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Resumo  

 

Diversas evidências experimentais têm sugerido que a plasticidade sináptica desempenha um 

papel importante na formação de memórias e na aprendizagem. A via de sinalização da Ras é um 

elemento importante em muitas formas de plasticidade sináptica, incluindo a potenciação sináptica de 

longa duração (LTP) e a morfogénese das espículas dendríticas. Em consonância com a função da Ras 

na plasticidade sináptica, muitas doenças mentais que causam défices de aprendizagem estão 

associadas com o funcionamento anormal desta via de sinalização. A Neurofibromatose Tipo I (NF1) é 

uma dessas doenças, sendo causada por mutações que resultam na perda de função do gene Nf1, que 

codifica a neurofibromina, uma proteína inactivadora da Ras. Entre outros sintomas, 40 a 60% dos 

pacientes têm problemas de aprendizagem e memória. Apesar de já ter sido demonstrado que a 

neurofibromina está presente nas espículas dendríticas dos neurónios do hipocampo, a função da 

neurofibromina nas espículas dendríticas ainda não está bem estudada.  

Neste trabalho, investigámos o papel da neurofibromina na estabilidade de longa duração das 

espículas dendríticas, e a contribuição da Ras neste processo. A diminuição da expressão proteica da 

neurofibromina com “short-hairpin RNA” (NF1 shRNA) reduziu a densidade das espículas dendríticas 

nos neurónios piramidais da região CA1, em culturas organotípicas do hipocampo, sem perturbar outros 

aspectos da morfologia das espículas dendríticas. Este fenótipo resultou de um mecanismo dependente 

da sinalização pela Ras, uma vez que a co-expressão do domínio GAP (GRD; domínio inactivador da 

Ras) da neurofibromina juntamente com NF1 shRNA foi suficiente para restaurar a densidade normal de 

espículas dendríticas. Este fenótipo depende ainda da actividade neuronal, uma vez que não foi 

observada qualquer alteração na densidade das espículas quando a actividade neuronal foi suprimida 

nas preparações. O NF1 shRNA também diminuiu a frequência das “mini excitatory post-sinaptic 

currents” (mEPSCs), sugerindo que a neurofibromina é necessária para a manutenção da função 

normal das sinapses excitatórias. 

A manutenção da densidade normal de espículas dendríticas depende também da existência de 

mecanismos de plasticidade estrutural. Para determinar se a neurofibromina é necessária para a 
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plasticidade estrutural das espículas dendríticas, analisámos o crescimento das espículas dendríticas 

associado com a LTP em neurónios onde a expressão proteica da neurofibromina foi reduzida com 

shRNA. Nestes ensaios, foi utilizada a estimulação “two-photon glutamate uncaging” numa única 

espícula dendrítica, um protocolo que induz um crescimento prolongado (~ 1 hora) das espículas 

dendríticas. Na presença do NF1 shRNA, este protocolo de estimulação induziu um efeito muito 

transitório no crescimento das espículas dendríticas. Este fenótipo foi abolido aquando da co-expressão 

do domínio GRD da neurofibromina, sugerindo a contribuição da sinalização pela Ras. A incubação da 

preparação com Mg
2+

 aboliu o fenótipo observado após a remoção de neurofibromina, indicando que o 

efeito desta proteína na plasticidade estrutural das espículas dendríticas é dependente da actividade 

neuronal.  

Para investigar se a neurofibromina regula a actividade da Ras em espículas dendríticas 

durante a plasticidade estrutural, monitorizou-se a actividade da Ras em espículas dendríticas 

estimuladas de modo a exibirem plasticidade estrutural, e a actividade da neurofibromina foi manipulada 

usando NF1 shRNA. Nestes ensaios, a actividade da Ras foi medida utilizando a “fluorescence lifetime 

imaging” (FLIM) e a estimulação das espículas foi efectuada através de “two-photon glutamate 

uncaging”. Observou-se que o declínio da activação da Ras foi muito mais lento em neurónios que 

expressavam NF1 shRNA. Pelo contrário, a sobre-expressão do domínio GRD da neurofibromina 

resultou num decréscimo da actividade basal da Ras, acompanhado por uma redução do pico da 

actividade durante a fase transitória da plasticidade estrutural, e acelerou a inactivação da Ras na 

resposta à estimulação de uma única espícula dendrítica. Estes resultados sugerem que a 

neurofibromina é uma das principais RasGAPs nas espículas dendríticas dos neurónios piramidais da 

região CA1 do hipocampo. 

No seu conjunto, a menor densidade de espículas dendríticas, a redução da plasticidade 

estrutural e a activação persistente da Ras nos neurónios com baixos níveis de expressão proteica de 

neurofibromina sugerem que esta proteína desempenha um papel importante na região pós-sináptica 

no hipocampo. Estes resultados podem explicar, pelo menos em parte, os défices cognitivos 

observados nos pacientes com NF1 e no modelo animal de NF1, assim como a redução na plasticidade 
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sináptica observada no modelo animal de NF1. Além disso, o facto de os fenótipos observados nas 

espículas dendríticas serem abolidos quando a actividade da Ras é suprimida indica que a regulação 

rigorosa da via de sinalização da Ras é essencial para a estabilidade das espículas dendríticas e para a 

plasticidade estrutural, e poderá estar relacionada com o papel da neurofibromina na plasticidade 

sináptica, aprendizagem e memória. Por último, neste trabalho identificámos, pela primeira vez, uma 

proteína (neurofibromina) que actua como uma RasGAP nas espículas dendríticas e expandimos o 

conhecimento actual sobre a função da neurofibomina no cérebro. 
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Abstract 

 

Synaptic plasticity is thought to underlie learning and memory formation. The Ras pathway plays 

critical roles in many forms of synaptic plasticity, including long-term potentiation (LTP) and 

morphogenesis of dendritic spines. Consistent with the important roles of Ras in synaptic plasticity, 

many mental diseases that cause learning deficits are associated with abnormal Ras signaling. 

Neurofibromatosis Type I (NF1) is one of such diseases, being caused by loss-of-function mutations of 

the Nf1 gene, which encodes neurofibromin, a Ras inactivator protein. Among other symptoms, 40-60% 

of the patients show learning and memory disabilities. While it has been shown that neurofibromin is 

localized in dendritic spines of hippocampal neurons, the function of neurofibromin in dendritic spines is 

not well understood.  

Here, we show that neurofibromin-dependent Ras regulation has an important role in the long-

term stability of dendritic spines. We found that downregulation of neurofibromin by short-hairpin RNA 

(NF1 shRNA) decreased the density of dendritic spines in CA1 pyramidal neurons, in organotypic slice 

cultures of the hippocampus, leaving other aspects of spine morphology unaffected. This phenotype was 

Ras-dependent, since co-expression of the GAP-related domain (GRD; Ras inactivator domain) of 

neurofibromin together with NF1 shRNA was sufficient to restore the normal spine density. Additionally, 

this phenotype was activity-dependent: when neurons were cultured under suppressed neuronal activity, 

NF1 shRNA did not decrease the spine density. NF1 shRNA also decreased the frequency of mini 

excitatory postsynaptic currents (mEPSCs), suggesting that neurofibromin is required for the 

maintenance of normal function of excitatory synapses. 

Normal spine structural plasticity is required to maintain spine density. To examine if 

neurofibromin is required for normal spine structural plasticity, we imaged spine enlargement associated 

with LTP in neurons in which neurofibromin was downregulated with shRNA. Previous studies showed 

that two-photon glutamate uncaging at single dendritic spines causes long-lasting (~ 1 hour) 

enlargement of dendritic spines. We found that dendritic spines of neurons expressing NF1 shRNA 

display a transient enlargement following stimulation, which decays rapidly. This phenotype was rescued 
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when co-expressing the GRD domain of neurofibromin, suggesting that it is a consequence of increased 

Ras signaling. Also, incubation with Mg
2+

 abolished the phenotype, indicating that the effects of 

neurofibromin on spine structural plasticity are activity-dependent.  

To study whether neurofibromin regulates Ras activity in dendritic spines during spine structural 

plasticity, Ras activity was monitored in single dendritic spines undergoing structural plasticity in neurons 

in which neurofibromin activity was manipulated. Using a combination of fluorescence lifetime imaging 

(FLIM) and 2-photon glutamate uncaging, we observed that the decay of Ras activation was much 

slower in neurons expressing NF1 shRNA. In contrast, overexpression of GRD reduced the basal Ras 

activity, decreased the peak Ras activation during the transient phase of structural plasticity and 

accelerated Ras inactivation following single spine stimulation. Hence, these data suggest that 

neurofibromin is a major RasGAP in the dendritic spines of CA1 pyramidal neurons of the hippocampus. 

Taken together, the observed lower spine density, impaired structural plasticity and persistent 

Ras activation in the dendritic spines of neurons with reduced neurofibromin expression levels provide 

strong evidence for a role of neurofibromin at postsynaptic sites in the hippocampus and may explain, at 

least in part, the cognitive deficits observed in NF1 patients and in the NF1 animal model, as well as the 

synaptic plasticity impairments in NF1 animal models. Moreover, the fact that the dendritic spine 

phenotypes observed here under low levels of neurofibromin expression are rescued when Ras activity 

is decreased indicates that a precise regulation of the Ras pathway is essential for proper structural 

plasticity and spine stability, which might explain, at least in part, the effect of neurofibromin-dependent 

regulation of the Ras pathway in synaptic plasticity, learning and memory. Lastly, we identified, for the 

first time, a protein (neurofibromin) that acts as a major RasGAP in dendritic spines and extended the 

current knowledge on the neurofibromin function in the brain. 
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Chapter I. General introduction 

 

 

Synaptic Plasticity in the Hippocampus 

 

The adult human brain contains over 100 billion neurons, with each interconnected by thousands 

of synapses. Experiences can modify synapses, favoring some neuronal pathways and weakening others 

(Kessels and Malinow 2009). Synaptic plasticity can be defined by persistent changes in synaptic 

efficacy, namely long-term potentiation (LTP) and long-term depression (LTD), which are induced by 

specific temporal patterns of activity. LTP results from a persistent increase in the efficacy of synaptic 

transmission. In contrast, LTD arises from persistent reduction in synaptic strength. The strength of most 

excitatory synapses can be bidirectionally modified by activity, such that synapses express both LTP and 

LTD (Bliss, Collingridge et al. 2003). Here, we will focus on LTP. 

 

 

Anatomy of the Hippocampus 

 

The hippocampus is a brain structure localized to the temporal lobe, known to be crucial for 

spatial and associative learning and memory (Stubley-Weatherly, Harding et al. 1996; Sziklas, Lebel et al. 

1998). It has an organized structure composed of several functionally distinct subareas, namely the 

dentate gyrus (DG), Cornu Ammonis 3 (CA3), Cornu Ammonis 1 (CA1) and subiculum (Figure 1.1) 

(Lopes da Silva and Arnolds 1978; Kerchner and Nicoll 2008). The hippocampus receives input from the 

entorhinal cortex (Heinemann, Schmitz et al. 2000), which forms direct connections with granule neurons 

of the dentate gyrus and pyramidal neurons in CA3 via the perforant path (Figure 1.1.) (Hjorth-Simonsen 

1972; Lopes da Silva and Arnolds 1978). From the dentate gyrus, granule cells relay information onto 

CA3 pyramidal neurons via the mossy fiber pathway (Gaarskjaer 1978). The axons of CA3 pyramidal 

neurons project to ipsilateral and contralateral CA1 pyramidal neurons through the Schaffer collateral and 
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the associational commissural pathway, respectively (Figure 1.1.). Besides the CA3 region, CA1 neurons 

also receive input from the entorhinal cortex via the perforant path (Hjorth-Simonsen and Jeune 1972). 

The axons of CA1 pyramidal neurons project to the entorhinal cortex, completing the loop, or to the 

subiculum. From here on, we will primarily focus on CA1 pyramidal neurons, where our research was 

performed. 

 

 

Figure 1.1. Diagram of the hippocampus viewed in the sagittal plane. EC, enthorhinal cortex; DG, 
dentate gyrus; CA3, Cornu Ammonis 3; CA1, Cornu Ammonis 1; Sub, Subiculum. Adapted from Kerchner 
and Nicoll 2008. 
 

  

CA1 Pyramidal Neurons Morphology  

 

CA1 pyramidal neurons are composed of a cell soma, one axon, basal dendrites and apical 

dendrites (Figure 1.2.). They are polarized cells covered with about ~10,000 dendritic spines (Kennedy, 

Beale et al. 2005; Sheng and Hoogenraad 2007). Most of the dendritic spines receive excitatory synaptic 

input. The soma and the first 100μm of apical dendrite are almost completely devoid of dendritic spines. 

The next 150μm of apical dendrite has a very low spine density, but the final 150μm of apical dendrite has 

a very high spine density.  
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In the present work, we use CA1 pyramidal neurons to address the postsynaptic function of 

neurofibromin, a protein that has been documented to participate in learning, memory, and in LTP in the 

Schaffer collateral pathway, whose postsynaptic elements reside on CA1 pyramidal neurons, mostly in 

dendritic spines. 

 

 

Figure 1.2. Schematic representation of the morphology of a CA1 pyramidal neuron. Adapted from 
Spruston 2008. 
 

  

LTP 

 

LTP is a fundamental property of the majority of excitatory synapses in the mammalian brain. The 

fact that LTP can be most reliably generated in brain regions involved in learning and memory is often 

used as an evidence for its functional relevance in cognitive processes. Particularly, in the hippocampus, 

LTP is the leading experimental model for learning and memory (Bliss and Collingridge 1993; Malenka 

and Nicoll 1999).  

Coordinated activity of the presynaptic terminal and the postsynaptic cell can increase the 

synaptic strength (Hebbian plasticity). Activity can also modify the properties of synaptic plasticity per se 

(metaplasticity). Here, we will focus on Hebbian plasticity. 
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Several forms of LTP have been described based on the specific type of synapse (and brain 

area) and the induction paradigm. LTP has been best studied at the Schaffer collateral pathway of the 

hippocampus. Here, we will focus on this particular form of synaptic plasticity. 

 

LTP Induction 

 

During normal synaptic transmission glutamate is released from the presynaptic bouton and acts 

on both AMPA receptors (AMPARs) and NMDA receptors (NMDARs), though it activates only AMPARs. 

At resting potentials, the NMDA ion channel is blocked by the binding of extracellular Mg
2+

 in the ion pore 

(Herron, Lester et al. 1985). This block is released when the postsynaptic membrane is strongly 

depolarized (Figure 1.3.) (Herron, Lester et al. 1985). Thus, NMDARs act as coincidence detectors for 

presynaptic activity (glutamate release) and postsynaptic activity (depolarization).  

 

 

Figure 1.3. Model for the induction of LTP. During normal synaptic transmission, glutamate is released 
from the presynaptic bouton and acts on both AMPARs and NMDARs. However, Na

+
 flows only through 

the AMPAR, but not the NMDAR, because Mg
2+

 blocks the channel of the NMDAR. Depolarization of the 
postsynaptic cell relieves the Mg

2+
 block of the NMDAR channel, allowing Na

+
 and Ca

2+
 to flow into the 

dendritic spine by means of the NMDAR. The resultant rise in Ca
2+

 within the dendritic spine is the critical 
trigger for LTP. Adapted from Malenka and Nicoll 1999. 
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At the Schaffer collateral pathway of the hippocampus, LTP induction requires synaptic activation 

of postsynaptic NMDARs (Malenka and Nicoll 1999). LTP can be induced by different patterns of 

neuronal activity, all requiring postsynaptic depolarization. For example, LTP can be induced by tetanic 

stimulation, a short-period of presynaptic high-frequency stimulation (HFS) (Bliss and Lomo 1973). Also, 

pairing postsynaptic depolarization with presynaptic low-frequency stimulation induces LTP. Alternatively, 

LTP can be induced by presynaptic stimulation followed within milliseconds by postsynaptic back-

propagating action potentials (spike-timing dependent plasticity, STDP) (Markram, Lubke et al. 1997; Bi 

and Poo 1998). Theta burst stimulation (TBS), which is a more physiological stimulus consisting of axonal 

stimulation at frequencies and patterns comparable to those exhibited by hippocampal neurons in 

behaving animals (each burst 4 pulses at 100Hz spaced by 200ms intervals or less), also induces LTP 

(Douglas and Goddard 1975; Larson, Wong et al. 1986). Chemical LTP protocols, namely the brief 

application of glycine (a co-agonist of NMDARs), have also proved successful at inducing LTP (Park, 

Penick et al. 2004). More recently, the pairing of focal two-photon MNI-L-glutamate uncaging with either 

low Mg
2+

 concentration or postsynaptic depolarization caused spine enlargements and enhanced 

AMPAR-mediated synaptic currents or insertion (Matsuzaki, Honkura et al. 2004; Makino and Malinow 

2009; Patterson, Szatmari et al. 2010). Although LTP is triggered within seconds, it can last for hours in in 

vitro preparations and days in vivo (Malenka and Nicoll 1999). 

Following NMDAR activation, the consequent rise of intracellular Ca
2+

 is the critical trigger for 

LTP (Malenka and Nicoll 1999; Bredt and Nicoll 2003; Malenka and Bear 2004). Consistently, preventing 

Ca
2+

 rise in the postsynaptic cell with Ca
2+

 chelators blocks LTP induction (Lynch, Larson et al. 1983) and 

injection and photolysis of a caged Ca
2+

 chelator (which releases Ca
2+

) in the postsynaptic cell is 

sufficient to mimic LTP (Malenka, Kauer et al. 1988). Also, Ca
2+

 imaging techniques have shown that 

tetanic stimulation elevates Ca
2+

 within dendrites and dendritic spines (Regehr and Tank 1990; Müller and 

Connor 1991). According to the “Ca
2+

 hypothesis”, rapid and large influxes of Ca
2+

 into the spine produce 

LTP (Kennedy, Beale et al. 2005), preferentially activating protein kinases (Malenka and Nicoll 1998), 

which are crucial for LTP. Importantly, the Ca
2+

 signal is restricted to the vicinity of the activated spines, 

due to compartmentalization and diffusion restriction granted by spine morphology (Yuste, Majewska et 

al. 2000; Noguchi, Matsuzaki et al. 2005). Some studies have suggested that the Ca
2+

 signal is amplified 
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by release from intracellular stores, given that thapsigargin, which depletes Ca
2+

 intracellular stores, 

inhibited the induction of LTP (Obenaus, Mody et al. 1989; Harvey and Collingridge 1992; Bliss and 

Collingridge 1993; Bortolotto and Collingridge 1993; Matias, Dionísio et al. 2002). However, the 

contribution of Ca
2+

 from intracellular stores to LTP remains controversial.  

Ca
2+

 flowing through the NMDAR channel can bind to several effectors inside the spine, namely 

calmodulin (CaM), a ubiquitous Ca
2+

-binding regulatory protein (Kennedy, Beale et al. 2005). In turn, the 

complex of Ca
2+

/CaM activates Ca
2+

/Calmodulin-dependent kinase II (CaMKII), which is critically involved 

in the induction of LTP. Accordingly, postsynaptic injection of inhibitors of CaMKII or genetic deletion of a 

critical CaMKII subunit blocked the ability to induce LTP (Malinow, Schulman et al. 1989; Silva, Stevens 

et al. 1992). Furthermore, a constitutively active (CA) form of CaMKII occluded LTP and increased 

synaptic transmission in CA1 neurons (Pettit, Perlman et al. 1994). Protein kinase A (PKA) is another 

Ca
2+

 sensor important for LTP induction. Elevation of cAMP levels activate PKA, leading to inhibition of 

protein phosphatase1 (PP1), which is involved in LTD (Mulkey, Endo et al. 1994). Conversely, 

pharmacological blockade of PKA blocks LTP (Otmakhova, Otmakhov et al. 2000). Protein kinase C 

(PKC) is also involved in LTP (Hu, Hvalby et al. 1987), particularly the form protein kinase M zeta (PKMζ) 

(Sacktor, Osten et al. 1993; Ling, Bernardo et al. 2002). Among other types of evidence, PKC inhibitors 

blocked LTP (Lovinger, Wong et al. 1987). The mitogen-activated protein kinase (MAPK) cascade that 

activates extracellular-signal regulated kinases (ERKs) has been implicated in LTP and in some forms of 

learning and memory (English and Sweatt 1997; Atkins, Selcher et al. 1998). Additionally, 

phosphoinositide 3-kinase (PI3K) participates in a form of LTP that involves the trafficking of AMPARs to 

synapses, whereas Src, a tyrosine kinase, may enhance the NMDAR function during LTP induction (Man, 

Wang et al. 2003; Thornton, Yaka et al. 2003). 

 

LTP Expression 

 

 The question of whether LTP is expressed presynaptically or postsynaptically has been pursued 

for over 20 years and much debate and controversy remains. A number of experiments yielding 

contradictory results have been carried out over the years, some supporting a presynaptic locus, some 
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supporting a postsynaptic locus and others supporting both a pre- and postsynaptic locus for the 

expression of LTP.  

The presynaptic hypothesis has been supported by studies demonstrating an increase in 

presynaptic vesicle release following LTP induction (Bliss and Collingridge 1993; Lisman 2009) or studies 

showing that synaptic failure rate decreases upon LTP (Nicoll 2003; Lauri, Palmer et al. 2007).  

In the past 10-15 years, the postsynaptic hypothesis of LTP at hippocampal CA1 synapses has 

been somewhat prevalent. The postsynaptic hypothesis is supported by studies that found a selective 

increase in AMPAR EPSCs and little change in NMDAR EPSCs following LTP (Malenka and Nicoll 1999; 

Bredt and Nicoll 2003). According to this hypothesis, following LTP induction, CaMKII (and PKC) 

phosphorylates the GluA1 subunit of AMPARs on Ser
831 

(Roche, O'Brien et al. 1996; Barria, Derkach et 

al. 1997), causing the regulated insertion of AMPARs to the postsynaptic membrane (Hayashi, Shi et al. 

2000; Lu, Man et al. 2001) or increase in AMPAR permeability (Derkach, Barria et al. 1999). This makes 

the synapse more powerful and underlies activity-induced changes in synaptic transmission, with no 

significant role for presynaptic changes (Malenka and Nicoll 1999; Malinow and Malenka 2002; Bredt and 

Nicoll 2003; Newpher and Ehlers 2008; Kessels and Malinow 2009; Lisman 2009). In line with these 

findings, a double phosphomutant mouse for Ser
831

 and Ser
845

 shows reduced LTP and memory retention 

in a spatial memory task, but no learning deficits (Lee, Takamiya et al. 2003). Activation of the small 

GTPase Ras downstream the NMDAR has also been shown required for the insertion of GluA1-

containing AMPARs following LTP induction (Zhu, Qin et al. 2002; Patterson, Szatmari et al. 2010). Also, 

older experiments showing that paired-pulse facilitation (PPF) is not altered following LTP induction 

constitute an evidence for a postsynaptic modification in LTP (Muller and Lynch 1989), assuming that 

PPF change reports modifications in presynaptic release probability (Malenka and Nicoll 1999).  

Technical advances over the last few years made it possible to study postsynaptic and 

presynaptic events with remarkable precision, providing strong evidence for both presynaptic and 

postsynaptic changes (Lisman 2009). In line with presynaptic locus for LTP expression, Enoki and 

collaborators (2009) used a sharp microelectrode injected in a CA1 neuron and demonstrated that LTP, 

induced at single synapses, is due to increased release of vesicles from the presynaptic terminal, without 



10 

 

change in the average amplitude of successful responses, there being no significant postsynaptic 

changes (Enoki, Hu et al. 2009). Additionally, a different study provides evidence for a molecular 

mechanism by which LTP could enhance the release of vesicles through measurements with FM1-43 dye 

(Ahmed and Siegelbaum 2009). On the other hand, recent work using two-photon glutamate uncaging 

(Matsuzaki, Honkura et al. 2004) provided evidence that all machinery needed for LTP is on the 

postsynaptic side. This technique makes use of two-photon laser pulses that are used to supply 

glutamate to a submicron region near an identified dendritic spine. With this method, if uncaging pulses 

are given together with postsynaptic depolarization or after Mg
2+

 removal, it is possible to induce LTP and 

to potentiate AMPAR-uEPSCs in a NMDAR- and CaMKII-dependent manner, at the stimulated synapse 

only (Matsuzaki, Honkura et al. 2004). Hence, the presynaptic element of the synapse is left out. 

 

 

 

Structural and Functional Plasticity of Dendritic Spines 

 

The formation of long-term synaptic plasticity and long-term memory (LTM) is closely associated 

with the remodeling of synaptic structure (Engert and Bonhoeffer 1999; Xu, Yu et al. 2009). Learning 

experiences that give rise to LTM have been found to induce increases in the number of presynaptic 

varicosities (Bailey and Chen 1988), as well as increases in the postsynaptic spine volume and density 

(Moser, Trommald et al. 1997). Mental retardation is often associated with synapse retraction and 

elimination (Fiala, Spacek et al. 2002). Structural plasticity of dendritic spines is considered to be tightly 

coupled with functional plasticity, and thus a physical basis for learning and memory (Matsuzaki, Ellis-

Davies et al. 2001; Matsuzaki, Honkura et al. 2004; Bourne and Harris 2008; Lee, Escobedo-Lozoya et al. 

2009; Patterson, Szatmari et al. 2010). 
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Dendritic Spines 

 

The human brain contains more than 10
13

 spines (Nimchinsky, Sabatini et al. 2002). Dendritic 

spines were first described by Ramón y Cajal, in 1888, as a series of small protrusions extending from the 

dendrites of chicken Purkinje cells, as visualized by the Golgi method (Bonhoeffer and Yuste 2002; Bhatt, 

Zhang et al. 2009; Holtmaat and Svoboda 2009). Because dendritic spines are the sites of most 

excitatory synapses on pyramidal neurons in the mammalian brain, spine number can be used as a 

reasonable measure of excitatory synapse density. Spines are highly variable in morphology (Kasai, 

Fukuda et al. 2010) and dendritic spines with different sizes and shapes occur on the same neuron and 

even on the same dendrite (Holtmaat and Svoboda 2009). Dendritic spines have diverse structures and a 

small average volume of ~ 0.1 femtoliter (Tada and Sheng 2006; Holtmaat and Svoboda 2009). 

Traditionally, spines are classified morphologically as stubby, thin or mushroom (Figure 1.4.) (Harris 

1999). Thin spines are long, narrow protrusions terminating in a small, bulbous head. Stubby spines are 

small protrusions lacking a clearly distinguishable neck and head. Mushroom spines have a narrow neck 

and a large and bulbous head. Spine structure is not only diverse, but also dynamic and it may change in 

response to neurotransmitter receptor activation or environmental and hormonal signals.  

 

 

Figure 1.4. Sheme of different types of dendritic spines. Spines can be classified in stubby, thin or 

mushroom, depending on their morphology. 

 

Regarding spinogenesis, dendrites of neonatal pyramidal cell are relatively smooth (Purpura 

1975; Nimchinsky, Sabatini et al. 2002). The dendritic protrusions begin to increase in density during the 

first week of life, with dramatic increases of density during the second and third weeks, as the rate of 
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synaptogenesis reaches its peak (Nimchinsky, Sabatini et al. 2002). Spine morphology also changes with 

development (Harris, Jensen et al. 1992). The most abundant spine type early in development is the 

stubby spine (Nimchinsky, Sabatini et al. 2002). Filopodia are also frequently encountered (Papa, 

Bundman et al. 1995; Fiala, Feinberg et al. 1998; Nimchinsky, Sabatini et al. 2002) and were initially 

thought to be the precursors of dendritic spines. In the adult, thin or mushroom spines are more common, 

although many stubby spines are still present in the adult mouse and human cortex (Nimchinsky, Sabatini 

et al. 2002; Yuste and Bonhoeffer 2004; Sheng and Hoogenraad 2007). One report demonstrated that the 

stability of spines is correlated with their morphology, such that larger and stubby spines seem to be 

much more stable than longer, thinner ones (Trachtenberg, Chen et al. 2002). However, the correlation 

between structure and stability is not absolute: small spines can persist, and large spines can disappear 

(Holtmaat and Svoboda 2009). Furthermore, new dendritic spines are also generated on mature neurons, 

through the perforation and splitting of existing synapses (Harris 1999), but de novo spine formation can 

also occur (Kwon and Sabatini 2011). 

Most spines contain a postsynaptic density (PSD) (Sheng and Hoogenraad 2007), an electron-

dense thickening of the postsynaptic membrane, which is located adjacent to the presynaptic bouton 

associated with the spine (Harris, Jensen et al. 1992; Bourne and Harris 2008). The PSD is composed of 

hundreds of proteins (Kennedy, Beale et al. 2005; Sheng and Hoogenraad 2007). Many structural, 

receptor and signaling proteins are anchored in the PSD, representing several signaling pathways 

involved in synaptic plasticity (Nimchinsky, Sabatini et al. 2002; Kennedy, Beale et al. 2005; Sheng and 

Hoogenraad 2007; Bhatt, Zhang et al. 2009). Harris and Stevens (1989) demonstrated that the 

dimensions of the spine head are well correlated with the area of PSD and number of vesicles in the 

presynaptic axonal varicosity (Harris and Stevens 1989). Thus, in terms both of transmitter release and 

postsynaptic sensitivity, large spines are the site of strong synapses (Nimchinsky, Sabatini et al. 2002).  

CA1 excitatory synapses use glutamate as a transmitter (Sheng and Hoogenraad 2007), and thus 

dendritic spines contain several types of glutamate receptors including ionotropic receptors - AMPA 

receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) - and G-protein coupled 

metabotropic glutamate receptors (mGluRs) (Sheng and Kim 2002; Bourne and Harris 2008). NMDARs 
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occupy the center of the PSD, AMPARs are distributed more evenly throughout the PSD, whereas 

mGluRs are mostly at the periphery of the PSD (Sheng and Hoogenraad 2007). 

 

 

Structural Plasticity of Dendritic Spines 

 

Recent improvements in time-lapse imaging techniques have made it possible to observe 

changes of dendritic morphology and synaptic function at the level of single synapses (Yuste and 

Bonhoeffer 2001). Two-photon laser scanning microscopy (TPLSM) has become the tool of choice for 

high-resolution fluorescence imaging in highly scattering environments, such as the intact brain and the 

brain slice (Svoboda and Yasuda 2006). Compared with other optical techniques, TPLSM allows high-

resolution imaging and efficient detection of a fluorescence signal with minimal photobleaching and 

phototoxicity (Svoboda and Yasuda 2006). 

Dendritic spine structure is highly dynamic, particularly during postnatal development, when 

synaptic connections are rapidly being made (Kasai, Matsuzaki et al. 2003; Bhatt, Zhang et al. 2009): 

spines change their morphology, appear and disappear quickly, in both activity-dependent and activity-

independent manners (Trachtenberg, Chen et al. 2002; Yasumatsu, Matsuzaki et al. 2008; Xu, Yu et al. 

