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A B S T R A C T

Peak-to-average power ratio (PAPR) reduction is of major concern in most telecom-
munication systems whose transmission capacity is limited by the transmitter’s
non-linear high-power amplifier (HPA). A high PAPR puts stringent linearity re-
quirements on the HPA, which badly degrades the system’s power efficiency.
In addition it also complicates the design of other components of the system,
e.g. the digital-to-analog converter (DAC), thereby increasing the overall cost of
the system.

This thesis discusses the problem of controlling the envelope’s power peak
of single-carrier (SC) modulated signals, band limited by Nyquist pulse shaping
filters, usually achieved with root-raised cosine (RRC) filters. Our main aim is to
lower the signal’s PAPR in order to reduce the power amplifier back-off for small
satellite communication terminals (VSAT).

Following original work by Miller et al. and Tomlinson et al. on the PAPR con-
trolling of SC signals we have focused on the concept of magnitude modulation
(MM). The MM technique is presented as a very efficient solution to the PAPR
problem. This thesis contributes two highly efficient MM algorithms that control
the envelope’s power peak: an improved LUT-based approach where constel-
lation and RRC symmetries are explored, and a novel multistage polyphase
magnitude modulation (MPMM) approach. The increased sensitivity to noise
due to MM is also addressed, with two effective techniques being proposed
for improving the detection of MM signals. Another major contribution is an
analytical model for statistically characterizing and analyzing the performance
of the MM procedure.
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S U M Á R I O

A redução da relação entre potência de pico e a potência média (PAPR) de
um sinal é motivo de preocupação no projecto da grande maioria de sistemas
de telecomunicações, cuja capacidade de transmissão é limitada pela não lin-
earidade do amplificador de potência (HPA) usado no emissor. Um elevado
PAPR coloca elevados requisitos de linearidade no HPA, com consequente perda
de eficiência de potência. Para além disso, dificulta igualmente o projecto de
outros componentes do sistema, tais como o conversor digital-analógico (DAC),
contribuindo para o aumento de custo global do sistema.

Esta tese aborda o problema de controlo da potência de pico da envolvente
de sinais modulados em portadora única e com largura de banda espectral
limitada com recurso a um filtro de Nyquist (tipicamente um filtro RRC). O
nosso principal objectivo é minimizar o PAPR do sinal a transmitir, com vista a
reduzir a necessidade de back-off em sistemas VSAT.

Dando continuidade ao trabalho de Miller et al. e Tomlinson et al., concentramo-
nos no estudo do conceito de modulação de magnitude (MM). A técnica de MM
é apresentada como uma solução muito eficiente para a resolução do problema
associado a um elevado PAPR. Este trabalho contribui com dois algorítmos de
MM com elevado desempenho no controlo da potência de pico da envolvente
do sinal a transmitir, sendo proposta uma versão melhorada do método de MM
baseada em LUT’s, bem como uma nova técnica polifásica de modulação de
magnitude (MPMM). O problema de aumento de sensibilidade ao ruído, devido
ao uso de técnicas de MM, é também abordado. Assim, este trabalho propõe
duas novas técnicas que melhoram eficazmente a detecção do sinal modulado
em magnitude. Outra contribuição muito importante é o desenvolvimento de
um modelo analítico para caracterização e análise estatística do desempenho do
método de MM.

xiii





P U B L I C AT I O N S

The original contributions presented in this thesis were disseminated in the
following scientific publications.

scientific journals with referees:

M. Gomes, F. Cercas, V. Silva, and M. Tomlinson, “Magnitude modulation for
VSAT’s low back-off transmission,” Journal Commun. Networks (JCN), special issue
on Recent Adv. in Satell. and Space Commun., vol. 12, no. 6, pp. 544–557, Dec. 2010.

M. Gomes, V. Silva, F. Cercas, and M. Tomlinson, “Power efficient back-off
reduction through polyphase filtering magnitude modulation,” IEEE Commun.
Lett., vol. 13, no. 8, pp. 606–608, August 2009.

scientific conferences with referees :

M. Gomes, V. Silva, F. Cercas, and M. Tomlinson, “Analytical analysis of
polyphase magnitude modulation method’s performance,” in Proc. IEEE ICC’2010,
Cape Town, South Africa, May 2010.

M. Gomes, F. Cercas, V. Silva, and M. Tomlinson, “Polyphase magnitude mod-
ulation for peak power control,” in 17th European Signal Processing Conference,
EUSIPCO 2009., Glasgow, Scotland, August 2009.

M. Gomes, V. Silva, F. Cercas, and M. Tomlinson, “Real-time LUT-less magnitude
modulation for peak power control of single carrier rrc filtered signals,” in IEEE
10th Workshop on Signal Process. Advances in Wireless Commun., SPAWC ’09. ,
Perugia, Italy, June 2009, pp. 424–428.

M. Gomes, F. Cercas, V. Silva, and M. Tomlinson, “Efficient m-QAM transmission
using compacted magnitude modulation tables,” in Proc. IEEE Globecom’08, New
Orleans, LA, Nov. 2008.

M. Gomes, V. Silva, F. Cercas, and M. Tomlinson, “Low back-off 16-APSK
transmission using magnitude modulation and symbol quantization,” in IEEE
Int. Workshop on Satellite and Space Commun., IWSSC’08. , Toulouse, France, Oct.
2008, pp. 229–233.

xv



M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, L. Silva, N. Marques, and
M. Falcao, “Scalable and parallel codec architectures for the dvb-s2 fec system,”
in Proc. IEEE APCCAS’08, Macau, China, Nov. 2008, pp. 1506–1509.

M. Gomes, G. Falcao, A. Sengo, V. Ferreira, V. Silva, and M. Falcao, “High
throughput encoder architecture for DVB-S2 LDPC-IRA codes,” in Proc. IEEE
Int. Conf. Microelectronics, ICM’07, Cairo, Egypt, Dec. 2007, pp. 271–274.

M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao, “Flexible
parallel architecture for DVB-S2 LDPC decoders,” in Proc. IEEE Globecom’07,
Washington, DC, Nov. 2007, pp. 3265–3269.

xvi



C O N T E N T S

1 introduction 1

1.1 Motivation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Peak Power Problem . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Research Contributions and organization of the thesis . . . . . . . 9

1.4.1 Research contributions . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . 11

2 error correcting coding 13

2.1 Error Correcting Coding: Basic concepts . . . . . . . . . . . . . . . . 13

2.1.1 Power-limited regime: the Ultimate Shannon Limit . . . . . 15

2.1.2 Block Codes and Convolutional Codes . . . . . . . . . . . . 17

2.2 Linear Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Generator and Parity-Check Matrices . . . . . . . . . . . . . 19

2.2.2 Error-Detecting and Error-Correcting Capabilities . . . . . . 21

2.2.3 Decoding: Syndrome’s Method . . . . . . . . . . . . . . . . . 22

2.2.4 Hamming and Golay codes . . . . . . . . . . . . . . . . . . . 23

2.3 Performance bounds of Linear Block Codes over the AWGN
channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Decoding: MAP and ML decision rules . . . . . . . . . . . . 26

2.3.2 Hard-Decision Decoding Performance . . . . . . . . . . . . 28

2.3.3 Soft-Decision Decoding Performance . . . . . . . . . . . . . 31

2.4 Low-Density Parity-Check Codes . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Description of LDPC Codes: Tanner Graphs . . . . . . . . . 37

2.4.2 Decoding LDPC Codes: Iterative Decoding Algorithms . . . 39

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 magnitude modulation 49

3.1 The Magnitude Modulation Principle . . . . . . . . . . . . . . . . . 50

3.1.1 Magnitude Modulation . . . . . . . . . . . . . . . . . . . . . 51

3.2 Magnitude Modulation: Look-up-Table Based Approach . . . . . . 55

3.2.1 MM Look-up-Table Computation . . . . . . . . . . . . . . . 55

3.2.2 Filtering finite length signals . . . . . . . . . . . . . . . . . . 58

3.2.3 LUT-MM Improvements to Handle Generic M-ary Con-
stellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xvii



xviii contents

3.2.4 LUT-MM Complexity Discussion and Algorithm Opti-
mization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 polyphase magnitude modulation 69

4.1 Multirate Signal Processing Overview . . . . . . . . . . . . . . . . . 69

4.1.1 Resamplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Noble Identities . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.3 Multirate Polyphase Signal Processing . . . . . . . . . . . . 74

4.2 Multistage Polyphase Magnitude Modulation . . . . . . . . . . . . 75

4.2.1 The Polyphase Magnitude Modulation Principle . . . . . . 76

4.2.2 MM Factors Accuracy Improvement . . . . . . . . . . . . . . 83

4.2.3 Multistage PMM . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 MPMM Simulation Results for PAPR and Back-Off . . . . . . . . . 84

4.4 Improved MPMM Detection and BER Performance . . . . . . . . . 87

4.4.1 BER performance of an MM’s blind receiver . . . . . . . . . 87

4.4.2 Detection with an Estimated MM Average Constellation . . 89

4.4.3 Detection with Estimation of MPMM Coefficients . . . . . . 93

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 modeling magnitude modulation performance 101

5.1 Multirate Processing of Random Signals . . . . . . . . . . . . . . . . 101

5.1.1 Stationarity Definitions . . . . . . . . . . . . . . . . . . . . . 102

5.1.2 Average Power of WSS and WSCS stochastic processes . . . 103

5.1.3 Stationarity under Rate Change . . . . . . . . . . . . . . . . 104

5.1.4 Filtering Random Processes . . . . . . . . . . . . . . . . . . . 108

5.1.5 The Interpolator Case . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Analytical Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Statistical Distributions of MM factors . . . . . . . . . . . . . 112

5.2.2 Average Power and PAPR Reduction . . . . . . . . . . . . . 114

5.2.3 Bounding the Average Transmitted Power . . . . . . . . . . 118

5.3 EVM and SER Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 EVM Analytical Analysis . . . . . . . . . . . . . . . . . . . . 122

5.3.2 SER Analytical Analysis . . . . . . . . . . . . . . . . . . . . . 126

5.4 Performance Analysis using channel coding . . . . . . . . . . . . . 130

5.4.1 Hard-Decision Decoding Performance . . . . . . . . . . . . 130

5.4.2 Soft-Decision Decoding Performance . . . . . . . . . . . . . 132

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 conclusions and future work 137

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



contents xix

Appendix 141

a nyquist filter and its papr contribution 143

a.1 Nyquist pulse shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 143

a.2 Nyquist filter contribution to signal PAPR . . . . . . . . . . . . . . . 145

b wimax and dvb-s2 ldpc codes 147

b.1 Structured LDPC-IRA Codes . . . . . . . . . . . . . . . . . . . . . . 147

b.1.1 IRA Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

b.1.2 DVB-S2 LDPC Codes . . . . . . . . . . . . . . . . . . . . . . 149

b.1.3 WiMAX LDPC Codes . . . . . . . . . . . . . . . . . . . . . . 149

b.2 Hardware architectures for DVB-S2 LDPC-IRA Codes . . . . . . . . 151

b.2.1 DVB-S2 LDPC Encoder Architecture . . . . . . . . . . . . . . 151

b.2.2 DVB-S2 LDPC Decoder Architecture . . . . . . . . . . . . . 155

bibliography 161





L I S T O F F I G U R E S

Figure 1 Generic SC transmitter’s system block diagram. . . . . . . . 2

Figure 2 Typical AM/AM characteristic of an HPA. . . . . . . . . . . 4

Figure 3 Theoretical efficiency limits of linear amplifiers. . . . . . . . 6

Figure 4 Post filtering peak power reduction techniques. . . . . . . . 8

Figure 5 Optimum hard-decision threshold for BPSK transmission
over the AWGN channel. . . . . . . . . . . . . . . . . . . . . 29

Figure 6 The binary symmetric channel model. . . . . . . . . . . . . . 29

Figure 7 Bounds on the error probability for hard- and soft-decision
decoding for the Golay (23, 12) code. . . . . . . . . . . . . . 35

Figure 8 Parity-check matrix H and Tanner graph of a (10, 5, 2)
LDPC code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 9 SPA algorithm: message passing updating procedure. . . . 41

Figure 10 MM underlying principle. . . . . . . . . . . . . . . . . . . . . 51

Figure 11 Sample of a α = 0.35 RRC filtered 16-QAM signal with
and without MM. . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 12 LUT-based magnitude modulation transmitter system. . . . 55

Figure 13 Computation algorithm for the MM coefficients of the
LUT-based approach for a generic M-ary constelation . . . 57

Figure 14 Envelope peak power reduction vs. LUT index size. . . . . . 59

Figure 15 LUT-MM approach: exploring constellation symmetry . . . 63

Figure 16 Sample of an α = 0.35 RRC filtered 16-APSK signal with
and without magnitude modulation. . . . . . . . . . . . . . 65

Figure 17 BER performance, PAPR and back-off gains of several
LUT-MM approaches for a 16-APSK RRC filtered signal. . . 66

Figure 18 BER performance, PAPR and back-off gains of several
LUT-MM approaches for a 16-QAM RRC filtered signal. . . 67

Figure 19 Up-sampling and Down-sampling operations. . . . . . . . . 70

Figure 20 Time and spectral illustration of the up-sampling process
for L = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 21 Time and spectral illustration of the down-sampling pro-
cess for M = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 22 Equivalent delay’s structures under a rate change. . . . . . 73

Figure 23 Noble Identities. . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 24 Multirate filter structure: interpolator. . . . . . . . . . . . . . 74

Figure 25 Interpolator’s polyphase decomposition. . . . . . . . . . . . 75

Figure 26 Generic block diagram of a typical SC transmitter system
that makes use of the MM concept. . . . . . . . . . . . . . . 76

Figure 27 Peak envelope control on a symbol interval. . . . . . . . . . 78

xxi



xxii List of Figures

Figure 28 MPMM component filters. . . . . . . . . . . . . . . . . . . . 78

Figure 29 Multistage polyphase magnitude modulation scheme. . . . 79

Figure 30 Detailed MPMM branch. . . . . . . . . . . . . . . . . . . . . 80

Figure 31 Back-off and PAPR gains of MPMM applied to different
constellations when performing bandwidth pulse shaping
with α = 0.2 and 0.35. . . . . . . . . . . . . . . . . . . . . . . 85

Figure 32 Back-off and PAPR gains of k-stage MPMM applied to
64-QAM RRC filtered signal for different roll-offs. . . . . . . 86

Figure 33 Soft-decoding BER performance for MM’s blind reception
of MPMM signals. . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 34 Scatter plot and pdf distributions of constellation symbols’
displacement for MPMM applied to 16-APSK and 16-QAM
transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 35 Soft-decoding BER performance of MPMM applied to
different constellations when using the MM EAC. . . . . . . 91

Figure 36 Comparison of soft-decoding BER performance between
the (1248, 832) and (2016, 1680) LDPC codes, when using
the MM EAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 37 Joint MPMM+SD detection scheme. . . . . . . . . . . . . . . 93

Figure 38 BER performance of joint MPMM+SD detection scheme
using the (1248, 832) LDPC code and RRC pulse shaping
with α = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 39 BER performance of joint MPMM+SD detection scheme
for the (1248, 832) LDPC code as function of the number
of allowed estimates’ recomputation. . . . . . . . . . . . . . 98

Figure 40 MPMM net back-off gain at BER= 10−5 for different de-
tection schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 41 Conditional pdf of MM coefficients given the constellation
symbol being MM for the 16-QAM case. . . . . . . . . . . . 115

Figure 42 CCDF of the k-MPMM signal amplitude and required
back-off in the demanding case of 0.1 roll-off RRC filtering. 117

Figure 43 Sample of a transmitted 16-QAM RRC filtered signal with
roll-off= 0.1 when the MPMM and clipping techniques for
peak power control are used. . . . . . . . . . . . . . . . . . . 119

Figure 44 Envelope amplitude histogram of a non-MM bandwidth
limited SC signal for different modulation formats and
RRC filtering with α = 0.2. . . . . . . . . . . . . . . . . . . . 120

Figure 45 Transmitted signal’s average power and corresponding
power losses for different constellations and peak-power
reduction techniques. . . . . . . . . . . . . . . . . . . . . . . 121

Figure 46 Comparison of bounds with exact error probability for
hard-decision and soft-decision decoding for the Golay
(23, 12) code, when MM is used. . . . . . . . . . . . . . . . . 136

Figure 47 Tanner graph description of an LDPC-IRA code [60]. . . . . 148



List of Figures xxiii

Figure 48 H matrix structure of a DVB-S2 LDPC-IRA code. . . . . . . 150

Figure 49 H matrix structure of a WiMAX LDPC code for rate 1/2
and z = 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Figure 50 Architecture for the DVB-S2 LDPC-IRA encoder. . . . . . . 154

Figure 51 DVB-S2 LDPC decoding architecture using M parallel
processing units [60]. . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 52 DVB-S2 LDPC decoding architecture using N parallel pro-
cessing units with M = L×N. . . . . . . . . . . . . . . . . . 159





L I S T O F TA B L E S

Table 1 PAPR contribution from constellation. . . . . . . . . . . . . . 4

Table 2 PAPR contribution from the RRC digital filter. . . . . . . . . 4

Table 3 Look-up tables length for different LUT-MM algorithm
approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 4 Computation complexity and LUT storage requirements
considering constellation and RRC symmetries. . . . . . . . 65

Table 5 Parameters of beta pdf that model MM value distributions. 114

Table 6 Average power of the bandwidth limited MM transmitted
signal for a 3-stage MPMM configuration. . . . . . . . . . . 116

Table 7 Typical observed reduction in required back-off when
using MPMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Table 8 EVM experienced at detection by an MM blind receiver. . . 123

Table 9 EVM experienced at detection when using MM EAC. . . . . 125

Table 10 EVM experienced at detection by an MM blind receiver
using AGC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table 11 Limits on MM factors that cause symbol errors considering
MM’s blind detection. . . . . . . . . . . . . . . . . . . . . . . 128

Table 12 SER experienced at detection by an MM blind receiver. . . . 129

Table 13 Simulation results for SER experienced at detection for:
receiver using the MM EAC on detection; MM’s blind
detection using AGC. . . . . . . . . . . . . . . . . . . . . . . 129

xxv





A C R O N Y M S

ADC Analog-to-Digital Converter

AGC Automatic Gain Control

APP A Posteriori Probability

APSK Amplitude Phase-Shift Keying

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

BCH Bose-Chaudhuri-Hocquenghem Code

BER Bit Error Rate

BLER Block Error Rate

BN Bit Node

BO Back-off

BPSK Binary Phase-Shift Keying

BSC Binary Symmetric Channel

CCDF Complementary Cumulative Distribution Function

CD Compact Disc

CN Check Node

CRC Cyclic Redundancy Check Code

DAC Digital-to-Analog Converter

D/A Digital-to-Analog

DTFT Discrete-Time Fourier Transform

DVB-S2 Digital Video Broadcast - Satellite (second generation)

EAC Expected Average Constellation

EVM Error Vector Magnitude

FEC Forward Error Correction

xxvii



xxviii acronyms

FIR Finite Impulse Response

FU Functional Unit

GF Galois Field

GSM Global System for Mobile Communications

HPA High Power Amplifier

IBO Input Back-off

i.i.d. independent and identically distributed

IN Information Nodes

IRA Irregular Repeat-Accumulate Code

ISI Intersymbol Interference

LDPC Low-Density Parity-Check Code

LLR Log-Likelihood Ratio

LTE Long Term Evolution

LTI Linear Time-Invariant

LUT Look-Up Table

LUT-MM LUT-based MM implementation

MAP Maximum a Posteriori Probability

MBWA Mobile Broadband Wireless Access

MC Multi-Carrier

ML Maximum Likelihood

MM Magnitude Modulation

MODCOD Modulation-Codification Scheme

MPMM Multistage Polyphase Magnitude Modulation

MPMM+SD Join MPMM plus Soft-Decoding Detection

OBO Output Back-off

OFDM Orthogonal Frequency-Division Multiplexing

OQPSK Offset QPSK



acronyms xxix

PAPR Peak-to-Average Power Ratio

PC-RS LUT-MM Polar-Clipping Rectangular-Scaling Case

pdf probability density function

PN Parity Nodes

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RAM Random Access Memory

r.v. random variable

RC Raised Cosine

RC-RS LUT-MM Rectangular-Clipping Rectangular-Scaling Case

ROM Read Only Memory

RS Reed-Solomon Code

RRC Root-Raised Cosine

SC Single-Carrier

SC-FDMA Single-Carrier Frequency Division Multiple Access

SER Symbol Error Rate

SNR Signal-to-Noise Ratio

SPA Sum-Product Algorithm

SSS Strick Sense Stationary

SWR Software Radio

TC Trellis-Coding

Tx Transmitter

VSAT Very-Small Aperture Terminals

WSCS Wide Sense Cyclostationary

WSS Wide Sense Stationary

WiMAX Worldwide Interoperability for Microwave Access





1
I N T R O D U C T I O N

1.1 motivation of the thesis

This thesis discusses the problem of controlling the envelope’s power peak of
single-carrier (SC) modulated signals, band-limited by Nyquist pulse shaping filters
[44, 65, 87], usually achieved with root-raised cosine (RRC) filters. The main aim
is to reduce power amplifier back-off for small satellite communication terminals
(VSAT) [53, 70].

Peak-to-average power ratio (PAPR) reduction has always been a concern in
bandwidth limited channels, e.g. satellite channels, whose transmission capacity
is limited by the transmitter’s non-linear high-power amplifier (HPA). A high
PAPR puts stringent requirements on the transmitter’s digital-to-analog converter
(DAC) and on the HPA, increasing the cost of these systems’ components and
badly degrading the system’s power efficiency.

In recent years much attention has been paid to solving the problem of
reducing the PAPR in multi-carrier modulation systems, such as orthogonal
frequency-division multiplexing (OFDM) [42, 57, 67]. But achieving low PAPR with
strictly band-limited SC signals is also desirable, especially with the renewed
interest in SC as the preferred solution to be used on the uplink by the next-
generation wireless communications standards, e.g. LTE [46, 95]. The ability to
combine the lower PAPR of traditional SC formats with the multi-path resistance
and in-channel frequency scheduling flexibility of OFDM in hybrid modulation
schemes such as single-carrier frequency division multiple access (SC-FDMA) [95],
led to the decision to choose SC for the uplink transmission in order to save the
precious battery life of small mobile devices.

However, the apparently ”simpler” problem of achieving low PAPR with
strictly band-limited SC signals, is still unsolved. Although the peak power
problem seems to be less critical in SC modulations than in OFDM, it is also
true that the SC PAPR can be extremely high if a very low roll-off Nyquist
filter is used [96]. This problem has particular relevance in VSAT systems.
With the aim of minimizing terminals’ power consumption, and so the need
to reduce the transmitted signal’s PAPR, constant amplitude SC modulation
formats, such as phase-shift keying (PSK), and pulse shaping with moderate
roll-off (typically α = 0.35) have always been the preferred choice for VSAT
[54, 70]. But in order to meet the growing demands for higher data rates (and
so higher spectral efficiency), higher-order non-constant amplitude constellations
and sharper Nyquist filtering are now being used. As an example, in the

1
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recent satellite standard for Digital Video Broadcasting (DVB-S2) [19], new M-
APSK constellations were added [15] (with M = {16, 32}) supported by a set
of spectrum shapes with roll-off factors of α = {0.2, 0.25, 0.35}. These lead to a
considerable increase in the PAPR of the transmitted signal, emphasizing the
peak power problem.

The contributions to the PAPR of a band-limited SC signal, and the effect of
the PAPR on the performance of an HPA, are discussed in more detail below.

1.2 the peak power problem

The generic block diagram of a typical single carrier (SC) transmitter is shown
in Fig. 1. The following processing stages are employed to obtain the transmit
signal tx(t). Redundancy defined by an error-correcting code is appended to
the information by the channel encoder so that most errors occurring during
transmission can be corrected [66, 77]. The encoded data is then mapped into
complex symbols s[n] of the constellation for the modulation scheme in use
[10, 87]. According to Nyquist theory [44, 76], the modulated signal has to be
up-sampled by L > 2, before limiting its bandwidth. A Nyquist pulse shaping
filter limits the bandwidth of the up-sampled modulated signal su[n] in order
to guarantee transmission over the band-limited channel without intersymbol
interference (ISI) [44]. The shaped sequence is converted to a continuous-time
signal in the DAC [44, 76] and amplified by the HPA [59, 67]. Finally, if necessary,
the baseband signal becomes passband by translation to a higher frequency
[10, 87].

In SC systems, the main contribution to PAPR results from RRC bandwidth
limitation1 that gives rise to undesirable envelope variations in the transmitted
signal x[n] that drives the transmitter’s DAC+HPA block.

Figure 1: Generic SC transmitter’s system block diagram.

The equivalent complex digital baseband signal, after filtering, and prior to
DAC conversion, is given by:

x[n] =

[∑
k

s[k] δ[n− kL]

]
∗ h[n] , (1.1)

1 Hereafter, we will consider, without loss of generalization, that Nyquist pulse shaping is achieved
with RRC filters, as it usually is in practice. Hence, both terms will be used interchangeably
throughout the text, although the term Nyquist filter refers to a broader class of filters to which the
techniques that will be discussed throughout this thesis also apply.



1.2 the peak power problem 3

where h[n] is the impulse response of the pulse shaping RRC filter and L∈N is
the oversampling factor.

The PAPR of the transmitted signal x[n] is defined as

PAPR = 10 log10

max |x[n]|2

E
{
|x[n]|2

}
 (dB) , (1.2)

and it is the sum of two components (as shown in appendix A): PAPRConst and
PAPRRRC, due to the constellation and the RRC filter, respectively, which are
evaluated as

PAPRConst = 10 log10


max

i=1,··· ,M
|Si|

2

1
M

M∑
i=1

|Si|2

 (dB) , (1.3)

PAPRRRC = 10 log10


max

i=0,··· ,L−1

(
2N∑
n=0

|h[nL+ i]|

)2
1
L

2NL∑
n=0

|h[n]|2

 (dB) , (1.4)

where Si, with i = 1, · · · ,M are the symbols of a M-ary constellation, and it is
assumed, without loss of generalization, a type I linear phase FIR RRC filter
[76] with 2NL+ 1 coefficients.

PAPRConst depends only on the constellation’s geometry. It is clear from (1.3)
that PAPRConst is null for constant amplitude constellations, such as M-PSK.
However, for higher order modulations, it contributes with a non-negligible
value to the total PAPR value, as shown in table 1.

Nevertheless, the major contribution to PAPR comes from Nyquist pulse
shaping, especially when considering roll-off (α) values in the range of interest,
α6 0.3. 2 typical values are presented in table 2. The main goal of any PAPR
reduction technique for SC transmission is, therefore, to cancel this undesirable
PAPRRRC contribution, eliminating the need to back-off from HPA saturation.

1.2.1 Power amplifier

A high PAPR puts stringent requirements on the linearity of the transmitter’s
HPA. But because of cost, design, and, most importantly, power efficiency
constraints, the HPA is not perfectly linear. This causes in-band distortion and,
even worse, spectral spreading, i.e. adjacent channel interference.
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Constellation M-PSK 16-APSKa
16-QAM 32-APSKb

64-QAM

PAPRConst 0 dB 1.1 dB 2.6 dB 2.1 dB 3.7 dB

a. 16-APSK DVB-S2 constellation with γ = 3.15 [19].
b. 32-APSK DVB-S2 constellation with γ1 = 2.84 and γ2 = 5.27 [19].

Table 1: PAPR contribution from constellation.

Roll-off 0.1 0.2 0.3 0.4 0.5

PAPRRRC 7.5 dB 5.8 dB 4.6 dB 3.7 dB 3.4 dB

Table 2: PAPR contribution from the RRC digital filter.

The nonlinear behavior of an HPA is usually characterized by the ampli-
tude modulation/amplitude modulation (AM/AM) and amplitude modula-
tion/phase modulation (AM/PM) conversion. Figure 2 shows a typical AM/AM
characteristic of an HPA.

PinSat

PoutSat

1dB compression 
point

Pin

Pout

input 
power

output 
power

IBO

OBO

Figure 2: Typical AM/AM characteristic of an HPA.

The amplifier output power is always limited to some value PoutSat, called
saturation. The point of the AM/AM characteristic that deviates 1dB from an
extension of its linear part is known as the 1dB compression point [54, 70], and it
is commonly used to define the linear region of the HPA.

Both points, the saturation and the 1dB compression point, allow the definition
of a simple soft-limiter model to characterize the nonlinear behavior of an HPA.
The soft-limiter’s AM/AM, F (ρ), and AM/PM, Φ(ρ), characteristics are:
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F (ρ) =

{
ρ ·
√
GHPA , ρ 6 A

A ·
√
GHPA , ρ > A

, (1.5)

Φ(ρ) = 0 , (1.6)

where ρ is the amplitude of the input signal, GHPA is the power gain of the
HPA in the linear region2 and A is specified by the 1dB compression point, i.e.
A =

√
PinSat with PinSat being the HPA input saturation power. This model for

the HPA nonlinearity is considered to be adequate when the HPA is linearized
by a suitable pre-distorter [67, 108], and it will be the one used throughout the
thesis.

To avoid the clipping of a signal having a high peak power (with consequent
undesirable spectral spreading and in-band distortion) we must guarantee that
the HPA is operated in its linear region by decreasing the average power of the
input signal, so that the peak power of the input signal be less than PinSat. This
is called input back-off (IBO) and results in a proportional output back-off (OBO),
as shown in figure 2, with both values being measured in decibels

IBO = 10 log10

(
PinSat

Pin

)
(dB) , (1.7)

OBO = 10 log10

(
PoutSat

Pout

)
(dB) , (1.8)

where Pin and Pout are the average input and output of the HPA.
For the soft-limiter model defined by (1.5) and (1.6) both measures are equal,

and so henceforth we will use only the generic designation of back-off (BO).

HPA efficiency

Linearity has costs in terms of the efficiency of a power amplifier. In fact there are
three main classes of linear amplifiers: A, AB and B [59, 67, 94]. The classes are
defined according to the biasing used, which corresponds to different conduction
angles, i.e. several degrees of linearity. Class A amplifiers conduct for the entire
cycle of the input signal, that is, the conduction angle is 2π and so they are the
most linear. However, they are also the least efficient with the maximum power
efficiency reaching only 50%. A higher conduction angle means better linearity
and worse efficiency. Class B is characterized by a conduction angle of π, and
class AB for an angle in ]π, 2π[.

Worse still, a high PAPR dramatically reduces the power efficiency of the
HPA. A rule of thumb is that for each 1 dB increase in required power amplifier

2 Hereafter, we will assume GHPA = 1 without any loss of generalization.
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headroom, a corresponding 10 to 15% increase in PA current drain occurs,
leading to a corresponding reduction in battery life. In addition to inefficiency
in terms of power, the coverage range is reduced, and the cost of the HPA is
higher than would be warranted by the average power requirements. Figure 3

presents the theoretical efficiency limits of linear amplifiers [74] as function of
the input signal PAPR.

4.5  The Peak-to-Average Ratio 133

The PAR of the transmitted analog signal can be defined as 

 (4.27)

where naturally, the range of time to be considered has to be bounded over some interval. Gener-
ally, the PAR is considered for a single OFDM symbol, which consists of  samples, or a
time duration of T, as this chapter has explained. Similarly, the discrete-time PAR can be defined
for the IFFT output as

 (4.28)

It is important to recognize, however, that although the average energy of IFFT outputs
 is the same as the average energy of the inputs  and equal to , the analog PAR is

not generally the same as the PAR of the IFFT samples, owing to the interpolation performed by
the D/A convertor. Usually, the analog PAR is higher than the digital (Nyquist sampled)5 PAR.
Since the PA is by definition analog, the analog PAR is what determines the PA performance.

Figure 4.13  Theoretical efficiency limits of linear amplifiers [26]. A typical OFDM PAR is in the 
10 dB range, so the power amplifier efficiency is 50% to 75% lower than in a single-carrier system. 
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Figure 3: Theoretical efficiency limits of linear amplifiers [74].

Reducing PAPR of strictly band-limited single-carrier signals is therefore a
matter of great concern in bandwidth limited channels.

However, in practice, the HPA should at least be able to handle PAPRConst,
i.e. if the multirate pulse shaping system (L up-sampler followed by filter
h[n]) has unitary power gain, GRRC = 1 , then maximum amplitude symbols
(with amplitude denoted as Amax) at the output of modulator (figure 1) should
suffer no distortion if they are fed directly at the HPA input. The main goal of
any PAPR reduction technique for SC transmission is, therefore, to cancel the
undesirable PAPRRRC contribution, eliminating the need to back-off from HPA
saturation, which can be expressed as

BO = 10 log10

(
max |x[n]|2

A2maxGRRC

)
(dB) , (1.9)

and this is the main objective of this work.
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1.2.2 DAC

Although less relevant, the influence of a high PAPR on the requirements of
the transmitter’s DAC and the receiver’s ADC should also be taken in account.
High resolution DAC and ADC must be used to deal with large peaks while
maintaining adequate signal resolution to overcome noise generated in the
digital-to-analog conversion process. Hence, reducing the PAPR makes the
design of these converters easier, thereby reducing their cost.

1.3 related work

As shown previously, reducing PAPR has always been of major importance in
any communication system, mainly due to linearity requirements put on the
transmitter’s HPA being related to a considerable decrease of system’s power
efficiency.

HPA’s linearization by means of feedback or pre-distortion techniques [59] has
always been a mean of operating the amplifier closer to saturation, and therefore
improving its efficiency. But that doesn’t solve the loss in power efficiency from
high PAPR, since the amplifier must still operate with a large amount of back-off
to avoid clipping of the transmitted signal.

There is a vast number of publications on the peak power problem, although
until recently only a few have considered the SC case. However, the large
number of patents on the subject underlines the importance of this theme for
the industry.

One way to provide a signal with a lower PAPR to the DAC+HPA block
consists of minimizing the PAPRConst contribution. As already mentioned, in the
recent DVB-S2 satellite standard [19] a new set of amplitude phase shift keying
(APSK) constellations has been adopted [15, 16] which combines a high spectral
efficiency with a low PAPR compared with M-QAM constellations providing
the same spectral efficiency.

Another solution for PAPRConst minimization is to avoid the transmission of
critical sequences of symbols which may originate large peaks, e.g. a sequence
of successive symbols having large magnitude and similar phase or whose
phases change from one symbol to the next approximately3 180o. This may
be accomplished by systematically picking consecutive symbols from different
constellations (usually non-square, for better performance) related to each other
through constellation-phase rotation [81, 97].

These constellation-oriented techniques have a limited peak power control
capability, however. As an alternative, a sequence-oriented approach may be
followed that avoids the problematic sequence of modulated symbols through
the use of coding [64, 92, 103] or more complex trellis shaping coding schemes

3 Both these sequences combine constructively with the pulse shaping impulse response to produce
large peaks.



8 introduction

[13, 104]. The major drawback of these solutions is the slower the information
rate. In addition, even though some trellis solutions may significantly decrease
the PAPR, they are usually complex, with a high computational overhead.

Although PAPRConst is relevant, a major contribution to PAPR comes from
Nyquist pulse shaping for limiting signal bandwidth without ISI. Some solutions
to decrease PAPRRRC by optimizing the Nyquist pulse shape have therefore
been proposed [11, 88].

We can divide PAPR reduction techniques into two main groups, post- and
pre- pulse shaping filtering techniques, with all the above described methods
being included in the latter category. But the best known peak power control
methods always imply some sort of distortion on the transmitted signal.

