristic scale (S) and

steady state search starts, thresholding first and second-order (WW;,) wavelet transforms:
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Figure 2. Wavelet transformation results. (Jiang et al. 2002).

According to Figure 2, the position for each W, and WW in relation to their
respective thresholds will define their “degree of stability”. The incoming signal finds
itself in a “more transient” state if both surpass their limits.

Because of the symmetry inside the wavelet window (Figure 1), this method
naturally operates with some time delay. Jiang et al. (2002) overcame this by applying a

symmetric extent technique — mirroring past data around the latest time instant ¢t.

2.2. ANN-based Algorithm

Tambouratzis and Antonopoulos-Domis (2004) suggested a non-linear
statistical data modeling method for on-line trend identification in nuclear power plants
neutron density supervision. It is based on an artificial neural network (ANN) to establish
non-linear patterns which will test the signal’s evolution.

ANNs are adaptive systems that change their structure according to the
information acquired that is, during the so-called “learning phase”. The connection
between the input and output is done through an interconnected group of neurons or nodes
(Figure 3).

According to the authors, the self-organizing map (SOM) is a standard type of

ANN for “unsupervised learning”, meaning that no knowledge about the density
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probability distribution (pdf) of future data is available or assumed. The SOM network is
particularly useful to reduce data storage — by creating a “map” (a discretized
representation of the input space), high-dimensional data is reduced to a bi-dimensional
array that conserves the information about past topological relationships. In this array,
information about the connection weights are kept in a way that, during the decision
process, a “winner” node is chosen if the inter-nodal weights that originated it are the most

similar to the feature values of the input test pattern.

085\

neutron density (scaled)

0.6 -

0.4

0.2

(b) selected values

Figure 3. SOM’s training patterns (Tambouratzis and Antonopoulos-Domis 2004).

As shown in Figure 3, 61 training patterns where established and the signal
must be scaled accordingly to meet pre-defined limits. This scaling (or normalization) is
done by subtracting the first signal value (here marked as SV;) from the following. This
method takes seven signal values equally spaced to reach a decision, involving six inter-
nodal weights to reach a semi-qualitative evaluation of the acquired signal. In the end, the
trend is classified into one of these temporal shapes.
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2.3. MSD-based Algorithm

Traditionally, steady-state identification relies on the T-test (from a T-student
distribution - Figure 4) of a given data window and in the comparison of its variance (a2)
with an expected noise contribution reflected on the mean-square deviation (MSD - v?2),

also called variance estimator:

N
2 - 2 4
= 1Z(Yl 7) (@)
=1
N
VZ=LZ(Y-—Y- )2 (5)
N_l-l i fi—1
i=

These estimators in (4) and (5) differ in the use of the mean value of data inside
the window (¥) and the previously filtered value (Y¢;_4).

Cao and Rhinehart (1995) present a method for on-line steady-state
identification based in the statistical F-test of a stochastic signal rather than T-test. As it
can be seen in Figure 4 and Figure 5, F-distributions are pdf distributions that take into

consideration the null hypothesis.

STUDENT T DISTRIBUTION : f(X)

-4 -2 o 2 ' 1
UALUE STOCHASTIC UARIABLE
Figure 4. T-Student distribution probability density function (Borghers and Wessa 2011).
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FISHER F DISTRIBUTION : f(X)

1.2

UALUE STOCHASTIC UARIABLE
Figure 5. F-Distribution probability density function (Borghers and Wessa 2011).

The method depends on three weight parameters (4,, 1, and A3), referred in
documentation as filter factors, and relies on thresholding a ratio (Ry,sp) of 2 estimates of
variance (v2 and §2) defined by:

@-2) v
RMSD = 6—2fl (6)
i

Where the filtered MSDs are calculated according to:
2
vEi= (Y —Ya) +(1—2) vy (7)
8fi=A3 - (Y, =Yii)? + (1 —23) - 6F,4 (8)

The filtered data window is also done by weighting the contributions of past
values:
Yei=A Y+ (1 =2 Y5 (9)

The results achieved on temperature and pH readings, are interesting but it
became clear that the choosing of 4,, 4, and A5 can have some undesired effect. If these
factors are too small, noise influences are reduced, making the pdf of both steady and non-
steady states to fall apart. On the other hand, the fast identification of state change can be

compromised due to the great influence of past data.
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Figure 6. Demonstration of the steady-state identifier (A;=0.2, A,= A3=0.1) (Cao and Rhinehart 1995).

The results presented (Figure 6) show mainly step-changes with following
close-to-zero trends. In the focus of this work, constant increase/decrease is considered to
be a steady-state, so it is necessary to know how well the algorithm works when confronted
to this situation, but the weighting of past data information is an idea that will be later used

for qualitative evaluation, described in section 3.7.2.

2.4. Linear CUSUM-based Algorithm

CUSUM s a sequential analysis technique used to detect changes in a given
time series. The calculation process involves the consecutive sum of error values,
according to equation (15). The primary assumptions is that the acquired data’s statistical
distribution is of Gaussian-type with an average (u) of 0 and variance (o2) equal to 1
(Basseville and Nikiforov 1993). T-distributions (Figure 4) are closely shaped to Gaussian
but with heavier tails that is, with more probability of outliers occurrence.

This is the approach that sets the basis for the trend extraction algorithm
presented by Charbonnier et al. (2004), which was tested in industrial and biological
monitoring processes, and also for the one presented in this work.

This method does not require pre-filtering. The justification for it is that
filtering would lead to a masking effect, also known as “aliasing”, on important high-

frequency features such as step-changes.
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The method involves the establishment of successive linear models and
consequent extrapolation of values, as shown in Figure 7. This process will become clearer
on the algorithm’s explanation in chapter 3.

