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Foreword

Molecular systems involving nitrogen and hydrogen atoms play a significant role

in many chemical processes as atmospheric chemistry [1], combustion of nitrogen

containing fuel [2], atmospheric cycles of pollutants [3] and nitrogen fixation [4].

The availability of potential energy surfaces (PESs) for small molecules is key for

reaction dynamics and kinetics studies.

Many important concepts that might appear to be mathematically challenging

can be grasped intuitively with the insight provided by the idea of the PES.

The molecular PES is the potential energy that determines the motion of the

nuclei. In the Borm-Oppenheimer [5] approximation the electrons adjust their

positions instantaneously to follow any movement of the nuclei, so that the PES

can equally be thought of as the potential for the movement of atoms within a

molecule or atoms in collision with one another. An analytical representation

of the PES is obtained using different formalism, such as the double many-body

expansion (DMBE) [6–9] method. Information about a PES can obtained both

from the analysis of experimental data and from ab initio calculations. NH2 and

NH3 are sufficiently small to allow the calculation of its electronic strcture with

accurate ab initiomethods and large basis sets, so it makes a possible to construct

accurate and global ab initio-based PES. Amongst the tetratomic systems, the

PES of NH3 assumes special relevance because this species is a major constituent

of some planetary atmospheres whose Boltzmann temperatures require for their

determination an accurate knowledge of the ro-vibrational transition energies,

and hence of its PES.

The main goal of the present doctoral thesis is the construction of DMBE PES

for NHx (x=2, 3) systems, which may used later in dynamics and kinetic studies

of gas-phase reactions. PESs for the first excited state of NH2 (1 2A′) and the
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ground state NH3 (
1A1) were constructed, which can therefore be recommended

as a building block for construction of DMBE forms for larger NxHy species.

This thesis is divided in two parts. The first concern with the theory and

methods, while the case studies presented in second part. Chapter 1 presents

the concept of PES. Chapter 2 gives a survey of the ab initio methods and the

formalisms to obtain analytical representations. Chapter 3 deals with methods

here employed to calculate spectroscopic and dynamics properties using these

PESs. Some conclusions and outlook are given in Chapter 7.

In Chapter 4, both accurate DMBE/SEC and DMBE/CBS PESs for the

1 2A′ state of NH2 are presented [10], the various topographical features of both

DMBE/SEC and DMBE/CBS PESs have been carefully examined, and compared

with previous results. Both PESs have been built such as to become degenerate

at linear geometries with the ground-state PES of 12A′′ [11] symmetry reported

by our group, where both form a Renner-Teller pair [12–14].

In Chapter 5, we report a single-sheeted global DMBE PES for the ground

electronic state of NH3 [15], the DMBE PES shows the proper atom permuta-

tional symmetry. To warrant that the PES dissociates to the correct asymptotes,

a generalization of the switching function proposed elsewhere [11] has been ex-

tended to the present four-atom species. The PES so obtained shows the correct

long-range behavior at all dissociation channels while providing a realistic repre-

sentation at all interatomic separations.

In Chapter 6, The single-sheeted DMBE PES for the ground-state of NH2 is

refined to attain near spectroscopic accuracy from a multiproperty fit to accurate

ab initio energies and experimental vibrational levels, including the Renner-Teller

effect for total angular momentum (excluding spin) of N = 0. Quasiclassical tra-

jectory calculations on both the original and newly reported potential energy

surfaces suggest that the dynamical properties of the original form remain essen-

tially unaltered as aimed.
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Part I

Theory and methods





Chapter 1

The concept of potential energy
surface

The potential energy surface (PES) is related to the Born-Oppenheimer approxi-

mation [1] in molecular quantum mechanics. The Born-Oppenheimer approxima-

tion demonstrates that the simple picture of nuclei moving in a PES determined

by electrons is justified due to the small mass ratio of electronic and nuclear. The

validity of the separation between electronic and nuclear motion is also due to

the small mass ratio between electronic and nuclear, the time scales with which

the electrons and nuclei move are generally quite different. In particular, the

heavy nuclei move more slowly than do the lighter electrons. Thus, we expect

the electrons to be able to “adjust” their motions to the much more slowly mov-

ing nuclei. This observation motivates us to solve the Schrödinger equation for

the movement of the electrons in the presence of fixed nuclei as a way to repre-

sent the fully-adjusted state of the electrons at any fixed positions of the nuclei1.

This implies that the total molecular wavefunction is written as a product of an

electronic wavefunction and a nuclear wavefunction. In this way, the resolution of

the molecular problem is attained within the so called adiabatic approximation,

in which an electronic Schrödinger equation is solved for a set of fixed nuclear

arrangements, yielding the PES for the nuclei motion through a specific electronic

state.

1This is why we say we “freeze the nuclei” in making the Born-Oppenheimer approximation. We
don’t really freeze them, we just solve first for the motions of the electrons at some specified
(i.e., frozen set of nuclear positions) R values
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1.1 The adiabatic and Born-Oppenheimer ap-

proximation

One of the most important approximations relating to applying quantum me-

chanics to molecules is known as the Born-Oppenheimer approximation [1]. For

a general molecular system consisting of electrons and nuclei, let us consider a

system comprising M nuclei and N electrons. By including only electrostatic

interactions, the Hamiltonian of the system is given by

Ĥtot(r,R) = −
M∑

α=1

h̄2∇2
α

2Mα
−

N∑

i=1

h̄2∇2
i

2me
+ V̂ (r,R) (1.1)

where r and R are used as shorthand notation for the electronic (r1, r2 . . . , rN)

and nuclear coordinates (R1, R2 . . . , RM) , respectively. ∇α is the nuclear gradi-

ent operator in coordinates of α-th nucleus, ∇i is the electronic gradient operator

in coordinates of i-th nucleus. All electrostatic interactions, i.e. electron-electron,

electron-nuclear, nuclear-nuclear, are included in V̂ (r,R).

The Hamiltonian operator is first transformed to center of mass system where

it is written as

Ĥtot = T̂n + Ĥe + Ĥmp (1.2)

where

Ĥe = T̂e + V̂ee + V̂ne + V̂nn (1.3)

and

Ĥmp = −
1

2Mtot

(
N∑

i=1

∇i

)2

(1.4)

here Ĥe is the electronic Hamiltonian operator and Ĥmp is called the mass-

polarization, which arises because it is not possible to rigorously separate center

of mass motion from the internal motion for system with more than two particles.

The time-independent Schrödinger equation is the starting point:

Htot |Ψ (r,R)〉 = Etot |Ψ (r,R)〉 (1.5)

where |Ψ (r,R)〉 is the total (exact) wave function without any approximations,

it can be written as an expansion in complete set of electronic functions, with the
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expansion coefficients being functions of the nuclear coordinates.

|Ψ (r,R)〉 =
∞∑

i=1

Ψni (R) |Ψi (r,R)〉 (1.6)

where |Ψi (r,R)〉 is electronic wave function defining by

Ĥe(R) |Ψi (r,R)〉 = Ei(R) |Ψi (r,R)〉 ; i = 1, 2, ...,∞ (1.7)

the |Ψi (r,R)〉 can be chosen to be orthonormal

〈Ψi (r,R) |Ψj (r,R)〉 = δij (1.8)

Introducing Eq. (1.2) and Eq. (1.6) into the The time-independent Schrödinger

equation (1.5), we get

∞∑

i=1

(T̂n + Ĥe + Ĥmp)Ψni (R) |Ψi (r,R)〉 = Etot

∞∑

i=1

Ψni (R) |Ψi (r,R)〉 (1.9)

where the nuclear kinetic energy T̂n is written as

T̂n =
M∑

a=1

−
1

2Ma

∇2
a = ∇2

n (1.10)

then, introducing Eq. (1.10) into Eq. (1.9)

∞∑

i=1

(∇2
n + Ĥe + Ĥmp)Ψni (R) |Ψi (r,R)〉 = Etot

∞∑

i=1

Ψni (R) |Ψi (r,R)〉 (1.11)

∞∑

i=1

{
∇2

nΨni (R) |Ψi (r,R)〉+ ĤeΨni (R) |Ψi (r,R)〉

+ĤmpΨni (R) |Ψi (r,R)〉
}
= Etot

∞∑

i=1

Ψni (R) |Ψi (r,R)〉 (1.12)

noted the fact that Ĥe and Ĥmp only act on the electronic wave function |Ψi (r,R)〉,

then introducing electronic Schrödinger equation Eq. (1.7) into Eq. (1.12)

∞∑

i=1

{
|Ψi (r,R)〉∇2

nΨni (R) + 2[∇n |Ψi (r,R)〉][∇nΨni (R)]

+Ψni (R)∇2
n |Ψi (r,R)〉+Ψni (R)Ei(R) |Ψi (r,R)〉

+Ψni (R) Ĥmp |Ψi (r,R)〉
}
= Etot

∞∑

i=1

Ψni (R) |Ψi (r,R)〉 (1.13)
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using the orthonormality of the |Ψi (r,R)〉 by multiplying from left by a specific

electronic wave function 〈Ψj (r,R) | and integrate the electron coordinates.

∇2
nΨnj (R) + Ej(R)Ψnj (R)

+
∞∑

i=1

{
2〈Ψj (r,R) |∇n |Ψi (r,R)〉∇nΨni (R)

+〈Ψj (r,R) |∇2
n |Ψi (r,R)〉Ψni (R)

+〈Ψj (r,R) |Ĥmp |Ψi (r,R)〉Ψni (R)
}
= EtotΨnj (R) (1.14)

the electronic wave function has been removed from the first two terms, the

first two terms in the curly bracket are the first- and second-order non-adiabatic

coupling elements, respectively, while the last is the mass-polarization.

In the adiabatic approximation [2–7] the form of total wave function is re-

stricted to one electronic surface, i.e., all coupling elements in Eq. (1.14) are

neglected, only the terms with i = j survive. Except for spatially degenerate

wave functions, the diagonal first-order non-adiabatic coupling elements are zero.

{
∇2

n + Ej(R) + 〈Ψj (r,R) |∇2
n |Ψj (r,R)〉

+〈Ψj (r,R) |Ĥmp |Ψj (r,R)〉
}
Ψnj (R) = EtotΨnj (R) (1.15)

neglecting the mass-polarization and reintroducing the nuclear kinetic energy

operator Eq. (1.10) into above equation

[T̂n + Ej(R) + U(R)]Ψnj (R) = EtotΨnj (R) (1.16)

where U(R) = 〈Ψj (r,R) |∇2
n |Ψj (r,R)〉 is the diagonal correction, is smaller than

Ej(R) by a factor roughly equal the ratio of the electronic and nuclear masses. It

is usually varying function of R, and the shape of the energy surface is therefore

determined almost exclusively by Ej(R) [7].

In the Born-Oppenheimer approximation, the diagonal correction is also ne-

glected, the Eq. (1.16) become

[T̂n + Ej(R)]Ψnj (R) = EtotΨnj (R) (1.17)

since the potential depends on the nuclear coordinates2, the electronic wave func-

tions depends parametrically on R and the “eigenvalue” Ei(R) is a function of

2As usual the nuclei repulsion operator is included in the electronic Hamiltonian.
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the nuclear coordinates. One obtains Ei(R) as a function of R. This is the

PES: Ei(R). In the Born-Oppenheimer picture, the nuclei move on a PES which

is a solution to the electronic Schrdinger equation. The PES is independent of

nuclear masses, but this is not the case when working in the adiabatic approxima-

tion since the diagonal correction (and mass-polarization) depends on the nuclear

masses.

Eq. (1.17) and its implied assumption of the separability of the electronic and

nuclear motions is called the Born-Oppenheimer approximation. This step of

the Born-Oppenheimer approximation involves separation of vibrational, trans-

lational, and rotational motions. The eigenvalue Etot in Eq. (1.17) is the total

energy of the molecule, including contributions from electrons, nuclear vibrations,

and overall rotation and translation of the molecule. The Eq. (1.17) expresses

that the nuclei move in an effective potential which is the electronic energy Ei(R)

as a function of the internuclear distances is constant with respect to a translation

and/or rotation of a fixed nuclear configuration.

1.2 Molecular geometry

PESs are important because they aid us in visualizing and understanding the rela-

tionship between potential energy and molecular geometry, and in understanding

how computational chemistry programs locate and characterize structures of in-

terest. Among the main tasks of computational chemistry are to determine the

structure and energy of molecules and of the transition states involved in chemical

reactions.

The geometry of a molecule determines many of its physical and chemical

properties. This is why it is very important that we understand the geometry of

a molecule when running computations. Given a PES, a geometry is just a point

on it, and there are many other points on the PES. Among all the points on a

surface, there are some points distinct from others. They are as follows:

Local minima: that point on the PES that is the lowest value in a particular

section or region of the PES.

Global minima: that point on the PES that is the lowest value in the entire

PES.
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Saddle point: a point on the PES that is a maximum in one direction and a

minimum in the othe. Saddle points represent a transition structure connecting

two equilibrium structures.

If all of the first derivative are zero and all the second order derivative are

positive at some point, then that point is a minimum. If all the first derivatives

are zero and second derivatives are negative at some point, then it is a maxima.

Saddle point is a point that is maximum in some directions and minimum in the

other directions. For a saddle point in n-dimension space, if there are only one

negative second order derivative, and all the others are positive, then it is called

first order saddle point. If there are k negative second order derivative, then it is

called k-th order saddle point. In the study of chemical reaction, only first order

saddle point may of interest.

There are possibly many saddle points and local minima but only one global

minimum. They are all called stationary points since their first order derivatives

are all zero. The stationary points are very important to chemical reactions and

also important in characterization PESs.

Stable molecules correspond to minima on the PES within the Born-Oppenheimer

approximation and a chemical reaction can be described as nuclei moving from

one minimum to another. The lowest energy pathway linking the two minima,

the reaction coordinate or intrinsic reaction coordinate is the path that would be

followed by a molecule in going from one minimum to another should it acquire

just enough energy to overcome the activation barrier, pass through the transition

state, and reach the other minimum.

In the lowest level of approximation, the motion is assumed to occur along the

path of least energy, and this path forms the basis for transition state theory [8].

The transition state is the configuration that divides the reactant and product

parts of the surface (i.e., a molecule that has reached the transition state will

continue on to product), while the geometrical configuration of the energy max-

imum along the reaction path is called the transition structure. The transition

structure a first-order saddle point on the PES is a maximum in the reaction

coordinate direction and a minimum along all other coordinates.



1.3 The Renner-Teller effect 13

1.3 The Renner-Teller effect

The Renner-Teller (RT) effect is one of the best characterized breakdowns of the

the Born-Oppenheimer approximation in molecular spectroscopy. In its simplest

manifestation, the RT effect occurs in linear triatomic molecules in orbitally de-

generate electronic states, it is caused by a coupling between the electronic orbital

angular momentum and the nuclear vibrational angular momentum associated

with the bending vibration [9].

In 1933 G. Herzberg and E. Teller [10] recognized that the potential of a tri-

atomic linear molecule in a degenerate electronic state splits into two when the

molecule is bent. A year later this effect was worked out in detail by Rudolf Ren-

ner [11], who gave an explanation of this splitting and showed that the bending

and electronic motion are coupled. He predicted that this coupling would give

rise to anomalies in the vibrational side bands of electronic spectra. Herzberg

refers to this as the “Renner-Teller” effect in one of his influential books [12] and

consequently the effect is now generally called after Renner and Teller.

Let the electronic state |Λ〉 be an eigenstate of Lel
Z , the projection of the

electronic angular momentum operator on the molecular axis, with eigenvalue

h̄Λ. The states |±Λ〉 are degenerate with energy Eel
|Λ|. Let |v, l〉 be a harmonic

bending vibration function, which is an eigenfunction of Lvib
Z , the projection of the

vibrational angular momentum operator on the molecular axis, with eigenvalue

h̄l. The v+1 states |v, l〉, l = −v, −v + 2, ... , v are are degenerate with energy

hν(v + 1). The orthonormal product states

|1〉 ≡ |Λ〉 ⊗ |v,K − Λ〉 (1.18)

and

|2〉 ≡ |−Λ〉 ⊗ |v,K + Λ〉 (1.19)

are eigenfunctions of

Ltot
Z ≡ Lel

Z ⊗ 1 + 1⊗ Lvib
Z (1.20)

with eigenvalue h̄K. In zeroth-order the product kets are degenerate with energy

Eel
|Λ| + hν(v + 1). The bending of the molecule generates a coupling between the

electronic and vibrational motion (a so-called vibronic coupling) that acts as a
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perturbation. Diagonalization of the 2 × 2 matrix of this perturbation on basis

of |1〉 and |2〉 gives two new orthonormal zeroth-order eigenvectors

Ψ
(0)
+ = cosα |1〉+ sinα |2〉 (1.21)

and

Ψ
(0)
− = −sinα |1〉+ cosα |2〉 (1.22)

with first order energies: E
(1)
± . Clearly, the functions Ψ

(0)
± are no longer simple

products; this breakdown of the Born-Oppenheimer approximation is the RT

effect. Also belonging to the Renner-Teller effect is the observation that the

functions Ψ
(0)
± are not degenerate in first order. The linear combinations Ψ

(0)
± are

not eigenfunctions of Eel
|Λ| and L

vib
Z . However, they are eigenfunctions of Ltot

Z .

The Renner-Teller effect was not observed until 1959, when K. Dressler and

D. A. Ramsay [13] measured the electronic absorption spectrum of NH2 and ND2.

They found that the first electronically excited states of these triatomic molecules

have a linear geometry and observed in these excited states an unusual type of

vibronic structure: the RennerTeller effect.
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Chapter 2

Ab initio-based potential energy
surface

The modeling of potential energy surface (PES) can be obtained using different

data, such as the ab initio electronic structure calculations. In this method one

performs a large number of ab initio electronic structure calculations which may

be very expensive and then fit the results using a least squares procedure. The

reliability of the PES depends on the basis set completeness and how well electron

correlation is accounted for.

The ab initio electronic structure methods are based upon quantum mechanics

and therefore provide the most accurate and consistent predictions for chemical

systems, it aim at solving Schrödinger equation for the chemical system using a

“basis set” of functions that satisfy a series of rigorous mathematical approxi-

mations. The term ab initio implies that the computations are based solely on

the laws of quantum mechanics. However ab initio methods are extremely com-

puter intensive and capable of high accuracy predictions over a wide range of

systems. Rapid advances in computer technology are making ab initio methods

increasingly more practical for use with realistic chemical systems.

A large number of ab initio electronic structure methods are available in pack-

age programs to perform quantum chemistry calculations. One of the most com-

monly used, for high accuracy electronic structure calculation, is the Molpro

package [1]. In the following sections a brief discussion of the standard models,

adopted for the present calculations, is presented.
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2.1 Ab initio calculations

All ab initio wave function methods commonly used in electronic structure the-

ory in some way involve the orbital approximation, wherein antisymmetrized

products (Slater determinants) of one-electron functions are used to represent

many-electron (fermion) wave functions of chemical systems

|Φ〉 = |φ1, φ2, . . . , φi, . . . , φn| (2.1)

where i identifies electronic states and
{
|φi〉

}
is an orthogonal basis set of one-

electron molecular wave functions (molecular orbitals), each molecular orbital1

|φi〉 is expanded in terms of the basis function |χα〉, conventionally called atomic

orbitals

|φi〉 =
∑

α

Cαi |χα〉 (2.2)

the Cαi coefficients may be determined numerically by substitution of this equa-

tion into the Schrödinger equation and application of the variational principle.

This method is called the linear combination of atomic orbitals approximation.

A variational solution of the Schrödinger equation (1.7) with trials Eq. (2.1)

and Eq. (2.2), these are the Hartree-Fock equations in the atomic orbital basis,

and all the equations may be collected in a matrix notation, is obtained by solving

the Roothaan-Hall Hartree-Fock [2–4] equations

FC = SCε (2.3)

where ε is a diagonal matrix of the orbital energies, C is a matrix of coefficients,

the F and S are the Fock and overlap matrices. The matrix elements of the

overlap matrix are defined as

Sαβ = 〈α |β〉 = 〈χα |χβ〉 (2.4)

in general, the basis functions cannot be chosen in such a way that S is the unit

matrix, the S matrix contains the overlap elements between basis functions. The

Fock matrix is constructed from one- and two-electron integrals [5]

Fαβ = 〈α|h |β〉+
∑

j

∑

ρ,σ

CjρCjσ(2〈ρσ |αβ〉+ 〈ρβ |ασ〉) (2.5)

1MO, molecular orbital = LCAO, Linear Combination of Atomic Orbitals
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the matrix elements of the one-electron Hamiltonian (one-electron integrals) are

given by

〈α|h |β〉 = 〈χα|h |χβ〉 =

∫
χ∗
αhχβdr (2.6)

and the two-electron integrals are given by

〈ρσ |αβ〉 = 〈χρχσ |χαχβ〉 =

∫
χ∗
ρ(1)χσ(1)

1

r12
χ∗
α(2)χβ(2)dr1dr2 (2.7)

The Roothaan-Hall Eq. (2.3) is a determination of the eigenvalues of the Fock

matrix. To determine the unknown coefficients Cαi, the Fock matrix must be

diagonalized. However, the Fock matrix, Eq. (2.5), is only known if all the MO

coefficients are known. The procedure therefore starts off by some guess of the

coefficients, forms the F matrix, and diagonalizes it. The new set of coefficients

is then used for calculating a new Fock matrix, etc. This is continued until the

set of coefficients used for constructing the Fock matrix is equal to those resulting

from the diagonalization. This set of coefficients determines a self-consistent field

(SCF) solution.

2.1.1 CI method

The Hartree-Fock (HF) method generates solutions to the Schrödinger equation

where the real electronelectron interaction is replaced by an average interaction.

The difference in energy between the HF and the lowest possible energy in the

given basis set is called the Electron correlation energy within the non-relativistic

realm

Ecorr = Eexact −EHF (2.8)

in contrast to the HF method, in order to account for electron correlation, the

configuration interaction (CI) method uses a variational wave function that is

a linear combination of configuration state functions (CSFs). In order to keep

track of all the possible HF orbitals, we often write the ground-state Hartree-Fock

wave function as ΦHF, the Slater determinant with an electron “excited” from

the ith occupied orbital to the ath unoccupied (virtual) orbital as |Φa
i , 〉, the two

electrons “doubly excited” from the ith and jth occupied orbital to the ath and

bth unoccupied orbital as
∣∣Φab

ij ,
〉
, etc.. With this notation, we can write the CI
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wave function as

|ΨCI〉 = C0 |ΦHF〉+
∑

i,a

Ca
i |Φ

a
i 〉+

∑

i>j
a>b

Cab
ij

∣∣Φab
ij

〉
+
∑

i>j>k
a>b>c

Cabc
ijk

∣∣Φabc
ijk

〉
+ . . . (2.9)

for the determination of the expansion CI coefficients the variation principle is in-

voked. Of course, we need to truncate the expansion in Eq. (2.9) , and not consider

any excitations above some order. When we truncate at zeroth-order, we have

the Hartree-Fock method. At first order, we have Configuration-Interaction with

Single excitations (CIS), at second order we have Configuration Interaction with

Single and Double excitations (CISD), and so on: CISDT (third order), CISDTQ

(fourth order), . . . . When we do not truncate the expansion (so that we include

N-electron excitations) we say we are doing a Full-Configuration-Interaction cal-

culations, which is called Full-CI (FCI). Full configuration interaction calculations

are costly, and their cost is related to the binomial coefficient
(
K

N

)
=

K!

(K −N)!N !
(2.10)

whereK is the total number of Hartree-Fock orbitals that were solved for andN is

the number of electrons. For sufficiently large K, FCI calculations are essentially

exact.

2.1.2 MCSCF method

In the sense that Hartree-Fock is a good zero-order approximation, and under such

circumstances, single-reference methods provide an efficient and accurate way to

getting correlation energies and correlated wave functions. However, wherever

bonds are being broken, and for many excited states, the Hartree-Fock deter-

minant does not dominate the wave function, and may sometimes be just one

of a number of important electronic configurations. If this is the case, single-

reference methods, which often depend formally on perturbation arguments for

their validity, are inappropriate, and one must seek from the outset to have a first

description of the system that is better than Hartree-Fock. Only then can one go

on to attempt to recover the remaining dynamic correlation effects [6].

In contrast to the relationship between virtual and occupied orbitals, natural

orbitals are localized in the same regions of physical space. The strong coupling
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thus produced by the overlap of ground state and excited orbitals effectively lowers

the energy of the system. Another method which achieves the same purpose and

therefore improves the convergence of a CI expansion is the multiconfiguration

self-consistent field (MCSCF) method. The method can be described as one

which ensures that both the CI coefficients [Ca
i , C

ab
ij , C

abc
ijk , ... ,in Eq. (2.9)] and

the molecular orbital coefficients [Cαi in Eq. (2.2)] have been varied to minimize

the energy [7]. The general form of a MCSCF wavefunction is [8]

|ΨMCSCF〉 =
∑

K

Ck |Φk〉 (2.11)

which is a linear combination of several configurations [referred to as CSFs, |Φk〉].

Each CSF differs in how the electrons are placed in the MOs, |φi〉. The MOs are

usually expanded in a basis of AOs as shows in Eq. (2.2). A doubly iterative

process is used which, upon convergence, yields the optimum orbitals and the

optimum configurational mixing coefficients for the basis sets used. The opti-

mization of the orbitals ensures that the virtual orbitals are in the same physical

space as the occupied orbitals. Since the number of MCSCF iterations required

for achieving convergence tends to increase with the number of configurations

included, the size of MCSCF wave functions that can be treated is somewhat

smaller than for CI methods.

The major problem with MCSCF methods is selecting which configurations

are necessary to include for the property of interest. One of the most popular

approaches is the Complete Active Space SCF (CASSCF) [9, 10] method [also

called Full Optimized Reaction Space (FORS [11–16])]. Here the selection of

configurations is done by partitioning the MOs into active and inactive spaces.

The active MOs will typically be some of the highest occupied and some of the

lowest unoccupied MOs. The inactive MOs have either 2 or 0 electrons, i.e.,

always either doubly occupied or empty [4].

2.1.3 MRCI method

The multireference configuration interaction (MRCI) wavefunction is obtained by

taking as the reference not a Single Slater determinant like in Eq. (2.9), but a set

as reference configuration optimized at the MCSCF level. In general, the MRCI
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wavefunction can be written as,

|ΨMRCI〉 =
∑

I

CI
∣∣ΦI
〉
+
∑

S

∑

a

CS
a |Φa

S〉+
∑

P

∑

a

Cp
ab

∣∣Φab
P

〉
+ . . . (2.12)

where a, b denote external orbitals (not occupied in the reference configurations)

ans S and P denote internal N −1 and N −2 electron hole state.
∣∣ΦI
〉
, |Φa

S〉 and∣∣Φab
P

〉
are internal, singly external, and doubly external configurations, respec-

tively, and the set of configurations is the union of the sets of CSFs obtained by

making all possible single and double excitations on each reference configuration

in turn.

The main bottleneck of the MRCI method is the fact that the size of the

configuration expansion and the computational effort rapidly increases with the

number of reference configurations. This handicap become dramatic when study-

ing PESs, where an reasonable number of configurations is needed to describe all

the configuration space in a balanced way.

In order to reduce the number of variational parameters in MRCI wave func-

tions different contraction schemes have been proposed. In the “externally” con-

tracted CI of Siegbahn [17, 18] the singly and doubly external configurations are

contracted as

|ΦS〉 =
∑

a

αS
a |Φ

a
S〉 (2.13)

|ΦP 〉 =
∑

ab

αP
ab

∣∣Φab
P

〉
(2.14)

where the contraction coefficients α are obtained by first order perturbation the-

ory. The number of variational parameters is then equal to the number of internal

states.

Another contraction scheme was first discussed Meyer [19] and Siegbahn [20].

In this method the configurations are generated by applying pair excitation op-

erators to the reference wave function as a whole. This effectively generates liner

combinations of the configurations
∣∣Φab

P

〉
with different internal states P and is

therefore called “internally contracted CI” [20, 21]. The internally contracted

doubly external configurations are defined as

∣∣Φab
ij,ν

〉
=

1

2

(
Êai,bj + νÊbi,aj

)
|Φ0〉 (2.15)
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where ν = 1 for external singlet pairs and ν = −1 for triplet pairs, and |Φ0〉 is the

reference wave function, which may be composed of many configurations |ΦR〉

|Φ0〉 =
∑

R

αR |ΦR〉 (2.16)

the Êai,bj in Eq. (2.15) is the two-particle excitation operators in the form

Êai,bj =
∑

ρσ

η†bρη
†
aσηiρηjσ = ÊaiÊbj − δibÊaj (2.17)

where η†aσ, ηiρ are creation and annihilation operators, ρ, σ denote the electron

spin (ρ, σ = {α, β}) and Êai are one-particle excitation operators.