2009; Zito, Scheuss et al. 2009). As animals mature into adulthood, substantial changes in spine number 

and morphology may still occur during the learning process and under pathological conditions.  

The link between synaptic plasticity and spine structure was first suggested by the finding that the 

size of the PSD is related to the size of the spine head and the number of AMPARs within it (Harris, 

Jensen et al. 1992; Nusser, Lujan et al. 1998; Matsuzaki, Ellis-Davies et al. 2001). Spine shrinkage and 

enlargement are associated with decreases and increases in synaptic AMPARs, which is one of the main 

mechanisms for LTD and LTP, respectively (Matsuzaki, Honkura et al. 2004; Park, Penick et al. 2004; 

Horne and Dell'Acqua 2007; Makino and Malinow 2009; Patterson, Szatmari et al. 2010). Hence, at the 

level of the dendritic spine, structural dynamics and receptor trafficking both contribute to functional 

plasticity (Kasai, Fukuda et al. 2010).  
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In brain slices, induction of LTP by pairing postsynaptic depolarization with presynaptic 

stimulation, TBS, or high frequency focal glutamate photolysis, can lead to a rapid outgrowth of dendritic 

protrusions (Engert and Bonhoeffer 1999; Maletic-Savatic, Malinow et al. 1999; Nagerl, Eberhorn et al. 

2004; Kwon and Sabatini 2011). Conversely, induction of LTD and reduced neuronal activity cause 

shrinkage of existing dendritic spines and a net loss in spine number (Nagerl, Eberhorn et al. 2004; Zhou, 

Homma et al. 2004; Bhatt, Zhang et al. 2009). In other words, hippocampal neurons can undergo 

bidirectional morphological plasticity; spines are formed and eliminated in an activity-dependent way 

(Nagerl, Eberhorn et al. 2004). The first studies reported a relatively slow process of spine growth, taking 

about 30 minutes, making it unlikely that the growth of new spines can explain LTP (Engert and 

Bonhoeffer 1999). However, a recent report demonstrated that high frequency suprathreshold focal 

glutamate uncaging can rapidly (~ 10s) produce de novo spine growth in a NMDAR-dependent manner, 

in the vicinity of the stimulation point (Kwon and Sabatini 2011).  

  

 

Functions of Dendritic Spines 

 

Over one hundred years ago, Ramón y Cajal, who first described dendritic spines, proposed that 

spines increase and modify synaptic connections. In line with this idea, structural spine plasticity 

dramatically increases the memory storage capacity of the brain, because a wide range of synaptic 

connectivity patterns are attainable by spine or bouton growth (Holtmaat and Svoboda 2009). Several 

studies are consistent with a model in which activity-dependent spine-volume changes regulate new 

memory acquisition (by enlarging/stabilizing or eliminating the smallest spines) and existing-memory 

persistence (by changing volumes of spines). As such, activity-dependent plasticity selects memory 

content and modifies memory strength. In contrast, intrinsic fluctuations in spine volume may change the 

strength of a memory but rarely affect its content (Kasai, Fukuda et al. 2010). Additionally, as the late 

phase of LTP and long-term memory, maintenance of spine enlargement depends on protein synthesis 

(Tanaka, Horiike et al. 2008). Moreover, spine structures are stable for days in cultured hippocampal 

slices (De Roo, Klauser et al. 2008) and for years in the cortex in vivo (Grutzendler, Kasthuri et al. 2002; 
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Trachtenberg, Chen et al. 2002; Zuo, Lin et al. 2005). These data support the idea that structural plasticity 

is the basic cellular mechanism that underlies memory formation (Kasai, Fukuda et al. 2010). 

Related to this, dendritic spine morphology has both chemical and electrical compartmentalization 

roles within individual synapses. In 1989, Harris and Stevens (1989) suggested that the constricted necks 

of hippocampal dendritic spines could reduce diffusion of activated molecules to neighboring spines, 

which was later confirmed (Harris and Stevens 1989; Svoboda and Tank 1996; Yuste and Majewska 

2001; Bloodgood and Sabatini 2005; Noguchi, Matsuzaki et al. 2005). Accordingly, the degree to which 

NMDAR-mediated Ca
2+

 is elevated in the spine independently from the dendrite is influenced by spine 

shape, such that bigger spines with wider necks let more Ca
2+

 in the adjacent dendritic shaft, whereas 

smaller spines with narrower necks are more efficient at compartmentalizing Ca
2+

 within the activated 

spine (Noguchi, Matsuzaki et al. 2005). Because the level of postsynaptic Ca
2+

 elevation determines 

synaptic plasticity, spine neck geometry might explain why some groups observed that small thin spines 

are more susceptible to induction of LTP (Matsuzaki, Honkura et al. 2004). Because of signal 

compartmentalization, LTP and associated spine enlargement can be induced in single dendritic spines 

without affecting surrounding spines (Matsuzaki, Honkura et al. 2004; Yasuda and Murakoshi 2011). 

Hence, spine morphology might confer the input-specificity requisite of LTP.  

Dendritic spine structure explains not only the input specificity characteristic of LTP, but also its 

associativity. A study by Harvey and Svoboda (2007), upon induction of a LTP stimulus in single dendritic 

spines by glutamate photolysis, showed that, within 5 minutes, a second weak subthreshold stimulation 

which usually does not produce plasticity, if applied to a second adjacent dendritic spine less than ~ 10μm 

away from the originally stimulated spine, can produce LTP and spine growth (Harvey and Svoboda 

2007). 

 

 

Abnormal Dendritic Spine Morphology in Mental Disorders 

 

Abnormalities of spine morphology, density and dynamics are associated with disrupted synaptic, 

neuronal, and higher-order brain functions. Spine structure and plasticity abnormalities have been found 
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in many pathological conditions, including mental illnesses and age-related neurodegenerative diseases 

(Newey, Velamoor et al. 2005). For example, in fragile X syndrome (FXS), which is the most common 

form of inheritable mental retardation, spines are found in much higher density and display a more 

immature, long, and thin form (Rudelli, Brown et al. 1985; Hinton, Brown et al. 1991; Irwin, Patel et al. 

2001; McKinney, Grossman et al. 2005; Grossman, Elisseou et al. 2006). Also, people with trisomy 21 

(Down’s syndrome) show decreased spine density in both the neocortex and hippocampus, as well as 

increased incidence of abnormally long and short spines (Marin-Padilla 1972; Suetsugu and Mehraein 

1980; Ferrer and Gullotta 1990).  

Schizophrenia can also be linked to abnormalities in spine size. Postmortem studies on the brains 

of schizophrenic patients demonstrate decreased spine density in neocortical pyramidal neurons, as a 

consequence of a reduced generation relative to elimination of synapses (Garey, Ong et al. 1998). 

Besides, several lines of evidence point to links between schizophrenia and abnormal activity-dependent 

plasticity (Lewis and Gonzalez-Burgos 2008; Kasai, Fukuda et al. 2010). Spine abnormalities have also 

been reported in tuberous sclerosis type I (Huttenlocher and Heydemann 1984). 

 

 

 

Ras 

 

Numerous signaling pathways have been implicated as playing crucial roles in hippocampal 

synaptic plasticity and hippocampus-dependent memory formation (Sweatt 2004). There is substantial 

interplay between these signaling pathways, increasing the level of complexity and implying a great 

degree of integration and coordination for signal transduction in hippocampal LTP induction. Among the 

multiple signaling pathways studied in the context of the cognitive processes, the NMDAR-Ras-MAPK-

ERK pathway is clearly important in synaptic plasticity and memory formation in general, across many 

species, brain areas and types of synapses (Manabe, Aiba et al. 2000). 
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Ras Isoforms, Structure and Expression 

 

Small G proteins constitute a large family of proteins that bind to and hydrolyze guanosine 

triphosphate (GTP) into guanosine diphosphate (GDP); therefore they are also named small GTPases 

(Ye and Carew 2010). Small GTPases are monomeric proteins, ubiquitously expressed, typically between 

20-25KDa in size (Ye and Carew 2010). They are membrane-associated proteins, important for 

converting a wide range of extracellular signals from membrane receptors to intracellular signaling 

cascades (Raaijmakers and Bos 2009; Ye and Carew 2010). They regulate many cellular processes, 

including cell cycle progression, cell survival, actin cytoskeletal organization, cell polarity and movement, 

vesicular and nuclear transport (Raaijmakers and Bos 2009; Vigil, Cherfils et al. 2010).  

In general, the activity of small GTPases is regulated by their GTP/GDP-binding state. When 

binding to GTP, they are in an active conformation and are able to bind downstream effectors, whereas 

binding to GDP returns them to the inactive state (Milburn, Tong et al. 1990; Vigil, Cherfils et al. 2010; Ye 

and Carew 2010). 

The small GTPases superfamily includes many members, namely the Ras, Rho, Arf, Rab, and 

Ran families, some of particular importance to neuronal plasticity and memory (Takai, Sasaki et al. 2001; 

Ye and Carew 2010; Stornetta and Zhu 2011). Here, we will focus on the Ras family, which includes Ras 

(HRas, NRas, and KRas), Rap1 and Rap2 has major members. Specifically we will focus on Ras, which 

was the object of our study.  Ras genes were first identified as oncogenes, as they play important roles in 

mediating cell proliferation, differentiation and survival during development. Mutations in Ras genes that 

result in constitutively active Ras family proteins are closely associated with tumorogenesis in humans 

(Ye and Carew 2010). Recently, a large number of reports also suggest that Ras family proteins are 

critical in memory formation. Furthermore, signaling of Ras proteins can modify neuronal function and 

structure, leading to changes in synaptic strength and neuronal firing rates (Ye and Carew 2010). At the 

membrane, Ras can interact with downstream effectors ultimately leading to short and long-term changes 

in neuronal function, namely synaptic plasticity, dendritic excitability, synapse formation, learning, and 

memory. Therefore, this pathway promotes an extensive amplification and divergence of signaling. 
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The different Ras isoforms generate distinct signal outputs, despite structural similarity and 

interaction with common activators and effectors (Hancock 2003). For example, KRas knockout is 

embryonic lethal, whereas HRas, NRas, and HRas-NRas double knockouts survive normally (Hancock 

2003).These biological differences are probably caused by the carboxy-terminal (C terminal) 25 amino 

acids of the hypervariable domain (HVR), which is the only region that differs significantly in sequence 

between the otherwise highly homologous Ras isoforms.  

 

 

Ras Membrane Localization  

 

Ras proteins are synthesized as cytosolic precursors that undergo posttranslational processing to 

be able to associate with cell membranes (Hancock 2003; Wright and Philips 2006). They are targeted to 

membranes by a series of modifications of the C terminal. The HVR contains the protein sequences that 

are necessary for Ras to associate with the inner plasma membrane. The initial triplet of modifications is 

directed by the CAAX motif and is common to all Ras proteins. Accordingly, mutation of the CAAX motif in 

the HVR was shown to abolish plasma-membrane localization and signaling of Ras (Hancock 2003; 

Sung, Rodrigues et al. 2010). The first step of posttranslational modification is prenylation, which 

covalently attaches either farnesyl or geranylgeranyl isoprenoids to the conserved cysteine residue in the 

C terminal CAAX motif of Ras family proteins (C is cysteine, A is generally an aliphatic amino acid, and X 

can be a variety of amino acids) (Hancock 2003). This motif is farnesylated by farnesyltransferase 

(FTase) when the last amino acid is S, M, A, or Q. Second, the farnesylated CAAX sequence targets Ras 

to the cytosolic surface of the endoplasmic reticulum (ER). Here, the endopeptidase Rce1 removes the 

AAX tripeptide. Third, the C-terminal is methylated by isoprenylcysteine carboxyl methyltransferase (lcmt). 

This creates a hydrophobic domain that mediates membrane interactions (Hancock 2003; Wright and 

Philips 2006). Membrane anchoring of Ras family proteins is crucial for their signaling and cellular 

functions (Hancock 2003; Wright and Philips 2006). Inhibitors of prenylation have been designed as 

therapeutic tools for blocking oncogenesis (Li, Cui et al. 2005; Sousa, Fernandes et al. 2008; Agrawal 

and Somani 2009). After methylation, Ras proteins take one of two routes to the cell surface, which is 

controlled by a targeting signal that is located immediately amino-terminal (N terminal) to the farnesylated 
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cysteine. HRas and NRas undergo palmitoylation, by Ras palmitoyltransferase (RPT), on cysteine 

residues in their HVRs and enter the exocytic pathway, trafficking through the Golgi to the plasma 

membrane (Hancock 2003; Wright and Philips 2006; Arozarena, Calvo et al. 2011). KRas, which has a 

polylysine sequence instead of cysteine residues, bypasses the Golgi and reaches the plasma membrane 

(Hancock 2003; Wright and Philips 2006; Arozarena, Calvo et al. 2011). Interestingly, the interaction of 

Ras with the plasma membrane is highly dynamic. Ras is also present on endosomes and other 

intracellular membranes, such as the ER and Golgi (Hancock 2003; Wright and Philips 2006; Brown and 

Sacks 2009; Arozarena, Calvo et al. 2011). 

 

 

Regulation of Ras Signaling Pathway by RasGEFs and RasGAPs 

 

The activity state of Ras is determined by the balance of activating proteins GEFs (guanine 

nucleotide exchange factors) and of inactivating proteins GAPs (GTPase-activating proteins) (Thomas 

and Huganir 2004). Activation of GEFs promotes the dissociation of GDP from Ras family proteins, which 

facilitates the exchange of GDP for GTP (more abundant in the cytosol), and thus enhances the activity of 

Ras family proteins. Activation of GAPs enhances the rate of intrinsic GTP hydrolysis of Ras family 

proteins, which is normally slow, and reduces their activity. There is a wide array of GEFs and GAPs 

targeting different members of Ras family proteins and probably many more will be identified in the future 

(Cullen and Lockyer 2002; Raaijmakers and Bos 2009; Ye and Carew 2010).  

It is important to note that GEFs and GAPs do more than simply turn on-off Ras family proteins. 

The activity of each GEF and GAP is under the regulation of distinct upstream signaling elements, such 

as cAMP, Ca
2+

, and tyrosine kinases. Thus, each of them links specific upstream signaling elements to 

Ras family proteins. GEFs and GAPs are large, multidomain proteins, which interact with membrane lipids 

or other proteins that target them to specific intracellular compartments. Therefore, activation of a specific 

GAP or GEF protein can modify the activity of nearby Ras family proteins, thereby regulating specific 

downstream targets in restricted cellular compartments (Vigil, Cherfils et al. 2010; Ye and Carew 2010).  
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RasGEFs 

 

 RasGEFs link cell-surface receptors to Ras protein activation by catalyzing the dissociation of 

GDP from the inactive Ras proteins. GTP can then bind and induce a conformational change, allowing 

interaction with downstream effectors (Quilliam, Rebhun et al. 2002). They are blocked by dominant 

negative (DN) mutants of Ras (Quilliam, Rebhun et al. 2002), such as the 17N mutation (Feig 1999). To 

date, about 20 RasGEFs were described (Quilliam, Rebhun et al. 2002) and some of these have been 

shown to have important roles in synaptic plasticity, learning and memory (Ye and Carew 2010). Below, 

we briefly mention a few RasGEFs implicated in brain function. 

 Son of sevenless (Sos) was the first RasGEF identified in higher eukaryotes, downstream 

receptor tyrosine kinases, and, in mammals, it includes two closely related isoforms: Sos1 and Sos2 

(Bowtell, Fu et al. 1992). Sos1 is ubiquitously expressed and it has been suggested that it might be the 

most commonly used RasGEF (Quilliam, Rebhun et al. 2002). Consistent with this hypothesis, a Sos1 

knockout is embryonically lethal (Qian, Esteban et al. 2000). Interestingly, Sos proteins have been 

implicated in NMDAR-mediated ERK activation in neurons of young mice. A study in cortical neuronal 

cultures from Sos2
-/-

 newborn mice ruled out the involvement of Sos2 in such phenomenons and 

indirectly implied that Sos1 is the major regulator of these well-known neuronal Sos functions (Arai, Li et 

al. 2009). 

Ras-GRF1 is a neuron-specific RasGEF activated by increased intracellular Ca
2+

 concentration or 

G-protein coupled receptors (GPCRs). Although mice lacking Ras-GRF1 (RasGRF
-/-

) show normal 

hippocampal function, as depicted from normal hippocampal LTP, spatial learning and memory, they are 

severely impaired in amygdala-dependent long-term synaptic plasticity and in memory amygdala-

dependent tasks, such as inhibitory avoidance, contextual and cued fear conditioning (Brambilla, 

Gnesutta et al. 1997). However, a study by Giese and collaborators (2001) described opposite results 

with a different line of RasGRF
-/-

 mice: these mice exhibited impairment in hippocampal-dependent 

memory tasks, but not in amygdala-dependent memory tasks (Giese, Friedman et al. 2001). RasGRF
-/-

 

also show higher basal synaptic activity at both amygdala and hippocampal synapses (Brambilla, 
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Gnesutta et al. 1997) and a posterior study demonstrated a role for Ras-GRF1 in neuronal excitability 

(Tonini, Franceschetti et al. 2001). 

A recent report identified another brain specific RasGEF, v-KIND, expressed in developing mouse 

brain, predominantly in the cerebellar granule cells (Huang, Furuya et al. 2007). Whereas v-KIND 

overexpression suppressed dendritic extension and branching of hippocampal neurons and cerebellar 

granule cells, knockdown of endogenous v-KIND expression promoted dendrite growth, suggesting that 

v-KIND activates Ras signaling to control dendrite growth (Huang, Furuya et al. 2007). 

Ca
2+

 and diacylglycerol-regulated GEF2 (CalDAG-GEF2), also known as RasGRP, is a RasGEF 

highly expressed in neurons throughout the forebrain (Toki, Kawasaki et al. 2001). Its function in the brain 

remains mostly obscure, but a recent report implicated CalDAG-GEF2 in striatum physiology. Namely, it 

has been suggested that CalDAG-GEF2 is involved in the expression of dyskinesias resulting from l-

DOPA therapy in Parkinson’s disease (Crittenden, Cantuti-Castelvetri et al. 2009). Thus, this protein 

could be a promising therapeutic target for limiting the motor complications arising from l-DOPA therapy. 

 

RasGAPs 

 

RasGAPs accelerate the very slow intrinsic GTP hydrolysis activity of Ras by several orders of 

magnitude. However, they have almost no effect on oncogenic Ras mutants (12V and 61L), which are 

constitutively activated (Hancock 2003). RasGAPs have a common ~ 250 amino acid RasGAP catalytic 

domain also named GAP-related domain (GRD), but otherwise show essentially no sequence similarity or 

domain architecture in the sequences that flank this RasGAP domain (Mitin, Rossman et al. 2005; Vigil, 

Cherfils et al. 2010). Accumulating evidence suggests that these molecules are crucial transducers of 

extracellular stimuli that serve to maintain the homeostasis of cellular functions (Iwashita and Song 2008). 

In this section, we review several major GAPs expressed in neurons. 

 p120RasGAP was the first GAP to be discovered (Mitin, Rossman et al. 2005) and is widely 

expressed (Bernards and Settleman 2005). p120RasGAP is recruited to growth factor receptors 

(Bernards and Settleman 2005). In neurons, p120RasGAP has been reported to transduce EphB2 (a 
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receptor tyrosine kinase) signals to inhibit the Ras-MAPK pathway, leading to cytoskeletal organization 

and adhesion responses in neuronal growth cones, during development (Elowe, Holland et al. 2001). A 

different study also implicated p120RasGAP in the development of the central nervous system (CNS), but 

through the regulation of repulsive function via the inhibition of Ras-PI3K pathway (Endo and Yamashita 

2009). 

SynGAP is a member of the RasGAP family that shows a CNS-restricted expression, especially 

in CA1 and DG of the hippocampus, and is specifically localized within the PSD (Grewal, York et al. 

1999), where it directly interacts with PSD95 and NMDARs in spines (Kim, Liao et al. 1998). SynGAP 

contains a Ca
2+

-binding motif that is essential for turning on its GAP activity (Pena, Hothorn et al. 2008). 

SynGAP is dually specific for both Ras and Rap, but it has greater affinity for Rap in vitro (Krapivinsky, 

Medina et al. 2004). Studies involving genetic manipulations of SynGAP have established a role for this 

RasGAP in synaptic plasticity (Komiyama, Watabe et al. 2002; Kim, Lee et al. 2003), dendritic spine 

morphology (Vazquez, Chen et al. 2004), learning and memory (Komiyama, Watabe et al. 2002; Muhia, 

Yee et al. 2010).  

The GAP1 family includes RasGAPs sharing a domain structure consisting of N terminal tandem 

C2 domains, a central GRD domain, and a C terminal PH domain with an associated Bruton tyrosine 

kinase (BTK) motif (Cullen and Lockyer 2002). Included in this family is Gap1m, the mammalian 

counterpart of Drosophila Gap1, which is expressed in brain, placenta, and kidney tissues, with only low 

levels of expression in other tissues (Maekawa, Li et al. 1994). Another member of this family is the 

mammalian GapIII, which has high homology with Gap1m (Baba, Fuss et al. 1995). GapIII mRNA 

expression was detected at highest levels in the brain, particularly in neurons and oligodendrocytes, 

increasing with development (Baba, Fuss et al. 1995). Therefore, GapIII might have an important function 

in the brain, yet to be investigated (Baba, Fuss et al. 1995). Ca
2+

-promoted Ras inactivator (CAPRI) is a 

member of the GAP1 family that is ubiquitously expressed (Lockyer, Kupzig et al. 2001). Whereas CAPRI 

is an inactive cytosolic RasGAP under basal conditions, treatments that induce elevation in the 

intracellular Ca
2+

 promote the translocation of CAPRI to the plasma membrane and switch it on, inhibiting 

the Ras-MAPK pathway (Lockyer, Kupzig et al. 2001). 
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Among one of the most studied RasGAPs is neurofibromin, perhaps due to its involvement in a 

common single-gene disease: Neurofibromatosis Type I (NF1). Neurofibromin exhibits its highest 

expression in the brain, despite ubiquitous expression at very low levels in other tissues (Mazzucchelli 

and Brambilla 2000). Interestingly, the first evidence suggesting a role of Ras in learning and memory 

came from studies of NF1, which results from loss-of-function mutations that compromise the expression 

of neurofibromin. Among many other symptoms, 40-60% percent of children with NF1 have learning 

disabilities and other cognitive deficits. Heterozygous Nf1 knockout (Nf1
+/-

) mice were established as an 

animal model for NF1 disease by Jacks and collaborators (Jacks, Shih et al. 1994) and, since then, 

multiple studies have revealed that deficits in memory and synaptic plasticity associated with Nf1 loss-of-

function can be rescued by manipulations that decrease Ras activity (Costa, Fedorov et al. 2002; Li, Cui 

et al. 2005; Guilding, McNair et al. 2007; Cui, Costa et al. 2008). A more detailed description on 

neurofibromin function is available in the last section of this chapter. 

 

 

Signaling Pathways Upstream Ras Activation 

 

Ras proteins transmit signals from receptor tyrosine kinases (RTKs) to intracellular networks 

(Harding and Hancock 2008). In neurons, TrkB is activated in spines and dendrites by brain-derived 

neurotrophic factor (BDNF) that is released from neighboring neurons (Poo 2001; Huang and Reichardt 

2003). TrkB can then activate Ras, Rap, or both (Kennedy, Beale et al. 2005). Ras can also be activated 

by recruitment of the adaptors Src homology 2 (SH2) domain-containing transforming protein C (Shc) and 

Sos to the plasma membrane following phosphorylation of Shc by Src (Kennedy, Beale et al. 2005).  

Alternatively, Ras can be activated following NMDAR activation. An influx of Ca
2+

 through 

NMDARs leads to the activation of the small GTPase Ras. Several studies have demonstrated that the 

opening of synaptic NMDAR channels leads to CaMKII activation (Malinow, Schulman et al. 1989; Tan 

and Chen 1997; Lee, Escobedo-Lozoya et al. 2009), which regulates Ras signaling via RasGEFs and/or 

RasGAPs (Stornetta and Zhu 2011). RasGRF1 specifically activates several Ras isoforms. It binds to the 
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GluN2B subunit of NMDARs and has been shown to mediate 60-70% of the NMDAR-mediated activation 

of the Ras/Raf/ERK cascade in cultured hippocampal neurons (Kennedy, Beale et al. 2005).  

 

 

Signaling Pathways Downstream of Ras 

 

Ras activation initiates multiple intracellular signaling cascades (Figure 1.5.), eventually leading 

to gene transcription (Mazzucchelli and Brambilla 2000). The best characterized downstream signaling 

cascade of Ras family proteins is the MAPK cascade (Figure 1.5.) (Adams and Sweatt 2002; Thomas 

and Huganir 2004; Ye and Carew 2010). When activated, Ras family proteins directly bind to the 

regulatory domain of protein kinase Raf (Ras binding domain of Raf, RBD) with high affinity (Raaijmakers 

and Bos 2009; Wimmer and Baccarini 2010; Ye and Carew 2010), thereby exposing its catalytic domain, 

which is subsequently phosphorylated and dephosphorylated at multiple sites for full activation. Although 

not sufficient, Ras proteins are necessary for Raf activation by anchoring Raf to the membrane 

compartment where other cofactors are present, and by unfolding Raf to allow for further modifications. In 

this “open” conformation, the kinase domain is free to recruit and phosphorylate its substrates (Wimmer 

and Baccarini 2010; Ye and Carew 2010). Ras can activate either c-Raf (also named Raf-1) or b-Raf, 

both of which can, in turn, activate MEK1 and MEK2 by serine phosphorylation (Hancock 2003; Thomas 

and Huganir 2004; Ye and Carew 2010). MEK is a specific kinase whose only proven target is ERK 

(Wimmer and Baccarini 2010; Ye and Carew 2010). Once activated, MEK phosphorylates ERK at 

threonine and tyrosine residues. ERK dissociates from MEK between the first and second 

phosphorylation (Harding and Hancock 2008) and regulates a vast array of targets distributed in different 

subcellular locations, including metabolic enzymes, structural proteins and transcription factors. Tight 

spatiotemporal regulation is crucial for driving the ERK signal in the right direction and achieving 

appropriate biological outcomes (Hancock 2003; Brown and Sacks 2009; Wimmer and Baccarini 2010). 

Downstream ERK, ribosomal S6 kinases (RSKs) phosphorylate the cAMP response element (CRE)-

binding factor CREB, which plays an essential role in inducing expression of many immediate-early genes 

(IEGs), such as Fos. In addition, MAPKs can phosphorylate and activate serum response element (SRE)-
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binding proteins, such as Elk1, thus contributing to the control of gene transcription (Mazzucchelli and 

Brambilla 2000).  

PI3K is another effector of Ras family proteins (Figure 1.5.) (Ye and Carew 2010). PI3Ks are 

heterodimeric proteins with a p110 catalytic and a p85 regulatory subunit. The p110 has a RBD that binds 

to Ras, facilitating membrane translocation and enhancing the activity of PI3K (Raaijmakers and Bos 

2009), which in turn converts phosphatidylinositol 4,5-biphosphate (PIP2) into phosphatidylinositol 3,4,5-

triphosphate (PIP3). This brings Akt and PDK1 into close proximity, allowing the latter to phosphorylate 

Akt. The mTOR-rictor complex (mTORC2) also phosphorylates Akt at a different residue, which is 

required for full Akt activity. Akt activates mTOR and also phosphorylates other downstream effectors 

(Markman, Dienstmann et al. 2010), which will not be discussed here.  

 

 

Figure 1.5. Schematics of the major signaling pathways downstream of Ras. Adapted from Ye and 
Carew 2010. 
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Ras family proteins also interact with other families of proteins in the small G protein superfamily 

(Figure 1.5.). Activated Ras can turn on the GEF activity of Tiam1, leading to activation of Rac, a member 

of Rho family proteins. Rac signaling mediates actin polymerization, therefore contributing to cell 

morphology (Heasman and Ridley 2008). In addition, Ras activation can lead to activation of RalGEF, 

which in turn activates Ral, a small G protein involved in exocytosis, and Rin, which activates Rab5, a 

small G protein involved in endocytosis (Ye and Carew 2010). 

 

 

Dynamics in Ras Induced by Neuronal Activity 

 

Neuronal activity can regulate Ras activity. For example, a study by Rosen and collaborators 

(1994) demonstrated that membrane depolarization of cultured cortical neurons by KCl induced rapid and 

transient Ras activation and subsequent activation of MEK and ERK, mediated by Ca
2+

 influx from 

voltage-gated calcium channels (VGCCs) (Rosen, Ginty et al. 1994). Another study by Yun and 

collaborators (1998) reported that Ras can also be activated following NMDAR activation (Yun, Gonzalez-

Zulueta et al. 1998). Collectively, these studies suggest that neuronal activity activates Ras. Neuronal 

activity can also regulate the distribution of Ras. Fivaz and Meyer (2005) found that glutamate treatment 

can induce reversible translocation of KRas, but not HRas, from the plasma membrane to the perinuclear 

membrane compartments. This translocation required Ca
2+

 influx, activation of NMDARs and an 

interaction with CaM (Fivaz and Meyer 2005). Recently, Harvey et al. (2008) found that uncaging 

glutamate with a train of laser pulses induced robust Ras activation at the stimulated spine, the 

magnitude of which was correlated with spine enlargement. The activation of Ras was transient, peaking 

within 1 minute and returning to baseline by 10-15 minutes. Furthermore, they observed that the activated 

Ras spread over several micrometers and entered 10-20 neighboring spines (Harvey, Yasuda et al. 

