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“Tudo tem a sua ocasião própria e há tempo para todo propósito debaixo do céu. Há tempo de 
nascer e tempo de morrer; tempo de plantar e tempo de arrancar o que se plantou; tempo 
de matar e tempo de curar; tempo de derrubar e tempo de edificar; tempo de chorar e 
tempo de rir; tempo de prantear e tempo de dançar; tempo de espalhar pedras e tempo de 
ajuntar pedras; tempo de abraçar e tempo de abster-se de abraçar; tempo de buscar e 
tempo de perder; tempo de guardar e tempo de deitar fora; tempo de rasgar e tempo de 
coser; tempo de estar calado e tempo de falar; tempo de amar e tempo de odiar; tempo de 
guerra e tempo de paz.” 
                                               Eclesiastes (capítulo 3); Antigo Testamento 
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RESUMO 

Cromossomas marcadores supranumerários (sSMCs, do inglês, small Supernumerary 

Marker Chromosomes) são pequenos cromossomas estruturalmente anormais que 

aparecem adicionalmente aos 46 cromossomas humanos e que não podem ser 

identificados ou caracterizados por citogenética convencional, tendo um tamanho 

inferior a um cromossoma 20 da mesma placa metafásica. Os sSMCs constituem um 

grupo heterógeneo de cromossomas anómalos que podem ter diferentes formas, 

como cromossomas duplicados invertidos (inv dup), cromossomas minute cêntricos 

(min) e cromossomas em anel (r). 

O risco de alterações fenotípicas associadas à presença de um sSMC depende de vários 

factores, como a hereditariedade, a origem do cromossoma, a morfologia, o conteúdo 

genético, a presença de dissomia uniparental ou o grau de mosaicismo. De facto, os 

fenótipos associados a um sSMC são variáveis, desde normais a severamente 

afectados.  

Os sSMCs podem ser detectados em diagnóstico pós-natal ou em pré-natal 

constituindo, sobretudo no último caso, um problema complexo para a investigação 

citogenética e o aconselhamento genético. Tendo em conta dados publicados na 

literatura que estimam uma frequência de 0.044% recém-nascidos portadores de um 

sSMC e que a população mundial é estimada actualmente em cerca de 6 823 000 000 

pessoas, pode-se extrapolar o número de aproximadamente 3 milhões de indíviduos 

no mundo portadores de um sSMC. A grande maioria destes indíviduos não tem 

manifestações fenotípicas aparentes, no entanto cerca de 26% dos casos de indivíduos 

com um sSMC terão manifestações fenotípicas que poderão ser mais ou menos 

severas. 

A maioria dos cromossomas marcadores publicados na literatura não têm uma 

caracterização citogenética detalhada, quer da origem quer do conteúdo genético, que 

permita uma correlação robusta com o fenótipo esperado. Este facto dificulta o 

aconselhamento genético quando é encontrado um sSMC, sobretudo em diagnóstico 

pré-natal. Neste domínio é essencial sistematizar o conhecimento sobre o conteúdo 
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genético envolvido nos sSMC e a descriminação das manifestações fenotípicas 

expectáveis de um indivíduo ou grupo de indivíduos, sejam elas normais ou anormais. 

Com este trabalho pretendeu-se contribuir para esta sistematização, procedendo-se à 

caracterização por citogenética molecular de um grupo de cromossomas marcadores 

supranumerários derivados de vários cromossomas, nomeadamente dos cromossomas 

1, 2, 5, 11, 13, 15, 16, 17, 18 e 22. Pretendeu-se validar a técnica de hibridização 

Genómica Comparativa por array (array CGH, do inglês array Comparative Genomic 

Hybrydization) para caracterização da extensão genética do cromossoma marcador, 

após a sua microdissecção e amplificação. Concluiu-se que esta técnica será de grande 

utilidade para a correcta caracterização de sSMCs sobretudo quando o cromossoma 

marcador está presente em mosaico de baixa expressão. Após caracterização 

molecular do grupo de sSMC em estudo estabeleceu-se, na medida do possível, uma 

relação genótipo/fenótipo, comparando cada caso com outros casos reportados na 

literatura. Neste trabalho propõem-se ainda linhas de orientação para lidar com casos 

de sSMC num laboratório de diagnóstico em citogenética, tendo em consideração 

factores como por exemplo o tempo para a caracterização citogenética, o grau de 

mosaicismo e as técnicas disponíveis no laboratório. O trabalho incluído nesta 

dissertação reforça e clarifica a necessidade de uma caracterização citogenética 

molecular detalhada de cromossomas marcadores supranumerários, recorrendo 

nomeadamente a técnicas de M-FISH e de array CGH. Esta caracterização possibilita o 

estabelecimento de relações genótipo/fenótipo cada vez mais precisas e essenciais 

para um correcto aconselhamento genético, por parte do Geneticista Clínico.  

 

 

 



 
Abstract 

 

 

15 
 

ABSTRACT 

Small supernumerary marker chromosomes (sSMCs) are small structurally abnormal 

chromosomes that occur in addition to the 46 human chromosomes, that cannot be 

identified or characterized unambiguously by conventional banding cytogenetics 

alone, and are (in general) equal in size or smaller than a chromosome 20 of the same 

metaphase spread. sSMCs are a morphologically heterogeneous group of structural 

abnormal chromosomes that can appear in different shapes: inverted duplicated 

chromosomes (inv dup), centric minute chromosomes (min) and ring chromosomes (r). 

The risk for phenotypic abnormalities associated with a sSMC depends on several 

factors, including inheritance, chromosomal origin, morphology, genetic content, 

presence of uniparental disomy or grade of mosaicism. In fact, phenotypes associated 

with a sSMC are variable, from normal to severely affected. 

sSMCs can be detected postnatally or prenatally, the last being a major problem for 

cytogenetic investigation and genetic counselling. Taking into account data in the 

literature that estimate a 0.044% frequency of newborns with a sSMC and that the 

estimated world population is 6 823 000 000 people, there will be at present 

approximately 3 million living sSMC carriers. The great majority of these carriers will 

not have apparent phenotypical consequences. However, about 26% of individuals 

with a sSMC will have phenotypical manifestations, more or less severe. 

The majority of sSMCs published in the literature do not have an accurate cytogenetics 

characterization, of the origin and genetic content of the marker, which allows a 

robust correlation with the expected phenotype. This is a difficulty for genetic 

counselling when a sSMC is encountered, especially at prenatal diagnosis. It is essential 

to systematize the knowledge of the genetic content of markers and the phenotypical 

manifestations encountered, normal or abnormal. 

With this work we want to contribute to this systematization, by doing a detailed 

molecular cytogenetic characterization of a group of sSMC derived from different 

chromosomes, namely chromosomes 1, 2, 5, 11, 13, 15, 16, 17, 18 and 22. We aimed 

to validate array CGH technique, after the microdissection and amplification of the 

marker, for the characterization of the genetic extension of the sSMC. We concluded 
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that this technique is of great value for an accurate characterization of the marker, 

especially when the sSMC is present in low levels of mosaicism. 

After the characterization of the group of sSMCs cases in study, it was established a 

genotype/phenotype correlation, whenever possible, and a comparison of each case 

with those described in the literature was done. In this work, guidelines are proposed 

for the management of sSMCs in a diagnostic cytogenetic laboratory, taking into 

account several factors, like time available for the cytogenetic characterization, levels 

of mosaicism and techniques availability in the lab. This work reinforces and clarifies 

the need of an accurate molecular cytogenetic characterization of sSMCs, using 

particularly M- FISH techniques or array CGH. This characterization allows the 

establishment of more precise genotype/phenotype correlations, which are essential 

for an accurate genetic counselling by the Clinic Geneticist. 
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1.1. CYTOGENETICS – state of the art 

1.1.1. Historical Perspective 

Cytogenetics is the field of genetics that concerns the study of chromosomes’ structure 

and function. The discovery of the number of human chromosomes on embryonic lung 

tissue in 1955 by Tjio was the fundamental step for the birth of human cytogenetics 

(Fig. 1.1.). This finding, that the diploid number of chromosomes in humans is 46, was 

published by Tjio and Levan in 1956 [Tjio and Levan, 1956], and that same year the 

number was confirmed by examining meiotic chromosomes [Ford and Hamerton, 1956]. 

This milestone occurred at the moment the hypotonic chromosome spreading 

procedure described by Hsu [Hsu, 1952] was made possible thanks to significant 

advances in techniques, later being improved through the use of phytohemaglutinin 

[Moorhead et al., 1960]. Given the simplicity of the procedure to observe human 

chromosomes, the study of certain syndromes of genetic origin began immediately, 

revealing the chromosomal origin of some of them by the end of the 1950s [Garcia-

Sagredo, 2008]. In fact in 1959, Lejeune and collaborators reported the first autosomal 

aneuploidy, trisomy 21, associated with a characteristic phenotype [Lejeune et al., 

1959]. This marked the beginning of clinical cytogenetics and soon after other 

descriptions of aneuploidies associated with syndromes were published, like Edwards 

syndrome (trissomy 18), Patau syndrome (trisomy 13), Klinefelter syndrome (47,XXY) 

or Turner syndrome (45,X). In tumour cytogenetics, one of the most exciting findings 

was the identification in 1960 of a minute chromosome, later named the Philadelphia 

chromosome, which was regularly found in the peripheral blood of patients with 

chronic myeloid leukaemia [Nowell and Hungerford, 1960]. 

 
Figure 1.1. - A human metaphase plate, from the original Tjio (in the photo) and Levan paper, shows 46 
chromosomes [from Gartler, 2006]. 
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The discovery of chromosome banding techniques and structural chromosomal 

rearrangements soon followed. As revised by Garcia-Sagredo [Garcia-Sagredo, 2008], at 

the end of the 1960s, several banding techniques were discovered which allowed 

chromosomes to be individually identified. Using fluorescence or digestion with 

trypsin, it was possible to obtain the characteristic pattern of Q and G band, producing 

a karyotype with a pattern of 500 bands [Caspersson et al., 1970; Seabright, 1971]. Over 

time, higher resolution became necessary and in 1976, a high-resolution band method 

using prometaphase chromosomes that can reach 1000 bands was published, allowing 

cytogenetic anomalies to be better identified [Yunis, 1976].  

To facilitate the identification of chromosomes and to prevent confusion in reporting 

cytogenetic results, an International System for Human Cytogenetic Nomenclature 

(ISCN) was created. The first steps for this system were done at “The Denver’s 

Conference”, USA, in 1960, when a group of researchers joined to propose a standard 

system for the nomenclature of human mitotic chromosomes. In 1978 the first 

“International System for Human Cytogenetic Nomenclature” was published. This 

Nomenclature System has been periodically revised, namely in 1981, 1985, 1995, 2005, 

being the last update done in 2009 [ISCN 2009 - Shaffer et al., 2009].  

 

1.1.2. Conventional Cytogenetics 

Traditionally, the term cytogenetics has referred to studies of the cellular aspects of 

heredity, especially the description of chromosome structure and the identification of 

genomic aberrations that cause disease. Cytogenetics has been used for many years 

for various applications, from clinical diagnostics to basic genomic research. 

Conventional chromosome analysis, which is based on banding and was developed in 

the 1970s is still widely used [Speicher and Carter, 2005]. 

Numerous procedures have been reported for producing banding patterns on 

metaphase spreads. A band is a part of a chromosome that is clearly distinguishable 

from its adjacent segments by appearing darker or lighter with one banding technique 

[Shaffer et al., 2009]. Chromosome banding methods are based on staining methods 

with a dye. The banding techniques fall into two principle groups: (1) those resulting in 
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bands distributed along the length of the whole chromosome, such as G-, Q- and R-

bands, including techniques that demonstrate patterns of DNA replication; (2) those 

that stain specific chromosome structures and give rise to a restricted number of 

bands, including C- and NOR-banding. Bands that show staining are referred to as 

positive bands; weakly staining bands are negative bands. However the staining 

patterns are not always black and white, different bands stains to different intensities 

[Francke, 1994; Bickmore, 2001]. 

Nearly all methods of chromosome banding rely on harvesting chromosomes in 

mitosis. This is usually achieved by treating cells with tubulin inhibitors, such as 

colcichine or colcemide, which depolymerise the mitotic spindle and arrest the cell at 

this stage [Bickmore, 2001]. In 1976, Yunis published a method for obtaining high-

resolution chromosomes, visualizing human chromosomes in mid-prophase, instead of 

metaphase [Yunis, 1976] (Fig. 1.2.). 

 

 

Figure 1.2. A partial karyotype of G-banded chromosome 7 from cells at successive stages of mitosis, 
illustrating the coalescing of sub-bands into larger, less defined, and less informative landmark bands. 
Cells captured in late prophase may show 850 to 1000 bands per haploid karyotype, i.e., high resolution. 
By mid-metaphase, fine band detail is lost as chromosomes condense and bands fuse, and only 400 or 
fewer bands per haploid karyotype may be observed [from Bangs

 
 and Donlon, 2005]. 

 

After staining to induce banding patterns, chromosome preparations are examined 

under a light microscope (1000x magnification). Images are captured and stored, 

nowadays with computerized image capture. They are then analysed by identifying 
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each chromosome pair, to form what is called a karyotype or karyogram1 (Fig. 1.3.). 

Chromosomes are identified by their size, position of the centromere and the patterns 

of bands along their arms. The chromosomes are counted in several metaphase plates 

and looked for abnormalities in banding patterns. This is a non-automated and labour-

intensive procedure [Warburton, 1995].  

 

G-Banding and R-Banding 

Techniques that use Giemsa dye mixture as the staining agent are termed G-staining 

methods and the resulting bands G-bands (Fig. 1.3.). Chromosomes are treated with 

trypsin and then with Giemsa stain to produce dark heterochromatic regions and light 

euchromatic regions [Seabright, 1971]. Giemsa is specific for the phosphate groups of 

DNA and attaches itself to regions of DNA where there are high amounts of adenine-

thymine (AT) bonding.  

 

 
Figure 1.3. – High resolution karyogram with G-banding showing a female with an extra X chromosome 
(47,XXX) [photo from Laboratório de Citogenética da Faculdade de Medicina da Universidade de 
Coimbra]. 

                                                 
1
 - According to Shaffer et al. (2009) – ISCN 2009, the term karyogram should be applied to a 

systematized array of chromosomes prepared either by drawing, digitized imaging, or by photography, 
typifying the chromosomes of an individual or a species. The term karyotype should be used to describe 
the normal or abnormal, constitutional or acquired, chromosomal complement of an individual, tissue 
or cell line. The term ideogram is reserved for the diagrammatic representation of a karyotype. 

http://en.wikipedia.org/wiki/Phosphate
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Adenine
http://en.wikipedia.org/wiki/Thymine
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R-banding includes a pre-denaturation of chromosomes with hot acidic saline followed 

by Giemsa staining. The AT-rich DNA is preferentially denatured, being stained under-

denatured GC-rich regions. This way the banding patterns are opposite in staining 

intensity to those obtained by the G-staining method [Dutrillaux et al., 1973; Shaffer et 

al., 2009]. 

 

Q-Banding 

Q-banding (Fig. 1.4.) involves staining with quinacrine, which reacts specifically with 

certain bases. Quinacrine intercalates into chromosomal DNA irrespective of sequence, 

but fluoresces brighter in regions of AT-rich DNA [Caspersson et al., 1970]. In addition to 

quinacrine, other fluorescent dyes, like DAPI, Hoechst 33258, are specific for AT-rich 

DNA. The fluorescence of DAPI and Hoeschst is not quenched by guanine, like 

quinacrine is, and the banding patterns are less distinct than those produced by 

quinacrine [Bickmore, 2001]. 

 

Figure 1.4. - Quinacrine stained karyotypes showing a 45,XX,-21 chromosome constitution [from 
Dutrillaux et al., 1973]. 
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C-Banding 

Centromeric DNA and pericentromeric heterochromatin, composed of alpha-repetitive 

DNA and various families of repetitive satellite DNA are detected by C-banding (Fig. 

1.5.). The patterns obtained with C-banding, revealing constitutive heterochromatin, 

do not allow the identification of every chromosome in somatic cell complement, 

being used only to identify specific chromosomes [Eiberg, 1973]. The C-bands on 

chromosome 1, 9, 16 and Y are morphologically variable. The short-arms of the 

acrocentric chromosomes also demonstrate variations in size and staining intensity, 

not only with C-banding, but also with the other banding techniques [Shaffer et al., 

2009]. 

 

Figure 1.5. - C-banding of metaphase chromosomes of a patient with Roberts syndrome. Arrows show 
selected chromosomes with premature centromere separation. Open arrows show selected 
chromosomes with normal C-banded regions [from Vega et al., 2005]. 

 

NOR-banding 

NOR-banding, with silver staining, detects the 18S and 28S ribosomal RNA genes that 

are clustered together in large areas containing about 40 copies of each gene, located 

at the acrocentric short arms, at the nucleolar organizer regions (NORs) (Fig. 1.6.) 

[Tantravahi et al., 1977; Shaffer et al., 2009]. 
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Figure 1.6. - Ag-NOR staining of human chromosomes for detection of NOR regions. The short arms of 
acrocentric chromosomes have a positive staining [photo from Laboratório de Citogenética da 
Faculdade de Medicina da Universidade de Coimbra]. 

 

Replication Banding 

Replication banding is a function-based banding method and is based on the fact that 

different bands replicate their DNA at different times during S phase of the cell cycle. 

This relationship between timing of replication and chromosome banding is usually 

studied by incorporating pulses of 5-bromo-2’-deoxyuridine (BrdU) into cells during 

defined stages of S phase and then examining chromosomes in the subsequent 

metaphase [Latt, 1973; Bickmore, 2001]. 

 

Chromosome Band Nomenclature 

Each chromosome in the human somatic cell complement is considered to consist of a 

continuous series of bands, with no unbanded areas. A band is a part of a chromosome 

clearly distinguishable from adjacent parts, having lighter or darker staining intensity. 

The bands are allocated to various regions along the chromosome arms, and the 

regions are delimited by specific landmarks, including the centromeres, the telomeres 
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and certain bands characteristic of different chromosomes [Shaffer et al., 2009]. The 

designation of the regions, bands and sub-bands for each chromosome are described 

in the International System for Human Cytogenetic Nomenclature [ISCN(2009) - Shaffer 

et al., 2009]. Briefly, regions and bands are numbered consecutively from the 

centromere outward along each chromosome arm. The symbols p (petit) and q are 

used to designate, respectively, the short and long arms of each chromosome (Fig. 

1.7.). The centromere (cen) itself is designated 10; the part facing the short arm is p10, 

the part facing the long arm is q10. The two regions adjacent to the centromere are 

labelled as 1 in each arm, the next more distal regions as 2, and so on [Shaffer et al., 

2009].  

 

Figure 1.7. – G-band ideograms of human chromosome 10 at 400- (left) and 850- (right) band resolution 
[adapted from ISCN 2009].  

 

For the designation of a particular band four items are required: 

a) the chromosome number; 

b) the arm symbol; 

c) the region number; 

d) the band number. 
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These items are given in order without spacing or punctuation. The bands can be 

subdivided in sub-bands, being numbered consecutively from the centromere 

outward. For example 18q22.1, is the band located at the long arm of chromosome 18, 

region 2, band 2, sub-band 1. The visualization of these sub-bands depends on the 

resolution of the karyotype (Fig. 1.2.). 

It is important to emphasize that on routine banding of chromosomes, still used in 

most laboratories to this day (specially G-banding), only rearrangements and genomic 

imbalances (deletions and duplications) greater than 5 megabase (5 Mb) in size, and 

often 10 Mb, are detected. 

 

1.1.3. Molecular Cytogenetics and Cytogenomics 

The first application of molecular techniques to chromosome cytology was based on 

the observation that complementary nucleotide sequences could anneal or hybridize 

to each other to form more stable complexes. The first in situ hybridization analysis 

was reported in 1969 by Joe Gall and Mary Lou Pardue, who used DNA–RNA 

radioactive hybridization [Gall and Pardue, 1969]. The first successful multicolour FISH 

experiments were done in 1989 by Nederlof and co-workers by visualizing three 

differently labelled nucleic acid sequences, simultaneously, in blue (amino methyl 

coumarin acetic acid – AMCA), red (tetramethylrhodamine isothiocyanate – TRITC) and 

green (fluorescein isothiocyanate – FITC) [Nederlof et al., 1989; Liehr et al., 2009]. Over 

the past years molecular cytogenetic techniques of increasingly higher resolution have 

been developed. The cytogenetic use of these new technologies is designed to provide 

a description of chromosome structure at a resolution that exceeds that of microscopic 

analysis. Therefore, these technologies bridge the gap between cytogenetic and 

molecular approaches. The molecular cytogenetics techniques include: Fluorescence in 

situ hybridization (FISH); Comparative Genomic Hybridization (CGH) and Array - 

Comparative Genomic Hybridization (array CGH). Beside these cytogenetic techniques, 

there are also molecular biology techniques that have been used to study chromosome 

imbalances, such as Multiplex Ligand Probe Amplification (MLPA) and Quantitative 

Fluorescence Polymerase Chain Reaction (QF-PCR).  
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1.1.3.1. FISH – Fluorescence in situ Hybridization 

Molecular cytogenetics is usually based on fluorescence in situ hybridization (FISH). In 

this technique a labelled DNA probe is hybridized to cytological targets such as 

metaphase chromosomes, interphase nuclei or even extended chromatin fibres.  

 

 
Figure 1.8. – Principal steps of a FISH experience. A) A fluorescently-labeled segment of DNA 
complementary to a chromosomal region of interest is used; B) Hybridization between the probe and 
the complementary chromosomal DNA occur; C) The slides can be visualized in a fluorescent 
microscope. If the DNA complementar to the probe is present a signal with the color of the emission 
wavelength of the fluorochrome of the probe is seen [A and B - adapted from Medical Genetics 
Information Resource database; C - photos from Laboratório de Citogenética da Faculdade de Medicina 
da Universidade de Coimbra]. 

 

FISH is a technique used to identify the presence of specific chromosomes or 

chromosomal regions through hybridization of fluorescently-labelled DNA probes to 

denatured chromosomal DNA. Every FISH experience has 3 fundamental steps: 

1) Preparation of the probe – A probe is a fluorescently-labeled segment of DNA 

complementary to a chromosomal region of interest (Fig 1.8. A); 

A 

B 

C 
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2) Hybridization – Denatured chromosomes fixed on a microscope slide are 

exposed to the fluorescently-labeled probe. Hybridization occurs between the 

probe and complementary chromosomal DNA (Fig 1.8.B); 

3) Visualization – Following hybridization, the slide is examined under a 

microscope using filtered light (depending on the fluorochrome used). 

Fluorescent signals indicate the presence of the complementary chromosomal 

DNA for that probe (Fig 1.8.C). 

All types of human DNA sequences have been used as probes for molecular 

cytogenetic studies. These include unique sequences, repetitive sequences such as α-

satellite and telomere DNA, locus specific DNA obtained by PCR amplification, large 

genomic DNA sequences cloned into cosmids, bacterial artificial chromosomes (BACs), 

P1-derived artificial chromosomes (PACs), yeast artificial chromosomes (YACs), 

chromosomes band or arm specific sequences generated by microdissection and DNA 

libraries established by chromosome flow sorting. Following the sequencing of the 

human genome with the Human Genome Project, large-insert clones that have been 

mapped and sequenced can be used as probes and are now readily available for 

almost all genomic regions. Probes can be selected using internet-browsers such as 

Ensembl Cytoview or the UCSC genome browser [Speicher and Carter, 2005]. To make 

the probes, DNA sequences are labeled directly with fluorescent dyes or indirectly with 

biotin or digoxigenin, which are then detected with immunofluorescent staining [Fan, 

2002].  

Many FISH techniques have been developed, including FISH with unique sequences; 

FISH with multiple subtelomeric probes; multiplex or multicolour FISH (M-FISH), 

Combined Binary Ratio Labelling (COBRA) FISH [Tanke et al., 1999] and spectral 

karyotyping (SKY); color banding; primed in situ labeling (PRINS), fiber FISH, reverse 

FISH and comparative genomic hybridization (CGH) [Fan, 2002; Liehr et al., 2009]. With 

these techniques, deletions or rearrangements of a single gene can be detected, 

cryptic chromosome translocations can be visualized (except with CGH), copy number 

can be assessed and very complex rearrangements can be characterized. FISH can be 

used in metaphase spreads, but also in interphase nuclei. The later allows the study of 
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all types of human tissues at any stage of cell division, without the need of cell culture 

and chromosome preparation. 

 

FISH with unique sequences 

FISH with unique DNA sequences is the most basic molecular cytogenetic technique 

[Lichter and Ward, 1990]. The probe used could be specific of a single gene, a particular 

chromosomal region or locus, being the technique used, for example, for the 

confirmation of microdeletion syndromes (Fig. 1.9.). 

 

 
Figure 1.9. – Partial metaphase hybrydized with locus-specific probes for Smith Magenis Syndrome 
(17p11.2) (green) and Miller Dicker Syndrome (17p13.3) (red) [photo from Laboratório de Citogenética 
da Faculdade de Medicina da Universidade de Coimbra]. 

 

FISH for multiple subtelomeric regions 

This technique uses 41 subtelomeric probes for all 24 different chromosomes (not 

including the short arms of acrocentrics) [Knight et al., 1997). Each of these probes is 

composed of unique sequences in the subtelomeric regions (~300 kb from the 

chromosome end). The probes for the short arms and the long arms are dual labelled 

with a green and a red fluorochrome respectively (Fig. 1.10.) [Fan, 2002].  This technique 

is particularly important in the detection of chromosomal imbalances in these regions, 

especially deletions that are associated with mental retardation. 

 

 
Figure 1.10. – Hybridization with subtelomeric probes for 5p and 5q showing a deletion of 5q 
subtelomeric region [photo from Laboratório de Citogenética da Faculdade de Medicina da Universidade 
de Coimbra]. 



 
Introduction 

 

31 
 

Chromosome Painting 

Chromosome painting allows the labeling of an entire chromosome using probes 

generated from specific chromosome libraries or chromosome microdissection (wcp, 

whole chromosome painting) [Cremer et al., 1988; Guan et al., 1994]. Partial chromosome 

painting (pcp) identifies the short or the long arm of a specific chromosome (Fig. 1.11.). 

This technique is extremely useful for the characterization of several chromosomal 

imbalances, like insertions and translocations. 

 

A BA B

 
Figure 1.11. – A) Whole chromosome painting for chromosomes 2 (green) and 3 (red); B) Partial 
chromosome painting of chromosome 2, being the short arm red and long arm green. [photo from 
Molekulare Zytogenetik Labor in Jena]. 
 

 

SKY, COBRA and M-FISH 

Combinatorial labelling uses the calculation of a spectral signature for each probe — 

each probe is identified by its unique combination of absences and presences of each 

fluorochrome. The required 24 colour combinations (for the 22 human autosomes plus 

the 2 sex chromosomes) can also be achieved using ratio labelling. In ratio labelling, 

different probes can be labelled with the same fluorochrome combinations, but are 

distinguished by the different proportions of the fluorochromes used. Using this 

approach, only four fluorochomes are necessary to achieve 96 possible colour 

combinations or pseudocolours. These labelling strategies allow the simultaneous 

visualization of all 24 human chromosomes, each in a different colour, in a single 

hybridization (Fig. 1.12.). The principle of combinatorial labelling is applied in almost 

cases. Specific technologies that use these approaches include Multicolour-FISH (M-

FISH), Spectral Karyotyping (SKY-FISH) and Combined Binary Ratio Labelling (COBRA) 
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[Schröck et al., 1996; Speicher et al., 1996; Tanke et al., 1999; Speicher and Carter, 2005; Liehr 

et al., 2009].  

 

 
Figure 1.12. Human male karyogram after hybridization of a seven-fluorochrome M-FISH mix [adapted 
from Geigl et al., 2006]. 
 

Multicolour-FISH (M-FISH) is defined as the simultaneous use of at least three different 

ligands or fluorochromes for the specific labelling of DNA (excluding the counterstain). 

Camera-based image acquisition and computer-based image analysis are required for 

the analysis of SKY, COBRA and M-FISH experiments. Indeed, in combinatorial labeling, 

at least one of the fluorochromes used has its emission wavelength in a spectral region 

that is invisible to the human eye and in ratio labeling the computer is essential to 

detect slight colour differences [Liehr et al., 2009]. Using these multicolour approaches 

the detection sensitivity for small interchromosomal rearrangements (involving <3 Mb 

of sequence) is poor [Speicher and Carter, 2005]. 

Subcentromeric FISH (subcenFISH) is a M-FISH technique that allows the 

characterization of the pericentromeric regions of all human chromosomes. 

SubcenFISH includes the most proximally available single-copy probes, 
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microdissection-derived partial chromosome probes specific for the long and the short 

arm, and a centromere specific probe. For the acrocentric chromosomes, no proximal 

single copy probes and no chromosome specific pcp probes of the short arms are 

available. For all the acrocentric chromosomes set, a probe that stains all p-arms of the 

acrocentric chromosomes (midi54) is used (Fig.1.13.) [Starke et al., 2003]. 