The contracted configurations
∣∣Φab

ij,ν

〉
can be expanded in terms of the set of

standard uncontracted doubly external CSFs
∣∣Φab

P

〉
according to

∣∣Φab
ij,ν

〉
=
∑

P

〈Φab
P

∣∣Φab
ij,ν

〉 ∣∣Φab
P

〉
(2.18)

Introducing Eqs. (2.15) and (2.16) into Eq. (2.18), the contracted configuration

can be written as

〈Φab
P

∣∣Φab
ij,ν

〉
=

1

2

∑

R

αR〈Φab
P |Êai,bj + νÊbi,aj |ΦR〉 (2.19)

this shows that these configurations are obtained contracting different internal

states.

The internally contracted configurations
∣∣Φab

ij,ν

〉
defined in Eq. (2.15) are, in

general, not orthonormal, The overlap matrix is given by

〈Φab
ij,ν

∣∣Φcd
kl,µ

〉
=

1

2
δνµ(δacδbd + νδadδbc)S

(ν)
ij,kl (2.20)

where the matrix S(ν) is determined by the second order density matrix of the

reference wave function |Φ0〉

S
(ν)
ij,kl = 〈Φ0|Êik,jl + νÊil,jk |Φ0〉 (2.21)

the configurations can be orthogonalized by the symmetric orthogonalization

∣∣Φab
D,ν

〉
=
∑

i≥j

(T
(ν)
D,ij)

−1/2
∣∣Φab

ij,ν

〉
(2.22)
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T(ν) = S(ν) (2.23)

In the orthogonal configuration basis, the residual vectors can be expressed

as

〈Φab
D,ν|Ĥ −E |Φ〉 =

{
1

2

[
GD,ν + ν(GD,ν)†

]
−ECD,ν

}

ab

(2.24)

〈Φa
S|Ĥ − E |Φ〉 = (gS − ECS)a (2.25)

〈ΦI |Ĥ −E |Φ〉 = gI − ECI (2.26)

where the index D denotes orthogonalized internally contracted N − 2 electron

states, the explicit formulas for the quantities GD,ν, gS and gI are obtained

as functions of the coupling coefficients [17, 18], which are calculated using an

efficient direct CI method [22, 23], in which the coupling coefficients are obtained

from a relatively small number of quantities by factorizing the high order density

matrices into lower order density matrices.

2.1.4 Atomic basis sets

Ab initio electronic structure computations are almost always carried out numer-

ically using a basis set of orbitals. A basis set is a combination of mathematical

functions used to represent atomic orbitals, the employed mathematical functions

describe the radial and angular distributions of electron density. It is important

to choose a basis set large enough to give a good description of the molecular wave

function [Eq. (2.2)]. Typically, the basis functions are centered on the atoms, and

so sometimes they are called atomic orbitals.

There are two types of basis functions (also called Atomic Orbitals) com-

monly used in electronic structure calculations: Slater Type Orbitals (STOs) and

Gaussian Type Orbitals (GTOs). The STOs [24] have the functional form

χSTO
nlm (r, θ, ϕ) = NYlm(θ, ϕ)r

n−1e−ζr (2.27)

here N is a normalization constant and Yl,m(θ, ϕ) are spherical harmonic functions

for angular distribution, rn−1e−ζr are exponential functions for radial distribution,

the exponential dependence on the distance between the nucleus and electron

mirrors the exact orbitals for the hydrogen atom.



2.1 Ab initio calculations 25

The GTOs [25] can be written in terms of polar or Cartesian coordinates as

χGTO
nlm (r, θ, ϕ) = NYlm(θ, ϕ)r

2n−2−le−ζr2 (2.28)

the r2 dependence in the exponential of Eq. (2.28) makes the GTOs inferior to

the STOs in two respects. At the nucleus a GTO has a zero slope, in contrast to a

STO which has a “cusp” (discontinuous derivative), and GTOs consequently have

problems representing the proper behaviour near the nucleus. The other problem

is that the GTO falls off too rapidly far from the nucleus compared with an STO.

However, the GTOs are practically well suited since they are separable in the three

Cartesian directions and since the product of two or more Cartesian GTOs on

different centers may be written as a simple linear combination of Cartesian GTOs

[26]. GTO is easy to handle because integrations can be calculated analytically, so

it is used very commonly. Both STOs and GTOs can be chosen to form a complete

basis, but the above considerations indicate that more GTOs are necessary for

achieving a certain accuracy compared with STOs. A rough guideline says that

three times as many GTOs as STOs are required for reaching a given level of

accuracy.

Combining the full set of basis functions, known as the primitive GTOs

(PGTO), into a smaller set of functions by forming fixed linear combinations is

known as basis set contraction, and the resulting functions are called contracted

GTOs (CGTOs).

χCGTO
nlm =

∑

i

aiχ
PGTO
nlm,i (r, θ, ϕ) (2.29)

where ai is the expansion coefficients, which can be determined by least-square

fits to accurate atomic orbitals or by a variational optimization of the atomic

HF energy. To construct Gaussian basis sets different contraction scheme have

been propose [27, 28], for example, segmented and general contraction. Usually a

segmented contracted scheme is used, where each primitive functions is allowed to

contribute to only one contracted orbital, simplifying the evaluation of molecular

integrals [29, 30]. In a general contraction all primitives (on a given atom) enter

all the contracted functions, but with different contraction coefficients.

STO-nG basis sets are Slater type orbitals consisting of n PGTOs [31]. This is

a minimum type basis where the exponents of the PGTO are determined by fitting
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to the STO, rather than optimizing them by a variational procedure. Although

basis sets with n =2-6 have been derived, it has been found that using more

than three PGTOs for representing the STO gives little improvement, and the

STO-3G basis is a widely used minimum basis. This type of basis set has been

determined for many elements of the periodic table.

An example particularly popular are the split-valence basis set of Pople and

coworkers [32, 33], in which a single-zeta2 representation of the core shell and

a n-zeta representation of the valence shell is done. k-nlmG basis sets are the

split valence type, with the k in front of the dash indicating how many PGTOs

are used for representing the core orbitals. The nlm after the dash indicate both

how many functions the valence orbitals are split into, and how many PGTOs are

used for their representation. Two values (nl) indicate a split valence, while three

values (nlm) indicate a triple split valence. In the 3-21G, This is a split valence

basis, where the core orbitals are a contraction of three PGTOs, the inner part

of the valence orbitals is a contraction of two PGTOs and the outer part of the

valence is represented by one PGTO [32]. In the 6-31G basis [33], This is also a

split valence basis, where the core orbitals are a contraction of six PGTOs, the

inner part of the valence orbitals is a contraction of three PGTOs and the outer

part of the valence is represented by one PGTO. 6-311G basis set is a triple split

valence basis, where the core orbitals are a contraction of six PGTOs and the

valence split into three functions, represented by three, one and one PGTOs [34].

To each of these basis sets can be added polarization [35] and/or diffuse [36]

functions. When basis function of angular momentum higher than that of the

occupied AOs are involved in the expansion, we have a polarized basis. The polar-

ized functions are suited to describe the lower symmetry of molecular compared

with that of their constitutes atoms and some properties due to physical pertur-

bations. For example, in the 6-31G** basis, which is identical to 6-31G(d,p), the

first asterisk indicate the addition of a set of d function on the first-row atoms and

the second asterisk the addition of a p set on hydrogen [37]. The diffuse function

can be added to the basis for a good description of diffuse electron distributions

characteristic of anionic systems, excited states and some properties as dipole

2The term zeta stems from the fact that the exponent of basis functions is often denoted by the
Greek letter ζ.
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moments and polarizabilities. Diffuse functions are normally s- and p-functions

and consequently go before the G. They are denoted by “+” or “++”, with the

first + indicating one set of diffuse s- and p-functions on heavy atoms, and the

second + indicating that a diffuse s-function is added also to hydrogen.

When two contracted functions per valence orbital is called a valence double

zeta (DZ)3 basis set; three contracted functions per valence atomic orbital is called

a valence triple zeta (TZ)4 basis set; four contracted functions per valence valence

orbital is called a valence quadruple zeta (QZ) basis set and so on.

For correlated calculations, the basis set requirements are different and more

demanding since we must then describe the polarization of the change distribu-

tion and also provide an orbital space suitable for recovering correlation effects.

For this purpose are very suited the correlation-consistent basis set, where each

correlating orbital is represented by a single primitive Gaussian chosen so as to

maximize its contribution to the correlation energy, and where all correlating

orbitals that make similar contributions to the correlation energy are added si-

multaneously [38, 39]. The correlation-consistent polarized valence basis set is

denoted by cc-pVXZ, where VXZ means valence-X-zeta. X = D, T,Q or 5 in-

dicate double-zeta, triple-zeta, quadruple-zeta or quintuple-zeta correlation con-

sistent basis sets respectively. By adding diffuse functions so as to improve the

flexibility in the outer valence region we get the augmented correlation-consistent

polarized valence basis set, which is denoted by aug-cc-pVXZ [39] or AVXZ,

where one set of diffuse functions is added for each angular momentum present

in the cc-pVXZ basis.

The basis set superposition error (BSSE) is a spurious contribution to the

interaction energy arising form the improved description of each fragment in the

total basis as compared to the fragment basis alone. It is ultimately a consequence

of the one-electron basis set incompleteness. Evidently, the BSSE error will vanish

asymptotically as the complete one-electron basis is approached. BSSE appears

whenever the molecular geometry is changed and is particularly important for the

computation of interaction energies. Without correction an artificial increased

binding energy is obtained. In particular when using modest basis sets, BSSE

3Examples of valence double zeta basis sets are the 3-21G basis set or the 6-31G basis set.
4An example of a valence triple zeta basis set is the 6-311G basis set.
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can result in substantial distortions of the PES. A conceptually simple method

to account for BSSE is the counterpoise correction method [40] in which the

energies of the fragments are computed in the full basis of the entire complex and

subtracted from the energy of the entire system. Although there is some debate

about its accuracy it is the procedure of choice to account for BSSE [41].

BSSE, can be corrected by using an approach, as discussed in section 2.1.6, to

scale the ab initio energy to the complete basis set limit. However, as discussed

in the section 2.1.7, accurate extrapolation to the complete basis set limit must

correct for BSSE prior to extrapolation.

2.1.5 Size-consistency and size-extensivity

Two important concepts in electronic structure theory are size-consistency and

size-extensivity [42]. There are very important distinctions to be made between

them.

A method is called size consistent if it gives an energy of two noninteracting

systems equal the sum of the individual components.

EAB(RAB → ∞) = EA + EB (2.30)

there are two primary definitions of size-consistency in use. The first was em-

ployed by Pople [43] as one criterion for a well-constructed quantum chemical

method. If we imagine two H2 molecules, separated by a large distance (large

enough that we may consider them to be non-interacting) then the energy calcu-

lated for both molecules simultaneously should be exactly twice that calculated

for only one, isolated molecule of H2, just like the exact energy. This “non-

interacting limit” description is the original concept of size-consistency. From this

perspective, size-consistency describes what has been referred to as the “additive

separability” of the wavefunction. However, a recently imposed definition [44]

requires that the method not only correctly describe the fragmentation limit, but

the entire process (in a qualitative sense). That is, the entire potential energy

curve mapped out when we bring our two non-interacting H2 molecules close

together must be correctly described as well.

Size extensivity is the most well-defined. A method is said to be size extensive

if the energy calculated thereby scales linearly with the number of electrons. The
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term was introduced to electronic structure theory by Bartlett [45], and is based

on analogous “extensive” thermodynamic properties.

While the definition of size extensivity applies at any geometry, the original

concept of size consistency applies only in the limiting case of infinite separation.

So, size consistency usually also implies correct dissociation into fragments; this

is the source of much of the confusion arising from this term. For example,

restricted Hartree-Fock is size extensive, but it is not necessarily size consistent,

since it cannot properly describe dissociation into open-shell fragments.

2.1.6 Semiempirical correction of ab initio energies

As all limited CI approaches, it is not size extensive [42], many corrections to

account for the size-extensivity errors in CI calculations have been proposed in

the literature [46]. Simple corrections to CISD have been suggested to account

for the effects of higher excitations, Davidson [47] was the first to use such a

correction:

EQ = ESD(1− C2
0) (2.31)

where ESD is the correlation energy obtained from CISD calculations and C0 is

the coefficient of the reference configuration.

The superscript Q in Eq. (2.31) indicate that Davidson correction (DC) may

be considered to correct for the lack of quadruple excitations effects. This cor-

rection, was justified by perturbation theory [46], although the final justification

for the use DC is a empirical one, based on a large number of calculations. Es-

sentially the same corrections as in the single reference case are usually applied

in the multireference case. One has to replace C2
0 with a sum of the squares of

coefficients over the reference space, i.e.,

C2
0 →

∑

i∈Ref

|Ci|
2 (2.32)

and taken as ESD the dynamical correlation energy obtained by the difference

between MRCISD and MCSCF energies.

The lack of Size-extensivity is linked to the fact that the truncate CI wave

function do not include dynamical or external electron correlation effects. A
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method to incorporated semiempirically the external valence5 correlation energy

was proposed by Brown and Truhlar [48]. In such approach the non-dynamical

(static) or internal correlation energy is obtained by an MCSCF calculation and

the part of external valence correlation energy by an MRCISD calculation based

on the MCSCF wave function as references. Then, is assume that the MRCISD

include a constant (geometry independent) fraction F of the external valence

correlation energy, accordingly, the total energy has been written as [48]

ESEC(R) = EMCSCF(R) +
EMRCISD(R)−EMCSCF(R)

F
(2.33)

where ESEC(R) denotes the scaled external correlation (SEC) energy, and The

empiricism therefore enters in the calculation of the scaling factor F , which has

been chosen for diatomics to reproduce a bond energy and for systems with three

or more atoms to reproduce more than one bond energy but in an average sense.

An important element of the physical basis of the SEC method is that the

MCSCF calculation must be large enough to include most of the nondynamical

effects that are sensitive to optimization of the reference space, and that the

one-electron basis sets are large enough to include an appreciable fraction of the

external valence correlation.

Varandas [49] suggested a generalization of the SEC method by noticing the

conceptual relationship between it and the double many-body expansion (DMBE)

method [50]. In fact, in the DMBE scheme each n-body potential energy term

is partitionaed into extended-Hartree-Fock (internal) and dynamic correlation

(external correlation) parts. In his proposal, denoted as DMBE-SEC [49]. This

author write the total interaction energy, relative to infinitely separated atoms in

the appropriate electronic states, in the form

V (R) = VMCSCF(R) + VSEC(R) (2.34)

where

VMCSCF(R) =
∑

V
(2)
AB,MCSCF(RAB)+

∑
V

(3)
ABC,MCSCF(RAB, RBC , RAC)+. . . (2.35)

5The external or dynamical correlation has a core contribution which may be as large as the
valence contribution, but it can often be neglected since it is nearly constant across the potential
energy surface.
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VSEC(R) =
∑

V
(2)
AB,SEC(RAB) +

∑
V

(3)
ABC,SEC(RAB, RBC , RAC) + . . . (2.36)

and the summations runs over the subcluster of atoms which compose the molecule.

The scaled external correlation energy for the n-th terms is given by

V
(n)
AB...,SEC(RAB, . . . ) =

V
(n)
AB...,MRCISD(RAB, . . . )− V

(n)
AB...,MCSCF(RAB, . . . )

F
(n)
AB...

(2.37)

where F
(n)
AB... is n-body geometry independent acsling factor, as in the original

SEC method, optimal values for two-body factors F
(2)
AB are chosen such as to

reproduce the experimental dissociation energy of the corresponding AB diatomic,

a criterion which may be adopted for higher-order terms if accurate dissociation

energies exist for the relevance subsystems. For the triatomic case a good quess

for F
(3)
ABC can be the average of the three two-body factors.

Improves agreement with experiment and best theoretical estimates, are ob-

tained when ab initio energies are corrected with the DMBE-SEC method. Par-

ticularly important, for dynamics calculations, is the correct exothermicities for

all arrangement channels, exhibit by the DMBE-SEC potential surfaces [49].

2.1.7 Extrapolation to CBS limit

One-electron basis sets are finite in solving the electronic Schrödinger equation,

This makes method for extrapolating to a one-electron complete basis set (CBS)

limit for a given level of electron correlation [51–56] most useful if we want to got

accurate interaction energy.

Built in a systematic manner that is intended to relate the correlation energy

to the cardinal number X , Dunning’s correlation consistent basis sets allow the

extrapolation of the raw energies to the CBS limit. To perform the extrapolation,

the MRCI(Q) energy is treated as usual in split form by writing [57]

EX(R) = ECAS
X (R) + Edc

X (R) (2.38)

where the subscript X indicates that the energy has been calculated in the AVXZ

basis, and the superscript dc stands for the dynamical correlation energy. Note
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that all extrapolations are carried pointwise, and hence the vectorR of the nuclear

geometrical coordinates will be omitted for simplicity.

By carrying out calculations for several values of X, one may then exploit

the X dependence of the calculated energy EX to obtain its value E∞ at the

CBS limit. Several formulas have been proposed for extrapolating the CAS finite

basis set results to the CBS limit. A proposed [57] generalization of the protocol

adopted by Karton and Martin [58] to extrapolate single-reference self-consistent-

field energies is utilized:

ECAS
X = ECAS

∞ +B/Xα (2.39)

where α is a predefined constant. Being a two-parameter protocol (ECAS
∞ , B), a

minimum of two raw energies will be required for the extrapolation.

For the dynamical correlation, a popular two-parameter CBS protocol is [59]

Edc
X = Edc

∞ +
A3

(X + α)3
(2.40)

where Edc
X is the dynamic correlation energy obtained with the X-tuple basis set.

Although Eq. (2.40) is known to perform accurately when extrapolating from

energies based on large cardinal number pairs, its performance is significantly less

satisfactory when using the (T,Q) pair. A more reliable scheme is the recently

suggested USTE [57] model (see also Ref. 60), this has its basis on the three-

parameter protocol

Edc
X = Edc

∞ +
A3

(X + α)3
+

A5

(X + α)5
(2.41)

with A5 being determined from the auxiliary relation

A5 = A5(0) + cAm
3 (2.42)

where E∞, A5(0), A3, c, m, and α are parameters. By fixing α, A5(0), c and m

from other criteria, Eq. (2.41) can then be transformed into an (E∞, A3) two-

parameter rule [57]. In particular, for the dynamical correlation of 24 systems

studied [57] using the MRCI(Q) method, the optimum values of the “universal-

like” parameters were found to be A5(0)= 0.0037685459, c=−1.17847713E
−5/4
h

and m= 5/4, with α =−3/8. The method has since been successfully utilized
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for a variety of other systems [61–67], either in its original version (USTE) or a

slightly generalized variant (GUSTE [68]).

Since electronic degeneracies are often present in global PESs, it is appropriate

to note that this may pose a subtle issue on extrapolation schemes. In fact, not

only the location of the CI may differ in the two chosen bases but also a given

basis set may prove to have somewhat different qualities when utilized for different

electronic states [65]. Since this may cause small distortions on the data to be

fitted, it is advocated by placing the raw ab initio points slightly away from such

topological features and interpolating the CBS extrapolated data subsequently

using the chosen functional form.

2.2 Analytical representation of potential en-

ergy surface

There have been dramatic improvements in both the accuracy and efficiency of

high-level electronic structure calculations [69, 70]. Many uses of this vast supply

of data require that it be expressed with a suitable local or global representation as

a PES. Since the inception of quantum mechanics, considerable effort has been

devoted to finding better ways of utilizing ab initio data or/and experimental

data to construct PESs. The earliest and most common methods involve least-

squares fitting to empirical or semiempirical functional forms [71, 72]. Another

solution is to skip the surface construction step entirely and to use the ab initio

results directly in dynamical studies [73]. However, the highest-accuracy ab initio

calculations can take hours or more of computer time, even for small systems.

Thus, the construction of accurate analytic representations of PES is a necessary

step in full quantum spectroscopic and dynamics studies that adequately model

results of state-of-the-art experiments.

Once collected and scaled an extensive data set of ab initio energies to map

the PES, the major problem is the development of a realistic global representation

of such potential. A function that match the ab initio data within the “chemical

accuracy” provide a visualization of topographical surface features, that may

not be evident from a coarse-grained ab initio study. Moreover, smooth and

well behaved potential function can be used in dynamical studies, as theoretical
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counterpart of experimental reaction dynamics.

PESs play an important role in the application of electronic structure meth-

ods to the study of molecular structures, properties and reactivities [71]. A good

representations of the PES should smoothly connect the asymptotic and inter-

action regions of the configuration space, it should represent the true potential

energy accurately in regions for which experimental or theoretical data are avail-

able, sometimes it even need to predict those parts of the interaction region for

which no experimental or theoretical data are available, it should preserve any

necessary permutation symmetry and it shouldn’t introduce arbitrary features.

Many other criteria that a successful representation of a PES must satisfy, can

be found in the literature [74–76].

Methods to construct analytical PES have been developed for many years.

Among the most popular approaches can be mentioned the semiempirical London-

Eyring-Polanyi-Sato (LEPS) [77–79] based on a simple quantum mechanical de-

scription of the electronic wave function; the diatom-in-molecule (DIM) [80–82]

methods, which use theoretical and experimental information to fit a functional

form derived from simple molecular orbital theory; the modified Shepard (MS)

method of Ischtwan and Collins [83–90], which uses the energy, gradient, and Hes-

sian from ab initio data; The reproducing kernel Hilbert space (RKHS) method

proposed by Ho and Rabitz [91–95] which provides a general approach to inter-

polation from grid of ab initio points. A general approach due to Murrell and

co-workers [71, 96, 97] propose to represent the PES of a molecular as an expan-

sion in energy terms of subclusters of atoms. This many-body expansion (MBE)

function is an useful analytical representation even when the convergence of series

is poor [71]. A practical advantage of the MBE approach is that relatively simple

polynomial forms, in the internal coordinates of molecule, need to be fitted, in the

least-squared sense, to gain chemical accuracy. The PES discussed in the present

thesis are represented using an improved version of MBE due to Varandas [50]:

the double many-body expansion (DMBE) method, which consists in partitioning

each n-body contribution in short-range and long-range parts.
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2.2.1 MBE method

In the MBE [71, 96, 97] method the single-valued PES of N -nucleus molecular is

represented as a cluster expansion in the form

V (RN) =

N∑

n=1

K∑

i=1

V
(n)
i (Rn) (2.43)

where K = N !/n!(N − n)! is the number of n-body terms in N -atom system and

Rn is the sit of n(n− 1)/2 interatomic distances referring to n-atoms, Rn ⊂ RN ,

RN denotes the full set of N(N − 1)/2 interatomic coordinates.

A n-body term tends asymptotically to zero if one atom in the cluster is

removed to infinity. This requirement is satisfied by writing the term as

V (n)(Rn) = P (n)(Rn)T (n)(Rn) (2.44)

where P (n)(Rn) is a n-body polynomial in the internuclear distances and T (n)(Rn)

is a n-body range function which tends to zero when one of the internuclear

coordinates in the n-body species tends to infinity [71].

The potential written in MBE form is guaranteed to satisfy all dissociation

limits, an essential requirement for molecular dynamics studies. The MBE sug-

gests a strategy for building up a polyatomic potential by studying the potential

of all the fragments. Thus, a first estimate of the MBE-PES for a molecular

can be made from the potential for the relevance states of the fragments. Also

significant is the fact that the MBE becomes most suited for implementation as

a data bank of PESs of small polyatomics [71].

2.2.2 DMBE method

Varandas [50] proposed an extension of the MBE approach by further partitioning

each n-body term of Eq. (2.43), into extended Hartree-Fock (EHF) and dynamic

correlation (dc) energy contributions, the single-sheeted PES is written as

V (RN) =
N∑

n=1

K∑

i=1

[V
(n)
i,EHF(R

n) + V
(n)
i,dc(R

n)] (2.45)

this DMBE method advocate for a reliable description of the potential surface

from short to large interatomic separations, by including, through a semiem-
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pirical potential, the dynamical correlation energy, in principle discarded in an

uncorrelated electronic structure calculation.

At large interatomic separation, when charge overlap and electronic exchange

effects can be neglected, the dynamic correlation energy term can be estimated

using the Rayleight-Schrödinger perturbation theory combined with the multipo-

lar expansion of the perturbation operator [98, 99].

In a series of papers Varandas and coworkers [100–105] proposed general ex-

pressions for the n-body dynamics correlation energy term, to reproduce the

proper anisotropy and asymptotic behavior of the PES for the entire config-

uration space. An important result refers to the introduction of an universal

charge-overlap damping function to account for the damping of the dispersion

coefficients for intermediate and small interatomic separations [100].

General, in the DMBE formalism, the potential curves for the two-body frag-

ments are based on the extended Hartree-Fock approximate correlation energy

method for diatomic molecules including the united atom limit (EHFACE2U),

which shows the correct behavior at the asymptotic limits when R → 0 orR→ ∞.

In turn, the three-body EHF energy potential has been modeled via the general

form

V
(3)
EHF =

m∑

j=1

{
P (j)(Q1, Q2, Q3)

3∏

i=1

{
1− tanh[γ

(j)
i (Ri −R

(j),ref
i )]

}}
(2.46)

where the polynomials P (j)(Q1, Q2, Q3) are written in terms of symmetry co-

ordinates, being all of order three. In turn, R
(j),ref
i is a reference geometry,

and γ
(j)
i nonlinear range-determining parameters that have been optimized via a

trial-and-error procedure that minimizes the root-mean-squared deviation (rmsd)

while warranting the proper asymptotic behavior on dissociation.

As usual in the DMBE formalism, the EHF contributions are calibrated by

fitting ab initio data to a suitable, physically motivated, functional form. In

turn, the dc energies are modeled to a function that uses ab initio long-range

dispersion energy coefficients, eventually estimated at the same level of ab initio

theory. When judged relevant, ab initio induction and electrostatic long range

coefficients are also taken into consideration in modeling the long range parts of

the PES. Thus, no empirical information is required for the construction of the
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final PES using DMBE theory, although the method affords sufficient physical

content to be usable semi-empirically when judged convenient.
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Chapter 3

Probing PESs via spectroscopic
and dynamics calculations

The spectroscopic and dynamical quantities are very sensitive to the details of

the potential energy surface (PES) and, such studies, besides their predictive

purposes, prove the accuracy of the PES and provides additional information

for further refinements. Being simple analytical forms, the DMBE-PESs here

presented can be used in accurate and fast procedures to numerically evaluate the

corresponding equations of motion. In the present chapter, methods to calculate

resonance state and rate constants, will be addressed.

One of the most important results of quantum scattering theory is the phe-

nomenon of resonance [1]. The resonance structure of atoms and molecules plays

a central role in many interesting phenomena in physics and chemistry [2]. For-

mally these states are associated with complex poles of the resolvent operator

and the corresponding eigenstates are nonnormalized solutions characterized by

well defined boundary conditions [3, 4].

In the complex scaling method [5–7] the resonances eigenvalues can be directly

obtained upon scaling the internal degree of freedom of the Hamiltonian by an

complex phase factor Exp (iθ), which represent a 2θ rotation of the lower half

complex energy plane. Such a transformation enables the resonances wavefunc-

tions to be obtained in a square-integrable form, and use standard bound-state

procedures to calculate resonance positions and widths. The complex absorb-

ing potential (CAP) method [2, 8, 9], transform the Hamiltonian representing

resonances to an L2 non Hermitian effective Hamiltonian by introducing an op-
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tical potential (OP) in the asymptotic potential region. In this field the CAP

method was first used by Jolicard and Austin [8]. An alternative to an ex-

act scattering calculation to characterize resonances is provided by a variety of

essentially real bound-state, L2 methods. These approaches are physically in-

tuitive and also provide a more familiar method to solve the problem. Due to

the nature of resonances which are embedded in the continuum of scattering

states, real L2 functions provide an excellent starting point for characterizing

their behavior [10]. To overcome the difficulties of continually repeating the di-

agonalization of large matrices, various schemes combine a complex method with

perturbative [11], coupled-channel [12] or finite difference [9] approaches. In the

present work the CAP method is combined with the discrete variable represen-

tation (DVR) method [13], a very suited approach for study of large amplitude

motion vibrations.

