## DEPARTAMENTO DE CIÊNCIAS DA VIDA

FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

## Incidence of polyploidy and genome evolution in Scrophulariaceae s.l.



Mariana Oliveira e Castro

## DEPARTAMENTO DE CIÊNCIAS DA VIDA

FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

## Incidence of polyploidy and genome evolution in Scrophulariaceae s.l.

Dissertação apresentada à Universidade de
Coimbra para cumprimento dos requisitos necessários à obtenção do grau de Mestre em 2011, realizada sob a orientação científica do Professor Doutor João Carlos Mano Castro Loureiro (Universidade de Coimbra) e da Doutora Sílvia Raquel Cardoso Castro Loureiro (Universidade de Coimbra)

## Acknowledgements

First, I want to thank to all the people who always supported me and directly or indirectly contributed for the accomplishment of the present work.

I am grateful to João Loureiro and Sílvia Castro for accepting the supervision of this work, for all their support and friendship and for the continuous encourage for making science.

I also thank to Dr Jorge Paiva for taxonomic lessons and for all his support in the corrent identification of some plant material.

I want to thank to the Index Semina of COI, UPT, ISAUTL and MHNM for sending Scrophulariaceae seeds.

I want to thank to Prof. Conceição Santos and Helena Oliveira for enabling the use of the flow cytometer of the Laboratory of Biotechnology and Cytomics (Department of Biology, University of Aveiro) in the first stages of this thesis.

I do not forget all the members (official or borrowed) of the Plant Ecology and Evolution Group for their friendship and for the excellent work environment.

Also, I am grateful to all the people of the Department of Life Sciences that somehow helped me during the development of this thesis, in special Manuela Patão, Ludovina Lopes, Arménio Matos, Luísa Ramalho and Pedro Cunha.

A special thanks also to my friends for all their support and encouragement, in special, Ana Maranha, Daniela Luís and Laura Perpétuo.

Finally, but not least important, this thesis is dedicated to my parents, brother and grandmothers, who continuously supported me and had a inexhaustible patience and understanding of all my choices, to my beloved José Ricardo, and in special to my uncle Domingos, who I miss.

## Table of Contents

i. Abbreviations ..... v
ii. Resumo ..... vii
iii. Abstract ..... ix
Chapter 1 - INTRODUCTION ..... 11
1.1. Nuclear DNA content and its significance ..... 13
1.1.1 Importance of genome size in biosystematics ..... 16
1.1.2 Biological correlates of genome size ..... 18
1.2. The role of polyploidy in plant diversity ..... 19
1.3. Flow cytometry: general principles and methods ..... 21
1.4. Study area ..... 24
1.5. Study group ..... 24
1.6. Objectives ..... 26
Chapter 2 - MATERIALS and METHODS ..... 27
2.1 Plant material. ..... 29
2.2. Calibration of reference standards for genome size estimations ..... 30
2.3 Genome size and ploidy level estimations using flow cytometry ..... 30
2.4 Statistical analysis ..... 32
Chapter 3-RESULTS ..... 35
Chapter 4 - DISCUSSION ..... 55
Chapter 5 -REFERENCES ..... 63
Chapter 6-APPENDICES ..... 75
Appendix 1 ..... 77
Appendix 2. ..... 84
Appendix 3 ..... 88

## i. Abbreviations

AAI - Alto Alentejo
Ag - Algarve
B - Bellis perenis
BA - Beira Alta
BAI - Baixo Alentejo
BB - Beira Baixa
BL - Beira Litoral
COI - Universidade de Coimbra
CV - coefficient variation
DL - Douro Litoral

E-Estremadura
e.g. - (L. exempli gratia) for example

EDTA $\mathrm{Na}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ - Ethylenediaminetetraacetic acid
et al. - (L. et alia) and other
FISH - fluorescence in situ hybridization
FL - fluorescence pulse integral
FS - forward light scatter
G - Glycine Max
i.e. $-(\mathrm{L} . i d$ est) that is

IS - Index seminum
ISAUTL - Instituto Superior de Agronomia Universidade Técnica de Lisboa
JC - Joana Costa
JL - João Loureiro
JP - Jorge Paiva
Mbp - mega base pair
MC - Mariana Castro
$\mathrm{MgCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ - Magnesium Chloride Hexahydrate
Mi - Minho
MNHN - Museu Nacional de História Natural
n - number of
NaCl - Sodium chloride
P - Pisum sativum
pg - pictograms
POP - natural populations
PVP - Polyvinylpyrrolidone 10
R - Raphanus sativus
R - Ribatejo
$R^{2}$-coefficient
S - Solanum lycopersicum
s.d. - standard deviation
s.l. - (L. sensu lato) in the broad sense
s.s. -- (L. sensu sctricto) in the sense of

SC - Sílvia Castro
SS - side light scatter
subsp - subspecie
TM - Trás-os-Montes
Tris.HCI - Tris(hydroxymethyl)aminomethane
UPT - Universidade Portucalensis
WPB - woody plant buffer
Z - Zea mays
$\delta$ - degrees of freedom

## ii. Resumo

Na última década, o recurso a marcadores moleculares influenciou fortemente a filogenia actual das Angiospérmicas, com diversos taxa a transitarem para novas famílias ou para outras famílias já existentes. O conteúdo em ADN nuclear contribuiu para esta discussão, sendo considerado um caracter importante na biossistemática e na ecologia e biologia das populações. Também, como novas entidades evolutivas podem surgir num único evento genético, a poliploidia foi proposta como um mecanismo importante na génese de biodiversidade. Nos últimos anos, tem existido um interesse crescente em estudos relacionados com a evolução do tamanho do genoma e com a incidência da poliploidia, apesar de na família das Scrophulariaceae, existirem muito poucos estudos disponíveis. Para além disto, e contrariamente ao observado noutras regiões do globo, existem poucos estudos focados na incidêncida da poliploidia na flora da Península Ibérica, um centro importante de diversificação. Tendo estes factos em consideração, os objectivos principais desta tese de Mestrado foram avaliar a importância do tamanho do genoma, especialmente como marcador taxonómico, e o papel da poliploidia como um processo de génese e manutenção da diversidade das Scrophulariaceae s.l. na Península lbérica. Para o efeito, foram realizadas análises em larga escala da variação do tamanho do genoma e do nível de ploidia usando a citometria de fluxo ao longo da região oeste da Península lbérica. Cento e sessenta e duas populações de 59 taxa distintos foram analisadas, tendo sido analisados 3 indivíduos por população para estimativas do tamanho do genoma e 30 indivíduos para análises do nível de ploidia. Dos 59 taxa analisados, $86 \%$ representam as primeiras estimativas do tamanho do genoma. A maioria das espécies de Scrophulariaceae apresenta um tamanho do genoma muito pequeno ou pequeno (2C $\leq 7.0 \mathrm{pg}$ ), com uma espécie apenas a apresentar um tamanho do genoma intermédio. Também, na maioria dos géneros analisados, foi possível utilizar este caracter para separar alguns dos taxa, independentemente de estes géneros serem homoplóides (e.g., Digitalis, Linaria) ou heteroploides (e.g., Veronica). Ainda, foram observados outros fenómenos relacionados com a evolução do genoma, em particular, variação intra-específica do tamanho do genoma em alguns géneros (e.g., Scrophularia) e disploidia em Verbascum. No que diz respeito à poliploidia, apesar de terem sido detectados novos níveis de ploidia em Veronica, não foi descoberto nenhum taxa com citotipos múltiplos. Estes dados revelam que aparentemente, a poliploidia não é um dos principais mecanismos de especiação nas Scrophulariaceae, pelo menos nesta região.

Palavras-chave: biossistemática, citometria de fluxo, evolução do genoma, Península Ibérica, poliploidia, Scrophulariaceae, tamanho do genoma, taxonomia.

## iii. Abstract

In the last decade the genomic studies using DNA markers have strongly influenced the current phylogeny of Angiosperms, with several plant taxa being moved to new or existing families. The nuclear DNA content itself has contributed to this discussion being considered an important character in biosystematics and more recently in ecology and population biology. Also, as new evolutionary entities can arise in a single genetic event, polyploidy has been proposed as an important mechanism for generating biodiversity. In recent years, there has been an increasing focus in studies related with genome size evolution and polyploidy incidence, despite that in Scrophulariaceae only a few works are available. Furthermore, contrarily to other regions, only a few studies concerning polyploidy incidence were focused on the Iberian Peninsula flora, an important center of diversification. Considering this, the main objectives of this Master thesis were to assess the value of genome size, mostly as a taxonomic marker, and the role of polyploidy as a process of genesis and maintenance of plant diversity in Scrophulariaceae s.l. in Iberian Peninsula. For that, large scale analyses of genome size and ploidy level variation were performed using flow cytometry across the Western Iberian Peninsula. One hundred sixty two populations of 59 distinct taxa were analyzed, with 3 individuals per population being analysed for genome size and 30 individuals for ploidy level. From the 59 sampled taxa, $86 \%$ were first estimates of genome size. The majority of the Scrophulariaceae species presented very small to small genome sizes ( $2 \mathrm{C} \leq 7.0 \mathrm{pg}$ ), with only one species presenting an intermediate genome size. Furthermore, in most of the analysed genera it was possible to use this character to separate several taxa, independently if these genera were homoploid (e.g., Digitalis, Linaria) or heteroploid (e.g., Veronica). Also, other genome related phenomena were detected, as intraspecific variation of genome size in some genera (e.g., Scrophularia) and disploidy in Verbascum. With respect to polyploidy, despite a few new DNA ploidy levels have been detected in Veronica, no multiple cytotypes have been found in any taxa, revealing that polyploidy apparently is not among the main mechanisms of speciation in Scrophulariaceae, at least in this region.

Key words: biosystematics, flow cytometry, genome evolution, genome size, Iberian Peninsula, polyploidy, Scrophulariaceae, taxonomy.

## Chapter 1 <br> INTRODUCTION

As a consequence of globalization, continuous growth of human population, resource exploration and climate changes (Pimm et al. 1995, Novacek and Cleland 2001, Warren et al. 2001, Brook et al. 2003), the degradation of natural habitats is reaching unprecedented proportions in history, and has been resulting in massive extinctions of biota (Sala et al. 2000, Novacek and Cleland 2001). For example. about $40-50 \%$ of the ice-free land surface was transformed by human activity, using one-third of the terrestrial net primary productivity and causing the extinction of $5-20 \%$ of the species in many groups of organisms (Brook et al. 2003, Chapin 2003). Nowadays, the rates are 100 to 1,000 higher than in the pre-human levels (Pimm et al. 1995), with about $25 \%$ of the 250,000 estimated species of vascular plants potentially becoming extinct within the next 50 years (Raven 1987). Also, dramatic declines of biodiversity led to reductions in the number of of species and subspecies, races and populations (Myers 1989). Still, to counterbalance this scenario, there are still several reports of the emergence of new entities, despite at much lower rates. For a correct evaluation of this phenomenon it is very important to develop strong efforts to investigate and understand the mechanisms of species neogenesis. In particular, efforts should be focused in studying groups in need of taxonomic revision, which may result in the re-definition of species boundaries (Greilhuber and Speta 1985), in the detection of undescribed taxa (Maxte et al. 1991), or in the revelation that a species has been misidentified (Yeater et al. 2004).

In the last decade the study of genome using DNA markers has strongly influenced the current phylogeny of Angiosperms, with several plant groups being moved to new or existing orders/families (Stevens 2011 onwards). The nuclear DNA content itself has contributed to this discussion being considered an important character in biosystematics and more recently in ecology and population biology (Loureiro 2007).

### 1.1. Nuclear DNA content and its significance

The knowledge of the genome has been increasingly important in many areas of plant research, including taxonomy and biosystematics, ecology and population biology. Genomes represent a distinct and legitimate level of organization, with unique and own evolutionary histories. Genome size is one of its intrinsic characteristics, being considered a constant species-specific character that can help to explain relationships between species (Gregory 2001). However, before focusing on the significance of genome size, it is important to explore the current terminology and nomenclature of "Cvalue".

The term "C-value", in its short history, has suffered from a misleading nomenclature and significance and only recently with the work of Greilhuber and coauthors a standardized nomenclature was achieved (Greilhuber et al. 2005). The first meaning of "C-value" was assigned by Swift in 1950 and was relative to "constant" DNA content, i.e., the amount of DNA that was characteristic of a particular genotype (Smith 1950). In 1976, Bennett and Smith defined it as the "DNA content of one unreplicated haploid chromosome complement" (Bennett and Smith 1976). Later, the term "C-value" was associated with the DNA content of the complete chromosome complement and the term "genome size" was restricted to the DNA content of the monoploid chromosome set (Bennett et al. 1998). Recently the terminology for genome size was standardized (Greilhuber et al. 2005), with the adjectives "holoploid" (C-value) and "monoploid" (Cx-value) being introduced to distinguish between DNA content of the unreplicated haploid genome (with chromosome number $n$ ) and DNA content of a single chromosome set of an organism (with chromosome number $x$ ), respectively (Greilhuber et al. 2005). In summary, C-value refers to half the somatic DNA content (the 2 C -value), and Cx -value is the 2 C -value divided by the ploidy level (i.e., the number of copies of the genome). In diploid organisms, C -value and Cx -value are equivalent, but not in polyploids. For these, the haploid state contains more than a single chromosome set.

Genome sizes can be expressed in mass units (picograms, pg), or in number of base pairs (bp). The conversion for both units is possible using the following equations (Doležel et al. 2003):

$$
\begin{aligned}
& \text { DNA content }(\mathrm{bp})=\left(0.978 \times 10^{9}\right) \times \text { DNA content }(\mathrm{pg}) \\
& \text { DNA content }(\mathrm{pg})=\text { DNA content }(\mathrm{bp}) /\left(0.978 \times 10^{9}\right)
\end{aligned}
$$

The first nuclear DNA content estimate in plants dates to the 1950's; however only in the 1980's the number of estimates started to increase at good rates. This is related with the advancement of flow cytometry, a rapid, robust and reliable technique that can be used for this purpose (see section 1.3 for details). In April of 1997, the first electronic version of the "Angiosperm DNA C-values database" was launched (Bennett and Leitch 2010). At the present, this database covers all the main plant groups and includes genome size estimates for up to 7,058 species (http://data.kew.org/cvalues/). The present knowledge of genome size in plants is summarized in Table 1.

Table 1. Descriptive statistics (min., minimum; max., maximum; mean and range) of 1C DNA values in the major plant groups, together with the level of species representation of C -values data using the latest release of the Plant DNA C-values database (Bennett and Leitch 2010).

| Plants group | Min. <br> $(\mathrm{pg})$ | Max. <br> $(\mathrm{pg})$ | Mean <br> $(\mathrm{pg})$ | Range <br> $($ max./min.) | No. <br> species <br> with DNA <br> C-values | No. <br> species <br> recognized | Species <br> representation <br> $(\%)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bryophytes | 0.17 | 7.97 | 0.66 | 47 | 232 | $\approx 18,000$ | $\approx 1.3$ |
| Pteridophytes | 0.09 | 72.68 | 11.77 | 808 | 82 | $\approx 11,900$ | $\approx 0.7$ |
| Gymnosperms | 2.25 | 36.00 | 18.57 | 16 | 204 | $\approx 730$ | $\approx 27.9$ |
| Angiosperms | 0.06 | 152.20 | 5.94 | 2,537 | 6287 | $\approx 250,000$ | $\approx 2.5$ |

Of all plants groups, Angiosperms present the most remarkable variation in holoploid genome size, spanning nearly a 2,500 -fold range, with Genlisea margaretae (Lentibulariaceae, 1C $=0.06 \mathrm{pg}$; Greilhuber et al. 2006) and Paris japonica (Melanthuaceae, 1C = 152.20 pg; Pellicer et al. 2010) presenting the smallest and the largest genomes discovered so far. In this plant group only approximately $2.5 \%(6,287)$ of the recognized species have their genome size estimated (Bennett and Leitch 2010).

Despite the small representation of estimates it is already possible to find a large variation in genome size among different taxonomic groups. This highlights the relevance of genome size as a taxonomic and/or ecological marker in particular plant groups. Also, this variation in amount of DNA content (or lack thereof) has been a central focus on evolutionary biology, an one important tool to know the structure of genetic information, its evolution and function, and understand the biological basis of the diversity and its adaptive value in ecological, evolutionary and taxonomic interpretations (Gregory 2005b, Greilhuber et al. 2010).

At the beginning of this research area, variations in genome size were seen as rather enigmatic due to the lack of correlation between the amount of nuclear DNA content and organism's complexity. This was named the "C-value paradox". Later, this paradox was solved by the discovery that much of the variation was due to repetitive non-codified DNA and, therefore renamed the "C-value enigma" (Gregory 2001, Gregory 2005a). Indeed, genome evolution is now considered to be a highly dynamic and bidirectional process and its size result from a dynamic balance between expansion and contraction forces (increasing and decreasing, respectively) (Bennett and Leitch 2005). Generally, polyploidy (explored in section 1.2) is one of the mechanisms that may lead to increases in genome size. In homoploid plants (plants

## INTRODUCTON

with the same number of chromosomes but different genome sizes), genome expansion is due to amplification and insertion of transposable genetic elements (different amounts of noncoding, repetitive DNA; Vitte and Bennetzen 2006) and evolution and amplification of satellite repeats (variation in the number and the proportion of minisatellites and microsatellites; Lim et al. 2006). Environment conditions may have an important role in genome evolution, as it may modulate the transcriptional activity of (retro)transposons (Kalendar et al. 2000). Relatively to the loss of genome size, it is associated with deletional mechanisms like unequal intra-strand homologous recombination, illegitimate recombination and/or higher rate of nucleotide deletion over insertion (Bennetzen et al. 2005).

Despite being considered a not so common phenomenon, some species may present variation in the amount of DNA among individuals within and/or between populations, i.e., intraspecific variation of genome size. This variation can be attributed to chromosomal differences (aneuploidy, polyploidy, supernumerary B-chromosomes, sex chromosomes) and cryptic species (Greilhuber 1998), and to polymorphisms in A chromosomes (heterochromatic knobs and differential deletion of transposable element remnants) (Gregory 2005a). Studies of intraspecific variation of genome size usually require the detection of small differences in the amount of DNA, and thus are technologically more demanding (high precision and resolution are usually needed). Once again, if methodological best practices are undertaken, flow cytometry is the ideal technique to accomplish this aim.

In biosystematics, ecology and evolution, genome size usage can be summarized in three main goals: as a taxon-specific marker in biosystematics, to predict the correlation of genomes size with several phenothypic, physiological and/or ecological characteristics (the nucleotypic effect) and to understand the dynamics of genome evolution (studying inter- and intraspecific variation "patterns" in genome size). Some of these goals are described in more detail below:

### 1.1.1 Importance of genome size in biosystematics

Despite in many cases, taxonomists relied on chromosomal data as an important marker in organisms division (Stace 2000, Ekrt et al. 2009), only recently genome size was been taken into consideration (Kron et al. 2007). As referred above, with a few exceptions, the variation of genome size is mostly constant among species with a larger variation observed among higher taxonomic categories, with some evolutionary relationships (Greilhuber 1998, 2005). So, genome size can be used a supportive tool
to discriminate taxa and resolve complex low-level taxonomies. In homoploid plants, genome size has high value to distinguish groups with phenotypic similarities, with a low number of distinct morphological characters, with continuous morphological variations and/or groups prone to inter-specific hybridization or with complex evolutionary histories (e.g., allopolyploids) (Loureiro et al. 2010).

For example, in Helleborus (one of the first FCM studies on homoploid groups), all species have 32 chromosomes in their somatic cells, but it was found that their genome is highly variable (Zonneveld et al. 2001). In this case, it was possible distinguish several species and the variation in genome size corresponds to the sectional division. After this study, many others focused in assessing the variation in genome size at species level were published, contributing to an increase in the number of genome size estimates. Another example that proves the value of using genome size as taxonomical marker is the study of Iberian Festuca species, in particular the distinction of two subspecies of Festuca ampla, subsps. ampla and transtagana, according to their genome size (Loureiro et al. 2007a).

The identification of homoploid hybrids through genome size is another useful application in biosystematics. Generally, it is supposed that hybrids present a genome size intermediate and non-overlapping with that of parental species (Trucco et al. 2006). In case the genome of parental species differ sufficiently (by at least 7\%), it is possible to detect homoploid hybrids using flow cytometry. This was the case of Elytrigia repens and E. intermedia and the subsequent hybrid (Mahelka et al. 2005). In Cirsium a high incidence of inter-specific hybridization was detected. Furthermore, a negative relationship between genome size and the incidence of hybrids was observed, i.e., species with smaller genome size had a higher hybridization frequency (Bureš et al 2004).

In some plants groups, such as allopolyploids (explained in section 1.3) with genome size differences in parental species and similar phenology, it may be possible to deduce the evolutionary relationships and genome constitution of hybrid species (Suda et al. 2007a). It is theoretically expected that, in polyploids, the genome of the new entity has the sum of genome size of the progenitors. However, in practice this process is usually accompanied by losses and/or gains in DNA. In 2008, Leitch and coauthors, observed a high difference between actual (determined by FCM) and expected (sum of genome size of parental species or most closely related to the diploid progenitor) genome size in allopolyploid Nicotiana species, revealing genome downsizing in some polyploids and an increase in others, with the former being more frequent. Differences between the actual and expect values were, in general, positively

## INTRODUCTON

correlated with evolutionary age (Leitch et al. 2008). The authors hypothesized that the observed DNA loss could be a selection mechanism to minimize genetic instability or the phenotypic effects of having an increased nucleus and cell size.

