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Abbreviations 
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A2A/A2AR A2A adenosine receptors 
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AR  Aldehyde reductase 

ARs  Adenosine receptors 

AUC  Area under curve 
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COMPT  Catecholamine-O-methyltransferase 

DβH  Dopamine beta-hydroxylase 

DA  Dopamine 

DHMA  3, 4- dihydroxymandelic acid 

DHPG  3, 4- dihydroxyphenylglycol 

DOPA  Dihydroxyphenylalanine 

DOPAL  3, 4-dihydroxyphenylacetaldehyde 

DOPAC  3, 4- dihydroxyphenylacetic acid 

DOPEGAL 3, 4-dihydroxyphenylglycolaldehyde 

DOPET  3, 4-dihydrophenylethanol 

EP  Epinephrine 

GPCRs  G protein-coupled receptors 

LDCVs  Large dense-core vesicles 

nAChRs  Nicotinic acetylcholine receptors 
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MHPG  3-methoxy-4-hydroxyphenylglycol 

MN  Metanephrine 

MOPEGAL 3-methoxy-4-hydroxyphenylglycolaldehyde 
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VIP  Vasoactive intestinal peptide 
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Resumo 

 

As glândulas supra-renais estão localizadas em cima de cada rim e são compostas por duas 

zonas funcionalmente distintas: a medula, ocupando uma posição central, e o córtex, na 

periferia. A medula da glândula supra-renal é constituída maioritariamente por células 

cromafins que são responsáveis pela libertação de catecolaminas (dopamina, adrenalina e 

noradrenalina) por exocitose.  

Os receptores de adenosina pertencem à superfamília de receptores acoplados à proteína G e 

são considerados quatro diferentes subtipos: A1, A2A, A2B, e A3, tendo em conta diferenças na 

estrutura molecular e perfil farmacológico. O papel dos subtipos de receptores de adenosina - 

A1, A2A, A2B, A3 – na glândula supra-renal e a sua distribuição são factos que ainda não são 

claros. Alguns estudos tentaram elucidar estes aspectos, mas muito continua ainda 

desconhecido. 

No presente trabalho foi possível localizar os receptores de adenosina A2A na medula da 

glândula supra-renal por imunohistoquímica. Foi realizada a optimização de um Sistema de 

Perfusão usando glândulas supra-renais de murganho possibilitando um estudo mais 

fisiológico da libertação de catecolaminas da glândula supra-renal de murganho. Utilizando 

este Sistema de Perfusão os resultados obtidos sugerem que o receptor de adenosina A2A tem 

efeito estimulatório na libertação de catecolaminas (adrenalina e noradrenalina) induzida pela 

nicotina na glândula supra-renal de murganho uma vez que o CGS 2160, agonista dos 

receptores de adenosina A2A, aumenta a libertação de catecolaminas mediada pela nicotina 

enquanto o SCH 58261, antagonista dos receptores de adenosina A2A inibiu  o efeito. 

 Em resumo, este estudo fornece uma nova ligação entre as células cromafins e os receptores 

de adenosina, usando o protocolo alternativo de Sistema de Perfusão. 

 

 

Palavras-chave: Glândula supra-renal, células cromafins, catecolaminas, Sistema de Perfusão, 

receptores de adenosina. 
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Abstract 

 

Adrenal glands are located above each kidney and are composed by two distinct functional 

zones, in a general classification: medulla, in a central position, and cortex, in the periphery. 

Adrenal medulla is mostly composed by chromaffin cells that are responsible for 

catecholamine release by exocytosis (dopamine, epinephrine and norepinephrine). 

Adenosine receptors belong to the superfamily of G protein-coupled receptors and four 

different subtypes of receptors are considered: A1, A2A, A2B, and A3, according to differences in 

molecular structure and pharmacological profile. The role of adenosine receptors subtypes - 

A1, A2A, A2B, A3 - in adrenal gland and their distribution are still not clear. Some studies tried to 

elucidate these aspects but a lot remains unknown.  

In the present work it was possible to localize the A2A adenosine receptors in mouse adrenal 

medulla by immunohistochemistry. It was performed the optimization of a Perfusion System 

using mouse adrenal glands leading to a more physiological study of catecholamine release by  

mouse adrenal gland. Using this Perfusion System results suggest that A2A adenosine receptor 

has  a stimulatory effect on catecholamine release (epinephrine and norepinephrine) induced 

by nicotine from mouse adrenal gland since CGS 21680, adenosine  receptors A2A agonist, 

enhances catecholamine release mediated by nicotine whereas SCH 58261, adenosine 

receptor A2A antagonist inhibited the effect.  

In summary, this study provides a new link between chromaffin cells and adenosine receptors, 

using the Perfusion System alternative protocol. 

 

 

 

Keywords: Adrenal gland, chromaffin cells, catecholamines, Perfusion System, Adenosine 

receptors. 
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1.1 The adrenal glands and chromaffin cells 

 

Adrenal glands own this name because of their location above each kidney. Two distinct 

functional zones compose these endocrine glands: medulla, in a central position, and cortex, in 

the periphery. It is also described two types of cell populations within the adrenal gland: 

adrenocortical cells that are responsible for steroid production and the chromaffin cells 

responsible for catecholamine production. Adrenal cortex and medulla are both involved in 

stress response and homeostasis maintenance [1]. 

 

Despite the adrenal cortex and the adrenal medulla are often considered separate units, 

scientific research on adrenal physiology has been largely focused on the individual 

understanding of each cell type. However, there is a coexistence of the two tissues in the same 

organ demonstrating their physiological interaction, suggesting a communication between 

medullary and adrenocortical cells in multiple contact zones; reviewed in 
[2],  [3]

. Furthermore 

there is no physical separation by connective tissue or interstitial membranes which is possibly 

contributing to an optimal function [4]. 

 

Adrenal cortex has a mesodermic origin and is responsible for production of mineralocorticoids 

and glucocorticoids. It is composed by three distinct zones: zone glomerulosa, the outer zone, 

composed of a thin region of columnar cells arranged in an accurate pattern, responsible for 

the production of the steroid hormone aldosterone; zone fasciculatas, the thickest zone 

(around 70 % of the cortex), composed of columns of secretory cells that produces 

glucocorticoids, and the zone reticularis which is also composed by polyhedral cells with a less 

linear arrangement, responsible for glucocorticoids production and in some species also 

produces small amounts of sex steroids like androgens, estrogens and progestins; reviewed in 

[5]. 

 

The adrenal medulla has structural and functional differences from adrenal cortex. In primer 

instance is derived embryologically from neural crest [6]. In the adrenal medulla, besides 

chromaffin cells, are also ganglion cells and sustentacular cells as fibroblasts and also Schwann 

cells [7, 8]
. Chromaffin cells are responsible for catecholamine release (dopamine (DA), 

epinephrine (EP) and norepinephrine (NE) and also peptides including neuropeptide Y (NPY) [9, 

10, 11]. This release of catecholamine and peptides occurs by a process of exocytosis from 

chromaffin granules described in section 1.1.4; reviewed in 
[2] .  
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Figure 1.1 - Adrenal glands. The adrenal glands are located in the upper poles of each kidney and are composed by 

two distinct functional zones: medulla, in a central position, and cortex, in the periphery of the gland. Adapted from 

http://images.yourdictionary.com/adrenal-gland. 