Signal + Model

! new model obtained -
180 lingar model

E_*.-r[rapula'linn

"”:'l:l *_ 1 i L L
2140 5150 o160 8140 21l a140 5200 2210 820

Figure 7..Linear model extrapolation (Charbonnier et al. 2004).

The decision process for qualitative evaluation, on its turn, is similar to the one
presented here in section 3.7 and is based in the comparison of segments of data and their
slopes. The difference though, lies in the usage of more information to reach a qualitative

assessment not so prone to false alarms, as it will be discussed later.

2.5. Non-Linear CUSUM-based Algorithm

Vaswani (2005) presents a more complex method by applying two different
likelihood functions — Expected (negative) Log Likelihood (ELL) and Observation
Likelihood (OL) — which are suitable to slow and fast changes, respectively. In a discrete
set of data Y, likelihood can be defined as the probability of y; given the already output set
Yyt

LyelYie) = By, (Y =Y1.¢) (10)

ELL confronts this by estimating the negative logarithm of the previous
likelihood of the state (at time t) under the “no change” hypothesis (H,):

ELL(Yy) = E [—log p:(y)|Y1.e, Hol (11)

OL is defined as being the negative log-likelihood of the current observation

conditioned on past observations under the “no change” hypothesis:

OL = —log P(Y;|Y1.t-1, Ho) (12)

José Salgueiro 10



On-line Oil Condition Monitoring Literature Review

The likelihood ratio (Lr) will then compare consecutive values of ELL or OL
and substitute the error value in equation (15). The identification process of changes is
common in all CUSUM-based algorithms and will be detailed later in 3.6. Vaswani (2005)
tested this idea on simulated results to observe the method’s response towards fast and
slow changes.

Other variations of the CUSUM technique are available in Basseville and

Nikiforov (1993) with proper theoretical justification.
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3. CHANGE-DETECTION ALGORITHM

The change-detection algorithm (CDA) represents the pivotal part of this work.
Within this software, all acquired data is to be properly processed and from it the important
change features retrieved, that is the signal’s trend and its evolution status.

The CDA'’s process relies on the linearization of important segments of data

which are representative of a system’s condition change, as shown in Figure 8.

40

— Acquired Data
395H\ -~ - -| = | inear Regression | —

39
38.5
38
]
;, 375
37
36.5
36

355

35
0 Tref
Time

Figure 8. Linearization of a data window.

The red line in Figure 8 plots the points predicted by the LR parameters
retrieved from the window, according to the following equation:

y:ao‘l‘ al'x (13)

With a, being the ordinate at the axis’ origin and a4 its slope.

The method to retrieve these parameters is fully explained in section 3.4.3.

3.1. The CUSUM Computation

The CUSUM computation, introduced in section 2.4, can be applied this way:
Given the general index i at the latest instant ¢, if we consider the difference

between the acquired value (y;) and a predicted one (y;), the error (e;) is defined by:
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&=y~ Vi (14)
The cumulative sum (E;) is then computed by summing consecutive error
values:
Ei=e + Ei4 (15)
In this work, the mathematical principles applied for change-detection are the

same as in Charbonnier et al. (2004), but the method for error computation has some
differences which will be thoroughly detailed in 3.5.

3.2. General View

The on-line change-detection algorithm developed can be perceived as a cycle
of operations which include five main modules (Figure 9):

e Step-Changes Identification;

Quantitative evaluation of the current data window (Window Analysis Module);

o Current trend output (A1 ¢yr);

New point prediction (Predicting Module);

Quantitative evaluation of the abnormal values” window (Post-CUSUM Module);

o Reference trend output (A1 r¢f);

Qualitative evaluation (Post-Processing Module);

o Evolution “State”.

Figure 9 represents the general flowchart of the algorithm. Each line color
indicates the origin of the variable that is being routed in between modules:

e Green — Data array writing process;

e Orange — Step Identification process;

e Blue — Window Analysis module;

e Cyan — Predicting module;

e Red - Post-CUSUM module;

o — Post-Processing module.
Notice that the ending tips of some flow lines are different. The square tip

indicates that the variable is being used as a trigger for a specific process or entire module.
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This aspect is of the uttermost importance when dealing with information that is processed

in different time periods.

_J Step-Changes St
- e
Acquire »| Identification P
New
Xj
Sample
Predicting
i :I_yd Module
| rmScy,, I T *
P A Ag,cur Ag,ref
I A cur |I‘ 21 cur a4 et Post-CUSUM .
! 7y Module
Post-Processing <
Module P | K, l<
T e | Y
r PPM

|§| trigger m
Window Analysis m
E’ Module

Figure 9. CDA’s general view.

3.3. Step-Changes Identification

During the planning of the CDA it was established that one of the important
features that must be identified are the step-changes. These kind events are important
because they might happen due to a sensor reading fail or an actual change in the mean of
the read parameter (Figure 10).

These kinds of events were clearly seen during the relative moisture readings in

the water contamination experiment (4.4.2.1) and indicate an abrupt change on the system.
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Consider this figure:
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Figure 10. Step-change occurrence after contamination with water.

The step-change in Figure 10 occurred in a span of three samples, where the
read parameter increased its value by 90% of its previous mean.