2008).  
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Ras in Synaptic Plasticity 

 

Several studies have examined the role of Ras in synaptic plasticity by the local infusion of FTase 

inhibitors into specific brain regions. FTase inhibitors disrupt the attachment of Ras to membranes and, 

therefore, prevent its activation. O’Kane and collaborators (2004) showed that FTase inhibitors disrupt 

LTP in the CA1 hippocampal region (O'Kane, Stone et al. 2004). Murray and O’Connor (2004) showed 

that FTase inhibitors attenuate LTD in the hippocampal DG (Murray and O'Connor 2004). HRas fused 

with TAT, a cell permeant Ras, significantly reduced LTP in hippocampal Schaffer collateral synapses 

(Thornton, Yaka et al. 2003). Genetic manipulations were also used to investigate the role of Ras in 

synaptic plasticity. Ohno and collaborators (2001) reported that a KRas heterozygous knockout mouse 

(KRas
+/-

) showed normal hippocampal LTP. However, a subthreshold dose of a MEK inhibitor, which did 

not affect LTP in WT mice, blocked LTP in the heterozygous KRas knockout mouse, suggesting the 

involvement of KRas in LTP induction (Ohno, Frankland et al. 2001). A different study by Kushner and 

collaborators (2005) examined mice expressing a constitutively active form of HRas (HRas
12V

) in forebrain 

postnatal neurons and observed that HRas
12V

 is predominantly localized in axon terminals in CA1 

pyramidal neurons. Increased ERK-dependent phosphorylation of Synapsin 1 (a protein involved in 

neurotransmitter release) was detected in the terminals of these mice, with resulting increased density of 

docked vesicles in glutamatergic terminals, larger miniature excitatory postsynaptic currents (mEPSCs) 

and enhanced PPF. These mice showed enhanced potentiation, even in the presence of NMDAR 

blockers. These effects were reversed by knockout of Synapsin 1, suggesting that HRas can mediate 

presynaptic facilitation (Kushner, Elgersma et al. 2005). Another report by Manabe and collaborators 

(2000) demonstrated that hippocampal LTP induced by HFS was larger in HRas
-/-

 mice, suggesting that 

HRas can restrain LTP induction (Manabe, Aiba et al. 2000). In contrast, when using a pairing protocol, 

another group found that LTP was normal in HRas
-/-

 mice, suggesting that the participation of HRas in 

LTP is sensitive to the stimulation pattern (Komiyama, Watabe et al. 2002). Collectively, these studies 

indicate that the two Ras isoforms, KRas and HRas, are involved in synaptic plasticity.  

Studies involving genetic manipulation of Ras regulators, such as RasGAPs and RasGEFs, have 

also provided strong evidence on a role of the Ras pathway in synaptic transmission. Namely, a 
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RasGRF1 knockout mouse has abnormal LTP in the basolateral amygdala (BLA), despite normal 

NMDAR-dependent LTP in the hippocampus (Brambilla, Gnesutta et al. 1997; Mazzucchelli and 

Brambilla 2000). Also, neurofibromin heterozygous knockout mice exhibit deficits in hippocampal LTP, 

which can be compensated by reducing KRas expression either pharmacologically or genetically (Costa, 

Fedorov et al. 2002). Similarly, SynGAP heterozygous knockout mice also display impaired hippocampal 

LTP (Komiyama, Watabe et al. 2002; Kim, Lee et al. 2003), despite increased synaptic transmission 

(Rumbaugh, Adams et al. 2006). 

Studies involving genetic manipulation of Ras scaffolds have also provided evidence for the 

involvement of Ras in synaptic plasticity. Scaffolding proteins can bring a subset of molecular elements 

into physical proximity, allowing specific interactions to occur. For example, Kinase Suppressor of Ras 1 

(KSR) is a scaffolding protein for the Ras-ERK cascade, which is highly expressed in the adult brain, 

especially in the hippocampus. Hippocampal LTP is lost in KSR
-/-

 mice (Shalin, Hernandez et al. 2006). 

 

Regulation of Postsynaptic AMPA Receptors 

 

Changes in AMPAR trafficking are important components of synaptic plasticity, and they have 

been implicated in multiple forms of adaptive behavior, including learning and memory (Kessels and 

Malinow 2009). A study by Zhu and collaborators (2002) established a role of Ras activation in AMPAR 

trafficking during LTP induction. Using transfected hippocampal CA1 pyramidal neurons, they observed 

that overexpression of WT- or CA-HRas enhanced whole-cell responses mediated by AMPARs at the 

basal state, whereas DN-HRas reduced the responses. Accordingly, DN-HRas inhibited synaptic insertion 

of AMPARs containing GluA2L, whereas CA-HRas promoted insertion of GluA1-containing receptors. In 

this study, when inducing LTP by pairing presynaptic stimulation with postsynaptic depolarization, they 

observed that Ras activation and subsequent ERK activation were required for LTP AMPAR current (Zhu, 

Qin et al. 2002).  

Another report showed that SynGAP plays a critical role in AMPAR trafficking in hippocampal and 

cortical cultured neurons (Rumbaugh, Adams et al. 2006). Accordingly, overexpression of SynGAP in 
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neurons results in a remarkable depression of AMPAR-mediated mEPSCs, a significant reduction in 

synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma 

membrane (Rumbaugh, Adams et al. 2006).  

Strong synaptic activity and experience-dependent activity stimulate additional Ras signaling and 

activate the Ras-PI3K-Akt pathway, which leads to phosphorylation of Ser
831

 of GluA1. Whereas Ser
841

 

phosphorylation of GluA2L is sufficient to drive GluA2L-containing AMPARs into synapses (Qin, Zhu et al. 

2005), phosphorylation of both Ser
845

 and Ser
831

 of GluA1 is required for the synaptic delivery of GluA1-

containing AMPARs (Lee, Barbarosie et al. 2000). However, these findings contradict a number of other 

reports. For example, Manabe et al. (2000) found that enhanced LTP in HRas knockout mice was 

unrelated to AMPARs (Manabe, Aiba et al. 2000).  

 

Regulation of Postsynaptic NMDA Receptors 

 

Although changes in the activity of Ras family proteins do not affect NMDARs during 

spontaneous activity (Zhu, Qin et al. 2002), several studies suggest that HRas signaling can regulate the 

function of NMDARs during the induction of long-lasting synaptic plasticity. Treatment of brain slices with 

TAT-HRas led to the conclusion that HRas activation is able to reduce surface retention of GluN2A-

containing NMDARs by inhibiting its Src-mediated phosphorylation (Thornton, Yaka et al. 2003). This was 

in line with findings by Manabe and collaborators (2000), who reported that HRas knockout mice (HRas
-/-

) 

showed increased tyrosine phosphorylation of GluN2A and GluN2B subunits of the NMDAR in 

hippocampus and larger NMDAR synaptic responses induced by HFS (Manabe, Aiba et al. 2000). 

 

Regulation of Presynaptic Neurotransmitter Release 

 

In addition to modifications of postsynaptic receptors, changes in synaptic strength can also be 

achieved by regulating neurotransmitter release in presynaptic terminals. For example, the C terminal of 

Synapsin 1, which is a protein associated with the surface of synaptic vesicles (SVs), contains consensus 

sites for phosphorylation by ERK, a major downstream effector of Ras family proteins. Neurofibromin 
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restricts GABA release from inhibitory neurons by regulating ERK activation and Synapsin 1 

phosphorylation, which was shown to be important for memory formation (Cui, Costa et al. 2008). A 

contradictory study by Kushner et al. (2005) reported that CA-HRas expression enhances synaptic 

potentiation and memory formation by facilitating vesicle docking and release in excitatory neurons 

(Kushner, Elgersma et al. 2005). 

 

 

Ras in Structural Plasticity 

 

Ras family proteins have long been found to regulate neuronal morphology during development 

by mediating the signaling of growth factors (Borasio, John et al. 1989). A study by Wu and collaborators 

(2001) demonstrated that the activation of the Ras-MAPK pathway by multiple spaced membrane 

depolarizations leads to filopodia formation, which can be reversed by a MEK inhibitor (Wu, Deisseroth et 

al. 2001). The SynRas mouse, a transgenic mouse expressing CA-HRas (HRas
12V

) in postmitotic neurons 

(Heumann, Goemans et al. 2000), displayed an increase in neuronal structural complexity correlated with 

an increase in efficacy in synaptic transmission (Alpár, Palm et al. 2003; Gärtner, Alpár et al. 2004; 

Gärtner, Alpár et al. 2005; Seeger, Gärtner et al. 2005). Particularly, these mutant mice exhibited 

increased spine density in cortical pyramidal neurons (Gärtner, Alpár et al. 2005). Neurons from mice 

lacking SynGAP exhibited accelerated spine development and larger spines than those of WT mice 

(Vazquez, Chen et al. 2004), consistent with SynGAP playing an inhibitory role in Ras signaling (Chen, 

Rojas-Soto et al. 1998; Kim, Liao et al. 1998), spine and synapse morphogenesis (Vazquez, Chen et al. 

2004).  

More recently, several studies suggested that Ras also contributes to structural plasticity 

associated with the formation of long-term synaptic and behavioral plasticity (Ye and Carew 2010). 

Among these, Harvey and collaborators (2008) showed that Ras is activated in single dendritic spines 

following a LTP-inducing stimulus that leads to spine enlargements. Moreover, the same authors showed 

that a MEK inhibitor was sufficient to abolish the sustained phase of spine structural plasticity, indicating 

that Ras is crucial in structural plasticity (Harvey, Yasuda et al. 2008). 
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Ras in Learning and Memory 

 

A number of studies have examined the role of Ras in memory formation by local infusion of 

FTase inhibitors into specific brain regions during different stages of memory processing. Among these 

studies, pretraining infusion of a FTase inhibitor into the BLA disrupted LTM for contextual and cued fear 

conditioning (Merino and Maren 2006). Additionally, genetic manipulations have been used to examine 

the role of specific Ras isoforms in memory formation. For example, despite robust memory for contextual 

fear conditioning in a KRas heterozygous knockout mouse, a subthreshold dose of a MEK inhibitor, which 

did not affect WT mice, blocked memory formation in the heterozygous KRas knockout mouse, 

suggesting the involvement of KRas in memory formation (Ohno, Frankland et al. 2001). Moreover, 

Kushner and collaborators (2005) reported that mice expressing HRas
12V

 in forebrain postnatal neurons 

exhibited enhanced acquisition of spatial memory in the Morris water maze task, and enhanced short-

term and long-term conditioned responses in contextual fear conditioning (Kushner, Elgersma et al. 

2005). Taken together, these studies suggest that KRas and HRas are involved in memory formation.  

Also, mice lacking RasGRF exhibited impaired memory consolidation, as revealed by emotional 

conditioning tasks that require the function of the amygdala, while normal performance was displayed in 

spatial learning tasks that require hippocampal function (Brambilla, Gnesutta et al. 1997; Mazzucchelli 

and Brambilla 2000). Additionally, hyperactivation of the Ras-MAPK-ERK signaling pathway in the 

neurofibromin heterozygous knockout mouse (Nf1
+/-

) led to deficits in spatial learning and memory 

retention (Costa, Fedorov et al. 2002; Li, Cui et al. 2005). 

Studies involving genetic manipulation of Ras scaffolds have provided additional support for the 

involvement of Ras in memory formation. A recent study by Shalin et al. (2006) using KSR knockout mice 

(KSR
-/-

) suggested that KSR specifically links mGluR/PKC-Ras-ERK-Kv4.2 signaling cascade, which is 

essential for memory formation (Shalin, Hernandez et al. 2006). A recent study by Moressis et al. (2009), 

using a Downstream of Receptor Kinase (DRK) heterozygous loss-of-function mutant fly, suggested that 

scaffolding signaling of RTK-Ras-Raf is important for the acquisition of olfactory aversive conditioning in 

Drosophila, since these flies exhibited impaired acquisition and consolidation of olfactory aversive 

conditioning (Moressis, Friedrich et al. 2009). 
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Precise Regulation of Ras and Rasopathies 

 

To date, innumerous reports provide evidence that synaptic AMPAR trafficking mediated by Ras 

signaling plays a key role in experience-dependent synaptic plasticity, as well as many forms of learning 

and memory. Studies involving diverse strategies to manipulate Ras activity suggest that precise 

spatiotemporal regulation of Ras signaling sustains the optimal synaptic load of distinct populations of 

AMPARs, which is essential for maintaining the highest capacity of plasticity, learning and memory 

(Thomas and Huganir 2004; Tidyman and Rauen 2009; Stornetta and Zhu 2011). Direct manipulation of 

Ras demonstrated that both hypo- and hyperactivation of Ras signaling impair synaptic AMPAR 

trafficking and synaptic plasticity (Figure 1.6.) (Zhu, Qin et al. 2002), providing a cellular and molecular 

base for this theory.  

 

 

Figure 1.6. Time course of AMPAR trafficking during LTP. Synaptic AMPAR-mediated response 
amplitudes in CA1 pyramidal neurons expressing CA-Ras-GFP or DN-Ras-GFP and neighboring non-
expressing control neurons before and after LTP-inducing stimuli. Adapted from Stornetta and Zhu 2011. 

 

Importantly, disease-linked mutations of many genes relate to various signaling molecules along 

the Ras pathway, driving the Ras signaling either too high or too low and impairing the signal transduction 

dynamics. The fact that Ras signaling is undoubtedly involved in development and cancer explains a few 

common characteristics often shared by mental diseases besides learning disabilities, including cardiac 

defects, facial dysmorphism, and increased risk of cancer (Stornetta and Zhu 2011). On the other hand, 
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mutations affecting distinct signaling molecules in the Ras pathway determine unique phenotypes in 

different mental disorders (Tidyman and Rauen 2009; Stornetta and Zhu 2011). Among these mental 

disorders associated with learning disability due to dysregulated Ras signaling are: autism (Stornetta and 

Zhu 2011), cardio-facio-cutaneous syndrome (Stornetta and Zhu 2011), Coffin-Lowry syndrome (Thomas 

and Huganir 2004; Stornetta and Zhu 2011), Costello syndrome (Rauen 2007; Tidyman and Rauen 2009; 

Stornetta and Zhu 2011), FXS (Nimchinsky, Oberlander et al. 2001; Newey, Velamoor et al. 2005; 

Stornetta and Zhu 2011), NF1 (Costa, Fedorov et al. 2002; Shilyansky, Lee et al. 2010), Legius syndrome 

(Denayer, Ahmed et al. 2008; Tidyman and Rauen 2009), Noonan syndrome (Tidyman and Rauen 2009; 

Stornetta and Zhu 2011), Leopard syndrome (Tidyman and Rauen 2009), schizophrenia (Stornetta and 

Zhu 2011), and tuberous sclerosis (Qin, Zhu et al. 2005; Tavazoie, Alvarez et al. 2005; Vigil, Cherfils et 

al. 2010). All these “RASopathies” underscore the requirement for the precise regulation of Ras signaling 

in development and behavior.  

 

 

 

Neurofibromin 

 

Neurofibromin, the product of the Nf1 gene, is a 250KDa protein, composed of 2818 amino acids 

(Marchuk, Saulino et al. 1991; Costa and Silva 2003), which is most well-known for being a major GAP for 

Ras proteins (Mazzucchelli and Brambilla 2000). The GRD of neurofibromin consists of a 360-amino acid 

region with 25% sequence homology to the catalytic domain of GAP and represents only a small portion 

(~12%) of the protein. Besides the GRD in the central portion of the protein (Figure 1.7.), neurofibromin 

also includes other biochemical domains, namely a PKA signaling domain close to the C terminal of the 

protein (Figure 1.7.), a PH domain and a Sec14-homology domain located in between the GRD domain 

and the C terminal (Figure 1.7.). Additionally, a regulatory domain with multiple phosphorylation sites 

(cysteine-serine rich domain, CSRD) has been described upstream the GRD domain (Figure 1.7.) and it 
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was demonstrated that phosphorylation of this region can regulate the RasGAP activity of neurofibromin 

(Mangoura, Sun et al. 2006; Larizza, Gervasini et al. 2009). The GRD domain is responsible for the 

negative regulation of Ras signaling (Xu, Lin et al. 1990), whereas the C terminal region contributes for 

PKA activation (The, Hannigan et al. 1997). Also, neurofibromin interacts with microtubules (McClatchey 

2007; Shilyansky, Lee et al. 2010). 

 

 

Figure 1.7. Schematic representation of neurofibromin biochemical domains, signaling and 
regulation. Adapted from Larizza, Gervasini et al. 2009. 
  

 

Neurofibromin Expression and Distribution 

 

Western blot and immunocytochemistry studies by Daston and Ratner (1992) demonstrated that 

neurofibromin is ubiquitously expressed in embryonic rats and is down-regulated in non-neuronal tissue 

during late fetal and early postnatal development (Daston and Ratner 1992). As a consequence, in the 

adult, neurofibromin is mainly expressed in the nervous system, despite its ubiquitous expression at very 

low levels (Mazzucchelli and Brambilla 2000).  Within the brain, neurofibromin is predominantly expressed 

in neurons, non-myelinating Schwann cells, and oligodendrocytes (Danglot, Régnier et al. 1995). Within 

neurons, neurofibromin is expressed in many neuronal cell types, irrespective of neurotransmitter 

expression, neuronal pathway, or brain region (Daston, Scrable et al. 1992; Gutmann and Collins 1993). 

At the subcellular level, neurofibromin is very hydrophilic and has no transmembrane domains or other 

common protein motifs, therefore it is estimated that neurofibromin is a cytosolic protein. More 

specifically, neurofibromin was shown to distribute in the cytoplasm in a fibrillar array coincident with the 
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localization of the microtubules (Gutmann, Boguski et al. 1993). However, some reports claim that 

neurofibromin could also be located in the nucleus (Li, Cheng et al. 2001; Vandenbroucke 2004; 

Leondaritis, Petrikkos et al. 2009). Interestingly, a proteomic study by Husi and collaborators (2000) 

revealed that, in the mouse brain, neurofibromin associates with the NMDAR complex (Husi, Ward et al. 

2000). Furthermore, another study reported that, in immature cultured cortical neurons, neurofibromin 

localizes to axons, neurites and the cell soma. In mature cultures, neurofibromin had a more diffuse 

pattern in the cell soma and a punctate distribution coincident with the distribution of a postsynaptic 

marker (Ethell and Yamaguchi 1999; Hsueh, Roberts et al. 2001). Moreover, subcellular fractionation of 

the adult brain revealed that neurofibromin is present, but not concentrated, at the PSD (Hsueh, Roberts 

et al. 2001). 

 

 

Neurofibromin Signaling           

 

Upstream Signaling 

 

To date, the activators of neurofibromin in adult neurons have not been identified. However, 

neurofibromin is quickly regulated by PKC in response to growth factors that utilize tyrosine kinase 

receptors (Mangoura, Sun et al. 2006), and by ubiquitin-dependent proteolysis in response to both G-

protein and tyrosine receptor signaling ligands (Cichowski, Santiago et al. 2003; Shilyansky, Lee et al. 

2010; Vigil, Cherfils et al. 2010). In embryonic neuronal cultures, the Ca
2+

-sensitive PKCα isoform 

phosphorylates neurofibromin in its N terminal, increasing its association with actin and maximizing its 

activity (Mangoura, Sun et al. 2006). Additionally, neurofibromin C tail serine phosphorylation, probably at 

Ser
2808

, by PKC, following phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) stimulation, leads 

to neurofibromin translocation from the nucleus to the cytoplasm and increases its RasGAP activity 

(Leondaritis, Petrikkos et al. 2009). Thus, neurofibromin RasGAP activity might be activity-dependent. 

Growth factors can also quickly, but transiently, induce ubiquitin-dependent proteolysis of neurofibromin 

in an activity-dependent manner (Cichowski, Santiago et al. 2003). Nevertheless, it remains to be 

confirmed whether similar regulation of neurofibromin occurs in adult neuronal networks. Another possible 
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upstream regulator is the NMDAR. Notably, neurofibromin is part of the NMDAR complex in the mouse 

forebrain (Husi, Ward et al. 2000). The NMDAR interacts with intracellular signaling cascades through its 

C terminal, in a manner that is independent of Ca
2+

 influx (Bannerman, Niewoehner et al. 2008). 

Together, these suggest that neurofibromin could play a role in NMDAR-dependent regulation of Ras 

signaling.  

 

Downstream Signaling 

 

Neurofibromin has multiple biochemical roles. Neurofibromin is a RasGAP, negatively regulating 

Ras signaling and its downstream targets (Figure 1.8.) (Xu, Lin et al. 1990). Hence, in neurons, loss of 

neurofibromin leads to constitutive increases in intracellular Ras activity and its downstream signaling 

(Guilding, McNair et al. 2007). Also, inhibition of Ras by neurofibromin regulates the PI3K-Akt-mTOR 

pathway, as evidenced by studies that suggest that Nf1 deficiency results in elevated activity of mTOR 

(Dasgupta, Yi et al. 2005; Johannessen, Reczek et al. 2005). Further, neurofibromin loss-of-function can 

allow Ras signaling to become decoupled from extracellular triggers, such as growth factors. Thus, 

following growth factor release or other signals, neurofibromin could act to limit and narrow the time 

window for Ras activation. 

 

 

Figure 1.8. Simplified neurofibromin signaling. Neurofibromin functions as a negative regulator of the 
Ras-MAPK signaling cascade. Neurofibromin is also an activator of AC. Adapted from Shilyansky et al. 
2010. 
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In addition to its role as a RasGAP, neurofibromin acts as an activator of adenylate cyclase (AC) 

(Figure 1.8.) (Tong, Hannan et al. 2002). Interestingly, neurofibromin can increase the AC activity in a 

Ras-dependent manner, flowing growth factor activation. Neurofibromin can also increase directly AC 

activity in a Ras-independent manner through its C terminal domain (Hannan, Ho et al. 2006). 

 

 

The Nf1 Gene 

 

The Nf1 gene, which encodes neurofibromin, is located on the q11.2 region of chromosome 17 

and is one of the largest in the genome (Xu, Lin et al. 1990; Marchuk, Saulino et al. 1991). The Nf1 gene 

is evolutionary highly conserved, with homologues present  in most eukariotic genomes. The mouse Nf1-

encoded protein shares 98% amino acid identity with their cognate human proteins (McClatchey 2007). 

The transcriptional regulation and downstream targets of Nf1 are also conserved across species 

(Shilyansky, Lee et al. 2010). The Nf1 gene is ubiquitously expressed throughout the body (Danglot, 

Régnier et al. 1995; Shilyansky, Lee et al. 2010) and it is driven by a weak promoter which accounts for 

its low expression in most mammalian cells (Larizza, Gervasini et al. 2009). Within the CNS, Nf1 

transcription is seen in the brainstem, cerebellum, striatum, cortex, hippocampus, and substantia nigra. In 

the cortex and hippocampus, Nf1 is expressed in pyramidal neurons, interneurons, and glia (Shilyansky, 

Lee et al. 2010).  

Several alternatively spliced isoforms of the Nf1 gene have been reported. Alternative splicing of 

Nf1 in exon 9a gives rise to an isoform including an additional 30bp sequence, which leads to the 

insertion of 10 amino acids between residues 420 and 421 of neurofibromin, at the junction of exons 9 

and 10a. This isoform is specifically expressed in the CNS, in neurons. Alternative splicing of exon 23a 

gives rise to isoforms I and II. Interestingly, exon 23a encodes a 63bp (21 amino acids) region within the 

GRD domain. Exclusion of exon 23a produces isoform I of neurofibromin, whereas inclusion results in 

isoform II. Isoform II has a greater affinity for Ras, but 10 times lower RasGAP activity as compared to 

isoform I (Yunoue, Tokuo et al. 2003). Isoform I is predominantly expressed in neurons, while isoform II is 

mostly expressed in glia (Gutmann, Geist et al. 1995). The transcripts including exon 23a are widely 

expressed in all tissues and are the most abundant form in adult tissues apart from the brain. Exon 48a is 
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located in the 3’ region of the coding sequence and inserts 54 nucleotides in the Nf1 mRNA. The resulting 

transcripts are highly expressed in muscle (cardiac, skeletal and smooth) and weakly in several other 

tissues. Another alternatively spliced exon removes exon 11, thereby generating a truncated transcript 

that lacks the GRD domain and whose function remains unknown (Danglot, Régnier et al. 1995; 

Shilyansky, Lee et al. 2010).  

The Nf1 gene is considered a tumor suppressor gene, since loss-of-function mutations have been 

associated with the occurrence of benign and malignant tumors in neural-crest derived tissues (Danglot, 

Régnier et al. 1995). Loss-of-function Nf1 mutations result in decreased cycling from the active to inactive 

state of Ras, thus leading to Ras hyperactivity and increased cell proliferation (Mitin, Rossman et al. 

2005). Interestingly, the calculated mutation rate for Nf1 is 1:10000, which is about 100-fold higher than 

the usual mutation rate for a single locus (Marchuk, Saulino et al. 1991). Inactivation of the mouse Nf1 

gene revealed that, like most tumor suppressors, Nf1 is required for normal embryonic development. 

Therefore, the complete loss of neurofibromin is lethal. Homozygous Nf1 mutant mice display heart 

malformation, hyperplasia of sympathetic ganglia, and die embryonically around E13.5 (Jacks, Shih et al. 

1994; McClatchey 2007). Heterozygous mice for the null mutation are viable, but show increased tumor 

incidence with age (Jacks, Shih et al. 1994). 

 

 

Neurofibromatosis Type I 

 

Neurofibromatosis Type I (NF1), or von Recklinghausen disease, was described in the late 

1700s, but was first recognized as a disorder and characterized extensively in 1882 by von 

Recklinghausen (McClatchey 2007). NF1 is an autosomal dominant genetic disease that affects about 1 

of 3500 individuals in all ethnic groups. NF1 is caused by loss-of-function mutations in the gene Nf1 and 

primarily affects tissues that derive from the neural crest. NF1 is characterized by multiple symptoms and 

pathologies, but the hallmark of the disease is the development of cutaneous café-au-lait spots 

(hyperpigmentation of melanocytes), Lisch nodes (harmatomas of the iris) (Figure 1.9.) and multiple 

neurofibromas, which are found in > 90% of the patients (Jett and Friedman 2010). The presence of 
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multiple benign tumors in the CNS and in the peripheral nervous system (PNS), as well as generally all 

over the body (myeloid leukemias, phaeochromocytomas), is also frequent (Cichowski, Shih et al. 1999; 

Costa and Silva 2003). The benign neurofibromas can develop into malignant peripheral-nerve sheath 

tumors (MPNSTs) (Jett and Friedman 2010). Some NF1 patients may also show optic pathway gliomas 

and other neurological lesions (Zhu, Harada et al. 2005; Albers and Gutmann 2009). Furthermore, in the 

brain, Nf1 mutations can result in astrogliosis and astrogliomas (Nordlund, Rizvi et al. 1995; Zhu, Romero 

et al. 2001), and in learning disabilities that occur in 40-60% of the NF1 patients (Jett and Friedman 

2010). Additionally, there is a significant incidence of headaches and seizures (Jett and Friedman 2010). 

A minority of patients might also have renal hypertension and occasionally skeletal abnormalities (such as 

scoliosis, pseudoarthrosis, megalencephaly, and short stature) (Jett and Friedman 2010) or mental 

retardation (Marchuk, Saulino et al. 1991; Danglot, Régnier et al. 1995). 

Not only the NF1-related symptoms are diverse, as their onset and severity are rather variable 

and age-dependent. This is true even among patients belonging to the same family and carrying the 

same mutation (Marchuk, Saulino et al. 1991; Gutmann and Collins 1993; McClatchey 2007). In spite of 

its familial nature, NF1 is also characterized by an incredible high incidence of new mutations, due to the 

peculiarly high mutation rate and large size of the Nf1 gene. New mutations account for approximately 

50% of NF1 cases, unrelated to a family history of the disease. Among the diversity of mutations reported 

in NF1 patients, small deletions, insertions, nonsense mutations, frameshift mutations, or truncating 

mutations that completely inactivate the gene have been detected. To bring even more complexity to the 

disease, genotype-phenotype correlations have been difficult to establish within the NF1 condition. 

Except for extremely severe cases, correlated with huge deletions in the Nf1 gene, most patients show 

only some symptoms of NF1. Even though, the clinical display of symptoms extends from minimal to 

severe. Some reports have partially attributed such diversity of symptoms to the contribution of modifying 

genes (Gutmann and Collins 1993; Ward and Gutmann 2005; McClatchey 2007). 

Due to the crucial role of Ras in growth and development, NF1-associated tumorogenesis is 

strongly related to the inability to downregulate Ras. Accordingly, NF1-mutant tumors exhibit elevated 

levels of Ras-GTP (McClatchey 2007). Particularly relevant evidence supporting this idea comes from a 



40 

 

report that identified a missense mutation in the Nf1 gene, in a family with multi-symptomatic NF1. This 

mutation was found to specifically abolish the RasGAP activity of neurofibromin, without affecting its 

ability to bind Ras (Klose, Ahmadian et al. 1998), suggesting that the loss of RasGAP activity underlies 

the NF1 symptoms. 

 

 

Figure 1.9. Examples of two of the most common symptoms of NF1. Lisch nodes (left) and café-au-

lait spots (right). Adapted from http://emedicine.medscape.com/article/1219222-overview and 

http://www.daviddarling.info/encyclopedia/B/birthmarks.html. 
 

 

Cognitive Deficits in NF1 

 

NF1 does not cause global cognitive dysfunction, but specifically affects executive and other 

higher-order cognitive functions (Costa and Silva 2003; Hyman, Shores et al. 2005; Krab, Goorden et al. 

2008). Specifically, NF1 affects planning, visuospatial function, reading/vocabulary, and motor 

coordination (Hofman, Harris et al. 1994; Costa and Silva 2003; Hyman, Shores et al. 2005). Additional 

deficits are seen in working memory, cognitive flexibility, and inhibitory control (Rowbotham, Pit-ten Cate 

et al. 2009). There is also a high correlation between NF1 and attention deficit disorder (Hofman, Harris et 

al. 1994; Kayl and Moore 2000; Koth, Cutting et al. 2000; North 2000; Costa and Silva 2003; Hyman, 

Shores et al. 2005). Overall, individuals with NF1 require special education (Krab, Goorden et al. 2008), 

which is able to compensate for the cognitive deficits.  

 

 

 

http://emedicine.medscape.com/article/1219222-overview
http://www.daviddarling.info/encyclopedia/B/birthmarks.html
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Insights from Animal Models of NF1 

 

Heterozygous Nf1 knockout (Nf1
+/-

) mice were established as an animal model for NF1 disease 

by Jacks and collaborators (1994). Like patients with NF1, this mouse is heterozygous for the Nf1 loss-of-

function mutation. The Nf1
+/-

 mouse was made by inserting a neo gene in exon 31 of the Nf1 gene, which 

leads to an unstable, quickly degraded transcript (Jacks, Shih et al. 1994). Based on the genetic, 

biochemical and behavioral parallels between the Nf1
+/- 

mouse model and human NF1, it is thought that 

this mouse offers a useful model of the behavioral and cognitive symptoms associated with the disorder. 

The Nf1
+/-

 mouse has, therefore, been utilized to identify physiological and molecular mechanisms that 

contribute critically to cognitive and behavioral changes associated with NF1 and important achievements 

were made in the past decade.  