### 1.1.2 Biological correlates of genome size

The enormous genome size variation raises many questions regarding biological correlates, stability and plasticity, function and effect, and selective significance and inertness of this character (Greilhuber et al. 2010). In 1971, M. D. Bennett proposed that DNA amount of an organism could influence its phenotype, through the genotype (information contained in genome) and through the nucleotype (mass and volume of the genome), which could impose drastic limits on the range of phenotypes expressed by genic control (the so-called "nucleotypic theory") (Bennett 1971). However, only recently this character has been integrated into ecological predictions and models. Some of the most interesting predictions include the positive relationships between genome size and cell size (Gregory 2005b), duration of cell division (Bennett 1977), guard cell length and size of epidermal cells (Beaulieu et al. 2008), pollen volume (Bennett 1972), seed size (Bennett 1972) and seed mass (Beaulieu et al. 2007). In the case of stomatal density, Beaulieu and co-authors observed a negatively relationship with genome size and as stomata size and frequency influence carbon fixation and efficient uses of water, variations in genome size may alter the plant physiology. Also, these observations may be useful to predict the natural distribution of species (e.g., species with large genome sizes have a low frequency of small stomata, which may be related with adaptation to dry environments; Beaulieu et al. 2008).

Another possible application of the study of genome size is the distinction, in early developmental stages of, male and female individuals of dioecious plants with heteromorphic chromosomes (e.g., Cannabis, Coccinia, Silene and Viscum), if there are significant differences in the size of sexual chromosomes (Loureiro et al. 2010). However in Silene latifolia, besides sex related differences, some intraspecific genome size variation was detected. This variation in genome size was reflected phenotypically in the calyx diameter, an adaptive characteristic in this dioecious species (Meagher and Costich 1994).

In terms of broader evolutionary implications, it is generally assumed that genera with larger genomes are less speciose, suggesting that having a larger amount of DNA can be disadvantageous (Knight et al. 2005). Very small genomes clearly prevail in species-rich genera that underwent adaptive radiation, providing support for a
relationship between the content of nuclear DNA and bursts of speciation, especially in insular populations (Loureiro at al. 2010).

### 1.2. The role of polyploidy in plant diversity

Plant speciation is characterized by the evolution of barriers to gene exchange between populations that previously had the possibility to mate freely. Reproductive isolation can be achieved through a combination of several barriers from different spatial distributions due to dissimilar habitat preferences, to different phenologies, different pollinator guilds, pre- or post- fertilization incompatibilities and low viability of the offspring (hybrids) (Castro et al. 2011). Because of immediate shifts in plant morphology and ecological tolerances of polyploid lineages in comparison with diploid progenitors, polyploidization has been proposed as a major mechanism of sympatric speciation. Indeed, recent studies show that most (up to 100\%) angiosperms have suffered genome duplication across their evolutionary history (Soltis et al. 2003, Wood et al. 2009).

Besides, the mere detection of individuals with different ploidy levels with important applications in areas as biotechnology and plant breeding, in ecology and evolution, the interest has been focused on the dynamics of polyploidization, in particular the origin, establishment and maintenance of polyploids, and how these may evolve into different species (Soltis et al. 2003, Mable 2004). In these areas, polyploids have been approached mainly in three ways: ploidy variation on different spatial and temporal scales; roles of allo- and auto-polyploidization, unreduced gamete production, and single vs multiple origins in the formation of polyploids; and phenotypic and ecological traits of neo- and established polyploids, and the role they play in the ecology and evolution of cytotypes, populations and species (Kron et al. 2007). Using flow cytometry, it has been possible to characterize the geographical distribution of cytotypes (within species or between closely related species), with the main advantage, in comparison with related techniques (e.g., chromosome counting), being the larger number of individuals that can be analysed in a relatively short period of time. As a consequence, the number of studies focused in the study of polyploids has increased significantly in the later years (e.g., Burton and Husband 1999, Bureš et al. 2003, Baack 2004, Pecinka et al. 2006).

Most of the studies so far are focused at population level to describe the patterns of cytotypes distribution. Baack in 2004, observed mixed populations of Ranunculus adoneus, with implications for the intercytotype interaction and subsequent

## INTRODUCTON

cytotype segregation of this species (Baack et al. 2004); while Lampert and co-authors, found fluctuations in cytotype's frequency over time in Poecilia formosa (Lampert et al. 2005).

Still, polyploidy and its origin can be quite complex to entangle, as it envolves the duplication of the genome from the same species (autopolyploidy) or by the combination of genomes from two parental species (allopolyploidy). The first phenomenon is generaly assumed as a mere duplication of the genome and thus, it has less incompatibility and fertility problems, being more easily detected using flow cytometry. In the case of allopolyploids, the process is more complex, and it may bear more fertility problems. Also, its detection using flow cytometry, and the identification of the diploid progenitors (Bennert et al. 2005), usually implies some background knowledge and the analysis of many species from a particular genus. Still, success in not always guaranteed, especially when diploid species have little variation in DNA content or when extinct taxa are involved (Kron et al. 2007).

Also, FCM has been been important to address studies focused on evaluating the prevalence of multiple versus single origins of taxa, and the role of unreduced gametes in polyploidy formation. Indeed this last process is the most important one in neopolyploids generation (Mable 2004), and therefore it is essential to understand the rates of unreduced gamete production. This can be done using flow cytometry by screening the ploidy level among progeny in controlled crosses. Burton and Husband (2001), in Chamerion angustifolium, observed the production of monoploid, diploid, and tetraploid gametes, and a significant role of triploid hybrids in the formation of tetraploids. FCM also enabled to directly measure unreduced microgamete production (still, this is more challenging), and thus to disentangle the rates of gamete production from differential fitness among cytotypes in progeny (Suda et al. 2007b). Some laboratory studies of the effect of experimental treatments on unreduced gamete production suggest an important potential use in natural populations: the comparison of variation in unreduced gamete production to variation in environmental factors (Kron et al. 2007).

In ecological studies, polyploidy is related with phenotypic and fitness differences between polyploids and their diploid progenitors, ecological correlates of ploidy distribution, and the relationship between polyploidy and invasiveness (Thompson and Lumaret 1992). The evidence that the cytotypes differ phenotypically suggest that their differences may have ecological implications (Ramsey and Schemske 2002). Various ecological correlates to polyploidy have been described (Soltis et al. 2003), and
cytotype surveys using FCM frequently include some environmental data (e.g., Baack 2004).

### 1.3. Flow cytometry: general principles and methods

Flow cytometry is a technique initially developed for rapid counting and analyses of blood cells in clinical research and practice in the late 1950s (Shapero 2007). Later, this technique was applied to a diverse array of scientific areas, including botany, after the discovery of new fluorochromes and development of convenient protocols (Doležel et al. 2007). It is based on the analyses of the optic properties (light dispersion and fluorescence) of particles as they flow individually in a liquid suspension through a light source at high speed ( $10^{2}-10^{3}$ particles/second), ensuring that particle analysis is completely random, without any subjectivity. This powerful technique enables the analysis of multiple parameters on individual particles in heterogeneous populations. These features make flow cytometry a pivotal technique in areas like diagnostic clinic, with immunophenotyping and cancer research being among the most popular appplications (Doležel 1997).

One vital concept of cytometry is hydrodynamic focusing, a physic phenomenon that near the interrogation point, assures a laminar flow and consequently that particles pass through this point one by one. This is done by an increase in the speed of a sheath fluid, so that it is higher than that of the sample fluid, and thus, both fluids never mix and the flow becames laminar. When the samples, in stream, intercept the laser (interrogation point) a photonic dispersion and/or emission of fluorescence occurs, and this varies directly with the particles characteristics (Côrte-Real et al. 2002). Cytometers can usually detect particles with sizes ranging between 1 and 50 microns in diameter.

The acquired parameters are light scatter and fluorescence. Among light scatter, the light that is dispersed at low angles is named forward light scatter (FS) and is known to be proportional to the particles size. The dispersion of light at wider angles is called side light scatter (SS) and is caused by granularity and the structural complexity of the particles. Fluorescence is the term used to describe the excitation of a fluorophore to a higher energy level followed by the return to the initial energy level, resulting in the emission of light. The energy in the emitted light is dependent on the energy level to which the fluorophore is excited, and that light has a specific wavelength and consequently a specific colour. Any cell component (e.g., DNA, antibodies) binded to a specific fluorescent molecule can be quantified and analysed,
as long as the fluorophore is excited by the light source available in the flow cytometer. As cytometers are usually equipped with a series of filters and mirrors, in most cases, the fluorescence of up to four fluorophores can be analysed at the same time, besides FS and SS.

The light is delivered to appropriate detectors, usually photomultipliers, where the light signal is converted into an analogical signal in the form of a voltage pulse that can be further analysed, after a digital conversion, in a computer (Loureiro 2007). Data is usually obtained in the form of one parameter histograms or two parameters cytograms in specific FCM software. In here quantitative and statistical data are easily obtained for each parameter.

In plants, the main advancements were made after the ingenious method of Galbraith et al. (1983), which develop an easy and quick protocol to isolate and stain plant nuclei. In short, the plant material is chopped in a nuclear isolation buffer (Figure 1). The isolated nuclei are filtered and then stained with a DNA-selective fluorochrome, usually propidium iodide (intercalary fluorochrome) or DAPI (AT-specific fluorochrome). Usually in 10 minutes the sample is ready to be analysed and for most species the resulting fluorescence histograms are of excellent quality. Using this protocol, most plant tissues can be used, but the most used one are the leaves (Loureiro et al. 2010).


Figure 1. Diagram of the sample preparation procedure for FCM DNA measurements (Galbraith et al. 1983). Figure adapted from the website: http://www.ueb.cas.cz/Olomouc1/LMCC/Imcc.html.

A typical DNA fluorescence histogram comprises a prominent peak corresponding to nuclei in the $G_{0} / G_{1}$ phase of the cell cycle (with a $2 C$ DNA content), a small peak that correspond to nuclei in the $G_{2}$ phase (with a 4C DNA content) and some signals in between that correspond to nuclei in the $S$ phase (nuclei synthesising new DNA) (Figure 1). As there are many sources of variation in the FCM analyses, wider peaks and background debris are usually observed (Loureiro 2007), thus the quality of a nuclear suspension is best evaluated by analysing the histogram of relative nuclear DNA content, and the respective CV value of each FL peak. Histograms of good quality should contain a low background debris and symmetrical $G_{0} / G_{1}$ and $G_{2}$ peaks with low variation (Doležel and Bartoš 2005).

However, there are also some drawbacks of the use of FCM to analyse plant nuclei. The tissues of several plant species have cytosolic compounds that are released during the nuclear isolation and are known to interfere with fluorescence of nuclear DNA. This artifact may lead to erroneous estimations of nuclear DNA content, and has lead to several controversies. The most well known example is the case of Helianthus annuus, where it initially appeared that light exposure could alter the DNA content of this species (Price and Jonhston 1996). However, this intraspecific variation in genome size was not light induced, but because sunflower plants, after light exposure, produce high amounts of cytosolic compounds that interfere with propidium iodide staining, giving a false variation. Other cases followed in the future and this interference is well documented nowadays (Noirot et al. 2002, Loureiro et al. 2006).

Despite of this, the advantages of FCM clearly surpass those of related techniques as chromosome counting and Feulgen microdensitometry (in here the effect of cytosolic compounds is also a problem, Greilhuber 1988): sample preparation is easy, convenient and rapid, only small amounts of plant material are usually required for sample preparation, a variety of plants tissues can be used for sample preparation, it enable the detection of subpopulations and after the equipment is purchased, the demand in consumables is relatively small, which results in relatively low running costs (Loureiro 2007).

Still one should not forget that for most studies it is important to complement FCM results with other cytological techniques as chromosome counting, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) (Bennett and Leitch 2005).

### 1.4. Study area

The complex and dynamic paleogeography of the Mediterranean region offers an ideal framework and a natural laboratory to study the diversification patterns of plant lineages. Indeed, Mediterranean flora is characterized by numerous radiations within several plant groups and, thus, it is an important diversification center (e.g., Vargas et al. 2004; Lobo et al. 2001), with Iberian Peninsula in particular being classified as one of the most diverse and biologically richest region of the world (Médail and Quézel, 1997; Myers et al. 2000).

As described above, the ability of flowering plants to give rise to new genetic entities through polyploidization events may have contributed to a rapid taxonomic diversification, eventually being involved on the genesis of the high biodiversity and the numerous endemisms currently observed in some regions of the world. In this context, it might be hypothesised that regions with highly diversified floras, such as the Iberian Peninsula, could be characterized by a high proportion of polyploid species. Considering the paleogeography of this region and the potential broad-scale effects on gene regulation and developmental processes, the Tertiary lberian orogeny and the subsequent glaciations may have led to important changes in climate and topography (Thompson 1999), which may have provided opportunities for the establishment of polyploids through hybridization and other mechanisms, in the contact zones between existing species. Immediate shifts after polyploidization in morphology, breeding system may have confered reproductive isolation and subsequently lead to diversification (Ramsey and Schemske 1998, Otto and Whitton 2000, Adams and Wendel 2005). On the other hand, polyploids are described as having broader ecological tolerances and thus may have a greater ability to exploit disturbed or novel niches than their diploid progenitors (Levin 2002). This advantage will be most effective when habitats undergo important changes in abiotic conditions or become newly available for colonization (Morton 1993), as has been the case of the Iberian Peninsula.

### 1.5. Study group

Scrophulariaceae belongs to the order Lamiales (sensu Olmstead et al. 1993, Angiosperm Phylogeny Group 1998) which contains several large and well-known families with both tropical and temperate distributions, comprising about $12.3 \%$ of the eudicot diversity. The age estimations for Lamiales range from approximately 97 to 74 Myrs ago (Bremer et al. 2004). As traditionally circumscribed (e.g., von Wettstein, 1891), Scrophulariaceae is the largest of Lamiales families and have a worldwide
distribution. The limits of Scrophulariaceae have long been problematic (Thieret 1967, Olmstead 2002) and recent molecular studies using DNA sequences of plastid genes revealed at least five distinct monophyletic groups leading to the desintegration of the traditional classification in, at least, 6 families (Olmstead et al. 2001). Members of the classical Scrophulariaceae are currently found in Scropulariaceae s.s., Plantaginaceae and Orobanchaceae (the latter two contain most of the taxa that have moved), as well as in Stilbaceae, Phrymaceae and Linderniaceae (Olmstead et al. 2001, Angiosperm Phylogeny Group II 2003). Despite of this new and currently dynamic state of Scrophulariaceae s.I., most of the tribes sensu von Wettstein (1891) that continue to be currently accepted have been shown to be monophyletic through molecular studies (e.g., tribe Anthirrhineae, Vargas et al. 2004) and can thus be considered natural groups.

Scrophulariaceae s.l. comprise plants that can be perennial, annual or biannual herbs, rarely shrubs. Their stem has circular or square section; the leaves are highly diverse and can be simple to pinnately dissected, alternate or opposite, entire to deeply indented, rarely in verticils and basal rosettes, with petiole or sessile, without stipules. The flowers are usually tubular with bilateral symmetry (zygomorphic), rarely actinomorphic, arranged in inflorescences or solitary; inflorescences can be spikes or panicles with bracts; the calyx is usually penta-lobated, more rarely bi-, tetra- or octolobated; the corolla is simpatelous with (4)5(8) petals forming a tube more or less developed, sometimes gibbous or ending in a spur; androecium is composed by 2-8 stamens, more frequently 4 didynamous stamens, and in some species staminoids are present; pollen grains are tricolporate or tricolpate; the gynoecium is bicarpelar and the ovary is superior and bilocular, with axial placentation and numerous ovules. Finally, the fruits are dehiscent capsules and the seeds have endosperm (Benedí et al. 2009).

A huge diversity in corolla shape, colour and functioning can be observed in the family. Characteristically, Scrophulariaceae individuals have gullet blossoms specially adapted to bee pollinations. The features that characterize these flowers are zygomorphy, corolla tube shaped, frequently with a landing platform (lower lip), nectar produced at the base of the corolla, sexual organs placed under the upper lip in some cases closed corolla dependent on bee weight to trigger the opening of the corolla (Faegri and van der Pijl 1979).

In Iberian Peninsula, Scrophulariaceae s.I. are represented by 323 species distributed in 33 genera (Benedí et al. 2009). In Portugal, the diversity is lower, with 116 species distributed in 27 genera being found. Most species are ruderal and can be easily found in disturbed lands; still, there are several species listed in the red lists, and
thus in need of special protection (e.g., Anarrhinum longipedicellatum, Habitats Directive ofNATURA2000; VV AA, 2000).

Considering the oldness of this family, that there is almost no available information on genome size for any taxa of this family (but see Albach and Greilhuber 2004), that there are several records in the literature pointing to the possible existence of polyploids within and between species of Scrophulariaceae (e.g., Antirrhinum, Digitalis and Veronica) and that, in case polyploids are found, many taxa present large attractive flowers, ideal for reproductive isolation studies, it seemed that this family had all the necessary attributes for a large-scale cytogenetic-based survey.

### 1.6. Objectives

The main objectives of the present Master Thesis were to assess the value of genome size as a taxonomic marker and the role of polyploidy as a process of genesis and maintenance of plant diversity in Scrophulariaceae s.I. in Iberian Peninsula. To achieve these goals we proposed three levels of fundamental research: 1) assessment of chromosomes numbers, genome size and polyploidy incidence in Scrophulariaceae taxa from Iberian Peninsula by performing a review of the bibliographic literature; 2) estimation of genome size in a diverse array of taxa from several key genera; and 3) assessment of cytotype diversity through large-scale screenings in natural populations. The results will increase the basic scientific knowledge on genome evolution and polyploid incidence in the Scrophulariaceae from Iberian Flora, providing important background information for subsequent studies, namely taxonomic studies in some interesting groups and focused on the ecological significance of genome size and polyploidy and their importance in plant diversification in this region.

Chapter 2
MATERIALS and METHODS

### 2.1 Plant material

Plant samples from 59 taxa of the Scrophulariaceae s.l. family were collected from several field locations in Portugal and Spain (Figure 2 and Appendix 1). Seeds from some taxa were kindly provided by index semina of several Iberian research institutions (Appendix 1). Also, seeds from the reference standards were kindly provided by the Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic.

Field collections were carried out in 2009 and 2010 during the flowering season (March to August) of the studied taxa. For that, when possible, natural populations presenting at least 30 individuals were selected. In each population, leaves and/or seeds from up to 30 individuals (one leaf/seed per individual) were collected and stored in a hermetic plastic bag identified with an ID code referring to the collector, population and taxa. Samples were kept at $4^{\circ} \mathrm{C}$ in a refrigerator until analysis. Photographs were made of each population and taxa, with special care being taken on photographing the habit and flowers of each taxon. Also, GPS coordinates were acquired and registered in a field book, being given the same ID code of the plastic bag. Voucher specimens were also collected and kept in the Herbarium of the University of Coimbra (COI). In the laboratory, each taxon was identified following Benedí et al. (2009).

An extensive bibliographic review on chromosome counts, localities and genome size of the studied species was carried out. For chromosome information and localities the following bibliography or online databases were used: Flora Iberica (Benedí et al. 2009), Tropicos ${ }^{\circledR}$ (http://www.tropicos.org/), Anthos (http://www.anthos.es/), BioDiversity4all (http://www.biodiversity4all.org/; for localities only) and M. Queirós printed files database available at the Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra. For genome size information the Kew Plant DNA C-values Database (release 5.0, December 2010; http://data.kew.org/cvalues/) was used.

Seeds from Scrophulariaceae taxa and from reference standards were sown in plastic cuvettes filled with commercial peat. Plastic cuvettes were put in a greenhouse operating at $20 \pm 2{ }^{\circ} \mathrm{C}$ and with a photoperiod of $16 \mathrm{~h} / 8 \mathrm{~h}$ (light/dark) and a light intensity of $530 \pm 2 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$.

### 2.2. Calibration of reference standards for genome size estimations

According to Greilhuber et al. (2007), before starting a large scale survey of genome size variation across a whole family, due to need of using multiple reference standards, one should consider to select a primary reference standard (e.g., Pisum sativum) and calibrate the genome size of the remaining standards against it. Considering the nature of the present study it was decided to follow this recommendation. In brief, Pisum sativum cv. Ctirad ( $2 \mathrm{C}=8.76 \mathrm{pg}$ DNA, Doležel et al. 1998) was selected as a primary reference standard and all the other standards, with exception of Raphanus sativus cv. Saxa, were calibrated against it (see details below for the flow cytometric procedure). In the case of $R$. sativus, to avoid possible problems of non-linearity due to dissimilar genome sizes between this species and Pisum sativum, Solanum lycopersicon cv. Stupické was used. For each species pair ( $P$. sativum / other standard), five replicates were done in three different days. When the coefficient of variation (CV) of the five genome size estimates was larger than $2 \%$ the most dissimilar values were discarded and new replicates were made until this threshold quality value was achieved.

