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ABSTRACT  

Over the past few years, the arterial stiffness has had an important role in the 

assessment and prevention of cardiovascular diseases (CVD) that according to the 

World Health Organization represents 30% of all the global deaths. It describes the 

elastic properties of the arteries and can be evaluated through different hemodynamic 

parameters as pulse wave velocity (PWV) and augmentation index (AIx).  

The Group of Electronics and Instrumentation has been developed some 

apparatus in order to assess these hemodynamic parameters, in a noninvasive, robust 

and cheap way. The systems are based in accelerometers, piezoelectric sensors, optical 

sensors and also acoustic sensors. This work intends to continue the study of 

hemodynamic parameters assessment using new instrumentation based on 

piezoelectric (PZ) sensors and software required. These elements together allow 

analysing the PZ signal and visualizing the arterial blood pressure waveform. The new 

PZ probe was characterized in dedicated test bench systems and in human common 

carotid arteries. In order to assess the local PWV were developed and implemented 

some signal processing algorithms.  

The test bench systems allowed simulating the clinical properties of the 

cardiovascular system in laboratory. These were a powerful tool to show that: the PZ 

sensors not suffer crosstalk effect, through the impulse response of them is able to 

recover the original waveform from deconvolution method and the time resolution 

inferred by minimum amplitude detection algorithm is 1.5 ms. Some clinical trials have 

been carried by our collaborators representing an important step in the validation of 

the probe in a large number of patients. From clinical trials made in a group of healthy 

volunteers, the local PWV was assessed by two algorithms. The local PWV values 

ranged from 2.03 to 7.22m/s and with a standard derivation from 0.74 to 6.17 m/s. 

Keywords: Cardiovascular Disease, Arterial stiffness, common carotid artery, Double 

piezoelectric probe, local Pulse Wave Velocity (PWV), test bench system, time 

resolution. 
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RESUMO  

Ao longo dos últimos anos, a rigidez arterial tem tido um papel importante na 

avaliação e prevenção de doenças cardiovasculares que, segundo a Organização 

Mundial de Saúde, representam 30% de todas as mortes globais. A rigidez arterial 

descreve as propriedades das artérias e pode ser avaliada através de alguns 

parâmetros hemodinâmicos como a velocidade de onda de pulso (VOP). 

 No Grupo de Electrónica e Investigação, algumas tecnologias têm sido 

desenvolvidas de modo a avaliar esses parâmetros hemodinâmicos de forma não 

invasiva, robusta e barata. Estas tecnologias são baseadas em acelerómetros, sensores 

piezoelectricos (PZ), sensores ópticos e em sensores acústicos. Este trabalho pretende 

dar continuidade ao estudo da avaliação de parâmetros hemodinâmicos usando uma 

nova sonda baseada em sensores PZ e software adequado. Estes elementos permitem 

analisar o sinal PZ e visualizar a onda de pressão arterial. A nova sonda PZ foi 

caracterizada em dois modelos de bancada e a partir de sinais adquiridos na artéria 

carótida comum em humanos. De modo a avaliar a VOP local foram também 

desenvolvidos e implementados alguns algoritmos de processamento de sinal. 

Os modelos de bancada permitiram simular propriedades clínicas do sistema 

cardiovascular em laboratório. Estes foram uma poderosa ferramenta permitindo 

mostrar que: os sensores PZ não sofrem efeito de crosstalk, através da resposta a 

impulso de ambos é possível recuperar a onda original pelo método da desconvolução 

e a resolução temporal determinada pelo algoritmo de detecção de amplitude mínima 

é de 1.5 ms. Alguns ensaios clínicos têm sido realizados pelos nossos colaboradores, 

representando um passo importante na validação da sonda em um grande número de 

pacientes. A partir do ensaio clínico realizado num pequeno grupo de voluntários 

saudáveis, a VOP local foi determinada usando dois algoritmos. Os valores da VOP local 

variaram de 2.03 – 7.22 m/s e com desvio padrão a variar de 0.74 – 6.17 m/s. 

Palavras-chave: Doenças Cardiovasculares, Rigidez arterial, arteria carotida comum, 

Sonda dupla piezoelétrica, Velocidade de onda de pulso (VOP) local, teste de bancada, 

resolução temporal. 
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CHAPTER I 

INTRODUCTION 

1.1 MOTIVATION 

Over the past few years, the arterial stiffness (AS) has had an important role in 

the assessment and prevention of cardiovascular diseases (CVDs) so it has been 

increasingly used in clinical practice [1, 2]. Hypertension, atherosclerosis and coronary 

heart disease (heart attacks) are some examples of CVD which are the major causes of 

mortality in adults both in developing and developed countries, representing a global 

health problem [3, 4]. In 2008, 32% of all deaths registered in Portugal were from CVD 

[5]. The World Health Organization (WHO) estimates that by 2030 about 23.6 million 

people will die due these diseases [6]. These numbers are the mirror of the unhealthy 

lifestyle. 

One of the key areas of work of the WHO Cardiovascular Programme is in the 

development of methods able to assess the pattern and trend of CVD, developing 

health care solutions reasonable to detect them as soon as possible [7]. Although there 

are some devices available in the market able to assess the AS, as Complior System® 

and SphymoCor® [8], its cost and the clinical level of operation are some disadvantages 

of these systems. In this way, the development of new noninvasive methods, cheaper, 

robust and feasible drives are one of the motivations behind this work. 

The main aim of these technologies or devices is to quantify hemodynamic 

parameters as pulse wave velocity (PWV) and augmentation index (Alx). These 

parameters allow assessing the elastic properties of arteries, in other words the AS, 

that is reported as an important marker and predictor of CV risks. The PWV is related 

with the velocity that the arterial blood pressure (ABP) waveform propagates along the 

artery being inversely related to arterial wall distensibility (D). The non-invasive 

measurement of PWV offers a useful approach for the arterial stiffness assessment [9].  

This work focuses on the principle that ABP waveform contains valuable 

information about the condition of the patient’s cardiovascular system so that 

measurement is essential to assess the PWV. In this way, there is a demand for 
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versatile and robust clinical solutions based on development of new probes destined 

to measure this parameter. We developed new instrumentation which combines the 

Piezoelectric (PZ) technology with hardware and software required for data acquisition 

and data processing. From these data is able to extract accurately relevant clinical 

information. This new probe intends to determine the arterial wall stiffness in the 

carotid artery based on locally measured PWV. This new approach allows assessing the 

PWV in a short segment of the artery identifying local changes in arterial wall, which 

varies along the arterial tree and can be an indicative of atherosclerosis. Despite some 

researchers have development technologies to assess the local PWV acknowledging its 

importance in the premature diagnosis of CVD, there isn’t a consensus among the 

scientific community of the reliability of this method in opposed to regional PWV.  

 

1.2 PREVIOUS WORK 
 

At the research unit, GEI, various probes have been developed for four years. 

They are based on different technologies but with the same purpose - to extract 

several hemodynamic parameters. The first studies consisted in the development of 

instrumental methods based on accelerometric probe for PWV hemodynamic 

characterization [10]. The results were promising and the studies using accelerometers 

continued.  

The idea to explore the potential of PZ sensors to assess hemodynamic 

parameters came a year later. A software analysis tool was developed, called PulScope, 

which allowed to analyze the hemodynamic data and determinate the PWV and Alx. 

Therefore it was developed a simple and low cost hardware where the values of PWV 

and Alx were in agreement with reported in the literature [11]. This study encouraged 

us to continue to focus our attention on the development of new PZ probes (single and 

double headed), their characterization in test bench and new algorithms for 

hemodynamic parameters assessment [12, 13].  

In addition, other innovative methods as optical probes and, more recently, 

acoustic sensors have been developed with the same purpose. 

 



CHAPTER I INTRODUCTION CHARACTERIZATION OF A NEW PIEZOELECTRIC PROBE 

 

3 
 

1.3 PURPOSES 
 

The main purpose of this thesis is to develop a new double PZ probe robust, 

accurate, low cost and able to measure hemodynamic parameters non-invasively way. 

The probe was firstly characterized, in a test bench system which simulated the 

dynamics of arterial system and secondly, in clinical trials from human common carotid 

artery (CCA).  

Algorithms for the signal processing were implemented in order to segment, 

and determine the local PWV (LPWV).  

 

1.4 HEMODYNAMIC PROJECT TEAM  
 

This project was developed at Grupo de Electrónica e Instrumentação (GEI) in 

the framework of a partnership with Instituto de Investigação e Formação 

Cardiovascular (IIFC), Escola Superior de Tecnologia da Saúde de Coimbra (ESTeSC) and 

Intelligent Sensing Anywhere (ISA).  

The work team involved in this project, their contributions and the associated 

staff and students are summarized in the Table I. 

Table 1 - Team members of the Hemodynamic Parameters. 

TEAM MEMBERS 
MAIN CONTRIBUTION AND MAIN AREAS OF 

RESEARCH 
INSTITUTION 

Prof Dr. Carlos Correia 

Scientific and 
Technical 

Supervisors 

General Software 
and Hardware 
Development 

GEI 

Dr. João Cardoso 
Software 

Development 
GEI 

PhD Student Helena 
Catarina Pereira 

Hemodynamic 
Parameters 

 

GEI/ ISA 

PhD Student Tânia 
Pereira  

GEI 
 PhD Student Vânia 

Almeida 
 

Dr. João Maldonado 
Medical 

Supervisor 

Clinical 
trials/Prototypes 

validation 
IIFC 

Dr. Telmo Pereira 
Medical 

Supervisor 

Clinical 
trials/Prototypes 

validation 
ESTeSC 
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1.5 OVERVIEW 

This dissertation is presented in seven chapters whose content is briefly summarized: 

• Chapter 2 Theoretical Background - important concepts about arterial stiffness, 

hemodynamic parameters and devices able to assess them are described.  

It is writing a review paper about local and regional PWV. 

• Chapter 3 Process Methodology – describe the general acquisition system: the 

probe, acquisition box and Cardio-Check Database. 

• Chapter 4 Signal Processing – A segmentation algorithm based on Pan and 

Tompkins algorithm was implemented. The local PWV was determined either in 

test bench II or in human CCA using different algorithms. 

• Chapter 5 Probe Characterization – two test benches were developed in order 

to simulate the properties of the cardiovascular system and characterize the 

new PZ probe.  

• Chapter 6 Preliminary Clinical Trials – The PZ probe was tested on a small group 

of volunteers without knowledge of cardiovascular disease. 

• Chapter 7 Final Remarks – Conclusions about this dissertation and some 

problems that it must be overcome to improve the results. 

The table 2 shows a diagram of the tasks of the plan work carried out during the 

project and the duration of these tasks. 

Table 2 – Gantt Diagram of duration each project task. 
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Arterial 
stiffness

Hemodynamic 
Parameter:

PWV 

(Local and 
Regional)

Commercial 
devices:

Complior®

SphymoCor®

Others ...

Alternative 
tecnologies based 

on: 

Piezoelectric 
sensors

Arterial Blood 
pressure 

CHAPTER II 

THEORETICAL BACKGROUND  

2.1 ARTERIAL STIFFNESS 

The blood enters at the arterial system in a series of strong bursts by the 

pumping action of the heart. The arterial walls are evolved to withstand the cyclical 

distension and contraction caused by the ejected blood from the left ventricle. But 

with increasing age the elastic fibers, which constituted the arterial walls, begin to fray 

due to mechanical stress, decreasing the elasticity of the arterial wall by the 

subsequent replacement of the elastin by collagen [14]. This property of the arteries in 

terms of elasticity or compliance is called AS [14]. The elastic properties of the arteries 

are nonlinear along the arterial tree. The ascending aorta, common carotid artery 

(CCA) and iliac arteries are more elastic than the brachial, radial, and femoral arteries 

(muscular arteries) due to the molecular and cellular structure of the arterial wall 

[1][14][15]. A gradual increase of the stiffness in elastic arteries causes an increase in 

the systolic blood pressure. It happens because the stiffer arteries aren’t able to dilate 

or expand in order to accommodate the ejected blood by left ventricle and the 

increase of systolic pressure is necessary to eject the same stroke volume [18].  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 – Schematic of the important concepts of this dissertation which are related on arterial stiffness. 
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The increasing of AS is associated not only with the age but also to genetic 

factors as parental history of hypertension and diabetes; to menstrual cycle; obesity, 

smoking; cardiovascular diseases as coronary heart disease, among others [1].  