 

 
Figure 1.13. – Human male karyogram with subcentromeric FISH [adapted from Starke et al., 2003]. 

 

Multicolour Banding (MCB) 

Multicolour Banding (MCB) is performed using overlapping microdissection libraries 

that are differentially labelled, producing reproducible and unique patterns of 

fluorescence ratios along chromosomes. These fluorescence ratios can be transformed 

into pseudocolour banding using specific software (Fig. 1.14.) [Chudoba et al., 1999]. MCB 

allows the differentiation of chromosome region specific areas at the band and sub-

band level and provides the possibility to analyse chromosomes irrespective of their 

condensation grades [Liehr et al., 2009]. 
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Figure 1.14. – Human Karyotype with different regions of chromosomes differentially labelled using 
probes obtained by microdissection – MCB [from Liehr et al., 2009]. 
 

Reverse FISH 

A whole chromosome or a specific band is microdissected from a metaphase spread, 

amplified by PCR and labelled with a fluorochrome. The hybridization of this probe in a 

metaphase spread will reveal the chromosome or region microdissected (Fig.1.15.) [Su 

et al., 1994].  

 
Figure 1.15. – Metaphase plate showing the presence of a marker chromosome by reverse FISH [from 
Melo et al., 2009]. 
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Fiber-FISH 

Fiber FISH is a powerful tool for mapping DNA sequences onto specific regions of the 

genome, because it allows accurate sizing of gaps and overlaps between probes (Fig. 

1.16.). Overlaps between two differentially labelled probes are sized by measuring the 

‘length’ of the signal on the DNA fibers that show mixed fluorescence (fluorescence 

from both probes). Gaps are sized by measuring the length of non-hybridized regions 

between two hybridization signals. Fiber FISH has been particularly useful for 

measuring the size of regions of the human genome that have been impossible to 

sequence [Florijn et al., 1995; Speicher and Carter, 2005]. 

 

 
Figure 1.16. – Fiber-FISH image showing the overlaps and gaps between probes [adapted from Iafrate et 
al., 2004]. 

 

1.1.3.2. Comparative Genomic Hybridization 

In Comparative Genomic Hybridization (CGH) the DNA is extracted from a test sample 

and a normal reference sample [Kallioniemi et al., 1992]. The two DNA samples are 

differentially labelled — for example, with the test labelled in green and the reference 

in red. The combined probes are then applied to target metaphase chromosomes and 

compete for complementary hybridization sites. Therefore, if a region is amplified in 

the test sample the corresponding region on the metaphase chromosome becomes 

predominantly green. Conversely, if a region is deleted in the test sample the 

corresponding region becomes red [Speicher and Carter, 2005]. By measuring the ratio of 

green to red colour, gains or losses of chromosomes can be detected (Fig. 1.17.). The 

size of DNA segments that CGH can detect is >~5-10 Mb, because it is dependable on 

the resolution of the metaphase spread used as a template [Kirchhoff et al., 2001]. By 

using dynamic standard reference intervals in high-resolution CGH, the resolution can 

be improved to ~3 Mb [Kirchhoff et al., 2004]. Although CGH can be applied to 
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constitutional cytogenetics, its main application is in tumour samples. Using DNA, and 

not metaphase spreads of the patient, CGH can be used for the study of cells in the 

different stages of cell cycle. For rearrangements that do not involve genomic 

imbalances, such as balanced chromosome translocations and inversions, the use of 

CGH is useless. In addition, whole-genome copy number changes (ploidy changes) 

cannot be detected. Furthermore, CGH provides no information about the structural 

arrangements of chromosome segments that are involved in gains and losses [Speicher 

and Carter, 2005]. For example, when a gain is observed it is not possible to ascertain 

whether it is a duplication or a marker chromosome. 

 

 
Figure 1.17. – Schematic representation of a CGH experiment. Patient DNA is labelled in green and a 
reference DNA is labelled in red. After mixture, the probes are hybridized in a metaphase plate. By 
measuring the ratio of green to red colour, gains or losses of chromosomes can be detected  
[downloaded from http://commons.wikimedia.org]. 

 
1.1.3.3. Array Comparative Genomic Hybridization – Array CGH 

Array Comparative Genomic Hybridization (array CGH) was developed on the same 

principle as CGH on chromosomes.  In array CGH, DNA probes are arrayed on a chip 

and CGH is used to test for increased or decreased dosage of chromosomal regions of 

interest. This technology allows the screening in one experiment of a great number of 

http://commons.wikimedia.org/
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DNA genomic sequences. Solinas-Toldo and co-workers were the first to report that it 

was possible to substitute the chromosome target by a glass where an ordered set of 

defined nucleic acid sequences are spotted [Solinas-Toldo et al., 1997; Sanlaville et al., 

2005]. 

Genomic DNA of the patient is extracted from peripheral blood lymphocytes, skin 

fibroblasts or other available tissue and labelled with one fluorescent dye (usually Cy3-

labelled dCTPs). The labelled patient DNA, together with an equal amount of control 

DNA labelled with another fluorescent dye (usually Cy5-labelled dCTPs), are co-

hybridised to a selected set of pre-spotted genomic fragments. The spot intensities are 

measured at 532 nm (Cy3) and 635 nm (Cy5). If the amount of Cy3 and Cy5 fluorescent 

intensities are equal in one spot, this region of the patient DNA is interpreted as being 

normal/balanced; if a threshold of increased ratio of Cy3 to Cy5 is detected, a 

duplication of the patient DNA is suspected, and inversely if a deletion is present (Fig 

1.18.) [de Ravel et al., 2007]. 
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Figure 1.18. - Principle of array CGH. Test DNA and control DNA are differentially labelled with Cy3 and 
Cy5 respectively. The two labelled products are combined and hybridized onto the spotted slide. Images 
from hybridized slides are obtained by scanning in two channels and Signal intensity ratios from 
individual spots can be displayed as a simple plot. In the presence of a deletion the correspondent spot 
will appear red and in the presence of a duplication green. 

 

With a single test, array CGH can detect genomic errors for disorders that are usually 

identified by cytogenetic analysis and multiple FISH tests. The detection limits of copy-

number differences by array CGH depend on the probe density and the resolution of 

the platform used. The DNA probes commonly used range from genomic clones, most 

often BAC clones (80–200 kb), to oligonucleotides (25–85 bp) (Fig. 1.19.) [Emanuel and 
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Saitta, 2007]. A special type of oligonucleotide array can distinguish Single Nucleotide 

Polymorphisms (SNPs), allowing recognition of the parental origin of each DNA copy 

and enabling the detection of uniparental disomy. 

 

 
Figure 1.19.  - Diagram showing the differences in resolution between conventional karyotyping and 
different array CGH platforms. Conventional karyotype allows a resolution of no more than 5 Mb. The 
resolution with array CGH depends on the platform used. 

 

The advantage of array analysis is that it simultaneously assays discrete loci in a high-

throughput manner at a resolution never before possible with conventional 

cytogenetic techniques. The high-resolution analysis afforded by microarrays can 

identify several pathogenic abnormalities. The recent use of microarray-based 

comparative array CGH has accelerated the identification of novel cytogenetic 

abnormalities. However, microarray analysis can also uncover gains and losses in 

regions of the genome that have unclear clinical significance. Some of these are 

apparently benign copy number variants (CNVs), but others may have clinical 
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relevance that remains unknown [Shaffer et al., 2007]. Like CGH, array CGH does not 

identify balanced chromosome rearrangements and complete ploidy. 

Selecting the correct molecular cytogenetics strategy for the study of a particular 

disease or chromosomal imbalance is a main issue. Indeed, different chromosomal 

abnormalities require different cytogenetic methods for their identification. As 

summarized in figure 1.20., depending on the chromosomal abnormality the different 

cytogenetic techniques can have different sensibilities. For instance, array-CGH is not a 

suitable technique for the detection of polyploidy and balanced translocations, 

inversions or insertions. On the other hand, it has a high resolution for detecting 

submicroscopic deletions and duplications/amplifications. 

 

# # ## # #

 
Fig. 1.20. - Comparison of cytogenetic techniques for identifying chromosomal abnormalities. Various 
chromosomal aberrations that might be present in clinical samples are shown, with the ability of 
different cytogenetic techniques to detect them. A ‘+’ indicates that an approach is suited for identifying 
the chromosomal rearrangement, a ‘–’ indicates that the aberration would be missed. M-FISH, multiplex 
fluorescence in situ hybridization; SKY, spectral karyotyping; LOH, loss of heterozigoty. *Indicates that 
several experiments are needed [adapted from Speicher and Carter, 2005]. 
#
rearrangements > 5Mb. 

 

 

 



 

40 
 

1.2. SMALL SUPERNUMERARY MARKER CHROMOSOMES (sSMCs) 

1.2.1. Definition and Nomenclature of sSMCs 

According to the ISCN published in 2009, a marker chromosome (mar) is a structurally 

abnormal chromosome that cannot be unambiguously identified or characterized by 

conventional banding cytogenetics [Shaffer et al., 2009]. A marker chromosome 

comprises a mixed collection of structurally rearranged chromosome regions. 

Numerous terms have been used in the literature to described markers, including 

supernumerary marker chromosomes (SMC), extra structurally abnormal chromosomes 

(ESAC), supernumerary ring chromosomes (SRC), accessory chromosomes (AC/ACH), 

small accessory chromosome (SAC), extra or additional marker chromosome, 

supernumerary or extra microchromosome, additional or metacentric chromosome 

fragment or small bisatelited additional chromosome [revised by Liehr et al., 2004]. 

Certain markers chromosomes are large enough to be identified by G banding and 

have a well-established phenotype. Examples include iso(12p), associated with 

Pallister-Killian syndrome (PKS) [Shinzel, 1991]; iso(18p), associated with mild-moderate 

mental retardation and a characteristic facial appearance [Callen et al., 1990]; or iso(9p)-

syndrome, associated with mental retardation and craniofacial dysmorphisms. The 

other markers, smaller, are usually identified only by molecular cytogenetics. Some of 

these smaller supernumerary markers are also associated with well established 

syndromes, like cat-eye syndrome and the presence of an extra small marker derived 

from chromosome 22. 

Crolla proposed a definition of small supernumerary marker chromosomes (sSMCs) as 

“small structurally abnormal chromosomes that occur in addition to the 46 

chromosomes” [Crolla et al., 1997]. Liehr suggested a “more cytogenetic” definition, 

defining sSMCs “as structurally abnormal chromosomes that cannot be identified or 

characterized unambiguously by conventional banding cytogenetics alone, and are (in 

general) equal in size or smaller than a chromosome 20 of the same metaphase 

spread” [Liehr et al., 2004]. In contrast, a supernumerary marker chromosome larger 

than chromosome 20 usually can be identifiable based on chromosome banding. The 
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definition of small sSMC versus larger sSMC is not functional, but cytogenetic, because 

sSMC and larger sSMC can have the same karyotypic evolution [Liehr et al., 2004]. 

sSMC can either be present in addition to [Liehr et al., 2009]: 

1) an otherwise normal karyotype (e.g.: 47,XX,+mar); 

2) a numerically abnormal karyotype (e.g. Down syndrome – 48,XY,+21,+mar); 

3) a structurally abnormal but balanced karyotype (e.g. 46,XX,del(mar-

region),+mar). 

sSMCs are a morphologically heterogeneous group of structural abnormal 

chromosomes that can appear in different shapes: inverted duplicated chromosomes 

(inv dup), centric minute chromosomes (min) and ring chromosomes (r) (Fig. 1.21.). The 

subgroup of inv dup is composed of different types of sSMC, including dicentric 

chromosomes.  

 

Figure 1.21.– Different shapes of sSMC. Small supernumerary marker chromosomes (sSMC) are defined 
as structurally abnormal chromosomes that cannot be identified or characterized unambiguously by 
conventional banding cytogenetics alone, and are (in general) equal in size or smaller than a 
chromosome 20 of the same metaphase spread. Different forms of sSMC can appear: inverted 
duplication chromosomes (inv dup), centric minute chromosomes (min) or ring chromosomes (r) [from 
Liehr et al., 2004].  

 

Taking into account the morphology variety, the term “markers” seems to be more 

comprehensive, even after their identification by molecular cytogenetics [Liehr, 2009]. 

One problem not resolved in the new ISCN 2009 [Shaffer et al., 2009] is the difficulty 

encountered when a definition of subpopulation of small supernumerary marker 

chromosomes (sSMCs) is to be formulated. Additionally, no uniform regulations are 

available concerning the order of sSMC cell lines in the karyotype formula and the 
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description of the sSMCs main shapes (centric minute, inverted duplication and ring). 

When the “marker” chromosome becomes a well-characterized sSMC its shape should 

be indicated. However, according to the ISCN the only possibility of doing that 

correctly is using the abbreviation “der”, for derivative. Liehr pinpointed this 

nomenclature problem in a recent letter to editor of the Journal of Histochemistry and 

Cytochemistry [Liehr, 2009]. According to the definition of derivative chromosomes 

(der) proposed in the 2009 ISCN, a “der” is a structurally rearranged chromosome 

generated either by a rearrangement involving two or more chromosomes or by 

multiple aberrations within a single chromosome. On the other hand, sSMCs are very 

specific and clearly definable according to their shapes. The only possibility according 

to the ISCN 2009 is to designate ring chromosomes as “r”, being the term “der” used 

for the other shapes of sSMCs. The term “inv dup” is considered outdated and the 

replacement of this designation is suggested - for example inv dup(15)(q11.2) replaced 

by idic(15;15)(q11.2;q11.2). However, this replacement could be confusing; in the way 

that “inv dup” is a widely accepted term.   

Taking into account these considerations, Liehr proposed that the abbreviations “min” 

for centric minute-shaped sSMCs, “inv dup” for inverted duplicated sSMCs and “r” for 

ring-shaped sSMCs should continue to be applied and the use of “der” should be 

avoided in the subgroup of centric minute-shaped sSMCs. In table I, a comparison of 

the nomenclature proposed by ISCN 2009 and Liehr, in different sSMC cases, is 

described, showing that the system proposed by this author is more simple and 

informative [Liehr, 2009] (Table 1.I.). Furthermore and taking into account the order of 

the different cell lines in an sSMC mosaic case, this author purposes to sort the clones 

first by their modal chromosome number, second according to the number of cells 

containing the marker, and finally by the size of the imbalance they cause. Therefore, 

the normal cell line (46,XX or 46,XY) would be always referred at last2.  

                                                 
2
 Considering the following example of a mosaic case with 4 different cell lines: 1) a normal complement 

in 4 analysed cells; 2) a cell line with a supernumerary  marker chromosome (mar1) present in  5 
analysed cells; 3) a cell line with a different, bigger, supernumerary  marker chromosome (mar2) present 
in 4 analysed cells;  4) a cell line with a different supernumerary  marker chromosome (mar3), smaller 
than mar2, present in 4 analysed cells; the order of the different cell lines should be: 
47,XX,+mar1[5]/47,XX,+mar2[4]/47,XX,+mar3[4]/46,XX[4]. 
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Table 1.I. - Comparison of ISCN 2009 nomenclature with the one suggested by Liehr for sSMCs shaped in 
centric minute, inverted duplication, or ring structure [from Liehr, 2009]. 

 

 

1.2.2. Relevance and risk of sSMCs  

The first cases in the literature describing the presence of an sSMC appeared in the 

60’s. Indeed, in 1961, Ilberry and collaborators described a boy with epicanthic fold 

and protuberant tongue who had a karyotype 47,XY,+mar[53]/46,XY[16] de novo 

[Ilberry et al., 1961]. Ellis and colleagues published, in 1962, a case with an aberrant 

small acrocentric chromosome and Froland et al., in 1963, described a boy with several 

congenital defects with a karyotype 47,XY,+mar [Ellis et al., 1962; Froland et al., 1963]. 

Only several years latter, a correlation between several sSMCs cases and their possible 

phenotypic effects was described, when Buckton and collaborators showed that the 

ascertainment of sSMCs among individuals in psychiatric institutions was 3.27/1000 

compared to their frequency of only 0.24/1000 among consecutive newborns [Buckton 

et al., 1985; Crolla et al., 2005].  

Several attempts have been made to correlate specific marker chromosomes with a 

clinical picture, resulting in the description of few new syndromes like i(18p)-

syndrome, the Pallister-Killian syndrome i(12p) (OMIM 601803) and the der(22) and 

cat-eye syndromes (CES) (OMIM 115470) [Crolla, 1998].  

The risk for phenotypic abnormalities associated with an sSMC depends on several 

factors, including inheritance, mode of ascertainment, chromosomal origin, and the 

morphology, content, and structure of the marker [Graf et al., 2006].  Phenotypes 

associated with an sSMC are variable, from normal to severely affected. It has been 

shown that, depending on the chromosomal region of an sSMC, differences can be 
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observed and expected in clinical outcome. Indeed, this observation is confirmed by 

different reports of small trisomies in connection with the presence of an sSMC and 

specific clinical features [Crolla, 1998; Stankiewicz et al., 2000; D'Amato Sizonenko et al., 

2002; Starke et al., 2003; Sarri et al., 2006; Baldwin et al., 2008]. However, the majority of 

markers published in the literature have not been fully characterized and in order to 

correlate an sSMC with a clinical outcome is essential to know it chromosomal origin 

and content. 

sSMCs can be detected postnatally or prenatally, the last being a major problem for 

cytogenetic investigation and genetic counselling, due to time availability and, 

essentially, due to the difficulty in the majority of cases in establishing a robust 

genotype/phenotype correlation. Occasionally, sSMCs lead to spontaneous abortions. 

The majority of sSMCs do not grossly interfere with fetal development, because they 

contain little or no euchromatin.  

Some markers are inherited directly from a phenotypically normal parent. In such 

cases, there are often no phenotypic consequences for individuals who inherit the 

marker, conferring the presence of a familial sSMC a low risk. However, there are 

exceptions to this, such as when there are imprinting effects from uniparental disomy 

(UPD), or low level, tissue specific mosaicism for the marker chromosome in a parent 

without phenotypic manifestations [Graf et al., 2006].   

The risk of an abnormal phenotype in de novo prenatal cases with an sSMC is given as 

approximetly 13% [Warburton, 1991]. However, and taking in consideration the origin of 

the sSMC, the risk of an abnormal phenotype associated with a de novo acrocentric 

sSMC (excluding those derived from chromosome 15) is 7% (if sSMC is from 13, 14, 21 

or 22) and 28% (for non-acrocentric autosomes) [Crolla, 1998]. Graf and colleagues 

estimated a 26% (28/108) risk for phenotypic abnormality for any non-sex 

chromosome de novo supernumerary marker chromosome [Graf et al., 2006]. It was 

suggested that if high resolution ultrasound studies are normal, this risk reduces to 

18% [Graf et al., 2006]. As a result of the high risks and many uncertainties regarding the 

clinical outcome, many pregnancies with de novo sSMC are terminated.  
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Furthermore, the detection of mosaicism or uniparental disomy (UPD) of the parental 

chromosomes homologous to the sSMC confers more complexity to the case 

management. 

 

1.2.3. Mechanisms of sSMCs formation 

Different mechanisms of sSMC formation including trisomic rescue, monosomic 

rescue, post fertilization errors and gamete complementation have been proposed 

[Bartels et al., 2003; Liehr et al., 2004]. Another mechanism, that could explain the 

existence of multiple sSMCs of different origin, is the formation of sSMC from 

transfection of chromosomes into the zygote derived from one or more superfluous 

haploid pronuclei that would normally be degraded by deoxyribonucleases or other 

means [Daniel and Malafiej, 2003].  

sSMCs can assume different shapes: inverted duplication (inv dup) chromosomes; 

centric minute chromosomes (min); neocentric chromosomes; ring chromosomes 

(SRC), and complex rearranged sSMCs. The mechanism of formation of the sSMC could 

be different according to the shape of the marker. 

 

Inv dup supernumerary chromosomes 

The most frequent mechanism proposed for the formation of inv dup sSMCs derived 

from acrocentric chromosomes is a U-type exchange resulting from crossover mistakes 

of chromatids of two homologous chromosomes during meiosis (Fig. 1.22.) [Schreck et 

al., 1977; Liehr et al., 2004]. A U-type exchange is also proposed for the formation of iso-

chromosomes of non-acrocentric chromosomes, with a break within the centromeric 

DNA [Liehr, 2010 – sSMC homepage]. Besides U-type exchange, other theories have arise 

concerning the formation of dicentric iso-chromosomes including: a non-sister 

chromatid exchange followed by a second-division non-disjunction; errors in 

replication, caused by parental inversion heterozygosity; translocation exchange; and 

mitotic errors originating from ligation error in a replication fork during S-phase, 

followed by a new replication [Murmann et al., 2009]. 
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Figure 1.22. –Frequent mechanism proposed for the formation of inverted duplication sSMCs.  A U-
type exchange derived from crossover mistakes of the two homologous during the pachytene of 
prophase I [adapted from Liehr et al., 2004]. 

 

Small neocentric supernumerary chromosomes  

Neocentric chromosomes do not contain detectable alpha-satellite DNA. They are 

called analphoid markers, carrying newly derived-centromeres (neocentromeres) that 

are formed within interstitial chromosomal sites that have not previously been known 

to express centromeres [Choo, 1997]. 

The development of the majority of neocentric sSMCs is based on a U-type exchange, 

between two chromatid of two different chromosomes (inter-chromosomal), and most 

of the neocentric sSMC are small iso-chromosomes (Fig. 1.23.). The acentric fragment 

created during a U-type exchange in these cases is included into a gamete, a neo-

centromere is activated and the new “chromosome” is distributed throughout further 

cell cycles. This theory is supported by the fact that the frequency of inv dup(15) 

chromosomes is similar to that observed in neocentric chromosomes 15 among other 

acrocentric derived chromosomes of the corresponding group [Liehr et al., 2006]. 

However, Murmann et al. (2009) have proven that in contrary to the model shown in 

Fig. 1.23., in most neocentric inv dup-chromosomes the U-type exchange appears not 

intra- but inter-chromosomal, between two chromatids of the same chromosome (Fig. 

1.24).  
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Figure 1.23. – Formation of a neocentromere supernumerary chromosome. An acentric inverted 
duplication chromosome is formed following a U-type exchange in meiosis I that forms a 
neocentromere, preventing it lost in subsequent cell divisions [adapted from Liehr et al., 2004]. 

 

 
Figure 1.24. – U-type exchange could also occur between two chromatids of the same chromosome 
(intra-chromosomal). During meiosis crossing over leads to the formation of one acentric inv dup marker 
with two arms and one dicentric derivative. After meiosis I and the meiosis II division, respectively, the 
intra-chromosomal dicentrics break when both their centromeres are pulled apart resulting in a deleted 
derivative and an inv dup del derivative [adapted from Murmann et al., 2009]. 
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There are some cases reported in the literature of sSMCs with a ring chromosome 

conformation and associated with the presence of a neocentrome [Slater et al., 1999; 

Spiegel et al., 2003, Mascarenhas et al., 2008]. The mechanism of formation in these cases 

should follow the one described for ring chromosomes (see below) with a part of one 

chromosome, without containing the centromere, is excised and a neocentromere is 

formed. 

 

Small supernumerary ring chromosomes  

In cases which the morphology of the sSMC can be determined, almost 50% appear to 

be ring chromosomes [Liehr et al., 2006]. Several explanations for formation of non-

neocentric small supernumerary ring chromosomes (sSRC) are available in the 

literature. Two major models are proposed: 

I) a sSRC can be formed after a break within the centromere (“centromere 

misdivision”), along with a break either in p arm or in q arm. This is the case 

where ring formation is in connection with an inverted duplication due to an 

U-shape reunion between broken sister chromatids [Michalski et al., 1993] (Fig. 

1.25.A) or when a SRC is associated with a deletion of a part of the 

chromosome.  In contrast to neocentric sSMC, parts of the centromere are 

included, leaving two centric chromosome fragments, one of which forms a 

small ring (Fig. 1.25.C); 

II) a sSRC formation requires the occurrence of one break in the p arm and a 

second break in the q arm, and the two broken ends of a centric fragment 

fusing together to form a ring. The resulting SRC contains DNA from both p and 

q arms. sSRC formation can start with a centric minute chromosome (Fig. 

1.25.B) or the formation of a sSRC could be associated with complex 

chromosomal rearrangements [Stankiewicz et al., 2001; Stavropoulou et al., 1998]. 

A dicentric iso-chromosome could be formed primarily, followed by an 

excision of one centromere, with the excised fragment subsequently forming a 

ring chromosome (Fig. 1.25.D). 
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Figure 1.25. – Formation of sSRC. A) Formation of a sSRC after a U-shape reunion; B) Formation of a 
sSRC after a centric minute chromosome ; C) Formation of a sSRC in connection  with a deletion; D) 
Formation of a sSRC associated with complex rearrangements, with a primary dicentric iso-chromosome 
formation, being one of the centromeres excised [adapted from Liehr, 2010 – sSMC homepage]. 

 

Recently, Baldwin and co-workers proposed that small-ring formation with a 

“centromere misdivision”, might be a predominant mechanism of origin [Baldwin et al., 

2008]. These authors supported this theory by the existence of several deletion cases 
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reported in the literature associated with a complementary sSRC and of a cryptic 

deletion case reported in their paper, associated with a complementary sSRC. This 

mechanism of breakage within the centromere creating a pericentromeric deletion 

and a complementary ring chromosome was first described by Barbara McClintock, in 

1938, using maize [McClintock, 1939].  

Taking this into account, when in the presence of a familial SRC in a child with an 

abnormal phenotype and with a phenotypically normal parent (carrier of a SRC), this 

mechanism should be considered, given the possibility of cryptic pericentromeric 

deletions and a balanced deletion and ring state in a normal parent and other relatives 

[Baldwin et al. , 2008]. 

It is postulated that sSRC do not have telomeres [Ning et al., 1999]. However, the 

presence of telomeric and subtelomeric sequences at the fusion points of ring 

chromosomes was demonstrated for larger ring chromosomes [Pezzolo et al., 1993].  

 

Complex rearranged supernumerary marker chromosomes 

There are some cases reported in the literature of sSMCs with no consecutive 

chromosomal material, having complex intrachromosomal rearrangements [Trifonov et 

al., 2008]. There are also cases reported in the literature with more than one sSMC 

derived from 2 different chromosomes [Liehr et al., 2006], from 3 chromosomes [Huang 

et al., 2006], from 4 chromosomes [Tsuchiya et al., 2008]; from 5 chromosomes 

[Beverstock et al., 2003]; from 6 chromosomes [Vermeesch et al., 1999] and from 7 

different chromosomes [Chen et al., 2006]. 

The formation of these complex rearranged sSMC could arise from a superfluous 

haploid pronucleus in which there is incomplete digestion of some chromosomes, and 

transfection of these leftover pieces into the zygote [Daniel and Malafiej, 2003]. 

 

1.2.4. Frequency and distribution of sSMCs  

An important issue when studying the impact of an sSMC case is the frequency of 

sSMC in prenatal and in postnatal cases in different human sub-populations. Liehr and 

Weise addressed this question, reviewing 132 datasets derived from the literature and 
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from own data [Liehr and Weise, 2007] (Table I.2). The range of frequency of sSMC 

carriers in the different datasets analysed varied between 0.028% and 0.15%. These 

variations were mainly caused by the size of the analysed population and the bias 

caused by single studies. In this study 1 288 693 cytogenetically studied cases 

detecting 980 sSMCs were assembled, being the i(18p), der(22), i(2p) and inv dup(22) 

also counted as sSMC. According to this study, 70% of the reported sSMC are de novo, 

being the other 30% familial cases. 

The frequency of sSMC in newborn cases is 0.044%, taking into account several reports 

of consecutive newborn children, without further selection criteria [Liehr and Weise, 

2007]. In prenatal cases this rate is higher, being 0.075% in 688 030 cases provided by 

>240 laboratories. This detection rate was independent if chorion villi samples (CVS) or 

amniotic fluid cells were studied. Liehr and Weise evidenced a strong positive 

correlation (0.204 %) of sSMC presence and ultrasound abnormalities, but Pallister-

Killian-, cat-eye-, der(22)- and iso(18p)-syndrome chromosomes were included and are 

usually correlated with malformations. 

 

Table 1.II. – Frequency of sSMCs in human subpopulations.  

Subpopulation sSMCs Frequency 

Prenatal cases 0.075% 
Newborn cases 0.044% 
Mentally retarded patients 0.288% 
Sub fertile people 0.125% [0.165% in male; 0.022% female] 

[adapted from Liehr and Weise, 2007] 

 

The higher rate of cases with sSMC in prenatal compared to newborn could be 

explained by the bias caused by the maternal age effect in prenatal studies. 

Additionally, prenatal diagnostics is often performed when a suspicion of foetal 

pathology exists, increasing this bias, and foetus with sSMC may result in miscarriage 

and will not be accounted in newborn cases [Blennow et al., 1994]. Warburton reported 

a frequency of 0.043% of de novo sSMCs in prenatal studies [Warburton, 1991]. The 

discrepancy of this value could be attributed to the fact that only de novo cases were 

reported (the familial ones were excluded) and that the sSMCs accounted did not 



 

52 
 

include extra chromosomes like iso(18p), iso(9p), Pallister-Killian-, cat-eye- and 

der(22)-syndrome chromosomes. 