A rigorous treatment of the dynamics of molecular collisions require the use

of quantum scattering methods, based on the resolution of the time-dependent

Schrödinger equation [1]. In fact, Schrödinger equation constitute the basic con-

cept to understand, at the atomic and molecular levels, the collision processes

and correlated this with observable phenomena. However, if the process under

study can be assumed as an adiabatic one, a more simple and useful treatment

involves the use of a PES as an interparticle interaction potential in classical

equations of motion. Indeed, when dealing with slow molecular collisions, a PES,

as discussed in the present work, provide the interaction energy as a function of

the configuration of the system throughout the rearrangement from reactants to

products. A common approach to study the dynamics of chemical reactions is

the quasiclassical trajectory (QCT) method [14–17], in which the time evolution

of the system is obtained by numerical integration of the classical equations of

motion and the prefix “quasi” indicate that initial conditions are chosen such

that the energy in the various degrees of freedom approximately correspond to

a quantum mechanical energy level. The QCT method assumes that each of

the nuclei comprising a chemical system moves according to the laws of classical

mechanics in the force field arising from the adiabatic electronic energy of the

system. In the QCT method, molecules are prepared in discrete internal energy

states corresponding to the quantum states of the molecular.
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3.1 The CAP-DVR method

Imposing resonance boundary conditions [3], resonance states are obtained as

discrete eigenstates of quantum system [18, 19]. A resonance wave function is

exponentially divergent at large distances from the scattering center [20]. The

complex absorbing potential method [8] is based in the main premise that the

exact asymptotic form of the exact wavefunction is not required for derivation of

the resonances eigenvalues. In this way, square integrable functions are derived

from the asymptotically diverging resonance states by introducing an imaginary

optical potential (OP) iV which absorbs the purely outgoing wave. Thus, an L2

complex Hamiltonian determine the nth resonance state through the Schrödinger

equation
(
Ĥ − iV

)
ψn =

(
En − i

Γn

2

)
ψn (3.1)

where Ĥ is the usual L2 real Hamiltonian, the eigenenergy, En−iΓn/2, is complex.

En is the resonance position and Γn the resonance width (inverse lifetime1). The

approach is to represent the ψn in a basis of L2 function, which are eigenfunctions

of the real Hamiltonian Ĥ.

The complex eigenfunctions of Ĥ−iV are obtained in a two-step procedure, as

described previously [21]. First, the real Hamiltonian Ĥ is diagonalized in a large

basis. It is essential that the basis in the dissociative degree of freedom extend

into the noninteraction region, where the absorbing potential is nonnegligible.

This condition is easy to satisfy by simply using a large, extended basis, e.g.,

particle-in-a-box functions, in that degree of freedom. However, for more than

two-mode problems, a direct-product basis consisting of this extended basis plus

internal basis functions would result in a prohibitively large basis size. Thus, we

have a used a truncation/recoupling procedure [21, 22] to precondition the final

basis.

The solutions of the equation (3.1) can be found by representing the complex

Hamiltonian in a finite basis set of the real vibrational Hamiltonian Ĥ . In order

to minimize errors associated to basis set truncation and artificial perturbations

induced by the absorbing potential, a variational parameter (λ) is included in the

1The corresponding lifetime of the resonance is h̄/Γn
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potential, which is then optimized respect to the complex eigenvalue of (3.1) [2,

8, 23]. The latter is carried out by diagonalizing the complex Hamiltonian for

a set of λ values. Thus, the complex eigenvalue for the optimal λ is the best

estimate to the exact resonance, En − i (Γn/2).

A simple and fast numerical procedure to solve (3.1) is attained by using a

discrete variable representation (DVR) method as suggested by Light and cowork-

ers [13, 24–27], for the calculation of ro-vibrational states. The DVR, is isomor-

phic to an approximate finite basis representation (FBR) in which some matrix

elements of the Hamiltonian are determined by numerical quadrature over the

DVR points. Thus the definition of a DVR requires both the definition of an

appropriate set of N basis functions {φi; i = 1, . . . , N} and the definition of an

appropriate quadrature over the DVR basis of points {xα;α = 1, . . . , N}. The

standard DVRs are defined in terms of classical polynomials such as particle-in-a-

box functions (Chebyshev polynomials), harmonic oscillator functions (Hermite

polynomials), Legendre polynomials, Laguerre polynomials, etc., their related

weight functions and Gaussian quadratures.

The Hamiltonian evaluation in the DVR relied in the fact that an “exact”

representation of the Hamiltonian matrix in a variational basis representation

(VBR), can be approximated by an FBR, in which some matrix elements of the

Hamiltonian are determined by numerical quadrature over the DVR points [28].

In turn, for basis of N classical orthogonal polynomials exist an isomorphism

between DVR and FBR defined by the orthogonal transformation [29, 30]

Uiα = φi (xα)ω
1/2
α (3.2)

where {xα;α = 1, . . . , N} and {ωα;α = 1, . . . , N} are the quadrature points and

weights for the classical polynomial basis sets {φi; i = 1, . . . , N}.

Thus, in the orthonormal DVR basis, obtained by direct diagonalization of

the position operator [31] or from the polynomial themselves via

ϕα (x) =

N∑

i=1

U †
iαφi (x) (3.3)

and the DVR potential matrix is approximated by the simple diagonal form

(
VDVR

)
αβ

= V (xα) δαβ =
(
U†VFBRU

)
αβ

(3.4)
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In practice the appropriate Gaussian quadrature scheme is generated from (3.2),

and for the multidimensional case the required composite transformation is writ-

ten as a product of 1D transformations [27]. Hence, a sequential truncation/diago-

nalization procedure can be used, in which the structure sparseness of the DVR

Hamiltonian is exploited to generate in a sequential fashion good contracted basis

sets in an increasing number of dimension [31].

3.2 The QCT method

The QCT method assumes that each of nuclei comprising a chemical system

moves according to the laws of classical mechanics in the force field arising from

the adiabatic electronic energy of the system. The term “quasiclassical” is used

to denote the manner in which molecular are prepare before collision (i.e., the

initial conditions) [15].

In the QCT method the time evolution of the classical degrees of freedom of

individual atoms are simulated by solving Hamilton’s or Newton’s equations of

motion expressed in term of the coordinates q and momentum p of the system.

In the Hamilton formulation [32] propagation is done by numerical integration of

the first-order differential equations [33]

∂H (q,p)

∂qi
=

−dpi
dt

and
∂H (q,p)

∂pi
=
dqi
dt

(3.5)

where the H , the sum of the kinetic T (q,p) and potential energies V (q), is the

system’s Hamiltonian

H (q,p) = T (q,p) + V (q) (3.6)

for the most general case T (q,p) depends on both the momenta p and the

coordinate q.

There are several components to quasiclassical trajectory simulation [14, 15,

34]. A potential energy function V (q) must be formulated. Hamilton’s equations

of motion (3.5) are solved numerically and numerous algorithms have been de-

veloped and tested for doing this is an efficient and accurate manner [14, 15, 32,

34–39]. When the trajectory is completed, the final values for the momenta and

coordinates are transformed into properties that may be used to make predictions
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about the chemical system’s molecular dynamics, and compared with experiment

and/or theory, such as product vibrational, rotational, and relative translational

energies.

3.2.1 Unimolecular decomposition

In a unimolecular reaction a reactant A is excited above its unimolecular threshold

so that it may dissociate to product(s).

A∗ → product(s) (3.7)

where the A∗ denotes vibrational-rotational state of the reactant A. Assuming

that the system is initially excited with a microcanonical ensemble and its in-

tramolecular dynamics is ergodic, such is called Rice-Ramsperger-Kassel-Marcus

(RRKM) behavior [40–42], for which all the accessible states of the molecule are

occupied in random order, the lifetime distribution P (t), namely, the probability

of decomposition per unit time will be

P (t) = k (E) exp [−k (E) t] (3.8)

given equal probability during any time interval for reaction to occur [40–42],

where k (E) is the classical microcanonical unimolecular rate constant. It may

be expressed as [43]

k (E) =
N ‡ (E)

hρ(E)
(3.9)

where N ‡ (E) is the sum of states at the transition state for decomposition and

ρ(E) is the density of state for A∗. However, for a large number of experiments

the Eq. (3.8) does not hold, due to the not random character of the transition

between states. Indeed, for a not sufficiently fast intramolecular vibrational-

energy redistribution (IVR), the transition between some states will be more

probable than others.

An important question is whether an unimolecular decomposition is random

in the sense (3.8), or does not obey such equation [43–45]. In this way, differ-

ent schemes have been developed, as the Monte Carlo sampling, for exciting A∗

randomly with a microcanonical ensemble of states, and nonrandomly excitation

procedures, involving specific state selection [17, 46].
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3.2.2 Bimolecular reactions

In principle, the cross section for the reaction between A and B to form products

A + B → products (3.10)

may be measured as a function of the A + B relative velocity vrel and the

vibrational-rotational energy of A and B [47]. For bimolecular reactions the

quantities of interest in such studies commonly included the reaction cross sec-

tion and the thermal bimolecular rate constant. For the simple case of an atom

B plus a symmetric top polyatomic molecule A, the reactive cross section may be

expressed as σr (vrel, νA, JA, KA), where vrel is the A+B relative velocity, νA, JA

and KA are the polyatomic’s collections of vibrational and rotational quantum

numbers.

Assuming Boltzmann distributions of vibrational-rotational levels specified by

temperature TA, the reactive Boltzmann-average cross section can be obtained as

σr (vrel;TA) =
∑

νA

∑

JA,KA

σr (vrel, νA, JA, KA)P (νA;TA)P (JA, KA;TA) (3.11)

where P (νA;TA) and P (JA, KA;TA) are the normalized Boltzmann distribution

for νA and JA, KA at temperature TA.

Multiplying the above cross sections σr (vrel;TA) by vrel gives the bimolecular

rate constant for a fixed relative velocity

k(vrel;TA) = vrelσr (vrel;TA) (3.12)

integrating the rate constant in Eq. (3.12) over the Boltzmann relative velocity

distribution P (vrel;T ) for temperature T = TA gives the thermal bimolecular

rate constant as

k (T ) =

∫ ∞

0

vrelσr (vrel;T )P (vrel;T ) dvrel (3.13)

the Maxwell-Boltzmann distribution for P (vrel;T ) is given by

P (vrel;T ) = 4π
( µ

2πkT

)3/2
e−µv2

rel
/2kTv2rel (3.14)

inserting the Maxwell-Boltzmann distribution Eq. (3.14) into Eq (3.13) to give

k (T ) =
( µ

2πkT

)3/2
4π

∫ ∞

0

σr (vrel;T ) v
3
rele

−µv2
rel

/2kTdvrel (3.15)
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changing the integration variable to the translational energy by the relation Etr =

µABv
2
rel/2 gives

k (T ) =

(
8kT

πµ

)1/2 ∫ ∞

0

σr(Etr)
Etr

(kT )2
e−Etr/kTdEtr

(3.16)

thus, the thermal rate constant may be written as

k (T ) =

(
8kT

πµ

)1/2

〈σr (Etr)〉 (3.17)

where the average cross section for temperature T will be

〈σr (Etr)〉 =

∫ ∞

0

σr (Etr)P (Etr)dEtr =

∫ ∞

0

σr (Etr)
Etr

(kT )2
e−Etr/kTdEtr (3.18)

where P (Etr), normalized to unity for Etr of 0 to ∞, is

P (Etr) =
Etr

(kT )2
e−Etr/kT (3.19)

In turn, a simple expression for the reaction cross section can be derived from

the classical mechanical expression for this quantity [48]

σr =

∫ bmax

0

Pr (b) 2πbdb (3.20)

where b is the collision impact parameter, bmax is the largest impact parameter

that leads to reaction, and Pr (b) is the so-called opacity function given the impact

parameter distribution.

One may determine σr from Eq. (3.20) by integrating over Pr (b) or from the

average Pr (b), which is given by

〈Pr (b)〉 =

∫ bmax

0
Pr (b) 2πbdb∫ bmax

0
2πbdb

=

∫ bmax

0
Pr (b) 2πbdb

πb2max

(3.21)

comparison of Eqs. (3.20) and (3.21) gives that

σr = 〈Pr (b)〉πb
2
max (3.22)

the average reaction probability 〈Pr (b)〉 is evaluated from trajectories with b

chosen randomly according to the distribution function

f (b) db =
2πb db

πb2max

(3.23)
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random values of b between 0 and bmax may be sampled with the cumulative

distribution function (CDF)

ξ =

∫ b

0

f (b) db (3.24)

introducing Eq. (3.23) into Eq.(3.24), one can obtain

ξ =

∫ b

0

2πb db

πb2max

=
b2

b2max

(3.25)

to give

b = ξ1/2bmax (3.26)

with b chosen randomly between 0 and bmax. The average reaction probability is

〈Pr (b)〉 = Nr/N , where N is the total number of trajectories and Nr the number

which are reactives. By substituting in (3.22), the reaction cross section is [17]

σr =
Nr

N
πb2max (3.27)

inserting the reaction cross section Eq. (3.27) and the average cross section

Eq. (3.18) into the thermal rate constant Eq. (3.17) to give

k (T ) =

(
8kT

πµ

)1/2
Nr

N
πb2max

∫ ∞

0

P (Etr)dEtr (3.28)

noted that the translational energy in Eq. (3.19) may be randomly sampled by

the von Neumann rejection method, or by the CDF [14]

Etr = −kT ln
(
ξ
(1)
tr ξ

(2)
tr

)
(3.29)

where ξ
(1)
tr and ξ

(2)
tr are two independent uniform random numbers. When choos-

ing the relative translational energy in P (Etr) of Eq. (3.19) randomly in accord

with Eq. (3.29), in another word, neglecting the influence of electronic degeneracy,

the Eq. (3.28) gives

k (T ) =

(
8kT

πµ

)1/2
Nr

N
πb2max (3.30)

when electronic degeneracy is included, the bimolecular rate constant Eq. (3.28)

may be expressed as [17]

k (T ) = ge (T )

(
8kT

πµ

)1/2
Nr

N
πb2max (3.31)
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where ge (T ) is the temperature dependent electronic degeneracy factor [49–53],

which is equal to the product of the reactant electronic partition functions divided

by the electronic partition function of the product [53], introduced to account for

the probability of a collision occurring on a particular surface.

Complex bimolecular reactions [54] is a particular type of chemical activation

system in which two chemical species react together to produce a short lived,

highly vibrationally excited intermediate complex that can decompose to pro-

duce new products, or re-dissociate to regenerate the original reactants. In the

latter case, there is no net reaction; in the former case, the reaction appears to

be a simple bimolecular process. If the intermediate complex undergoes colli-

sional relaxation, re-dissociation is reduced and production of the new products

is enhanced or the intermediate is stabilized. Because collisional relaxation is

involved, the overall process is pressure-dependent. At ordinary pressures, the

intermediate complex often cannot be isolated.

3.2.3 Energy transfer and chaperon mechanism of recom-
bination process

An exothermic radical + radical recombination reaction produces an excited prod-

uct with enough energy to redissociate. In order to obtain a stable product, the

energy must be removed [55]. In the limit of zero pressure, energy may be lost by

spontaneous infrared emission, resulting in stabilized product molecules [56], but

at higher pressures, interactions with the bath gas are dominant in producing a

stabilized product [57]. In describing the pressure dependence of recombination

process usually two mechanisms must be considered, for lager free radicals at

low to moderate densities, the energy transfer mechanism (ETM), or Lindemann

mechanism, is probably most important, for a process of the type [55–59]

A + B +M → AB +M (3.32)

can be formulated symbolically in terms of the steps

A + B → AB∗ (3.33)

AB⋆ → A+ B (3.34)
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AB⋆ +M → AB+M (3.35)

with steady-state concentrations of AB*, where A and B are reactants, AB is

the product, the asterisk denotes internal excitation, and M is an energy transfer

collider, this leads to a rate expression

d[AB]

dt
= kETM[A][B] (3.36)

with a pseudo-second-order rate coefficient

kETM = k1

(
k2[M ]

k−1 + k2[M ]

)
(3.37)

where the brackets denote concentration, the k1, k−1 and k2 denote the rate

coefficients of reaction (3.33), (3.34) and (3.35), respectively. Eq. (3.37) is easily

interpreted by identifying the maximum value of kETM with the rate constant

k1 for formation of the highly excited unstable adduct AB∗ via reaction (3.33)

and by identifying the parenthesis at the right-hand side of Eq. (3.37) with the

fraction of which is collisionally stabilized by reaction (3.35) rather then being

redissociated via reaction (3.34). Eq. (3.37) is the basis for the strong collision

and master equation versions of the Rice-Ramsperger-Kassell-Marcus (RRKM)

theory [60–62].

At higher densities, lower temperatures, and for smaller reactant species, a

second mechanism may become important, the chaperon mechanism(CM), or

radical complex [55–59].

A +M → M...A (3.38)

M...A → A+M (3.39)

M...A + B → AB+M (3.40)

where the dots emphasize, as usual, the weak nature of the van der Waals (VDW)

bond, and the reaction rate constant is given by

kCM = k4

(
k3[M ]

k−3 + k3[M ]

)
= k4

(
K3[M ]

1 +K3[M ]

)
(3.41)

where K3 = k3/k−3 and the k3, k−3 and k4 denote the rate coefficients of reaction

(3.38), (3.39) and (3.40), respectively. As pointed out elsewhere [55], the ETM is
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used in the conventional analysis of recombination rate data. If the ETM analysis

fails in some way, the CM is often implicated by default. Quantitative assessment

of the ETM is relatively routine because widely available master equation codes

are all based on the ETM [54]. The same is not true of the CM.

3.2.4 Products properties from QCT runs

The end point of a trajectory occurs when it enters a regions of phase space

designated as reactants or products space. Once the product molecules have

been determined by testing interatomic distances, using geometric and energetic

criteria can be determined whether the molecules are in bound, quasi-bound or

dissociative states.

Among the products properties in a QCT run are the relative translational

energy of the formed molecules, the scattering angle between the initial and fi-

nal relative velocity vectors and their vibrational and rotational energies. For

diatomics, almost all of these quantities are straightforward from the coordi-

nates and velocities of the product molecules [17]. For example, vibrational and

rotational quantum numbers are determined for a diatomic from the Eintein-

Brillouin-Keller (EBK) semiclassical quantization condition [63–65]. For poly-

atomics, no general algorithm have been established for finding their vibrational

and rotational quantum numbers [17], mainly due to vibrational-rotational cou-

plings, the multidimensionality of the problem, and possible resonances between

the vibrational modes [17].
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Abstract

An accurate single-sheeted double many-body expansion potential energy surface is

reported for the title system which is suitable for dynamics and kinetics studies of the

reactions N(2D) +H2(X
1Σ+

g ) ⇀↽ NH(a1∆)+H(2S) and their isotopomeric variants. It

is obtained by fitting ab initio energies calculated at the multireference configuration

interaction level with the aug-cc-pVQZ basis set, after slightly correcting semiempiri-

cally the dynamical correlation using the double many-body expansion-scaled external

correlation method. The function so obtained is compared in detail with a potential

energy surface of the same family obtained by extrapolating the calculated raw energies

to the complete basis set limit. The topographical features of the novel global potential

energy surface are examined in detail, and found to be in general good agreement with

those calculated directly from the raw ab initio energies, as well as previous calcula-

tions available in the literature. The novel function has been built such as to become

degenerate at linear geometries with the ground-state potential energy surface of A′′

symmetry reported by our group, where both form a Renner-Teller pair.
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1 Introduction

The reactivity of atomic nitrogen is of fundamental importance in various fields

such as atmospheric chemistry and combustion processes.1 In the first and second

excited states [N(2D) and N(2P )], atomic nitrogen atoms are metastable with

common wisdom attributing to N(2P ) a greater reactivity than ground state

N(4S), while N(2D) is known to be highly reactive.2 During the past decade,

the reaction N(2D) + H2(X
1Σ+

g ) → NH(X3Σ−) + H(2S) has been much studied

both experimentally3–6 and theoretically.1, 2, 7–17 Most such studies have dealt

with the ground electronic adiabatic state potential energy surface (PES), and

the first excited state one (labeled 1 2A′′ and 1 2A′ in Cs symmetry, respectively).

In this case, such studies have often been oriented from the perspective that

the two PESs form a Renner-Teller (RT) pair, a topic that has impact both in

reaction dynamics and spectroscopy beyond the Born-Oppenheimer approxima-

tion. Amongst the theoretical studies, Pederson et al.18, 19 reported accurate

ab initio calculations and global PESs for the lowest (1 2A′′) and second lowest

(1 2A′) electronic states using an interpolation technique known as reproducing

kernel Hilbert space (RKHS). They reveal the degeneracy at linear HNH geome-

tries forming a RT coupled pair of 2Π symmetry. In particular, their 1 2A′ PES

is based on multireference configuration interaction (MRCI) calculations with a

triple-zeta basis set of the correlation consistent type (aug-cc-pVTZ; the popular

notation is generically aug-cc-pVXZ or AVXZ, with X =D, T,Q, 5, ... standing

for the so-called cardinal number that identifies the basis set). It shows a barrier

along the minimum energy path for the N(2D) + H2 reaction of 3.4 kcalmol−1,

before entering a well whose minimum lies about 93.5 kcalmol−1 deeper than the

reactants and finally leading adiabatically to NH(a1∆)+H products with an en-

doergicity of 8.3 kcalmol−1. This is to be compared with the PES for the ground

electronic state of NH2 (1 2A′′) that connects N(2D) + H2 to ground state prod-

ucts [NH(X 3Σ−) + H(2S)] via rather similar topographical attributes, but being

exoergic by 29.4 kcalmol−1 according to their own MRCI/AVTZ calculations.

Despite connecting adiabatically reactants to NH(a1∆) + H products, there

is a possibility that collisions occurring on the 1 2A′ PES may lead to ground

state products via the non-adiabatic RT interaction mentioned above. Thus, the
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1 2A′ excited state PES of NH2 may have an impact on the overall dynamics

and kinetics of the N(2D) + H2 reaction, not to mention its well known role in

the spectroscopy of the ground state molecule. Indeed, quasiclassical trajectory

calculations18, 19 and quantum mechanical reactive scattering studies20 carried out

on such PESs have shown satisfactory agreement with the experimental results.

Calculations of PESs for the above two electronic states of NH2 have also

been performed by Qu et al.13 using the MRCI approach, mostly with the AVQZ

basis set and cubic-spline fits for the representation. Similar calculations have

been reported for the ground-state (1 2A′′) PES by Varandas and Poveda,14 with

the novelty being its representation via a switching function formalism within

the double many-body expansion (DMBE) strategy for single-sheeted functions.

Such a DMBE function has its global minimum 126.4 kcalmol−1 below the en-

ergy of the reactants, while the products lie 97.6 kcalmol−1 above the minimum.

Thus, reaction occurs on the ground state DMBE form with an exoergicity of 28.8

kcalmol−1. Of relevance is also the fact that the minimum of D∞h symmetry (to-

pographically a saddle point in 3D) occurs about 33.7 kcalmol−1 above the global

minimum of the 1 2A′′ PES where it becomes degenerate with the corresponding

D∞h minimum of the 1 2A′ PES forming a RT pair of states. Since the minimum

of the 1 2A′ PES is predicted in this work to lie 94.58 kcalmol−1 below reactants,

it follows that the energy for optimized bending is 1.92 kcalmol−1 on this PES,

in good agreement with other available estimates.13, 21

An aspect of the N(2D) + H2(X
1Σ+

g ) reaction dynamics that has not been

sufficiently studied is the role of excited electronic states. There are five dou-

blet states that correlate to N(2D) + H2(X
1Σ+

g ), and one of the excited states

(1 2A
′

) may have important implications on such dynamics studies [for a recent

publication that addresses this issue for the N(2D)+HD reaction, see Ref. 22] as

suggested by the correlation rules:

NH2(1
2A

′

) →N(2D) + H2(X
1Σ+

g ) (1)

→NH(a1∆) + H(2S) (2)

→N(2D) + H(2S) + H(2S) (3)

The major goal of the present work is therefore to report an accurate global PES

for NH2(1
2A

′

) based on DMBE theory.23–26 Being a fragment of larger NxHy
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species like those of relevance in studying the synthesis of ammonia, such a PES

may then be of key importance also for constructing DMBE forms for such larger

systems. Indeed, this has been a major motivation for modeling an accurate

single-sheeted DMBE function for the title system. To calibrate such a function,

a few thousand ab initio points have been calculated at the MRCI27, 28 level us-

ing the full valence complete active space (FVCAS)27 reference function with the

AVQZ basis set. For improved accuracy, the raw ab initio energies are corrected

semiempirically using the double many-body expansion-scaled external correla-

tion (DMBE-SEC29) method such as to extrapolate to the limit of a one-electron

complete basis set (CBS) and full CI expansion; this PES will be denoted hereafter

as DMBE/SEC. The DMBE/SEC function so obtained will then be compared in

detail with another of the same family but calibrated from energies obtained by

extrapolating the calculated raw ones to the CBS limit.30 For this, 2210 MRCI

points have been calculated using both AVTZ and AVQZ basis,31, 32 being the

final PES denoted as DMBE/CBS. Suffice it to indicate at this point that the

uniform singlet- and triplet-electron pair extrapolation (USTE) scheme33, 34 has

been utilized on this endeavor for the dynamical correlation energy, by far the

most difficult contribution to obtain accurately via ab initio techniques. As usual

in DMBE theory,23–26 both the DMBE/SEC and DMBE/CBS PESs show the

correct long-range behavior at all dissociation limits.

The paper is organized as follows. Section 2 describes the ab initio calcula-

tions, while the analytical representation of the PES is discussed in section 2.

Specifically, section 3.1 focuses on the two-body energy terms, while section 3.2

is devoted to three-body ones. Section 3.3 discusses the Renner-Teller degener-

acy. The main topographical features of the NH2(1
2A

′

) PES will be examined in

section 3, while some conclusions are gathered in section 4.

2 Computational details

2.1 Ab initio calculations and scaling of external correla-
tion

To map the DMBE/SEC PES, a total of 2454 points has been calculated for

N − H2 regions defined by 1.2 ≤ RH2
/a0 ≤ 3.6, 0.4 ≤ rN−H2

/a0 ≤ 10, and
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0 ≤ γ/ deg ≤ 90 while, for H − NH, they cover geometries defined by 1.8 ≤

RNH/a0 ≤ 3.6, 1.2 ≤ rH−NH/a0 ≤ 10, and 0 ≤ γ/ deg ≤ 180; R, r, and γ are

atom-diatom Jacobi coordinates. All ab initio energies have been obtained at the

MRCI27, 28level with the Molpro35 package for electronic structure calculations,

using the FVCAS27 wave function as reference. This involves 7 correlated elec-

trons in 6 active orbitals (5a′ + 1a′′), amounts to a total of 82 configuration state

functions. The AVQZ atomic basis sets36 of Dunning have been employed. For

simplicity, core effects have been neglected by freezing the core electrons. Despite

being a seemingly unacceptable simplification when aiming at high-accuracy re-

quirements, its impact will be clarified along the paper. Of course, such improved

calculations should, for consistency, not be done with the standard basis sets de-

scribed above but with correlation consistent core-valence ones. Along this line of

reasoning, one should further recall that other effects, often of competitive mag-

nitude, are altogether also neglected, namely, relativistic and nonadiabatic ones.

