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1 Notations and Background

1.1 Notation

Matrices are represented as bold capital letters (eg.A ∈ R
n×m, n rows andm columns). Vectors are represented

as bold small letters (eg.a ∈ R
n, n elements). By default, a vector is considered a column. Smallletters (eg.a)

represent one dimensional elements. By default, thejth column vector ofA is specified asaj. Thejth element

of a vectora is written asaj. The element ofA in the linei and columnj is represented asai,j. Regular capital

letters (eg.A) indicate one dimensional constants.

1.2 Useful Algebra Tools

In this section we describe some algebra tools that will be useful in the remaining sections. For more information

about their properties we suggest [7, 2, 3].

For a matrixA ∈ R
n×m

• C (A) – dimension of the column–space orrank of A;

• N (A) – dimension of the null–space or nullity.

• m = C (A) +N (A)

• An useful property of therank is C (A) = C
(
AT
)
.

• If P1 andP2 are two permutation matrices. ThenC (A) = C (P1AP2).

• If B ∈ R
k×m is column full–rank(C (B) = m) thenC (BA) = C (A)

• If a matrixA ∈ R
m×m is partitioned as

A =

(

A1 A2

0 A3

)

(1)

then, itseigenvaluesλ (A) = λ (A1) ∪ λ (A3)

1.3 Kronecker product

LetU ∈ R
m×n andV ∈ R

k×l and the equation

UXVT = C (2)

whereX ∈ R
n×l is matrix of the system unknowns. It is possible to rewrite the previous equation as

(V ⊗U) vec(X) = vec(C) (3)
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where⊗ is theKroneckerproduct ofU andV [2], with [V ⊗U] ∈ R
mk×nl, and vec(X) is anl–vector formed

by stacking the columns ofX.

The Kroneckerproduct is an useful tool to turn some systems linear. ForV ∈ R
k×l andU ∈ R

m×n the

Kroneckerproducts

V ⊗U = {vi,jU} ∈ R
mk×nl. (4)

2 Radial Basis Functions

Radial Basis Functionsare are frequently used in approximating functions (f : R
2 7→ R) by means of least

squares fitting. In these cases the interpolant equation canbe written as

s (x) = a0 + aT
x x+

P∑

i=1

wiφ (||x− ci||) =
(

φ (x) p (x)
)

︸ ︷︷ ︸

r(x)

(

w

a

)

︸ ︷︷ ︸

hwa

(5)

wherex and{ci} belong toR2, ||.|| is the2–normof vectors,p (x) =
(

1 xT
)

, φ (x) = (φ1 (x) , . . . , φP (x))

whereφi (x) = φ (||x− ci||), w =
(

w1 . . . wP

)T

anda =
(

a0 aT
x

)T

.

In this section we describe the typical problem of finding theunknown vectorhwa for a set of interpolant

conditions

s (xi) = f (xi) (6)

for i = 1, . . . , P .

For a set{ci}, we define

Φ = {φ (||xi − cj||)} ∈ R
P×P , (7)

WendlandandBuhamann[8, 1] prove that, for{xi = ci} wherei = 1, . . . , P , Φ is conditional positive definite.

For scatteredset{ci}, where{xi 6= cj} for i, j = 1, . . . , P , Quak et al.andSivakumarandWard [5, 6] prove

thatΦ is conditional positive definite, where eachcontrol pointhas to be associated to a data point{xi}, that

satisfiesd ≤ qǫ, where0 < ǫ ≤ 1, d = max {||xi − ci||} and2q = minj 6=i {||ci − cj||}. Quaket al.[5] also

proved thatφ1 (r) = (β2
1 + r2)

1/2 andφ2 (r) = e−β2r2 are good choices forradial basis functions, because,

choosing an appropriateβ1 andβ2, they reduce the negative effects of small values ofq andǫ respectively.

From Equation (5), for a setP of {xi} we can write

s =
(

Φ KT
)

︸ ︷︷ ︸

R

hwa (8)

whereK ∈ R
3×P is the stacking ofp (xi) ands =

(

s (x1) . . . s (xP )
)T

.