 

 

1.1.1 Chromaffin cells 

 

The principal secretory cells in adrenal medulla are chromaffin cells. These cells are known as 

chromaffin cells because after exposure to oxidizing agents, such as chromate, the formation 

of colored polymers of catecholamines occurs [19]. Chromaffin cells are like postganglionic 

sympathetic neurons, derived from the neural crest and so, they also are excitable cells that 

generate action potentials [6]. Chromaffin cells are specialized on the synthesis and release of 

catecholamine. The medullary cells also produce other substances besides EP and NE. Some of 

those molecules are co-released from chromaffin granules with EP and NE; reviewed in [5], [6]. 

Some of these molecules are: leu-enkephalin and met-enkephalin [12, 13], NPY [13, 14], substance P 

[15], vasoactive intestinal peptide (VIP) [16, 17], inhibitors of endogenous proteases, 

chromogranins, secretogranins, glicoproteins and opioid peptides; reviewed in 
[18]

. 

 

Splanchnic nerve activation, a cholinergic chemical synapse, stimulates chromafin cells to 

secrete EP or NE into the blood [20]; reviewed in 
[21]

. Acetylcholine binds to nicotinic and 

muscarinic receptors in chromaffin cells (reviewed in 
[21]

),  and the stimulation of nAChRs 

(nicotinic acetylcholine receptors) results in the entry of calcium (Ca2+) and sodium (Na+) from 

the extracellular medium through the ionic channel. This influx of ions causes a slight 
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membrane depolarization, which induces the opening of Na+ channels sensitive to voltage 

inducing a large depolarization of the cytoplasmic membrane. This despolarization causes the 

opening of several types of VDCCs (voltage-dependent calcium channels), with the subsequent 

entry of Ca2+, which leads to an increase of intracellular calcium that, subsequently promotes 

the translocation of chromaffin granules and consequent fusion with the plasma membrane 

for exocytosis. There is also mobilization of Ca2+ from intracellular reservoirs, favoring the 

process [22, 24]; reviewed in 
[21]. (Figure 1.2). 

 

Figure 1.2 - Catecholamine release in chromaffin cells due to nicotinc receptor activation. Due to splanchnic nerve 

activation, acetylcholine binds to nicotinic receptors in chromaffin cells. That stimulation results in the entry of 

calcium (Ca
2+

) and sodium (Na
+
) causing a slight membrane depolarization which leads to the opening of VDCCs 

(voltage-dependent calcium channels). The increase of intracellular calcium promotes chromaffin granules 

exocytosis. Based on [21, 22, 24] 

 

 

1.1.2 Catecholamine synthesis 

 

The first and also rate-limiting step in the synthesis of catecholamines is the enzymatic 

conversion of tyrosine to dihydroxyphenylalanine (DOPA) by tyrosine hydroxylase (TH), 

revealing the fundamental role of the amino acid tyrosine. DOPA is then converted by aromatic 

L-amino acid decarboxylase to dopamine. After these steps, dopamine enters the chromaffin 

granule, where it is converted to NE by dopamine beta-hydroxylase (DβH). NE leaves the 

granule to be converted into EP in the cytosol by phenylethanolamine-N-methyltransferase 

(PNMT) and then EP re-enters the granule for storage in the chromaffin granule reviewed in [25] 

(Figure 1.3). 
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Figure 1.3 - Catecholamine’s synthesis on chromaffin cell. After the enzymatic conversion of tyrosine to 

dihydroxyphenylalanine (DOPA) by tyrosine hydroxylase (TH), DOPA is then converted to dopamine that enters the 

chromaffin granule. Inside the chromaffin granule dopamine suffers the action of beta-hydroxylase, and 

norepinephrine is formed. Norepinephrine leaves the granule to be converted into epinephrine by PNMT and then 

re-enters into the chromaffin granule. Based on [25] 

 

 

1.1.3 Catecholamine metabolization 

 

Catecholamine metabolization is described in a two-step reaction (Figure 1.4). The enzymes 

involved in the first step of this reaction are monoamine oxidase (MAO), which performs the 

oxidative deamination of catecholamines with deaminated aldehydes formation and 

catecholamine-O-methyltransferase (COMPT) that performs the addition of a metil group to 

catecholamine. There are two types of MAO enzymes, MAO-A and MAO-B [26] and have 

different functions and localizations [27, 28]. In adrenal gland, MAO-A has a higher enzymatic 

activity and it is localized in peripheral chromaffin cells in the medulla, while MAO-B is 

localized in chromaffin cells in a central position of medulla [29, 30]. DA is deaminated to DOPAL 

(3, 4-dihydroxyphenylacetaldehyde) and NE and EP both originate the same aldehyde 

intermediate: DOPEGAL (3, 4-dihydroxyphenylglycolaldehyde). This two deaminated aldehyde 

metabolits of cathecolamines are short-lived intermediates of the catecholamines 

metabolization process, and so, they are converted to more stable alcohol or acid metabolites 

in the second step. DOPAL is metabolized to DOPET (3, 4-dihydrophenylethanol) by aldehyde 

reductase (AR) and DOPAC (3, 4- dihydroxyphenylacetic acid) by aldehyde dehydrogenase (AD) 
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whereas DOPEGAL is metabolized to DHPG (3, 4- dihydroxyphenylglycol) by aldehyde 

reductase (AR) and DHMA (3, 4- dihydroxymandelic acid) by aldehyde dehydrogenase (AD) [30]. 

DA is preferentially metabolized to DOPAC and NE and EP to DHPG, the acid metabolites. This 

occurs because DA and DOPAL do not have a β-hydroxyl group which favors the oxidation by 

aldehyde dehydrogenase, and that β-hydroxyl group is present in NE, EP and DOPEGAL, 

favoring in this case the action of aldehyde or aldose reductase; reviewed in 
[33]. 