### 2.3 Genome size and ploidy level estimations using flow cytometry

For flow cytometric (FCM) analyses of genome size and ploidy level, leaves from field collected or seed germinated plants were used as plant material. In one taxon (Rhinanthus minor), because all plants were in fructification and no leaves were available, seeds were used as an alternative tissue. Nuclear suspensions were prepared according to Galbraith et al. (1983), by chopping approximately 50 mg of plant material of the study species and 50 mg of leaves of the internal reference standard with a sharp razor blade in a glass Petri dish containing 1 mL of WPB buffer (0.2 M Tris. $\mathrm{HCl}, 4 \mathrm{mM} \mathrm{MgCl} 2.6 \mathrm{H}_{2} \mathrm{O}, 1 \%$ Triton X-100, 2 mM EDTA $\mathrm{Na}_{2} .2 \mathrm{H}_{2} \mathrm{O}, 86 \mathrm{mM}$ $\mathrm{NaCl}, 10 \mathrm{mM}$ metabissulfite, $1 \%$ PVP-10, pH adjusted to 7.5 and stored at $4^{\circ} \mathrm{C}$; Loureiro et al. 2007b). For each taxon/population, after the first sample, if necessary the chopping intensity and amount of plant material was adjusted in order to have a rate of 20-50 nuclei/s in the subsequent replicates. In samples with a large amount of cytosolic compounds, the chopping intensity was reduced to avoid their release from the cells and, thus prevent or minimize their negative effect on nuclear fluorescence (Loureiro et al. 2006). When a novel species was analysed for the first time, a quick overview of the literature was made using the FLOWER database (http://flower.web.ua.pt/) to determine which reference standard was previously used. In case no information was available, P. sativum or S. lycopersicon were chosen as
starting standards, and according to the obtained results the most appropriate standard for each taxon was selected. When possible and justifiable, the same standard was used for all the taxa of each genus. Nuclear suspensions were then filtered through an $50 \mu \mathrm{~m}$ nylon filter and $50 \mu \mathrm{~g} / \mathrm{mL}$ of propidium iodide (PI, Fluka, Buchs, Switzerland) and $50 \mu \mathrm{~g} / \mathrm{mL}$ of RNAse (Fluka, Buchs, Switzerland) were added to sample tubes to stain the DNA and avoid staining of double stranded RNA, respectively. Samples were kept at room temperature and analysed within a 10 minute period in a Partec CyFlow Space flow cytometer (Partec GmbH, Görlitz, Germany) equipped with a 532 nm green solidstate laser, operating at 30 mW . Integral fluorescence and fluorescence height and width emitted from nuclei were collected through a 620 nm band-pass interference filter. For a given taxon the amplifier system was set to a constant voltage and gain, throughout the whole estimates. Each day, prior to analysis, the instrument stability and linearity was checked either with fluorescent beads or using PI stained nuclei isolated from $P$. sativum. The analyses were only started when CV values were below $3 \%$. If this was not achieved both a cleaning procedure and an adjust of the position of the flow chamber with respect to the incident laser were made until the desired CV values were obtained.

The results were acquired using the Partec FloMax software (v. 2.5) in the form of five graphics: fluorescence pulse integral in linear scale (FL); forward light scatter (FS) vs. side light scatter (SS), both in logarithmic (log) scale; FL vs. time; FL vs. fluorescence pulse height; FL vs. SS in log scale. In most samples, in the latter graphic, a polygonal region was defined to include only intact nuclei. This region was used as a gating in all the other graphics. This procedure enabled to remove partial nuclei, nuclei with associated cytoplasm and other debris from analysis, and thus obtain a clearer view on the position of each peak. In FL histograms, linear regions were delimited around the $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks of both sample and standard nuclei. This enabled to obtain information on the number of nuclei, mean fluorescence and CV value of the fluorescence of the particles included in this region. At least 1,300 nuclei in each $\mathrm{G}_{0} / \mathrm{G}_{1}$ peak were analysed per sample. For each taxon, only genome size estimates presenting a CV value below $5 \%$ were considered. Samples with higher CV values were discarded and a new sample was prepared. For some taxa with high amounts of cytosolic compounds it was not possible to achieve such CV values, and thus a higher CV threshold was considered acceptable (8 \%).

For each population, the genome size of 3 individuals was analysed. The ploidy level of the remaining individuals was analysed by pooling 5-6 individuals in one sample, i.e., a piece of leaf of each individual (the same quantity of each leaf) was
added to the Petri dish and chopped together with the reference standard. In case different ploidy levels were detected (given by multiple $G_{0} / G_{1}$ peaks), the number of nuclei present in each $G_{0} / G_{1}$ peak enabled to determine the number of individuals with each ploidy level.

Ploidy level analyses consisted on determining the ratio between the mean FL of sample's nuclei and the mean FL of standard's nuclei. The holoploid genome size in pg (2C; complete genome size, sensu Greilhuber et al. 2005) of each individual was estimated according with the following formula:

2C nuclear DNA content $=\frac{\text { Scrophulariaceae sp. } \mathrm{G}_{0}, G_{1} \text { peak mean } \mathrm{FL}}{\text { reference standard } \mathrm{G}_{0} / G_{1} \text { peak mean } \mathrm{FL}} \times$ nuclear DNA content of reference standard.

The monoploid genome size (1Cx; i.e., the single genome with $x$ chromosomes, of which there are two per unreplicated nucleus in a diploid individual and several in a polyploid individual, sensu Greilhuber et al. 2005) of all species was also calculated by dividing the holoploid genome size (2C) by the supposed ploidy level of each taxa, both in mass values (pg) and Mbp ( $1 \mathrm{pg}=978$ Mbp; Doležel et al. 2003).

### 2.4 Statistical analysis

Descriptive statistics of genome size were calculated for each species (mean, standard deviation of the mean and coefficient of variation of the mean). For genera with more than one species, box plots with mean and standard deviation of the mean were computed using Microsoft Excel 2007. 1Cx values of Veronica species were also plotted.

Differences in genome size among families considering the newly established boundaries (i.e., Scrophulariacea s.s., Orobanchaceae and Plantaginaceae) were assessed using a non-parametric Kruskal-Wallis one-way ANOVA on ranks (normality and homoscedasticity was not achieved even after data transformation). For genus with more than one sampled species (Anarrhinum, Antirrhinum, Digitalis, Linaria, Misospates, Pedicularis, Scrophularia, Verbascum and Veronica) differences in nuclear DNA content within and between species were evaluated using Statistica v.8.0. A similar analysis was performed between closely related genera (Bartsia, Nothobartsia and Parentucellia, and Odontite vs Odontitella). For variables that were normally distributed and homoscedastic a t-test (comparisons between two groups) or a oneway ANOVA (comparisons of more than two groups) were followed. In Linaria spp. and Veronica spp., data transformations ( $\log _{10}$ and square root, respectively) had to be
used to achieve normality and homoscedasticity. In Scrophularia sp., due to failure in achieving homoscedasticity (even after data transformation), a non-parametric KruskalWallis one-way ANOVA on ranks was used. When statistically significant differences were detected, either a multiple comparison Tukey-Kramer test (for parametric data) or a Dunn's method (for non-parametric data) were applied to determine which groups presented significantly different values.

In Veronica spp., a linear regression analysis and a Pearson correlation were performed between mean nuclear DNA content and chromosome numbers of each taxa.

## Chapter 3 <br> RESULTS

The bibliographic review on chromosome counts and localities of the 116 Scrophulariaceae s.l. taxa present in Portugal is presented in Appendix 2. From the analysis of this data, 28 taxa presented more than one value of chromosome counts, despite that only in 10 taxa ( $8.6 \%$ of the total) this may represent different ploidy levels (e.g., Digitalis purpurea subsp. purpurea and Odontites vernus, both with $2 x$ and $4 x$; Veronica cymbalaria and $V$. hederifolia, both with $2 x$ and $3 x$ ). For the remaining taxa, usually differences of 2 or more chromosomes are reported, but never an additional full set of chromosomes (Appendix 2). With respect to the distribution, $56 \%$ of the taxa occurred in more than 3 Portuguese provinces; still, 25 taxa were restricted to one province. Field observations revealed that, as reported in the literature, most species are ruderal and can be easily found in disturbed lands, in many cases due to anthropogenic activities (e.g., Digitalis purpurea subsp. purpurea, Verbascum sp.).

The available data in the literature on genome size variation in Scrophulariaceae (minimum value of $0.34 \mathrm{pg} / 2 \mathrm{C}$ in Torenia baillonii, Kikuchi et al. 2006, and maximum value of $14.30 \mathrm{pg} / 2 \mathrm{C}$ in Collinia verna, Greenlee et al. 1984) suggested the need to use multiple standards to obtain reliable estimations of nuclear DNA content in this family. Therefore, a calibration of the necessary reference standards against Pisum sativum (the primary reference standard) was performed. The results of this calibration are given in Table 2. Due to a slightly lower value assumed to $P$. sativum, as recommended by Greilhuber et al. (2006), all the calibrated 2 C values were lower than the original ones provided by the Laboratory of Molecular Cytogenetics and Cytometry (Olomouc, Czech Republic).

Table 2. DNA reference standards used in the present study, with both the original and calibrated 2C DNA values

| Species | Cultivar | Calibrated 2C <br> DNA content (pg) | Original 2C DNA <br> content (pg)' | Reference |
| :--- | :---: | :---: | :---: | :--- |
| Pisum sativum | 'Ctirad' | $8.76^{*}$ | 9.09 | Doležel et al. 1998 |
| Zea mays | 'CE-777' | 5.30 | 5.43 | Lysák and Doležel 1998 |
| Glycine max | 'Polanka' | 2.39 | 2.50 | Doležel et al. 1994 |
| Solanum lycopersicum | 'Stupické' | 1.92 | 1.96 | Doležel et al. 1992 |
| Raphanus sativus | 'Saxa' | 1.08 | 1.11 | Doležel et al. 1992 |

[^0]

Figure 2. Maps with the location of the sampled populations: (A) all collected populations; (B) populations of the genera Pedicularis (yellow) and Veronica (blue); (C) populations of the genera Nothobartsia (yellow), Bartsia (blue) and Parentucellia (green); (D) populations of the genera Misopates (yellow) and Verbascum (blue); (E) populations of the genera Kickxia (yellow) and Linaria (blue); (F) populations of the genera Melampyrum (yellow), Anarrhinum (blue) and Euphrasia (green); (G) populations of the genera Chaenorhinum (yellow) and Antirrhinum (blue); (H) populations of the genera Cymbalaria (yellow), Digitalis (blue) and Rhinanthus (green); (I) populations of the genera Odontite (yellow), Scrophularia (blue) and Odontitella (green). The black bar represents 100 km .

The use of FCM enabled to perform a large scale analysis of 17 genera of Scrophulariaceae, comprising 59 species ( $51 \%$ of the species known to occur in Portugal) and a total of 162 populations (Table 3 and Figure 2). From the 59 sampled species, $86 \%$ are first estimations of genome size (Table 3). With a few exceptions (e.g., Veronica micrantha) the overall quality of the results, as given by the CV values of $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks and by the background debris, was good, with mean CV values below 5 \% being achieved in most taxa (Table 3 and Figure 3).


Figure 3. Flow cytometric histograms of relative PI fluorescence intensity obtained after simultaneous analysis of nuclei isolated from the internal reference standard and from the Scrophulariaceae species: (A) $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks of Anarrhinum Iongipedicellatum and Solanum lycopersicum; (B) $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks of Antirrhinum onubense and S. Iycopersicum; (C) $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks of Digitalis purpurea subsp. purpurea and Pisum sativum; (D) $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks of Linaria spartea and S. Iycopersicum; (E) $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks of Misopates orontium and $S$. lycopersicum; (F) $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks of Odontite vernus and S. Iycopersicum; (G) $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks of Scrophularia sambucifolia and $P$. sativum; (H) $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks of Verbascum simplex and S. lycopersicum; (I) $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks Veronica persica and S. lycopersicum. In histograms A, B, D-F, H and It is possible to observed the $\mathrm{G}_{2}$ peak of the internal reference standard; additionally, in $F$ it is also possible to observe the $G_{2}$ peak of $O$. vernus (third peak). Also, please note the overall good quality of the histograms, as defined by the narrow $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks and by the low amount of background debris.
RESULTS
Table 3. Nuclear DNA content estimations in the studied taxa of Scrophulariaceae s.l.

| Taxon | Family s.s. | Genome size (2C, pg) |  | $\begin{gathered} \text { Genome } \\ \text { size } \\ (1 \mathrm{Cx}, \mathrm{Mbp})^{1} \end{gathered}$ | $\begin{aligned} & \text { Genome } \\ & \text { size } \\ & (1 \mathrm{Cx}, \mathrm{pg}) \end{aligned}$ | $\begin{gathered} \text { FL CV } \\ \text { (\%) } \end{gathered}$ | Ploidy level | Standard ${ }^{2}$ | $\begin{gathered} \mathrm{n} \\ \mathrm{G} . \mathrm{s} . \end{gathered}$ | $\begin{gathered} n \\ \text { total } \end{gathered}$ | $\begin{gathered} \mathrm{n} \\ \text { Pop. } \end{gathered}$ | Origin | Previous estimations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mean $\pm$ SD | CV (\%) |  |  |  |  |  |  |  |  |  |  |
| Anarrhinum bellidifolium | Plantaginaceae | $1.13 \pm 0.03$ | 3.1 | 553 | 0.56 | 3.68 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 32 | 157 | 11 | POP+IS | First estimation |
| Anarrhinum duriminium | Plantaginaceae | $1.11 \pm 0.02$ | 2.2 | 545 | 0.56 | 5.61 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 12 | 35 | 3 | POP+IS | First estimation |
| Anarrhinum longipedicelatum | Plantaginaceae | $1.12 \pm 0.02$ | 1.4 | 547 | 0.57 | 4.05 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 7 | 40 | 3 | POP | First estimation |
| Antirrhinum cirrhigerum | Plantaginaceae | $1.21 \pm 0.01$ | 0.8 | 594 | 0.59 | 5.95 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 3 | 30 | 1 | IS | First estimation |
| Antirrhinum graniticum | Plantaginaceae | $1.18 \pm 0.05$ | 3.9 | 576 | 0.59 | 5.06 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 3 | 30 | 1 | IS | First estimation |
| Antirrhinum linkianum | Plantaginaceae | $1.23 \pm 0.03$ | 2.7 | 600 | 0.61 | 4.66 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 17 | 66 | 7 | POP+IS | First estimation |
| Antirrhinum meonanthum | Plantaginaceae | 1.20 | - | 588 | 0.61 | 5.36 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 1 | 1 | 1 | IS | First estimation |
| Antirrhinum onubense | Plantaginaceae | $1.18 \pm 0.01$ | 1.1 | 579 | 0.61 | 4.15 | $2 \mathrm{n}=2 x$ | S | 3 | 20 | 1 | POP | First estimation |
| Bartsia trixago | Orobanchaceae | $1.85 \pm 0.08$ | 4.1 | 907 | 0.93 | 3.91 | $2 \mathrm{n}=2 \mathrm{x}$ | G/S | 17 | 103 | 6 | POP+IS | First estimation |
| Chaenorhinum origanifolium | Plantaginaceae | $1.13 \pm 0.02$ | 1.3 | 555 | 0.57 | 3.47 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 9 | 61 | 3 | POP | First estimation |
| Cymbalaria muralis subsp. muralis | Plantaginaceae | $0.99 \pm 0.02$ | 2.5 | 482 | 0.49 | 5.12 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 9 | 48 | 3 | POP | First estimation |
| Digitalis mariana subsp. heywoodii | Plantaginaceae | 1.12 | - | 546 | 0.56 | 6.77 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 1 | 1 | 1 | IS | First estimation |
| Digitalis purpurea subsp. purpurea | Plantaginaceae | $1.87 \pm 0.05$ | 2.6 | 917 | 0.94 | 3.64 | $2 \mathrm{n}=2 \mathrm{x}$ | B/P | 19 | 168 | 11 | POP+IS | $2 \mathrm{C}=2.45 \mathrm{pg}^{\text {A }}$ |
| Digitalis thapsi | Plantaginaceae | 2.08 | - | 1017 | 1.04 | 5.90 | $2 \mathrm{n}=2 x$ | Z | 1 | 1 | 1 | IS | First estimation |
| Euphrasia minimus | Orobanchaceae | $1.29 \pm 0.02$ | 1.3 | 631 | 0.65 | 3.02 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 3 | 30 | 1 | POP | First estimation |
| Kickxia spuria subsp. integrifolia | Plantaginaceae | $1.64 \pm 0.02$ | 1.2 | 801 | 0.82 | 3.44 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 4 | 17 | 1 | IS | First estimation |
| Linaria aeruginea subsp. aeruginea | Plantaginaceae | $1.29 \pm 0.01$ | 0.9 | 629 | 0.64 | 3.83 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 2 | 5 | 1 | POP | First estimation |
| Linaria amethystea subsp. amethystea | Plantaginaceae | $1.05 \pm 0.01$ | 0.6 | 514 | 0.53 | 3.67 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 3 | 30 | 1 | POP | First estimation |
| Linaria diffusa | Plantaginaceae | $1.15 \pm 0.00$ | 0.4 | 560 | 0.57 | 2.97 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 2 | 15 | 1 | POP | First estimation |


| Linaria incarnata | Plantaginaceae | $1.13 \pm 0.00$ | 0.3 | 552 | 0.56 | 3.31 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 2 | 15 | 1 | POP | First estimation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Linaria polygalifolia subsp. polygalifolia | Plantaginaceae | $1.32 \pm 0.04$ | 2.7 | 647 | 0.66 | 4.17 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 12 | 70 | 4 | POP | First estimation |
| Linaria saxatilis | Plantaginaceae | 1.21 | - | 583 | 0.60 | 6.12 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 1 | 1 | 1 | IS | First estimation |
| Linaria spartea | Plantaginaceae | $1.11 \pm 0.05$ | 4.1 | 541 | 0.55 | 4.05 | $2 \mathrm{n}=2 x$ | S | 29 | 149 | 9 | POP+IS | First estimation |
| Linaria supina | Plantaginaceae | $1.30 \pm 0.03$ | 2.7 | 637 | 0.65 | 3.76 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 9 | 57 | 3 | POP | First estimation |
| Linaria thriornithophora | Plantaginaceae | $2.66 \pm 0.08$ | 3.0 | 1302 | 1.33 | 3.03 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 14 | 98 | 5 | POP | First estimation |
| Melampyrum pratense subsp. latifolium | Orobanchaceae | $15.69 \pm 0.19$ | 1.2 | 7670 | 7.84 | 3.27 | $2 \mathrm{n}=2 \mathrm{x}$ | P | 6 | 46 | 2 | POP | First estimation |
| Misopates calycinum | Plantaginaceae | $0.88 \pm 0.04$ | 4.4 | 431 | 0.44 | 4.04 | $2 \mathrm{n}=2 x$ | S | 3 | 26 | 1 | POP | First estimation |
| Misopates orontium | Plantaginaceae | $0.88 \pm 0.04$ | 4.3 | 431 | 0.44 | 4.91 | $2 \mathrm{n}=2 x$ | S | 19 | 97 | 7 | POP | First estimation |
| Northobartsia asperrima | Orobanchaceae | $1.55 \pm 0.02$ | 1.3 | 756 | 0.77 | 3.58 | $2 \mathrm{n}=2 x$ | S | 3 | 27 | 1 | POP | First estimation |
| Odontite vernus | Orobanchaceae | $1.16 \pm 0.02$ | 1.8 | 569 | 0.58 | 4.05 | $2 \mathrm{n}=2 x$ | S | 3 | 30 | 1 | POP | First estimation |
| Odontitella virgata | Orobanchaceae | $4.27 \pm 0.02$ | 0.5 | 2088 | 2.13 | 2.93 | $2 \mathrm{n}=2 x$ | G/S | 6 | 60 | 2 | POP | First estimation |
| Parentucellia viscosa | Orobanchaceae | $2.72 \pm 0.06$ | 2.0 | 1331 | 1.36 | 2.83 | $2 \mathrm{n}=2 x$ | S | 6 | 24 | 3 | POP | First estimation |
| Pedicularis sylvatica subsp. Iusitanica | Orobanchaceae | $5.95 \pm 0.15$ | 2.5 | 2909 | 2.97 | 2.42 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 8 | 29 | 3 | POP | First estimation |
| Pedicularis sylvatica subsp. sylvatica | Orobanchaceae | $5.61 \pm 0.02$ | 0.3 | 2744 | 2.81 | 3.15 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 2 | 2 | 1 | POP | First estimation |
| Rhinanthus minor | Orobanchaceae | $2.81 \pm 0.08$ | 2.8 | 1373 | 1.40 | 5.26 | $2 \mathrm{n}=2 \mathrm{x}$ | P | 3 | 20 | 1 | POP | $2 \mathrm{C}=7.9 \mathrm{pg}^{\text {B }}$ |
| Scrophularia auriculata subsp. auriculata | Scrophulariaceae | $1.79 \pm 0.01$ | 1.6 | 877 | 0.90 | 3.98 | $2 \mathrm{n}=2 \mathrm{x}$ | P | 8 | 8 | 1 | IS | First estimation |
| Scrophularia frutenscens | Scrophulariaceae | $1.34 \pm 0.03$ | 2.5 | 653 | 0.67 | 5.55 | $2 \mathrm{n}=2 x$ | P | 7 | 34 | 3 | POP+IS | First estimation |
| Scrophularia grandiflora | Scrophulariaceae | $1.94 \pm 0.07$ | 6.6 | 948 | 0.97 | 4.13 | $2 \mathrm{n}=2 x$ | B/G/P | 19 | 51 | 6 | POP+IS | First estimation |
| Scrophularia herminii | Scrophulariaceae | $2.56 \pm 0.07$ | 2.7 | 1252 | 1.28 | 6.15 | $2 \mathrm{n}=2 x$ | P | 3 | 16 | 1 | IS | First estimation |
| Scrophularia lyrata | Scrophulariaceae | $3.19 \pm 0.05$ | 0.7 | 1561 | 1.60 | 4.54 | $2 \mathrm{n}=2 x$ | P | 3 | 15 | 1 | POP | First estimation |
| Scrophularia nodosa | Scrophulariaceae | $1.19 \pm 0.01$ | 0.6 | 583 | 0.60 | 6.71 | $2 \mathrm{n}=2 \mathrm{x}$ | P | 2 | 2 | 1 | IS | First estimation |
| Scrophularia sambucifolia subsp. sambucifolia | Scrophulariaceae | $1.86 \pm 0.04$ | 2.0 | 909 | 0.93 | 4.33 | $2 \mathrm{n}=2 \mathrm{x}$ | P | 5 | 5 | 1 | POP | First estimation |
| Scrophularia scorodonia | Scrophulariaceae | $2.11 \pm 0.05$ | 2.2 | 1034 | 1.06 | 4.57 | $2 \mathrm{n}=2 \mathrm{x}$ | B/G/P | 19 | 106 | 7 | POP+IS | First estimation |