The high-frequency fluctuations make it difficult for a correct identification of
step-changes. A simple way to do it would be to fix a threshold for the relative change
occurred between neighboring points. If so, the calculation for the relative change (R)

would be:

R = YVi— YVi-1 (16)
Vi

But this method presents two main problems:

e |f the absolute value of y; is too close to zero, then R tends to infinity which means
that false step-change warnings would be sent permanently.

e The algorithm should be independent from the signal-to-noise ratio, so the typical
relative change can have very different values depending on the source of the read
data, making it impossible to fix a threshold.

The magnitude of variation of a signal around its mean can be calculated

considering the definition of the root-mean-square (rms):

/Z}V Y
- (2L (17)
rms

Applying this equation to a data window with a length of N samples,

identification of a step change becomes:
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Llyi— yi-al > h Xrms

18
0, [y; — yial < hx rms 1e)

Step ={

The value of h can be set depending on the sensitivity CDA should have
towards finding these step-changes. In the version of this work, h was set to 20 after
several run tests performed on obtained data.

As it can be seen in Figure 9 ( flow lines), the algorithm will send the

information of this occurrence to different modules, changing its general behavior.

3.4. Window Analysis Module

Here is where the algorithm begins to differ from the approach suggested by
Charbonnier et al. (2004). For this group, three sub-modules were established, as shown in
Figure 11:

e Current window array writing;
e Window normalization;

e Window linearization (Retrieve LR parameters).

E Current window Retrieve
. —>
! [Vikeur = Vil LR parameters

Normalize Retrieve

data LR parameters

'

Figure 11. Window Analysis Module.

3.4.1. The Current Window

This data window is a fixed-length time series, much as the one in Figure 8. It
has a span of K samples, correspondent to a pre-chosen reference time — Ty

This reference time is one of the most important input parameters for the CDA.
If we see the window linearization process that follows as a low-pass filter for incoming

data, attenuating high-frequency events then T is its cutoff period.
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The cutoff period would be the inverse of the cutoff frequency, which is
defined as being the boundary in a system's frequency response at which energy levels start
to be attenuated. This means that short-time fluctuations in the acquired data are damped
which happens to be a standard procedure in signal processing methods.

According to Figure 11, this current window is rewritten each time a new

sample arrives.

3.4.2. Window normalization

On the beginning of the algorithm’s development, one idea that was settled was
that it should be independent of the readings amplitude. Being so, normalization of the data
window became a regular process. This way, the quantitative evaluation of trend changes
is merely relative and value-independent.

In this sub-module both the average —y, defined in (19) — and the root-mean-
square of the current window, here called rms,,,,- (17), are calculated.

Xy
K

(19)

y =
The window is normalized when all its points are normalized according to the

following equation:

yi—y .
i =——,j€[1:K (20)
n; pr—— Jj € [1:K]

Being n; the normalized value correspondent to the ™ sample inside.

3.4.3. Window linearization
The LR model is set according to (13). The determination of ay and a; is done

through the least-squares method. Considering the jth sample (y;) and its correspondent
abscissa x;, the LR parameters are retrieved following the next equations:
1
K K K
XXy L% XY

1 2
22 — % (2 %)

a, ,J € [1:K] (21)

ao == :)_/ + alf (22)
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Notice that, in Figure 11, there are two slopes being output. A; - is the
immediate trend of the original signal, updated at the same rate of sample writing and
displayed to the user. The variable a, ., is the slope of the normalized window which is

used only for internal calculation the same way as ag ¢y

3.5. Predicting Module

In this module the process of predicting a new point is quite straightforward. In
the approach by Charbonnier et al. (2004), the error is calculated between the real acquired
value and a predicted one (section 3.1). Here, the error is calculated using two predicted

points, which means two sets of LR parameters from distinct data windows.

Ao, ref
aq,ref

> Calculate

' reference-predicted m
1

E Xm = Xmq + 11— point

A W |

1

IQ—'_ Calculate E
: y*i cur i
; i error :
i | Calculate i
g cur[—+ current-predicted @] :
a } > i
Lo - point H
i Calculate i a
; CUSUM '

Figure 12. Predicting Module.

The calculation of predicted points uses a shared internal abscissa (x,,) to
obtain the following:
* Yirer — reference-predicted point.
® ;. — cCurrent-predicted point.
The index ref should be not confused with the one used in the CDA’s input

parameter T,..r. The variables ay,.r and a, .. come from a reference LR model obtained
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in the Post-CUSUM module and will be explained in 3.6. They are calculated the same
way as ag ¢y and ag ¢y, USING equations (21) and (22).

The newly predicted points are determined by adapting the LR parameters
mentioned to the linear equation (13).

The error and CUSUM are computed from equations (14) and (15),
respectively.

In Figure 13, the difference between both predicted points is shown:

1.0538
Current-Predicted Points
0711 e i e e e e e e e e (y* CUI') -
o I e Referenced-Predicted Points (y* )

0.211

-0.289

-0.789

-1.289

-1.789

-2.289

0 Tref

Time [h]

Figure 13. Reference and current-predicted points.

The difference between both plotted functions is justified by the rate of the LR
parameter’s update. Since ag - and a; o are computed every time a new sample is
acquired, the current-predicted points’ evolution is more “unstable” than the reference-
predicted, whose parameters are obtained after longer periods, as described in the next

section.

3.6. Post-CUSUM Module

In Figure 13 there are stretches where the current-predicted points deviate
considerably from the reference-predicted ones. According to (15), this will have a direct

impact on CUSUM’s calculation, making it grow.
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The standard CUSUM algorithm’s approach needs to set two thresholds — Th,
and Th, (Figure 14). This way, for each raw value y; there is a correspondent CUSUM
condition towards the established LR model:

e 0 < E; < Th;— Acceptable.
e Thy <E; < Th,—Warning.
e Th, < E; —Critical.