A final pragmatic reason for improving cost-effectiveness of the calculations stems

from the observation that the data are going to be modeled with an accuracy that

probably falls close to or even exceeds the error that can be attributed to the ne-

glect of such core correlation effects. This does not imply that a high-accuracy

PES cannot be envisaged within our scheme. On the contrary, we generally advo-

cate a dual-level approach, where the first step involves a relatively modest cost

study such as the present one and a second step involves an independent study

involving a direct fit to available spectroscopic data, as suggested elsewhere.37, 38

In addition to the reasons already mentioned in the previous paragraph, a

major one for adopting the frozen core approximation lies on the fact that the

raw ab initio energies are subsequently corrected semiempirically (although this

involves only a correction of tiny magnitude, it can be of significant impact on

dynamics attributes) with the DMBE-SEC method such as to account for elec-

tronic excitations beyond singles and doubles, (core effects) and most importantly

for the incompleteness of the basis set. The total DMBE-SEC interaction energy

assumes the form29

V (R) = VCAS(R) + VSEC(R) (4)
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where

VCAS(R) =
∑

AB

V
(2)
AB,CAS(RAB) + V

(3)
ABC,CAS(R) (5)

VSEC(R) =
∑

AB

V
(2)
AB,SEC(RAB) + V

(3)
ABC,SEC(R) (6)

where CAS is a simplified notation for FVCAS and R=
{
RAB, RAC , RBC

}
is a

collective variable of all internuclear distances. Explicitly, the terms in Eq. (6)

assume the form:

V
(2)
AB,SEC(RAB) =

V
(2)
AB,CAS−CISD(RAB)− V

(2)
AB,CAS(RAB)

F
(2)
AB

(7)

V
(3)
ABC,SEC(R) =

V
(3)
ABC,CAS−CISD(R)− V

(3)
AB,CAS(R)

F
(3)
AB

(8)

As usual, F
(2)
AB in Eq. (7) is chosen such as to reproduce the bond dissociation

energy of the corresponding AB diatomic, while F
(3)
AB is estimated as the average

of the three two-body F-factors. In this work, F
(2)
HH = 0.9050, F

(2)
NH =0.9340, and

F
(3)
NHH = 0.9243.

2.2 Further ab initio calculations and extrapolation to

CBS limit

A further consistency test to the reported DMBE/SEC PES will be made by

producing another function of the same family but purely ab initio and based on

the extrapolation of the correlation energy to the one-electron CBS limit. For

this, a total of 2210 points (out of the 2454 considered before) has been utilized

to map the DMBE/CBS function. Note that these calculations covered the same

configuration space as in section 2.1 but only at the MRCI(Q)/AVTZ level such

as to form the energy-pairs required by the CBS/(T,Q) approach here utilized.

Thus, only a small fraction of additional computational time (typically an order

of magnitude smaller) has been required.

Built in a systematic manner that is intended to relate the correlation energy

to the cardinal number X , Dunning’s correlation consistent basis sets allow the

extrapolation of the raw energies to the CBS limit. To perform the extrapolation,
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the MRCI(Q) energy is treated as usual in split form by writing33

EX(R) = ECAS
X (R) + Edc

X (R) (9)

where the subscript X indicates that the energy has been calculated in the AVXZ

basis, and the superscript dc stands for the dynamical correlation energy. Note

that all extrapolations are carried pointwise, and hence the vectorR of the nuclear

geometrical coordinates will be omitted for simplicity.

To extrapolate the CAS energy (uncorrelated in the sense of lacking dynam-

ical correlation), a proposed33 generalization of the protocol adopted by Karton

and Martin39 (KM) to extrapolate single-reference self-consistent-field energies is

utilized:

ECAS
X = ECAS

∞ +B/Xα (10)

where α is a predefined constant. Being a two-parameter protocol (ECAS
∞ , B), a

minimum of two raw energies will be required for the extrapolation. Specifically,

Eq. (10) will be calibrated from the CAS/AV(T,Q)Z energy pairs, using a value

of α = 5.34 which has been found optimal when extrapolating HF energies to the

CBS limit.

For the dynamical correlation, a popular two-parameter CBS protocol is40

Edc
X = Edc

∞ +
A3

(X + α)3
(11)

where Edc
X is the dynamic correlation energy obtained with the X-tuple basis

set. Although Eq. (11) is known to perform accurately when extrapolating from

energies based on large cardinal number pairs, its performance is significantly less

satisfactory when using the (T,Q) pair. A more reliable scheme is the recently

suggested USTE33 model (see also Ref. 41). This has its basis on the three-

parameter protocol

Edc
X = Edc

∞ +
A3

(X + α)3
+

A5

(X + α)5
(12)

with A5 being determined from the auxiliary relation

A5 = A5(0) + cAm
3 (13)
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where E∞, A5(0), A3, c, m, and α are parameters. By fixing α, A5(0), c and

m from other criteria (none utilizing data alien to the employed ab initio the-

ory), Eq. (12) can then be transformed into an (E∞, A3) two-parameter rule.33

Using USTE, it has been shown in Ref. 33 that both the full correlation in

systems studied by the popular single-reference Møller-Plesset (MP2) and cou-

pled cluster [CCSD and CCSD(T)] methods as well as its dynamical part in

MRCI(Q) calculations can be accurately extrapolated to the CBS limit. In par-

ticular, for the dynamical correlation of 24 systems studied33 using the MRCI(Q)

method, the optimum values of the “universal-like” parameters were found to be

A5(0) = 0.0037685459, c=−1.17847713E
−5/4
h and m= 5/4, with α =−3/8. In

fact, the method has since been successfully utilized for a variety of other sys-

tems,33, 42–47 either in its original version (USTE) or a slightly generalized variant

(GUSTE48). The USTE/(T,Q) scheme will then be employed here to extrapolate

the dynamical correlation in NH2(1
2A

′

). Since electronic degeneracies are often

present in global PESs, including the present one, it is appropriate to note that

this may pose a subtle issue on extrapolation schemes. In fact, not only the loca-

tion of the CI may differ in the two chosen bases but also a given basis set may

prove to have somewhat different qualities when utilized for different electronic

states.46 Since this may cause small distortions on the data to be fitted, it is

advocated by placing the raw ab initio points slightly away from such topologi-

cal features and interpolating the CBS extrapolated data subsequently using the

chosen functional form, here DMBE.

3 Single-sheeted DMBE potential energy surface

Within the framework of DMBE theory,14, 49 the single-sheeted PES is written

as

V (R) =
∑

x=EHF,dc

[
3∑

i=1

V (2)
x (Ri) + V (3)

x (R)

]
(14)

where V (2) and V (3) are the two- and three-body terms in the cluster expansion

of the CAS (this will be denoted as extended-Hartree-Fock, EHF) and dynamical

correlation energies.

As usual in the DMBE formalism, the EHF contributions are calibrated by
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fitting ab initio data to a suitable, physically motivated, functional form. In

turn, the dc energies are modeled to a function that uses ab initio long-range

dispersion energy coefficients, eventually estimated at the same level of ab initio

theory. When judged relevant, ab initio induction and electrostatic long range

coefficients are also taken into consideration in modeling the long range parts of

the PES. Thus, no empirical information is required for the construction of the

final PES using DMBE theory, although the method affords sufficient physical

content to be usable semi-empirically when judged convenient. The following

sections give the details of the specific forms that are employed in Eq. (14).

3.1 Two-body energy terms

The potential curves for the two-body fragments are based on the extended

Hartree-Fock approximate correlation energy method for diatomic molecules in-

cluding the united atom limit50 (EHFACE2U), and hence show the correct be-

havior at the asymptotic limits when R → 0 or R → ∞. They are given by the

sum of V
(2)
EHF and V

(2)
dc contributions for each pair. Specifically, the two-body EHF

term is written as

V
(2)
EHF(R) = −

D

R

(
1 +

n∑

i=1

αir
i

)
exp(−γr) + χexc(R)V

asym
exc (R) (15)

where

γ = γ0[1 + γ1 tanh(γ2r)] . (16)

and

V asym
exc (R) = −ÃRα̃(1 + α̃1R + α̃2R

2)exp(−γ̃R) (17)

is the asymptotic exchange energy, χexc(R) a convenient damping function that

accounts for charge overlap effects, and r = R− Re the displacement coordinate

relative to equilibrium geometry. In turn, the two-body dynamical correlation

V
(2)
dc assumes the form

V
(2)
dc (R) = −

∑

i=6,8,10

Cnχn(R)R
−n (18)

where

χn(R) =

[
1− exp

(
−An

R

ρ
− Bn

R2

ρ2

)]n
(19)
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is a charge-overlap dispersion damping function. Moreover, An = α0n
−α1 and

Bn = β0 exp(−β1n) are auxiliary functions;23, 51 α0 = 16.36606, α1 = 0.70172,

β0 = 17.19338, and β1 =0.09574. In turn, for the atom-pair JK, the scaling pa-

rameter is defined by ρ = 5.5+ 1.25(〈r2J〉
1/2

+ 〈r2K〉
1/2

). Finally, the coefficients in

Eqs. (3)-(7) are chosen to reproduce available theoretical data for the diatomic as

described elsewhere.23, 50 For a slightly improved accuracy, the EHFACE2U po-

tential energy curve for the ground state H2(X
1Σ+

g ) reported in Ref. 52 has been

adopted in the present work. For imidogen, NH(a1∆), the potential curve has

been chosen to mimic the SEC/MRCI ab initio energies here reported. All pa-

rameters are gathered in Table 1 of the Supplementary Information (SI). As seen,

the value of the diatomic equilibrium geometry (Re = 1.974 a0) is in very good

agreement with the experimental value of 1.973 a0
53 and the recent theoretical

values of 1.975 a0
54 and 1.976 a0.

13

3.2 Three-body energy terms

The three-body dynamical correlation is written as52

V
(3)
dc = −

∑

i

∑

n

fi(R)C
(i)
n (Ri, θi)χn(ri)r

−n
i (20)

where ri, θi andRi are the Jacobi coordinates corresponding to a specific geometry

of the triatomic and fi =
1
2

{
1− tanh[ξ(ηRi −Rj −Rk)]

}
is a switching function.

Following recent work on NH2(1
2A

′′

),14 the parameters have been fixed at η=6,

ξ=1.0a−1
0 , and ρ=16.125a0. Regarding χn(ri), Eq. (7) is still adopted but R is

replaced as usual by the center-of-mass separation for the relevant atom-diatom

channel. In turn, the atom-diatom dispersion coefficients in Eq. (20) assume their

typical form

C(i)
n (Ri) =

∑

L

CL
n (R)PL(cosθi) (21)

where PL(cos θi) denotes the L-th Legendre polynomial. The expansion in Eq. (21)

has been truncated by considering only the coefficients C0
6 , C

2
6 , C

0
8 , C

2
8 , C

4
8 and

C0
10; all other coefficients are assumed to make a negligible contribution, and

hence neglected. Furthermore, the atom-diatom dispersion coefficients assume
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Table 1. Accumulated (acc.) and stratum (strat.) root-mean-square deviations
(in kcalmol−1) of DMBE/SEC PES.

Energy Na max. dev.b rmsd N c> rmsd
Acc. Strat. Acc. Strat. Acc. Strat. Acc. Strat. Acc. Strat.

10 0-10 235 235 0.053 0.053 0.005 0.005 26 26
20 10-20 290 55 0.372 0.372 0.028 0.065 8 2
30 20-30 310 20 0.982 0.982 0.076 0.280 7 3
40 30-40 332 22 1.659 1.659 0.212 0.774 15 7
50 40-50 353 21 1.659 1.383 0.234 0.454 23 6
60 50-60 374 21 2.984 2.984 0.343 1.085 31 5
70 60-70 394 20 2.984 2.554 0.418 1.113 41 4
75 70-75 407 13 2.984 2.253 0.442 0.904 45 3
80 75-80 436 29 3.729 3.729 0.564 1.428 52 8
90 80-90 491 55 3.729 2.939 0.650 1.121 77 17
100 90-100 703 212 3.729 3.151 0.668 0.706 121 44
125 100-125 1529 826 3.729 3.564 0.689 0.707 279 156
150 125-150 1889 360 3.729 2.906 0.717 0.825 391 101
175 150-175 2231 342 3.965 3.965 0.772 1.022 474 93
200 175-200 2450 219 3.965 3.929 0.806 1.095 528 51

a Number of calculated MRCI/SEC points up to the indicated energy range. b Maxi-

mum deviation up to the indicated energy range. c Number of calculated MRCI/SEC

points with an energy deviation larger than the root-mean-square deviation.

the usual form

CL,A−BC
n (R) = CL,AB

n + CL,AC
n +DM

(
1 +

3∑

l=1

air
i

)
exp

(
3∑

l=1

bir
i

)
(22)

Since Eq. (21) is known to cause an overestimation of the dynamical correla-

tion energy at the atom-diatom dissociation channels,52 the two-body dynamical

correlation energy for the ith pair has been multiplied by Πj 6=i(1− fj). This en-

sures37, 52 that the only two-body contribution at the i-th channel will be the jk

one. The parameters in Eqs. (20)-(22) have been taken from Ref. 14 for ground

state NH2, with the notation and numerical values kept unchanged to prevent

any confusion.

By removing, for a given triatomic geometry, the sum of the two-body energy

terms from the corresponding interaction energies, one obtains the total three-

body energy. By then subtracting the three-body dynamical correlation contri-
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bution in Eq. (20) from the total three-body energy, the three-body EHF energy

contribution is obtained. This has been modeled via the three-body distributed-

polynomial14, 55 form

V
(3)
EHF =

3∑

j=1

{
P (j)(Q1, Q2, Q3)

3∏

i=1

{
1− tanh[γ

(j)
i (Ri −R

(j),ref
i )]

}}
(23)

where the polynomials P (j)(Q1, Q2, Q3) are written in terms of symmetry coordi-

nates, being all of order three. In turn, R
(j),ref
i is a reference geometry, and γ

(j)
i

nonlinear range-determining parameters that have been optimized via a trial-and-

error procedure that minimizes the root-mean-squared deviation (rmsd) while

warranting the proper asymptotic behavior on dissociation. The complete set of

parameters totals 150 linear coefficients, 9 nonlinear ones, and 9 reference bond

distances. For the DMBE/SEC PES, a total of 2454 points covering an energy

range of over 210 kcal mol−1 above the NH2 global minimum has been utilized

in the least-squares fit, with special weights having been attributed to the points

close to stationary points. Table 2 gathers the reference geometries and nonlinear

range-determining parameters, while Table 3 collects the linear ones, both given

as SI. The partial and accumulated stratified rmsd of the final DMBE/SEC PES

with respect to all fitted energies are given in Table 2. As shown, the DMBE/SEC

form fits regions up to the linear and C2v barriers (100 kcalmol−1 above the global

minimum) with a rmsd smaller than 0.67 kcalmol−1 and a maximum unsigned

deviation smaller than 3.8 kcalmol−1. Only 17.2% of the fitted points deviate by

more than the rmsd value.

As already noted, the DMBE/CBS PES has employed a total of 2210 points

for the fit covering an energy range of over 210 kcal mol−1 above the NH2 global

minimum. Special fitting weights have been also attributed to the points close to

stationary points. Table 4 of the SI gathers the reference geometries and nonlinear

range-determining parameters, while Table 5 of the SI collects the linear ones.

The rmsd of the final DMBE/CBS PES with respect to all fitted ab initio energies

are given in Table 2. As shown, the fit up to the linear and C2v barriers shows

a rmsd smaller than 0.34 kcalmol−1 and a maximum unsigned deviation smaller

than 2.4 kcalmol−1. Of the fitted points, only 13.5% show a deviation larger

than the corresponding rmsd value. Thus, both DMBE PESs fit the data with a
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Table 2. Accumulated (acc.) and stratum (strat.) root-mean-square deviations
(in kcalmol−1) of DMBE/CBS PES.

Energy Na max. dev.b rmsd N c> rmsd
Acc. Strat. Acc. Strat. Acc. Strat. Acc. Strat. Acc. Strat.

10 0-10 237 237 0.034 0.034 0.003 0.003 19 19
20 10-20 290 53 0.081 0.081 0.009 0.020 18 7
30 20-30 308 18 0.179 0.179 0.024 0.093 17 7
40 30-40 326 18 0.485 0.485 0.050 0.186 27 6
50 40-50 344 18 0.677 0.677 0.088 0.323 33 5
60 50-60 360 16 1.111 1.111 0.149 0.575 38 5
70 60-70 376 16 1.360 1.360 0.200 0.665 43 5
75 70-75 385 9 1.360 1.024 0.224 0.684 45 4
80 75-80 406 21 2.307 2.307 0.286 0.817 44 5
90 80-90 445 39 2.307 1.805 0.343 0.700 60 11
100 90-100 697 252 2.307 1.700 0.333 0.316 94 33
125 100-125 1434 737 2.307 2.125 0.380 0.420 234 137
150 125-150 1735 301 3.118 3.118 0.452 0.699 342 80
175 150-175 2020 285 3.118 2.345 0.470 0.569 431 82
200 175-200 2207 187 3.118 1.996 0.469 0.460 468 37

a Number of calculated MRCI/CBS points up to the indicated energy range. b Maxi-

mum deviation up to the indicated energy range. c Number of calculated MRCI/CBS

points with an energy deviation larger than the root-mean-square deviation.

stratified rmsd ≪ 1% of the stratum energy.

3.3 Treatment of the Renner-Teller degeneracy

The interaction between the various electronic states of NH2 is intricate,2, 13 es-

pecially at the NH + H channel. As noted elsewhere,13, 56 stretching of a N − H

bond in linear H−N−H makes the 2Π ground-state conically intersect the 2Σ−,
2∆, and 2Σ+ ones, which correlate with different states of the NH +H products.

As a result, the ground state 1 2A′′ PES (which correlates with the X 3Σ− state of

NH), can also yield 2Π product NH diatomics. Similarly, the 1 2A′ excited state

[which correlates with NH(a 1∆)] may form either 2Π or 2∆ states of NH. This

may be explained from the fact that the ground (1 2A′′) and first-excited (1 2A′)

states become degenerate at small HN−H bond distances for linear geometries.

To study the RT coupling, it is critical that the 1 2A′ and 1 2A′′ PESs show
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Table 3. Stationary points at the valence region of NH2(1
2A′) PES.

Feature R1/a0 R2/a0 R3/a0 V/Eh
a ∆V b/kcalmol−1 ωsym ωasym ωsym

Global minimun
DMBE-SECc 3.5914 1.8819 1.8819 −0.3252 −94.58 3639 3953 978
DMBE/SECd 3.5899 1.8807 1.8807 −0.3252 −94.58 3641 3956 985
DMBE-CBSe 3.5943 1.8836 1.8836 −0.3272 −95.85 3638 3952 979
DMBE/CBSf 3.5927 1.8824 1.8824 −0.3272 −95.85 3631 3944 982
RKRSg 3.5555 1.8763 1.8763 −93.5 3615 3912 1056

C2vbarrier
DMBE/SECd 1.4190 3.8150 3.8150 −0.1692 3.29 4359 583i 253
DMBE/CBSf 1.4195 3.8150 3.8150 −0.1703 2.64 4291 496i 399
RKRSg 1.42 3.768 3.768 3.39 4218 558i 446

C∞vbarrier
DMBE/SECd 1.4135 3.0458 4.4592 −0.1650 5.96 4454 671i 597i
DMBE/CBSf 1.4087 2.6656 4.0742 −0.1647 6.13 4254 882i 532i
RKRSg 1.48 2.95 4.43 4.61 1612 2184i 914i

D∞hbarrier
DMBE/SECd 3.7418 1.8709 1.8709 −0.3221 −92.66 3676 7029 1166i
DMBE/CBSf 3.7389 1.8695 1.8695 −0.3241 −93.92 3676 7030 1201i

a Relative to the N(2D)+H+H asymptote. b Relative to the N(2D)+H2 asymptote . c Fitted to a dense grid of MRCI/AVQZ

points, which is then scaled using the DMBE-SEC method. d From global DMBE/SEC PES. e Fitted to a dense grid of

extrapolated CBS/MRCI(Q) /AV(T,Q)Z points. f From global DMBE/CBS PES. g RKHS PES (Ref.19).
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Table 4. Attributes of N(2D)−H2 van der Waals stationary points.

DMBE/SECa DMBE/CBSb

Feature C2v min.c C∞v min.c Cs s.p.
d C2v min.c C∞v min.c Cs s.p.

d

R1/a0 1.4012 1.4024 1.4017 1.4019 1.4014 1.4009
R2/a0 6.1625 5.9056 5.9793 5.8288 5.7287 5.8088
R3/a0 6.1625 7.3080 6.9162 5.8288 7.1301 6.7053
V e −0.17475 −0.17475 −0.17473 −0.17499 −0.17498 −0.17492
∆V f −0.1739 −0.1735 −0.1583 −0.3232 −0.3170 −0.2820
ω1(intra)/cm

−1 4417 4395 4406 4390 4390 4397
ω2(inter)/cm

−1 80 72 73 146 111 111
ω3(bend)/cm

−1 79 66 65i 104 95 94i

a From global DMBE/SEC PES. b From global DMBE/CBS PES. c Van der Waals

minimum. d Saddle point connecting the two van der Waals minima. e Relative to

the N(2D) + H + H asymptote (in Eh).
f Relative to the N(2D) + H2 asymptote (in

kcalmol−1).

the correct topology at the linear degeneracy locus where both form a RT pair.

Because the 1 2A′′ state PES previously reported is of DMBE/SEC type, we refer

explicitly in this work to the excited state 1 2A′ DMBE/SEC PES. In fact, due

to their similar accuracies, the RT degeneracy can simply be imposed (when

using DMBE/SEC) by appropriate weighting of the dense grid of raw energies

which has been calculated to model the degeneracy locus. Since there might

still occur some tiny difference due to its least-squares nature, we adopted in the

SEC case too the procedure described next for further accuracy. For the 1 2A′

DMBE/CBS PES, a somewhat different procedure has been envisaged to ensure

a smooth degeneracy behavior. Specifically, the excited state 1 2A′ PES has been

written as

V ′(R) = V (R)(1− f(R)) + V ′′(R)f(R) (24)

where V (R) is the excited state 1 2A′ DMBE/CBS PES as defined in Eq. (14),

and V ′′(R) is the ground state 1 2A′′ PES reported in Ref. 14. In turn, f(R) is a

three-dimensional switching function which has been conveniently written as

f(R) = fHH(R1)fNH(R2)fNH(R3)fθ(θ) (25)
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where

fHH(R1) =
1

2

{
1− tanh[α(R1 −R0

1)]
}

(26)

fNH(R2) =
1

2

{
1− tanh[α(R2 −R0

2)]
}

(27)

fθ(θ) = exp {−[β(Cos(θ)− 1)]γ} (28)

with θ being the H−N−H bending angle, and the remaining symbols having

the meaning previously assigned. The parameters in Eq. (25) have been calcu-

lated using a trial-and-error procedure ensuring that the 1 2A′′ and 1 2A′ PESs

become degenerate at HNH linear geometries with small NH bond lengths. Such

a procedure led to α = 7.0 a−1
0 , β = 104, γ = 1.5, R0

1 = 5.2 a0 and R0
2 = 3.0 a0.

Needless to say, the above procedure warrants the RT degeneracy but not the

degeneracy at the N(2D) + H2 asymptote [due to the small difference between

the CBS and SEC values of the N(2D) energy]. However, one may approximately

cope with this too in two steps, first by applying the procedure described in eq

24 to warrant the RT degeneracy and then using a procedure similar to this to

impose degeneracy at the asymptote. This second step has not been carried out

in the SI material.

4 Features of the NH2(1
2A

′

) potential energy surface

The optimized C2v bending curve of the NH2(1
2A

′

) DMBE/SEC PES is displayed

in Figure 1 as a function of the bending angle, with the bond distance of NH op-

timized at each angle. Also shown for comparison in this figure is the bending

curve of the accurate DMBE/CBS PES. Note that the barrier to linearity calcu-

lated from the DMBE/SEC PES is 673 cm−1, This compares well with the one

of 674 cm−1 obtained from the DMBE/CBS PES, which is predicted to be only

1 cm−1 smaller. The near parallel behavior of the DMBE/SEC and DMBE/CBS

PESs is highlighted in the bottom panel of Figure 1, with DMBE/CBS predicting

a slightly deeper well depth. This may largely be due to the fact that the DMBE-

SEC method employs a single constant scaling factor for all points calculated with

the AVQZ basis set. It may also be due to the fact that the MRCI energies uti-

lized to calibrate the DMBE/CBS form include the Davidson correction. This
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suggests that the DMBE-SEC scheme slightly underestimates such a popular cor-

rection, a finding also supported from our recent work on the ground state NH2
14

and SH2
47 systems. Quantitatively, the energy difference at the global minimum

in Figure 1 amounts to ∼ 1.25 kcalmol−1, with the well depths calculated rela-

tive to the three-atom dissociation limit being −0.3252 Eh and −0.3272 Eh for the

DMBE/SEC and DMBE/CBS PESs, respectively. Thus, the well depth at equi-

librium NH2(1
2A

′

) is enhanced by ∼ 0.0036 Eh (2.25 kcalmol−1) by the Davidson

correction. In fact, if this is not included for the AVTZ and AVQZ energies, the

CBS well depth would be 0.3272− 0.0036 = 0.3236 Eh, thus only∼ 1.0 kcalmol−1

smaller than the well depth of the DMBE/SEC PES. Not surprisingly, as seen

from Figure 2, the parallelism noted above largely disappears when one considers

the optimized path for insertion of N(2D) into H2. This is likely attributable to

the very nature of the least-squares fit as the deviations fall on average close to

the values given above. The above results then corroborate the high reliability

and consistency of the CBS and DMBE-SEC methods. Needless to say, it cannot

be discarded that the above differences may partly be attributable also to the

fact that core correlation effects are absent in the CBS energies while they are

effectively taken into account in the empirical SEC correction.

Table 3 compares the attributes of the stationary points of the DMBE/SEC

and DMBE/CBS PESs for NH2(1
2A

′

) with those of other potentials, especially

the most recent RKHS form of Ref. 19. The predicted geometry of the station-

ary points is seen to be basically coincident with those reported by Pederson et

al.,19 who have based their PES on MRCI calculations using AVTZ basis set.

Such a good agreement is not entirely unexpected as the DMBE/SEC surface

has been obtained from a fit to SEC/MRCI with AVQZ raw energies, while the

DMBE/CBS surface has been obtained from a fit to CBS(T,Q)/MRCI(Q) raw

energies. This may also explain the fact that the DMBE/CBS PES predicts a

slightly deeper well depth than the DMBE/SEC one. Moreover, Table 3 shows

that the features of the other transition states in the DMBE/SEC PES are in

quite good agreement with the results from DMBE/CBS, although this predicts

a slightly deeper well depth. As for the harmonic frequencies, they are predicted

from the DMBE/SEC PES to be 3641, 3956, and 985 cm−1, whereas the corre-

sponding values calculated from a fit to a dense grid of SEC/MRCI/AVQZ points
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Figure 3. Contour plot for bond stretching in H − N − H, (a) included angle
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0.02 Eh in plot (a)and 0.015 Eh for (b), starting at −0.32 Eh. The energy zero is
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near the equilibrium geometry are 3639, 3953, and 978 cm−1. Clearly, both sets

of values show an excellent agreement with each other. Table 3 also shows that

the harmonic frequencies are very similar for the CBS and DMBE/CBS surfaces,

with the differences being smaller than 10 cm−1. We emphasize that a dense grid

of points has been calculated in the vicinity of the global minimum, with the rmsd

of the DMBE least-squares fit to such points being ∼ 0.03 cm−1 and a maximum

deviation of < 0.034 kcalmol−1 (see Table 2). For C2v insertion of N(2D) into H2,

the DMBE/SEC PES predicts a barrier height only 0.1 kcalmol−1 lower than the

one of Ho et al.19 In fact, Table 3 shows that a fairly good agreement also exists

between the DMBE/CBS and RKHS19 PESs as far the vibrational frequencies

are concerned: the largest absolute deviations do not generally exceed 75 cm−1.

The deviations remain small when comparing the DMBE/SEC and DMBE/CBS

results, which corroborates the high quality of both fits. The barrier height

of the saddle point at C∞v (N − H − H) geometries is seen to be larger than

the previous best theoretical value. Perhaps not surprisingly, somewhat larger

differences are also observed for the corresponding harmonic frequencies. Unfor-

tunately, no results are available for comparison for the D∞h (H−N−H) barrier.

Despite this, there is a fairly good agreement between the results obtained from

the DMBE/SEC and DMBE/CBS forms. So, we may judge the DMBE func-

tion here reported as providing an accurate representation of the true PES at

the chosen level of theory. A technical detail to note that the dense grids of ab

initio points near the stationary points have been highly weighted in the fitting

procedure, thus warranting an accurate description of the topographical features

of the PES at such regions.