Nf1
+/-

 mice are prone to developing some of the tumors seen in NF1 patients, notably 

pheochromocytoma and myeloid leukemia (Jacks, Shih et al. 1994). Furthermore, Nf1
+/-

 mice also 

develop astrogliosis in several brain regions (Rizvi, Akunuru et al. 1999), including the hippocampus. Like 

most NF1 children, Nf1
+/- 

mice are hyperactive and have attention problems, which can be rescued by 

Ras inhibitors (Li, Cui et al. 2005). At the cognitive level, Nf1
+/-

 mice show spatial learning deficits in the 

hidden version of the Morris water maze (Silva, Frankland et al. 1997; Costa, Fedorov et al. 2002; Li, Cui 

et al. 2005; Cui, Costa et al. 2008), a task dependent on the hippocampal function. This suggests a role 

of neurofibromin in the hippocampus during memory processing. Probe trials given early on during water 

maze training revealed that Nf1
+/-

 mice required more training trials than control animals to learn the 

position of the hidden platform. In other words, when searching for the missing platform in probe trials, the 

mutant mice spent less time in the appropriate quadrant compared to their WT littermates (Costa, 

Fedorov et al. 2002). Interestingly, Nf1
+/-

 mice were able to overcome their performance deficit with 

extended training, which bypasses the requirement of the hippocampus (Packard and McGaugh 1996; 

Pouzet, Zhang et al. 2002). This sensitivity to overtraining is also a feature reported in NF1-associated 

learning disabilities in patients. Nf1
+/-

 mice also show deficits in contextual conditioning, a test where mice 

associated a novel chamber with a mild foot shock (Cui, Costa et al. 2008). As with the Morris water 

maze, contextual conditioning has a spatial learning component and requires hippocampal function. 
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Interestingly, despite the finding by Nordlund and collaborators (1995) that neurofibromin is expressed in 

many brain regions (Nordlund, Rizvi et al. 1995), Silva and collaborators (1997) did not observe any 

memory deficit in Nf1
+/-

 mice in cued fear conditioning, a form of amygdala-dependent and hippocampus-

independent memory task, suggesting that neurofibromin does not affect amygdala-mediated memory 

(Silva, Frankland et al. 1997). Electrophysiological studies in the CA1 region of the hippocampus of Nf1
+/- 

mutant mice demonstrated that LTP is impaired when induced with a TBS protocol (Costa, Fedorov et al. 

2002). Interestingly, the same way that additional training rescues the learning impairments of the 

mutants, stronger synaptic stimulation (such as HFS) also rescues their LTP deficits (Costa, Fedorov et 

al. 2002). Therefore, the LTP deficits are thought to underlie the learning deficits seen in the Nf1
+/-

 mice 

(Costa, Fedorov et al. 2002). Additionally, increased GABAergic inhibition was observed in these mice, 

compared to WT controls (Costa, Fedorov et al. 2002). Just as with the learning deficits, increased 

inhibition and synaptic plasticity impairments of the Nf1
+/- 

mice were reversed by manipulations that 

decrease Ras activity (Costa, Fedorov et al. 2002; Li, Cui et al. 2005). Nf1
+/-

 mice crossed to null Ras 

mutants (KRas
+/-

 or NRas
-/-

 mice) resulted in a double Nf1/Ras mutant that performed at the same level 

as the WT mice, even though each mutant individually showed deficits in this task (Costa, Fedorov et al. 

2002). Equally, while LTP deficits were seen individually in each mutant, these were rescued in the 

double Nf1/Ras mutant (Costa, Fedorov et al. 2002). Also, pharmacological agents, such as FTase 

inhibitors, which inhibit Ras activity, were able to rescue the performance of the Nf1
+/-

 mouse in the Morris 

water maze task and the LTP deficits (Costa, Fedorov et al. 2002; Li, Cui et al. 2005). Downstream the 

signaling pathway, Guilding et al. (2007) found that basal ERK phosphorylation and downstream CREB 

phosphorylation were elevated in the hippocampus of the Nf1
+/-

 mice, while there was no change in the 

PI3K cascade. This suggests that neurofibromin specifically suppresses the ability of Ras to activate the 

Raf-MEK-ERK-CREB cascade. In this study, application of a subthreshold dose of a MEK inhibitor, which 

reversed the abnormal increase in ERK and CREB phosphorylation, reversed the LTP deficit in Nf1
+/- 

mice (Guilding, McNair et al. 2007). Therefore, in Nf1
+/-

 mice, both LTP and memory deficits are caused 

by increased Ras signaling due to loss of regulation by neurofibromin (Costa, Fedorov et al. 2002; Li, Cui 

et al. 2005; Cui, Costa et al. 2008). 
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The idea that modifying genes underlie the variability in the expression of NF1-related symptoms 

came from mouse studies, which indicated that background genetic modifiers alter the expression of 

Nf1
+/-

-related phenotypes. For example, in the NF1 mouse model, the phenotypic effect of the Nf1 

mutations depends on the background strain on which that mutation is expressed (Silva, Frankland et al. 

1997; Hawes, Tuskan et al. 2007). Since these strains are engineered with the same Nf1 mutation, 

phenotypic differences across strains are attributed to differential expression of modifying genes across 

mouse strains. Silva and collaborators reported that, although the GluN1
+/-

 mutation alone does not have 

a spatial learning phenotype, it exacerbates the spatial learning phenotype of the Nf1
+/-

 mutant mice 

(Silva, Frankland et al. 1997).  

Conditional mutants of the Nf1 gene have also been extensively studied to identify the effects of 

Nf1 deletion within specific neuronal types. Conditional mutants can be created in mice using the Cre-

loxP system, a powerful tool widely used for restricting gene deletions to specific time frames, cell types, 

or areas. A mouse line was engineered with loxP sites flanking exons 31-32 of the Nf1 gene (Nf1 
flox/flox

). 

The floxed Nf1 gene acts like the WT allele prior to the expression of Cre recombinase. Mice carrying one 

floxed Nf1 allele and one deleted Nf1 allele (Nf1
+/floxed

) show the same phenotypes as Nf1
+/-

 mice (Zhu, 

Romero et al. 2001). Cui and collaborators (2008) used this strategy to cross Nf1
flox/flox

 mouse with mice 

expressing Cre recombinase under the control of cell-type-specific promoters: Synapsin 1 promoter (for 

expression in neurons only), GFAP promoter (for expression in astrocytes only), αCaMKII promoter (for 

expression in pyramidal neurons only) and Dlx5/6 promoter (for expression in GABAergic neurons only) 

(Cui, Costa et al. 2008). They observed that Nf1 deletion and increased Ras signaling has cell-type 

specific physiological effects that contribute to behavioral symptoms. Surprisingly, they reported that 

neurofibromin expression in hippocampal pyramidal neurons might not have such an essential role in 

hippocampal learning, in the strains of mice tested and tests performed. In contrast, neurofibromin 

expression in interneurons might be crucial for cognitive performance. In the Morris water maze, 

heterozygous deletion of Nf1 from inhibitory neurons was sufficient to cause behavioral impairments, 

whereas deletion from pyramidal neurons or glia did not cause deficits in the conditions in which the task 

was performed. Thus, these authors reported that regulation of Ras signaling by Nf1 is particularly critical 

in interneurons. In more detail, within the hippocampus of Nf1
+/-

 mice, increased interneuronal Ras 



44 

 

signaling led to enhanced ERK phosphorylation, which therefore increased Synapsin 1 phosphorylation, a 

presynaptic protein involved in vesicle release. Consequently, Nf1 deletion in interneurons caused 

enhanced activity-dependent GABA release, which, in turn, led to larger evoked inhibitory currents in 

CA1, shifting the balance between inhibitory and excitatory processes within the hippocampal networks of 

the mutant mice (Cui, Costa et al. 2008). As a result, LTP was impaired in the Nf1
+/- 

mice, perhaps 

because the increased inhibition prevented sufficient depolarization of the NMDARs during learning 

(Costa, Fedorov et al. 2002; Cui, Costa et al. 2008). Both LTP and Morris water maze deficits were 

improved using picrotoxin (PTX), a GABAA receptor inhibitor, at concentrations that did not affect these 

phenomena in controls (Costa, Fedorov et al. 2002; Cui, Costa et al. 2008). Despite the fact that 

behavioral deficits occur as a result of a reversible increase in inhibition, it is important to also consider 

potential effects on development of neuronal networks, since most Nf1 gene mutations in patients and 

mice are present from birth. Importantly, GABAergic inhibition plays an important role in the development 

patterning of neuronal networks, and so the Nf1 mutation may cause development defects that correlate 

with symptoms of NF1 such as learning disabilities. 

 Finally, mouse models targeting specific biochemical domains of the Nf1 gene have been 

examined to demonstrate the relative importance of the various regulatory functions of neurofibromin. 

Mice carrying a homozygous knockout of exon 23a of Nf1 (Nf1
23a-/-)

, which encodes part of the GRD, 

showed no predisposition for tumor formation and developed normally. However, they exhibited impaired 

spatial learning and memory in the Morris water maze task (Costa, Yang et al. 2001). This study also 

underscores the importance of neurofibromin as a RasGAP in memory formation and revealed that the 

role of neurofibromin in memory and oncogenesis can be dissociated. Altered behavioral performance in 

these mutant mice is a direct function of their Nf1 mutation, rather than a secondary effect of tumor 

formation. 

The strongest support for functions of neurofibromin beyond Ras regulation comes from studies 

of Drosophila melanogaster Nf1 mutants. Homozygous inactivation of Drosophila Nf1 yields viable flies, 

but ones that are abnormally small and exhibit electrophysiological, learning, and circadian defects (Guo, 

The et al. 1997; The, Hannigan et al. 1997; Guo, Tong et al. 2000; Williams, Su et al. 2001). In an 
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aversive conditioning task, Nf1-deficient flies showed both a learning deficit immediately after one-cycle 

training and a long-term memory deficit 24 hours after spaced repeated-trial (Guo, Tong et al. 2000; Ho, 

Hannan et al. 2007). Interestingly, learning defects in Nf1 null Drosophila melanogaster could be rescued 

by overexpression of a constitutively active form of PKA (Guo, Tong et al. 2000). These and other data 

suggested that the associative learning impairments in Nf1 null flies are due to decreased activity of AC. 

Also, the mutant flies performed normally in memory tests after massed training, once again suggesting 

that extensive training might compensate for the cognitive deficits inherent to NF1. Ho et al. (2007) found 

that the C terminal of neurofibromin, which activated AC, was important for immediate memory, whereas 

its GAP activity was specifically required for the formation of LTM followed spaced training. Regulation of 

AC by neurofibromin has also been found in rodents (Tong, Hannan et al. 2002; Dasgupta, Dugan et al. 

2003; Ho, Hannan et al. 2007; Lin, Lei et al. 2007; Brown, Diggs-Andrews et al. 2011). Particularly 

relevant for the context of this dissertation, a recent study by Lin et al. (2007) demonstrated that 

neurofibromin removal by shRNA resulted in PKA-dependent loss of dendritic spines in hippocampal 

cultured neurons (Lin, Lei et al. 2007).  

 

Treatment of the Cognitive Effects 

 

Cognitive defects are a challenging aspect of NF1 management, with nearly half of NF1 children 

exhibiting some type of learning disability. The key pathophysiologic mechanism underlying Nf1 mutations 

in both mice and humans is increased Ras activity (Costa, Fedorov et al. 2002). Therefore, Ras has been 

the preferred therapeutical target for NF1. Since posttranslational farnesylation is required for the 

membrane localization and function of Ras, inhibition of farnesylation has been widely explored for NF1 

pharmacotherapy. Indeed, pharmacological inhibitors of FTase downregulate Ras activity. Li et al. (2005) 

identified lovastatin, a FTase inhibitor, as a potent inhibitor of Ras/MAPK activity. Lovastatin decreased 

the enhanced brain Ras-MAPK activity of the Nf1
+/-

 mice, rescued the LTP deficits, and reversed their 

spatial learning and attention impairments. Hence, lovastatin is currently the best drug candidate to 

ameliorate the cognitive deficits associated with NF1 (Li, Cui et al. 2005).  
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Aims 

 

The general goal of this dissertation is to study the role of neurofibromin in Ras signaling and 

morphological plasticity of dendritic spines in CA1 pyramidal neurons. Abnormal Ras inactivation may 

account for the spatial learning and memory deficits, as well as LTP impairment, associated with 

neurofibromin loss-of-function mutants, as seen in NF1 patients and in animal models of the disease 

(Nf1
+/-

 mice) (Silva, Frankland et al. 1997; Costa, Fedorov et al. 2002; Li, Cui et al. 2005). Because spatial 

learning and memory have been extensively described as being dependent on hippocampal function 

(Morris, Halliwell et al. 1989; Eichenbaum, Stewart et al. 1990), and because synaptic plasticity (which 

has been best studied in the Schaffer-collateral pathway of the hippocampus) is thought to underlie 

memory formation and learning (Morris, Davis et al. 1990; Silva, Elgersma et al. 2000) we focused our 

research in hippocampus. Furthermore, most of the excitatory synapses are made onto dendritic spines 

(Nimchinsky, Sabatini et al. 2002; Holtmaat and Svoboda 2009; Lee and Yasuda 2009) and LTP can be 

expressed in single dendritic spines (Matsuzaki, Honkura et al. 2004), making dendritic spines an 

attractive location to study a signaling pathway that regulates synaptic plasticity. The Ras signaling 

pathway has been reported to have a fundamental role in synaptic plasticity, learning and memory. 

Additionally, previous studies have demonstrated that Ras is important for postsynaptic structural 

plasticity (Wu, Deisseroth et al. 2001; Arendt, Gärtner et al. 2004; Harvey, Yasuda et al. 2008). 

Furthermore, neurofibromin has been shown to interact with the NMDAR complex (Husi, Ward et al. 

2000) and to be present in dendritic spines of cultured neurons (Hsueh, Roberts et al. 2001). Hence, we 

hypothesize that the changes observed in dendritic spines upon neurofibromin loss-of-function are due to 

a dysfunction in the Ras signaling pathway.  

The first specific aim of this dissertation was to understand the role of neurofibromin in regulating 

the spine density and morphology in mature neurons. In order to do this, hippocampal organotypic slice 

cultures were sparsely transfected with neurofibromin shRNA and GFP and imaged under a TPLSM. The 

dendritic spine density and morphology were analyzed and we investigated whether the observed 

phenotype was Ras-dependent and activity-dependent through either genetic or pharmacological 
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manipulations. Furthermore, we examined if neurofibromin is also capable of regulating the number of 

functional synapses in the hippocampus, by recording mEPSCs in the same type of preparation (chapter 

III).  

We also examined if neurofibromin regulates the spine structural plasticity, the structural basis of 

synaptic plasticity. In order to pursue this question, we stimulated single dendritic spines of CA1 

hippocampal neurons using the 2-photon glutamate uncaging technique and monitored the volume 

change of the stimulated spine for 30 minutes. Finally, we asked whether the observed effects were Ras-

dependent and/or activity-dependent. We determined through pharmacological manipulations that a 

decrease in NMDAR function rescues the phenotype created by neurofibromin loss-of-function. We 

performed calcium imaging experiments in combination with 2-photon glutamate uncaging to examine if 

the NMDAR is regulated by neurofibromin signaling in dendritic spines of CA1 neurons (chapter IV). 

Lastly, we proposed to examine to what degree neurofibromin inactivates Ras in dendritic spines 

during spine structural plasticity. We first developed an improved Ras sensor with good sensitivity to 

image Ras activation in single dendritic spines. Then, we monitored Ras activation using advanced 

techniques, namely two-photon glutamate uncaging and fluorescence lifetime imaging (FLIM), under 

genetic manipulations that affect neurofibromin function (chapter V). 
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Chapter II. Materials and methods 

 

 

Introduction 

 

In this chapter, we describe in detail all materials and methods that we used in experiments 

described in the following chapters. Data are presented as mean ± standard error of the mean (s.e.m.) 

unless otherwise specified. 

 

 

 

General Strategy 

 

To study the function of neurofibromin, we transiently downregulated neurofibromin using shRNA. 

Overexpression of the GRD domain of neurofibromin (isoform I) (Costa, Yang et al. 2001) and of several 

modified Ras constructs, including dominant negative (HRas
17N

) (Feig 1999) and constitutively active 

forms (HRas
12V

) (Feig and Cooper 1988; Ehrhardt, Ehrhardt et al. 2002) was also used to study 

specifically the role of neurofibromin in Ras regulation.  

We used two-photon fluorescence lifetime imaging microscopy (TPFLIM) to image signaling 

activity with high spatial and temporal resolution in slices (Svoboda and Yasuda 2006). We used 

organotypic slice cultures from the hippocampal brain region of rats (Stoppini, Buchs et al. 1991). Also, 

we used ballistic gene transfer, which results in sparse labeling of the hippocampal slice and, thus, makes 

single spine imaging possible (McAllister 2000). Electrophysiology studies were used to study a 

physiological function of several observations, or to confirm some morphological events. 
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DNA Constructs, Antibodies and Reagents 

 

MNI-caged-L-glutamate, NBQX, AP5 and TTX were purchased from Tocris Cookson (Ballwin, 

MO). 

The antibodies used for shRNA validation were the following: rabbit anti-neurofibromin (Santa 

Cruz Biotechnology, sc-68), mouse anti-alpha actinin (BD Biosciences, 612576), rabbit anti-pERK1/2 

(Cell Signaling, 4377) and mouse anti-ERK1/2 (Cell Signaling, 9107). 

As for cDNA constructs, we used a plasmid including shRNA targeted to rat neurofibromin and 

EGFP (SABiosciences). The plasmid consists of a dual promoter CMV-EGFP/U1-shRNA vector 

(pGeneClip), which ensures coexpression of green fluorescent protein (GFP) and shRNA. The sequences 

GCAGCTAGATGAAGTCAACTT (NF1 shRNA #1) and GCTGGCAGTTTCAAACGTAAT (NF1 shRNA #2) 

were tested. The sequence GGAATCTCATTCGATGCATAC was used as a negative control shRNA 

(scrambled shRNA, sc-shRNA) that does not knockdown neurofibromin. Further, in order to obtain 

neurofibromin shRNA constructs that do not express EGFP, SDS-PAGE purified cDNA oligonucleotides 

were designed and purchased from Integrated DNA Technologies (IDT):  

-  sc-shRNA sense 

   TGGAATCTCATTCGATGCATACCTTCCTGTCAGTATGCATCGAATGAGATTCCTTTTTTC; 

-  sc-shRNA antisense 

   TCGAGAAAAAAGGAATCTCATTCGATGCATACTCACAGGAAGGTATGCATCGAATGAGATTCCA;  

-  NF1 shRNA #2 sense 

   TGCTGGCAGTTTCAAACGTAATCTTCCTGTCAATTACGTTTGAAACTGCCAGCTTTTTTC;  

-  NF1 shRNA #2 antisense 

   TCGAGAAAAAAGCTGGCAGTTTCAAACGTAATTCACAGGAAGATTACGTTTGAAACTGCCAGCA. 

These were cloned into the pLL3.8 vector (also a dual promotor vector CMV-EGFP/U6-shRNA) using the 

HpaI and XhoI restriction sites. EGFP was removed from the pLL3.8 vector using restriction sites NheI 

and EcoRI, followed by vector klenowing. The change of vector was justified by the fact that the initial 

vector pGeneClip has no convenient restriction sites for EGFP removal and to gain the possibility of 

producing lentivirus expressing neurofibromin shRNAs in the future, if needed.  
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The GRD domain from neurofibromin isoform I (NF1-GRD) was obtained from Fuyuhiko Tamanoi 

lab through Addgene in the pGBT9 vector. NF1-GRD cDNA was amplified by polymerase chain reaction 

(PCR) using the following primers: GGCCAGCTAGCGAATTCATGGAATTGATGGAAGCC (forward) and 

GCGCTGGTACCGCCCCTTTCGATTCTAGG (reverse); and then inserted onto the pCI vector and onto 

the pmEGFP-C1 vector using the restriction sites EcoRI and KpnI.  

The constructs pCI-mEGFP-HRas, pCI-mEGFP-HRas
12V

, pCI-mEGFP-HRas
17N

, pCI-mRFP-RBD-

mRFP and pCI-mRFP-RBD
59A

-mRFP were previously described (Yasuda et al. 2006). Two point 

mutations were inserted in the original pCI-mRFP-RBD-mRFP to produce pCI-mRFP-RBD
65E,108A

-mRFP. 

To insert the K108A mutation, a PCR was performed using the following primers: 

-  CTCCACGAACACAAAGGTGCAAAAGCACGCTTAGATTGG (forward); 

-  CCAATCTAAGCGTGCTTTTGCACCTTTGTGTTCGTGGAG (reverse).  

To insert the mutation K65E, a second PCR was performed using the primers: 

-  GCAACACTATCCGTGTTTTCTTGCCGAACGAGCAAAGAACAGTGGTCAATGTGCGAAATGG 

   (forward); 

-  CCATTTCGCACATTGACCACTGTTCTTTGCTCGTTCGGCAAGAAAACACGGATAGTGTTGC  

   (reverse).  

All primers were purchased from IDT.  

 

 

Cell Culture and Transfection 

 

HEK293T cells were cultured in 35mm dishes in Dubelco’s modified eagle medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) at 37
o
C in 5% CO2, and transfected with plasmid DNA 

using Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions: 2μg of cDNA in 

100μL Opti-MEM (Invitrogen) was mixed with 3μL of lipofectamine 2000 in 100μL Opti-MEM that was pre-

incubated for 5 min at room temperature. The mixture was incubated for 20 min and added dropwise into 

the media. Cells were then incubated for 24 hours. 

HEK293T cells were used to test for the different Ras sensors. Approximately 16-18 hours after 

transfection, the cells were deprived by a reduction of the FBS supplement in the DMEM from 10% to 
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0.5%. Eight hours after that, the cells were imaged in a solution containing HEPES (30mM, pH 7.3) 

buffered ACSF (130mM NaCl, 2.5mM KCl, 1mM CaCl2, 1mM MgCl2, 2mM NaHCO3, 1.25mM NaH2PO4 

and 25mM glucose) (Murakoshi, Lee et al. 2008). 

For shRNA validation, hippocampal neuron cultures were prepared from E18 rat embryos and 

grown on 35mm dishes coated with poly-D-lysine as previously described (Liao, Zhang et al. 1999; Ehlers 

2000).  The hippocampal neuron cultures were kindly prepared by Carrie Marean-Reardon, in Dr. Michael 

Ehlers laboratory. 

 

 

Lentivirus and Infection 

 

 Lentivirus packaged with pLL3.8 harboring either scrambled control shRNA or shRNA targeting 

neurofibromin and mEGFP were generated by the Duke Neurotransgenic Laboratory, supported, in part, 

with the funding from NIH-NINDS Center Core Grant 5P30NS061789. For the shRNA validation 

experiments, hippocampal neuron cultures were infected with the lentivirus mentioned in the previous 

paragraph at DIV 1-3. Cell lysates were collected 5-7 days later for immunoblot analysis. 

 

 

Organotypic Hippocampal Slice Cultures and Transfection 

 

Hippocampal slice cultures were prepared from postnatal day 6 or 7 rats (Stoppini, Buchs et al. 

1991), in accordance with the animal care and use guidelines of the Duke University Medical Center. 

Pups were anesthetized using isofluorane, decapitated, and quickly placed in chilled dissection media 

containing: 1mM CaCl2, 5mM MgCl2, 10mM glucose, 4mM KCl, 26mM NaHCO3 and 248mM sucrose. The 

hippocampuses were removed, transferred to a tissue chopper and sliced into 350 μm slices. Next, the 

slices were placed on a Millipore membrane (3 to 5 slices per membrane), with a 0.2μm pore size filter, 

and left to incubate in tissue media (pH 7.4 and mOsm 300) containing: 0.0084g/ml HEPES base MEM, 

20% horse serum, 1mM L-glutamine, 1mM CaCl2, 2mM MgSO4, 12.9mM D-glucose, 5.2mM NaHCO3, 

30mM HEPES, 0.075% ascorbic acid, and 1μg/ml insulin. The organotypic slice cultures were incubated 
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at 35
o
C, 97% O2 and 3% CO2. The culture medium was changed every 2-3 days. After 10-15 days in 

culture, the slices were ballistically transfected, using a Helius gene gun (Bio-Rad). Bullets were prepared 

using 8-11mg of 1.6μm gold particles (Bio-Rad) coated with a total of 50μg of plasmids containing cDNA. 

For the Ras sensor, a ratio of 1:1:3 was used between neurofibromin construct (sc-shRNA, NF1 shRNA 

or GRD1; 10μg), Ras sensor donor (mEGFP-HRas; 10μg) and Ras sensor acceptor (mRFP-RBD
65E,108A

-

mRFP; 30μg). For all pharmacological experiments, the respective drug (MgCl2 or AP5) was added to the 

culture medium at the time of transfection and kept in the culture medium until the experiment was 

performed. Experiments were done 4-7 days later, to allow for full knockdown of the Nf1 gene. At this 

time, hippocampal slices containing transfected CA1 neurons located between 15 to 100μm deep from 

the surface were used for imaging, at room temperature (~ 25
o
C). 

 

 

Western Blot 

 

E18 hippocampal neurons were infected with lentivirus harboring shRNAs constructs directed 

against neurofibromin or scrambled control shRNA. Five to seven days later, the majority of the cells were 

verified to be infected by checking for green fluorescence in the culture. The neurons were lysed in 

TEENT lysis buffer (50mM Tris-HCl, 1mM EDTA, 1mM EGTA, 150mM NaCl, 1% Triton X-100, pH 7.4) 

containing a protease inhibitor cocktail (Roche) (Wang, Edwards et al. 2008). The lysates were cleared by 

centrifugation and protein concentrations were measured by BCA assays (Pierce). Samples containing 

equal amounts of protein were denatured in Laemli buffer and boiled for 5 minutes. The samples were 

then subjected to SDS-PAGE and immunoblotting. Briefly, the lysates were loaded on 7.5% acrylamide 

gels for protein separation and transferred to a PVDF membrane (pore size 0.45 μm, Millipore). Following 

blocking with 5% nonfat dry milk in 1x TBS containing 0.25% Tween-20, the PVDF membrane was 

incubated with primary antibodies, at 4
o
C, overnight. The membrane was washed several times and then 

incubated with secondary antibodies conjugated with horseradish peroxidase (HRP) (Jackson 

Immunoresearch, West Grove, PA) diluted at 1:5000, for one hour, at room temperature. Signals were 

visualized with the enhanced chemiluminescence (ECL Plus) detection systems (GE Biosciences). Alpha-

actinin, in the same sample, was used as a loading control. Primary antibodies used in the study include: 
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rabbit anti-neurofibromin 1:500 (Santa Cruz, sc-68), mouse anti-alpha actinin 1:5000 (BD Biosciences, 

612576), rabbit anti-pERK1/2 1:1000 (Cell Signaling, 4377), and mouse anti-ERK1/2 1:1000 (Cell 

Signaling, 9107). 

 

 

mEPSC Recording 

 

mEPSC recording was performed as previously described (Shankar, Bloodgood et al. 2007). The 

hippocampal slices were placed in standard artificial cerebral spinal fluid (ACSF) containing: 130mM 

NaCl, 2.5mM KCl, 2mM NaHCO3, 1.25mM NaH2PO4 and 25mM glucose aerated with 95% O2 and 5% 

CO2. The following pharmacological agents were added to the ACSF: 20μM bicuculline, 1μM TTX, 20μM 

mibefradil, 100μM PTX, 20μM nimodipine, 50μM AP5. This combination of antagonists, in combination 

with intracellular cesium, blocks many dendritic conductances, increases the resting input resistance, and 

improves the ability to detect mEPSCs. 

Whole-cell voltage-clamp recordings were obtained at a holding potential of - 70 mV, from visually 

identified transfected CA1 pyramidal hippocampal neurons or their neighboring unstransfected pyramidal 

neurons, using pipettes (4-5MOhm) containing Cs-based internal solution: 100mM Cs methanesulfonate, 

20mM CsCl, 10mM HEPES, 10mM EGTA, 4mM MgCl2, 0.4mM NaGTP, 4mM MgATP, 10mM 

phosphocreatine. 

Recordings were made using a Multiclamp 700B amplifier, filtered at 2kHz, digitized at 10kHz, 

and acquired during a 60s period. Five recordings were made and averaged per neuron.  

mEPSCs were analyzed in MATLAB, using custom software with detection criteria that included 

an amplitude > 8 pA, a minimum rise rate of 5 pA/ms, and a decay constant between 1-12 ms.  
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Two-Photon Fluorescence Microscopy 

 

A custom-built two-photon microscope with two Ti:sapphire pulsed lasers (MaiTai; Spectra-

Physics, Fremont, CA) was used for imaging (Figure 2.1.). One of the lasers was tuned to 920nm for 

imaging of mEGFP- and mRFP-tagged constructs, the other one was tuned to 720nm for glutamate 

uncaging. The intensity of each laser beam was independently controlled with electro-optical modulators 

(350-80 LA; Conoptics, Danbury, CT). Two laser beams were combined using a beam-splitting cube and 

passed through the same set of galvano-scanning mirrors and objective (60X, 0.9 NA; Olympus, Melville, 

NY). Emitted fluorescence from mEGFP- and mRFP-tagged constructs was divided using a dichroic 

mirror (565nm; Chroma) and detected by wide aperture photomultiplier tubes (PMTs; R3896; 

Hamamatsu) for both red and green fluorescence after wavelength filters (HQ510/70-2p for green and 

HQ620/90-2p for red; Chroma Techonology,  Brattleboro, VT). Fluorescence was detected by summing 

epifluorescence and transfluorescence signals, as previously described (Mainen, Maletic-Savatic et al. 

1999). Fluorescence signal was acquired by ScanImage (Pologruto, Sabatini et al. 2003), using a data 

acquisition board (PCI-6110, National Instruments). 

The only exception to this occurred during the excitation of the red fluorescence for the cell line 

experiments described in chapter V. For these experiments, the red fluorescence was acquired in a 

similar system, but using a mode-locked Ytterbium-doped laser with a fixed wavelength of 1030nm 

(Amplitude Systèmes, Bordeaux, France).  

All two-photon based experiments were performed at a constant temperature of ~ 25
o
C in Mg

2+
-

free ACSF containing the following: 4.0mM CaCl2, 1μM TTX and 2.0mM 4-methoxy-7-nitroindolinyl (MNI)-

caged-L-glutamate. ACSF was constantly bubbled with 95% O2 and 5% CO2 through the experiments.  