One of the simplest post-filtering methods of decreasing peak power of band-
width limited signal x[n] is to deliberately clip the signal before amplification
[63, 67]. This generates serious spectral spreading, however, which is the main
reason to avoid operating HPA near saturation and, therefore, the motive for
trying to reduce signal’s PAPR. Nonetheless, many post-filtering techniques
use the concept of error shaping to decrease the signal’s PAPR [48, 85, 109].
Basically, the error of hard-clipping is bandwidth limited by a proper shaping

z-k Filter

H(z)

Shaping Filter
scaling factor 

calculation

clipping 
threshold

x[n]

(a)

z-k Filter

Window
Peak Detection and

scaling factor 
calculation

clipping 
threshold

x[n]

scaling
factor 1

0enable 
windowing

1

(b)

Figure 4: Post filtering peak power reduction techniques: (a) error shaping, (b) window-
ing.
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filter and then subtracted from a delayed version of the original undistorted
signal, as shown in figure 4(a). Another common technique is the concept of peak
windowing [79, 109], shown in figure 4(b), that basically consists of detecting
undesirable peaks of x[n], with the signal being multiplied in those locations
by a proper scaled window (e.g. Hamming, Hanning, Kaiser, etc.) of limited
bandwidth. But multiplication in the time domain corresponds to a convolution
in the frequency domain and spectral spreading results. In order to put the
spectrum back within allocated limits, the windowing step is usually followed
by a new filtering stage. Methods that combine the concepts of error shaping and
windowing can also be found [40, 102]. Unfortunately, the final filtering stage in
post-filtering techniques, required to guarantee bandwidth limitation, can cause
PAPR regrowth. Most techniques solve this by using a cascade of these blocks,
based on the premise that peak regrowth does not result in peaks as large as the
original signal peaks. The major drawback is that multiple stages can introduce
an unacceptable amount of latency into the communications system.

Making signal adjustments prior to filtering has the advantage of not affecting
bandwidth of the signal x[n]. These adjustments must take into account the
RRC impulse response h[n] in order to also prevent the peak regrowth problem.
Otherwise the efficiency gain is limited. Another pre-filtering technique is data
Magnitude Modulation (MM). This consists of adjusting the amplitude of each
data pulse s[n] prior to RRC filtering. This concept, proposed in the nineties
by Miller et al. [74, 75], and later developed by Tomlinson et al. [4, 108] who
proposed an efficient look-up table (LUT) implementation, is the root of the work
presented in this thesis.

A final reference should be made to some recent techniques [55, 56] that use
the concept of polyphase filtering [3, 44, 76] to predict RRC response to the signal
x[n] when performing clipping of a signal. They are important because, at the
same time, we have independently developed a similar strategy, giving rise to a
new efficient polyphase magnitude modulation technique [35–38].

1.4 research contributions and organization of the thesis

This thesis discusses the problem of controlling the envelope’s power peak of
SC modulated signals band-limited by Nyquist pulse shaping filters when using
M-ary constellations of high order and filters with strict roll-offs.

Following the original work by Miller et al. [74, 75] and the later work of
Tomlinson et al. [4, 108] we have concentrated on the concept of magnitude
modulation (MM). This thesis contributes highly efficient algorithms for the
control of the envelope’s power peak through the use of MM, and also provides
an analytical model for statistically characterizing the MM procedure.
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1.4.1 Research contributions

The main contributions are discussed in the following chapters:

– Chapter 3

The LUT-MM approach, first proposed by Tomlinson et al. [4, 108] for QPSK
modulation formats, is improved and extended to constellations with dimension
up to M 6 16 [32, 34, 38]. In order to cope with the additional complexity, new
clipping limits are proposed and the method’s ability to avoid phase modulation
is improved [34]. A detailed analysis of the different approaches to compute the
magnitude modulation tables is performed. We show that LUT’s computation
complexity and storage requirements can be considerably reduced by exploring
the constellation’s symmetry and the RRC’s linear phase characteristic [32].

– Chapter 4

Building on the polyphase decomposition of the finite impulse response (FIR) of the
pulse shaping filter, a new LUT-less approach of the magnitude modulation’s
concept is developed. We present a novel, highly efficient Multistage Polyphase
Magnitude Modulation (MPMM) scheme [35–38] for decreasing the PAPR of an
SC modulated signal, bandwidth limited by a finite impulse response (FIR) filter.

The problem related to an increased sensitivity to noise due to MM is also
addressed. Two techniques are proposed for improving the detection of the
MPMM signal, namely: detection based on the MM estimated average constel-
lation (EAC) [35, 36] and detection with estimation of MPMM factors in the
receiver.

– Chapter 5

A mathematical model based on parameterized beta distributions is also pro-
posed for characterizing the statistical distributions of the MM factors for dif-
ferent SC constellations [38, 39]. Building on the proposed model, we carry out
an analytical performance analysis of the MM technique in terms of the power
of the transmitted signal, the error vector magnitude (EVM) and the symbol error
rate (SER) experienced in a noiseless transmission, and on the block error rate
(BLER) when channel coding is used. We present expressions for the analytical
computation of the EVM and bounds on the SER, for the cases of MM’s blind
reception and detection based on the MM EAC, as well as bounds on the BLER
performance of the MM scheme over an AWGN channel when using forward
error correction (FEC) with linear block coding.

– Appendix B

Outside the main scope of the thesis, but included in related channel coding
research activities, we propose encoding and decoding efficient hardware ar-
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chitectures [30, 31, 33] for the low-density parity-check codes (LDPC) used by
satellite’s digital video broadcast DVB-S2 standard [19].

1.4.2 Thesis organization

This thesis is composed of 6 chapters and 2 appendices. The contents of chapters
3, 4 and 5 and appendix B have just been summarised.

Chapter 2 covers the basic concepts of error control coding. Channel coding
plays a crucial role in improving communications reliability. The system’s FEC
capabilities are explored in chapters 3 and 4 in order to offset the increased noise
sensitivity resulting from MM, which is why some reference must be made to
this subject. In addition, the derived bounds, under hard- and soft-decoding,
presented in this section, allow us to access the performance of MM techniques
analytically through comparison with the matched ones that will be deduced
in chapter 5 for the case where peak power control is used. Some attention is
also devoted to the special case of the LDPC codes that were used in this work
to evaluate BER performance of the peak power control techniques devised,
and that were also the subject of some parallel research that is presented in
appendix B.

Given the fact that a major contribution to the PAPR problem comes from
Nyquist pulse shaping filters, usually achieved with RRC filters, it makes sense
to briefly discuss their characteristics. This is done in appendix A which also
contains the proof that

PAPR = PAPRConst + PAPRRRC . (1.10)

Finally, chapter 6 summarizes the main conclusions and provides some of the
bearing lines of future research.





2
E R R O R C O R R E C T I N G C O D I N G

The seeds of Error Correcting Coding were sown by Claude Shannon in his 1948

landmark paper [99]. Shannon demonstrated that if the information is properly
encoded errors induced by a noisy channel or storage medium can be reduced
to any desired level without sacrificing the rate of information transmission or
storage, as long as the information rate is less than the capacity of the channel.
For the next fifty years the core objective of research was to find practical coding
schemes that could come near to the Shannon limit, i.e. that could approach
channel capacity on channels such as the additive white Gaussian noise (AWGN),
the binary symmetric channel (BSC) and the Rayleigh fading channel, used to model
typical transmission and storage noise disturbances. In the past decade, with the
advent of turbo codes [6] and the rebirth of low-density parity-check codes (LDPC)
[20, 69], this goal has been partly accomplished and these developments have
helped to achieve the reliability required by today’s high speed digital systems.

Coding for error control is nowadays an integral part of modern commu-
nication and digital storage systems. This chapter introduces the necessary
coding notions. We focus on forward error correction (FEC) codes that are used in
one-way channels (such as compact disk recordings, deep-space communication
and digital video broadcasting systems, etc.), wherein the receiver must detect
and correct errors without the use of a feedback channel (for retransmission
requests). The most common types of codes are presented. The class of binary
linear block codes is emphasized, however, with their performance being evalu-
ated under soft- and hard-decision decoding for the AWGN channel. Finally, the
LDPC family of capacity-approaching linear block codes, and the principles of
iterative soft-decoding are described.

2.1 error correcting coding : basic concepts

All error correcting codes are based on the same basic principle: redundancy
is added to information in order to correct any errors that may occur in the
storage or transmission process. Shannon [99] proved that in an AWGN channel,
through proper encoding, the probability of information bit error, i.e. the bit
error rate (BER), can be reduced to any desired level as long as the information
transmission rate Rb [bits/s] does not exceed the channel capacity C:

C =W log2(1+
S

N
) [bits/s] . (2.1)
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where S/N is the channel’s signal-to-noise ratio (SNR), andW [Hz] the bandwidth
available for transmission.

Typically, the encoder maps the sequence of bits at the rate Rb to a sequence
of symbols at a baud rate Rs [Bd]. The code rate rc is therefore,

rc =
Rb
Rs

[bits/symbol] . (2.2)

According to Nyquist theory [87], the minimum bandwidth B required to
transmit information at a rate Rs (also called the Shannon bandwidth) is

B =
Rs

2
. (2.3)

This bandwidth is ideal and it is not achievable since it assumes an ideal
bandwidth limiting filter. As stated in chapter 1, in practice, to avoid intersymbol
interference we use a Nyquist filter with a roll-off factor α and so B relates to
the bandwidth available for transmission W as follows,

W = B (1+α) . (2.4)

The spectral efficiency η [bits/s/Hz] of the coding scheme is thus evaluated as

η =
Rb
W

=
2rc

1+α
[bits/s/Hz] . (2.5)

As B→W, the spectral efficiency η approaches 2rc, called the nominal spectral
efficiency. Assuming ideal transmission, i.e. B = W, and so denoting 2rc by η,
according to Shannon’s result we can establish different limits on each of the
parameters Rb, η and the S/N, given the restrictions on either of the other two.
Therefore using (2.1), and as stated before, the rate for reliable transmission of
information is upper-bounded by

Rb < W log2(1+
S

N
) . (⇒ Shannon limit on Rb) (2.6)

In the same way, the spectral efficiency is upper-bounded by

η < log2(1+
S

N
) , (⇒ Shannon limit on η) (2.7)

or, given a spectral efficiency η, the SNR needed for reliable transmission is
lower-bounded by

S

N
> 2η − 1 . (⇒ Shannon limit on SNR) (2.8)
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These bounds define two different scenarios, the so-called power-limited (η 6
2rc 6 2 [bits/s/Hz]) and bandwidth-limited (η > 2 [bits/s/Hz]) regimes, which
require quite distinct coding schemes [14, 66].

Most work on channel coding has focused on binary codes whose code rate
rc < 1 and so η < 2. Hence, taking the transmitted power as a restriction
(power-limited regime) and referring to (2.6), to maintain the same information
rate Rb as an uncoded system, these coding schemes require bandwidth expansion
by a factor 1/rc.

In fact, it was believed in the early 70s that coding gain1 could be achieved only
through bandwidth expansion and that coding could serve no useful purpose
at spectral efficiencies η > 2. In communication applications with restricted
bandwidth (bandwidth-limited regime), where large modulation alphabets
were needed to achieve high spectral efficiencies, design emphasis was almost
exclusively on constructing large signal sets in two-dimension Euclidean space
that had the highest possible minimum Euclidean distance between signal
points, given certain constraints on average and/or peak signal energy. This was
obviously a misleading thought since coding gain can be obtained through the
serial concatenation of error correcting coding and higher-order modulation.
However, higher efficiency and coding gain can be achieved by considering
coding and modulation as a single entity, as suggested by Massey in 1974. The
joint design of codes and signal constellations is known as coded modulation, and
the practical breakthrough in this field came with Ungerboeck’s invention of
trellis-coded modulation and the multi-level coded modulation devised by Imai and
Hirakawa [66, 78].

2.1.1 Power-limited regime: the Ultimate Shannon Limit

As mentioned above, most research in coding theory has concentrated on de-
signing good codes and efficient decoding algorithms for binary-input channels.
A typical figure-of-merit used to evaluate the performance of a binary coding
system at a given BER, over an AWGN channel with white spectral noise density
N0/2 [W/Hz], is the ratio between the average received energy per information
bit Eb [J] and N0, i.e. Eb/N0. This ratio relates to the SNR of the channel and it
is usually called the signal noise ratio per information bit [87]. Eb can be expressed
as:

Eb =

∫Tb
0
S dt = STb =

S

Rb
, (2.9)

where Tb [s] is the time duration of one information bit and S [W] is the average
transmitted power.

1 The formal definition of coding gain is presented in sub-section 2.1.1.
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The noise equivalent bandwidth [10] equals the Shannon bandwidth2 B and the
total noise power is therefore:

N =

∫B
−B

N0
2
df = N0B . (2.10)

Hence, we can replace S/N in (2.6) to (2.8) by:

S

N
=
EbRb
N0B

= η
Eb
N0

, (2.11)

where the last equality holds when assuming ideal transmission, i.e. W = B.
A superficial analysis of Shannon’s equations (2.1) and (2.6) may lead to the

misleading conclusion that, for a certain channel’s SNR, the channel capacity
C, and therefore Rb, can be as large as desired, provided the bandwidth W is
increased. This is the same as saying that, given the desired information rate
Rb, by allowing W →∞ (i.e. making the spectral efficiency η→ 0) the required
Eb/N0 will tend to zero, which is not true.

By replacing (2.11) in (2.8), the Shannon limit on SNR can be written as:

Eb
N0

>
2η − 1

η
. (2.12)

Then, as η→ 0, the lower bound on Eb/N0 is:

Eb
N0

> lim
η→0

2η − 1

η
= ln 2 = −1.59 [dB] . (2.13)

which means that even for an infinite bandwidth, Eb/N0 has an absolute
minimum value required for an error-free transmission. This value is usually
called the ultimate Shannon limit.

Similarly, it can be concluded that the channel capacity C, in the limit as
W →∞, is, in fact, upper-bounded by

lim
B→∞C = 1.443 Rb

Eb
N0

. (2.14)

The ultimate Shannon limit establishes a ceiling for the amount of gain that
can be achieved by any error correcting scheme. This gain is usually measured
as the difference in Eb/N0 [dB], required to guarantee the same value of BER,
between the coded system and an uncoded system with the same information
rate Rb, and is referred to as the coding gain of the error correcting scheme.

2 The area under the frequency response curve of the Nyquist filter with bandwidth B(1+α), is the
same as that of the ideal filter of bandwidth B [10].
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2.1.2 Block Codes and Convolutional Codes

Depending on how redundancy can be added to messages, there are two
important classes of codes: block and convolutional [7, 66].

In general, we define block codes over an arbitrary finite alphabet X, say an al-
phabet with q symbols {0, 1, 2, · · · , q− 1}. Block codes process the information
on a block-by-block basis, i.e. the encoder divides the information sequence into
blocks of k information symbols each3, which it transforms independently into
blocks of n symbols (with n > k) of the same alphabet X. Each k-tuple block of
information symbols,

m = [m0, m1, · · · ,mk−1] with mi ∈ X (2.15)

is called a message. Hence, there is a total of qk different k-tuple messages that
the block encoder maps to qk distinct n-tuple vectors, called codewords, with
each codeword being represented as,

c = [c0, c1, · · · , cn−1] with ci ∈ X . (2.16)

This set of qk codewords of length n is called an (n,k) block code. The code
rate as defined in (2.2) is thus given by4

rc =
k

n
log2q [bits/symbol] . (2.17)

The code is said to be systematic when the message m can be found explicitly
and unchanged in the codeword c. That is, the block encoder maps each message
into a codeword that has k elements, say at coordinates i0, i1, · · · , ik−1, that
equal the k symbols of the message, i.e. ci0 = m0, · · · , cik−1 = mk−1. In this
case the remaining n− k symbols p that are appended to the message are called
parity symbols, and each codeword is usually represented as

c = [m |p ] = [m0, · · · ,mk−1, p0, · · · ,pn−k−1] with mi, pi ∈ X , (2.18)

where without loss of generality, a systematic encoder is assumed on the left5.

3 In a digital transmission the input source data is usually taken to be binary (q = 2). This should
not place any restriction on using non-binary q-ary block codes (q > 2), since it is a trivial matter
to represent binary source data in terms of a q-ary alphabet, especially if q is a power of 2, as it
usually is in practice.

4 Another popular definition of code rate of an (n,k) block code, defined over a q-ary alphabet X,
that it is usually found in literature, is rc = k/n. This rate is dimensionless and rc 6 1. Both
definitions agree for binary block codes, i.e. q = 2.

5 It means that the message m appears in the first k positions (on the left) of codeword c.
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Because a block encoder treats each message of information symbols indepen-
dently of the others, the encoder is memoryless and can be implemented with a
combinational logic circuit.

A convolutional code, on the other hand, is generated by passing the infor-
mation sequence to be transmitted through a linear finite-state shift register
(sequential logic circuit) with memory order L, called the constraint length of the
convolutional code. Instead of blocks the convolutional encoder takes a non-
ending sequence of information symbols arranged in k-symbol segments called
dataframes, and outputs a sequence of code symbols arranged in n-symbol seg-
ments called codeframes. Each generated codeframe depends not only on the
corresponding k-symbol dataframe at the same time unit but also on L previous
dataframes.

Although both types of codes have found practical applications, historically,
convolutional codes have been preferred, apparently because of the availability
of the soft-decision Viterbi decoding algorithm [7, 66], and the belief for many
years that block codes could not be efficiently decoded with soft-decisions. But
the rediscovery of LDPC codes in the mid 90s [20, 69] and the developments
in the theory and design of soft-decision decoding algorithms for linear block
codes helped to dispel this belief.

2.2 linear block codes

As mentioned above, given an (n, k) block code, defined over a q-ary alphabet
X, encoding is basically a bijective assignment between the qk different k-
tuple messages and qk n-tuple codewords of symbols of X. When k and n

are small this assignment can be done by means of a table, but when they are
large efficient encoding and decoding mechanisms must be found. If algebraic
operations could be used this would greatly simplify the encoding and decoding
procedures.

Algebraic coding dominated the first few decades of the research in error
correcting coding. Particularly, the Galois’ theory of finite fields and vector spaces
defined over those fields [7, 66], is on the basis of one the most important classes
of error correcting codes, the linear block codes [101].

In general, a field F consists of a set of elements that has two arithmetic
operations defined in them, i.e. addition and multiplication, that satisfy a certain
number of axioms [7, 26]. A finite field with q elements, usually denominated by
Galois Field GF(q), can only be constructed whenever q is a prime number, or the
power of a prime number, and has the elements {0, 1, 2, · · · , q− 1}. Addition
and multiplication defined in GF(q) are modulo-q operations whenever q is a
prime number. When q is the power of a prime number p, i.e. q = pm with m
an integer, the field GF(pm) is called the extension field of GF(p) and the addition
and multiplication operations in the extension field are based on modulo-p
arithmetic.
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The simplest and also the most common GF used in coding theory is the
binary field GF(2), with X = {0, 1}, which has the obvious connection to the
logical symbols "0" and "1" called bits. In fact, we easily conclude that modulo-2
addition and multiplication in GF(2) are simply the boolean operations EXOR
and AND performed on bits.

The set of all n-tuple vectors over GF(q) is a vector space [7, 26] of dimension n,
denoted as GF(q)n. An (n, k) block code C is therefore a non-empty subset of
qk different vectors of GF(q)n.

A block code C is said to be linear if and only if the linear combination of any
number of codewords is also a codeword, i.e. suppose ci and cj are any two
codewords of C, and let α1 and α2 be any two elements from GF(q), then the
code is linear if and only if α1ci +α2cj is a codeword as well. Hence, an (n, k)
block code is linear if and only if the set of qk codewords forms a k-dimensional
subspace of GF(q)n. An obvious conclusion to draw from this definition is that
in a linear code the all-zero n-tuple is always a codeword.

2.2.1 Generator and Parity-Check Matrices

Because an (n, k) linear code C is a k-dimensional subspace of GF(q)n, it is possi-
ble to find in C a basis of k linearly independent codewords, say g0, g1, · · · gk−1,
such that any codeword c in C is a linear combination of these k codewords, i.e.

c = m0g0 +m1g1 + · · ·+mk−1gk−1 , (2.19)

where mi can be any element of GF(q), for i = 0, · · · k− 1. Because there are
qk distinct vectors [m0 m1 · · · mk−1] over GF(q) that can be chosen, each of
these vectors can be seen as each of the k-tuple messages m to be encoded.

The linear equation (2.19) can thus represented in a matrix form as

c = [m0 m1 · · · mk−1] ·


g0
g1
...

gk−1

 = m ·G , (2.20)

where G is called a generator matrix of the code, because the rows of G generate,
i.e. span, the (n, k) linear code C.

Matrix G not only completely characterizes the code C, it also defines the
bijective assignment between the messages m and the codewords c of C. However,
since the set of basis codewords used to span C is not unique, we conclude
that G is not unique, either. In fact, any algebraic operations or permutations
performed on the rows of a generator matrix G give rise to a different generator
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matrix G’ that spans C as well6. Matrix G’ only defines a different assignment
between the messages and the set of codewords of C.

However, permutations on the columns of G give rise to a generator matrix
of a different linear code C ′, i.e. a code with a different set of codewords.
Nevertheless, as it will be clear in next sub-section 2.2.2, both C and C ′ have the
same error correcting capabilities and so they are said to be equivalent codes.

Any (n, k) linear code can thus be made systematic, by reducing its generator
matrix to a systematic (or canonic) form as

G = [ Ik|P] =


1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

...

0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

p00 p01 · · · p0,n−k−1

p10 p11 · · · p1,n−k−1
...

...
...

pk−1,0 pk−1,1 · · · pk−1,n−k−1


(2.21)

where Ik is the k×k identity matrix and P is a k× (n− k) matrix that determines
the n− k redundant symbols. The particular systematic form (2.21), with Ik on
the leftmost k columns of G, maps each message m into codewords having the
format (2.18). Redundant (check) symbols are thus obtained through a set of
n− k linear equations,

p = m · P . (2.22)

Because C is a k-dimensional sub-space of GF(q)n, it has an orthogonal
complement C⊥, which is the set of all vectors orthogonal to C. The orthogonal
complement is also a sub-space of GF(q)n (the null-space of C) and it has
dimension n− k. Hence, C⊥ itself is an (n, n− k) linear block code and it is
called the dual code of C.

Let H be a generator matrix for C⊥. Because the set of rows of H is a basis of
C⊥ and since all vectors in C⊥ are orthogonal to C, matrix H can also be used to
describe the code C. In fact, an n-tuple c is a codeword in C if and only if

c ·HT = 0 , (2.23)

where 0 is an (n− k)-tuple vector of zeros. As H provides a way for checking
whether a word is a codeword of C, it is called the parity-check matrix of the code
C. Clearly, it results from (2.23) that

G ·HT = 0k×(n−k) . (2.24)

6 Given the code’s linearity property, by performing arithmetic operations or permutations over the
rows of G, we obtain a different ordered set of k linearly independent codewords that constitute G’.
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The parity-check matrix H can also be reduced to a systematic form by
elementary row operations. If the generator matrix of C has the systematic
structure shown in (2.21), then, according to (2.24), the systematic form for H is

H =
[

PT
∣∣∣ In−k] . (2.25)

2.2.2 Error-Detecting and Error-Correcting Capabilities

Any full-rank k× n matrix defined over GF(q) can be used as generator G of
an (n, k) linear block code, or as parity-check matrix H of its (n, n− k) dual
code. However, not all possible codes (n, k) defined over GF(q)n have good
error-detecting and error-correcting capabilities. A "good" code should have its
codewords as far apart as possible.

A measure of the difference between two codewords, say ci and cj, is the
Hamming distance, denoted as dH

(
ci, cj

)
and defined as the number of corre-

sponding elements or positions in which ci and cj differ. The shortest distance
between all distinct pairs of codewords in C is called the minimum distance, dmin
of the code, i.e.

dmin = min
∀ci, cj∈C

{
dH
(
ci, cj

)∣∣ ci 6= cj
}

. (2.26)

Another important measure is the Hamming weight of a codeword c, denoted
as wH(c), which is the number of non-zero elements of the codeword. If the
code is linear then it follows from the definition of modulo-q addition that

dH
(
ci, cj

)
= wH

(
ci + cj

)
. (2.27)

Hence, the weight distribution of a linear code completely characterizes the
distance properties of the code. Furthermore, the minimum distance of the code
is exactly the weight of the non-zero codewords with smallest weight, i.e.

dmin = min
c∈C\{0}

{wH(c)} . (2.28)

Both dmin and the weight distribution of a linear code C specify the error-
detecting and error-correcting capabilities of C, and the performance under soft-
and hard-decision decoding. Since any two distinct codewords of C differ at
least dmin places, no error pattern of dmin − 1 or fewer errors occurring during
transmission or storage can change one codeword into another. Therefore, C
guarantees detection of all error patterns of dmin − 1 or fewer errors and so the
code is said to be capable of detecting tdet errors with

tdet = dmin − 1 . (2.29)
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Although C cannot detect all error patterns with dmin or more errors, it can
detect any error pattern that does not equal a codeword, i.e. all the qn − qk

received words that violate (2.23).
To determine the error-correction capability of C, it is convenient to view its

qk codewords as points in an n-dimensional space. If each codeword is viewed
as the centre of a sphere of radius (Hamming distance) tcor, the largest value
that tcor may have without intersection or tangency of any pair of the qk spheres
is

tcor =

⌊
dmin − 1

2

⌋
, (2.30)

where bxc denotes the largest integer contained in x. Hence, the linear code C is
said to be capable of correcting all error patterns of tcor or fewer errors.

If these qk spheres span all vector space GF(q)n, then C is called a perfect code.
This means that every received word is no more than distance tcor from one of
the possible transmitted codewords and therefore the decoder is always able to
take a decision on the most probable codeword that was sent. Because there are(
n

l

)
ways to choose l places where a point differs from a codeword of C, and

q− 1 ways in which it can be different in each of those places, the number of
points contained in each Hamming sphere of radius tcor is

tcor∑
l=0

(
n

l

)
(q− 1)l , (2.31)

and so if C is perfect then

qn = qk ×
tcor∑
l=0

(
n

l

)
(q− 1)l . (2.32)

By making use of the same Hamming sphere concept, we conclude that C can
detect ed errors and correct ec (with ec 6 ed) if

ed + ec < dmin . (2.33)

2.2.3 Decoding: Syndrome’s Method

Because codewords of C are the only solutions of (2.23) we use an easy algebraic
technique to check whether a received word is a valid codeword without having
to search the entire set of qk codewords for the received vector.

Equation (2.23) also allows us to conclude that the minimum distance of
C is equal to the smallest number of columns of H that sum to zero. In fact,
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the structure of the H matrix not only dictates the error-detecting and error-
correcting capabilities of the code but it also influences the performance of
iterative algorithms used for decoding long codes.

One of the "simplest" and most efficient methods of decoding an (n, k) linear
block code C is based on the concept of syndrome. Let c be a codeword of C and
e ∈GF(q)n be an error occurring during transmission. The received word r is
thus given by

r=c+e . (2.34)

When r is received, the decoder computes the following (n− k)-tuple

s = r HT , (2.35)

which is called the syndrome of r. According to (2.23), s = 0 if and only if r is
a codeword, and so the presence of errors is only detected when s 6= 0. In this
case, the decoder can either act to locate the errors and correct them (FEC) or
request a retransmission of c (ARQ).

Because r is the vector sum of c and e, it follows from (2.23) that

s = (c + e) ·HT = c ·HT + e ·HT = 0+ e ·HT = e ·HT . (2.36)

Hence, the syndrome s computed from the received word r depends only on
the error pattern e and not on the transmitted codeword c. Also we conclude
that there are qk received words that produce the same syndrome, since c can
be any codeword of C.

Decoding can thus be performed based on a table, called standard array [7, 66].
In this array, each row, called a coset, contains all the error patterns (received
words) that produce the same syndrome. There are q(n−k) syndromes and so
the standard array has dimensions q(n−k) × qk.

The error pattern with the smallest Hamming weight in each coset is called
the coset leader. If the coset leader es of a coset is unique then the code is able to
correct the received word r that produces the corresponding coset’s syndrome s.
The decoded word c’ is thus given by

c’ = r + es . (2.37)

2.2.4 Hamming and Golay codes

In this section we describe two of the most important non-trivial perfect binary
codes that were discovered in the early days of error-correcting coding: Hamming
and Golay codes.
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Other important codes discovered early on, like the cyclic redundancy check
(CRC), the BCH and the Reed-Solomon (RS) codes [66, 78], belong to a special
class of linear block codes known as cyclic codes, and also deserve to be men-
tioned, mainly because both are still being used in today’s major commercial
applications [14]. For instance, CRC codes are widely used for error detection
in conjunction with ARQ protocols in computer communications. A consider-
able number of them are international standards for error detection in various
contexts [61, 66]; BCH are used as outer codes in the concatenated code system
adopted by the second generation of the satellite’s digital video broadcast standard
(DVB-S2) [19], and RS codes are used in the compact disc (CD) standard [52].
They are beyond the scope of the main subject of the thesis, however, so they
are not dealt with here.

Hamming Codes

Hamming codes are an important family of binary perfect codes capable of
correcting a single error. They were proposed in 1950 by Richard Hamming [41],
a colleague of Shannon at Bell Labs.

The dimensions (n, k) of a Hamming code must therefore satisfy (2.32) with
q = 2 and tcor = 1, meaning that

2n = 2k ×
1∑
l=0

(
n

l

)
(q− 1)l ⇒ n = 2n−k − 1 . (2.38)

For any positive integer m > 2, therefore, there is a Hamming code of
dimensions (n = 2m − 1, k = 2m −m− 1), where m is the number of parity-
check bits of the code, i.e. m = n− k.

In order to correct a single error, according to (2.30) a linear code must have
dmin > 3 and so the columns of its parity check matrix H must be all distinct.
Because H has dimensions (n− k)× n there are 2n−k − 1 non-zero (n − k)-
tuple vectors that can be chosen for columns of H. Since a Hamming code
has n = 2n−k − 1 its parity-check matrix consists of all these distinct 2n−k − 1
non-zero vectors in its columns, and so its minimum distance is exactly dmin = 3.

The structure of a Hamming code’s H matrix makes decoding very simple
when the syndrome method is used. If the computed syndrome s of a received
word r is non-zero, then sT is a column of H. Let i denote the index of the
column of H which is equal to sT . The coset leader of the syndrome’s coset is a
binary vector which is all zeros except for a "1" in the ith-position, i.e. the ith-bit
of r is the one considered to be wrong.
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The weight distribution of an (n, k) Hamming code is known [66, 87]. The
number of codewords of weight i, Ai, is simply the coefficient of zi in the
expansion of the following polynomial:

A(z) =
1

n+ 1

[
(1+ z)n +n (1+ z)(n−1)/2 (1− z)(n+1)/2

]
, (2.39)

usually called the weight enumerating polynomial of the code.

Golay Codes

Shortly after the publication of Shannon’s paper the Swiss mathematician Marcel
Golay published a half-page paper [27] presenting two perfect codes: a binary
linear (23, 12) triple-error-correcting code having minimum distance dmin =

7; and ternary linear (11, 6) double-error-correcting code having minimum
distance dmin = 5.

Their beautiful algebraic structure led them to be studied by many coding
theorists and mathematicians who published numerous papers on their structure
and decoding. An important result was obtained in 1974 and 1975 by Tietäväinen
and Van Lint respectively, who proved that no other non-trivial perfect linear
codes exist apart from the Hamming and Golay codes,[7, 77].

Beautiful structure apart, the binary (23, 12) Golay code and its extension [66],
a binary (24, 12) linear code7 with dmin = 7, have been used in many real and
important communication systems, like the U.S. space program8.

The Golay codes should therefore probably be considered as the most remark-
able of all algebraic codes.

The weight enumerating polynomial of the (23, 12) Golay code is also known
and it is given by:

A(z) = 1+ 253
(
1+ z9

)
z7 + 506

(
1+ z7

)
z8 + 1288 (1+ z) z11 + z23 . (2.40)

2.3 performance bounds of linear block codes over the awgn

channel

In this section, we derive some bounds on the probability of a decoding error
for a linear binary block code over an AWGN memoryless channel with zero
mean white noise spectral density N0/2 [W/Hz]. We assume that coherent
BPSK signaling is used for transmission and optimum reception is performed by
matched filtering in the receiver demodulator (or the use of correlation demodulator)
[10, 87].

7 The extended binary (24, 12) Golay code is capable of correcting all error patterns of three or
fewer errors and detecting all error patterns of four errors.

8 The (24, 12) Golay served as the primary Voyager error-control system, providing clear colour
pictures of Jupiter and Saturn between 1979 and 1981.



26 error correcting coding

Let C be a binary (n, k) linear block code with minimum Hamming distance
dmin and weight enumerating polynomial A(z). Assume that each transmitted
BPSK symbol has energy Es and let c = [c0, c1, · · · , cn−1] be a codeword ∈ C.
For transmission, this codeword is mapped into a sequence of BPSK signals that,
in vector form, is represented by a bipolar sequence9 s = [s0, s1, · · · , sn−1],
where for 0 6 i < n,

si =
√
Es (2ci − 1) =

{
−
√
Es for ci = 0√
Es for ci = 1

. (2.41)

Let r = [r0, r1, · · · , rn−1] denote the n sampled outputs of the matched filter.
The AWGN channel is characterized as having a finite alphabet at the input
and producing a continuous output that can take any real value. Hence, each
received sampled output may be expressed as

ri = si +ni =
√
Es (2ci − 1) +ni , (2.42)

where ni is a real random variable representing the AWGN noise added to the
transmitted symbol si, and so, the received sample ri conditioned on si (or ci,
since there is a one-to-one correspondence between ci and si) is a Gaussian
random variable whose conditional probability density function (pdf) is given by:

p(ri |si ) = p(ri |ci ) =
1√
πN0

e−
(ri−si)

2

N0 . (2.43)

Since the channel is considered to be memoryless, the noise components {ni}

are uncorrelated Gaussian random variables and so statistically independent.
As consequence, the elements of r conditioned on s being transmitted are also
statistically independent Gaussian variables and the joint conditional pdf is
simply

p(r |s ) = p(r |c ) =
n−1∏
i=0

p(ri |si ) =
1

(πN0)
n/2

exp

[
−

n−1∑
i=0

(ri − si)
2

N0

]
. (2.44)

2.3.1 Decoding: MAP and ML decision rules

Based on the received sequence r, the decoder must produce an estimate ĉ of
the transmitted codeword c. A decoding error occurs whenever ĉ 6= c, and so the

9 Henceforth, the symbol s will be used to represent a vector of modulated symbols, and therefore
should not be confused with the syndrome s = r HT defined in section 2.2.3.
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conditional error probability of the decoder, given that r was received, is defined
as

Pr(E|r ) ∆= Pr(ĉ 6= c|r ) . (2.45)

An optimal decoding rule should therefore minimize the overall error proba-
bility among all possible received sequences r, i.e. it should minimize

Pr(E) =
∫

r
Pr(E|r ) p(r)dr , (2.46)

where p(r) is the joint pdf of the received sequence r. However, since p(r) > 0, an
optimum decoding rule that minimizes Pr(E) is the one that minimizes Pr(E|r )
for all r.

Because minimizing Pr(E|r ) is equivalent to maximizing Pr(ĉ = c|r ) the opti-
mum decoding rule should select a codeword ĉ ∈ C whose a posteriori probability
is greater than for any of the remaining codewords, i.e. ĉ should be selected
such that

Pr(ĉ|r ) > Pr
(
cj|r
)

,∀cj ∈ C with j = 0, . . . , 2k − 1 . (2.47)

This decision criterion is called the maximum a posteriori probability (MAP)
criterion. The a posteriori probabilities Pr

(
cj|r
)

can be computed using Bayes’
rule, i.e. according to

Pr(c|r ) =
p(r|c )Pr(c)

p(r)
=

p(r|c )Pr(c)∑
cj∈C

p
(
r
∣∣cj )Pr

(
cj
) . (2.48)

Therefore, in order to compute Pr(c |r ) the a priori probabilities of the code-
words Pr

(
cj
)

must be known. However, in many cases, these probabilities are
not known exactly at the receiver, making optimum decoding impossible. In
this case, the best feasible decoding rule is to use the maximum-likelihood (ML)
criterion that selects ĉ ∈ C such as:

Pr(r|ĉ ) > Pr
(
r
∣∣cj ) ,∀cj ∈ C with j = 0, . . . , 2k − 1 . (2.49)

We note that the denominator of (2.48) is independent of the signal that is
transmitted. Hence, we conclude that a decoder based on the MAP criterion and
one that is based on the ML criterion make the same decisions as long as the a
priori probabilities Pr

(
cj
)

are all equal, i.e., all the transmitted codewords are
equiprobable, as is usually the case.
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2.3.2 Hard-Decision Decoding Performance

The only decoding algorithm for linear block codes presented so far was the
syndrome’s method. This algorithm assumes that the received word r belongs
to the vector space where the code was defined, i.e. r is a n-tuple binary
vector10. Sample outputs ri of the matched filter in the receiver demodulator
must therefore be quantized in two levels, denoted as "0" and "1", and the
demodulator is said to make hard-decisions.