Current-Predicted Paoints (y‘cwj
S PSSRSO PRSP PP PP PRI Refererced-Predicted Paints (17, | ]

v ———CUSUM [E)
4 Threshold 1 (Th,)

.| ==—Threshold 2 (Th,)

Kabn - Kabn
1
1] \ Py, -|l N
I \M _.,_,m.yh.. Y 11‘\\1/”' o e A
1 A W
2% \ ~—~ 7
3
5 B
-t T-——————— T———-———- T ——————- T 1-——=—=—- - —————- —-Th2
225 230 235 240 245 250 255

Figure 14. CUSUM evolution.

According to the Figure 14, when E; reaches the critical state it is reset so that
a new LR model can be established. The model is set according to the procedure detailed
in section 3.4, with a difference — the length of the data window is variable (K;p,)-

Following Charbonnier et al. (2004) method, the values used for establishing
the new model are the ones that pair with CUSUM when it evolves between “warning” and
“critical” conditions — therefore the plotted abnormal values in Figure 14 which are
coincident with E; going through this area.

With this in mind, the Post-CUSUM Module’s flowchart is presented in Figure
15:
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Figure 15. Post-CUSUM Module.

Once E; surpasses its second threshold the abnormal values array is “released”
for normalization and linearization.

Notice that, in the upper decision block, the abnormal values array is reset
upon transition to “warning” condition. This is an internal procedure only to ensure that
former abnormal values that never reached Th, are not incorporated in the new window.

Again, Ajef represents the window’s real slope to be displayed, a; ref and
ao ref the LR parameters from the normalized window. These two will be used to establish
a new model inside the Predicting Module, as referred.

The occurrence of this change in CUSUM’s condition also triggers another set
of events, mainly two:

e The resetting of the Predicting Module’s abscissa (x,);
e The setting of Post-Process access (“PPM trigger”).
At this point all quantitative evaluation of the signal has been performed. Further

considerations about this are done later in section 3.8.
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3.7. Post-Processing Module

This is the module responsible for the qualitative evaluation of the signal. After
its process, the algorithm should be able to output an evolution state differed in eight
levels, as presented in the results annexed — “Step Down”, “Changing (Decreasing)”, “No
Change (Decreasing)”, “Stable”, “Stabilizing”, “No Change (Increasing)”, “Changing
(Increasing)” and “Step Up”.

To simplify this analysis, the signal’s trend sign will be ignored for now since,
for the most part of its operation, the module works with absolute slope values. Therefore,
we can define five main evolution states:

1. Step;

2. Changing;

3. No Change;

4. Stabilizing;

5. Stable.

3.7.1. Decision Quadrant

The update of the signal’s evolution state can be done using a quadrant as
shown in the figures below. In this quarter of a circle, a maximum of 4 evolution states can
be defined but, depending on the previous state, one or more state zones can be suppressed.

As mentioned before, at this point only the absolute value of the incoming
reference slope, retrieved from the previous module, is being looked at. Considering the
example of a high slope signal that will stabilize after some time, all possibilities can be
explored.

The next figure relates to the quadrant’s phase that is applied after both
“Changing” and “No Changing” state.
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Figure 16. “Changing”/”No Change” state quadrant.

At first instance, the quadrant’s reference (4, o - Figure 19) is set and all state
limits defined, according to the diagram in Figure 16. The “No Change” zone lies between
limits 2 (Q2) and 3 (Q3), which are defined through a relative threshold (Thy):

{Qz = |Ayq| - The

,0 <Thy <1 (23)
Qs = |A1,Q| (2 - ThQ)
According to (23), Thy defines the limits for the “Stabilizing” state, also

meaning that the next processed slope value can be considered in an “unchanged” if inside

an interval of A; o £ Ay (1 —Thy).
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Figure 17. “Stabilizing” state quadrant.

From the state shown in Figure 16, a “Changing” warning will be issued if the
slope leaves the zone delimited by Q, and Q5. In this example, it will deviate to the
previous “Stabilizing” area.

As is seen in Figure 17, the previous quadrant’s reference changed and the state
limits redefined according to (23). Because now the signal state is “Stabilizing”, the
“Stable” zone becomes available to access. Qq is simply defined as being equal to the
stable threshold (Th,) and this is the only parameter in CDA that is value-dependent.

Notice that if the trend continues to drop eventually Q, will fall below Q;. In

this case the “Stabilizing” zone will be narrowed, having Q, as its lower limit.
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Figure 18. “Stable” state quadrant.

When the signal reaches a “Stable” state, its only options are to remain
“Stable” or return to a “Changing” status, therefore all other zones in the quadrant are
suppressed, as shown in Figure 18.

These state limits define the quadrant array (Q — Figure 19) that retains the
information about their position every time the Post-Processing Module is called to into
process.

Notice that no case for step-change has been mentioned so far. The fact is that
step-changes occur faster than regular reference slope analysis, which means that a change
to “Step” state overcomes any other and it redefines the same quadrant display as in
“Changing”/“No Change” state (Figure 16).

As referred before, the quadrant only works with absolute slope values but its
analysis is only valid as long as the general data trend (negative/positive) remains the
same. If two consecutive reference slopes are different in sign, then the decision quadrant
is reset, that is the signal is brought back to a “Changing” state (Figure 16).

In the following section the effective determination of A, ,, is fully explained.

José Salgueiro 25



On-line Oil Condition Monitoring Change-Detection Algorithm

3.7.2. Quadrant’s Reference

One could think that the quadrant’s reference could be the same as the
reference slope (4, .f) determined previously in the Post-CUSUM Module. Theoretically
that would be true, but run tests have proved that another criterion has to be established in
order to avoid incorrect state evaluations.