It has been demonstrated that the AS has an important role to predict the 

development of CVD, becoming to be a started point for the early detection and 

prevention of these diseases [1, 9]. Some hemodynamic parameters have been 

introduced in order to assess the elastic properties of the arteries. The Pulse Wave 

Velocity (PWV) is considered the gold standard parameter that can be measured on a 

non-invasive way which allows the indirect estimation of the arterial stiffness [1] [2] 

[16].  Because the elasticity of the arterial walls varies along the arterial tree, also the 

velocity of the pulse wave propagation is influenced by the increasing of the arterial 

wall hardness. The central arteries (aorta and carotid) are more elastic and the PWV is 

lower in these arteries. When moving to the peripheral arteries (femoral or brachial 

arteries) the stiffness increased and the PWV in this sites increase too [1][17]. The 

measurement of the PWV can be distinguished in local and regional PWV. Beyond the 

PWV other parameters have been developed and all they extract information from the 

ABP waveform measured on arteries. The morphology of the pressure waveform 

measured contains key points that allow assessing the hemodynamic parameters. 

Over the last years, different devices have been developed to assess PWV as 

the well known commercial devices Complior® and SphymoCor® system but due to its 

high cost other non invasive apparatus, based on Piezoelectric sensors, for example, 

has been developed. The figure 2.1 shows a diagram about of the important concepts 

which are highlighted along of the text to understand this dissertation. 

 

2.2 ARTERIAL BLOOD PRESSURE WAVEFORM 

The blood ejected from left ventricle to ascending aorta propagates throughout 

the arterial tree in form of waves – the arterial blood pressure (ABP) waveform. From 

antiquity, the arterial pulse is understood as a sign of life and its change related with 

the force that the blood exerts on arterial wall has been associated with the health or 

disease condition [19].   
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When the ventricular systole occurs, the ascending aorta (elastic large artery) 

expands and absorbs some of the transient increase in pressure generated by the 

ejected blood, due to the compliance of the central artery walls [14]. The compliance 

(C) of the arteries is defined by the ability to stretch in response to increase of the 

blood volume which is stored temporarily in the artery reducing blood pressure 

increase during ventricular ejection and to recover the original dimensions upon 

removal of the pressure. This relation between volume and pressure define 

mathematically compliance as:  

� �  ���� , where ΔA is changes of cross-section area of the artery (A systolic – A 

diastolic) and ΔP is changes in the pulse pressure [19],[20].  

The distensibility (D) also is related with the elastic properties of arteries 

reflecting the artery diameter variability to a corresponding variability blood volume 

and pressure, mathematically defined as: 

 � � � � 	�
, where Ad is diastolic arterial cross-section [20]. 

 

After blood ejection, there is an exchange of energy between the arterial wall of 

ascending aorta and the blood flow allowing the propagation of the pressure wave 

[14]. The figure 2.2 shows a drawing of this phenomenon that happens while the 

artery is compliant; otherwise the pulse pressure (difference between systolic and 

diastolic pressure) increases with the increased of arterial stiffness, as it was referred 

in previous section. 

 

Figure 2.2 – Pressure pulse generates from ventricular systole and blood flow though arterial tree due to the 

change of energy between arterial wall and the blood flow during the diastole [14]. 
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2.2.1 THE INCISURA AND FORWARD AND REFLECTED WAVE 

The heterogeneity of geometric and visco-elastic properties of the arterial walls 

along the arterial tree have an important physiologic consequences that are reflected 

in changes in the morphology of ABP waveform. The morphology of the ABP wave 

reveals important phenomenon that occur during the cardiac cycle providing a 

prediction about cardiovascular risk.   

Two main components characterize the ABP waveform: the propagation of 

incident or forward wave which results the blood ejected from left ventricle during 

systole (with amplitude Ps-Pd), and the reflected wave from the periphery (with 

amplitude Ps-Pi), figure 2.3 a) [21].  The forward wave when travels to radial artery, 

the mean pressure decrease slightly due to high conductive arteries and low resistance 

to blood flow [22]. However, the blood flows to the peripheral arteries and finds 

bifurcations (e.g. iliac and femoral artery), figure 2.4, that block its entry because the 

vascular resistance and impedance increase, causing the reflection of the pressure 

pulse that travel back towards the heart. In this way, the reflected wave, is called 

backward wave, acts to augment the pressure pulse [21- 23][32].  

 
a) 

 
 
 
 
 
 
 
 
 
 
 

 
b) 

Figure 2.3 – a) Representation of an ABP waveform in 50 year old man corresponding central aortic pressure 

wave, the characteristic peaks (Pd, Pi, Ps, Pes) and the mean arterial pulse (MAP) [19]; b) two components of 

arterial wave in young and elderly people waveforms [21]. 

 

For young people the reflected wave coincides with the diastolic pressure wave 

while in elderly people the D of arteries is smaller resulting in earlier reflected wave 

which overlapping the systolic wave increasing the systolic pressure and consequently 
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the pressure pulse. The systolic peak occurs later and diastolic wave is attenuated 

[21,32], figure 2.3 b).   The ‘interaction’ between reflected and forward wave induces a 

change in the ABP waveform by appearing of the inflection point Pi, figure 2.3 a). The 

location of inflection point in relation to systolic peak (Ps) can bring information about 

arterial stiffness of artery [25-26]. In figure 2.3 a) the inflection point precedes the 

systolic peak meaning that the reflected wave arrived in early systole and indicates 

that the artery is stiff.  When the inflection point occurs after systolic peak represents 

that the artery is elastic and consequently the patient is health [12]. Murgo et al 

proposed a classification based on four types ABP waveforms [25]. From this 

classification we synthesized cardiac waves to simulate different physiological 

conditions, are shown in section 5.1. 

 

Due to differences in arteries compliance and the of wave reflection the shape 

and amplitude of ABP wave changes with age of patient and the site of the body where 

is recorded, figure 2.4. At the peripheral arteries the amplitude of pressure wave is 

higher than central arteries because the reflection sites are closer to them, causing the 

‘amplification phenomenon’ represented in figure 2.4. It means that the systolic 

pressure, diastolic pressure and mean arterial pressure also increase [1][24]. 

 

 

Figure 2.4 – Propagation of the ABP waveform along the arterial tree. The ‘amplification phenomenon’ is verified 

by of amplitude of pressure pulse. Adapted from [27, 28] 

After ventricular systole the aortic valve closes causing an increase of pressure in 

ascending aorta which is called the incisura. The incisura point (Pes) marks the 
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beginning of ventricular diastole which is represented by dicrotic wave in ABP 

waveform, figure 2.3. 

 

2.3 HEMODYNAMIC PARAMETERS 

The measurement of AS is a focal point to assess the cardiovascular risk of the 

patients. The hemodynamic parameters allow quantify the AS through the analysis of 

ABP waveform, e.g. the augmentation index (Alx) measures the contribution of 

reflected wave in the total pressure pulse, figure 2.5 [29][31].  

 
Figure 2.5 – Determination of ALx, PWV and LVET from characteristic points of ABP waveform. Adapted from 

[29],[31],[30] respectively. 

 

However, the PWV is the most used marker of vascular stiffness and a predictor 

of CVD that measures the velocity which the ABP waveform propagates along of a 

segment of arterial tree, figure 2.5 [31, 34]. Elastic modulus (E) of the arterial wall, the 

blood density (ρ = 1.05 g/cm3), the thickness (h) and lumen radius (r) that characterize 

the arterial geometry are related with PWV, as Moens and Korteweg showed by the 

following equation: 

��� �   � � �� � � � � ��� � 

when described a model based on a elastic tube filled with an incompressible fluid 

[1][31-33]. The measurement of PWV is also inversely related to D of arterial wall by: 

Hemodinamic 
Parameters

Alx (%) = ΔP/PP PWV (m/s) = Δx /Δt
LVET (ms) = Pes -Pd
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��� �  �� � ��� � � �  	�� � �  ��� � 

This relation shows that the value PWV depends on geometric and elastic 

properties of arteries (h, r and D), which varies along arterial tree, so PWV also varies 

from one measurement location to another [1][26]. Thus, in humans the PWV is 4-5 

m/s in the ascending aorta, increasing to 5-6 m/s in the abdominal aorta and in the 

iliac and femoral arteries is near 8-9 m/s [1]. PWV’s value is greater than 12m/s it has 

been considered a predictor of CVD risk, mainly in hypertensive patients [37]. This 

increased of PWV along arterial tree is associated with: 

 - the ‘amplification phenomenon’; 

- the increase AS in peripheral arteries that causes the increase of systolic 

pressure by the early arrival of reflected wave – stiff artery, high PWV; 

- age and blood pressure [1].  

Age and blood pressure are hemodynamic factors as well as the left ventricular 

ejection time (LVET) that influence the PWV. LVET measures the time interval between 

the opening and the closing the aortic valve which corresponds from the onset of 

ventricular systole to incisura point, figure 2.5 [30]. 

 

In practice, the assessment of PWV is made through the measurement of the 

time delay (Δt) between the pressure waves recorded in arterial system and the 

distance (Δx) on the body’s surface between recording site(s), as is shown in figure 2.5 

[31-32]. 

The measured in common carotid to femoral arteries is considered by the 

Expert Consensus document [1] the ‘gold standard’ method to assess aortic PWV.  In 

fact, it’s not possible to measure PWV in aorta artery by a non-invasive method and 

the CCA is near to the heart. Moreover, carotid and femoral are sites easily accessible 

representing the PWV assessment along a segment composed by elastic and muscular 

arteries [1, 14, 18]. A new approach to assess the PWV appeared which consists to 

assess PWV in a short segment of an artery.  
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2.3.1 REGIONAL PWV (RPWV) 

The measurement of regional PWV is made from distance over a long segment 

of the arterial tree and the transit time (TT) between the two recorded waves in this 

segment. The two measurement sites are along of a segment of easy access of arterial 

tree like: Radial-tibial, brachial-ankle, carotid-radial, brachial-radial and femoral-tibial 

[26, 31, 35]. But carotid-femoral path is widely used to assess the regional PWV, as 

illustrated in figure 2.5 [1]. 

The path length between recorded sites due to the trajectory or curvature of 

vessels is not easy to measure. Two main hypotheses mentioned on the literature for 

distance determination between recorded sites:  

i) the simplest one assumes the arterial segment under study as a 

homogeneous and isotropic material and without any  curvature, and 

simply takes the direct measure of the distance between the two 

measurement sites on the surface of the body by a tape meter; 

ii) another approach is using a corrected value resulted from the subtraction 

of the distance from the carotid location to the sterna notch from the total 

distance or by the subtraction of the distance from the carotid artery 

location to sterna notch from the distance between the sterna notch and 

femoral artery site of measurement, figure 2.6 [31]. 

 
Figure 2.6 – Measurement of the distance between carotid-femoral arteries [31]. 
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The transit time delay is determined from of a characteristic point of the pulse 

waves, normally by foot of wave. There are three main algorithms to identify the foot 

from ABP waveform, figure 2.7:  

- Maximum upstroke of second derivate; 

- Time-point at 20% of the upslope of ABP wave and 

- Intersecting tangents – interception of minimum value of ABP wave with the 

steepest part of the slope, being this method the most reliable [31, 36].  

