

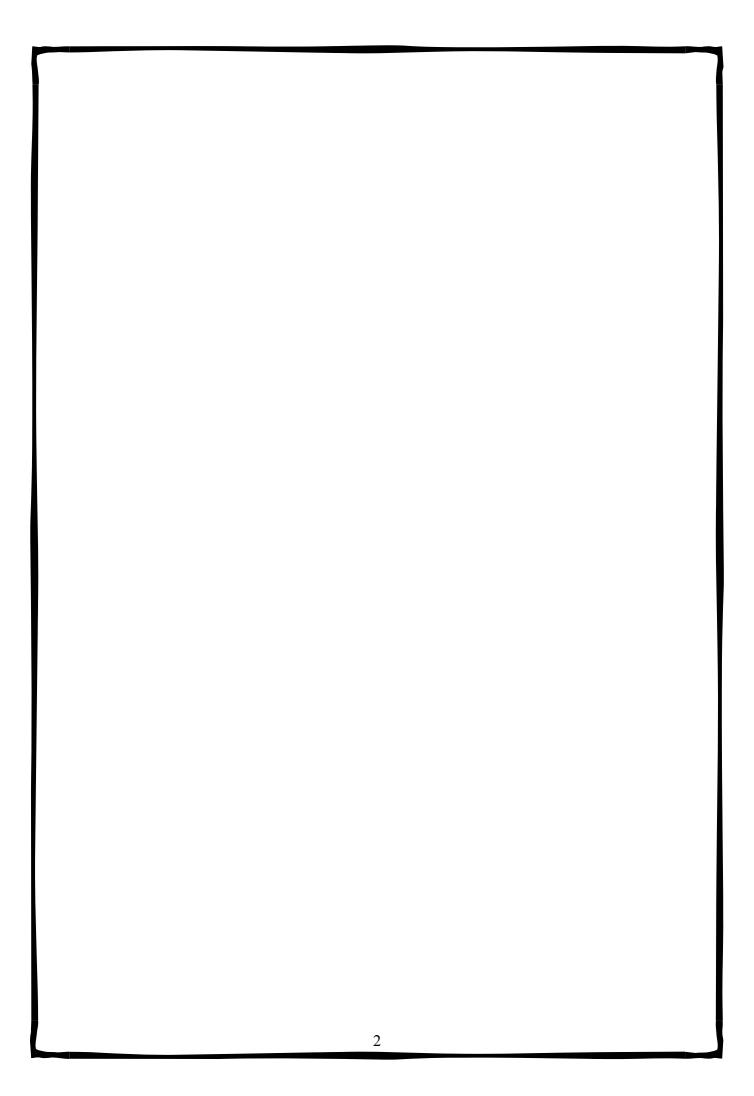
Carlos Fiolhais

Centro de Física Computacional e Departamento de Física de Universidade de Coimbra

Victor Gil

Exploratório Infante D. Henrique e Departamento de Química da Universidade de Coimbra

José Carlos Teixeira

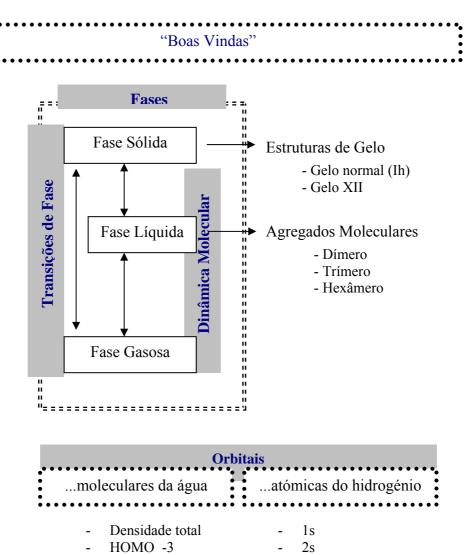

Departamento de Matemática da Universidade de Coimbra

Jorge Alberto Trindade

Escola Superior de Tecnologia e Gestão do Instituto Politécnico da Guarda

Projecto financiado pelo Ministério da Ciência e Tecnologia PRAXIS/P/FIS/14188

Coimbra, Fevereiro de 2002


Índice

1.	O que é Água Virtual?	4
2.	Caracterização do cenário de "Boas Vindas"	6
3.	Caracterização do cenário de dinâmica molecular	8
	3.1 Fases gasosa e líquida e transições de fase	8
	3.2 Simulação da dinâmica molecular	11
	3.3 Agregados moleculares	11
	3.4 Fase sólida	11
4.	Caracterização do cenário de orbitais	14
	4.1 Orbitais atómicas	14
	4.2 Orbitais moleculares	15
5.	Requisitos Mínimos	16
5.	Execução do programa	16
6.	Comandos de utilização	16
7.	Utilização do programa	17
8.	Créditos	17

