

Journal of Molecular Structure 410-411 (1997) 343-348

Journal of MOLECULAR STRUCTURE

Vibrational spectra (FT-IR, Raman and MI-IR) of α - and β -alanine

Mário Túlio S. Rosado^a, Maria Leonor R.S. Duarte^b, Rui Fausto^{c,*}

^aDepartamento de Química, Universidade da Madeira, P-9000 Funchal, Portugal

^bDepartamento de Química, Faculdade de Ciências, Universidade de Lisboa, P-1700 Lisboa, Portugal

^cDepartamento de Química, Universidade de Coimbra, P-3049 Coimbra, Portugal

Received 9 October 1996; accepted 21 October 1996

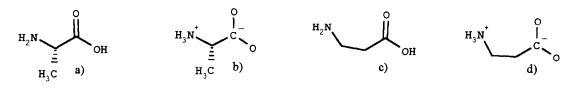
Abstract

The vibrational spectra of α - and β -alanine molecules in both their zwitterionic and neutral forms are studied by FT-IR, Raman and MI-IR spectroscopy. Together with results from theoretical SCF-MO ab initio calculations, the spectroscopic data obtained under the various experimental conditions used in this study (crystalline phase; low temperature matrix isolated molecules) enable to undertake a detailed assignment of the vibrational spectra of the studied compounds. © 1997 Elsevier Science B.V.

Keywords: FTIR spectroscopy; Raman spectroscopy; Matrix isolation spectroscopy; Vibrational assignment; Alanine

1. Introduction

 α -aminoacids are the building blocks of proteins and, for this reason, they have been extensively studied. On the contrary, n-aminoacids, in spite of their biological importance, have deserved much less attention. In fact, various n-aminoacids, such as for example GABA (γ -aminobutiric acid) and β alanine, participate directly, as information carrier molecules, in the neurotransmission processes occurring in the mammalian nervous system [1–3].


Aminoacids are also very interesting systems for fundamental research, since in solution or in the crystalline state they are present as zwitterions, whereas in the gaseous state or isolated in a noble gas matrix at low temperature the neutral forms are much more stable [4]. Besides, the zwitterion and neutral forms show marked differences regarding their geometries and electronic structures, which are well reflected on their vibrational spectra.

Glycine, simultaneously an α - and n-aminoacid, α alanine and its structural isomer β -alanine (Fig. 1) are the three simplest aminoacids. While glycine has been the subject of extensive structural and vibrational studies [4], the other two aminoacids, specially β alanine, which is an n-aminoacid, have not deserved much attention and, as far as we know, vibrational data on their neutral forms have not yet been reported. Although the most biochemically relevant species correspond to the zwitterionic species, the study of the neutral molecules has attracted an ever growing attention, since its great importance is recognized for identification of interstellar aminoacids, which may provide insight into the formation of large molecules in space.

In this work, FT-IR and Raman spectroscopic measurements were undertaken on crystalline α - and

^{*} Corresponding author. Fax: +351 39 27703; e-mail: rfausto@-gemini.ci.uc.pt

^{0022-2860/97/\$17.00 © 1997} Elsevier Science B.V. All rights reserved. PII \$0022-2860(96)09695-0

α -alanine

β-alanine

Fig. 1. Neutral and zwitterionic forms of α - and β -alanine molecules.

 β -alanine to study the vibrational spectra of these molecules in their zwitterionic forms, and matrix isolation infrared spectroscopy (MI-IR) was used to analyze the vibrational spectra of the neutral forms. A detailed assignment of the spectra, supported by theoretical data obtained by SCF-MO ab initio calculations, is also presented.

2. Experimental

FT-IR spectra of the solid compounds were obtained as KBr pellets on a Perkin Elmer 1760 FT-IR spectrometer, equipped with a germanium on CsI beam splitter and a DTGS detector, in the wavenumber range 400–4000 cm^{-1} , with 32 scans and a spectral resolution of 2 cm^{-1} , at room temperature.

Raman spectra were recorded using a SPEX 1403 double monochromator spectrometer (focal distance 0.85 m, aperture f/7.8), equipped with holographic gratings with 1800 grooves mm⁻¹ (reference 1800-1SHD). The 514.5 nm argon laser (Spectra-Physics, model 164-05) line, adjusted to provide 220 mW power at the sample, was used as excitation radiation. Detection was effected using a thermoelectrically cooled Hamamatsu R928 photomultiplier. Spectra were recorded using increments of 1 cm⁻¹ and integration times of 1 s. Under these conditions, the estimated errors in wavenumbers are ± 1 cm⁻¹.