 

Figure 2.7 – Identification of the foot point from tree algorithms: maximum of 2nd derivate, 20% of the upslope 

and intersecting tangents [36].  

Currently, there are in the market some devices used in clinical practice which 

allow assess the RPWV. They estimate the TT from different algorithms and the waves 

are recorded by different methods. 

2.3.1.1 COMMERCIAL DEVICES TO ASSESS REGIONAL PWV 

Complior® and SphymoCor® Systems are the ‘gold standard’ commercial 

devices for the PWV assessment [31, 37]. SphymoCor® measures with a tonometer the 

carotid or radial wave and simultaneously is recorded the ECG signal. The foot of 

carotid and radial waves is estimated by intersecting tangent algorithm and the TT is 

estimated between the R-wave on the ECG and the foot of each wave recorded in 

different sites, figure 2.8. It is obtain two TT values that are combined to obtain a 

single TT value [14]. In relation to Complior®, it used piezoelectric sensors to record 
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simultaneously the signals at CCA and femoral arteries. The time delay between the 

foot of two recorded waves is the pulse TT, figure 2.8 [14]. The new Complior® System 

is able to measure three different arterial segments at the same time to study 

peripheral arteries, to measure the central pressure waveform and analyze the pulse 

wave which allows study the wave reflection by Alx.  

a) 
B) 

Figure 2.8 – Pulse transit time (PTT) measured by: a) Complior® and b) SphymoCor® systems. Adapted from [14]. 

Other devices commercialized more recently are: Arteriograph® and PulsePen®, where 

the first uses an upper arm cuff to occlude the brachial artery and the second uses the 

same method that SphymoCor® but it analyses directly the pulse wave without a 

transfer function [37]. The main characterizes of commercial devices are summarized 

in the table 3. 

Table 3 - The features of some commercial devices that assess the regional PWV. 

 
Devices 

 
Company 

Pulse waves 
detected on 

Measurement 
technique 

Principles and 
Features 

Algorithm 
transit time 

Other 
Parameters 

Complior System®  
 

 

Artech 
Medical, 
Pantin, 
France 

 

Carotid-femoral; 
carotid-radial; 
carotid – distal  

Piezoelectric 
sensor 

TT between foot of 
two recorded waves 

Correlation 
algorithm 

Heart rate; 
Central pulse 

pressure; LVET; 
Alx 

Sphymocor® 
system 

 

AtCor 
Medical, 

Inc., 
Sydney, 
Australia  

Carotid and 
femoral  

Applanation 
tonometry +ECG 

Use a 
transfer function to 

measure AIx and 
aortic pulse wave 

R-wave + foot 
(Intersecting 

tangent 
algorithm) 

Heart rate; 
Alx 

TensioClinic TM 

Arteriograph 

 

TensioMed 
Ltd., 

Budapest, 
Hungary 

 

Brachial 
Oscillometric 

method  

PWV estimated by 
oscillations detected 

on the upper-arm 
cuff.  

occluded brachial 
artery 

Blood pressure; 
AIx 

Pulse Pressure  

PulsePen® device  

 

Diatecne, 
Milano, 

Italy  

Carotid, brachial, 
radial, femoral 

Applanation 
tonometer + ECG  

Determine Δt delay 
between pressure 

waves  
Foot + R-wave  

Heart rate; 
Blood pressure; 

AIx 
LVET 
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Some studies were done in order to compare the PWV measured by 

Arteriograph®, Complior® and SphygmoCor® and that reported: a) there are a poor 

agreement between the PWV values determined by these devices  and b) it still hasn’t 

been enough studies that show Arteriograph how a ‘gold standard’ technique 

[38].With these available devices are calculated different PWV because each device 

overestimate the distance between recorded sites and use different algorithms to 

assess the transit time based on different characteristic time-point of the waveform. 

This not allows comparing perfectly the devices hence one solution could be all 

manufactories to establish the same principles for measuring the travel distance 

[37][18].  

2.3.2 LOCAL PWV (LPWV) 

Another approach to assess PWV consists in measurement of pulse wave in a 

short segment of an artery, usually on CCA. ABP waves are recorded simultaneously by 

two sensors at close positions which allow know exactly the distance that were 

recorded [18, 41]. As mentioned previously, the elastic and geometric properties of 

arteries vary significantly along arterial tree as well as the pressure and blood flow due 

to the branches [39]. CCA has an elastic behaviour and femoral is a muscular artery, 

these properties change with age.  While the RPWV measure the average PWV along a 

segment with different proprieties, the LPWV measures the PWV and pressure in the 

same artery so it’s an advantage to the regional assessment [39]. 

The pulse TT is also measured the time delay between two recorded waves. 

The foot of waves are the reference point to estimate the TT but the systolic foot isn’t 

free from reflected waves [26, 40]. In this case, the artery’s segment to assess PWV 

locally without reflections sites, is only considered the backward and forward 

propagations waves [39, 40].  

PWV is inversely related to the D of the artery. It means that to measure locally 

the PWV from D of artery, the local pulse pressure and diameter of artery need to be 

estimated [40]. Khir et al. measured the change in pressure and volume at the end of a 

latex tube to assess the LPWV. However, isn’t easy to estimate the local pulse pressure 

therefore new methods based on ultrasound appeared without local pulse pressure 

measurements and lower coefficient of variation (CV). 
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Two ultrasound probes spaced at 9 mm were used by Brands et al. to calculate 

the ratio between temporal and spatial gradient with B-mode image [42]. A more 

recent approach to assess and use the diameter waveform for LPWV determination 

was proposed by Meinders et al, suggesting a multiple M-line system with 16 lines that 

allows the simultaneous recording of the diameter waveform on 16 positions [43].  

Later, Hermeling et al. developed a method to measure the local PWV using an 

M-mode ultrasound. They identified the foot of distension waveforms, from time delay 

algorithms in figure 2.7, the purpose is to measure the change of diameter over time. 

This method exhibited good results with CV of 1% [18]. 

Also the MRI technology has been mentioned as an alternative to measure 

LPWV. Tarnawski M. et al (1994) applied the comb-excited Fourier velocity-encoded 

MRI technique to measure simultaneously wavespeed at two stations, 14 cm apart, on 

the femoral artery. In order to allow the selection of a straight artery segment and 

localize the tow stations, 2-D MR phase contrast (sagittal and coronal) angiograms of 

the femoral artery were acquired [44].  

Our research group has been devoted to the development and characterization 

of new sensors for LPWV assessment. The aim of this thesis is to characterize a new 

probe to assess LPWV based on piezoelectric sensors. 

 

2.3.2.1 PIEZOELECTRIC SENSORS USED IN THE LPWV ASSESSMENT  

The electric measuring of mechanical quantities has been increasingly used in 

research and industry (process control) since the middle of the 20th century. Velocity, 

acceleration, force and pressure are some mechanical quantities that can be measured 

[45].   

Piezoelectric (PZ) sensors are able to measure pressure, acceleration, strain 

and force. [46] They are characterized to have a transduction element and are called 

active sensors because they don’t need an external power source to yield an electric 

charge (output signal) in response to a mechanical load due to behaviour of the PZ 

material which is made the transduction element, namely crystals and ceramics.  [45] 
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The quartz (SiO2) crystal is an example of the PZ material which changes its dimension 

when transform energy of a mechanical input into an electric output. The PZ crystals 

have a molecular structure of the ionic bonded crystal (figure 2.9 a)) and a permanent 

electrical polarization (figure 2.9 b)). As a consequence of the symmetry of the crystal 

structure the electric dipoles are aligned and the respective positive and negative ions 

cancel each other. As a result, the electric field is not observed. [47] 

a) 

 
b) 

Figure 2.9 – a) Molecular structure of quartz (SiO2) [48], b) alignment of the electric dipoles, adapted [46] 

When a force is applied on PZ material there is the separation of the charges 

with the loss of the symmetry of the crystal structure, the orientation of the dipoles 

change and the crystal became electrically polarized creating an electrostatic output 

voltage - this phenomenon was labelled the piezoelectric effect. The polarity of the 

voltage generated depends on the atomic structure of the material and the direction in 

which the force is applied. This voltage (V) caused by the new charge distribution (Q) is 

mathematically expressed by:  

� �  ��  

where C is the capacitance of the material. 

Some advantages are recognized of PZ sensors as: 

- High rigidity, able to measure deflection in the µm range; 

- Reproducibility; 

- High natural frequency (up to over 500 kHz); 

- Wide operating temperature range [45]. 
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2.3.2.1.1 EQUIVALENT CIRCUIT OF PZ SENSOR 

A PZ sensor can be modelled by an RC circuit, it means by a capacitor with 

capacitance C in parallel with a current source and a resistor, in turn, is in parallel with 

the other two, as show in figure. The PZ actuates as a differentiator, the current flow is 

equal to the derivate of the charge then the current source is 
 ! "  [49]. The capacitance 

is determined by the area, the width, and the dielectric constant of the material. 

 

Figure 2.10 - Schematic of electronic model of a piezoelectric sensor. [49] 

The voltage, V, at the source is proportional to the applied pressure on PZ 

sensor and is measured across the PZ terminals. The resistor, R, results in a high-pass 

filter which explains why the PZ can sound high-passed. One possibility to decrease 

this effect is to use a voltage follower circuit between the PZ and the input to the ADC 

[49].  

2.3.2.1.2 PZ SENSORS USED IN HEMODYNAMIC STUDIES 

As mentioned in chapter I, new probes have been developed at GEI in order to 

assess hemodynamic parameters. These probes based on PZ sensors (MuRata®), 

consist in a single and a double headed probes, as shows in figure 2.11 b) and c). Both 

probes have shaped pieces of ‘mushrooms’ as an interface between PZ sensor and the 

CCA.  The studies with both probes involved besides the characterization in test bench 

system, the determination of the local PWV and Alx, showing encouraging results. 

a) b) c) 
Figure 2.11 – a) A MuRata® PZ sensor, b) single and c) double headed probe. 
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 Other studies have been carried out using a thin film piezoelectric sensor 

system (McLaughlin J et al 2003) in order to assess regional PWV between radial and 

brachial arteries, non-invasively using different methods [50].  

More recently, Clemente F. et al 2010, proposed a non-invasively method based 

on piezo-film sensor too. This allowed to measure the blood pressure waveform at 

radial artery and to reconstruct it online [51].  

 

2.3.3 LIMITATIONS AND PITFALLS OF LOCAL AND REGIONAL PWV 

The first limitation that can be referred about RPWV determination is the fact 

that it represents only an average value due to its variation of the properties of the 

arterial segment under study [52]. In fact, elastic properties of vessel walls are site 

dependent, which causes an increase of PWV from a measurement point near the 

heart (usually CCA) to a peripheral artery (usually femoral).  

The path length carotid-femoral to assess RPWV is difficult to measure and 

there are two approaches referred in section 2.3.1. However, both methods have the 

disadvantage because the measurement is made on body surface inducing errors on 

the absolute value of PWV. On the other hand, distance measurements can also be 

hindered in patients with abdominal obesity or in women with large bust size. 

Magnetic resonance imaging has as its major advantage the possibility of measuring 

with great accuracy the path length, but its temporal resolution is low when comparing 

with other techniques [26].  

The lack of standardization of the measurement method of TT makes the 

commercial devices use different algorithms that can influence the final value of PWV. 

This problem is caused by the inherent difficulty on the definition of the foot of the 

wave mostly because, during its propagation along the arterial tree there are wave 

reflections, which in turn causes the time-point used in the identification of the onset 

of the wave is shifted to a different position within the waveform [18]. Despite these 

problems about measurement of distance and TT estimated the Complior® System 

continues to be the gold standard technology. 
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If the difficulty to measure a distance between recorded sites is the tender spot 

of RPWV, the LPWV resolves it easily because the distance between recorded sensors 

is well known. But one problem can emerge: to know the minimum space along a short 

arterial segment to allow assessing simultaneously two arterial waveforms with higher 

temporal resolution [42, 53].  