Catecholamine metabolism and catecholamine synthesis occurs in the cytoplasm of the same 

cells because there is a passive leakage of catecholamine from the storage granules into 

cytoplasm in a highly dynamic state. The most considerable quantity (90 %) of catecholamine 

are sequestered by the vesicular monoamine transporter (VMT) back to storage vesicles while 

a small value is metabolized (10%), and so, under basal condition this process exceeds 

metabolization after exocytose. During the leaking of catecholamines from storage granules 

into the cytoplasm, they may suffer O-methylation by COMPT (catechol-O-methyltransferase), 

as referred below, which originates metanephrine (MN) and normetanephrine (NMN) from EP 

and NE, respectively. In humans, about 90 % of MN and 40 % of NMN results from the 

metabolism of catecholamine in chromaffin cells [31]. COMPT in these cells is mainly present in 

the membrane-bound form which is an isoform that has higher affinity to catecholamine, than 

the soluble form present in other tissues [32], reviewed in 
[33] . NMN and MN are deaminated by 

MAO into MOPEGAL (3-methoxy-4-hydroxyphenylglycolaldehyde). DHPG can also be 

converted by COMPT to MHPG (3-methoxy-4-hydroxyphenylglycol) and then to MOPEGAL by 

ADH (alcohol dehydrogenase). Because MOPEGAL is also a short-lived aldehyde intermediate, 

it can be converted to VMA (vanillylmandelic acid) in the liver that is the major end-product of 

norepinephrine and epinephrine metabolism in humans; reviewed in 
[33]. 
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a)                                                                                           b) 

 

Figure 1.4 - Pathways of catecholamine metabolization. Oxidative deamination of catecholamines (DA, NE and EP) 

to their aldehyde intermediates (DOPAL and DOPEGAL). By the action of AR (aldose or aldehyde reductase) and AD 

(aldehyde dehydrogenase) a stabilization step occurs with the formation of alcohol or acid metabolites: DOPEC, 

DOPAC, and DHPG and DHMA. b) Metabolism of norepinephrine with VMA formation. Adapted from 
[33]

 

 

 

1.1.4 The release of Catecholamine by exocytosis 

 

Chromaffin cells contain 10.000 - 20.000 chromaffin granules (large dense-core vesicles 

(LDCVs) [23]. After a stimulus catecholamines and peptides (as refereed in section 1.1.1) are 

released from chromaffin granules in a highly regulated process, so an excessive release of 

catecholamine does not occur [34, 35], reviewed in 
[36]. Chromaffin granules with NE have slight to 

moderate electron-dense content. 

The conventional exocytosis process, also called complete fusion, occurs by the merging of 

chromaffin granule membrane with the plasma membrane and so, the liberation of contents 

of the vesicles occurs followed by collapse of the vesicle and integration of its membrane into 

the plasma membrane (complete membrane distention). This means a rapid granule content 

discharge, and is therefore a quick adaptive reaction (Figure 1.5) [38] 

After a stimulus, there occur an intracellular Ca2+ rise and additionally a disorganization of the 

cytoskeleton of chromaffin cells, filamentous actin net, so the access of granules to exocytosis 
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sites is easier. When chromaffin granules are close to exocytosis sites occurs docking due to 

the formation of a complex called the soluble NSF attachment receptor (SNARE) [39]. SNARE 

proteins are central on the process of exocytosis and play a role in both docking and they are 

part of a docking complex. Synaptobrevin (v-SNARE, a vesicle-membrane associated SNARE 

protein), syntaxin, and SNAP-25 form a ternary complex, the SNARE complex that drives the 

fusion of plasma membrane and vesicle lipid bilayers allowing exocytosis of vesicle contents 

[39]. 

An alternative model to the conventional exocytosis process is “kiss and run” (Figure 1.5): in 

this process the release occurs through the formation of a reversible fusion pore, a ‘channel-

like’ protein complex that opens and closes in a partial membrane distention that enables an 

adaptive mechanism to keep up with high-frequency [40]. During the secretion process, the 

vesicle maintains its integrity without collapsing. These two processes coexist in chromaffin 

cells [38, 40]. 

The last reported process is called piecemeal degranulation (PMD) (Figure 1.5). PMD differs 

from basic exocytosis because the granules never fuse whit each other and neither with the 

plasma membrane. Granules do not open to extracellular and their structures are intact [41]. 

This is a controlled mechanism of chatecholamine discharge by discret granule deposits and 

the transfer to the cell exterior of secretory material through an outward vesicle in a small 

quantity providing a subtle modulation of hormone release [37], 
reviewed in 

[42]. With PMD there 

is a slow and chronic release of molecules from granules. PMD was identified in both types of 

cells: adrenaline- and noradrenaline-producing cells. reviewed in 
[43].   

 

 

Figure 1.5 - Mechanisms of catecholamine release by exocytosis from chromaffin ganules. Schematic approach of 

the three processes of catecholamine release. Complete fusion, that occurs by the merging of chromaffin granule 

membrane with the plasma membrane and so, exocytosis of the contents of the vesicles; “Kiss and run”, an 

alternative process where the liberation of vesicle contents occurs by formation of a reversible fusion pore that 
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opens and closes in a partial membrane distention. Piecemal degranulation, the last reported process, mechanism 

of chatecholamine discharge by discret granule deposits by small vesicles formed by chromaffin granule that keeps 

intact. Adapted from [43] 
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1.2 The adenosine receptors 

 

Adenosine is an endogenous purine nucleoside continuously formed intracellular and 

extracellular and it is present in several tissues in mammalian organisms and has an important 

role in a variety of physiological processes; reviewed in [44]. Adenosine can act on cell surface 

receptors eliciting a large number of responses and so the activation of adenosine receptors 

(ARs) can occur in response to endogenous adenosine; reviewed in [45]. Adenosine produced 

intracellular is transported out of the cell by facilitated diffusion through a specific nucleoside 

transporter protein; reviewed in [44]. If adenosine extracellular levels are high, the adenosine is 

transported into cells and is degraded to inosine by adenosine deaminase. Moreover it can 

also be phosphorylated to AMP by adenosine kinase; reviewed in [44]. 

 

ARs belong to the superfamily of G protein-coupled receptors (GPCRs) and according to 

differences in molecular structure and pharmacological profile, four different subtypes of 

receptors are considered: A1, A2A, A2B, and A3 ; reviewed in [44]. Adenosine receptors are 

composed of seven transmembrane α-helices (7TM), located in a lipidic environment, with 

approximately 25 residues of length that are connected by intra- and extracellular loops 

(surrounded by an aqueous medium) ; reviewed in [44,46]. Adenosine receptors can also be 

differentiated according to their preferred mechanism of signal transduction: the subtypes A1 

and A3 act through Gi proteins, and mediate the inhibition of adenylyl cyclase and the activity 

of several K+ and Ca2+ channels On the other hand, the A2A and A2B subtypes act through the Gs 

proteins, causing the activation of adenylyl cyclase and thus stimulating the formation of 

cAMP; reviewed in [46]. 

 

 

1.2.1 Adenosine receptors subtypes 

 

Many cell types express adenosine receptors, and the response to adenosine is individual so 

that several actions are associated to adenosine receptors. Different response patterns are 

obtained, dependent of receptor subtypes and effector molecules on the target cell. Besides 

some similarities between the subtypes, each of them seems to have some particularities and 

so different effects and functional significance in several organ tissues; reviewed in [47]. 
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A1 adenosine receptor (A1AR) is present in several tissues and it is the most abundant 

adenosine receptor subtype in the brain, present in neurons and glial cells, both pre and post-

synaptically. It is coupled to activation of K+ channels and inhibition of Ca2+ channels both of 

which would inhibit neuronal activity. A1AR is also the receptor with the highest affinity for the 

adenosine; reviewed in
 [48, 49]. A1AR plays an important role in cardiovascular system and in 

central nervous system. The A1AR activation has been reported to protect heart tissues from 

ischemia and so, selective antagonists have been used as antihypertensive. Selective 

antagonists of A1AR are also been used as diuretics, in Alzheimer’s disease and decrease of 

neuronal excitability; reviewed in [44, 46]. 