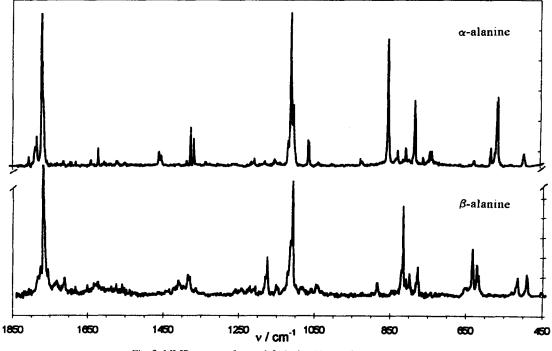


Fig. 2. MI-IR spectra of α - and β -alanine (Ar matrix; T = 17 K).

The exact description of the experimental system used to undertake the MI-IR studies has been reported elsewhere [5]. Essentially, the set up used is formed by a dispersive Specord IR75 (updated) infrared spectrometer and an open cycle liquid He cryostat. The samples were deposited in argon matrices over an optical subtract of CsI windows at 17 K. The sample : matrix ratio (1:750 for α -alanine and 1:500 for β -alanine) was controlled by quartz

Table 1

Vibrational frequencies of neutral forms of α - and β -alanine ^a

microbalances, for a fine adjustment of the flux rate of the deposition of both sample and matrix materials. Because aminoacids tend to decompose at melting temperatures, special care was taken in choosing the adequate temperatures in the Knudsen cells from where the samples were evaporated (429 K for α -alanine and 422 K for β -alanine). After deposition at 17 K, the aminoacids retained the conformations and the same distribution present at the evaporation

α -alanine			β -alanine			
Assignment	Calc. (RHF/6-31G*)	Exp. ^b (MI-IR)	Assignment	Calc. (RHF/6-31G*)	Exp. ^b (MI-IR)	
νOH	3605	3560, 3555 ,3546	νOH	3607	3569 ,3559 ,3547	
$v_{as}NH_2$	3392	n.o.	$\nu_{as}NH_2$	3392	3408	
v _s NH ₂	3321	n.o.	$\nu_{s}NH_{2}$	3316	n.o.	
$\nu_{as}CH_3$	2949	2999, 2981	$\nu_{\rm as} CH_2$	2932	2958	
$\nu_{as}CH_3$	2925	2940	$\nu_{s}CH_{2}$	2893	2925	
vCH	2886	2886	$\nu_{as}CH_2$	2885	2890	
v _s CH ₃	2859	n.o.	$\nu_{s}CH_{2}$	2858	2867	
vC=O	1805	1791,1787	vC=O	1807	1782,1776, 1770	
		1774,1771			1767,1761,1757	
δNH ₂	1646	1642, 1622	δNH_2	1636	1634 ,1623	
$\delta_{as}CH_3$	1463	1460	δCH ₂	1461	1463	
$\delta_{as}CH_3$	1459	1454	δCH ₂	1434	1445,1441, 1435	
δСН	1401	1408	ωCH_2	1409	1411,1407	
δ _s CH ₃	1378	1386, 1376	twCH ₂	1347	1386,1380	
δСН	1349	1368, 1335	ωCH_2	1341	1365	
twNH ₂	1275	n.o.	twCH ₂	1271	1259,1244	
δСОН	1247	1215, 1206	δСОН	1267	1221,1207	
δC-Ο	1164	1153	nC-O	1159	1181,1176	
νCN	1124	1117, 1110 ,1105	$twNH_2 + \rho CH_2$	1126	1152 ,1146	
ρCH3	1060	1064	nCN	1050	1113, 1109	
ρCH3	990	1037,1002	νH_2C-CH_2	1018	1088,1082	
ωNH_2	915	925, 920	$\rho CH_2 + tw NH_2$	946	1047, 1042	
vC-CH ₃	894	852 ,826	vC-COOH	871	885	
vC-COOH	777	805, 782	ωNH_2	828	822,817,800	
ωCOO	730	741, 736	ρCH_2	752	783, 779	
δCOO	615	623	$\tau C-O$	630	654, 634	
τC–O	566	580, 562	δCOO	620	623 ,617	
δCCO	477	493	ωCOO	503	516, 492	
δCCN	367		δССО	434	453 ,451	
δCCN	297		δCCN	348		
δССС	238		$\tau \mathrm{NH}_2$	278		
τNH_2	227		δC-C-C	174		
τCH_3	216		τH_2C-CH_2	102		
τCOOH	51		τ COOH	47		

^a Frequencies in cm⁻¹; ν , stretching; δ , bending; ω , wagging; tw, twisting; ρ , rocking; τ , torsion; n.o., not observed; s, symmetric; as, asymmetric.