The foot’s identification of recorded waves is used as time reference point to 

estimate pulse TT, and consequently to assess LPWV, because isn’t affected by 

reflections. However, the backward propagation waves change the shape of ABP 

waveforms and can interfere with the foot’s identification affecting the pulse TT 

estimation [40].  

The precision of measured methods to assess LPWV is poor yet but promising 

techniques have been developed suggesting the dicrotic notch as an alternative time-

reference point [54]. 
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CHAPTER III 

PROCESS METHODOLOGY   

In this chapter the hardware development by the hemodynamic team is 

described – the conception of the new PZ probe, the CardioCheck acquisition box and 

the Cardio-Check system v1.0.  

3.1 CONTEXT 

As previously stated in chapter 1, this project aims to continue the study of 

pulse wave assessment using PZ sensors. The previous development studies at GEI 

demonstrated the feasibility of PZ sensors in extracting relevant information of pulse 

wave signal at CCA [12, 13]. 

The developed acquisition system allows visualize the ABP waveform. It is a 

new feature of the system that intends to reproduce the ABP waveform. This system 

was used to characterize the PZ probe in the test bench and in clinical trials. 

3.2 ACQUISITION SYSTEM  

The main elements which constituted the acquisition system are: the double PZ 

probe, the acquisition box and a PC as the schematic in figure 3.1 shows.  A description 

of the elements follows. 

Double 
Probe PZ 

 
Figure 3.1- Acquisition system scheme. 1- Common carotid artery, 2- Measurement probe (Double PZ probe), 3- 

Data acquisition system (CardioCheck Acquisition Box), 4– Data logging processing and storage (PC), 5– NI 

software (Measurement & Automation) or Cardio-Check database. 

 

The ABP waveform is recorded on common carotid artery by PZ probe. The 

CardioCheck Acquisition Box, with data acquisition (DAQ) module, sends the data to PC 

by USB cable. The data are recorded using the National Instruments software, in the 
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test bench systems, or the Cardio-Check system, in the clinical trials, and after 

processed in Matlab® software.  

3.2.1 DOUBLE PZ PROBE 

The new instrument proposed is a double headed probe based on PZ sensors 

(MURATA® 7BB-12-9 Sounder, 12mm of diameter) that are placed apart. It allows the 

assessment two signals: the PZ signal (the derivate of the pressure waveform, dP/dt, – 

piezo-electric effect) and the integrated PZ signal (the ABP waveform, – obtained by 

the electronic circuit of the probe). For more information’s about DP see the appendix. 

A RJ45 connector allows connecting the double probe to CardioCheck 

acquisition box. 

3.2.2 CARDIOCHECK ACQUISITION BOX 

The CardioCheck acquisition box, represented in figure 3.2, supports the double 

PZ probe and has additional inputs for PZ probe characterization in the test benches 

which are: one entry for the arbitrary waveform generator, Agilent, and two entries for 

pressure sensors. Into this unit there are a data acquisition (DAQ) module and a power 

supply +5V/-5V.  

 

Figure 3.2 – CardioCheck Acquisition Box and the connectors. 1 – NI-USB 6009, 2 – Power supply, 3 - waveform 

generator connector , 4 – Pressure sensors connectors , 5 – PZ probe connector, 6- USB. 

In Figure 3.3 shows the DAQ module used is in this measurement system. It’s 

the NI-USB 6009©, it has 8 analog inputs, 14-bit resolution and it can sample up to 
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48kS/s [55]. Driver software is necessary to configure the NI-DAQmx© in order to 

acquire, analyze and log the measurement data.  If the data are logged in NI software 

they will be saved in a .txt format and after will be processed in Matlab®. 

The power supply is based on a layer printed circuit board (PCB) that used as 

input the ground and +5 volt from NI-USB 6009 and as output +5 volt, -5 volt and 

ground that power the PZ probe. 

 

Figure 3.3 – NI-USB 6009© [55]. 

 

 

3.3 CLINICAL TRIALS 

Two more prototypes of PZ probe and CardioCheck acquisition box were 

developed in order to record data in human carotid in IIFC by João Maldonado and in 

ESTeSC by Telmo Pereira. The clinical data were also recorded in a small group of 

volunteers at GEI.  

3.3.1 DATA ACQUISITION – CARDIOCHECK SYSTEM 

There was developed a graphic interface in Microsoft Access® database- Cardio-

Check Database v1.0 - useful to store and record clinical data of a large number of 

patient. The data base allows: 

i) To select which probe are recording the data (PZ probe, Acoustic probe or 

accelerometric probe); 

ii) To save the cardiac signals recorded; 

iii) To register the operators; 

iv) To save patient’s information (personal information, personal history, family 

history, clinical parameters (age, sex, weight, height), biochemical analysis and 

notes) ; 
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v) To register the PWV with reference device (Complior®), the diastolic and 

systolic pressure. 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Example of a window of the data acquisition software in real-time. 

 

The software to acquire signals in human CCA in real-time is connected to the 

database. The figure 3.4 shows an example a window of the acquisition software. The 

signals were acquired by another double PZ probe. 

 

3.3.2 DATA PROCESSING 

The data acquired are processed in Matlab® where the signals are filtered, 

segmented and was assessed the local PWV. The algorithms used to assess the local 

PWV are described next chapter.  
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CHAPTER IV 

SIGNAL PROCESSING 

This chapter describes the algorithms used to segment the pulse waves and to 

determine the LPWV either in the test bench II or in the human CCA signals.  

4.1 SIGNAL SEGMENTATION 

One of the important steps of the cardiac signals processing is the signal 

segmentation. There are some algorithms to detect the onset of ABP, as Zong W. et al 

(2003) concerning the importance of ABP onset detection to study the PWV [56]. 

In this work was implemented an algorithm based on the idea proposed by Pan 

and Tompkins [57], which is able to detect the onset and the end of the each pressure 

waveforms segmenting a signal into periods. The basic idea of the original algorithm is 

to determine the energy of the signal and detect the higher-energy peaks. 

Before applying any algorithm, the signals are normalized after being removed 

the DC component.  

 

4.1.1 STEPS IN ALGORITHM 

The algorithm consists in four fundamental steps, as shown in figure 4.1:  i) the 

signal passes through a moving average filter, ii) differentiation, iii) squaring, iv) setting 

the threshold by the mean of the squaring signal.  

 

 

Figure 4.1 –Diagram of the fundamental steps of the algorithm. 

 

Original Signal

Moving 
Average  Filter

Differentiator Squaring Threshold
Segmented 

Signal
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The moving average filter allows smoothing the signal and decreasing the high 

frequency noise. The operation of differentiation is like a high pass filter, the 

differential signal notes the peaks with the greatest variation of the signal. In order to 

not obtain the negative data, the next steep of the algorithm is to square the signal.  

The most important step in this algorithm is the calculation of the threshold 

which tries to be independent of the signal and ideally allows its adjustment to 

changes in the signal to analyzing. The threshold is defined as 20% of the mean of the 

square signal and the points of the original signal that are above the threshold are 

stored in a matrix of zeros where the onset and the end of pulses are identified, as 

shows the example in figure 4.2. 

Figure 4.2 – A cardiac pulses waveform (on the left) were segmented by an algorithm based on the idea proposed 

by Pan and Tompkins. In the segmented signals (on the left) are represented with circles the onset of each cardiac 

pressure waveform and with the squares the end of it.  

 

4.2 ALGORITHMS TO ASSESS THE LOCAL PWV IN THE TEST BENCH II 

The main purpose of this work is to assess the LPWV by a new double PZ probe. 

The test bench II was developed to simulate the arterial system able to assess the 

PWV. It is calculated from the measurement of the distance travelled by the wave 

pressure between two recorded sites divided by the pulse TT. In this case, the distance 

between the recorded sites by pressures sensors or PZ sensors is well known and the 

pulse TT was estimated using five algorithms described below, some of them were 

implemented by Pereira et al and McLaughlin et al [50, 58]. All signals were filtered by 

Moving Average filter of 70 points.  
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4.2.1 MAXIMUM AMPLITUDE DETECTION ALGORITHM 

The TT is calculated between the peaks with maximum amplitude of the 

recorded signals. After the detection of the maximum peak, a sixth degree polynomial 

fit is made between a set of points that includes this maximum peak initially detected.  

This fit pretends to re-calculate the maximum value in order to ensure the proper 

identification of the maximum amplitude peak. An example of application this 

algorithm is shown in figure 4.3, where on the left is calculated the maximum of 

recorded two signals and on the right the maximum is re-calculated by the polynomial 

fit.  

 

Figure 4.3 – Example of detection of the maximum amplitude peak (represented by black circles) in recorded PZ 

signals in the test bench II by maximum amplitude detection algorithm. The sixth degree polynomial fit (in B)) is 

made at the region around of the maximum detected initially in A). The TT is determined between two maximum 

peaks re-calculated by polynomial fit. 

 

4.2.2 MINIMUM AMPLITUDE DETECTION ALGORITHM 

 This algorithm allows detecting the minimum amplitude peak of recorded 

signals using the same methodology as maximum amplitude detection algorithm. The 

TT is determined from the time difference of two peaks detected by a sixth degree 

polynomial fit with minimum amplitude, as shows the figure 4.4. 
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Figure 4.4 – Example of detection of the minimum amplitude peak (represented by black circles) in PZ signals 

recorded in the test bench II by minimum amplitude detection algorithm. The TT is determined between two 

minimum peaks re-calculated by polynomial fit. 

 

4.2.3 ZERO-CROSSING POINT IDENTIFICATION ALGORITHM 

The zero crossing point is estimated through a linear fit between the maximum 

and minimum peak of the signal. The crossingcorr function finds the location where 

the signal crosses the zero. The figure 4.5 shows the zero-crossing detected by this 

algorithm from recorded PZ signals in two sites in the test bench II. The TT is estimated 

between both zero-crossing points detected. 

 
Figure 4.5 – Example of zero-crossing point detected, represented by black circles, in recorded PZ signals in the 

test bench II. The TT estimated between both zero-crossing detected. 
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4.2.4 PULSE ONSET DETECTION ALGORITHM 

The segmentation algorithm described in section 4.1 was used to detect the 

pulse onset.  

 
Figure 4.6 – Example of pulse onset detection represented by a red circle for PZ1 signal and by a black circle for PZ2 

signal. The TT is estimated between two onset points detected. The PZ signals were recorded in the test bench II. 

The signal is filtered by a band pass filter due to signal noise. The threshold is 

defined as the maximum amplitude of the first 300 samples of the signal. The rising 

time of two signals is estimated because the threshold is high to detect the true pulse 

onset point. The rising time allows knowing how many samples are necessary to 

subtract the onset detected initially by defined threshold, with this setting is obtained 

the pulse onset point closed expected for all signals, as shows the result in figure 4.6. 

4.2.5 MAXIMUM OF CROSS-CORRELATION ALGORITHM 

With the cross-correlation algorithm, it is intended to measure the degree to 

which a reference signal and a measurement signal are correlated. In test bench II, the 

700 µm Actuator, Physik Instrumente GmbH P-287, produced a Gaussian waveform 

that is used as the reference signal.  To compare the two signals, the reference signal 

was differentiated once to compare with pressure sensors signals and twice to 

compare with PZ signals. From the time difference between the maximum values of 

the cross-correlation between reference signal and pressure signals or PZ signals the 

TT is estimated. An example is shown in figure 4.7.  
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Figure 4.7 – Example of pulse TT estimated from maximum values of correlation between reference signal and PZ 

1 sensor (red) and reference signal and PZ 2 sensor (blue). 

 

4.3 ASSESSMENT OF LOCAL PWV IN CCA SIGNALS 

The PWV was also determined from the recorded signals in CCA. The pulse TT 

was determined by maximum and minimum amplitude detection (AD) algorithms 

(section 4.2.1 and 4.2.2).  