From Equation (8), we haveP + 3 unknowns and onlyP equations. To eliminate the extra degrees of free-

dom, additional constraints are needed. We use the additional constraints resulting from the conditional positive
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definiteness of the space of solutions ofw [8]

P∑

i=1

wip (x) = Kw = 0. (9)

Putting all together
(

s

0

)

=

(

Φ KT

K 0

)

︸ ︷︷ ︸

Γ

hwa (10)

which has only one solution whenΓ ∈ R
P+3×P+3 is full–rank.

If N (Γ) = 0, C (Γ) = P + 3. Thus, computing thenull–spaceof Γ,

(

Φ KT

K 0

)(

v

u

)

= 0 (11)

or

Φv +KTu = 0 (12)

Kv = 0. (13)

The solution is only verified forv = 0 andu = 0, which means thatN (Γ) = 0 andC (Γ) = P + 3.

From [8, Section 8.5], if we pre–multiply the first Equation of Equation (12) by vT we get

vTΦv + (Kv)T u = 0. (14)

From Equation (13), Kv = 0 which reduces Equation (14) to

vTΦv = 0. (15)

We know from previous statements thatΦ is conditional positive definite, which means thatvTΦv > 0 for

any non–zero vectorv. As a consequence, Equation (15) is only verified forv = 0.

Since we already proved thatv = 0, we can rewrite the Equation (12) as

KTu = 0. (16)

If the set{xi}, for i = 1, . . . , P with P ≥ 3, forms afull–column rankmatrixKT , C
(
KT
)
= 3, Equation (16) is

only verified foru = 0, which impliesN (Γ) = 0 andC (Γ) = P + 3.

3 Introduction

In this report we study and analyze the relationship betweenthe numberN of point correspondences{xi 7→ pi}

required for the calibration and the rank of the calibrationmatrix described in [4].
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The equation that represents the general imaging model (as described in [4]) can be written as

lR = s (x) =
(

φ (x) p (x)
)

︸ ︷︷ ︸

r(x)

(

h
(1)
wa . . . h

(6)
wa

)

︸ ︷︷ ︸

Hwa

(17)

where vectorsh(i)
wa, for i = 1, . . . , 6, are as in Equation (5).

The calibration parameters are computed by estimating a non–zero vectorvec (Hwa) that satisfies















Q (p1)⊗ r (x1)

Q (p2)⊗ r (x2)

...

Q (pN)⊗ r (xN)

D















︸ ︷︷ ︸

M

vec(Hwa) = 0 (18)

where vec(Hwa) ∈ R
(6P+18)×1 is the stacking ofh(i)

wa for i = 1, . . . , 6, andQ (pi) is the incident relation between

a point in the worldpi ∈ R
3 and a line generated from an image pointxi

Q (pi) =

(

[pi]x −I

0T pT
i

)

(19)

whereI is the identity matrix, with dimensions3 × 3, and[a]x is the matrix that linearizes the three dimensional

exterior product as[a]x b = a× b.

SincelR = s (x), we see that the solution forHwa is up to a scale factor. Thus, to have a unique solution,

we must haveN (M) = 1 and the solution is any element of the rightnull–spaceexept the trivial solution

vec(Hwa) = 0.

4 Rank of matrix M

In this section, we study the relationship between therank of matrixM (Equation (18)) and the number of point–

correspondences (N ), used in the calibration process.

Since permuting rows does not change therank of a matrix,C (A) = C (ZM), for any permmutation matrix

Z, and we can study therank of A, instead ofM.

From Equation (18) and Equation (4), we can find a matrixA = ZM as Equation (20). whereZ is a

permutation matrix,pi =
(

p
(1)
i , p

(2)
i , p

(3)
i

)

andri = r (xi), wherer (xi) is as described in Section2.
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A =






























0 −p
(3)
1 r1 p

(2)
1 r1 r1 0 0

...
...

...
...