Decoding algorithms like the syndrome method that process the hard-decision
received sequences are called hard-decision decoding algorithms. When the alge-
braic structure of the code is used to perform this decoding (as with the syn-
drome method, too), the algorithm is also called an algebraic decoding algorithm
[66].

Let ri denote an unquantized matched filter output sample, and r̄i the hard
decision taken on ri according to

r̄i =

{
0 , if ri < τ

1 , if ri > τ
, (2.50)

where τ is the hard-decision threshold.
The optimum threshold τ is obtained using the MAP criterion [77]. For the

case of coherent BPSK transmission over the AWGN channel, the MAP decision
rule compares the weighted densities p(ri |si )Pr(si) for si = ±

√
Es, where

p(ri |si ) is given by (2.43). Clearly, from figure 5 we conclude that the optimum
threshold τ is the point at which

p
(
ri

∣∣∣si=√Es)Pr
(
si=

√
Es

)
= p
(
ri

∣∣∣si=−
√
Es

)
Pr
(
si=−

√
Es

)
, (2.51)

and can thus be computed explicitly as

τ =
N0

4
√
Es

ln
Pr
(
si=−

√
Es
)

Pr
(
si=
√
Es
) . (2.52)

Usually Pr
(
si=
√
Es
)
= Pr

(
si=−

√
Es
)
, i.e. transmitted symbols are equiprob-

able, and so the decision threshold is at τ = 0. Here the composite channel
composed of the BPSK modulator, the AWGN channel, the demodulator and
the hard-decision detector, turns out to be equivalent to a discrete-time BSC
channel (as depicted in figure 6) with crossover probability

p = Pr
(
ri < 0

∣∣∣si=√Es) = Pr
(
ri > 0

∣∣∣si=−
√
Es

)
. (2.53)

10 Remember that from section 2.3 on the codes are considered to be binary.
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Figure 5: Optimum hard-decision threshold for BPSK transmission over the AWGN
channel.

Figure 6: The binary symmetric channel model.

Hence, using equation (2.43), p is given by

p =
1√
πN0

∫+∞
0

e−
(ri+

√
Es)

2

N0 dri = Q

(√
2Es

N0

)
, (2.54)

where Q(x) is the Gaussian Q-function that returns the area under the tail of the
normalized Gaussian11 pdf and is defined as:

Q(x) =
1√
2π

∫+∞
x

e−
t2

2 dt . (2.55)

The crossover probability p can be expressed as a function of the typical figure
of merit Eb/N0. Because for a binary (n, k) block code each set of n transmitted
symbols ("bits") carries only k information bits, the average transmitted energy
per information bit Eb relates to Es according to

Eb =
nEs

k
=
Es

rc
, (2.56)

where rc is the code rate defined in (2.17). Therefore, p can be expressed as

p = Q

(√
2rc

Eb
N0

)
. (2.57)

11 Gaussian distribution with zero mean and unitary standard deviation.
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The hard-decision decoding metric

Considering transmission of a codeword c over a BSC channel, the probability
of an error pattern e with wH(e)= i occurring equals the probability that i bits
of the hard-decision received word r̄ are in error and the remaining n− i bits
are correct. This probability denoted as Pe(i), is thus given by

Pe(i) = Pr(r̄ |c ) = pi (1− p)n−i . (2.58)

Therefore, the higher the Hamming weight of the error pattern, i.e. the longer
the distance dH(r̄, c), the lower the probability that it will occur12.

As stated in section 2.3.1, an ML decoding rule selects the codeword ĉ ∈ C

that maximizes Pr(r̄ |ĉ ), which, according to (2.58), is thus equivalent to select
ĉ ∈ C that minimizes dH(r̄, ĉ). The Hamming distance is therefore the metric
used for practical hard-decision decoding algorithms.

Probability of an undetected error

An undetected error pattern occurs whenever the received word r̄, is a codeword
different from the transmitted one c, i.e. the error pattern e = r̄ + c is a non-zero
codeword, since the code is linear. In fact, for any error pattern e∈C\{0}, the
syndrome r̄ HT of the received word is zero according to (2.23) and (2.36), and
so no error would be detected.

Using the coefficients of the weight enumerating polynomial A(z), we can
thus compute exactly the probability that an undetected error will occur Pu as

Pu =

n∑
i=dmin

AiPe(i) =

n∑
i=dmin

Aipi (1− p)n−i . (2.59)

Unfortunately, for most codes of practical interest the weight distribution is
unknown. However, since C is a subspace of GF(2)n, the number of codewords
of weight i satisfies

Ai 6

(
n

i

)
, (2.60)

and so the following upper bound on Pu is obtained

Pu 6
n∑

i=dmin

(
n

i

)
pi (1− p)n−i . (2.61)

12 A useful BSC channel has a crossover probability p<0.5 .
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Probability of a decoding error

According to the syndrome method a received word r̄ is properly corrected
whenever the error pattern e occurring during transmission is a coset leader.

Let Li denote the number of coset leaders of weight i and l the largest
Hamming weight of a coset leader in the standard array. The probability of a
correct decoding Pc is thus given by

Pc =

l∑
i=0

Li pi (1− p)n−i . (2.62)

and the probability of a decoding error PE, usually called block (or word) error rate
(BLER) [66], is

PE = 1− Pc = 1−

l∑
i=0

Li pi (1− p)n−i . (2.63)

For most (n, k) linear codes of practical interest, the syndrome method is not
a feasible decoding algorithm because of its long length n, and so the weight
distribution of the coset leaders is not known. However, a simple upper bound
on PE can be found. As stated in section 2.2.2, a linear code with minimum
distance dmin is able to correct all error patterns of tcor = b(dmin − 1) \2c or
fewer errors. Therefore, the probability of the decoder committing an erroneous
decoding is upper bounded by

PE 6
n∑

i=tcor+1

(
n

i

)
pi (1− p)n−i . (2.64)

Equality holds in equation (2.64) if the linear block code is a perfect code. In
this case, as results from (2.32), the largest Hamming weight of a coset leader in
the standard array is l = tcor and the weight distribution of the coset leaders is
known and given by

Li =

(
n

i

)
, for i = 0, . . . , tcor . (2.65)

2.3.3 Soft-Decision Decoding Performance

When the sample outputs of the matched filter are left unchanged or quantized in
more than two levels13, the demodulator is said to make soft-decisions. Decoding

13 Once more we are restricting ourselves to the binary case, q = 2. For a linear code defined over
GF(q), the demodulator is said to make soft-decisions whenever the number of quantization levels
is greater than q.



32 error correcting coding

algorithms that process the soft-decision received sequences are called soft-
decision algorithms.

Soft-decision decoding has a higher complexity than hard-decision decoding.
However, since the decoder can use the additional information contained in
the unquantized (or multilevel quantized) received samples to recover the
transmitted codeword, soft-decision decoding provides a much better error
performance, which in practical cases can be of the order of about 2dB [66, 87].

Soft-decision decoding metrics

Metrics other than the Hamming distance must be used for soft-decision decod-
ing. The first approach to the ML decoding of a soft-decision received sequence
r is to use the likelihood function, i.e. the conditional pdf p(r |s ) given by equation
(2.44), or any monotonic function of it. A typical function used to simplify the
computations is the natural logarithm of p(r |s ), i.e.

ln p(r |s ) = −
n

2
ln (πN0)−

1

N0

n−1∑
i=0

(ri − si)
2 . (2.66)

The ML decoder selects the codeword ĉ ∈ C, or the equivalent BSPK mod-
ulated sequence ŝ = 2ĉ − 1, that maximizes ln p(r |ŝ ). According to (2.66), this
is equivalent to finding the codeword BPSK sequence ŝ that minimizes the
Euclidean distance

dE(r, ŝ) =
n−1∑
i=0

(ri − ŝi)
2 . (2.67)

This decision rule is called the minimum distance detection [87] and the metric
used is the Euclidean distance.

An equivalent optimum decision rule based on the ML criterion can be
obtained by expanding the right-hand side of (2.67) as

dE(r, ŝ) =
n−1∑
i=0

r2i +n− 2

n−1∑
i=0

riŝi = ‖r‖+n− 2r · ŝ , (2.68)

where r · ŝ denotes the correlation (inner product) between r and ŝ .
In computing dE(r, ŝ) over all codeword BPSK sequences ŝ, the term ‖r‖+n

is constant and so it may be ignored in the computation of the metrics. Hence,
minimizing ŝ among all possible codewords ĉ ∈ C is equivalent to maximizing
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the correlation between the received sequence and all ĉ ∈ C. This metric C(r, ĉ),
called the correlation metric, is computed as

C(r, ĉ) = r · ŝ =

n−1∑
i=0

riŝi =

n−1∑
i=0

ri (2ĉi − 1) . (2.69)

Probability of a decoding error

Assume that we send a codeword c̄∈C and the received sequence is r. Optimum
soft-decision ML decoding can be performed by computing the 2k correlation
metrics of r with C’s codewords. A decoding error occurs if

∃cj ∈ C\ {c̄} : C
(
r, cj

)
> C(r, c̄) . (2.70)

The probability of c̄ being correctly decoded can thus be computed as

P
(c̄)
c = Pr

[
C(r, c̄)>C(r, c1), C(r, c̄)>C(r, c2), · · · , C(r, c̄)>C

(
r, c2k−1

)]
, with cj∈C\ {c̄} ,

(2.71)

which means that the probability of a correct decoding over all possible trans-
mitted codewords is

Pc =
∑
∀c̄∈C

P
(c̄)
c Pr(c̄) . (2.72)

Because the code is linear and the AWGN channel is symmetric, the error
probability given by (2.71) is the same for all c̄∈C. It can therefore be assumed
that the all-zero codeword c̄0 is transmitted and so

Pc = P
(c̄0)
c . (2.73)

However, the computation of (2.71) is not a trivial task due to the correlations
among the 2k correlation metrics. Therefore, instead of attempting to derive
the exact probability Pc, or the equivalent word error probability PE=1− Pc,
we resort to the union bound. The word error probability can thus be upper
bounded as follows

PE 6
∑

cj∈C\{c̄0}
Pr
[
C
(
r, cj

)
>C(r, c̄0)

]
(2.74)

Expanding the probability that C
(
r, cj

)
>C(r, c̄0) and using equation (2.69),

we get
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Pr
[
C
(
r, cj

)
>C(r, c̄0)

]
= Pr

[
r ·
(
cj − c̄0

)
> 0
]

= Pr

[
n−1∑
i=0

ri
(
cji − c̄0i

)
> 0

]
, (2.75)

where cji represents the bit i of the codeword cj.
Let Sj denote the sum

∑n−1
i=0 ri

(
cji − c̄0i

)
. Note that Sj is a sum of indepen-

dent Gaussian random variables14 ri ∼ N
(
−
√
Es,N0/2

)
and it has only wH

(
cj
)

non-null terms that correspond to the positions where cj differs from c̄0. Hence,
Sj is a Gaussian random variable with mean

mSj = −wH
(
cj
) √

Es , (2.76)

and variance

σ2Sj = wH
(
cj
) N0
2

, (2.77)

and so, the probability that C
(
r, cj

)
>C(r, c̄0) is given by

Pr
[
C
(
r, cj

)
>C(r, c̄0)

]
= Pr

[
Sj > 0

]
= Q

(√
2wH

(
cj
) Es
N0

)
. (2.78)

If A(z) is the weight enumerating polynomial of the linear code C then, by
making use of equation (2.78) and the relation (2.56) between Es and Eb, the
result is that the word error probability as a function of the signal noise ratio
per information bit Eb/N0 is upper bounded by

PE 6
n∑

w=dmin

AwQ

(√
2w rc

Eb
N0

)
. (2.79)

For large Eb/N0 this bound is quite tight. However, it requires the knowledge
of the weight distribution of the code. A particularly useful, but somewhat
looser bound can be obtained by noting that (2.78) is a monotonic decreasing
function of the codeword’s weight wH

(
cj
)
, and so

PE 6
n∑

w=dmin

AwQ

(√
2w rc

Eb
N0

)
6
(
2k − 1

)
Q

(√
2 dmin rc

Eb
N0

)
. (2.80)

14 Remember that it was assumed that codeword c̄0 was transmitted and so, according to (5.99), the
received samples of r are expressed as ri = −

√
Es+ni.
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Figure 7: Comparison of bounds with exact error probability for hard-decision and
soft-decision decoding for the Golay (23, 12) code.

Another very good approximation of (2.79), that doesn’t require the knowl-
edge of A(z), can be obtained for large values of Eb/N0. Here the term√
2 dmin rc Eb/N0 is dominant in the summation (2.79) and so

PE 6
n∑

w=dmin

AwQ

(√
2w rc

Eb
N0

)
≈ AdminQ

(√
2 dmin rc

Eb
N0

)
. (2.81)

Bounds given by equations (2.79), (2.80) and (2.81) are compared in figure 7,
with the exact word error probability (obtained by Monte Carlo simulation) for
the case of the binary (23, 12) Golay code described in section 2.2.4. We observe
that the above mentioned properties of each of these bounds are verified. In
particular, we note that (2.81) provides a quite good approximation of the exact
word error probability under soft-decision decoding.

The exact performance PE under hard-decision decoding and the numerical
result obtained from the upper bound (2.64) are also plotted in figure 7. Since
the Golay (23, 12) code is perfect, equation (2.64) holds in equality and so gives
the exact word probability error. In addition figure 7 shows that soft-decision
decoding has a gain of about 2dB in performance with respect to hard-decision
decoding.

2.4 low-density parity-check codes

LDPC codes also called Gallager’s codes, are a special class of linear block
codes whose parity-check matrix H has a low density of ones15, i.e. it is sparse.

15 In this section, we address only the study of binary LDPC codes, and therefore we consider H to be
a binary matrix. Non-binary LDPC codes can also be constructed, with H being a sparse matrix
defined over GF(q).
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They were originally proposed in 1962 by Robert Gallager in his doctoral thesis
[20, 21]. Along with turbo codes (discovered much later in 1993 by Berrou et al.
[6]), LDPC codes form a family of Shannon limit capacity-approaching codes.

Unfortunately, Gallager’s remarkable discovery was long before its time
mainly because the iterative message-passing a posteriori probability (APP) decod-
ing algorithm that he proposed was too complex for the technology of that time.
As a result, LDPC codes remained largely unstudied for over 30 years, with
only scattered references to them. One notable exception is the important work
published in 1981 by Michael Tanner [106] in which he generalized LDPC codes
and introduced a graphical representation of them, now called Tanner graphs. It
was only in 1995 with the advent of the turbo code "revolution", that Mackay
and Neal [68] rediscovered them and showed empirically [69] that near Shannon
limit performance could be obtained with long LDPC-type codes and iterative
decoding.

Since Mackay and Neal’s rediscovery of them LDPC codes have become one of
the hottest topics in coding theory. There were several reasons for the astonishing
interest in Gallager’s original work. In some cases LDPC codes perform even
better than turbo codes [90], with their error floor occurring at a much lower
BER. LDPC’s iterative decoding algorithms are also easy to implement (with a
much lower per-iteration complexity than that of turbo decoders) and are also
parallelizable in hardware. In addition, the decoder declares a decoding failure in
a very natural way when it is unable to correctly decode, whereas turbo decoders
must perform extra computations for a stopping criterion. On the commercial
side, a strong reason for the interest on them was that LDPC codes are not patent
protected. But among all the advantages they have a disadvantage with respect
to turbo codes: LDPC codes have a significantly higher encoding complexity
since it is generically quadratic in the code dimension. This disadvantage can
however be overcome by using a special class of LDPC codes named Irregular
Repeat-Accumulate (IRA) [58], or cyclic or quasi-cyclic LDPC codes constructed
based on finite geometries [62, 66].

The powerful capabilities of LDPC codes have led them to compete suc-
cessfully with turbo codes and they have recently been included in several
standards, such as WiMAX IEEE 802.16e [49], Mobile Broadband Wireless Access
(MBWA) IEEE 802.20 [50], Ethernet IEEE 802.3an [51] and the satellite digital
video broadcast DVB-S2 [19].

We use the LDPC codes defined in the WiMAX IEEE 802.16e standard to
evaluate performance of the techniques of peak power control devised for
higher order modulated band-limited signals, considering transmission over
the AWGN channel. For this reason the special type of IRA-LDPC adopted
in WiMAX is detailed in appendix B. The same is done for the LDPC codes
defined in the DVB-S2 standard. Along with the PAPR study, some research
was carried out on the side to study LDPC’s efficient encoding and decoding
hardware architectures for DVB-S2. The results of this research [30, 31, 33] are
also presented in appendix B.
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2.4.1 Description of LDPC Codes: Tanner Graphs

The original LDPC codes as proposed by Gallager [20] were regular LDPC codes.
Gallager defined an (n, k, wc) LDPC code as a linear block code with dimensions
(n,k) characterized by a sparse parity-check matrix H whose columns have
a uniform Hamming weight wc and whose rows have a uniform Hamming
weight wr = wc × n

n−k , where wc << n−k (equivalent to wr << n). Therefore,
assuming H is full-rank, the code rate rc relates to wc and wr via

rc = 1−
wc
wr

. (2.82)

Gallager stated that by making wc > 3 and following some simple rules on
the design of a code parity check matrix (such as guaranteeing that no two
columns of H have an overlap greater than one) we obtain with high probability
an LDPC code with good error detecting and error correcting capabilities. In
fact, Gallager proved that with wc > 3 the typical minimum distance dmin of
the ensemble of (n,k) codes that can be obtained grows linearly fast with the
block size n of the code, while for wc = 2, dmin grows only logarithmically with
n [20, 80].

One may also define an irregular LDPC code where the Hamming weights of
the columns and rows of H are chosen in accordance with some non-uniform
distribution. Such irregular codes often outperform regular codes with similar
dimensions [90]. However, this "irregularity" poses problems for the implemen-
tation in hardware, making the parallelization of the algorithms difficult.

Tanner Graphs

It is easiest to understand the sense in which an LDPC code is regular or
irregular through its graphical representation. Any linear block code defined by
a parity check matrix H, can be represented by a bipartite graph associated with
H, known as Tanner graph [106].

A bipartite graph is a graph [66, 89], whose nodes (or vertices) may be separated
into two types, and edges may only connect two nodes of different types. In a
Tanner graph these two types of nodes are called variable nodes (or bit nodes -
BN, when the code is binary16) and check nodes (CN).

The variable and check nodes owe their name to the one-to-one correspon-
dence between the Tanner graph and the parity check matrix H. As we know, the
H matrix of an (n,k) linear block code specifies a system of n− k homogeneous
linear equations (check equations) with n unknowns presented in (2.23), whose
solutions are the 2k codewords of the code. We can thus construct a graph
with n− k check nodes, one per each check equation, n variable nodes, one per

16 For a non-binary code some authors also call the variable nodes symbol nodes.
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Figure 8: (a) The parity-check matrix H of a (10, 5, 2) LDPC code. (b) Corresponding
Tanner graph. A length-6 cycle of the Tanner graph is highlighted in blue.

each code bit17 (symbol) ci of a codeword c, and where check node j, CNj, is
connected to variable node i, BNi, whenever element hji in H is a 1. An example
of a parity check matrix of a (10, 5, 2) LDPC code and its corresponding Tanner
graph is presented in figure 8.

In figure 8 a length-6 cycle of the Tanner graph is also highlighted. A cycle (or
loop) of length l in a Tanner graph is a path comprising l edges and l nodes that
forms a close circuit passing from one node to another without using the same
edge more than once. The length of the shortest cycle existing in the graph is
called the girth.

Cycles, especially the short ones, lead to inefficient decoding and prevent
the iterative message-passing decoding algorithms, such as the sum-product
algorithm (SPA) proposed by Gallager [20], from converging to the optimal
decoding result. It is known that the sum-product algorithm yields optimum
decoding when applied to cycle-free Tanner graphs [89]. But cycle-free Tanner
graphs do not support good codes, with their minimum distance being dmin = 2

at code rates rc > 1/2 [80]. Tanner showed that for graphs with cycles dmin
grows with the girth of the code [106] and therefore, LDPC codes with a large
girth are to be preferred. It is therefore necessary to establish some rules for
the construction of LDPC codes with good distance properties and a high girth.
One of the simplest rules is to guarantee that no two columns of H have more

17 The Tanner graph description given here is also valid for non-binary LDPC codes, where H is a
matrix defined over GF(q).
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than one bit in common. That way we avoid the presence of length-4 cycles (the
shortest possible length of a cycle) in the Tanner graph.

There are, however, other criteria that may dictate the design approach to
constructing an LDPC code, such as: structured parity check matrices for efficient
encoding and decoding, near capacity performance, or low-error rate floors.
Various LDPC code construction methods that target different design criteria
can be found in literature [66, 80, 91]. However, this subject is beyond the scope
of this thesis and so it is not addressed here.

2.4.2 Decoding LDPC Codes: Iterative Decoding Algorithms

An LDPC code can be decoded in various ways ranging from low to high
decoding complexity and from reasonably good error performance to very
good error performance. Nevertheless, almost all decoding algorithms (both
hard-decision and soft-decision type algorithms) share the property of being
iterative. LDPC hard-decision iterative decoding algorithms are usually known
as bit-flipping algorithms [21, 66], while soft-decision algorithms used for LDPC
decoding are referred to as message-passing algorithms [66, 77, 89, 91]. Some
algorithms lie midway between hard-decision and soft-decision decoding, such
as the weight bit-flipping [62, 66] where the simple hard-decision bit-flipping
decoding is improved by including some kind of reliability information (or
measure) of the received symbols in their decoding decisions. These algorithms
offer a good trade-off between error performance and decoding complexity.

Besides discovering LDPC codes, Gallager also proposed both a bit-flipping
and a message-passing algorithm [20, 21]. The latter, then referred to as proba-
bilistic decoding, is nowadays known as sum-product algorithm (SPA) and is very
important because it is used in areas as diverse as error control coding, signal
processing and artificial intelligence18.

The SPA algorithm forms the basis of the best known high performance LDPC
decoding algorithms. As noted, the SPA is optimum when applied to cycle-free
Tanner graphs [89], but also provides near optimal decoding when applied to
high-girth Tanner graphs (i.e. without short length cycles, specially of length-4
and length-6), and yet it is practical to implement.

Descriptions of the SPA algorithm for decoding binary LDPC codes in the
literature traditionally assume the system model defined in section 2.3, i.e. that
coherent BPSK transmission is used over an AWGN memoryless channel with
white spectral noise density N0/2 [W/Hz], and optimum reception is achieved
by matched filtering in the receiver demodulator. Therefore, in presenting the
SPA algorithm, we consider the framework assumed in section 2.3 and we
use the same notation, i.e. c denotes a codeword of the LDPC code, s is the

18 The SPA was discovered independently by a few researchers in an attempt to solve problems that
were not always related to the decoding of channel codes. It is therefore known by different names.
For example, in the field of artificial intelligence it is usually called as belief propagation algorithm,
since it is applied in Bayesian networks.
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correspondent BPSK modulated sequence, and r = s+n is the received sequence
with n being the noise vector occurring during transmission.

Sum-product algorithm

The SPA is an iterative message-passing algorithm that operates over the code’s
Tanner graph. It processes the received symbols r iteratively to improve the
reliability of each decoded code symbol ci based on the set of restrictions
(check equations) imposed by the sparse H matrix of the LDPC code. The main
objective is to provide, at the end of each iteration, an improved estimate of the
a posteriori probability (APP) of each codeword bit, measured as

Pr(ci = b |r,Si ) , (2.83)

where b ∈ {0, 1} and Si denotes the event that the check equations involving
codeword bit ci (i.e. BNi) are satisfied. Hard decisions are made based on (2.83)
and (2.23) is used to check if decoding was successful. If there is a decoding
failure a new iteration is performed with the input being the reliability measures
of code symbols computed in the previous iteration.

Because the SPA algorithm iterates over the code’s Tanner graph, each node
of the graph can be imagined as a processor, and the edges as message paths
through which BN processors and CN processors (corresponding to the two
types of nodes that form the Tanner graph) communicate. It is thus convenient
to introduce the following notation:

• J(i) = {check nodes connected to BNi}
=
{
j : hji = 1

}
;

• J(i)\j = { check nodes connected to BNi excluding CNj } ;

• I(j) =
{

bit nodes connected to CNj
}

=
{
i : hji = 1

}
;

• I(j)\i = { bit nodes connected to CNj excluding BNi} ;

• MCN(∼ j) = { messages from all check nodes except CNj } ;

• MBN(∼ i) = { messages from all bit nodes except BNi } ;

• qi→j(b) = message that BNi sends to CNj regarding the probability that
bit ci = b, with b∈ {0, 1};

• rj→i(b) = message that CNj sends to BNi regarding the probability that
check node restriction j is satisfied given that ci = b;

• Pi = Pr(ci=1 |ri ) .
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A BN processor receives information from the channel, and messages from
its CN neighbours19 as depicted in figure 9a. A BNi processes all the received
information and sends back to each of its CN neighbours (to CNj, for instance)
a message regarding its probability based on all the information it has received,
excluding the information received from CNj, i.e. only extrinsic information is
passed to CNj20. The message that BNi passes to CNj is therefore

qi→j(b) = Pr(ci = b |ri,Si,MCN(∼ j) ) . (2.84)

(a) (b)

Figure 9: Subgraphs of a Tanner graph corresponding to an H matrix whose: (a) first
column is [1 0 1 1 0 · · · 0]T1×(n−k) ; (b) third row is [1 1 0 1 1 0 · · · 0]1×n .

Messages received by BNi are assumed to be statistically independent. Hence,
from applying the Bayes’ rule to (2.84) and making use of the independence
assumption, it happens that qi→j can be computed as [68, 91]:

qi→j(0) = kij (1− Pi)
∏

j ′∈J(i)\j

rj ′→i(0) , (2.85)

qi→j(1) = kijPi
∏

j ′∈J(i)\j

rj ′→i(1) , (2.86)

where the constants kij are chosen to ensure that qi→j(0) + qi→j(1) = 1.
A CN processor receives only information from its BN neighbours as depicted

in figure 9b. It processes the received messages in a similar manner and passes
the resulting output messages to its BN neighbours with the message sent to
each BN containing only information extrinsic to that BN. The message passed
to each BN concerns the probability of the check node restriction being satisfied
given the value of the BN and all extrinsic information, and so can be expressed
as

rj→i(b) = Pr
(
Sj |ci = b,MBN(∼ i)

)
. (2.87)

19 Two nodes in a graph are said to be neighbours if they are connected by an edge.
20 Considering the example of figure 9a, the information that BN0 passes to CN2 is all the information

available to BN0 from the channel and through its neighbours, excluding the one received from CN2.
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In order for a parity-check equation involving BNi to be satisfied, given that
ci=0 (1), the remaining bits involved in the parity-check equation must contain
an even (odd) number of 1s. In addition, it can be proved [91] that the probability
of the sum (modulo 2, ⊕) of a set of independent binary digits ai being equal
to zero is given by

Pr
(⊕
i
ai = 0

)
=
1

2
+
1

2

∏
i

[1− 2Pr(ai = 1)] . (2.88)

Hence, using (2.88) and assuming that messages received by CNj are statisti-
cally independent, it follows that

rj→i(0) =
1

2
+
1

2

∏
i ′∈I(j)\i

(
1− 2qi ′→j(1)

)
, (2.89)

rj→i(1) = 1− rj→i(0) . (2.90)

Each SPA decoding iteration is thus composed of two parts following a flooding
schedule approach [112]. A first half-iteration (horizontal pass) where all CN are
processed and a second half-iteration (vertical pass) where BN are processed21.
The algorithm is initialized by setting qi→j(b) = Pr(ci=b |ri ), with b ∈ {0, 1},
which for the case of coherent BPSK transmission on the AWGN channel is
given by

qi→j(b) =
1

1+ e
ri (1−2b)
N0

. (2.91)

At the end of each iteration the pseudo a posteriori probabilities of each
codeword bit are computed

Qi(b) = Pr(ci = b |ri,Si ) (2.92)

which, using the Bayes rule and the independence assumption, is

Qi(0) = ki (1− Pi)
∏
j ′∈J(i)

rj ′→i(0) , (2.93)

Qi(1) = kiPi
∏
j ′∈J(i)

rj ′→i(1) , (2.94)

where the constants ki are chosen to ensure that Qi(0) +Qi(1) = 1.

21 The terms horizontal pass and vertical pass are associated with the fact that we are processing all the
lines and all the columns of H.
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The assumption that the messages passed to each node throughout the de-
coding process are statistically independent holds true only if the Tanner graph
possesses no cycles. In this case, the SPA yields the exact APP [89]. However, for
a graph of girth l, the independence assumption is only true up to the l/2-th
iteration, after which messages start to loop back on themselves in the graph’s
cycles. Simulations have nonetheless shown that the message-passing algorithm
is generally very effective provided length-4 cycles are avoided.

Algorithm 2.1 presents a summary of the SPA just described. Because the
messages exchanged between a Tanner graph’s nodes are probabilities this
implementation is usually called the probabilistic-domain version of SPA.

Log-domain SPA decoder

The high number of multiplications involved in decoding an LDPC code when
using the SPA probabilistic-domain approach may pose problems to an im-
plementation in both hardware or software. Not only are additions less costly
to implement than multiplications, but also a high number of multiplications
of probability values can be numerically unstable. Therefore, a log-domain
implementation of the SPA is to be preferred [12, 20, 47].

The SPA algorithm can be modified straightforwardly by using the concept of
log-likelihood ratio (LLR) of a binary random variable a defined as

LLR(a) = ln
Pr(a = 0)

Pr(a = 1)
. (2.95)

We can thus define the LLR of the a posteriori probabilities Pi, of the messages
exchanged between nodes rj→i and qi→j, and of the pseudo-probabilities a
posteriori Qi. Let:

LPi = ln
1− Pi
Pi

, (2.96)

Lrj→i = ln
rj→i(0)

rj→i(1)
, (2.97)

Lqi→j = ln
qi→j(0)

qi→j(1)
, (2.98)

LQi = ln
Qi(0)

Qi(1)
. (2.99)

Replacing (2.85)–(2.86) in (2.98), and (2.93)-(2.94) in (2.99), after simple ma-
nipulation, we get
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Algorithm 2.1 Sum-Product Algorithm
Perform each of following steps for all

(
CNi,CNj

)
pairs, i.e. for all (i, j) for which the code’s

parity check matrix H has hji = 1.

STEP 0: Initialization

qi→j(0) = (1− Pi) , qi→j(1) = Pi .

do {

STEP 1: CN processing (horizontal pass)
– Update all rj→i messages:

rj→i(0) =
1

2
+
1

2

∏
i′∈I(j)\i

(
1− 2qi′→j(1)

)
, rj→i(1) = 1− rj→i(0) .

STEP 2: BN processing (vertical pass)
(a) Update all qi→j messages

– Compute:

qi→j(0) = (1− Pi)
∏

j′∈J(i)\j

rj′→i(0) , qi→j(1) = Pi
∏

j′∈J(i)\j

rj′→i(1) .

– Normalize computed values with kij = 1
qi→j(0)+qi→j(1)

:

qi→j(0) = kijqi→j(0) , qi→j(1) = kijqi→j(1) .

(b) Update the pseudo a-posteriori probabilities Qi
– Compute:

Qi(0) = (1− Pi)
∏
j′∈J(i)

rj′→i(0) , Qi(1) = Pi
∏
j′∈J(i)

rj′→i(1) ,

– Normalize computed values with ki = 1
qi(0)+qi(1)

:

Qi(0) = kiQi(0) , Qi(1) = kiQi(1) .

STEP 3: Hard-decision and stopping criterion test
– Perform hard-decision decoding according to:

ĉi =

{
1 ⇐ Qi(1) > 0.5

0 ⇐ Qi(1) < 0.5

} while (ĉ HT 6= 0) & (#iterations < max_iterations )

STEP 4: Check if decoding was successful

if (ĉ HT = 0)
return ĉ; // successful decoding

else
return "Decoding failure";

end
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Lqi→j = LPi +
∑

j ′∈J(i)\j

Lrj ′→i , (2.100)

LQi = LPi +
∑
j ′∈J(i)

Lrj ′→i . (2.101)

Note that when the BN’s processing (horizontal pass) is performed in the
log-domain not only are all multiplications replaced by less costly additions,
but the need for the normalization procedure in step 2 of the algorithm 2.1
disappears, and so fewer operations have to be performed.

In order to compute Lrj→i we can replace as well (2.89)–(2.90) in (2.97) and
follow the deduction made in [21, 91]. A more interesting approach that is also
easier to understand and process, makes use of the boxplus-sum � operation
proposed in [47] and defined as

a� b = ln
ea+b + 1

ea + eb
. (2.102)

It can be proved that the LLR of the sum (mod 2, ⊕) of two binary random
variables (x1 and x2, for instance) is the boxplus-sum of their LLRs, i.e.

LLR(x1 ⊕ x2) = LLR(x1)� LLR(x2) . (2.103)

The definition of rj→i(b) given in (2.87), can be written by simple reasoning
in an equivalent form as

rj→i(b) = Pr

( ⊕
i ′∈I(j)\i

ci ′ = b

)
, (2.104)

where by the recursive application of (2.103) to (2.104) we find that Lrj→i can be
computed as follows

Lrj→i = �
i ′∈I(j)\i

Lqi ′→j . (2.105)

Efficient computation of � can be performed by approximating (2.102) by
a piecewise linear function [47]. However, a slightly rougher approximation
of (2.102) should be mentioned because of its simplicity and popularity. It is
known as the min-sum approximation [12, 47, 91] and is given by

a� b ≈ sgn(a) sgn(b)min(|a| , |b|) . (2.106)
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Algorithm 2.2 Log-Domain Sum-Product Algorithm and Min-Sum Algorithm
Perform each of following steps for all

(
CNi,CNj

)
pairs, i.e. for all (i, j) for which the code’s

parity check matrix H has hji = 1.

STEP 0: Initialization

Lqi→j = LPi .

do {

STEP 1: CN processing (horizontal pass)
– Update all Lrj→i messages:

Lrj→i = �
i′∈I(j)\i

Lqi′→j .

Box-plus operator � definition:

– LSPA: a� b = ln
ea+b + 1

ea + eb

– Min-sum: a� b = sgn(a) sgn(b)min(|a| , |b|)

STEP 2: BN processing (vertical pass)
(a) Update all Lqi→j messages

Lqi→j = LPi +
∑

j′∈J(i)\j

Lrj′→i .

(b) Update the pseudo a-posteriori probabilities LQi

LQi→j = LPi +
∑
j′∈J(i)

Lrj′→i .

STEP 3: Hard-decision and stopping criterion test
– Perform hard-decision decoding according to:

ĉi =

{
0 ⇐ LQ > 0

1 ⇐ LQ < 0

} while (ĉ HT 6= 0) & (#iterations < max_iterations )

STEP 4: Check if decoding was successful

if (ĉ HT = 0)
return ĉ; // successful decoding

else
return "Decoding failure";

end
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Min-sum approximation causes about 1dB loss in required Eb/N0 at BER= 10−6

with respect to SPA. However, the simplicity of the operations involved in com-
putations allows very efficient implementation in both hardware and software.

Algorithm 2.2 presents a summary of the outline of both the SPA in log-
domain and its min-sum approach.

2.5 conclusion

The basic concepts of error control coding have been presented in this chapter,
with special emphasis on linear block codes. Channel coding is an integral part
of any modern communication system, where it plays a crucial role in improving
communications reliability. In this thesis system’s FEC capabilities are explored
from the standpoint of offsetting increased noise sensitivity resulting from the
techniques for the envelope’s peak power control that are presented in the
following chapters. Derived bounds, under hard and soft-decoding allow us to
analytically assess the performance of those techniques through comparison
with the matched ones that are deduced in chapter 5 for the case where peak
power control is used.

Some attention has also been paid to the special case of LDPC codes, as one
of the most powerful families of linear codes able to approach the Shannon
limit, and one of the hottest research topics in coding theory since the late 90s.
They are the class of codes used throughout this thesis to evaluate the BER
performance of the devised techniques of peak power control. They are also the
subject of some parallel research presented in annex B.