The main problem concerns the fact that sometimes current and reference
trends are too different. Knowing that one is based on a fixed-length window and the other
on a variable and unpredictable one, this event mostly happens due to the frequent irregular
shape of acquired signals, so the issues stands in deciding which one to choose.

Figure 19 shows the flowchart of the Post-Processing Module:
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A1,ref — n .
! evolution zone

-
:
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E * Zref E
i Step Y !
Step | trigger | Z <—| i
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] :

H Define H n
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Figure 19. Post-Processing Module.
Inside this module, a decision block compares the position of both slopes in the
quadrant (Z,. and Z,,). If their position match, then the reference slope (4, ) is set as
the new A, ;. Otherwise, the quadrant’s reference must be a weighted value between Ay ,..f
and Aq cyr:

Al,Q =k, 'Al,ref + k; 'Al,cur (24)

José Salgueiro 26



On-line Oil Condition Monitoring Change-Detection Algorithm

The values of the k, and k, weights should then reflect the amount of points —

K and K, — used for the calculation of their respective slopes:

= K
27 K+ Kgpn (25)
kl :1_k2

With this method the proper contribution of each data window (reference and
current) is taken into account. This way, if either A;,.r and Ay ., were retrieved from a
small number of samples in comparison to the other, its effect, considered to be a punctual
abnormality in trend, will be minimized in the final state evaluation.

In case of a recent step-change occurrence, this process has to be skipped and
A1 rer chosen as the quadrant’s reference. This happens because the current window still
contains the step-change points which increase the magnitude of the current slope after

linearization, therefore leading to an erroneous 4, , value if determined by (24).

3.8. Input/Output Parameters

Having into consideration what was exposed previously, the following tables
set some considerations about the input and output parameters of the Change-Detection

Algorithm:
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Table 1. CDA’s input/output parameters.

Parameter

Meaning

Remarks

Input

Tre f

Reference time length
(For the current window).

This value sets the time span of the
current window. Except for step-
changes, no target events should be
shorter than this.

Thy

Evolution quadrant’s
relative threshold

According to section 3.7.1, this
parameter is used to define the
“unchanged” area where the signal’s
trend can dwell.

Thy

“Stable” state threshold

It is an absolute value and the only
value-dependent  parameter.  that
defines the trend limit from below
which the signal is considered to be
stable. It should be set to avoid
unnecessary warnings small signal
fluctuations.

Th,

CUSUM’s “warning”
condition threshold.

Th,

CUSUM’s “critical”
condition threshold.

These parameters set the regions of
CUSUM’s condition  development
(Figure 14). The larger these are, the
longer the cumulative sum needs to
mark a new reference, meaning that
evaluation will be performed less often.

Output

Al,cur

Current Trend

This is the slope retrieved from the
current window. It can be displayed as
“the trend in the last T} time period”

Al,ref

Reference Trend

This is the slope retrieved from the
analysis of the abnormal values’ It is
always reflective of the true change
occurred in the system.

State

Signal’s state

This is the variable responsible for the
issuing of warnings. Warnings are sent
upon step-change occurrence,
“changing” and also “stabilizing”
states.
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4. EXPERIMENTAL RESULTS

In order to diagnose correctly oil changes during machine work, it is necessary
to relate monitored parameters with a specific known occurrence. The algorithm described
before will be tested with the data retrieved from some experiments that were conducted in
a laboratorial environment, using (for every case) a reference oil with the following
description:

e Olmad.d. Olmaredol VG-68 — reference viscosity (i) = 68 mm?/s at 40 °C.

4.1. Experimental Setup Description

Figure 20 is an actual image of the experimental assembly:

Figure 20. The experimental assembly.

On this experimental setup, torque is transmitted from the Synchronous
Electric Motor to a Brake-Generator. The Gearbox connected to the SMU (described in
4.1.1), will be duly sealed after 2 liters of unchanged oil are poured inside. The Sensors’
Block (Figure 21) will be outputting an analog signal to the DAQ Card (Figure 21) which
will convert it to a digital one, ready to be registered by the already implemented LabView
interface.

Regarding the components of the experimental setup, the following table

shows their main characteristics:
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Table 2. Experimental setup components characteristics.

Component

Main Characteristics

Synchronous Electric Motor

Rated Power

12.7 kW

Rated/Maximum Speed

1470/1700 rpm

Brake-Generator

Rated Power

20.2 kW

Maximum Torque

110 N.m

DAQ NI USB 6215
Card (Isolated Multifunction 1/O)

16 Analog Input Channels (250 kS/s)
(with 16-bit analog-to-digital converter)

4.1.1. SMU’s Description

The Standalone Monitoring Unit is responsible for providing data for the

analyzed parameters. Figure 21 is a schematic drawing of the experimental setup:

Synchronous| 1
Electric Motor|C

Gearbox

Brake
Generator

| SMUI

| |

] ISensors' Filter 1

: Block = |

T |

DAQ | I
card

[ | Pump :
A J

aigitai | | I

input 1 1 _ _ o e - o |

Figure 21. Schematic assembly of the experimental setup.
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Designed and developed at CTD, the SMU takes oil from the gearbox and

pumps it towards the sensor’s block, through the filter and back to the oil container. For

on-line assessment of the oil condition, the sensor’s block incorporates the following three

Sensors:

HYDACLab® AquaSensor AS 1000 (temperature compensated) — for measuring
water content relative to saturation point and oil temperature:
1. Relative moisture content (0 to 100%);
2. Temperature (-25 to 100 °C).
HYDACLab® Fluid Condition Sensor (temperature compensated) - for
measuring multiple parameters, including:
1. Relative change in viscosity (-30 to 30%);
2. Relative change in dielectric constant (-30 to 30%);
3. Relative moisture content (0 to 100%);
4. Temperature (-25 to 100°C).
KITTIWAKE GmbH Metallic Particle Sensor — to measure and classify (by
size) wear metal particles concentration. Size categories include:
1. Ferrous bins:
a. 40to 60 pm;
b. 61to 100 pum;
c. 101 to 200 pm;
d. 201 to 300 pm;
e. Larger than 300 pm.
2. Non-ferrous bins:
a. 13510 150 pum;
b. 151 to 250 pm;
c. 251to 350 pm;
d. 351 to 450 um;
e. Larger than 450 pum.

According to the described sensors, two main groups of experiments were

performed. These are detailed in the following sections 4.2 and 0.
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4.2. Pitting Experiments

The pitting phenomenon is one type of mechanical fault with most interest in
the field of technical diagnosis. Due to its frequent occurrence in industrial environments,
it is on the interest of maintenance departments to detect the start of this event as soon as
possible.

In this sense, two pitting experiments were conducted at CTD with different
load conditions — at constant (Figure 22) and variable load (Figure 23). The load values in
Figure 22 and Figure 23 come as a percentage of the generator’s maximum torque, shown

in Table 2.

100 . . . 200

_________ I R R N ———————— -

Temperatura [C]
o

100 i i i i i | i | 0
0 50 100 150 200 250 300 350 400 450
t[h]

Figure 22. Pitting experiment from 04/02/2011: Temperature and load conditions (Axis: Temperature [2C],

Load [%]) (Persin, G. 2011a).
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Figure 23. Pitting experiment from 04/02/2011: Temperature and load conditions (Axis: Temperature [2C],
Load [%]) (Persin, G. 2011b).
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Comparing both figures, it can be seen that load variation has a direct impact
on oil temperature. Concerning the metal particles count associated with pitting, oil
temperature has no impact, but load variation does and it is visible on the CDA’S run
results.

These load conditions were established and uploaded into the generator’s
control unit and the motor put to run via remote connection. The motor’s speed was set to
1296 rpm in both cases.

The objective was to drive the mounted gears into a fault state and register the
important changes in the read signals, that include the ones discussed in 4.1.1.

For this there were used two sets of spur gears, both pairs with a transmission
ratio of 1.5 (24 to 16 teeth). The gears are from steel according to designation DIN
42CrMo4.

A change in the nitration process influenced the outer layer thickness. This was
determined visually after the tests, through microphotography.

Table 3. Measured outer layer thickness.

Experiment Date Outer Layer Thickness
04/02/2011 20 pm
03/03/2011 2-3um

4.3. Contamination Experiments

Oil contamination by alien agents can be most important in cases where
equipment cleanliness greatly affects its reliability and life cycle extent. Also, it can be
indicative of oil aging status, in case of increased viscosity, or an existent leak in
surrounding modules (i.e. coolant/fuel contamination, etc.). Knowing that the presence of
these agents mostly affects the lubricant’s viscosity, the contamination’s response profile
for each should be determined.

Water contamination test was divided in three sessions, each starting with
contamination of the running oil with different amounts of water — 1ml, 2ml and 5ml.

The 8" of August experiment (section 0) is a repetition of the one performed

on the 24™ of March where all 3 sessions where complied. Unfortunately, undetected
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crash-downs in the acquisition LabView modules lead to the loss of great stretches of data,
causing visible discontinuities in registered values. In this sense, it was decided that the
previous experiment should be disregarded and a new one performed.

The driving motor was put to work at a speed of 1000 rpm and the torque set to
33% of its maximum torque (Table 2). Contaminants were introduced through an access
conduit welded to the covering top of the oil container, allowing for this process to take
place without stopping the machine’s running.

The obtained results are discussed in detail on section 4.4.2.

4.4, Results

Concerning what was described in sections 4.2 and 0, the results here presented
were taken from the KITTIWAKE Metallic Particle Sensor, for metallic particle count
(Pitting Experiments), and from the HYDACLab AquaSensor AS 1000 for relative
moisture reading (Contamination Experiments).

Although tests with other contaminants were performed, faults in the
HYDACLab Fluid Condition Sensor did not allow for viscosity variations to be observed,
a setback that will be discussed in section 4.4.2.2 and chapter Error! Reference source

ot found..

4.4.1. Pitting Experiments

The pitting phenomenon can be observed in the trends of particle count that is,
the velocity of newly released particles to the operating fluid — especially in large-sized
ones (above 200 pm). Wear, on the other hand, is mostly expressive in particle sizes below
200 pm and its evolution is more logarithmic-shaped rather than exponential. The two
phenomena are visible on both sets of signals obtained.

The input parameters for particle count signals are shown in Table 4.
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Table 4. Input parameters for pitting experiments.

Parameter Value

Tref 8 hours

Thy 40 %

Thy 5 particles/hour

Th, 50

Th, 500

4.4.1.1. Wear Confirmed
The test that started on the 4™ of February (Figure 24) shows a high rate of

initial wear, followed by stabilization as shown by the progress of both output trends.
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Figure 24. Quantitative evaluation: Number of ferrous particles (101 to 200 um) (Pitting experiment from
04/02/2011).