...
...

0 −p
(3)
N rN p

(2)
N rN rN 0 0

p
(3)
1 r1 0 −p

(1)
1 r1 0 r1 0

...
...

...
...

...
...

p
(3)
N rN 0 −p

(1)
N rN 0 rN 0

−p
(2)
1 r1 p

(1)
1 r1 0 0 0 r1

...
...

...
...

...
...

−p
(2)
N rN p

(1)
N rN 0 0 0 rN

0 0 0 p
(1)
1 r1 p

(2)
1 r1 p

(3)
1 r1

...
...

...
...

...
...

0 0 0 p
(1)
N rN p

(2)
N rN p

(3)
N rN

D






























(20)

We defineE andF as

E =






















0 −p
(3)
1 r1 p

(2)
1 r1 r1 0 0

...
...

...
...

...
...

0 −p
(3)
N rN p

(2)
N rN rN 0 0

p
(3)
1 r1 0 −p

(1)
1 r1 0 r1 0

...
...

...
...

...
...

p
(3)
N rN 0 −p

(1)
N rN 0 rN 0

−p
(2)
1 r1 p

(1)
1 r1 0 0 0 r1

...
...

...
...

...
...

−p
(2)
N rN p

(1)
N rN 0 0 0 rN






















and F =







0 0 0 p
(1)
1 r1 p

(2)
1 r1 p

(3)
1 r1

...
...

...
...

...
...

0 0 0 p
(1)
N rN p

(2)
N rN p

(3)
N rN







(21)

whereE ∈ R
3N×6P+18, F ∈ R

N×6P+18 and we can rewriteA as

A =






E

F

D




 . (22)

We can see that the rows ofF are linear dependent on the rows ofE.

4.1 Proof that matrix M (in Equation ( 18)) can haverank 6P + 17

Since the rows of theF are linearly dependent on the rows ofE, we ignore the rows ofF for the rest of the section.

Thus, we consider the matrixA(1) ∈ R
3N+18×6P+18

A(1) = Z(1)

(

E(1)

D

)

(23)
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and if we defineD ∈ R
18×6P+18 as

D =














0 −Ξ1P1 Ξ2P1 P1 0 0

Ξ1P1 0 −Ξ3P1 0 P1 0

−Ξ2P1 Ξ3P1 0 0 0 P1

0 −Ξ4P2 Ξ5P2 P2 0 0

Ξ4P2 0 −Ξ6P2 0 P2 0

−Ξ5P2 Ξ6P2 0 0 0 P2














(24)

where

P1 =
(

K1 0

)

, P2 =
(

K2 0

)

(25)

Pi ∈ R
3×P+3 andK1,K2 ∈ R

3×P are the stacking of the set{p (xi)} for i = 1, . . . , P , and{p (xi)} for

i = P + 1, . . . , 2P respectively. MatricesΞi ∈ R
3×3 are random diagonal matrices, whereξ

(i)
j , for j = 1, 2, 3 are

their diagonal elements.

We see thatE(1) ∈ R
3N×6P+18 andD ∈ R

18×6P+18. Thus, to haveC
(
A(1)

)
= 6P + 17, we need at least

N = 2P .

For a permutation matrixZ(1), E with N = 2P andD as in Equation (24), we defineA(1) as in Equation (26).

We can expressA(1) as a block ofP + 3× P + 3 matrices

(
A(1)

)T
=














0 ΓT
1T1 −ΓT

1D1 0 ΓT
2T2 −ΓT

2D2

−ΓT
1T1 0 ΓT

1 S1 −ΓT
2T2 0 ΓT

2 S2

ΓT
1D1 −ΓT

1 S1 0 ΓT
2D2 −ΓT

2 S2 0

ΓT
1 0 0 ΓT

2 0 0

0 ΓT
1 0 0 ΓT

2 0

0 0 ΓT
1 0 0 ΓT

2














(27)

whereDi,Ti,Si ∈ R
P+3×P+3 are diagonal matrices, whose diagonal elements are equal torespectivelyp(m)

n and

to corresponding elements of diagonal matricesΞi (ξ(i)j , with j = 1, . . . , 3). For instance, diagonal matrixT1 is

T1 =














p
(3)
1 . . . 0 0 0 0
...