The sSMC frequency rate in mentally retarded patients is 0.288% taking into account 

26 studies with 2000 sSMCs carriers in 69 332 patients. The sSMC rate is ~7 times 

higher in developmentally retarded patients than in the normal population [Liehr and 

Weise, 2007]. 

In patients with fertility problems, and considering 41 studies with 30 510 patients, the 

overall rate is 0.125%, but with a higher frequency in male (0.165%) comparing with 

female (0.022%). Patients with fertility problems have a 2.9 times enhanced risk for an 

sSMC compared to the general population [Liehr and Weise, 2007]. It has been shown 

that the frequency of chromosome abnormalities in infertile male is approximately five 

times higher than that found among the normal male population [Chandley et al., 1975]. 

The majority of chromosome abnormalities appeared to be exerting their effect on 

male fertility through disturbance of spermatogenesis. Chromosomopathies account 

for approximately 2% of all men who attend infertility clinics, rising to 15% among 

those with azoospermia [Chandley, 1998].   

An interesting estimation could be done – taking into account the estimated world 

population of 6 823 000 000 people and a 0.044% rate of sSMC in newborns, that will 

be at present ~3.0x106 living sSMC carriers [U.S. Census Bureau, 2010; Liehr and Weise, 

2007]. 

 

1.2.5. Mosaicism and sSMCs 

Mosaicism refers to the presence of genetically different cells in a multicellular 

organism that have been derived from a single fertilized egg. Many different 

mechanisms and types of genetic changes can lead to mosaicism, such as differences in 

the number and configuration of chromosomes (loss, gain, translocation, deletion), 

and various types of mutations of a single gene [Hall, 2005].  

Chromosome instability is a hallmark of tumorigenesis but recently it was shown that 

is also common during early embryogenesis [Vanneste et al., 2009]. It is characterized by 

an elevated rate of gains or losses of complete chromosomes or segments of 
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chromosomes per cell cycle, resulting in cell-to-cell variability [Geigl et al., 2008]. 

Vanneste and collaborators revealed a high frequency of chromosome instability in 

cleavage-sate embryos involving complex patterns of segmental chromosomal 

imbalances and mosaicism for whole chromosomes and uniparental isodisomies 

[Vanneste et al., 2009].  

The clinical impact of genetic mosaicism may be negligible, minor or dramatic. It has 

been known for a long time that chromosomal mosaicism can be seen in some of the 

more common chromosomal disorders, like Down syndrome or Turner syndrome. In 

general, it has been observed that the more normal cells that are present, the milder 

the effect on the phenotype could be. However, this is not a straightforward 

observation. The impact of the type of cell lines (normal or abnormal) present in 

different tissues is also very important to evaluate the severity of phenotypes, 

associated with mosaicism. 

Mosaicism associated with sSMCs is a well-known fact. As previously discussed (section 

1.2.3.) the different mechanisms proposed for sSMC formation, inluding trisomic 

rescue or monosomic rescue and post fertilization errors, would frequently lead to 

mosaicism. Additionally, sSMCs may tend to rearrange and/or reduce size during 

karyotype evolution. These phenomena could lead to the formation of different cell 

lines, for example: 

a) in ring chromosomes, due to the characteristic instability of a ring structure at 

mitosis after sister chromatid exchange events, double or even more sSRC 

could be found [Starke et al., 2003; Carreira et al., 2007] 

b) the decrease of cells with sSMC during lifetime [Hoo et al., 1974]  or even the 

disappearance of the sSMC in the most frequent studied tissues during lifetime 

could occur (e.g. peripheral blood) [Fitzgerald and Mercer, 1980]; 

c) the formation of different variants and a highly complex mosaic arising from 

centric minute or ring chromosomes that are degraded differently in different 

cells/tissues [Liehr et al, 2004]. 

Fickelscher and collaborators characterized the levels of mosaicism of a prenatally 

ascertained case with a de novo sSMC derived from, chromosome 1. A molecular 
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cytogenetic study of eleven tissues of this foetus was performed showing that the 

presence of the sSMC varied between 13 and 62% within the different tissues. This 

finding is something common in sSMC carriers and could explain why up to the present 

no clinical correlations for sSMC mosaicism and clinical outcome in the corresponding 

carriers could be established [Fickelscher et al., 2007].  

The retrospective study made by Warburton of 377,357 reported amniocenteses in a 

10 years-period revealed that, of the 123 cases with sSMC, 53% were in mosaic and 

that mosaicism in phenotypically normal sSMC carriers was ~52.3% and in 

phenotypically abnormal sSMC carriers was ~56.3% [Warburton, 1991]. These numbers 

are approximate to the results of Daniel and Malafiej report – 61.9% mosaicism in 

phenotypically normal carriers and 56.6% in abnormal carriers, when reviewing 

supernumerary small ring marker in the literature [Daniel and Malafiej, 2003].  

There are also cases showing that similar grades of mosaicism in two generations are 

associated with differences in clinical outcome [Tan-Sindhunata et al., 2000] or showing 

major differences in mosaicism percentage without phenotypic consequences [Anderlid 

et al., 2001]. In conclusion, the risk associated with the presence of an sSMC is difficult 

to ascertain in the presence of mosaicism. 

With the use of molecular cytogenetic approaches and array techniques, it has been 

reported the presence of previously undetectable cryptic mosaicism associated with 

sSMC cases [Starke et al., 2003; Liehr et al., 2004; Tsuchiya et al., 2008; Liehr, 2009].  
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1.2.6. Uniparental Disomy and sSMCs  

Uniparental disomy (UPD) is the inheritance of both homologues of one chromosome 

from only one parent, either the father or the mother (instead of inheriting one from 

the father and other from the mother) [Schinzel and Baumer, 2005]. If the parent passes 

on two copies of the same chromosome (non-disjunction in meiosis II) it is considered 

an isodisomy. But if the parent passes on one copy of each homolog (non-disjunction 

in meiosis I) it is called a heterodisomy (Fig. 1.26.). Additionally, UPD can occur for an 

entire chromosome or only in a chromosomal segment (interstitial or telomeric) 

together with biparental inheritance of the rest of the pair of chromosomes and a 

normal karyotype, in this case being called “segmental UPD”. 

 

Heterodisomy Isodisomy

P1 p1 P2 P1 p1 P1 P1 P1

Heterodisomy Isodisomy

P1 p1 P2 P1 p1 P1 P1 P1

 
Figure 1.26. – Schematic representation showing the formation of an uniparental heterodisomy, usually 
after a trisomic “rescue” event and of an uniparental isodisomy, that can occur after pos-fertilization 
errors or by the fecundation of a nulissomic gamete followed by a postzygotic reduplication for 
aneuploidy “rescue”. P1 and p1 represent both homologs of progenitor 1 and P2 one of the homolog 
from progenitor 2. 
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Figure 1.27.- Mechanisms of formation of UPD associated with an sSMC. (A) Functional trisomy rescue; 
(B) Postzygotic reduplication by fertilisation of a normal gamete by a gamete carrying a sSMC followed 
by somatic reduplication of the normal homologue; (C) Post-fertilisation errors by either mitotic non-
disjunction followed by reduction of the single homologue or vice versa; (D) Complementation by 
fertilisation of a disomic gamete by a gamete carrying an sSMC. 
 

There are several mechanisms proposed for the formation of UPD, but the bases are 

always two events, either two meiotic, or one meiotic and one mitotic, or two mitotic.  

Indeed, the coexistence of UPD with an sSMC could be explained by four different 

mechanisms (fig 1.27.) [Kotzot, 2002]: 
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A) Functional trisomy rescue: The zygote is trisomic (caused by an error in meiosis 

I or in meiosis II) and, either at random or by an active mechanism, parts of the 

single parental homologue are lost through one or two breakage events in an 

early embryonic cell division (fig 1.27.A). The sSMC is formed following two 

breakage events that can originate a sSMC with heterochromatic material (just 

near the centromere) or with also euchromatic regions (breakage more or less 

distal to the centromere).  

B)  Postzygotic reduplication when a normal gamete is fertilised with a gamete 

carrying a sSMC (a meiotic fragment or an inherited sSMC) (fig. 1.27.B). UPD will 

appear because a duplication of the normal homologue in a zygote which has 

inherited a sSMC in place of the normal corresponding chromosome occurs, 

“rescuing” an aneuploidy (fig 1.27.B). This mechanism seems to be less 

frequent. 

C) Post-fertilization errors by either nondisjunction in an early mitosis and 

subsequent reduction of the monosomic homologue or by an inverse sequence 

(fig. 1.27.C). This subclass is the most complex and hard to demonstrate. 

D) Fertilisation of a disomic gamete by a gamete with a sSMC formed before or 

during meiosis (“complementation”) (fig. 1.27.D).  

 

The major problems associated with UPD are trisomy mosaicism on the placenta or the 

foetus, genomic imprinting, homozygosity of autosomal recessive mutations or the 

combination of all these [Kotzot, 1999]. After identification of the origin of the sSMC, its 

normal sister chromosomes should be tested for their parental origin to exclude a 

possible uniparental disomy (UPD), particularly in chromosomes for which genomic 

imprinting is known.  UPD is an example of the plasticity of the human genome, which 

for most chromosomes can tolerate the lack of biparental inheritance. In contrast a 

minority of genes expressed irregularly as a result of UPD will lead to severely harmful 

phenotypes [Kotzot, 2008]. Predicting the phenotypic effects of UPD is, therefore, 

complex. UPD phenomena in chromosomes 6, 7, 11, 14, 15 and 20 has shown in some 
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cases abnormalities in affected individuals [Chudoba et al., 1999; Shaffer et al., 2001; 

Kotzot, 2002]. 

The proportion of maternal versus paternal, meiotic versus mitotic nondisjunction in 

UPD parallels that of trisomy: predominance of maternal origin and increased mean 

maternal age. Thus, the vast majority of maternal UPD is heterodisomy, mostly 

stemming from maternal meiosis I nondisjunction. Mean maternal age in maternal 

UPD equals that usually found in maternal trisomy, i.e. an elevation of about 6 years 

over euploid controls. Paternal UPD, in contrast to maternal, is almost always 

isodisomy [Schinzel and Baumer, 2005]. 

UPD can be tested by molecular approaches, such as microsatellite analysis or 

methylation-specific polymerase chain reaction, or more recently with SNPs array 

analysis [Salafsky et al., 2001; Nietzel et al., 2003; Starke et al., 2003; Conlin et al., 2010]. 

Although UPD is often considered an event to be characterized exclusively by 

molecular genetic or epigenetic approaches, it seems that at least one third of UPD 

cases emerge in connection with or due to a chromosomal rearrangement [Liehr, 2010]. 

Thus, additional cytogenetic characterization of UPD cases is essential.  

 

1.2.7. Parental age and sSMCs 

Hook and Cross reported a significant maternal age effect associated with de novo 

sSMCs in a study with 75000 prenatal cases assessed by conventional cytogenetics 

[Hook and Cross, 1987]. In 2005, using FISH for ascertain chromosomal origin of 131 

cases of  sSMCs, Crolla and collaborators notice no overall maternal age effect 

associated with sSMCs [Crolla et al., 2005]. However, in this study, de novo sSMCs 

derived from chromosome 15 were associated with a significantly increased maternal 

age. Previous studies demonstrated the existence of an exponential increase with 

maternal age associated with maternal meiosis I nondisjunction involving chromosome 

15 and with uniparental disomy for chromosome 15 [Robinson et al., 1996; Robinson et 

al., 1997]. The maternal age effect associated with de novo sSMC(15) in humans would 

suggest a common origin for both trisomy 15 following nondisjuction at meiosis I with 
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subsequent complete trisomy rescue leading to UPD(15) or incomplete trisomy rescue 

resulting in the formation of an sSMC(15) [Crolla et al., 2005]. 

Bartsch and collaborators reported a higher frequency of cat eye syndrome (CES) 

chromosomes in a prenatal retrospective study, that could be indicative of a maternal 

age effect in sSMC(22). In this study a CES chromosome was found in de novo cases 

(5/43 273 prenatal cases) in pregnant women referred because of advance maternal 

age [Bartsch et al., 2005]. Indeed, inverted duplications of chromosomes 15 and 22 

share similar origins because they both may arise in female meiosis from errors of 

recombination at sites of low copy repeats (LCRs). 

Apart from sSMCs derived from chromosome 15 and 22, the lack of comparable data 

concerning sSMCs from the other acrocentric and non acrocentric chromosomes does 

not allow taking a conclusion about the maternal age effect of de novo sSMCs. 

However, it seems that familial sSMCs are predominantly inherited via the maternal 

line [Liehr, 2006]. 
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1.3. Aim of the work 

Taking into account the following considerations: 

1 - sSMCs can be detected postnatally or prenatally, the last being a major problem for 

cytogenetic investigation and genetic counselling, due to time availability and, 

essentially, due to the difficulty in the majority of cases in establishing a robust 

genotype/phenotype correlation; 

2 - More precise knowledge of the size of the partial trisomy segment(s) and the gene 

content of the SMC would greatly improve the ability to predict phenotype and 

prognosis; 

3 - The great majority of sSMCs reported in the literature lack of detailed 

characterization; 

4 – The presence of a sSMC is often accompanied by mosaicism; 

 

the main goal of this work was the ascertainment of the genetic content of a set of 

cases with sSMCs derived from different chromosomes, comparing them with similar 

cases reported in the literature with trisomies involving the same regions, in order to 

establish a genotype/phenotype correlation. A more precise knowledge of the size of 

the partial trisomy segment and the gene content of an sSMC would greatly improve 

the ability to predict phenotype, contributing to a more informed prenatal counseling 

or prognosis. 

 

For this main achievement we aimed to: 

a) Characterize the shape of the sSMCs by conventional banding and multicolour FISH, 

namely recurring to subcentromeric FISH or multicolour banding, in order to evaluate 

the sSMC structure and the presence of pericentromeric genes in the different marker 

chromosomes; 

b) Evaluate the array CGH technique, with previous microdissection and amplification 

of the SMCs, for the ascertainment of the genetic content of the marker. If validated, 

this technique could have great value when the levels of mosaicism are low. 

c) Evaluate, whenever possible, the presence of uniparental disomy (UPD); 
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d) Establish EBV-transformed linfoblastoid cell lines for all the sSMCs cases. 

 

The final aim of this study is to propose guidelines for the management of sSMCs in a 

diagnostic cytogenetic laboratory, taking into consideration several issues like, for 

example: technical availability and presence/absence of mosaicism. 
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2.1. Cell culture and harvesting 

A good visualization of human chromosomes in somatic cells requires that dividing 

cells are studied during prometaphase. Large numbers of prometaphase cells can be 

obtained by growing cells in culture and by adding agents that inactivate spindle fiber 

formation, such as colcemid, to cell cultures during periods of active growth5. While 

the number of cells found in metaphase will increase as the length of exposure to 

colcemid increases, chromosome condensation also progresses with time. The optimal 

length of exposure to colcemid will be determined by the rate of cell division and the 

degree of condensation that is desired. Many cell types undergo growth and division 

spontaneously, but some cell types, such as peripheral lymphocytes, need to be 

stimulated into mitotic activity by the addition of a mitogen, like phytohemaglutinin, at 

the time cell cultures are initiated. 

Cytogenetic procedures are optimized when all of the cells in culture are synchronized 

in their mitotic cycle. This is achieved by adding chemical agents, like thymidine, that 

block progression into S phase to an actively growing culture. The harvesting 

procedure, after culture, involves centrifugation of cell suspensions into a cell pellet, 

treatment with a hypotonic salt solution, fixation of the suspended cell pellet, and 

dropping of the cells onto glass slides [Moore and Best, 2001]. Cell cultures for this study 

were obtained from peripheral blood and amniocytes. 

 

2.1.1. Peripheral blood cell culture 

Peripheral blood culture was performed according to standard protocols, by 

inoculating sodium heparin collected whole blood in PB-MAX (Gibco), containing L-

glutamin and phytohemaglutinin (PHA). PHA stimulates T lymphocytes to blast-like 

cells. After 48 to 72 h methotrexate (MTX)6 was added (final concentration of 5 μM) in 

                                                 
5
Colcemid and Colchicine are antimitotic drugs that bind to free tubulin and inhibit microtubule 

assembly [Fitzgerald, 1976]. These drugs bind to β-tubulin near the intradimer interface where they 
stabilize a “curved” tubulin conformation that inhibits microtubule elongation and destabilizes the 
polymer [Yin et al., 2007]. 
 
6Methotrexate is a folate antagonist that prevents thymidine syntesis. Depletion of thymidine pool 
prevents the cells from completing replication, and cells accumulate in the S-phase of the cell cycle. 
Subsequent addition of thymidine releases a synchronized wave of cells to complete replication and 
proceed through G2 and into mitosis [Bangs

 
 and Donlon, 2005]. 

http://mct.aacrjournals.org/search?author1=Shanghua+Yin&sortspec=date&submit=Submit
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order to block DNA replication. After 17h incubation at 37ºC, thymidine was added 

(final concentration of 0.05 μM) to synchronize cells. After 5 h cultures were subjected 

to colcemid treatment for 20 minutes (final concentration of 0.1 μg/ml), and the cells 

were then ressuspended in 0.4% KCl with buffered hypotonic solution (JL006A, GGS, 

Genial Genetic Solutions). The KCL hypotonic buffer was incubated for 25 minutes at 

37ºC. A volume of 5 ml of methanol:acetic acid fixative solution (3:1) was added to the 

cell pellet under agitation and 3 more fixative washes were subsequently performed. 

Cell pellet(s) were stored at -20ºC in fixative solution. The best cell suspension, with 

high metaphase index and of very good quality, was chosen for subsequent studies 

[Haines et al., 1995; Bangs  and Donlon, 2005].  

 

2.2.1. Amniocytes cell culture 

Amniocytes cell culture was performed using standard procedures [Haines et al., 1995; 

Meron, 2001] with modifications]. Briefly amniotic fluid was cultured with 5 ml of 

complete medium (Ham’s F 10 medium supplemented with 2mM L-Glutamine, 10% 

Fetal Bovine Serum (FBS) and Penicillin/Streptomycin) and 3 ml of Amniomax 

(GIBCOTM) or AmnioMed (EuroCloneTM). After 5-7 days in culture the proliferation of 

the culture was assessed in a daily basis. When a sufficient growth was detected cells 

were prepared for manipulation. Following a 3 hour treatment with colcemid (1 µg of 

KaryoMAX, GIBCOTM) at 37ºC, cells were washed and tripsinized (0.05% trypsin with 

EDTA, without Ca or Mg). Hypotonic shock was done for 20 minutes with 0.4% KCl 

solution. Cells were fixed consecutively with 3 solutions: methanol/acetic acid solution 

(6:1); methanol/acetic acid solution (3:1) and methanol/acetic acid solution (1:1).  

 

2.2. Chromosomes spreading  

Cell suspensions in fixative were used to prepare metaphases for G-banding, C-

banding, NOR-banding or FISH. When preparing slides with chromosome spreads one 

should be aware that it is not an exact science, although careful attention to a number 

of variables certainly increases the chance of successful results.  
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Cells in fixative solution were diluted at the appropriate density to produce a 

reasonable number of well-spread metaphases in each microscopic field. About 12-14 

μl of cell suspension were distributed on several spots on a slide (pre-wet slide, when 

needed). A drop of new fixative solution was added to each area of spreading when 

needed.  The slide was placed face up into a hot metal plate (37ºC) for evaporation of 

the fixative solution. The degree of spreading could be adjusted using different 

temperatures on the heated plate, with higher temperatures increasing chromosome 

spreading. For difficult-to-spread cells, after the surface became grainy, the slide was 

passed briefly through water vapours, and then some droplets of fixative were placed 

on the slide [Haines et al., 1995; Bangs  and Donlon, 2005]. The rate at which the fixative 

evaporates is critical to the final dispersion of the chromosomes on the slide. Thus, 

humidity and temperature over the surface of the drying slide can be manipulated to 

produce optimal chromosome preparations. The ideal metaphase spread has all 46 

chromosomes dispersed in the same optical field under the microscope (1000x 

magnification), with minimal overlapping chromosomes. 

Aging of the slides was done at room temperature during 2-3 days or at 65ºC 

overnight. After dehydration of the slides, with ethanol (70%, 2min; 95%, 2min; 100%, 

2 min) FISH was performed. 

For multicolour FISH procedures, after aging, the slides were subjected to pepsin pre-

treatment using 0.005% pepsin in 0.1 N HCl. This was followed by rinsing in PBS and a 

10 min post-fix treatment with 4% formaldehyde for 5 min at room temperature. The 

post-fix solution was rinsed with water and the slides were dehydrated with ethanol 

series (70%, 95%, 100%).  

 

2.3. Banding Techniques 

2.3.1. G-Banding technique 

Giemsa banding (G-Banding) produces a series of light and dark bands along the 

lengths of the chromosomes, allowing the identification of chromosomes and 

chromosomes regions. Bands that are dark with G-Banding generally correspond to 

late-replicating regions of the genome. Giemsa is specific for the phosphate groups of 
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DNA and attaches itself to regions of DNA where there are high amounts of adenine-

thymine. These bands tend to contain relatively few active genes (Fig. 2.1.). G-Banding 

is produced by pre-treatment of chromosomes with trypsin before staining with 

Giemsa.  

Briefly, aged slides of prometaphase chromosomes were incubated with trypsin 

(0.06g/100ml to 0.12g100 ml) for about 8 to 20 s, to obtain a partial digestion of the 

chromosomes. The concentration and time of trypsinization depend of the slides 

quality and cell types. Slides were washed with 5% FCS in phosphate buffer (pH 6.8) 

and incubated with 4% -10% Giemsa staining solution in phosphate buffer (pH 6.8) for 

4 minutes. After a short wash (2x) with phosphate buffer, slides were ready to be 

observed at bright-field microscope [Schreck
 

and Distèche, 2001]. Karyotypes were 

mounted and analysed using 1000x amplification and a Cytovision software. 

 

 

Figure 2.1. – Karyogram obtain after G-banding showing a small supernumerary marker chromosome – 
47,XX,+mar. [photo from Laboratório de Citogenética da Faculdade de Medicina da Universidade de 
Coimbra]. 

 

2.3.2. C-Banding technique 

Noncoding constitutive heterochromatin, such as the repetitive DNA surrounding the 

centromeres of all of the chromosomes, replicates later in the cell cycle than other 
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chromatin and exhibits special characteristics of stability under extreme conditions of 

heat and chemical exposure. This property of tightly condensed heterochromatin can 

be exploited to produce a unique banding pattern (C-Banding) in which the 

constitutive heterochromatin stains darkly and all other chromatin remains pale. C-

Banding is produced by treatment of chromatin with acidic and then basic solutions 

followed by staining with Giemsa [Moore and Best, 2001]. 

After a treatment with HCl 1N for 10 min, at room temperature the slides were rinsed 

with water and let dry (air dry). Slides were immersed in a Coplin jar containing freshly 

prepared 5% Ba(OH)2 solution (in SSC) at 50oC . They were incubated during 30 s to 1 

min at room temperature. After washing thoroughly with water, the slides were 

immersed in a SSC solution during 45 to 60 min, in a 60oC water bath. The staining was 

done incubating the slides with 2% Giemsa Solution during 30 to 40 min. C-banded 

chromosomes were visualized with a bright-field microscope [Schreck
 
and Distèche, 2001]. 

 

2.3.3. NOR-Banding technique 

This staining technique uses silver nitrate that stains the active ribosomal DNA-

containing Nucleolar Organizer Regions (NOR) located near the ends of the short arms 

of human acrocentric chromosomes 13, 14, 15, 21, and 22. 

Slides (not-aged) were incubated with a 50% silver nitrate solution (in bi-distilled 

water) in a wet-chamber and incubated overnight at 37ºC (the slides are removed 

from heat when appear golden brown). The slides were rinse in water and air-dried. 

NOR-banded chromosomes were observed with a bright-field microscope [Schreck
 
and 

Distèche, 2001]. 

 

2.4. Extraction of Bacterial Artificial Chromosomes (BAC) 

The used Bacterial artificial (BAC) DNA was isolated from Escherichia coli cultures, 

Bacterial cultures were grown overnight, at 37oC and 120 rpm, with the appropriate 

antibiotic in LB medium (Bacto Yeast extract 5g, Bacto trypton 10g, NaCl 10g, H20 up to 

1 liter). For isolation of the plasmid DNA, a QIAprep Miniprep (Quiagen®) kit was used, 

following manufacter’s instructions.  
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2.5. Labelling of DNA 

The DNA can be labelled for a direct detection, using dUTPs directly coupled to 

fluorochromes, or for an indirect detection. In this case, the probe is labelled with a 

hapten that itself is not fluorescent. The most common haptens used are biotin (that 

reacts with streptavidin that is bind to a fluorochrome) or digoxigenin (that can be 

detected by an antibody coupled with a fluorochrome). Whereas Fluoresecence in situ 

hybrydization (FISH) is faster with directly labelled probes, indirect labelling offers the 

advantage of signal amplification by using several layers of antibodies, and might 

therefore produce a signal that is brighter compared with background levels. For 

labelling DNA, hapten- or fluorescent labelled dUTPs are generally incorporated into 

the probe by either nick-translation or DOP-PCR (Fig. 2.2.) [Speicher and Carter, 2005].  

 

Figure 2.2. - Before hybridization (a), the DNA probe is labelled by various means such as nick 
translation or DOP-PCR. Two labelling strategies (b) are commonly used — indirect labelling (left panel) 
and direct labelling (right panel). For indirect labelling, probes are labelled with modified nucleotides 
that contain an hapten, whereas direct labelling uses the incorporation of nucleotides that have been 
directly modified to contain a fluorophore. The labelled probe and the target DNA are denatured to 
yield single stranded DNA (c) and then they are combined (d), which allows the annealing of 
complementary DNA sequences. If the probe has been labelled indirectly, an extra step is required for 
visualization of the non-fluorescent hapten that uses an enzymatic or immunological detection system 
(e) [adapted from Speicher and Carter, 2005].  
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During nick-translation the double stranded probe is "nicked" by DNAse and partially 

digested. At the same time, the strand is filled up by a polymerase that incorporates 

dNTPs and also labelled dUTP offered in the labelling reaction. Nick-translation is 

usually used for labelling of cloned DNA. However, PCR can also be used to label these 

probes with degenerated primers (DOP-PCR). Usually DOP-PCR is used to generate and 

label complex probes such as paints from flow sorted chromosomes or 

microdissection. DOP-PCR has the advantage that the entire probe is also being 

amplified.  

BAC probes were amplified by degenerated oligonucleotide polymerase chain 

reaction7 (DOP-PCR; 50 μl; 30 cycles). Each probe was labelled separately by using 

secondary DOP-PCR (20 μl volume; 20 cycles) either with Spectrum Green or TexasRed. 

Finally, the probe was dissolved in 30 µl hybridization solution 
[Senger et al., 1998; 

Nietzel et al., 2001; Starke et al., 2003]. The probes were derived from CHORI BACPAC 

Resources (Oakland, USA), Dr M Rocchi (Universita degli Studi di Bari, Italy) or Dr. Nigel 

Carter (Sanger Centre, Cambridge, UK).  

 

2.6. Microdissection and Reverse Painting 

Eight copies of the marker chromosome were dissected on a slide with a metaphase 

chromosome spread, using glass micro-needles controlled by a micro-manipulator 

under an inverted microscope. The dissected material was amplified with DOP-PCR and 

PCR products were labeled by nick-translation with biotin-14-dATP. Subsequently, this 

probe was used for reverse painting on patient metaphases (Fig. 2.3.) [Trifonov et al., 

2003].  

                                                 
7
 The DOP Primer used was: 5’CCG ACT CGA GNN NNN NAT GTG G3’ 
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Figure 2.3. – Identification of the origin of a supernumerary marker chromosome derived from 
chromosome 16 using a reverse FISH approach. After microdissection and amplification of the marker, a 
probe was done. The hybridization of this probe with a metaphase plate of the same patient identified 
the normal 16 chromosomes and the marker. 

 

2.7. Fluorescence In situ Hybridization (FISH) 

FISH was performed using several probes including single probes (centromeric; 

subtelomeric, locus specific; BAC; and all-telomere); painting probes (whole 

chromosome painting – wcp, and partial chromosome painting – pcp) or multicolor 

probes (subcentromere specific probes - subcenM-FISH; multicolour banding probes – 

MCB) for different chromosomes, depending on the sSMCs cases. FISH was also done 

after marker chromosome microdissection, with reverse FISH (see section 2.5). For all 

FISH experiments standard procedures were used, depending on the probe. 

Centromeric- , locus-specific-, subtelomeric-, all-telomere-, and painting- probes were 

commercial probes and were hybridized according to manufacter’s instructions. When 

using subcenM-FISH, MCB, or BAC probes, hybridization, post-washing, signal 

detection, and image acquisition were performed as previously reported [Chudoba et al. 