José Salgueiro 35



On-line Oil Condition Monitoring Experimental Results

Number of Particles

Acquired Data
Abnormal Values
Step Down .
Changing (Decreasing)
No Change (Decreasing)| _|
Stable
Stabilizing ,
No Change (Increasing)

Q001 e i s e

Changing (Increasing) |
Step Up

“I>rpood«ed -

2000 L [ [P i S S A S e e e e feees

| 1 1 1 1
50 100 150 200 250 300
Time [h]

Figure 25. Qualitative evaluation: Number of ferrous particles (101 to 200 um) (Pitting experiment from
04/02/2011).

Similar results are shown in appendixes from A.1 to A.4.

In line with the CDA’s description and its intended progress, a “Changing”
state was marked after 20 hours (Figure 25) from the test start and final stabilization
reached after 96 hours. This corresponds to an initial rate of more than 30 particles
generated per hour before reaching stagnant level below 2. Also, two transitions to
“Stabilizing” state were obtained in between, the first marking a small change in trend and
the second spotting the end of the initial wear phase.

In this experiment, pitting did not occur, mainly due to the large thickness of
the outer layer (20 pum - Table 3). In the next section, the test discussed uses gears with a

layer thickness ten times smaller, and this will influence greatly the general particle count.

4.4.1.2. Pitting Confirmed
In the 3" of March experiment, according to the reports produced at CTD,
pitting was confirmed after 72 hours of the test start and the algorithm should pinpoint this

with a “Changing” warning.
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Figure 26. Quantitative evaluation: Number of ferrous particles (101 to 200 um) (Pitting experiment from
03/03/2011).

The current trend/slope is changing in a cyclic mode due to the load variation
(Figure 23), showing peaks which are coincident with the highest stretches of load, as
shown in Figure 26. This reflects later on the reference slope output that clearly changed in
average after 78 hours. The values registered that followed remained with similar peak
values — from 110 to 130 particles/hour, approximately — and keeping the same varying

profile as before.
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Figure 27. Qualitative evaluation: Number of ferrous particles (101 to 200 um) (Pitting experiment from
03/03/2011).
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The trend’s high fluctuations make it difficult to find the pitting start point. In
any case, between 60 and 80 hours, two “Changing (Increasing)” warnings were issued
(Figure 27), confirming that a real changing in the system’s condition was occurring. The
same phenomenon can be seen in similar results in appendixes B.1 to B.4, the latest

concerning non-ferrous particles.

4.4.2. Contamination Experiments

The results presented in this section have very interesting features from step-
changes to high slope fluctuations. Moreover, the signals obtained are not cumulative-type
like the previous but stochastic, which reflects on the noisy readings obtained.

Because the reference time is intentionally smaller than the one input on the
pitting experiments, state issuing will be more frequent.

For the signals analyzed, the CDA’s input parameters are:

Table 5. Input parameters for contamination experiments.

Rel'ative Temperature
Moisture
Parameter Value
Tref 4 hours 4 hours
Th, 75 % 75 %
Thy 0.01 %/hour 0.15 °C/hour
Th, 50 50
Th, 500 500

Notice that the CUSUM thresholds values (Th; and Th, - Table 5) are similar
for input parameters used in pitting experiments (Table 4), proving that value-
independency has been achieved.

For these contamination parameters, only the “Stable” state threshold is
different between both analyses. That is clearly the obvious change in parameters because
it is the only one which is value-dependent.
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Furthermore, the reference time chosen the same for both comes from the
assumption that changes in their condition occur within the same time range and faster in

comparison to particles count.

4.4.2.1. Relative Moisture

The contamination of the operating lubricant with water produced immediate
“spikes” in the signal’s readings, identified right away with a “Step Up” warning issue and
followed by a low-paced decrease. This happens because of the long period that even the
smallest amount of water (1 ml) needs to disperse completely inside the oil container.

If ideal conditions had been matched, the readings should have stabilized into a
new value, but variations in the room’s temperature did not allow for this feature to be
registered, an aspect which will be discussed further. Even so, in the first 100 hours after
the contamination mostly “Stabilizing” states were output, preceded with a “Changing
(Decreasing)” warning after the step-change (Figure 29).
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Figure 28. Quantitative evaluation: Relative moisture (Water contamination experiment from 01/08/2011).
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Figure 29. Qualitative evaluation: Relative moisture (Water contamination experiment from 01/08/2011).
After 170 hours of running experiment a permanent “No Change” state was
achieved, being only disturbed briefly at the 285™ hour before the signal continued its
constant descent. Although the rate of change is very low (0.2 %/hour - Figure 28), it is
clear on this graph that the signal is still decreasing, therefore this state should be
maintained.

4.4.2.2. Temperature

As it was referred on the beginning of the previous section, temperature
fluctuations inside the room had an impact in relative moisture readings. These can be seen
now in the following Figure 30 and Figure 31:
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Figure 30. Quantitative evaluation: Temperature (Water contamination experiment from 01/08/2011).

After the initial temperature rising and stabilization a high decrease was
registered (Figure 30). At this time, it was decided that the increasing heat could jeopardize
the safety of the running machine, therefore measures were taken to ensure proper cooling
flow in the room. Later, new problems concerning readings stability were brought by the

natural day temperature variations.
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Figure 31. Qualitative evaluation: Temperature (Water contamination experiment from 01/08/2011).

Figure 31 shows how unstable trend evolution can be when dealing with these

daily temperature variations. A “Stable” set of states was correctly issued, but 220 hours

after the experiment’s start, cycle amplitudes became larger causing alternate “Changing”

states to be output.
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In Appendix C, the temperature readings and results from the 4™ of April
experiment — contamination with different oil - are presented. This test lasted for little
more than 41 hours, moment when the test was put to stop.