. ..
...

...
...

...

0 . . . p
(3)
P 0 0 0

0 . . . 0 ξ
(1)
1 0 0

0 . . . 0 0 ξ
(1)
2 0

0 . . . 0 0 0 ξ
(1)
3














. (28)

MatricesΓ1 andΓ2 are

Γ1 =

(

R1

P1

)

and Γ2 =

(

R2

P2

)

(29)
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A(1) =























































0 −p
(3)
1 r1 p

(2)
1 r1 r1 0 0

...
...

...
...

...
...

0 −p
(3)
P rP p

(2)
P rP rP 0 0

0 −Ξ1P1 Ξ2P1 P1 0 0

0 −p
(3)
P+1rP+1 p

(2)
P+1rP+1 rP+1 0 0

...
...

...
...

...
...

0 −p
(3)
2P r2P p

(2)
2P r2P r2P 0 0

0 −Ξ4P2 Ξ5P2 P2 0 0

p
(3)
1 r1 0 −p

(1)
1 r1 0 r1 0

...
...

...
...

...
...

p
(3)
P rP 0 −p

(1)
P rP 0 rP 0

Ξ1P1 0 −Ξ3P1 0 P1 0

p
(3)
P+1rP+1 0 −p

(1)
P+1rP+1 0 rP+1 0

...
...

...
...

...
...

p
(3)
2P r2P 0 −p

(1)
2P r2P 0 r2P 0

Ξ4P2 0 −Ξ6P2 0 P2 0

−p
(2)
1 r1 p

(1)
1 r1 0 0 0 r1

...
...

...
...

...
...

−p
(2)
P rP p

(1)
P rP 0 0 0 rP

−Ξ2P1 Ξ3P1 0 0 0 P1

−p
(2)
P+1rP+1 p

(1)
P+1rP+1 0 0 0 rP+1

...
...

...
...

...
...

−p
(2)
2P r2P p

(1)
2P r2P 0 0 0 r2P

−Ξ5P2 Ξ6P2 0 0 0 P2























































∈ R
6P+18×6P+18 (26)
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whereΓi ∈ R
P+3×P+3, and

R1 =







r1
...

rP







and R2 =







rP+1

...

r2P







(30)

whereRi ∈ R
P×P+3 andP1 andP2 are as in Equation (25).

We assume that the conditions described in Section2 are met forΓ1 andΓ2, which means that these matrices

arefull–rank.

Let us define a matrix

N = G1

(
A(1)

)T
G2 (31)

where

G1 =









(
ΓT

1

)−1
0 . . . 0

0
(
ΓT

1

)−1
. . . 0

...
...

. . .
...

0 0 . . .
(
ΓT

1

)−1









and G2 =














I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 L−1 0 0

0 0 0 0 L−1 0

0 0 0 0 0 L−1














(32)

G1,G2,∈ R
6P+18×6P+18 arefull–rankmatrices, and withL =

(
ΓT

1

)−1
ΓT

2 . The pre or post–multiplication by any

full–rankmatrix does not change therankof a matrix. Thus,C (N) = C
((

A(1)
)T
)

andC
(
A(1)

)
= C

((
A(1)

)T
)

.

From Section1.2, we can see thatC (N)+N (N) = 6P +18. Thus, if we wantC
(
A(1)

)
= C (N) = 6P +17,

we must haveN (N) = 1. As a result, we need to prove that thenullity of N is one, whereN is

N =














0 T1 −D1 0 LT2L
−1 −LD2L

−1

−T1 0 S1 −LT2L
−1 0 LS2L

−1

D1 −S1 0 LD2L
−1 −LS2L

−1 0

I 0 0 I 0 0

0 I 0 0 I 0

0 0 I 0 0 I














, (33)

which means thatNv = 0 has a one dimensional subspace of solutions.