1. O que é Água Virtual?

Água Virtual é um programa de realidade virtual do tipo "janela para o mundo" (Window on World), de acordo com a classificação de sistemas de realidade virtual. Trata-se de um ambiente virtual para o estudo da Física e da Química, que abrange conceitos sobre fases, transições de fase, orbitais atómicas do hidrogénio e orbitais moleculares, reunidos a propósito da água. Neste software os cenários são visualizados num ecrã de computador, podendo ou não existir estereoscopia. Neste último caso, recorre-se à utilização de óculos especiais (ligados à placa gráfica do computador) que, em conjunto com o ecrã de computador, permitem dar o efeito de relevo, isto é, a sensação que os objectos do cenário virtual ficam a pairar à frente do utilizador, no espaço entre ele e o ecrã. A interacção do utilizador com o programa é feita de modo convencional com o rato.

O ambiente virtual é constituído por três cenários, de acordo com o organigrama apresentado na Figura 1.

HOMO – orbital molecular ocupada de maior energia. LUMO – orbital molecular desocupada de menor energia.

2p

3s

3p

3d

Figura 1: Organigrama do programa Água Virtual.

HOMO -2

HOMO -1

HOMO

LUMO

Os cenários que constituem o programa Água Virtual são:

- "Boas Vindas". É o primeiro ambiente que aparece e a sua finalidade consiste em familiarizar o utente com o modo de navegação.
- Dinâmica molecular. Neste cenário estudam-se as fases sólida, líquida e gasosa da água e das transições de fase. É também possível, na fase líquida, analisar a estrutura de alguns agregados moleculares (dímero, trímero e hexâmero) e, na fase sólida, estudar, para além da estrutura normal do gelo, a estrutura do gelo XII.
- Orbitais. É um cenário para estudar orbitais moleculares da água e orbitais atómicas do hidrogénio.

A Tabela 1 sintetiza as características dos vários cenários de *Água Virtual* no que respeita à visualização tridimensional dos modelos e de animações, à possibilidade de exploração do cenário e escolha do referencial, e ainda à formação ou separação de moléculas de água.

Tabela 1: Características dos cenários de Água Virtual.

	Transições de Fase		Fases			
Características do cenário	Gasosa ↓ Líquida	Líquida	Gasosa	Líquida	Sólida	Orbitais
Modelos tridimensionais	✓	✓	✓	✓	✓	✓
Navegação pelo cenário	✓	✓	✓	✓	✓	
Animações: Dinâmica molecular	✓	√	✓	✓		
Formação ou quebra de ligações	✓	✓				

2. Caracterização do cenário de "Boas Vindas"

O objectivo deste cenário é ambientar o utilizador na navegação no espaço tridimensional, usando o rato, e familiarizá-lo com a utilização dos óculos estereoscópicos.

Trata-se de um cenário constituído por um amplo espaço verde que envolve uma casa (Figura 2a). No interior da casa, para além de alguma informação sobre a água (estrutura e

densidade total) em imagens colocadas nas paredes (Figura 2b), são também apresentados, em cima de uma mesa e no centro da casa, três caixas cujas faces representam macroscopicamente cada uma das fases da água (Figura 2c).

É através daquelas caixas de água que é feita a passagem para o cenário de dinâmica molecular. Assim, ao aproximar-se suficientemente do cubo que, por exemplo, mostra a fase gasosa, o utilizador é transportado para a dinâmica molecular nessa fase.