^b The most intense band of a group of bands assigned to the same vibration is shown in bold.

temperature, remaining in the neutral form after instantaneous sublimation on the cold matrix. All spectra were recorded using a spectral resolution of 0.2 cm^{-1} .

The ab initio molecular orbital calculations were performed with a PC equipped with a Am486DX4/ 100 MHz processor, using GAUSSIAN 92 for Windows (Revision G-3) [6]. All calculations (structure optimizations and frequencies) were carried out at the Hartree–Fock level of theory with the 6-31G* basis set [7]. The calculated frequency values were scaled down by a single factor of 0.89, and refer to the most stable conformers found in the HF/6-31G* molecular potential energy surfaces by systematic scanning of the molecular configurational space (structural data are available from the corresponding author).

3. Results and discussion

Fig. 2 displays the 1800–350 cm⁻¹ spectral region of the MI-IR spectra of the neutral forms of α - and β -alanine. The corresponding theoretical (ab initio

RHF/6-31G*) frequencies and the band assignments are presented in Table 1.

The calculated and experimental results show a good general agreement, with exceptions for some of the higher frequency modes (e.g. $\nu O-H$, νCH) and ν C=O. In the case of the ν CH vibrations, the predicted (scaled) frequencies are somewhat lower than those experimentally observed, probably due to the involvement of the ν CH fundamentals in Fermi resonance interactions, as suggested by the appearance of a number of additional lower intensity bands in the ν CH spectral region. On the other hand, the overestimation observed in the 6-31G* predicted frequencies of ν O-H and ν C=O vibrations when compared to the MI-IR data follows the pattern previously found for similar molecules [8] and may then be attributed to matrix/solute interaction effects. It is important to note that, for both molecules, most of the bands have a well observable structure (in particular ν C=O) caused by both matrix splitting and the presence of different conformers. This result follows the trend previously observed for glycine [5] and a detailed study of these features is presently being carried out in our laboratories.

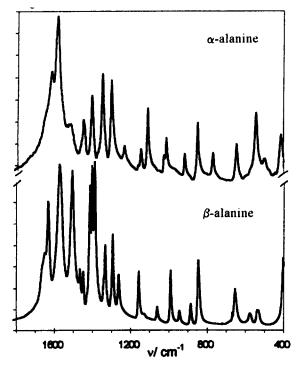


Fig. 3. FT-IR spectra of α - and β -alanine.

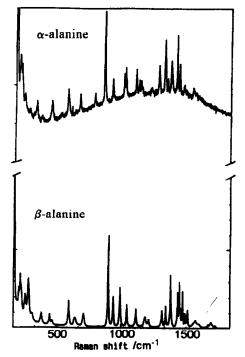


Fig. 4. Raman spectra of α - and β -alanine.

The FT-IR spectra of the α - and β -alanine zwitterions are presented in Fig. 3 and their Raman spectra are shown in Fig. 4. These spectra can be compared with the corresponding theoretical vibrational frequencies in Table 2. As in the case of the neutral forms of the studied molecules, the experimental

rule occurring in vibrations which are similar to those that are also less well predicted for the neutral species (e.g. ν_{as} COO-H, ν CH).

Acknowledgements

This study has been carried out under the PRAXIS

Table 2

Vibrational frequencies of zwitterionic forms of α - and β -alanine ^a

and theoretical results obtained for the zwitterions agree quite well, the main exceptions to this general