Figures 3 to 13 illustrate the topographical features of the NH2(1
2A

′

) DMBE/SEC

PES (the corresponding Figures for DMBE/CBS are shown in Figures 1-11 of the

SI). Clearly, it has a smooth and correct behavior over the whole configuration

space. Also visible from these plots are its major stationary points: C2v, C∞v and

D∞h barriers, and the global minimum. Specifically, Figure 3 shows a contour

plot for bond stretching in H-N-H keeping the included angle fixed at 145.3 deg.

The prominent feature is the global minimum, which corresponds to the point

of minimum energy at 145.3 deg in the optimized bending plot of Figure 5. It

is observed that the ground state 1 2A′′ and excited state 1 2A′ PESs become
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degenerate at the 2Π line of linear geometries, as they should according to the
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MRCI calculations for small bond lengths. Not surprisingly, the excited state

1 2A′ predicts the same optimum energy and bond length at D∞h geometry as

the ground state 1 2A′′ PES; such a structure corresponds to the maximum at

180 deg in the optimized bending plot of Figure 5. The notable feature from this

plot is the fairly good agreement between our optimized bending curve and the

one we have directly optimized at SEC/MRCI/AVQZ level. In turn, Figure 4

shows a contour plot for the C2v insertion of the nitrogen atom into the hydrogen

molecule. Visible from this plot are the stationary points corresponding to C2v

and D∞h barriers, and the global minimum.

Figures 7 and 8 illustrate the long range regions of the DMBE/SEC PES

which have been fitted such as to provide a reliable description of the van der

Waals minimum for the N − H2 interaction. Note that it shows a flat van der

Waals valley, with two minima: one at a C2v geometry and the other at a C∞v

one. Of these, the deepest minimum refers to the T-shaped structure, although

the well depth is only 0.0004 kcalmol−1 (0.14 cm−1) larger than the collinear one;

see Table 4 for other attributes. As shown in the insert of Figures 7 and 8,

the final DMBE/SEC form reproduces quite satisfactorily all such topographical

features. Thus, the NH2(1
2A′) PES shows a topography rather similar to the

ground state when evaluated at the same level of theory. It should be noted

at this point that the single-state CAS self-consistent-field (CASSCF) reference

wave function that has been utilized for the CI should, in principle, yield a better

description of the PES than usually do16 state-averaged CASSCF ones, although

this by no means implies that the latter approach cannot be useful when aiming

at a more uniform description of the various electronic states under theoretical

scrutiny. The minimum energy paths of the DMBE/SEC PESs for C2v insertion

of N(2D) into H2 are shown in Figure 9; r is the distance from N to the center

of HH, with the HH bond length optimized at each value of r. visible from this

plot are the small maxima corresponding to the C2v saddle points, the minima,

and D∞h barriers for linearity. Also visible is, of course, the RT degeneracy of

the 1 2A′′ and 1 2A′ PESs at linearity .

Figure 10 shows the isotropic and leading anisotropic components of the N-

H2 interaction potential, two important quantities of relevance in atom-diatom

scattering.57 Specifically, the isotropic potential V0 determines how close on av-
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erage the atom and molecule can approach each other, while the magnitude of V2

indicates whether or not the molecule prefers to orient its axis along the direc-

tion of the incoming atom: a negative value favors the collinear approach while

a positive value favors the approach through an isosceles triangular geometry.

The barrier in V0 located near 3.58 a0 (see Figure 10) corresponds to the C2v

transition state, as corroborated by the positive value of V2 at such a distance.

Correspondingly, the sign of V2 at distances larger than 7.18 a0 is negative favor-

ing a collinear atom-diatom approach, but become positive at ∼ 6.34 a0 where the

van der Waals minimum of the isotropic curve occurs. This conforms with the

fact that the deepest well is associated to the T-shaped van der Waals structure.

Note that the N+H2 reaction has been shown to display a preference for the in-

sertion mechanism, and hence such subtle details may have practical implications

for scattering calculations, especially at low collision energies.

The interaction between electronic states of NH2 is intricate,
2, 13 especially in

the NH+H channel. As noted elsewhere,13, 56 by stretching a N−H bond in linear

H−N−H, the 2Π state will intersect conically with a 2Σ−, a 2∆, and a 2Σ+ state;

these correlate with different states of the NH + H products. Because of these

conical intersections, the ground state 1 2A′′ correlates to 2Π or to 2Σ−, and hence

may dissociate to form NH(X3Σ−)+H products. Similarly, the excited state 1 2A′

correlates to 2Π or 2∆, and with the NH(a1∆)+H dissociation channel. Thus, for

linearity, the ground state 1 2A′′ and the excited state 1 2A′ become degenerate

for small HN− H bond distances.

Figure 11 illustrates 1D cuts of 1 2A′′ and 1 2A′ DMBE/SEC PESs of NH2

as a function of the bending angle for a bond length fixed at 1.8695 a0. Clearly,

the 1 2A′′ and 1 2A′ states become degenerate at linearity. The potential well in

the 1 2A′ state DMBE/SEC PES toward the linear H − N − H geometry is also

seen to be very shallow, with a barrier height for linearity of only 673 cm−1. This

compares well with the value of 674 cm−1 obtained on the DMBE/CBS PES. In

turn, this is in good agreement with the theoretical value of 693 cm−1 obtained

from the PES of Qu et al.,13 and the recent theoretical value of 719 cm−1 by Zhou

et al.21 In turn, Figure 12 illustrates a 1D cut of the energy difference between

the 1 2A′ and the ground state (1 2A′′) PESs as a function of the bending angle,

keeping the bond lengths fixed at 1.8695 a0. Shown in the insert of Figure 12
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is the energy difference between both PESs in linear H − N − H configurations.

As noted elsewhere,58, 59 such a difference should have the form ∆V = ksin2θ,

where θ is the bending angle. The agreement is shown from Figure 12 to be

good, with the 1D cut of the energy difference being nearly indistinguishable

from the fit for small deviations from linearity. Two further points should be

noted: first, the form k sin2 θ ensures that the states 1 2A′′ and 1 2A′ become

strictly degenerate at all linear configurations for small HN− H bond distances;

second, the energy split between the 1 2A′ and 1 2A′′ PESs is proportional to θ2 at

small HN−H bond distances and small deviations from linearity, as it should for

electronic Π states. Such a behavior is depicted graphically in Figure 13, which

shows 1D cuts of the 1 2A′′ and 1 2A′ DMBE/SEC PESs of NH2 as a function of

the stretched bond distance, with the bond angle fixed at 180 deg and the other

bond length at 1.965 a0. Clearly, the degeneracy at linearity is lifted such as to

allow that the 1 2A′′ state correlates with NH(X3Σ−) + H, while 1 2A′ does with

NH(a 1∆) + H. This is consistent with the PESs of Qu et al.13 and Zhou et al.21

Moreover, Figure 13 shows that, for small N − H distances, the 1 2A′′ and 1 2A′

PESs become degenerate while, for large N − H distances, 1 2A′′ correlates with

N(4S) + 2H and 1 2A′ with N(2D) + 2H.

5 Concluding remarks

We have reported a single-sheeted DMBE/SEC PES for the excited state of NH2

based on a realistic representation of the long-range forces and a fit to accurate ab

initio energies calculated at the MRCI level with the AVQZ basis set, after slightly

correcting semiempirically the dynamical correlation by the DMBE-SEC method.

The resulting function has been compared in detail with the DMBE/CBS PES

obtained by extrapolating the calculated raw energies to the CBS limit. The

various topographical features of both DMBE/SEC and DMBE/CBS PESs have

been carefully examined, and compared with previous results for the title system.

Regarding accuracy attributes, the two forms can hardly be discriminated since

they have rather similar rmsd. Of course, the DMBE/CBS PES has been con-

structed in a purely ab initio fashion, whereas the DMBE/SEC one here reported

entails a small degree of empiricism via scaling of the external (or dynamical)
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correlation. The fact that they are so similar in topography and accuracy can

therefore be regarded as an asset on the consistency of both schemes. Since the

DMBE functions from the present work fit accurately the ab initio energies, they

can both be recommended for dynamics studies of the N(2D)+H2 reaction and as

building blocks for constructing the PESs of larger nitrogen/hydrogen containing

systems. Their use for ro-vibrational calculations both with inclusion or without

inclusion of nonadiabatic effects may help on further judging some minute but

subtle (such as core correlation) effects that have been neglected (DMBE/CBS)

or corrected empirically (DMBE/SEC) in the present work.
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Table 1. Parameters of two-body potential energy curves in Eqs. (17)-(21).

Parameter NH(a1∆)/SEC NH(a1∆)/CBS H2(X
1Σ+

g )

Re/a0 1.974 1.974 1.401
D/Eh 0.287545 0.289261 0.22979439
α1/a

−1
0 2.95556 3.00041 1.82027480

α2/a
−2
0 2.61308 2.76841 0.52437767

α3/a
−3
0 0.94138 1.11775 0.36999610

γ0/a
−1
0 2.39092 2.43535 1.094670

γ1/a
−1
0 -0.104357 -0.108428 1.009737

γ2/a
−1
0 0.872534 0.83125 0.235856

Ã/Eha
−α̃
0 -0.8205

α̃1/a
−1
0 0

α̃ 2.5
γ̃/a−1

0 2.0
R0/a0 6.75306911 6.75306911 6.9282
C6/Eha

−6
0 12.2568025 12.2568025 6.499

C8/Eha
−8
0 232.171547 232.171547 124.4

C10/Eha
−10
0 5761.18842 5761.18842 3286.0

C11/Eha
−11
0 -3475

C12/Eha
−12
0 121,500

C13/Eha
−13
0 -291,400

C14/Eha
−14
0 6,061,000

C15/Eha
−15
0 -23,050,000

C16/Eha
−16
0 393,800,000

Table 2. Parameters and reference geometries of DMBE/SEC PES, which used
in the extended Hartree-Fock energy in Eq. (25).

Coefficients P (1) P (2) P (3)

γ
(j)
1 /a−1

0 0.6 0.7 0.4

γ
(j)
2 /a−1

0 0.9 1.2 0.7

γ
(j)
3 /a−1

0 0.9 1.2 0.7

R
(j),ref
1 /a0 1.4 3.0 3.8

R
(j),ref
2 /a0 3.0 2.5 3.0

R
(j),ref
3 /a0 3.0 2.5 3.0
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Table 3. Numerical values of DMBE/SEC PES, which used in the extended
Hartree-Fock energy in Eq (25).

Coefficients P (1) P (2) P (3)

C1/a
0
0 −6.9445959097 −5.5684576070 8.0562556558

C2/a
−1
0 −1.7927064363 −0.0921728439 −1.9212102554

C3/a
−1
0 −2.9575063858 −0.9467948710 3.3690640150

C4/a
−2
0 −1.3789061843 −1.8685057139 1.3428713667

C5/a
−2
0 −5.6313400809 −2.2254865846 1.0588315775

C6/a
−2
0 −0.6114974820 0.0602872726 −1.6922359646

C7/a
−2
0 −0.9313499675 −0.5394573895 0.4417090677

C8/a
−3
0 −0.9788813868 0.2145292865 −0.4164956241

C9/a
−3
0 −1.9632265192 −0.1575448392 −0.4961067906

C10/a
−3
0 −0.2319561504 −0.0717234500 0.1025783652

C11/a
−3
0 −0.6942913490 −0.9465433525 0.8205176191

C12/a
−3
0 −0.8458066353 −0.2048421685 0.3049074208

C13/a
−3
0 −0.1967963412 0.1728623412 0.0300097218

C14/a
−4
0 −0.1167264334 −0.0435984955 0.0266474104

C15/a
−4
0 −0.8604045368 0.3189057226 0.1486118124

C16/a
−4
0 −0.7603144931 −0.1295109714 0.0794020260

C17/a
−4
0 0.1829632546 0.7572422535 −0.1095224714

C18/a
−4
0 −0.2536737245 −0.5839199519 −0.1263369415

C19/a
−4
0 −0.0239919396 0.3669381234 −0.1686466736

C20/a
−4
0 0.2221192090 −0.2226917895 −0.1506082583

C21/a
−4
0 −0.0102403648 −0.1012786080 0.0023450421

C22/a
−4
0 −0.1214021487 0.0456579932 −0.0167790935

C23/a
−5
0 −0.1020845467 0.0420090597 0.0007373850

C24/a
−5
0 −0.2285650035 −0.0379090133 0.0079077236

C25/a
−5
0 −0.0517933419 −0.0003347071 −0.0406340355

C26/a
−5
0 0.0652027555 0.1325356120 0.0226837555

C27/a
−5
0 0.0037405057 −0.1141356883 0.0042373292

C28/a
−5
0 −0.0605324041 −0.1806920748 0.0016049046

C29/a
−5
0 0.0331982080 0.0213174833 0.0231696709

C30/a
−5
0 −0.1020675226 0.0700799290 0.0133072547

C31/a
−5
0 0.1064745080 0.0375400782 −0.0083895850

C32/a
−5
0 0.0511797840 0.0297835613 −0.0000352599

C33/a
−5
0 0.0111683227 0.0517592845 0.0095717982

C34/a
−5
0 0.0145297278 −0.0189105035 −0.0026133257
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Table 3. Continue

C35/a
−6
0 0.0081269194 −0.0032076815 0.0010249946

C36/a
−6
0 −0.0473490834 0.0173321542 −0.0039180850

C37/a
−6
0 0.0250649111 −0.0907315433 0.0039100752

C38/a
−6
0 −0.0027992599 −0.0188465554 −0.0016320073

C39/a
−6
0 0.1343414718 −0.0396089649 −0.0001736353

C40/a
−6
0 −0.0467524285 −0.0122739602 0.0007328184

C41/a
−6
0 −0.0078997965 −0.0197150866 −0.0001770807

C42/a
−6
0 0.0039297282 −0.0612294775 −0.0016894302

C43/a
−6
0 0.0206051561 −0.0188237837 −0.0030572589

C44/a
−6
0 0.0276523706 0.0306767777 0.0032857405

C45/a
−6
0 0.0640472759 0.0457656741 −0.0001861065

C46/a
−6
0 0.0210728652 −0.0249278274 0.0032151326

C47/a
−6
0 0.0263247691 0.0524694210 −0.0020500867

C48/a
−6
0 0.0318038343 −0.0291167015 0.0000791760

C49/a
−6
0 −0.0120735502 0.0387865172 0.0009577033

C50/a
−6
0 0.0085901250 0.0347687759 −0.0011679920

Table 4. Parameters and reference geometries of DMBE/CBS PES, which used
in the extended Hartree-Fock energy in Eq. (25).

Coefficients P (1) P (2) P (3)

γ
(j)
1 /a−1

0 0.4 1.1 0.3

γ
(j)
2 /a−1

0 0.8 1.1 1.0

γ
(j)
3 /a−1

0 0.8 1.1 1.0

R
(j),ref
1 /a0 1.4 3.0 3.8

R
(j),ref
2 /a0 3.0 2.5 3.0

R
(j),ref
3 /a0 3.0 2.5 3.0



J. Phys. Chem. A. 114, 9644-9654 (2010). 103

Table 5. Numerical values of DMBE/CBS PES, which used in the extended
Hartree-Fock energy in Eq (25)

Coefficients P (1) P (2) P (3)

C1/a
0
0 −3.6131972688 0.3760584069 −0.6860940355

C2/a
−1
0 2.9666268115 −4.5627139245 −1.6911850193

C3/a
−1
0 3.1215115473 1.4424371349 0.8011838070

C4/a
−2
0 −0.5205026667 −0.2006234339 0.3108837620

C5/a
−2
0 −2.9831322753 1.6368742123 0.3776487116

C6/a
−2
0 6.4488244481 −1.2740257882 0.0422197152

C7/a
−2
0 1.1458357022 0.2419043688 0.3449741514

C8/a
−3
0 0.1120465134 −1.4746155401 −0.3883259919

C9/a
−3
0 0.7593129119 −0.9671194428 −0.0698625723

C10/a
−3
0 0.0730449815 0.0151285248 −0.0080766897

C11/a
−3
0 −3.1908835012 −0.1560954544 0.6632400741

C12/a
−3
0 −0.7271789435 0.5536927327 0.1626496747

C13/a
−3
0 0.1180967295 0.6112777464 −0.1053223907

C14/a
−4
0 −0.2162315779 0.0484250638 0.0000764501

C15/a
−4
0 −0.5351393200 0.2741114831 0.1550747827

C16/a
−4
0 −0.0685644754 0.4755437521 0.0397547565

C17/a
−4
0 0.0734380694 −0.2690044939 0.0304861775

C18/a
−4
0 1.1296697016 −0.6106116765 −0.2137131744

C19/a
−4
0 0.2260557885 0.0338385631 −0.0333037206

C20/a
−4
0 0.1701897329 −0.1916249959 −0.2385923058

C21/a
−4
0 0.1863295909 −0.0191648907 0.0357985511

C22/a
−4
0 0.3331721694 −0.2066966169 −0.0045116868

C23/a
−5
0 0.0657062662 −0.0798665536 −0.0206898392

C24/a
−5
0 0.1892115137 0.2568403100 −0.0279094371

C25/a
−5
0 0.1749574467 0.0133052300 −0.0186132823

C26/a
−5
0 −0.0275895315 0.1896437944 −0.0505683079

C27/a
−5
0 0.0464722081 −0.0110111489 −0.0138122739

C28/a
−5
0 −0.1304480250 −0.0933590085 0.0469671912

C29/a
−5
0 0.0457090716 −0.1780393787 −0.0447799456

C30/a
−5
0 −0.2107451688 0.0624583375 −0.0031670710

C31/a
−5
0 0.0396907213 −0.1602592181 0.0032894809

C32/a
−5
0 0.0556221672 −0.0717004410 −0.0767850139

C33/a
−5
0 −0.0198254315 0.0356267712 −0.0111882971

C34/a
−5
0 0.0119651016 −0.0092445159 −0.0082091075
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Table 5. Continue

C35/a
−6
0 −0.0033602831 0.0124044227 −0.0029235211

C36/a
−6
0 −0.0014478444 −0.0047737372 0.0097427445

C37/a
−6
0 −0.0370250796 0.0182942487 0.0002676181

C38/a
−6
0 0.0163520828 0.0734165847 −0.0228759016

C39/a
−6
0 −0.0187157856 −0.0824216458 −0.0160575555

C40/a
−6
0 0.0044380247 0.0231785175 −0.0077463751

C41/a
−6
0 −0.0009654444 −0.0038012199 −0.0015454905

C42/a
−6
0 0.0055733645 −0.0454288037 −0.0034241896

C43/a
−6
0 0.0042103082 −0.0215890360 −0.0145315359

C44/a
−6
0 0.0120908784 0.1105230068 −0.0183163390

C45/a
−6
0 −0.0011304861 −0.0169523064 0.0324410188

C46/a
−6
0 −0.0191218740 −0.0269179141 0.0015208468

C47/a
−6
0 0.0201236095 −0.0182798082 0.0006936851

C48/a
−6
0 −0.0054523062 −0.0124714156 0.0040623792

C49/a
−6
0 −0.0108391916 0.0076398845 0.0008196160

C50/a
−6
0 −0.0024657372 −0.0073187637 −0.0164326558
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Figure 1. Contour plot for bond stretching in H-N-H, keeping the included angle
fixed at 145.20. Contours are equally spaced by 0.02 Eh, starting at −0.325 Eh.
The energy zero is defined at the N(2D) + H(2S) + H(2S) asymptote.
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Figure 2. Contour plot for bond stretching in linear H-N-H configurations.
Contours are equally spaced by 0.015 Eh, starting at −0.323 Eh. The energy zero
is defined at the N(2D) + H(2S) + H(2S) asymptote.
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Figure 3. Contour plot for the C2v insertion of the N atom into H2. Contours
are equally spaced by 0.01 Eh, starting at −0.325 Eh. The energy zero is defined
at the N(2D) + H(2S) + H(2S) asymptote.
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Figure 5. Contour plot for bond stretching in linear N-H-H configurations.
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Abstract

We report a single-sheeted global double many-body expansion potential energy surface

for the ground electronic state of NH3 that has been calibrated from newly calculated ab

initio energies. It employs realistic double many-body expansion functions previously

reported from accurate ab initio data for the triatomic fragments plus four-body energy

terms that have been calibrated from multireference configuration calculations carried

out in the present work for the title system using the full valence complete active space

wave function as reference and a basis set of the correlation consistent type. The major

attributes of the NH3 double many-body expansion potential energy surface have also

been characterized, and found to be in good agreement both with the calculated ones

from the raw ab initio energies and theoretical results available in the literature. It can

then be recommended both as a reliable functional form on which dynamics calculations

can be performed and as a model for improvement that is open to refinement through

further accurate ab initio calculations, vibrational calculations, or both.
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1 Introduction

The availability of potential energy surfaces for small molecules is key for reaction

dynamics and kinetics studies. Amongst the tetratomic systems, the potential

energy surface (PES) of NH3 [1–10] assumes special relevance because this species

is a major constituent of some planetary atmospheres whose Boltzmann tempera-

tures require for their determination an accurate knowledge of the ro-vibrational

transition energies, and hence of its potential energy surface. Moreover, NH3 is

an important intermediate in atmospheric chemistry and combustion processes,

and a prototype pyramidal molecule that provides a benchmark system for the-

oretical spectroscopic models. In particular, its complicated low-frequency large

amplitude inversion motion makes it a challenge to understanding.

It is therefore not surprising that ammonia has been extensively studied [1],

with related topics being MASER action [11], microwave and infrared spec-

troscopy [12–16], chirality [17],and time-dependent multidimensional quantum

wave packet dynamics under coherent laser excitation [18]. Moreover, ammonia

and its isotopomers have been interesting prototypical systems for the studying

of photodissociation dynamics [8, 9, 19–21] and the role of atomic insertion ver-

sus molecular abstraction reactions [22, 23]. Having a relatively small number of

electrons, NH3 further allows calculations of its electronic structure with accurate

ab initio methods and large basis sets, although being still too large to permit a

dense exploration of its entire PES.

Recently, quite accurate experiments and calculations have been reported for

the ammonia molecule. [1–4, 18, 24–29] Theoretically, representations of the PES

have mostly utilized high-order Taylor expansions in the neighborhood of the

equilibrium molecular structure, although some [1, 27] can describe large ampli-

tude vibrations. Therefore, adiabatic representations of the PES reported thus

far from ab initio calculations are either accurate but local or global but not suffi-

ciently accurate to describe the complete set of experimental data. In particular,

such adiabatic PESs often fail to show the correct behavior at all dissociation

channels related to the global PES. An alternative to adiabatic representations is

to have diabatic representations. [28, 29] Although these offer generally smoother

features and hence may be easier to model than adiabatic ones, especially when
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aiming at multisheeted forms, there are also cons associated with difficulties in

defining proper dissociation limits (ref 30 and references therein). This situation

prompted us to carry out electronic structure calculations extensively enough to

cover the major features of the full six-dimensional (6D) configuration space of

the ammonia molecule and to model globally the PES using double many-body

expansion (DMBE) theory [31–33]. This approach has been successfully applied

to a wealth of triatomic systems (including all ground-state triatomic fragments

arising from dissociation of ammonia, namely NH2 [34, 35], and H3 [36]) as well

as tetratomic (O4 [37], HO3 [38], and HSO2 [39]) and N2H2 [40], and even larger

polyatomic (HO4 [41] and HO5 [42]) systems, and can provide a physically mo-

tivated form to model accurate ab initio calculations in both at valence and and

long-range interaction regions. Because single-valued DMBE PESs have been

reported for the NH2 and H3 molecules, such a work has paved the way for ob-

taining a similar form for the larger NH3 molecule by providing the involved

two-body and three-body energy terms that arise in the cluster expansion of the

molecular potential energy. In turn, NH3(1
1A1) can serve as a building-block for

the PESs of larger NxHy species such as those of relevance in the synthesis of

ammonia, and hence the current study may to construct global DMBE forms for

such polyatomic systems.

A final remark to note that proper dissociation at all asymptotes is warranted

by employing a generalization of the Varandas-Poveda [34] switching function

approach originally reported for triatomic species. As calibration data, 476 ab

initio energies calculated at the multi-reference configuration interaction with

the popular quasi-degenerate Davidson correction [MRCI(Q) [43, 44]] level have

been utilized. Such calculations employed the full valence complete active space

(FVCAS) wave function as reference, and the aug-cc-pVTZ (AVTZ) basis set of

Dunning. [45, 46] We emphasize that the PES so obtained shows the correct long-

range behavior at all dissociation channels while providing a realistic representa-

tion at all interatomic separations. The small number of required ab initio points

is clearly an asset of DMBE theory (obviously of any cluster expansion [47]) by

allowing the use of work previously done for the molecular fragments.Naturally,

electronic structure calculations of higher accuracy are nowadays feasible for the

title molecule, with the PES here reported then serving as a starter toward more
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ambitious and expensive endeavors along such a direction. Of course, if combined

with vibrational calculations, it may also serve as an ab initio 6D model that may

afford sufficiently flexibility to fit available spectroscopic data, much on line with

what has be done in the past with triatomic potentials [48–53].

The paper is organized as follows. Section 2 describes the results of new ab

initio calculations carried out for NH3, while the DMBE methodology is discussed

and applied in Section 3 by focusing on the title system. The characterization of

the novel DMBE PES is then presented in Section 4. Section 5 gathers the major

conclusions.

2 Ab initio calculations

All ab initio calulations have been carried out at the MRCI(Q) [43, 44]level us-

ing the FVCAS [43] wave function as reference. The AVTZ atomic basis set of

Dunning [45, 46] has been employed, and the calculations carried out using the

Molpro [54] package. The most important regions of the PES for spectroscopic

studies are the two symmetry equivalent global minima (C3v) and the region

around the saddle point (D3h) for the umbrella motion. However, because the

aim is to obtain a fully six-dimensional PES, there is the need to consider also

the description of the PES away from such regions. A total of 476 ab initio points

has been calculated, of which 205 concentrated in the region of the two equivalent

C3v minima and D3h saddle point for the umbrella motion that connects them.

The remainder 271 ab initio points have been necessary to remove an unphysical

minimum that occurs in the absence of the four-body energy correction, and to

refine the entrance barrier associated to the H + NH2 channel. Since one seeks a

reliable description of the inversion barrier, the above 205 raw ab initio energies

there located have been carried out using state averaging of the two lowest states

of the same symmetry. All others that have been employed to model the VS and

VL contributions that will be discussed later (see section 3.4) have been generated

at the cheaper single state level. Note that the dissociation limit of H+NH2 has

been calculated by keeping NH2 frozen at the geometry reported in Ref. 34 while

moving away the hydrogen atom. Similarly, the dissociation energy of N+H3 has

been calculated by keeping H3 frozen at its optimum FVCAS/AVTZ collinear ge-
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ometry (the well established saddle point in 3D) while moving away the nitrogen

atom, and so on (see Table 5).

3 Single-sheeted DMBE potential energy surface

Within the framework of DMBE theory as applied to four-atom systems [38, 39],

a single-sheeted PES for ground state NH3 (labelled ABCD in the following) is

written as

VNH3
(R) =

4∑

i=1

V (i)(R) (1)

where R is the vector of the six internuclear coordinates [Rj (j = 1, . . . , 6)],

V (1) = V
(1b)

N(2D)f
(4)(R) is a (pseudo-) one-body term, V

(4)

N(2D) represents the energy

difference between the 2D and 4S states of atomic nitrogen: V
(1b)
N(2D)=0.091225 Eh.

In turn, f (4)(R) is a 6D switching function, and V (2), V (3) and V (4) are two-

body, three-body, and four-body terms in the cluster expansion of the molecular

potential energy. The details of the analytical forms employed to represent the

various n-body energy terms that are involved will be given in the following

subsections.