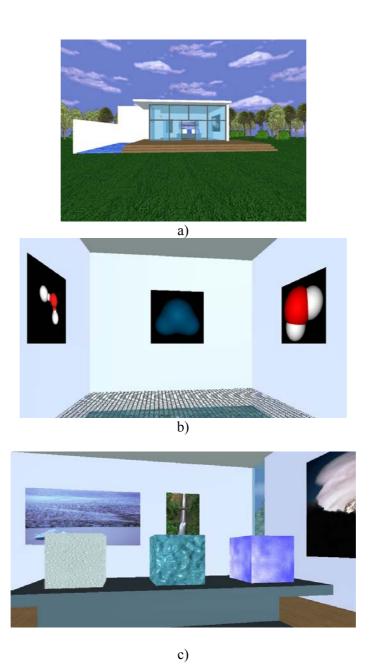


Figura 2: Cenário de "Boas Vindas": a) Perspectiva exterior à casa mostrando um amplo espaço verde; b) Várias representações da molécula de água nas paredes da casa; c) Interior da casa mostrando as caixas contendo água nas três fases: sólida (cubo da esquerda), líquida (cubo ao centro) e gasosa (cubo da direita). A visualização microscópica daquelas fases faz-se por aproximação a cada um dos cubos.

3. Caracterização do cenário de dinâmica molecular

O cenário da dinâmica molecular contempla o estudo da geometria das moléculas de água, da dinâmica molecular das fases gasosa e líquida, a fase sólida e as transições de fase. Em qualquer caso, é possível navegar pelo cenário e visualizar o conteúdo da caixa a partir de qualquer referencial.

3.1 Fases gasosa e líquida e transições de fase

Variando as condições de pressão e/ou temperatura no interior do cubo vê-se ao comportamento dinâmico da água nas várias fases e transições de fase (Figura 3).

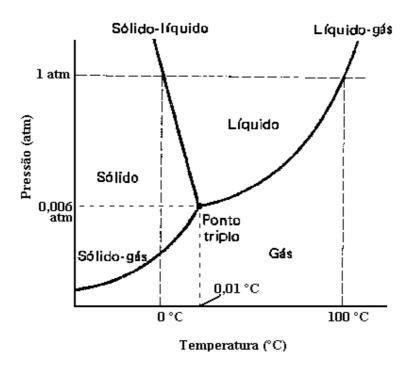
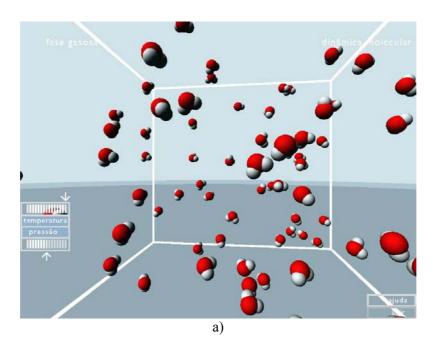



Figura 3: Diagrama de fases da água. Cada linha a cheio que separa duas fases representa as condições de pressão e temperatura às quais as duas fases podem coexistir em equilíbrio. O ponto no qual as três fases podem existir em equilíbrio (0,006 atm e 0,01 °C) chama-se ponto triplo.

Para as fases gasosa (Figura 4a) e líquida (Figura 4b) surgem animações tridimensionais da dinâmica molecular, correspondentes a condições de pressão e de temperatura daquelas fases. As transições de fase obtêm-se por mudança da pressão e/ou

temperatura. Em qualquer uma das transições é possível observar a formação ou dissociação de ligações por pontes de hidrogénio entre moléculas de água (Figura 5).

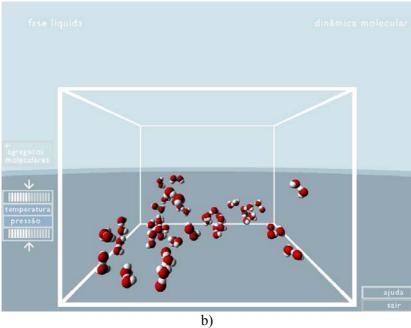
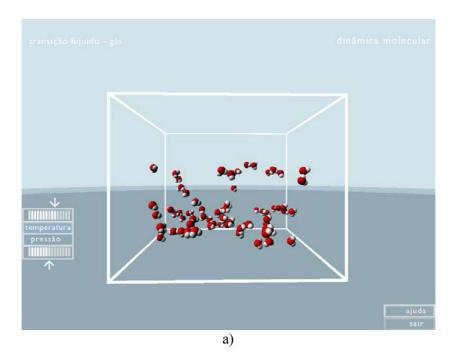



Figura 4: Fases da água: a) Fase gasosa à temperatura de 100 °C: há movimento desorganizado das moléculas com grande mobilidade; b) Fase líquida obtida por diminuição da temperatura: formam-se ligações, há menor mobilidade das moléculas e a densidade aumenta.