Imaged and stimulated spines were located on secondary and tertiary apical dendrites within 50 

to 150μm from the soma. 
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Figure 2.1. Two photon excitation microscopy. (A) Simplified Jablonski diagram of the two-photon 
excitation process. (B) Localization of excitation in a scattering medium (black). The excitation beam (red) 
is focused to a diffraction-limited spot by and objective where it excites green fluorescence in a dendritic 
branch, but not in a nearby branch. The paths of two ballistic photons and one scattered photon are 
shown (red lines). Scattered photons are too dilute to cause off-focus excitation. The intensity of the 
beam decreases with depth as an increasing number of excitation photons are scattered. (C) 
Fluorescence collection in a scattering medium. Fluorescence photons are emitted isotropically from the 
excitation volume (red lines). Even scattered fluorescence photons contribute to the signal if they are 
collected by the objective. Since the field of view for detection is larger than for excitation, the 
fluorescence light exiting the objective back-aperture will diverge substantially (green). (D) Schematic of a 
two-photon excitation microscope with epifluorescence and transfluorescence detection. Adapted from 
Svoboda and Yasuda (2006). 
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Morphometric Imaging 

 

 Transfected CA1 pyramidal neurons of the hippocampus were identified by green fluorescence 

and characteristic morphology 5-8 days after transfection. High resolution images (512 x 512) were 

acquired as z-stacks of several sections at 2μm spacing for the full neuron or 1μm spacing for apical 

dendrites. Each section was an average of three scans. First, one image of the entire cell was taken (x,y 

= 342μm x 369μm), followed by three to four images of apical dendrites (x,y = 70μm x 80μm). 

Morphometric analysis was performed using custom software written in MatLab (Mathworks, Natick, MA). 

Spines were counted, and the total number was divided by the length of dendrite in the field of view to 

calculate the density. The spine type was automatically categorized by the software and spine length was 

measured from the tip of the protrusion to the junction with the dendritic shaft. Spine volume was also 

calculated. For neurons chronically exposed to AP5, imaging was performed in the constant presence of 

the antagonist. 

 

 

Two-Photon Glutamate Uncaging and Spine Enlargement 

 

Five to seven days after transfection, local uncaging stimulation was delivered on the tips of spine 

heads (~ 0.5μm from the center of the spine in the direction away from the dendritic shaft), upon 4 basal 

acquisitions spaced by one minute interval, to stimulate the glutamate receptors (in particular, NMDARs, 

Figure 2.2.) in the spine. Only spines well separated from the parent dendrite and nearby spines were 

selected for experiments. For individual experiments, Z stacks were acquired 4 times before plasticity 

induction and then acquired once every minute after the uncaging protocol for 30 minutes. Images were 

acquired with a resolution of 128 x 128 pixel (x,y = 14μm x 17μm). 

The uncaging protocol applied to induce structural plasticity consisted of 30 uncaging pulses with 

6ms duration at 0.5Hz, in ACSF containing 4mM CaCl2, 0mM MgCl2, 1μM TTX and 2mM MNI-L-

glutamate. Individual z-series were then collapsed into maximum projections and used to quantify the 

integrated fluorescence intensity of individual spines. For the experiments described in chapter IV, the 

GFP fluorescence intensity was used to measure the spine volume, whereas the mRFP signal from 
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mRFP-RBD
65E,108A

-mRFP was used to measure the spine volume for the FLIM experiments described in 

chapter V. The changes in spine volume upon uncaging were quantified by the fractional change in 

fluorescence light intensity ([F-F0]/F0). The sustained volume change was calculated as the mean 

volume at 25 min to 30 min minus the mean baseline, normalized to the baseline volume. The transient 

volume change was calculated as the difference between the mean peak volume at ~ 1 min after 

uncaging and the sustained phase, normalized to the baseline volume. The volume increase caused by 

NMDAR activation could be overestimated for the FLIM experiments, because a population of mRFP-

RBD
65E,108A

-mRFP binds to activated Ras in the stimulated spine. However, since mRFP-RBD
65E,108A

-

mRFP is expressed at higher levels than mEGFP-Ras, this effect is likely small. 

 

 

Figure 2.2. Schematic representation of a single spine stimulation by two-photon glutamate 
uncaging. 2mM MNI-L-glutamate is added in ACSF containing 4 mM Ca

2+
, 0 mM Mg

2+
, and 1 μM TTX. 

Uncaging laser beam at 720nm is focused on the tip of a spine head. Upon stimulation, MNI-L-glutamate 
is uncaged, becomes physiological L-glutamate and binds to the NMDARs located on the surface of the 
spine head. The NMDARs open, Ca

2+
 flows in and activate downstream signaling pathways, namely Ras. 

Adapted from Harvey, Yasuda et al. (2008). 

 

 

Calcium Imaging and uEPSC Recording 

 

Four to six days after transfection, CA1 pyramidal neurons transfected with NF1 shRNA were 

identified by their red fluorescence and typical morphology. Calcium imaging was performed 

simultaneous to glutamate uncaging and current recordings (Carter and Sabatini 2004; Sobczyk, Scheuss 

et al. 2005; Zito, Scheuss et al. 2009), using a pulsed Ti:sapphire laser (MaiTai, Spectra-Physics) tuned 
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to 920nm. Whole-cell voltage clamp was performed (Vhold = 0mV) on CA1 pyramidal hippocampal 

neurons in organotypic slice cultures with pipettes (4-5MOhm) containing Cs-based internal solution: 135 

mM CsMeSO3, 10 mM HEPES, 10 mM Na-phosphocreatine, 4mM MgCl2, 4mM Na2-ATP, 0.4mM Na-

GTP, 3mM sodium-L-ascorbate. To this solution, we added a red Ca
2+

-insensitive dye (300μM Alexa 594, 

Invitrogen) and a green Ca
2+

-sensitive dye (500μM Oregon-Green-BAPTA 5N, Invitrogen). Recordings 

were made using a Multiclamp 700B amplifier, filtered at 2 kHz for voltage-clamp recordings, in ACSF 

containing: 127mM NaCl, 25mM NaHCO3, 25mM D-glucose, 2.5mM KCl, 1.25mM NaH2PO4, 4mM CaCl2, 

0mM MgCl2, 1μM TTX and 2mM MNI-caged-L-glutamate and 20μM NBQX. Upon breaking the 

membrane, 20 minutes were allowed for indicator loading into the cell via diffusional equilibration, when 

the red fluorescence intensity reached a steady state. Ca
2+

 imaging started at this moment and both dyes 

were excited at 920nm. Frame scans were acquired every 16ms. A typical trial starts with the 

measurement of the dark current of the photomultiplier (0 to 50ms) followed by shutter opening. After a 

short measurement of baseline fluorescence (60 to 120ms), MNI-L-glutamate uncaging (1 pulse, 6ms, 4-

5mW) is evoked. Measurement of peak fluorescence is averaged over 3 to 20ms around the peak. For 

each spine, approximately 10 trials were collected and averaged, which has been reported to not cause 

rundown of two-photon uncaging-induced excitatory postsynaptic currents (uEPSCs) or spine calcium 

concentration signals by Zito and collaborators (Zito, Scheuss et al. 2009). 

The change in [Ca
2+

] was measured as follows (Yasuda, Nimchinsky et al. 2004): 

 ∆[𝐶𝑎2+] =
(∆𝐺 𝑅⁄ ) ∙ 𝐾𝑑

(𝐺 𝑅⁄ )𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑

 Eq. (3) 

where (𝐺 𝑅⁄ )𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑
 is the ratio of green fluorescence intensity to red fluorescence intensity at saturating 

[Ca
2+

] (10mM) measured in a pipette and 𝐾𝑑 is 32μM for Oregon-Green-BAPTA-5N (Invitrogen). 

Simultaneously, uEPSCs were recorded from the soma. The uEPSCs were averaged across the 

multiple trials (~ 10) for the same spine. Of note, given that we used a very potent AMPAR blocker 

(NBQX) in ACSF, the recorded current was uniquely representative of the NMDAR component. The 

INMDAR is typically recorded at + 40mV, not at a holding potential of 0mV. However, we observed that the 
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inward current at 0mV, under conditions that block IAMPAR, was a potent method for specific activation of 

NMDARs (by MNI-L-glutamate uncaging). 

 

 

Two-Photon Fluorescence Lifetime Imaging (TPFLIM) 

 

To compare the sensitivity of the Ras GTPase fluorescence resonance energy transfer (FRET) 

sensors in cells, we transfected HEK293T cells with the different Ras GTPase FRET sensors described in 

chapter V, imaged under TPFLIM and acquired four basal (128 x 128 pixel; x,y = 87μm x 100μm) 

pictures. Next, we applied 100ng/ml epidermal growth factor (EGF) to stimulate Ras signaling and 

acquired more pictures. The fraction of mEGFP-HRas bound to the several versions of mRFP-RBD-

mRFP was calculated from the fluorescence lifetime decay. Fluorescence lifetime was measured only 

from mEGFP-HRas and, thus, nonspecific binding of mRFP-RBD-mRFP should not affect our FRET 

measurements. The sensor that showed the best response and localization was selected for the following 

experiments. 

To characterize the fluorescence lifetime of the newly developed Ras sensor in neurons, we 

sparsely transfected CA1 pyramidal neurons of organotypic hippocampal slices with the Ras sensor using 

ballistic gene transfer and imaged the fluorescence lifetime using TPFLIM 6 to 8 days after transfection. 

Images were acquired with 128 x 128 pixel resolution (x,y = 14μm x 17μm for Figure 5.4.; x,y = 17μm x 

22μm for Figure 5.5.). NMDARs were activated with MNI-L-glutamate (2mM), through an uncaging 

protocol lasting 4 minutes and 32 seconds in the absence of extracellular Mg
2+

. This method was 

sufficiently sensitive to visualize Ras activation in individual spines.  

The newly developed acceptor for this sensor mRFP-RBD
65E,108A

-mRFP distributes 

homogeneously all over the neurons, including soma, dendrites, spines and axons, and its mRFP signal 

is bright, similarly to the observations of Harvey and collaborators (2008) (Figure 2.3.). The donor was 

previously described (Yasuda, Harvey et al. 2006; Harvey, Yasuda et al. 2008) and localizes to the cell 

membrane, as the native HRas protein. RBD contains the K65E mutation to reduce the affinity GTP-

bound Ras and RBD (from KD 0.13 to 0.67) (Jaitner, Becker et al. 1997). RBD contains a second mutation  
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Figure 2.3. Membrane localization of mEGFP-Ras and cytosol distribution of mRFP-RBD
59A

-mRFP. 
(A) GFP fluorescence and immunofluorescence images of HEK293T cells transfected with mEGFP-Ras. 
In the overlay image, the GFP fluorescence and immunofluorescence are pseudo-colored green and red 
respectively. (B) Green and red fluorescence image of the thick apical dendrite of a neuron transfected 
with FRas-F (mEGFP-Ras and mRFP-RBD

59A
-mRFP). (C) Green and red fluorescence measured along 

the white line in (A). Adapted from Harvey, Yasuda et al. (2008). 

 

(K108A) that abolishes a nuclear localization signal (NLS) present in the WT RBD. Spine structural 

plasticity in cells expressing the Ras sensor showed similar magnitudes and timecourses with GFP-

transfected cells (data not shown), suggesting that the new Ras sensor did not perturb the signaling 

network in the spine, as seen by Harvey and collaborators (2008) for the FRas-F sensor (Harvey, Yasuda 
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et al. 2008). At the time of transfection with the Ras sensor, 8mM MgCl2 (final concentration 10mM) was 

added to the culture medium to minimize the effects of Ras overexpression in synaptic efficacy (Yasuda, 

Harvey et al. 2006; Harvey, Yasuda et al. 2008).  

 

 

Figure 2.4. Two photon excitation fluorescence lifetime imaging. (A) Shematic illustrating the 
principle of time-correlated photon counting. The time between photons and the next laser pulse is 
measured. (B) Fluorescence lifetime curve of mEGFP. Measured histogram of photon arrival times (open 
circles). The curve can be decomposed into the true fluorescence decay curve (red) and a pulse 
response function (gray) that reflects the finite response time of the detector. (C) Schematics of the time 
domain fluorescence lifetime measurements. Fluorophores are excited with a short laser pulse. When the 
donor and acceptor do not interact, the fluorescence decays with a single exponential defined by the 
donor. When they do interact, the fluorescence decays with a double exponential, a combination of the 
decay of the free donor and the donor bound to the acceptor. Adapted from Yasuda (2006), Svoboda and 
Yasuda (2006) and Yasuda, Harvey et al. (2006). 

 

Details of FRET imaging using a custom-built TPFLIM have been described previously (Yasuda, 

Harvey et al. 2006; Harvey, Yasuda et al. 2008) (Figure 2.4.A-B). For FLIM in the green channel, a PMT 

with low transfer time spread (H7422-40p, Hamamatsu) was used. A wide aperture PMT (R3896, 

Hamamatsu) was used for the red channel. Each pixel of a FLIM image represents the fluorescence 

lifetime of the donor fluorophore (mEGFP), which is defined as the average time between the fluorophore 

excitation and photon emission. The lifetime is obtained from the fluorescence decay curve (a histogram 

of the collection of single photons generated by a time-correlated single photon counting board (SPC-730; 

Becker-Hickl; Figure 2.4.B) controlled with a custom software (FLIMImage) integrated into ScanImage), 
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following pulsed excitation. A shorter lifetime implies higher FRET. Red signal was acquired using a 

separate data acquisition board (PCI-6110) and ScanImage software. 

 

 

Fluorescence Lifetime Analysis 

 

To quantify Ras activation, the fraction of mEGFP-Ras (donor) molecules bound to mRFP-

RBD
65E,108A

-mRFP (acceptor) molecules (binding fraction) was calculated. The binding fraction was 

calculated by direct fitting of the fluorescence decay curve, which is composed of two populations 

corresponding to free donors and donors bound to acceptors. 

The fluorescence lifetime decay curve, F(t), was fitted with a single exponential function 

convolved with the Gaussian pulse response function of a microscope as follows (Yasuda, Harvey et al. 

2006): 

 𝐹(𝑡) = 𝐹0 ∙ 𝐻(𝑡, 𝑡0, 𝜏𝐷 , 𝜏𝐺) =  𝐹0
1

2
𝑒𝑥𝑝 (

𝜏𝐺
2

2𝜏𝐷
−
𝑡 − 𝑡0
𝜏𝐷
) 𝑒𝑟𝑓 (

𝜏𝐺
2 − 𝜏𝐷(𝑡 − 𝑡0)

√2𝜏𝐷𝜏𝐺
) Eq. (1) 

where t is photon arrival time for each collected photon by the PMT, t0 is the offset time between the start 

of a laser pulse and the start of photon arrival, 𝜏𝐷 is the fluorescence lifetime of the free donor (2.6ns), 𝜏𝐺 

is the standard deviation of the Gaussian pulse response function (0.12ns – 0.16ns), and 𝐹0 is the peak 

fluorescence. To improve the stability of this fitting, all pixels in an image were summed and fitted with Eq. 

(1). Furthermore, 𝜏𝐷  and 𝜏𝐺  are pre-determined and these values are fixed for fitting. 𝐹0  and 𝑡0  are 

obtained by fitting. 

The mean fluorescence lifetime, 𝜏 , of a fluorescence lifetime decay curve was then measured 

from the mean photon arrival time 〈𝑡〉 as follows (Yasuda, Harvey et al. 2006): 

 𝜏 = 〈𝑡〉 − 𝑡0 =
∫𝑑𝑡 ∙ 𝑡𝐹(𝑡)

∫ 𝑑𝑡 ∙ 𝐹(𝑡)
− 𝑡0 Eq. (2) 

Here F(t) was not fitted with Eq. (1), but is raw experimental data represented by a histogram of single 

photons collected by the time-correlated single photon counting board. 



66 

 

 

 

 

 

 

  



67 

 

 

 

 

 

 

 

CHAPTER III 

Neurofibromin maintains the density of 

dendritic spines and functional synapses in 

CA1 pyramidal neurons in the hippocampus 

 

 

 

 

 

 

 

 



68 

 

 

 

 

 

 

  



69 

 

Chapter III. Neurofibromin maintains the density of dendritic 

spines and functional synapses in CA1 pyramidal neurons in 

the hippocampus 

 

 

Introduction 

 

Among multi-symptom disorders relevant to the neuroscience field, it is well established that 40-

60% of the patients afflicted with NF1 exhibit cognitive impairment (Silva, Frankland et al. 1997; Costa, 

Fedorov et al. 2002; Costa and Silva 2003; Shilyansky, Lee et al. 2010). The NF1 mouse model, a 

heterozygous knockout of the Nf1 gene, shows spatial learning and memory impairment and LTP 

impairment (Silva, Frankland et al. 1997; Costa, Fedorov et al. 2002; Li, Cui et al. 2005). These 

phenotypes were rescued when Ras activation was downregulated either by pharmacological approaches 

or by combining the heterozygous Nf1 knockout with heterozygous KRas knockout. This suggests that 

the LTP deficits are related to excessive Ras activation (Costa, Fedorov et al. 2002).  

As Nf1
+/-

 mice were identified as a useful model for learning disabilities of NF1, the physiological 

properties of the Nf1
+/-

 mice were extensively studied. It has been also found that inhibitory synapses are 

substantially potentiated in these mice (Costa and Silva 2002). Later, Cui and collaborators (2008) 

reported an excessive phosphorylation of Synapsin 1 in inhibitory neurons in the hippocampus, which 

results in increased presynaptic vesicle fusion and GABA release, leading to increased inhibitory 

transmission. This same study excludes a role of glia or excitatory neurons in the cellular abnormalities 

identified in the Nf1
+/-

 mouse (Cui, Costa et al. 2008).  

Besides the role in presynaptic function, a number of studies have reported that neurofibromin is 

also important for postsynaptic function. Hsueh and collaborators (2001) identified the presence of 

neurofibromin in dendritic spines of the hippocampus, where it associates with the adhesion molecule 

Syndecan-2. Additionally, they observed that neurofibromin is present at the PSD (Hsueh, Roberts et al. 

2001). Recently, Lin and collaborators (2007) reported that neurofibromin removal by shRNA decreases 
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the density of dendritic spines in primary cultures of the hippocampus (Lin, Lei et al. 2007). Hence, these 

studies suggest a function of neurofibromin at postsynaptic sites. 

Studies from Ras manipulation experiments have also provided evidence that Ras holds an 

important postsynaptic function. For example, at the functional level, Zhu and collaborators provided 

evidence for the crucial postsynaptic function of Ras. In this study, they infected hippocampal brain slices 

with virus harboring several HRas constructs and verified an increase in AMPAR-mediated transmission 

in neurons overexpressing WT-HRas or CA-HRas, whereas a decrease in AMPAR-mediated synaptic 

transmission was observed in neurons overexpressing a DN-HRas. The effects of WT-HRas and DN-

HRas were blocked by a NMDAR antagonist (AP5) and by high concentration of Mg
2+ 

(Zhu, Qin et al. 

2002). Other studies have demonstrated that Ras is required for proper spine formation and 

maintenance. For example, using a Synapsin 1 promoter, Heumann et al. (2000) created a gain-of-

function transgenic mouse model in which constitutively active HRas
12V

 is expressed selectively in 

neurons (synRas mice). In this mouse, there is an up-regulation of ERK activity in the cortex, 

hippocampus and other brain regions. This group reported that dendritic spine density is increased in 

synRas mice, which correlated with a two-fold increase in synapse number (Heumann, Goemans et al. 

2000). In another study by Biou and collaborators (2008), the expression of a constitutively active Ras 

(KRas or NRas) form destabilized spine morphology, producing filopodia on dendrites of mature (> 

21DIV) hippocampal neurons, whereas a dominant negative Ras form did not affect spine morphology. 

Moreover, spine destabilization was rescued by co-expressing dominant negative Ras (Biou, Brinkhaus et 

al. 2008). In a study by Kumar and collaborators (2005), overexpression of a constitutively active Ras 

mutant, Ras
61L

, resulted in prominent filopodia-like protrusions and decrease in spine density. Besides, 

they used a mutant Ras
61L,35S

, which specifically activates the MAPK pathway, and when overexpressing 

it they observed a moderate but significant decrease in spine density. Such observation was not repeated 

when using the mutant Ras
61L,40C

, which specifically activates the PI3K pathway (Kumar, Zhang et al. 

2005). This study supported previous findings by Wu and collaborators (2001), who reported a 

simultaneous persistent activation of MAPK pathway (as detected by increased phosphorylation of 

ERK1/2 by immunocytochemistry in dissociated hippocampal neurons) and stable formation of filopodia-

like structures in the dendrites of these neurons following multiple spaced membrane depolarizations with 
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a high concentration K
+
 solution. Interestingly, the morphological changes induced by spaced 

depolarizations were reversed by a MEK inhibitor (U0126), confirming the involvement of the Ras-MAPK 

signaling pathway in these morphological changes (Wu, Deisseroth et al. 2001). Therefore, we 

hypothesized that Ras hyperactivation by neurofibromin loss-of-function could, similarly, affect the CA1 

pyramidal neurons spine morphology.  

 

 

Results 

 

Neurofibromin shRNA Validation 

 

To test the hypothesis that neurofibromin regulates the spine number and shape, we tested the 

efficiency of neurofibromin knockdown by two shRNA constructs directed against neurofibromin. Primary 

cultures from E18 rat hippocampus were prepared. The cultures were infected with lentivirus containing 

mEGFP and NF1 shRNA #1, NF1 shRNA #2, or a scrambled control shRNA at DIV1-3. Seven days later, 

we examined the green fluorescence for each viral infection under the microscope and verified that the 

majority of cells were infected. Western Blots were performed to screen for an efficient neurofibromin 

shRNA that is capable of removing the protein. Alpha-actinin was used as a loading control. Figure 3.1. 

shows the efficient neurofibromin knockdown by constructs NF1 shRNA # 1 and NF1 shRNA #2 in E18 

hippocampal neurons.  

Figure 3.1. also shows that phospho-ERK (p-ERK1/2) levels is increased in neurons expressing 

NF1 shRNA, suggesting that neurofibromin removal results in upregulation of the Ras-ERK pathway. 

Based on the experimental data from Western blot, NF1 shRNA #1 and NF1 shRNA #2 were selected for 

use in the following experiments. 
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Figure 3.1. Neurofibromin shRNA validation. Knockdown of endogenous neurofibromin in E18 
hippocampal neuronal primary cultures infected with lentivirus containing a scrambled shRNA or shRNA 
constructs directed against neurofibromin for 7 days. α-actinin was used as a loading control. Amounts of 
phospho-ERK1/2 and total ERK1/2 (t-ERK1/2) are also shown in the same samples. Total protein levels 
were measured by Western Blot. 
 

 

Loss of Dendritic Spines in Neurofibromin Knockdown Neurons 

 

To analyze the dendritic spine structure, we transfected organotypic slice cultures at DIV10-15 

with shRNA constructs directed against neurofibromin for 5-7 days. Transfected neurons were identified 

by their green fluorescence. Then, using TPLSM, we acquired images of an entire CA1 pyramidal neuron 

(Figure 3.2.A), followed by images of secondary and tertiary apical dendrites of that same neuron 

(Figure 3.2.B). Pyramidal neurons expressing both NF1 shRNA #1 and shRNA #2 showed reduced spine 

density 5-7 days post transfection (DPT) (68 ± 5.8 for control sc-shRNA neurons, 47 ± 1.9 for neurons 

expressing NF1 shRNA #1 and 36 ± 4.1 for neurons expressing NF1 shRNA #2; p ≤ 0.05 ANOVA 

followed by post hoc least significant difference (LSD) tests; Figures 3.2.B-C). 

Regarding the spine morphology, three spine categories were defined: mushroom, stubby and 

thin spines. Spines from control neurons and neurofibromin knockdown neurons (either transfected with 

NF1 shRNA #1 or NF1 shRNA #2) showed similar distribution among the three defined categories with no 

significant difference in their spine morphology (0.64 ± 0.02, 0.60 ±0.06 and 0.52 ± 0.01 for mushroom 
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spines of control sc-shRNA neurons, NF1 shRNA #1 neurons and NF1 shRNA #2 neurons, respectively 

(p = 0.37); 0.35 ± 0.01, 0.35 ± 0.05 and 0.48 ±0.01 for stubby spines of control sc-shRNA neurons, NF1 

shRNA #1 neurons and NF1 shRNA #2 neurons, respectively (p = 0.18);  0.01 ± 0.003, 0.05 ± 0.018 and 

zero for thin spines of control sc-shRNA neurons, NF1 shRNA #1 neurons and NF1 shRNA #2 neurons, 

respectively (p = 0.062); Figure 3.2.D). 

At the same time, the spine length, which was measured from the top of the spine head center 

until the connection point with the dendrite, was the same between control sc-shRNA neurons (0.82 ± 

0.01μm, n = 6), NF1 shRNA #1 expressing neurons (0.89 ± 0.06μm, n = 7) and NF1 shRNA #2 

transfected neurons (0.76 ± 0.04μm, n = 8) (Figure 3.2.E, p = 0.17).  

Also unchanged was the average spine volume between control sc-shRNA neurons and neurons 

where neurofibromin was knocked down (0.16 ± 0.07fL for control sc-shRNA neurons, n = 6; 0.14 ± 

0.02fL for NF1 shRNA #1 expressing neurons, n = 7; and 0.16 ± 0.04fL for NF1 shRNA#2 expressing 

neurons, n = 8, p = 0.93; Figure 3.2.F).  

In conclusion, our results indicate that downregulation of neurofibromin reduces the spine number 

in CA1 pyramidal neurons. 

 

 

 

 

 

 

Figure 3.2. Neurofibromin regulates the spine morphology of CA1 pyramidal neurons in 
organotypic slice cultures, in a Ras-dependent manner. Organotypic hippocampal slice cultures were 
transfected and treated at DIV10-15 with shRNA constructs against neurofibromin or scrambled shRNA, 
DN-HRas, CA-HRas and the neurofibromin GRD domain. The slices were imaged 5-7 days later. Z-
stacks were acquired and maximum projections were made from them. (A) Representative image of a 
CA1 pyramidal neuron in organotypic hippocampal slice cultures transfected. (B) Representative images 
of segments of apical secondary and tertiary dendrites transfected with shRNA constructs, or shRNA 
constructs and/or HRas constructs or neurofibromin GRD domain for 5-7days. (C) Quantification of the 
spine density in the apical dendrites of neurons shown in (B). * p < 0.05 compared with control for each 
condition. (D) Quantification of the types of spines analyzed. (E) Quantification of the spine length. (F) 

Plot of the spine volume. 
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Dendritic Spine Loss by Neurofibromin Removal Can Be Rescued by Manipulations that Decrease 

Ras Activity 

 

Are the effects of neurofibromin removal in spine morphology due to increased Ras signaling? 

Given that it was previously established that the removal of one Ras copy is enough to correct for the 

deficits observed in both cognition and LTP in a mouse model of NF1 (Costa et al. 2002) and that Ras 

manipulations alter the spine number (Heumann et al. 2000, Kumar et al. 2005, Biou et al. 2008), we 

speculated that Ras hyperactivation might also be the signaling problem determining the observed 

morphological abnormalities. In order to test this hypothesis, we performed several genetic Ras 

manipulations to determine if they can rescue the spine number decrease seen in neurons expressing 

NF1 shRNA. Namely, we co-transfected both shRNA directed against neurofibromin and only the GRD 

domain (isoform I) of neurofibromin, or co-transfected NF1 shRNA #1 (we used this construct to test Ras 

manipulations rescue effect) with dominant negative HRas (DN-HRas, HRas
17N

), or we overexpressed 

constitutively active HRas (CA-HRas, HRas
12V

) alone. In our preparations, co-expressing the GRD 

domain (Ras inactivator domain) of neurofibromin rescued the spine number to control levels (47 ± 1.9 for 

neurons expressing NF1 shRNA, n = 7; 73 ± 4.4 for neurons expressing both NF1 shRNA and the GRD 

domain, n = 9; 68 ± 5.8 for control sc-shRNA neurons, n = 6; Figures 3.2.B-C). The same rescue effect 

on the spine number was observed when we co-transfected CA1 neurons in organotypic slice cultures 

from the hippocampus with both NF1 shRNA and a DN-HRas construct (HRas
17N

) (68 ± 5.8 for control sc-

shRNA neurons, n = 6; 71 ± 3 for neurons expressing both NF1 shRNA and DN-HRas, n =6; 47 ± 1.9 for 

neurons expressing NF1 shRNA #1, n = 7; Figures 3.2.B-C). These results suggest that Ras 

hyperactivation causes the spine elimination upon neurofibromin knockdown. The number of spines in 

neurons overexpressing scrambled shRNA only were similar with that in neurons overexpressing both 

scrambled shRNA and DN-HRas (68 ± 5.8 for control neurons, n = 6; 83 ± 4.3 for neurons overexpressing 

both scrambled shRNA and DN-HRas, n = 6; p ≥ 0.05; Figure 3.2.B). Also, overexpression of the 

neurofibromin GRD domain together with scrambled shRNA did not alter the number of spines observed 

for neurons overexpressing sc-shRNA only (68 ± 5.8 for control sc-shRNA neurons, n = 6; 79 ± 3.7 for 

neurons overexpressing both sc-shRNA and the GRD domain of neurofibromin, n = 11; p ≥ 0.05; Figure 

3.2.B). However, when we transfected CA1 neurons with CA-HRas only, the spine number was 
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maintained as compared with control sc-shRNA neurons (68 ± 5.8 for control sc-shRNA neurons, n = 6; 

68 ± 4.3 for neurons overexpressing CA-HRas, n = 10; p ≥ 0.05; Figure 3.2.B). This apparent 

inconsistency may be because mechanisms other than Ras hyperactivation, for example PKA signaling 

(Lin, Lei et al. 2007), may contribute to this phenotype. 

 

 

Dendritic Spine Loss by Neurofibromin Loss-of-Function is Activity-Dependent 

 

To verify the impact of activity blockade in spine morphology upon neurofibromin loss-of-function, 

we transfected organotypic slice cultures of the hippocampus with shRNA directed against neurofibromin 

or the scrambled control shRNA and treated the transfected slices with a NMDAR antagonist (AP5, 100 

μM) or with MgCl2 (8mM additionally to the regular content in the tissue culture medium, making up to 

10mM). We used NF1 shRNA #1 for the AP5 experiment and NF1 shRNA #2 for the MgCl2 experiment. 

Five to seven days later, we imaged secondary and tertiary apical dendrites of the transfected neurons 

and analyzed the spine morphology of these neurons. In our preparations, AP5 treatment rescued the 

spine number to control levels (66 ± 3.9 for neurons expressing NF1 shRNA #1, n = 7; 68 ± 5.8 for control 

neurons expressing sc-shRNA, n = 6; Figures 3.3.A-B), indicating that the spine loss due to 

neurofibromin removal is activity-dependent.  