3
M A G N I T U D E M O D U L AT I O N

Peak power reduction and spectral efficiency are two of the major issues in
practical communications system design. As made clear in chapter 1, a high
PAPR puts stringent requirements on the transmitter’s DAC and HPA, increas-
ing the cost of these systems’ components and badly degrading the system’s
power efficiency. This problem is actually emphasized when, in order to meet
the currently growing demands for higher data rates (and so higher spectral
efficiency), very low roll-off root-raised cosine (RRC) pulse shaping filters and
high-order constellations are used, since these lead to an increase on the signal’s
PAPR.

As mentioned, we have focused our study on the problem of achieving low
PAPR with strictly band-limited single-carrier signals, often selected as the pre-
ferred solution for communications where the transmitter’s power consumption
might be a concern, such as VSAT and small mobile devices. Data Magnitude
Modulation (MM) prior to RRC filtering is one of the techniques used to de-
crease PAPR in SC transmissions. The MM concept was proposed in the nineties
by Miller et al. [74, 75], who used it to develop an adaptive peak-suppression
algorithm that works well for phase shift keying (PSK) and generalized PSK con-
stellations. An efficient look-up table (LUT) implementation of the MM technique
was later proposed by Tomlinson et al. [4, 108] and applied with success to QPSK
and OQPSK constellations.

This chapter presents an improved evolution of the LUT-MM technique. We
show that is possible to use the LUT-MM concept for higher-order non-constant
amplitude constellations, even considering the huge number of symbol com-
binations. Because RRC is driven by a sequence of data symbols varying not
only in phase but also in magnitude, the control of envelope’s peak-power at
RRC output is more complex. In order to cope with the additional complex-
ity, new clipping limits are proposed and the method’s ability to avoid phase
modulation is improved. We show, too, that LUT’s computation complexity and
storage requirements can be considerably reduced by exploring the constella-
tion’s symmetry and the RRC’s linear phase characteristic. This chapter ends
with a performance evaluation, focusing on the PAPR, back-off and BER of the
improved LUT-MM technique applied to 16-QAM and 16-APSK constellations.

The content of this chapter is based mainly on [32], [34] and [38].

49
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3.1 the magnitude modulation principle

The underlying principles of data magnitude modulation applied to single-
carrier communications are presented in this section. The generic block diagram
of a typical SC transmitter is presented in figure 1 of chapter 1. In SC systems,
the main contribution to PAPR results from RRC bandwidth limitation that gives
rise to undesirable envelope variations in transmitted signal x[n] that drives the
transmitter’s DAC+HPA block.

The use of post-filtering peak power reduction techniques may give rise to
spectral spreading, causing loss of bandwidth efficiency and undesirable adjacent
channel interference. But by making signal adjustments prior to filtering we do
not affect the bandwidth of signal x[n] and so guarantee operation within
government allocated limits. These adjustments must, however, take into account
the RRC impulse response h[n] in order to prevent peak regrowth that may be
caused by the filtering.

Pre-filtering PAPR reduction techniques

Regarding the latter strategy, two approaches are usually followed: trellis coding
(TC) [13, 104], and magnitude modulation [4, 74, 75, 108]. TC techniques try
to avoid critical sequences of modulated symbols that cause peak envelope
excursions at the RRC’s output. However, as stated before, such solutions are
complex with a high computational overhead and difficult to include in currently
operating radio transmission systems. In addition, they require constellation
redundancy, with some bits being used for shaping control1, which implies a
reduction in the transmitted information rate.

Compared with state-of-the-art trellis PAPR reduction techniques, MM shows
similar PAPR reduction gains, but offers major advantages [35]. MM operates
on the modulator’s output symbols and provides adjusted symbols to the
RRC block, i.e. it is a simple processing block fitted between the modulator
and the RRC filter. Therefore, it can be easily included in currently operating
transmitter systems without replacing the equipment already installed. This
is a very important advantage in terms of both system and cost. In addition,
as this chapter and the next one make clear, it is possible to take advantage
of the systems’ existing forward-error-control (FEC) capabilities in order to
efficiently compensate for the increased sensitivity to noise resulting from MM.
So no further FEC is needed, which means that MM does not imply a penalty
reduction in the information rate.

1 The 8-PSK trellis coding technique proposed in [104] requires the use of 1 bit per transmitted symbol,
only for shaping control, in order to achieve the best performance. The maximum information rate
of 8-PSK signaling is thus in fact reduced by 2/3, corresponding in practice to the information rate
of a 4-ary constellation.
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3.1.1 Magnitude Modulation

Figure 10 illustrates the functional diagram and the basic building blocks of
a typical digital communication transmitter system using the MM concept
[4, 74, 75, 108]. The MM block adjusts the amplitude of the in-phase (I) and
quadrature (Q) components of each modulator’s output symbol

s[n]=sI[n] + jsQ[n] , (3.1)

so as to suppress peaks in the RRC’s output signal x[n]∈C to be transmitted.
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Figure 10: (a) Generic transmitter’s system block diagram including MM and (b) under-
lying principles of MM processing.

The computation of the best MM coefficient m[n] to apply to each symbol s[n],
can be accomplished by carrying out a procedure similar to the one proposed by
Miller et al. [74, 75], that is presented in figure 10.(b). The method is composed
of three steps:

1. Pulse shaping;

2. Peak detection and scaling factor calculation;

3. Scaling.

Pulse Shaping

As mentioned earlier, by performing PAPR control by signal adjustment prior to
filtering, in order to prevent peak regrowth at RRC’s output, the response of the
pulse shaping filter to the sequence s[n] must be predicted. Hence, all samples
(in the neighborhood of the symbol to be magnitude modulated) that combine
with the pulse shape to produce significant signal magnitude within the symbol
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interval of interest must therefore be considered in the computation of the MM
coefficient. That’s the reason why figure 10.(a) shows a generic scheme of an
MM system that looks at D past and future symbol neighbors2 of sn when
computing the MM coefficient mn to apply in sn. So here a delay of DTSYMB
is introduced by the MM technique, with TSYMB denoting the symbol duration
time.

The MM’s processing delay D is usually small since it depends mainly on
the time duration for which the RRC impulse response maintains significant
non-zero amplitude values. However, if the MM procedure is made iterative as
shown in figure 10.(b), it increases k times, with k being the number of iterations
performed per MM factor computation.

Peak detection and scaling factor calculation

However, as stated in section A.1, according to the Nyquist theory pulse shaping
has to be performed at a higher sampling rate 1/TSMPL = L/TSYMB, with L>2
being the up-sampler factor of the rate expansion prior to RRC filtering. The RRC
output symbol interval of interest, i.e. the one in which the contribution of
symbol sn (that is to be MM) is more prominent, it is therefore composed of L
samples. This set of samples, and possibly also the ones from the neighboring
intervals in its close vicinity (where the influence of sn can still be strongly
felt), are analyzed in order to detect any peak excursion exceeding a specified
threshold A.

Two different types of detection may be performed: polar and rectangular
analysis. Polar analysis compares the amplitude of the complex RRC output
samples against the specified threshold A (polar threshold), while rectangular
analysis monitors the amplitude of the I and Q components of those samples
independently, comparing them against the rectangular thresholds, AI and AQ
respectively. Rectangular thresholds are usually chosen in order to guarantee
that the final MM signal x[n] has an amplitude lower than the polar threshold
A. However, polar analysis provides a fine control of signal magnitude.

If the threshold is exceeded, the algorithm calculates the symbol scale factor
mn to apply to sn. A simple procedure is to scale down sn by a factor

mn = A/As , (3.2)

where As is the amplitude of the maximum peak detected in the analysis
interval. This value is called the MM factor or MM coefficient.

A better MM factor may be obtained by employing more complex algorithms,
such as the one proposed by Miller et al. [74, 75]. For example, Miller’s algorithm
considers the maximum signal excursion occurring to the left and to the right

2 Hereafter, whenever there is doubt that we may be referring to a discrete time sequence s[n] or to
the particular sample of that sequence at instant n, we will denote the sample as sn.
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of symbol sn during the analysis interval, and computes mn based on the
amplitude of those two peaks and their relative time distance to the symbol sn.

Scaling

Let h[n] be the impulse response of the pulse shaping filter operating at a
sampling rate 1/TSMPL. Magnitude modulation is performed at symbol rate
1/TSYMB with a scale factor mn being applied to each symbol sn. Scaling of the
data symbols can also follow two different strategies: polar scaling or rectangular
scaling.

Polar scaling multiplies both the I and Q components of symbol sn by the
same factor mn∈R in order to avoid phase modulation. The equivalent complex
digital baseband MM signal, after filtering and prior to D/A conversion, is
therefore given by:

x[n] =

[∑
k

m[k] s[k] δ[n− kL]

]
∗ h[n] . (3.3)

Alternatively, the amplitude of the I and Q components may be altered
independently, which changes both the magnitude and the phase of sn. The
equivalent complex digital baseband MM signal using rectangular scaling can
be expressed as

x[n] =

[∑
k

mI[k] sI[k] δ[n− kL]

]
∗ h[n] +

+ j

[∑
k

mQ[k] sQ[k] δ[n− kL]

]
∗ h[n] , (3.4)

where mI[k] and mQ[k] are the multiplier coefficients that modulate the ampli-
tude of the transmitted pulse components sI[k] and sQ[k], respectively.

The resulting effect of magnitude modulation is the smooth scaling of the
undesirable signal’s peaks without clipping, as shown in figure 11 for the case
of a 16-QAM constellation, with α = 0.35 RRC filtering.

Figure 10.(b) presents a scatter plot example of an 8-PSK constellation, when
using polar and rectangular scaling. As can be observed, MM can seriously in-
crease constellation symbols’ sensitivity to noise. It can even cause some symbol
errors, as may happen for higher-order non-constant amplitude constellations,
unless some care is taken when choosing the factor MM mn to apply to sn.
Some simple common-sense rules are usually followed:

• Avoid phase inversion by making mn > 0;

• Keep, or at least minimize the decrease in, the minimum distance between
constellation symbols by choosing mn∈ ]0, 1].



54 magnitude modulation

−2

−1

0

1

2

In-phase component (sI [n] symbols and baseband equivalent RRC filtered signal)

A
m
p
li
tu

d
e

Time
 

 

No Magnitude Modulation

Magnitude Modulated Signal

A

AI
Maximum
Amplitude
of 16-QAM
Symbols

Component
Amplitude
Levels

−2

−1

0

1

2

Quadrature component (sQ[n] symbols and baseband equivalent RRC filtered signal)

A
m
p
li
tu

d
e

Time

A

AQ

0

0.5

1

1.5

2

Amplitude of complex baseband equivalent RRC filtered signal

A
m
p
li
tu

d
e

Time

Amplitude
Levels of
16-QAM
Symbols

A

Figure 11: Sample of a α = 0.35 RRC filtered 16-QAM signal with and without Magnitude
Modulation. Rectangular scaling is used when performing MM.

Phase inversion causes symbol errors and so mn cannot be negative. By re-
stricting mn∈ ]0, 1], we only allow attenuation of the symbols to transmit and not
their amplification. Amplification can be critical, especially in higher-order non-
constant amplitude constellations. Here, in order to decrease some undesirable
output peaks, it may be easy to amplify some inner symbols (small-amplitude
symbols) in order to compensate for the contribution of outer symbols (high-
amplitude symbols), while at the same time attenuating the latter and thereby
minimizing the constellation’s average power-loss due to MM. This minimiza-
tion might even seem to be desirable based on the misleading conclusion that it
would not affect the SNR at reception, and therefore system’s BER performance.
However, the described MM procedure would cause a dangerously close approx-
imation of inner and outer symbols, decreasing the constellation’s minimum
distance too much and so increasing the constellation symbols’ sensitivity to
noise3. This would in fact seriously degrade the system’s BER performance.

3 This is not the case for constant amplitude constellations, and so amplification of symbols to transmit
may be allowed [74, 75].
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3.2 magnitude modulation : look-up-table based approach

Figure 12 outlines a LUT-based implementation of the MM technique, as pro-
posed in 2002 by Tomlinson et al. [4, 108]. MM coefficients are computed a priori
by an iterative algorithm [32, 34], and stored in a look-up table (LUT).

As already noted, the optimum MM factor to apply to each data pulse
sn = sIn + jsQn, depends both on sn itself, and on the D past and future symbol
neighbors of sn. Hence, MM coefficients mI

n and mQ
n that apply to sn, are each

stored in a LUT, at positions defined by state

Sn = [sn−D · · · sn−1 sn sn+1 · · · sn+D] . (3.5)

When performing polar scaling MM the LUT-based magnitude modulation
transmitter system present in figure 12 is simplified with only one LUT being
required, since both sIn and sQn are scaled by the same MM factor.
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Figure 12: LUT-based magnitude modulation transmitter system.

3.2.1 MM Look-up-Table Computation

The iterative algorithm proposed by Tomlinson et al. [4, 108] for the a priori
computation of MM factors simply emulates a noiseless transmission of a band-
limited (RRC filtered) signal when peak-power control through clipping is used
in the transmitter. The ratio of a received sample to the corresponding sent one
provides the value of the MM coefficient. The method is therefore composed of
the following steps presented in algorithm 3.1.

The algorithm devised by Tomlinson et al. was targeted to constant amplitude
constellations. As mentioned, we are presenting an improved version of the
LUT-MM technique, extending it to the more complex higher-order non-constant
amplitude constellations.
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Algorithm 3.1 Concise Algorithm for Computation of MM Factors’ LUT

do {

STEP 0: Setup input data.

Input Data =

{
Signal to be MM ⇐ first iteration

MM signal from previous iteration ⇐ other iterations

STEP 1: Filter data using a RRC filter.

STEP 2: Limit the magnitude of the filtered signal to the specified threshold A.

STEP 3: Filter the resulting signal using a match RRC filter.

STEP 4: Sample the resulting signal to obtain the MM sequence corresponding to
the input data.

} while ( Signal limitation occurs in STEP 2 )

STEP 5: Output the MM coefficients by performing the ratio of MM signal from the
most recent iteration to the input original sequence to be MM.

Figure 13 presents a discrete-time outline of the iterative algorithm we used
for computing the MM coefficients. Different variations of this algorithm dictate
the flow through the diagram. In a preferred embodiment, vectors

mI =
[
mI

−D · · · mI
0 · · · mI

D

]
(3.6)

and,

mQ =
[
mQ

−D · · · m
Q
0 · · · m

Q
D

]
, (3.7)

are initialized to all ones, and the algorithm iterates for each sequence of
N=2D+1 modulated symbols

s = [s−D · · · s0 · · · sD] , (3.8)

until it obtains a magnitude modulated sequence

a =
[
mI

−Ds
I
−D · · · mI

0s
I
0 · · · mI

Ds
I
D

]
+ j
[
mQ

−Ds
Q
−D · · · m

Q
0 s

Q
0 · · · m

Q
D s

Q
D

]
(3.9)
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that guarantees that no limiting of the RRC filtered signal v[n] (see figure 13) is
necessary, i.e. |v[n]| is upper bounded by

|v[n]| 6 A , (3.10)

where A is the polar threshold, chosen so as to guarantee that the transmitter’s
HPA is not driven into saturation4.

At the end of the iterative procedure, the mI
0 and mQ

0 values are stored in the
look-up table at the position defined by state s (i.e. mapped in the corresponding
bit sequence).

Note, however, that during the iterative procedure all neighboring symbols
of s0 are also magnitude modulated (pre-distorted), and not only s0, i.e. all
elements of the mI and mQ vectors are updated. This ensures that final values
for mI

0 and mQ

0 will also take into consideration the magnitude modulation pre-
distortion that neighboring symbols may suffer. Hence, applying the obtained
MM coefficients mI

0 and mQ

0 to symbol s0 when state s occurs in the transmitted
stream guarantees that minimum excursions above the threshold voltage A due
to s0 arise in the corresponding RRC output symbol interval of interest and its
adjacent symbol intervals.

3.2.2 Filtering finite length signals

Border problems for each state s due to RRC filtering of a finite length signal
with zero padding [76], have a small impact on the accuracy of magnitude
modulation values. During the iterative procedure, the MM factor of a border
symbol (s−D or sD ) may need to be changed in order to avoid clipping because
of lack of neighboring information. That change will be propagated to all inner
symbols of the state. Hopefully, final coefficients can be refined by reducing
the N look-up table to a new one with N ′=N−2 symbols per state, through a
simple averaging operation.

Denote by X the set of constellation symbols of a M-ary constellation, s(N) an
N-tuple state defined by N=2D+ 1symbols as in (3.8) and let

ms(N) =
(
mI

s(N)
,mQ

s(N)

)
(3.11)

be the pair of MM coefficients resulting from applying the LUT-MM algorithm
of figure 13 to state s(N).

4 Infinite loop situations may happen, however, when peak power of v [n] falls to the close vicinity of
the polar threshold A2, but remains higher than A2. Therefore, in order to increase the algorithm’s
robustness, the limit condition (3.10) should be accompanied by monitoring v [n] peak power of
v[n]. The iterative procedure stops when max |v [n]| is in the close vicinity of A and does not
decrease from one iteration to the next.
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Let N ′=N−2 and s(N
′) be the state formed by the N ′ middle symbols of a

state s(N). There are M2 states s(N)i,j that give rise to the same state s(N
′), where

s(N)i,j =
[
si s(N

′) sj

]
, with si, sj ∈ X . (3.12)

A pair of refined MM coefficients m
s(N
′) for state s(N

′) can be obtained by
taking an average over all m

s
(N ′)
i,j

with i, j = 0, · · · ,M− 1, as follows

m
s(N
′) =

1

M2

M−1∑
i=0

M−1∑
j=0

m
s
(N ′)
i,j

. (3.13)

With this procedure we have nearly succeeded in eliminating the boundary
influence. With reference to (3.5), note that N should be large enough for the
computed pair of MM factors that applies to a symbol sn to take into account
both the sn itself and the influence of its neighbors. If this average procedure
is applied recursively, although the boundary influence on the computed MM
coefficients vanishes and the LUT memory size falls, the lack information
from sn neighbors causes a decrease of the MM envelope control performance.
Figure 14 shows these effects. It plots the envelope maximum excursion and the
corresponding required back-off (dB) of a BPSK transmission with α = 0.35 RRC
pulse-shaping, as a function of the LUT index size (bits) when: the LUT-MM
algorithm from figure 13 is used alone; the LUT-MM algorithm is used followed
by single-step and a two-step reduction through averaging of the LUT size;
and the recursive application of the averaging procedure. Excursion values are
normalized assuming BPSK symbols sn =±1 and GRRC = 1. There is a clear
reduction in the required back-off as a function of N (LUT index size) with the
use of the MM technique after elimination of the boundary influence through
(3.13).
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3.2.3 LUT-MM Improvements to Handle Generic M-ary Constellations

Figure 13 shows four algorithm approaches for the computation of magnitude
modulation tables:

• Rectangular Clipping - Rectangular Scaling (RC-RS);

• Rectangular Clipping - Polar Scaling (RC-PS);

• Polar Clipping - Rectangular Scaling (PC-RS);

• Polar Clipping - Polar Scaling (PC-PS).

Clipping

According to algorithm 3.2, envelope clipping after RRC filtering at the trans-
mitter can be performed by separately limiting the vIn and vQn components
(rectangular clipping) or by rescaling them together, when the envelope’s magni-
tude |v[n]| > A (polar clipping).

In [4], the authors chose the component clipping levels as

AI = AQ =
A√
2

(3.14)

for the rectangular clipping case, since they were dealing with constant ampli-
tude constellations.

For non-constant amplitude modulations different values must be set for
AI and AQ according to the constellation design. Denoting the M symbols of
an M-ary constellation by Xn, with n = 0, · · · ,M− 1, we can guarantee that
|x [n]|6A in the separate limiting case of vIn and vQn by setting

AI = max
i=0,··· ,M−1

|< (Xn)| , (3.15)

AQ = max
i=0,··· ,M−1

|= (Xn)| , (3.16)

where < (Xn) and = (Xn) denote the real and imaginary parts of Xn∈C, and,
thus,

A = max
i=0,··· ,M−1

|Xn| =

√
(AI)2 + (AQ)2 . (3.17)

These conditions are simply an extension of the limits defined for constant
amplitude modulations. However, they are very restrictive and MM coefficients
computed according to them lower the power of the transmitted signal too
much, leading to a decline in the BER performance. For M-ary non-constant
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amplitude modulations and equiprobable symbols, the probability that one of
the signal components, vIn or vQn, violates (3.15) and (3.16) while |x [n]|6A, is
very high, especially, if the majority of constellation symbols have amplitude
lower than A. Therefore, the clipping limits should take into account the average
energy of both I and Q components according to

AI =

√
A2 − E

{
|= (Xn)|

2
}

, (3.18)

AQ =

√
A2 − E

{
|< (Xn)|

2
}

, (3.19)

where E {Xn} is the expected value of a random variable Xn.
These new limits, do not guarantee the condition |x [n]|6A at every instant.

In fact, in worst case conditions a maximum excursion of

√
(AI)2 + (AQ)2 > A (3.20)

may be observed, but, their probability is too low when compared to the
conditions expressed by (3.15) and (3.16).

Scaling

In order to avoid phase modulation mI and mQ can be forced to be equal, mI,Q

(polar scaling). In [4], the authors proposed using the arithmetic mean, i.e. in
figure 13, mI,Q

new was defined as

mI,Q
new ,

mI
new +mQ

new

2
. (3.21)

for the QPSK case. For higher order constellations whose symbols have unequal
amplitude components we define a new averaging function. The idea is to
preserve the power of the MM symbol when restricting mI = mQ, compared
with the power of the symbol obtained with rectangular scaling. Hence, mI,Q

new is
computed as

mI,Q
new ,

√√√√ (mI
news

I)2 +
(
mQ

newsQ
)2

(sI)2 + (sQ)2
. (3.22)

3.2.4 LUT-MM Complexity Discussion and Algorithm Optimization

Computational complexity and look-up tables size (i.e. storage requirements)
depend on the different clipping and scaling approaches that can be followed,
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the shape and dimension of the considered M-ary constellation and the shift
register length, N = 2D+ 1 (figure 13).

Denote by bI and bQ the number of bits associated with I and Q components
of the constellation symbols. The number of constellation symbols is

M = 2bI+bQ , (3.23)

and for square constellations,

bI = bQ =

√
M

2
. (3.24)

From figure 13 it is easy to conclude that for the RC-RS case the two com-
putation branches are completely separated, with mI

0 and mQ

0 depending only
on sI=< (s) and sQ== (s), respectively. In the remaining cases there are inter-
connections between the two branches and so the mI

0 and mQ

0 values depend
on the whole vector s. These correspond to a huge difference in the LUT’s size
between the RC-RS approach and the remaining cases as shown in table 3.

rc-rs case remaining cases

table mI: 2bIN MN = 2(bI+bQ)N = 2bI × 2bQN

table mQ: 2bQN MN = 2(bI+bQ)N

Table 3: Look-up tables length for different LUT-MM algorithm approaches

If we consider a square constellation, the complexity of the RC-RS case can be
simplified even more. The set of combinations sI and sQ to compute the look-up
tables for mI

0 and mQ

0 are equal. Thus only one branch of the diagram (figure
13) needs to be run, so the magnitude modulation system (figure 12) can be
implemented with a single look-up table.

Exploring constellation symmetry

The main problem posed by extending the method to a higher order M-ary
constellation is the high number of constellation symbols of non-constant ampli-
tude, which leads to a huge number of combinations to be considered, even for
a system with a small memory. Hopefully, the M-ary constellations considered
are usually mutually symmetric with respect to both the real and imaginary
axis.

As stated before, let X denote the set of constellation symbols of a M-ary
constellation and Xn

th
the subset of the ones belonging to the nth quadrant. For
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a symmetric constellation, any state s defined as in (3.8), whose central symbol
s0 /∈ X1

st
, i.e.

arg (s0) = α+n
π

2
, with α ∈ arg

(
X1

st
)

and n ∈ {1, 2, 3} , (3.25)

can be transformed into an equivalent state

s ′ =
[
s ′−D · · · s ′0 · · · s

′
D

]
= e−jn

π
2 s (3.26)

where s ′0 ∈ X1
st

and arg
(
s ′0
)
= α.

Figure 15 presents an example of a 16-QAM equivalent symbol state through
the rotation procedure (3.26).

s1s’1

s0

s-1

s’0

s’-1

16-QAM

Figure 15: Equivalent nπ2 rotated state of s = [s−1 s0 s1].

Based on the following proposition, only states whose central symbol belongs
to X1

st
need to be computed and stored in a LUT. This leads to a reduction in

the number of states to be considered, by a factor of 2 for RC-RS and by a factor
of 4 for the remaining LUT-MM approaches.

Proposition 3.1. For rotated states s ′ = e−jn
π
2 s (with s ′ ∈ X1

st
and s /∈ X1

st
),

magnitude modulation factors are related by:

s0 ∈
{
X2

nd
, X4

th
}
⇒

(
mI, mQ

)
=
(
m ′Q, m ′I

)
(3.27)

s0 ∈ X3
rd

⇒
(
mI, mQ

)
=
(
m ′I, m ′Q

)
(3.28)

Proof. Accordingly with (3.26):

s = ejn
π
2 s ′ ⇒


sI = −s ′Q , sQ = s ′I ⇐ n = 1

sI = −s ′I , sQ = −s ′Q ⇐ n = 2

sI = s ′Q , sQ = −s ′I ⇐ n = 3

(3.29)
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The symmetry of the LUT-MM algorithm 3.2 diagram (figure 13) leads to
the conclusion that swapping s ′I and s ′Q components at the algorithm input
produces the same, but swapped, MM factors at output. Also, a sign change of
vector s ′I and/or s ′Q propagates through the respective algorithm branch until
it is cancelled at the division block and so, MM factors for −s ′I and −s ′Q , are
the same as for s ′I and s ′Q , respectively.

Based on these properties, (3.27) and (3.28) results directly from (3.29).

Exploring RRC symmetry

The RRC digital filters in figure 12 and figure 13 are typically chosen to be linear
phase which allows the number of combinations to be computed according to
proposition 3.2 to be reduced further.

Proposition 3.2. Let sr be the time reversal of state s. For linear phase filters with
even impulse response

hrrc[n] = hrrc[−n] , (3.30)

the two states, sr and s, have the same magnitude modulation coefficients.

Proof. Data sequences corresponding to states s and sr are related by

sr[n] = s[−n] . (3.31)

According to the LUT-MM algorithm 3.2, it results

ar[n] = a[−n] . (3.32)

and so, considering (3.30), we conclude that

vr[n] = a[−n] ∗ hrrc[n] = v[−n] . (3.33)

Thus, making sr the input, signals at each step of the algorithm are just time
reversed versions of the corresponding signals with s as input, and so, LUT-MM
algorithm output is the same.

Proposition 3.2 allows the number of states to be computed to be reduced to
almost half (there are M

N−1
2 states for which sr = s ).

Exploring both the constellation symmetries and RRC linear phase, the LUT-
MM algorithm complexity and look-up table storage requirements are reduced
by almost 4 times for RC-RS, and 8 times for the remaining cases, as shown in
table 4.
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rc-rs case remaining cases

table mI: 1
4

(
2bIN + 2bI(

N+1
2 )
)

1
8

(
MN +M

N+1
2

)
table mQ: 1

4

(
2bQN + 2bQ(

N+1
2 )
)

1
8

(
MN +M

N+1
2

)
Table 4: Computation complexity and LUT storage requirements considering constella-

tion and RRC symmetries.

3.2.5 Simulation Results

This section presents some experimental results showing that is possible to ex-
tend the MM technique to constellations with M = 16. A 16-APSK constellation
with γ = 3.15, taken from DVB-S2 standard [19], and a 16-QAM constellation
are considered. Both constellations are normalized, i.e. with average energy per
transmitted symbol equal to one.

Figure 16 ilustrates a sample of an α = 0.35 RRC filtered 16-APSK signal
with and without MM. The method clearly limits the maximum peak power.
Envelope excursions above maximum amplitude A, are smooth scaled without
clipping, as desired. In practice, with a restriction on the maximum admissible
power at HPA input to prevent HPA output saturation, the MM method allows
the transmission of much higher power to the channel, as can be observed in
figure 16.(a) on the right, where the outer constellation symbols are closer to the
limit circle.
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Figure 16: Sample of an α = 0.35 RRC filtered 16-APSK signal with and without magni-
tude modulation.
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For the polar scaling case, the new proposed function (3.22) is evaluated in
comparison with the (3.21) used previously [4]. The results presented in figure
17 consider a system memory of N = 5 and polar clipping for the 16-APSK
constellation. Performance is also evaluated in terms of BER for the AWGN
channel, assuming the linear transmission (ideal HPA operation) of an α = 0.35
RRC pulse shaped signal. Forward error correcting coding was used, considering
the (576, 288) LDPC code defined in the WiMAX 802.16e standard [49]. The
logarithmic SPA algorithm described in section 2.4.2, following a horizontal
schedule [29, 100], approach, was used on decoding.
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Figure 17: BER performance, PAPR and back-off gains of several LUT-MM approaches
for a 16-APSK RRC filtered signal.

Even for a small memory system, e.g. N = 5, the LUT-MM method allows a
considerable reduction of about 80% in the required back-off. PAPR reduction
in dB is lower than the back-off reduction as desired, i.e. the expected decrease
on transmitted average power due to the MM procedure is much lower than
the desired reduction in output peak power, and so a small penalty on BER
performance should be expected. This is confirmed by the BER results. No fur-
ther FEC is needed. In fact, the short LDPC code efficiently offsets the increased
sensitivity to noise due to the MM technique, with the MM system performing
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only 1dB away (at BER= 10−6) compared with the linear transmission non-MM
case.

A useful measure to access the overall performance of an MM technique is
the net back-off gain (dB), which is defined at a given BER per [36]

net_GBO = GBO − L@BER (dB) , (3.34)

where GBO denotes the back-off reduction gain resulting from applying MM,
and L@BER denotes BER performance loss measured in (dB) with respect to the
linear non-MM system at a given BER.

We observe in figure 17 that net_GBO is more than 2.5dB at BER= 10−6, which
is a significant improvement.

Considering function (3.22), it presents no loss compared with the LUT-MM
method under the rectangular scaling approach, i.e. mI 6= mQ, with the major
advantage of not introducing phase distortion in transmitted symbols that
could cause synchronization problems on reception [72, 73]. In the typical range
of interest, α ∈ [0.15; 0.35], the back-off gain is significantly better than that
obtained by the average function (3.21) [4]. Figure 17 shows also that even at
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Figure 18: BER performance, PAPR and back-off gains of several LUT-MM approaches
for a 16-QAM RRC filtered signal.
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α = 0.35, where both functions present similar back-off gains, a further gain of
about 0.4dB is obtained at BER= 10−5.

We also evaluated the advantage of using a RC-RS approach when separation
can be performed on the set of bits that map to I and Q symbol components.
Results for the 16-QAM modulation for the RC-RS and PC-RS approaches are
presented in figure 18. Here, both methods are compared within a similar LUT
size criterion. Performance considering a system memory of N = 9 for RC-RS is
compared with PC-RS with N = 5.

As desired, both methods show a significant reduction of the back-off (60% −

70% range). Although the performance for PC-RS with N = 5 is slightly better
than for RC-RS with N = 9, there is no flexibility for changing N because of the
problematic huge LUT size. In addition, in terms of BER RC-RS performs better
than PC-RS, only 0.2dB apart from the non-MM system at BER= 10−6, which
also confirms the efficiency of the LUT-MM method.

BER results also show that it is possible to take advantage of the systems’
existing forward-error-control (FEC) capabilities in order to efficiently compen-
sate the increased sensitivity to noise resulting from MM. With respect to the
linear transmission non-MM case a much lower BER performance degradation
is observed compared with the obtained reduction in the required back-off. The
net_GBO is 2dB for RC-RS and 2.3dB for PC-RS at BER= 10−6.

3.3 conclusion

The concept of magnitude modulation MM has been presented. The LUT-MM
approach, formerly proposed by Tomlinson et al. [4, 108] for QPSK modulation
formats, has been improved and extended to constellations with dimension up
to M = 16. In order to cope with the additional complexity, new clipping limits
have been proposed and the method’s ability to avoid phase modulation has
been improved. A detailed analysis of the different approaches to compute the
magnitude modulation tables has been performed. The constellation’s symmetry
and the RRC’s linear phase characteristic have also been explored so as to
compact the look-up tables and speed-up their computation.

Finally, the improved LUT-MM technique as applied to 16-QAM and 16-APSK
constellations was evaluated, with the focus on PAPR, back-off and BER. Net
back-off gains (net_GBO) above 2dB were reported (at BER= 10−6) when con-
sidering an α = 0.35 roll-off RRC filter and a (576, 288) LDPC code.



4
P O LY P H A S E M A G N I T U D E
M O D U L AT I O N

This chapter presents a novel Multistage Polyphase Magnitude Modulation (MPMM)
scheme for efficiently controlling the envelope’s peak power of single carrier
band limited signals. Building on the polyphase decomposition of the finite im-
pulse response (FIR) of the pulse shaping filter, a new LUT-less approach of the
magnitude modulation’s concept is developed. Contrary to the traditional MM
solutions based on LUTs, in the MPMM technique the multiplier coefficients
that magnitude modulate the data stream prior to RRC filtering are computed in
real time by a low-complexity polyphase filter system. In addition, the proposed
technique is independent of the modulation being used, making it possible
to extend the MM concept to higher order and/or non-constant amplitude
constellations. Also, any number of base-system blocks can be added in a serial
cascade, thereby making it possible to almost eliminate the back-off, even at
very low filter roll-off values. Simulation results for M-ary constellations with
M up to 64 are presented, proving the efficiency of the proposed scheme.

Like the strategy followed in LUT-MM schemes [4, 32, 34, 108], increased
sensitivity to noise due to MM is compensated for by using error control coding.
In forward error correction arrangements with iterative soft-decoding at the
receiver successful decoding is highly dependent on the initial receiver’s soft-
decoding estimates. We present two efficient techniques for improving initial
estimates that considerably minimizes noise sensitivity due to MPMM.

This chapter is mainly based on [36], [37], [35] and [38].

4.1 multirate signal processing overview

Multirate systems [3, 44, 76] are systems in which signal samples are processed
and manipulated at different rates, at different points of the configuration. There
are many applications where the signal at a given sampling rate needs to be
converted into another signal with a different sampling rate. For instance, it is
very common for digital modems to use a 4-times oversampled version of the
data to reduce both the distortion caused by the analog filtering and the cost of
the analog filter following the DAC [44]. Accordingly, a Nyquist digital pulse
shaping filter is usually designed to operate at 4 or 8 samples per symbol, i.e.
with L = 4 or 8 in figures 1 and 10.

69
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4.1.1 Resamplers

The two basic components in sampling rate alteration are the up-sampler and the
down-sampler, whose most common symbols are shown in figure 19.

Mx[n] yd[n]

0

1

2

M-1

.  .  .  .

x[n]

yd[n]

Lx[n] yu[n]

0

1

2

L-1

.  
.  

.  
.

x[n]

yu[n]

(a) (b)

Figure 19: Symbols representing the (a) up-sampling and (b) down-sampling operations.

The two operations are duals and the systems that employ them for sample
rate changes are also seen to be duals, as long as there is no aliasing in the down-
sampling procedure. This can easily be proved by building on their time-domain
or frequency-domain characterizations [3, 76].

The up-sampling operation with an up-sampling factor L ∈N consists of
inserting L−1 zero-valued samples between two consecutive samples of the
input signal x[n] according to the relation

yu[n] =

{
x [n/L] ⇐ n = 0,±L,±2L, . . .

0 ⇐ otherwise
. (4.1)

In the transform domain we get

Yu(z) =

∞∑
n=−∞y[n] z

−n =

∞∑
n=−∞
nmodL=0

x
[n
L

]
z−n =

∞∑
k=−∞ x[k]

(
zL
)−k

, (4.2)

i.e. it follows that

Yu(z) = X
(
zL
)

, (4.3)
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or equivalently, using the discrete-time Fourier Transform (DTFT), it can be ex-
pressed as

Yu

(
ejω

)
= X

(
ejωL

)
. (4.4)

The up-sampling effect of stretching the discrete-time axis induces an expected
compression in frequency with an L-fold replication of the input spectrum in the
interval [−π,π]. A time and spectral description example in a 1-to-3 up-sampling
process is shown in figure 20.

n1 2 3 4 5 60

x[n]

yu[n]

n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180

n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180

y[n]

U
p-Sam

pling

-π/3-π π

ω

Yu(e
jω)

-2π/3 π/3 2π/3

-π/3-π π

ω

X(ejω)

-2π/3 π/3 2π/3

-π/3-π π

ω

Y(ejω)

-2π/3 π/3 2π/3

Interpolation filter

Figure 20: Time and spectral illustration of the up-sampling process for L = 3.