1999; Liehr et al. 2002].  
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Hybridization 

In general the hybridization step was done using dehydrated pre-treated slides (with a 

15 min treatment in 2xSSC solution at 37ºC). When using commercial probes, slides 

and probes were denaturated together at 74ºC to 80ºC, during 2 to 3 min (depending 

on the probes used). The hybridization was done overnight in a wet-chamber at 37ºC.  

For subcenM-FISH, MCB, and BAC, probes were denaturated using a thermocycler with 

the following condition: 75ºC (5 min), 4ºC (2 min) and 37ºC (30 min). The slide (pepsin 

pretreated slide) was denaturated with 70% formamide (in 2SSC) at 72ºC for 3 min, 

followed by immersion in 70% ice-cold ethanol, 95% ethanol and 100% ethanol at 

room temperature (3 min each). Hybridization was done in a wet-chamber at 37ºC 

over-night. 

 

Post hybridization wash 

When using commercial probes, with direct labelled probes, slides were washed in 

washing buffer at 70ºC, during 30 to 60 s (depending on the probe). After rinsing with 

PBS, slides were mounted using antifade solution, to prevent rapid fading of the 

fluorescence signal, with DAPI. 

For subcenM-FISH, MCB, and BAC-FISH8, slides were washed 3 times with a solution of 

50% formamide at 42ºC during 5 min and 3 times with 2xSCC at 42ºC during 5 min. A 

final wash, with 4xSSCT at room temperature for 2 min was done. A blocking buffer 

(powder milk) was then used for 15 min at 37ºC. Each hybridization area of the slide 

was incubated with 100 µl antibody solution for 40 min at 37ºC (e.g., 5 µg/ml 

streptavidin-Cy5 in blocking buffer). The slides were washed with 4xSSCT (5 min) at 

room temperature and, after rinsing with water, were dehydrated with a series of 

ethanol (75%, 90%, 100 - 3 min each). The slides were mounted using antifade solution 

and using DAPI as a counter stain. 

 

 

                                                 
8
 In these FISH approaches, besides having direct labelled probes with fluorochromes, probes 

conjugated with biotin or digoxin are also used. An additional step is needed with binding of streptavidin 
or anti-digoxin (immunobinding), respectively, conjugated with a fluorochrome. 
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Visualization 

For multicolor FISH approaches, like subcenM-FISH and MCB, the analysis was done 

using a Zeiss Axioplan fluorescence microscope with MetaSystems (Isis) software. For 

the other FISH experiences a Nikon fluorescence microscope coupled with Cytovision 

software was used. 

 

SubcenM-FISH 

Figure 2.4. – A) SubcenM-FISH pseudo-color pattern for all 24 human chromosomes. Only one 
chromosome at a time can be stained; the chromosome figures were assembled from 24 different 
experiments B) Labelling scheme of the subcentromere specific multicolour FISH (subcenM-FISH) probe 
set. In the non-acrocentric chromosomes de p-arm is labelled with cyanine 5 (Cy5) and the q-arm with 
diethylaminocoumarin (DEAC). The centromere-near probe in the long arm is labelled with 
SpectrumGreen and in the short arm with Texas Red. In the acrocentric chromosomes, the long arm is 
stained with Cy5, the short arm with DEAC, and the centromere-near probe in the long arm with Texas 
Red. The centromeres are labelled with Spectrum Orange [adapted from Starke et al., 2003]. 

 

The proximal probes included in the subcenM-FISH set are chosen under the 

prerequisite that they were the most proximal probes presently mapped in the 

ENSEMBL database. Bacterial artificial (BAC) probes were amplified by DOP-PCR. For 

each chromosome a subcenM-Fish probe set is prepared. The set consists of the most 

proximally available single-copy probes, microdissection-derived partial chromosome 

(pcp) probes specific for the long and the short arm, and a centromere specific probe. 

For the acrocentric chromosomes, no proximal single copy probes and no chromosome 

specific pcp probes of the short arms are available. For all the acrocentric 

A B 
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chromosomes set, a probe that stains all p-arms of the acrocentric chromosomes 

(midi54) is used (Fig 2.4.) [Starke et al., 2003].  

 

MCB-FISH 

 
Figure 2.5. – Multicolor banding (MCB) pseudocolor pattern for all 24 human chromosomes on ~366 
band level. Only one up to three chromosomes can be simultaneously stained by MCB. The chromosome 
figures were assembled from different experiments. 

 

Between 3 and 12 microdissection libraries were combined per chromosome (Fig 2.5.; 

Fig. 2.6.). Three to five different fluorochromes were used to label the partial 

chromosome painting (pcp) probes: SpectrumOrange, SpectrumGreen, TexasRed, Cy5 

(Cy5 coupled to streptavidin; detection of biotinylated probes), and 

diethylaminocoumarin (DEAC). The probe Midi 54 for the acrocentric chromosomes 

was added specifically to cover the corresponding short arms of these acrocentric 

chromosomes [Mrasek et al., 2001; Weise et al., 2008].  

Recently, Weise and colleagues characterized the library of MCB probes with an array 

CGH approach. The possibilities of the MCB technique to characterize chromosomal 

breakpoints in one FISH experiment are now complemented by the feature of being 

anchored within the human DNA sequence at the BAC level (Fig. 2.7.) [Weise et al., 2008]. 
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Figure 2.6. - Label scheme for chromosome 1 in MCB: From left to right: ideogram, inverted DAPI, 
pseudocolors, fluorochrome profiles where arrows indicate boundaries of the three new libraries of 
MCB 1 [adapted from Weise et al., 2008]. 

 

 

 
Figure 2.7. - Graphical overview and labelling scheme for all 169 array-mapped MCB libraries. Double 
labeling of a single MCB library is indicated with two vertical color lines connected by a horizontal black 
line. The fluorochrome color key is at the bottom of the legend [adapted from Weise et al., 2008]. 

 

2.8. Microsatellite analysis for Uniparental Disomy analysis 

For uniparental disomy (UPD) analysis, genomic DNA was extracted from the 

peripheral blood lymphocytes of both parents, when possible, and the patient by using 

standard procedures. Twenty-five cycles of PCR were performed with labelled primers 

responsive to infrared (IRD800; MWG-Biotech, Germany). Denatured samples were 
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loaded onto a 6% denaturing polyacrylamide gel, separated electrophoretically on a 

Licor DNA 4000 sequencer (LI-COR, Nebraska), and detected with an infrared laser 

diode [Starke et al, 2003]. 

 

2.9. Array CGH – array painting 

DOP PCR-amplified microdissected DNA from the marker chromosome was labeled by 

a random prime labeling system (Bioprime DNA Labeling System, Invitrogen, Carlsbad, 

CA) using Cy5 labeled dCTP’s (Amersham Pharmacia Biotech, Piscataway, New Jersey) 

as described [Backx et al., 2008].  

 

 
Figure 2.8. – Schemetic representation of the methodology used for array-painting. After 
microdissection of the sSMCs, the DNA was amplified by DOP-PCR. The DNA was labelled and hybridized 
on a microarray slide. 

 

Except for some small modifications, probe preparation, and pre-blocking of the slide 

were performed as described [Fiegler et al., 2003]. To hybridize a spotting area of 24x24 

mm, the probe was dissolved in 20 l of hybridization solution. The hybridization was 

allowed to take place for 2 nights under a coverslip in a humid chamber saturated with 

20% formamide and 2x SSC. Post hybridization washes were performed [Vermeesch et 

al., 2005]. A full tiling BAC array was used, with a resolution of 100-150 Kb (VIB 

MicroArrays Facility - www.microarrays.be). The array was scanned at 635nm using a 

GenePix4000B scanner (Axon Instruments) and image analysis was done using GenePix 

Pro 6.0. Spot intensities were corrected for the local background [Melo et al., 2009].  

 
DOP-PCR 

Amplificated DNA 
from microdissected 
material 

DOP - Degenerate Oligonucleotide-primed 
PCR 
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Chapter III 
 
This chapter is subdivided in 10 sections (3.1 to 3.10), according to the chromosome 

derivative, as follows: 

3.1. – sSMC derived from chromosome 1 

3.2. – sSMCs derived from chromosome 2 

3.3. – sSMC derived from chromosome 5 

3.4. – sSMC derived from chromosome 11 

3.5. – sSMC derived from chromosome 13 

3.6. – sSMCs derived from chromosome 15 

3.7. – sSMCs derived from chromosome 16 

3.8. – sSMC derived from chromosome 17 

3.9. – sSMCs derived from chromosome 18 

3.10– sSMCs derived from chromosome 22 

 

For a better sistematization in each section the description of the cases, results 

obtained, review of the literature for each subtype of sSMCs are described and 

discussed.  

In section 3.2., 3.3., 3.4., 3.5., 3.7., 3.8., and 3.9., the text is extracted from the 

correspondent articles (published or submitted), as described in the list of publications 

included at the end of Chapter IV (page 212). In order to avoid repetition, material and 

methods subsection (included in the articles) was omitted, having Chapter II (Materials 

and Methods) the description of the materials and methods used. A general discussion 

of the results presented in this chapter is done in chapter IV followed by concluding 

remarks.  
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3.1. sSMC from chromosome 1 

A case of a small supernumerary ring chromosome derived from chromosome 1  

 

3.1.1. Introduction 

Genetic counselling of patients with small supernumerary ring chromosomes (sSRCs) 

can be difficult, especially in prenatal testing, due to the complexity in establishing a 

karyotype-phenotype correlation. In cases which the morphology of the sSMC can be 

determined, almost 50% appear to be ring chromosomes [Liehr et al., 2006]. Mosaicism 

is quite common, resulting either from postzygotic mutation or from mitotic instability 

resulting in loss of the ring during cell division [Chen et al., 1995]. Clinical outcome of 

sSRCs is highly variable depending on their origin, size, euchromatin content, co-

occurrence of uniparental disomy, and presence of mosaicism [Bernardini et al., 2007]. 

SRCs account for approximately 10% of the prenatal sSMC-positive cases and 60% of 

them are associated with abnormal phenotype [Blennow et al., 1994; Davidsson et al., 

2008]. sSRC derived from chromosome 1 are among the most common aneuploid small 

marker chromosomes, excluding the ones derived from chromosomes 15 and 22 [Liehr 

et al., 2004]. Over two-thirds of cases carrying a sSMC derived from chromosome 1 are 

associated with clinical abnormalities [Liehr et al., 2010].  

We report on a new case of mosaic small supernumerary ring derived from 

chromosome 1 in a female patient with a mild phenotype. The sSRC(1) was 

characterized by conventional cytogenetics, reverse FISH, subcenM-FISH and array 

CGH after microdissection. 

 
3.1.2. Results 

Case Report and Cytogenetic Studies 

A young girl was referred to genetic clinic with learning difficulties, microcephaly, 

microtia, tooth problems, scoliosis and vesico-uretral bilateral reflux with 

normochromic normocytic anemia. She had an inguinal right and left hernia corrected 

with surgery. Cytogenetic analysis, by G-Banding, revealed a de novo supernumerary 

marker chromosome in 8 of the 22 analysed cells (mos 47,XX,+mar[8]/46,XX[14]). At 

eleven years old she was clinically reassessed revealing a normal growth (height - P50; 
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weight - P50-75; cephalic perimeter - P10-P25) and adequate learning capacities. She 

presented vesico-uretral reflux with nephropathy. Scoliosis and anaemia were not 

confirmed. Blood was collected from the patient in order to perform additional 

cytogenetic studies. 

G-banding analysis revealed the presence of 3 different cell lines: one normal, other 

with a ring and the third with a double ring, being the karyotype mos 

47,XX,+r[6]/47,XX,dic r[2]/46,XX[24] (Fig. 3.1.1.). 

 

a) b) c)a) b) c)

 
Figure 3.1.1. - G-banding pattern of one normal chromosome 1 (a) and of the two rings found in two 
different cell lines (b, c). 

 

C-banding induced by barium hydroxide and Giemsa confirm the presence of the 3 cell 

lines, having the double ring  and the ring C-banding positive regions interpreted as 

centromeric (Fig. 3.1.2.). 

 

a) b)a) b)

 
Figure 3.1.2. - C-banding pattern of the two sSRCs found in two different cell lines, showing a double 
ring with two centromeres (a) and a ring with one centromere (b). 

 

Molecular Cytogenetics Analysis 

The markers chromosomes were microdissected, labelled, and hybridized in a 

metaphase plate of the patient for reverse FISH, showing to be derived from 

chromosome 1 (Fig. 3.1.3.). SubcenM-FISH specific for chromosome 1 was made, the 
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karyotype being: mos 47,XX,+mar.ish r(1)(::p12->q12::)[5]/47,XX,+mar.ish r(1;1)(::p12-

>q12::p12->q12::)[2]/46,XX[24]. 

The microdissected DNA of the sSMCs of the patient was hybridized, after labelling, in 

a full tiling BAC array specific for chromosome 1, with a resolution of 100-150 Kb (VIB 

MicroArrays Facility - www.microarrays.be), having material of approximately 36.24 

Mb (between 112.16 to 148.4 Mb), redefining the breakpoints between 

1p13.2 1q21.2 region.  

 

 
Figure 3.1.3. - Reverse FISH image showing the origin of the marker as derived from chromosome 1. The 
marker was microdissected, amplified, labelled and hybridized in a patient metaphase. 

 

3.1.3. Discussion 

We present a case of a female mosaic carrier of a small supernumerary ring derived 

from chromosome 1 in ~25% of her cells. The child presented a mild phenotype when 

clinically evaluated at 11 years old. The genetic content of the sSRC encompasses a ~36 

Mb pericentromeric region rich in genes, both in p arm and in q arm (1p13.2 1q21.2) 

(Fig. 3.1.4.). The region encompasses 136 genes, 17 of them in Online Mendelian 

Inheritance in Man (OMIM)-morbid map. Of these 17, 14 are located in the 1p-arm, 

and the other 3 in 1q-arm. One example of an OMIM morbid gene located in this 

region (located at 1p between 120.45-120.61 Mb) is NOTCH2, a very highly conserved 

and important gene for cell differentiation, that seems to be involved in tooth 

development [Mitsiadis et al., 2003]. In about 94% of patients with Alagille syndrome 
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(ALGS; OMIM 118450), an autosomal dominant multisystem disorder, a mutation in 

the gene encoding the NOTCH signalling pathway ligand Jagged-1 is present. ALGS was 

also associated with mutations in NOTCH2 in 2 different families, having all the 

affected individuals renal manifestations [McDaniell et al., 2006]. Our proband 

presented tooth problems and nephropaty. 

 

~36 Mb~36 Mb
 

Figure 3.1.4. – Schematic representation of chromosome 1 with the ~36 Mb region involved in the 
sSMC(1) (square) [adapted from Ensembl]. 

 

However, it is difficult to establish a genotype/phenotype correlation in a sSMC carrier. 

It is essential to have several cases reported and very well characterized, both clinically 

and molecularly. The majority of the cases described in the literature with a sSMC(1) 

lack detailed molecular characterization or clinical details. Liehr established a sSMC 

database to overcome this problem [Liehr T, 2010 - www.med.uni-

jena.de/fish/sSMC/00START.htm]. However, of the 46 cases with a sSMC(1) and clinical 

findings in his database, only 2 are nonmosaic, turning genotype/phenotype 

correlation more difficult.  

Taking into account the cases described in sSMC(1) collection, including our case, [Liehr 

T, 2010 - www.med.uni-jena.de/fish/sSMC/00START.htm] (Table 3.1.I) the most common 

clinical symptoms of centromere-near proximal imbalances are, for 1p proximal region, 

development delay, mental retardation, microcephaly, dysmorphic face, finger and toe 

malformation and hypotonia. The symptoms more associated with 1q pericentromeric 

imbalances are dysmorphic face, growth retardation, heart defect, and mental 

retardation. Kidney problems and microcephaly were described in 11% of the cases. 

However, more cases should be reported, especially with a good cytogenetic 

characterization, to strength these observations. Taking into account the data from 

table 3.1.I., our patient showed features associated with imbalances in both 1p 

proximal (microcephaly in early childhood) and 1q proximal (growth retardation and 

kidney problems). With increasing of age, the proband revealed a milder phenotype.  

http://www.ncbi.nlm.nih.gov/omim/118450
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Table 3.1.I. - Clinical symptoms of centromere-near proximal imbalances in 1p and 1q-proximal region, 
according to the sSMC(1) collection database [www.med.uni-jena.de/fish/sSMC/00START.htm]. The 
frequency of symtoms is indicated, taking into account the 46 cases with a sSMC(1) associated with 
clinical findings, as described in the sSMC(1) database. 

Symptoms 1p - proximal 1q - proximal 

ataxia 8 % 0 % 

autism 25 % 0 % 

brain malformations 8 % 11 % 

developmental delay 83 % 33 % 

dysmorphic face 83 % 89 % 

finger or toe/foot malformations 42 % 22 % 

genital abnormalities 0 % 11 % 

growth retardation 17 % 55 % 

heart defect 17 % 44 % 

hypotonia 25 % 0 % 

joint problems 8 % 11 % 

kidney problems/ malformations 8 % 11 % 

mental retardation 58 % 33 % 

microcephaly 58 % 11 % 

overgrowth 17 % 11 % 

seizures 0 % 0 % 

vision impaired  8 % 0 % 

  [adapted from Liehr T, 2010 - www.med.uni-jena.de/fish/sSMC/00START.htm] 

 

Tönnies and co-workers, when reporting a child with a r(1) chromosome in about 14% 

of lymphocytes and 9% of buccal cells, stated that it would be important to verify the 

proportion of the mosaic cell line in different tissues to better understand the likely 

correlation between aneuploidy and clinical phenotype [Tönnies et al., 2003]. 

Fickelscher et al. verified the levels of mosaicism in different tissues in a prenatally 

ascertained sSMC(1). Post-mortem studies revealed that sSMC presence varied 

between 13 and 62% within different tissues [Fickelscher et al., 2007]. However, 

although analysis of different tissues can be important to better characterize mosaic 

patients, this kind of study does not seem to contribute significantly to the genetic 

counselling [Bernardini et al., 2007]. Indeed, the level of mosaicism in a patient with a 

SRC not always correlates with phenotypic features. For this purpose, it appears more 

appropriate the molecular characterisation of ring structures. It is also possible that 

the factors determining phenotypic severity in a mosaic carrier of a SRC are, rather 
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than the level of mosaicism, the cell lineage/type in which malsegregation occurs 

[Davidsson et al., 2008]. It is also important to re-evaluate the carriers of these sSMC at 

several ages, in order to establish the contribution of abnormal cell lines in their 

development. 

Using high resolution array-based applications, it may be possible to delineate well-

defined subgroups of patients with sSMC(1) and other sSMC in the future. This 

definition is essential for establishing a strong genotype/phenotype correlation, 

ultimately allowing a more informed genetic counselling, particularly in prenatal 

diagnosis. 
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3.2. sSMCs from chromosome 2 

Two new cases of de novo small supernumerary marker chromosomes (sSMC) 

detected at prenatal diagnosis [*] 

[*] The work presented in this section was published in: 

Jardim A, Melo JB, Matoso E, Pires LM, Ramos L, Carreira IM (2007) Prenatal Diagnosis 27: 380-381.  

 
3.2.1. Introduction 

Small supernumerary marker chromosomes (sSMC) can be defined as structurally 

abnormal chromosomes that cannot be identified or characterized unambiguously by 

conventional banding cytogenetics alone, and are (in general) equal in size or smaller 

than chromosome 20 of the same metaphase spread [Liehr et al., 2004]. sSMC are 

relatively uncommon in the general population. They have been detected with a 

frequency of 0.076% at prenatal diagnosis and at a much higher frequency of 0.426% 

in mentally retarded patients [Liehr et al., 2004]. 

The phenotypes associated with the presence of a de novo sSMC vary from normal to 

severely abnormal. In general, the risk associated with an abnormal phenotype in 

prenatally detected de novo cases with sSMC is 13% [Warburton, 1991], while for sSMC 

de novo derived from non-acrocentric chromosomes the risk is estimated to be 

approximately 28% [Crolla, 1998]. The phenotypic consequences of particular sSMC are 

difficult to predict because of differences in euchromatic DNA content, different 

degrees of mosaicism and/or uniparental disomy (UDP) of the parental chromosomes 

homologous to the sSMC [Starke et al., 2003]. 

The origin of sSMC is impossible to determine by routine cytogenetics alone but 

fluorescence in situ hybridization (FISH) enables the identification of its chromosomal 

origin. However, because of the several possibilities of different phenotypes 

attributable to the chromosomal origin of the sSMC, their characterization and also an 

adequate long-term follow-up are necessary [Starke et al., 2003; Liehr et al., 2006]. In 

cases with apparently normal phenotypes, the characterization of sSMC can provide 

important information about regions that are phenotypically silent in the presence of 

gene dosage imbalances [Sumption and Barber, 2001; Starke et al., 2003; Barber, 2005; Liehr 

et al., 2006]. In this report, we describe two new cases of de novo sSMC detected at 
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prenatal diagnosis derived from chromosome 2, with apparently normal phenotypes 

ascertained during the neonatal period and until the age of 2 years.  

 

3.2.2. Results 

Case A 

The first case is the prenatal diagnosis of a 39-year-old pregnant woman who 

underwent an amniocentesis at 17 weeks’ gestation due to advanced maternal age 

and also positive serum screening. Routine cytogenetics with GTG-banding (G-bands 

obtained by Trypsin and Giemsa) (Fig. 3.2.1.A) revealed the presence of sSMC in 15 of 

the 70 metaphases analysed. The sSMC were CBG positive (C-bands induced by barium 

hydroxide and Giemsa) (Fig 3.2.1.B) and NOR negative (silver staining of the nucleolus 

organizer regions). Chromosomal analysis of both parents’ lymphocytes revealed 

normal karyotypes. FISH with the I-Multiprobe System (Cytocell) (complete set of 

alphasatellite/satellite III probes for the 24 chromosomes) (Figure 3.2.1.C) enabled the 

identification of the chromosome 2 origin of the sSMC. The sSMC showed 

hybridization with the centromeric probe D2Z2 and the karyotype of the fetus was 

mos47,XX,+mar.ishder(2)(D2Z2+)[15]/46,XX[55]. Ultrasound analysis did not reveal any 

abnormalities in the fetus. After counselling, the parents decided to carry on with the 

pregnancy, and the presence of the sSMC was confirmed in lymphocytes after birth 

although with different frequencies of the two cell lines (50% of metaphases analysed 

had the sSMC). 

 

Case B 

In the second case, amniocentesis of a 38-year-old pregnant woman was performed at 

16 weeks’ gestation because of advanced maternal age. The GTG-banding (Fig. 3.2.1.D) 

study revealed the presence of sSMC in 14 of 30 metaphase spreads analysed. The 

sSMC were CBG positive (Fig. 3.2.1.E) and NOR negative. The parents’ karyotypes were 

normal. The origin of this sSMC was identified to be derived from chromosome 2 using 

the OctoChrome System (Cytocell) (includes whole chromosome painting probes for 

the 24 chromosomes) (Fig. 3.2.1.F). The sSMC hybridized with the wcp (whole 
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chromosome paint) for chromosome 2 and the karyotype of the fetus was 

mos47,XY,+mar.ishder(2)(wcp2+)[14]/46,XY[16]. Ecographic evaluation of the fetus 

was normal. After genetic counselling, the parents decided to continue the pregnancy, 

and postnatal chromosomal analysis confirmed the presence of the sSMC in 73% of the 

blood lymphocytes. 

 

 
Figure 3.2.1. - (A) GTG, (B) CBG and (C) FISH with centromeric probe D2Z2 for the sSMC (indicated by 
arrow) in case 1; (D) GTG, (E) CBG and (F) FISH with wcp for chromosome 2 for the sSMC (indicated by 
arrow) in case 2. 

 

 

3.2.3. Discussion 

Chromosome 2 is rarely involved in the formation of marker chromosomes [Crolla, 

1998; Ostroverkhova et al., 1999]. Only 11 other cases have been reported in the 

literature [Plattner et al., 1993; Daniel et al., 1994; Ostroverkhova et al., 1999; Villa et al., 

2001; Giardino et al., 2002; Lasan Trcic et al., 2003; Starke et al., 2003; Guanciali-Franchi et al., 

2004; Mrasek et al., 2005; Liehr et al., 2006] and of these only 2 at prenatal diagnosis [Villa 

et al., 2001; Mrasek et al., 2005; Liehr et al., 2006]. Only 8 of the 11 cases were 

characterized in detail for their chromosomal content, and analysis of the data seems 

to indicate a correlation between the centromere-near sequences of 2p11.2 and the 

presence of clinical abnormalities, and the absence of clinical symptoms with presence 

of proximal sequences of 2q11.2. [Starke et al., 2003; Mrasek et al., 2005; Liehr et al., 
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2006]. Small partial trisomies of material derived distally from 2q11.2 are associated 

with clinical abnormalities [Giardino et al., 2002; Mrasek et al., 2005; Liehr et al., 2006]. The 

normal phenotype and development of both children up to the age of 2 years leads us 

to suspect that both cases are probably proximal trisomies of 2q. Nevertheless, a 

thorough characterization of both sSMC reported is still necessary and will be pursued. 

As soon as the parents give their consent, we intend to determine the euchromatic 

content of the sSMC by using microdissection and also bacterial artificial chromosomes 

(BACs) of the pericentromeric region of chromosome 2. The complete characterization 

of both sSMC as well as the continued follow-up of the children will take us one step 

further towards a more comprehensive genotype–phenotype correlation and thus 

ensure a more informed genetic counselling in the future. 
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3.3. sSMC from chromosome 5 

Characterization of sSMC derived from chromosome 5: Towards a 

Genotype/Phenotype correlation [*] 

[*]The work presented in this section was partially published in: 

Melo JB, Santos HL, Backx L, Vermeesch JR, Kosyakova N, Weise A, Ewers E, Liehr T, Carreira IM (2011) Chromosome 5 derived 

small supernumerary marker chromosome: towards a genotype/phenotype correlation of proximal chromosome 5 imbalances. 

Journal of Applied Genetics (in press). 

 

3.3.1. Introduction 

Small supernumerary marker chromosomes (sSMC) are defined as structurally 

abnormal chromosomes that cannot be identified or characterized unambiguously by 

conventional banding cytogenetics alone and are generally equal in size or smaller 

than a chromosome 20 of the same metaphase spread [Liehr et al., 2004]. Clinical 

outcome of sSMC is highly variable depending on their origin, size, euchromatin 

content, eventual co-occurrence of uniparental disomy, and prevalence of aneuploidy 

in mosaic cases. 70% of non-acrocentric sSMC do not have phenotypic consequence, 

while the remaining 30% have different clinical manifestations [Liehr et al., 2006]. The 

heterogeneous group of sSMC presents serious genetic counseling problems, 

especially if they are de novo. It is very important to characterize the content and the 

structure of the sSMC, in order to establish an adequate genotype-phenotype 

correlation. Most sSMC are derived from short arms and pericentric regions of the 

acrocentic chromosomes, while the occurrence of an additional derivative 

chromosome 5 is very rare. 

In the present study we report features of a patient with a sSMC derived from 

chromosome 5 - sSMC(5), which was characterized by GTG-banding, fluorescence in-

situ hybridization (FISH) and full-tiling resolution array CGH after sSMC 

microdissection. We also retrospectively compare and review all cases with sSMC from 

chromosome 5 previously reported and cases with chromosomal imbalances involving 

a trisomy with a genetic content overlapping our case. The use of molecular 

cytogenetics, especially array CGH approaches, is crucial for an efficient 

genotype/phenotype correlation. 
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3.3.2. Results 

Case Report 

The patient is the third female child of healthy non-consanguineous 

parents, with two normal sisters. The delivery was uneventful, after a pregnancy with 

reduced fetal movements, with a birth weight of 2,750 g, no evidence for anoxia and 

she started crying soon after birth. Hypotonia was observed since birth. She revealed 

moderate psychomotor delay, started walking late and had speech difficulties, with the 

first sentence only at 4 years old. She presented mild facial dysmorphisms, namely 

mild hypertelorism, high and wide nasal bridge, a prominent and bulbous nose, thin 

upper lip, dental anomalies  and slight protrusion of the chin.  The patient revealed 

learning difficulties throughout her life but has succeeded finishing a professional 

course, although she can't be persistent in a job. She is now 35 years old and has a 

healthy son with a normal karyotype.  

 

Cytogenetics and Molecular Cytogenetics 

Lymphocyte culture was established from peripheral blood and GTG-banding analysis 

was performed revealing a female karyotype with an sSMC in 70% of the 20 analyzed 

metaphases. The marker chromosome was very small and appeared to have a ring 

shape (Fig 3.3.1A). Karyotypes of both parents were normal (data not showed).  