RESULTS

| Scrophularia sublyrata | Scrophulariaceae | $2.22 \pm 0.12$ | 5.5 | 1087 | 1.11 | 5.95 | $2 \mathrm{n}=2 \mathrm{x}$ | B | 5 | 15 | 2 | POP | First estimation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Verbascum levanticum | Scrophulariaceae | $0.75 \pm 0.02$ | 2.9 | 368 | 0.38 | 5.57 | $2 \mathrm{n}=2 \mathrm{x}$ | R | 3 | 16 | 1 | POP | First estimation |
| Verbascum litigiosum | Scrophulariaceae | $0.76 \pm 0.03$ | 4.2 | 370 | 0.38 | 3.48 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 3 | 30 | 1 | POP | First estimation |
| Verbascum pulverulentum | Scrophulariaceae | $0.78 \pm 0.02$ | 2.2 | 383 | 0.39 | 4.15 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 3 | 30 | 1 | POP | First estimation |
| Verbascum simplex | Scrophulariaceae | $0.74 \pm 0.02$ | 2.8 | 361 | 0.37 | 3.70 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 12 | 70 | 4 | POP | First estimation |
| Verbascum sinuatum | Scrophulariaceae | $0.77 \pm 0.04$ | 4.7 | 379 | 0.39 | 5.08 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 17 | 121 | 6 | POP+IS | First estimation |
| Verbascum virgatum | Scrophulariaceae | $1.44 \pm 0.02$ | 1.5 | 350 | 0.36 | 3.51 | 2n=4x | S | 4 | 11 | 2 | POP+IS | First estimation |
| Veronica acinifolia | Plantaginaceae | $1.24 \pm 0.01$ | 0.7 | 608 | 0.62 | 3.73 | $2 \mathrm{n}=2 x$ | S | 3 | 3 | 1 | POP | First estimation |
| Veronica arvensis | Plantaginaceae | $0.91 \pm 0.01$ | 1.6 | 447 | 0.46 | 3.92 | $2 \mathrm{n}=2 \mathrm{x}$ | S/R | 9 | 58 | 3 | POP | 2C $=0.66 \mathrm{pg}^{\text {C }}$ |
| Veronica chamaedrys subsp. chamaedrys | Plantaginaceae | $3.72 \pm 0.02$ | 0.6 | 607 | 0.62 | 3.70 | 2n=6x | G/S | 3 | 30 | 1 | POP | $2 \mathrm{C}=2.98 \mathrm{pg}^{\text {C }}$ |
| Veronica hederifolia | Plantaginaceae | $4.16 \pm 0.08$ | 2.0 | 678 | 0.69 | 2.84 | 2n=6x | B | 3 | 8 | 1 | POP | $2 \mathrm{C}=2.82 \mathrm{pg}^{\text {C }}$ |
| Veronica micrantha | Plantaginaceae | $2.15 \pm 0.04$ | 1.7 | 525 | 0.54 | 7.56 | $2 \mathrm{n}=4 \mathrm{x}$ | P | 3 | 17 | 1 | IS | First estimation |
| Veronica officinalis | Plantaginaceae | $2.10 \pm 0.06$ | 2.9 | 514 | 0.53 | 3.98 | $2 \mathrm{n}=4 \mathrm{x}$ | B/P | 12 | 51 | 4 | POP | First estimation |
| Veronica peregrina subsp. peregrina | Plantaginaceae | $1.96 \pm 0.06$ | 2.9 | 479 | 0.49 | 4.02 | $2 \mathrm{n}=4 \mathrm{x}$ | B | 3 | 8 | 1 | POP | $2 \mathrm{C}=1.90 \mathrm{pg}^{\text {C }}$ |
| Veronica persica | Plantaginaceae | $1.40 \pm 0.03$ | 2.4 | 342 | 0.35 | 4.70 | $2 \mathrm{n}=4 \mathrm{x}$ | S | 24 | 105 | 7 | POP | 2C $=1.55 \mathrm{pg}^{\text {C }}$ |
| Veronica polita | Plantaginaceae | $0.77 \pm 0.01$ | 1.5 | 378 | 0.39 | 4.61 | $2 \mathrm{n}=2 \mathrm{x}$ | S | 6 | 18 | 2 | POP | $2 \mathrm{C}=0.84 \mathrm{pg}^{\text {C }}$ |

The values are given as mean and standard deviation of the mean of the holoploid genome size (2C, pg) of individuals of each species. For every species, the monoploid genome size ( 1 Cx ) in Mbp and in mass values ( pg ), the mean coefficient variation (CV, \%) of $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks, the supposed ploidy level, the reference standard used to estimate the genome size (standard), the number of individuals analysed for genome size ( n G.s.), the total number of analysed individuals ( n total), the total number of analysed populations ( n Pop.) and the origin of plant material (POP, natural populations; IS, index seminum) are also given. Also, for each species, previous genome size estimations and original references are provided ( ${ }^{\text {A }}$ Mowforth $1986,{ }^{\text {B }}$ Nagl and Fusenig 1979, ${ }^{\text {C }}$ Albach and Greilhuber 2004). In bold, the new DNA ploidy levels are highlighted. ${ }^{1} 1 \mathrm{pg}=978 \mathrm{Mbp}$ (Doležel et al. 2003) ${ }^{2}$ R, Raphanus sativus cv. Saxa; S, S see Table 2 for genome size estimations of the standards).

Among the sampled species, a genome size variation of 21.6 -fold was found, with the lowest mean value being obtained for Verbascum simplex ( $2 \mathrm{C}=0.74 \pm 0.02 \mathrm{pg}$ ) and the highest one for Melampyrum pratense subsp. latifolium ( $2 \mathrm{C}=15.69 \pm 0.19 \mathrm{pg}$ ). Still, according with the genome size categories defined by Leitch et al. (1998), $89.8 \%$ of the taxa have a very small genome ( $2 \mathrm{C} \leq 2.8 \mathrm{pg}$ ), $8.5 \%$ have a small genome ( 2.8 $\mathrm{pg}<2 \mathrm{C} \leq 7.0 \mathrm{pg}$ ) and $1.7 \%$ have an intermediate genome ( $7.0 \mathrm{pg}<2 \mathrm{C} \leq 28.0 \mathrm{pg}$ ) (Figure 4). No species with large ( $28.0 \mathrm{pg}<2 \mathrm{C} \leq 70.0 \mathrm{pg}$ ) and very large ( $2 \mathrm{C}>70.0$ pg ) genome sizes were detected. No significant differences in genome size were obtained among families considering the newly established taxonomy $\left(H_{2}=5.47, P=\right.$ $0.065)$.


Figure 4. Distribution of genome size according with genome categories ( 1 pg difference). Colors represent the categories defined by Leitch et al. (1998).

A detailed analysis of the variation of genome size within each genus, revealed that no statistically significant differences were detected in genome size in Anarrhinum (3 analysed species; $F_{2}=1.51, P=0.230$ ), Anthirrhinum ( 5 analysed species; $F_{4}=$ 2.39, $P=0.082$ ) and Misopates (2 analysed species; $t=0.01, P=0.991$ ) (Figure 5 and Appendix 3). In all the other genera (Digitalis, Linaria, Pedicularis, Scrophularia, Verbascum and Veronica) statistically significant differences were observed (see details of the tests in Appendix 3, Figures 6-9), with genome size being an important character to separate at least two taxa within each genus.


Figure 5. Genome size variation (mean and standard deviation of the mean) in: (A) Anarrhinum sp. (Ad, Anarrhinum duriminium; AI, Anarrhinum longipedicelatum; Ab, Anarrhinum bellidifolium) and (B) Antirrhinum sp. (Ag, Antirrhinum graniticum; Ao, Antirrhinum onubense; Am, Antirrhinum meonanthum; Ac, Antirrhinum cirrhigerum; Al, Antirrhinum linkianum). Groups followed by the same letter are not significantly different at $P<0.05$.

In Scrophularia, Verbascum and Veronica genera genome size differences are due to different numbers of chromosomes among taxa. While, in Verbascum and Veronica the species with the highest number of chromosomes present the largest genome, in Scrophularia, the species with the higher number of chromosomes (S. auriculata subsp. auriculata, 78-88 chromosomes, Appendix 2), presented a lower genome size ( $2 \mathrm{C}=1.79 \mathrm{pg}$ ) than expected, if a positive linear correlation between chromosome numbers and genome size would be considered (data not shown). Also, despite many Scrophularia species were not statistically different, due to dissimilar and nonoverlapping values of genome size, it was possible to use this character to separate several taxa (e.g., S. nodosa, S. frutescens, S. hederifolia, S. Iyrata; $P<0.05$; Figure 6C). In Verbascum, despite it was possible to statistically distinguish $V$. virgatum from all the other analysed taxa, the latter ones had very similar genome sizes being statistically similar ( $P<0.05$; Figure 6D).


Figure 6. Genome size variation (mean and standard deviation of the mean) in Scrophulariaceae genera: (A) Digitalis sp. (Dm, D. mariana; Dpp, D. purpurea subsp. purpurea, Dt, D. thapsi); (B) Pedicularis sp. (Pss, P. sylvatica subsp. sylvatica; Psl, P. sylvatica subsp. lusitanica ); (C) Scrophularia sp. (Sn, S. nodosa; Sf, S. frutescens; Sa, S. auriculata subsp. auriculata; Ssa,S. sambucifolia subsp. sambucifolia; Sg, S. grandiflora; Ssc, S. scorodonia; Ss, S. sublyrata; Sh, Scrophularia herminii; SI, S. lyrata); (D) Verbascum sp. (Vsp, V. simplex; Vle, V. levanticum; Vli, V. litigiosum; Vsi, V. sinuatum; Vp, V. pulverulentum; $\mathrm{Vv}, \mathrm{V}$. virgatum). Different letters represent groups that are significantly different $(P<0.05)$.

In Veronica, with the exception of $V$. officinalis and $V$. micrantha, all the other analysed taxa were significantly different in genome size ( $P<0.05$; Figure 7A). With respect to the monoploid genome size (1Cx), some variation was also observed (ranging from 0.33 pg in V. peregrina subsp. peregrina to 0.69 pg in V . hederifolia) (Figure 7B). A detailed analysis considering the sections to which the analysed taxa belong revealed more homogenous 1Cx values in section Veronica than in section Pocilla (Figure 7B). The linear regression analysis between chromosome numbers and genome size, revealed a positive correlation between these characters, with a relatively high $R^{2}$ value of 0.7229 (Figure 7C). A Pearson correlation analysis confirmed this result (correlation coefficient of $0.85, P<0.05$ ).


Figure 7. Genome size variation in Veronica sp.: (A) Genome size (mean and standard deviation of the mean); (B) 1Cx values; (C) linear regression analyses between mean nuclear DNA content and chromosome number (the linear regression equation and the $\mathrm{R}^{2}$ coefficient are also provided). Species: Vpo, V. polita; Var, V. arvensis; Vac, V. acinifolia; Vp, V. persica; Vpe, V. peregrina subsp. peregrina; Vo, V. officinalis; Vm, V. micrantha; Vc, V. chamaedrys subsp.chamaedrys; Vh, V. hederifolia. Different letters represent groups that are significantly different $(P<0.05)$. Black dots represent the species belonging to section Pocilla and the blue dots represent species that belong to section Veronica.

In the case of Digitalis, Linaria and Pedicularis, according with the literature, all the analyzed taxa within each genus present the same number of chromosomes (56, 14 and 16, respectively, Appendix 2). However, regardless of the same number of chromosomes, statistically significant differences in genome size were detected (Appendix 3), being possible to separate the three analysed taxa of Digitalis ( $P<0.05$; Figure 6A) and the two analysed taxa of Pedicularis (Figure 6B), using this character only. In Linaria, L. triornithophora presented a statistically distinguishable higher genome size than the remaining species ( $P<0.05 ; 2 \mathrm{C}=2.66 \mathrm{pg}$; Figure 8 A ); still, the other species presented dissimilar but close values of genome size ranging from 1.05 $\mathrm{pg} / 2 \mathrm{C}$ in L. amethystea subsp. amethystea to 1.32 pg in L. polygalifolia subsp. polygalifolia, not all distinguishable statistically ( $P<0.05$; Figure $8 B$ ).


Figure 8. Genome size variation (mean and standard deviation of the mean) in Linaria genus: (A) La, Linaria amethystea subsp. amethystea; Ls, Linaria spartea; Li, Linaria incarnata; Ld, Linaria diffusa; Lsa, Linaria saxatilis; Lae, Linaria aeruginea subsp. aeruginea; Lsu, Linaria supina; Lp, Linaria polygalifolia subsp. polygalifolia; Lt, Linaria triornithophora; (B) Detail of the figure 9A, excluding Linaria triornithophora from the analysis. Different letters represent groups that are significantly different $(P<0.05)$.

A comparison of the genome size values obtained for the species of the closely related genera Bartsia, Nothobartsia and Parentucellia, revealed that the analysed taxa have statistically significant differences ( $F_{2}=300.76, P<0.001$; Appendix 3 ), with $N$. asperrima presenting the lowest genome size value ( $2 \mathrm{C}=1.55 \mathrm{pg}$ ) and $P$. viscosa presenting the highest genome size with $2 \mathrm{C}=2.72 \mathrm{pg}$ ( $P<0.05$; Figure 9A). A similar analysis but with species from the closely related genera Odontites and Odontitella, also revealed statistically significant differences between the two genera ( $\mathrm{t}=206.23, \mathrm{P}$ <0.001; Figure 9B; Appendix 3).


Figure 9. Genome size variation (mean and standard deviation of the mean) in the following Scrophulariaceae species: (A) Bartsia trixago (Bt), Nothobartsia asperrima ( Na ) and Parentucellia viscosa (Pv); (B) Odontite vernus (Ov), Odontitella virgata (Ottv). Different letters represent groups that are significantly different ( $P<0.05$ ).

To evaluate the incidence of intraspecific variation of genome size, i.e., variation among populations of the same taxa, a thorough analysis was made for the genera where statistically significant differences among taxa were obtained and where more populations were collected (Digitalis, Linaria, Scrophularia, Verbascum and Veronica; Tables 4-8, respectively). In Digitalis, the main focus was on Digitalis purpurea subsp. purpurea where a CV value of $2.6 \%$ and a DNA range of 1.76 to $2.06 \mathrm{pg} / 2 \mathrm{C}$ ( $\mathrm{n}=10$ populations) were obtained (Table 4). Still, in all populations except population 9 (MC92) the CV values were low (<2.0 \%). In population 9 a CV value of 5.6 \% was obtained, reflecting three very dissimilar genome size estimates within this population. These results at population level reflect the scenario obtained for this taxon, with 3 main groups of estimates differing of approximately 0.11 pg being obtained between populations (population 10 with mean value of 1.79 pg , populations $5-8$ with mean values of 1.90 pg and populations $1-4$ with mean values of 2.01 pg ; Table 4).

In Linaria, usually low CV values of genome size (< $3.0 \%$ ) were obtained among populations of the same taxa. Still, in L. triornithophora and L. spartea higher CV values were found. In the case of $L$. triornithophora, this is mainly due to the estimates obtained for two of the individuals of population 3 (MC71, Table 5), which had approximately $8 \%$ less DNA than the mean value obtained for all the other individuals. With respect to L. spartea, a variation on DNA values of $14 \%$ was found, with individuals from population 5 (MC44, Table 5) presenting the lowest values, and those from populations 1 and 6 (SC14 and MC88, respectively) presenting the highest values. Still, these were among the populations with the higher homogeneity in genome size among individuals (Table 5).

In Scrophularia, some heterogeneity in genome size values was found within some species (e.g., S. grandiflora), but mostly among the estimates within populations (Table 6 ). For example, it is curious to notice that despite the mean value for all the populations of $S$. frutescens and $S$. sublyrata was very similar, in population 1 of $S$. frutescens and in both populations of $S$. sublyrata, highly dissimilar values of genome size were obtained, with CV values higher than 5 \% being obtained. In S. grandiflora, both differences among populations (e.g., population 5 with mean 2 C of 2.01 pg vs. population 6 with mean 2 C of 1.87 pg ) and within populations (e.g., population 4 with 2C values spanning from 1.80 to 1.94 pg ) wre obtained. Also, in S. scorodonia, in one population (MC51) the obtained estimates of genome size are among the most extreme found for this species (Table 6).

In Verbascum, some heterogeneity in genome size estimates was observed, with seven out 15 populations of different taxa presenting genome size CV values higher
than $3.5 \%$. This was mostly due to dissimilar estimations within populations (e.g., population 3 of $V$. sinuatum with a DNA range from 0.74 to $0.81 \mathrm{pg} / 2 \mathrm{C}$, and the only population of V . litigiosum with a DNA range between 0.72 and $0.78 \mathrm{pg} / 2 \mathrm{C}$; Table 6) and not among populations (Table 7). In Veronica, all the species and populations presented CV values below 3.5 \%, revealing a good homogeneity in the genome size values both between and within populations (Table 8).