It was recorded four signals of the probe – the PZ signals and the integrated 

signals of both sensors but only the PZ signals were used to determine the pulse TT 

because they were acquired directly from CCA. Each recorded signal had seven pulse 

waves, as shows figure 4.9, these were segmented and the PWV was assessed. 

 

 

 

Figure 4.8 – Diagram of the process to assess the LPWV in CCA signals. 
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Figure 4.9 – Segmentation of the PZ 1 signal recorded in CCA of a volunteer. The onset and the end of the seven 

pulse waves are identified in green and red circles, respectively.  

The segmentation algorithm (section 4.1) is applied to PZ signal acquired by PZ 

1 sensor where the onset and the end of the seven pulse waves are identified, as is 

shown in figure 4.9. The PZ 2 signal is segmented with the same onset and end points 

identified in the PZ 1 signal.  

 
Figure 4.10 – Example of the detection of the maximum and minimum amplitude point of each PZ signal of the 

first pulse wave. The temporal difference between two detected maximum (black circle) and minimum (red 

circle) correspond to pulse TT. 
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For each segment or pulse wave is determined the pulse TT from maximum and 

minimum AD algorithms between two recorded PZ signals, as is described in sections 

4.2.1 and 4.2.2. In figure 4.10, it is shown an example of a pulse wave recorded with 

two PZ sensors where the algorithms were implemented. The temporal difference 

between two maximum and minimum is calculated from the sample rate which signal 

was recorded and the pulse TT is determined.  

The local PWV was assessed for each pulse wave from pulse TT determined 

with both algorithms and the distance between two recorded sites (Δx), as it shows the 

following equation: 

��� � �# ���$$ ��� . 
 

The mean PWV of the all seven pulse waves correspond to the local PWV in 

each recorded signal. 
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CHAPTER V 

PROBE’S CHARACTERIZATION  

The two bench tests developed were powerful tools to characterize the DP in 

laboratory. These were able to reproduce the hemodynamic properties of the 

cardiovascular system using programmable arbitrary pressure waveforms, including 

cardiac waveforms.  

The test bench I allowed to study the probe’s response to different types of 

waveforms, the crosstalk effect between both PZ sensors, the repeatability and the 

determination of the impulse response (IR) of each PZ sensor. 

With the test bench II, the time resolution was studied through the propagation 

of Gaussian waveform in a latex tube.  

 

5.1 TEST BENCH I               

5.1.1 INSTRUMENTATION      

The first test bench was carried out with four main studies. The synthesized 

Gaussian and cardiac waveforms  were delivered by  an arbitrary waveform generator 

(WG), Agilent 33220A, driven by a hight-voltage linear amplifier and after generated by 

a 700µm actuator (ACT), Physik Instrumente GmbH P-287, which transmits it to the PZ 

sensor through a PVC ‘mushroom’.  The signal generated by the ACT is synchronizing 

with DAQ (NI-USB 6009©), being this one and the output of the probe to this stimulus 

acquired simultaneously. The data are sent to PC as is illustrated in the schematic in 

figure 5.1. 

 Double 
Probe PZ 

 

Figure 5.1 -  Schematic of the test bench system. 1-Agilent 33220A arbitary waveform generator, 2- high-voltage 

linear amplifier (HV) (Physik Instrumente GmbH, E-508), 3- 700 µm Actuator (ACT) (Physik Instrumente GmbH, P-

287), 4 – Tube with air; 5 – Double Probe PZ, 6 – Data Acquisition (National Instuments©- USB 6009), 7- signals are 

logged by Measurement & Automation software and processed using MATLAB®. 
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The synthesized arbitrary pressure waveforms reproduce three types of cardiac 

waveforms morphologically different in order to simulate different physiological 

conditions. Figure 5.2 shows the synthesized waveforms used in test bench (Gaussian 

and cardiac). The period of waveforms were chosen in order to characterize the 

behaviour of the probe in a range of periods that included the period of a cardiac cycle 

(near 800ms) [59]. 

 

    
Figure 5.2 – Types of waveforms used in test bench and the characteristic points Ps – systolic pressure, Pi – 

inflection point and DW – dicrotic wave. 

 

The first stage of probe’s characterization in test bench was to study an 

appropriate interface between ACT and PZ sensor. It was very important to do this study 

in order to simulate the carotid artery, the existing tissue and skin on it, otherwise the 

probe’ signals saturated.  The best interface that reproduced the best results was when 

was put a bit of glue pads (UHU patafix) on PZ sensor and a silicon tube with air between 

ACT and probe. This allowed us to perform the tests presented below.  

5.1.2 WAVEFORMS ANALYSIS 

The main aim of this study is to assess the probe’s response for the different 

types of waveforms shown in figure 5.2. For each type of wave was also studied the 

effect the period and amplitude variation in the probe’s response by Root Mean 

Squared error (RMSE).  

Beyond the ACT signal and the response of one PZ sensor (the PZ signal and its 

integrated signal), it is also represented the signal obtained by integration method. This 

signal is obtained through the Matlab® function, cumsum, from the PZ signal.  

Ps Ps Ps 

Pi 

Pi Pi 

DW 
DW 

DW 
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The RMS of the error was calculated between: the integrated PZ signal (PZ Int) 

and the signal obtained by integration method (Int method); the integrated PZ signal 

and the ACT signal; and the ACT signal and the signal obtained by integration method. 

All signals were already filtered by a moving average filter and were sampled to 12.5 

kSamples/s. 

 

5.1.2.1 GAUSSIAN WAVEFORM 

 

Figure 5.3 – The generated ACT signal is a Gaussian with amplitude 2 volts and period 500ms. The PZ signal and 

integrated signal of one PZ sensor and the signal by integration method are represented (on the left). The three 

distributions of the RMS of the error for Gaussian with amplitude 2 volts and period 500ms (on the right). 

 

Table 4 – The RMS of the error was calculated for different amplitudes and periods of the Gaussian waveform. 

Actuator Signal RMSE (%) 

Amplitude 
(volt)/ Period 

(ms) 
PZ Int vs Int Method 

PZ Int vs ACT 
signal 

ACT signal vs Int 
Method 

2 / 500 3.375 6.604 6.979 
2 / 600 2.897 3.397 6.294 
2 / 800 6.470 3.309 3.161 
2 / 900 6.250 0.107 6.357 
3 / 500 3.267 0.815 4.082 
3 / 800 6.171 2.670 3.500 
3 / 900 6.951 2.031 4.920 
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5.1.2.2 TYPE A WAVEFORM 

 

 

 
 

Figure 5.4 – The generated ACT signal is a TYPE A waveform with amplitude 3 volts and period 800ms. The PZ signal 

and integrated signal of one PZ sensor and the signal by integration method are represented (on the left). The three 

distributions of the RMS of the error for TYPE A waveform with amplitude 3v and period 800ms (on the right). 

 

 

Table 5 – The RMS of the error was calculated for different amplitudes and periods of the TYPE A waveform. 

Actuator Signal RMSE error (%) 

Amplitude 
(volt)/Period 

(ms) 

PZ Int vs Int 
Method 

PZ Int vs ACT 
signal 

ACT signal vs Int 
Method 

2 / 500 6.273 1.899 4.374 
2 / 600 8.987 2.998 5.989 
2 / 800 9.462 2.602 6.860 
2 / 900 11.246 5.461 5.785 
3 / 500 11.024 6.781 4.243 
3 / 600 13.099 5.140 7.960 
3 / 800 10.724 3.787 6.937 
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5.1.2.3 TYPE B WAVEFORM 

 

 

  
Figure 5.5 – The generated ACT signal is a TYPE B waveform with amplitude 3 volts and period 500ms. The PZ signal 

and integrated signal of one PZ sensor and the signal by integration method are represented (on the left). The three 

distributions of the RMS of the error for TYPE B waveform (amplitude 3v and period 800ms) on the right. 

 
 
 
 
 

Table 6 – The RMS of the error was calculated for different amplitudes and periods of the TYPE B waveform. 

Actuator Signal RMSE error (%) 

Amplitude 
(volt)/Period 

(ms) 
PZ Int vs Int Method 

PZ Int vs ACT 
signal 

ACT signal vs Int 
Method 

2 / 700 7.870 3.268 4.602 
2 / 800 12.726 3.322 9.403 

2 / 900 9.652 7.408 17.060 
3 / 500 14.366 6.745 7.621 

3 / 700 4.480 0.478 4.957 

3 / 800 13.913 6.389 7.524 
3 / 900 16.774 8.166 8.608 
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5.1.2.4 TYPE C WAVEFORM 

 

Figure 5.6 – The generated ACT signal is a TYPE C waveform with amplitude 2 volts and period 800ms. The PZ signal 

and integrated signal of one PZ sensor and signal by integration method are represented (on the left). The three 

distributions RMS of the error for TYPE C waveform (amplitude 2v and period 800ms) on the right. 

 

 

Table 7– The RMS of the error was calculated for different amplitudes and periods of the TYPE C waveform. 

Actuator Signal RMSE error (%) 

Amplitude 
(volt)/Period (ms) 

PZ Int vs Int Method PZ Int vs ACT signal ACT signal vs Int Method 

2 / 500 12.591 9.231 3.361 

2 / 800 12.560 5.038 7.522 

2 / 900 14.903 5.387 9.516 

3 / 500 13.058 7.806 5.252 

3 / 700 14.510 8.187 6.322 

3 / 800 14.002 6.043 7.960 

3 / 900 14.911 6.645 8.266 

 

The next issue will be if the output of PZ probe is the same under the same 

conditions. In order to answer this question the test of repeatability was done. 

 

5.1.3 REPEATABILITY ANALYSIS 

With the repeatability test it is intended to measure the same item repeatedly by 

the same person and PZ probe, under the same conditions. The main aim is to know the 

variability of the measurements or precision of the measurement equipment [60].  
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Twenty five pulses of type B and C synthesized cardiac waveforms, spaced by five 

seconds, were reproduced by actuator and sensed by each PZ sensor, as is shown in 

figure 5.7. The measurements were repeated, in the same conditions, a few days after. 

The signals were sampled 5 kSamples/s. 

Figure 5.7 - Repeatability test to PZ sensor 2, the actuator wave was: TYPE B with 3 volts amplitude and period 500 

ms. The original signal was segmented and the average signal was calculated. 

 

 

The synthesized cardiac waveforms were segmented by a method based on the 

algorithm proposed by Pan and Tompkins (see section 4.1) in order to segment the 

signal into periods and calculate the average signal, figure 5.7. The RMSE was calculated 

between the actuator signal and the integrated PZ signal. The results are presented in 

the table 8. 

Table 8– Results of repeatability test. The data, measurement 1 and measurement 2, were done on different days.  

Actuated 
PZ 

TYPE/ Amplitude 
(volt)/ Period (ms) 

Measurement 1 
RMSE 1(%) 

Measurement 2 
RMSE 2(%) 

|RMSE 1 – RMSE2| 
(%) 

1 

B / 3/ 500 8.295 8.301 0.006 

B /3/ 800 8.540 8.390 0.150 

B /3 / 900 9.312 8.061 1.251 

C / 3/ 500 5.223 5.353 0.130 

C / 3/ 800 8.466 7.931 0.535 

C / 3/ 900 10.938 8.925 2.013 

2 

B /3/ 800 8.913 8.086 0.827 

B /3/ 900 8.989 8.100 0.889 

C /3/ 800 9.370 9.949 0.579 

C /3/ 900 10.194 9.645 0.549 

 

 



CHAPTER V PROBE CHARACTERIZATION  CHARACTERIZATION OF A NEW PIEZOELECTRIC PROBE 

 

40 
 

5.14 CROSSTALK ANALYSIS  

The repeatability and crosstalk tests were done simultaneously for all 

measurements of the table 8. While a PZ sensor was being actuated, the other one 

wasn’t being actuated but the signal was being recorded. During the acquisition the PZ 1 

sensor wasn’t responding when the PZ 2 sensor was being actuated and vice versa, as 

show in figure 5.8 a) and b). After signal segmentation, the average signal was calculated 

and the output of PZ sensor not actuated is a straight line whose amplitude is near zero, 

see figure 5.8 c) and d). It shows that for all types of waves, amplitude and period shown 

in the table 8 it didn’t occur the crosstalk effect. 