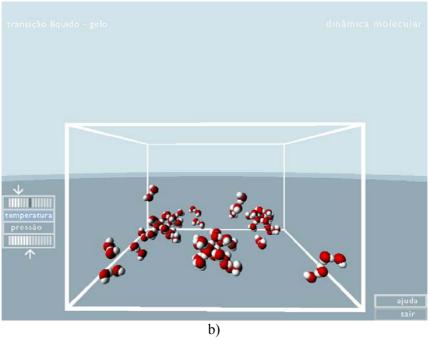


Figura 5: Transições de fase por variação de temperatura à pressão constante: a) Transição gás – líquido: os fenómenos mais importantes são a diminuição da mobilidade das moléculas, a formação de ligações intermoleculares por pontes de hidrogénio, o aumento da densidade e o agrupamento de moléculas; b) Transição líquido – sólido: agora há perda de mobilidade dos agregados moleculares e formação de novas ligações de modo a emergir a estrutura do gelo.

3.2 Simulação da dinâmica molecular

A simulação da dinâmica da água baseia-se no método da Dinâmica Molecular. Esta consiste na resolução no computador das equações de Newton para cada uma das moléculas de um sistema, a partir das posições e das velocidades iniciais de todas as moléculas e da força que actua em cada molécula num determinado instante. Para simplificar os cálculos consideraram-se as moléculas de água esfericamente simétricas e quimicamente inertes.

3.3 Agregados moleculares

Os agregados moleculares da água (conjuntos de moléculas) integram a água na fase líquida. No programa Água Virtual é possível, na fase líquida, ver e estudar em separado alguns agregados moleculares da água como o dímero (Figura 6a), o trímero (Figura 6b) e o hexâmero (Figura 6c). Note-se que estes agregados são apenas alguns exemplos da enorme variedade de configurações que podem existir entre uma molécula de água e o gelo.

3.4 Fase sólida

No programa *Água Virtual*, no cenário da fase sólida (Figura 7), para além do estudo da estrutura hexagonal do gelo normal (Ih) (Figura 8a) é possível analisar uma estrutura de gelo menos comum, o gelo XII (Figura 8b), que foi descoberto no espaço de fase do gelo V (tratase uma estrutura metaestável).

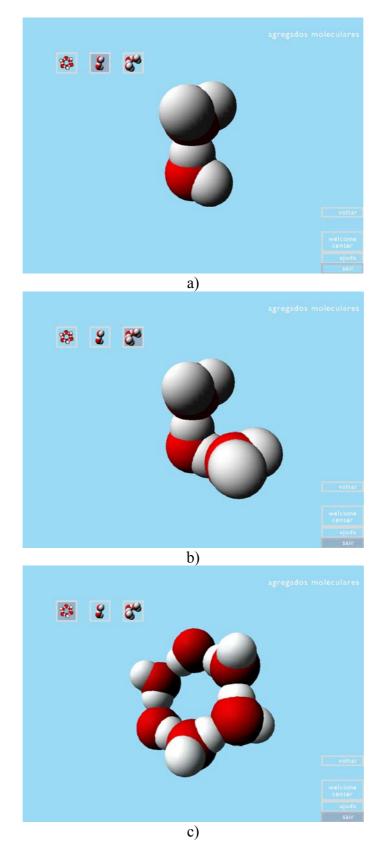


Figura 6: Agregados moleculares da água: a) dímero $(H_2O)_2$; b) trímero $(H_2O)_3$ e c) hexâmero $(H_2O)_6$, com a forma de um anel. Os modelos representados não estão à escala não havendo, por isso, preocupação de rigor nas distâncias intra e intermoleculares.

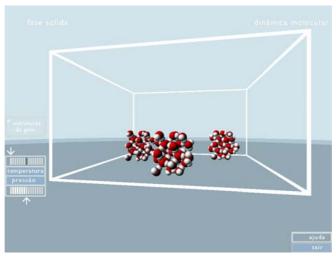


Figura 7: Fase sólida: estrutura compacta em larga escala em que há quase ausência de movimentos moleculares translacionais e rotacionais.