α-alanine				β-alanine				
Assignment	Calc. (RHF/6-31G*)	Exp. ^{b,c} (IR-crystal)	Exp. ^b (Raman-crystal)	Assignment	Calc. (RHF/6-31G*)	Exp. ^{b.c} (IR-crystal)	Exp. ^b (Raman-crystal)	
$\nu_{as}NH_3$	3388			$\nu_{as}NH_3$	3350			
$\nu_{as}NH_3$	3315			$\nu_{as}NH_3$	3350			
$\nu_{as}CH_3$	2966	3002	3011	v _s NH ₃	3248			
νCH	2931	2982	2991	$\nu_{as}CH_2$	3028	3017	3016	
$\nu_{as}CH_3$	2899	n.o.	2960	$\nu_{s}CH_{2}$	2965	2955	2980	
v _s CH ₃	2851	n.o.	2897	$\nu_{as}CH_2$	2883	n.o.	2936	
v _s NH ₃	2509	2597	n .o.	$\nu_{s}CH_{2}$	2847	n.o.	2917	
ν _{as} COO	1775	1623	n .o.	ν _{as} COO	1751	1633	1630	
δ _{as} NH ₃	1621	1592	1604	$\delta_{as}NH_3$	1632	1653	1686,1655	
δ _{as} NH ₃	1592	1523	1527	$\delta_{as}NH_3$	1626	1573	1556,1533	
$\delta_{as}CH_3$	1459	n.o.	1491	δ _s NH ₃	1454	1508	1519	
$\delta_{as}CH_3$	1458	1452	1469	δCH ₂	1442	1466	1473	
δ _{CH}	1396	1408	1421	δCH ₂	1441	1447	1452,1434	
v COO	1354	1354	1390,1368	v,COO	1344	1413, 1403	1409.1395	
δ _{NH}	1335	1307	1316	ωCH ₂	1299	1333	1338	
$\nu C - CH_3$	1288	n. o.	n.o.	twCH ₂	1261	1294	1300	
δСН	1241	1235	1250	twCH ₂	1229	1263	1270	
ρNH3	1169	1149	1166,1151	ωCH_2	1219	n.o.	n.o.	
ρCH ₃	1071	1114	1125	νH_2C-CH_2	1073	1158 ,1138	1167, 1138	
δСН	1035	1027	1036	$\rho \mathrm{NH}_3$	1033	1061	1068	
ρCH ₃	960	1014	1024	ρNH_3	904	991	998	
ρNH3	943	919	930	ρCH_2	863	945	945	
vC-COO	838	851	862	vC-COO	825	886	893	
νCN	783	769	781	ρCH_2	757	n.o.	n.o.	
ωCOO	745	n.o.	n.o.	nC-N	745	847	853	
δCOO	604	646	654	δCOO	648	654	659	
δCCO	500	544 ,498	553,499	ωCOO	564	576 ,538	589, 541	
δCCN	367	412	418	δCCO	443	403	410, 392	
δCCN	315		335	δCCN	318		327	
$\tau \mathrm{NH}_3$	270		293 ,270	$\tau \rm NH_3$	219		224 ,199	
δC-C-C	246		235	δC-C-C	187		167, 160	
τCH ₃	226		194	τH_2C-CH_2	94		112	
τCOO	49			τCOO	51			

^a Frequencies in cm⁻¹; ν , stretching; δ , bending; ω , wagging; tw. twisting: ρ , rocking; τ , torsion; n.o., not observed; s, symmetric; as, asymmetric.

^b The most intense band of a group of bands assigned to the same vibration is shown in bold.

^c The nNH₃ vibrations give rise to very broad overlapping bands in the 3400-2400 cm⁻¹ spectral region.

XXI research programme (contract PRAXIS/2/2.1/ QUI/412/94). M.T.R. would like to thank CITMA for partial financial support and the Institute for Low Temperature Physics and Engineering of the Ukrainian Academy of Sciences, Kharkov, for making available the MI-IR experimental facilities used in this work.

References

- [1] D. Choquet and H. Korn, Neurosci. Lett., 84 (1988) 329.
- [2] J.H. Caldwell, N.W. Daw and H.J. Wyatt, J. Physiol., 276 (1978) 277.

- [3] M. Ramek, J. Mol. Struct. (Theochem), 208 (1990) 301.
- [4] I.D. Reva, S.G. Stepanian, A.M. Plokhotnichenko, E.D. Radchenko, G.C. Sheina and Yu.P. Blagoi, J. Mol. Struct., 318 (1994) 1, and references therein.
- [5] E.D. Radchenko, G.G. Sheina, N.A. Smorigo, Yu.P. Blagoi, J. Mol. Struct., 116 (1984) 387.
- [6] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.W. Wong, J.B. Foresman, M.A. Robb, M. Head-Gordon, E.S. Replogle, R. Gomperts, J.L. Andres, K. Ragha-vachari, J.S. Binkley, C.R. Gonzalez, L. Martin, D.J. Fox, D.J. Defrees, J. Baker, J.J.P. Stewart and J.A. Pople, GAUSSIAN 92/DFT, Revision G.3, Gaussian, Inc., Pittsburgh, PA, 1993.
- [7] W.J. Hehre, R. Ditchefield and J.A. Pople, J. Chem. Phys., 56 (1972) 2257.
- [8] A. Kulbida, M.N. Ramos, M. Rasanen, J. Nieminen, O. Schrems and R. Fausto, J. Chem. Soc. Faraday Trans., 91 (1995) 1571.