We consider thatv = (v1, . . . ,v6) ∈ R
6P+18 wherevi ∈ R

P+3. From the three last rows of Equation (33),

we see that thenull–spaceof N must verify

v1 = −v4 (34)

v2 = −v5 (35)

v3 = −v6. (36)

Getting the second, fifth and sixth row of equations of matrixN and the third, fifth and sixth row of equations
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of matrixN respectively, we can define the following constraints






−T1 0 S1

0 I 0

0 0 I











v1

v2

v3




 = −






−LT2L
−1 0 LS2L

−1

0 I 0

0 0 I











v4

v5

v6




 (37)

and 




D1 −S1 0

0 I 0

0 0 I











v1

v2

v3




 = −






LD2L
−1 −LS2L

−1 0

0 I 0

0 0 I











v4

v5

v6




 . (38)

If the diagonal elements ofD1 andT1 are different from zero, we can define matricesB andC as






v1

v2

v3




 = B






v4

v5

v6




 ,






v1

v2

v3




 = C






v4

v5

v6




 . (39)

Using AppendixA.2, we obtain

−






−T1 0 S1

0 I 0

0 0 I






−1




−LT2L
−1 0 LS2L

−1

0 I 0

0 0 I




 = −






−T−1
1 0 T−1

1 S1

0 I 0

0 0 I











−LT2L
−1 0 LS2L

−1

0 I 0

0 0 I




 =

−






T−1
1 LT2L

−1 0 −T−1
1 LS2L

−1 +T−1
1 S1

0 I 0

0 0 I






︸ ︷︷ ︸

B

(40)

and

−






D1 −S1 0

0 I 0

0 0 I






−1




LD2L
−1 −LS2L

−1 0

0 I 0

0 0 I




 = −






D−1
1 D−1

1 S1 0

0 I 0

0 0 I











LD2L
−1 −LS2L

−1 0

0 I 0

0 0 I




 =

−






D−1
1 LD2L

−1 −D−1
1 LS2L

−1 +D−1
1 S1 0

0 I 0

0 0 I






︸ ︷︷ ︸

C

.

(41)

From Section1.2, the sets ofeigenvaluesof B andC are respectively

λ (B) = λ
(
−T−1

1 LT2L
−1
)
∪ λ

((

−I 0

0 −I

))

and λ (C) = λ
(
−D−1

1 LD2L
−1
)
∪ λ

((

−I 0

0 −I

))

(42)
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and we defineΣB,ΣC as diagonal matrices, whose diagonal elements are theeigenvaluesof B andC respectively

ΣB =






Σ−T
−1

1
LT2L

−1 0 0

0 −I 0

0 0 −I




 and ΣC =






Σ−D
−1

1
LD2L

−1 0 0

0 −I 0

0 0 −I




 . (43)

We can see that the solutions for Equations (37) that verify Equations (34), (34) and (36), are defined by the

eigenvectors, that correspond to theeigenvaluesλ (B) that are equal to−1. On the other hand, solutions for

Equations (38) that verify Equations (34), (34) and (36), are defined by theeigenvectors, that correspond to the

eigenvaluesλ (C) that are equal to−1.

If we consider thatTi andDi are random matrices, we can conclude that the probability ofλ
(
T−1

1 LT2L
−1
)
∩

λ (−I) = ∅ andλ
(
D−1

1 LD2L
−1
)
∩ λ (−I) = ∅ is equal to one.

From AppendixA.3, we conclude that the matrices that correspond to the stacking ofeigenvectors(eigenvec-

tors matrices), V andU (B = VΣBV
−1 andC = UΣCU

−1) have the form

V =






V(1) 0 V(2)

0 V(3) 0

0 0 V(4)




 and U =






U(1) U(2) 0

0 U(3) 0

0 0 U(4)




 (44)

whereV,U ∈ R
3P+9×3P+9.