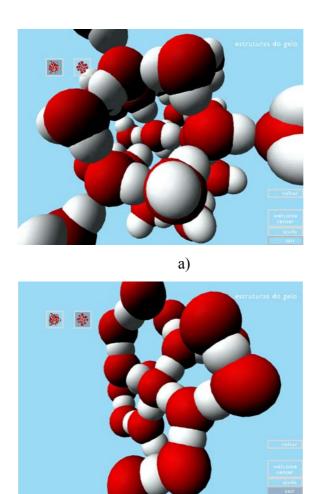
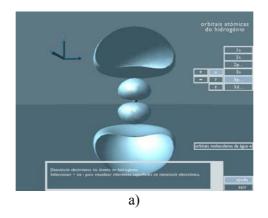


Figura 8: Estruturas de gelo: a) gelo normal (Ih) e b) gelo XII, que existe numa estrutura tetragonal que se obtém na faixa de pressões de 0,2 GPa a 0,6 GPa e na gama de temperaturas de $-100~^{\circ}$ C a 0 $^{\circ}$ C. Os modelos representados não estão à escala, não havendo preocupação de rigor nas distâncias intra e intermoleculares.

b)


O gelo XII, difícil de obter em laboratório, existe num tipo de estrutura em forma de hélice (com ligações por pontes de hidrogénio desordenadas) e que não se encontra em equilíbrio com a água líquida.

4. Caracterização do cenário de orbitais

Neste cenário é possível visualizar as orbitais atómicas do hidrogénio e orbitais moleculares de valência da água assim como a densidade electrónica total da molécula de água.

4.1 Orbitais atómicas

A Figura 9 mostra algumas superfícies de isoprobabilidade para as orbitais do átomo de hidrogénio ($3p_x$ e $3d_x$). Nesta representação perde-se a variação da densidade electrónica dentro da superfície de isoprobabilidade. Mas as características mais importantes das orbitais atómicas são as suas formas e tamanhos relativos, que são representadas adequadamente pelas superfícies de probabilidade.

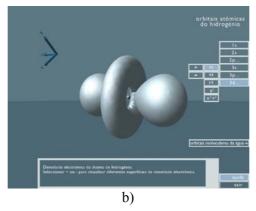


Figura 9: Representação de algumas orbitais do hidrogénio no programa Água Virtual: a) orbital $3p_x$ orientada segundo o eixo dos x e com um corte no plano xy; c) orbital $3d_{xy}$ orientada segundo o eixo dos z.

4.2 Orbitais moleculares

Neste cenário podem ser visualizadas várias orbitais moleculares da água e várias configurações da densidade electrónica total da molécula de água.

A Figura 10 representa uma das orbitais moleculares da água enquanto a Figura 11 apresenta algumas configurações da densidade total da molécula de água para diferentes valores de contorno.

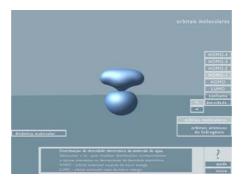


Figura 10: A segunda orbital molecular ocupada de maior energia (ψ_z) da molécula de água no programa Água Virtual.

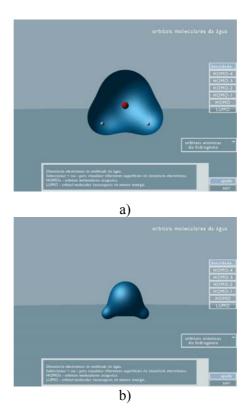


Figura 1: Representação da densidade total da molécula de água para diferentes valores das linhas de contorno: a) visualização em corte mostrando as posições relativas dos núcleos de oxigénio (a vermelho) e dos núcleos de hidrogénio (cinzento); b) densidade total para valores de contorno mais baixos.

5. Requisitos Mínimos

- Processador Pentium II
- 256 MB RAM
- Placa Gráfica com aceleração 3D
- CD-ROM
- Sistema Operativo Microsoft Windows NT 4.0 / 2000 / XP

5. Execução do programa

O programa tanto pode ser executado a partir do CD como do disco do computador.