In practice, following the up-sampling, a filter limits the band of interest
by removing the unnecessary spectral replicas. This is consistent in the time-
domain with the zero-valued samples being replaced with interpolated values.
This process, called interpolation, is sketched in the bottom graphs of figure 20,
with the resulting interpolated signal being denoted as y[n].

A down-sampler, meanwhile, with down-sampling factor M∈N keeps every
M-th sample of the input sequence and removes the M− 1 in-between samples.
The output signal is thus given by

yd[n] = x[nM] . (4.5)
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This process is usually visualized as a two-step procedure, with the aid of an
intermediate signal x ′[n] operating at the same clock rate as x[n], where

x ′[n] = x[n] ·
∞∑

r=−∞ δ(n− rM) , (4.6)

and,

yd[n] = x
′[nM] . (4.7)

Expanding the periodic impulse train,
∑∞
r=−∞ δ(n− rM), in a Fourier series

[82], x ′[n] can be expressed as

x ′[n] =
1

M

M−1∑
k=0

x[n] ejk
2π
Mn . (4.8)

Hence, its transform is simply

X ′(z) =
1

M

M−1∑
k=0

X
(
ze−j

2π
M k
)
=
1

M

M−1∑
k=0

X
(
zWkM

)
, (4.9)

where WM = e−j
2π
M . The spectrum of the sampled signal x ′[n] is thus the sum

of M replicas of the input signal spectrum spaced 2π
M apart. Aliasing occurs

unless the input signal spectrum has a bandwidth lower than π
M [3, 44, 76].

The spectrum characterization of the down-sampling signal yd[n] can thus be
easily derived. Applying the z-transform to (4.7), we arrive at

Yd(z) =

∞∑
n=−∞ x

′[nM] z−n =

∞∑
r=−∞ x

′[r] z−
r
M = X ′

(
z
1
M

)
. (4.10)

By substituting equation (4.9) in (4.10) we get

Yd(z) =
1

M

M−1∑
k=0

X
(
z
1
MWkM

)
, (4.11)

or using the DTFT,

Yd

(
ejω

)
=
1

M

M−1∑
k=0

X
(
ej(

ω−2πk
M )

)
. (4.12)
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Figure 21: Time and spectral illustration of the down-sampling process for M = 4.

Thus the down-sampling effect of compressing the discrete-time axis induces
a stretch in the frequency-domain as shown in figure 21. The down-sampling
procedure can be completely reversed by performing an interpolation by M, as
long there is no aliasing when down-sampling.

In order to avoid aliasing the up-sampler is usually preceded by a low-pass
filter to reduce the bandwidth to π

M . This procedure of anti-aliasing low-pass
filtering followed by down-sampling is usually called decimation.

4.1.2 Noble Identities

Building on the up- and down-sampling definitions (4.1) and (4.5), it is straight-
forward to conclude that equivalences of figure 22 are valid.

Lx[n] y[n]z-L Lx[n] y[n]z-1≡

Mx[n] y[n] Mx[n] y[n]≡z-1 z-M

(b)

(a)

Figure 22: Equivalent delay’s structures under a rate change.

In fact, focusing on figure 22.(a), it is easy to conclude that L-units of delay
following a 1-to-L up-sampler is equivalent to 1-unit of delay followed by a
1-to-L up-sampler, since one clock-cycle at the input of the up-sampler spans
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the same time interval as L clock cycles at its output. A similar conclusion can
be drawn for case (b).

By using the previous properties, and also the fact that summing or scaling
operations on sequences can commute with their sample rate change, we get
the noble identities shown in figure 23. These define the conditions under which
a filter can be pulled through the resampler.

Lx[n] y[n]H(zL) Lx[n] y[n]H(z)≡

Mx[n] y[n] Mx[n] y[n]≡H(z) H(zM)

(b)

(a)

Figure 23: Noble Identities.

4.1.3 Multirate Polyphase Signal Processing

The noble identities are particularly useful for the efficient realization of multi-
rate FIR filters [3, 76]. In this section we will only address the interpolator case,
i.e. a FIR filter H (z) following a 1-to-L up-sampler as presented in figure 24,
since this is the basis of the new LUT-less approach of the concept of MM.

x[n] L y[n]H(z)
xu[n]

Figure 24: Multirate filter structure: interpolator.

Let us assume, without loss of generalization, a causal FIR transfer function
H (z) of order N:

H(z) = h(0) + h(1) z−1 + h(2) z−2 + · · ·+ h(N) z−N . (4.13)

Given any integer number L 6 N+ 1, expression (4.13) can be rewritten as

H(z) =
(
h[0] + h[L] z−L + h[2L] z−2L + · · ·

)
+ z−1

(
h[1] + h[L+ 1] z−L + h[2L+ 1] z−2L + · · ·

)
+ · · ·

· · ·+ z−(L−1)
(
h[L− 1] + h[2L− 1] z−L + h[3L− 1] z−2L + · · ·

)
,

(4.14)
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or, in a more compact and generalized form, as

H(z) =

L−1∑
i=0

z−iEi

(
zL
)

, (4.15)

where

Ei(z) =

b(N+1)/Lc∑
n=0

h[nL+ i+ λ] z−n , 0 6 i 6 L− 1 . (4.16)

This decomposition of H (z) is usually known as polyphase decomposition. The
parameter λ ∈Z is the filter decomposition phase offset and corresponds in
practice to a time-delay (λ < 0) or advance (λ > 0) of the filter impulse response.

A computationally efficient realization of the up-sampler and filter combi-
nation can thus be obtained from (4.15) and (4.16). First H (z) in figure 24 is
replaced by the polyphase bank as shown in figure 25.(a). Then, by using the no-
ble identity of figure 23.(a), the upsampler can be pulled through the polyphase
filters as shown in 25.(b). Note that in this realization the polyphase filters
operate at a much lower rate.

Lx[n] y[n]E0(z
L)

E1(z
L)

E2(z
L)

EL-1(z
L)

z-1

z-1

z-1

+

+

+

z-1

x[n] y[n]E0(z)

E1(z)

E2(z)

EL-1(z)

z-1

z-1

z-1

+

+

+

z-1

L

L

L

L

(a) (b)

Figure 25: Interpolator’s polyphase decomposition.

4.2 multistage polyphase magnitude modulation

It is this efficient multirate polyphase decomposition of the pulse shaping filter
(joint combination of the 1-to-L up-sampler followed by filterH(z)) that underlies
the idea of a LUT-less MM approach. The generic block diagram of a typical SC
transmitter employing MM, presented in section 3.1.1, is reproduced in figure 26,
but here the pulse shaping filter is displayed in its multirate polyphase efficient
form.



76 polyphase magnitude modulation

Modulator
bits

s[n]

RRC Pulse ShapingMagnitude Modulator

z
-D

n
s

n D
s

+
⋯

n D
s

−
⋯

Magnitude Modulation 

Factor Computation

m[n]
Memory

Delay Scaling
x[n]

↑LE0(z) +

↑LE1(z) +

z
-1

z
-1

y0[n]

y1[n]

↑LEL-1(z) +

z
-1

yL-1[n]

Sampling RateSymbol Rate

ƒsampƒsymb

m[n]s[n]

Figure 26: Generic block diagram of a typical SC transmitter system that makes use of
the MM concept.

4.2.1 The Polyphase Magnitude Modulation Principle

In the development that follows, consider first that no MM is being used, i.e.
m[n]=1. Let us assume, without loss of generalization, a type I linear phase FIR
RRC filter [76] whose impulse response spreads over 2N+1 symbols and which
is given by:

H(z) =

2NL∑
n=0

h[n] z−n with h [n] = h [2NL−n] , (4.17)

and that the over-sampling factor L is even. Similar developments for a type II
filter [76] or an odd L can easily be inferred.

According to (4.15) and (4.16), pulse shaping filtering can be performed at
symbol rate using the polyphase scheme displayed in figure 26, with

Ei(z) =

2N∑
n=0

ei[n] z
−n =

2N∑
n=0

h[nL+ i+ λ] z−n , (4.18)

considering the required zero padding shown in figure 28, consistent with a
decomposition phase offset1 λ = −L/2.

1 The reason for selecting λ = −L/2 is related to the center of symmetry of the RRC impulse
response and the processing of the symbol to be MM. This will become clear later in this section.
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The output x[n] is given by one of the polyphase filters’ outputs at instant
n0=bn/Lc, since

x[n] = y(n mod L)[ bn/Lc ] . (4.19)

All outputs yi[n0], with i = 0, · · · ,L−1, depend on the same set of inputs
symbols s[n ′], with n ′ = n0 − 2N, · · · ,n0, since

yi[n] =

2N∑
k=0

ei[k] s[n− k] . (4.20)

The MPMM principle consists of computing the best MM coefficient m[n0] to
apply to symbol s[n0], so as to guarantee that

|x[n]| 6 A , (4.21)

where A is the specified polar threshold2.
Computation of m[n0] takes into account the RRC output samples at those

sampling instants to which s[n0] most contributes. Once the energy of the
impulse response h[n] is centered around sampleNL, s[n0] is, according to (4.19)
and (4.20), the most relevant symbol to the RRC output excursion x[n] during
the interval

[(
n0+N− 12

)
L;
(
n0+N+ 12

)
L
[
, as shown in figure 27. Those samples

can be observed at the same time instant at the output of the polyphase filter
bank, Ei(z) with i = 0, · · · ,L−1, when considering a polyphase decomposition
with offset λ = −L/2.

Based on this premise and setting λ = −L/2, we have developed the system
shown in figure 29 that adjusts the amplitude of symbol s[n0] in order to control
the output excursion of all polyphase filters Ei(z) at sampling instant n0+N
(figure 27), so as to guarantee that

|yi[n0 +N]|6A . (4.22)

2 See section 3.1.1.
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Figure 2 – Polyphase magnitude modulation scheme for controlling 
the signal’s excursion at the RRC output. (a) Global MPMM system 
followed by an RRC filter block. (b) Detailed MPMM branch. 
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For a better understanding and without loss of general-
ity, we will focus our attention in Fig. 2(b), which depicts a 
single branch of the MPMM system. When magnitude 
modulation is used, (9) is written as 
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Figure 27: Controlling the output around sample n0+N, within a range of L samples.
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Figure 29: Multistage polyphase magnitude modulation scheme for controlling the signal
excursion at the RRC output, followed by the RRC filter block.

The RRC impulse response is divided into two parts around its center of
symmetry, as shown in figure 28. The polyphase filters Ei(z) are consequently
separated into filters G0i(z) and G1i(z), respectively on the left and right, with
their impulse responses given by

g0i [n] =

{
ei [n]

0

, 0 6 n 6 N

, otherwise
, (4.23)

g1i [n] =

{
ei [n+N+ 1]

0

, 0 6 n 6 N− 1

, otherwise
. (4.24)

MPMM in detail. . .

Consider now that MM is being used. Figure 29 shows a k-stage MPMM
system, followed by the polyphase representation of the RRC filter. For a better
understanding and without loss of generality we will consider the case of only
1-stage and focus our attention on figure 30, which depicts a single branch of
the MPMM system. When magnitude modulation is used (4.20) is written as

yi[n] =

2N∑
k=0

ei[k]mi[n− k] s[n− k] , (4.25)

where mi[n] is the sequence of MM coefficients which controls the peak power
at the output of polyphase filter Ei(z).
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Figure 30: Detailed MPMM branch.

Basically, the system tries to anticipate the output of Ei(z) at each instant
n0+N and it computes accordingly the MM factor mi[n0] to apply to s[n0], the
input sample that most contributes to the output yi[n0 +N]. Each MPMM stage
system therefore introduces a small delay of NTSYMB during transmission.

Building on (4.25), condition (4.22) can be written as

∣∣∣∣∣
2N∑
k=0

ei[k]mi[n0 +N− k] s[n0 +N− k]

∣∣∣∣∣ 6 A . (4.26)

When computing mi[n0], coefficients mi[n0 − k], with k=1, · · · ,N, are al-
ready known (past symbols relative to s[n0]). However, nothing is known
about the MM values that will magnitude modulate symbols s[n0 − q], with
q=−N, · · · ,−1 (future symbols relative to s[n0]). In order to avoid excessive
time variation of the average power of the signal after pulse shaping, we assume
that future symbols should be MM as,

mi[n0 − q] ' mi[n0] , for q = −N, · · · ,−1 . (4.27)

Hence, considering equality in equation (4.27), condition (4.26) can rewritten
as

∣∣∣∣∣∣∣∣∣
mi[n0]

N∑
k=0

ei[k] s[n0 +N− k]

+
2N∑

k=N+1
ei[k]mi[n0 +N− k] s[n0 +N− k]

∣∣∣∣∣∣∣∣∣ 6 A , (4.28)

and so, using definitions (4.23) and (4.24) it follows that

∣∣∣∣∣∣∣∣
mi[n0]

N∑
k=0

g0i[k] s[n0 +N− k]

+
N−1∑
k=0

g1i[k]mi[n0 − k− 1] s[n0 − k− 1]

∣∣∣∣∣∣∣∣ 6 A . (4.29)
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Let ai[n] and bi[n] denote the complex signals at the output of filters G0i(z)
and G1i(z) as shown in figure 30. Examining (4.29) and considering convolution
definition, it is straightforward to conclude that

N∑
k=0

g0i[k] s[n0 +N− k] = ai[n0 +N] , (4.30)

and,

N−1∑
k=0

g1i[k]mi[n0 − k− 1] s[n0 − k− 1] = bi[n0 +N] . (4.31)

As a result, condition (4.29) can be expressed as

|mi[n0]ai[n0 +N] + bi[n0 +N]| 6 A . (4.32)

A non-negative fMM(·) function is defined so as to guarantee (4.32) with
mi[n0] being computed as

mi[n0] = fMM(A,ai[n0 +N] ,bi[n0 +N]) , (4.33)

where

fMM(A,a,b)=

 1 , |a+b|6A
−<{ab∗}+

√
<{ab∗}2−|a|2(|b|2−A2)

|a|2
, |a+b|>A

, (4.34)

for A ∈ R+ and a, b ∈ C.
According to the following proposition, fMM(·) provides the maximum value

for mi[n0] ∈ ]0; 1] that satisfies (4.32), as long as

|bi[n0 +N]| 6 A . (4.35)

This condition is always verified in practice. In fact, note that signal bi[n0 +N]

is the contribution to yi[n0 +N] from the past symbols already attenuated by
mi[n0 − k], with k=1, · · · ,N, in order to guarantee proper envelope control.
Having |bi[n0 +N]| > A would thus be nonsense, meaning that MM system
was not functioning properly.

Proposition 4.1. Given a,b ∈ C, A ∈ R+, if |b| < A then there exists an m ∈ ]0; 1]
that satisfies

|ma+ b| 6 A (4.36)

and its maximum value is given by 4.34.



82 polyphase magnitude modulation

Proof. We start by proving that if |b| < A an m ∈ R+ solution exists that meets
condition (4.36).

According to vector algebra properties

|ma+ b| 6 |ma|+ |b| , (4.37)

and so, condition (4.36) will also be satisfied for any m that assure

|ma|+ |b| 6 A , (4.38)

whose solution can be computed as

|m| 6
A− |b|

|a|
, with |a| 6= 0 . (4.39)

Since we are assuming |b| < A, the righ-hand side of (4.39) is always positive
which proves the existence of an m ∈ R+ that satisfies (4.36).

In order to prove that the maximum value for m ∈ ]0; 1] that meets (4.36) is
given by (4.34), two different cases must be considered:

• If |a+ b|6A, it is straightforward to conclude that maximum value for
m ∈ ]0; 1] that satisfies (4.36) is

m = 1 ; (4.40)

• If |a+ b|>A, it means that condition (4.36) is violated for m = 1.

Hence, according to (4.39), solution on the maximum value of m will
belong to ]0; 1[ and it will satisfy condition (4.36) with equality. It can be
so computed as

|ma+b| = A⇔ (ma+ b)(ma+ b)∗ = A2

⇔ |a|2m2 + 2Re {ab∗}m+ |b|2 −A2 = 0 . (4.41)

Both solutions of the quadratic equation (4.41) are real, as proved, since
we are assuming |b| < A. Because we look for the maximum, we select the
highest root which is given by

m =
−<{ab∗}+

√
<{ab∗}2 − |a|2(|b|2 −A2)

|a|2
, (4.42)
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which is positive attending to

|b| < A ⇒
√
<{ab∗}2 − |a|2(|b|2 −A2) > <{ab∗} . (4.43)

The procedure just described computes the MM factor mi[n] that multiplies
each symbol s[n] in order to limit the excursion at the output of a particular filter
Ei (z). However, m[n] must be unique and has to guarantee that |yi[n]|6 A at
the output of all filters Ei (z) (with i = 0, · · · ,L−1). We have solved this problem
by multiplying each symbol s[n] by the most restricted factor, i.e. by

m[n] = min
i=0,··· ,L−1

(mi[n]) . (4.44)

4.2.2 MM Factors Accuracy Improvement

In (4.28), equality in condition (4.27) is assumed to be true in order to compute
m[n0]. So what happens if the next value to be computed, m[n0 + 1], differs
from m[n0] ?

When m[n0 + 1] 6 m[n0], the condition |yi[n0 +N]|6A still holds because
we are applying a more restricted factor to the next symbol s[n0 + 1].

If m[n0 + 1] > m[n0] then the factor to apply to s[n0 + 1] that guarantees
|yi[n0 +N+ 1]|6A (for all i) can be relaxed, but it will no longer guarantee that
|yi[n0 +N]|6A. However, since symbol s[n0 + 1] is more relevant to the output
yi[n0 +N+ 1] than to yi[n0 +N], there must be a compromise for m[n0 + 1]

that does not decrease yi[n0 +N+ 1] too much (which is undesirable) and still
guarantees that restriction |yi[n0 +N]|6A is only slightly violated. A simple
procedure to accomplish this was found by using the following time variant
filter:

m[n+ 1] > m[n] ⇒ m ′[n+ 1] =
m[n+ 1] +m[n]

2
(4.45)

Different weight averaging functions have also been tested, with unequal
contributions of m[n0 + 1] and m[n0]. As an example, tests were conducted for
non-constant amplitude constellations where the relative amplitudes of symbols
s[n0 + 1] and s[n0] were taken into account on the weights’ stipulation.

However, on performing simulations for different M-ary constellations the
simple arithmetic mean (4.45) proved to be the most effective of all the averages
considered.
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4.2.3 Multistage PMM

One of the major advantages of the proposed polyphase MM scheme is that
the system design depends only on the RRC impulse response. There are no
constraints on the input type signal which makes this new proposed technique
independent of the constellation being used. The system adjusts the amplitude
of the input symbols regardless of their type, which means that this procedure
can also be applied to a sequence that has already been processed by MM. Each
stage incrementally adjusts the symbols’ amplitudes, in order to achieve a better
control of the signal’s excursion at the RRC’s output. The back-off to apply to
the input signal can therefore become almost negligible by using a cascade of a
few MPMM blocks, as shown in figure 29.

4.3 mpmm simulation results for papr and back-off

This section reports reduction gains obtained with the MPMM scheme in the
PAPR of the band limited signal x[n] (see figure 29) and in the required back-off
to drive the HPA close to saturation.

The MPMM technique was evaluated for different M-ary constellations. Unlike
the LUT-MM algorithm, there is no restriction on applying the method to
constellations with M>16. We choose to present some of the obtained results
through simulation for the 8-PSK, 16-APSK (with γ1 = 3.15 [19]) and 32-
APSK (with γ1 = 2.84 and γ2 = 5.27 [19]) constellations that find particular
application in satellite communications, mainly due to their low PAPRConst.
The performance of the normalized 16-QAM and 64-QAM constellations under
MPMM is also evaluated. Their study is of particular interest: the first, in order
to compare with the 16-APSK case when MM is used3; the second, to assess the
MPMM’s performance for constellations with high number of symbols.

With the exception of the 64-QAM system, the RRC pulse shaping filters used
in the simulation were designed with an oversampling L = 16 and a delay of
N = 7 symbols [44, 108], where the filter’s coefficients were optimized in order
to ensure an ISI< 1% [11, 44]. The 64-QAM simulation considers RRC filters
designed with L = 4 and N = 18.

Figures 31 and 32 show the reduction in the required back-off obtained with
the MPMM method, and the PAPR of the MM signal when a different number
of stages are considered.

In figure 31 the MPMM performance is compared among different constella-
tions for the demanding case of sharp roll-off RRC filtering with α=0.2 used in
DVB-S2 [19], and also α=0.35 for comparison with figures 17 and 18 (LUT-MM
performance). For a better comparison with the LUT-MM technique, the best
results for a memory size of N=5 from the different approaches proposed in

3 Although presenting a slightly worse BER performance, the 16-APSK transmission is usually
preferred to 16-QAM due to its low PAPRConst. We want to see whether that advantage is maintained
when MM is used to control the envelope of the transmitted signal.
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Figure 31: Back-off and PAPR gains of MPMM applied to different constellations when
performing bandwidth pulse shaping with α = 0.2 and 0.35.

section 3.2 are included in the figure. In addition, the MPMM behavior is also
compared with the 1-stage configuration without improving the accuracy of the
MM factors4 through (4.45).

MPMM clearly outperforms the LUT-MM technique. Even without such
accuracy improvement a reduction in the required back-off of about 80% is
obtained for just 1-stage. This reduction rises to the 88% − 93% range when
(4.45) is used, which shows the effectiveness of the simple procedure proposed.
For 2-stages the need to use back-off almost vanishes, with reduction gains
always above 95% (similar results obtained for the different tested constellations
for an even more demanding example of RRC filtering with α=0.1).

Figure 31 also shows that MPMM performs identically for the different
constellations. This behavior was expected, since the maximum excursions
above the desired limit, A, are mainly due to outer-circle symbol combinations.
Consequently the system behavior should be the same in such cases, as was

4 Whenever reference is made to the MPMM technique, unless otherwise said, it is assumed that
accuracy of the MM factors through (4.45) is used.
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Figure 32: Back-off and PAPR gains of k-stage MPMM, with k = 1, · · · , 3, applied to
64-QAM RRC filtered signal for different roll-offs.

found. This important fact demonstrates that this technique is independent of
the modulation being used, as previously claimed.

The previous conclusion is emphasized by analysis of the MPMM’s per-
formance results for a 64-QAM constellation (figure 32). We observe that
MPMM performs equally well for this high number of symbols. The figure
plots MPMM’s performance for bandwidth pulse shaping with different values
of roll-off in the range [0.1; 0.5]. Results confirm that the MPMM method per-
forms very well even for very stringent roll-offs, and that with just 3-stages the
need to use back-off can be completely eliminated for α > 0.2.

With respect to the PAPR, both figures show that its reduction is lower than
back-off reduction. Hence, the expected fall in average transmitted power due
to the MM procedure is much lower than the reduction in output peak power,
as was recently shown analytically5 [39]. This behavior is desirable. In fact,
the small decrease in average transmitted power due to MM justifies the small
penalty on BER, as will be seen in the next section.

Note also that the reduction in PAPR is less for high roll-off values, although
the need to use back-off is completely eliminated. This is easily understandable
because the need to adjust the symbol’s amplitudes becomes weaker for less
stringent roll-offs, and therefore the average power does not fall too much.

When comparing, under MPMM envelope control, the PAPR of a 16-QAM
transmitted signal with a 16-APSK one, we observe that they exhibit a PAPR
of the same order, and so the aforementioned advantage of 16-APSK having a
much lower PAPRConst disappears. This is confirmed by the fact that a 16-QAM
transmission using MM still exhibits a better BER performance than a 16-APSK
constellation, as is shown in section 4.4. This higher PAPR gain in dBs for the
16-QAM occurs because only its 4 outer constellation symbols suffer more severe

5 This analytical analysis is addressed in the next chapter.
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distortion due to MM, which leads to a smaller fall in the average transmitted
power.

4.4 improved mpmm detection and ber performance

The BER performance of the proposed MPMM technique was evaluated for
the AWGN channel assuming the linear transmission (ideal HPA operation)
of an α = 0.2 RRC pulse shaped signal. Forward error correction with soft-
decision decoding was used, considering the (1248, 832) and (2016, 1680) LDPC
codes defined in the WiMAX 802.16e standard [49]. Decoding was performed
using the logarithmic SPA algorithm described in section 2.4.2, following a
horizontal schedule [29, 100] approach and considering a maximum number of
100 iterations per decoded word.

4.4.1 BER performance of an MM’s blind receiver

In section 3.2.5, when analyzing the BER performance of the LUT-MM technique
we were assuming that the receiver was MM’s blind, i.e. the receiver operates
normally as if no MM was previously applied at the transmitter’s side. Due
to the distortion caused by the MM procedure to the transmitted symbols,
some increased sensitivity to noise was observed. Hopefully, this loss was well
overcompensated for by the reduction gain obtained in the required back-off.

MPMM exerts a fine control of the signal’s envelope excursion and so a
worsening of sensitivity to noise should be expected. Figure 33 plots the BER
performance of an MM’s blind receiver when MPMM is used in the transmitter.
It shows a serious BER degradation for M-ary constellations with M > 32, even
for a 1-stage MPMM configuration. The observed loss6, L@BER, kills the GBO,
making MPMM a technique of limited interest.

For smaller constellation size the net back-off gain is clearly positive. However,
interestingly, we observe a higher BER degradation for 16-APSK transmission
than for 16-QAM. As both constellations are the same size (M = 16), it is
straightforward to conclude that sensitivity to noise due to MM depends on
constellation geometry. In fact, non-constant amplitude constellations with low
PAPR or with aligned symbols (same phase) are more prone to noise. This
is easily understandable from the 16-APSK and 16-QAM MPMM symbols’
displacement and their corresponding pdf, shown in figure 34. Here, we can
observe for the 16-APSK that all outer symbols suffer severe distortion and
that a few of them (those with phase φ = π/4) are dangerously close to the
inner ones, while for 16-QAM only the smaller set of 4 outer symbols are more
severely distorted, but they are still much further away from their neighbors.
In addition, note also that the outer 16-QAM symbols are less distorted than

6 Refer to the net back-off gain (net_GBO) definition given in (3.34).
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Figure 33: Soft-decoding BER performance for MM’s blind reception of MPMM signals
with respect to different constellations, when performing bandwidth pulse
shaping with α = 0.2 and using a FEC system based on the (1248, 832) LDPC
code [49].

the 16-APSK outer ones, as can be concluded from the analysis of their pdf
distributions7.

The same reasoning explains the severe BER degradation observed for higher
order constellations. When computing initial soft-decoding estimates, an MM’s
blind receiver will easily commit an error (wrong estimation), even under the
ideal conditions of an error free transmission environment. As the constellation
symbols are close together and because of the distortion introduced by the
MM procedure to control the signal’s envelope excursion, an MM symbol, say
sMM[n] = m[n] s[n], will mislead the receiver whenever sMM[n] is closer to any
constellation symbol that differs from s[n].

7 The pdf distributions of the MPMM coefficients are analyzed in the next chapter.
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Figure 34: MPMM method applied to (a) 16-APSK and (b) 16-QAM transmission with
α = 0.2 RRC filtering. Scatter plot and pdf distributions of the symbols’
displacement in a 2-stage system (• original symbol’s positions; + MPMM
symbols’ average positions).

4.4.2 Detection with an Estimated MM Average Constellation

The correct estimation of a priori code bit LLRs, based on the received infor-
mation from channel, plays a crucial role in the performance of a soft-decision
iterative decoding algorithm like the SPA.

Let X denote the set of constellation symbols of a M-ary complex constellation,
with M = 2l and l ∈ N. The M-ary symbol at the modulator’s output is
represented by s = F (c0, c1, · · · , cl−1), where F is the function that maps
code bits8 ci, with i = 0, · · · , l−1, to constellation symbols. The constellation
is assumed to be normalized, i.e. with unitary average power. Considering
transmission over the AWGN channel, the complex received sample at the
output of the receiver matched filter may be expressed as

r = s+nz , (4.46)

where nz ∈ C is a zero mean random variable representing the complex AWGN
noise, with variance

σ2nz = E {nzn
∗
z} . (4.47)

8 Sequence of bits at channel encoder’s output.
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As defined in (2.95), the LLR of a code bit ci given the received word r is

LLR(ci |r ) = ln
Pr(ci = 0 |r )
Pr(ci = 1 |r )

. (4.48)

Assuming perfect knowledge of the channel, this can be computed as [110]

LLR(ci |r ) = ln


∑

{s∈X:ci=0}

exp
(
−

|r−s|2

σ2nz

)
∑

{s∈X:ci=1}

exp
(
−

|r−s|2

σ2nz

)
 (4.49)

where {s ∈ X : ci = b}, with b ∈ {0, 1}, is the sub-set of constellation symbols
having code bit ci = b.

The critical loss of performance observed in figure 33, especially for constella-
tions with M > 32, is caused by an MM’s blind receiver computing (4.49) based
on X, i.e. the original constellation symbols’ position.

However, the initial receiver’s soft-decoding estimates should take into ac-
count the symbol displacement statistics due to MM. A simple way to do this
without changing the existing receivers is to compute those estimates based on
the expected average MM constellation (EAC) [36, 39].

Let siMM denotes the average position of constellation symbol si ∈ X after
being MM, i.e.

siMM = siE{m |si } = si

∫1
0
m p(m |si )dm , (4.50)

where p(m |si ) is the pdf of the MM factors given that symbol si was transmitted.
The EAC, XMM, is simply the set of all symbols siMM , with i = 0, · · · ,M−1,
computed according to (4.50). This set can be easily obtained a priori through
simulation and so it can be known by the receiver. As an example, in figure 34

we plot the MPMM EAC constellation for 16-APSK and 16-QAM transmission
with α = 0.2 RRC filtering.

The initial receiver’s soft decoding estimates will therefore be computed as

LLR(ci |r ) = ln


∑

{sMM∈XMM:ci=0}
exp

(
−

|r−sMM|2

σ2nz

)
∑

{sMM∈XMM:ci=1}
exp

(
−

|r−sMM|2

σ2nz

)
 . (4.51)

Figure 35 displays the BER performance of the MPMM scheme when using
the EAC for the initial soft decoding estimates. The other conditions are the
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same as those in figure 33, i.e. transmission over the AWGN channel and a FEC
system based on the (1248, 832) LDPC WiMAX802.15e code [49].

A marked improvement in BER performance can be observed. Although the
selected code rate is only 2/3, we observe that it efficiently offsets the increased
noise sensitivity due to MM. Even in the worst scenario, the 32-APSK with a
2-stage MPMM configuration, the BER performance loss with respect to non-
MM case at BER= 10−6 is only L@10−6 = 1.6dB. Since the back-off reduction
is GBO = 5.6dB, the power efficiency of the system is improved by more than
4dB. For 8-PSK the overall back-off gain (net_GBO) reaches 5.4dB. Hence, this
simple technique, which does not require any changes to existing receivers, is
extremely efficient.

Figure 36 illustrates what happens when a much lower rate code is used.
The BER performance for the (2016, 1680) LDPC WiMAX802.15e code [49] is
compared with results just presented for the (1248, 832) code. By providing
good estimates based on the EAC for the soft-decoder, although using different
codes, the performance of the MPMM technique is similar for 8-PSK and only
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Figure 35: Soft-decoding BER performance of MPMM applied to different constellations
when using the MM EAC for the initial soft decoding estimates. Tested system
uses RRC pulse shaping with α = 0.2, and FEC based on the (1248, 832) LDPC
code [49].
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a slight degradation in BER performance is observed for 16-QAM when the
weaker code is used. Hence, for constellations with M 6 16, the EAC and the
system’s FEC can efficiently compensate for the increased sensitivity to noise
resulting from MM. This means that no additional error control protection is
required, so the information rate and the quality of service links are preserved.

However, for M-ary constellations with M > 32 we observe a marked BER
performance degradation with net_GBO vanishing. As will be shown in section
5.3.2, for higher order constellations, MM may cause a serious SER because of the
constellation symbols’ close proximity. Here the 5/6 rate code lacks the capacity
to compensate for the increased sensitivity to noise resulting from MM and
so additional error protection must be provided or an improved soft-decoding
scheme used.
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Figure 36: Comparison of soft-decoding BER performance between the (1248, 832) and
(2016, 1680) LDPC codes [49], when using the MM EAC for the initial soft
decoding estimates.
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4.4.3 Detection with Estimation of MPMM Coefficients

Detection of an MPMM signal can be improved by proper estimation on the
receiver side of the MM factors used in transmission. In this way, more accurate
code bits LLRs can be provided to the receiver’s soft-decoder and so a better BER
performance should be expected. But correct estimation of the MM coefficients
depends on the receiver’s knowledge of the sequence of symbols that was sent,
which the receiver does not know and is in fact looking for. Although this
seams a paradox, the fact is that both the soft-decoder and the MPMM estimator
can benefit from any information that each can pass to the other. Hence, the
exchange of information between these two systems, analogous to the concept
of iterative message-passing described in section 2.4.2, can improve decoding
performance.

Figure 37 gives the block diagram of a joint design of a receiver’s MPMM
estimator and soft-decoder (MPMM+SD).

+ Soft-bits 
Demodulator Soft-Decoder

ModulatorMPMM

+
+-r=sMM+nz

ŝŝMM

LLR(ci) ci
Decoded soft-bits

Figure 37: Joint MPMM+SD detection scheme.

Let us assume, without loss of generalization, a FEC system based on an
n-length block code C and that each codeword

c=[c0, c1, · · · , cn−1] ∈ C , (4.52)

is mapped into a set of constellation symbols as previously defined in section
4.4.2, i.e.

s=F (c)=
[
s0, s1, · · · , s(n/l)−1

]
, (4.53)

when considering an M-ary constellation with M = 2l and assuming n to be a
multiple of l.
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The transmitted MM codeword given by applying MPMM to s is represented
by

sMM =
[
sMM0 , sMM1 , · · · , sMM(n/l)−1

]
, (4.54)

and let

r=
[
r0, r1, · · · , r(n/l)−1

]
, (4.55)

denote the (n/l) sampled outputs of the receiver’s matched filter. According to
(4.46), each complex received sample is given by

ri = sMMi +nzi , (4.56)

where nzi is a complex random variable representing the AWGN noise added
to the MM transmitted symbol sMMi .

According to figure 37, based on received word r, i.e. by setting r’ = r, the
soft-bits demodulator starts by providing code bit LLRs estimates, LLR(ci |r’ ), to
the soft-decoder.

If decoding is successful the receiver proceeds to detection of the next received
word.

If decoding is unsuccessful the soft-decoder output word

ĉ=[ĉ0, ĉ1, · · · , ĉn−1] , (4.57)

is presented as input to the cascade of modulator and MPMM block so as to
compute new estimates of the transmitted sequence of constellation symbols,

ŝ =
[
ŝ0, ŝ1, · · · , ŝ(n/l)−1

]
, (4.58)

and its MPMM sequence counterpart

ŝMM =
[
ŝMM0 , ŝMM1 , · · · , ŝMM(n/l)−1

]
. (4.59)

In unsuccessful decoding only a few code bits of ĉ are expected to be wrong.
Hence, because modulation is a memoryless procedure, estimate ŝ contains
mostly valid information. The same happens with ŝMM, despite MPMM not
being memoryless. However, given that the influence on the MM factor that
applies to a symbol s[n0] is limited to its closer neighbors, and also to the
assumptions under (4.27) and (4.45), estimation ŝMM is largely reliable.
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Estimates ŝ and ŝMM can thus be used to improve reliability of the information
provided to the soft-bits demodulator according to

r’ = r − ŝMM + ŝ , (4.60)

i.e. we try to cancel the MM distortion added to transmitted symbol. In fact,
assuming ideal estimation, i.e. ŝMMi = sMMi and ŝi = si, each received sample
passed to the soft-bits demodulator

r ′i = sMMi − ŝMMi + ŝi +nzi , (4.61)

would reduce to

r ′i = si +nzi , (4.62)

and so there would be no BER performance loss with respect to a non-MM
transmission.