3.1 Two-body energy terms

The potential energy curves for the two-body fragments are based on the extended

Hartree-Fock approximate correlation energy method for diatomic molecules in-

cluding the united atom limit [55] (EHFACE2U)which show the correct behavior

at both asymptotic limits R → 0 and R → ∞. For the j-th diatomic, it assumes

the form

V (2)(Rj) = V
(2)
EHF(Rj) + V

(2)
dc (Rj) (2)

where V
(2)
EHF, V

(2)
dc are two-body terms of the extended Hartree-Fock and dynamical

correlation types, respectively; Eq. (2) applies to all six diatomic fragments. The

two-body extended Hartree-Fock energy term V
(2)
EHF is written as

V
(2)
EHF(R) = −

D

R

(
1 +

n∑

i=1

αir
i

)
exp(−γr) + χexc(R)V

asym
exc (R) (3)
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where

γ = γ0[1 + γ1 tanh(γ2r)] (4)

and

V asym
exc (R) = −ÃRα̃(1 + α̃1R + α̃2R

2)exp(−γ̃R) (5)

is the asymptotic exchange energy, and χexc(R) is a convenient damping function

that accounts for charge overlap effects, r denotes the displacement coordinate

relative to equilibrium geometry of the diatomic, r = R − Re. In turn, the

two-body dynamical correlation energy term V
(2)
dc is written as

V
(2)
dc (R) = −

∑

i=6,8,10

Cnχn(R)R
−n (6)

where

χn(R) =

[
1− exp

(
−An

R

ρ
− Bn

R2

ρ2

)]n
(7)

is a charge-overlap dispersion damping function. Moreover, An = α0n
−α1 and

Bn = β0 exp(−β1n) are auxiliary functions [31, 56] ; α0 = 16.36606, α1 = 0.70172,

β0 = 17.19338, and β1 = 0.09574. for a given pair of atoms (say, XY), ρ =

5.5 + 1.25(〈r2X〉
1/2

+ 〈r2Y 〉
1/2

) is a scaling parameter. Finally, the coefficients ap-

pearing in Eqs. (2)-(7) are chosen such as to reproduce available theoretical (and

experimental, although this will not be done here) data in diatomic as described

elsewhere [31, 55]. In this work, we employ the accurate EHFACE2U potential

energy curve of ground state H2(X
1Σ+

g ) reported in Ref. 48, and the curve of

ground-state imidogen, NH(X3Σ−), reported in Ref. 57. As shown in Figure 2 of

Ref. 34, both potential curves mimic accurately the calculated ab initio energies.

3.2 Three-body energy terms

The three-body energy is written as

V (3)(R) =
4∑

i=1

[V
(3)
EHF(R

3) + V
(3)
dc (R3)] (8)

where V
(3)
EHF , V

(3)
dc are the three-body terms of extended Hartree-Fock and dynam-

ical correlation energy, respectively; R3 specifies the set of the three interatomic

distances referring to each triatomic fragment.
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The three-body energy terms employed in Eq. (8) have been taken from Ref. 34

and 36 for NH2 and H3, respectively. In turn, the three-body dynamical correla-

tion of NH2 is modeled by the form [48]

V
(3)
dc−NH2

= −
∑

i

∑

n

fi(R)C
(i)
n (Ri, θi)χn(ri)r

−n
i (9)

where ri, θi andRi are the Jacobi coordinates corresponding to a specific geometry

of the triatomic and fi =
1
2

{
1−tanh[ξ(ηRi−Rj−Rk)]

}
is a convenient switching

function. Following recent work on NH2 [34], we have fixed η = 6, ξ = 1.0a−1
0 and

ρ = 16.125a0. Regarding, the damping function χn(ri), we still adopt Eq. (7) but

replace R by the center-of-mass separation for relevant atom-diatom channel of

NH2. The atom-diatom dispersion coefficients in Eq. (9) assume their usual form

C(i)
n (Ri) =

∑

L

CL
n (R)PL(cos θi) (10)

where PL(cos θi) denotes the L-th Legendre polynomial. The expansion in Eq. (9)

has been truncated by considering only the coefficients C0
6 , C

2
6 , C

0
8 , C

2
8 , C

4
8 and

C0
10. As noted elsewhere, [48] Eq. (9) causes an overestimation of the dynamical

correlation energy at the atom-diatom dissociation channels. To correct such a

behavior, we have multiplied the two-body dynamical correlation for the i-th pair

by
∏

j 6=i(1− fj). This ensures [34, 48, 52] that the only two-body contribution at

the i-th channel belongs to the JK atom-pair (in an obvious notation IJK is any

triatomic formed from atoms A to D).

The three-body extended Hartree-Fork energy for the NH2 fragments has been

modeled via a three-body distributed-polynomial [34, 58] form

V
(3)
EHF−NH2

=

5∑

j=1

{
P (j)(Q1, Q2, Q3)

3∏

i=1

{
1− tanh[γ

(j)
i (Ri − R

(j),ref
i )]

}}
(11)

where all the polynomials P (j)(Q1, Q2, Q3) are written in terms of symmetry co-

ordinates, γ
(j)
i is a nonlinear range-determining parameter, and R

(j),ref
i a reference

geometry.

Following earlier work [36] , the three body dynamical correlation of H3 as-
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sumes the form

V
(3)
dc−H3

=
3∑

i=1

∑

n=6,8,10

Cn

{
1−

1

2
[gn
(
Ri+1(mod 3)

)
hn
(
Ri+2(mod 3)

)

+ gn
(
Ri+2(mod 3)

)
hn
(
Ri+1(mod 3)

)
]R−n

i

}
(12)

where

gn(R) = 1 + knexp[−k
′

n(R− Rm)] (13)

and

hn(R) = [tanh(k
′

n)R]
η
′

(14)

The constants k
′

n and η
′

control the rate of decay of the gn and hn functions, and

these constants and the kn are determined, for a given η
′

, by the requirement

that the model reproduces the H−H2 dispersion coefficients [59] CH−H2

n at re for

n = 6, 8, and 10.

Note that the Eq. (9) and (12) represent dynamical correlation terms for

different three-body interaction fragments. Specifically, Eq. (9) account for N−H2

and H − NH long range energies whereas the the Eq. (12) describe the H −

H2 dissociation channels. As noted in Ref. 39, due to an overestimation of the

dynamical correlation energy, each V
(2)
dc (Ri) term in the DMBE PES of NH2 has

been multiplied by a switching function
∏

j 6=i(1− fj) for the i-th pair [34], which

transforms such contributions into three-body-like ones. Thus, an extra three-

body energy term should be added to Eq. (8). Taking into account the properties

of the switching function
∏

j 6=i(1−fj), such an additional term should be written

as follows:

V
(3)
add =

12∑

1

V
(2)
dc (Ri)(

∏

j 6=i

(1− fj)− 1) (15)

which, when taken into account, reproduces all the asymptotic limits of the

tetratomic PES (i.e., if one of the atoms is placed far away from the remain-

ing triatomic, the resulting PES matches exactly that of the triatomic fragment.

As shown in Figure 14, the resulting PES matches exactly that of the NH2 DMBE

PES when one of the H atoms is placed far away from the remaining NH2). We

should also note that the diatomic potential (H2) originally employed in the H3
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DMBE PES which has been constructed using an earlier formalism somewhat

simpler than that used for NH2 DMBE PES. For consistency, we have replaced it

by corresponding updated diatomic curves [34, 48], which has been used for NH2

DMBE PES. As shown in Table 5, The dissociation energy at the N(2D)+H3(
2A′)

limit is −0.0680 Eh, If one then removes from this amount the energy difference

between the 2D and 4S states of atomic nitrogen, we predict the energy of H3(
2A′)

at reference geometries to be −0.1592 Eh, which in good agreement with the one

of −0.1591 Eh that we have calculated using the original form. Thus, the update

does not affect significantly the attributes of the H3 PES in comparison with its

original form.

Finally, the three-body extended Hartree-Fork energy of H3 is written by the

form [36]

V
(3)
EHF−H3

= s2(1 + s3cos(3φ))(b61 + b62q)exp[−b
2
63(q − q0)

2] (16)

where q, s and φ are defined in Eqs. (4), (40) and (41) of Ref. 36, respectively.

Finally, the parameters appearing in Eqs. (8)-(16) have been taken from Refs. 34

and 36 for NH2 and H3, respectively; for clarity, the notations of such equations

has been kept unchanged, with the reader being referred to the original papers

for the numerical values of the coefficients.

3.3 The switching function

The use of switching function to approximate the multivalued nature of a PES

(i.e., to replace a crossing by an avoided crossing, and hence allow proper dis-

sociation with a single-sheeted form) has first been proposed by Murrell and

Carter [60], who applied the formalism in the construction of an approximate PES

for the ground state of H2O. However, as noted in their paper, their switching

function cannot reach a unique value at the three-atom limit. To solve this in-

consistency and get a smooth three-body energy term, Varandas and Poveda [34]

proposed an improved switching-function formalism and applied it successfully

to the ground-state of NH2. A similar situation holds for the title system, where
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the following dissociation scheme applies:

NH3(
1A1) → H2(X

1Σ+
g ) + N(2D) + H(2S) (17)

→ NH(X3Σ−) + H(2S) + H(2S) (18)

→ NH(a1∆) + H2(X
1Σ+

g ) (19)

→ NH2(1
2A′′) + H(2S) (20)

→ N(2D) + H3(
2A′) (21)

Since NH(X3Σ−) dissociates to ground-state atoms, it will be necessary to in-

troduce a switching function that removes the N(2D) state from the channel as

NH(X3Σ−) dissociates to nitrogen and hydrogen atoms in their ground electronic

states, respectively N(4S) and H(2S). By comparing the PES that is obtained by

using only two-body and three-body terms with the ab initio calculations here

carried out, we have established the major changes to warrant the proper dissoci-

ation limits. This was followed by modeling a convenient switching function that

could also ensure the proper atom-permutational symmetry. Although not unique

(for a similar extension that has been found convenient for the N2H2 molecule,

see Ref. 40), of course, a form that satisfies such criteria is

f (4)(R) =
∑

αβγ

h(Rαβ)g(RA−αβ)k(RAγ) (22)

where

h(Rαβ) =
1

4

2∑

i=1

{
1− tanh[αi(Rαβ −Ri0

αβ) + βi(Rαβ − Ri1
αβ)

3
]
}

(23)

g(RA−αβ) =
1

2

{
1 + tanh[α0(RA−αβ − R0

A−αβ)]
}

(24)

k(RAγ) = γ0 +
(1− γ0)

2

{
1 + tanh[γ1(RAγ − R0

Aγ)]
}

(25)

with Rαβ representing the H−H distance, RA−αβ the distance of the N atom to

the center of mass of reference H2, RAγ the distance of the N atom to another H

atom, and A and (αβγ) stand for the nitrogen and hydrogen atoms. Thus, h(Rαβ)

in Eq. (23) will allow the N(2D) state to appear in the H2(X
1Σ+

g )+N(2D)+H(2S)

channel while being absent in the NH(X3Σ−)+H(2S)+H(2S) one (see the panel
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Figure 1. Switching function used to model the single-sheeted NH3 DMBE PES.
Where RNH= 20 a0 in panel (a) and RHH= 1.401 a0 in panel (b).

(a) of Fig. 1). Note that αi and βi (i=1,2) are parameters to be obtained

as described elsewhere [34], while the values of the Ri0
αβ and Ri1

αβ are chosen

from the requirement that the PES have the correct energy dissociation limit at

N(2D) + H3(
2A′) asymptote. Similarly, the value of the γ0 in Eq. (25) is chosen

from the requirement that the PES displays the correct energy dissociation limit

at the NH(a1∆)+H2(X
1Σ+

g ) asymptote (see the panel (b) of Fig.1). Taking into
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account the conform between the four-atom and threeatom cases, we adopt to

represent the final one-body term V (1)(R) the following generalized form

V (1)(R) = V
(1b)

N(2D)f
(4)(R)[1− f(R)] + V

(1a)

N(2D)f
(3)(R)f(R) (26)

with V
(1a)

N(2D)f
(3)(R) represents the one-body term of NH2(

2A′′), and f(R) is a

function of the internuclear coordinates that varies smoothly between 0 and 1

in such a way that V
(1b)
N(2D)f

(4)(R) and V
(1a)
N(2D)f

(3)(R) switched on/off conveniently

in different regions of the configuration space. An appropriate function that

describes approximately the desired behavior is

f(R) =
∏

i=1,2,4

1

2

{
1− tanh[α(Ri − Rf

0]
} ∏

j=3,5,6

1

2

{
1 + tanh[α(Rj − Rf

0]
}

(27)

where α = 1.0 and Rf
0 = 12 a0. Note that the summation in Eq. (22), Eq. (26) and

Eq. (27) run over the three terms to the ABCD, ACDB, and ADBC species, such

as to keep the correct permutational symmetry on the H atoms. Finally, to get a

smooth four-body energy term, the coefficients α0, R
0
A−αβ in Eq. (24) and γ1, R

0
Aγ

in Eq. (25) have been calculated using a trial-and-error procedure. The numerical

values of all parameters in Eq. (22) are collected in Table 3. As a check to the

switching function, we have calculated the energy dissociation limits by using V (1),

V (2) and V (3) (hereafter referred to as DMBE1+2+3 PES) and our own ab initio

calculations. As seen from Table 5, the switching function imposes the correct

behavior at every dissociation channel while providing a realistic representation

at all interatomic separations.

3.4 Four-body energy term

As a first step toward the four-body energy term V (4), we have examined in detail

all the features predicted by the PES when truncated at the V (1) + V (2) + V (3)

level. As already noted in the previous section, this DMBE1+2+3 PES shows

the correct behavior while providing a fair representation at all interatomic sep-

arations. Thus, it has been found to qualitatively describe the NH3 PES. By

comparing the DMBE1+2+3 surface with our own ab initio calculations, we have

established the major differences that ought to be corrected by adding four-body
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energy terms. We have found convenient the following correction:

V (4) =

4∑

i=1

V
(4)
Si +

3∑

l=1

V
(4)
l + P (4)T (4) (28)

where V
(4)
Si is a Gaussian-type function

V
(4)
Si =

∑

αβγ

{
di[1 + ai1(RAα − Ri0

Aα) + ai2(RAα −Ri0
Aα)

2 + ai3(RAα −Ri0
Aα)

3]

exp[−bi1(RAα − Ri0
Aα)]exp[−bi2(RAα − Ri0

Aα)
2]
}
T

(i)
αβγ (29)

the T
(i)
αβγ in Eg. (29) is the range function defined by

T
(1)
αβγ =exp[−γ11(2RAα − RAβ − RAγ))

2]

exp
{
− γ12[(Rαβ − R0

αβ)
2 + (Rαγ − R0

αγ)
2 + (Rβγ − R0

βγ)
2]
}

(30)

T
(2)
αβγ =exp[−γ21(RAβ −RAγ))

2]

exp
{
− γ22[(Rαβ − R0

αβ)
2 + (Rαγ − R0

αγ)
2 + (Rβγ − R0

βγ)
2]
}

(31)

T
(3)
αβγ =exp[−γ31(R

2
Aβ −R2

Aα − R2
βγ +RAαRβγ)

2]

exp[−γ31(R
2
Aβ −R2

Aα − R2
βγ −RAαRβγ)

2]

exp
{
− γ32[(Rαβ − R0

αβ)
2 + (Rαγ − R0

αγ)
2 + (Rβγ − R0

βγ)
2]
}

(32)

T
(4)
αβγ =exp[−2(Rαβ −Rαγ))

2 − 2(RAβ − RAγ))
2]exp[−γ41(Rβγ − R0′

βγ)
2]

exp
{
− γ42[(RAβ −R0

Aβ)
2 − (RAγ − R0

Aγ)
2]
}

(33)

In turn, V
(4)
S1 , V

(4)
S2 and V

(4)
S3 have been chosen to correct the energy at the N+H3

channel, with the parameters in V
(4)
S1 , V

(4)
S2 and V

(4)
S3 calibrated by fitting ab initio

points that cover the regions that the dissociation process NH3 → N + H3. In

turn, V
(4)
S4 is rather localized, and hence chosen to remove a small unphysical

minimum that occurred in the H+N+H2 channel, while the parameters of V
(4)
S4

were fitted to ab initio points in the vicinity of the corresponding geometry. In

turn, the terms V
(4)
l that appear in Eq. (28) are local Gaussian functions defined

by

V
(4)
1 =

∑

αβγ

6∑

j=1

C1 exp[−γ51(Rj − R0
j )

2] (34)
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Table 1. Stationary points (in Å and degrees) and harmonic frequencies (in
cm−1) computed using different methods and available experimental results. Un-
certainties are given in parentheses where applicable.

Symmetry method RNH θHNH ω1 ω2 ω3 ω4

C3v Global PESa 1.0155 105.85 3482 1039 3569 1500
Dense-grida 1.0160 105.95 3747 1025 3892 1821
B97-1/TZ2P [62] 1.0138 106.49 3485 1066 3606 1677
CCSD(T)/ccVTZP [6] 1.0141 105.64 3471.9 1109.2 3597.5 1687.9
CCSD(T)/ccVQZP [6] 1.0124 106.18 3480.5 1084.1 3608.8 1679.6
QCISD(T)/[5s4p2dlf,3s2p]+core [6] 1.0132 106.6 3486 1075 3616 1684
MP4/6-31G** [67] 1.035 105.9 3546.2 1140.8 3687.3 1733.19
CISDTQ/DZP [68] 1.0173 106.3 3528 1121 3676 1706
Hoy et al. [69] 1.025 107 3503 1030 3591.6 1689.9
Duncan and Mills [70] 1.0116 106.7 3504 1022 3577 1691
Coy and Lehmann [71] 3485( 11) 3624( 12) 1678(6)
Lehmann and Coy [72] 3478( 12) 3597( 8) 1684(8)

D3h Global PESa 0.9983 120.0 3704 870i 3845 1572
Dense-grida 0.9983 120.0 3636 868i 3779 1561
B97-1/TZ2P [62] 0.9971 120.0 3637 822i 3835 1577
MC-QDPT [64] 0.998 120.0 3252 903i 3523 1596
CCSD(T)/cc-pVDZ [10] 1.0051 120.0
CCSD(T)/aug-cc-pVDZ [10] 1.0054 120.0
CEPA-1/[9s6p4d2f/5s3p] [73] 0.9940 120.0

aThis work.
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Table 2. Inversion energy (in cm−1) of ammonia computed using different meth-
ods and available experimental results.

method ∆Einv(cm
−1) Emin(Eh) ETS(Eh)

PES
Global PESa 2033.5 −0.4660 −0.4567
Dense-grida 2029.4 −0.4660 −0.4567
DFT [65] 2013.5
B97-1/TZ2P [62] 1820
ab initio
Focal-point scheme [3] 2021
CCSD(T)/aug-cc-pVDZ [10] 2033.4
CCSD(T)/aug-cc-pVTZ [10] 1936.5
CCSD(T)/aug-cc-pVQZ [10] 1866.9
CCSD(T)/cc-pVDZ [10] 3104.5
CCSD(T)/cc-pVTZ [10] 2237.9
CCSD(T)/cc-pVQZ [10] 2025.6
Experiment
Swalen and Ibers [66] 2018

S̆pirko and Kraemer. [13] 1885

S̆pirko. [12] 1834

aThis work.

Table 3. Parameters in the switching function of Eq. (22).

Parameter numerical value
α1 0.718244
α2 0.719351
β1 0.493967
β2 0.066742
R10

αβ 3.17557
R11

αβ 5.11353
R20

αβ 4.19386
R21

αβ 6.27869
α0 0.75
R0

A−αβ 5.35
γ0 0.6478
γ1 0.8
R0

Aγ 3.6
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Table 4. Geometries(in a0 and degree) and harmonic frequencies(in cm−1) for
NH· · ·H2 transition state(TS), calculated from full DMBE PES, where ∆E (in
kcal mol−1) denotes the energy difference relative to the NH+H2 asymptote.

RNHa
RNHb

RNHc
RHbHc

RHaHb
RHaHc

∆E Frequencies

NH· · ·H2 1.983 4.860 4.860 1.405 5.361 5.361 13.1 657i 3219 330 222 4257 914

NH+H2 1.9565 1.401 0.0

V
(4)
2 =

∑

αβγ

6∑

j=1

C2 exp[−γ61(Rj − R0
j′)

2] exp[−γ62(|cosφ| − 1)] (35)

V
(4)
3 =

∑

αβγ

{
G1G2G3C2 exp[−2(Rαβ − Rαγ)

2 − 2(RAβ −RAγ)
2]

exp[−γ71(RAα −R50
Aα)]

}
(36)

where

G1 =
1

2

{
1 + tanh

{
α′
1[
1

4
(RAβ +RAγ)

2 − (
1

4
Rβγ)

2 − R′
1]
}}

(37)

G2 =
1

2

{
1− tanh[α′

2(Rβγ − R′
2)]
}

(38)

G3 =
1

2

{
1 + tanh[α′

3(Rβγ −R′
3)]
}

(39)

Moreover, V
(4)
1 and V

(4)
2 have been chosen to refine the entrance barrier of H+NH2

channel, V
(4)
3 is rather localized and chosen to remove the unphysical minimum

in NH + H + H channel, and the parameters of V
(4)
l were chosen from a fit to

the ab initio points in the vicinity of the corresponding geometry. In summary,

the addition of such local terms V
(4)
l has been found necessary particularly to

eliminate spurious unphysical minima during the fitting procedure. Table 6 gath-

ers the parameter values in Eqs. (28)-(39). Recall that A and (αβγ) stand for

the nitrogen and hydrogen atoms, and note that the summation in V
(4)
Si and V

(4)
l

runs over the three equivalent terms (ABCD, ACDB, ADBC) such as to keep the

correct permutational symmetry on the H atoms. Note further that T (4) in Eg.

(28) is a range-determining factor chosen to be of the Gaussian type [39]

T (4) =
∑

α

exp
{
− [gNH(RAα −Rref

NH)
2 + gHH(Rαβ − Rref

HH)
2]
}

(40)
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where P (4) is a fourth-order polynomial written as [61]

P (4) =
∑

i,j,kp

ai,j,kpS
i
1S

j
4

8∏

p=1

tkpp (41)

with S1, S4 and

tp =
{
S2
2 + S2

3 , S
2
5 + S2

6 , S2S5 + S3S6, S
3
3 − 3S3S

2
2 , S

3
6 − 3S6S

2
5 , S6(S

2
3 − S2

2)

−2S2S3S5, S3(S
2
6 − S2

5)− 2S2S5S6, (S3 + S6)
3 − 3(S3 + S6)(S2 + S5)

2
}
(42)

being 10 totally symmetric integrity functions [38, 61], which are invariant under

permutation operation of any two equivalent H atoms of NH3. Consequently,

the NH3 PES is totally symmetric under permutation of any two H atoms of

NH3. Note that Si are the D3h symmetric coordinates defined as Eq. (43) of

Ref. 38 but using a different set of reference geometries (Rref
NH, and Rref

HH). In

turn, the coefficients Rref
NH, R

ref
HH, gNH, gHH in Eq. (40) have been calculated using

a trial-and-error procedure, their numerical values are reported in Table 7. The

linear coefficients appearing in Eq. (41) have been calibrated from a least-squares

fitting procedure to our own 205 ab initio points. Table 7 gathers the values of

the 54 liner coefficients ai,j,kp appearing in Eq. (41). The fitted surface shows a

root-mean-square deviation (rmsd) of 0.065 kcalmol−1 with a maximum error of

0.420 kcalmol−1. The stratified rmsd of the final PES with respect to all fitted

ab initio energies are reported in Table 2. The DMBE form is seen to fit the ab

initio date with chemical accuracy, with a stratified rmsd ≪ 1% of the reference

energy.

4 Features of the NH3 potential energy surface

The reaction path with C3v symmetry connects on the title system the D3h tran-

sition state with the C3v minimum [62]. Table 1 shows the results of the ab initio

calculations and DMBE PES for the D3h structure. As shown, the D3h transition

state structure on the DMBE PES shows the characteristic a bond length in very

good agreement with the one predicted ab initio. In turn, Table 1 reports the

properties of the DMBE PES at the C3v equilibrium structure. Besides our own

results, we give for comparison the results from other theoretical and experimen-

tal works. Here too, the DMBE PES predicts bond lengths in good agreement
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Table 5. Energy dissociation limits (in Eh) of NH3 PES.

Fragmentsa R1/a0 R2/a0 R3/a0 R4/a0 R5/a0 R6/a0 DMBE1+2+3 DMBE ab initiob errorc

N(4S) + 3H(2S) 19.0000 19.0000 19.0000 32.9090 32.9090 32.9090 -0.000001 -0.000001 0.000000 0.000001

H2(X
1Σ+

g ) + N(2D) + H(2S) 10.0000 10.0245 10.0245 20.0123 20.0123 1.4010 -0.083330 -0.083330 -0.083311 0.000019

NH(X3Σ−) + 2H(2S) 1.9650 10.0245 10.0245 10.3491 10.3491 20.0000 -0.130233 -0.130233 -0.128466 0.001767

NH(a1∆) + H2(X
1Σ+

g ) 1.9565 15.0163 15.0163 16.9710 16.9710 1.4010 -0.243414 -0.243414 -0.243997 0.000583

NH2(1
2A′′) + H(2S) 15.0000 1.9405 1.9405 16.2839 16.2839 3.0289 -0.285765 -0.285765 -0.282517 0.003248

N(2D) + H3(
2A′) 20.0000 20.0773 20.0773 1.7605 1.7605 3.5210 -0.067950 -0.067950 -0.067262 0.000688

a H3 is taken here at the collinear saddle point geometry (D∞h), although it is a well known van der Waals species. bEnergy

calculated using FVCAS/MRCI(Q)/AVTZ. cTaken as the difference between the DMBE PES and the calculated ab initio

energy.
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Table 6. Coefficients in V
(4)
Si and V

(4)
l of four-body energy term defined by Eqs.

(28)-(39).

VS1 VS2 VS3 VS4 V1 V2 V3

d1 = −0.108983 d2 = 0.0198257 d3 = 0.0022601 d4 = −0.023724 C1 = 0.035 C2 = 0.025 C3 = −0.050
a11 = 2.24483 a21 = 1.2956 a31 = 2.37549 a41 = 0.423244 R0

1 = 3.5 R0
1 = 3.7 α′

1 = 0.6
a12 = 0.678106 a22 = 0.909194 a32 = 1.23576 a42 = 0.737368 R0

2 = 1.9405 R0
2 = 1.9405 R′

1 = 4.4
a13 = 0.582107 a23 = 0.622791 a33 = 0.181617 a43 = 0.273109 R0

3 = 1.9405 R0
3 = 1.9405 α′

2 = 2.0
b11 = 2.12763 b21 = 1.04963 b31 = 1.56864 b41 = 1.40199 R0

4 = 2.742728 R0
4 = 5.141385 R′

2 = 3.2
b12 = 0.0 b22 = 0.919367 a32 = 0.0 a42 = 0.639717 R0

5 = 2.742728 R0
5 = 5.141385 α′

3 = 2.0
γ11 = 9.1 γ21 = 0.1 γ31 = 0.1 γ41 = 1.0 R0

6 = 3.028850 R0
6 = 3.028850 R′

3 = 2.5
γ12 = 100 γ22 = 100 γ32 = 100 γ42 = 0.5 γ51 = 0.75 γ61 = 1.05 γ71 = 5.0
R10

Aα = 2.9072 R20
Aα = 4.4 R30

Aα = 4.58303 R30
Aα = 3.69261 γ62 = 10 R50

Aα = 1.965
R0

αβ = 1.7605 R0
αβ = 1.7605 R0

αβ = 1.7605 R0
Aβ = 3.080698

R0
αγ = 1.7605 R0

αγ = 1.7605 R0
αγ = 1.7605 R0

Aγ = 3.080698

R0
βγ = 3.5210 R0

βγ = 3.5210 R0
βγ = 3.5210 R0′

βγ = 1.401
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Figure 4. Contour plot for H moving in a coplanar manner around a partially
relaxed NH2 molecule, where Re= 1.9405 a0. Contours in panels (a) and (b) start
at −0.458 Eh, being equally spaced by 0.01 Eh. Panel (a) shows the DMBE1+2+3

surface, while panel (b) refers to the full DMBE PES.

with other results. Furthermore, the predicted bond angle from DMBE agrees

with other predictions within 2 deg. These two facts suggest that the harmonic

frequencies should also be in good agreement with one another, as is indeed ob-

served from Table 1. Figures 2 to 15 illustrate the major topographical

features of the NH3(
1A1) DMBE PES. Clearly, it has a smooth and correct be-

havior over the whole configuration space. Also visible are its global minimum

and the D3h transition state. Specifically, Figure 2 shows energy contours for N
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moving in a coplanar manner around a partially relaxed H3 (this is frozen at its

optimum FVCAS/AVTZ geometry) with the central H atom fixed at the origin.