 

A2A adenosine receptors (A2AAR) are present in several tissues at high levels but only in a few 

regions of the brain; reviewed in [48]. A2AAR agonists have a great potential in cardiovascular 

diseases treatment like in hypertension, ischemic cardiomyopathy and inflammation and also 

have been proposed for the treatment of neurodegenerative diseases; reviewed in [44, 46].  

Adenosine receptors (A2BAR) have been identified in almost every cell type but appear to be 

present at higher expression levels in various parts of the intestine and the bladder; reviewed 

in [47].. Some of the functions described linked to A2B receptors: regulation of mast cell 

secretion, gene expression, cell growth, intestinal functions, and vascular tone; reviewed in [44, 

46].  

A3 adenosine (A3AR) receptors are distributed in several peripheral organs and it is the 

receptor with the lowest affinity for adenosine; reviewed in [48]. This receptor subtype is the 

less known and clarified. For the A3 receptor, it is known that the use of selective agonists may 

also have cardioprotective effects. A3AR selective antagonists may be used for the treatment 

of asthma and inflammatory conditions; reviewed in [44, 46]. 
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1.3 Adenosine receptors in adrenal gland 

 

Adenosine acts on adenosine receptors, G-protein coupled receptors, and adenosine in basal 

conditions concentration, is sufficient to activate A1, A2A e A3 receptors, if they are highly 

expressed. In the case of A2B receptors, they need higher adenosine concentrations to be 

activated; reviewed in [50]. 

Besides cholinergic stimulation by splanchnic nerve, the increase of catecholamine release by 

stress from chromaffin cells can also be controlled by hormonal, paracrine and autocrine 

mechanisms, by neuropeptides and neuromodulators. The role of adenosine receptors 

subtypes - A1, A2A, A2B, A3 - in adrenal gland and their distribution is still not clear. Some studies 

tried to elucidate some of these aspects, but a lot remain unknown. 

 

It was already described the presence of mRNA for A1, A2A, A2B and A3 receptors in rat adrenal 

cortical cells [51] and the presence of A2B in bovine adrenal medulla [52]. Results from our 

laboratory (unpublished data) also showed the presence of mRNA of adenosine receptors 

subtypes – A1, A2A – in mouse adrenal gland. 

Following the knowledge that adenosine acts on endocrine cells and immune system, 

modifying citokines release, interleukin-6 and TNF release was studied concerning the effect of 

this nucleoside. It was showed that in rat adrenal gland the effects of adenosine on the release 

of these citokines were mediated by A2A, since an antagonist of A2A receptor blocked the 

effects of adenosine. This study enabled A2A identification in rat adrenal zone glomerulosa 

cortical cells [53]. 

In bovine adrenal cells, that express a noninactivating K+ current (IAC), experiments using 

adenosine and NECA, a nonselective adenosine receptor agonist demonstrated the inhibition 

of IAC current by using agonists and antagonists of the adenosine receptors. The A1 selective 

agonist CCPA, the A2A selective agonist CGS 21680 and the A3 selective agonist IBMECA 

inhibited IAC; the specific A1 antagonist, DPCPX, the specific A2A antagonist, ZM 241385 and the 

A3 specific antagonist MRS 1191 effectively blocked the inhibition of IAC caused by receptors 

specific agonists [54]. These results also suggest the importance of adenosine receptors on K+ 

current, and thereby could be putative modulators of molecules exocytosis. 

However, the role of adenosine receptors on catecholamine release from adrenal chromaffin 

cells and which receptor is involved is still not known. Other important facts remain to be 

elucidated: the specific location and function of adenosine receptors subtypes in adrenal gland 
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and the signaling pathways of catecholamine release and synthesis associated to these 

receptors activity. 
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1.4 Aims of the present work 

 

- Define the precise location of adenosine receptors in mouse adrenal gland. 

 

- Optimization of a Perfusion System using mouse adrenal glands. 

 

- Study the role of A2A adenosine receptors on catecholamine release from mouse adrenal 

gland. 
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2 Chapter II – Materials and Methods 
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2.1 Immunohistochemistry 

 

The mice adrenal glands collected, fixed with 4 % PFA, were embedded on OCT medium, 

frozen at – 80 º C and 7 µm and 10 µm slices were obtained using a cryostat. These sections 

were kept at - 80ºC for preservation. 

For immunohistochemistry, the cryosections were dried at 37ºC, fixed again with 4% PFA for 

45 minutes and incubated in 0.1 M glycine solution, for 30 minutes. 1 % Triton X-100 was used 

for cells permeabilization during 5 min. To prevent non-specific binding, slices were incubated 

in the blocking solution [3% (w/v) fatty acid-free bovine serum albumin (BSA) and 0.2 % Tween 

20] for 1h at room temperature (RT). The slices were then incubated at 4ºC, with primary 

antibody, prepared in blocking solution: mouse anti-A2A (1:100, Sigma-Aldrich). After 

incubation, slices were washed with PBS and incubated for 1h at RT with the secondary 

antibody also prepared in blocking solution: goat anti-mouse Alexa Fluor 647 (1:200) . The final 

step was the nuclei stain with Hoechst (1µg/ml in PBS) for 5 minutes. To avoid nonspecific links 

of secondary antibodies, negative controls without primary antibodies were performed. 

After slides dry, using fluorescent mounting medium and nail polish, slides were prepared for 

visualization. Cells were visualized in a Zeiss PALM, coupled to an Axiocam HRc camera. 
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2.2 Perfusion System  

 

As animal model it was used the adult C57BL/6 female mice (10-14 weeks). After anesthesia by 

halothane inhalation, the animals were sacrificed by decapitation, which was briefly followed 

by adrenal glands removal.  Adrenal glands were immediately immersed in a cold low-calcium 

bicarbonate buffered saline (BBS) – 125 mM NaCl; 5mM KCl; 2mM CaCl2; 1 MgCl2; 26 NaHCO3; 

10 C6H12O6; 1,25 NaH2PO4 (Based on [20, 55, 57]) -  and continuously bubbled (O2/CO2) in 

holding chambers. After the extraction of surrounding fatty tissue, each adrenal gland was 

embedded in agar 2.5% in gelling point. Each agar block containing a gland, was cut 

approximated into a cube and glued to a stone block, possible to stow and immobilize in the 

slicing chamber of the vibratome. Slices of 250 μM were obtained, surrounded agar was 

removed, and the slices were kept in holding chambers containing the already described BBS 

solution at room temperature (RT). The slices of each gland were transferred to different 

chambers of the perfusion system. The perfusion system was continuously pumped with 

Krebs1 solution; in a diffusion rate of 0.7 ml/min. Slices were perfused during 45 minutes with 

Krebs solution at 37 ° C to stabilize the slices in the new environment. Fractions were collected 

each minute. Several stimuli with adenosine agonists were applied in the same rate, during 

different periods of times. To test the effect of the A2A receptor antagonist, this drug was 

applied 20 minutes period of pre-incubation. The fraction corresponding to each minute was 

collected to a different tube containing perchloric acid (HClO4 0.4 M) in order to avoid 

catecholamines degradation. The tubes were maintained in ice during the experience and 

preserved at – 80 º C. 