Decoding stops whenever a valid codeword is found, or a maximum number
of feedback iterations is reached. After decoding each received word (whether
successful or not), say r’∆tn over interval9 ∆tn, and before the receiver proceeds
to detect the next received word r’∆tn+1 , MPMM’s internal state is updated to
SMPMM
∆tn

by running ĉ∆tn through the modulator+MPMM once. At the beginning
of each new iteration to decode r’∆tn+1 , MPMM’s internal state is reset to SMPMM

∆tn
.

The constellation to be used by the receiver to compute initial soft-decoding
LLRs and estimates ŝ and ŝMM can be the original constellation used at the
transmitter. However, since detection starts by performing soft-decoding of the
received word r and fulfillment of this task depends critically on initial LLRs
estimates (as seen in section 4.4.2), then much better results can be observed
when MM EAC is used instead.

Algorithm 4.1 summarizes the joint MPMM+SD decoding procedure just
described.

The MPMM+SD detection was tested for a demanding case requiring trans-
mission of an α = 0.2 RRC pulse shaped signal with nearly zero back-off.
Soft-decoding was performed, as for the results in figure 35, using the logarith-
mic SPA algorithm following a horizontal schedule [29, 100] approach, but now
considering only a maximum number of 50 iterations per decoded word. Initial
soft decoding estimates were computed using the MM EAC and, in order to
simplify decoding, a sole 1-stage MPMM system has been used at the receiver.

Figure 38 presents the BER performance of the joint MPMM+SD technique
when using the (1248, 832) LDPC code [49] with the maximum allowed feedback

9 Each time interval ∆ti has duration n
l TSYMB, where n is the code length, l is the number of bits

per constellation symbol and TSYMB is the symbol’s time duration.
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Algorithm 4.1 Join MPMM+Soft Decoder Detection Algorithm

For a generic vector x consider that the notation x(i)∆tn denotes the value x during time interval
∆tn at iteration (i). During interval ∆tn the maximum number of admissible feedback iterations
is MAX_ITER.

STEP 0: Initialization
– Setup soft-decoder’s input data: r’(0)∆tn = r∆tn .

– Setup MPMM initial state SMPMM
∆tn−1

by running previous soft-decoder output, ĉ∆tn−1
,

through receiver’s modulator and MPMM blocks.

do {

STEP 1: Reset MPMM’s state to SMPMM
∆tn−1

STEP 2: Compute initial soft-decoding estimates LLR
(
ci

∣∣∣r’(i)∆tn

)
.

STEP 3: Based on LLR
(
ci

∣∣∣r’(i)∆tn

)
, perform soft-decoding of r∆tn , generating ĉ(i)∆tn .

STEP 4: Modulate decoded word ĉ(i)∆tn in order to produce an estimate, ŝ(i)∆tn , of the
transmitted sequence of symbols.

STEP 5: Magnitude modulate ŝ(i)∆tn in order to produce an estimate, ŝ(i)MM∆tn
, of the

transmitted sequence of MPMM symbols.

STEP 6: Update soft-bits demodulator input for next iteration:

r’(i+1)∆tn
= r∆tn − ŝ(i)MM∆tn

+ ŝ(i)∆tn .

} while (ĉ(i)∆tn is an unvalid codeword) & (#iterations < MAX_ITERATIONS )

STEP 7: Output decoded word ĉ(i)∆tn from last iteration runned.

iterations set to 3. The results refer to the 1- and 2-stage MPMM configurations
used at the transmitter (Tx) for comparison with figure 35, when detection based
on the EAC was studied.

Analysis of figure 38 shows that the already good results obtained earlier
with the use of the MM EAC can be improved, with special relevance for
constellations with M > 32, e.g. for 64-QAM with a Tx configuration of 1-stage
MPMM, system performs only 0.5dB away from the non-MM case corresponding
to a net_GBO ' 4.4dB. In addition, for the case of strict fine control of the
envelope excursion, i.e. for the 2-stage configuration at Tx, the BER degradation
observed at the receiver is still lower than that experienced with detection based
only on the EAC for the 1-stage MPMM Tx configuration. This corresponds to
an additional net back-off gain of at least 0.5dB.

As seen before for large constellations (M > 32), the use of a detection scheme
based only on the MM EAC is not sufficient to compensate for the increased
sensitivity to noise resulting from MM if the channel code is not ”strong” enough.
Figure 39 plots the BER performance of the joint MPMM+SD technique as a
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Figure 38: BER performance of joint MPMM+SD detection scheme using the (1248, 832)
LDPC code [49] and RRC pulse shaping with α = 0.2.

function of the number of maximum allowed feedback iterations, when using
the less powerful (2016, 1680) LDPC code [49]. A 2-stage MPMM configuration
is employed at Tx.

The improvement in performance for both cases is quite clear. With a maxi-
mum of only 3 feedback iterations at BER= 10−5, this method performs only
2dB and 2.5dB away from the non-MM case for 64-QAM and 32-APSK, which
corresponds to a net_GBO of about 3.5dB and 3.1dB, respectively.

The results in figure 39 also show that, as expected, the decoder performs
better as the number of maximum iterations allowed for the estimation of the
MM factors increases, although the maximum achievable performance tends to
a limit, e.g. the gain from using 7 feedback iterations over 5 is already small. In
addition, the computation time also increases, and so there is a tradeoff between
the number of feedback iterations, the time taken on soft-decision decoding of a
received word, and also the desired performance. Experience has shown that
a good tradeoff was to consider only 3 feedback iterations, while reducing the
maximum number SPA soft-decoding iterations to half (i.e. 50) for our testbed.
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Figure 39: BER performance of joint MPMM+SD detection scheme using the (1248, 832)
LDPC code [49] as function of the number of allowed estimates’ recomputation
(max. feedback iterations) of the MM factors. Results refer to bandwidth pulse
shaping with α = 0.2 and a 2-stage MPMM Tx’s configuration.

As a main conclusion, the joint MPMM+SD detection scheme makes it possible
to successfully use the MPMM technique for high-order constellations even
when the system employs a less powerful FEC system, with effective net_GBO
being experienced without the need for additional error protection.

4.5 conclusion

A novel Multistage Polyphase Magnitude Modulation (MPMM) scheme for effi-
ciently controlling the envelope’s peak power of single carrier band limited
signals has been presented in this chapter.

To compensate for the increased sensitivity to noise due to MM, two different
techniques for improving the detection of the MPMM signal have also been
proposed, viz.: detection based on the MM estimated average constellation
(EAC); and detection with estimation of MPMM factors in the receiver. The first
detection technique does not imply changes to traditional receivers and provides
a notable improvement in performance with respect to MM’s blind reception.
The second technique combines MPMM factors estimation and soft decoding in
a feedback loop scheme, and it was found to be particularly efficient for higher
order constellations with M > 32 (more sensitive to MM distortion), especially
when less powerful FEC coding is used.

The performance of the MPMM scheme was evaluated through simulation
in terms of PAPR, back-off and BER. One useful measure to assess the overall
performance is the net back-off gain net_GBO, computed as in (3.34). Figure 40

summarizes net_GBO at BER= 10−5 for the different detection schemes, for a
system employing a 2-stage MPMM configuration at transmitter, RRC pulse
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shaping with α = 0.2 and using a FEC system based on the (1248, 832) LDPC
code [49].

The results emphasize the high efficiency of this new proposed MPMM
technique.
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Figure 40: Net back-off gain at BER= 10−5 for different detection schemes, for or a
system employing a 2-stage MPMM configuration at transmitter, RRC pulse
shaping with α = 0.2 and using a FEC system based on the (1248, 832) LDPC
code.





5
M O D E L I N G M A G N I T U D E
M O D U L AT I O N P E R F O R M A N C E

In this chapter we perform an analytical analysis of the transmitted signals
using the peak-power reduction MM methods described in chapters 3 and 4.
The statistical distributions of the MM coefficients are studied and parameter-
ized probability density functions are provided, with typical parameters being
obtained for different M-ary constellations and RRC roll-offs through simulation.
Analytical average power and PAPR expressions for the transmitted MM signal
are then deduced. The average drop in power due to MM is compared with
the power losses observed when using other common peak-power reduction
techniques, i.e. scaling (pure back-off applied to the signal) and clipping.

A typical figure of merit to evaluate the accuracy of a modulation scheme
when subjected to magnitude and phase distortions is the error vector magnitude
(EVM). The analytical study of the EVM and symbol error rate (SER) due to
MM distortion is also addressed. Assuming a noiseless transmission, we derive
expressions for the analytical computation of the EVM and bounds on the SER
for the MM’s blind reception and detection based on the MM EAC.

Finally, we present analytical bounds on the BLER performance of the MM
scheme over an AWGN channel when using FEC with linear block coding.

Before proceeding to the analytical study of MM we will tackle the subject of
multirate processing of random signals, namely of stationary and cyclostationary
signals [93, 107]. The acquired knowledge will be particularly useful in the
analysis that follows.

This chapter is partly based on [38] and [39].

5.1 multirate processing of random signals

The statistical analysis of random signals and noise is traditionally carried out
assuming wide sense stationarity (WSS). In multirate digital signal processing, we
often encounter time-varying linear systems such as decimators and modulators.
In many applications these building blocks are interconnected with linear filters
to form more complex systems. It is often necessary to understand how the
statistical behavior of a discrete-time signal changes as it passes through such
systems.

101
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5.1.1 Stationarity Definitions

When analyzing a digital system, input and output signals are usually random
and therefore modeled as discrete-time stochastic random processes [45, 84, 87]. A
discrete-time random process x[n] is simply an indexed sequence of random
variables characterized statistically by their joint pdf, with

p(x[n] ;n = n1,n2, · · · ,nk) ≡ p
(
xn1 , xn2 , · · · , xnk

)
, (5.1)

denoting k-order joint pdf, for the k random variables obtained from observing
x[n] at a given set of time instants1 {n1,n2, · · · ,nk}.

A stochastic process (continuous- or discrete-time) is called strict sense station-
ary (SSS) if its statistical properties are invariant over time. From the definition,
x[n] is said to be an SSS stochastic process if and only if,

p
(
xn1 , xn2 , · · · , xnk

)
= p
(
xn1+c, xn2+c, · · · , xnk+c

)
, (5.2)

for all k ∈N and c ∈ Z.
However, a less stringent condition of stationarity is often used in practice. A

stochastic process x[n] is called wide sense stationary (WSS) if its mean is constant

E{x[n]} = η , (5.3)

and if its autocorrelation, defined as

rx[n; τ] = E{x[n+ τ] x∗[n]} , (5.4)

is only a function of the time lag between random variables x[n+ τ] and x[n],
and it is also independent of the specified time index n, i.e.

rx[n; τ] = rx[n+ c; τ] = rx[τ] , ∀ c ∈ Z . (5.5)

Two stochastic processes x[n] and y[n] are said to be jointly WSS if x[n] and
y[n] are WSS and the cross-correlation

rxy[n; τ] = E{x[n+ τ]y∗[n]} , (5.6)

depends only on the time lag τ, and so

rxy[n; τ] = rxy[n+ c; τ] = rxy[τ] , for any c ∈ Z . (5.7)

1 The random variable obtained from the evaluation of x[n] at a given time instant ni, is denoted as
x[ni] ≡ xni
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Another important definition in stationarity, particularly useful in the analysis
of multirate systems, is the concept of cyclostationarity [22, 25, 84, 93]. A stochas-
tic process x[n] is said to be wide sense cyclostationary (WSCS) with period L∈N

(denoted as WSCS(L)) if

E{x[n]} = E{x[n+ kL]} , ∀ k ∈ Z , (5.8)

and

rx[n; τ] = rx[n+ kL; τ] , ∀ k ∈ Z , (5.9)

i.e. the mean and autocorrelation of x[n] are both periodic functions in time
with period L.

5.1.2 Average Power of WSS and WSCS stochastic processes

The instantaneous power of a zero mean stochastic process x[n] is defined as2

σ2x[n] = E{x[n] x∗[n]} = rx[n; 0] . (5.10)

If x[n] is WSS, the autocorrelation rx[n; 0] depends only on the time lag τ = 0
in accordance with (5.5), and so its power is constant over time. Hence, the
average power of a WSS stochastic process x[n] is given by

σ2x = rx[0] . (5.11)

However, if x[n] is WSCS(L) its instantaneous power varies periodically over
time with period L. In order to compute the average power of a WSCS process we
must map the process to an equivalent stationary process. Since autocorrelation
rx[n; τ] is a periodic function of time it can be represented by a Fourier series
[22, 25, 93, 107]

rx[n; τ] =
L−1∑
k=0

Rx[k; τ] ejk
2π
L n , (5.12)

with Fourier coefficients, called cyclic autocorrelations, given by

Rx[k; τ] =
1

L

L−1∑
n=0

rx[n; τ] e−jk
2π
L n . (5.13)

2 σ2x[n] usually defines the variance of a r.v., i.e. σ2x[n] = E
{
|x[n] − E{x[n]}|2

}
. For zero mean

random processes the autocovariance and autocorrelation are equal, and so (5.11) is verified [45]. For
convenience, unless stated otherwise, random processes are assumed to have zero mean.
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Sequence x[n] can be mapped to an equivalent stationary process by com-
puting the time average autocorrelation function, which is simply the cyclic
autocorrelation Rx[k; τ] at k = 0. The stationarization is equivalent to filtering
the WSCS(L) process with an ideal low-pass filter with cut-off frequency π/L
[93, 107]. The autocorrelation of the ”stationary component” of x[n] is thus given
by

r̄x[τ] = Rx[0; τ] =
1

L

L−1∑
n=0

rx[n; τ] , (5.14)

and the average power of the WSCS process x[n] is calculated as

σ2x = r̄x [τ]|τ=0 = Rx[0; τ]|τ=0 =
1

L

L−1∑
n=0

rx[n; 0] . (5.15)

5.1.3 Stationarity under Rate Change

In this section we present some of the propositions that characterize the changes
in the statistical behavior of a stochastic signal due to a sampling rate change.
The subject is dealt with in detail in [93]. The presented propositions will be
particularly useful in the analytical analysis of MM systems.

Proposition 5.1. If we pass a WSS signal x[n] through an L-fold up-sampler (see
figure 19.(a)), the output yu[n] is WSCS(L).

Proof. We know that the up-sampled signal yu[n] relates to x[n] according to
(4.1), which can also be written as

y[n] =

∞∑
k=−∞ x[k] δ[n− kL] . (5.16)

Making use of (5.16), we compute the autocorrelation of yu[n]

ryu [n; τ] = E{yu[n+ τ]y∗u[n]}

= E

∑
i

∑
j

x[i] x∗[j] δ[n+ τ− iL] δ[n− jL]

 . (5.17)

Exchanging the expectation operator wit both sums3, and since x[n] is WSS,
it results that

3 Expectation, E{·}, is a linear operation.
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ryu [n; τ] =
∑
i

∑
j

E{x[i] x∗[j]} δ[n+ τ− iL] δ[n− jL]

=
∑
i

∑
j

rx[i− j] δ[n+ τ− iL] δ[n− jL] . (5.18)

It is straightforward to conclude from the analysis of (5.18) that

ryu [n; τ] = ryu [n+ kL; τ] , ∀ k ∈ Z (5.19)

i.e. it is periodic in time with period L and, therefore, yu[n] is WSCS(L) as we
wanted to prove.

Based on proposition 5.1 we can easily relate the average power of WSCS
signal yu[n] to the average power of the up-sampler input x[n]. By using (5.15),
we can compute σ2yu as

σ2yu =
1

L

L−1∑
n=0

ryu [n; 0] . (5.20)

According to (5.18) we have

ryu [n; 0] =

{
rx[0] , n = kL

0 , n 6= kL
, ∀ k ∈ Z , (5.21)

which gives

σ2yu =
rx[0]
L

=
σ2x
L

. (5.22)

Proposition 5.2. If we pass a WSCS(P) signal x[n] through an L-fold up-sampler (see
figure 19.(a)), the output yu[n] is WSCS(LP), and the power of the output signal relates
to the power at up-sampler entrance as σ2yu = σ2x/L .

Proof. Given that x[n] is now WSCS(P), (5.17) can be simplified as

ryu [n; τ] =
∑
i

∑
j

rx[j; i− j] δ[n+ τ− iL] δ[n− jL] . (5.23)
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In order to prove that yu[n] is WSCS(LP), we simply apply the definition
(5.9) of a WSCS process and compute ryu [n+ kLP; τ], for any k ∈ Z. Hence,
according to (5.23) we get

ryu [n+ kLP; τ] =
∑
i

∑
j

rx[j; i− j] δ[n+ τ− (i− kP)L] δ[n− (j− kP)L] , (5.24)

and by performing a change of variables, i ′ = i− kP and j ′ = j− kP, it results

ryu [n+ kLP; τ] =
∑
i ′

∑
j ′

rx
[
j ′ + kP; i ′ − j ′

]
δ
[
n+ τ− i ′L

]
δ
[
n− j ′L

]
. (5.25)

Since x[n] is WSCS(P) (5.25) simplifies to

ryu [n+ kLP; τ] =
∑
i ′

∑
j ′

rx
[
j ′; i ′ − j ′

]
δ
[
n+ τ− i ′L

]
δ
[
n− j ′L

]
= ryu [n; τ] , (5.26)

proving that yu[n] is WSCS(LP).
The power of the output signal can be computed according to (5.15) and so

considering (5.23) σ2y is given by

σ2yu =
1

LP

LP−1∑
n=0

ryu [n; 0]

=
1

LP

LP−1∑
n=0

∞∑
i=−∞

∞∑
j=−∞ rx[j; i− j] δ[n− iL] δ[n− jL] . (5.27)

The product δ[n− iL]×δ[n− jL] is zero for all i 6= j and so (5.27) simplifies to

σ2yu =
1

LP

LP−1∑
n=0

∞∑
j=−∞ rx[j; 0] δ[n− jL]

=
1

LP

∞∑
j=−∞

(
rx[j; 0]

LP−1∑
n=0

δ[n− jL]

)
, (5.28)

where,
∑LP−1
n=0 δ[n− jL] = 1 for j= 0, · · · ,P − 1, and is zero for the remaining

values of j. Relation between σ2yu and σ2x thus follows directly

σ2yu =
1

LP

P−1∑
j=0

rx[j; 0] =
σ2x
L

. (5.29)
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Some considerations on propositions 5.1 and 5.2 and their proofs should be
noted. Firstly, proposition 5.1 and result (5.22) are a particular case of proposition
5.2, in view of the fact that a WSS stochastic process can be interpreted as being
WSCS(P) with P = 1. Secondly, when proving the WSCS property of the up-
sampled signal yu[n] we have ignored condition (5.8); given that E{yu[n]} is
periodic, the proof is trivial.

Proposition 5.3. If we pass a WSCS(L) signal x[n] through an M-fold down-sampler
(see figure 19.(b)), the output yd[n] is WSCS(K), where K = L/gcd(L,M).

Proof. Using the input-output relationship of a down-sampler (4.5) we can write
the autocorrelation of yd[n] as

ryd [n; τ] = E{yd[n+ τ]y∗d[n]}

= E{x[nM+ τM] x∗[nM]} = rx[nM; τM] . (5.30)

Assuming that yd[n] is WSCS(K) from (5.9) we know that

ryd [n; τ] = ryd [n+K; τ] , (5.31)

and so by substituting (5.30) in (5.31), it results

rx[nM; τM] = rx[nM+KM; τM] . (5.32)

Since x[n] is WSCS(L) (5.32) is satisfied if

KM = iL , (5.33)

for some i ∈ Z. The smallest value of K ∈N for which there is an integer i that
satisfies (5.33) is given by

K =
L

gcd(L,M)
, (5.34)

as we wanted to prove.

Note that a WSS stochastic process is a special case of a WSCS(L) with L = 1.
Hence, according to proposition 5.3, the down-sampling of a WSS process
always gives rise to a WSS signal.
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5.1.4 Filtering Random Processes

Linear time-invariant (LTI) filters [76, 82] are frequently used to perform a variety
of different signal processing tasks. It is therefore important to be able to
determine how the statistics of a random process change as a result of being
filtered by an LTI system.

A digital LTI filter is usually characterized by its impulse response h[n] or,
equivalently, by its frequency response H(z). The output y[n] of the system may
be expressed as the convolution sum of the input x[n] with h[n], i.e.

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞h[k] x[n− k] . (5.35)

Proposition 5.4. The output response of an LTI digital system to a WSCS(L) signal,
x[n], is a WSCS(L) process y[n] with autocorrelation

ry[n; τ] =
∞∑

i=−∞
∞∑

j=−∞h[i]h
∗[j] rx[n− j; i− j− τ] , (5.36)

where h[n] is the LTI system’s impulse response.

Proof. Let’s begin by computing the mean value of y[n] which is given by

E{y[n]} = E

{ ∞∑
k=−∞h[k] x[n− k]

}
=

∞∑
k=−∞h[k]E{x[n− k]} . (5.37)

Signal x[n] is WSCS(L), and so E{x[n]} is periodic with period L. Hence, it
results from (5.37) that E{y[n]} is also periodic with the same period. In fact, by
computing E{y[n+ iL]} for any i ∈ Z we conclude that

E{y[n+ iL]} =

∞∑
k=−∞h[k]E{x[n− k+ iL]}

=

∞∑
k=−∞h[k]E{x[n− k]} = E{y[n]} . (5.38)

The autocorrelation function of the output y[n] is
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ry[n; τ] = E{y[n+ τ]y∗[n]}

= E


∞∑

i=−∞h[i] x[n+ τ− i]×
∞∑

j=−∞h
∗[j] x∗[n− j]


=

∞∑
i=−∞

∞∑
j=−∞h[i]h

∗[j] rx[n− j; j− i+ τ] , (5.39)

which is also a periodic function in n. By evaluating ry[n+ kL] for any k ∈ Z,
and making use of the WSCS(L) property of x[n], it results that

ry[n+ kL; τ] =
∞∑

i=−∞
∞∑

j=−∞h[i]h
∗[j] rx[n− j+ kL; j− i+ τ]

=

∞∑
i=−∞

∞∑
j=−∞h[i]h

∗[j] rx[n− j; j− i+ τ] = ry[n; τ] . (5.40)

Given (5.38) and (5.40), we conclude, according to the WSCS definition, that
y[n] is WSCS(L).

For the particular instance of the LTI system’s input being WSS (i.e. WSCS(1))
then output y[n] is also WSS and its autocorrelation (5.36) simplifies to

ry[τ] =
∞∑

i=−∞
∞∑

j=−∞h[i]h
∗[j] rx[j− i+ τ] = h[τ] ∗ h∗[−τ] ∗ rx[τ] , (5.41)

with h[τ] ∗ h∗[−τ] being called the filter aperiodic autocorrelation [83].

5.1.5 The Interpolator Case

So far we have seen the effects of basic multirate building blocks on station-
ary random inputs. But it is interesting to study similar properties for some
standard interconnections of these building blocks. We will only examine the
interpolator filter structure (studied in section 4.1), since it is part of any typical
SC transmitter (figures 1 and 10).

Some interesting properties and theorems on the interpolator structure have
been stated in [22, 93, 107]. Recalling figure 24 (see chapter 4), assume that x[n]
is WSS. Hence, according to propositions 5.1 and 5.4, the up-sampled signal
xu[n] and the interpolator’s output y[n] are WSCS(L). Nevertheless, Sathe et al.
[93] have proved that if the LTI filter H (z) is such that the L-fold decimation of
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its impulse response does not create aliasing then the interpolated signal y[n] is
WSS.

In the generic block diagram of a typical SC transmitter presented in figure 10

(see chapter 3), the pulse shaping filter H(z) (part of an interpolator structure),
does not necessarily have a spectrum shape with single side bandwidth limited
to π/L, and so its output may not be WSS. However, H(z) should satisfy the
Nyquist condition for zero ISI with pulse duration of L samples (interpolator
up-sampling factor) [44, 65, 87]. This means that the aperiodic autocorrelation
of the filter

hc[n] = h[n] ∗ h∗[−n] , (5.42)

is such that,

hc[kL] =


∞∑

n=−∞ |h[n]|2 , k = 0

0 , k 6= 0
, ∀ k ∈ Z . (5.43)

To this special case of a Nyquist interpolator filter we can relate the average
power of a WSS or WSCS signal x[n] fed into the interpolator to the average
power of the WSCS output signal y[n].

Theorem 5.1. Consider a multirate interpolator system formed by an L-fold up-
sampler followed by a pulse shaping filter with impulse response h[n], whose aperiodic
autocorrelation satisfies the Nyquist pulse criterion for zero ISI with pulse duration of
L samples. The interpolated signal’s average output power, σ2y, in response to a zero
mean WSCS(P) stochastic process x[n] with power σ2x, is given by

σ2y =
σ2x
L

∞∑
n=−∞ |h[n]|2 . (5.44)

Proof. Assuming that input signal x[n] is WSCS(P), it follows from propositions
5.2 and 5.4 that the L-fold up-sampled signal xu[n] and the output pulse shaped
signal y[n] are both WSCS(LP) processes.

The pulse shaped signal relates to input as

y[n] = h[n] ∗ xu[n] = h[n] ∗
∞∑

k=−∞ x[k] δ[n− kL]

=

∞∑
k=−∞ x[k]h[n− kL] , (5.45)
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whereby, computing ry[n; τ] according with definition (5.4), we obtain

ry[n; τ] =
∞∑

i=−∞
∞∑

j=−∞ rx[j; i− j]h[n+ τ− iL]h∗[n− jL] . (5.46)

The pulse shaped signal is a WSCS(LP) process and so its power is computed
as

σ2y =
1

LP

LP−1∑
n=0

ry[n; 0]

=
1

LP

LP−1∑
n=0

∞∑
i=−∞

∞∑
j=−∞ rx[j; i− j]h[n− iL]h∗[n− jL] , (5.47)

whereby, performing a variable change, i = j+ a, it results

σ2y =
1

LP

LP−1∑
n=0

∞∑
a=−∞

∞∑
j=−∞ rx[j;a]h[n− (j+ a)L]h∗[n− jL] . (5.48)

Input x[n] is WSCS(P). Hence, rx[j;a] = rx[j+mP;a], for all m ∈ Z and (5.48)
can thus be rewritten as

σ2y =
1

LP

LP−1∑
n=0

∞∑
a=−∞

P−1∑
j=0

(
rx[j;a]

∞∑
m=−∞h[n−(j+mP+a)L]h∗[n−(j+mP)L]

)

=
1

LP

∞∑
a=−∞

P−1∑
j=0

(
rx[j;a]

LP−1∑
n=0

∞∑
m=−∞h[n−mPL−(j+a)L]h∗[n−mPL−jL]

)

=
1

LP

∞∑
a=−∞

P−1∑
j=0

rx[j;a]
∞∑

n ′=−∞h
[
n ′− jL− aL

]
h∗
[
n ′−jL

] ⇐ variable change

k=n ′−jL

=
1

LP

∞∑
a=−∞

P−1∑
j=0

(
rx[j;a]

∞∑
k=−∞h[k− aL]h

∗[k]

)
, (5.49)

where the sum inside the parenthesis is simply the filter aperiodic autocorrela-
tion (5.42) at n=−aL, where we get

σ2y =
1

L

∞∑
a=−∞

 1
P

P−1∑
j=0

rx[j;a]hc [−aL]

 . (5.50)
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Filter h[n] is assumed to satisfy the Nyquist pulse criterion for zero ISI, and so,
accordingly to (5.43), hc [−aL] it is only nonzero for a = 0 wherefore, theorem
statement results straightforward:

σ2y =
1

L

 1
P

P−1∑
j=0

rx[j; 0]

hc [0] = σ2x
L

∞∑
n=−∞ |h[n]|2 . (5.51)

5.2 analytical power analysis

In this section we analyze the statistical properties of the MM’s factors sequence
m[n] and of the average power of the MM signal. Although attention will mainly
focus on the MPMM scheme (figure 29), given its excellent performance, the
analysis is also valid for the LUT-MM approach. Here the statistical distributions
of the MM factors can be known exactly from the information stored in the LUT.

Let Si, with i= 1, · · · ,M , denote the M symbols of an M-ary constellation
X, and refer back to figure 29 in section 4.2. The sequence of symbols4 s[n] at
the output of the modulator is assumed to be a discrete-time zero mean WSS
random process. The symbols are considered to be independent and identically
distributed (i.i.d.) random variables (r.v.) with average transmitted power given
by

σ2s = E
{
|s[n]|2

}
=
1

M

M∑
i=1

|Si|
2 = εs , (5.52)

i.e. it equals the average energy of a constellation symbol, εs. It is also assumed
that MM sequence, sMM[n] = m[n]× s[n], preserves the WSS properties of s[n].

5.2.1 Statistical Distributions of MM factors

Although the computation of mn depends on sn and its 2N closer neighbors
(as seen in chapters 3 and 4), it is also true that sn is the symbol that contributes
most to the evaluation of mn. For reasons of treatability of the problem we will
assume that the pdf of r.v. mn only depends on the current constellation symbol
sn being MM, i.e.

p(mn | sn−N, · · · , sn, · · · , sn+N) ' p(mn | sn) . (5.53)

4 In order to avoid notation misinterpretation, we recall that sn denotes a transmitted constellation
symbol at a given time instant n, whereas when a capital letter is used, e.g. Si, we are referring to
the ith symbol of the M-ary constellation. (See also footnote 2 on page 52.)
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Even with this simplification, because of the recursive computation nature
of each MM factor that depends on previous computed MM factors, and the
nonlinearity of equations (4.34), (4.44) and (4.45), it is not possible to arrive at a
close expression for the pdf of mn by analytical procedures.

By performing a goodness of fit statistical analysis, we conclude that the
conditional pdf of mn, given that sn is constellation symbol Si, can be statically
handled using a beta distribution [84] (as expected, since mn∈ ]0, 1]), and so it
can be expressed5 as

p(mn | sn = Si) = p(m | Si) =
Γ(α+β)

Γ(α) Γ(β)
mα−1 (1−m)β−1 , (5.54)

where

Γ(α) =

∫∞
0
xα−1e−xdx , (5.55)

represents the gamma function. The beta distribution model also matches the
LUT-MM case since 0 < m 6 1.

Due to constellation and RRC symmetry properties, the pdf of m is only
conditioned in |Si| and so (5.54) is the same for all the symbols in X having the
same magnitude, as shown in figure 41 for 16-QAM. Therefore, let SAj be the
sub-set of symbols of the constellation X with amplitude Aj, and nAj = #

{
SAj
}

.
Then for Si ∈ SAj , (5.54) is hereafter written as

p
(
m | Si ∈ SAj

)
=

Γ
(
αAj +βAj

)
Γ
(
αAj

)
Γ
(
βAj

)mαAj−1 (1−m)
βAj−1 , (5.56)

where parameters αAj and βAj are a function of the constellation geometry and
the RRC roll-off. The dependence on the number of MPMM stages, k, vanishes
for k > 2 since the need to back-off is almost completely eliminated, as has
been shown in section 4.3. The same conclusion on the MPMM’s efficiency can
be drawn from the observation of the complementary cumulative distribution
functions (CCDF) of the amplitude of the transmitted MM signal, presented
in figure 42 for the demanding case of 0.1 roll-off RRC filtering. Typical values
for αAj and βAj were thus obtained through maximum likelihood estimation [71],
with the beta distribution as prototype, considering a large data set of MM
values obtained through simulation for different constellations and RRC’s roll-
offs with a 3-stage MPMM configuration. These parameters are presented in
table 5.

5 Temporal subscript n can thus be dropped, since under assumption (5.53) the statistical distribution
thatmn follows, depends only on the constellation symbol Si and not on the particular instant n.
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Roll-off→ 0.1 0.2 0.3

nAj αAj βAj αAj βAj αAj βAj

BPSK A1 = 1 2 6.8 3.09 9.9 3.99 13.0 4.64

8-PSK A1 = 1 8 9.8 3.15 14.8 4.21 21.2 5.39

16-APSK
A1 = 0.36056 4 18.5 1.49 27.4 1.95 37.2 2.50

A2 = 1.13578 12 8.6 2.09 12.4 2.76 17.9 3.69

16-QAM
A1 = 0.44721 4 14.8 0.51 18.2 0.53 19.7 0.52

A2 = 1 8 7.3 0.48 9.9 0.49 13.3 0.50

A3 = 1.34164 4 7.9 1.38 10.9 1.81 14.4 2.30

32-APSK
A1 = 0.24227 4 18.6 0.89 24.5 1.08 29.2 1.27

A2 = 0.68807 12 13.7 0.80 19.4 0.99 24.7 1.17

A3 = 1.2768 16 8.2 1.58 11.9 2.15 16.9 2.92

64-QAM

A1 = 0.21821 4 14.8 0.19 18.1 0.18 20.5 0.18

A2 = 0.48795 8 13.8 0.19 17.4 0.18 20.0 0.18

A3 = 0.65465 4 12.4 0.19 16.0 0.18 18.6 0.18

A4 = 0.78679 8 10.8 0.19 14.9 0.18 18.2 0.18

A5 = 0.89973 8 9.1 0.19 12.7 0.18 16.6 0.18

A6 = 1.09108 12 6.3 0.19 9.0 0.18 13.4 0.18

A7 = 1.17513 8 5.3 0.20 7.2 0.18 10.6 0.18

A8 = 1.32736 8 4.0 0.23 4.9 0.22 6.3 0.23

A9 = 1.52752 4 6.6 0.88 8.8 1.17 11.8 1.60

Table 5: Parameters of beta pdf that models MM values’ distributions. The set of ampli-
tudes Aj provided for each constellation, assumes that εs = 1.

5.2.2 Average Power and PAPR Reduction

For a better understanding, and without loss of generality, we will consider that
the multirate pulse shaping system (L up-sampler followed by the RRC filter
h[n]) has unitary power gain, i.e. GRRC = 1, and so according to theorem 5.1
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Figure 41: Conditional pdf of MM coefficients given that constellation symbol Si is being
MM for the 16-QAM case. Distributions for equal magnitude symbols are
plotted in the same graph.

and propositions 5.1 and 5.4, the bandwidth limited MM signal x[n] is WSCS(L)

and has power

σ2x = σ2sMM
=

M∑
i=1

(
|Si|

2 Pr(Si)
∫1
0
m2p(m | Si)dm

)
. (5.57)

Considering (5.56) the power of the transmitted signal for a M-ary constella-
tion can thus be expressed as

σ2sMM
=
∑
j

nAjA2j
M

1∫
0

m2p
(
m | SAj

)
dm


=
∑
j

nAjA2j
M

1∫
0

Γ
(
αAj +βAj

)
Γ
(
αAj

)
Γ
(
βAj

)mαAj+1 (1−m)
βAj−1 dm

 ,

(5.58)

and from the integral calculation,

σ2sMM
=
∑
j

nAjA2j
M

×

(
αAj + 1

)
αAj(

αAj +βAj + 1
)(
αAj +βAj

)
 , (5.59)

which, for constant amplitude constellations, can be further simplified as

σ2sMM
=

(α+ 1)α

(α+β+ 1) (α+β)
εs . (5.60)
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Analytical Model Simulation

Roll-off→ 0.1 0.2 0.3 0.1 0.2 0.3

8-PSK 0.58588 0.61474 0.64153 0.59080 0.61670 0.64149

16-APSK 0.66713 0.68459 0.69970 0.66917 0.68522 0.69867

16-QAM 0.82198 0.83817 0.85073 0.82175 0.83741 0.84875

32-APSK 0.74904 0.75960 0.76642 0.75093 0.76034 0.76571

64-QAM 0.91685 0.93032 0.93827 0.91529 0.92915 0.93711

Table 6: Average power of the bandwidth limited MM transmitted signal for a 3-stage
MPMM configuration, considering different normalized constellations, i.e. εs = 1,
and a multirate pulse shaping filter with GRRC = 1.

Table 6 shows that (5.59), computed for αAj and βAj provided in table 5,
accurately follows the simulation results. The results presented in table 6 relate
to normalized constellations, i.e. εs = 1, and GRRC = 1.

The average power loss due to MM is thus given by:

PMM_loss = 10 log10
(
σ2sMM

/σ2s

)
= 10 log10

∑
j

nAjA2j
Mεs

×

(
αAj+1

)
αAj(

αAj+βAj+1
)(
αAj+βAj

)
 (dB) ,

(5.61)

where we have made use of (5.52) and (5.59).
Although this power loss gives rise to some increased sensitivity to noise, we

must consider the power efficiency gain that results from eliminating the need
to back-off from HPA saturation. Overall power efficiency gain for MM system,
GMM, can be evaluated as the observed reduction in PAPR, i.e.

