Erratum

FTIR Spectroscopic and Theoretical Study of the Photochemistry of Matrix-isolated Coumarin

Nihal Kuş, Susana Breda, Igor Reva, Erol Tasal, Cemil Ogretir and Rui Fausto

DOI: 10.1111/j.1751-1097.2007.00233.x

In the most recent issue of Photochemistry and Photobiology, 2007, 83(5), 1237-1253, an error in Table 2 was published.

The corrected Table 2 is shown:

Table 2. Frequencies (cm^{-1}) and intensities $(km mol^{-1})$ of monomeric coumarin theoretically calculated at the B3LYP/6-311++G(d,p) and MP2/6-31G(d,p) levels compared to the observed infrared spectrum of coumarin isolated in an argon matrix at 10 K*.

	Sym.	Calculated DFT(B3LYP)/ 6-311 + + G(d,p)		Calculated MP2/6-31G(d,p)		Observed spectrum Ar (10 K)		
Approximate description†		Freq.‡	Int.	Freq.§	Int.	Freq.	Int.	
v(C3–H)	A'	3099	0.3	3100	0.5	-		
v(C7–H)	A'	3088	3.2	3087	4.1	3096	1.0	
v(C9–H)	A'	3079	11.0	3079	10.6	3085,3079	1.5	
v(C8–H)	A'	3065	7.0	3064	5.5	3059	1.0	
v(C10–H)	A'	3055	5.2	3050	0.9	3053	1.1	
v(C4–H)	A'	3051	4.1	3052	11.0	3043	0.7	
v(C = O)	A'	1772	718.0	1757	422.3	1776,1774,1772,1767,1762, 1759,1752,1748,1747	456.6	
v(C3 = C4)	A'	1633	65.9	1628	24.8	1635,1632,1631,1630	45.0	
v(C10-C9)	A'	1616	60.7	1608	25.7	1617,1613,1612,1610	54.1	
v(C8-C7)	A'	1568	39.3	1566	6.3	1572,1571	12.7	
δ (C–H) ph	A'	1489	5.2	1484	8.4	1492	3.2	
v(C7-C6)	A'	1453	23.4	1445	31.6	1459,1458,1455	25.8	
δ (C–H) pv	A'	1400	10.1	1425	11.6	1399	9.8	
$v(C5-C6)/\delta(C-H) ph$	A'	1336	2.7	1390	12.8	1329,1327	1.9	
δ (C–H) ph/ v(C5–C6)	A'	1273	20.7	1258	27.3	1278.1276.1275	13.2	
v(C6-O)	A'	1255	28.6	1242	14.0	1263,1262,1260,1259	17.6	
v(C4-C5)	A'	1225	13.1	1224	2.2	1233.1232.1228.1226.1225	13.8	
δ (C–H) pv/v (C2–C3)	A'	1169	25.6	1174	99.5	1202.1197.11961194.1181.1178	69.2	
δ (C–H) ph	A'	1156	0.9	1151	0.9	1156.1153	1.2	
$\delta(C-H) ph$	A'	1118	20.5	1111	47.5	1134,1132,1129,1128,1123,1119,1118	32.6	
$v(C2-C3)/\delta(C-H) pv$	A'	1075	99.8	1088	49.2	1106.1102.1098.1097	56.1	
v(C9-C8)	A'	1030	2.2	1021	1.3	1031 1030	1.0	
$\gamma(C-H) pv$	Α"	983	0.5	964	0.5	984.982	0.2	
$\gamma(C-H) ph$	A″	969	0.2	917	0.3	_	•	
$\gamma(C-H) ph$	A″	948	3.2	903	0.5	945.944.942.940	3.4	
$v(\Omega - C^2)/\delta$ ring <i>ph</i>	A'	922	28.8	911	23.5	929.927.926	19.8	
$\delta \operatorname{ring} ph/v(O-C2)$	A'	875	43.3	949	41.5	888.886	21.0	
v(C-H) ph	Α"	863	3.1	843	0.6	866.865.864	2.3	
$\gamma(C-H) pv$	A″	830	59.1	827	61.0	832,829,828,827	52.2	
v(C10-C5)	A'	761	2.5	785	2.6 1	765 763 762 761 759 753	56.2	
v(C-H) ph	A''	761	46.8	763	$\frac{10}{46.0}$, , , , , , , , , , , , , , , , , , , ,	00.2	
$\tau \operatorname{ring} nv$	A″	740	15.9	105	10.0 -			
$\delta \operatorname{ring} p $	A'	731	2.6	754	17	726 725	11	
v(C=0)	Δ"	678	0.5	669	4.2	680	0.2	
$\delta \operatorname{ring} nv$	Δ'	614	83	626	9.7	610	73	
$\tau \operatorname{ring} py$	Δ"	538	0.2	503	0.0		1.5	
$\delta \operatorname{ring} py$	A'	530	67	542	3.0	527 526	2.0	
$\delta(C=0)$	Δ'	489	5.4	497	3.9	490 486(?)	2.0	
τ Butterfly	Δ"	454	5.7	435	13	459 452	4.6	
δ ring <i>ph</i>	A'	445	1.5	456	0.8	446	0.3	

1542 Erratum

Table 2. (Continued)

Approximate description [†]	Sym.	Calculated DFT(B3LYP)∕ 6-311+ + G(d,p)		Calculated MP2/6-31G(d,p)		Observed spectrum Ar (10 K)	
		Freq.‡	Int.	Freq.§	Int.	Freq.	Int.
$\tau \operatorname{ring} py$	Α"			355	0.4		
τ ring ph	Α″	369	0.1	327	0.1		
$\delta \operatorname{ring} py$	A'	304	0.8	308	1.0	Not investigated	
τ ring py	Α"	253	0.5	243	0.3		
τ ring ph	A″	154	4.6	154	4.5		
τ ring ph	Α″	93	1.4	93	1.2		

*See Table S1 for definition of symmetry coordinates and Tables S2 and S3 for PEDs calculated using the DFT and MP2 force constants and geometries, respectively. †Approximate description is known to be an oversimplification of the vibrations description, where their description in terms of a single, most significant symmetry coordinate was attempted. The detailed description is given in the PED form (Tables S2 and S3). v, bond stretching; δ , bending; γ , rocking; τ , torsion; *ph*, phenyl ring; *py*, pyrone ring. Wherever two approximate descriptions are given, separated by a slash (/) symbol, the left one corresponds to the approximate description extracted from the PEDs calculated at the DFT(B3LYP)/6-311 + + G(d,p) level and the right one to that obtained based on the MP2/6-31G(d,p) calculations. ‡Theoretical positions of absorption bands were scaled by a factor 0.964 in the 4000–2500 cm⁻¹ region; 0.982 in the 2500–1000 cm⁻¹ region and 0.989 in the region below 1000 cm⁻¹. §Theoretical positions for absorption bands were scaled by a factor of 0.938 in the 4000–2500 cm⁻¹ region; 0.956 in the 2500–1000 cm⁻¹ region and 1.014 in the region below 1000 cm⁻¹. [|Observed intensities (Int_{exp}) correspond to band integral absorbances (*A*) normalized by the theoretical intensities (Int_{exp}) different way by the DFT(B3LYP)/6-311 + + G(d,p) and MP2/6-31G(d,p) methods.

Copyright of Photochemistry & Photobiology is the property of Blackwell Publishing Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.