Centromeric-FISH, using the probe SE 1/5/19 (Poseidon Kreatech Diagnostics, The 

Netherlands) revealed that the sSMC was derived from chromosomes 1, 5 or 19 (data 

not showed). Reverse FISH confirmed the origin of the marker and suggested the 

involvement of the euchromatic region of 5q in the sSMC (Fig 3.3.1B). SubcenM-FISH 

specific for chromosome 5 confirmed the ring-shape of the marker and demonstrated 

that the sSMC possessed euchromatic material from 5q, the karyotype being mos 

47,XX,+r(5)(::p11.1 q11.2?::)[70%]/46,XX[30%] (Fig 3.3.1.C). With array CGH, after 

microdissection of the sSMC, the breakpoints of the marker were redefined. Thus, the 

sSMC led to a partial trisomy with approximately 15 Mb length, between 46.15~49.56 

MB (5p11.1) and 61.25~61.33Mb (5q12.1) on chromosome 5 (Fig 3.3.2).  
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UPD was excluded in this patient for chromosome 5, with the following markers being 

informative: D5S2505, GATA145D09, D5S1457, D5S1501, D5S1456, D5S211, D5S1453 

(data not shown). 

CC Inv DAPI Sp Green Sp OrangeTexasRed Cyanine 5 DEAC

#5

mar

cep 5 bA19F12 bA160F8 pcp 5q wcp 5

mar#5 #5

AA BB

CC Inv DAPI Sp Green Sp OrangeTexasRed Cyanine 5 DEAC

#5

mar

cep 5 bA19F12 bA160F8 pcp 5q wcp 5

mar#5 #5

AA BB

 

Figure 3.3.1. - G-banding and FISH results. The sSMC(5) is signed as mar. A. GTG banded images of both 
normal chromosomes 5 and of the sSMC(5). B. Reverse FISH image confirming the origin of the sSMC 
and the extent of the chromosome 5 involved in the marker. The sSMC was microdissected and the DNA 
was amplified, labeled and hybridized in a patient metaphase. C. FISH image applying the 
subcentromeric probes for chromosome 5, revealing that the centromere-near region in p-arm 
(bA19F12, in purple) is absent in the marker, the centromere-near region in q-arm (bA160F8, in red) is 
present in the marker, being the sSMC mainly derived from q-arm (in yellow). For space reasons only 
one of the two normal chromosomes 5 is shown.  
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Figure 3.3.2 – A. Array CGH result after microdissection and amplification of the sSMC(5). A. The plot 
shows a gain for region 5q11 to 5q12.1, between 46.15~49.56 MB and 61.25~61.33 Mb, with the 
flanking BAC clones, RP11-52C13 (absent in the sSMC), RP11-753D19 (present in the sSMC), RP11-72L18 
(present in the sSMC), RP11-714L4 (absent in the sSMC). B. Ideogram of chromosome 5 showing the 
region involved in the sSMC, corresponding to the flanking BAC clones identified in 3A. 

 

Literature review 

To the best of our knowledge, there are 21 cases with a sSMC derived from 

chromosome 5 reported in the literature. Beside these reports, 14 additional cases are 

reported in sSMC homepage [Liehr 2010, sSMC homepage], i.e. 1.2% of the sSMC cases 

included in this data base. However not all are correlated with a clinical outcome. 

Taking into account the cases reported in the literature, in three of these cases clinical 

information is not available and/or the marker chromosomes were poorly 

characterized, being therefore excluded of a possible genotype/phenotype correlation 

[Masuno et al.,1999, Heng et al., 2003 – case 12; Karaman et al., 2006 – case18]. Four of the 

reported cases with a sSMC(5) do not present clinical findings [Starke et al., 2003 – case 

11; Leite et al., 2006; Baldwin et al., 2008 – case 10; Manvelyan et al., 2008 – case 9, Fig 3.3. – 

i) to iv)]. The other fourteen reported sSMC(5) cases present significant clinical findings 

(Fig 3.3.3 – v) to xvii)), including one with a neocentromere (Fig 3.3.3.v) [Schuffenhauer et 

al., 1996; Avansino et al., 1999; Stankiewicz et al., 2000 – case 1; Anderlid et al., 2001 - case G; 

Fritz et al., 2001; D'Amato Sizonenko et al., 2002 – case 1 and case 2; Brecevic et al., 2006 - 
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case 5; Huang et al., 2006- cases 53 and 54; Liehr et al., 2006a – case 5-6; Sarri et al., 2006; 

Baldwin et al., 2008 – case 9; Polityko et al., 2008,]. Additionally to these cases of sSMC(5), 

there is one with the presence of two sSMC with euchromatin from two different 

chromosomes (chromosomes 5 and 6) [Liehr et al., 2006b].  

 

r(::p13 q10::p13 q10::) Schuffenhauer et al., 1996

mar(::p13.1 q10::) Avansino et al., 1999

r(::p14 q11.2::) Stankiewickz et al., 2000 (case 1)

r(::p12 q10::) Anderlid et al., 2001 (case G)

r(::p13.3 q12.3::) D’Amato Sizonenko et al., 2002  (case 2 ) 

r(::p13.3 q10::) D’Amato Sizonenko et al., 2002  (case 1 ) 

invdup(:p12 q11.1::q11.1 p12:) Brecevic et al., 2006 (case 5)

invdup(pter q10::q10 pter) Huang et al., 2006 (case 54)

min(:p12~13.1 q10:) Liehr et al., 2006a (case 5-6)

min(:p13.3~p13.2 q11.2:) Sarri et al., 2006

r(::p11 q12.1::) Baldwin et al. 2008 (case 9)

min(pter q10) Polityko et al., 2008

r(::p11.1 q12.1::) present case

invdup(pter p14::p14 pter) Fritz et al., 2001

min(5)(:p12→q11.1:) Starke et al., 2003 (case 11)

der(5)(:p11.2→q11.1:)/der(5)(:p11.1→q11.2:) Baldwin et al., 2008 (case 10)

mar(5)(:p?15.3→q11?:) Leite et al., 2006 (case 1)
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Figure 3.3.3. – Representation of the approximate breakpoints/genetic content of the reported sSMC(5) 
cases with or without clinical symptoms and with a sufficient cytogenetic characterization and of the 
cases with a duplication or insertion involving trisomy of proximal 5q arm. The sSMC(5) cases are 
designated from i) to xviii) and the duplications/insertions cases are designated from a) to d). Green 
squares correspond to reported sSMC(5) without clinical symptoms and red squares to reported 
sSMC(5) or partial trisomy 5q associated with clinical findings. Breakpoints’ representation is 
approximated. 

 

Of the sSMC (5) so far reported, approximately 50% have a ring shape, the others 

being inverted duplications or minutes. The great majority of sSMC(5) described are 

mainly derived from 5p arm. The approximately breakpoints/genetic content of the 

sSMC(5) documented with or without clinical findings are shown in figure 3.3.3. The 
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characterization of the sSMC(5) summarized in figure 3.3.3 were mainly performed by 

FISH, using in some cases multicolor FISH approaches like subcenM-FISH and 

multicolor banding, or using other FISH probes specific for chromosome 5. The present 

case is the first reported sSMC(5) characterized by array CGH, allowing a more precise 

information about the genetic content of the marker. The features of the patients with 

a trissomic region, associated with the presence of a sSMC with a molecular 

cytogenetic content overlapping our case, are described in Table 3.3.I [Stankiewicz et al., 

2000 – case 1; D'Amato Sizonenko et al., 2002 –case 2; Sarri et al., 2006; Baldwin et al., 2008 – 

case 9]. 

Besides the cases with sSMC(5), there are reports in the literature describing probands 

with a proximal 5q trisomic region located close to the centromere and overlapping 

the region of our sSMC(5): 1) a boy with a de novo duplication involving 5q11.2 q14 

region [Breslau-Siderius et al., 1993]; 2) a case with a de novo duplication 5q11.1 q15 

[Rojas-Martinez et al., 1990]; 3) a boy with a trisomy 5q11.2 q13.1 as a result of a 

paternal balanced insertion in the long arm of chromosome 20 [Yip et al., 1989] and 4) a 

girl with a trisomy 5q11 q22 as a result of a maternal balanced insertion at 

chromosome 1 [Jalbert et al., 1975]. The features of these patients are also included in 

Table 3.3.I and represented in figure 3.3.3. (a) to d)), as the genetic content involved in 

the trisomy overlaps our case. 

 

3.3.3. Discussion 

We have reported a mosaic case with a sSMC derived from chromosome 5 with 

approximately 15 Mb length characterized by multicolor FISH and array CGH, after 

microdissection. The proband karyotype was initially established as mos 

47,XX,+r(5)(::p11.1 q11.2?::)[70%]/46,XX[30%]. With array CGH, after 

microdissection of the sSMC, the breakpoints of the marker were redefined, leading to 

a partial trisomy between 46.15~49.56 MB (5p11.1) and 61.25~61.335Mb (5q12.1) on 

chromosome 5. We reviewed all reported cases with a sSMC(5) and with a trisomy 

involving the region contained in the marker chromosome. 
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sSMC(5) involving regions just near the centromere, apparently without euchromatin 

involvement, do not present clinical manifestations (Fig 3.3.3, i) to iii)). The other 

reported sSMC(5), with involvement of euchromatic regions in p-arm and/or q-arm, 

are associated with clinical manifestations. The exception seems to be the case of Leite 

and collaborators [Leite et al., 2006], which reported a sSMC(5) involving a long 

extension of p-arm (p?15.3 q11?) but with no apparent pathological phenotype (Fig 

3.3.3, iv). This could be associated to the fact that the sSMC is present in mosaic (< 40% 

of cord cells with the marker). The characterization of this marker was done using a 

cross-species color banding FISH approach with gibbon whole chromosome painting 

probes, homologous to human chromosomes, leading to an unclear characterization of 

the sSMC. It would be interesting to evaluate this case using another molecular 

cytogenetic approach, in order to confirm the genetic content of the marker.  

The majority of the sSMC(5) reported involved partial trisomy of 5p arm, being the 

sSMC(5) with 5q material rarer (Fig 3.3.3.). A critical region has been proposed for 

chromosome 5 p-arm in 5p13, being trisomy including this region associated with 

psychomotor delay and a characteristic facies following a pregnancy complicated by 

polyhydramnios *Avansino et al., 1999; D’Amato-Sizonenko et al., 2002]. The dysmorphic 

features include macrocephaly, epicanthic folds with apparent hypertelorism, enlarged 

anterior fontanelle, midfacial hypoplasia with a small nose, micrortrognathia, short 

neck, low-set dysplastic ears with preauricular skin tag, arachnodactyly and talipes 

equinovarus. Psychomotor retardation may be accompanied by a seizural disorder 

*D’Amato-Sizonenko et al., 2002]. 

sSMC(5) involving euchromatin in q arm are rare and a genotype/phenotype 

correlation is difficult to ascertain due to heterogeneity of the size and content of the 

sSMC. Of the 4 reported cases with a sSMC(5) and with a molecular cytogenetic 

content overlapping our case (described in Table 3.3.I and represented in Fig 3.3.3. – xiv to 

xvii), 3 sSMC(5) cases (Fig 3.3.3. - xiv to xvi) involve 5p arm euchromatic content, namely 

the critical region proposed for 5p13, and euchromatic material from 5q arm 

[Stankiewicz et al., 2000 – case 1; D'Amato Sizonenko et al., 2002 –case 2; Sarri et al., 2006]. 

The dysmorphic features of these cases are concordant in some extent with the ones 
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described for trisomy involving 5p13 *Avansino et al., 1999; D’Amato-Sizonenko et al., 

2002]. Interestingly, the report of Stankiewicz and colleagues [Stankiewicz et al., 2000 – 

case 1] (Fig 3.3.3.- xiii) describe besides the dysmorphic features and mental 

development slightly delayed, speech difficulties, with beginning of an indistinctly 

speech at 4 years old (Table 3.3.I.). The observation of learning difficulties and speech 

delay was also seen in our proband. The case reported by Baldwin and co-workers 

[Baldwin et al., 2008 – case 9] (Fig 3.3.3.- xvii) revealed also development delay, but no 

speech difficulty was reported. However, this proband was clinically evaluated at 1 

year old and it would be interesting to reassess him later in life to confirm a possible 

speech difficulty. There are in the literature some cases with a duplication involving 

proximal 5q arm [reviewed by Douyard et al., 2006], 4 of them having a cytogenetic 

content overlapping our case (Figure 3.3.3 – a to d; Table 3.3.I) [Jalbert et al., 1975; Yip et 

al., 1989; Rojas-Martinez et al., 1990; Breslau-Siderius et al., 1993] and 3 of these cases 

reported speech difficulties, with speech delay [Yip et al., 1989] (Fig 3.3.3. – a) or even 

absence of speech [Jalbert et al., 1975; Rojas-Martinez et al., 1990] (Fig 3.3.3.- c and d). It 

was not possible to assess this characteristic in the other remaining case, due to the 

age of examination (8 months) (Breslau-Siderius et al., 1993] (Fig 3.3.3. – b). It seems that 

cases with trisomy involving 5q11.2 to 5q12.1 are associated with speech delay and 

cases with more distal duplications of 5q arm are related with absence of speech. 

Douyard and collaborators, when reviewing proximal 5q duplications cases, already 

noted this observation, and our report could reinforce this correlation [Douyard et al., 

2006]. This evidence could suggest a possible critical region associated with speech 

deficiency in proximal 5q arm. Nonetheless, in order to strengthen this association, it 

would be important to have more sSMC(5) or partial 5 trisomies documented, even if 

they are associated with normal phenotypes.  

Hypotonia and development delay are also a common feature of the cases reviewed 

involving a 5q proximal arm trisomy. The dysmorphic features observed in all cases are 

broad, but in most of the reported cases, including our patient, was described a 

prominent nose with a wide nasal bridge. 
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Mosaicism, a very common phenomenon in sSMC cases, is a very important factor 

regarding the heterogeneity of clinical manifestations. It would be expected that 

patients with a low-grade of mosaicism would display a milder phenotype, but this is 

not confirmed by the literature. Depending on the specific tissues with the sSMC, 

namely if cerebral tissue is involved, the impact of the marker size could be overcome. 

Imprinting phenomena could also influence the clinical impact of the sSMC, and it 

would be interesting to evaluate this in all sSMC cases.  

A genotype-phenotype correlation is very difficult to ascertain mainly due to 

breakpoint distribution heterogeneity and to different levels and distribution of 

mosaicism. A more precise knowledge of the size of the partial trisomy segment and 

the gene content of a sSMC would greatly improve the ability to predict phenotype, 

contributing to a more informed prenatal counseling and prognosis. Indeed, this kind 

of studies gives detailed information that would allow data sequence mining for 

disease-related genes, where dosage gene increase could have an important role. 

Multicolor FISH approaches, recurring to subcenFISH and/or multicolor banding allow a 

good characterization of the heterochromatic/euchromatic content of a sSMC. 

Currently, with the use of array CGH, it is possible to identify the specific gene content 

of sSMCs. However this technique could present some problems: 1) when the sSMC is 

present in a low percentage of cells, it could be difficult to have significant results; 2) 

depending on the coverage of the pericentromeric region on the array it could be 

difficult to assess the content just near the centromere. In such cases the use of array 

CGH after the microdissection and amplification of the sSMC coupled with an array 

with high resolution in pericentromeric regions, namely a BAC full-tilling array, could 

overcame these problems. In conclusion, it is very important to characterize 

thoroughly the genetic content of all sSMC and report them, in order to establish a 

more precise genotype-phenotype correlation. 
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3.4. sSMC from chromosome 11 

Unbalanced chromosome abnormality in the pericentromeric region 11q: mother 

and child with distinct phenotypes with a small supernumerary marker chromosome 

derived from chromosome 11 [*] 

[*] The work presented in this section is under submission: 

Melo JB, Jardim A, Soares G, Backx L, Vermeesch JR, Kosyakova N, Weise A, Liehr T, Carreira IM. Unbalanced chromosome 

abnormality in the pericentromeric region 11q: mother and child with distinct phenotypes with a small supernumerary marker 

chromosome derived from chromosome 11. Submitted to American Journal of Medical Genetics A. 

 

3.4.1. Introduction 

Unbalanced chromosomal abnormalities (UBCAs) usually involve several megabases of 

DNA, and the great majority are ascertained because of phenotypic or reproductive 

effects that bring patients to medical attention. The more severely affected an 

individual is, the more likely he will be investigated; creating an ascertainment bias 

that does not reflect the full range of phenotypes that may be associated with 

imbalance of a particular chromosomal segment [Barber, 2005]. Small supernumerary 

marker chromosomes (sSMC) are small structurally abnormal chromosomes that occur 

in addition to the 46 chromosomes and cannot be identified or characterized 

unambiguously by conventional banding cytogenetics alone and are generally equal in 

size or smaller than a chromosome 20 of the same metaphase spread (Liehr et al., 

2004). The risk for phenotypic abnormalities associated with an sSMC depends on 

several factors, including pattern of inheritance, levels of mosaicism, mode of 

ascertainment, chromosomal origin, uniparental disomy, and the morphology, 

content, and structure of the marker [Graf et al., 2006]. 

We report a case of mother and son with the identical sSMC derived from 

chromosome 11 (sSMC(11)) with distinct phenotypes. 

 

3.4.2. Results 

Case Report 

The 13 years old boy presents facial dysmorphisms, macrocephaly, strabism, ptosis, 

mild mental retardation / developmental delay (global IQ on WISC-III evaluation at the 
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age of 15 years: 56). The 36 years old mother, besides a congenital cardiopathy – atrial 

septum defect (corrected with surgery), is phenotypically normal. 

 

Cytogenetics and Molecular Cytogenetics 

The sSMC was characterized comprehensively for its genetic content by G-banding, 

molecular cytogenetics using reverse FISH and subcentromere-specific multicolor 

fluorescence in situ hybridization (subcenM-FISH) [Starke et al., 2003], and array 

Comparative Genomic Hybridization (Array CGH) after microdissection and 

amplification of the sSMC-specific DNA [Melo et al., 2009]. G-banding showed that the 

sSMC was present in 83% of the 30 analysed metaphase in the boy and in 70% in the 

mother (Fig 3.4.1). The origin of the marker was ascertained by reverse FISH, as derived 

from chromosome 11 (Fig 3.4.2). 

The karyotype, after characterization of the marker by G-banding and subcenM-FISH, 

was in the mother – 

47,XX,+min(11)(:p11.12~11.2->q12:)[7]/47,XX,+r(11)(::p11.12~11.2-

>q12::)[2]/46,XX[4];  

and in the son –  

47,XY,+r(11)(::p11.12~11.2->q12::)[6]/47,XY,+r(11;11)(::p11.12~11.2-

>q12::p11.12~11.2->q12::)[3]/47,XY,+min(11)(:p11.12~11.2->q12:)[4]/46,XY[3] 

 (Fig. 3.4.3.A). 

The microdissected DNA of the sSMCs of the son was hybridized in a full tiling BAC 

array specific for chromosome 11, with a resolution of 100-150 Kb (VIB MicroArrays 

Facility - www.microarrays.be), having material of approximately 14.55 Mb size 

extension from 11q (between 50.47 Mb to 65.02 Mb) (Fig. 3.4.3 B and C). 

 

Uniparental Disomy analysis 

Uniparental Disomy (UPD) for chromosome 11 was excluded in the boy, with the 

following markers being informative: D11S1984, D11S2362, D11S1999, D11S1981, 

D11S1392, D11S2000, D11S1986, D11S1998, D11S4464, D11S912, and D11S968. 

http://www.microarrays.be/
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Figure 3.4.1 – Karyogram of the child showing a 46,XY with a small supernumerary marker chromosome 
that was encountered in 25 of the 30 analyzed cells. 

 

 
Figure 3.4.2 – Reverse FISH after microdissection and amplification of the the sSMC. The amplificated 
material was labelled and hybridized in a nomal metaphase plate. FISH image shows that the origin of 
the marker is the pericentromeric region of chromosome 11. 
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Figure 3.4.3 – A. SubcenM-FISH for chromosome 11, revealing that the centromere-near region in p-arm 
(RP11- 722K13, in red) is absent and the centromere-near region in q-arm (bA77M7, in purple) is 
present in the marker, being the sSMC derived from q-arm. The p-arm is absent in the marker (in 
yellow). The centromeric probe – CEP11 is identified in green and whole chromosome painting of 11 in 
blue (for space reasons only one of the two normal chromosomes 11 is shown). B. Array CGH result after 
microdissection and amplification of the sSMC(11). The plot shows a gain for region 11p11.12 to 
11q13.1, between 50,47 Mb to 65,02Mb C. Ideogram of chromosome 11 showing the region (red 
square) involved in the sSMC, corresponding to the flanking BAC clones identified in 1.B. 

 

3.4.3. Discussion 

Some sSMCs are inherited directly from a phenotypically normal parent. In such 

cases, there are often no phenotypic consequences for individuals who inherit the 

marker. However, there are exceptions to this. Although the sSMC reported here is 

maternally derived, the mother has a normal phenotype and the son an abnormal one. 

The difference in the phenotypes of mother and child could be due to both the 

different degree and distribution of mosaicism and to the different forms of the sSMC 

encountered.  

The variability of phenotypes among relatives observed in transmitted UCBAs can also 

be due to other causes, like chromosomal non-penetrance, uniparental disomy or 

undetected differences at the molecular level, in this or other locci. The normal 

outcome for a cytogenetically visible UBCA, deletion or duplication, could be due to 

several reasons [Barber et al., 2005], like for example: 

1) Low gene content;  
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2) Absence of dosage sensitive loci: many genes are not dosage sensitive, and 

imbalances involving a limited number of genes may not include genes that are dosage 

sensitive. 

3) Functional redundancy: deletions or duplications of genes that have additional or 

related copies outside an imbalanced segment may have no detectable effect on the 

phenotype. Metabolic pathways can substitute for a pathway affected by mutation or 

functional complementation can arise from duplicate genes. It has also been suggested 

that deletions involving gene clusters may be better buffered because of the remaining 

cluster of related genes on the normal homologue. 

4) Allelic exclusion: specific alleles have allele-specific levels of expression – a high 

expressing allele could compensate for a deleted locus and a low expressing allele for a 

duplicated gene in a given individual, but unlikely that these would be coinherited over 

several generations of the same family. 

Barber reviewed 130 families with directly transmitted, cytogenetically visible 

unbalanced chromosome abnormalities (UBCAs), and noticed that in 30 families (23%), 

the affected proband had the same UBCA as other phenotypically normal family 

members. There are more female than male transmitting carriers of UBCAs, suggesting 

that unbalanced chromosome complements may have a more deleterious effect on 

male than female meiosis, as has previously been suggested for balanced translocation 

and ring chromosome carriers [Barber, 2005]. 

sSMCs derived from chromosome 11 (sSMC) are rare and, so far, it is not yet totally 

clear which regions of chromosome 11 are critical and have clinical consequences. In 

the literature there are 5 cases reported of sSMC(11) associated with an abnormal 

phenotype [Neill et al., 2010; Baldwin et al., 2008; Rauch et al., 1992; Daniel and Malafiej, 

2003; Sanz et al., 2005] and 3 cases without phenotypical consequences [Mannens et al., 

1991; Haaf et al., 1992; Bartsch et al., 2005]. In the majority of these cases the 

characterization of the genetic content of the markers is not exhaustive.  

There is a difficulty in establishing a genotype–phenotype correlation in a ring carrier. 

Rings often appear as mosaics because of sister chromatid exchange within a ring in 
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mitotic crossing-over events, which generates aneuploid cells with increased mortality 

[Carreira et al., 2007]. 

It is essential to report all cases of sSMC, associated or not with clinical findings, with a 

good molecular cytogenetic content characterization to have a robust 

genotype/phenotype correlation. This case highlights the problem of correlating 

familial sSMCs encountered in a phenotypic normal parent with the expected 

phenotypic outcome in a child with the same imbalance. This is a major problem, 

especially in prenatal diagnosis. 
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3.5. sSMC from chromosome 13 

First prenatally detected small supernumerary neocentromeric derivative 

chromosome 13 resulting in a non-mosaic partial tetrasomy 13q [*] 

[*] The work presented in this section was published in: 

Mascarenhas A, Matoso E, Tönnies H, Gerlach A, Julião MJ, Melo JB, Carreira IM (2008) Cytogenetic and Genome Research 121: 

293-7. 

 

3.5.1. Introduction 

Human centromeres are defined cytogenetically by a primary constriction of the 

chromosomes and are required for proper chromosome segregation in both meiosis 

and mitosis. They are characterized by tandemly repeated alpha satellite DNA and 

heterochromatin [Choo, 1997; Warburton, 2004]. A class of mitotically stable human 

derivative chromosomes containing fully functional centromeres, so called 

neocentromeres lacking alpha satellite DNA has been described. Despite the complete 

absence of normal centromeric alpha-satellite DNA, human neocentromeres are able 

to form a primary constriction and assemble a functional kinetochore, suggesting that 

centromere formation is not strictly dependent on primary DNA sequence [Karpen and 

Allshire, 1997; Amor and Choo, 2002]. An analysis of the distribution of neocentromeres 

suggests clustering in chromosomal hotspot regions 15q25, 3q, and 13q [Amor and 

Choo, 2002; Warburton, 2004]. Neocentromeres often result in partial tri- or tetrasomy, 

because their formation confers mitotic stability to acentric chromosome fragments 

that would normally be lost [Levy et al., 2000]. The most common class of 

neocentromeric chromosomes are supernumerary inverted duplications of the distal 

segments of a chromosome [Choo, 1997; Warburton et al., 2000]. Small supernumerary 

marker chromosomes (sSMC) are defined as structurally abnormal chromosomes that 

cannot be identified or characterized unambiguously by conventional banding 

cytogenetics alone, and are generally equal in size or smaller than a chromosome 20 of 

the same metaphase spread [Liehr et al., 2004]. 

We present a case of a sSMC without centromeric alpha satellite DNA, which is an 

inverted duplication of distal 13q31, found in a prenatal diagnosis with ultrasound 

malformations, of a 34 year-old pregnant woman. Fifteen supernumerary 
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neocentromeric marker chromosomes originating from the distal region of 

chromosome 13q have been reported, supporting the idea that this chromosome may 

have an increased propensity for neocentromere formation (For review: 

http://www.med.uni-jena.de/fish/sSMC). However, only ten of these cases are sSMC, 

according to the definition proposed by Liehr et al. (2004) (see Table3.5.I.). Prenatal 

diagnosis of tetrasomy for distal 13q, mosaic or nonmosaic, is very uncommon [Knegt 

et al., 2003]. To the best of our knowledge, this is the first case reported prenatally of a 

supernumerary neocentromeric chromosome from distal 13q. 

 

3.5.2. Results 

A 34 year old woman was referred to prenatal cytogenetic diagnosis due to foetal 

abnormalities identified on ultrasound at 23 weeks of pregnancy. There was 

oligohydramnios, a large cisterna magna, ventriculomegaly, enlarged and 

hyperechogenic kidneys and club left foot. 

13q3.1

A B

Chromosome 13

13q3.1

A B

Chromosome 13
 

Figure 3.5.1. – A. GTG banded images of normal chromosomes 13 and the marker chromosome. B. CGH 

profile for chromosome 13. The gain of the chromosome region 13q31 qter is shown. 
 
Studies on both the culture amniotic fluid and foetal blood cells revealed a de novo 

small supernumerary marker chromosome, in all 50 analysed metaphases. This marker 

showed a symmetrical G-banding pattern (Fig 3.5.1.A). CBG-staining revealed no 

pericentromeric heterochromatin and Ag-NOR staining showed no NOR on the marker 

(data not shown). FISH studies, using whole chromosome painting, centromeric and 

subtelomeric probes, revealed this marker to be 13 in origin (Fig 3.5.2.A) and an 

inverted duplication of the distal portion of chromosome 13q (Fig 3.5.2.B), with no 
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detectable alpha satellite DNA (Fig 3.5.2.C-D). The neocentromeric constriction was 

apparently at band 13q31 (Fig 3.5.1.A). Comparative genomic hybridization confirmed 

the origin and the chromosomal region involved in the partial tetrasomy (Fig 3.5.1.B). 

The presence of a functional neocentromere at band 13q31 on this marker 

chromosome was confirmed by immunofluorescence with antibodies to CENP-C (Fig 

3.5.2.E).  

The karyotype of the foetus was 47,XX,+mar.ish inv dup(13) 

(qter→q31::q31→neo→qter)(wcp13+,D13Z1/D21Z1–,D13S327++), resulting in a 

tetrasomy of the distal portion of chromosome 13q. 

After genetic counselling, parents decided for pregnancy termination. After the 

induced abortion the foetal observation with post-mortem autopsy identified the 

presence of short nose and neck, hypothelorism (inner canthal distance 1 cm), short 

palpebral fissures, low set ears and thymic hypoplasia. It also confirmed the presence 

of club left foot and renal dysplasia. The central nervous system study was unable to 

confirm the presence of the large cisterna magna and ventriculomegaly. 
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A B

D

C

mar

E

mar

A B

D

C

mar

E

mar

 

Figure 3.5.2. - FISH using different probes. The supernumerary marker chromosome is signed as mar. A) 
Whole chromosome painting 13 identifying the supernumerary marker having chromosome 13 origin. B) 
Subtelomeric 13q probe showing the inversion duplication of the derivative. C) CEP 13/21 probe 
showing the absence of a normal alphoid centromere in the derivative. D) All centromeric probe 
reinforcing the absence of any alphoid centromere in the supernumerary derivative chromosome 13. E. 
FISH with wcp13 (red) and immunofluorescence with antibodies to CENP-C (green) that marks all active 
centromeres, including the neocentromere in the derivative chromosome 13. 
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3.5.3. Discussion 

We report the first case of a prenatal diagnosis that showed a small supernumerary 

marker chromosome consisting of an inverted duplication of the distal portion of 

chromosome 13q, containing no detectable alpha satellite DNA. The neocentromeric 

constriction was located at band 13q31. The presence of a functional neocentromere 

was proved by immunofluorescence studies using antibodies against a centromere 

protein - CENP-C, that is known to be important for centromere function, namely for 

the assembly of the kinetochore and in the correct segregation of sister chromatids 

[Politi et al., 2002]. CENP-C is associated with active neocentromeres that apparently do 

not contain repetitive sequences typical of conventional centromeres [Amor et al., 

2004]. 