GMM = PAPRno_MM − PAPRwith_MM . (5.62)

As stated in chapter 1, it is assumed that the HPA should be able to handle at
least PAPRConst and, therefore, the MM polar threshold used in simulations and
with respect to which the required back-off is measured is set to be

A2 = max
Si∈X

|Si|
2 ×GRRC , (5.63)

and so, using (5.63) in the manipulation of (5.62) we get6

6 Note that we are assuming GRRC = 1, without any loss of generalization.



5.2 analytical power analysis 117

0.5 1 1.5 2 2.5
10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
(a

m
pl

itu
de

>a
)

a

16 APSK 0dB 1dB 2dB 3dB 4dB 5dB 6dB

1.1358

 Back Off

0.5 1 1.5 2 2.5
10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
(a

m
pl

itu
de

>a
)

a

16 QAM 0dB 1dB 2dB 3dB 4dB 5dB

1.3416

 Back Off

0.5 1 1.5 2 2.5
10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
(a

m
pl

itu
de

>a
)

a

32 APSK 0dB 1dB 2dB 3dB 4dB 5dB

1.2768

 Back Off

0.5 1 1.5 2 2.5
10 6

10 5

10 4

10 3

10 2

10 1

100

Pr
(a

m
pl

itu
de

>a
)

a

8 PSK 0dB1dB 2dB 3dB 4dB 5dB 6dB  Back Off

 

 
No MM
1 stage MPMM
2 stage MPMM
3 stage MPMM

Figure 42: CCDF of the transmitted signal amplitude, |x[n]|, and required back-off, con-
sidering MPMM with a different number of stages for some constellations in
the demanding case of 0.1 roll-off RRC filtering.

GMM = PAPRno_MM − 10 log10

(
A2

σ2sMM

)
⇐ GRRC=1

= PAPRno_MM − 10 log10

max
Si∈X

|Si|
2

σ2s

− 10 log10

(
σ2s
σ2sMM

)

= PAPRno_MM − PAPRConst − PMM_loss . (5.64)

Bearing in mind that, as stated in section 1.2 and proved in appendix A,

PAPRno_MM = PAPRConst + PAPRRRC , (5.65)

by substituting (1.4) and (5.61) in equation (5.64), we get

GMM = PAPRRRC − PMM_loss

= 10 log10


max

i=0,··· ,L−1

(∑
n

|h[nL+ i]|

)2
∑
j

(
nAjA

2
j

Mεs
×

(
αAj+1

)
αAj(

αAj+βAj+1
)(
αAj+βAj

)
)
 (dB) . (5.66)
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Expression (5.66) is indeed a tight upper bound, since some residual back-off
may be needed, as shown by the CCDF curves presented in figure 42. Given
that the percentage reduction observed in the required back-off is shown to be
mainly a function of the number of stages, a more accurate gain estimation is
given by

GMM = κ× PAPRRRC − PMM_loss , (5.67)

where typical values for κ (i.e. the overall back-off reduction gain7) are given in
table 7.

Number of Stages 1 2 3

% Reduction (κ) 80% ∼ 95% 90% ∼ 100% 95% 100%

Table 7: Typical observed reduction in required back-off when using MPMM.

5.2.3 Bounding the Average Transmitted Power

There are two simple methods of decreasing the peak power of bandwidth
limited pulse shaped signal x[n] in order to avoid HPA saturation. One, which
consists of applying some back-off to the transmitted signal, i.e. by scaling it, has
already been mentioned. This preserves spectrum shape as desired but badly
degrades the system power efficiency. The opposite is to deliberately clip the
signal before amplification [63, 67]. This generates serious spectral spreading
but minimizes the drop in the signal’s average power and therefore the PAPR
of the transmitted signal, thus maximizing the system’s power efficiency. The
average power loss due to clipping is thus a lower limit on the average power
penalty caused by the use of any peak power control technique. The comparison
of power loss due to MM with the clipping method gives us some idea of how
well the new technique performs, since it does not cause spectral spreading.

Let xc[n] be the signal resulting from the clipping operation. We will assume
polar clipping, since MM performs polar distortion of the signal. The clipping
signal is thus given by

|xc[n]| =

{
A , |x[n]| > A

|x[n]| , |x[n]| 6 A
, (5.68)

]xc[n] = ]x[n] . (5.69)

7 These typical values were obtained from the results presented in section 4.3.
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By simple observation of figure 43, and remembering that we have been
assuming GRRC = 1, hence σ2x = σ2sMM

, it easy to conclude that

σ2sMM
6 σ2sxc ⇔ E

{
|sMM[n]|2

}
6 E
{
|xc[n]|

2
}

. (5.70)
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Figure 43: Sample of a transmitted 16-QAM RRC filtered signal with roll-off= 0.1 when
the MPMM and clipping techniques for peak power control are used.

In order to compute the average power of the clipped signal, let us represent
x[n] in terms of its amplitude and phase components, i.e.

x[n] = xI[n] + j xQ[n] = Rx[n] e
jθx[n] , (5.71)

and let pRx(r) denote the pdf of its amplitude distribution. The average power
of the clipped signal is thus given by [63, 67],

Pxc = E
{
|x[n]|2

}
=

A∫
0

r2pRx(r)dr+A
2

+∞∫
A

pRx(r)dr . (5.72)

Usually, assuming the validity of the central limit theorem, xI[n] and xQ[n]
are considered to be independent Gaussian random processes, with distribution
N
(
0,σ2x/2

)
, and so the magnitude,

Rx[n] =

√
(xI[n])2 + (xQ[n])2 , (5.73)

follows a Rayleigh distribution [84] with

pRx(r) =
2r

σ2x
e
− r2

σ2x for r > 0 , (5.74)

and so (5.72) is expressed as,

Pxc = σ
2
x

(
1− e

−A2

σ2x

)
. (5.75)
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Figure 44: Envelope amplitude histogram of a non-MM bandwidth limited SC signal for
different modulation formats, considering εs = 1 and RRC with GRRC = 1

and roll-off 0.2. The Rayleigh and Weibull pdfs obtained through maximum
likelihood estimation and that best fit the histogram are also drawn.

Although this model was found to be quite accurate for describing the ampli-
tude of the transmitted signal of a multicarrier case, it does not work as well
for a single carrier constellation unless the number of symbols M is very high
[111]. For the SC case the pdf pRx(r) was found to depend on the constellation
geometry, as shown in figure 44, and on the RRC’s filter roll-off. As an example,
the results from statistical analysis curve fitting displayed in figure 44 show that
pRx(r) is more closely modeled by a Weibull distribution [84] than by Rayleigh,
when considering 0.2 roll-off RRC filtering. The result (5.75) will be used even
so as reference, since it is a well known result [63, 67, 109].

Numerical evaluation of (5.72) was thus performed for different M-ary con-
stellations, using simulation data. The results are presented in figure 45 and
compared with the Rayleigh approximation (5.75). The power of the MM signal
given by (5.59) is also shown for a 3-stage MPMM system. Interestingly, the
Rayleigh distribution is shown to provide a good approximation of the power
of an MM signal. In addition, we may conclude that (5.75) constitutes a lower
bound on Pxc for the SC case.

The power efficiency gain, i.e. the reduction in the transmitted signal’s PAPR,
can also be observed in figure 45 as the difference with respect to the scaling
method’s curve (pure back-off). GMM rises for higher order constellations be-
cause only outer constellation symbols suffer more severe distortion due to MM,
which leads to a smaller fall in the average transmitted power. The same conclu-
sion would be drawn from (5.61) and (5.66) considering MM factors statistical
distributions.

Clipping implies a loss in average signal power of less than 1dB. The MPMM
performs very well and differs by less than 1dB from the clipping case, showing
that the MPMM can provide almost maximum power efficiency for a given con-
stellation and RRC filter, while avoiding spectral regrowth. This is emphasized
when comparing the transmitted average power using the MPMM technique
with scaling, where the significant increase obtained in the system’s power
efficiency becomes clear, especially at sharper roll-offs.
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Figure 45: Transmitted signal’s average power and correspondent power losses for differ-
ent constellations and peak-power reduction techniques, considering εs = 1
and GRRC = 1.

5.3 evm and ser analysis

Error vector magnitude (EVM) is a typical figure of merit used to evaluate
accuracy of a modulation scheme when subjected to magnitude and phase
distortions [5, 24, 109]. Requirements on EVM are already part of most wireless
communication standards such as the 3GPP25.141 [1] and the IEEE802.16e-2005

Wimax standard [49].
Other popular figures of merit used to assess performance of digital modula-

tion schemes are SNR, SER and BER. All these figures relate to each other, albeit
in a non-trivial manner. Efforts have been made in order to get analytical close
expressions among them in different contexts [5, 24, 86, 98].

This section presents an analytical study of the EVM and SER arising from
MM distortion. Assuming a noiseless transmission, we derive expressions for
the analytical computation of the EVM and bounds on the SER for the MM’s
blind reception and detection based on the MM EAC. We also address the case
of an MM blind receiver that uses automatic gain control (AGC) [15, 43, 109]
to adjust the amplitude of the constellation used in detection. The optimum
scale factor to apply to the original constellation according to a criterion of
minimizing the EVM is deduced.
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5.3.1 EVM Analytical Analysis

Basically, EVM is a measure of the magnitude of the error vector between the
measured received symbols and the expected ones. Since we are considering a
noiseless transmission, the only source of distortion is due to MM and so the
error vector signal eMM[n]∈C can be computed as

eMM[n] = sMM[n] − s̃[n] , (5.76)

where s̃[n] is the reference signal (expected signal).
In order to make it independent of the constellation type, EVM is usually

expressed as a percentage of the average power of the reference signal [24, 98,
109] and thus defined as

EVMrms =

√√√√√E
{
|eMM[n]|2

}
E
{
|s̃[n]|2

} =

√√√√√√√
E
{
|eMM[n]|2

}
1
M

M∑
i=1

∣∣S̃i∣∣2 , (5.77)

where S̃i are the symbols of the reference M-ary constellation X̃ used by the
receiver on detection.

MM’s blind detection

An MM blind receiver uses the original constellation X employed at the trans-
mitter as reference. Hence, the error signal is given by8

eMM[n] = sMM[n] − s[n] = s[n] (m[n] − 1) . (5.78)

Therefore, the power of the noise (i.e. error vector) due to MM is

σ2eMM
= E
{
|eMM[n]|2

}
=

M∑
i=1

(
|Si|

2 Pr(Si)
∫1
0
(m− 1)2 p(m | Si)dm

)

=
∑
j

nAjA2j
M

1∫
0

(m− 1)2 p
(
m | SAj

)
dm

 , (5.79)

and so, considering (5.56) we get

σ2eMM
=
∑
j

nAjA2j
M

×

(
βAj + 1

)
βAj(

αAj +βAj + 1
)(
αAj +βAj

)
 . (5.80)

8 Remember that we have assumed, without loss of generalization, that GRRC = 1.
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The average power of the original constellation is εs, and so EVM experienced
under MM’s blind detection can be evaluated analytically as

EVMrms =

√√√√√∑
j

nAjA2j
Mεs

×

(
βAj + 1

)
βAj(

αAj +βAj + 1
)(
αAj +βAj

)
 . (5.81)

Table 8 presents the results of the analytical computation (5.81) for αAj and
βAj provided in table 5. The results refer to different normalized constellations,
i.e. εs = 1, and multirate pulse shaping filters with different roll-offs and
GRRC = 1, when considering a 3-stage MPMM configuration at the transmitter.

We observe that the values computed from (5.81) follow the simulation results
accurately, which again confirms the usefulness of the statistical model proposed
in section 5.2.1. In addition, we also observe that the EVM experienced at
the MM’s blind detection is considerable, and is more severe for the APSK
constellation. This agrees with the highest sensitivity to MM noise of the APSK
constellations observed in sections 3.2.5 and 4.4.1, mainly because of their low
PAPRConst (i.e. having constellation symbols closer to each other).

Detection using the MM EAC

As stated in section 4.4.2, the optimum detection of received symbols should
take into account the distortion introduced by MM. Therefore, it was proposed
to perform demodulation based on the EAC, where the average position of a
constellation symbol Si∈X after being MM is given by (4.50). Substituting (5.54)
into (4.50) we get

SiMM = SiE
{
m | Si∈SAj

}
= SimAj , (5.82)

Analytical Model Simulation

Roll-off→ 0.1 0.2 0.3 0.1 0.2 0.3

8-PSK 26.9% 24.0% 21.7% 26.9% 24.0% 21.7%

16-APSK 22.4% 20.3% 18.6% 22.4% 20.3% 18.5%

16-QAM 14.4% 12.8% 11.6% 14.5% 12.6% 11.4%

32-APSK 18.1% 16.4% 15.3% 18.0% 16.3% 15.1%

64-QAM 9.6% 8.1% 7.1% 9.2% 7.6% 6.6%

Table 8: EVM experienced at detection by an MM blind receiver. Assumptions are εs = 1,
GRRC = 1 and a 3-stage MPMM configuration at the transmitter.
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whereby (5.56), mAj is

mAj = E
{
m | Si∈SAj

}
=

αAj
αAj +βAj

. (5.83)

When the detection process uses the EAC the error vector signal is computed
as

eMM[n] =
(
m[n] − E {m[n] | s[n]}

)
s[n] , (5.84)

and so its power is given by

σ2eMM
=

M∑
i=1

(
|Si|

2 Pr(Si)
∫1
0

(
m− E {m | Si}

)2p(m | Si)dm

)

=
∑
j

nAjA2j
M

1∫
0

(
m−mAj

)2
p
(
m | SAj

)
dm

 , (5.85)

whereby (5.56) and (5.83), it follows that

σ2eMM
=
∑
j

nAjA2j
M

×
αAjβAj(

αAj +βAj + 1
)(
αAj +βAj

)2
 . (5.86)

The average power of the EAC is determined as

σ2EAC =
1

M

M∑
i=1

∣∣SiMM

∣∣2 =
∑
j

nAjA2j
M

×
α2Aj(

αAj +βAj

)2
 , (5.87)

which means that the EVM for detection using the EAC can be analytically
evaluated as

EVMrms =

√√√√√√√√
∑
j

(
nAjA

2
jαAjβAj

/[(
αAj +βAj + 1

)(
αAj +βAj

)2])
∑
j

(
nAjA

2
jα
2
Aj

/(
αAj +βAj

)2) . (5.88)

The numerical evaluation of (5.88) is presented in table 9 and compared with
the simulation results. We find that (5.88) provides a precise estimation of EVM
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in accordance with the simulation, which once again confirms the correctness of
the proposed statistical model.

But the most relevant conclusion that can be drawn from the results is that
the use of the EAC leads to a significant decrease of the EVM experienced at
reception which agrees with the conspicuous improvement in BER performance
reported in section 4.4.2.

Analytical Model Simulation

Roll-off→ 0.1 0.2 0.3 0.1 0.2 0.3

8-PSK 15.2% 11.9% 9.6% 15.7% 12.3% 9.6%

16-APSK 14.2% 11.5% 9.4% 14.4% 11.6% 9.2%

16-QAM 10.5% 8.5% 7.1% 10.5% 8.2% 6.4%

32-APSK 12.1% 9.9% 8.3% 12.2% 9.8% 7.9%

64-QAM 8.2% 6.5% 5.3% 7.6% 5.7% 4.4%

Table 9: EVM experienced at detection when using MM EAC. Assumptions are εs = 1,
GRRC = 1 and a 3-stage MPMM configuration at the transmitter.

MM’s blind detection using AGC

Optimum detection usually implies the use of an AGC at the receiver for
synchronization purposes [9, 15] and to improve demodulation [43, 87], by
amplitude scaling of the reference constellation used in detection.

Let η ∈ R+ denote the scaling factor to apply to the original constellation by
an MM blind receiver using AGC. The error vector signal is thus

eMM[n] = sMM[n] − η s[n] = s[n] (m[n] − η) , (5.89)

The scaling factor η must be chosen so that EVM is minimized. Substituting
(5.89) in EVM definition (5.77) we get

EVMrms =

√√√√√E
{
(m[n] − η)2 |s[n]|2

}
E
{
η2 |s[n]|2

}

=

√√√√εsη2 − 2E
{
m[n] |s[n]|2

}
η+ σ2sMM

εsη2
, (5.90)

where we used (5.52) and (5.57).
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Equation (5.90) is minimized when

η =
σ2sMM

E
{
m[n] |s[n]|2

} (5.91)

whereby, combining equations (5.90) and (5.91), EVM becomes

EVMrms =

√√√√√1−
[
E
{
m[n] |s[n]|2

}]2
εsσ2sMM

. (5.92)

The term E
{
m[n] |s[n]|2

}
can be computed using (5.56), where, by manipula-

tion we arrived at

E
{
m[n] |s[n]|2

}
=
∑
j

(
nAjA

2
j

M
×

αAj
αAj +βAj

)
. (5.93)

Table 10 presents the results both from the evaluation of (5.92) and from
simulation. They agree with one another. The use of AGC according to a
criterion of minimizing the EVM significantly improves the performance of an
MM blind receiver, as can be concluded from comparing table 10 and table
8. Since, in practice, some sort of AGC is always used at synchronization and
detection [9, 15, 43, 87], the EVM experienced by an MM blind receiver will
always be much lower than reported in table 8.

However, even when employing AGC, the results are still worse than when
using the MM EAC for detection (table 9), which proves the effectiveness of the
EAC approach.

5.3.2 SER Analytical Analysis

Assume that a symbol Si∈X is sent and that it is MM by m. As before, let X̃
denote the reference constellation used by the receiver on detection, and S̃i the
symbol matching Si. Consider that transmission is noiseless. When using ML
minimum distance detection9 at the receiver, a symbol error occurs if

∃S̃j ∈ X̃\
{
S̃i
}
:
∣∣mSi − S̃j∣∣ 6 ∣∣mSi − S̃i∣∣ . (5.94)

9 See sections 2.3.1 and 2.3.3.
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Analytical Model Simulation

Roll-off→ 0.1 0.2 0.3 0.1 0.2 0.3

8-PSK 15.0% 11.8% 9.6% 15.5% 12.2% 9.5%

16-APSK 14.3% 11.7% 9.6% 14.5% 11.8% 9.4%

16-QAM 11.5% 10.0% 9.0% 11.6% 9.8% 8.5%

32-APSK 13.0% 10.9% 9.4% 13.0% 10.8% 9.1%

64-QAM 8.8% 7.4% 6.5% 8.3% 6.8% 5.8%

Table 10: EVM experienced at detection by an MM blind receiver that uses AGC. As
in table 8, the assumptions are εs = 1, GRRC = 1 and a 3-stage MPMM
configuration at the transmitter.

Solving (5.94) in order to m provides an upper bound mSi on the MM factor
which, when applied to Si, causes a detection symbol error. This value is given
by

mSi = min
S̃j∈X̃\{S̃i}

1

2
×

∣∣S̃i∣∣2 − ∣∣S̃j∣∣2〈
Si · S̃i

〉
−
〈
Si · S̃j

〉 , (5.95)

where 〈Sa · Sb〉 is the scalar vector product10.
Hence, SER experienced at reception can be computed explicitly as

SER =

M∑
i=1

(
Pr (Si)

∫mSi

0
p(m | Si)dm

)
. (5.96)

MM’s blind detection

For MM’s blind detection X̃ = X, and so (5.95) simplifies to

mSi = min
Sj∈X\{Si}

1

2
×

|Si|
2 −

∣∣Sj∣∣2
|Si|

2 −
〈
Si · Sj

〉 , (5.97)

The mSi obtained for all Si∈SAj will not all be equal. They depend on the
constellation geometry. Table 11 presents, for MM’s blind detection, the upper
bound mAjUB and the lower bound mAjLB in the MM factors that cause symbol

10 A complex number a+ jb can be interpreted as a vector with coordinates (a,b), and so the scalar
vector product as applied to complex numbers is defined as

〈
(a+ jb) · (c+ jd)

〉
, ac+bd.
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errors when applied to any Si∈SAj . A symbol error occurs whenever m < mAjLB

and there will be no error if m > mAjUB.
We can thus define two analytical bounds on SER that are particularly useful

when analyzing large constellations. Assuming that all symbols are transmitted
with equal probability, and paying heed to (5.54) and (5.56), SER is bounded as

∑
j

nAjM
m
Aj
LB∫
0

p
(
m | SAj

)
dm

 6 SER 6
∑
j

nAjM
m
Aj
UB∫
0

p
(
m | SAj

)
dm

 . (5.98)

Table 12 presents the SER simulation results for an MM blind receiver, as
well as the evaluation of the analytical theoretical bounds. The 8-PSK case is
omitted because the polar MM does not cause symbol errors when it is applied
to constant amplitude constellations even though it increases the constellation’s
sensitivity to noise (EVM is non-null).

Again, the adopted statistical model is found to be accurate. The defined
analytical bounds are quite tight and establish a narrow interval for the SER
experienced through simulation.

Analysis of table 12 reinforces the conclusions drawn previously about the
performance of MM’s blind detection. In fact a relatively high SER is observed.
In addition, we confirm that constellations with low PAPRConst are more prone
to MM noise.

mAjLB mAjUB mAjLB mAjUB

8-APSK A1 0 0

64-QAM

A1 0 0

16-APSK A1 0 0 A2 0.6667 0.6667

A2 0.6201 0.6587 A3 0.6667 0.6667

16-QAM A1 0 0 A4 0.8 0.8

A2 0.6667 0.6667 A5 0.8 0.8

A3 0.6667 0.6667 A6 0.8 0.8571

32-APSK A1 0 0 A7 0.8571 0.8571

A2 0.6302 0.6761 A8 0.8571 0.8571

A3 0.7400 0.7694 A9 0.8571 0.8571

Table 11: Limits on MM factors that cause symbol errors considering MM’s blind detec-
tion. Given Si ∈SAj , MM causes a symbol error whenever m < mAjLB and no

error occurs if m > mAjUB .
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Analytical
Simulation

Analytical
lower bound upper bound

Roll-off→ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

16-APSK 5.8 2.8 1.0 6.9 3.9 1.5 8.9 5.1 2.3

16-QAM 2.6 1.4 0.68 2.8 1.3 0.43 2.6 1.4 0.68

32-APSK 9.1 6.6 4.5 10.4 7.8 5.2 12.0 9.5 7.2

64-QAM 5.3 4.0 3.2 5.9 4.1 3.1 5.8 4.3 3.4

(· · · )× 10−2

Table 12: SER experienced at detection by an MM blind receiver, when considering εs = 1,
GRRC = 1 and a 3-stage MPMM configuration at the transmitter.

EAC and MM’s blind detection with AGC

A similar derivation can be followed for the cases of detection using the MM
EAC or MM’s blind detection using AGC. Considering reference constellations
with symbols given by (5.82) for the EAC case, or the original constellation
scaled by (5.91) for the AGC case, we can get analogous tables on mAj from the
combination with (5.95). Then we can obtain, through analytical computation,
an interval for the SER experienced in each instance. But the correctness of our
analytical model has already been proved and no new insight would result
therefrom. Hence, only the simulation results on SER are presented in table 13.

Detection MM’s blind det.
using EAC with AGC

Roll-off→ 0.1 0.2 0.3 0.1 0.2 0.3

16-APSK 2.3 0.92 0.13 2.2 0.86 0.093

16-QAM 1.4 0.50 0.081 1.5 0.56 0.14

32-APSK 4.1 2.4 1.1 4.0 2.3 0.97

64-QAM 3.8 2.4 1.3 4.2 2.8 1.9

(· · · )× 10−2

Table 13: Simulation results for SER experienced at detection for: (a) receiver using the
MM EAC on detection; (b) MM’s blind detection using AGC. As in table 12,
assumptions are εs = 1, GRRC = 1 and a 3-stage MPMM configuration at the
transmitter.
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We observe a significant decrease in SER for both approaches compared
with the MM’s blind detection. Detection based on the MM EAC performs
similarly to the AGC case for PSK constellations, but considerably better for
QAM constellations. These results agree with the much lower EVM experienced
when using the MM EAC, especially for QAM modulations. In addition, also
note that SER is much lower for QAM than for PSK transmission, even when
comparing constellations of considerably different sizes, e.g. 64-QAM and 32-
APSK. This explains the higher BER performance losses observed in section 4.4
for PSK constellations.

5.4 performance analysis using channel coding

In this section we derive bounds on the BLER performance of the MM scheme
over an AWGN channel when using FEC based on linear block coding. Hard-
and soft-decision cases are both handled.

The development closely follows that used in section 2.3. Let C be a binary
(n, k) linear block code with minimum Hamming distance dmin and weight
enumerating polynomial A(z). We also assume coherent BPSK transmission and
that MM EAC is used in detection.

As in section 2.3, let c = [c0, c1, · · · , cn−1] denote a codeword ∈ C, and
s=[s0, s1, · · · , sn−1] be the corresponding BPSK sequence obtained from (2.41).
Finally, let sMM=

[
sMM0 , sMM1 , · · · , sMMn−1

]
denote the sequence that results

from applying MM to s, and r = [r0, r1, · · · , rn−1] the n sampled outputs of
the receiver’s matched filter. When MM is used, each received sampled output
may be expressed as11

ri = sMMi +ni = mi
√
Es (2ci − 1) +ni , (5.99)

where mi and ni are r.v. representing the MM factor applied to symbol si
and the AWGN noise added to the MM transmitted symbol sMMi , with ni ∼
N(0,N0/2).

5.4.1 Hard-Decision Decoding Performance

The beta distributions of the MM factors that apply to each of the BPSK constel-
lation symbols (

√
Es and −

√
Es) are known to be the same according to (5.56).

Hence, assuming that transmitted symbols are equiprobable, by reasoning simi-
lar to that followed in section 2.3.2, it is easy to conclude that when performing
hard-decision decoding according to (2.50), the optimum decision threshold is

11 Throughout this chapter the average energy per transmitted symbol has been denoted as εs. But in
section 2.3.2 the energy of a transmitted BPSK symbol was denoted as Es. Since the development
in this section closely follows that in section 2.3.2, the former notation will be used, and so, in the
BPSK context, whenever there is a reference to a previous current chapter’s formula εs = Es.
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also at τ = 0. The system from the modulator’s input to the hard-decoder’s
output can thus be seen as a BSC channel with a crossover probability given by
(2.53), i.e.

p = Pr
(
ri < 0

∣∣∣si=√Es) = Pr
(
ri > 0

∣∣∣si=−
√
Es

)
. (5.100)

Although MM does not cause any symbol errors in the BPSK sent symbols,
because mi ∈ ]0, 1], the constellation’s increased sensitivity to noise should be
taken into account when computing the crossover probability p of the equivalent
BSC channel. Hence, equation (5.100) can be rewritten as

p =

∫1
0

Pr
(
ni>m

√
Es

∣∣∣ sMMi=−m
√
Es

)
p
(
m | si=

√
Es

)
dm , (5.101)

and so, from combining (5.54) and the Gaussian distribution of ni with (5.101),
we get

p =

∫1
0
Q

(
m

√
2Es

N0

)
Γ(α+β)

Γ(α) Γ(β)
mα−1 (1−m)β−1 dm . (5.102)

The integral may be expressed as

p =
1

2
+m

√
Es

πN0
× 3F3

(
1
2 , 1+ α

2 , 1
2 +

α
2

3
2 , 1+ α+β

2 , 1
2 +

α+β
2

; −
Es

N0

)
, (5.103)

where m is the expectation of the MM factors given by (5.83), and pFq, with
p,q ∈N+, is the generalized hypergeometric function [2, 23], defined as

pFq

(
a1,a2, · · · ,ap
b1,b2, · · · ,bq

; z

)
=

∞∑
n=0

(a1)n (a2)n · · · (ap)n
(b1)n (b2)n · · · (bq)n

zn

n!
, (5.104)

with (a)n denoting the Pochhamer symbol, which can be computed as

(a)n = a (a+ 1) · · · (a+n− 1) =
Γ(a+n)

Γ(a)
. (5.105)

As in section 2.3.2, it is convenient to express p as a function of the signal
to noise ratio per information bit Eb/N0. Relation (2.56) has to be modified
according to the fact that MM is now being used. Since it is assumed that all
symbols occur with equal probability, the average energy of a symbol of the MM
EAC, i.e. EsMM , equals the average transmitted power of the MM signal, which
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is given by (5.60) for constant amplitude constellations such as BPSK. Hence,
Eb relates to Es according to

Eb =
nEsMM

k
=
EsMM

rc
=

E
{
m2
}
Es

rc
, (5.106)

which makes it possible, through simple substitution in (5.103), to express p as
a function of Eb/N0.

It has been shown in section 2.3.2 that for a transmission over a BSC with
crossover probability p, the decoder’s probability of committing a decoding
error is upper bounded by (2.64). By combining (2.64) with p given by (5.103)
we thus obtain an upper bound on PE when performing hard decoding for a
system using MM. Again, equality holds in equation (2.64) if the linear block
code is perfect, e.g. the Golay (23, 12) code.

Analytical and simulation results under hard-decision decoding for this Golay
code are plotted in figure 46. The results refer to a system using a 3-stage
MPMM configuration at the transmitter that performs RRC pulse shaping with
roll-off= 0.2. Hard-decision simulation results when no MM is used, presented
in figure 7, previously, are also reproduced for comparison.

This analytically-derived bound is found to be exact, just as expected. When
it is compared with the non-MM case the graph shows a fall of only 1dB in
performance in the probability of error domain at PE = 10−5. This again proves
the high efficiency of the MM scheme, since, for the tested configuration, the
need to back-off is completely eliminated, which is equivalent to a gain of about
5.8dB (see table 2 and figure 31).

5.4.2 Soft-Decision Decoding Performance

The computation of the exact error probability PE for soft-decision decoding is
not a trivial task, as was shown in section 2.3.3. We have therefore resorted to
the union bound (2.74). The same approach will be taken in the study on the
MM case. As in section 2.3.3, an upper bound on PE can be computed as

PE 6
∑

c̄i

Pr[c̄i]
∑

cj∈C\{c̄i}
Pr
[
C
(
r, cj

)
>C(r, c̄i)

] , (5.107)

where c̄∈C denotes the codeword assumed to be sent.
The MM EAC is assumed to be used on detection. Hence, equation (5.99)

can be rewritten as the sum of the expected MM BPSK symbol and the noise
contributions from the MM distortion and the AWGN channel, i.e.
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ri = msi + (mi −m) si +ni

= m
√
Es (2ci − 1) + e

(EAC)

MMi
+ni , (5.108)

where e(EAC)

MMi
is the error vector signal (5.84). The two noise sources12, eMMi and

ni, are independent and both have zero mean. The variance of eMMi is given by
(5.86), which for BPSK simplifies to

σ2eMM
= σ2mEs =

αβ

(α+β+ 1) (α+β)2
Es , (5.109)

where σ2m denotes the variance of the MM factors. As stated before, it is consid-
ered that ni ∼ N(0,N0/2).

Remember that although the MM system has memory because of the treata-
bility reasons of the problem it has been assumed that mi only depends on the
current constellation symbol si being MM, and so the MM noise contributions,
eMMi with i = 0, · · · ,n− 1, that add to each symbol si of a codeword s∈C can
be considered independent of one another. Furthermore they all obey the same
statistical distribution. The composite channel (MM+AWGN) can thus be seen as
symmetric, and since the code is linear the sum

∑
cj∈C\{c̄i} Pr

[
C
(
r, cj

)
>C(r, c̄i)

]
is the same for all c̄i. Therefore, just like in section 2.3.3, it can be assumed that
the all-zero codeword c̄0 is transmitted, and computation of (5.107) also reduces
to (2.74), i.e.

PE 6
∑

cj∈C\{c̄0}
Pr
[
C
(
r, cj

)
>C(r, c̄0)

]
. (5.110)

Expanding the probability that C
(
r, cj

)
>C(r, c̄0) by using equation (5.108),

we get the same equation that was obtained in (2.75), that is

Pr
[
C
(
r, cj

)
>C(r, c̄0)

]
= Pr

[
n−1∑
i=0

ri
(
cji − c̄0i

)
> 0

]
= Pr

[
Sj > 0

]
, (5.111)

where Sj denotes the sum
∑n−1
i=0 ri

(
cji − c̄0i

)
.

The random variables ri, with i= 0, · · · ,n− 1, are no longer Gaussian. But
they are still independent as a result of noise contributions eMMi and ni, being
independent not only of each other (i.e. for the same index i), but also from

12 Hereafter, we will omit superscript on eMMi . We only used it in (5.108) to make it clear that we
were referring to the error vector signal for the detection case using the MM EAC.
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symbol to symbol. It thus follows from (5.108) that the mean and variance of ri
are

mri = E{ri} = −m
√
Es , (5.112)

σ2ri = E
{(
ri −mri

)2}
= σ2mEs +

N0
2

. (5.113)

Hence, Sj is a sum of independent random variables formed by wH
(
cj
)

non-null terms that correspond to the positions where cj differs from c̄0. By
the central limit theorem [84], Si has a cumulative distribution function that
approaches a normal (Gaussian) distribution with mean

mSj = −wH
(
cj
)
m
√
Es , (5.114)

and variance

σ2Sj =

(
σ2mEs +

N0
2

)
wH
(
cj
)

, (5.115)

and so probability (5.111) is given by

Pr
[
Sj > 0

]
= Q

(
−
mSj
σSj

)
= Q

m
√√√√ wH

(
cj
)
Es

σ2mEs +
N0
2

 . (5.116)

Combining (5.116) with (5.106), we can express Pr
[
Sj > 0

]
as a function of

Eb/N0. After proper manipulation we obtain

Pr
[
Sj > 0

]
= Q

m
√√√√√ wH

(
cj
)

σ2m +
E{m2}

2rc
Eb
N0

 . (5.117)

The union bound on the probability of decoding error PE can thus be obtained
straightforwardly through substitution of (5.117) in (5.110), which gives

PE 6
n∑

w=dmin

AwQ

m
√√√√√ wH

(
cj
)

σ2m +
E{m2}

2rc
Eb
N0

 . (5.118)
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where Aw is the w-th order coefficient of the weight enumerating polynomial
A(z) of the linear code C.

As in section 2.3.3, a very good approximation of (5.118) that does not require
the knowledge of A(z) can be obtained for large values of Eb/N0. Here, the
term relating to codewords with minimum Hamming weight dmin is dominant
in the summation (5.118), and so PE can be upper bounded by

PE 6 AdminQ

m
√√√√√ dmin

σ2m +
E{m2}

2rc
Eb
N0

 . (5.119)

Bounds given by equations (5.118) and (5.119) are compared in figure 46, with
the exact word error probability (obtained by Monte Carlo simulation), for the
case of the binary (23, 12) Golay code. The results refer to the same system
configuration used in the previous section for the hard-decision case.

We observe that both bounds are indeed quite tight, providing a very good
approximation of the exact word error probability under soft-decision decod-
ing. This not only validates the usefulness of the derived expressions and the
assumptions made during development, but it also confirms the correctness of
the MM factors’ statistical model.

Figure 46 also plots the soft-decision decoding error probability when no
MM is used. As for the hard-decision case, performance loss at PE = 10−5 is
less than 1dB, which proves the high efficiency of the system compared with
the reduction of about 5.8dB obtained in the required back-off for the system
configuration tested. In addition, figure 46 also shows that the ≈ 2dB difference
between hard- and soft-decision remains unaltered.

Error Floor

For very high Eb/N0 values, the MM noise contribution eMMi becomes domi-
nant over the AWGN noise. In this case, probability (5.117) can be approximated
by

Pr
[
Sj > 0

]
≈ Q

m
√

wH
(
cj
)

σ2m

 . (5.120)

which does not depend on the signal noise ratio per information bit. Hence,
an error floor under soft-decision decoding will be observed for high values of
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Figure 46: Comparison of bounds with exact error probability for hard-decision and
soft-decision decoding for the Golay (23, 12) code, when MM is used. Results
refer to a system using a 3-stage MPMM configuration at the transmitter and
an RRC pulse shaping filter with roll-off=0.2.

Eb/N0. This is dictated by the MM distortion and it can be estimated based on
the union bound (5.110), when using approximation (5.120), which gives

PE (error floor) ≈
n∑

w=dmin

AwQ

m
√

wH
(
cj
)

σ2m

 . (5.121)

This error floor is fortunately extremely low. As an example, for the (23,
12) Golay code when considering the system configuration in figure 46 the
computation of (5.121) yields 4.3485×10−56.