                                                
1
Krebs: 111 mM NaCl; 2.5 mM CaCl2; 4.7 mM KCl; 1.2 mM MgSO4; 1.2 mM KH2PO4; 24.8 mM NaHCO3; 11.1 mM glucose; 15 mM HEPES; pH 

7.4 
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Figure 2.1 - First part of the protocol of Perfusion System and components. A- Adrenal glands after removal were 

kept in cold holding chambers; B- extraction of surrounding fatty tissue of adrenal glands; C- slicing chamber of the 

vibratome; D- vibratome; E and F- agar removal; G- holding chambers with slices at room temperature (RT), after 

vibratome cut; H- Perfusion System; I-  Perfusion System chamber 
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Figure 2.2 - Perfusion System during an experience. A- A full image of Perfusion System; B- A close view of 

perfusion chambers  
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2.3 Catecholamine assay by HPLC with electrochemical detection  

 

The assay of catecholamines (NE and EP) was performed by electrochemical detection using 

HPLC. A portion of the total contents of each tube collected from the perfusion system, and 

also the intracellular (obtained by sonication) perfusion were injected directly into the HPLC.  

The assay of EP and NE was carried out by HPLC “High performance liquid chromatography” 

with electrochemical detection. In this oxidation-reduction reaction, catecholamines are 

converted into quinones, by generating an electric current that is directly proportional to the 

amount of catecholamines present in the sample or standard. The energy required to initiate 

or increase this electrochemical reaction is given by the potential difference between the 

reference electrode and working electrode of the electrochemical detector. Around 120 μL of 

all the samples were injected directly into the HPLC. 

 

Catecholamines eluted in the mobile phase2 were separated by chromatography using an 

octadecylsilane column of 4 mM, 75 mm/ 4 mm (Merck Supersphere 100 RP18) and HPLC 

Gilson 234 connected to an electrochemical detector (ESA Coulochem II model 5200). This 

technique is based on a redox reaction that occurs on working electrode of electrochemical 

detector. In this system, the sample was initially subject to a potential of +300 mV in 

conditioning cell, after in the first electrode of the analytical cell to a potential +600 mV and 

finally, a second electrode of analytical cell at a potential of -600 mV. These potential 

differences have reduced catecholamines. The signal resulting from this reduction, after 

amplification, was broadcast to a computer with chromatography software and the analysis 

was performed (UniPoint Version 5.11). The identification and calibration of the peaks 

obtained in the chromatograms was made with known amounts of EP and NP with the limit of 

detection was 0.125 pmol. 

 

                                                
2

Mobile Phase: 50 mM sodium phosphate, 50 mM sodium acetate, 0.5 mM SDS, 0.4 mM EDTA, 12% acetonitrile, pH=3.2  
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3 Chapter III – Results 
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3.1 Optimization of a Perfusion System of mouse adrenal gland slices 

 

The perfusion system of mouse adrenal glands is a protocol for catecholamine analysis that 

was established for the first time in our laboratory, which required experimental optimizations 

that are described in this section with some detail. 

 

 

3.1.1 Optimization of adrenal slices 

 

The development of perfusion system experience requires the optimization of two important 

details: the complete removal of surrounding adipose tissue and the determination of correct 

agar concentration, 2.5% (values between 2-3%). The removal of surrounding adipose tissue 

was an important step to take in account before the immersion in agar because when the 

adipose tissue was not completely removed, the remaining fatty tissue around the gland 

induced the detachment of adrenal gland from the agar (data not shown) and was not possible 

to obtain the adrenal slices in the vibratome. 

The optimization of the agar concentration was another important point to obtain adrenal 

slices. 2.5 % of agar was the optimal concentration to obtain the adrenal slices. 

The combination of these two important key points, the adipose tissue removal and the agar 

concentration, made possible to obtain adrenal gland in a conserved way so that experimental 

protocol could be correctly continued. 

 

Another relevant aspect in the optimization of the Perfusion System was the thickness of 

mouse adrenal gland slices. Several experiments were performed with slices of different 

thicknesses: 100, 250 and 500 µm (Table 1). Adrenal gland slices of 100 µm were fragile and 

some of them shown an apparent loss of adrenal gland integrity. It seemed that especially 

adrenal medulla had lost consistency and appeared to get fragmented. And the experiments of 

perfusion with these slices we were able to detect a basal catecholamine release by HPLC with 

electrochemical detection. However, when slices were perfused with the addition of a solution 

containing a stimulating compound, it was not possible to see any catecholamine release from 

adrenal slices. 

The 500 µm slices kept their morphology integrity, but analysis by HPLC-ED revealed the same 

profile of catecholamine release of 100 µm slices: basal catecholamine release was possible to 
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detect, but stimulated catecholamine release, using some compound that is known to increase 

catecholamine release, it was not possible to observe any catecholamine release. 

Mouse adrenal slices with 250 µm of thickness had a conserved appearance of cortex and 

medulla and so the integrity was maintained. In this case was even possible to obtain a 

considerable number of slices, this number depending on adrenal gland position on agar. 

HPLC-ED analysis revealed that only in this case and was possible to detect basal and 

stimulated catecholamine release. All these results are summarized on Table 1. According to 

these results, all subsequent experiments were performed with 250 µm adrenal slices. 

 

Table 1 - Appearance of mouse adrenal gland slices and profile of catecholamine release: basal or stimulated (this 

two parameters by HPLC-ED analysis), according to different thicknesses, 100, 250 and 500 µm. 

Slices thickness 

(µm) 

Slices appearance Basal 

catecholamine release 

Stimulated catecholamine 

release 

 

100 

 

 
Lost of integrity 

 
Detectable 

 
No response 

 

250 

 

 
Integrity maintenance 

 
Detectable 

 
Detectable 

 

500 or more 

 

 
Integrity maintenance 

 
Detectable 

 
No response 

 

 

3.1.2 Optimization of the Perfusion System protocol 

 

For the optimization of catecholamine release stimulus of slices from mouse adrenal gland, 

several perfusion system experiences were performed to define the protocol model: the best 

stimulus (positive control), duration of stimulus and best conditions for basal catecholamine 

release. All experiences were then performed obeying to the same profile, illustrated in Figure 

3.1. 
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Figure 3.1 - Profile of catecholamine release after two stimuli. Percentage of catecholamine release 

(norepinephrine and epinephrine) induced by two different stimuli over time. a, c and e corresponds to basal 

fractions, obtained by perfusion of adrenal slices with a Krebs solution; b and d correspond to two different time 

stimuli application. 