The high number of observed 13q neocentromeres cases may be related with the 

viability of chromosome 13 trisomies. However in other chromosomes, like 18, 21 and 

X, that are well tolerated in trisomy, neocentromerization is a rare event: there is one 

case reported for chromosome 21 [Barbi et al., 2000], one for chromosome X [Kaiser-

Rogers et al., 1995] and one reported neocentromere for chromosome 18 [Rauch et al., 

1992]. These facts suggest that 13q has a higher propensity for formation of 

neocentromeric derivatives, but the reason for it remains to be elucidated. At least 

four distinct regions in 13q have been shown to contain neocentromeres: 13q21 (five 

cases), 13q31 (three cases), 13q31/32 (one case) and 13q32 (seven cases) [For review: 

http://www.med.uni-jena.de/fish/sSMC], which could suggest that these bands are 

“hotspot” regions for neocentromere formation. A study by Alonso and coworkers has 

analysed the DNA sequence of three chromosome 13 neocentromeres at 13q32, using 

CENP-A chromatin immunoprecipitation and genomic microarray analysis. They 

showed that there is no evidence of any overlap between the three neocentromeres, 

indicating, therefore, that there is no DNA sequence defined as a neocentromere 

hotspot in this region [Alonso et al., 2003]. Interesting also is that the sequence analysis 

of the DNA isolated from several independent neocentromeres revealed no common 

sequence, with the exception of an increase AT richness, a shared characteristic with 
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alpha satellite DNA sequences of human centromeres [Lo et al., 2001; Satinover et al., 

2001; Li et al., 2002]. 

The most frequent features seen in patients with partial trisomy or tetrasomy of 

chromosome 13q are microphthalmia, ear abnormalities, hypotelorism, facial 

dysmorphisms, urogenital defects and severe learning difficulties [Schinzel, 2001]. The 

phenotype of the case in this report also showed hypotelorism, low set ears, facial 

dysmorphisms and renal dysplasia. Regarding the size of the partial tetrasomy only 

three cases are cytogenetically comparable to our case (case 2; 3 and 4 – Table 3.5.I). 

However, these cases which involve a tetrasomy of 13q31-qter, two with the 

neocentromere location like ours at 13q31 (case 3 and 4 – Table 3.5.I) and one with 

the neocentromere at 13q32 (case 2 – Table 3.5.I), are different from the present case 

not only because they were mosaic but they were also postnatally diagnosed. 

Therefore the clinical comparison with our case can only be extrapolated. There are 

some clinical features that can be correlated in all of these cases, namely the 

cranio/facial abnormalities and ear malformations. Since this is the first case reported 

prenatally, it is important to notice the relevance regarding the ultrasound 

malformations, specially the ones involving the head (large cisterna magna, 

ventriculomegalia and the hypotelorism). The severity of the foetus phenotype could 

be explained by the full tetrasomy in the two tissues studied, in contraposition to the 

mosaic status of the previous reported postnatal cases involving the same region.  

The complexity and variability of the phenotypes seen in patients with sSMC of 

chromosome 13 do not support a genotype/phenotype correlation [reviewed by Liehr et 

al., 2007]. Furthermore, the wide range of mosaicism and the chromosome imbalances 

seen in all these cases must account to some extent for the wide variability of the 

observed phenotypes. Moreover, the presence of the neocentromere could lead to 

chromatin changes, influencing gene expression over an extended chromosomal 

region [Levy et al., 2000].  

In conclusion, there are, to the best of our knowledge, only three more cases 

described with sSMC with the location of the neocentromere in band 13q31 (case 3, 4 

and 5 – Table 3.5.I), as in our case. However, this is the first one with a neocentromere 
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in 13q31 reported prenatally and that was not a mosaic. The origin and mechanisms 

involved in neocentromeric marker chromosomes are interesting subjects that deserve 

further investigation. Every sSMC should be characterized by cytogenetic and 

molecular methods, in order to define the euchromatic content and to prove the 

physical neocentromere position, providing further information for genetic counselling 

and future genotype/phenotype correlations. 
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3.6. - sSMCs from chromosome 15 

Refined molecular cytogenetic characterization of the breakpoints of small 

supernumerary marker chromosomes derived from chromosome 15 [*] 

[*] The work presented in this section is under submission: 

Melo JB, Jardim A, Matoso E, Backx L, Vermeesch JR, Kosyakova N, Liehr T, Carreira IM. Molecular breakpoints definition of six 

supernumerary marker chromosomes derived from chromosome 15 by array techniques after microdissection. Submitted to 

Journal Histochemistry and Cytochemistry. 

 

3.6.1. Introduction 

Many rearrangements may occur in the imprinted chromosome region 15q11->q14, 

which is known for its instability due to the presence of repeated DNA elements 

[Battaglia, 2008]. This region harbours six common sites that mediate chromosomal 

rearrangements. These duplicons or breakpoints (BPs) consist of large segments with 

low copy repeats referred to as BP1–BP5 located in 15q11->q13, whereas BP6 is within 

15q14 [Kleefstra et al., 2010] (Fig. 3.6.1.). The rearrangements include deletions 

associated either with Angelman syndrome (OMIM 105830) or with Prader-Willi 

syndrome (OMIM 176270), according to parental origin [Lalande, 1996], translocations, 

inversions and supernumerary marker chromosomes formed by the inverted 

duplication of proximal chromosome 15. Interstitial duplications, triplications and 

balanced reciprocal translocations are much less frequent [Battaglia, 2008].  

 

 
Figure 3.6.1. Schematic representation of chromosome 15, showing the five recurrent breakpoints (BP), 
and the ~4 Mb segment (15q11-q14) that encompasses the Prader-Willi/Angelman syndrome critical 

region (PWS/ASCR) [from Battaglia, 2008]. 
 

Supernumerary marker chromosomes (SMC) originating from chromosome 15 are the 

most common SMCs. They encompass clinically irrelevant SMC(15)s containing only 

heterochromatin and 15p material, and clinically relevant SMC(15)s that consist of 

both eu- and heterochromatic 15q material [Kleefstra et al., 2010]. The two most 
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proximal breakpoints (BP1 and BP2) are implicated in the origins of clinically 

insignificant SMCs [Huang et al., 1997]. The three distal breakpoints give rise to larger 

SMCs [Roberts et al., 2003; Makoff and Flomen, 2007]. So far, BP6 has not been reported 

to be involved in the formation of SMCs [Kleefstra et al., 2010]. The critical ~4 Mb region, 

responsible for PWS/AS and the duplication chromosome 15 syndromes, lies between 

BP2 and BP3. 

As with others SMCs, a SMC(15) can be monocentric or dicentric. The dicentric 

SMC(15)s are the most common and may have originated from recombination 

between two homologs or between the two chromatids of one chromosome 15. Such 

a dicentric SMC(15) consists of two centromeres, with one inactivated, two bisatellited 

telomeres, and two inverted copies of the proximal end of the q arm [Kleefstra et al., 

2010]. These dicentric SMC(15)s are also referred to as “pseudodicentric chromosome 

15” or “inv dup(15)” [Roberts et al., 2003]. Two cytogenetic types of inv dup (15) 

markers chromosomes have been identified, with different phenotypic consequences 

[Battaglia, 2008; Crolla et al., 1995; Huang et al., 1997; Roberts et al., 2003]: 

a) small SMC(15)s, which are metacentric or submetacentric chromosomes without 

euchromatic material, not containing the Prader-Willi/Angelman syndrome critical 

region (PWS/ASCR), and that can be familial or de novo. Most children with this 

aberration show a normal phenotype, although exceptions have been reported 

[Hou and Wang, 1998]. They have been associated with male infertility [Eggermann et 

al., 2002; Morel et al., 2004]; 

b) large SMC(15)s, with the PWS/ASCR, between BP2 and BP3, being associated 

with an abnormal phenotype - the idic(15) syndrome [Battaglia, 2008]. On the basis 

of size, these clinically relevant SMC(15)s can be subdivided into type A,‘‘large’’ 

asymmetric and type B, ‘‘small’’ symmetric SMC(15)s. Type B SMC(15)s contain the 

triplicated 15pter to BP3 (located at 26.5 Mb) region, while type A SMC(15)s 

consist of 15pter->BP4(28.5Mb)::BP5(30.5Mb)->15pter [Kleefstra et al., 2010]. 

 

The inv dup(15) or idic(15) (inverted duplication of proximal chromosome 15 or 

isodicentric 15 chromosome) syndrome is characterized by a distinct neurobehavioral 

phenotype including moderate to profound developmental delay/intellectual 
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disability, absent or very poor speech, hypotonia, epilepsy, and an autism spectrum 

disorder [Robinson et al., 1993; Crolla et al., 1995; Battaglia, 2008; Battaglia et al., 2010]. The 

combination of severe epilepsy and the particular behaviour disorder renders a more 

distinctive clinical picture that distinguishes idic(15) syndrome from other conditions 

involving severe neurodevelopmental disability [Battaglia et al., 2010]. Incidence at birth 

is estimated to be 1/30 000 with a sex ratio of almost 1 [Schinzel and Niedrist, 2001; 

Battaglia et al., 2010].  

Genotype/phenotype studies have not been able, to date, to show any correlation 

between type and size of the idic(15), and the degree of severity of the clinical 

spectrum. We describe 6 new cases with SMC(15)s that were characterized by 

molecular cytogenetics and array CGH techniques, for the evaluation of the exact 

genetic content.  

 

3.6.2. Results 

We report 6 new cases of patients with a SMC(15) (cases I, II, III, IV, V and VI) (Table 

3.6.I.). 

 

I II

IV V VI

III

15 sSMC 15 sSMC 15 sSMC

15 sSMC 15 sSMC 15 sSMC

I II

IV V VI

III

15 sSMC 15 sSMC 15 sSMC

15 sSMC 15 sSMC 15 sSMC

 
Figure 3.6.2. GTG banding of normal chromosomes 15 and the marker chromosome in 6 cases (I to VI). 
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Case I  

The sSMC(15) was ascertained prenatally in a case referred for advanced maternal age 

and confirmed in lymphocytes after birth. A normal child was born (Table 3.9.I). After G-

Banding, the karyotype was mos 47,XX,+mar[27]/46,XX[3] (Fig. 3.6.2.). Karyotypes of 

both parents were normal. Centromeric FISH identified the origin of the marker as 

being derived from chromosome 15. SubcenM-FISH and Multicolour Banding (MCB) 

analysis revealed the sSMC as an inv dup(15)(q11.2). 

The microdissected DNA of the sSMC was hybridized in a full tiling BAC array specific 

for chromosome 15, with a resolution of 100-150 Kb (VIB MicroArrays Facility - 

www.microarrays.be), having material of approximately 2.49 Mb size extension from 

15q (between 18.47 Mb to 20.96 Mb). This region encompasses only one gene (BCL8) 

described in OMIM morbid map, which is associated with large - cell Lymphoma 

[Dyominet al., 1997]. 

Uniparental Disomy (UPD) for chromosome 15 was excluded, with the following 

markers being informative: D15S652, D15S816, and D15S642. 

 

Case II  

During the first years of life the patient presented hipotony, psychomotor 

development delay and strabismus. At 7 years old started having mioclonic crisis. The 

child was clinically reassessed at 14 years old, presenting severe psychomotor delay; 

daily convulsions; and frequent respiratory infections (Table 3.6.I). He is the second 

child of nonconsanguineos parents with no familiar history, being the older child 

normal.  

G-banding revealed the presence of a supernumerary marker chromosome in all the 

analyzed cells, the karyotype of the boy being 47,XY,+mar (Fig. 3.6.2.). Karyotypes of 

both parents were normal. After MCB and subcenM-FISH analysis the sSMC 

characterization revealed an inv dup(15)(q13~14) (Fig. 3.6.3.) (Table 3.6.I.). 
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15 sSMC15 sSMC
 

Figure 3.6.3. -  Multicolour Banding (MCB) specific for chromosome 15, in the two normal chromosomes 
and in the sSMC of case II, revealing an  inv dup(15)(q13~14). 

 

The microdissected DNA of the sSMC was hybridized in a full tiling BAC array specific 

for chromosome 15, with the same resolution, having material of approximately 8.35 

Mb size extension from 15q (between 18.47 Mb to 26.82 Mb). This region 

encompasses six genes described in OMIM morbid map [OMIM], like UBE3A and 

GABRB3, located in PW/ASCR [Kleefstra et al., 2010]. 

 

Case III  

The patient was clinically assessed at 8 years old presenting severe psychomotor 

development delay; speech problems, no control of the sphincters, growth delay, 

autism and hyper-reactivity, and frontal lobe epilepsy (Table 3.6.I). 

G-banding revealed the presence of a supernumerary marker chromosome in all the 

analyzed cells, the karyotype being 47,XY,+mar (Fig. 3.6.2.). The characterization of the 

sSMC by subcenM-FISH and MCB, revealed an inv dup(15)(q11.2). However, array CGH 

analysis identified the marker with material of approximately 8.35 Mb size extension 

from 15q (between 18.47 Mb to 26.82 Mb), larger than expected with MCB results and 

with the same genetic content as case II (Table 3.6.I.). 

Uniparental Disomy (UPD) for chromosome 15 was excluded, with the following 

markers being informative: D15S659, D15S818, D15S655, D15S652, D15S816, 

D15S642, and D15S153. 
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Case IV 

A female patient was clinically re-evaluated at 18 years old having psychomotor 

development delay; speech problems; behaviour alterations; aggressiveness; and 

agitation (Table 3.6.I.). The age of the mother at birth was 39 years old. 

The karyotype revealed a de novo marker chromosome in mosaic (mos 

47,XX,+mar[16]/46,XX[8]) (Fig. 3.6.2.). MCB and subcenM-FISH characterization defined 

the marker derived from chromosome 15, as an inv dup(15)(q13~14), with duplicated 

PW/ASCR. Array CGH analysis of the microdissected DNA of the marker revealed a 

marker with 10.47 Mb size extension, between 18.47 Mb and 28.94 Mb (Table 3.6.I.). 

This region encompasses more two genes described in OMIM morbid map [OMIM] 

comparing with cases II and III: OCA2 and HERC2, associated with skin/hair/eye 

pigmentation [Sturm, 2009]. 

Uniparental Disomy (UPD) for chromosome 15 was excluded, with the following 

markers being informative: D15S1507, D15S653, D15S642, and D15S153. 

 

Case V  

A female child with hypotonia; mental retardation; autism; and speech problems was 

assessed at 5 years old. The karyotype revealed a sSMC in all cells (47,XX,+mar), 

maternally derived. The origin of the marker was identified by centromeric FISH. The 

PW/AS critical region was identified by locus-specific FISH probes, the marker being an 

inv dup (with duplicated PW/AS critical region) (Fig. 3.6.4.).  

mara) b)

15

15

c)

mar

15

mara) b)

15

15

c)

mar

15

 
Figure 3.6.4. a) Centromeric FISH for chromosome 15 showing the origin of the sSMC in case 
V.; b) Locus-specific probes for chromosome 15 - SNRPN in red (PW/AS critical region) and 
D15Z1 in green; c) Locus-specific probes for chromosome 15 –D15S10 in red (PW/AS critical 
region) and D15Z1 in green. 
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Table 3.6.I. – Description of the sSMC(15)s cases characterized by molecular cytogenetics and 
array CGH, after microdissection of the marker. 

C Origin Pre 
or 

Pos 

UPD Karyotype/ 
sSMC characterization M-
FISH 

Array result OMIM* Clinical presentation 

I de 
novo 

PRE 
+ 

POS 

No 
UPD 

47,XX,+mar[27]/46,XX[3] 
 
sSMC characterization: 
ish. inv dup(15)(q11.2) 
 

sSMC size: 2.49 Mb 

18.47 20.96 Mb 

15q11.2 15q11.2 

 
1 

Normal child was born 

II de 
novo 

POS n.a. 47,XY,+mar 
 
sSMC characterization: 
ish. inv dup(15)(q13~14) 
 

sSMC size: 8.35 Mb 

18.47  26.82 Mb 

15q11.2 15q13.1 

 
6 

14 years: Severe 
psychomotor delay; 
Convulsions – daily; 
Frequent respiratory 
infections 
 

III 
 

de 
novo 

POS No 
UPD 

47,XY,+mar 
 
sSMC characterization: 
ish. inv dup(15)(q11.2) 
 

sSMC size: 8.35 Mb 

18.47  26.82 Mb 

15q11.2 15q13.1 

 
6 

8 years: Severe 
psychomotor development 
delay; speech problems, 
no control of sphincters 
Growth delay 
Autism and hyper-
reactivity 
Frontal lobe epilepsy 

IV de 
novo 

POS No 
UPD 

47,XX,+mar[16]/46,XX[8] 
 
sSMC characterization: 
ish. inv dup(15)(q13~14) 
 

sSMC size: 10.47 Mb 

18.47 28.94 Mb 

15q11.2 15q13.2 

 
8 

18 years: Psychomotor 
development delay; 
speech problems; 
behaviour alterations; 
aggressiveness; agitation 

V mat POS n.a. 47,XX,+mar 
 
sSMC characterization: 
ish.inv dup(15)(q13~14) 

sSMC size: 12.38 Mb 

18.47 30.85Mb 

15q11.2 15q13.3 

 
8 

5 years: Mental 
retardation; Autism; 
Hypotonia; Speech 
problems  
 

VI de 
novo 

POS n.a. 47,XX,+mar 
 
sSMC characterization: 
ish.inv dup(15)(q13~14) 

sSMC size: 12.38 Mb 

18.47 30.85Mb 

15q11.2 15q13.3 

 
8 

27 years: Low IQ; Learning 
disabilities  
(mother of V) 

Mat – maternal; Pre – prenatal; Pos – postnatal; M-FISH – Multicolor Fluorescence in situ hybridization; Mb – Megabases; n.a. – 
not available; UPD – uniparental disomy; *-number of genes in OMIM morbid map; C- case. 

 

SubcenM-FISH and MCB results identified the breakpoints of the inv dup, as inv 

dup(15)(q13~14) (Fig. 3.6.5.). Array CGH analysis, after microdissection of the marker, 

revealed a sSMC with 12.38 Mb extension, between 18.47Mb and 30.85Mb (Table 

3.6.I.). This region encompasses the same number of genes (8) described in OMIM 

morbid map [OMIM] comparing with case IV. 

 

Case VI 

Patient VI is the mother of case V. She has the same sSMC(15) as the daughter, as 

characterized by MCB and SubcenM-FISH. At 27 years old she presents low IQ and 

learning disabilities (Table 3.9.I). 
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Figure 3.6.5. SubcenM-FISH specific for chromosome 15 in case V, with the two normal chromosomes 
15 and the sSMC. The sSMC(15) is dicentric (centromere in green) with breakpoints between q13~q14. 

 

3.6.3. Discussion 

A wide range of structural rearrangements may occur in the 15q11->q13 region, 

including supernumerary marker chromosomes. In the present study, we characterized 

the molecular content of SMC(15), present in 6 different patients, correlating clinical 

features with SMC(15) sizes. One case is a small SMC(15)s, without PWS/ASCR (case I), 

and without clinical features and/or development delay. The other 5 cases are large 

SMC(15)s with PWS/ASCR (cases II, III, IV, V, and VI), all having clinical features 

associated. Of these large SMC(15)s described, two cases are from group B, having 

symmetrical pattern corresponding to BP3 (BP3:BP3) (case II and Case III). The other 3 

cases have large SMC(15)s from group A, showing an asymmetrical pattern with distal 

margins at the known breakpoint BP4 (Fig. 3.6.6). As described in previous studies, all 

large SMC(15)s in this study had distal margins at the known breakpoints: at BP3 

(BP3:BP3), or at BP4 and BP5 (BP4:BP5) [Wandstrat et al., 1998; Roberts et al., 2003; Wang 

et al., 2004; Sahoo et al., 2005; Makoff and Flomen, 2007, Kleefstra et al., 2010]. 

Large SMC(15)s have been associated with increased mean maternal age at 

conception, similar to other trisomies [Crolla et al., 1995; Dennis et al., 2006; Roberts et al., 

2003; Valente et al., 2006; Battaglia et al., 2010, Kleefstra et al., 2010]. Indeed, 

nondisjunction is likely to play a role in the formation of all SMC(15)s. The fact that the 

majority of SMC(15) are nonmosaics suggests a meiotic origin of these markers and 

this is supported by the observations that all de novo SMC(15)s characterized 

molecularly have been shown to be maternal in origin [Crolla et al., 2005]. No paternally 

derived large SMC(15)s have been reported. The reasons for this remain unresolved. 

During spermatogenesis, cells carrying a SMC can be selected against [Cotter et al., 
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2000; Eggermann et al., 2002]. Alternatively, large SMC(15)s could be lethal if paternally 

inherited, although paternally inherited interstitial triplications have been described 

[Ungaro et al., 2001] that have the same PWACR copy number as those in patients with 

large SMC(15). 
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Figure 3.6.6. – Schematic representation of the 15q region involved in all the SMC(15)s described in this 
study. The extension of each marker is described.  

 

The presence of a large SMC(15)s in all cells, with the PWS/ASCR, has been associated 

with phenotypic effects [Battaglia, 2008]. Previous reports on SMC(15) have shown that 

on average 80%-85% of SMC(15)s are present as nonmosaics [Leana-Cox et al., 1994; 

Mignon et al., 1996; Roberts et al., 2003; Crolla et al., 2005]. Mosaicism with a normal cell 

line has been described in a small subset of individuals [Roberts et al., 2003; Crolla et al., 

2005; Loitzsch and Bartsch, 2006; Saitoh et al., 2007; Guanciali-Franchi et al., 2008]. In case IV 

of this study, the large SMC(15) is present in 66% of the analyzed cells (Table 3.6.I). It 

has been seen that the features of patients with mosaic large SMC(15) are in the 

phenotypic spectrum of large SMC(15)s, depending on the percentage and type of cell 

line which contain the SMC(15) [Dennis et al., 2006; Kleefstra et al., 2010]. To date, 

mosaicism for large SMC(15) (with PW/ASCR) with no phenotypic effects has been 

observed in very few cases [Roberts et al., 2003; Loitzsch and Bartsch, 2006; Guanciali-

Franchi et al., 2008]. 



  
 

154 
 

Numerous copies of region-specific repeats that lie within proximal 15q facilitate 

mispairing and unequal meiotic exchanges, which promote a relatively high frequency 

of rearrangements within this region. Gene expression in this critical region is 

regulated by an imprinting mechanism [Dittrich et al., 1996]. Only maternally inherited 

aberrations of chromosome 15q11-13 seem to be pathogenic, with the exception of 

one report [Mohandas et al., 1999]. Maternal genes, contained in this genomic region, 

could act in a dosage dependent manner their copy number being critical for normal 

brain development and function [Battaglia, 2008]. Indeed, several cases of partial 

hexasomy for chromosome 15q have been reported, that arose because of the 

presence of either two idic(15) chromosomes or a very large idic(15) chromosome, 

that have a clinical presentation more severe than typical cases of idic(15) [Huang and 

Bartley, 2003; Maggouta et al., 2003; Nietzel et al., 2003; Qumsiyeh et al., 2003; Mann et al., 

2004]. It seems that whereas the size of the duplication chromosome does not seem to 

be directly related to the phenotype of patients with idic(15), the severity of the 

presentation of these hexasomic patients indicates that increasing dosage of the 

region has a negative effect on outcome [Mann et al., 2004]. 

In our cohort, patients with large SMC(15)s presented common features of idic(15) 

syndrome, like mental retardation or psychomotor development delay, epilepsy, or 

autistic-like behaviour, that is associated with high prevalence of behavioural 

problems. As pinpointed by Kleefstra and co-workers, these features could be 

explained by a dosage effect of various genes located in the 15q11.2->q13 region like: 

GABRB5, GABRB3, APBA2, CHRFAM7A, and SGNE1 that encode proteins present in 

nervous tissue; and NIPA1, CHRNA7, and UBE3A that show a possible association with 

neurologic and neuropsychiatric disorders [Kleefstra et al., 2010]. We did not identify 

significant differences in phenotype between patients with type A and type B large 

SMC(15)s. This observation is in concordance with other studies that reported 

phenotypic data of types A and B SMC(15) separately [Dennis et al., 2006; Kleefstra et al., 

2010]. As expected, the patient with a small SMC(15), without PW/ASCR, presents a 

normal phenotype.  
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In one patient (case III) multicolour FISH analysis (with MCB and SubcenM-FISH) 

showed a different size of the SMC(15) compared to the assessment by array CGH 

analysis. Additionally, routine cytogenetic analysis was not an accurate method to 

determine the size of the SMC(15). A full characterization of SMC(15) by array CGH 

techniques is essential to establish with more precision breakpoints position and size 

of duplicated segments. Array CGH analysis, after microdissection of the marker, 

showed to be a powerful approach to detect the duplication and its extent. 
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3.7. sSMCs from chromosome 16 

Molecular cytogenetic characterization of two cases with de novo small mosaic 

supernumerary marker chromosomes derived from chromosome 16: Towards a 

genotype/phenotype correlation [*] 

[*] The work presented in this section was published in: 

Melo JB, Matoso E, Polityko A, Saraiva J, Backx L, Vermeesch JR, Kosyakova N, Ewers E, Liehr T, Carreira IM (2009) Cytogenetic and 

Genome Research 125:109-14. 

 
3.7.1. Introduction 

The chromosome 16 long arm (16q) is characterized by the presence of a block of 

heterochromatin in the pericentromeric region (16q11.1→q11.2). Cases with an sSMC 

consisting of only these centromeric and heterochromatin regions do not show clinical 

manifestations [Callen et al., 1990, 1991; Crolla, 1998; Paoloni-Giacobino et al., 1998; Sanz et 

al., 2000]. However, trisomy involving band 16q12 is usually associated with a clinical 

impact [Barber et al., 2006]. 

We present two cases with an sSMC derived from chromosome 16. These cases were 

characterized by molecular cytogenetics, namely with centromere specific FISH probes 

and subcenM-FISH. Case A was also characterized by reverse FISH and array painting, 

using a full-tiling BAC array specific for chromosome 16 (with resolution of 100--150 

kb). The characterization of these sSMC demonstrated the involvement of 16q12 

euchromatin in both markers. 

 

3.7.2. Results 

Case A: 

A prenatal diagnosis due to advanced maternal age with no ultrasound anomalies was 

performed in the 16th week of gestation. Autopsy was done at 23 weeks, revealing a 

female fetus in the 50th percentile with signals of maceration and signals of acute 

anoxia. The fetus had an extra suprarenal gland near the left ovary and only slight 

facial dysmorphisms, namely discrete hypertelorism, large philtrum and asymmetrical 

implantation of the ears.  

GTG-banded amniocytes were studied revealing a female karyotype with an sSMC in 

24% of the analyzed metaphases. The marker chromosome was very small and 
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appeared to have a ring shape (Fig. 3.7.1.A). Karyotypes of both parents, performed in 

cultured lymphocytes, were normal (data not shown). The de novo sSMC was positive 

with C-banding, suggesting that the marker chromosome contained heterochromatin 

(Fig. 3.7.1.B). 

Centromere FISH, using probe D16Z1 revealed that the sSMC was derived from 

chromosome 16 (data not shown). All-telomere probe was negative in the sSMC (Fig. 

3.7.2.A). Reverse FISH confirmed the origin of the marker and suggested the 

involvement of the euchromatic region of 16q12 in the sSMC (fig. 2B). SubcenM-FISH 

specific for chromosome 16 confirmed the ring-shape of the marker and demonstrated 

that the sSMC possessed euchromatic material from 16q, the karyotype being mos 

47,XX,+r(16)(::p11.1→q12.1~q12.2::)*25%+/46,XX*75%+ (Fig. 3.7.2.C). With array-CGH 

the breakpoints of the marker were redefined to 16p11.2 and 16q12.1. Thus, the sSMC 

led to a partial trisomy of 33.43 Mb to 47.02 Mb on chromosome 16 (Fig. 3.7.3.). 

 

 

Figure 3.7.1. - A. GTG banded images of both normal chromosomes 16 and of the marker chromosome 
of case A. B. CBG banded images showing the marker chromosome of case A. The supernumerary 
marker chromosome is designated as mar. 