5.5 conclusion

A mathematical model based on the parameterized beta distributions has been
proposed to characterize the statistical distributions of the MM factors for
different SC constellations. Building on the proposed model, an analytical
performance analysis of the MM technique was carried out in terms of: the
power of the transmitted signal, the EVM and SER experienced in a noiseless
transmission, and in the BLER when channel coding is used. The derived
expressions and bounds have been shown to be quite accurate. This not only
allows us to confirm the exactness and usefulness of the proposed statistical
model, it also provides an analytical validation as to the effectiveness of the MM
technique as a highly efficient peak-power reduction technique that does not
cause spectral spreading.



6
C O N C L U S I O N S A N D F U T U R E
W O R K

6.1 conclusions

This thesis has addressed the problem of reducing the PAPR of band limited
SC signals. We were seeking to reduce the power amplifier back-off on com-
munication systems such as VSAT, whose capacity is limited by the low power
efficiency of the transmitter’s non-linear HPA.

Research was focused on the development of the magnitude modulation
technique, an effective PAPR reduction method first proposed (in the nineties)
by Miller et al. [74, 75], and later enhanced by Tomlinson et al. [4, 108] with
a proposal of a low-complexity LUT approach. However, the effectiveness of
their approaches was limited to constant amplitude constellations, i.e. PSK
modulations.

This work has made significant contributions to the MM concept. The LUT
approach has been improved considerably and a new, highly efficient, polyphase
MM algorithm has been proposed. Both techniques can now be applied to high-
order non-constant amplitude constellations. However, the affordable treatment
of the huge number of symbol combinations to be handled when applying the
LUT’s method still limits, in this case, the constellation’s size to M 6 16.

Other important achievements include the development of detection tech-
niques that substantially reduce the noise sensitivity due to MM, and the
proposal of a mathematical model for the statistical distributions of the MM
factors that permits the analytical performance evaluation of MM systems.

In more detail, the main contributions of this thesis are:

• The LUT-MM approach has been improved and extended to constellations
up to M 6 16 in size [32, 34, 38]. In order to cope with the additional
complexity, new clipping limits have been proposed [32] and the method’s
ability to avoid phase modulation improved [34]. By exploring the constel-
lation’s symmetry and the RRC’s linear phase characteristic we have also
been able to present a new method for compacting MM look-up tables and
speed-up their computation. We have further contributed with a detailed
analysis of the different schemes to compute the MM tables.

• A new, highly efficient, Multistage Polyphase Magnitude Modulation algo-
rithm for PAPR reduction, has been developed, where MM factors are
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computed in real time by a low-complexity polyphase filter system [35–38].
The main advantages of this technique have been highlighted. It has been
proved that MPMM is independent of the modulation mapping geometry,
making it possible to extend the MM concept to higher order and/or
non-constant amplitude constellations. In fact, the analysis of the MPMM
system has demonstrated that there are no constraints on the type of its
input signal and, as noted, any number of MPMM base-system blocks
can be added in a serial cascade, with each additional stage providing
a fine control of the envelope excursion of the band-limited signal to be
transmitted. The MPMM’s efficiency is demonstrated by showing that it
provides a better control of the envelope’s peak power of SC band lim-
ited signals than previous MM approaches, even when only considering
1-stage. Furthermore, with just a few stages (typically 3), it is possible
to almost eliminate the need for back-off, even at very low filter roll-off
values.

• To offset the increased sensitivity to noise caused by MM, two effective
techniques for improving the detection of the MM signal have been pre-
sented, viz.: detection based on the MM estimated average constellation
(EAC) [36]; and detection with estimation of MM factors in the receiver.
These techniques were developed with the aim of ameliorating the correct
estimation of the a priori code bit LLRs used in the soft-decision decoding
of the MM signal. It has been shown that EAC detection can provide a
notable improvement in performance with respect to MM’s blind reception
without entailing changes in traditional receivers. The main innovation in
the second technique is the combination of MM factors’ estimation and
soft decoding in a feedback loop scheme. It was shown that this method is
particularly efficient for higher order constellations with M > 32 (more
sensitive to MM distortion), especially when less powerful FEC coding is
used.

• A mathematical model based on parameterized beta distributions has been
proposed for characterizing the statistical distributions of MM factors for
different SC constellations [38, 39]. This work also contains an analytical
performance analysis of the MM technique in terms of the power of the
transmitted signal, the EVM and SER experienced in a noiseless transmis-
sion, and the BLER when channel coding is used. Based on the proposed
model, closed analytical expressions were provided for the evaluation of
the EVM, as well as tight bounds on the SER and BLER experienced. Model
correctness was confirmed by comparison with experimental results, and
the derived expressions and bounds were found to be quite accurate.

The effectiveness of the proposed techniques was validated by means of
simulation. It considered constellations up to M = 64 in size and pulse shaping
with sharp roll-offs (α 6 0.35). Performance was evaluated in terms of the



6.2 future work 139

reduction observed in the PAPR, the required back-off to drive the HPA close to
saturation, and in the BER experienced over the AWGN channel when using a
FEC system based on LDPC codes. As a measure of overall performance, it was
defined the net back-off gain (3.34).

It should be stressed that a significant net back-off gain above 5dB (at
BER= 10−5) was obtained with the MPMM scheme using a (1248, 832) LDPC
code [49]). This confirms the extremely high efficiency of the new MPMM
technique proposed in this thesis. Although, net_GBO has also shown some
dependency on the error correcting capabilities of the selected FEC scheme, the
methods developed for improving the detection of the MM signal proved that it
is possible to obtain effective high net_GBO gains for different combinations of
modulation and coding.

Finally, the importance of the developed analytical model for the statistical
characterization of MM factors’ distributions should be emphasized. It provides
an analytical validation of the effectiveness of the MM technique as a highly
efficient peak-power reduction technique.

6.2 future work

Power efficiency is a key issue in our world today. The interest in PAPR reduction
in telecommunications proves it. The problem extends over different (but related)
fields such as SC and MC communications and software radio (SWR). This work
has addressed a small piece of this problem, although it provides a solid starting
basis for future research.

One open subject is the study of MM applied to SC-FDMA [95]. The recent
interest in such an SC modulation scheme, thanks to its PAPR characteristics
being better than those of OFDM, makes it a promising research topic. However,
the PAPR problem is still present in SC-FDMA, and it is our belief that MM
could be a good solution to minimize it.

Adapting the MM concept to the MC case and comparing it with state-of-the
art techniques is another demanding challenge.

Another field in which the PAPR problem arises, and which is also of interest
to us and the subject of future investigation, is SWR. An SWR signal combines
multiple standards where each has its own system parameters. Some standards
use MC modulation (like OFDM based systems) whereas others use SC modula-
tion (like GSM). Since the SWR signal is a combination of these different SC and
MC modulation based standards it may well inherit high PAPR.
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A
N Y Q U I S T F I LT E R A N D I T S PA P R
C O N T R I B U T I O N

As stated in chapter 1, the largest contribution to the PAPR of a band limited
SC signal comes from the Nyquist pulse shaping. Thus it makes sense to briefly
discuss the Nyquist filter characteristics and the type of filters normally used to
implement it, such as the root-raised cosine filter.

In this section we also evaluate the contribution of the Nyquist filter to the
total PAPR of a bandwidth limited SC modulated signal, i.e. the PAPR of signal
x[n] for the generic SC transmitter system in figure 1 (chapter 1).

a.1 nyquist pulse shaping

The Nyquist pulse is the signal pulse required to communicate over band-limited
channels with no ISI. The continuous-time version of this family of filters is
described in almost every communications book [10, 65, 87]. However, only a
few discuss their digital version counterpart that is generally used in practice
[44, 105]. For a pulse duration of L samples (interpolator up-sampling factor
[44, 76] in figure 1), the digital pulse-shaping filter should satisfy the so-called
Nyquist condition for zero ISI, i.e. the impulse response hNyq is such that

hNyq[kL] = 0 , ∀ k ∈ Z\ {0} . (A.1)

A frequently used class of filters verifying the Nyquist criteria is the raised
cosine RC filters. The frequency response of an RC filter in the continuous-time
domain is

HRC(jω)=


TSYMB , 0 6 |ω| 6 (1−α)π

TSYMB
TSYMB
2

{
1+ cos

[
TSYMB
2α

(
|ω|−

(1−α)π
TSYMB

)]}
, (1−α)π
TSYMB

6 |ω| 6 (1+α)π
TSYMB

0 , |ω| > (1−α)π
TSYMB

(A.2)

where TSYMB is the symbol’s duration time period and α is the filter roll-off
which specifies the excess bandwidth with respect to 1/(2TSYMB) (the minimum
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bandwidth required, according to Nyquist theory [10, 87], to transmit a sequence
at rate 1/TSYMB).

In order to maximize the signal-to-noise ratio (SNR) at the output of the re-
ceiver’s front-end the receiver filter must be matched to the transmitting shaping
filter [87]. Hence, the overall RC spectral characteristic is usually split evenly
between the filters used at the transmitter and receiver, i.e. both having a spec-
tra of magnitude |HRRC(jω)| =

√
|HRC(jω)|, which is why this filter is called

root-raised cosine.
The impulse response of a digital RRC is obtained by sampling the continuous

time impulse response1 hRRC(t) = F−1{HRRC(jω)}, at a rate fSMPL = L/TSYMB,
which gives,

hRRC[n] =
4αn2 cos

[
πn(1+α)

L

]
+ L sin

[
πn(1+α)

L

]
[
1−

(
4αnL

)2]
πn
√
L

, (A.3)

which was scaled, to ensure
∑
n |h[n]|2 = 1. The autocorrelation of the RRC

impulse response, i.e. hRRC[n] ∗ h∗RRC[−n], is a Nyquist filter and thus satisfies
(A.1).

The oversampling factor L ∈N determines the up-sampling factor that precedes
the pulse shaping filter in figure 1. According to the Nyquist sampling theorem
[76, 82], in order to avoid aliasing we must guarantee that

fSMPL >
2

TSYMB
(1+α) . (A.4)

In practice, the use of a higher up-sampling factor imposes fewer restrictions
on the design of the DAC’s reconstruction filter, allowing a considerable reduc-
tion in its order and so lowering its cost [44]. Therefore, it is usual to operate
the digital RRC filter at 4 or 8 samples per symbol, i.e. to set L = 4 or 8.

To limit the impulse response hRRC[n] to a finite duration, hRRC[n] is usually
truncated by applying a rectangular window that spreads over 2N+ 1 symbols2.
The parameter N should be large enough to guarantee almost zero ISI [44]. To
solve this problem and also the fact that the side-lobes in the spectrum of the
finite duration hRRC[n] are quite high (rectangular windowing), other windows
are also used [44] or, alternatively, filter coefficients are optimized [11, 105, 113].

1 F−1 {H(jω)} stands for the inverse Fourier transform of H(jω) [82].
2 This leads to a filter of 2NL+ 1 taps
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a.2 nyquist filter contribution to signal papr

Consider the generic block diagram of a typical SC transmitter, as shown in
figure 1 (section 1.2). It is our intention to prove that, as stated in chapter 1, the
PAPR of a single carrier band limited signal x[n] is

PAPRx[n] = PAPRConst + PAPRRRC , (A.5)

with PAPRConst and PAPRRRC given by (1.3) and (1.4), respectively.
Symbols at the output of the demodulator are assumed to be independent

and identically distributed (i.i.d.) random variables (r.v.). As shown before, the
transmitted average power is given by

σ2s = E
{
|s[n]|2

}
=
1

M

M∑
i=1

|Si|
2 = εs , (A.6)

and so the expression (1.3) for PAPRConst, i.e. the PAPR of s[n], is readily yielded
from applying the PAPR definition when using (A.6).

Let us now prove that the contribution from Nyquist pulse shaping is given
by (1.4). Consider the more general case of a zero mean WSCS signal s[n] with
average power σ2x. Its PAPR is expressed as

PAPRs[n] = 10 log10

(
max |s[n]|2

σ2s

)
(dB) . (A.7)

The proof makes use of the theoretical insights addressed in section 5.2. From
theorem 5.1, since s[n] is WSCS, and the autocorrelation of h[n] satisfies the
Nyquist condition for zero ISI, then the average power of the band limited signal
x[n] is given by

σ2x =
σ2s
L

∞∑
n=−∞ |h[n]|2 . (A.8)

In order to obtain the PAPR of signal x[n], we just have to evaluate

max
n

|x[n]| = max
n

∣∣∣∣∣∑
k

h[k] su[n− k]

∣∣∣∣∣ . (A.9)

Since the transmitter system is multirate the pulse-shaping can be performed
at symbol rate according to polyphase decomposition (4.15), as presented in
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figure 25 (see section 4.1.3). Denoting the output signal of each polyphase filter
Ei(z) as yi[n], we get

max
n

|x[n]| = max
i=0,1,··· ,L−1

|yi[n]|

= max
i=0,1,··· ,L−1

∣∣∣∣∣∑
k

h[kL+ i] su[n− k]

∣∣∣∣∣ , (A.10)

which, according to algebra properties, can be upper bounded as

max
n

|x[n]| 6 max
i=0,1,··· ,L−1

∑
k

∣∣∣h[kL+ i] su[n− k]
∣∣∣

6 max
n

|s[n]|× max
i=0,1,··· ,L−1

∑
k

∣∣h[kL+ i] ∣∣ . (A.11)

The PAPR of x[n] can thus be computed as

PAPRx[n] = 10 log10

(
max |x[n]|2

σ2x

)

= 10 log10

max
n

|s[n]|× max
i=0,1,··· ,L−1

∑
k |h[kL+ i]|

σ2s
L

∞∑
n=−∞ |h[n]|2

 (A.12)

which can be written as

PAPRx[n] = 10 log10

(
max
n

|s[n]|

σ2s

)
︸ ︷︷ ︸

PAPRs[n]

+ 10 log10

 max
i=0,1,··· ,L−1

∑
k |h[kL+ i]|

1
L

∞∑
n=−∞ |h[n]|2


︸ ︷︷ ︸

PAPRRRC

.

(A.13)

(q.e.d.)
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W I M A X A N D D V B - S 2 L D P C
C O D E S

Low-density parity-check codes LDPC [20, 21, 68] are currently one of the most
important classes of linear block codes that are capable of approaching the
Shannon limit [99]. Their importance is reflected by their recent inclusion in
several standards, such as WiMAX IEEE 802.16e [49], Mobile Broadband Wireless
Access (MBWA) IEEE 802.20 [50], Ethernet IEEE 802.3an [51] and the satellite’s
digital video broadcast DVB-S2 [19].

This was the main reason why we chose them for the FEC system of the
testbed we used to evaluate the performance of peak power control techniques
proposed in this work. The codes we used were taken from the WiMAX IEEE
802.16e standard [49] because of their linear encoding complexity and their
affordable length for computer simulations. Their structure is therefore set forth
in this appendix, though briefly.

This appendix also reports some research work on parallel architectures for
encoding and decoding [30, 31, 33] the LDPC codes used by DVB-S2 that has
been carried out alongside with the thesis’ main work1.

b.1 structured ldpc-ira codes

LDPC codes [20, 21, 68] are linear block codes defined by sparse parity-check
matrices H and they are usually represented by Tanner graphs [106]. A Tanner
graph is a bi-partite graph formed by two types of nodes. Check nodes (νC), one
per each code constraint, and bit nodes, one per each codeword bit (information
and parity, respectively, νI and νP), with the connection edges between them
being given by H.

They are decoded using low complexity iterative belief propagation algorithms
operating over the Tanner graph description [12]. However, a major drawback is
their high encoding complexity caused by the fact that the generator matrix G
is, in general, not sparse. In order to overcome this problem, standards such as
DVB-S2 and WiMAX have adopted a special class of LDPC codes, with linear
encoding complexity, named Irregular Repeat-Accumulate (IRA) [58].

1 Their importance is shown by the high number of known citations to [31].
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b.1.1 IRA Codes

Although the parity check matrix H of an LDPC code is sparse, the generator
matrix G needed for encoding is usually not sparse, and this leads to storage
and encoding complexity problems. An IRA code is characterized by a parity
check matrix H of the form,

H(n−k)×n =
[
A(n−k)×k | B(n−k)×(n−k)

]

=


a00 a01 · · · a0,k−1 1

a10 a11 · · · a1,k−1 1 1

...
...

...
. . .

. . .

an−k−2,0 an−k−2,1 · · · an−k−2,k−1 1 1

an−k−1,0 an−k−1,1 · · · an−k−1,k−1 1 1

 . (B.1)

where B is a staircase lower triangular matrix. By restricting A to be sparse, an
LDPC-IRA code is obtained [18].

The codes defined by (B.1) are systematic, i.e. the codewords have the fol-
lowing format, c = [i | p], with the information bits i = [i0 i1 · · · ik−1] being
associated with the A matrix, and the parity check bits p =[p0 p1 · · ·pn−k−1],
with the B matrix. In terms of Tanner graph representation, this means that check
nodes (CN) related to the code constraints are connected with two different
types of bit nodes (BN): the information nodes (IN) that represent the information
bits, and the parity nodes (PN) associated with the parity check bits, as shown in
figure 47.

...

...

... ...3
w

lw

...

k Information Nodes ( IN )

Permutation Network ( matrix A )

n-k Parity Nodes ( PN )

Check Nodes ( CN )

Figure 47: Tanner graph description of an LDPC-IRA code [60].

The bi-diagonal structure of the B sub-matrix corresponds to a zigzag connec-
tivity between CNs and PNs, which allows the computation of the parity check
bits directly from the A matrix, in a recursive manner, according to:
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p0 = a00i0 ⊕ a01i1 ⊕ · · · ⊕ a0,k−1ik−1

p1 = a10i0 ⊕ a11i1 ⊕ · · · ⊕ a1,k−1ik−1 ⊕ p0
...

p0 = an−k−1,0i0 ⊕ an−k−1,1i1 ⊕ · · · ⊕ an−k−1,k−1ik−1 ⊕ pn−k−2 , (B.2)

where ⊕ is the GF(2) addition operator. For LDPC-IRA codes, since the A matrix
is sparse, this presents an O(n) encoding complexity [58].

b.1.2 DVB-S2 LDPC Codes

The H matrices of the DVB-S2 LDPC codes have properties other than being of
IRA type [18, 19]. Some periodicity constraints were imposed on the pseudo-
random design of the A matrices to make it possible a significant reduction in
the storage requirement without code performance loss.

The matrix A construction technique is based on dividing the νI nodes in
disjoint groups of M consecutive ones. All the νI nodes of a group l have the
same weight wl, and it is only necessary to specify the νC nodes that connect
to the first νI of the group in order to know the νC nodes that connect to each
of the M−1 remaining νI nodes.

Denote by
{
r1, r2, · · · , rwl

}
the indices of the νC nodes that connect to

the first νI of group l. The indices of the νC nodes that connect to νIi , with
0 6 i 6M− 1, of group l can be obtained by,

{
(r1 + i× q) mod (n− k) , (r2 + i× q) mod (n− k) , · · · ,(
rwl + i× q

)
mod (n− k)

}
(B.3)

with q = (n− k) /M and M = 360 (a common factor for all DVB-S2 supported
codes). The structure of H is presented in figure 48.

Another property of matrix A is that for each supported code there is a set of
groups of νI nodes of constant weight w > 3 (w is code dependent), while all
the others have weight 3.

b.1.3 WiMAX LDPC Codes

The LDPC codes in WiMAX [8, 49] standards are quasi-cyclic codes. The stan-
dard specifies six different code classes spanning four different code rates. All
defined codes are based on the expansion of a H ′ base matrix which has an
IRA-type structure. The H ′ matrix consists of 24 columns and (1− R)×24 rows2,
with each integer entry p > −1, describing a z-by-z sub-matrix which is either a
p-right shifted permuted identity matrix (for p > 0) or a zero matrix (p = −1).

2 R stands for the code rate.
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Figure 48: H matrix structure of a DVB-S2 LDPC-IRA code.

The first R×24 columns correspond to the message information and the rest
(1− R)×24 to the parity information. The size of sub-matrices z-by-z is variable
and ranges from 24×24 to 96×96 with a granularity of 4, therefore supporting
19 codeword sizes that ranges from n = 576 to n = 2304. The parity check
matrix of the rate 1/2 code for z = 96 case is shown in figure 49 [8].

Figure 49: H matrix structure of a WiMAX LDPC code for rate 1/2 and z = 96 [8].
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b.2 hardware architectures for dvb-s2 ldpc-ira codes

Standards like DVB-S2 and WiMAX specify different combinations of modu-
lation and coding (MODCOD) schemes. For instance, DVB-S2 supports two
different frame lengths (16200 bits for low delay applications and 64800 bits
otherwise) and a set of different code rates (1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5,
5/6, 8/9 and 9/10) for both frame lengths and for different modulation schemes
[18, 19]. A normally important issue is the design of the LDPC encoder and
decoder architectures to be compliant with all MODCOD schemes.

This section presents efficient LDPC encoding and decoding hardware archi-
tectures [30, 31, 33] for DVB-S2 which were developed during this work.

b.2.1 DVB-S2 LDPC Encoder Architecture

By proper manipulation of (B.2) and considering the periodicity factor M = 360

common to all DVB-S2 LDPC IRA codes we developed an efficient encoder
algorithm shared by all code options (length and rate) which is able to perform
partial-parallel computation of the parity check bits, thereby increasing the
encoder throughput.

Encoder algorithm

Let IN(r) denote the indices of the information bits that participate in the parity
check node restriction r, i.e. in νCr , and let CN(c) denote the indices of CNs that
are connected to νIc, where the letters ”r” and ”c” refer to row and column of H.
Hence, equations (B.2) can be rewritten as,

p0 = ⊕
z∈IN(0)

iz = S0

p1 = ⊕
z∈IN(1)

iz ⊕ p0 = S1 ⊕ S0
...

pr = Sr ⊕ pr−1 =
r
⊕
i=0

Si , (B.4)

for r = 0, · · · , (n−k−1) and with,

Sr = ⊕
z∈IN(r)

iz . (B.5)

The preceding equation can be recursively computed for each CN in the
following way,
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for r = 0 : (n− k− 1) do

for each z ∈ IN(r) do

Sr = Sr ⊕ iz
end

end (B.6)

with Sr (for all r) being initialized to zero.
Instead of processing the CNs one by one, which requires the a priori knowl-

edge of all information bits, we can swap the processing order from horizontal to
vertical. So, for each new information bit received by the encoder the associated
Sr values are updated according to,

for c = 0 : (k− 1) do

for each r ∈ CN(r) do

Sr = Sr ⊕ ic
end

end (B.7)

Considering the DVB-S2 LDPC’s codes periodicity, each inner cycle of (B.7)
can be performed simultaneously for M = 360 CNs, thereby increasing the
encoder throughput. According to (B.3), we know that for each group of M
received information bits, say {ic, ic+1, · · · , ic+M−1}, with c mod M = 0, we only
need to know CN(c) in order to find CN(c+j), for j = 1, · · · ,M−1. In fact, if νCr
is connected to νIc (i.e. r ∈ CN(c)), then [(r+ j× q) mod (n− k)] ∈ CN(c+j).

Hence, the iterative encoding procedure (B.7) can be rewritten as,

for c = 0 :M : (k−M) do

for each r ∈ CN(r) do

Sr = Sr ⊕ ic
S(r+q)mod(n−k) = S(r+q)mod(n−k) ⊕ ic+1...

S(r+(M−1)×q)mod(n−k) = S(r+(M−1)×q)mod(n−k) ⊕ ic+M−1

end

end (B.8)
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If we store the Sr values as in the following binary matrix,

S =



S0 Sq S2q · · · S359q

S1 Sq+1 S2q+1 · · · S359q+1

S2 Sq+2 S2q+2 · · · S359q+2
...

...
...

. . .
...

Sq−1 S2q−1 S3q−1 · · · Sn−k−1


(q×M)

(B.9)

we can easily check that all updated Sr values in (B.8) are in the same row of S.
The only problem is that they may not be in the order needed to perform the
iterative computation specified by (B.8). However, by observing the structure of
S we conclude that we just need to perform a cycle shift of the corresponding S
row or, alternatively, a rotation of the information vector. The second solution is
preferable, since the operation on S can be easily vectorized in this way.

Considering the required row, S(r modq, :), and the information vector,
i =[ic ic+1 · · · ic+M−1], the inner cycle (B.8) can thus be written as,

S(r modq, :) = S(r modq, :)⊕ rotrdivq(i) , (B.10)

where rota(·) is a right circular shift of a bits.
Once the Sr values are known we can easily compute the parity bits, pr,

according to the recursive operations in (B.4). But this method would imply a
significant encoder delay. Once again it is possible to increase the throughput
by using vectorized approaches. By computing the checksum of all columns of
S we obtain the following vector,

s =

[
q−1
⊕
i=0

Si
2q−1
⊕
i=q

Si
3q−1
⊕
i=2q

Si , · · · ,
359q−1
⊕

i=358q
Si

360q−1
⊕

i=359q
Si

]
(1×M)

, (B.11)

which can be transformed by the following matrix operation in GF(2),

L× sT =

[
q−1
⊕
i=0

Si
2q−1
⊕
i=0

Si
3q−1
⊕
i=0

Si , · · · ,
359q−1
⊕
i=0

Si
360q−1
⊕
i=0

Si

]
= s’ , (B.12)

where L is an M ×M lower triangular matrix of ones. Next, the vector s’
undergoes a logical right shift of one bit in order to obtain,

[
0
q−1
⊕
i=0

Si
2q−1
⊕
i=0

, · · · ,
360q−1
⊕
i=0

Si

]
=
[
0 pq−1 p2q−1 , · · · , p359q−1

]
. (B.13)
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Finally, for j = 0, · · · ,q−1 , we calculate M parity bits at a time using the
following procedure,

[
pj pq+j p2q+j , · · · , p359q+j

]
=
[
pj−1 pq+j−1 p2q+j−1 , · · · , p359q+j−1

]
⊕S(j, :) .

(B.14)

The sorting in natural order of the results in (B.14) can be included in the
encoder interleaver design that follows the LDPC encoder [19].

Encoder architecture

Figure 50 presents the encoder architecture that implements the algorithm just
described [30, 33]. It is composed of three major modules which are responsible
for computing the Sr values (Task 1), performing the checksum of all columns
of the S memory (Task 2) and, finally, computing the parity check bits (Task 3),
according to (B.10), (B.11) and (B.14), respectively.

The proposed architecture is independent of the chosen DVB-S2 LDPC-IRA
code. In fact the S RAM only has to be designed for the worst case scenario,

Figure 50: Architecture for the DVB-S2 LDPC-IRA encoder.
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i.e. q = 135. Based on the code rate and frame length, the appropriate row of
the control ROM is selected, where the encoder control parameters for each
DVB-S2 LDPC code (the number of IN’s groups of weight w) are stored. The
corresponding ROM containing shift and address values is read sequentially in
order to perform Task 1, according to (B.10) and (B.8). Address and shift values
stored in ROMs can be easily computed, according to (B.10), from tables in the
annexes B and C of DVB-S2 standard [19].

Task 2 and Task 1 are performed simultaneously. In fact, it is not necessary
to wait until the end of Sr computation in order to obtain the checksum of all
columns of the S memory. This would imply a longer delay. Instead, at each Sr
computation the GF(2) addition of the current shifted information vector to the
previous accumulated result is performed.

After Step 1, consisting of tasks 1 and 2, the first 359 values of the Total GF(2)
Sum register are processed by a simple combinatorial module which produces
(B.13). Once computed, this value is written into the processed GF(2) sum register
and Task 3 is performed, computing 360 parity bits per clock cycle, according to
(B.14).

b.2.2 DVB-S2 LDPC Decoder Architecture

The huge dimensions of the LDPC-IRA codes adopted by the DVB-S2 standard
make the adoption of a fully parallel architecture that maps the Tanner graph
structure impractical [28]. Furthermore, this solution is code dependent, which
means that a different decoder is required for each code defined by the standard.

The best known solutions are based on highly vectorized partial parallel
architectures [17, 60], that explore the particular characteristics of the DVB-S2

LDPC-IRA codes such as their periodic nature (M = 360) shared by them all.
One solution was proposed in [60], whose architecture uses M functional units
working in parallel. In this section we show that it is possible to reduce the
number of functional units by any integer factor of M, without any addressing
overhead and keeping its efficient memory mapping scheme unchanged. Our
approach not only overcomes the disadvantages of the architecture described in
[60], it is also more flexible and easily reconfigurable according to the decoder
constraints.

M Parallel Processing Units Approach

The periodicity properties (B.3) of the DVB-S2 LDPC-IRA codes make it possible
to simultaneously process the νI and νC node sets, whose indices are given by,

C(c) = {c, c+1, · · · , c+M−1} with, c mod M = 0 , (B.15)
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and,

R(r) = {r, r+q, r+2q, · · · , r+(M−1)q} with, 0 6 r 6 −1 , (B.16)

respectively, which significantly simplifies the decoder control. In fact, according
to (B.3), assuming that νIc̃ is connected to νCr , then νCr+i×q, with 0 6 i 6M−1,
is also connected to νI

c+(c̃−c+i) modM , where c=M×(c̃ divM) is the index of

the first νI of the group C(c) to which νIc̃ belongs.
The architecture shown in figure 51 is based on M functional units (FU)

working in parallel with shared control signals [28], that process both νC (in
check mode) and νI nodes (in bit mode) in a flooding schedule manner. As
result of the zigzag connectivity between νP and νC nodes they are updated
jointly in check mode following a horizontal schedule approach [100].

Figure 51: DVB-S2 LDPC decoding architecture using M parallel processing units [60].

Each FU unit is shared by a constant number of νI, νC and νP nodes, de-
pending on the code length and rate. More precisely, for a (n, k) DVB-S2 LDPC
IRA code the FUi, with 0 6 i 6 M−1, updates sequentially in bit mode the
νI
{i,i+M,i+2M,··· ,i+(α−1)M}

nodes, with α = k/M. In check mode the same

FU updates the νC
{j,j+1,··· ,j+q−1} and νP

{j,j+1,··· ,j+q−1} nodes, with j= i×q. This

guarantees that when simultaneously processing the nodes in group C(c) the
computed messages have as destination a set R(r), where each one is processed



B.2 hardware architectures for dvb-s2 ldpc-ira codes 157

by a different FU. Considering (B.3), the new computed messages only need to
be right-rotated to be handled by the correct νC nodes.

The same happens when processing each R(r) set where, according to (B.3),
the right rotation must be reversed so that the new computed messages have as
destination the exact νI nodes.

The shuffling network (barrel shifter) is responsible for the correct message
exchange between νC and νI nodes, emulating the code Tanner graph. The shift
values stored in ROM (figure 51) can be easily obtained from annexes B and C
of the DVB-S2 standard tables [19].

The messages sent along the Tanner graph edges are stored in RAM (see
figure 51). If we adopt a sequential RAM access in bit mode then the access
in check mode must be indexed, or vice-versa, with both options being valid.
Without loss of generalization, let us assume sequential access in bit mode.

Denoting by ri =
[
ri1 ri2 · · · riwi

]
the vector of νC node indices connected to

the νIi node, of weight wi, the message memory mapping is specified by the
following matrix,

R =


r0 r1 · · · rM−1

rM rM+1 · · · r2M−1
...

...
...

...

r(α−1)M r(α−1)M+1 · · · rαM−1


(q×wC)×M

(B.17)

where, wC, is a code related parameter ( νC weight is wC + 2, except for the
first one (B.1)).

In order to process each R(r) set in check mode, the required memory ad-
dresses can be obtained by searching the matrix R rows where the index r
appears.

Decoding Decomposition by a Factor of M

The simplicity of the shuffling mechanism and the efficient memory mapping
scheme are the major strengths of the architecture just described [60]. But the
large number of FUs and the long width of the barrel shifter require a huge
silicon area. Since this architecture is able to provide a throughput far higher
than the minimum mandatory rate of 90 Mbps we may reduce the number of
FUs. In fact, we show that this can be done by any factor of M [31, 33].

Let L,N ∈N be factors of M, with M=L×N. A set C(c), as defined by (B.15),
can be decomposed by subsampling in L subgroups as:
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C(c)
0 = {c, c+ L, c+ 2L, · · · , c+ (N− 1)L}

C(c)
1 = {c+ 1, c+ 1+ L, c+ 1+ 2L, · · · , c+ 1+ (N− 1)L}

...

C(c)
L−1 = {c+ L− 1, c+ 2L− 1, c+ 3L− 1, · · · , c+NL− 1} . (B.18)

According to (B.3), each sub-group C(c)
γ , with 0 6 γ 6 L−1, can be described

in terms of the first node of subgroup νIc+γ. If νCr is connected to the first

information node of subgroup C(c)
γ , then, νC(r+i×L×q) mod (n−k) is connected

to the i-th νI node of the referred subgroup, considering that 0 6 i 6 N− 1.
Similarly, R(r) can be decomposed in L sub-groups as:

R(r)
0

= {r, r+ Lq, r+ 2Lq, · · · , r+ (N− 1)Lq}

R(r)
1 = {r+ q, r+ (L+ 1)q, · · · , r+ ((N− 1)L+ 1)q}

...

R(r)
L−1 = {r+ (L− 1)q, r+ (2L− 1)q, · · · , r+ (NL− 1)q} , (B.19)

and each subgroup R(r)β , with 0 6 β 6 L−1, can be described just in terms of

the first element, νCr+β×q. If νIc̃ is connected to the first node of sub-set R(r)β ,
then νI

c+((c̃−c+i×L) mod M) with c = M× (c̃ div M) is connected to the i-th

νC of the considered subgroup, for 0 6 i 6 N−1.
Framework (B.18) and (B.19) shows that the subsampling approach preserves

the key modulo M properties, and thus we conclude that subgroups C(c)
γ and

R
(r)
β can be processed individually using the same architecture as described in

[60], but now considering only N processing units. In fact, when simultaneously
processing a group C(c)

γ , the computed messages have as destination a set R(r)β
and vice-versa. The new proposed architecture is shown in figure 52.

The sub-sampling strategy therefore allows a linear reduction (by a factor of
L) of the hardware resources occupied by the FUs blocks, while it significantly
reduces the complexity of the barrel shifter ( O

(
N log2N

)
) and simplifies the

routing problem. Yet, at first glance, it may seem that this strategy implies an
increase by L in the size of the system ROM (Shifts and Addresses). Fortunately,
if we know the properties of subgroups C(c)

0 and R(r)0 then we automatically

know the properties of the remaining subgroups C(c)
γ and R(r)β , respectively

(with 0 6 γ, β 6 N−1).
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Figure 52: DVB-S2 LDPC decoding architecture using N parallel processing units with
M = L×N.

Memory mapping matrix (B.17) can be reshaped by L as

R =



r0 rL · · · r(N−1)L
rM rM+L · · · rM+(N−1)L

...
...

...

r(α−1)M r(α−1)M+L · · · r(α−1)M+(N−1)L

r1 rL+1 · · · r(N−1)L+1
rM+1 rM+L+1 · · · rM+(N−1)L+1

...
...

...

r(α−1)M+1 r(α−1)M+L+1 · · · r(α−1)M+(N−1)L+1

...
...

...

rL−1 r2L−1 · · · rM−1

rM+L−1 rM+2L−1 · · · r2M−1

...
...

...

r(α−1)M+L−1 r(α−1)M+2L−1 · · · rαM−1


(L×q×wC)×N

. (B.20)
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This convenient message memory mapping allows us to keep the size of the
system ROM unchanged, as it only keeps shift and address values for the C(c)

0

and R(r)0 groups. For the remaining groups those values can be computed on

the fly while decoding. Hence, for C(c)
γ , shifts are given by

shift(c)
γ

= (shift(c)
0

+ γ) div L , (B.21)

and when processing R(r)β addresses are computed as

address(r)β = (address(r)0 + q×wC ×β) mod (q×wC × L) , (B.22)

where, shift(c)
0

and address(r)0 are the shift and address values stored in ROM

for all C(c)
0 and R(r)0 groups.

The shift values stored in ROM are the same for the architectures of both
figure 51 and figure 52. Yet because the matrix R is reshaped the memory
addresses contained in R(r)0 change. However, they can be easily obtained by
following the procedure described in the previous sub-section, i.e. by searching
the matrix (B.20) for the rows where the index r appears.
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