Since we are only interested ineigenvectorsassociated toeigenvaluesequal to−1, we only consider the

subspaces generated from matrices

V̂ =






0 V(2)

V(3) 0

0 V(4)




 and Û =






U(2) 0

U(3) 0

0 U(4)




 (45)

whereV̂, Û ∈ R
3P+9×2P+6

However, we want solutions that verifyNv = 0, which means that they must belong to bothV̂ and Û

subspaces. As a result, solutions must belong to the intersection of subspaces defined bŷV andÛ.

From AppendixA.3 and AppendixA.4, we conclude that the intersection subspace is defined by thecolumn

space of

W =






∗

I

K




 (46)

whereW ∈ R
3P+9×P+3. This means that, any linear combination ofW columns (Wa for anya 6= 0) is a solution

for Equations (39) that verifies Equation (34), (35) and (36) where

v = (∗, a,Ka,∗,−a,−Ka) (47)

for any vectora ∈ R
P+3 different from zero.
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However, from the first row of equations ofN, Equation (47) must verify

T1v2 + LT2L
−1v5 = D1v3 + LD2L

−1v6, (48)

which from Equation (47) is equal to

(
T1 − LT2L

−1
)

︸ ︷︷ ︸

F(T1,2)

a =
(
D1 − LD2L

−1
)

︸ ︷︷ ︸

F(D1,2)

Ka. (49)

From SectionA.1, the previous assumptions thatλ
(
T−1

1 LT2L
−1
)
∩ λ (−I) = ∅ andλ

(
D−1

1 LD2L
−1
)
∩

λ (−I) = ∅ and assuming thatS1,S2 are random matrices which implies that the probability ofλ
(
S−1
1 LS2L

−1
)
∩

λ (−I) = ∅ is one, we see thatC (F (T1,2)) = P + 3, C (F (D1,2)) = P + 3 andC (K) = P + 3. Thus, the

constraint corresponding to Equation (48) can be rewritten as

K−1F (D1,2)
−1

F (T1,2) a = a. (50)

As a result, we can see that the dimension of thenull–spaceof N is equal to the number ofeigenvalues

λ
(
K−1F (D1,2)

−1
F (T1,2)

)
that are equal to1.

4.2 The setλ
(

K−1F (D1,2)
−1

F (T1,2)
)

In the previous section, we saw thatC
(
A(1)

)
= C (N). On the other hand, we see that theN (N) is equal

to the number ofeigenvaluesλ
(
K−1F (D1,2)

−1
F (T1,2)

)
∩ λ (I) and, sinceN is a square matrix, we know

that 6P + 18 = C (N) + N (N). As a result,C (N) = 6P + 17, implies N (N) = 1, which means that

λ
(
K−1F (D1,2)

−1
F (T1,2)

)
must have oneeigenvalueequal to1.

Γi are matrices that depend on a vectord. As a result, if we consider random elements ofd, it is expected that

the number ofeigenvaluesλ
(
K−1F (D1,2)

−1
F (T1,2)

)
∩ λ (I) = ∅.

However, we, intentionally chose matrixD as in Equation (24). Therefore matrixD has the following rows

Y =














0 −ξ
(1)
1 ξ

(2)
1 1 0 0

ξ
(1)
1 0 −ξ

(3)
1 0 1 0

−ξ
(2)
1 ξ

(3)
1 0 0 0 1

0 −ξ
(4)
1 ξ

(5)
1 1 0 0

ξ
(4)
1 0 −ξ

(6)
1 0 1 0

−ξ
(5)
1 ξ

(6)
1 0 0 0 1














(51)

whereY ∈ R
(6×6P+18),

ξ
(i)
1 =

(

ξ
(i)
1 . . . ξ

(i)
1 0 0 0

)

and 1 =
(

1 . . . 1 0 0 0
)

(52)

with ξ
(i)
1 ,1 ∈ R

(1×P+3).
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One concludes thatC (Y) = C
(
Ȳ
)

where

Ȳ =














0 −ξ
(1)
1 ξ

(2)
1 1 0 0

ξ
(1)
1 0 −ξ

(3)
1 0 1 0

−ξ
(2)
1 ξ

(3)
1 0 0 0 1

0 −ξ
(4)
1 ξ

(5)
1 1 0 0

ξ
(4)
1 0 −ξ

(6)
1 0 1 0

−ξ
(5)
1 ξ

(6)
1 0 0 0 1














(53)

andC (Y) = C
(
Ȳ
)
= 5.