Note that H3 is not a stable species, with the chosen structure corresponding

to a well established saddle point of D∞h symmetry for the hydrogen-atom ex-

change reaction. [36, 63] From Figures 2(a) and 2(b) we can see that both the

DMBE1+2+3 and DMBE PESs predictions for the dissociation limit at the N+H3

dissociation limit are in good agreement with our ab initio results (see also the

fifth entry of Table 5). However, inclusion of the four-body energy term make the

full DMBE PES significantly improves the accuracy by improving the description

of other regions at the N+H3 channel.

Figure 3 compares the DMBE PES with the ab initio energies at MRCI(Q)/AVTZ

for N moving in a coplanar manner around a partially relaxed H3 molecule. The

curves obtained from the DMBE PES are seen to be in good agreement with the

calculated values. A diagram showing contour plots for H moving in a coplanar

manner around a partially relaxed NH2 molecule (by keeping NH2 frozen at the

geometry reported in Ref. 34) is shown in Figure 4. As panel (a) of Figure 4

shows, the DMBE1+2+3 PES cannot attain an unique value at the H+NH2 limit.

Fortunately, as illustrated in panel (b) of Figure 4, this inconsistency is over-

come through the inclusion of the four body energy term (i.e., in the full DMBE

PES). Similarly, the accuracy in describing the C2v insertion of H atom into NH2

molecular is significantly enhanced by the full DMBE PES. Figure 5 compares

the DMBE PES with the MRCI(Q)/AVTZ energies for H moving in coplanarary

around a partially relaxed NH2 molecule. As shown by this plot, The curves

obtained from the DMBE PES are in good agreement with the calculated en-

ergies. The above referred discrepancies for the coplanar geometries are mainly

caused by a sudden change in the MRCI(Q) energy with the RH−NH2
distance .

At those geometries, there are strong configuration-mixing effects [1, 64] due to a

change in the lowest electronic configuration from 1A1 to A
′′

2 as one approaches the

strong-interaction regions. Thus, the lowest adiabatic PES exhibits complicated

topographical features. As a result, a multivalued approach may be required to

obtain a more realistic potential model.

Figures 6 show the two-dimensional section of the DMBE PES of NH3 in-

cluding the two minima and the saddle point for the umbrella inversion. The
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optimized DMBE potential curve is shown in the inset of Figures 6, and com-

pared with the other reported inversion potential curve [62, 65]. A notable feature

from such a plot is the fairly good agreement between our optimized DMBE in-

version potential curve and the one by Aquino et al [65], particularly for small

values of the inversion coordinate where the optimized DMBE inversion potential

curve is almost indistinguishable from their curve. Table 2 gives the results of the

calculation for the inversion barrier computed using different methods and avail-

able experimental results. The predicted DMBE inversion barrier of 2033.5 cm−1

is clearly in very good agreement with the result of 2029.4 cm−1 obtained from

the fit to the dense grid of ab initio points close to the equilibrium geometry and

D3h saddle point, being also in quite good agreement with the experiment value

of 2018 cm−1 by Swalen and Ibers [66]. Figure 7 shows the global minimum,

while illustrating that the DMBE PES is totally symmetric under permutation of

any two H atoms of NH3. Moreover, inclusion of the four-body energy term in the

full DMBE PES makes the global minimum energy to be reduced to −0.4660 Eh,

in good agreement with the result of −0.4660 Eh from our ab initio prediction.

To obtain more information of the global minimum, we compare the DMBE PES

with the ab initio energies at MRCI(Q)/AVTZ. This is illustrated in Figures 8

where cuts are shown of the DMBE PES along one bond length. Values for the

remaining coordinates are bond lengths (b) at 1.919 a0 and bond angles (α) at

105.85 deg, respectively the optimum equilibrium bond length and equilibrium

bond angle based on the DMBE PES. Clearly, the 1D cuts of the DMBE PES

show good agreement with the calculated ab initio energies. Figure 9 shows a con-

tour plot of the full DMBE PES for the channel NH2+H⇀↽ NH3 ⇀↽ NH+H+H,

with a 2D minimum being apparent from Figure 9 corresponding to the D3h

transition state structure which energy is −0.4567 Eh, in good agreement with

the result of −0.4567 Eh from our ab initio prediction. Moreover, as panels (a)

and (b) of Figures 10 and 11 clearly show, both the DMBE1+2+3 and DMBE

PESs predict a barrier for the NH3 ⇀↽ H2 + NH channel in agreement with the

calculated ab initio result. By comparing panels (a) and (b) of Figures 10 and

11, we stress the significant improvement obtained by eliminating the unphysical

minimum with the addition of the proper four-body energy term as discussed

above. Figure 12 and Figure 13 shows contour plot of the full DMBE PES for the
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channel NH2 + H ⇀↽ NH + H2, the DMBE PES also predicts the barrier on the

H2+NH channel. Such a barrier has been found to be 13.1 kcal mol−1 higher than

the NH+H2 dissociate energy. Table 4 collects the the Geometries and harmonic

frequencies for NH· · ·H2 transition state , calculated from full BMBE PES. As

shown in Figure 12 , there is no barrier for this geometry dissociates to NH2 +H

geometry. in this direction, the H atom can more easily escapes, as can also be

seen from Figure 5. Figure 15 shows a schematic diagram of energetics of the title

system according to the DMBE PES reported in the present work, while table

5 summarizes the reference ab initio MRCI(Q)/AVTZ energy. In addition, as

pointed out elsewhere, if one of the atoms is placed far away from the remaining

triatomic, the resulting PES matches exactly that of the triatomic fragment. Fi-

nally, Figure 14 shows that the update does not affect significantly the attributes

of the NH2 PES in comparison with the original form [34].

5 Conclusions

We have reported a single-valued DMBE PES for the ground electronic state of

NH3, partly based on detailed MRCI(Q)/AVTZ calculations for the tetratomic

also given in the present work. These have been shown to be in fair agreement

with previously reported ab initio results. The DMBE PES shows the proper

atom permutational symmetry. while being based on a modest number of ab

initio energies (when judged from the popular X3N−6 law, which shows that

the number of required energy points grows exponentially with the number of

atoms, with X being the number of points typically required per dimension) at

an affordable (relatively low) level of theory. Therefore, it may pave the way

for an ab-initio-based study aiming at a more sophisticated level of ab initio

theory, or else for improvement via a direct fit to spectroscopic data (ref 52

and references therein). Despite the above, The attributes of the function here

reported have been found to be in generally good agreement with those from the

fitted raw ab initio energies and the results from previous theoretical calculations

and experiment. To warrant that the PES dissociates to the correct asymptotes,

a generalization of the switching function proposed elsewhere [34] (see ref 40 for a

related development for the N2H2 species)has been extended to the present four-
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Table 7. Coefficients an,i,j,kp appearing in Eqs. (40) and (41).

Rref
NH 1.89 Rref

HH 3.273411

gNH 5.0 gHH 2.0

a0,0,0 −0.0149239509 a2,0,11 −0.0000047329

a1,0,0 0.0393566682 a2,0,12 −0.0000249623

a0,1,0 −0.0207103175 a2,0,13 0.0000004764

a2,0,0 −0.1460667641 a1,1,11 −0.0000134270

a1,1,0 0.0802288866 a1,1,12 −0.0000655363

a0,2,0 −0.0453661202 a1,1,13 0.0000071649

a0,0,11 −0.0956785052 a1,3,0 −0.0221918415

a0,0,12 −0.0399175663 a1,0,14 0.0000145569

a0,0,13 −0.0210753673 a1,0,15 0.0000308448

a3,0,0 0.0112004510 a1,0,16 −0.0000055180

a2,1,0 −0.0414751468 a1,0,17 0.0000056313

a1,2,0 −0.0186598337 a1,0,18 0.0000457415

a1,0,11 0.0003457716 a0,4,0 −0.0717617678

a1,0,12 0.0022309626 a0,2,11 −0.0000314825

a1,0,13 −0.0003883413 a0,2,12 −0.0000927060

a0,3,0 −0.0619437295 a0,2,13 −0.0000167492

a0,1,11 0.0008785003 a0,1,14 0.0000332154

a0,1,12 0.0017967763 a0,1,15 0.0000834940

a0,1,13 0.0009600578 a0,1,16 −0.0000174075

a0,0,14 −0.0004633714 a0,1,17 −0.0000144196

a0,0,15 −0.0056973880 a0,1,18 0.0000212283

a0,0,16 0.0004316154 a0,0,21,1 −0.0000302394

a0,0,17 0.0014237697 a0,0,21,2 −0.0000088146

a0,0,18 −0.0005946042 a0,0,21,3 0.0000026353

a4,0,0 0.0006812888 a0,0,22,2 −0.0000500316

a3,1,0 −0.0037633238 a0,0,22,3 −0.0000417883

a2,2,0 0.0153576383 a0,0,23,3 0.0000005487
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Table 8. Accumulated (acc.) and stratum (strat.) root-mean-square deviations
(in kcalmol−1) of DMBE PESa

Energy N b max.dev.c rmsd Nd
>rmsd

Acc. strat. acc. strat. acc. strat. acc. strat. acc. strat.

10 0- 10 211 211 0.420 0.420 0.066 0.066 8 8
20 10- 20 212 1 1.215 1.215 0.106 1.215 8 0
30 20- 30 214 2 6.538 6.538 0.463 4.661 3 1
40 30- 40 215 1 6.538 4.734 0.563 4.734 4 0
50 40- 50 217 2 6.538 1.617 0.572 1.161 5 1
60 50- 60 219 2 6.538 2.915 0.615 2.425 7 1
70 60- 70 221 2 6.538 2.587 0.641 2.017 9 1
80 70- 80 223 2 6.538 1.983 0.654 1.525 11 1
90 80- 90 224 1 6.538 0.698 0.655 0.698 12 0
100 90-100 227 3 6.538 1.679 0.662 1.072 13 1
120 100-120 305 78 6.538 4.322 1.170 2.019 69 23
140 120-140 320 15 7.230 7.230 1.247 2.309 75 2
160 140-160 325 5 7.230 4.331 1.261 1.963 76 1
180 160-180 335 10 7.230 5.371 1.287 1.948 78 2
200 180-200 351 16 7.230 3.806 1.310 1.729 87 3
300 200-300 465 114 10.444 10.444 1.663 2.449 98 20
500 300-500 472 7 10.444 7.081 1.738 4.465 97 2
930 500-930 476 4 10.444 3.810 1.741 2.086 96 1

aDefined here by rmsd= {
∑N

i=1[V (Ri)− E(Ri)]
2/N}1/2, where V (Ri) and E(Ri) are

the DMBE and calculated ab initio energies. b Number of calculated MRCI/AVTZ

points up to the indicated energy range. c Maximum deviation up to the indicated

energy range. d Number of calculated MRCI/AVTZ points with an energy deviation

larger than the root-mean-square deviation.
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Figure 15. Energetics of full NH3 DMBE PES reported in the present work.

atom species. As usual in DMBE theory, the PES is expected to mimic the correct

behavior at all dissociation channels while providing a realistic representation at

all interatomic separations. It can therefore be recommended both for dynamics

studies and as a building block for construction of DMBE forms for largerNxHy

species. Such a work is currently in due course.
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[25] Léonard, C.; Handy, N. C.; Carter, S. Chem. Phys. Lett. 2003, 370, 360.

[26] Yurchenko, S. N.; Carvaial, M.; Jensen, P.; Lin, H.; Zheng, J. J.; Thiel, W.

Mol. Phys. 2005, 103, 359.

[27] Huang, X.; Schwenke, D. W.; .; Leec, T. J. J. Chem. Phys. 2008, 129,

214304.

[28] Li, Z. H.; Valero, R.; Truhlar, D. G. Theor. Chem. Acc. 2007, 118, 9.

[29] Bonhommeau, D.; Valero, R.; Truhlar, D. G.; Jasper, A. W. J. Chem. Phys.

2009, 130, 234303.

[30] Mota, V. C.; Varandas, A. J. C. J. Phys. Chem. A 2008, 112, 3768.

[31] Varandas, A. J. C. Adv. Chem. Phys. 1988, 74, 255.



J. Phys. Chem. A. 114, 6669-6680 (2010). 147

[32] Varandas, A. J. C. Lecture Notes in Chemistry; Laganá, A., Riganelli, A.,
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Abstract

The single-sheeted double many-body expansion potential energy surface for the ground-

state of NH2 is refined to attain near spectroscopic accuracy from a multiproperty fit to

accurate ab initio energies and experimental vibrational levels, including the Renner-

Teller effect for total angular momentum (excluding spin) of N = 0. Quasiclassical

trajectory calculations on both the original and newly reported potential energy sur-

faces suggest that the dynamical properties of the original form remain essentially

unaltered as aimed.
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1 Introduction

The amidogen (NH2) radical plays a crucial role in atmospheric chemistry and

combustion processes, being also a prototype in spectroscopic and reaction dy-

namics studies.

The spectrum of NH2 has been first reported by Herzberg and Ramsey1 in

1952. A more detailed analysis of that spectrum in 1959 by Dresseler and Ram-

say2 revealed the first experimental evidence of the Renner-Teller (RT) effect, a

non-adiabatic effect due to the coupling of the electronic and total nuclear an-

gular momenta that manifests on vibrational-rotational levels. Ever since, the

spectrum of NH2 and its isotopomers has been investigated by a large variety of

spectroscopic and theoretical methods (see Refs. 3–6 and references therein). In

addition, NH2 is a well established prototype for the study of insertion reactions,

with the reaction N(2D) + H2(X
1Σ+

g ) playing also a key role in the combustion

of nitrogen-containing materials.

Most studies of the title system have been carried out on its ground electronic

adiabatic state potential energy surface (PES) and first excited state (labeled

12A′′ and 12A′ in Cs symmetry, respectively). These PESs form a RT pair of
2Πu character at linear geometries, with both PESs becoming degenerate at some

linear D∞h and C2v geometries and at the asymptote, N(2D) + H2(X
1Σ+

g ).

Varandas and Poveda7 reported a single-sheeted DMBE (double many-body

expansion) PES for the ground state 12A′′ state of NH2 from MRCI ab ini-

tio energies, using the double many-body expansion-scaled external correlation

(DMBE/SEC)8 to slightly correct semiempirically the calculated raw energies. To

take care of the dissociation channels involving nitrogen in the ground N(4S) and

first N(2D) excited states a switching-function formalism has been utilized. In

addition, the barrier for N(2D)+H2(X
1Σ+

g ) insertion has been calibrated. More-

over, quasiclassical9 and quantum10 studies of the N(2D)+H2(X
1Σ+

g ) reaction as

well as quasiclassical and quantum studies11 of the reaction H(2S)+NH(X3Σ−) →

N(2S) +H2(X
1Σ+

g ) using this DMBE PES led to results in good agreement with

the best available experimental and theoretical results. Li and Varandas12 re-

ported a single-sheeted DMBE PES for the 12A′ state based on the DMBE/SEC

method and complete basis set (CBS) extrapolation13 with care taken to ensure
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an accurate match of both PESs at linear D∞h geometries and at asymptotic

regions, since, as noted before, they form a RT pair.

Other PESs have been reported for the 12A′′ state,14–16 12A′ state,6, 17 as well

as for both states3, 18–20 of NH2. Some of these PESs have also been used in reac-

tion dynamics studies, both including the RT effect,21–23 and without including

it.15, 16, 24 Spectroscopic studies have also been undertaken, both including the

RT effect3, 18, 19, 23 and without its inclusion.15, 16, 20 Although the RT effect seems

to have a relatively small influence in reaction dynamics, it is key in obtaining

accurate spectroscopic attributes.

The main goal of the present work is to improve the spectroscopic properties

of the single-sheeted DMBE PES of Varandas and Poveda for the ground-state

of NH2 (hereinafter referred to as DMBE I) by employing a multiproperty fit25–27

to both the DMBE/SEC energies7 and experimental vibrational levels.

To get a more clear picture of how much error can be ascribed to RT effect

versus the error attributable to inaccuracies of the PES itself, fits have been done

with and without the inclusion of RT effects. Following Zhou et al.,6 these effects

have been taken into account in the vibrational calculations considering an extra

term on the PES that is dependent on L̂2
z, with L̂z being the electronic angular

momentum projection on the body-fixed (BF) z-axis. It assumes the form (in

atomic units)6

VRT =

(
1

2µRR2
+

1

2µrr2

)
〈L̂2

z〉

sin2 γ
−

〈L̂2
z〉

2µrr2
(1)

where (R, r, γ) are Jacobi coordinates; µR = mN(mH + mH)/(mN + mH + mH)

and µr = mHmH/(mH + mH). Note that, for N = 0, with N the total angular

momentum (excluding spin) quantum number, the coupling between the two po-

tential energy sheets is absent and the vibrational calculations can be performed

separately.6, 19

The paper is organized as follows. Section 2 describes the potential func-

tion and technical details of the fitting procedure, while the main features of the

resulting PES are in Section 3. A brief description of the performed test dynam-

ics studies will also be presented at this section. Finally, section 4 gathers the

conclusions.
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2 Potential energy surface recalibration

The Varandas-Poveda7 single-sheeted DMBE PES for NH2(1
2A′′) assumes the

form

V (R) =
3∑

i=1

V
(2)
i (Ri) + V

(3)
EHF (R) + V

(3)
dc (R) + V

(1)

N(2D)f (R) (2)

where V
(2)
i (Ri) are the two-body energy terms, V

(3)
EHF the three-body extended

Hartree-Fock (EHF) energy term, V
(3)
dc the three-body dynamical correlation en-

ergy term, V
(1)
N(2D) the difference in energy between 2D and 4S states of atomic

nitrogen, and f (R) is a switching function specially chosen to warrant the proper

dissociation limits at all channels (see Ref. 7 for details).

For the multiproperty25–27 recalibration, two approaches have been followed

resulting in two slightly different new DMBE PESs, hereinafter dubbed as DMBE IIa

and DMBE IIb. To obtain DMBE IIa, 18 experimental vibrational frequencies up

to above the D∞h barrier to linearity have been fitted including RT effects in the

vibrational calculations, while, for DMBE IIb, only 9 experimental vibrational

frequencies up to roughly half of the energy to linearity have been utilized but

the RT effects have not been considered. A third fit using the same 18 exper-

imental vibrational frequencies, but not including RT effects in the vibrational

calculations, shows very similar results to DMBE IIa fit, except in what concerns

the reproducing of the bending frequencies (see below), thus the results of this

last fit are not presented.

2.1 Technical details

In the present work, a subset of coefficients of the three-body EHF energy term

have been optimized in order to fit the experimental frequencies and the energy

points. As in Ref. 7 this term is modeled via a distributed-polynomial28 form

V
(3)
EHF =

5∑

j=1

{
P (j) (Q1, Q2, Q3)

3∏

i=1

{
1− tanh

[
γ
(j)
i

(
Ri −R

(j)
i,ref

)]}}

where for j = 1− 4, P (j) (Q1, Q2, Q3) is given by the sixth-order expansion,

P (j) (Q1, Q2, Q3) =C
(j)
1 + C

(j)
2 Q1 + C

(j)
3 Q3 + C

(j)
4 Q2

1 + C
(j)
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(j)
6 Q1Q3



Chem. Phys. Lett. 516, 17-22 (2011). 157

+ C
(j)
7 S2

2b + C8Q
3
1 + C

(j)
9 Q1S

2
2a + C

(j)
10 S

3
3 + C

(j)
11 Q

2
1Q3 + C

(j)
12 Q1S

2
2b

+ C
(j)
13 Q3S

3
3 + C

(j)
14 Q

4
1 + C

(j)
15 Q

2
1S

2
2a + C

(j)
16 S

4
2a + C

(j)
17 Q1S

3
3

+ C
(j)
18 Q

3
1Q3 + C

(j)
19 Q

2
1S

2
2b + C

(j)
20 Q1Q3S

2
2a + C

(j)
21 Q3S

3
3 + C

(j)
22 S

2
2aS

2
2b

+ C
(j)
23 Q

5
1 + C

(j)
24 Q

3
1S

2
2a + C

(j)
25 Q1S

4
2a + C

(j)
26 Q

2
1S

3
3 + C

(j)
27 S

2
2aS

3
3

+ C
(j)
28 Q

4
1Q3 + C

(j)
29 Q

3
1S

2
2b + C

(j)
30 Q

2
1Q3S

2
2a + C

(j)
31 Q1Q3S

3
3

+ C
(j)
32 Q1S

2
2aS

2
2b + C

(j)
33 Q3S

4
2a + C

(j)
34 S

2
2bS

3
3 + C

(j)
35 Q

6
1 + C

(j)
36 Q

4
1S

2
2a

+ C
(j)
37 Q

2
12S

4
2A + C

(j)
38 Q

3
1S

3
3 + C

(j)
39 Q1S

2
2aS

3
3 + C

(j)
40 S

6
2a + C

(j)
41 S

6
3

+ C
(j)
42 Q

5
1Q3 + C

(j)
43 Q

4
1S

2
2b + C

(j)
44 Q

3
1Q3S

2
2a + C

(j)
45 Q

2
1Q3S

3
3

+ C
(j)
46 Q

2
1S

2
2aS

2
2b + C

(j)
47 Q1Q3S

4
2a + C

(j)
48 Q1S

2
2bS

3
3 + C

(j)
49 Q3S

2
2aS

3
3

+ C
(j)
50 S

4
2aS

2
2b (3)

and for j = 5 only a fourth-order expansion is considered (up to C
(5)
22 ). Symmetry

coordinates have been defined as28–31



Q1

Q2

Q3


 =




√
1/3

√
1/3

√
1/3√

1/2 −
√

1/2 0

−
√

1/6 −
√

1/6
√
2/3






R1 − R

(j)
1,ref

R2 − R
(j)
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 (4)

as well as S2
2a = Q2

2 + Q2
3, S

2
2b = Q2

2 − Q2
3, and S3

3 = Q3
3 − 3Q2

2Q3; for brevity,

we omit any reference to the polynomial index in labeling the Qi. As in Ref. 10,

the complete set of parameters consists of 222 C
(j)
i , 5 γ

(j)
i , and 5 R

(j)
i,ref but, in the

present work, only 50 of those parameters, corresponding to the j = 3 polynomial,

centered near the equilibrium geometry, have been optimized. Our fitting code

uses the routine LMDER of the package MINPACK,32 which is a version33 of the

Levenberg-Marquardt method. The objective function

F =

Np∑

i=1

wi

(
V
[
R(i);C

(j)
k

]
− V ab

i

)2
+

M∑

v=1

wv

(
Ecalc

v [C
(j)
k ]−Eexp

v

)2
(5)

was minimized in order to fit Np = 1498 energy points,7 V ab
i , and a maximum

of M = 18 experimental vibrational frequencies,3, 4 Eexp
v , with weights wi and wv

respectively; wv are given in Table 1 and wi = max(1, w′
i/10

5) with w′
i being the

original weights of Ref. 7. The theoretical vibrational spectra is calculated using
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Table 1. Experimental and calculated vibrational energies (presented as the
difference from calculated to experimental values, in cm−1) for NH2. For the
DMBE potentials: the non-fitted frequencies are reported in italic; wv are the
weights used in the fitting procedure.

(n1, n2, n3) exp.a calc.-exp. calc.-exp. calc.-exp. calc.-exp. calc.-exp. wv/10
3

DMBE Ib without RTc with RTc DMBE IIad DMBE IIbd

(0 1 0) 1497.32 -6.28 7.37 9.64 -0.13 -0.11 10
(0 2 0) 2961.24 -3.18 -1.57 3.69 0.15 0.16 10
(1 0 0) 3219.37 -7.39 8.99 8.29 0.01 0.00 10
(0 0 1) 3301.11 -32.26 19.89 19.23 0.02 0.01 10
(0 3 0) 4391.35 2.99 1.15 10.73 -0.09 -0.10 10
(0 4 0) 5785.55 9.34 -3.87 11.72 -0.02 0.02 10
(1 2 0) 6151.95 -25.00 13.80 18.35 -0.79 -0.09 1
(2 0 0) 6335.15 -25.56 26.88 25.84 -0.69 0.18 1
(0 5 0) 7140.35 13.42 -15.30 10.45 0.54 0.05 1
(1 3 0) 7564.63 -18.08 15.05 23.64 0.03 0.58 1
(2 1 0) 7804.54 -48.79 32.39 33.54 0.84 2.52 1
(0 1 2) 8000.40 -70.30 47.35 48.19 -0.60 -6.92 0.1
(0 6 0) 8451.45 9.81 -35.36 10.58 0.94 -3.89 0.1
(1 4 0) 8942.59 -11.76 10.40 25.33 0.17 -0.25 1
(2 2 0) 9227.14 -41.48 33.15 36.73 -0.24 0.09 1
(0 2 2) 9421.50 -62.17 51.72 54.77 1.54 0.67 -
(0 7 0) 9716.90 -18.03 -86.88 8.07 -0.14 -26.16 0.01
(1 5 0) 10286.30 -13.03 -6.05 21.59 -3.16 -8.21 0.1
(2 3 0) 10609.00 -27.13 44.68 52.87 11.42 8.93 0.1
(0 8 0) 10948.00 -109.23 -198.66 8.88 4.12 -101.84 -
(0 10 0) 13448.60 -408.99 -446.26 20.74 25.16 -396.45 -

rmsd - 96.76 110.96 26.60 6.16 89.56

a Refs. 3, 4.b Ref. 7.c Ref. 6.d This work.
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Table 2. Stratified root-mean-square deviations (in kcalmol−1) between DMBE
PESs and ab initio points.

Points energy DMBE Ia DMBE IIab DMBE IIbb

141 20 0.045 0.091 0.195
184 40 0.251 0.389 0.369
218 60 0.283 0.484 0.445
259 80 0.296 0.550 0.501
404 100 0.286 0.527 0.482
600 120 0.341 0.527 0.482
1421 200 0.428 0.514 0.491
1498 2400 0.474 0.566 0.539

a Ref. 7. b This work.

the DVR3D suite34 in Radau coordinates; the assignment of vibrational states

is based in the previously used scheme25, 26 including a complementary harmonic

progressions test. In each step of the iterative fitting process, the lowest 200 vi-

brational levels (N = 0) of the potential energy function were calculated in Radau

coordinates using the DVR3D program suite34 which uses a discrete variable rep-

resentation (DVR) for each coordinate and is based on the Tennyson and Sutcliffe

methodology.35 For the radial coordinates, the number of the DVR grid points

(based on Morse oscillator-like functions) have been set to 29 with the variational

Morse parameters being optimized and set to re = 2.00 a0, De = 0.17Eh, and

ωe = 0.008Eh. For the bending the number of grid DVR points (based on the

associated Legendre polynomials) have been set to 80. According to the DVR3D

methodology34, 36 the calculation was set up as a series of diagonalizations using

the order r2 → r1 → θ and using the lowest 500 1D states together with an energy

cutoff of 0.0 cm−1 (referred to the PES minimum of −62748 cm−1), to obtain the

final Hamiltonian matrix of dimension 2000 × 2000; as in previous studies25, 26

even-odd symmetry was not considered for simplicity. Based on comparisons

with calculations with larger Hamiltonian matrices and more functions per coor-

dinate the calculated levels should be converged within 0.01 cm−1 or better. For

the RT contributions to the potential in the vibrational calculations the extra

term in Eq. (1) have been used; the angular variation of 〈L̂2
z〉 has been taken (in

atomic units) as 〈L̂2
z〉 = [1 + s1(α − π)4]s2 (s1 = 0.05(1 + tanh[10(α − π/4)]),
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Table 3. Experimental and calculated vibrational energies (presented as the
difference from calculated to experimental values, in cm−1) for NH2 isotopomers
(these frequencies have not been used in the calibration of the PES).

(n1, n2, n3) exp.a calc.-exp. calc.-exp. calc.-exp. calc.-exp.
DMBE Ib Zhou et al.c DMBE IIad DMBE IIbd

ND2

(0 1 0) 1108.75 4.85 -13.50 1.97 0.31

NHD
(0 1 0) 1321 7.89 -8.65 3.58 2.55

15NH2

(0 1 0) 1495.5 8.39 -7.39 2.23 2.24
(1 0 0) 3215 7.66 -8.25 0.49 0.44

a Refs. 39, 42.b Ref. 7.c Ref. 6.d This work.

s2 = 0.5 {1− tanh[10(R1 +R2 +R3 − 9.8)]}, and α is the bending angle between

R2 and R3), which reproduces with reasonable accuracy the calculated ab initio

values. Note that 〈L̂2
z〉 = 1 a.u. is the exact value at some linear geometries.