Neste último caso é necessário copiar o conteúdo do CD para uma pasta, com um nome à escolha, para o disco do computador.

Em qualquer dos casos os procedimentos a seguir são:

- 1. Execute o ficheiro "data antiga".
- 2. Execute o programa "Agua Virtual" situado na pasta [programa].
- 3. Quando terminar a execução do programa execute o ficheiro "data actual".

6. Comandos de utilização

Teclas

• ESC - Sair do programa

Rato

Movimentos

Aproximar - clicar com o botão esquerdo na parte superior do ecrã;
Afastar - clicar com o botão esquerdo na parte inferior do ecrã;
Direita - clicar com o botão direito na parte direita do ecrã;
Esquerda - clicar com o botão direito na parte esquerda do ecrã;
Cima - clicar com o botão direito na parte superior do ecrã;
Baixo - clicar com o botão direito na parte inferior do ecrã;

Rotações

Direita - clicar com o botão esquerdo na parte direita do ecrã; Esquerda - clicar com o botão esquerdo na parte esquerda do ecrã;

Cima - clicar com os botões direito e esquerdo na parte superior do ecrã;
Baixo - clicar com os botões direito e esquerdo na parte inferior do ecrã;

Sentido dos

ponteiros do relógio Sentido contrário aos

- clicar com os botões direito e esquerdo na parte direita do ecrã;
- ponteiros do relógio clicar com os botões direito e esquerdo na parte esquerda do ecrã;
 - Para activar os menus clicar com o botão esquerdo sobre os mesmos

7. Utilização do programa

No cenário de "Boas Vindas" pode passar-se para o cenário da Dinâmica Molecular entrando num dos cubos que se encontram em cima da mesa. O da esquerda indica o estado sólido, o do meio o estado líquido e o da direita o estado gasoso.

No cenário da Dinâmica Molecular é possível mover a caixa. Com a caixa podemos fazer três movimentos:

- aproximar / afastar;
- subir / descer;
- rodar para a esquerda / direita.

Em todos os cenários (à excepção do de "Boas Vindas"), podemos executar quatro tipos de operações:

- aproximar / afastar;
- rodar para a esquerda / direita;
- rodar para cima / baixo;
- rodar no sentido dos ponteiros do relógio e no sentido contrário.

8. Créditos

Autores

Carlos Fiolhais (coordenador do projecto)

Centro de Física Computacional, Departamento de Física da Universidade de Coimbra tcarlos@teor.fis.uc.pt

José Carlos Teixeira

Departamento de Matemática da Universidade de Coimbra teixeira@mat.uc.pt

Victor Gil

Exploratório Infante D. Henrique e Departamento de Química da Universidade de Coimbra vgil@csjp.ua.pt