The contaminator, Olma d.d. Gear Oil SAE 80W-90 (u; = 90 mm?s at 40 °C),
was not producing any variation in viscosity readings and for this reason, even after an
attempt to recalibrate the sensor, is was concluded that it was unable to deliver the
necessary parameters.

In any case, the data retrieved was kept for testing the algorithm’s run progress

and to compare with the results from the 8™ of August experiment.
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5. CONCLUSIONS

In line with the proposed objectives detailed in chapter 1, a change-detection
algorithm was developed, capable of outputting trend and evolution state from obtained
signals on-line. In its development process, value-independency was achieved which made
it possible to reduce the number of input parameters, simplifying future implementation in
a multi-parameter diagnosis unit.

The algorithm was tested with retrieved data from different lubricant
parameters with very distinguished behavior. Despite the setbacks already referred, enough
data was obtained to validate its consistency.

It performed particularly well when confronted with cumulative-type signals in
metal particles count, identifying all stages in initial wear evolution (4™ of February
experiment) and spotting in definite the occurrence of pitting 8 hours after the moment it
was confirmed by observation of the progress of gear-mesh frequency amplitude (3™ of
March experiment).

Run tests were performed on vibrational features but only to assess the
consistency of the algorithm. In order to evaluate CDA’s performance in pitting detection,
it would be necessary to achieve this fault with constant load conditions, which was not
possible. The high variations in load, especially in gear-mesh frequency amplitude which is
indicative of pitting phenomenon, did not allow for the signal to have a continuous
evolution. In this sense, it would be wise develop a programmed module to shift between
historical data arrays every time the load conditions change. If these changes are not
scheduled that is, consequence of a malfunction, then the algorithm should naturally issue
the appropriate warning.

New tests regarding oil contamination parameters should be performed in a
properly controlled environment in order to register the signal’s evolution in full. On the
other hand, it must be kept in mind that in industrial environment the influence of external
factors is always present, something that the diagnosis process should be prepared to deal

with.
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Concerning the faults occurred in the experiments of 24™ of March and 4™ of
April, the most decisive was the loss of viscosity readings. Without this parameter, the
presence of fuel, wrong lubricant or cooling fluid in the reference oil could not be
observed. Consequently, the initially pretended variety of contamination response profiles
wasn’t obtained.

Here, at Center for Tribology and Technical Diagnosis, we feel that the
developed algorithm is solid and ready to be integrated in automated signal diagnosis. The
fact that it uses simple mathematical operations makes it light, as intended to be, and
therefore suitable to be implemented in a multi-parameter evaluation process. Although
trend is an important feature, its interpretation is dependent on experience and needs tests
to establish appropriate critical thresholds. Still, the combination of states between
different parameters can be indicative of a specific fault, from which the final assessment

would be refined with confirmation through the rates of evolution.
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Figure 32. Quantitative evaluation: Number of ferrous particles (40 to 60 um) (Pitting experiment from
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Figure 33. Qualitative evaluation: Number of ferrous particles (40 to 60 um) (Pitting experiment from

04/02/2011).
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Figure 34. Quantitative evaluation: Number of ferrous particles (61 to 100 um) (Pitting experiment from
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Figure 35. Qualitative evaluation: Number of ferrous particles (61 to 100 um) (Pitting experiment from

04/02/2011).
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Figure 36. Quantitative evaluation: Number of non-ferrous particles (135 to 150 um) (Pitting experiment
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Figure 37. Qualitative evaluation: Number of non-ferrous particles (135 to 150 um) (Pitting experiment

from 04/02/2011).
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Figure 38. Quantitative evaluation: Number of non-ferrous particles (151to 250 um) (Pitting experiment

from 04/02/2011).
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Figure 39. Qualitative evaluation: Number of non-ferrous particles (151 to 250 um) (Pitting experiment

from 04/02/2011).
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Figure 40. Quantitative evaluation: Number of ferrous particles (40 to 60 um) (Pitting experiment from
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Figure 41. Qualitative evaluation: Number of ferrous particles (40 to 60 um) (Pitting experiment from

03/03/2011).
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Figure 42. Quantitative evaluation: Number of ferrous particles (61 to 100 um) (Pitting experiment from
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Figure 43. Qualitative evaluation: Number of ferrous particles (61 to 100 um) (Pitting experiment from

03/03/2011).
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Figure 44. Quantitative evaluation: Number of ferrous particles (201 to 300 um) (Pitting experiment from
03/03/2011).
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Figure 45. Qualitative evaluation: Number of ferrous particles (201 to 300 um) (Pitting experiment from
03/03/2011).
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Figure 46. Quantitative evaluation: Number of ferrous particles (larger than 300 um) (Pitting experiment
from 03/03/2011).
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Figure 47. Qualitative evaluation: Number of ferrous particles (larger than 300 um) (Pitting experiment from

03/03/2011).
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Figure 48. Quantitative evaluation: Number of non-ferrous particles (135 to 150 um) (Pitting experiment

from 03/03/2011).
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Qualitative evaluation: Number of non-ferrous particles (135 to 150 um) (Pitting experiment
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Figure 50. Quantitative evaluation: Number of non-ferrous particles (151 to 250 um) (Pitting experiment
from 03/03/2011).
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Figure 51. Qualitative evaluation: Number of non-ferrous particles (151 to 250 um) (Pitting experiment
from 03/03/2011).
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52. Quantitative evaluation: Temperature (Different oil contamination experiment from
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Figure 53. Qualitative evaluation: Temperature (Different oil contamination experiment from 04/04/2011).
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