When using NF1 shRNA #2 cloned into a different vector (pLL3.8), we observed dendritic spine 

loss, as expected, compared to the control pLL3.8-sc-shRNA. The spine density was measured to be 50 

± 5.4 spines for neurons expressing pLL3.8-NF1 shRNA #2 (n = 5), and 88 ± 6.9 for control neurons 

expressing pLL3.8-sc-shRNA (n = 5, p ≤ 0.05; Figures 3.3.C-D). However, when we treated the slices 

transfected with pLL3.8-NF1 shRNA #2 with MgCl2, the spine density was not significantly different from 

that of the neurons expressing a sc-shRNA (68 ± 7.5 for neurons expressing pLL3.8-NF1 shRNA #2 and 

treated with MgCl2, n = 7; 88 ± 6.9 for control neurons expressing pLL3.8-sc-shRNA, n = 5; p > 0.05; 

Figures 3.3.C-D). Instead, we observed a partial rescue of the spine number, since there is no statistical 

difference between control neurons and neurons where neurofibromin was removed and that were also 
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Figure 3.3. Neurofibromin regulates the spine morphology of CA1 pyramidal neurons in 
organotypic slice cultures, in an activity-dependent manner. Organotypic hippocampal slice cultures 
were transfected and treated at DIV10-15 with NF1 shRNA #1 or sc-shRNA and treated with 100μM AP5 
from the moment of transfection until the end of the experiment; or slices were transfected with pLL3.8-
sc-shRNA or pLL3.8-NF1 shRNA #2 and treated with an extra 8mM MgCl2 from the moment of 
transfection and until the end of the experiment. The slices were imaged 5-7 days later. Z-stacks were 
acquired and maximum projections were made from them. (A) Representative images of segments of 
secondary and tertiary apical dendrite. (B) Quantification of the spine density in the apical dendrites of 
neurons shown in (A). * p ≤ 0.05 compared with control, 

#
 p ≤ 0.05 compared with NF1 shRNA #1. (C) 

Representative images of segments of secondary and tertiary apical dendrites of CA1 pyramidal neurons 
in organotypic hippocampal slice cultures transfected. (D) Quantification of the spine density in the apical 

dendrites of neurons shown in (C).  
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treated with MgCl2. The lack of total rescue of spine number by MgCl2 could be related to the fact that 

MgCl2 also seems to have a slight, yet non-significant, effect on the spine number of control neurons (88 

± 6.9 for control neurons expressing pLL3.8-sc-shRNA, n = 5; 64 ± 9.4 for neurons expressing pLL3.8-sc- 

shRNA and treated with MgCl2, n = 4; Figure 3.3.D).  

 

 

Loss of Excitatory Synapses in Neurofibromin Loss-of-Function Neurons 

 

 In hippocampal pyramidal neurons, each dendritic spine is normally associated with one and only 

one glutamatergic synapse and the vast majority of excitatory synapses form onto the heads of dendritic 

spines. Thus, changes in spine number are thought to reflect changes in the number of active synapses. 

Therefore, we speculated that the number of excitatory synapses is reduced in the absence of 

neurofibromin. In order to confirm that NF1 shRNA-induced spine loss reflects a loss of excitatory 

synapses, we transfected organotypic slice cultures of the hippocampus with NF1 shRNA #1 and 

scrambled shRNA for 6-8 days and then we performed whole-cell voltage-clamp recordings from CA1 

neurons. Spontaneous activity, indicated by mEPSCs, was monitored in transfected neurons and their 

neighboring untransfected neurons for 60 seconds per trial, five trials per neuron (Figure 3.4.A). At 6-8 

DPT, NF1 shRNA expressing neurons had moderately reduced membrane capacitance (Cm) (Cm = 157 ± 

3pF and 139 ± 3pF for scrambled shRNA and NF1 shRNA neurons, respectively; n = 42-45), indicating 

decreased membrane area (data not shown). The input resistance (R in) was similar between scrambled 

shRNA neurons and NF1 shRNA-expressing neurons (Rin = 174 ± 11 and 181 ± 9mOhm for scrambled 

shRNA and NF1 shRNA neurons, respectively; n = 42-45; data not shown). The mEPSC amplitude and 

frequency were averaged across trials and we observed that, indeed, neurons where neurofibromin was 

removed showed fewer events as seen by a lower mEPSC frequency (0.39 ± 0.05Hz for neurons 

expressing neurofibromin shRNA in contrast with 0.59 ± 0.09Hz in neurons expressing scrambled shRNA, 

p = 0.04; or 0.39 ± 0.05Hz for neurons expressing neurofibromin shRNA in contrast with 0.62 ± 0.07Hz in 

untransfected neurons, p = 0.009, Figures 3.4.A-B). We also compared the mEPSC frequency between 

untransfected neurons and neurons expressing scrambled shRNA and observed no differences between 
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Figure 3.4. Neurofibromin regulates the number of functional excitatory synapses in CA1 
pyramidal neurons, in organotypic slice cultures. Organotypic hippocampal slice cultures were 
transfected at DIV10-15 with shRNA constructs against neurofibromin or scrambled shRNA. Seven days 
later, whole cell voltage-clamp recordings were performed to access the mEPSCs. (A) Representative 
traces of mEPSCs recorded at a holding potential of -70mV for untransfected neurons (n = 53), 
scrambled shRNA (n = 42) and NF1 shRNA (n = 45). (B) Quantification of the frequency of the mEPSCs 
recorded. *p < 0.05. (C) Quantification of the amplitude of the mEPSCs recorded. Values are presented 

as average and error bars are SEM. 

 

these two groups (0.62 ± 0.07Hz and 0.59 ± 0.09Hz for untransfected neurons and scrambled shRNA 

neurons, respectively; p = 0.83, Figures 3.4.A-B). Therefore, we conclude that there is a loss of 

excitatory synapses in neurofibromin knockdown neurons and, therefore, neurofibromin is required for the 

maintenance of functional excitatory synapses.  

With respect to the mEPSC amplitude, we observed no differences between neurons where 

neurofibromin was knocked down and control neurons (15.6 ± 0.5pA in neurons expressing scrambled 

shRNA and 15.4 ± 0.5pA for neurons expressing neurofibromin shRNA, p = 0.72; or 15.4 ± 0.5pA for 

neurons expressing neurofibromin shRNA and 15.1 ± 0.3pA in untransfected neurons, p = 0.72, Figures 
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3.4.A,C), suggesting that the AMPAR content is similar between conditions and unaffected by 

neurofibromin removal. Also, there were no differences between the amplitude of the mEPSCs recorded 

from untransfected neurons and neurons expressing scrambled shRNA (15.1 ± 0.3pA and 15.6 ± 0.5pA 

for untransfected and scrambled shRNA neurons; p = 0.41, Figures 3.4.A,C). Thus, postsynaptic 

expression of neurofibromin is required for the maintenance of functional excitatory synapses, without 

affecting the AMPAR content. 

 

 

Discussion 

 

In this chapter, we asked whether neurofibromin has a role in dendritic spine morphology and 

used shRNA constructs directed against neurofibromin to answer this question. Under the conditions of 

our organotypic slice culture preparations, we observed that reduced levels of neurofibromin cause a 

decrease in dendritic spine density in the pyramidal neurons of the CA1 region of the hippocampus. In 

line with my observations, during the course of our project, Lin and collaborators (2007) reported the first 

evidence that neurofibromin is required for filopodia and dendritic spine formation in hippocampal cultured 

neurons. In this study, in young hippocampal neurons, the expression of neurofibromin shRNA impaired 

dendritic filopodia formation, and in mature hippocampal neurons, the expression of neurofibromin shRNA 

reduced the density of dendritic spines (Lin, Lei et al. 2007). This study provided evidence that 

neurofibromin regulates filopodia and dendritic spine formation through PKA activation and did not test 

whether the RasGAP function of neurofibromin was involved in the observations. Of note, we observed 

no further dendritic spine abnormalities besides the difference in density. The conclusions of the 

morphology data that we present in this dissertation are further supported by the conclusions achieved 

with mEPSCs recording in our hippocampal slices’ preparation, which indicate that reduced levels of 

neurofibromin expression lead to a decreased number of functional excitatory synapses. 
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In the present study, we observed, by Western Blot, that the Ras-MAPK pathway is activated in 

neurons with reduced expression of neurofibromin, by means of increased phospho-ERK1/2 (a member 

of the Ras-MAPK pathway downstream Ras activation) expression, as compared to control neurons 

overexpressing a scrambled shRNA. ERK has recently been implicated as an important regulator of 

activity-dependent structural changes in hippocampal neurons. Specifically, formation and stabilization of 

dendritic spines involves ERK activation, a role likely to be involved in long-term information storage in 

the CNS (Goldin and Segal 2003). Therefore, precise Ras activation might be crucial for the stabilization 

of dendritic spines. Hence, since previous studies reported that synaptic plasticity and spine morphology 

is altered in transgenic mice holding Ras transgenes (Manabe, Aiba et al. 2000; Arendt, Gärtner et al. 

2004), we asked if the reduction in spine density that we observed in our preparations were due to Ras 

hyperactivation. In order to answer this question, we overexpressed a DN-Ras form or the NF1-GRD 

domain together with NF1 shRNA in hippocampal slice cultures and analysed the dendritic spine density. 

Our data shows that these manipulations, which decrease Ras activity, were able to rescue the spine 

density phenotype to control levels, indicating that neurofibromin regulates the dendritic spine density in a 

Ras-dependent manner. In line with our data, Kumar and collaborators (2005) observed that 

overexpression of a constitutively active Ras mutant resulted in decrease in spine density. They further 

used a mutant Ras
61L,35S

, which specifically activates the MAPK pathway, and when overexpressing it 

they also observed a moderate, but significant, decrease in spine density. In our experiments, a different 

constitutively active form (HRas
12V

) was unable to cause a decrease in dendritic spine density, suggesting 

that, despite the role of Ras signaling regulation by neurofibromin in spine morphology, another signaling 

pathway might be involved in the observed phenotype. In line with this speculation, Lin et al. (2007) 

reported that dendritic spine removal by neurofibromin in mature cultured neurons resulted from 

increased PKA signaling. Therefore, we speculate that both Ras signaling and PKA signaling are required 

for proper spine numbers. Our results are also in line with a study by Biou and collaborators (2008), 

reporting that expression of constitutively active Ras destabilized spine morphology due to its interaction 

with debrin (a component of the actin cytoskeleton that competes with other actin-binding proteins to 

influence the spine morphology), whereas debrin-induced spine destabilization was rescued by co-

expressing a dominant negative Ras. As seen by Kumar and collaborators (2005) and in our own 
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preparations (data not shown), constitutively active Ras often produced filopodia on dendrites of mature 

hippocampal neurons, whereas dominant negative Ras did not affect spine morphology. Thus, together 

with these reports, our data suggests that Ras hyperactivation causes a reduction in spine density. We 

speculate that spine removal under conditions of Ras hyperactivation is a homeostatic mechanism to 

overcome the effects of overstimulation of the Ras pathway, but further experiments must be performed 

in order to test this hypothesis. 

However, in contrast with our data, Arendt et al. (2004) observed that  dendritic spine density was 

increased and correlated with a two-fold increase in synapse number in a mouse overexpressing a 

constitutively active HRas form (HRas
12V

) in neurons only (driven by the Synapsin 1 promoter). These 

data are equally in contrast with our data from mEPSCs, which reports that the number of excitatory 

functional synapses is decreased when neurofibromin expression levels are reduced. Instead, Arendt and 

collaborators (2004) reported that, in whole cell patch clamp preparations, the frequency of AMPAR-

mediated spontaneous excitatory postsynaptic currents was increased by 39%, but the amplitude of the 

mEPSCs was unaffected when compared to WT littermates, which is in line with our data. These effects 

were seen in the cortex, whereas our observations were done in the hippocampus, which could 

potentially explain the discrepancies of the two studies. 

Furthermore, we asked whether the effect of neurofibromin on spine density is activity-dependent. 

In order to test this hypothesis, we treated hippocampal slice cultures overexpressing NF1 shRNA 

constructs with Mg
2+

 or AP5 in order to block activity. Our data indicates that neurofibromin maintains 

spine density in an activity-dependent manner. This finding supports the speculation that the spine 

removal in conditions where neurofibromin expression is reduced might be a homeostatic mechanism to 

compensate for the Ras hyperactivation resulting from neurofibromin loss-of-function. Ras is activated by 

the NMDAR, among other stimulus, under normal conditions. If neurofibromin is removed, Ras will be 

hyperactivated upon NMDAR stimulation/activation. If NMDAR-mediated activity is blocked, Ras 

activation might occur with a smaller magnitude despite neurofibromin loss-of-function, removing the 

need for spine density decrease. This is, however, just one possible explanation that requires further 

verification. 
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Chapter IV. Neurofibromin is required for Ras-mediated 

dendritic spine structural plasticity in CA1 hippocampal 

neurons 

 

 

Introduction 

 

In the previous chapter, we demonstrated that neurofibromin is required to maintain the dendritic 

spine density. Normal spine structural plasticity is required to maintain spine density. Therefore, in the 

present chapter, we assess whether neurofibromin regulates structural plasticity in dendritic spines of 

CA1 pyramidal neurons.  

Costa et al. (2002) reported that a mouse model of NF1, a heterozygous mouse for the Nf1 gene, 

shows impaired LTP upon TBS in the Schaffer collateral pathway (Costa, Fedorov et al. 2002). 

Importantly, previous studies have correlated spine structural plasticity with LTP induction (Engert and 

Bonhoeffer 1999; Maletic-Savatic, Malinow et al. 1999). For example, Nagerl and collaborators (2004) 

have induced LTP in Schaffer collaterals and long-term imaging showed an increase of size in several 

spines in the CA1 area or even the formation of new spines (Nagerl, Eberhorn et al. 2004). Similarly, LTD 

induction, using low frequency stimulation (LFS), has proven efficient on promoting the removal of 

dendritic spines or decrease of their size in CA1 neurons, in hippocampal slices (Nagerl, Eberhorn et al. 

2004; Zhou, Homma et al. 2004). Thus, despite the fact that it remains unclear whether structural 

plasticity is the morphological correlate of synaptic plasticity, several studies strongly support this idea. 

Furthermore, several studies have reported that learning and memorizing tasks lead to increased rates of 

spine formation and elimination, as well as spine remodeling with spine volume increases (Harms, Rioult-

Pedotti et al. 2008; Xu, Yu et al. 2009). Therefore, one can speculate that the impairments in memory and 

learning, associated with reduced levels of neurofibromin expression, might be correlated with 

impairments in structural plasticity. 
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In line with our hypothesis, recent studies have reported a role of Ras in dendritic spine structural 

plasticity following LTP stimulus (Harvey, Yasuda et al. 2008; Patterson, Szatmari et al. 2010). Of note, 

Harvey et al. (2008) reported that a MEK inhibitor (a kinase downstream of Ras) (U0126) blocked the 

sustained phase of spine structural plasticity in CA1 pyramidal neurons, following single spine stimulation 

with LTP-inducing stimulus (Harvey, Yasuda et al. 2008). Similarly, a study by Patterson and 

collaborators (2010) has reproduced these results, supporting the idea that Ras is required for structural 

plasticity and AMPAR exocytosis (Patterson, Szatmari et al. 2010). However, to our knowledge, there are 

no studies addressing the effects of Ras hyperactivation in dendritic spine structural plasticity. In this 

chapter, we hypothesized that precise Ras regulation is crucial for structural plasticity, as previously 

suggested by other authors, who predict that precise Ras regulation is required for optimal capacity to 

induce LTP, learning and memory (Thomas and Huganir 2004; Stornetta and Zhu 2011). Thus, we predict 

that Ras hyperactivation, due to low expression levels of neurofibromin, will, like Ras hypoactivation, 

result in impaired structural plasticity. As a result of this prediction, we also predict that neurofibromin 

signaling regulates dendritic spine structural plasticity. 

 

 

Results 

 

Impaired Structural Plasticity in Neurofibromin Loss-of-Function Neurons 

 

In order to test this hypothesis, we transfected organotypic slice cultures of the hippocampus with 

NF1 shRNA and scrambled shRNA for 5-7 days. We selected transfected CA1 pyramidal neurons based 

on their green fluorescence and imaged apical secondary and tertiary dendrites located 50 - 150μm from 

the soma, with a 60X, 0.9NA, Olympus objective in a TPLSM. Images with 128 x 128 pixel resolution 

were acquired every minute. The neurons were imaged in ACSF with 1μm TTX, 2mM MNI-L-caged-

glutamate, 4mM CaCl2 and 0mM MgCl2. Four basal acquisitions were made with a Ti:Sapphire laser  
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Figure 4.1. Neurofibromin impairs the transient phase of the spine structural plasticity in CA1 
pyramidal neurons of the hippocampus, in a Ras-dependent manner. (A) Representative images of 
portions of secondary or tertiary dendrites of CA1 pyramidal neurons transfected with NF1 shRNA, 
scrambled shRNA, NF1 shRNA #1 and NF1-GRD domain or scrambled shRNA and NF1-GRD domain, 
for 5-7 days. The images were taken with a 60x, 0.9NA, Olympus objective, and show stimulated spines 
in basal conditions, 1 minute after glutamate uncaging stimulus and 30 minutes after stimulation. (B) 
Time-course of the structural plasticity experiment for the conditions specified in (A), as quantified by the 
spine volume change. Images were acquired every minute. Error bars are S.E.M. (C) Quantification of the 

stimulated spine volume during the transient phase of structural plasticity. The transient phase shown  
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tuned to 920nm to excite the GFP signal and, after that, an uncaging spot was defined on the top and 

center of one of the dendritic spines’ head in the field. Thirty uncaging pulses of 6ms, 4-5mW, at 0.5Hz, 

were delivered to this spine through a Ti:Sapphire laser tuned to 720nm and, following that, image 

acquisitions restarted at the frequency of one per minute until about 30 minutes passed. The volume of 

the stimulated spine, as well as of the neighboring spines, was measured using the GFP signal. The 

measured volumes were normalized to the baseline volume, so as to indicate changes of volume. During 

this experiment, the control condition stimulated spines grew to 385 ± 69% times of their original volume 

immediately  after uncaging (n = 13; Figure 4.1.A-C), and, at the end of the experiment, 30 minutes later, 

the spine volume was still 90 ± 9% bigger than the basal volume (Figure 4.1.A-B,D). In contrast, for 

neurons where neurofibromin was knockdown, the stimulated spine grew only 231 ± 36% times of the 

initial volume right after uncaging (n = 10; Figure 4.1.A-C) and, after 30 minutes, during the sustained 

phase of spine growth, the volume of the stimulated spine was only 34 ± 4% times bigger than the basal 

volume (Figures 4.1.A-B,D). Of note, the differences observed in the transient phase were not 

statistically significant, as denoted by the ANOVA test (p = 0.07, Figure 4.1.C). In contrast, the sustained 

volume of the imaged spines from neurons expressing NF1 shRNA was significantly smaller than that of 

spines from neurons expressing a scrambled control shRNA (p < 0.05, Figure 4.1.D). For both 

conditions, the neighboring spines’ volume remained unchanged during the course of the experiment 

(data not shown). Hence, our data indicates that, under the conditions of our preparations, neurofibromin 

removal impairs spine growth during the sustained phase of dendritic spine structural plasticity, when 

compared to control neurons. 

 

 

 

 

(Figure 4.1., continuation) here results of the subtraction of the sustained phase (average of the 
acquisitions taken between 25 and 30 minutes period) from the time point zero (right after glutamate 
uncaging). (D) Quantification of the stimulated spine volume during the sustained phase of structural 
plasticity, as normalized for the basal condition. The sustained phase was chosen to be the average of 
the data acquired 25 to 30 minutes after stimulation. Stars (*) denote statistically significant difference (p 
< 0.05) from the value in the stimulated spines in scrambled shRNA condition; # denote statistically 
significant difference (p < 0.05) from the value in the stimulated spines in NF1 shRNA condition. 
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Impaired Structural Plasticity by Neurofibromin Loss-of-Function is Ras-Dependent 

 

Next, we hypothesized that the observed spine structural plasticity impairment, in neurons where 

neurofibromin was removed, is Ras-dependent. Ras signaling has previously been reported to be 

important for spine structural plasticity. As mentioned in the introduction of this chapter, Ras signaling 

inhibition by U0126 resulted in an impairment of the sustained phase of structural plasticity, leaving the 

early phase of structural plasticity unaffected (Harvey, Yasuda et al. 2008; Patterson, Szatmari et al. 

2010), as seen here with removal of neurofibromin. It is possible that structural plasticity requires a tight 

regulation of Ras-MAPK signaling and that this biological phenomenon is affected by both hyper- and 

hypoactivation of Ras. If that is true, restoring the RasGAP function of neurofibromin should bring 

structural plasticity back to control levels. In order to test this hypothesis, we co-transfected organotypic 

slice cultures of the hippocampus with both NF1 shRNA and the GRD domain of neurofibromin (NF1-

GRD), for 5-7 days. We stimulated single target spines with glutamate uncaging and acquired images of 

the stimulated spine for another 30 minutes, every minute. We observed that the GRD domain of 

neurofibromin was sufficient to rescue the spine structural plasticity of the stimulated spines to control 

levels during the sustained phase. Thirty minutes after uncaging, the stimulated spines had a volume that 

was 88 ± 5% times bigger than their respective basal volume and no statistical difference was observed 

between these spines and the spines of neurons expressing a scrambled control shRNA (n = 13 for sc-

shRNA and n = 9 for sc-shRNA + NF1-GRD; p > 0.05; Figures 4.1.A-B,D). Surprisingly, the 

overexpression of the GRD domain of neurofibromin together with the scrambled control shRNA had no 

effect on the sustained volume of spines, which were 84 ± 8% times bigger than in the basal state (n = 7; 

p > 0.05; Figures 4.1.A-B,D). Also, there were no significant differences in the transient phase of spine 

growth between the conditions tested (385 ± 69% for sc-shRNA; 231 ± 36% for NF1 shRNA; 178 ± 40% 

for sc-shRNA + NF1-GRD; and 241 ± 31% for NF1 shRNA + NF1-GRD; p = 0.07; Figure 4.1.C). In 

conclusion, neurofibromin regulates spine growth during the sustained phase of structural plasticity in a 

Ras-dependent manner. Furthermore, this experiment indicates that a precise regulation of Ras activity is 

required for structural plasticity. Thus, hyperactive Ras impairs structural plasticity. 
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Impaired Structural Plasticity by Neurofibromin Loss-of-Function is Activity-Dependent 

 

Another interesting question is whether the regulation of structural plasticity by neurofibromin is 

activity-dependent, especially since we demonstrated that neurofibromin is required for dendritic spine 

density maintenance in an activity-dependent way. In order to test this, we transfected organotypic 

hippocampal slice cultures with shRNA directed against neurofibromin or scrambled control shRNA and 

treated them with Mg
2+

 (8mM to a final concentration of 10mM), to block activity, for 6-7 days. Transfected 

neurons were imaged as before and spines were stimulated with glutamate uncaging. Measurements of 

the stimulated spine volume indicate that there were no differences between the control neurons and the 

neurons where neurofibromin was knockdown for structural plasticity during the transient phase (310% ± 

51 for sc-shRNA, n = 12, and 201% ± 50 for NF1 shRNA, n = 11; p = 0.24 ANOVA; Figures 4.2.A-B). 

Equally, there were no differences for the transient phase among any other conditions (348% ± 62 for 

NF1-GRD, n = 11; 308% ± 57 for sc-shRNA + Mg
2+

, n = 13; 350% ± 70 for NF1 shRNA + Mg
2+

, n = 12; 

359% ± 66 for NF1-GRD + Mg
2+

, n = 16; p = 0.24 ANOVA; Figures 4.2.A-B).  

In contrast, ANOVA indicates that there were significant differences in the sustained phases 

among the different conditions (p = 7.32x10
-6

). As compared to the control condition of neurons 

expressing scrambled shRNA (61% ± 5), the sustained phase of structural plasticity was impaired in 

neurons with neurofibromin loss-of-function (23% ± 5 for NF1 shRNA; Figures 4.2.A, C), confirming the 

data presented on Figure 4.1. Also in line with the data from Figure 4.1., there were no statistically 

significant differences between the sustained phases of the control neurons and the neurons expressing 

the NF1-GRD domain (77% ± 7 for NF1-GRD; Figures 4.2.A, C). Importantly, there were no differences 

between neurons expressing the scrambled control shRNA and those expressing the same construct and 

also treated with 10.33mM Mg
2+

 for 7 days (49% ± 5 for sc-shRNA + Mg
2+

; Figures 4.2.A,C), which rules 

out a side effect of Mg
2+

 in structural plasticity. Interestingly, there were also no differences between the 

sustained phases of structural plasticity induced in neurons expressing the scrambled control shRNA and 

those expressing NF1 shRNA and incubated with Mg
2+

 for 7 days (61% ± 6 for NF1 shRNA + Mg
2+

;
 

Figures 4.2.A, C), indicating that the impairment in the sustained phase of structural plasticity in neurons 

where neurofibromin expression is reduced is activity-dependent. Incubation of neurons expressing NF1- 
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Figure 4.2. Neurofibromin impairs the sustained phase of the spine structural plasticity in CA1 
pyramidal neurons of the hippocampus, in an activity-dependent manner. (A) Representative 
images of portions of secondary or tertiary dendrites of CA1 pyramidal neurons transfected with NF1 
shRNA #2, scrambled shRNA, or NF1-GRD domain and treated with either 2mM or 10mM Mg

2+
, for 6-7 

days. The images were taken with a 60x, 0.9NA Olympus objective, and show stimulated spines in basal 
conditions, 1 minute after glutamate uncaging stimulus and 28 minutes after stimulation. (B) Time-course 

of the structural plasticity experiment for the conditions specified in (A), as quantified by the spine volume. 
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GRD with Mg
2+

 (57 ± 8%) did not lead to differences from the scrambled control shRNA neurons (61 ± 

5%) during the sustained phase of structural plasticity (Figures 4.2.A,C). Also, when incubated with Mg
2+

 

for 7 days, there were no differences between neurons expressing a scrambled control shRNA (49 ± 5%), 

NF1 shRNA (61 ± 6%) or NF1-GRD (57 ± 8%), which further supports the conclusion that the effect of 

neurofibromin on the sustained phase of structural plasticity is activity-dependent. In contrast, spine 

growth during the sustained phase of structural plasticity was significantly impaired for NF1 shRNA-

transfected neurons (23 ± 5%), as compared with neurons expressing the NF1 shRNA and also incubated 

in elevated Mg
2+

 for 7 days (61 ± 6%), indicating that the effect of decreased levels of expression of 

neurofibromin in dendritic spine structural plasticity was abolished when neuronal activity was blocked. 

The GRD domain of neurofibromin, in either the presence (57 ± 8%) or absence (77 ± 7%) of elevated 

Mg
2+

, had a significantly larger sustained phase than NF1 shRNA-expressing neurons (23 ± 5%). Lastly, 

there were no significant differences between the sustained phases in neurons expressing the NF1-GRD 

domain in control conditions (77 ± 7%) and the NF1-GRD domain (57 ± 8%) or NF1 shRNA (61 ± 6%) in 

the presence of extra Mg
2+

. Taken together, these data demonstrate that neurofibromin impairs dendritic 

spine structural plasticity in an activity-dependent way. 

 

 

Neurofibromin Does Not Regulate the NMDA Receptor Function 

 

Husi and collaborators (2000) have shown that neurofibromin is in the complex that associates 

with the NMDAR via mass spectrometry (Husi, Ward et al. 2000). Hence, it is possible that the NMDAR is 

regulated by neurofibromin and/or vice-versa. Also, the data presented in this chapter (Figure 4.2.) and  

 

 

(Figure 4.2., continuation) Images were acquired every minute. Error bars are S.E.M. (C) Quantification 
of the stimulated spine volume during the transient phase of structural plasticity (average of volume at 
0min subtracted by average of volume during the sustained phase (25-30min)). (D) Quantification of the 
stimulated spine volume during the sustained phase of structural plasticity, as normalized for the basal 
condition. The sustained phase was arbitrary chosen to be the average of the data acquired 25 to 30 
minutes after stimulation. Stars (*) denote statistically significant difference (p < 0.05) from the value in 
the stimulated spines in scrambled shRNA condition (under 2mM Mg

2+
); # denote statistically significant 

difference (p < 0.05) from the value in the stimulated spines in NF1 shRNA condition (under 2mM Mg
2+

). 
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the previous chapter (Figure 3.3.) suggests a regulatory mechanism between these two molecules. 

Namely, the removal of neurofibromin affects the structural plasticity of dendritic spines downstream the 

NMDAR and blockade of the NMDAR activity abolishes the structural plasticity impairment caused by 

reduced expression of neurofibromin (Figure 4.2.). Furthermore, as seen in the previous chapter, the 

effect of neurofibromin removal in the spine number can be rescued when blocking the NMDAR with a 

strong antagonist, AP5 (Figure 3.3.). These data suggest that neurofibromin regulates NMDAR signaling 

and, most likely, the Ca
2+

 entry in the cell. In order to test this hypothesis, we performed Ca
2+

 imaging 

experiments and we measured the peak Ca
2+

 concentration in dendritic spines, as well as the NMDAR 

current (INMDAR) at the soma, following single uncaging pulses of 4-5mW of 6ms. Organotypic 

hippocampal slice cultures were transfected with shRNA directed against neurofibromin for 5-7 days. 

After that, the slices were incubated in ACSF containing 1μM TTX, 4mM CaCl2, 0mM MgCl2, 2mM MNI-L- 

glutamate and 20μM NBQX (to block the AMPARs). Whole-cell voltage-clamp recordings were performed 

with pipettes of 4-5mOhm resistance, containing a Cs-based internal solution and 500μM Oregon-Green 

BAPTA-5N (a green Ca
2+

-sensitive dye) and 300μM Alexa-594 (a red Ca
2+

-insensitive dye) and the 

neurons were held at 0mV in order to allow for NMDAR activation. Secondary and tertiary apical 

dendrites were selected and spines of interest were imaged with a 60x, 0.9NA Olympus objective. For 

stimulation, single pulses of 4-5mW were applied in a small region on the top and center of spine heads 

of interest to uncage MNI-L-glutamate and activate NMDARs. Glutamate uncaging has been accepted as 

a method fairly specific for NMDAR activation only, therefore it is possible to access the function of this 

receptor when such stimulation is used. The peak INMDAR at the soma and the Ca
2+

 concentration peak in 

the spine and neighboring dendrite were measured simultaneously before and upon stimulation. At the 

end of the day, a pipette was filled with the same internal solution mixed with a 10μM CaCl2 solution and 

positioned on the top of the imaged slice. Two-photon scanning images were acquired and the Ca
2+

 

concentrations observed during the experiments of that day were determined through normalization to the 

well-known Ca
2+

 concentration from the solution in the pipette. 