 

In the Perfusion System, mouse adrenal gland slices were placed in perfusion chambers and 

cells were maintained with the Krebs solution for 45 minutes to obtain stability recovery; all 

experiments were performed according to the same experimental protocol, as represented in 

the image (Figure 3.1). Slices were being perfused with Krebs solution during a period of time 

between 5 and 10 minutes (a). After this time, the first stimulus was applied to the slices, 

during 5, 10 or 30min, according to the experience that was being analyzed (b). Next, 

chambers were perfused with Krebs solution again, so that the slices recover from the first 

stimulus (c), and after a variable period of time, another stimulus was applied (d). This second 

stimulus could be the same or different stimulus compared to the first. When the application 

of the second stimulus finished, mouse adrenal gland slices were perfused again with Krebs 

solution in order to decrease catecholamine release to basal catecholamine levels (e). The 

values of area under curve (AUC) where then calculated, for both NE and EP curves. 
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3.1.2.1 Catecholamine release induced by KCl 

 

The potassium chloride is a well know compound that induce catecholamine release from 

chromaffin cells [60]. So, the first experiment for the optimization of the stimulus that induce 

catecholamine release from mouse adrenal gland slices catecholamine release was the KCl, 

50mM, during 10 minutes. KCl caused a large increase on catecholamine release (Figure 2), 

however, after this huge catecholamine release, catecholamine levels did not return to basal 

values (Figure 3.2). 
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Figure 3.2 - KCl (50 mM) increases catecholamine release (norepinephrine and epinephrine). Catecholamine 

release (EP and NE) is expressed as the percentage of catecholamine release compared to total catecholamine slice 

content. Catecholamine release was quantified using HPLC-ED, as described in section 2. 

 

 

3.1.2.2 Catecholamine release induced by Interleukin-1ß 

 

Interleukin-1 ß (10ng/mL)is known to increase catecholamines release from human and mouse 

chromaffin cells in culture [61, 62].The perfusion with IL-1 ß for 5 or 10 minutes did not change 

catecholamine release from mouse adrenal slices (Figure 3.3). 
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Figure 3.3 - Catecholamine release (norepinephrine and epinephrine) induced by IL-1 ß .Catecholamine release (EP 

and NE) is expressed as the percentage of catecholamine release compared to total catecholamine slice content. 

Catecholamine release was quantified using HPLC-ED, as described in section 2.  

 

 

3.1.2.3 Catecholamine release induced by Nicotine 

 

Using the same protocol, basal catecholamine levels were collected, and nicotine stimulus was 

applied in the concentration of 1 mM during 10 minutes. Nicotine (1mM) increased 

catecholamine release, compared to basal release. After 12 minutes (approximately), 

catecholamine release returned to the basal values (Figure 3.4) [59]. 
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Figure 3.4 - Nicotine 1 mM increases catecholamine release (norepinephrine and epinephrine). Catecholamine 

release (EP and NE) is expressed as the percentage of catecholamine release compared to intracellular content. 

Catecholamine release was quantified using HPLC-ED, as described in section 2. (n=3-6) 
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Lower concentrations of nicotine were also tested: 100 µM, 250 µM and 500 µM.  

Nicotine 100 µM did not induced an increase on catecholamine ne release (Figure 3.5). 
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Figure 3.5 - Catecholamine release (norepinephrine and epinephrine) induced by Nicotine 100 µM. Catecholamine 

release (EP and NE) is expressed as the percentage of catecholamine release compared to intracellular content. 

Catecholamine release was quantified using HPLC-ED, as described in section 2. 

 

After these experiments, was possible to define the interval of nicotine concentration where 

that is a visible response and an effective increase in catecholamine release: 250 µM – 1mM 

(Figure 3.6). Several experiments were performed with different concentrations of nicotine, 

250 µM, 500 µM and 1mM, and it was possible to compare the different profiles of 

catecholamine release using higher or smaller concentrations. Both in EP and NE, nicotine 

1mM caused a higher response but with a faster decrease when compared with nicotine 

500µM and 250µM, that have a larger response, but not so high (Figure 3.6 a) and b)). AUC of 

all the experiences with different concentrations of nicotine where determined, and made 

possible to observe that nicotine 1mM causes an higher catecholamine release, while nicotine 

500 µM and 250 µM have smaller and similar values. 
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Figure 3.6 - Catecholamine release, epinephrine (a) and norepinephrine (b), induced by Nicotine 250 µM, 500 µM 

and 1mM. Catecholamine release (EP an NE) is expressed as the percentage of catecholamine release compared to 

intracellular content. Catecholamine release was quantified using HPLC-ED, as described in section 2. 

(c)Catecholamine release (EP and NE) induced by Nicotine 250 µM, 500 µM and 1mM calculated by AUC, as 

described above in this section in figure 3.1. (n=3-6) 

 

 

3.1.2.4 The effect of two stimuli in catecholamine release  

 

Another important aspect in the optimization of catecholamine release stimulus, was to 

observe if a response occurs when the application of two stimuli, in different times. In previous 

experiments, using Nicotine 1mM, it was possible to conclude that after the first response of 

chromaffin cells, enhancing cathecolamine release after the first stimulus, it was impossible to 

obtain a second response using an equal second stimulus. Some experiments using A2A 

receptor agonist CGS 21680 (300nM) did not increase the catecholamine release. However, 

when the firs stimulus applied was CGS 21680, known to cause no effect that was response to 

the second stimulus, in this case Nicotine 1mM.  

According to these results it was only possible to obtain only one response to one effective 

stimulus, and that response (catecholamine release) is independent of the time tested 

(maximum 90 minutes). 
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Figure 3.7 - Percentage of catecholamine release (norepinephrine and epinephrine) over time induced by two 

Nicotine 1mM stimuli (a), two CGS 300 nM stimuli (b) and a stimulus of CGS followed by one of Nicotine 1mM (c). 

Catecholamine release (epinephrine and norepinephrine) induced by two Nicotine 1mM stimuli (a), two CGS 300 

nM stimuli (b) and a stimulus of CGS followed by one of Nicotine 1mM (c). Catecholamine release (NA and AD) is 

expressed as the percentage of catecholamine release compared to intracellular content. Catecholamine release 

was quantified using HPLC-ED, as described in section 2.  
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3.2 Immunohistochemistry of mouse adrenal glands 

 

By immunohistochemistry it was possible to identify the precise location of adenosine 

receptors in the medulla of mouse adrenal gland. 