 

Case B:  

A cytogenetic study of a boy presenting congenital malformations, born at term, with 

birth weight 3200 g and length 50 cm, was done. At 13 years of age the weight was 47 

kg, length 160.5 cm and head circumference 54 cm. He presented low-set dysplastic 

ears, hypoplastic testes and cryptorchidism. No further clinical details were available. 

GTG-banding in metaphase spreads from lymphocytes revealed a male karyotype with 

a ring shape sSMC in 50% of the analyzed cells. Karyotypes of both parents were 

normal (data not shown). Centromere FISH revealed that the sSMC derived from 

chromosome 16 and subcenM-FISH specific for chromosome 16 demonstrated a 
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karyotype mos 47,XY,+r(16)(::p11.1→q12::)*7+/46,XY*7+ (results not shown due to 

similarity of the figures).  

 

Figure 3.7.2. – FISH using different probes in cases A (subfigures A-C). The supernumerary marker 
chromosome is signed as mar(16). A. Image of a hybridization of an all telomeric probe, showing an 
absence of signs in the small supernumerary marker in case A. B. Reverse FISH image confirming the 
origin of the sSMC and the extent of the chromosome 16 involved in the marker of case A. The sSMC 
was microdissected and the DNA was amplified, labeled and hybridized in a patient metaphase. C. FISH 
image applying the subcentromeric probes for chromosome 16, revealing in case A that the centromere-
near region in p-arm (RP11-360L15; in red) is absent in the marker, the centromere-near region in q-arm 
(RP11-474-B12; in purple) is present in the marker, being the sSMC mainly derived from q-arm (in blue). 
For space reasons only one of the two normal chromosomes 16 is shown.  
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Fig. 3.7.3. – A. Array painting result of the marker chromosome in case A. A. The plot shows a gain for 
region 16p11.2 to 16q12.1 with breakpoints mapping at BAC clones RP11-258P17 and RP11-520B19. B. 
Ideogram of chromosome 16 showing the region involved in the sSMC, corresponding to the flanking 
BAC clones identified in 3A. C. Diagram from Ensembl (www.ensembl.org) showing the genes present in 
the region between 16q11.2 and 16q12.1, which is the euchromatic content of the sSMC from case A. 

 

3.7.3. Discussion 

If a structural chromosome rearrangement is diagnosed in a pregnancy it is crucial to 

determine the implications of this particular abnormality in order to counsel the 

parents in their decision for a suitable course of action [Gardner and Sutherland, 2004]. If 

neither a family history nor ultrasound fetal abnormalities exist and a chromosome 

aberration is detected, the prognosis for the fetus is largely deduced from the results 

of the cytogenetic analysis. Depending on the type of aberration, the risk for 

abnormalities and/or mental retardation ranges from almost nil in case of 

amplification of heterochromatic material to a high risk in the presence of genetically 

active euchromatin [Trimborn et al., 2006]. Indeed, heterochromatic C-band negative 

variants of 16q11.2 involving α-satellite DNA have been described in the literature 



 
Results and Discussion 

3.7. sSMC from chromosome 16 

 

165 
 

[Jalal et al., 1993]. The carriers show neither phenotypic abnormalities nor mental 

retardation. There are several reports describing the presence of an sSMC from 

chromosome 16 associated with no clinical manifestations [Callen et al., 1990, 1991; 

Crolla, 1998; Paoloni-Giacobino et al., 1998; Sanz et al., 2000; Hengstschlager et al., 2001; 

Bartsch et al., 2005, Pater et al., 2006, Karaman et al., 2006, Rodríguez et al., 2008]. In only a 

few of these cases the markers have been characterized extensively, however their 

content seems to be limited to the centromeric and heterochromatin regions. Trisomy 

involving band 16q12 is usually associated with clinical impact [reviewed by Barber et al., 

2006]. It seems that individuals with duplications of this proximal 16q do not have 

characteristic facies but frequently have short stature, developmental and speech 

delay, learning difficulties and behavioral problems which range from mild to severe 

[Barber et al., 2006]. However, a recent report showed that not all euchromatic 

trisomies of 16q12 have a clinical repercussion [Rodríguez et al., 2008]. Indeed, the 

authors showed the presence of a partial trisomy of the long arm of chromosome 16, 

involving the heterochromatin block and the proximal euchromatin region at 16q12 in 

a healthy patient. This discrepancy could be attributed to the fact that the sSMC 

reported in this case was present in a mosaic form (~65% of the analyzed cells). 

To the best of our knowledge there are 6 reported cases of sSMC derived from 

chromosome 16 with clinical findings as described in table 1 [Krauss et al., 1987; Liehr et 

al., 2006; Crolla et al., 1998; Aviv et al., 2005; Avela et al., 2007; Baldwin et al., 2008]. In only 3 

of these cases (case 1, 2 and 6) the sSMC is characterized sufficiently. Case 1 is a 

postnatal case with a minute shaped centric marker with material from 16p11.1 to 

16q11.2. Case 2 is a ring 16 with p10 to q13 material but associated with a deletion in 

chromosome 1. Case 6 is a postnatal case with an sSMC consisting of 16p11.2 to 

16q11.2 characterized by array-CGH, but with a diagnosis of Beckwith-Wiedemann 

syndrome, associated with alterations in the methylation pattern of the 11p15 region. 

Therefore, it is difficult to assess genotype/phenotype correlations in carriers of sSMCs 

derived from chromosome 16. However, taking into account these reports and the two 

cases reported here, the presence of the proximal euchromatic region of 16q12 

(between 45.5 and 47.02 Mb) in the sSMC seems to result in broad clinical 
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consequences (Table 3.6.I), although more cases of affected and unaffected individuals 

with sSMC from chromosome 16 should be reported in order to confirm this 

observation. In both cases reported here and in the sSMC described by Krauss and 

colleagues [Krauss et al., 1987] the patients have broad facial dysmorphism, and in 

common alterations related to ear implantation (Table 3.7.I). 

Some protein-coding genes have been located in band 16q12, the region present in the 

sSMC of case A reported here (Fig 3.7.3.C). These include the E3 ubiquitin protein ligase 

gene (SIAH1), the peroxisomal Lon protease homologue 2 gene (LONP2), two 

multidrug resistance-associated proteins genes (ABCC11 and ABCC12), the beta 

subunit gene of phosphorylase kinase gene (PHKB) which is an enzyme that activates 

glycogen phosphorylases in muscle, liver, and other tissues, the gene for a precursor a 

T-cell immunomodulatory protein (ITFG1), the gene for a brain specific 

transmembrane protein (NETO2), the gene for a protein important for cell cycle 

progression restoration (DNAJA2), the alanine aminotransferase-2 gene (GPT2), a gene 

of the family of myosin light chain kinases (MYLK3), a gene from ORC family (ORC6L), a 

gene related with vacuolar protein sorting-associated proteins (VPS35) and a gene of 

the family of SHC-SH2 domain binding proteins (SHCBP1) (www.ensembl.org). 

In conclusion, molecular cytogenetic techniques, namely subcen-FISH and especially 

array CGH-based techniques, allow a more accurate characterization of the 

heterochromatic/euchromatic content of an sSMC, which is important for the 

establishment of genotype-phenotype correlation and for the improvement of 

prenatal counseling and patient follow-up.  
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Table 3.7.I - Description of previously reported cases with a sSMC derived from chromosome 
16 with clinical findings and the two cases reported here. 

Case age 
de novo/ 
inherited 

Karyotype clinical symptoms Ref. 

1 2 years de novo 47,XY,+min(16)(:p11.1→q11.1 or 
q11.1→p11.1::p11.1→q11.2:) [6%] 

normal at birth, edema at hands at 
9m; little asymmetry of skull, no 
dysmorphic signs, slight penis 
anomaly 

Liehr et al., 
2006  
case 16-1 

2 23 
years 

n.a. 47,XX,del(16)(p10q13), 
+r(16)(::p10→q13::)*100%+ 

mild general hypotonia, Head 
circumference 51cm = very small; 
bow shaped mouth, abnormal 
posterior rotated ears; detected 
due to a malformed child without 
the mar but with the del(16) 
chromosome 

Krauss et al., 
1987 

3 30 
years 

de novo 47,XY,+mar(16).ish(DZ16Z2+; D16Z3+, 
wcp16-) [100%] 

mild mental handicap; psychosis; 
schizophrenia, normal appearance 
without abnormalities 

Crolla et al., 
1998 case 21 

4 Pre 
natal 

de novo 47,XX,+mar(16) [88%] amniocentesis due to posterior 
fossa cyst with extension of the 
region of cerebellar vermis with 
splaying of cerebellar hemispheres 
suggesting Dandy-Walker complex 
in week 20 of gestation; 
termination of pregnancy in week 
23; no autopsy, external 
examination showed normal 
female phenotype. 

Aviv et al., 
2005 

5 Pos 
natal 

de novo 47,XY,+mar(16).ish(DZ16Z2+; D16Z3+, 
wcp16-) [50%]  

Patient born at term after normal 
pregnancy and delivery: 3150g, 
51cm, Head circumference 35.5cm. 
facial dysmorphic; epicanthic folds, 
thin, distinct eyebrows, simian 
crease in both hands, short neck, 
ventricular septal defect and open 
foramen ovale, delayed 
development; up to 3y of age 
patient progressed at -2SD, weight 
+5% and Head circumference at -
2.5 SD curve. 

Avela et al., 
2007 

6 Pos 
natal 

de novo 47,XX,+mar(16)(:p11.2→q11.2:) [85%] 
 
size p 0.7MB (array CGH) 

macroglossia, dysmorphic features, 
height, weight and OFC ~90 
centile; mild gross motor delay, 
asymmetric lower extremities; 
clinical features suggestive of 
Beckwith-Wiedemann syndrome 
(BWS)- testing for LIT1 methylation 
confirmed a diagnosis of BWS. 

Baldwin et 
al., 2008 

7 Pre 
natal 

de novo 47,XX,+r(16)(::p11.2 q12.1::) [24%] TOP, extra supra-renal, slight facial 
alterations, like discrete 
hypertelorism, large philtrum and 
asymmetrical implantation of the 
ears 

Case A 

8 13 
years 

de novo 47,XY,+r(16)(::p11.1→q12::) [50%] congenital malformations, born at 
term, low-set dysplastic ears, 
hypoplastic testes, cryptorchidism 

Case B 

Adapted from http://www.med.uni-jena.de/fish/sSMC/00START.htm 
n.a. – not available; SD – standard deviation; TOP = termination of pregnancy 
 

http://www.med.uni-jena.de/fish/sSMC/00START.htm
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3.8. - sSMC from chromosome 17 

Prenatal diagnosis of a small supernumerary marker chromosome 17 with a normal 

phenotypic outcome [*] 

[*]The work presented in this section is under submission: 

Melo JB, Jardim A, Saraiva J, Backx L Vermeesch JR, von Eggeling F, Kosyakova N, Liehr T, Carreira IM. Prenatal diagnosis of a small 

supernumerary marker chromosome 17 with a normal phenotypic outcome. Submitted to Cytogenetic and Genome Research. 

 

3.8.1. Introduction 

Small supernumerary marker chromosomes (sSMCs) are structurally abnormal 

chromosomes that cannot be identified or characterized unambiguously by classic 

cytogenetics analysis alone, and are (in general) equal in size or smaller than a 

chromosome 20 of the same metaphase spread [Liehr et al., 2004]. Phenotypes 

associated with a sSMC are variable, from normal to severely affected. It has been 

shown that, depending on the chromosomal region of a sSMC, differences can be 

observed and expected in the clinical outcome. Also other factors like uniparental 

disomy, mosaicism and mode of inheritance have to be considered. When detected 

prenatally, de novo sSMCs constitute a major problem for cytogenetic investigation 

and genetic counselling, due to time availability and, essentially, due to the difficulty, 

in the majority of cases, in establishing a robust genotype/phenotype correlation.  

The finding of unbalanced chromosomal abnormalities (UBCAs) was reviewed and 

summarized from a total of 200 families [Barber, 2005; 

http://www.ngrl.org.uk/Wessex/collection/ubca_chart.htm]. UBCAs involve the addition 

(duplication) or removal (deletion) of one of the two copies of each chromosomal 

segment present in normal diploid individuals. UBCAs usually involve several 

megabases of DNA, and carriers are usually ascertained either through an abnormal 

phenotype or because of adverse reproductive effects. UBCAs have also been reported 

in families for “incidental” reasons such as prenatal diagnosis because of maternal age 

[Barber, 2005].  

UBCAs without phenotypic effect are frequently not well characterized and so they 

could be more common than is apparent from the literature. We report a possible new 

chromosomal region involved in a cytogenetic UBCA, in a case of a sSMC detected 

http://www.ngrl.org.uk/Wessex/collection/ubca_chart.htm
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through prenatal diagnosis. The sSMC was characterized by molecular cytogenetics, 

namely with subcenM-FISH, and by array painting, using a full-tiling BAC array specific 

for chromosome17. 

 

3.8.2. Results 

Case report 

A pregnant woman was referred for amniocentesis, at 20 weeks gestation, due to 

advance maternal age. The pregnancy was normal with no relevant familiar history. 

High resolution ultrasound did not show any abnormality in the female foetus.  

She was born at 38 weeks gestation by normal delivery, with a birth weight of 2,900 kg 

and an Apgar score of 9/10/10. The clinical evaluation at birth was normal. She was 

clinically reassessed at 2 years of age, being a healthy child, with normal growth and 

development, and with no malformations nor dysmorphisms. 

 

Cytogenetics and Molecular Cytogenetics 

Routine cytogenetics with GTG-banding documented the presence of a centric minute-

shaped sSMC (47,XX,+mar) in 83 % of the analysed metaphases. Whole chromosome 

painting (WCP) identified the origin of the marker as being from chromosome 17. The 

parents had normal karyotypes. The sSMC was later characterized comprehensively for 

their genetic content by molecular cytogenetics using subcentromere-specific 

multicolor fluorescence in situ hybridization (subcenM-FISH) [Starke et al., 2003], and by 

array Comparative Genomic Hybridization (Array CGH) after microdissection and 

amplification of the sSMC by degenerated oligonucleotide polymerase chain reaction 

[Melo et al., 2009]. SubcenM-FISH results confirmed the origin of the sSMC as being a 

der(17)(::p11.2->q11.1::) (Fig.3.8.A). The microdissected DNA of the marker was 

hybridized in a full tiling BAC array specific for chromosome 17, with a resolution of 

100-150 Kb (VIB MicroArrays Facility - www.microarrays.be), having material of 

approximately 3.27 Mb size extension from 17p (between 19.32~19.74 Mb to 

22.15~22.59 Mb) (Fig. 3.8.B and C).  
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Uniparental Disomy analysis 

Uniparental Disomy (UPD) was excluded in this patient for chromosome 17, with the 

following markers being informative: D17S130; D17S520; D17S1293; D17S1795; 

D17S1290; D17S1301. 

 

 
Figure 3.8. –A. SubcenM-FISH for chromosome 17, revealing that the centromere-near region in q-arm 
(RP11-229K15, in purple) is absent and the centromere-near region in p-arm (RP11-746M1, in red) is 
present in the marker, being the sSMC derived from p-arm (in blue). The centromeric probe – CEP17 is 
identified in green and partial chromosome painting of 17q in yellow (for space reasons only one of the 
two normal chromosomes 17 is shown). B. Array CGH result after microdissection and amplification of 
the sSMC(17). The plot shows a gain for region 17p11.2 to 17q11.1, between 19.32~19.74 Mb to 
22.15~22.59 Mb with the flanking BAC clones present in the sSMC, RP11-79O4 (17p11.2) and RP11-
423O14 (17q11.1). C. Ideogram of chromosome 17 showing the region (red square) involved in the 
sSMC, corresponding to the flanking BAC clones identified in 1.B. 

 

3.6.3. Discussion 

In the literature there are 15 cases reported of sSMC derived from chromosome 17, 3 

of them being associated with a normal phenotype [Friedman et al., 1992; Starke et al. 

2003 – case 25; Bartsch et al., 2005 – case 30] (Table 3.8.I) and the others associated with 

affected phenotypes [Shabtai et al., 1979; Brondum-Nielsen and Mikkelsen, 1995 – case 11; 

Morrison et al., 1997; Kozma et al., 1998; Kulharya et al., 1998; Stankiewicz et al., 2001; 

Dupont et al., 2003; Shaw et al., 2004 – patient 1934 and patient 2170; Yatsenko et al., 2005; 

Baldwin et al. 2008 – case 17; Lee et al., 2009; Manolakos et al., 2010]. 
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Table 3.8.I – Cases described in the literature with a sSMC derived from chromosome 17 and 
without clinical findings 

Case sSMC shape and content %Mosaicism* sSMC Characterization 

Bartsch et al., 2005  
(case 3) 

r(17)(::p1?1→q1?1::) 68% FISH: centromeric probes, wcp 17 

Friedman et al., 1992 min(17)(:p11.2→q10:)  89% n.a. 

Starke et al. 2003  
(case 25) 

min(17)(:p11.2→q11.1:)  66% SubcenM-FISH 

Present case min(17)(::p11.2->q11.1::) 
19.32~19.74-22.15~22.59 Mb 

83% SubcenM-FISH 
Array CGH 

*%of metaphases with a sSMC; n.a. – not available information 

 

Apart from the present report, in the literature there is only one comparable case with 

a similar imbalance in 17p and with a good molecular cytogenetic characterization 

[Starke et al., 2003]. Additional chromosomal material of proximal 17p11.2 apparently 

does not contribute to an abnormal phenotype. However, this observation should be 

confirmed with other cases, and the degree of mosaicism should be considered. 

Unbalanced chromosomal abnormalities without phenotypic effect are frequently not 

published and therefore more common than is apparent from the literature. The data 

published by Barber and colleagues [Barber et al., 2005] are consistent with the idea 

that microscopic and submicroscopic imbalances of multiple evolutionarily conserved 

loci can be compatible with a normal phenotype. However, it should be taken into 

account that few of the children who were reportedly normal at term in cases 

ascertained at prenatal diagnosis for maternal age, have been followed up over a 

period of years by a medical geneticist.  

In summary, the presence of a de novo sSMC in prenatal diagnosis presents a problem 

for genetic counselling. The time to investigate the genetic content of the marker is 

limited and the degree of mosaicism might influence the phenotype. It is important to 

report all cases of sSMC associated or not with clinical findings. A good molecular 

cytogenetic content characterization is essential for a robust genotype/phenotype 

correlation. A chromosomal imbalance of 17p11.2, involving a partial trisomy of 

19.32~19.74 Mb to 22.15~22.59 Mb region, does not seem to be correlated with 

phenotypic effects. It is important to quickly and clearly characterize prenatal sSMCs, 

with molecular cytogenetic techniques such as SubcenM-FISH or array CGH. The 

knowledge of the exact genetic content of the marker, the determination of the levels 
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of mosaicism, and the exclusion of UPD will definitely help genetic counselling when a 

sSMC is encountered at prenatal diagnosis. 
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3.9. sSMCs from chromosome 18 

Three unusual but cytogenetically similar cases with up to five different cell lines 

involving structural and numerical abnormalities of chromosome 18 [*] 

[*] The work presented in this section was published in: 

Carreira IM, Mascarenhas A, Matoso E, Couceiro AB, Ramos L, Dufke A, Mazauric M, Stressig R, Kosyakova N, Melo JB, Liehr T 

(2007) Journal of Histochemistry and Cytochemistry 55:1123-1128. 

 

3.9.1. Introduction 

The occurrence of structural abnormalities that involve chromosome 18 is relatively 

high [Baumer et al., 2002; Miller et al., 2003], being the most frequently ones deletions 

and ring formation. About 70 cases have been reported with ring chromosome 18 and 

most of them are female [Schinzel, 2001].The phenotypic variability observed in 

patients with r(18) depends primarily on the extension of the deleted chromosome 

segment [Stankiewicz et al., 2001]. In most cases patients that present r(18) show a 

phenotype like the 18q- which is highly variable, probably depending on the extent of 

the terminal or interstitial 18q deletions [Brkanac et al., 1998; Cody et al., 1999; Engelen et 

al., 2003]. Few cases share the phenotype like 18p- syndrome or, a combination of 

these two syndromes [Schinzel, 2001; Stankiewicz et al., 2001; Bird et al., 1997]. In general, 

it is thought that malformations in these patients result of terminal deletions of both 

arms of the chromosome [Vermeesch et al., 2002]. Rings often appear as mosaics and in 

some cases loss of the ring, double sized rings or multiple copies of the ring have been 

observed, as a consequence of structural instability of the ring during cell division 

[Miller et al., 2003; Baumer et al., 2002]. Mosaicism involving structural and numerical 

chromosome anomalies in a single individual is rare [Sutcliffe et al., 2001; Eiben et al., 

1992]. We present two prenatal and two postnatal cases (twins) showing mosaicism 

for; rings, marker and monosomy 18. In these cases the application of several high 

resolution molecular cytogenetics techniques such as, FISH using centromeric probes, 

MCB and locus specific probes for chromosome 18 were important to increase the 

precision of the definition of the rearrangement itself, as to define more accurately the 

level of mosaicism, attained by the evaluation of a larger number of cells. 
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3.9.2. Results 

Case Report 

Case A 

Prenatal diagnosis of a 34 year-old gravida was performed in the 14th week of 

gestation due to ultrasound malformations including holoprosencephaly (HPE) and 

hypotelorism (Figure 3.9.1.A). It was the first gestation of a non-consanguineous healthy 

couple. After cytogenetic evaluation of the amniocytes (results see below) the parents 

chose, after genetic counselling, to terminate the pregnancy in the 15th week of 

gestation. An autopsy was performed and the anatomopathologic study revealed a 

foetus with female-like gonads, holoprosencephaly (Figure 3.9.1.B), low set ears and 

without other internal or external malformations. 

Case B 

A prenatal diagnosis was performed in a 27 year-old pregnant woman in the 28th week 

of gestation due to abnormal ultrasound result of the heart, suggesting a vitium cordis, 

i.e. pulmonar stenosis with poststenotic dilatation and hypoplastic right ventricle. The 

pregnancy was terminated at the 34th gestational week. Autopsy revealed deep setting 

ears, large back of the head and flat arch of feet. Moreover, the presence of a valvulary 

pulmonar stenosis with poststenotic dilatation was confirmed and it was also detected 

a premature closure of ductus botalii, and an obstructive fetal uropathy with left sided 

ureterstenosis including dilatation of renal pelvis and urethra-dilatation plus fibrosis.  

Cases C1 and C2 

Monozygotic twins were born to healthy Caucasian, non-consanguineous parents. The 

mother, a 1st gravida, was 28 years old at delivery. After an uneventful pregnancy, the 

girls were delivered by caesarean section at 36 weeks of gestation. At birth, auxological 

data for the first twin were, weight 2.180g [<3rd centile], length 43cm [4th centile], 

head circumference [OFC] 31.5cm [20th centile], and for the second twin weight 

1.460g, length 40cm, OFC 29.5cm [all <3rd centile]; Apgar scores were 9/10/10, 

respectively.  

According to similar abnormal clinical features observed in both girls, like minimal 

dysmorphisms including a smooth philtrum, a thin upper lip, low set ears, wide spaced 
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nipples, and clinodactyly of the fifth finger, cytogenetic analysis from lymphocytes was 

done.  

Developmental delay was first observed at 6 months. Independent walking was 

achieved at the age of 20 months. At the age of 4 they spoke short sentences of 3 – 4 

words. At the age of 8 years they were able to read single words and it was expected 

that they will acquire adequate reading abilities. Both girls displayed growth 

retardation with all growth parameters developing below the 3rd centile. At the age of 

8 4/12 years, height was 107.8cm (- 4,7 SDS) for the first twin and 103.7cm (-5,5 SDS) 

for the second twin. Ossification was delayed according to an age of 5 9/12 years and 5 

years, respectively. Growth hormone and related factors (IGFI and IGFBP3) were 

measured in the lower normal range at several occasions. Ultrasound examination 

excluded major malformations of internal organs. MRI of the brain performed in the 

first twin at the age of 4 years showed an Arnold-Chiari-I malformation without 

hydrocephalus and delayed myelination. Seizures have not been observed. Major 

clinical problems were recurrent infections, bronchial hyper reactivity, dry and 

eczematic skin. 

 

Cytogenetic Results 

Case A 

Cytogenetic analysis of G-banded chromosomes after the first passage from different 

cultures lines of amniotic fluid cells, using flask technique, revealed a mosaicism 

involving two cell lines: mos 46,XY,r(18)[36]/45,XY,-18[7] . Fluorescence in situ 

hybridization (FISH) was performed in order to clarify the structural rearrangement 

and the distribution of the different cell lines. Chromosome 18 centromeric probe 

D18Z1 showed signals on both, the normal chromosome 18 and the ring 

chromosomes. With this probe was also possible to identify a metaphase with a 

duplicated ring and another with a double ring. Hybridization with subtelomeric 

probes D18S552 (18p) and D18S1390 (18q), showed normal signals on the normal 

chromosome and deletion of both terminal regions in the ring chromosomes (data not 
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shown). With these FISH studies it was possible to identify two extra cell lines, so that 

the karyotype was:  

mos 46,XY,r(18)[36]/45,XY,-18[7]/47,XY,+r(18)x2[1]/46,XY,dupr(18)[1] (Fig. 3.9.1.C) 

(Table 3.9.I). 

After termination of the pregnancy a cytogenetic analysis and FISH studies were 

performed in the fibroblasts of the expelled foetus after the third passage. A new cell 

line with a small marker chromosome was detected, as well as three of the cell lines 

observed in the amniocytes. The line with two rings, observed in the amniocytes, was 

not found in the fibroblasts. Thus, result of the cytogenetic analysis in this tissue was: 

mos 46,XY,r(18)[89]/45,XY,-18[22]/46,XY,dupr(18)[2]/ 46,XY,mar(18)[4]. FISH with a 

centromere 18 specific probe was also performed to determine the origin of the 

marker chromosome, which was found to contain material from the pericentromeric 

region of chromosome 18 (Fig. 3.9.1.E).  

Applying subtelomeric probes 18p and 18q (Figure 1D), subcenM-FISH (Figure 1E) and 

MCB (Fig. 3.9.1.F) analysis, only the most frequent variant of the derivative 

chromosome 18 could be detected. Thus, a final karyotype like the following can be 

suggested:  

mos 46,XY,r(18)(::p11.1 ::q22)/45,XY,-18/  

46,XY,dupr(18)(::p11.1 q22::)/46,XY,del(18)(:p11.1 q12:) (Table 3.9.I). 

Karyotypes of both parents were normal. 

Case B 

After G-banding the amniocytes, two cell lines were accounted for with the following 

karyotype: 46,XY,r(18)[90%]/45,XY,-18[10%].  

MCB analyses revealed a complex karyotype with five cell lines:  

r(18)(::p11.2?2 q21.?2::)[12]/r(18;18)(::p11.2?2 q21.?2::p11.2?2 q21.?2::)[4]/r(18

;18)(::p11.2?2 q21.?2::p11.2?2 q21.?2::)x2[1]/del(18)(:p11.21 q11.2:)[1]/ace(18)(

:q11.2 q12.?2:)[1] (Fig. 3.9.2, Table 3.9.I). Karyotypes of both parents were normal. 

Cases C1 and C2 

Structurally abnormal female karyotypes with ring chromosomes 18 [karyotype 

46,XX,r(18)(p11.32q22.3)de novo] were observed in both girls without evidence for 
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mosaicism. MCB, subcenM-FISH and application of subtelomeric probes in 

combination with centromeric probes were very useful because they allowed the 

identification of adicional cell lines and a variety of rearrangemnts revealing therefore 

differing complex karyotypes in each of the twins (see Table 3.8.I). 

Parental karyotypes were normal. Two younger sisters of the twins are healthy.  

 

Figure 3.9.1. - A) Sonography revealed in case A a holoprosencephaly.; B) Frontal view of the autopsy of 
the fetus at 17 weeks, showing the holoprosencephaly; C) Partial G-banded karyotype showing the 
normal chromosome 18, the single ring (r), double ring (dr), two rings and the marker (mar) in case A; D) 
Commercially available FISH subtelomeric probes (Abbott/Vysis) for chromosome 18p (st 18p) and18q 
(st 18q) demonstrated that both corresponding regions are deleted in the ring chromosome of this case; 
E) FISH applying subcentromeric probes revealed that the centromere-near region in 18p11.21 was 
absent and the centromere-near region in 18q11.21 was present on the ring.; F) Multicolor banding 
(MCB) confirmed the aforementioned findings.  
Figure 3.9.2 - MCB results obtained in case B, besides a normal chromosome 18 either a ring 
chromosome (r), a double ring (dr) a minute shaped chromosome (del) or an acentric fragment (ace) 
was present. 
 

3.8.3. Discussion 

We report here 4 cases, 2 prenatal and 2 postnatal, with complex karyotypic changes 

involving the formation of rings of chromosome 18. 
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Table 3.9.I - Karyotype after application of MCB, subtelomeric probes 18pter and 18qter in combination 
with the centromeric probe for chromosome 18 and subcenM-FISH in the four cases. As highly complex 
karyotypes were present in all cases slightly different results were obtained for the probe sets used, as 
listed here.  