Since the rows ofY will be the columns of
(
A(1)

)T
, we see thatC

((
A(1)

)T
)

≤ 6P + 17 which means that

we have oneeigenvectorof λ
(
K−1F (D1,2)

−1
F (T1,2)

)
equal to1.

Thus, for random elements of the diagonal matricesDi,Ti,Si and random vectord, we haveN (N) = 1 with

probability one, which impliesC
(
A(1)

)
= C

((
A(1)

)T
)

= C (N) = 6P + 17.

5 Conclusions

To obtain therank of the matrixM we write

M = Z(2)A(2) (54)

where the matrixA(2) is as

A(2) =

(

A(1)

F

)

(55)

andA(1) is as in Equation (26) andZ(2) is a permutation matrix.

In Section4, we saw that each of the rows ofF is linearly dependent on the rows ofE, which are included in

matrixA(1). Thus, we can writeC
(
A(2)

)
= C

(
A(1)

)
= 6P + 17.

Since the permutation of rows does not change therank of a matrix, we can writeC (M) = C
(
A(2)

)
=

6P + 17.

Appendices

A Some Matrix Results

A.1 Rank of D1 − LD2L
−1

Considering diagonalfull–rank matricesD1,D2 ∈ R
P×P and a genericfull–rankL ∈ R

P×P .

If we write a matrixM ∈ R
2P×2P as

M =

(

I 0

LD1L
−1 −LD1L

−1 +D2

)

, (56)
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we see thatC (M) = C (I) + C (−LD1L
−1 +D2). If we post–multiplyM by anynon–singularmatrix, therank

of the resulting matrix will be the same as therank of M. As a result, we define

N = M

(

I I

0 I

)

(57)

whereC (N) = C (M) and

N =

(

I I

LD1L
−1 D2

)

. (58)

We can see that thenull–spaceof N must satisfy

(

I I

LD1L
−1 D2

)(

v1

v2

)

= 0, (59)

which can be rewritten as {

v1 = −v2

−D−1
2 LD1L

−1v1 = v2

(60)

andN (N) = n, wheren is the number ofeigenvaluesof −D−1
2 LD1L

−1v1 equal to one.

If do not existeigenvaluesequal to one, thenN (N) = 0, which impliesN (M) = N (N) = 2P and

C (−LD1L
−1 +D2) = P .

A.2 Inverse of Matrices

In this section we describe how to get the inverses of the matrix

A =






A1 0 A2

0 A3 0

0 0 A4




 (61)

whereA is full–rank.

The inverse must satisfyA−1A = I, thus






X1 X2 X3

X4 X5 X6

X7 X8 X9











A1 0 A2

0 A3 0

0 0 A4




 =






I 0 0

0 I 0

0 0 I




 . (62)

We can define the tree next systems







X1A1 = I

X4A1 = 0

X7A1 = 0

,







X2A3 = 0

X5A3 = I

X8A3 = 0

and







X1A2 +X3A4 = 0

X4A2 +X6A4 = 0

X7A2 +X9A4 = I

. (63)

From the first system, we getX7 = X4 = 0 andX1 = A−1
1 . From the second system, we getX2 = X8 = 0 and
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X5 = A−1
3 . SinceX4 = X7 = 0, we can rewrite the third system as







X1A2 +X3A4 = 0 =⇒ X3 = −A−1
1 A2A

−1
4

X6A4 = 0

X9A4 = I

(64)

and we can writeX6 = 0 andX9 = A−1
4 .