Our data shows that immediately after stimulation there was Ca
2+

 influx in the stimulated dendritic 

spine, which was moderately restricted to the stimulated spine. A smaller increase in Ca
2+

 concentration  
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Figure 4.3. Neurofibromin does not regulate the INMDAR or its Ca
2+

 permeability. Organotypic slice 
cultures of the hippocampus were ballistically transfected with NF1 shRNA #2 or scrambled shRNA for 5-
7 days. Whole-cell voltage-clamp recordings were made and the cells were held at 0mV, after being filled 
with a green Ca

2+
-sensitive dye and a red Ca

2+
-insensitive dye. Using a TPLSM, single dendritic spines 

were stimulated with MNI-L-glutamate uncaging and Ca
2+

 imaging was performed simultaneously to 
INMDAR recordings. (A) Representative images of the Ca

2+
 imaging experiment, showing the red channel 

for morphology and the green channel for Ca
2+ 

imaging, before and upon stimulation. (B) Representative 
electrophysiological traces of the INMDAR measured at the soma upon uncaging stimulation, in pA, paired 
with the respective traces for Ca

2+
 entry in the spine and adjacent dendrite. (C) Quantification of the peak 

Ca
2+

 concentration in the stimulated dendritic spines and their adjacent dendrites, in μM, upon 
normalization to a defined pipette concentration of 10μM (n = 9 neurons for untransfected condition or n = 
7 neurons for NF1 shRNA condition). Neurofibromin removal does not affect the Ca

2+
 entry through the 

NMDAR. (D) Quantification of the peak INMDAR, in pA, measured at the soma.  
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was also seen in the immediate adjacent dendrite (2.04 ± 0.34μM for untransfected neurons, n =9, and 

1.68 ± 0.42μM for NF1 shRNA transfected neurons, n = 7; Figures 4.3.A-C). The Ca
2+

 was rapidly 

cleared from the spine and dendrite, returning to its basal concentration. This pattern was observed in 

both neurons transfected with NF1 shRNA and their neighboring untransfected neurons. Surprisingly, we 

observed no differences in the peak Ca
2+

 concentration in the stimulated dendritic spine between the two 

conditions (4.66 ± 0.81μM for untransfected neurons and 4.48 ± 0.82μM for neurons expressing a NF1-

directed shRNA, p = 0.98, Figures 4.3.A-C), indicating that neurofibromin removal did not affect the 

NMDAR-mediated Ca
2+

 permeability. Equally, the INMDAR recorded at the soma was not different between 

the control condition and the case where neurofibromin was knockdown (14.22 ± 2.88pA for 

untransfected neurons and 13.73 ± 4.15pA for NF1 shRNA-expressing neurons, p = 0.84, Figures 4.3.B- 

D). Together, these data indicate that the NMDAR function is not affected by neurofibromin, despite the 

fact that these two proteins are present in the same protein complex.  

 

 

Discussion 

 

In this chapter, we asked whether neurofibromin plays a role in dendritic spine structural plasticity 

in the CA1 region of the hippocampus. We used shRNA constructs directed against Nf1 to answer this 

question and stimulated single spines with two-photon glutamate uncaging. Under the conditions of our 

organotypic slice culture preparations, we observed that reduced levels of neurofibromin caused 

impairment in the late phase of dendritic spine plasticity compared to the control condition. In line with our 

observations, Costa and collaborators (2002) showed that a mouse model of NF1, consisting of a 

heterozygous mouse for the Nf1 gene (Nf1
+/-

) and therefore expressing reduced levels of neurofibromin, 

had impaired LTP in the Schaffer-collateral pathway of the hippocampus, following a standard 

physiological protocol of TBS to induce LTP (Costa, Fedorov et al. 2002).  
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Dendritic spines undergo functional and structural changes during synaptic plasticity. Several 

studies indicate a strong correlation between structural and functional plasticity (Engert and Bonhoeffer 

1999; Maletic-Savatic, Malinow et al. 1999; Nagerl, Eberhorn et al. 2004; Zhou, Homma et al. 2004; 

Harvey, Yasuda et al. 2008; Lee, Escobedo-Lozoya et al. 2009; Patterson, Szatmari et al. 2010), being 

that a LTP-induced stimulus generally causes increases in the volume of spines undergoing LTP. 

Conversely, spines that undergo LTD often shrink or even disappear. As in functional LTP, where 

potentiated pathways remain potentiated for long periods, spine structural plasticity induced by a LTP 

stimulus lasts for at least 60 minutes (Matsuzaki, Ellis-Davies et al. 2001; Matsuzaki, Honkura et al. 

2004). Using two-photon glutamate uncaging to induce LTP, we reported similar findings in our control 

condition to those observed by Matsuzaki and collaborators (2004). Like us, they delivered LTP-inducing 

stimuli in dendritic spines of GFP-expressing hippocampal pyramidal neurons in rat organotypic slices 

from 14-20 days old animals (Matsuzaki, Honkura et al. 2004), which increased the stimulated spine 

volume by about two-fold (stimulation of a single dendritic spine by 1-2Hz for 60s in 0mM Mg
2+

 

extracellular solution). This increase persisted for more than 1h after stimulation (Matsuzaki, Honkura et 

al. 2004). In the current study, we used a different stimulation protocol, previously shown to induce LTP 

(Harvey and Svoboda 2007; Harvey, Yasuda et al. 2008; Lee, Escobedo-Lozoya et al. 2009; Patterson, 

Szatmari et al. 2010; Murakoshi, Wang et al. 2011), which induced a spine volume growth of similar 

magnitude that lasted for at least 30 minutes after stimulation. In contrast with control neurons, our data 

shows that neurons with low expression of neurofibromin had reduced volume changes 30 minutes upon 

receiving a LTP-inducing stimulus, supporting and extending previous findings that report impaired LTP in 

mice with reduced expression of neurofibromin (Costa, Fedorov et al. 2002; Li, Cui et al. 2005; Guilding, 

McNair et al. 2007). 

The data presented in this chapter also establishes that Ras hyperactivation results in impaired 

structural plasticity, since overexpression of the GRD domain of neurofibromin (a manipulation that 

promotes Ras inactivation) abolishes the impairment of structural plasticity caused by reduced levels of 

neurofibromin. This further supports an important role of Ras in synaptic plasticity. Adding our data to the 

previous findings reporting that blocking a downstream effector of Ras (MEK) also impairs the sustained 

phase of spine structural plasticity (Harvey, Yasuda et al. 2008; Patterson, Szatmari et al. 2010), we 
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conclude that precise Ras activation is necessary for normal structural plasticity to occur. This idea was 

already suggested by others (Thomas and Huganir 2004; Stornetta and Zhu 2011) based on multiple 

reports that demonstrated that both hypo- and hyperactivation of Ras lead to impairments in synaptic 

plasticity. For example, on the side of blockade of LTP by Ras hyperactivation, another mutant 

heterozygous mouse for a different RasGAP (SynGAP) also exhibited impaired LTP in the hippocampus 

(Komiyama, Watabe et al. 2002). A HRas peptide impaired LTP in the CA1 region of the hippocampus 

(Thornton, Yaka et al. 2003). On the side of blockade of LTP by Ras hypoactivation, a RasGEF mutant 

(RasGRF
-/-

), a situation that blocks Ras activation, displayed impaired LTP in the amygdala (Brambilla, 

Gnesutta et al. 1997). Inhibitors of Ras, such as FTase inhibitors, disrupt LTP in the CA1 region of the 

hippocampus (O'Kane, Stone et al. 2004). However, there are also studies that do not seem to support 

the theory that precise Ras regulation is required for optimal LTP magnitude. Namely, a study by Manabe 

and collaborators (2000) demonstrated that, in HRas deficient mice (HRas
-/-

), the magnitude of the LTP 

(induced by tetanic stimulation) is almost the double of that of WT mice (Manabe, Aiba et al. 2000). In line 

with this study, we report that Ras hyperactivation decreased the magnitude of structural plasticity levels, 

which extends the information of Manabe’s study showing that, conversely, HRas loss-of-function 

increases the magnitude of LTP. Manabe and collaborators (2000) also concluded that PPF was not 

significantly different between WT mice and HRas mutant mice, suggesting that presynaptic release 

probability is not affected by HRas proteins (Manabe, Aiba et al. 2000). Rather, their data suggests that 

the enhanced LTP in mutant mice results from postsynaptic mechanisms. Hence, our data is in line with 

the findings of this study, supporting a postsynaptic role of Ras signaling downstream neurofibromin in 

LTP. 

We have also investigated whether the structural plasticity impairment by neurofibromin reduced 

levels is activity-dependent. In order to do so, we performed two-photon glutamate uncaging experiments, 

stimulating single dendritic spines from neurons previously treated with pharmacological agents that block 

the NMDAR and transfected with a control shRNA or a NF1-directed shRNA. We concluded that blockade 

of activity was sufficient to reverse the magnitude of structural plasticity in neurons expressing low levels 

of neurofibromin. Thus, the regulation of dendritic spine structural plasticity by neurofibromin is activity-

dependent.  
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We speculate that this phenomenon might be related to a homeostatic mechanism to balance 

Ras activity and synaptic plasticity. In other words, we hypothesize that, under normal conditions, precise 

Ras regulation by neurofibromin and perhaps other RasGAPs is essential for the magnitude of structural 

plasticity, following NMDAR activation. When neurofibromin levels are reduced, Ras inactivation is 

inefficient due to the absence of the RasGAP, resulting in abnormally high or even persistent Ras activity 

upon NMDAR activation (and most likely other receptors, too, such as the TrkB receptor), which 

unbalances the precise signaling control required for maximal magnitude structural plasticity. It is possible 

that, under conditions of reduced inactivation by neurofibromin, permanent Ras hyperactivity leaves no 

space for further activation following NMDAR stimulation. In this case, the synapse would behave as 

insensitive to LTP-inducing stimulus, being unable to undergo potentiation, which would explain the 

reduced levels of structural plasticity seen here and LTP in general. In this case, when the NMDAR is 

chronically blocked (such as in our experiment, where we kept NMDAR inhibitors in the culture medium 

for 6-7 days), despite lack of inactivation by neurofibromin, Ras might remain under hyperactivation levels 

due to lack of NMDAR activation, which is upstream Ras (Yun, Gonzalez-Zulueta et al. 1998). As such, a 

single acute episode of NMDAR activation during the two-photon glutamate uncaging experiments (after 

removal of NMDAR inhibitors) would now activate a nearly basal level activity Ras (prone to be further 

activated) and follow the normal route of signaling-induced spine structural plasticity. 

We also investigated if neurofibromin regulates the NMDAR by performing two-photon Ca
2+

 

imaging and glutamate uncaging, which is one of the prime experiments to analyze Ca
2+

 entry through the 

NMDAR. The findings reported in this chapter indicate that neurofibromin does not regulate the NMDAR 

function, given that both the peak Ca
2+

 concentration and peak INMDAR were similar between neurons with 

reduced neurofibromin expression and control untransfected neurons. A study by Manabe and 

collaborators (2000) contradicts somewhat our conclusions, given that this other group concluded that 

HRas loss-of-function leads to an enhancement of the NMDA synaptic responses induced by an increase 

in the tyrosine phosphorylation of the NMDAR (Manabe, Aiba et al. 2000). NMDAR tyrosine 

phosphorylation is necessary to keep the NMDAR at the membrane. Hence, hypothetically, this study 

would predict that we would observe a decreased NMDAR current and Ca
2+

 permeability under conditions 

where neurofibromin levels were reduced and Ras activated. This discrepancy might be due to the 
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differences in the approach used in the two studies. Manabe et al. (2000) completely removed the HRas 

gene and, thus, it is expected that there is no residual activity of HRas. In our study, HRas was not 

removed, but simply it lacks complete regulation by neurofibromin, one among several RasGAPs present 

in dendritic spines of the hippocampus. It might be that other RasGAPs not removed, namely SynGAP 

(also present in dendritic spines of hippocampal neurons), can compensate for the reduced levels of 

neurofibromin. Also, it is possible that neurofibromin acts as a RasGAP over a different Ras isoform that 

not HRas. Another study by Thornton and collaborators (2003) is also in disagreement with our data. 

Thornton et al. (2003) provided evidence that HRas inactivates Src kinase, a tyrosine kinase that 

phosphorylates the GluN2A subunit of the NMDAR. This phosphorylation is necessary to keep the 

NMDAR at the membrane and incubation of rat hippocampal slices with a Tat-HRas depleted GluN2A 

from the synaptic membrane, causing a decrease in the magnitude of LTP in the Schaeffer-collateral 

pathway (Thornton, Yaka et al. 2003). Hence, in contrast with our results, this study reported that Ras 

hyperactivity decreases the NMDAR function. 

 

 

Future Directions 

 

 Previous studies in NF1 patients and mouse models of NF1 have shown that a more intense 

learning paradigm is able to compensate the cognitive impairments observed in humans and mice 

afflicted with the disease (Costa, Fedorov et al. 2002). Hence, it will be interesting to test if a more intense 

input-specific glutamate uncaging stimulus is able to abolish the decreased sustained phase of structural 

plasticity in neurons expressing reduced expression of neurofibromin. Whether this experiment might not 

be conclusive under the cognitive view, since memory restoration by extended training has been shown 

to be independent of the hippocampus function, Costa and collaborators demonstrated that a strong, non-

physiological stimulus (HFS), can abolish the impairment in LTP observed in Nf1
+/-

 mice (Costa, Fedorov 

et al. 2002). It will also be interesting to pursue follow-up experiments to the Ca
2+

 imaging experiment in 

order to possibly identify a different receptor that could be regulated by neurofibromin.  
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Chapter V. Neurofibromin is a major RasGAP in the dendritic 

spines of CA1 pyramidal neurons of the hippocampus 

 

 

Introduction 

 

 Many GAPs have been identified towards multiple members of the Ras family proteins (Bernards 

2003) and it is likely that many more will be identified in the future. These proteins are fundamental for the 

regulation of Ras signaling, by inactivating Ras. Since the recent discovery that Ras is required for 

synaptic plasticity, learning and memory, several studies have tried to address the role of RasGAPs in 

proper memory formation, as well as disease (Silva, Frankland et al. 1997; Costa, Fedorov et al. 2002; Li, 

Cui et al. 2005; Guilding, McNair et al. 2007; Cui, Costa et al. 2008). Among these, a recent study 

demonstrated that neurofibromin regulates neurotransmission by inactivating Ras at the presynaptic 

terminals of interneurons, thereby preventing excessive GABA release and high inhibition in the 

hippocampus (Cui, Costa et al. 2008). SynGAP, another RasGAP, is present in dendritic spines, where it 

associates with the NMDAR at the PSD of hippocampal CA1 pyramidal neurons and regulates the 

numbers of synaptic AMPARs that are inserted at the postsynaptic sites during LTP (Kim, Lee et al. 2003; 

Krapivinsky, Medina et al. 2004; Kim, Dunah et al. 2005; Rumbaugh, Adams et al. 2006; Lee, Lee et al. 

2011). However, it is yet unknown which RasGAP contributes to Ras inactivation in dendritic spines.  

Given our findings in the previous chapters of this dissertation, namely the impact of 

neurofibromin removal in spine morphology (chapter III) and structural plasticity (chapter IV), as well as 

the involvement of Ras signaling dysregulation mechanisms, we hypothesize that neurofibromin may be 

an important RasGAP in dendritic spines, regulating Ras activity in this compartment during spine 

structural plasticity. A study from Hsueh and collaborators (2001) reporting that neurofibromin is present 

in dendritic spines of hippocampal cultured neurons and another study from Husi and collaborators (2000) 

reporting that neurofibromin associates with the NMDAR protein complex suggest that neurofibromin 

could be a RasGAP in dendritic spines (Husi, Ward et al. 2000; Hsueh, Roberts et al. 2001). In order to 
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study if neurofibromin regulates Ras activity in dendritic spines, we made use of advanced optical 

techniques that allow the visualization of interactions between molecules in small compartments, such as 

dendritic spines (Yasuda 2006; Yasuda, Harvey et al. 2006; Harvey, Yasuda et al. 2008; Lee, Escobedo-

Lozoya et al. 2009; Murakoshi, Wang et al. 2011). Particularly, a previous study using TPFLIM and 2-

photon glutamate uncaging revealed the spatiotemporal dynamics of HRas in single dendritic spines 

undergoing structural plasticity and LTP (Harvey, Yasuda et al. 2008). HRas is rapidly activated following 

single dendritic spine stimulation and its activity spreads from the stimulated spines along dendrites and 

into surrounding spines over ~ 10μm. Here, we used several neurofibromin manipulations, including 

neurofibromin removal by shRNA expression or overexpression of the GRD domain of neurofibromin, to 

identify whether neurofibromin acts as a RasGAP in dendritic spines, regulating Ras signaling in this 

compartment. 

 

 

Results 

 

An Improved Sensor to Detect Ras Activation 

 

To measure the activity of HRas in dendritic spines, we developed a FRET-based sensor 

optimized for imaging under TPFLIM, using the previously described Ras sensor FRas-F (Yasuda, 

Harvey et al. 2006; Harvey, Yasuda et al. 2008) as a template. The HRas sensor consists of two 

components: HRas, tagged with one monomeric enhanced green fluorescent protein (mEGFP) in its N 

terminal (donor), and its binding partner Ras GTPase binding domain (RBD) of c-Raf, double-tagged with 

mRFP (mRFP-RBD-mRFP) in the N terminal and the C terminal (acceptor). When mEGFP-HRas is 

activated, mRFP-RBD-mRFP binds to mEGFP-HRas, causing FRET between mEGFP and mRFP 

(Figure 5.1.A). In the original sensor, RBD includes the R59A mutation, in order to decrease the binding 

affinity between RBD and HRas, allowing the inactivation of HRas following activation. The WT version of 

RBD as acceptor prevents the efficient sensor inactivation (Yasuda, Harvey et al. 2006).  



105 

 

 

Figure 5.1. Design of the Ras sensor. (A) Schematic representation of the HRas sensor. The HRas 
sensor is composed of two molecules: the donor, which consists of HRas tagged with a mEGFP in its N 
terminal, and the acceptor, which consists of the Ras binding domain of c-Raf (RBD) with two mRFPs 
tagged to the N and C terminal of RBD. For the experiments presented in this dissertation, the acceptor 
was modified by the introduction of two mutations in RBD (K65E and K108A) and removal of a previous 
mutation (R59A; Yasuda, Harvey et al. 2006; Harvey, Yasuda et al. 2008). When HRas is activated, RBD 
is recruited to the membrane where it binds to HRas, producing FRET between mEGFP and mRFP. (B) 
Schematic of fluorescence decay curves after pulsed excitation. Slow and fast components correspond to 
the free donor and donor bound to acceptor, respectively. FRET decreases fluorescence lifetime. 
Fluorescence lifetime measurements can deconvolve the binding fraction. Adapted from Yasuda, Harvey 
et al. 2006; Yasuda 2006; Harvey, Yasuda et al. 2008. 

 

At first, we decided to use the original sensor, but consistently observed the accumulation of RBD 

in the nucleus (Figure 5.2.B; Figure 5.3.A-B) and, therefore, the sensor did not activate in neurons upon 

a LTP-inducing stimulus similar to the one administered by Harvey and collaborators (2008). Having the 

acceptor in the nucleus makes it slow and difficult to move it to the plasma membrane upon Ras 

activation, which deteriorates the temporal resolution of Ras activation and likely the magnitude of the 

signal. Hence, we decided to start by performing experiments in cell lines (293T cells) to test the effect of 

a few new mutations on RBD in the localization and activation/inactivation of the Ras sensor. When 

testing for the localization of the sensor, we expect to find the GFP signal from mEGFP-HRas at the 

plasma membrane and possibly in other intracellular membranes, since HRas like other Ras forms 

undergoes prenylation and farnesylation to become a membrane protein (Hancock 2003; Wright and 

Philips 2006; Arozarena, Calvo et al. 2011). Conversely, we expect the RFP signal from mRFP-RBD-

mRFP to be cytosolic like RBD. For all Ras sensors tested, we observed membrane localization for HRas,  
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Figure 5.2. Characterization of the Ras sensor. (A) Table with the dissociation constants for the 
complexes between RafRBD WT and mutants and WT mant-Gpp(NH)p-Ras. Adapted from Jaitner, 
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as expected (Figure 5.2.B; Figure 5.3.B-C), but the RBD localization was rather diverse. We observed 

that the acceptor of the original sensor (mRFP-RBD
59A

-mRFP) was concentrated in the nucleus of 293T 

cells (Figure 5.2.B), similarly to what was also observed in neurons (Figure 5.3.A-B). Thus, we analysed 

the sequence of RBD and, with the help of Dr. Hideji Murakoshi, we found a NLS in RBD. We introduced 

the mutation K108A, which disrupts the NLS. When RBD harbored both the R59A and the K108A 

mutations, the acceptor localized to the cytoplasm, being mostly excluded from the nucleus (data not 

shown), but this sensor was unable to activate in neurons (data not shown). Hence, we decided to 

replace the mutation R59A with the mutation K65E, which confers a higher affinity of RBD towards Ras, 

but still lower affinity than the WT version of RBD (Figure 5.2.A; (Jaitner, Becker et al. 1997)), therefore 

increasing the sensitivity of the HRas sensor. RBD harboring both K65E and K108A mutations is cytosolic 

(Figure 5.2.B and Figure 5.3.A-C) and activates well in neurons (Figure 5.4.A-C), to comparable levels 

as the sensor previously reported with similar stimulation (Yasuda, Harvey et al. 2006; Harvey, Yasuda et 

al. 2008). 

Next we compared the efficiency of three sensors for Ras activity detection in HEK293T cells. We 

transfected HEK293T cells with the different Ras sensors and reduced the percentage of serum present 

in the culture medium from 10% to 0.5% sixteen hours after transfection. Eight hours later the cells were 

imaged in Hepes-buffered ACSF medium containing 1mM Ca
2+

 as previously described by Murakoshi et 

al. (2008). We acquired four basal FLIM images, followed by EGF (100ng/ml) stimulation. We promptly  

 

 

(Figure 5.2., continuation) Becker et al. 1997. (B) Membrane localization of mEGFP-HRas as seen by 
the green and red fluorescence images of HEK293T cells transfected with mEGFP-HRas and the 
respective acceptor for each sensor. (C) Representative fluorescence lifetime images in HEK293T cells 
transfected with three different Ras sensors all consisting of the same donor, but different acceptors. The 
original acceptor (mRFP-RBD

59A
- mRFP) described in Yasuda, Harvey et al. (2006) and Harvey, Yasuda 

et al. (2008), the acceptor with a disrupted NLS (mRFP-RBD
108A

-mRFP) and the acceptor with the 
disrupted NLS plus a mutation that slightly decreases RBD affinity for Ras (mRFP-RBD

65E,108A
-mRFP) 

were used. The top pseudocolored images show 293T cells expressing the different Ras sensors under 
basal conditions, whereas the bottom pseudocolored images show the same cells upon EGF (100ng/ml) 
stimulation. Warmer colors indicate shorter lifetimes and higher levels of Ras activity. Fluorescence 
lifetime imaging was performed 24 hours after transfection in a solution containing 30mM Na-HEPES (pH 
7.3), 130mM NaCl, 2.5mM KCl, 1mM CaCl2, 1mM MgCl2, 2mM NaHCO3, 1.25mM NaH2PO4 and 25mM 
glucose. (F) Fraction of donor bound to acceptor before and after the application of EGF (100ng/ml). Error 

bars indicate S.E.M. over 4 fields from one dish. 
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Figure 5.3. Localization of the Ras sensor in CA1 pyramidal neurons. (A) Images of neurons 
transfected with Ras sensors, showing the localization of the donor (mEGFP-HRas) and the localization 
of the acceptor (mRFP-RBD-mRFP). (B) Detail of cell soma showing membrane localization of mEGFP-
HRas and the subcellular localization of the acceptor for each sensor. The acceptor accumulates in the 
nucleus if using mRFP-RBD

59A
-mRFP, or is cytoplasmic if using mRFP-RBD

65E,108A
-mRFP. (C) Detail of 

the localization of the Ras sensor in the primary apical dendrite of CA1 pyramidal neurons. 
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observed increased Ras activation upon EGF stimulation for all the sensors (Figure 5.2.C-D), as reported 

by the change from colder (higher lifetime, lower FRET between mEGFP and mRFP) to warmer colors 

(shorter lifetime, higher FRET between mEGFP and mRFP) in a pseudocolor code for lifetime (Figure 

5.1.B). The basal binding fraction was slightly lower for the acceptor version mRFP-RBD
108A

-mRFP (BF = 

0.06 ± 0.004) as compared to the other two sensors tested, whereas no significant differences were seen 

between the acceptors mRFP-RBD
59A,108A

-mRFP and mRFP-RBD
65E,108A

-mRFP for the basal binding 

fraction (BF = 0.12 ± 0.008 for RBD
59A,108A

; 0.13 ± 0.022 for RBD
65E,108A

; Figure 5.2.D). However, the 

acceptor mRFP-RBD
65E,108A

-mRFP allowed for a higher activation magnitude and, therefore, might be 

more sensitive than the acceptor mRFP-RBD
59A,108A

-mRFP (peak BF = 0.29 ± 0.019 for RBD
59A,108A

; peak 

BF = 0.38 ± 0.013;  Figure 5.2.D). Moreover, testing experiments showed that the sensor using the 

acceptor mRFP-RBD
59A,108A

-mRFP did not activate in neurons (data not shown). Therefore, given its 

cytosolic localization and higher sensitivity, we decided to use the sensor that includes the donor mRFP-

RBD
65E,108A

-mRFP for the following experiments in cultured hippocampal neurons. 

 

 

Neurofibromin Acts as a RasGAP in Dendritic Spines of the Hippocampus 

 

Using the optimized sensor, we measured the activity of HRas during dendritic spine structural 

plasticity. Pyramidal neurons of the CA1 region of cultured hippocampal slices were ballistically co-

transfected with the HRas sensor and NF1 shRNA or scrambled control shRNA, or with the HRas sensor 

and the GRD domain of neurofibromin and treated with an elevated concentration of MgCl2 (10mM) to 

prevent HRas activation following HRas overexpression. The FRET signal was measured under TPFLIM 

(Yasuda, Harvey et al. 2006; Harvey, Yasuda et al. 2008; Lee, Escobedo-Lozoya et al. 2009; Murakoshi, 

Wang et al. 2011). Simultaneously, the spine volume was monitored using the red fluorescence of mRFP-

RBD
65E,108A

-mRFP. To induce structural plasticity in a single dendritic spine, we applied a train of 30 two-

photon glutamate uncaging pulses at 0.5Hz to the top center of the spine without extracellular MgCl2. In 

control neurons, the spine volume increased rapidly by approximately 341 ± 8% following glutamate 

uncaging (transient phase) and relaxed to an elevated level of 56 ± 3% for more than 30 minutes later 
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(sustained phase) (Figure 5.4.F-H). In neurons where neurofibromin was knockdown, the spine volume 

increased to approximately 370 ± 7% during the transient phase and relaxed to an elevated level of 66 ± 

5% during the sustained phase (Figure 5.4.F-H). There was no statistically significant difference between 

the scrambled control shRNA and the NF1 shRNA during both the transient and sustained phases of 

spine structural plasticity. In the neurons expressing the NF1-GRD domain, we observed a spine volume 

increase of up to 472 ± 11% during the transient phase, followed by an elevated maintenance of up to 96 

± 7% during the sustained phase (Figure 5.4.G-H). Statistical analysis proved that the structural plasticity 

observed in neurons expressing both the Ras sensor and the NF1-GRD domain was increased compared 

to the control condition (ANOVA, p = 5.43x10
-5

, followed by post-hoc tests; Figure 5.4.H). Hence, in line 

with the data from chapter IV (Figure 4.2.), the blockade of activity with MgCl2 removed the structural 

plasticity impairment seen in neurons expressing reduced levels of neurofibromin, suggesting that the 

HRas sensor does not interfere with structural plasticity. However, in contrast with the results obtained in 

chapter IV (Figure 4.2.), we observed an enhanced structural plasticity in neurons overexpressing the 

GRD domain of neurofibromin. 

When dendritic spine structural plasticity was induced, HRas activity was rapidly activated, within 

approximately 0.5 - 1 minute, in the stimulated spines of neurons transfected with a scrambled control 

shRNA. Examples of Ras activation upon single dendritic spine activation can be appreciated in Figure 

5.3.A. Ras activity remained elevated for a few minutes (approximately 2 minutes, Figure 5.4.A-C) and, 

then, gradually decreased until close to basal levels (Figure 5.4.A-C,E). Despite the higher binding 

affinity of RBD for HRas with the mutation K65E instead of R59A, we did not observe obvious effects on 

Ras
GTP

 inactivation during our control experiments (Figures 5.4.A-C). However, further binding affinity 

experiments will be required to rule out possible issues with the sensor inactivation. As previously 

reported by Harvey et al. (2008), the time course of HRas activation was similar to that of dendritic spine 

volume change (Figure 5.4.C,F). Equally, the time course of Ras activation was similar to that one 

reported by Harvey and collaborators (2008) when using FRas-F and a similar stimulation protocol, with a 

gradual decrease of Ras activity to basal levels in about 10 minutes.  

We also measured Ras activation in neurons where neurofibromin was knockdown (NF1 shRNA) 

and in neurons expressing NF1-GRD. In neurons expressing NF1 shRNA, the basal Ras activity was,  
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overall, similar to that of neurons expressing a scrambled control shRNA (Figure 5.4.B). Also, Ras 

activation upon glutamate uncaging reached a similar level (7.82 ± 0.29% for sc-shRNA against 7.04 ± 

0.15% for NF1 shRNA). However, the inactivation of Ras
GTP

 was much more inefficient in NF1 shRNA 

expressing neurons. The Ras activation signal decayed slowly and incompletely, being that, 30 minutes 

after stimulation, Ras activity was still moderately elevated (4.48 ± 0.15% for NF1 shRNA against 1.50 ± 

0.25% for sc-shRNA). Statistical analysis proved that the Ras activity observed for neurons where 

neurofibromin was knockdown was significantly higher during the sustained phase of structural plasticity, 

when compared to control neurons (ANOVA, p = 1.3x10
-11

; Figure 5.4.A-C,E). Thus, neurofibromin 

regulates the inactivation of HRas in dendritic spines and, therefore, has RasGAP activity in dendritic 

spines. 