 
 

There are reports of rings for all chromosomes, although the most frequent are those 

involving autosomes 13 and 18 [Mohamed et al., 2001]. It is suggested that chromosome 

18 might carry an elevated number of certain repeated sequences susceptible to 

interchromosomal and intrachromosomal rearrangements [Pater et al., 2003]. The most 

frequently structural rearrangements that involve chromosome 18 are the deletions 

and the ring chromosomes. 

One of the mechanisms of formation of a ring chromosome can be explained by 

breakage of the chromosome at both ends and the joining back of both extremities, 

with loss of terminal regions [Sigurdardottir et al., 1999]. Depending on the size of the 

deletion at each end of the chromosome, the phenotypic appearance ranges from 

normal fertile carriers in a minority of cases, to those with severe malformations. 

Incidences and types of congenital malformations are similar to those carrying the 

del(18)(q21-qter) [Schinzel, 2001].  



 
Results and Discussion 

3.9. Rings from chromosome 18 

187 
 

There is a difficulty in establishing a genotype-phenotype correlation in a ring carrier. It 

is necessary to determinate primary deletions associated with ring chromosome 

formation and also secondary loss or gain of material that may occur due to instability 

of ring chromosomes. This can cause a dilemma in prenatal diagnosis [Tümer et al., 

2004]. Rings often appear as mosaics due to sister chromatid exchange within a ring in 

mitotic crossing-over events, which generates aneuploid cells with increased mortality 

[Sigurdardottir et al., 1999; Vermeesch et al., 2002]. 

Patients with ring chromosome 18 usually share clinical features of 18q- syndrome, 

such as, hypotonia, poor coordination, microcephaly, hearing abnormalities, 

malformation of genitalia [Schinzel, 2001; Cody et al., 1999; Brkanac et al., 1998]. Less 

frequently these patients show characteristics in common with 18p- syndrome, such 

as, mild to moderate growth deficiency, microcephaly, ptosis and more occasionally 

holoprosencephaly (HPE) [Schinzel, 2001]. Case A shares features with both syndromes. 

Cytogenetic analysis revealed a male foetus and the anatomopathologic study 

reported a foetus with female-like gonads. This discrepancy may be related to 

malformation of genitalia, a clinical feature of 18q- syndrome. Low set ears is also a 

hearing abnormality associated with deletion of the long arm of chromosome 18. 

Holoprosencephaly (also found in the autopsy) is probably due to deletion of 18p 

[Muenke, 1989; Bird et al., 1997]. The genetic causes of HPE can be cytogenetic 

anomalies or monogenic syndromes [Croen et al., 1996; Olsen et al., 1997; Cohen 1989; 

Muenke, 1989]. The association of HPE and deletion of chromosome 18p was first 

described in a child with HPE and monosomy 18p due to an unbalanced translocation 

[Johnson and Bachman, 1976]. The region 18p11.3 is defined as one of the critical regions 

for HPE [Overhauser et al., 1995]. Despite the fact that all the cases reported here 

showed deletions on 18p11.3, HPE was only found in case A. This could mean that the 

HPE critical region was most probably not disrupted in the other 3 cases, ie. the 

chromosome breaks were more distal, towards the telomere. According to Strenge 

and Froster (2004), HPE only occurs in 10-20% of the cases showing the terminal 

deletion [Strenge and Froster, 2004]. 
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The occurrence of a r(18) together with a duplication of a segment of chromosome 18 

or with a small marker chromosome is rare [Madan et al., 1981; Stankiewicz et al., 2001]. 

In all the 4 cases reported here, a marker was detected in a small percentage of the 

cells observed from different cultures suggesting that it is not a culture artefact (Table 

3.8.I). The most likely explanation for the mosaic occurrence of the small marker in 

such small proportion could be that its loss would not be associated with a decreased 

cell survival as it would be if a complete ring was lost [Sigurdardottir et al., 1999]. 

Cytogenetic analysis of case A revealed a mosaicism involving a total of five cell lines 

(four in the amniotic fluid and four in post mortem fibroblasts, with two lines that only 

appear each in one or the other tissue) showing the mitotic instability of the ring [Fig. 

3.9.1., Table 3.9.I]. Mosaicism of monosomy 18 was considered as a culture artefact, due 

to mitotic loss of the ring [Schinzel, 2001; Fischer et al., 2001]. However, there are 

reasons that make us think otherwise and to agree with Yardin et al. (2001), two 

different cultures of the amniotic fluid in case A gave approximately the same level of 

mosaicim and the monosomic cell line was also present in fibroblasts [Yardin et al., 

2001]. In both tissues the percentage of this cell line was similar (16% and 18% 

respectively). Also in all 4 cases, a cell line with -18 was observed [Table 3.9.I]. One 

could suggest that this cell line, may have started as a r(18) which, because of its 

mitotic instability and crossing-over events between the ring sister chromatids, led to 

its loss during cell division generating the monosomy. So, the monosomic cell line may 

be part of the biological mechanism associated with the propagation of the ring during 

cell division. These events are also responsible for loss or duplications of ring 

chromosomes.  

The growth retardation observed in both twins (Cases C1 and C2) could be associated 

with the occurrence of sister chromatid exchange within the rings that generate 

aneuploid cells with double rings and consequently serious genetic imbalance. This 

process may lead to increase cell death that can led to a decreased number of viable 

cells at any given interval of development and subsequently to growth deficiencies in 

the carriers. Generally severe growth failure is seen more often in patients with larger 
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rings than among patients with smaller ones, because of the probability of the higher 

frequency of sister chromatid exchanges in the first ones [Kosztolányi, 1987]. 

In all the cases presented here a de novo r(18) was established, showing mitotic 

instability that seems to be an important tool for the investigation of the dynamics of 

ring chromosome mosaicism, through multiple cell divisions. Mosaicism in all four 

reported cases can be explained by post-zygotic errors during mitosis. The variability of 

the cell lines observed and the variability in structure of the ring chromosomes found 

highlights the importance of analyzing a large number of cells and the importance of 

using various cytogenetic techniques. 

The use of molecular cytogenetics is also of great value in the establishment of the 

presence of either loss or gain of chromosomal material in the ring structure as it will 

help to elucidate the role played by that material in determining the phenotypes, 

facilitating the search for candidate genes on those regions. 
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3.10. sSMCs from chromosome 22 

Molecular cytogenetic characterization of two cases with a small supernumerary 

marker chromosome derived from chromosome 22  

 

3.10.1. Introduction 

Segmental duplications, or low-copy repeats (LCRs) of >95% sequence identity, cluster 

within different chromosome regions and constitute approximately 5% of the human 

genome [Bailey et al., 2002]. Low-copy repeats range in size from 10-250 kb [Stankiewicz 

and Lupski, 2002]. They are considered highly dynamic regions in the genome because 

they mediate meiotic unequal nonallelic homologous recombination events, resulting 

in altered gene dosage associated with human genomic disorders [Babcock et al., 2003]. 

The LCRs on chromosome 22q (LCR22) are a complex mosaic of genes and 

pseudogenes formed by duplication processes. The 22q11 region is involved in 

chromosomal rearrangements that lead to altered gene dosage, resulting in genomic 

disorders that are characterized by mental retardation and/or congenital 

malformations. Three of such disorders- cat-eye syndrome (CES, OMIM 115470), 

der(22) syndrome, and velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS, 

OMIM 192430/ MIM 601362) - are associated with four, three, and one dose, 

respectively, of parts of 22q11 (Fig. 3.10.1) [McDermid and Morrow, 2002]. The reason for 

such a multitude of rearrangements lies in the complicated inverted and direct 

orientation of sequences in the LCR22 [McDermid and Morrow, 2002]. 

 
Figure 3.10.1. - Rearrangements on 22q11. VCFS/DGS is associated with interstitial deletions; Der(22) 
syndrome occurs in offspring of unaffected carriers of the constitutional t(11;22) translocation; patients 
with der(22) syndrome have a partial trisomy for 22pter-q11 and 11q23-qter. Patients with CES harbour 
a bissatellite supernumerary chromosome 22 that results in a partial tetrasomy [from McDermid and 
Morrow, 2002]. 
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The phenotypes of partial trisomy 22q include the CES, the der(22) syndrome, the 

microduplication 22q11.2 syndrome, and the chromosome 22q duplication syndrome. 

Full trisomy 22 typically results in abortion, but partial 22q trisomy including 22q11.2 

and/or parts of 22q12–q13 was reported with phenotypes that were compatible with 

survival [Bartsch et al., 2005]. The der(22) syndrome is more severe than CES and 

includes numerous additional signs that can be attributed to partial trisomy of 11q 

[Emanuel, 2008]. 

A very large subset of SMCs is derived from the human chromosome 22 and usually 

confers tri- or tetrasomy for the cat eye syndrome chromosomal region (the proximal 

2Mb of chromosome 22q) and/or other segments of 22q [Emanuel, 2008]. Features of 

CES include ocular colobomata, anal atresia, congenital heart defects, renal 

malformations, craniofacial anomalies (e.g., preauricular skin tags and pits), male 

genital anomalies, skeletal defects, and borderline to moderate mental retardation 

[Schinzel et al., 1981].  

A number of different SMCs containing the CES critical region (CESCR) have been 

described, including the typical bisatellite small and larger cat eye syndrome 

chromosomes and small ring-like SMCs(22) [Liehr et al., 1992; Mears et al., 1995; Crolla et 

al., 1997; McTaggart et al., 1998; Bartsch et al., 2005]. Owing to their small size and 

complex rearrangements, SMCs(22) have remained a diagnostic challenge [Bartsch et 

al., 2005]. McTaggart and co-workers classified the CES chromosomes into two types 

based on the location of the two breakpoints required to generate them within LCR22 

region (Fig 3.10.2.) [McTaggart et al., 1998]: 

- Type I - small CES chromosomes, that are symmetrical, with both breakpoints 

located within the proximal interval; 

- Type II - Large CES chromosomes, which are either asymmetrical (type IIa), with 

one breakpoint located in each of the two intervals, or symmetrical (type IIb), 

with both breakpoints located in the distal interval. 

Bartsch and colleagues, when reporting a set of SMC(22) with CESCR, suggested a type 

III CES chromosome defined by at least one breakpoint outside the LCRs22, larger than 

type II (Fig 3.10.2.).  
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Figure 3.10.2. - Representation of the CES chromosomes: type I (frequent); symmetrical type IIa, rare; 
asymmetrical type IIb, rarer; and type III (exceptional), with association of trisomy (3x) and/or tetrasomy 
(4x) of the 22q11.1 region [adapted from Bélien et al., 2008]. 

 

We performed FISH studies on two patients with different sSMC(22). In one of the 

cases the marker was additionally studied by array CGH after microdissection. One of 

the patients presented the more frequent type of CES (Type I) and the other the 

exceptional type (Type III). 

 

3.10.2. Results 

 

Case I 

A 6 years old boy with cat-eye syndrome presented congenital cardiopathy, 

psychomotor development delay, anal atresia, poor ponderal progression, bilateral iris 

coloboma, palate groove, lateral ventricles asymmetry, and small kidneys with 

deficient cortico-medullar differentiation (Table 3.10.I). Conventional cytogenetics 

revealed a karyotype of 47,XX,+mar, de novo, in all the analyzed cells. The SMC showed 

two AgNOR and two CBG positive regions, corresponding two a bisatellite and dicentric 

SMC (Fig. 3.10.3). 

FISH using centromeric probes (D14Z1/D22Z1) revealed the origin of the marker as 

being derived from chromosome 14 or 22, and confirmed the presence of two 

centromeres. The SMC did not present a signal for D22S75, a probe located in the 

VCFS/DGS region (~17.5 Mb)(Fig. 3.10.4.). 
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G Band AgNOR C Band

mar

G Band AgNOR C Band

mar  
Figure 3.10.3. – Karyogram of Case I obtained by GTG-banding showing a 47,XY,+mar. The sSMC has two 
AgNOR positive regions and two CBG positive regions. 

 

FISH using BAC clones confirmed the presence in the marker of two signals for RP11-

172D7(~16.5 Mb) and for RP11-81B3 (~16.8 Mb) in 22q11.21, and two positive regions 

for rRNA regions (corresponding to acrocentric p-arms). The 22q11.22 region 

corresponding to RP11-1058B20 is not present in the sSMC (Fig. 3.10.5.). 

 

D22S75 -

a)

D22S75 -

a)

D14Z1/D22Z1x2

b)

D14Z1/D22Z1x2

b)

 
Figure 3.10.4. – a) Partial metaphase showing the two normal 22 chromosomes and the SMC (white 
circle)  in Case I. The SMC does not present a signal for D22S75 (red), a probe located in the VCFS/DGS 
region; b) Partial metaphase showing the two normal 22 chromosomes and the SMC (white circle) with 
two signals for the centromeric probe specific for chromosomes 14/22 ( ) 
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22 sSMC

22 sSMC

a)

b)

22 sSMC

22 sSMC

a)

b)

 
Figure 3.10.5. – Normal 22 chromosomes and the sSMC(22) showing the presence in Case I a) 2 
centromeres (cep14/22 in green), two signals (2 signals merged in a bigger signal, when comparing to 
the signal in normal 22 chromosomes) for RP11-172D7 in 22q11.21 (red) and two regions corresponding 
to acrocentric arms (aqua); b) Two signals (2 signals merged in a bigger signal, when comparing to the 
signal in normal 22 chromosomes) in the marker for RP11-81B3 in 22q11.21 (red) and absence of signal 
for RP11-1058B20 in 22q11.22. 
 

The microdissected DNA of the sSMC was hybridized in a full tiling BAC array specific 

for chromosome 22, with a resolution of 100-150 Kb (VIB MicroArrays Facility - 

www.microarrays.be), having material of approximately 2.8 Mb size extension from 

22q (between 14.55 Mb to 17.35 Mb). (Table 3.10.I). The sSMC revealed to be an inv 

dup(22)(q11.21) (Table 3.10.I).  

 

Case II 

A sSMC present in mosaic was detected after prenatal diagnosis. G-banding of 

amniocytes culture revealed a karyotype 47,XY,+mar in 61% of the analyzed cells. The 

study after cordocentesis revealed a percentage of mosaicism of 56%. The presence of 

the marker was confirmed postnatally in peripheral blood in 37% of the 

prometaphases studied. The marker was characterized by CBG and AgNOR banding, 

revealing the presence of one centromere and 2 positive AgNOR regions (Fig. 3.10.6.). 

FISH studies by whole chromosome painting (wcp), revealed that the sSMC was 

derived from chromosome 22; presented two regions corresponding to the acrocentric 

arms (rRNA probes); and two positive regions for D22S75 probe (~17.5 Mb) (Fig. 

3.10.7.). 
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G Band AgNOR C BandG Band AgNOR C Band

 
Figure 3.10.6. – Karyogram of Case II obtained by GTG-banding showing a 47,XY,+mar. The sSMC s two 
AgNOR positive regions and one C-band positive region. 

 

The boy was clinically assessed after birth and revaluated at 5 years old. He presents a 

“Cat-eye like syndrome”, with normal psychomotor development, normal growth 

development, normal echocardiography, normal renal and abdominal ecography, and 

bilateral preauricular skin pits (Table 3.10.I).  

Additional FISH studies, using BAC clones, revealed the presence in the sSMC of two 

signals for RP11-172D7 in 22q11.21 (~16.5 Mb), two signals for RP11-1058B20 in 

22q11.21 (~19.6 Mb), and apparently two signals for RP11-229C18 in 22q11.23 (~24 

Mb), which appear merged (Fig. 3.10.8.). The sSMC revealed to be an inv 

dup(22)(q11.23~12.1) (Table 3.10.I). 

  

Table 3.10.I. - Description of karyotype and clinical presentation of the sSMC(22)s cases 
characterized by molecular cytogenetics. 

Case 
Karyotype/ 
sSMC characterization M-FISH 

Array CGH result Clinical presentation 

Case I 

47,XY,+mar[100%] 
 
sSMC characterization: 
ish.inv dup(22)(q11.21) 

sSMC size: 2.8 MB 
 

14.55  17.35 MB 

22q11.1 22q11.21 

6 years: Cat-eye syndrome 
Congenital cardiopathy, psychomotor 
development delay, anal atresia, poor 
ponderal progression; bilateral iris coloboma; 
palate groove; lateral ventricles asymmetry; 
small kidneys with deficient cortico-medullar 
differentiation 

Case II 47,XY,+mar[36%]/46,XY[64%] 
 
sSMC characterization: 
ish.inv dup(22)(q11.23~12.1) 
 

n.a. 5 years: Cat-eye like syndrome; normal 
psychomotor development; normal growth 
development; normal ecocardiography; 
normal renal and abdominal ecography;  
Bilateral preauricular skin pits.  
 

n.a. – not available 
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Figure 3.10.7. – FISH images in Case II. a) Partial metaphase showing the two normal 22 chromosomes 
and the marker painted with wcp specific for chromosome 22; b) The SMC has one centromere (aqua) 
and two rRNA positive regions (red); c) Partial metaphase showing the two normal 22 chromosomes and 
the sSMC with apparently two signals for D22S75, a probe located in the VCFS/DGS region. 

 

22 sSMC

22 sSMC

a)

b)

22 sSMC

22 sSMC

a)

b)

 
Figure 3.10.8. – Normal 22 chromosomes and the sSMC(22) in Case II showing the presence of: a) One 
centromere (cep14/22 in green), two signals for RP11-172D7 in 22q11.21 (red) and two regions 
corresponding to acrocentric arms (aqua); b) Two signals in the marker for RP11-1058B20 in 22q11.22 
(green) and apparently two signals (2 signals merged in a bigger signal, when comparing to the signal in 
normal 22 chromosomes) for RP11-229C18 in 22q11.23. 
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3.10.3. Discussion 

We report two cases with a sSMC(22), studied by molecular cytogenetics, using several 

BAC probes and, in one case, using array CGH after marker microdissection. Using a set 

of probes corresponding to different regions of 22q (Fig. 3.10.9.), and correlating with 

the data obtained by array CGH, we can conclude that the sSMC(22) from case I is a 

type I CES, the most common, and the sSMC(22) from case II corresponds to a type III 

CES chromosome, the rarest type of CES chromosomes. 

Babcock and co-workers defined LCR22 localization, discovering that some LCR22s are 

large, such as LCR22-2 and LCR22-4, which are both 240 kb in size. LCR22-3a, situated 

between the two, contains an uncloned region within; thus, its size is unknown. Some 

LCR22s are quite small—less than 2 kb. LCR22s are composed of blocks or modules 

forming a complex pattern. Most of them appear to be partial duplicates of each 

other. The two greatest in size, LCR22-2 and LCR22-4, contain a large region of overall 

direct orientation [Shaikh et al., 2000]. Homologous recombination events between 

these two LCR22s mediate recurrent 22q11.2 rearrangements associated with 

VCFS/DGS and CES. Thus, these two intervals, due to their high degree of direct 

identity (97%-99%), are excellent substrates for unequal crossing-over events [Babcock 

et al., 2003]. 

Classical CES is characterized by the presence of a dicentric and bisatellite small inv 

dup (22) supernumerary marker chromosome. Thus, patients with CES usually have a 

partial tetrasomy of a region that spans chromosome 22p and part of 22q11.21 

[McDermid and Morrow, 2002; Bartsch et al., 2005; Gentile et al., 2005, Bélien et al., 2008]. 

We can cytogenetically distinguish three types of CES chromosomes (Fig. 3.10.2.), which 

are correlated with breakpoints localization (Fig. 3.10.9). Type I CES chromosomes have 

a breakpoint between 16.688 - 17.690 Mb, corresponding to the LCR22-3a (17.248–

17.433 Mb (previously named LCRA). Type II CES chromosome have their breakpoints 

between 19.466 - 21.847 Mb, matching the molecular positions of LCR-4 and LCR22-6.  

[Babcock et al., 2003; Bartsch et al., 2005; Gentile et al., 2005; Bélien et al., 2008]. Type III CES 

chromosome, is defined by at least one breakpoint outside the LCRs22 [Bartsch et al., 

2005] (Fig. 3.10.9.). 
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22q11.1 22q11.21 22q11.22 22q11.23
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3A 3B 6LCR22-4 7 8

 
 
Figure 3.10.9. – Different types of CES according to LCR22 position and BAC clones position. In Case I of 
this report a type I CES is described with positive signal for 172B7 (~16.4 Mb) and 81B3 (~16.8 Mb) 
clones and negative for D22S75 (~17.5 Mb). In Case II a type III CES is present, with positive signal for 
RP11- 229C18 (24.18 Mb). LCR 22 position is indicated according to Babcock et al., 2003.  

 

Bartsch and co-workers were the first to report a case with a type III CES chromosome. 

It was a case with a SMC present only in a small subset of cells (19% of amniocytes), 

with phenotype of the patient at the age of 6 months being normal. The sSMC in case 

II, that we report, is also present only in a subset of cells. Cytogenetic mosaicism 

significantly influences the clinical outcome of patients with a SMC. This could explain 

the mild phenotype observed, with a normal psychomotor development. Indeed, this 

SMC conferred trisomy of 22p11-q12.3 and would predict, if present in all cells, a 

severe phenotype. Recently, Karcaaltincaba and colleagues reported a non mosaic 

partial trisomy 22q with de novo duplication of chromosomal region 22q11.1-22q13 

and a different phenotype from the reported cat eye syndromes, with absence of heart 

defects and presence of brain anomalies [Karcaaltincaba et al., 2010]. 

For now, a clear delineation of the phenotypes associated with rearrangements of 

22q11.2 cannot be accomplished. CES phenotype is variable and it does not appear to 

correlate with the size of the marker [Bartsch et al., 2005; Bélien et al., 2008]. A careful 

clinical and molecular delineation of additional patients with these disorders is 

necessary to understand the relationship between genotype and phenotype. 
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About 3 million individuals of the whole human population would have one small 

supernumerary marker chromosome (sSMC) additionally to their normal chromosomal 

complement, i.e. 46 normal chromosomes and one sSMC (47,XX,+mar or 47,XY,+mar). 

These sSMCs can originate from each of the 24 human chromosomes and have 

different shapes. Marker chromosomes are of particular interest in clinical 

cytogenetics. They are more frequent in individuals with mental retardation than in 

the normal population. However, they are often found in only a small percentage of 

cells, making them difficult to detect and characterize in a diagnostic setting. About 

30% of the carriers of a sSMC are clinically abnormal and 70% are clinically normal. The 

major problem in connection with sSMC appears when the diagnosis of the sSMC 

presence is made prenatally. A clear prediction about the outcome of the pregnancy is 

difficult to ascertain.  

So, when a sSMC is encountered by classical cytogenetics in a prenatal or postnatal 

diagnosis, the main questions are:  

- What to do next? Should the marker be more extensively characterized? 

- Which techniques should be used for its correct characterization? 

- In prenatal diagnosis, is it possible to predict the outcome of a sSMC? 

- How to interpret its characterization especially in the mosaic states? 

 

In this study we have characterized several cases, prenatal and postnatal, with a small 

Supernumerary Marker Chromosome (sSMC): 

- One de novo case with a sSMC derived from chromosome 1, with a ring shape, 

present in mosaic associated with a mild phenotype (section 3.1.); 

- Two de novo cases detected at prenatal diagnosis with a sSMC derived from 

chromosome 2, present in mosaic and with no apparent phenotype (section 3.2.); 

- One de novo case with a sSMC derived from chromosome 5 in mosaic and with a ring 

shape, present in a female patient with learning difficulties and mild facial 

dysmorphisms (section 3.3.); 

- A case of a sSMC derived from chromosome 11 present in mosaic, in a mother and a 

child with distinct phenotypes (section 3.4.); 
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- A case with a de novo small supernumerary neocentromeric chromosome derived 

from chromosome 13 ascertained prenatally (section 3.5.); 

- Six postnatal cases of SMCs derived from chromosome 15 some associated with 

clinical findings others not (section 3.6.); 

- Two cases of de novo sSMCs derived from chromosome 16, present in mosaic, 

associated with clinical findings (section 3.7.); 

- A prenatal case with a sSMC derived from chromosome 17 with a normal phenotype 

(section 3.8.); 

- Three cases with complex karyotype changes involving the formation of rings of 

chromosome 18, and with the presence of a marker in a small percentage of cells 

(section 3.9.); 

- Two cases with a sSMC derived from chromosome 22 associated with cat-eye 

syndrome (section 3.10.). 

In all these cases we tried to obtain the best possible clinical description of the patients 

or features, and to follow a specific series of methodologies in order to achieve the 

ultimate goal – a strong genotype/phenotype correlation. 

 

Based on our results and experience, we propose approaches for a correct 

management of sSMC cases, which are dependent on a good and motivated clinical set 

up and on the techniques available at the laboratory (Fig. 4.1.). The management of a 

sSMC case depends primarily if it is ascertained pre or postnatally. When the case is 

prenatal, some of the techniques, like microdissection, are not appropriate for the 

diagnosis because they are time consuming, not compatible with the time for 

termination of pregnancy we currently have (24 weeks of gestation). However, they 

should be done later for a more precise characterization of the sSMC, as well as the 

good characterization of the foetuses by the Clinical Geneticist and 

Anatomopathologist, to establish a strong genotype/phenotype correlation.  
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Figure 4.1. - Management of a sSMC encountered with conventional cytogenetics. The approach for its 
characterization depends on the techniques available and the genotype/phenotype correlation depends 
on a strong clinical set up. 

 

Some main issues should be emphasized: 

1) The follow-up of patients with a sSMC is crucial, either by recurring to autopsy data 

or by collecting data after birth. We have described cases where the phenotype 

becomes milder with age. It is a well know fact that when the sSMC appears in mosaic, 

the percentage of mosaicism could decrease over the years. Patients with a sSMC 

should be followed up, and laboratory testing as well as clinical details at different ages 

are crucial for establishing strong genotype/phenotype correlations. 

 

2) The sSMC should be extensively characterized for its shape, origin and molecular 

content. The cases presented in this work were extensively characterized using 

conventional cytogenetics and molecular cytogenetics. We can conclude that 

molecular cytogenetic analysis is essential for the characterization of a sSMC. A variety 

of molecular cytogenetic techniques for SMC characterization can be used for a more 

comprehensive analysis in a single or a few experiments. Fluorescence in situ 



  
 

210 
 

hybridization (FISH) approaches, including centromeric FISH, whole-chromosome 

painting, and locus-specific probes, allow the characterization of the chromosomal 

origin of the sSMC. Other FISH strategies can be used, like subcentromere specific 

multicolor FISH (subcenM FISH) and multicolour banding (MCB), detecting the 

presence of euchromatin on a sSMC. These FISH techniques are feasible both in 

prenatal and in postnatal cases. The characterization by glass-needle-based 

chromosome microdissection and reverse painting could also be used, this approach 

being suited for all types of sSMC, including neocentromeric sSMC. Due to short time 

availability that usually is a problem in prenatal diagnosis, microdissection would be 

more suitable for postnatal diagnosis or for latter characterization of the sSMCs 

detected in prenatal cases. 

 

3) As we can observe from our results, these multicolour FISH techniques can not 

precisely determine the chromosome regions or breakpoints involved. Microarray-

based comparative genomic hybridization (array CGH) is a high-resolution and 

comprehensive method for detecting both genome-wide and chromosome-specific 

copy-number imbalance. The use of array CGH seems to be a good strategy for the 

characterization of the genetic content of sSMCs and allows the determination of the 

breakpoints and chromosomal regions present in the marker. Nevertheless, the 

characterization of centromeric and heterochomatic regions is problematic with this 

technique. Additionally, array CGH does not give information in cases with less than 

30% mosaicism, leading to erroneous conclusions, being a major problem in sSMCs 

cases, which often appear in mosaic.  

 

4) This study clearly demonstrates the utility of combining molecular cytogenetic 

analysis, namely with multicolour FISH approaches, and array CGH in the detection and 

characterization of marker chromosomes. Additionally, the use of combined 

microdissection and array CGH allows the determination of molecular breakpoints of 

the marker, even when the sSMC was present in mosaic. The use of conventional 

cytogenetic and M-FISH approaches permits the characterization of the sSMC shape. 
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5) Uniparental disomy should be analysed and excluded, especially when the sSMC is 

derived from chromosomes associated with genomic imprinting. 

 

6) Biological material from the proband, and if possible from the parents, should be 

collected for future studies. For the majority of the cases described in this study an 

EBV-immortalized cell line was established. 

 

 

In conclusion, for a good characterization of a sSMC several approaches should be 

taken, in order to ascertain not only the genetic content but also the shape of the 

sSMC. This information, about the shape and content, is crucial for moving towards a 

correct genotype/phenotype correlation of a sSMC and also for establishing possible 

mechanisms of formation for each marker, essential for risk assessment. The detailed 

molecular characterization of sSMCs will play a valuable role in the diagnosis and 

medical management of both pre- and postnatal cases in which marker chromosomes 

have been identified. Array CGH is a step in answering to the request of aetiological 

diagnosis in families with affected individuals. This technology is being installed in 

laboratories worldwide, including our own. Only with these combined approaches we 

can move forward for a better understanding of the impact of a sSMC on the 

phenotype, especially in prenatal cases.  
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