 

Figure 5.8 - Results of crosstalk analysis during data acquisition where: the PZ1 was being actuated a) and PZ2 was 

being actuated b). The average signals of PZ 1 c) and PZ2 d). The waveform is TYPE B with amplitude 3volts and 

period 500ms. 
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5.1.5 IMPULSE RESPONSE (IR) AND DECONVOLUTION METHOD 

The determination of impulse response (IR) of each PZ sensor is another 

important study to be done to characterize the PZ probe. The determined IR, in turn, is 

used to obtain the original signal (the cardiac waveform) by deconvolution method in 

order to show that it is able to recover it.  

The deconvolution method was studied and discussed in other works [11, 13] 

proving to be an accurate method. It allows to get the original signal or input signal (x(t)) 

from the differentiate signal of PZ probe (y(t)) and its IR (h(t)), as it can be 

mathematically expressed by convolution theorem: 

&�'� � (�'� � )�'�                                                                            �5.1� 

In the frequency domain is easier to solve the equation (5.1), in other words the 

convolution of two functions in time domain is equivalent to a product of their Fourier 

transform: 

&�'� �  (�'� � )�'� ,�- .�/0� � 1�/0�. 2�/0�  ,�- 1�/0� �   .�/0�2�/0�        �5.2� 

Where 2�/0� is the system’s transfer function, the Fourier transform of IR. 

 

5.1.5.1 IMPULSE RESPONSE (IR) DETERMINATION 

The method used to determine the IR for each PZ sensor is similar to the one used 

by Pereira H. et al [58]. A linear sweep is generated by the WG (Agilent 33220A) and 

reproduced by ACT 700 µm (Physik Instrumente GmbH P-287) which actuate on each PZ 

sensor. The relation between Fast Fourier Transform of PZ output and the linear sweep 

results the transfer function, 2�/0� �  4�56�7�56�. Through Inverse Fast Fourier Transform 

the 2�/0� is transformed to the time domain resulting the IR. Figure 5.9 illustrated this 

method. The interface used between ACT and PZ probe was the same as in previous 

tests, air tube and glue pads. 
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Double 
Probe PZ 

 

Figure 5.9 – Schematic of IR determination method for each PZ sensor. 

 

Figure 5.10– Results of IR determination of each PZ sensors. 
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The frequencies’ range used to make the linear sweep was 500 MHz to 250 Hz 

because for frequencies above 250 Hz both PZ sensors saturated due to power supply 

(±5v). The linear sweep characteristics are: 

Sine amplitude: 1.600 Vpp 

Frequency start: 500 mHz 

Frequency Stop: 250Hz 

Sweep time: 500 seconds 

Sample rate: NI-USB 6009 5 kSamples/s 

 

The figure 5.10 illustrates the output and the IR for each PZ sensor. Both IRs are 

similar whether in amplitude or shape. This method to obtain the IRs was repeated and 

the same results were obtained as long as the interface was well positioned. But we 

were able to reproduce the results showing the IRs are repeatable. 

 When a PZ sensor was being actuated by linear sweep, the output of the other 

one was being recorded too. It was noticed that the integrated signal from the PZ 

actuated responded to some frequencies but with very low amplitude. The integrated 

signal from another PZ sensor didn’t respond unlike PZ signal which responded to higher 

frequencies but this output didn’t result any IR. 

 

5.1.5.2 DECONVOLVED SIGNALS  

From IR to each PZ sensor we are able to apply deconvolution method in order to 

obtain the original signal transmitted by ACT and that was actuated on PZ sensors, 

proving the accuracy of the IR determined. Both PZ sensors were actuated 

simultaneously by ACT and sampled by 5 kSamples/s. The differentiated PZ 1 and PZ 2 

signals were deconvolved with their respective IR. It was selected a segment of IR to be 

deconvolved with PZ signal taking in account the frequency spectrum of both. The DC 

components of the IR and PZ signal were recovered. The result is presented in figure 

5.11 where the original pressure waveform (type C waveform with amplitude 3 volts 

and period 900 ms) was recovered. 
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Figure 5.11 – Result of deconvolution using IR of and PZ output each PZ sensor. The original signal (type C with 

amplitude 3 volts and period 900ms) (green) is recovered (red and blue). The integrated PZ1 and PZ2 signal are also 

represented (black and purple). 

 

5.1.6 DISCUSSION 

WAVEFORMS ANALYSIS 

This test shows that the PZ probe can reproduce the synthesized cardiac and 

Gaussian waveforms. The integrated PZ signal has exactly the same shape of synthesized 

waveforms and the PZ signal identify the inflection points of waves, see figures 5.3, 5.4, 

5.5 and 5.6 (on the left). Regarding waveforms, the new PZ probe is able to reproduce 

the original wave.The signal obtained by the integration method, in some of the 

acquired signals, doesn’t have the same amplitude as the integrated PZ signal (obtained 

by electronic probe) or ACT signal but their shape is the same.  

In the majority of the signals acquired it appears that the RMSE values between 

the integrated PZ signal and the ACT signal were smaller than the signal obtained by 



CHAPTER V PROBE CHARACTERIZATION  CHARACTERIZATION OF A NEW PIEZOELECTRIC PROBE 

 

45 
 

integration method and ACT signal, see tables 4, 5, 6 e 7. This means that the integrated 

PZ signal can reproduce more faithfully the original wave. For cardiac waveforms, the 

RMSE values between integrated PZ signal and signal obtained by integration method 

were the biggest, comparing to the other ones. It shows a large discrepancy between 

two paths that intended reproduce the same ACT signal. The integrated PZ signal is able 

to reproduce the main characteristic points of the waves with low error, showing to be a 

good approximation to the original wave. From the results in table 4 for the Gaussian 

waveform, table 4, is difficult to draw general conclusions.  

In order to know how the RMSE varies along the waveform the figure 5.3, 5.4, 

5.5 and 5.6 on the right show the RMSE distribution. The error is increased after the 

systolic upstroke of waves and systolic peak, it means after near 0.2 seconds in Gaussian 

waveform, 0.1 seconds in TYPA, TYPEB and TYPEC waveforms. When the waveforms 

back to the baseline the RMSE is decreased. This can be explained by the electronic 

circuit of the probe, specifically by the effect of a capacitor.  

In this test bench, the interface between actuator and PZ probe is the most 

important factor. If the air tube is in a slightly different position or doing more or less 

pressure on actuator’s mushroom, it influences the shape of the probe signal (PZ signal 

and integrated PZ signal) and consequently the RMSE. However, an operator working 

regularly with this test bench system can adjust the interface and identify whether the 

signal is saturated or the interface is to interfere with PZ signal.  

REPEATABILITY ANALYSIS 

The repeatability analysis consisted to know the precision of PZ probe when this 

measures the same input signal, produced by ACT, several times. In other words, if the 

PZ probe always responds in the same way at the same input signal. In order to quantify 

this study, for each measurement was calculated the RMSE between the integrated PZ 

signal and the ACT signal of the average signal, see table 8. 

The RMSE values weren’t consistent in both measurements, as we can see in 

table 8. For three data, shaded in gray, the discrepancy between RMSE of both 

measurements (|RMSE 1 – RMSE2|) wasn’t significant compared to others. The number 

of cardiac waveforms analysed (the twenty five pulses) may not be enough to get good 
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results and show the repeatability of the probe as well as the different way the probe 

and interface were coupled. However more measurements should be made to obtain 

conclusive results and to draw more conclusions. 

CROSSTALK ANALYSIS 

The test showed there isn’t crosstalk effect between both PZ sensors. The 

transmission of a synthesized waveform to one PZ sensor doesn’t affect the response of 

the other PZ sensor. 

IR DETERMINATION AND DECONVOLUTION METHOD 

The IR was determined, see figure 5.10, for each PZ sensor using appropriated 

range of frequencies and interface in order to not saturate of the PZ signals during the 

linear sweep. The profile of both IRs is similar, there is only difference a little difference 

regarding the amplitude. The determined IR in dissertation Methodologies for 

Hemodynamic Parameters Assessment is represented in figure 5.12 [13]. It was used the 

same methodology but with another PZ double probe and it was obtained different IRs. 

The electronic associated with each probe was different, justifying this results. 

 

Figure 5.12 – The Impulse Response of a PZ1 sensor obtained by [13]. 

Figure 5.11 shows that the determined IRs were capable to recover accurately 

the original waveform by deconvolution method. In fact, both deconvolved signals are 

similar to each other and with the original signal too. The deconvolved signals aren’t 

filtered and the RMS value between both is 3.01%. The integrated signals are very close 

to each other and the shape is equal to deconvolved signals and original signal. In 

general, we can say that the waveforms given by probe are a good approximation to 

original signal and deconvoluted signals. 
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5.2 TEST BENCH II 

The test bench II was thought to simulate some hemodynamic properties of the 

cardiovascular system namely the propagation of the arterial pressure wave (APW) in 

arteries and the components: the incident and reflected waves.  

The first system developed at GEI for this purpose showed to be an important 

tool in the study of the forward and backward propagation pressure waves, in the 

recovery of the APW by deconvolution as well as in the validation of the algorithms [61]. 

The encouraging results led to the development of another test bench system whose 

length of the tube was greater allowing the execution of the previous studies and 

estimate the time resolution of the probe [58]. This system is used now to characterize 

the new PZ probe too. 

5.2.1 INSTRUMENTATION 

The experimental setup was adapted from Pereira et al 2010 and it is illustrated 

in figure 5.13. Regarding this system, the silicon tube was replaced by a latex tube that 

in literature is considerate the best material to simulate the compliance of the human 

carotid artery [62, 63].  

 

Figure 5.13 – Schematic drawing of the test bench II. Two PZ sensors are placed on latex rubber tube that sense the 

Gaussian waveform generated by ACT. The pressure sensors (PS1 and PS2) monitored the DC pressure, controlled 

by the piston (P) and mass (m), and are used as reference to assess the PWV. Adapted from Pereira et all [58]. 
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In fact, the latex tube is more distensible than silicon tube being able to expand 

and constrict due to the pressure’s action replicating the blood flow of the arterial 

system. It’s expected that the elastic characteristics of the tube are similar to normal 

arteries under physiologic pressures (80-150 mmHg).  

Like in the test bench I, a waveform is delivered from WG, Agilent 33220A, driven 

by a high-voltage linear amplifier (Physik Instrumente GmbH, E-508) and delivered by a 

700 µm ACT (Physik Instrumente HmbH, P-287). The test bench II tries to characterize 

the new PZ probe under similar physical conditions. The ACT generates a synthesized 

Gaussian pressure waveform, to simulate the propagation of the pulse wave from 

ascending aorta to arteries of the system arterial. This phenomenon is simulated by a 

natural rubber latex tube (length 200 cm, inner diameter of 7.937 mm and wall 

thickness of 0.7937 mm) filled with water. A latex membrane is used as an interface 

between the ACT and the water into the tube at the left extremity of latex tube. 

The arterial pressure is controlled by a piston (P) and a mass (m) allowing to 

change the DC pressure level which is monitorized by two pressure sensors (Honeywell 

S&C-40PC015G1A) coupled to a digital voltmeter (Digital panel meter 3-1/2D LCD) 

placed transversely and longitudinally to the tube, PS1 and PS2 respectively. The 

pressure sensors are used as reference to assess the PWV in the tube, and both are 

connected to the data acquisition system (NI- USB 6009). Their reponses to the wave 

delivered by the ACT is recorded by the NI sotware. 