Concerning the incidence of polyploidy in Scrophulariaceae, contrarily to what was expected, at least for some taxa (Appendix 2), no different cytotypes were detected among any of the 162 surveyed populations in any of the 59 taxa. Still, as referred above, within some genera (e.g., Veronica, Verbascum) there are species with different DNA ploidy levels (sensu Suda et al. 2006). In the particular case of Veronica, according with the 1Cx analysis presented in Figure 7C, three novel DNA ploidy levels were assumed, namely hexaploid populations in V. chamaedrys subsp. chamaedrys and $V$. hederifolia, and tetraploid populations in $V$. officinalis and $V$. micrantha (Table $3)$.
RESULTS
Table 4. Nuclear DNA content estimations in the studied taxa of Digitalis.

| ID code | Taxon | Pop. | Genome size (2C, pg) |  |  |  | Genome size (1Cx, Mbp) ${ }^{1}$ | Genome size (1Cx, pg) | FL CV <br> (\%) | Ploidy level |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mean $\pm$ SD | CV (\%) | Min. | Max. |  |  |  |  |
| COI8 | Digitalis mariana subsp. heywoodii | 1 | 1.19 | - | - | - | 581 | 0.594 | 6.77 | $2 \mathrm{n}=2 \mathrm{x}$ |
| SC29 | Digitalis purpurea subsp. purpurea | 1 | $2.00 \pm 0.03$ | 1.3 | 1.98 | 2.03 | 976 | 0.998 | 2.51 | $2 \mathrm{n}=2 \mathrm{x}$ |
| SC34 | Digitalis purpurea subsp. purpurea | 2 | $2.03 \pm 0.04$ | 1.8 | 1.99 | 2.06 | 993 | 1.015 | 2.57 | $2 \mathrm{n}=2 \mathrm{x}$ |
| SC39 | Digitalis purpurea subsp. purpurea | 3 | $1.97 \pm 0.01$ | 0.5 | 1.96 | 1.98 | 962 | 0.983 | 2.71 | $2 \mathrm{n}=2 \mathrm{x}$ |
| SC41 | Digitalis purpurea subsp. purpurea | 4 | $2.02 \pm 0.02$ | 1.2 | 1.99 | 2.03 | 988 | 1.010 | 3.03 | $2 \mathrm{n}=2 \mathrm{x}$ |
| UTP20 | Digitalis purpurea subsp. purpurea | 5 | $1.90 \pm 0.02$ | 1.2 | 1.88 | 1.93 | 931 | 0.952 | 6.94 | $2 \mathrm{n}=2 \mathrm{x}$ |
| MC17 | Digitalis purpurea subsp. purpurea | 6 | $1.90 \pm 0.01$ | 0.5 | 1.89 | 1.91 | 929 | 0.950 | 3.21 | $2 \mathrm{n}=2 \mathrm{x}$ |
| MC20 | Digitalis purpurea subsp. purpurea | 7 | $1.89 \pm 0.01$ | 0.6 | 1.87 | 1.89 | 922 | 0.943 | 3.07 | $2 \mathrm{n}=2 \mathrm{x}$ |
| MC69 | Digitalis purpurea subsp. purpurea | 8 | $1.89 \pm 0.03$ | 1.8 | 1.86 | 1.93 | 925 | 0.946 | 4.19 | $2 \mathrm{n}=2 \mathrm{x}$ |
| MC92 | Digitalis purpurea subsp. purpurea | 9 | $1.90 \pm 0.11$ | 5.6 | 1.81 | 2.02 | 930 | 0.950 | 3.44 | $2 \mathrm{n}=2 \mathrm{x}$ |
| MC94 | Digitalis purpurea subsp. purpurea | 10 | $1.79 \pm 0.03$ | 1.5 | 1.76 | 1.81 | 873 | 0.893 | 4.22 | $2 \mathrm{n}=2 \mathrm{x}$ |
| COI9 | Digitalis thapsi | 1 | 2.08 | - | - | - | 1017 | 1.040 | 5.90 | $2 \mathrm{n}=2 \mathrm{x}$ |

The values are given as mean and standard deviation of the mean of the holoploid genome size (2C, pg) of individuals of each species. For each collection, the ID code and population number (see Appendix 1 for details), the DNA range (Min., minimum genome size; Max., maximum genome size), the monoploid genome size (1Cx) in Mbp and in mass values $(\mathrm{pg})$, the mean coefficient of variation ( $\mathrm{CV}, \%$ ) of $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks and the supposed ploidy level are also given.
${ }^{1} 1 \mathrm{pg}=978 \mathrm{Mbp}$ (Doležel et al. 2003)

| ID code | Taxon | Pop. | Genome size (2C, pg) |  |  |  | Genome size$(1 \mathrm{Cx}, \mathrm{Mbp})^{1}$ | Genome size (1Cx, pg) | $\begin{gathered} \text { FL CV } \\ (\%) \end{gathered}$ | Ploidy level | Section, Subsection |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mean $\pm$ SD | CV (\%) | Min. | Max. |  |  |  |  |  |
| MC12 | Linaria triornithophora | 1 | $2.73 \pm 0.02$ | 0.8 | 2.70 | 2.75 | 1333 | 1.363 | 4.41 | $2 \mathrm{n}=2 \mathrm{x}$ | Pelisserianae |
| MC19 | Linaria triornithophora | 2 | $2.71 \pm 0.01$ | 0.2 | 2.70 | 2.71 | 1324 | 1.354 | 2.71 | $2 \mathrm{n}=2 \mathrm{x}$ | Pelisserianae |
| MC71 | Linaria triornithophora | 3 | $2.54 \pm 0.09$ | 3.6 | 2.48 | 2.65 | 1244 | 1.272 | 3.05 | $2 \mathrm{n}=2 \mathrm{x}$ | Pelisserianae |
| SC30 | Linaria triornithophora | 4 | $2.69 \pm 0.01$ | 0.2 | 2.68 | 2.69 | 1315 | 1.344 | 2.69 | $2 \mathrm{n}=2 \mathrm{x}$ | Pelisserianae |
| MC99 | Linaria triornithophora | 5 | $2.64 \pm 0.00$ | 0.1 | 2.64 | 2.65 | 1293 | 1.322 | 2.33 | $2 \mathrm{n}=2 \mathrm{x}$ | Pelisserianae |
| COI16 | Linaria saxatilis | 1 | 1.19 | - | - | - | 583 | 0.597 | 6.12 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Saxatile |
| SC28 | Linaria aeruginea subsp. aeruginea | 1 | $1.28 \pm 0.01$ | 0.7 | 1.27 | 1.29 | 627 | 0.641 | 3.97 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| MC49 | Linaria amethystea subsp. amethystea | 1 | $1.05 \pm 0.01$ | 0.6 | 1.05 | 1.06 | 514 | 0.525 | 3.67 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| MC14 | Linaria diffusa | 1 | $1.15 \pm 0.00$ | 0.4 | 1.14 | 1.15 | 560 | 0.573 | 2.97 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| SC01 | Linaria polygalifolia subsp. polygalifolia | 1 | $1.35 \pm 0.01$ | 0.1 | 1.34 | 1.36 | 661 | 0.676 | 3.86 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| SC25 | Linaria polygalifolia subsp. polygalifolia | 2 | $1.35 \pm 0.01$ | 0.4 | 1.34 | 1.36 | 660 | 0.674 | 4.47 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| MC84 | Linaria polygalifolia subsp. polygalifolia | 3 | $1.32 \pm 0.01$ | 0.4 | 1.32 | 1.33 | 647 | 0.662 | 2.97 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| COI14 | Linaria polygalifolia subsp. polygalifolia | 4 | $1.27 \pm 0.00$ | 0.7 | 1.27 | 1.27 | 620 | 0.634 | 5.40 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| MC29 | Linaria supina | 1 | $1.32 \pm 0.01$ | 0.8 | 1.31 | 1.33 | 646 | 0.661 | 4.20 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| MC63 | Linaria supina | 2 | $1.26 \pm 0.02$ | 1.6 | 1.24 | 1.28 | 616 | 0.629 | 3.63 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| MC101 | Linaria supina | 3 | $1.33 \pm 0.01$ | 0.8 | 1.31 | 1.33 | 551 | 0.564 | 3.47 | $2 \mathrm{n}=2 \mathrm{x}$ | Supinae, Supinae |
| MC13 | Linaria incarnata | 1 | $1.13 \pm 0.00$ | 0.3 | 1.12 | 1.13 | 552 | 0.564 | 3.31 | $2 \mathrm{n}=2 \mathrm{x}$ | Versicolores, Versicolores |
| SC14 | Linaria spartea | 1 | $1.16 \pm 0.01$ | 0.7 | 1.15 | 1.17 | 566 | 0.579 | 4.05 | $2 \mathrm{n}=2 \mathrm{x}$ | Versicolores, Versicolores |
| JC03 | Linaria spartea | 2 | $1.13 \pm 0.04$ | 3.1 | 1.10 | 1.17 | 551 | 0.563 | 4.04 | $2 \mathrm{n}=2 \mathrm{x}$ | Versicolores, Versicolores |
| JC07 | Linaria spartea | 3 | $1.13 \pm 0.01$ | 1.2 | 1.13 | 1.15 | 555 | 0.567 | 4.31 | $2 \mathrm{n}=2 x$ | Versicolores, Versicolores |
| JC18 | Linaria spartea | 4 | $1.11 \pm 0.02$ | 1.5 | 1.10 | 1.13 | 545 | 0.557 | 5.62 | $2 \mathrm{n}=2 x$ | Versicolores, Versicolores |
| MC44 | Linaria spartea | 5 | $1.02 \pm 0.02$ | 1.8 | 1.01 | 1.04 | 501 | 0.512 | 4.75 | $2 \mathrm{n}=2 \mathrm{x}$ | Versicolores, Versicolores |
| MC88 | Linaria spartea | 6 | $1.16 \pm 0.01$ | 0.7 | 1.15 | 1.16 | 566 | 0.578 | 4.44 | $2 \mathrm{n}=2 \mathrm{x}$ | Versicolores, Versicolores |
| MC89 | Linaria spartea | 7 | $1.13 \pm 0.02$ | 1.3 | 1.11 | 1.14 | 551 | 0.563 | 2.98 | $2 \mathrm{n}=2 \mathrm{x}$ | Versicolores, Versicolores |
| MNHN30 | Linaria spartea | 8 | $1.07 \pm 0.04$ | 3.5 | 1.03 | 1.11 | 525 | 0.537 | 2.88 | $2 \mathrm{n}=2 \mathrm{x}$ | Versicolores, Versicolores |
| MNHN32 | Linaria spartea | 9 | $1.09 \pm 0.02$ | 1.7 | 1.09 | 1.12 | 532 | 0.544 | 3.08 | $2 \mathrm{n}=2 \mathrm{x}$ | Versicolores, Versicolores | population number (see Appendix 1 for details), the DNA range (Min.. minimum genome size; Max.. maximum genome size), the monoploid genome size (1Cx) in Mbp and in mass values (pg), the mean coefficient of variation (CV. \%) of $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks and the supposed ploidy level are also given. The section and subsection of each taxon is also provided. ${ }^{1} 1 \mathrm{pg}=978 \mathrm{Mbp}$ (Doležel et al., 2003).

RESULTS
Table 6. Nuclear DNA content estimations in the studied taxa of Scrophularia.

| FL CV <br> (\%) | Ploidy <br> level | Section, Subsection |
| :--- | :--- | :--- |
| 6.64 | $2 \mathrm{n}=2 x$ | Caninae, Caninae |
| 5.85 | $2 \mathrm{n}=2 x$ | Caninae, Caninae |
| 3.57 | $2 \mathrm{n}=2 x$ | Caninae, Caninae |
| 4.54 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 3.20 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 3.25 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 3.49 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 3.64 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 5.00 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 4.03 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 7.49 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 3.98 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 6.71 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 4.33 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 3.87 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 2.95 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 3.92 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 5.84 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 6.04 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 5.46 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 2.57 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 5.81 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |
| 4.52 | $2 \mathrm{n}=2 x$ | Scrophularia, Scrophularia |

The values are given as mean and standard deviation of the mean of the holoploid genome size $(2 \mathrm{C}, \mathrm{pg})$ of individuals of each species. For each collection, the ID code and population number (see Appendix 1 for details), the DNA range (Min., minimum genome size; Max., maximum genome size), the monoploid genome size (1Cx) in Mbp and in mass values ( pg ), the mean coefficient of variation ( $\mathrm{CV}, \%$ ) of $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks and the supposed ploidy level are also given. The section and subsection of each taxon is also provided. ${ }^{1} 1 \mathrm{pg}=978 \mathrm{Mbp}$ (Doležel et al. 2003).

| ID code |
| :--- |
| COI24 |
| MC81 |
| MC86 |
| MNHN34 |
| SC20 |
| MC18 |
| MC26 |
| MC42 |
| MC50 |
| UTP22 |
| UTP23 |
| MC93 |
| ISAUTL7 |
| MC58 |
| MC22 |
| MC46 |
| MC51 |
| MC76 |
| MC77 |
| MC110 |
| UPT24 |
| JC02 |
| JC06 |


| ID code | Taxon | Pop. | Genome size (2C, pg) |  |  |  | Genome size $(1 \mathrm{Cx}, \mathrm{Mbp})^{1}$ | Genome size (1Cx, pg) | FL CV <br> (\%) | Ploidy level | Section, Subsection |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mean $\pm$ SD | CV (\%) | Min. | Max. |  |  |  |  |  |
| MC07 | Verbascum levanticum | 1 | $0.75 \pm 0.02$ | 2.9\% | 0.74 | 0.78 | 368 | 0.38 | 5.57 | $2 \mathrm{n}=2 \mathrm{x}$ | Verbascum, Singuliflora |
| MC85 | Verbascum litigiosum | 1 | $0.76 \pm 0.03$ | 4.2\% | 0.72 | 0.78 | 370 | 0.38 | 3.48 | $2 \mathrm{n}=2 \mathrm{x}$ | Verbascum, Verbascum |
| MC59 | Verbascum pulverulentum | 1 | $0.78 \pm 0.02$ | 2.2\% | 0.76 | 0.80 | 383 | 0.39 | 4.15 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MC36 | Verbascum simplex | 1 | $0.76 \pm 0.02$ | 2.0\% | 0.75 | 0.78 | 373 | 0.38 | 3.38 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MC37 | Verbascum simplex | 2 | $0.76 \pm 0.02$ | 2.5\% | 0.74 | 0.78 | 370 | 0.38 | 3.03 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MC68 | Verbascum simplex | 3 | $0.74 \pm 0.03$ | 3.8\% | 0.72 | 0.77 | 364 | 0.37 | 2.65 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MC100 | Verbascum simplex | 4 | $0.72 \pm 0.03$ | 4.0\% | 0.70 | 0.76 | 354 | 0.36 | 4.54 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MC31 | Verbascum sinuatum | 1 | $0.82 \pm 0.01$ | 1.0\% | 0.82 | 0.83 | 403 | 0.41 | 4.57 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MC57 | Verbascum sinuatum | 2 | $0.80 \pm 0.01$ | 1.3\% | 0.79 | 0.81 | 391 | 0.40 | 4.04 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MC60 | Verbascum sinuatum | 3 | $0.78 \pm 0.05$ | 6.8\% | 0.74 | 0.81 | 380 | 0.39 | 3.77 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MC73 | Verbascum sinuatum | 4 | $0.76 \pm 0.03$ | 4.3\% | 0.72 | 0.78 | 370 | 0.38 | 3.88 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MNHN35 | Verbascum sinuatum | 5 | $0.74 \pm 0.00$ | 0.2\% | 0.74 | 0.75 | 364 | 0.37 | 4.77 | $2 \mathrm{n}=2 \mathrm{x}$ | Verbascum, Verbascum |
| ISAUTL9 | Verbascum sinuatum | 6 | $0.75 \pm 0.02$ | 3.1\% | 0.73 | 0.77 | 366 | 0.37 | 9.00 | $2 \mathrm{n}=2 x$ | Verbascum, Verbascum |
| MC60A | Verbascum virgatum | 1 | $1.44 \pm 0.02$ | 1.6\% | 1.41 | 1.46 | 703 | 0.36 | 2.43 | $2 \mathrm{n}=4 \mathrm{x}$ | Verbascum, Verbascum |
| MNHN36 | Verbascum virgatum | 2 | 1.41 |  |  |  | 692 | 0.35 | 3.12 | $2 \mathrm{n}=4 \mathrm{x}$ | Verbascum, Verbascum |

The values are given as mean and standard deviation of the mean of the holoploid genome size (2C, pg) of individuals of each species. For each collection, the ID code and population number (see Appendix 1 for details), the DNA range (Min., minimum genome size; Max., maximum genome size), the monoploid genome size (1Cx) in Mbp and in mass values ( pg ), the mean coefficient of variation (CV, \%) of $\mathrm{G}_{0} / \mathrm{G}_{1}$ peaks and the supposed ploidy level are also given. The section and subsection of each taxon is also provided. ${ }^{1} 1 \mathrm{pg}=978 \mathrm{Mbp}$ (Doležel et al., 2003).$3.72 \pm 0.02$

\[

\]

|  | Mean $\pm$ SD |
| :---: | :---: |
| 1 | $1.24 \pm 0.01$ |
| 1 | $0.92 \pm 0.00$ |
| 2 | $0.91 \pm 0.01$ |
| 3 | $0.90 \pm 0.02$ |
| 1 | $1.45 \pm 0.01$ |
| 2 | $1.39 \pm 0.04$ |
| 3 | $1.39 \pm 0.03$ |
| 4 | $1.38 \pm 0.00$ |
| 5 | $1.41 \pm 0.05$ |
| 6 | $1.40 \pm 0.03$ |
| 7 | $1.41 \pm 0.03$ |
| 1 | $0.78 \pm 0.01$ |
| 2 | $0.77 \pm 0.01$ |
| 1 | $4.16 \pm 0.08$ |
| 1 | $1.96 \pm 0.06$ |
| 1 | $3.72 \pm 0.02$ |
| 1 | $2.14 \pm 0.04$ |
| 1 | $2.18 \pm 0.01$ |
| 2 | $2.14 \pm 0.01$ |
| 3 | $2.03 \pm 0.05$ |
| 4 | $2.08 \pm 0.03$ |

$$
2.14 \pm 0.04
$$

$$
2.18 \pm 0.01
$$

$$
2.14 \pm 0.01
$$

$$
2.08 \pm 0.03
$$

The amount of DNA per chromosome set is known to be a fairly constant characteristic of a species. While we can pinpoint minute changes in DNA sequences, identify chemical modifications of nuclear bases, and link these changes to the phenotype, we continue to be puzzled by the large variation in the size of the genome itself, of which there seems to be no rational explanation (Greilhuber et al. 2010). Still, since the past decade an increasing interest on genome size studies and its significance has been observed, with many studies focused on using genome size as a taxonomic marker and on finding correlations between ecological and environmental variables and this character. However, there are still many families being neglected such as Scrophulariaceae, for which the present study contributed with more data than the available up to date, with 55 of 59 species ( $86 \%$ ) being new estimates of genome size. Furthermore, due to the importance of polyploidy events on the genesis of new entities, it is important to evaluate how common these events are in nature, and, in the particular case of Scrophulariaceae, how often it may be contributing for the origin of new species in Iberian Peninsula. The detailed bibliographic analyses of polyploidy incidence in this family seemed to point out that at least some taxa could present different cytotypes (Appendix 2). However, the absence of more than one cytotype in all the analysed species revealed that polyploidy apparently is not among the main mechanisms of speciation in Scrophulariaceae, currently at least in this region. On the other hand, genome size confirmed to be an excellent tool in species delimitation in many Scrophulariaceae genera.

After molecular studies using DNA sequences of plastid genes, the genera belonging to Scrophulariaceae sensu latum were reorganized into 6 different families, including Scrophulariaceae sensu stricto (Olmstead et al. 2011). A comparison of genome size taking in consideration this new classification did not reveal any pattern. This result was already expected, as genome size estimations obtained in Scrophulariaceae s.l. fell almost exclusively in the very small and small genome size categories (Leitch et al. 1998), presenting a relatively low variation - if Melampyrum pratense subsp. latifolium is excluded from the analysis (the only species with intermediate genome size), only a 8 -fold variation was observed.

As already observed in many genera (e.g., Helleborus spp., Zonneveld et al. 2003) genome size can be used as an extra taxonomic character for discriminating between closely related taxa. Species belonging to Bartsia, Nothobartsia and Parentucellia share a close evolutionary history and some morphological similarities that sometimes may lead to misidentifications. For example, Nothobarsia asperrima was formerly included in the Bartsia genus as Bartsia asperrima (Benedi et al. 2009). The same
situation repeats with species belonging to Odontites and Odontitella, with Odontitella virgatum being previously included in the former genus (Benedi et al. 2009). As expected by the dissimilar chromosome numbers present in each species of these genera, all the analysed species had different non-overlapping genome sizes, and thus in case any doubt would arise in species identification, using genome estimates the assignment to a taxonomomic category would be straightforward. In a similar study, Loureiro and co-authors, were able to distinghish two genera of Ulmaceae, Ulmus and Celtis (Loureiro et al. 2007c).

A survey of the Plant DNA C-values database (Bennett and Leitch 2010) revealed a high incidence of intra-generic variation in genome size in species with the same number of chromosomes. At least two-fold variation in monoploid genome size is recorded for more than one third of the genera for which there is sufficient coverage of homoploid species (Suda et al. 2006). Genera Bulnesia, Crepis, Cypripedium, Dendrobium, Lonicera, Oxalis, Phalaenopsis, Scilla, Senecio, Sisyrinchium, Tradescantia, Vaccinium and Vicia are some of the best examples of genera with a large between-species divergence in genome size that is not accompanied by changes in the number of chromosomes. Those genera that already were a focus of deep study include Petunia (Mishiba et al. 2000), Hydrangea (Cerbah et al 2001), Artemisia (Torrel and Vallès 2001), Cistus (Ellul et al. 2002), Elytrigia (Mahelka et al. 2005) and Curcuma (Leong-Škorničková et al. 2007), among others. In the case of Scrophulariaceae, contrasting results were obtained among the studied genera: while in a few (Anarrhinum, Antirrhinum and Misopates), genome size was an unsuitable character for taxonomic purposes, as all the estimates were very homogeneous among species; in the other analyzed genera, genome size could be used for taxa delimitation and for analyses of interspecific variation. This information was particularly important in the genera with homoploid taxa: Digitalis, Pedicularis and Linaria.

In Digitalis, all the analysed species had different genome sizes, and indeed, this data supports recent taxonomic changes in this genus: traditionally, Digitalis mariana was considered one sub-species of Digitalis purpurea and has been recently elevated to the species level (Benedi et al. 2009). Indeed, this new species presents a genome size significantly lower than that of Digitalis purpurea subsp. purpurea. It will be very interesting to apply FCM to all the species in the genus and evaluate if it continues to be possible to discriminate these homoploid taxa using genome size.

In the case of the analysis of the two subspecies of Pedicularis sylvatica, as observed in Crepis foetida (Dimitrová et al. 1999) and in Festuca ampla (Loureiro et al. 2007a), it was possible to separate both subspecies using the information of genome
size. Still, the close proximity of the estimates correlates well with taxonomic promixity of both subspecies. So far, P. sylvatica subsp. sylvatica was not described for Portugal, so our report in the National Park of Peneda Gerês is a new citation for this country.