    

 

Figure 3.8 - Adenosine receptors A2A are located in adrenal gland medulla. Representative images of A2A adenosine 

receptors (red) in mouse adrenal gland. Cortex cells have autofluoresence (green), which leads to an easy 

vizualization of adrenal cortex and medulla. Nuclei were labeled with Hoechst. 
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3.3 Role of adenosine receptors on catecholamine release from mouse 

adrenal gland 

 

 

3.3.1 Effect of A2A receptor agonist and antagonist on catecholamine release 

induced by Nicotine 500 μM 

 

To test the effect of A2A adenosine receptor in catecholamine release from mouse adrenal 

gland, the perfusion protocol was developed using A2A receptor agonist, CGS 21680 (300nM) 

and A2A antagonist, SCH 58261 (500 nM). Their effects were studied on basal catecholamine 

release and on catecholamine release induced by nicotine. 

. CGS and SCH alone did not change basal catecholamine release compared to basal values 

(data not shown). 

It was possible to observe that CGS 21680 (300 nM) increases catecholamine release induced 

by Nicotine 500 μM and with SCH 58261 (500nM) it was possible to observe a decrease of 

catecholamine release, when compared with nicotine 500 μM (Figure 3.9). 

These effects, analyzed by several experiments, are also studied/compared in total percentage 

of catecholamine release and in the amplitude of the stimulus, calculated by the difference 

between the peak and the baseline (Figure 3.9 c and d). 

 

a) 

Epinephrine

2 4 6 8 10 12 14 16 18 20 22 24 26
0.0

0.2

0.4

0.6

0.8
Nicotine 500uM

Nic 500uM + CGS

Nic 500uM + CGS + SCH

Time (min)

%
 c

a
te

c
h

o
la

m
in

e
 r

e
le

a
s

e

 



Role of A2A adenosine receptors on catecholamine release from mouse adrenal gland using a Perfusion System 

Fábia Vicente 40

b) 

Norepinephrine

2 4 6 8 10 12 14 16 18 20 22 24 26
0.0

0.2

0.4

0.6
Nicotine 500uM

Nic 500uM + CGS

Nic 500uM + CGS + SCH

Time (min)

%
 c

a
te

c
h

o
la

m
in

e
 r

e
le

a
s

e

(A
U

C
)

 
c) 

Nicotine 500uM Nic 500uM + CGS Nic 500uM + CGS + SCH 
0

1

2

3
Norepinephrine

Epinephrine

%
 c

a
te

c
h

o
la

m
in

e
 r

e
le

a
s

e

(A
U

C
)

 
d) 

Nicotine 500uM Nic 500uM + CGS Nic 500uM + CGS + SCH
0.0

0.1

0.2

0.3

0.4

0.5
Norepinephrine

Epinephrine

P
e

a
k

 -
 B

a
s

e
li

n
e

 

Figure 3.9 - Catecholamine release induced by A2A activation in the presence of Nicotine. Catecholamine release 

induced by Nicotine 500 μM, Nicotine 500 μM + CGS 300nM, Nicotine 500μM + CGS 300nM + SCH 500nM of 

epinephrine and norepinephrine (a ,b). Catecholamine release (EP and NE) is expressed as the percentage of 

catecholamine release compared to intracellular content. Catecholamine release was quantified using HPLC-ED, as 

described in section 2; Calculated by area under curve (AUC), as described above in this section (c); Difference 

between peak of catecholamine release and baseline (d) (n = 3 – 6). 
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3.3.2 Effect of CGS and SCH on catecholamine release induced by Nicotine 1 

mM 

 

The perfusion protocol was also developed to study the effects of A2A agonist, CGS 21680 

(300nM) and A2A antagonist, SCH 58261 (500 nM) on catecholamine release from mouse 

adrenal gland, mediated by nicotine 1 mM.  

Using nicotine 1mM, the effect of CGS 21680, enhancing catecholamine release was not visible 

in EP and NE levels, however SCH 58261 (500 nM) seems to decrease catecholamine release 

values, compared with nicotine 1mM and nicotine 1mM and CGS. 
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Figure 3.10 - Catecholamine release induced by A2A activation in the presence of Nicotine. Catecholamine release 

induced by Nicotine 1mM, Nicotine 1mM + CGS 300nM, Nicotine 1mM + CGS 300nM + SCH 500nM of epinephrine 

and norepinephrine (a ,b). Catecholamine release (EP and NE) is expressed as the percentage of catecholamine 

release compared to intracellular content. Catecholamine release was quantified using HPLC-ED, as described in 

section 2; Calculated by area under curve (AUC), as described above in this section (c); Difference between peak of 

catecholamine release and baseline (d) (n = 3 – 6). 
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Chapter IV – Discussion 
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Optimization of a Perfusion System using mouse adrenal glands 

 

The Perfusion System used in the present work was optimized in order to perform 

catecholamine release experiments from mouse adrenal gland. The two first general 

conditions optimized were the removal of adipose tissue and agar concentration. These are 

two significant details of the protocol that were determinant to obtain adrenal slices with 

functional chromaffin cells. 

Mouse adrenal glands when collected are surrounded by adipose tissue that needs to be 

carefully removed; otherwise when adrenal glands are placed in the cut chamber of vibratome, 

loss of gland slices integrity occurs.  

To use the vibratome, adrenal gland needs to be immobilized in order that the blade cuts slices 

with the desired thickness. For that purpose, agar in gelling point was used to immerse the 

gland that after solidification was able to sustain the gland and obtain intact slices. Some 

concentrations were tested based in what was described by others [20, 55, 57] and the agar 

concentration defined and used in this protocol was 2.5 %. In fact, after agar solidification a 

fairly dense cube was obtained and when placed in cut chamber was able to sustain the gland 

to obtain slices. With other concentrations tested (below 2.5 %), the agar was not able to 

sustain correctly the gland. 

The other condition optimized was the adrenal slices thickness. The ideal adrenal slices 

thickness should guaranty that most cells of the tissue are functional and enable the drugs 

solutions to reach almost all cells. As can be seen in Table 1 of Chapter III, only the slices with 

250 µm of thickness may have enough functional chromaffin cells that were able to release 

detectable basal catecholamines and respond to stimuli. Slices of 100 µm of thickness may 

have too many deteriorated cells, induced by blade cut, that do not allow that they respond to 

stimuli. The slices with 500 µm, although maintained apparent slice integrity did not respond 

to stimuli, maybe because sometimes these thickness slices correspond to cutting the gland 

into two parts which may difficult the access of stimuli to inner chromaffin cells. All these 

protocol adaptations were based in what was described [20, 55, 56, 58] in studies with adrenal 

glands slices for different purposes. 

 

To design the appropriate protocol of Perfusion System, a template for the optimization of 

catecholamine release stimuli was tested. The experiences were performed using several 

durations and different stimuli in order to define the protocol parameters. As can be seen in 

Figure 3.1 of Chapter III a template for the analysis of catecholamine release during time was 
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optimized, according to stimulus application and slices recovery, after several optimization 

experiences. 