 

 

 

Figure 5.4. Neurofibromin is a major RasGAP in the dendritic spines of CA1 pyramidal neurons of 
the hippocampus. (A) Representative fluorescence lifetime images of Ras activity in CA1 pyramidal 
neurons, in the presence of scrambled shRNA (top panel), NF1 shRNA (middle panel) or the GRD 
domain of neurofibromin (bottom panel). At time zero, 30 uncaging pulses were applied to the spine 
marked by the white circle in 0mM extracellular Mg

2+
. Warmer colors indicate shorter lifetimes and higher 

levels of Ras activation. (B) Time course of Ras activation in the stimulated spine in neurons expressing a 
scrambled shRNA, NF1 shRNA or NF1-GRD domain, upon MNI-L-glutamate uncaging. Black bar, time of 
stimulus. (C) Time course of Ras activation in the stimulated spine normalized to the baseline. This data 
shows that Ras activity increases by approximately 10% at its peak and decreases to baseline levels in 
10min, under the control condition, as measured by changes in binding fraction normalized to the 
baseline. For neurons where neurofibromin was knockdown, Ras activity increases to approximately the 
same level during the transient phase, with a much weaker inactivation 30 minutes after stimulation and 
with a slow decay. Expression of the NF1-GRD domain had the opposite effect, leading to a much more 
modest Ras activation level right after uncaging stimulation (about 5% activation), which decays quickly 
(in approximately 5min) compared to the control. The inset to (C) shows a closer view of the first 5 
minutes. (D) Transient (averaged over 64s - 128s) Ras activation. Stars (*) denote statistically significant 
difference (p < 0.05) from the value in the stimulated spines of the scrambled control shRNA. Ras 
activation immediately following uncaging is significantly smaller when the NF1-GRD domain is 
overexpressed. (E) Sustained (averaged over 21min - 37min) Ras activation. Stars (*) denote statistically 
significant difference (p < 0.05) from the value in the stimulated spines of the scrambled control shRNA. 
Ras activity decreases 21 – 37 minutes after stimulation to levels close to basal activity in both the 
scrambled control shRNA and the NF1-GRD conditions. In contrast, Ras activity remains elevated in the 
stimulated spines of neurons expressing NF1 shRNA, compared to the scrambled control shRNA 
condition, indicating that removal of neurofibromin impairs Ras inactivation. (F) Averaged time course of 
spine volume change in the same experiments as in (B) and (C). The inset to (F) shows a closer view of 
the first 5 minutes. (G) Transient (volume change averaged over 1 - 1.5min subtracted by that over 21 - 
37min) volume change. (H) Sustained volume change (volume change averaged over 21 - 37min). The 

sustained volume is significantly higher in neurons expressing the NF1-GRD domain. 
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In neurons expressing the NF1-GRD domain, the basal binding fraction was lower than that 

observed in control neurons, indicating lower basal Ras activity (ANOVA, p = 2.15x10
-6

; Figure 5.4.A-B, 

D) and showing that the GRD domain of neurofibromin is able to inactivate HRas in dendritic spines, 

under basal conditions. Furthermore, following glutamate uncaging stimulation, Ras activity increased to 

4.55 ± 0.29%, which was significantly lower than the transient increase in Ras activity observed in control 

neurons (7.82 ± 0.29%) and neurons expressing NF1 shRNA (7.04 ± 0.15%; Figure 5.4.C-D). 

Additionally, Ras
GTP

 inactivation in neurons expressing the NF1-GRD domain occurred much 

faster than in control neurons. In other words, Ras activity was already close to basal levels 5 minutes 

after single spine stimulation and it remained low for at least another 30 minutes (Figure 5.4.C-D). 

Therefore, the GRD domain of neurofibromin is effective at restricting the full range of HRas activation to 

lower levels in dendritic spines and it also accelerates the inactivation of HRas, further supporting the 

conclusion that neurofibromin has major RasGAP activity in dendritic spines and is likely to be one of the 

major negative regulators of HRas signaling in these subcellular compartments.  

 

 

 

 

Figure 5.5. Neurofibromin is a RasGAP in the dendritic spines and adjacent dendrites of CA1 
pyramidal neurons of the hippocampus. (A) Representative fluorescence lifetime images of Ras 
activity in CA1 pyramidal neurons, in the presence of scrambled shRNA (top panel), NF1 shRNA (middle 
panel) or the NF1-GRD domain (bottom panel). The black bar indicates the time at which a train of 30 
uncaging pulses were applied to the spine marked by the white circle in 0mM extracellular Mg

2+
. Warmer 

colors indicate shorter lifetimes and higher levels of Ras activation. (B) Time course of Ras activation in 
the stimulated spine and nearby dendrite in neurons expressing scrambled shRNA, upon MNI-L-
glutamate uncaging. This data shows that Ras activation occurs also outside the stimulated spine, in the 
nearby dendrite. Ras activity increases by approximately 10% at its peak and decreases to baseline 
levels within 10 minutes. (C) Time course of Ras activation in the stimulated spine and nearby dendrite in 
neurons expressing NF1 shRNA, upon MNI-L-glutamate uncaging. Ras activity increases by 
approximately 8% at its peak, but does not quickly decrease to baseline levels. Instead, it remains 
elevated at least for 25 minutes after stimulation. Simultaneous Ras activation in the adjacent dendrite 
remains elevated by approximately 6.5% of the baseline for, at least, 25 minutes after stimulation. (D) 
Time course of Ras activation in the stimulated spine and nearby dendrite in neurons expressing the 
NF1-GRD domain, upon MNI-L-glutamate uncaging. Ras activity only increases by approximately 4.5% at 
its peak and decreases to baseline levels in only 5 minutes. (E) Transient (averaged over 64 - 128s) Ras 
activation. Ras is activated in both the stimulated spines and adjacent dendrite in all conditions. Stars (*) 
denote significantly different values compared to those from sc-shRNA measure at the spine. (F) 
Sustained (averaged over 19 - 25min) Ras activation. For all the conditions tested, Ras activity is similar 
between the stimulated dendritic spines and their adjacent dendrites.  
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Ras activity was also monitored in the adjacent dendrite to the stimulated spine. Harvey et al. 

(2008) previously reported the spreading of Ras activity to the adjacent dendrite and neighboring dendritic 

spines following single dendritic spine stimulation with a LTP-inducing stimulus similar to the one 

administered here (Harvey, Yasuda et al. 2008). We compared the HRas activity in the stimulated spine 

and in the dendrite, during the transient and sustained phases of structural plasticity, in scrambled control 

shRNA neurons, neurons where neurofibromin was knockdown, and neurons expressing the GRD 

domain of neurofibromin. HRas activity displayed a relatively small gradient between the stimulated 

spines and adjacent dendrite, rather showing activation in both compartments that was close to 

simultaneous. 

Hence, in control neurons, Ras activated to similar levels in the stimulated spine (7.95 ± 0.33%) 

and in the adjacent dendrite (7.51± 0.32%) during the transient phase of structural plasticity (p = 0.36; 

Figure 5.5.A-B,E). The same similar level of Ras activation between the stimulated spine (6.31 ± 0.61% 

for NF1 shRNA and 4.37 ± 0.34% for NF1-GRD) and the adjacent dendrite (6.50 ± 0.66% for NF1 shRNA 

and 3.22 ± 0.46% for NF1-GRD) was observed for neurons expressing NF1 shRNA and neurons 

overexpressing the GRD domain of neurofibromin (p = 0.39 for NF1 shRNA and p = 0.06 for NF1-GRD; 

Figure 5.5.C-E). During the sustained phase of structural plasticity (19-25 minutes after stimulation), the 

situation was quite similar. In other words, Ras activity was not statistically different between the 

stimulated dendritic spine and the adjacent dendrite for any of the conditions tested (2.91 ± 0.33% in 

dendrite against 0.91 ± 0.36% in the stimulated spine, p = 0.13, for sc-shRNA; 5.70 ± 1.23% in dendrite 

against 4.57 ± 0.37% in the stimulated spine, p = 0.85, for NF1-shRNA; 1.74 ± 0.40% in the dendrite and 

1.54 ± 0.15% in the stimulated spine, p =0.78, for NF1-GRD; Figure 5.5.D,F). This data suggests that 

HRas activation is not restricted to the stimulated dendritic spine, but rather occurs also in the adjacent 

dendrite or spreads to the adjacent dendrite. 
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Discussion 

 

In this chapter, we investigated whether neurofibromin has a RasGAP function in the dendritic 

spines of CA1 pyramidal neurons, using a newly modified Ras sensor and a combination of TPFLIM and 

two-photon glutamate uncaging. We show that neurofibromin is a major RasGAP in the dendritic spines 

of CA1 pyramidal neurons, as evidenced by the FLIM experiments. More specifically, when compared to 

control neurons, those expressing low levels of neurofibromin showed deficient Ras inactivation after 

single dendritic spine stimulation with a LTP-inducing stimulus. Also, enhanced neurofibromin GAP 

activity, by overexpression of the GRD domain of neurofibromin, resulted in lower peak activation 

response and faster inactivation. 

First, we modified the previously described Ras sensor FRas-F, used by Yasuda and 

collaborators (2006) and by Harvey and collaborators (2008), because the original acceptor of the sensor 

FRas-F (mRFP-RBD
59A

-mRFP) would accumulate in the nucleus of CA1 pyramidal neurons, as reported 

by its red fluorescence (Figure 5.3.). Hence, the acceptor was not readily available to bind the donor 

(mEGFP-HRas) at the time of stimulation and Ras activation was never observed in neurons (data not 

shown). We introduced two new mutations (K65E and K108A), which resulted in an HRas sensor capable 

of reporting Ras activation in 293T cells, to the same level as the original sensor FRas-F (Yasuda, Harvey 

et al. 2006). Furthermore, it was also able to report Ras activation in CA1 pyramidal neurons to levels 

similar to those reported by Harvey and collaborators (2008) when using the original FRas-F and a similar 

protocol of stimulation to ours (Harvey, Yasuda et al. 2008). Lastly, the newly modified Ras sensor was 

able to inactivate in pyramidal neurons, indicating that it is a valuable tool for imaging Ras activity in small 

neuronal compartments, such as dendritic spines. However, further experiments will be required to 

completely rule out the possibility of deficient inactivation by the modified sensor. 

Under our preparation conditions, when using the newly modified sensor, a LTP stimulus capable 

of inducing structural plasticity in single dendritic spines (Lee, Escobedo-Lozoya et al. 2009; Patterson, 

Szatmari et al. 2010; Murakoshi, Wang et al. 2011) was sufficient to cause HRas activation in dendritic 

spines. Ras activation was not confined to the stimulated spine as in the case of CaMKII activation (Lee, 
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Escobedo-Lozoya et al. 2009), but was also observed in the adjacent dendrite under control conditions. 

This data supports findings by Yasuda et al. (2006) and Harvey et al. (2008), who previously reported that 

Ras activation spreads along the adjacent dendrite and neighboring spines over a length of at least 10μm 

(Yasuda, Harvey et al. 2006; Harvey, Yasuda et al. 2008). However, we did not investigate the spreading 

of Ras activation to the neighboring dendritic spines in the present study. Also in line with Harvey et al. 

(2008), our sensor reported a transient peak of activation of about 8% and Ras
GTP

 inactivated in 

approximately 10 minutes to nearly basal level. Hence, the new sensor is a reliable reporter of Ras 

activity.  

After verifying that the new sensor is a good reporter of Ras activity in dendritic spines of CA1 

pyramidal neurons, we imaged Ras activation under conditions where neurofibromin activity was 

manipulated. Our data suggests that neurofibromin inactivates Ras in dendritic spines and their adjacent 

dendrites upon single spine stimulation. Neurofibromin knockdown does not seem to have a significant 

effect in the basal levels of Ras activity (Figure 5.2.B.) nor during the transient phase of structural 

plasticity, since Ras activation is similar to that one of the control condition during these stages. However, 

neurofibromin removal by shRNA results in persistent Ras activation in dendritic spines and their adjacent 

dendrites, during the sustained phase of structural plasticity (19-25 minutes upon stimulation), suggesting 

an inefficient Ras
GTP

 inactivation under reduced levels of neurofibromin expression, as compared to 

control neurons. In contrast, overexpression of the GRD domain of neurofibromin blocks full Ras 

activation, as compared to control neurons, and accelerates the inactivation of Ras
GTP

, which happens in 

only 5 minutes. Thus, our data is in agreement with a role of neurofibromin as a RasGAP in the dendritic 

spines of CA1 neurons and this is the first study identifying a RasGAP in dendritic spines by direct 

visualization of Ras activation. 

We were surprised to observe that Ras activation in the adjacent dendrites was always similar to 

that seen in the stimulated spines, even during the transient phase of structural plasticity. This suggests 

that Ras activation might occur in dendrites, rather than spreading from the stimulated spine to the 

adjacent dendrites, in contrast with the findings reported by Yasuda et al. (2006) and Harvey et al. (2008). 

This would be a rather new idea and requires additional experiments in order to be confirmed. Also during 
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the sustained phase of structural plasticity, Ras activation in the adjacent dendrite was always similar to 

Ras activation in the stimulated spine for all conditions tested. The experiments performed here are not 

clear on how neurofibromin might affect the hypothetical spreading of Ras activity. Further experiments 

will be required to answer this question, namely the analysis of the spatial profile of Ras activation along 

at least 10μm of dendrite and neighboring spines (Harvey, Yasuda et al. 2008). If this analysis is carefully 

performed, it will be possible to understand if Ras activation occurs primarily in the stimulated dendritic 

spine, then spreading to the adjacent dendrite, or if conversely it occurs simultaneously in the stimulated 

dendritic spine and adjacent dendrite. If spreading occurs, then the spatial profiling of Ras activity in 

multiple sites along the 10μm of dendrite and neighboring dendritic spines will allow us to understand 

whether neurofibromin controls the Ras activation spreading upon single dendritic spine stimulation. 

Regarding the spine volume changes during Ras activation experiments, our data is mostly 

consistent with the major findings shown in chapter IV of this dissertation. Therefore, as shown in the 

previous chapter (Figure 4.2.), when activity is blocked with 10mM of MgCl2, the spine structural plasticity 

abnormalities observed under neurofibromin manipulations are no longer seen. All facts taken together, 

this data was expected. However, we observed an unexpected discrepancy between the structural 

plasticity experiments performed in chapter IV and the FLIM experiments performed in chapter V: when 

co-expressing the HRas sensor and the GRD domain of neurofibromin, we observed that the spine 

enlargement was bigger than the control condition for both the transient and sustained phases of 

structural plasticity, in contrast with the data collected in chapter IV for NF1-GRD with 10mM MgCl2, 

where we observed no differences between the structural plasticity of control neurons and those 

overexpressing the NF1-GRD domain in the presence of high MgCl2 concentration. Despite the fact that 

Harvey et al. (2008) demonstrated that there are no differences between the structural plasticity in 

neurons overexpressing GFP and neurons expressing the FRas-F sensor, it is possible that the newly 

modified HRas sensor has an effect in structural plasticity of dendritic spines, though the control condition 

experiments, which show similar values both in the presence (156% ± 3; Figure 5.2.) and absence (161% 

± 2; Figure 4.2.) of HRas sensor, appear to rule out that possibility. It is also possible that the enhanced 

structural plasticity during the co-expression of both the HRas sensor and the GRD domain of 

neurofibromin results from a compensatory effect of simultaneously overexpressing a protein and its 
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inactivator, therefore maintaining the optimal balance of Ras activity required to maximal structural 

plasticity. 

 

 

Future Directions 

 

 The data presented in chapter V suggests that neurofibromin is a major RasGAP in dendritic 

spines of CA1 pyramidal neurons. Therefore, it will be very interesting to unravel new details in this field 

and expand the knowledge on the mechanisms controlled by neurofibromin. Namely, it will be interesting 

to analyze the spatial profile of Ras activation along the dendrites of CA1 pyramidal neurons upon single 

spine stimulation under conditions of neurofibromin manipulation. Harvey and Svoboda (2007) reported 

that after input-specific LTP induction by two-photon glutamate uncaging or synaptic stimulation, 

subthreshold stimuli, which by themselves were too weak to trigger LTP, caused robust LTP and spine 

enlargement at neighboring spines, provided that these ones would be no more than 10 μm away from 

the stimulated spine and that the subthreshold stimulus was applied within 10 minutes of input-specific 

LTP induction (Harvey and Svoboda 2007). This form of plasticity spans a similar length with the spread 

of Ras activity (Harvey, Yasuda et al. 2008). In order to test the involvement of Ras in this form of 

plasticity, Harvey and collaborators (2008) applied a MEK inhibitor (U0126) between the first 

suprathreshold and the second subthreshold stimuli and observed a reduction of structural plasticity in 

response to subthreshold stimuli, but not in response to suprathreshold stimuli. Furthermore, the 

subthreshold stimuli did not produce any additional Ras activation, suggesting that spreading of Ras is 

essential to produce the facilitation of plasticity (Harvey, Yasuda et al. 2008; Lee and Yasuda 2009). 

Hence, if neurofibromin regulates the spatial spreading of Ras activation, it will most likely interfere with 

this form of plasticity. Taken into account the data presented in this chapter, we hypothesize that 

overexpression of the NF1-GRD domain blocks the spatial spreading of Ras activation and abolishes the 

plasticity form described by Harvey and Svoboda (2007). Future experiments will be required to answer 

these questions and unveil the details of neurofibromin RasGAP function in dendritic spines. 
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Chapter VI. General discussion and future directions 

 

The ability of synapses to change their strength in response to neuronal activity is commonly 

referred as synaptic plasticity. Synaptic plasticity is the central cellular mechanism that underlies memory 

formation. Understanding the molecular mechanisms controlling the morphological plasticity of dendritic 

spines may be important in determining the cellular processes that underlie long-lasting neuronal 

plasticity and memory storage. In the hippocampus, numerous signaling systems have been implicated in 

synaptic plasticity and memory formation. There is a substantial interplay between these signaling 

pathways, increasing the level of complexity and implying a great degree of integration and coordination 

for signal transduction in hippocampal LTP induction. Among the multiple pathways, a wide variety of 

studies in the past 15 years denote a clear importance of the Ras pathway in synaptic plasticity and 

memory formation in general, across many species, brain areas and types of synapses. Specifically at the 

dendritic spine level, the Ras signaling pathway has been shown to participate in morphological stability 

and structural plasticity. 

 

 

Neurofibromin is Required for Dendritic Spine Maintenance 

 

In this work, we demonstrate that neurofibromin, a RasGAP, plays an important role in the 

dendritic spines of CA1 pyramidal neurons by regulating the Ras signaling pathway (chapter III). This 

finding brings new insights to a recent report that demonstrated that reduced neurofibromin levels in 

hippocampal interneurons led to a deregulation of the Ras pathway (Cui, Costa et al. 2008). In contrast 

with our study, Cui and collaborators refute a role of neurofibromin in the regulation of the Ras pathway in 

pyramidal neurons of the hippocampus. 

A recent study by Lin et al. (2007) also contrasts Cui and collaborators (2008) observations by 

demonstrating that neurofibromin is required to maintain the normal dendritic spine density in mature 
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hippocampal cultured neurons (DIV16-17), but via the PKA-Ena/VASP pathway. In that study, the authors 

reported that removal of neurofibromin by shRNA (the same approach that we used in the present work) 

significantly decreased the spine density. Additionally, Lin et al. (2007) demonstrated that neurofibromin 

plays a role at the postsynaptic sites of hippocampal neurons. However, they did not analyze the role of 

the Ras pathway in the phenotype (Lin, Lei et al. 2007). The same study also demonstrated that 

neurofibromin has a function in young neurons (DIV4-5), by regulating filopodia formation via de PKA-

Ena/VASP pathway (Lin, Lei et al. 2007). Furthermore, an older study by Hsueh et al. (2001) 

demonstrated that neurofibromin is present in the dendritic spines of cultured hippocampal neurons by 

immunostaining techniques. Using subcellular fractionation and co-immunoprecipitation experiments, 

Hsueh et al. (2001) demonstrated that neurofibromin is present in the PSD of hippocampal neurons, 

where it interacts with the complex of Syndecan2/CASK (Hsueh, Roberts et al. 2001). 

In line with Lin et al. (2007) findings, we report that neurofibromin regulates the dendritic spine 

density of mature CA1 pyramidal neurons in the hippocampus, in organotypic slice cultures (DIV17-22). 

However, in contrast with that study, we demonstrate that the loss of dendritic spines by neurofibromin 

removal is mediated by the Ras pathway, as manipulations that decreased Ras activity could rescue the 

phenotype and restore the normal dendritic spine density. On the other hand, our study does not 

necessarily disagree with that study, since we did not investigate the role of PKA signaling in this 

phenotype. Equally, they did not investigate whether Ras signaling could rescue the spine density loss. 

Our studies might, therefore, be complementary. Perhaps in line with this possibility, our data indicates 

that the effect of neurofibromin in dendritic spine density is not only mediated by a dysregulation of the 

Ras pathway, but also by different signaling pathways, since overexpression of a constitutively active 

form of HRas (HRas
12V

) was not sufficient to mimic the dendritic spine morphology phenotype observed 

upon removal of neurofibromin. Given the findings by Lin et al. (2007) demonstrating that reduced levels 

of neurofibromin expression cause a decrease in the dendritic spine density through the PKA-Ena/VASP 

pathway, we speculate that this pathway, in conjunction with the Ras pathway, is involved in the 

phenotype. It is also possible that additional signaling pathways, eventually related to regulation by the 

Sec14-PH domain of neurofibromin, might be involved in this phenotype. Alternatively, this might be 

explained by the possibility that neurofibromin is a RasGAP specific towards a different Ras isoform, such 
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as KRas or NRas. However, these hypotheses were not explored in the present work. In the future it will 

be interesting to dissect whether neurofibromin is a general GAP for all Ras isoforms or whether it is 

specific towards one or more Ras isoforms.  

We have also shown that the regulation of the dendritic spine density by neurofibromin observed 

in our preparations is activity-dependent, as demonstrated by the rescue of the phenotype under 

conditions where the NMDAR was pharmacologically and chronically blocked.  

In line with the morphology data, spontaneous activity recordings in this study demonstrated a 

decreased frequency in mEPSCs in neurons with reduced levels of expression of neurofibromin. This 

result also supports the hypothesis that the number of functional excitatory synapses is reduced upon 

neurofibromin removal. As approximately 90% of the excitatory synapses are made onto dendritic spines 

(Sweatt 2004; Bhatt, Zhang et al. 2009), this finding is not surprising. Hence, neurofibromin not only 

regulates the dendritic spine number in pyramidal neurons of the CA1 region of the hippocampus, but it 

also maintains the normal number of excitatory synapses. We also show that neurofibromin does not 

affect the AMPAR content of excitatory synapses, since the amplitude of mEPSCs is similar between 

control neurons and neurons with reduced levels of neurofibromin. In line with our findings, Arendt et al. 

(2004) showed that the synRas mouse, which overexpresses a CA-HRas, does not have different 

mEPSCs amplitudes from their control littermates (Arendt, Gärtner et al. 2004).  

 

 

Neurofibromin is Required for the Structural Plasticity of Dendritic Spines 

 

 In this work we showed that neurofibromin is required for normal dendritic spine structural 

plasticity in excitatory neurons. To date, the effects of neurofibromin loss-of-function in synaptic plasticity 

had only been explained by presynaptic Ras signaling hyperactivation in inhibitory interneurons (Cui, 

Costa et al. 2008). Therefore, we have unveiled additional cellular correlates of impaired synaptic 

plasticity in the hippocampus by reporting impairment in dendritic spine structural plasticity in a situation 
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of low expression levels of neurofibromin. Also for the plasticity studies, our data supports that the 

hyperactivation of Ras, caused by neurofibromin inactivation, is responsible for the reduced magnitude of 

structural plasticity in neurons where neurofibromin has been knockdown, since overexpression of the 

GRD domain of neurofibromin is sufficient to restore the long lasting phase of dendritic spine structural 

plasticity.  

Spines are important compartments for information storage and synaptic plasticity is currently 

accepted to be the basis for learning and memory. Furthermore, structural plasticity has recently emerged 

as the morphological correlate of synaptic plasticity. Hence, it is likely that the cognitive impairments 

observed in NF1 patients and mouse model can be explained by the reduced magnitude of structural 

plasticity upon manipulations that decrease neurofibromin expression levels. Moreover, our study 

emphasizes once more the important function of precise Ras signaling regulation in synaptic plasticity. 

Interestingly, we also show that the effect of neurofibromin removal in structural plasticity is activity-

dependent under the condition of our preparations. As hypothesized in chapter IV, it is possible that this 

is due to a homeostatic mechanism to maintain a balance of Ras activity and synaptic plasticity under 

conditions of low expression levels of neurofibromin (Figure 6.1.). 

  

 

Figure 6.1. Model of Ras regulation by neurofibromin in dendritic spines. Under normal conditions, 
neurofibromin is a RasGAP in dendritic spines, inactivating Ras. This is essential for the perfect balance 
of Ras activation, which is transient following NMDAR activation, leading to LTP/structural plasticity. 
Under conditions of neurofibromin loss-of-function, Ras is hyperactivated following NMDAR opening. This 
results in unbalanced Ras signaling, ultimately leading to LTP/structural plasticity deficits. 
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Investigation of a possible regulatory effect of neurofibromin over the NMDAR by calcium imaging 

and two-photon glutamate uncaging led to the conclusion that the NMDAR function is not regulated by 

neurofibromin. It is possible that neurofibromin acts on a different channel, instead. For example, in 

capsaicin-sensitive sensory neurons, it has been shown that the Nf1
+/-

 mouse has enhanced sodium 

currents (Wang, Duan et al. 2010). Alternatively, neurofibromin could regulate the TrkB receptor, a well-

known path to activate Ras signaling, or even a different type of receptor still to be unraveled. 

In summary, the spine structural plasticity experiments performed here suggest that deficits in 

learning and memory observed in NF1 patients and in the mouse model of the disease might be 

explained, at least in part, by the reduction of the magnitude of structural plasticity that we observed 

under low levels of neurofibromin expression. Similarly, the reduction of the dendritic spine and synapse 

number in the CA1 region of the hippocampus in our experiments might explain the cognitive deficits 

reported in NF1. Indeed, neurological and neurodegenerative disorders are frequently associated with 

aberrant spine structure and plasticity in critical brain regions; a number of psychiatric and neurological 

disorders are associated with substantial alterations in either spine density or morphology.  

 

 

Neurofibromin is a RasGAP in the Dendritic Spines of CA1 Neurons 

 

To study whether neurofibromin regulates Ras activity in dendritic spines during spine structural 

plasticity, Ras activity was monitored in single dendritic spines undergoing structural plasticity in neurons 

in which neurofibromin activity was manipulated, using a combination FLIM and two-photon glutamate 

uncaging (chapter V). Our data suggest that neurofibromin acts as a major RasGAP in dendritic spines of 

CA1 pyramidal neurons. We found that, under downregulation of neurofibromin, Ras activation in 

dendritic spines decays much more slowly than that measured in control neurons: following LTP 

induction, Ras activity decays over 10 min under the control condition, while in neurons with reduced 

expression levels of neurofibromin Ras activity inactivation lasts more than 30 minutes. In other words, 



128 

 

neurofibromin knockdown resulted in a slower and incomplete inactivation of Ras in dendritic spines. 

Conversely, overexpression of the GRD domain of neurofibromin blocks full Ras activation, as compared 

to control neurons, and accelerates the inactivation of Ras
GTP

.  

Similar to our protocol, Harvey et al. (2008) monitored Ras activation following the delivery of a 

LTP-inducing stimulus to single dendritic spines and showed Ras activation and inactivation exhibited the 

same timecourse as the one that we report for the control condition in our own experiments. Besides, 

they reported the spreading of Ras activity from the stimulated spine to the adjacent dendrite and, then, to 

adjacent spines, too, over a range of at least 10μm (Harvey, Yasuda et al. 2008). In the present study, 

spreading of Ras activation was not quantified, due to the small sample available. However, careful 

inspection of the FLIM images suggests that also in our preparations there was Ras activity spreading 

and that this phenomenon might be, at least in part, regulated by the RasGAP function of neurofibromin. 

On the other hand, our data suggests that Ras activation might occur at the level of dendrites themselves, 

since a simultaneous activation of Ras in both the stimulated spine and the adjacent dendrite was 

observed in the course of our experiments. Further experiments will be crucial to confirm this hypothesis. 

Like in Murakoshi and collaborators recent report, it will be necessary to characterize the spatial profile of 

Ras activation along at least 10μm of dendrite as a function of the distance from the stimulated spine 

(Murakoshi, Wang et al. 2011). If confirmed that Ras activation occurs in dendrites, there will be a small 

or no gradient of Ras activity between stimulated spines and adjacent dendrites, with indistinguishable 

activity levels between the two compartments. If Ras activity spreads rapidly from the stimulated spine 

into the adjacent dendrite, the high spatiotemporal resolution of TPFLIM combined with the analysis of the 

spatial profile of Ras activation will detect a small gradient of Ras activity between the stimulated spine 

and the adjacent dendrite. While this is still ongoing investigation, our results suggest that neurofibromin 

is one of the main GAPs regulating the Ras signaling pathway in dendritic spines of CA1 pyramidal 

neurons. In addition to this, by characterizing the spatial profile of Ras activation under neurofibromin 

activity manipulations, we are currently examining the effects of neurofibromin in Ras activation spreading 

along dendrites upon single spine stimulation with a LTP-inducing stimulus similar to the one delivered in 

the current work.  
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Another exciting question would be whether neurofibromin is a RasGAP for all Ras isoforms or if 

it shows specificity towards a particular isoform or isoforms. The different Ras isoforms localize to 

different subcellular compartments and different subdomains of the plasma membrane and, perhaps, 

even to specific subdomains of intracellular membranes (Arozarena, Calvo et al. 2011). It is possible that 

neurofibromin particularly activates specific isoforms depending on their subcellular localization. 

Accordingly, a previous report indicated that neurofibromin activity can be inhibited by some lipids, 

whereas other lipids are unable to affect its activity. The same report also demonstrated that 

neurofibromin binds H-Ras with 4 times higher affinity than N-Ras (Bollag and McCormick 1991). Site-

specific regulatory effects have been described for other Ras regulators. For example, whereas some 

GEFs preferentially activate Ras at the plasma membrane, others act on endomembrane systems 

(Arozarena, Calvo et al. 2011). Even higher degree of specificity could be determined by the fact that the 

same Ras regulator can act at distinct locations depending on different stimuli (Arozarena, Calvo et al. 

2011).  

It would be equally interesting to identify if neurofibromin regulates specific signaling pathways 

downstream Ras or if its RasGAP effects generalize to all pathways downstream Ras. Ras subcellular 

localization can mobilize different Ras scaffolds, which could determine which pathway is activated 

downstream of Ras. Moreover, if neurofibromin specifically inactivates one or other Ras isoform, it is likely 

that it affects signaling pathways downstream Ras differently, since different Ras isoforms activate 

different downstream signaling pathways with different intensities. For example, whereas KRas is the 

most potent activator of c-Raf, HRas is the most potent activator of PI3K (Yan, Roy et al. 1998). To date, 

the reports on the topic are contradictory, given that some of them have only identified the Ras-MAPK 

signaling pathway as the target of neurofibromin regulation, leaving the Ras-PI3K/Akt signaling pathway 

unaffected (Guilding, McNair et al. 2007); whereas others show that the Ras-PI3K/Akt pathway is also 

affected (Boyanapalli, Lahoud et al. 2006). Hence, the identity of the signaling pathways downstream Ras 

that are affected by neurofibromin regulation remains an open question. 
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