In Linaria, with exception of L. triornitophora, who presented a higher genome size value, all the other species presented more similar genome sizes; still, due to the high quality of the obtained estimates, it was possible to use this character to separate some taxa. However, two commonly confused taxa, L. polygalifolia subsp. polygalifolia and $L$. supina, presented the same genome size and thus, unfortunately, could not be distinguished using this character. A rough analysis considering the subgeneric level, seems to point out that members of section Pelisserianae present the highest values of genome size, while those from section Versicolores present the lowest. Still, this can be do to the reduced number of species analysed in those sections, as evident by the larger heterogeneity in genome size observed in section Supinae, the section to which most of the analysed species belong. Previous studies in the literature support this type of sectional analysis. For example, genome size also supports the subgeneric division in the genus Equisetum: taxa from subgenus Equisetum have significantly smaller values than their counterparts from subgenus Hippochaete (Obermayer et al. 2002). Similarly, a nuclear DNA content analysis provided information on the sectional classification of the genus Taraxacum (Záveský et al. 2005).

In Veronica, Scrophularia and Verbascum, most of the observed differences in genome size were related with different numbers of chromosomes. Still, considering that obtaining good microscopic plates for counting the number of chromosomes in all the analysed species would take a long time, the value of genome size estimates is undeniable also in these cases.

Using genome size, it was possible to distinguish all the analysed taxa of Veronica, with exception of $V$. micrantha and $V$. officinalis. In a comparison with the only genome size study focused in this genus, some of our estimates are very similar to those of Albach and Greilhuber (2004) (e.g., V. peregrina subsp. peregrina with $1.93 \mathrm{pg} / 2 \mathrm{C}$ in this thesis vs. $1.90 \mathrm{pg} / 2 \mathrm{C}$ in the literature), while others are clearly different (e.g., V . chamaedrys subsp. chamaedrys with $3.72 \mathrm{pg} / 2 \mathrm{C}$ in this thesis vs. $2.98 \mathrm{pg} / 2 \mathrm{C}$ in the literature, and $V$. arvensis with $0.91 \mathrm{pg} / 2 \mathrm{C}$ in this thesis vs. $0.66 \mathrm{pg} / 2 \mathrm{C}$ in the literature). Some of these differences could be easily justified by different ploidy levels, as is possibly the case of $V$. chamaedrys and $V$. hederifolia where hexaploidy was assumed in our case instead of tetraploidy (Albach and Greilhuber 2004). Still, in the case of V. arvensis the large difference that we observed may be related to the use of different techniques and methodologies. Indeed most of the estimates reported by Albach and

Greilhuber were obtained using Feulgen densitometry, including that of $V$. arvensis. Despite that Doležel et al. (1998) showed a close agreement between both methods, there are numerous cases in the literature where estimates obtained using both techniques do not correspond. For example, Loureiro et al. (2007) using FCM obtained a 2 C value of 5.08 pg DNA for Coriandrum sativum, while Das and Mallick (1989) using Feulgen microdensitometry obtained 2 C values ranging between 7.65 and $9.55 \mathrm{pg} / 2 \mathrm{C}$. These differences are mostly related with the many critical points of the Feulgen technique (e.g., fixation, slide preparation and storage, acid hydrolysis), which are not always followed and that may influence the obtained estimations (Greilhuber, 1988). Still, particularities of the FCM methodology, as the use of different reference standards, sample preparation and staining protocols (Doležel et al 1998), may also contribute for these differences.

Following the analysis of monoploid genome size variation and the linear regression between chromosome numbers and genome size, besides the different DNA ploidy level assumed for $V$. chamaedrys and $V$. hederifolia, it seems that the the analysed individuals of $V$. micrantha and $V$. officinalis are tetraploid and not diploid, as assumed in the literature. Thus, the sampled populations present 32 and 36 chromosomes, respectively. As these are first estimates of genome size, no information on this parameter is available in the literature that could be used to certify this assumption. Still, in the case of V. officinalis, there are some previous reports of 36 chromosomes despite two base chromosome numbers, 9 and 18, are reported (Benedi et al. 2009), indicating some confusion to what ploidy level the set of 36 chromosomes corresponds. Therefore this hypothesis needs to be confirmed in the future using chromosome counts and fluorescence in situ hybridization (FISH). Similar results are documented in other families. For example, in Festuca, Al-Bermani et al. (1992) attributed the octaploid level to F. rothmaleri, while, more recently, Loureiro et al. (2007) detected hexaploids in this species.

In Scrophularia, several species had apparently different genome sizes, but those differences revealed to be not statistically significant. The use of a non-parametric statistical test due to problems in achieving homocedasticity (even after data transformation) can explain the lack of statistical differences among taxa. In this genus, the species with the highest number of chromosomes, S. auriculata subsp. auriculata, is not the one with the higher value of genome size. Considering the number of chromosomes that this species presents (78-88 chromosomes) it is certain that it suffered from several polyploidy events in the past and, as happened in other species (e.g., Nicotiana sp., Leitch et al. 2008), these phenomena may have been
accompanied by genome downsizing. It is assumed that DNA loss during polyploidization may be a selection mechanism to lessen genetic instability or the phenotypic effects of having a larger nucleus and cell size (Leitch et al. 2008). A rough analysis of genome size variation among sections revealed that species from Section Caninae presented, in general, smaller genome sizes than those of Section Scrophularia. Still, S. nodosa from section Scrophularia presented the smallest genome size among the analysed taxa of Scrophularia, being in complete disagreement with this postulate.

Finally, in Verbascum, if we exclude $V$. virgatum who is tetraploid and consequently presents approximately the double value of genome size of the remaining species, the other taxa presented very similar genome sizes. Still, all these species present different chromosome numbers (i.e., 30, 32, 36 chromosomes; Benedi et al. 2009). This may be due to a phenomenon called disploidy, i.e., the increase or decrease of one, or a few chromosomes. The decrease in chromosome numbers appears not to be unusual (Martel et al. 2004, Hidalgo et al. 2007) and may be due to the fusion of two or more chromosomes. In principle, this would not affect the genome size in any way. Based on chromosome number variation, descendant disploidy has been suggested for several genera of Iridaceae (Goldblatt and Takei 1997). For example, in Iris subgenus Xiphium, it was proposed that if the ancestral base number was $x=9$, and $I$. boissieri ( $\mathrm{n}=18$ ) represented a polyploidy event, descending disploidy may explain the remaining chromosome numbers ( $\mathrm{n}=17,16,15,14$ ). Similarly, in Verbascum, the same phenomenon may explain a decrease in the number of chromosomes from 36 , to the remaining chromosomes numbers that are reported in the literature $(2 n=30,32$ and 34 chromosomes), without variation in genome size. Molecular cytogenetic techniques as FISH could help to solve this question and should be used in the future.

The analysis of intraspecific variation revealed some variation in genome size among individuals of the same species, both between and within populations. While some argue for a large plasticity of nuclear genome, others claim for a more stable genome size within species. In reality, the growing number of reports that did not confirm the intraspecific variation reported in original publications [see list of "blunderkilling" papers of Suda (2004) and the review by Greilhuber (2005)] has shifted the pendulum towards the stability side, without eliminating the possibility of its occurrence. Actually, in recent years several reports that followed best practices confirmed the existence of this phenomenon (see Šmarda and Bureš 2010 for a review). In the case there is a true intraspecific variation, chromosomal differences (aneuploidy and supernumerary B-chromosomes,) and polymorphisms in A chromosomes
(heterochromatic knobs and differential deletion of transposable element remnants) (Gregory 2005a), may explain the differences that were reported. In particular, it is worth highlighting the differences observed in the genome size estimates among individuals of Digitalis purpurea subsp. purpurea. In here, three groups differing of about 0.11 pg were observed. In the literature, two chromosome numbers, 48 and 56, are known (Benedi et al. 2009). Furthermore, the possibility of presenting $B$ chromosomes is documented for this species (Regnart 1934). Alltogether a combination of both these events may support the variation observed in this subspecies, similarly to what was reported by Sharbel et al. (2004) in Boechera holboellii. To fully confirm the occurrence of this phenomenon, chromosome counts of this subspecies should be prepared in the future.

In conclusion, this work contributed with important background knowledge on genome size variation and polyploidy incidence in the Iberian Peninsula Scrophulariaceae. Despite the results on polyploidy incidence were discouraging, with no multiple cytotypes being detected for any taxa, genome size results confirmed the high importance this character may have in species delimitation. Indeed, regarding genome size evolution, many doors were open, with interesting phenomena, as intraspecific variation of genome size and disploidy being detected. Future studies should focus in studying the genome size of the remaining taxa of Scrophulariaceae, while broadening sampling to central and eastern Iberian Peninsula.

Adams KL, Wendel J F (2005) Polyploidy and genome evolution in plants. Current Opinion in Plant Biology 8:135-141.

Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Annals of Botany 94:897-911.

Al-Bermani AK, Catalan P, Stace CA (1992) A new circumscription of Festuca trichophylla (Gaudin) K. Richter (Gramineae). Anales del Jardín Botánico de Madrid 50:209-220.

Angiosperm Phylogeny Group (1998) An ordinal classification of the families of flowering plants. Annals of the Missouri Botanical Garden 85:531-553.

Angiosperm Phylogeny Group II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141:399-436.

Baack EJ (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). American Journal of Botany 91:17831788.

Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007) Correlated evolution of genome size and seed mass. New Phytologist 173:422-437.

Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179:975-986.

Benedí C, Rico E, Güemes J, Herrero A (200X) Plantaginaceae-Scrophulariaceae. In: Castroviejo et al. (eds.). Flora Iberica Vol. 13, Real Jardín Botánico, Madrid, pp. 44-434

Bennert W, Lubienski M, Körner S, Steinberg M (2005) Triplody in Equisetum subgenus Hippochaete (Equisetaceae, Pteridophyta). Annals of Botany 95:807-15.

Bennett MD (1971) Duration of Meiosis. Proceedings of the Royal Society of London Series BBiological Sciences 178:277-\&.

Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society B 181:109-135.

Bennett MD (1977) Time and duration of meiosis. Philosophical Transactions of the Royal Society B 277:201-226.

Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philosophical of the Royal Society B 274:228-274.

Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Annals of Botany 95:45-90.

Bennett MD, Leitch IJ (2010) Angiosperm DNA C-values database (release 7.0, Dec.2010)
Bennett MD, Leitch IJ, Hanson L (1998) DNA amounts in two samples of angiosperm weeds. Annals of Botany 82:121-134.

Bennetzen JL, Ma JX, Devos K (2005) Mechanisms of recent genome size variation in flowering plants. Annals of Botany 95:127-132.

Bremer B, Olmstead RG, Struwe L, Sweere JA (1994) RbcL sequences support exclusion of Retzia, Desfontainia, and Nicodemia (Buddlejaceae) from the Gentianales. Plant Systematics and Evolution 190:213-230.

Brook BW, Sodhi NS, Ng PKL (2003) Catastrophic extinctions follow deforestation in Singapore. Nature 424:420-423.

Bureš P, Tichý L, Wang YF, Bartoš J (2003) Occurrence of Polypodium x mantoniae and new localities for $P$. interjectum in the Czech Republic confirmed using flow cytometry. Preslia 75:293-310.

Bureš P, Wang YF, Horová L, Suda J (2004) Genome size variation in Central European species of Cirsium (Compositae) and their natural hybrids. Annals of Botany 94:353-363.

Burton TL, Husband BC (1999) Population cytotype structure in the polyploid Galax urceolata (Diapensiaceae). Heredity 82:381-390.

Burton TL, Husband BC (2001) Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): consequences for tetraploid establishment. Heredity 87:573-82.

Castro S, Münzbergová Z, Raabová J, Loureiro J (2011) Breeding barriers at a diploidhexaploid contact zone in Aster amellus. Evolutionary Ecology 25:795-814.

Cerbah M, Mortreau E, Brown S, Siljak-Yakovlev S, Bertrand H, Lambert C (2001) Genome size variation and species relationships in the genus Hydrangea. Theoretical and Applied Genetics 103:45-51.

Chapin FS (2003) Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Annals of Botany 91:455-463.

Côrte-Real M, Sansonetty F, Ludovico P, Prudêncio C, Rodrigues F, Fortuna M, Sousa M, Silva M, Leão C (2002) Contributos da citologia analítica para estudos de biologia de leveduras. Boletim de Biotecnologia 71:19-33.

Dimitrová D, Ebert I, Greilhuber J, Kozhuharov S (1999) Karyotype constancy and genome size variation in Bulgarian Crepis foetida s.I. (Asteraceae). Plant Systematics and Evolution 217:245-257.

Doležel J (1997) Applications of Flow Cytometry for the study of plant genomes. Journal of Applied Genetics 38:285-302.

Doležel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95:99-110.

Dolezel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85:625-631.

Dolezel J, Dolezelová M, Novák F (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biologia Plantarum 36:351-357.

Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Doležel J, Greilhuber J, Suda J (eds), Flow cytometry with plant cells, Wiley VCH, Weinheim pp. 4165.

Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry Part A 51A:127-128.

Doležel J, Geilhuber J, Lucretti S, Meister A, Lysák M, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Annals of Botany 82:17-26.

Ekrt L, Trávníček P, Jarolímová V, Vít P, Urfus T (2009) Genome size and morphology of the Dryopteris affinis group in Central Europe. Preslia 81:261-280.

Ellul P, Boscaiu M, Vicente O, Moreno V, Rossello JA (2002) Intra- and interspecific variation in DNA content in Cistus (Cistaceae). Annals of Botany 90:345-351.

Faegri K, van der Pijl L (1979) The Principles of Pollination Ecology. Pergamon Press, Oxford.
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049-1051.

Goldblatt P, Takei M (1997) Chromosome cytology of Iridaceae - patterns of variation, determination of ancestral base numbers, and modes of karyotype change. Annals of the Missouri Botanical Garden 4:285-304.

Greenlee JK, Rai KS, Floyd AD (1984) Intraspecific variation in nuclear DNA content in Collinsia verna Nutt (Scrophulariaceae). Heredity 52:235-242.

Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the Cvalue enigma. Biological Reviews of the Cambridge Philosophical Society 76:65-101.

Gregory TR (2005a) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Annals. of Botany 95:133-46.

Gregory TR (2005b) Synergy between sequence and size in large-scale genomics. Nature Reviews Genetics 6:699-708

Greilhuber J (1988) Self tanning - a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Systematics and Evolution 158:87-96.

Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Annals of Botany 82:27-35.

Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany 95:91-98.

## REFERENCES

Greilhuber J, Speta F (1985) Geographical variation of genome size at low taxonomic levels in the Scilla bifolia, alliance (Hyacinthaceae). Flora (Jena) 176:431-438.

Greilhuber J, Temsch E, Loureiro J (2007) Nuclear DNA content measurement. In: Dolezel J, Greilhuber J, Suda J (eds). Flow cytometry with plant cells. Weinheim: Wiley-VCH Verlag, pp 67-101.

Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents. Annals of Botany 95:255-60

Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biology 8: 770-777

Greilhuber J, Dolezel J, Leitch I, Loureiro J, Suda J (2010) Genome size. Journal of Botany Volume 2010: 4 pages

Habitats $\quad$ Directive ofNATURA2000—Web 1: http://www.nature.cz/publik_syst2/files08/habitats\ directive_official\ text.pdf

Hidalgo O, Garcia-Jacas N, Garnatje T, Susanna A, Siljak-Yakovlev S (2007) Karyological evolution in Rhaponticum Vaill. (Asteraceae, Cardueae) and related genera. Botanical Journal of the Linnean Society 53:193-201.

Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Science USA 97:66036607.

Kikuchi S, Tanaka H, Shiba T, Mii M, Tsujimoto H (2006) Genome size, karyotype, meiosis and a novel extra chromosome in Torenia fournieri, T. baillonii and their hybrid. Chromosome Research 14:665-672.

Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95:177-190.

Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annual Reviews of Ecology, Evolution, and Systematics 38:847-76.

Lampert KP, Lamatsch DK, Epplen JT, Schartl M (2005) Evidence for a monophyletic origin of triploid clones of the Amazon molly, Poecilia formosa. Evolution 59:881-89.

Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Annals of Botany 82:85-94.

Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Annals of Botany 101:805-814.

Leong-Škorničková J, Šída O, Jarolímová V, Sabu M, Fér T, Trávníček P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Annals of Botany 100:505-526.

Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York.

Lim KY, Kovarik A, Matyasek R, Chase MW, Knapp S, McCarthy E, Clarkson JJ, Leitch AR (2006) Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant Journal 48:907-919.

Lista Roja de Flora Vascular Española (valoración según categorías UICN). CONSERVACIÓN VEGETAL 6 (extra):11-38.

Lobo JR, Lumaret JP, Jay-Robert P (2001) Diversity, distinctiveness and conservation status of the Mediterranean coastal dung beetle assemblage in the Regional Natural Park of the Camargue (France). Diversity and Distributions 7:257-270.

Loureiro J (2007) Flow cytometric approaches to study genomes. PhD Thesis, University of Aveiro.

Loureiro J, Rodriguez E, Dolezel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Annals of Botany 98:515-527.

Loureiro J, Kopecky D, Castro S, Santos C, Silveira P (2007a) Flow cytometric and cytogenetic of Iberian Peninsula Festuca spp. Plant Systematics and Evolution 269:89-105.

Loureiro J, Rodriguez E, Dolezel J, Santos C (2007b) Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Annals of Botany 100:875-888.

Loureiro J, Rodriguez E, Gomes A, Santos C (2007c) Genome size estimations on Ulmus minor Mill., Ulmus glabra Huds., and Celtis australis L. using flow cytometry. Plant Biology 9:541544.

Loureiro J, Trávnícek P, Rauchová J, Urfus T, Vit P, Štech M, Castro S, Suda J (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82:3-21.

Lysák M, Dolezel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123-132.

Mable BK (2004) 'Why polyploidy is rarer in animals than in plants': myths and mechanisms. Biological Journal of the Linnean Society 82:453-66.

Mahelka V, Suda J, Jarolímová V, Trávníček P, Krahulec F (2005) Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae: Triticeae) and their hybrid. Folia Geobotanica 40:367-384.

Martel E, Poncet V, Lamy F, Siljak-Yakovlev S, Lejeune B, Sarr A (2004) Chromosome evolution of Pennisetum species (Poaceae): implications of ITS phylogeny. Plant Systematics and Evolution 249:139-149.

Martínez J, Vargas P, Luceño M (2010) Evolution of Iris subgenus Xiphium based on chromosome numbers, FISH of nrDNA (5S, 45S) and trnL-trnF sequence analysis. Plant Systematics and Evolution 289:223-235.

Maxted N, Callimassia MA, Bennett MD (1991) Cytotaxonomic studies of eastern mediterranean Vicia species (Leguminosae). Plant Systematics and Evolution. 177:221-234.

Meagher TR and Costich DE (1994) Sexual dimorphism in nuclear DNA content and floral morphology in populations of Silene latifolia (Caryophyllaceae). American Journal of Botany 81:1198-1204.

Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden 84:112-127.

Mishiba K, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu ussieu (Solanaceae). Annals of Botany 85:665-673.

Morton JK (1993) Chromosome numbers and polyploidy in the flora of Cameroons Mountain. Opera Botanica 121:159- 172.

Mowforth MAG (1986) Variation in nuclear DNA amounts in flowering plants: an ecological analysis. PhD Thesis, University of Sheffield.

Myers N (1989) Extinction rates past and present. Bioscience 39:39-41.
Myers N, Mittermeier RA, Mittermeier CG, Fonsaeca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853-858.

Nagl W, Fusenig HP (1979) Types of chromatin organization in plant nuclei. Plant Systematics and Evolution Suppl. 2:221-233.

Noirot M, Barre P, Louarn J, Duperray C, Hamon S (2002) Consequences of stoichiometric error on nuclear DNA content evaluation in Coffea liberica var. dewevrei using DAPI and propidium iodide. Annals of Botany 89:385-389.

Novacek MJ, Cleland EE (2001) The current biodiversity extinction event: scenarios for mitigation and recovery. Proceedings of the National Academy of Sciences of the United States of America 98:5466-5470.

Obermayer R, Leitch IJ, Hanson L, Bennett MD (2002) Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Annals. of Botany 90:209-217.

Olmstead RG (2002) Whatever happened to the Scrophulariaceae? Fremontia 3:13-22.

Olmstead RG, Bremer B, Scott K, Pallmer JD (1993) A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. Annals of the Missouri Botanical Garden 80:700-722.

Olmstead RG, de Pamphilis CW, Wolfe AF, Young ND, Elisons WJ, Reeves PA (2001) Disintegration of the Scrophulariaceae. American Journal of Botany 88:348-361.

Otto SP, Whitton J (2000) Polyploidy: Incidence and evolution. Annual Reviews of Genetics 34:401-437.

Pecinka A, Suchánková P, Lysák MA, Trávníček B, Doležel J (2006) Nuclear DNA content variation among central European Koeleria taxa. Annals of Botany 98:117-22.

Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society 164:10-15.

Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347-350.

Price HJ, Johnston JS (1996) Influence of light on DNA content of Helianthus annuus Linnaeus. Proceedings of the National Academy of Sciences of the United States of America 93:1126411267.

Ramsey JR, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Reviews of Ecology, Evolution, and Systematics 29:467-501.

Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annual Review of Ecology, Evolution and Systematics 33:589-639.

Raven P (1987) The scope of the plant conservation problem worldwide. In: Bramwell D, Hammaa O, Heywood V, Synge H (eds.) Botanic gardens of the world conservation strategy. London: Academic Press pp. 19-29.