The PZ sensors are placed on the latex tube doing some pressure on it through of 

the an acrylic structure with a hole to fixed the PZ sensor. The PZ sensors are connected 

to the electronic of the probe throught an electric wire. 

Four main studies were done with this experimental setup that consisted in: 

studying the wave propagation along the tube; characterizing the behaviour of latex 

tube with different DC pressure levels; to determining the time resolution of the PZ 

probe and assessing the dispersion of the PWV measure with the probe along twenty 

positions along the tube. 
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5.2.2 CHARACTERIZATION OF THE TEST BENCH II  

5.2.2.1 PROPAGATION OF THE PRESSURE WAVE IN THE LATEX TUBE 

In this study, only the PZ 1 sensor is placed on the latex tube detecting a 

Gaussian waveform (period: 100 ms and amplitude: 3 volts), generated by the ACT, at 2 

to 2 cm along the tube.  The PZ sensor is able to sense this Gaussian waveform that 

propagates along of the tube, and that is composed by an incident Gaussian waveform 

and a reflected Gaussian waveform, figure 5.14. The study was done at the pressure 

40.86 mmHg and all acquired signals were sampled at 11 kSamples/s and with 10 

kSamples to read. 

 

Figure 5.14 – Propagation of a Gaussian waveform (amplitude 3 volts and period 100 ms) sensed by PZ 1 sensor at 

90 cm of the tube. The PZ and ACT signals were recorded. 1- Forward wave sensed by PZ1 sensor, 2- Reflected wave 

at the end of the tube, 3- Reflected wave at the beginning of the tube. 

The imagesc and mesh functions of Matlab® allowed representing the wave 

propagation along of the tube length in function of time. The figure 5.15 represents the 

data in a 3-D mesh surface and the figure 5.16 shows the propagation of the wave along 

the tube where is represented the incident wave generated by the ACT – the forward 

wave (represented by line 1)- that is reflected at the end of the tube – the backward 

wave (represented by line 2) - and this last one was reflected again at the tube 
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beginning (represented by line 3). It’s also possible to see more reflections along the 

tube (lines 4, 5 and 6) although weaker, as expected, due to wave dissipation.  

 

Figure 5.15 – Representation of the data of the wave propagation in a latex tube by 3-D mesh surface. 

 

Figure 5.16 – Propagation of the Gaussian waveform along the latex tube and its reflection. Line 1 represents the 

propagation of forward wave and Line 2, 3, 4 and 5 represent the backward waves reflected at the end of the tube. 

The black horizontal lines corresponds the sites where wave was reflected, at -4.5cm and +1.5cm. 
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In the acquisitions made at the tube’s beginning, the multiple reflections of the 

wave at the ends of the tube were more difficult to see.  

The black circles along the line 1, in figure 5.16, represent the minimum value of 

the forward wave sensed by the PZ sensor along the tube. The lines were drawn from of 

the amplitude of absolute minimum of the PZ signal and the interceptions of these also 

represent the physical sites where the Gaussian wave is reflected. The horizontal black 

lines in figure 5.16 show that the reflection occurred: at 4.5 cm before the beginning of 

the tube, where is located the latex membrane through which the ACT releases the 

pressure wave, and at 1.5 cm after the end of the tube where is located the piston. 

These components of the test bench close the latex tube. 

The velocity of the Gaussian waveform propagation is determined by the slope of 

the line 1 which in this case is near 13.4 m/s. 

 

5.2.2.2 RELATION BETWEEN DC PRESSURE AND PWV IN THE LATEX TUBE 

This second study allowed characterizing the behaviour of the latex tube for 

different DC pressure levels. The PWV in the tube for different DC pressures was 

determined from the response of the pressure sensors (PS 1 and PS 2) to a Gaussian 

waveform, with amplitude 3 V and 150 ms of period, released by the ACT. The ACT, PS 1 

and PS 2 signals are recorded at 5 kSamples/s for each and every one of the 33 levels of 

DC pressure acted on latex tube by the piston - an example of the signals recorded are 

presented in figure 5.17. The distance between the two pressure sensors (Δx) is 2.108 m 

and the pulse TT was determined from maximum amplitude detection, zero-crossing 

point identification and maximum of cross-correlation algorithms described in section 

4.2. The signals were filtered by moving average filter with 70 points. 
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Figure 5.17 – Recorded ACT, PS 1 and PS 2 signals at 49 mmHg of the DC pressure. 

Three trials were made in order to prove the repeatability of the measurements. 

The figure 5.18 shows the results where each point represents the mean PWV obtained 

in the three trials in each algorithm.  

 

 

Figure 5.18 – Relation between the DC pressure and PWV obtained by pressure sensors from three algorithms in 

the latex tube. The linear fit was made for each algorithm: maximum: y=-0.034x +15.39, R
2
=0.996; zero-crossing: 

y=-0.037x+ 15.25, R
2
=0.993 and cross-correlation: y=0.036x +15.26, R

2
=0.996.  
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These results showed that the PWV decrease linearly with the pressure increase. 

A linear fit was done for the determined PWV with each algorithm where the Pearson’s 

coefficient varies 0.993 to 0.996, very close to 1. The results are consistent and the PWV 

assessed by the three algorithms is similar.  

According to the Bramwell-Hill expression which related the local wave speed 

with the D:  

89� �  : ;<= , where > �  ??@. A,               (5.3) [20] 

the increase of the pressure causes an increase of PWV, assuming that the cross section 

of the tube doesn’t vary.  

During the experiments the increasing pressure seemed to cause an increase of 

tube’s diameter and length. In the last of the three experiments, with 144 mmHg DC 

pressure, the tube besides swelling also extended ‘jumping’ of the structure where it 

was on it. Given the results in figure 5.18 and the observations during the experience, it 

was concluded that the diameter or D of the tube should be measured. Using ultrasound 

would be an accurate way to obtain the cross sectional area of the tube for each 

pressure but in this case the diameter was measured at 60, 124 and 190 cm of the tube 

three times for each DC pressure level with a calibre. The experience was repeated 

three times so each point of the figure 5.19, 5.20 is the result of the mean of the three 

trials. 

The figure 5.19 shows that in fact the diameter of the tube increases with the 

increasing of the DC pressure and increase equally along the three measured positions. 

The area of the cross-section of the tube was determined from the mean value of the 

diameter in the three measured positions for each DC pressure as is shown in figure 

5.20.  

It was verified that there is an exponential relationship between the pressure (p) and 

the area (A), as is described in Meinders et al [20]: 

B � BC � DE?, where BCFGH I are constants.         (5.4)        
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Figure 5.19 – Relation between DC pressure level and diameter measured at 60, 124 and 190 cm of the tube. 

 

Figure 5.20 – Exponential relationship between DC pressure and cross-section of the latex tube. An exponential fit 

was made to the data with equation: y=7*10
-5
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The two data points, in figures 5.19 and 5.20, are far from the other points which it was 

due to a lack of precision in the measure with the calibre, which it will be reflected in 

the assessment of PWV.  

From diameter measured in the tube we determine the D, as 5.3 equation, 

where: HJ � JKLJ   FGH H8 � 8KL8  , JK FGH 8K  is systolic arterial cross-section and 

systolic pressure and J   FGH 8  is diastolic cross-section and diastolic pressure. 

Assuming that: the diastolic pressure corresponds to the initial DC pressure (35.68 

mmHg); the diastolic area corresponds to the initial area of the tube at 35.68 mmHg; the 

systolic pressure corresponds to each DC pressure level and the systolic area 

corresponds to area of the tube for each DC pressure level.  The density of the water is 1 

Kg/m3. 

The PWV as a function of D of the tube was assessed for different DC pressure 

levels, as is shown in figure 5.21. Each point corresponds to the mean PWV of the last 

two experiments.  

 

Figure 5.21 – Relation between the DC pressure level and PWV as a function of the distensibility of the latex tube. A 

linear fit was made to the last points with equation y=-0.088x+27.25 and R
2
=0.989. 

Considering the D of the tube to assess PWV we verified that PWV varies to 16.5-

18.5 m/s for range pressures 44-100 mmHg, thereafter the PWV seems to decrease 

linearly as shows the linear fit in the last points.  
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The first trial was excluded to determine the PWV in the latex tube because the 

ACT was removed from the experimental setup, and consequently, with the increasing 

DC pressure the latex membrane (whose is the interface between ACT and water into 

the tube) stretched and this influenced the PWV obtained for lower pressures, as shows 

figure 5.22. It means that not exerting force on the latex membrane, leaving it ‘free’, it 

dilates to compensate the pressure it is exerting on the tube decreasing the PWV. 

 

 

Figure 5.22 – Representation of PWV in the three trials for lower DC pressures. 

 

 

5.2.3 TIME RESOLUTION OF PZ PROBE 

The time resolution of the probe was showed through the LPWV assessment. 

The pulse TT between two recorded PZ signals was determined from several algorithms. 

They allowed assessing the smallest changes that the TT value can be measured. 
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Two experimental studies were done in order to evaluate the time resolution of 

the PZ probe. In the first one, two uncoupled PZ sensors on the latex tube were 

separated initially of 40 cm (Δxi), as illustrates the figure 5.13. The PZ 1 was fixed in the 

same position on the tube while the PZ2 was approaching it every 2 to 2 cm. It was 

determined the LPWV for each separate distance (Δx) when a Gaussian waveform, with 

3 volts amplitude and 150 ms of period, was sensed by both sensors. The section 4.2 

describes the algorithms used to assess the pulse TT. 

The signals of pressure sensors, PZ sensors and ACT were sampled to 5 

kSamples/s at DC pressure of 39 mmHg. The PWV determined from the signals of the 

pressure sensors was used as the reference value. The figure 5.23 shows the signals 

recorded when Δx was 14 cm. 

 

Figure 5.23 – Recorded signals to evaluate the time resolution of the probe. The Δx between PZ sensors was 14cm. 

The signals were filtered by a moving average filter. 

 

Three trials were made and in each one was determined the PWV between the 

signals of the PZ sensors and pressure sensors with five algorithms. Each point of the 

figure 5.24 represents the mean PWV of the three trials. The distance between pressure 

sensors was 2.108 m and between uncoupled PZ sensors varied (Δx) but it’s well known. 
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The relative error for each distance between uncoupled PZ sensors for each algorithm, 

figure 5.25, was determined as: 

NDOF'PQD DRRSR �%� � 89� RDU L 89�P89� RDU � 100, 
where 89� RDU is the PWV value determined with pressure sensors and 89�P is the 

PWV value determined with the PZ sensors.   

Figure 5.24 shows the PWV values estimated from pressure sensors remained 

constant with increasing distance between uncoupled PZ sensors. With the pulse onset 

detection algorithm, the PWV values obtained are more widely dispersed than other 

algorithms. For Δx=2cm, the PWV estimated with PZ sensors is greater than the 

reference and the relative error is near 8% for maximum AD, minimum AD and zero-

crossing algorithm. In opposite the PWV estimated with onset algorithm is lower than 

the reference and the relative error is near 6%. When Δx increases the PWV values 

deviate from the reference values but for Δx greater than 22 cm the PWV values again 

approach the reference values with a relative error for all algorithms near to 8%. 

The mean of all relative errors was 7.9% for maximum AD algorithm, 10.45% for 

minimum AD algorithm, 9.847% for pulse onset detection algorithm, 9.08% for zero-

crossing point algorithm and 8.89% for maximum of cross-correlation algorithm. 

Although there isn’t a large discrepancy between the mean relative errors for each 

algorithm the maximum amplitude algorithm showed a lower error for the most Δx. 

However, the pulse onset algorithm showed lower error for Δx of 2 and 4 cm. 