The partial derivatives of the vibrational energy with respect to the parameters

in the PES which are required for the least-squares fitting procedure have been

calculated using the Hellmann-Feynman theorem

∂En

∂C
(j)
i

=< n|
∂V
(
R1, R2, R3;C

(j)
i

)

∂C
(j)
i

|n > (6)

using the wavefunction values at the grid points.37 As in previous work,25, 26 the

attribution of the quantum numbers has been made automatically. The vibra-

tional quantum numbers are first estimated as38

ni =
1

2

< n|∆Q2
i |n >

< 0|∆Q2
i |0 >

−
1

2
(7)

where ∆Q2
i = Q2

i− < Qi >
2, with Qi corresponding to the normal modes eigen-

vectors calculated at the equilibrium geometry. This assignment is then corrected

using harmonic progressions of levels and monitorized by fitting the resulting fre-
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Figure 1. Optimized NH2 C2v bending curve: DMBE I7 (dashed line); DMBE IIa
(solid; this work); DMBE IIb (dotted, this work). Horizontal thin line segments
show the calculated vibrational levels: fitted frequencies (solid); frequencies not
fitted (dotted). The arrow indicates the approximate energy of the top fitted level
in DMBE IIb PES.

quencies to a Dunham expansion

En =
3∑

i=1

(
ni +

1

2

)
ωi +

3∑

i=1

3∑

j=1

(
ni +

1

2

)(
nj +

1

2

)
xij

and also by inspecting wavefunction plots. The fit started with the parameters

from Ref. 7, with the final parameters reported as supplementary material. The

root mean squared deviations of the fit to the energy points is shown in Table 2,

while the initial and final deviations relative to the fitted vibrational levels is

given in Table 1. In addition to the available experimental data, Table 1 gives

the theoretical estimates based on other PESs. As Table 2 shows, the DMBE

fits from the present work reproduce the ab initio energies only slightly poorer

than the Varandas-Poveda potential.7 However, this is compensated by the more
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accurate description now reported of the vibrational levels, which are reproduced

within 1 cm−1 or so for frequencies below the linear barrier (see Figure 1) when

compared to the measured values. As also shown from Table 1, the current fits

reproduce the spectroscopic data with a smaller root mean-squared deviation

(rmsd) than the recently calculated PES of Zhou et al.6

The vibrational levels calculated for the isotopomers ND2, NHD, and 15NH2

are shown in Table 3. These have not been included in the fits here reported,

and hence may serve as a test on the predictive capability of the present DMBE

IIa and DMBE IIb forms. The agreement with experiment is quite satisfactory,

although caution must be exercised by noting that such matrix-isolation infrared

measurements of Milligan and Jacox39 are expected to have an associated error

of a few cm−1. Rotational-vibrational term values have also been calculated up

to N = 3 (presented as additional information) using the using the DVR3D

and ROTLEV3 suite.34 The agreement with experimental and other accurate

calculations is good, showing that the present fit do not introduce any significant

bias in the potential.

The fit without RT effects, including only 9 vibrational levels (DMBE IIb)

shows a performance almost identical to the one including levels up to the top of

the barrier and RT effects except in what concerns the bending levels. Indeed, the

bending levels which are prone to be naturally affected by the RT effect cannot

be fitted irrespective of the weights assigned to such levels provided that spurious

features are avoided.

3 Features of potential energy function

The features of the new DMBE IIa and IIb potential energy surfaces (see Fig-

ure 2 for DMBE IIa) are very similar to the previous DMBE I ones, particu-

larly at regions far from the global minimum (where the parameters optimized

in the present work are centered). Indeed, one expects small deviations from the

start, since the very purpose of a direct fitting technique is to convey spectro-

scopic accuracy without endangering the quality of the original fit to accurate

ab initio points.40 As can be seen from Table 4, which gathers the stationary
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Table 4. Stationary points at the valence region of the NH2(1
2A′′) potential

energy surfaces.

Feature property ab initioa RKHSa ZXLGb DMBE Ic DMBE IIad DMBE IIbd exp.

Global re(NH)/a0 1.9445 1.94 1.923 1.9405 1.9377 1.9411 1.9377(23)e

minimum 6 HNH/deg 102.7 102.7 102.61 102.6 103.6 103.9 102.85(14)e, 103.36e

V/Eh -0.2858 -0.2859 -0.2859
∆Eh/kcalmol−1 -126.4 -126.4 -128.93 -126.4 -126.47 -126.46

ωs/cm
−1 3340 3350 3383 3381 3382 3374f

ωas/cm
−1 3435 3436 3457 3491 3491 3481f

ωb/cm
−1 1542 1559 1541 1548 1548 1524f

Linear re(NH)/a0 1.8695 1.8694 1.8657
barrier V/Eh -0.23169 -0.23171

∆Ei/cm−1 11802 11894 11886 11914f , 11774g

ωs/cm
−1 3676 3674 3706

ωas/cm
−1 6979 4101 4122

ωb/cm
−1 1544 1575i 1582i

C2v barrier re(NH)/a0 1.42 1.42 1.419 1.4198 1.4196 1.4202
N(2D)−H2 R/a0 3.99 3.99 3.8703 3.9444 3.9427

V/Eh -0.0809 -0.08088 -0.08087
∆Ee/kcalmol−1 1.8 1.8 1.948 2.16 2.17 2.17

ωs/cm
−1 4239 4240 4209 4215 4210

ωas/cm
−1 501i 499i 499i 499i 500i

ωb/cm
−1 324 325 282 285 278

C∞v re(HH)/a0 1.539 1.54 1.55 1.5121 1.4836 1.4843
barrier re(NH)/a0 2.913 2.93 2.869 2.9010 2.9787 2.9744

V/Eh -0.0763 -0.07609 -0.07606
∆Ee/kcalmol−1 4.8 4.8 4.925 5.1 5.17 5.19

ωs/cm
−1 3031 2616 2671 2920 2910

ωas/cm
−1 1031i 1032i 1455i 814i 812i

ωb/cm
−1 818i 764i 844i 817i 824i

a Ref. 15.b Ref. 16.c Ref. 7.d This work.e Ref. 2, 41.f Ref. 3.g Ref. 4.h Relative to the N(2D) + H2 asymptote
(−0.084335 Eh).

i Relative to the global minimum.
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points features of the PES, the C2v and C∞v barriers are nearly identical in all

DMBE potentials. In fact, maintaining the topography of these barriers has

been considered very important to warrant that the reactivity predicted from

the original DMBE form of Varandas and Poveda (i.e., DMBE I) will not be

altered but, if possible, be even slightly improved. This was verified with ex-

ploratory quasiclassical trajectory (QCT) calculations that we have carried out

for the reaction N(2D) + H2(X
1Σ+

g ). Since the calculations are essentially iden-

tical to the ones reported for DMBE I,10 we just mentioned that batches of 104

trajectories have been run on the new PESs at T = 300K yielding a rotational

specific (j = 0) rate constant (in units of 10−12cm3s−1) of k0 = 1.36 ± 0.07

for both DMBE IIa and DMBE IIb (the corresponding value for DMBE I is

k0 = 1.42 ± 0.06), thus overlapping each other within their mutual uncertain-

ties. At this temperature, the agreement extends to other rotational-specific rate

constants. In order to test if the small differences in the wells of DMBE I and

DMBE II surfaces manifest at lower temperature, thermalized calculations have

also been done for T = 200K. At this temperature, the calculated rate con-

stant is k = 2.3 ± 0.3 × 10−13cm3 s−1 which is slightly higher than the value of

k = 1.9±0.3×10−13cm3 s−1 obtained previously for DMBE I. Note that the Arrhe-

nius forms presented in Ref. 10 have been misprinted, with a factor of 103 missing:

the correct expressions are k(T ) = (9.8±0.8)×10−11 exp[−(1247±26)/T ]cm3 s−1

and k(T ) = (9.2± 0.6)× 10−11 exp[−(1099± 25)/T ]cm3 s−1 for thermalized QCT

and quantum closed coupling (CC) calculations, respectively. The results are

found to be insentive to the addition of the RT-diagonal term in Eq. (1). At

the global minimum, the equilibrium angle of the DMBE IIa and IIb PESs are

slightly larger than the available experimental and theoretical results.2, 41 This

feature is consistent in DMBE IIa and DMBE IIb and appears to be a result of the

inclusion of the vibrational frequencies in the optimization procedure; note that

the DMBE I and all other PESs show equilibrium bond angles slightly smaller

than the experimental value.2, 41 Regarding the equilibrium internuclear distance,

DMBE IIa has the value closest to the experimental result as surveyed in Ref. 41.

As for the barrier to linearity, both the DMBE IIa and DMBE IIb PESs show

close agreement with the Varandas-Poveda7 prediction of 11802 cm−1, and the

value of Gabriel et al.3 of 11914 cm−1. Shown in Figures 3 and 4 are contour
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Figure 2. Contour plot for a H atom moving around a NH diatomic fixed
at the equilibrium geometry, 1.965 a0 for DMBE IIa PES. Solid contours start
at −0.29 Eh with ∆E = 0.01 Eh. Dotted contours start at −0.130208 Eh, with
∆E = −0.00005 Eh.

plots of the energy differences between DMBE I and DMBE IIa PESs. As it is

observed, for the most relevant configurations such differences are of < 10 cm−1.

Generically, they are < 1 kcalmol−1.

Finally, it must be stressed that to study RT coupling effects, the excited-state

12A′ DMBE potential can easily be made degenerate with the present ground

state 12A′′ DMBE potentials by using the switching function formalism reported

in Ref. 12.

4 Concluding remarks

In this work we have recalibrated the spectroscopic properties of the single-sheeted

DMBE PES for NH2(1
2A′′) within < 1 cm−1 (below the barrier for linearity)

while maintaining the quality of ab initio-based fit everywhere else. Our results,

obtained including the Renner-Teller effect for N = 0 are consistent with the

experimental3, 4 data and recent theoretical studies.6, 16 We expect to address

the Renner-Teller effect for N > 0 and for studying reactivity in future work.
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[23] P. Gamallo, P. Defazio, M. González and C. Petrongolo, J. Chem. Phys. 129

(2008) 244307.
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[32] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Argonne Na-

tional Laboratory, 1980; MINPACK package can be obtained from

http://www.netlib.org/minpack/.
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1 Suplementary material

Tables with the parameters of the EHF term of the DMBE II potentials and mean

term rotational-vibrational energies up to N = 3.
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Table 1. Fixed EHF parameters of the DMBE PES for NH2 (in atomic units).

C
(1)
1 = 0.28972574E+00 C

(1)
2 = -0.55810849E+00 C

(1)
3 = 0.35597867E+00

C
(1)
4 = 0.30113790E-01 C

(1)
5 = 0.25264641E+00 C

(1)
6 = 0.71505040E-01

C
(1)
7 = -0.25255300E-02 C

(1)
8 = -0.21020530E+00 C

(1)
9 = -0.10344050E-01

C
(1)
10 = -0.56372700E-02 C

(1)
11 = -0.40826443E+00 C

(1)
12 = 0.43715500E-02

C
(1)
13 = 0.24320295E+00 C

(1)
14 = 0.58137000E-02 C

(1)
15 = 0.52888720E-01

C
(1)
16 = 0.75320790E-01 C

(1)
17 = -0.32346470E-01 C

(1)
18 = -0.10993160E-01

C
(1)
19 = 0.36429000E-01 C

(1)
20 = 0.15570612E+00 C

(1)
21 = -0.39944820E-01

C
(1)
22 = -0.59561850E-01 C

(1)
23 = -0.62179700E-02 C

(1)
24 = -0.27642050E-01

C
(1)
25 = 0.15146780E-01 C

(1)
26 = -0.28543790E-01 C

(1)
27 = -0.10637500E-01

C
(1)
28 = -0.28623610E-01 C

(1)
29 = 0.24583000E-01 C

(1)
30 = -0.21405070E-01

C
(1)
31 = -0.57777600E-01 C

(1)
32 = -0.16651480E-01 C

(1)
33 = 0.21228470E-01

C
(1)
34 = 0.19141940E-01 C

(1)
35 = 0.24721800E-02 C

(1)
36 = -0.12110480E-01

C
(1)
37 = -0.71149700E-02 C

(1)
38 = -0.18725770E-01 C

(1)
39 = -0.12053570E-01

C
(1)
40 = 0.41321600E-02 C

(1)
41 = -0.41404200E-02 C

(1)
42 = 0.12606300E-02

C
(1)
43 = 0.13323720E-01 C

(1)
44 = -0.37877710E-01 C

(1)
45 = -0.26001130E-01

C
(1)
46 = 0.11814540E-01 C

(1)
47 = 0.95198500E-02 C

(1)
48 = 0.12782030E-01

C
(1)
49 = -0.48639300E-02 C

(1)
50 = -0.14241900E-02 C

(1)
1 = -0.22388382E+01

C
(2)
2 = 0.13479885E+01 C

(2)
3 = 0.25147920E+01 C

(2)
4 = 0.46600400E-01

C
(2)
5 = 0.32033747E+00 C

(2)
6 = 0.79618730E-01 C

(2)
7 = -0.21360102E+00

C
(2)
8 = 0.33599947E+00 C

(2)
9 = -0.29850390E-01 C

(2)
10 = -0.15730581E+00

C
(2)
11 = 0.23927521E+00 C

(2)
12 = 0.33805178E+00 C

(2)
13 = 0.52130976E+00

C
(2)
14 = 0.10163321E+00 C

(2)
15 = 0.14376423E+00 C

(2)
16 = 0.15183690E-01

C
(2)
17 = 0.23345430E-01 C

(2)
18 = -0.21441955E+00 C

(2)
19 = 0.32734850E-01

C
(2)
20 = -0.59012730E-01 C

(2)
21 = -0.23208490E-01 C

(2)
22 = 0.73405890E-01

C
(2)
23 = -0.84108000E-03 C

(2)
24 = -0.53669660E-01 C

(2)
25 = -0.24028500E-01

C
(2)
26 = -0.18439500E-01 C

(2)
27 = -0.33668800E-02 C

(2)
28 = 0.27675990E-01

C
(2)
29 = -0.76473400E-02 C

(2)
30 = 0.84816490E-01 C

(2)
31 = -0.11279160E-01

C
(2)
32 = 0.53856740E-01 C

(2)
33 = 0.17304480E-01 C

(2)
34 = -0.17636770E-01

C
(2)
35 = 0.52889500E-02 C

(2)
36 = 0.38549900E-02 C

(2)
37 = -0.79568300E-02

C
(2)
38 = -0.71293000E-03 C

(2)
39 = -0.40159900E-02 C

(2)
40 = -0.77721000E-03

C
(2)
41 = -0.42295000E-03 C

(2)
42 = -0.16425190E-01 C

(2)
43 = -0.90664500E-02

C
(2)
44 = 0.11780700E-02 C

(2)
45 = 0.82075200E-02 C

(2)
46 = 0.82103600E-02

C
(2)
47 = 0.11906000E-01 C

(2)
48 = 0.15973000E-02 C

(2)
49 = 0.64467000E-02

C
(2)
50 = -0.27149000E-03
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(Table 5: cont.)

C
(4)
1 = -0.10345479E+02 C

(4)
2 = 0.68214645E+01 C

(4)
3 = -0.16511647E+02

C
(4)
4 = 0.41925703E+01 C

(4)
5 = -0.31531844E+01 C

(4)
6 = -0.16437615E+02

C
(4)
7 = -0.36136157E+01 C

(4)
8 = 0.25696468E+01 C

(4)
9 = -0.30955447E+01

C
(4)
10 = 0.11729748E+01 C

(4)
11 = -0.12795762E+01 C

(4)
12 = 0.42694465E+01

C
(4)
13 = -0.49508061E+00 C

(4)
14 = 0.89781794E+00 C

(4)
15 = 0.10335586E+01

C
(4)
16 = 0.32623867E+00 C

(4)
17 = -0.10641794E+01 C

(4)
18 = -0.26394441E+01

C
(4)
19 = -0.11869115E+01 C

(4)
20 = -0.47108207E+01 C

(4)
21 = 0.10004673E+01

C
(4)
22 = -0.67036214E+00 C

(4)
23 = 0.14299508E+00 C

(4)
24 = -0.99916190E+00

C
(4)
25 = -0.82278451E+00 C

(4)
26 = 0.22691603E+00 C

(4)
27 = 0.40056270E+00

C
(4)
28 = 0.75973486E+00 C

(4)
29 = 0.95557878E+00 C

(4)
30 = 0.12347535E+01

C
(4)
31 = -0.18269793E+00 C

(4)
32 = 0.97068822E+00 C

(4)
33 = 0.49320770E+00

C
(4)
34 = -0.22657901E+00 C

(4)
35 = 0.19971700E-01 C

(4)
36 = 0.39887510E-01

C
(4)
37 = 0.19528166E+00 C

(4)
38 = -0.78854540E-01 C

(4)
39 = -0.91683830E-01

C
(4)
40 = 0.23456180E-01 C

(4)
41 = 0.27109770E-01 C

(4)
42 = -0.36761250E-01

C
(4)
43 = -0.59784200E-02 C

(4)
44 = -0.28878921E+00 C

(4)
45 = 0.70887480E-01

C
(4)
46 = -0.24948561E+00 C

(4)
47 = -0.23974016E+00 C

(4)
48 = 0.15995300E-01

C
(4)
49 = 0.10016699E+00 C

(4)
50 = -0.20059570E-01 C

(5)
1 = 0.33641700E-02

C
(5)
2 = 0.40245800E-02 C

(5)
3 = 0.77129200E-02 C

(5)
4 = 0.12681360E-01

C
(5)
5 = 0.12746660E-01 C

(5)
6 = 0.36319290E-01 C

(5)
207= -0.15018760E-01

C
(5)
8 = 0.51759200E-02 C

(5)
9 = 0.24179860E-01 C

(5)
10 = 0.68263600E-02

C
(5)
11 = 0.28040540E-01 C

(5)
12 = -0.24833530E-01 C

(5)
13 = 0.21434040E-01

C
(5)
14 = -0.16475900E-02 C

(5)
15 = -0.19509600E-02 C

(5)
16 = 0.31957500E-02

C
(5)
17 = 0.34903100E-02 C

(5)
18 = -0.60489600E-02 C

(5)
19 = 0.62813000E-03

C
(5)
20 = 0.66813300E-02 C

(5)
21 = 0.31855000E-02 C

(5)
22 = -0.25594300E-02

γ
(1)
1 = 1.45 γ

(1)
2 = 0.50 γ

(1)
3 = 0.50

R
(1)
1 = 1.50 R

(1)
1 = 4.00 R

(1)
1 = 4.00

γ
(2)
1 = 0.40 γ

(2)
2 = 0.80 γ

(2)
3 = 0.80

R
(2)
1 = 2.50 R

(2)
1 = 3.00 R

(2)
1 = 3.00

γ
(3)
1 = 0.35 γ

(3)
2 = 0.85 γ

(3)
3 = 0.85

R
(3)
1 = 3.50 R

(3)
1 = 2.00 R

(3)
1 = 2.00

γ
(4)
1 = 0.75 γ

(4)
2 = 0.75 γ

(4)
3 = 0.75

R
(4)
1 = 3.70 R

(4)
1 = 1.85 R

(4)
1 = 1.85

γ
(5)
1 = 3.95 γ

(5)
2 = 0.65 γ

(5)
3 = 0.65

R
(5)
1 = 1.40 R

(5)
1 = 6.55 R

(5)
1 = 6.55
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Table 2. Optimized EHF parameters of the DMBE IIa PES for NH2.

C
(3)
1 = -0.48203078E+01 C

(3)
2 = -0.13329298E+02

C
(3)
3 = 0.52041025E+01 C

(3)
4 = -0.69816801E+01 C

(3)
5 = -0.17607826E+01

C
(3)
6 = 0.13151386E+02 C

(3)
7 = 0.24085599E+01 C

(3)
8 = -0.25155174E+01

C
(3)
9 = -0.21823116E+01 C

(3)
10 = -0.58689163E+00 C

(3)
11 = 0.31513323E+01

C
(3)
12 = -0.15130667E+01 C

(3)
13 = -0.83764108E+00 C

(3)
14 = -0.71413742E+00

C
(3)
15 = -0.28996558E+01 C

(3)
16 = -0.17437195E+00 C

(3)
17 = 0.17845144E+00

C
(3)
18 = 0.34796140E+01 C

(3)
19 = 0.17393282E+01 C

(3)
20 = 0.21861265E+01

C
(3)
21 = -0.18640300E+00 C

(3)
22 = 0.14717610E+00 C

(3)
23 = -0.63846874E-01

C
(3)
24 = 0.53214683E+00 C

(3)
25 = 0.43115839E+00 C

(3)
26 = -0.36436894E+00

C
(3)
27 = -0.17123014E+00 C

(3)
28 = -0.27535826E+00 C

(3)
29 = -0.34060901E+00

C
(3)
30 = -0.10005288E+01 C

(3)
31 = 0.37409799E+00 C

(3)
32 = -0.57363272E+00

C
(3)
33 = -0.33902819E+00 C

(3)
34 = 0.61214764E-01 C

(3)
35 = -0.26699900E-01

C
(3)
36 = -0.14925237E+00 C

(3)
37 = -0.18427256E+00 C

(3)
38 = 0.16204782E+00

C
(3)
39 = 0.12556026E+00 C

(3)
40 = -0.25671036E-01 C

(3)
41 = -0.14045982E-01

C
(3)
42 = 0.17900758E+00 C

(3)
43 = 0.21452652E+00 C

(3)
44 = 0.31183332E+00

C
(3)
45 = -0.19080734E+00 C

(3)
46 = 0.15583102E+00 C

(3)
47 = 0.15156462E+00

C
(3)
48 = -0.65763320E-01 C

(3)
49 = -0.85906260E-01 C

(3)
50 = 0.16555895E-01

Table 3. Optimized EHF parameters of the DMBE IIb PES for NH2.

C
(3)
1 = -0.48210758E+01 C

(3)
2 = -0.13330577E+02

C
(3)
3 = 0.52043457E+01 C

(3)
4 = -0.69823709E+01 C

(3)
5 = -0.17549151E+01

C
(3)
6 = 0.13148683E+02 C

(3)
7 = 0.24036659E+01 C

(3)
8 = -0.25165102E+01

C
(3)
9 = -0.21832814E+01 C

(3)
10 = -0.58086123E+00 C

(3)
11 = 0.31521206E+01

C
(3)
12 = -0.15098241E+01 C

(3)
13 = -0.82473243E+00 C

(3)
14 = -0.71450485E+00

C
(3)
15 = -0.28962821E+01 C

(3)
16 = -0.17167209E+00 C

(3)
17 = 0.17824894E+00

C
(3)
18 = 0.34777029E+01 C

(3)
19 = 0.17384331E+01 C

(3)
20 = 0.21833641E+01

C
(3)
21 = -0.18094833E+00 C

(3)
22 = 0.14279528E+00 C

(3)
23 = -0.63798886E-01

C
(3)
24 = 0.53197726E+00 C

(3)
25 = 0.43031300E+00 C

(3)
26 = -0.36376018E+00

C
(3)
27 = -0.17007103E+00 C

(3)
28 = -0.27561598E+00 C

(3)
29 = -0.34006259E+00

C
(3)
30 = -0.99835797E+00 C

(3)
31 = 0.37388637E+00 C

(3)
32 = -0.57381863E+00

C
(3)
33 = -0.33800720E+00 C

(3)
34 = 0.59817067E-01 C

(3)
35 = -0.26684387E-01

C
(3)
36 = -0.14925546E+00 C

(3)
37 = -0.18429293E+00 C

(3)
38 = 0.16213791E+00

C
(3)
39 = 0.12538273E+00 C

(3)
40 = -0.25425766E-01 C

(3)
41 = -0.13882590E-01

C
(3)
42 = 0.17910962E+00 C

(3)
43 = 0.21473718E+00 C

(3)
44 = 0.31178970E+00

C
(3)
45 = -0.19090918E+00 C

(3)
46 = 0.15520449E+00 C

(3)
47 = 0.15155897E+00

C
(3)
48 = -0.65839284E-01 C

(3)
49 = -0.85643197E-01 C

(3)
50 = 0.16855327E-01
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Table 4. Mean term rotational-vibrational energies (in cm−1) with N = Ka.

Ka exp.a calc.b calc.c calc.d

(0 0 0) 1 34.28 34.3 34.11 34.04
(0 0 0) 2 116.29 116.5 115.72 115.46
(0 0 0) 3 244.36 244.4 243.12 242.56

(0 1 0) 1 1533.85 1533.9 1533.18 1533.38
(0 1 0) 2 1622.50 1623.3 1621.44 1621.05
(0 1 0) 3 1761.22 1761.2 1759.45 1758.07

(0 2 0) 1 3000.64 3001.6 3000.57 3000.24
(0 2 0) 2 3097.43 3097.4 3097.34 3095.48
(0 2 0) 3 3248.86 3248.3 3248.75 3244.26

(1 0 0) 1 3252.9 3249.6 3252.67
(1 0 0) 2 3332.2 3330.1 3332.23
(1 0 0) 3 3457.7 3455.9 3456.31

(0 0 1) 1 3334.3 3333.0 3334.10
(0 0 1) 2 3412.2 3412.1 3412.71
(0 0 1) 3 3535.5 3535.5 3535.20

a Compiled in Refs. 3,4.b Ref. 3.c Ref. 4.d This work.





Chapter 7

Conclusions

In the present thesis we reported a series of published results, mainly focused on

the calculation and modeling of double many-body expansion potential energy

surface for NHx (x=2, 3) systems. It can therefore be recommended both for

dynamics studies and as a building block for construction of DMBE forms for lager

NxHy species. The DMBE-PES for the first excited state of NH2 molecule and

the ground state of the ammonia molecule were constructed by fitting extensive

ab initio data at the MRCI level of theory.

For NH2(1
2A′), a single-sheeted DMBE/SEC PES has been reported based

on a realistic representation of the long-range forces and a fit to accurate ab ini-

tio energies calculated at the MRCI level with the AVQZ basis set, after slightly

correcting semiempirically the dynamical correlation by the DMBE-SEC method.

The resulting function has been compared in detail with the DMBE/CBS PES

obtained by extrapolating the calculated raw energies to the CBS limit. The

various topographical features of both DMBE/SEC and DMBE/CBS PESs have

been carefully examined, and compared with previous results for the title system.

Regarding accuracy attributes, the two forms can hardly be discriminated since

they have rather similar rmsd. Of course, the DMBE/CBS PES has been con-

structed in a purely ab initio fashion, whereas the DMBE/SEC one here reported

entails a small degree of empiricism via scaling of the external (or dynamical)

correlation. The fact that they are so similar in topography and accuracy can

therefore be regarded as an asset on the consistency of both schemes. The novel

function has been built such as to become degenerate at linear geometries with

the ground-state potential energy surface of A′′ symmetry reported by our group,
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where both form a Renner-Teller pair.

For the ground state of the ammonia molecule, a full six-dimensional config-

uration space global DMBE PES has been reported, proper dissociation at all

asymptotes is warranted by employing a generalization of the Varandas-Poveda

switching function approach originally reported for triatomic species. It can then

be recommended both as a reliable functional form on which dynamics calcula-

tions can be performed and as a model for improvement that is open to refinement

through further accurate ab initio calculations, vibrational calculations, or both.

For the ground-state of NH2, a single-sheeted DMBE PES has been refined,

the main goal of this work is to improve the spectroscopic properties of the single-

sheeted DMBE PES of Varandas and Poveda for the ground-state of NH2 by

employing a multiproperty fit to both the DMBE/SEC energies and experimental

vibrational levels. Quasiclassical trajectory calculations on both the original and

newly reported potential energy surfaces suggest that the dynamical properties

of the original form remain essentially unaltered as aimed.

Summarizing we can concludes that the DMBE PESs reported in the present

thesis, are expected to mimic the correct behavior at all dissociation channels

while providing a realistic representation at all interatomic separations. they can

therefore be recommended both for dynamics studies and as a building block for

construction of DMBE forms for larger NxHy species. The main achievements of

the reported DMBE PESs are its smoothness and its accuracy. In turn, special

care was devoted during the fitting procedure to avoid the appearance of sprious

stationary points and/or unphysical behaviors in the potential.