Regnart HC (1934) Studies of hybrids in the genus Digitalis. Department of Botany and Genetics, Armstrong College, University of Durham, Newcastle-upon-Tyne pp 145-153

Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770-1774.

Sharbel TF, Voigt ML, Mitchell-Olds T, Kantama L, de Jong H (2004) Is the aneuploid chromosome in an apomictic Boechera holboellii a genuine B chromosome? Cytogenetics and Genome Research 106:173-183.

Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since plant speciation. New Phytologist 161:173-91.

Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21 st centuries. Taxon 49:451-77.

## REFERENCES

Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since].

Suda J (2004) An employment of flow cytometry into plant biosystematics. PhD Thesis, Charles University in Prague.

Suda J, Travnicek P (2006) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry - New prospects for plant research. Cytometry Part A 69A:273-280.

Suda J, Krahulcová A, Travnicek P, Krahulec F (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447-450.

Suda J, Krahulcová A Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007a) Genome size variation and species relationships in Hieracium subgenus Pilosella (Asteraceae) as inferred by flow cytometry. Annals of Botany 100:1323-1335.

Suda J, Kron P, Husband BC, Trávníček P (2007b) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Doležel J, Greilhuber J, Suda J (eds), Flow cytometry with plant cells, Wiley VCH, Weinheim pp. 103-30

Swift H (1950) The constancy of desoxyribose nucleic acid in plant nuclei. Proceedings of the National Academy of Sciences 36:643-654.

Thieret JW (1967) Supraspecific classification in the Scrophulariaceae: a review. Sida 3:87106.

Thompson J (1999) Population differentiation in Mediterranean plants: insights into colonization history and the evolution and conservation of the endemic species. Heredity 82:229-236.

Thompson JD, Lumaret $R$ (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends in Ecology and Evolution 7:302-307.

Tiersch TR, Chandler RW, Wachtel SS, Elias S (1989) Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10:706-710.

Torrell M, Vallès J (2001) Genome size in 21 Artemisia L. species (Asteraceae, Anthemideae): systematic, evolutionary, and ecological implications. Genome 44:231-238.

Trucco F, Tatum T, Robertson KR, Rayburn AL, Tranel PJ (2006) Characterization of waterhemp (Amaranthus tuberculatus) $\times$ smooth pigweed (A. hybridus) F1 hybrids. Weed Technology 20:14-22.

Vargas P, Rosselló JA, Oyama R, Güemes J (2004) Molecular evidence for naturalness of genera in the tribe Antirrhineae (Scrophulariaceae) and three independent evolutionary lineages from the New World and the Old. Plant Systematics and Evolution 249:151-172.

Vitte C and Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proceedings of the National Academy of Science USA 103:17638-17643.
von Wettstein R (1891) Scrophulariaceae. In: Engler A, Prantl K (eds.), Die Natürlichen Pflanzenfamilien, Vol. 4, pp.39-107.

Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65-69.

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences 106:13875-13879.

Yeater KM, Bollero GA, Bullock DG, Rayburn AL (2004) Flow cytometric analysis for ploidy level differentiation of 45 hairy vetch accessions. Annals of Applied Biology 145:123-127.

Záveský L, Jarolímová V, Štěpánek J (2005) Nuclear DNA content variation within the genus Taraxacum (Asteraceae). Folia Geobotanica 40:91-104.

Zonneveld BJM (2001) Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Plant Systematics and Evolution 229:125-130.

Chapter 6 APPENDICES
APPENDICES
Appendix 1. Field collections of Scrophulariaceae s.l. taxa performed during the flowering season (March to August) 2010 and 2011 in Portugal and Spain. For each taxon an

| Location | GPS coordinates |
| :--- | :---: |
| PT: Seia, Aldeia da Serra | $40^{\circ} 2451.56^{\prime \prime} \mathrm{N}$ |
| $77^{\circ} 41^{\prime 2} 28.30^{\prime \prime} \mathrm{W}$ |  |

PT: Oliveira do Hospital, Caldas da Felgueira $\quad 40^{\circ} 29^{\prime} 48.24^{\prime \prime} \mathrm{N} \quad 7^{\circ} 50^{\prime} 14.43^{\prime \prime} \mathrm{W}$
PT: Arganil, Pardieiros $\quad 40^{\circ} 13^{\prime} 30.18^{\prime \prime} \mathrm{N} \quad 7^{\circ} 56^{\prime} 16.30^{\prime \prime} \mathrm{W}$
$40^{\circ} 10^{\prime} 43.57{ }^{\prime \prime} \mathrm{N} \quad 8^{\circ} 19^{\prime} 6.23^{\prime \prime} \mathrm{W}$
 $41^{\circ} 47^{\prime} 7.944^{\prime N} \quad 6^{\circ} 53^{\prime 2} 20.51^{\prime \prime} \mathrm{W}$

 42037'34.74"N $\quad 7^{\circ} 10^{\prime} 5.63^{\prime \prime} \mathrm{W}$ | SP: Galiza, Folgoso de Caurel, Seoane de Caurel (Cotelo) | $42^{\circ} 38^{\prime} 18.36^{\prime \prime} \mathrm{N}$ | $7^{\circ} 9^{\prime} 3.06^{\prime \prime} \mathrm{W}$ |
| :--- | :--- | :--- | $\begin{array}{lll}\text { PT: Serra do Gerês, Borrageiro } & 41^{\circ} 45^{\prime} 47.05^{\prime \prime} \mathrm{N} & 8^{\circ} 7^{\prime} 40.51^{\prime \prime} \mathrm{W}\end{array}$ PT: Tabuaço, Desejosa - PT: Montalegre, Pitões das Junias, Planalto da Morela PT: Marco de Canaveses, Paços de Gaiolo PT: Castro Daire PT: Condeixa-a-Nova, Casmilo

PT: Bragança, road between Alimonde and Carrazedo
PT: Serra do Gerês, Borrageiro
SP: Galiza, Folgoso de Caurel, Mércurim PT: Serra do Gerês, Borrageiro ID code, information on the location and GPS coordinates of the population are given. Voucher specimens are kept in the Herbarium of University of Coimbra (COI).

| ID code ${ }^{1}$ | Taxon | Location | GPS coordinates |  |
| :---: | :---: | :---: | :---: | :---: |
| MC67 | Anarrhinum bellidifolium | PT: Seia, Aldeia da Serra | $40^{\circ} 24^{\prime} 51.56$ "N | 704'28.30"W |
| MC65 | Anarrhinum bellidifolium | PT: Oliveira do Hospital, Caldas da Felgueira | $40^{\circ} 29^{\prime} 48.24$ "N | 7050'14.43"W |
| MC72 | Anarrhinum bellidifolium | PT: Arganil, Pardieiros | $40^{\circ} 13^{\prime} 30.18^{\prime \prime} \mathrm{N}$ | 756'16.30"W |
| MC15 | Anarrhinum bellidifolium | PT: Coimbra, Caneiro | $40^{\circ} 10^{\prime} 43.57{ }^{\prime \prime N}$ | $8^{\circ} 19^{\prime} 6.23{ }^{\prime \prime} \mathrm{W}$ |
| MC28 | Anarrhinum bellidifolium | PT: Condeixa-a-Nova, Casmilo | $40^{\circ} 03^{\prime} 14.23{ }^{\prime \prime} \mathrm{N}$ | 8²9'56.29"W |
| SC35 | Anarrhinum bellidifolium | PT: Bragança, road between Alimonde and Carrazedo | 41047'7.94"N | 6053'20.51 ${ }^{\text {"W }}$ |
| MC96 | Anarrhinum bellidifolium | PT: Serra do Gerês, Borrageiro | $41^{\circ} 46{ }^{\prime} 42.27$ "N | 70 56'17.70"W |
| SC31 | Anarrhinum bellidifolium | SP: Galiza, Folgoso de Caurel, Mércurim | $42^{\circ} 37^{\prime} 34.74{ }^{\prime \prime} \mathrm{N}$ | 7010'5.63"W |
| SC32 | Anarrhinum bellidifolium | SP: Galiza, Folgoso de Caurel, Seoane de Caurel (Cotelo) | $42^{\circ} 38{ }^{\prime} 18.36{ }^{\prime \prime} \mathrm{N}$ | 709'3.06"W |
| JC04 | Anarrhinum bellidifolium | PT: Serra do Gerês, Borrageiro | $41^{\circ} 45$ '47.05"N | 87'40.51'W |
| UPT13 | Anarrhinum bellidifolium | PT: Tabuaço, Desejosa | - | - |
| MC33 | Anarrhinum duriminium | PT: Montalegre, Pitões das Junias, Planalto da Morela | - | - |
| UPT14 | Anarrhinum duriminium | PT: Marco de Canaveses, Paços de Gaiolo | - | - |
| COI1 | Anarrhinum duriminium | PT: Castro Daire | - | - |
| MC52 | Anarrhinum longipedicelatum | PT: Vale de Cambra, Souto Mau | $40^{\circ} 46^{\prime} 52.80$ "N | 8 ${ }^{\circ} 16{ }^{\prime} 50.80{ }^{\prime \prime} \mathrm{W}$ |
| MC35 | Anarrhinum longipedicelatum | PT: Aveiro, Sever do Vouga, Couto de Esteves | $40^{\circ} 45^{\prime} 32.63$ "N | 8 ${ }^{\circ} 18{ }^{\prime} 27.40 \mathrm{WW}$ |
| JP01 | Anarrhinum longipedicelatum | Unknown locality | - | - |
| COI4 | Antirrhinum cirrhigerum | PT: Gala | - | - |
| COI3 | Antirrhinum graniticum | PT: Valhelhas, Guarda | - | - |
| MC24 | Antirrhinum linkianum | PT: Coimbra, Buçaco | $40^{\circ} 22^{\prime} 33.82^{\prime \prime} \mathrm{N}$ | $8^{\circ} 21^{\prime} 50.99^{\prime \prime W}$ |
| MC06 | Antirrhinum linkianum | PT: Coimbra, Jardim Botânico | $40^{\circ} 12^{\prime} 23.06$ "N | 8²5'31.14"W |


| MC08 | Antirrhinum linkianum | PT: Coimbra, Santa Clara | $40^{\circ} 11^{\prime} 33.83 " \mathrm{~N}$ | 8 ${ }^{\circ} 25^{\prime} 56.85$ "W |
| :---: | :---: | :---: | :---: | :---: |
| SC15 | Antirrhinum linkianum | PT: Setúbal, Comporta | $38^{\circ} 22^{\prime} 59.43$ "N | 8²7'51.50"W |
| JC09 | Antirrhinum linkianum | PT: Leiria, Nazaré, Sítio | $39^{\circ} 36{ }^{\prime} 17.31^{\prime \prime} \mathrm{N}$ | 905'3.68"W |
| JC10 | Antirrhinum linkianum | PT: Leiria, Nazaré, Praia do Norte | $39^{\circ} 36{ }^{\prime} 18.40$ "N | 905'4.96"W |
| ISAUTL3 | Antirrhinum linkianum | PT: Sintra | - | - |
| MC70 | Antirrhinum onubense | PT: Oliveira do Hospital, Avô | $40^{\circ} 17^{\prime} 56.95{ }^{\prime \prime} \mathrm{N}$ | 70 $54.5 .42^{\prime \prime} \mathrm{W}$ |
| MC75 | Bartsia trixago | PT: Serra d'Aires e Candeeiros, Casal das Pias | $39^{\circ} 33^{\prime} 32.98{ }^{\prime \prime} \mathrm{N}$ | $8^{\circ} 48^{\prime} 31.46{ }^{\prime \prime} \mathrm{W}$ |
| SC42 | Bartsia trixago | PT: Figueira da Foz | $40^{\circ} 12^{\prime} 8.50$ "N | 852'50.45"W |
| MC78 | Bartsia trixago | PT: São Martinho do Porto | $39^{\circ} 30^{\prime} 50.29^{\prime \prime} \mathrm{N}$ | $9^{\circ} 8^{\prime} 29.47$ "W |
| SC19 | Bartsia trixago | PT: Lisboa, Paredes | $38^{\circ} 41^{\prime} 52.80$ "N | $9^{\circ} 22^{\prime} 3.20$ "W |
| SC24 | Bartsia trixago | PT: Cascais, Praia do Guincho | $38^{\circ} 43^{\prime} 35.42^{\prime \prime} \mathrm{N}$ | $9^{\circ} 28{ }^{\prime} 27.17{ }^{\prime \prime} \mathrm{W}$ |
| UPT17 | Bartsia trixago | PT: Régua | - | - |
| MC62 | Chaenorhinum origanifolium | PT: Serra d'Aires e Candeeiros, Casal das Pias | $39^{\circ} 33^{\prime} 35.47{ }^{\prime \prime N}$ | $8^{\circ} 48^{\prime} 30.76{ }^{\prime \prime} \mathrm{W}$ |
| MC38 | Chaenorhinum origanifolium | PT: Alcobaça, Casal de Vale de Vento | $39^{\circ} 28^{\prime} 32.67{ }^{\prime \prime N}$ | $8^{\circ} 54{ }^{\prime} 30.00 \mathrm{WW}$ |
| MC47 | Chaenorhinum origanifolium | PT: Serra d'Aires e Candeeiros, Casal de Vale de Ventos | $39^{\circ} 27^{\prime} 5.62$ "N | $8^{\circ} 54{ }^{\prime} 39.87{ }^{\prime \prime} \mathrm{W}$ |
| MC109 | Cymbalaria muralis subsp. muralis | SP: Galiza, Folgoso de Caurel Samos | $42^{\circ} 43^{\prime} 55.65{ }^{\prime \prime} \mathrm{N}$ | 7¹9'36.70"W |
| MC21 | Cymbalaria muralis subsp. muralis | PT: Coimbra, Luso | $40^{\circ} 22^{\prime} 42.30 \mathrm{~N}$ | $8^{\circ} 22^{\prime} 12.10{ }^{\prime \prime W}$ |
| MC02 | Cymbalaria muralis subsp. muralis | PT: Coimbra, Jardim Botânico | $40^{\circ} 12^{\prime} 23.61{ }^{\prime \prime} \mathrm{N}$ | 8²5'29.68"W |
| COI8 | Digitalis mariana subsp. mariana | PT: Numão, castle | - | - |
| SC34 | Digitalis purpurea subsp. purpurea | PT: Bragança, road between Alimonde and Carrazedo | 4147'7.94"N | 653'20.51'W |
| SC39 | Digitalis purpurea subsp. purpurea | PT: Bragança, Carrazeda de Ansiães | 41013'58.64"N | $7{ }^{\circ} 19$ '32.11 ${ }^{\prime \prime} \mathrm{W}$ |
| SC41 | Digitalis purpurea subsp. purpurea | PT: Bragança, Parambos | $41^{\circ} 14{ }^{\prime} 16.61$ "N | 7021'57.69"W |
| MC69 | Digitalis purpurea subsp. purpurea | PT: Seia, Aldeia da Serra | $40^{\circ} 25^{\prime} 10.96{ }^{\prime \prime} \mathrm{N}$ | 7041'1.10"W |
| MC20 | Digitalis purpurea subsp. purpurea | PT: Aveiro, Sever do Vouga, Parada | $40^{\circ} 46^{\prime} 13.00^{\prime \prime} \mathrm{N}$ | 8¹7'35.33"W |

APPENDICES

| MC17 | Digitalis purpurea subsp. purpurea | PT: Coimbra, Vale de Canas | $40^{\circ} 12^{\prime} 37.25^{\prime \prime} \mathrm{N}$ | 8²2'33.06"W |
| :---: | :---: | :---: | :---: | :---: |
| MC94 | Digitalis purpurea subsp. purpurea | PT: Serra do Gerês, Borrageiro | $41^{\circ} 46{ }^{\prime} 42.27^{\prime \prime N}$ | 70 56'17.70"W |
| SC29 | Digitalis purpurea subsp. purpurea | SP: Galiza, Folgoso de Caurel, Santa Eufemia | 42034'12.67"N | 7011'49.68"W |
| MC92 | Digitalis purpurea subsp. purpurea | PT: Serra do Gerês, Borrageiro | 4146'04.09"N | $8^{\circ} 06{ }^{\prime} 48.14{ }^{\prime \prime} \mathrm{W}$ |
| UPT20 | Digitalis purpurea subsp. purpurea | PT: Cinfães, Ferreiros | - | - |
| COI9 | Digitalis thapsi | PT: Seia | - | - |
| MC105 | Euphrasia minima | SP: Galiza, Folgoso de Caurel, Visuña | $42^{\circ} 35^{\prime} 56.41^{\prime \prime} \mathrm{N}$ | 7 ${ }^{\circ} 3^{\prime} 12.60$ "W |
| ISAUTL5 | Keckxia spuria subsp. integrifolia | PT: Lisboa, Tapada de Ajuda | - | - |
| SC28 | Linaria aeruginea subsp. aeruginea | PT: Guarda, Vila Nova de Foz Côa | - | - |
| MC49 | Linaria amethystea subsp. amethystea | PT: Serra d'Aires e Candeeiro, Casal de Vale de Ventos | $39^{\circ} 26^{\prime} 42.07{ }^{\prime \prime N}$ | $8^{\circ} 54{ }^{\prime} 50.65{ }^{\prime \prime} \mathrm{W}$ |
| MC14 | Linaria diffusa | PT: Coimbra, Caneiro | $40^{\circ} 10^{\prime} 44.36{ }^{\prime \prime} \mathrm{N}$ | 8 ${ }^{\circ} 19^{\prime} 6.97{ }^{\prime \prime} \mathrm{W}$ |
| MC13 | Linaria incarnata | PT: Coimbra, Santo António dos Olivais | $40^{\circ} 13^{\prime} 35.71{ }^{\prime \prime} \mathrm{N}$ | $8^{\circ} 24^{\prime} 23.24{ }^{\prime \prime} \mathrm{W}$ |
| SC01 | Linaria polygalifolia subsp. polygalifolia | PT: Viana do Castelo, Carreço, Praia do Carreço | $41^{\circ} 44^{\prime} 28.86$ "N | 852'33.85"W |
| SC25 | Linaria polygalifolia subsp. polygalifolia | PT: Cascais, Praia do Guincho | $38^{\circ} 43^{\prime} 55.00{ }^{\prime \prime} \mathrm{N}$ | $9^{\circ} 28^{\prime} 9.21{ }^{\prime \prime} \mathrm{W}$ |
| MC84 | Linaria polygalifolia subsp. polygalifolia | PT: Figueira da Foz, Praia de Quiaios | $40^{\circ} 12^{\prime} 33.74{ }^{\prime \prime N}$ | $8^{\circ} 53{ }^{\prime} 47.98{ }^{\prime \prime} \mathrm{W}$ |
| COI14 | Linaria polygalifolia subsp. polygalifolia | PT: Quiaios, Murtinheira | - | - |
| COI16 | Linaria saxatilis | PT: Quiaios, Trevim | - | - |
| MNHN30 | Linaria spartea | PT: Herdade da Defese, Montes Juntos (Capelins parish) | - | - |
| SC14 | Linaria spartea | PT: SetúBAI, Pegões | $38^{\circ} 41^{\prime} 1.51$ "N | 8³7'13.88"W |
| JC03 | Linaria spartea | PT: Leiria, Berlengas | $39^{\circ} 24^{\prime} 54.95$ "N | 9${ }^{\circ} 30^{\prime} 23.18{ }^{\prime \prime} \mathrm{W}$ |
| JC07 | Linaria spartea | PT: Leiria, Berlengas | $39^{\circ} 24^{\prime} 57.28^{\prime \prime} \mathrm{N}$ | $9^{\circ} 30 \cdot 24.62{ }^{\prime \prime} \mathrm{W}$ |
| MNHN32 | Linaria spartea | PT: Road Torrão to Alfundão | - | - |
| MC44 | Linaria spartea | PT: Aveiro, Sever do Vouga, Parada | $40^{\circ} 46{ }^{\prime} 44.24{ }^{\prime \prime N}$ | 8017'22.49"W |
| MC89 | Linaria spartea | PT: Figueira da Foz, Praia de Quiaios | $40^{\circ} 12^{\prime} 56.79^{\prime \prime} \mathrm{N}$ | 853'19.09"W |