KCl induces depolarization that will induce high levels of catecholamine release from 

chromaffin cells [60]. Using mouse adrenal slices in perfusion system, KCl (50 mM) induced a 

high increase on catecholamine release that did not return to basal levels, at least during the 

time analyzed, as it was expected.  

In our laboratory, we showed that IL-1 β (10 ng/ml, 10 min) increased catecholamine release 

from isolated human and mice chromaffin cells in culture [61]. These results indicated that IL-1 

β was also a suitable to be used in the Perfusion System to evaluate catecholamine release 

from mouse adrenal slices. However, in the present work the IL-1 β (10ng/mL) did not 

stimulate catecholamine release from mouse adrenal slices. More studies are needed to 

understand this lack of stimulatory effect of IL-1β. 

 

Several concentrations of nicotine were used to stimulate catecholamine release from mouse 

adrenal slices, since nicotine is known for stimulate this process: 1 mM, 500 µM, 250 µM and 

100 µM. Nicotine 100 µM increases catecholamine release from isolated human and mice 

chromaffin cells [62, 63]. However, nicotine 100 µM did not stimulate catecholamine release 

from adrenal slices in the perfusion system.  A possible explanation for the lack of effect of this 

concentration could be the access of nicotine to chromaffin cells. Using higher concentration 

of nicotine (1 mM, 500 µM, 250 µM) it was possible to observe a significant increase on 

catecholamine release from mouse adrenal gland slices, when compared with basal levels. 

Nicotine 1 mM caused a higher stimulation of catecholamine release, as expected. A possible 

explanation for these results is the access of nicotine to all cells of the adrenal slices. Probably 

only higher concentrations of this drug are able to stimulate all the nicotinic receptors.  

 

Another important aspect that was analyzed, was the possibility of perform the application of 

two stimuli (different or not) to the adrenal slices placed in the same perfusion chamber. That 

would be useful to use one the first stimulus as control in the same group of slices. However, 

as showed in the results section, after a first effective stimulus (nicotine 1 mM) on chromaffin 

cells a second stimulus did not increase catecholamine release. When the first drug application 

did not increase catecholamine release (CGS 21680 in this case), a second effective stimulus 

(nicotine 1mM) increased catecholamine release. In the perfusion system used, it was possible 

to use only one stimulus, independently of the time tested between the two drugs application 

(90 minutes). After an effective stimulus, it is possible that chromaffin cells had release a 

significant amount of catecholamine, and so, chromaffin cells will not be able to respond to a 
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second effective stimulus. Another hypothesis, is that may occur a desensitization of the 

receptors, in this case, nicotinic receptors and that explain the detection of only the basal 

levels of catecholamine release [64]. 

 

Based in the results achieved, it is possible to enunciate some advantages and disadvantages 

of this Perfusion System to study the release of catecholamine from adrenal gland slices. 

Using the protocol of Perfusion System with adrenal slices, contrary to cell cultures, a 

considerable less quantity of animals are used. In this case a single animal can be used at least 

for two experimental different conditions. Another very important aspect is that, with slices, 

the adrenal gland structure is maintained, the interactions between cortex and medulla still 

almost intact and so, this protocol came much closer to the physiological conditions.   

However, like was already said, the protocol still needs several optimizations. There still are 

some disadvantages of the Perfusion System: the concentrations of the several compounds 

used were very high, which lead to specificity questions, namely of nicotine and A2A agonist 

and antagonist. Because it is impossible to apply two stimuli in the same perfusion chamber 

with the slices, that makes impossible to have a correct positive control and that leads also to a 

great variability between experiences. 

 

 



Role of A2A adenosine receptors on catecholamine release from mouse adrenal gland using a Perfusion System 

Fábia Vicente 47

Role of adenosine receptor A2A in catecholamine release from mouse 

adrenal glands 

 

It was already known from results of our laboratory (unpublished data) and by others that 

mRNA for adenosine receptors subtypes – A1, A2A – was present in mouse adrenal gland, 

besides some studies of other authors. (See Chapter I- Section 1.3)  

 

By immunohistochemistry of adrenal gland slices obtained by cryostat, it was possible to 

identify the exact location of A2A adenosine receptors. Since cortical cells have intrinsic 

autofluorescence (green), it was possible to define the location of mouse adrenal cortex and 

medulla. It was shown that A2AARs are located only in the adrenal medulla and not in the 

adrenal cortex. Next experiments were performed analyzing A2AARs, since they are located in 

adrenal medulla, where chromaffin cells are.  

 

The role of adenosine receptors in catecholamine release is still not known. In this work, using 

the established Perfusion System, we studied the effect of agonist and antagonist of the A2A 

receptor – CGS 21680 and SCH 58261, respectively – on catecholamine release from mouse 

adrenal slices.  

It was possible to observe that the A2A receptor agonist (CGS 21680) had no effect on 

catecholamine release from slice adrenal chromaffin cell. These results could indicate that A2A 

activation had no role on catecholamine release. However, when adrenal glands slices were 

incubated with nicotine 500 µM in the presence of CGS 21680 300 nM, it was possible to 

observe an increase of catecholamine compared to nicotine alone. Moreover, the A2A receptor 

antagonist (SCH 58261) decreases catecholamine release induced by nicotine. These results 

indicate that A2A receptors may modulate catecholamine release induced by nicotine.  

 

When adrenal slices were incubated with nicotine 1mM, the A2A receptor agonist did not 

increase catecholamine release, unlike the effect mediated by nicotine 500 µM. When is 

applied additionally the A2A receptor antagonist, a lower catecholamine release was observed, 

compared to nicotine was observed. The analysis of the difference between the peak of 

catecholamine release and the baseline values showed a decrease of catecholamine release 

with the agonist and the antagonist of A2A. 
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The absence of an increase of catecholamine release in the presence of nicotine 1 mM might 

indicate that cells have released a high amount of catecholamine that, when an extra stimulus 

is added it is not possible to observe any change on catecholamine release. However, the fact 

that the selective antagonist inhibits this stimulatory effect indicates the specificity of A2A 

activation on modulation of catecholamine release. 

Another hypothesis is the receptor type and morphology: nicotinic receptors are ionotropic 

receptors, directly linked with ion channels, and so, their activation in adrenal chromaffin cells 

may be quick and causing a fast membrane depolarization and an observable response.  

 

It is possible to achieve a main conclusion of this part of the study: A2AAR appears to have a 

stimulatory effect on catecholamine release induced by nicotine from mouse adrenal gland, in 

concordance with other results from our lab (unpublished data) with chromaffin cells primary 

cultures.  
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Chapter V – Main Conclusions 
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The elaboration of this project allows defining some main conclusions: 

 

- Perfusion system protocol and several conditions were optimized leading to a new and 

more physiological approach in studies with mouse adrenal gland. 

- Based on the previous knowledge of A2AAR presence in mouse adrenal gland, this 

receptor was identified in mouse adrenal gland medulla (chromaffin cells) by 

immunohistochemistry. 

 

 

A2AAR appears to have a modulator role on catecholamine release induced by nicotine. 
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