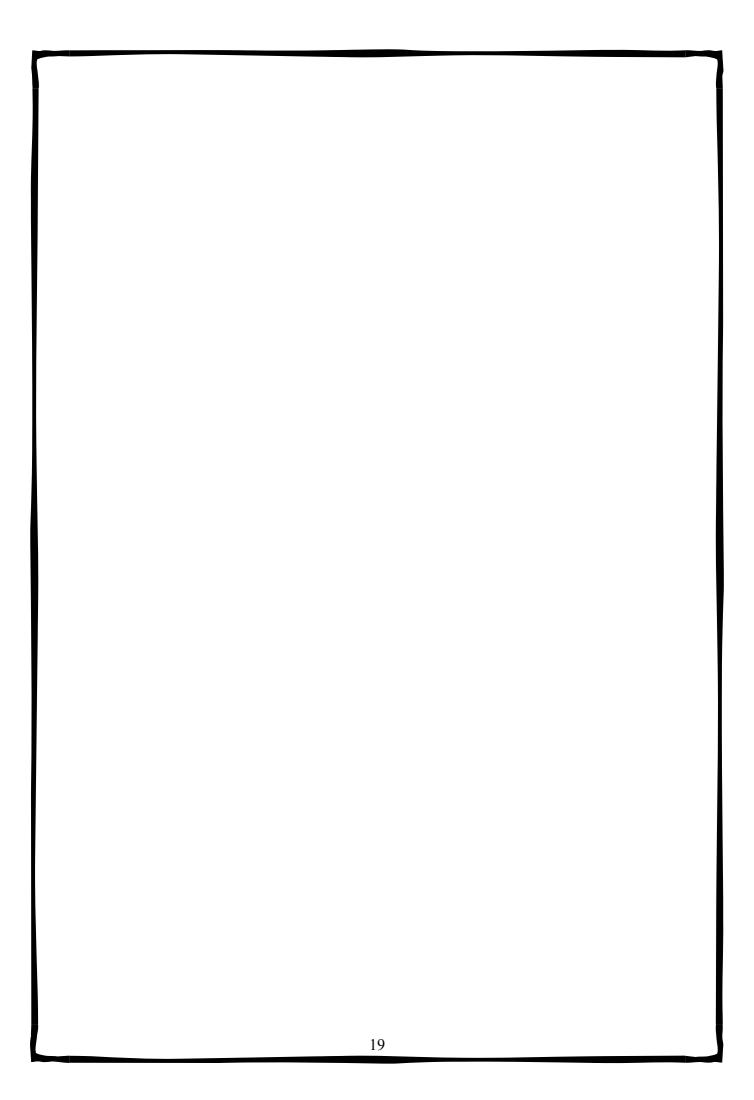
Jorge Trindade

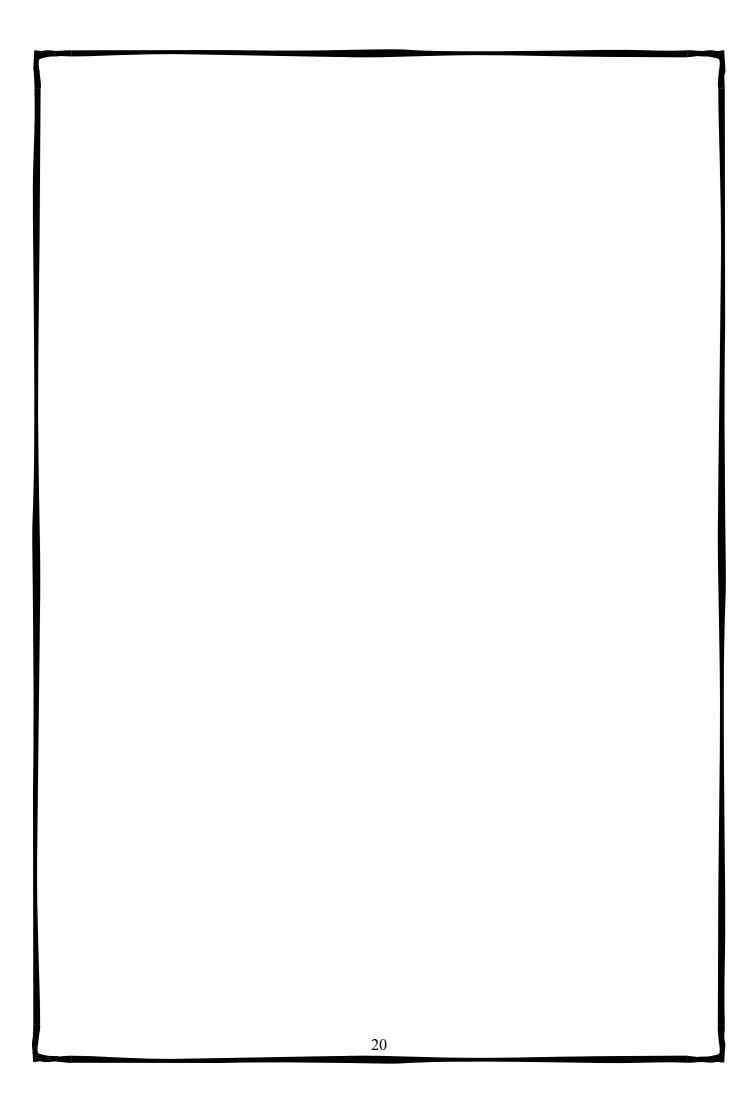
Escola Superior de Tecnologia e Gestão, Instituto Politécnico da Guarda jtrindade@ipg.pt

Desenvolvimento

Nuno Pereira

Eduardo Coutinho


Jorge Trindade


Colaboração

André Dias

Sandra Monteiro

Sandra Pinto