| MC88 | Linaria spartea | PT: Figueira da Foz, Praia de Quiaios | $40^{\circ} 12^{\prime} 51.65^{\prime \prime} \mathrm{N}$ | 853'9.04"W |
| :---: | :---: | :---: | :---: | :---: |
| JC18 | Linaria spartea | PT: Montemor-o-Velho, Quinhendros, Vila Mota | 40¹0'22,36"N | 8²0'27,31"W |
| MC101 | Linaria supina | SP: Galiza, Folgoso de Caurel, Castillo de Carbedo | $42^{\circ} 38{ }^{\prime} 8.02$ "N | 7 ${ }^{\circ} 7^{\prime 27.07 " W}$ |
| MC29 | Linaria supina | PT: Condeixa-a-Nova, Casmilo | $40^{\circ} 2^{\prime} 50.38{ }^{\prime \prime} \mathrm{N}$ | 8²9'48.04"W |
| MC63 | Linaria supina | PT: Serra d'Aires e Candeeiros, Casal das Pias | $39^{\circ} 33{ }^{\prime} 36.91{ }^{\prime \prime} \mathrm{N}$ | $8^{\circ} 48^{\prime} 30.15^{\prime \prime W} \mathrm{~W}$ |
| MC71 | Linaria thriornithophora | PT: Arganil, Pomares | $40^{\circ} 16^{\prime} 14.24{ }^{\prime \prime N}$ | 753'30.12"W |
| MC19 | Linaria thriornithophora | PT: Coimbra, Agrelo | $40^{\circ} 16^{\prime} 49.14{ }^{\prime \prime} \mathrm{N}$ | 8²1'17.87"W |
| MC12 | Linaria thriornithophora | PT: Aveiro, Sever do Vouga, Pessegueiro do Vouga | $40^{\circ} 42^{\prime} 0.18{ }^{\prime \prime N}$ | $8^{\circ} 22^{\prime} 3.11{ }^{\prime \prime} \mathrm{W}$ |
| SC30 | Linaria thriornithophora | SP: Galiza, Folgoso de Caurel, Santa Eufemia | 42034'12.67"N | 7011'49.68"W |
| MC99 | Linaria triornithophora | SP: Galiza, Quiroga | $42^{\circ} 32 \cdot 3.45$ "N | 7¹3'28.51"W |
| MC103 | Melampyrum pratense subsp. latifolium | SP: Galiza, Folgoso de Caurel, Moreda | $42^{\circ} 36{ }^{\prime} 45.96$ " N | $7^{\circ} 6^{\prime} 13.10$ "W |
| JC08 | Melampyrum pratense subsp. latifolium | PT: Serra do Gerês, Portela do Leonte | $41^{\circ} 46^{\prime} 0.63$ "N | 88'37.12"W |
| MC56 | Misopates calycinum | PT: Serra d'Aires e Candeeiros, Pragais | $39^{\circ} 34^{\prime} 46.89^{\prime \prime} \mathrm{N}$ | 8${ }^{\circ} 49^{\prime} 30.07{ }^{\prime \prime} \mathrm{W}$ |
| MC106 | Misopates orontium | SP: Galiza, Folgoso de Caurel, Visuña | $42^{\circ} 36{ }^{\prime} 24.48{ }^{\prime \prime N}$ | $7{ }^{\circ} 3^{\prime} 59.48$ "W |
| MC16 | Misopates orontium | PT: Coimbra, Caneiro | $40^{\circ} 10^{\prime} 43.60$ "N | 8 ${ }^{\circ} 19$ '6.93"W |
| MC27 | Misopates orontium | PT: Sever do Vouga, Pessegueiro do Vouga | $40^{\circ} 42^{\prime} 33.53{ }^{\prime \prime} \mathrm{N}$ | $8^{\circ} 21{ }^{\prime} 36.29{ }^{\prime \prime} \mathrm{W}$ |
| MC74 | Misopates orontium | PT: Coimbra, Assafarges, Palheira | $40^{\circ} 9^{\prime} 54.93$ "N | $8^{\circ} 27{ }^{\prime} 12.79{ }^{\prime \prime} \mathrm{W}$ |
| MC79 | Misopates orontium | PT: Caldas da Rainha, Salir do Porto, miradouro | $39^{\circ} 29^{\prime} 50.26$ " N | $9^{\circ} 9{ }^{\prime} 21.47{ }^{\prime \prime W}$ |
| SC13 | Mysopates orontium | PT: SetúBAI, Pegões | $38^{\circ} 41^{\prime \prime} 1.51{ }^{\prime \prime N}$ | $8^{\circ} 37{ }^{\prime} 13.88{ }^{\prime \prime} \mathrm{W}$ |
| SC26 | Mysopates orontium | PT: Coimbra, Souselas | $40^{\circ} 16{ }^{\prime} 55.15{ }^{\prime \prime} \mathrm{N}$ | 8²5'3.02"W |
| MC80 | Nothobartsia asperrina | PT: Caldas da Rainha, Salir do Porto, miradouro | $39^{\circ} 29^{\prime} 51.50 \mathrm{~N}$ | 9 ${ }^{\circ} 9^{\prime} 18.83{ }^{\prime \prime} \mathrm{W}$ |
| MC104 | Odontite vernus | SP: Galiza, Folgoso de Caurel, Visuña | $42^{\circ} 36{ }^{\prime} 24.58{ }^{\prime \prime} \mathrm{N}$ | $7^{\circ} 3^{\prime} 19.16{ }^{\prime \prime} \mathrm{W}$ |
| MC83 | Odontitella virgata | PT: Figueira da Foz, Lagoa da Vela, | $40^{\circ} 16^{\prime} 13.10^{\prime \prime} \mathrm{N}$ | $8^{\circ} 47{ }^{\prime} 43.13{ }^{\prime \prime} \mathrm{W}$ |
| MC87 | Odontitella virgata | PT: Figueira da Foz, Praia de Quiaios | $40^{\circ} 13^{\prime} 20.52^{\prime \prime} \mathrm{N}$ | $8^{\circ} 51{ }^{\prime} 53.51{ }^{\prime \prime} \mathrm{W}$ |

APPENDICES
$42^{\circ} 38^{\prime} 12.87{ }^{\prime \prime} \mathrm{N} \quad 7^{\circ} 7^{\prime} 29.23^{\prime \prime} \mathrm{W}$ $40^{\circ} 25^{\prime} 45.99^{\prime \prime N} \quad 7^{\circ} 42^{\prime} 38.94$ "W
 $41^{\circ} 46^{\prime} 3.55^{\prime \prime} \mathrm{N} \quad 8^{\circ} 8^{\prime} 49.06{ }^{\prime \prime} \mathrm{W}$ $39^{\circ} 27^{\prime} 20.23^{\prime \prime} \mathrm{N} \quad 8^{\circ} 54^{\prime} 32.29^{\prime \prime} \mathrm{W}$ $41^{\circ} 46^{\prime} 57.61^{\prime \prime} \mathrm{N} \quad 8^{\circ} 06^{\prime} 42.56^{\prime \prime} \mathrm{W}$ 41044'50.98"N $\quad 7^{\circ} 57^{\prime} 18.43^{\prime \prime} \mathrm{W}$ $42^{\circ} 377^{\prime} 46.81{ }^{\prime \prime} N \quad 7^{\circ} 6{ }^{\prime} 34.18{ }^{\prime \prime} W$ PT: Minas do Bugalho PT: Figueira da Foz, Praia de Quiaios $\quad 40^{\circ} 12^{\prime} 35.70 " \mathrm{~N} \quad 8^{\circ} 53^{\prime} 46.17^{\prime \prime} \mathrm{W}$ PT: Caldas da Rainha, Salir do Porto $39^{\circ} 30^{\prime} 4.78^{\prime \prime N} \mathrm{~N} \quad 9^{\circ} 9^{\prime} 5.74$ "W PT: Quiaios, Murtinheira PT: Coimbra, Buçaco $40^{\circ} 22^{\prime} 37.10^{\prime \prime} \mathrm{N} \quad 8^{\circ} 21^{\prime} 57.66^{\prime \prime} \mathrm{W}$ PT: Coimbra, Vale de Canas $\quad 40^{\circ} 12^{\prime} 36.59^{\prime \prime} \mathrm{N} \quad 8^{\circ} 22^{\prime} 32.83^{\prime \prime} \mathrm{W}$ PT: Coimbra, Assafarges, Palheira $\quad 40^{\circ} 99^{\prime} 57.75 " \mathrm{~N} \quad 8^{\circ} 27^{\prime} 5.48^{\prime \prime} \mathrm{W}$ PT: Serra d'Aires e Candeeiros, Casal de Vale de Ventos $\quad 39^{\circ} 25^{\prime} 15.09^{\prime \prime} \mathrm{N} \quad 8^{\circ} 55^{\prime} 44.65^{\prime \prime} \mathrm{W}$ PT: Coimbra, Jardim Botânico $\quad 40^{\circ} 12^{\prime} 24.69^{\prime \prime N} \quad 8^{\circ} 25^{\prime} 19.27^{\prime \prime} \mathrm{W}$ PT: Condeixa, Pitança de Baixo
PT: Cinfães, Ferreiros
41046'42.27"N $\quad 7^{\circ} 566^{\prime} 17.70$ "W
 $42^{\circ} 38^{\prime} 20.477^{\prime \prime N} \quad 7^{\circ} 9^{\prime} 0.72{ }^{\prime \prime} \mathrm{W}$ $40^{\circ} 46^{\prime} 53.07$ "N $\quad 8^{\circ} 16^{\prime} 50.46$ "W $40^{\circ} 22^{\prime} 31.48^{\prime \prime} \mathrm{N} \quad 8^{\circ} 21^{\prime} 29.07{ }^{\prime \prime} \mathrm{W}$

| MC76 | Scrophularia scorodonia | PT: Serra d'Aires e Candeeiros, Serro Ventoso | $39^{\circ} 34 \cdot 3.29$ "N | 8049'25.61"W |
| :---: | :---: | :---: | :---: | :---: |
| MC77 | Scrophularia scorodonia | PT: Porto de mós, Lagoa de ArraBAI | $39^{\circ} 29^{\prime} 54.36 \mathrm{~N}$ | 852'18.75"W |
| MC46 | Scrophularia scorodonia | PT: Serra d'Aires e Candeeiros, Casal de Vale de Ventos | $39^{\circ} 27^{\prime} 4.36$ " N | 854'40.90"W |
| UPT24 | Scrophularia scorodonia | PT: Figueira da Foz, Santana |  |  |
| JC02 | Scrophularia sublyrata | PT: Leiria, Berlengas | $39^{\circ} 24^{\prime} 54.99^{\prime \prime N}$ | $9^{\circ} 30^{\prime} 23.18{ }^{\prime \prime} \mathrm{W}$ |
| JC06 | Scrophularia sublyrata | PT: Leiria, Berlengas | $39^{\circ} 24^{\prime} 45.21{ }^{\prime \prime} \mathrm{N}$ | 9³0'40.86"W |
| MC07 | Verbascum levanticum | PT: Coimbra, Jardim Botânico | $40^{\circ} 12^{\prime} 23.42^{\prime \prime} \mathrm{N}$ | 8²5'16.02"W |
| MC85 | Verbascum litigiosum | PT: Figueira da Foz, Praia de Quiaios | $40^{\circ} 12^{\prime} 37.94{ }^{\prime \prime} \mathrm{N}$ | 853'46.38"W |
| MC59 | Verbascum pulverulentum | PT: Serra d'Aires e Candeeiros, Serro Ventoso | $39^{\circ} 33^{\prime} 49.13^{\prime \prime} \mathrm{N}$ | 8049'49.58"W |
| MC98 | Verbascum simplex | SP: Galiza, Quiroga | $42^{\circ} 32^{\prime} 3.75{ }^{\prime \prime} \mathrm{N}$ | 7013'25.17"W |
| MC68 | Verbascum simplex | PT: Seia, Aldeia da Serra | $40^{\circ} 24^{\prime} 51.73{ }^{\prime \prime} \mathrm{N}$ | 7041'28.11"W |
| MC36 | Verbascum simplex | PT: Aveiro, Sever do Vouga, Parada | $40^{\circ} 46^{\prime} 41.72{ }^{\prime \prime} \mathrm{N}$ | 8¹7'20.19"W |
| MC37 | Verbascum simplex | PT: Aveiro, Sever do Vouga, Pessegueiro do Vouga | $40^{\circ} 41^{\prime} 25.14{ }^{\prime \prime N}$ | $8^{\circ} 23^{\prime} 19.65{ }^{\prime \prime W}$ |
| MC73 | Verbascum sinuatum | PT: Coimbra, Carvalhais | $40^{\circ} 10^{\prime} 53.94{ }^{\prime \prime} \mathrm{N}$ | 8²6'35.26"W |
| MC31 | Verbascum sinuatum | PT: Condeixa-a-Nova, Peixeiro | $40^{\circ} 4^{\prime} 36.17{ }^{\prime \prime N}$ | 8³0'19.46"W |
| MC57 | Verbascum sinuatum | PT: Serra d'Aires e Candeeiros, caminho para a Fórnea | $39^{\circ} 33^{\prime} 58.13^{\prime \prime} \mathrm{N}$ | $8^{\circ} 47^{\prime} 55.93{ }^{\prime \prime} \mathrm{W}$ |
| MC60 | Verbascum sinuatum | PT: Serra d'Aires e Candeeiros, Casal das Pias | $39^{\circ} 33^{\prime} 57.44{ }^{\prime \prime N}$ | 8²4'46.39"W |
| ISAUTL9 | Verbascum sinuatum | PT: Lisboa | - | - |
| MNHN35 | Verbascum sinuatum | PT: Road Juromelha to Elvas | - | - |
| MC60A | Verbascum virgatum | PT: Serra d'Aires e Candeeiros, Casal das Pias | $39^{\circ} 33^{\prime} 57.44{ }^{\prime \prime N}$ | $8^{\circ} 48^{\prime} 46.39{ }^{\prime \prime W}$ |
| MNHN36 | Verbascum virgatum | PT: Road to Mourão | - | - |
| SC21 | Veronica acidifolia | PT: Coimbra, Jardim Botânico | $40^{\circ} 12^{\prime} 21.61{ }^{\prime \prime} \mathrm{N}$ | 8²5'14.36"W |
| MC25 | Veronica arvensis | PT: Coimbra, Buçaco | 40²2'30.90"N | 8²1'54.83"W |
| JL06 | Veronica arvensis | PT: Coimbra, Jardim Botânico | $40^{\circ} 12^{\prime} 23.40$ "N | 8²5'27.68"W |

APPENDICES
APPENDICES
The letters in the ID code refer either to the collector of the population (MC, Mariana Castro; SC, Silvia Castro; JL, João Loureiro; JP, Jorge Paiva; JC, Joana Costa) or to the index seminum that sent us seeds (UPT, Universidade Portucalensis; COI, Universidade de Coimbra; ISAUTL, Instituto Superior de Agronomia, Universidade Técnica de Lisboa; MNHN, Museu Nacional de História Natural).

## APPENDICES

Appendix 2. Species, chromosomes numbers and distribution of Scrophulariaceae s.l. species occurring in Portugal

| Genus | Species | Subspecies | Chromosome <br> numbers | Distribution |
| :--- | :--- | :--- | :--- | :--- |



| Scrophularia |  |  | Flora Iberica |  |
| :---: | :---: | :---: | :---: | :---: |
|  | bourgaeana |  | 42 | Port: Mi |
|  | herminii |  | 52/68 | Port: BA (DL) Mi TM |
|  | lyrata |  | 58 | Port: AAI Ag BB E R TM |
|  | auriculata | auriculata | 78/80/84/86/88 | Port: AAI Ag BA BAI BB BL DL E Mi R TM |
| Scrophularia | scorodonia |  | 58/60-80 | Port: AAI Ag BA BAI BB BL (DL) E Mi R TM |
|  | sublyrata |  | 58/60 | Port: AAI Ag BA BAI BB (DL) E Mi TM |
|  | sambucifolia | sambucifolia | 52/58 | Port: AAI Ag BAI E R |
|  | grandiflora |  | 58 | Port: BL |
|  | valdesii |  | 58 | Port: TM |
|  | peregrina |  | 36 | Port: BB E R |
|  | canina | canina | 24/26/30 | Port: AAI Ag BA BAI BB BL (DL) E Mi R TM |
|  | frutescens |  | 26 | Port: Ag BAI BB BL DL E Mi |
| Sibthorpia | europaea |  | 18 | Port: AAI Ag BA (BAI) BB BL DL E Mi TM |
|  | perefrina |  | 20 | Port: [E] |
| Verbascum | barnadesii |  | 48/55-58/62 | Port: AAI Ag (BAI) BB E R |
|  | levanticum |  | 44/48 | Port: [(BA)] [BL] |
|  | virgatum |  | 62/64/66 | Port: AAI Ag BA BAI BB BL DL E Mi R TM |
|  | simplex |  | 32 | Port: AAI Ag BA BAI BB BL DL E Mi TM |
|  | thapsus |  | 32/34/36 | Port: TM |
|  | giganteum | martinezii |  | Port: BAI |
|  | litigiosum |  | 36 | Port: Ag BAI BL (DL) |
|  | pulverulentum |  | 32 | Port: AAI BA BB BL R TM |
|  | sinuatum |  | 18/24/30 | Port: AAI Ag (BA) (BAI) BB BL (DL) E Mi R TM |
| Veronica | serpyllifolia |  | 14/16/28 | Port: AAI BA BL DL Mi TM |
|  | nevadensis |  | 14 | Port: BA |
|  | officinalis |  | 18/36 | Port: BA (BB) BL DL Mi TM |
|  | scutellata |  | 18 | Port: BA BB BL DL E Mi TM |
|  | montana |  | 18/36 | Port: BA BL Mi |
|  | chamaedrys | chamaedrys | 16/32 | Port: DI (Mi) TM |
|  | micrantha |  | 16 | Port: BA BB BL (DL) Mi R TM |
|  | arvensis |  | 16 | Port: AAI Ag BA (BAI) BB BL DL E Mi R TM |
|  | verna |  | 16 | Port: BA |
|  | triphyllos |  | 24 | Port: BA BL TM |
|  | polita |  | 14 | Port: AAI Ag (BB) BL E R TM |
|  | agrestis |  | 28 | Port: BA BL (E) (R) |
|  | persica |  | 28 | Port: AAI (Ag) (BAI) Ba BL DI E (Mi) R TM |
|  | cymbalaria |  | 36/54 | Port: AAI BAI (BB) E R |
|  | hederifolia |  | 36/54/56 | Port: AAI Ag BA BAI BB BL |

Veronica

|  |  | E R TM |  |
| :--- | :--- | :---: | :--- |
| acinifolia | $14 / 16$ | Port: AAI (Ag) BA BL DL (E) <br> R TM |  |
| peregrina | peregrina | 52 | Port: $[\mathrm{BL}][(\mathrm{DL})][\mathrm{E}][(\mathrm{Mi})][\mathrm{R}]$ |
| beccabunga | beccabunga | $16 / 28 / 36$ | Port: BA BB BL (Mi) TM |
| anagallis-aquatica | anagallis-aquatica | $34 / 35 / 36$ | Port: AAI Ag BA BAI BB BL <br> DL E R TM |
| anagalloides | anagalloides | $18 / 18+2 \mathrm{~B} / 36$ | Port: BAI BL E TM |

* First documentation in Portugal
${ }^{1}$ Chromosome numbers according to Flora Iberica (Benedí et al. 2009), to Tropicos® (http://www.tropicos.org/) and Anthos (http://www.anthos.es/) online databases and to M. Queirós printed files (available at the Department of Life Sciences, FCTUC)
${ }^{2}$ Distribution among Portuguese provinces according with Flora lberica (Benedí et al. 2009). Provinces in round brackets indicate that the information on the occurrence of a given taxon in that province was provided by a specialist and not from material analysed by the author of the revision. Provinces in square brackets indicate that the taxon is naturalized in that province. Provinces followed by a question mark indicate that the presence of the taxon in that province is uncertain. Province abbreviations: AAI, Alto Alentejo; Ag, Algarve; BA, Beira Alta; BAI, Baixo Alentejo; BB, Beira Baixa; BL, Beira Litoral; DL, Douro Litoral; E, Estremadura; Mi, Minho; R, Ribatejo; TM, Trás-os-Montes e Alto Douro.

Appendix 3. Statistical analyses on genome size estimates among the sampled species of each genera and among species from closely related genera.

| Taxa | $n$ | $\delta$ | Statistically test | $P$ |
| :--- | :---: | :--- | :--- | :---: |
| Anarrhinum spp. | 52 | 2 | $F=1.51$ | 0.320 |
| Antirrhinum spp. | 27 | 4 | $F=2.39$ | 0.081 |
| Bartsia sp., Nothobartsia sp., <br> Parentucellia sp. | 24 | 2 | $F=300.76$ | $<0.001$ |
| Digitalis spp. | 33 | 3 | $F=129.93$ | $<0.001$ |
| Linaria spp. | 72 | 8 | $F=750.99$ | $<0.001$ |
| Misopates spp. | 22 | - | $t=0.01$ | 0.991 |
| Odontite sp., Odontitella sp. | 9 | - | $t=206.23$ | $<0.001$ |
| Pedicularis spp. | 77 | 8 | $H=62.72$ | $<0.001$ |
| Scrophularia spp. | 39 | 5 | $F=374.31$ | $<0.001$ |
| Verbascum spp. | 54 | 7 | $F=1677.4$ | $<0.001$ |
| Veronica spp. | $t=3.01$ | 0.017 |  |  |

n represents the number of samples and $\delta$ the degrees of freedom. A t-test was applied to Misopates spp., Odontite sp. vs. Odontitella sp. and Pedicularis spp.; a non-parametric Kruskal-Wallis one-way ANOVA on ranks was applied to Scrophularia spp., while a one-way ANOVA was applied to the remaining taxa (for details on statistical analyses see Materials and Methods).


[^0]:    ${ }^{1}$ Nuclear DNA content established using human male leukocytes ( $2 \mathrm{C}=7.0 \mathrm{pg}$ DNA; Tiersch et al. (1989) ) as a primary reference standard.

    * Pisum sativum cv. Ctirad (Doležel et al. 1998) served as a primary reference standard, with a 2 C value of 8.76 pg as recommended by Greilhuber et al. (2006).