Finally, we can write

A−1 =






A−1
1 0 −A−1

1 A2A
−1
4

0 A−1
3 0

0 0 A−1
4




 . (65)

Using the same method, we can prove that

B−1 =






B1 B2 0

0 B3 0

0 0 B4






−1

=






B−1
1 −B−1

1 B2B
−1
3 0

0 B−1
3 0

0 0 B−1
4




 . (66)

A.3 Eigenvector Matrices

Suppose we want to know the structure of theeigenvector matrix(VA) of a matrix

A =






A1 0 A2

0 −I 0

0 0 −I




 (67)

whereA is full–rank.

We know thatVA must satisfyAVA = VAΣA, whereΣA is a diagonal matrix whose diagonal elements are

λ (A). Thus






A1 0 A2

0 −I 0

0 0 −I











X1 X2 X3

X4 X5 X6

X7 X8 X9




 =






X1 X2 X3

X4 X5 X6

X7 X8 X9











ΣA1
0 0

0 Σ−I 0

0 0 Σ−I




 . (68)

Using this representation we can define the system







A1X1 +A2X7 = X1ΣA1

−X4 = X4ΣA1

−X7 = X7ΣA1

. (69)

If we consider that matrixA1 is a random matrix, the probability ofλ (A1) ∩ λ (−I) = ∅ is equal to one, which

from Equation (69) implies thatX4 = X7 = 0 andX1 = VA1
whereVA1

is theeigenvector matrixof A1.
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The remaining equations from Equation (68) must verify







A1X2 +A2X8 = −X2

−X5 = −X5

−X8 = −X8

and







A1X3 +A2X9 = −X3

−X6 = −X6

−X9 = −X9

. (70)

We are interested in the subspace ofeigenvectors. Thus, we can define a set ofeigenvectorbasis where

X8 = X6 = 0 andX5 = X9 = I

VA =






VA1
0 (−I−A1)

−1
A2

0 I 0

0 0 I




 . (71)

If we apply the same method to the matrix

B =






B1 B2 0

0 −I 0

0 0 −I




 (72)

and considering thatB1 is a random matrix (λ (B1) ∩ λ (−I) = ∅), we get

VB =






VB1
(−I−B1)

−1
B2 0

0 I 0

0 0 I




 . (73)

A.4 Intersection Subspace

In this section, we study the intersection subspace betweeneigenvector matricesVA of Equation (71) andVB of

Equation (73), that correspond toeigenvaluesequal to minos one.

Since we are only interested in theeigenvectorsthat correspond toeigenvaluesequal to minos one, from

AppendixA.3, we can define

V̂A =






0 (−I−A1)
−1

A2

I 0

0 I




 and V̂B =






(−I−B1)
−1

B2 0

I 0

0 I




 , (74)

and the basis for the intersection subspace can be obtained from the solution of the following Equation






0 A−1
3 A2 B−1

3 B2

I 0 I

0 I 0






︸ ︷︷ ︸

M






X1

X2

X3




 =






0

0

X4




 (75)

whereM is full-rank, A3 = −I−A1 andB3 = I−B1. Note thatA1 andB1 are random matrices which means

16



that the probability ofλ (A1) ∩ λ (I) = ∅ andλ (B1) ∩ λ (I) = ∅ is one and, from AppendixA.1, we know that

A3 andB3 have inverses.

The subspace of solution for Equation (75) can be defined as







X1 = −K

X3 = K

X2 = −A−1
2 A3B

−1
3 B2K

X4 = −A−1
2 A3B

−1
3 B2K

, (76)

for anynon–singularmatrixK.

We are interested in defining the basis for the intersection subspace. Thus, we can writeK = I and







X1 = −I

X3 = I

X2 = −A−1
2 A3B

−1
3 B2

X4 = −A−1
2 A3B

−1
3 B2

. (77)

UsingX1 andX2 we can determine the intersection subspace from






0 A−1
3 A2

I 0

0 I






(

X1

X2

)

=






−B−1
3 B2

−I

−A−1
2 A3B

−1
3 B2




 . (78)
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