When the PZ sensors are placed 2 cm apart, the pulse TT estimated them by all 

algorithms was 1.3 ms except the onset algorithm that was 1.4 ms. 
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Figure 5.24 – PWV assessment of five algorithms from the signals of the PZ sensors uncoupled Δx cm and pressure 

sensors (reference). 

 

 

Figure 5.25 – Relative error for each distance between uncoupled PZ sensors (Δx) and each algorithm. 
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The second study consisted in generating a burst of ten Gaussian waveforms, 

with amplitude of 3 volts and 150 ms of period, it was sensed by PZ probe and pressure 

sensors. The two PZ sensors were placed near 16.8 mm apart on the tube where they 

were placed in twenty consecutive positions along it (90 - 130 cm of the tube in 2 to 2 

cm). As in the first study, the PWV was estimated from pressure sensors, (reference 

value), and from PZ signals, using three different algorithms – maximum and minimum 

AD and pulse onset detection. Figure 5.26 shows an example of recorded signals in this 

study in response to a burst generated by the ACT. The first two pulses and the last one 

of all recorded signals weren’t analysed. 

It was also made three trials and in each one was estimated the reference PWV 

and the PWV from PZ signals. The ACT signal was segmented (segmentation algorithm in 

section 4.1) and found the onset of each Gaussian waveform, dividing the signal into 

periods. For each period was determined the pulse TT between two PZ or pressure 

signals and from the mean of the TT estimated in all periods was determined the PWV 

for each position on the tube. In the figure 5.27, each point represents the mean PWV of 

the three trials and in the figure 5.28 the relative error between the reference PWV and 

determined from PZ probe associated to each algorithm for each position.  

 

Figure 5.26 – Recorded signals of PZ and pressure sensors in response to a burst of ten Gaussian waveforms (in 

black). The PZ probe is at 90 cm of the tube. 
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Figure 5.27 – The local PWV estimated from pressure sensors and PZ probe in 20 consecutive positions along the 

latex tube. 

 

 

Figure 5.28 – Relative error between the reference PWV and determined from PZ probe for each position on the 

latex tube and each algorithm. 
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The LPWV assessed by maximum AD algorithm showed a greater dispersion of 

the measurements in relation to the reference PWV, as we can see in figure 5.27 and 

5.28. The dispersion is greater in positions 98-104 cm and 118-126 cm on the latex tube 

where the PWV ranged from 20 to 50 m/s. Physiologically, these PWV values don’t make 

sense. 

The mean of the all relative errors with minimum AD was 33.87%, with onset 

detection was 43.19% and maximum AD was 89.9%. Although the dispersion of PWV 

measurements by PZ probe in relation to the reference are large, the PWV values 

obtained with minimum AD, whose mean PWV of the distribution was 12.89±6.07 m/s, 

tended to approach to the correspondent reference values that was near 13.56 ±0.03 

m/s. The mean of reference PWV obtained with onset detection was 14.78±0.07 m/s 

and the mean PWV obtained with PZ probe was 8.39±2.47 m/s. The algorithm with 

worst performance in this study was the maximum AD, where the mean of the 

reference PWV was 13.906±0.03 m/s and the mean of PWV obtained with the PZ probe 

was 23.59 m/s and high standard derivation was 14.55 m/s. In order to compare the 

deviation of the two PWV distributions (reference and PZ probe) determined with 

minimum AD, the coefficients of variation were calculated. The CV of the reference PWV 

was 0.53% and for PWV determined from PZ signals was 47.07%. 

In this study the PZ probe could discriminate two points where the mean of TT 

estimated, with minimum AD along the all positions on the latex tube, was 1.5 ms. 

 

5.2.4 DISCUSSION 

CHARACTERIZATION OF THE TEST BENCH II 

The characterization of the latex tube constituted the first part of the tests in the 

test bench II. The propagation of a Gaussian waveform along the tube was studied with 

a PZ sensor of the new PZ DP which was able to sense the incident wave and their 

reflections at the ends of the tube. The figures 5.15 and 5.16 show the incident wave is 

more visible because it was detected with great amplitude. Over the time, with the 

multiple reflections, the wave was dissipated. The study of the phenomena of wave 
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propagation allowed verifying the physical location in the test bench where the wave is 

reflected, in other words, the components at the ends of the tube – the latex membrane 

and piston. The Gaussian wave propagated into the latex tube 13.4 m/s at 40.86 mmHg.  

The latex tube showed to be a distensible tube because it was able to stretch and 

dilate under the increasing of DC pressure. In this tube, the PWV estimated through the 

pressure sensors as the reference value, didn’t reflect the actual behaviour of the tube 

because it swelled and the caused a difference in diameter with the DC pressure. It was 

shown that there is an exponential relationship between the DC pressure and area 

cross-section of the tube. The results of the PWV assessed by measuring the diameter or 

D, see figure 5.21, showed a different profile from the first in figure 5.18 and the silicone 

tube in figure 5.29, where the PWV varied to 16.5-18.5 m/s for range pressures 44-100 

mmHg. For DC pressures above 100 mmHg the PWV decreased and a possible 

explanation is that the tube increased in diameter but also in length compensating the 

difference in pressure, as it was seen in early trials. The method to measure the 

diameter wasn’t the most precise and it would be necessary more trials to obtain better 

results but this can show that the PWV in a latex tube is approximately constant for a 

range of DC pressures.  

During the trials with DC pressure variation it’s necessary to be careful with the 

latex membrane because for high pressures (near 140 mmHg) which can break it. 

However, it was possible to vary DC pressure simulating the biological pressures in the 

human adult (80 mmHg diastolic and 120 mmHg systolic) in opposite with the silicone 

tube (10 mmHg to 70 mmHg, see figure 5.29) [64].  

The initial diameter of the tube, according to the product description, was 

9.5244 mm and the initial diameter measure with the calibre varied to 9.79-9.92 mm. 

Another interesting study would be to prove, with another method of measuring the 

diameter, if the tube beyond distensible is compliant, which means is able to come back 

to its original dimensions. The ultrasound was used to measure the diameter in the 

carotid artery and it seems to be the best alternative to measure the diameter in the 

tube [20].  Another alternative would be to measure it optically. 
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Figure 5.29 – Relation between DC pressure level and PWV in the silicon tube [58]. 

 

TIME RESOLUTION 

To evaluate the time resolution of the new PZ probe, several algorithms was 

implemented in order to calculate the pulse TT and find the best way to assess the 

LPWV, from PZ signals, and also the most accurate way in relation to reference PWV.  In 

both studies the dispersion between reference PWV and PWV estimated from PZ signals 

was high for all algorithms but in each study was found the best algorithm, the 

algorithm with the lowest relative error. The maximum and minimum AD algorithms 

showed best performance for the first and second study, respectively. 

In the first study, it was possible to determine the pulse TT with all algorithms 

when the distance between uncoupled PZ sensors was decreasing.  

In the second study, the dispersion of the PWV measured along the tube was 

quantified by CV. Although the mean of PWV (12.89±6.07 m/s) determined by minimum 

AD and obtained by PZ probe along the twenty positions, being near the reference PWV 

(13.56±0.03 m/s) the standard derivation isn’t enough to compare the two distributions 

of PWV. The CV revealed a large discrepancy between the distributions, 0.53% for 

reference PWV and 47.07% for PWV determined from PZ probe. The CV was greater 
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than the CV obtained with the previous double probe (10.32%) and the local PWV 

assessed with this new PZ probe was near 13 m/s while the previous was near 19 m/s. 

The position along of the tube where were acquired the PZ signals also could 

have contributed for these results due to the influence of the backward waves. The 

reflected waves at the ends of the tube changed the morphology of the acquired signals 

by PZ probe and the algorithms to assess LPWV weren't the most appropriated for these 

signals. On the other hand, as mentioned in chapter 2, the PWV increases in arteries 

near the reflection sites. Similarly, along these positions in the latex tube this 

phenomenon could have happened.  

The average of the time resolution estimated along the 20 positions on the tube 

when both PZ sensors were placed near 16.8 mm apart was 1.5 ms. 

In order to improve the results, the algorithms to assess pulse TT should be 

optimized because the relative errors and LPWV values were large. An appropriate 

interface between PZ sensor and the measurement site should also be studied so that 

there is only one point of contact between them both. To choose a region along the 

tube where the PZ signals there aren’t affected by reflected waves could be another 

solution to improve the results. More trials should be done to have more measurements 

and increased the statistic of the data because three trials aren’t enough.  
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CHAPTER VI 

PRELIMINARY CLINICAL TRIALS 

The clinical trials are another important step in the PZ probe’s characterization. 
The clinical validation of the probe is a long process which will be carried out by our 
collaborators and for this reason the clinical trials shown in this thesis were collected in 
a small group of volunteers at GEI. 

6.1 DATA ACQUISITION PROTOCOL 

The clinical trials involved eight healthy volunteers, two male and six female, in 

the age range from 22 to 28 years old and without history of cardiovascular disease, 

hypertension and diabetes. For a month, once a week, were collected signals on CCA 

on each patient using the following protocol: 

1) The volunteers were sat on a chair and at rest before the acquisitions 

started; 

2) The operator of all acquired signals with the PZ probe was the volunteer 

himself; 

3) The signal was acquired at right CCA and recorded seven consecutive pulse 

waves. The procedure was repeated for left CCA. 

4) The step 3) was repeat a second time. It means each week two signals were 

recorded at right CCA and left CCA. 

 

6.2 RECORDED SIGNALS IN CCA 

The CCA signals were recorded at 11 KSamples/s in Measurement & 

Automation software and processed in MATLAB®.  

Although the volunteers used to deal with similar probes the data acquisition 

process wasn’t easy. Anyway, the integrated PZ signal as a aproximation to the real 

ABP waveform is a new trend to help to the operator to recognize more easily its ABP 

and identify if it’s a normal or abnormal signal. Figure 6.1 shows an example of a 

recorded signal in a volunteer where the DC component was removed, the signals 

were normalized and filtered by a moving average in 50 samples. 
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Figure 6.1 – Example of a recorded right CCA signal recorded by a volunteer. It is represented the PZ signal and 

the integrated signal of both PZ sensors. 

 

6.3 ASSESSMENT OF LOCAL PWV  

In section 4.3 of this thesis, the method used to determine the local PWV was 

explained taking into account the distance between two recorded sites (Δx). The PWV 

was calculated in each segmented pulse wave of each recorded signal at left CCA and 

right CCA by two methods: maximum and minimum AD algorithms.  

Some of the PWV values obtained from a pulse wave were distant from the 

PWV values of the other pulse wave in the same recorded signal or the other PWV 

values obtained in other recorded signals in the same week. Statistically, the values 

that appear to differ dramatically from the rest of the data are defined as outliers. In 

order to improve the results the outliers were identified and removed by the 

assumption that an outlier is a value (WX) that is more than two standard derivations 

away from the mean of the PWV, mathematically expressed by 

�WX L �YZ[������ \ 2 � ]� [65]. The table 9 shows an example of identified 

outliers, in gray. Although it was identified the outliers, there are PWV values far from 

physiological values, 4-10 m/s [1]. So a second criterion was used to removal outliers 

which consisted to removal PWV values > 15 m/s, represented with * in table 9. 
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Table 9 – Identification of the outliers, in gray, from the data recorded in week 2 in a volunteer. 

Week 2 – PWV assessment (m/s) 
Maximum Amplitude Detection Algorithm 

Pulse 
waveform 

Left CCA Right CCA 

Signal 1 Signal 2 Signal 1 Signal 2 

1 4.06 44.68* 2.71 1.71 
2 3.50 13.75 2.93 0.02 
3 5.96 25.53* 3.19 1.70 
4 5.26 22.34* 2.79 1.82 
5 3.72 70 2.93 1.67 
6 5.11 44.68* 2.66 1.49 
7 5.96 44.68* 2.66 1.58 

Mean 
PWV±SD 

 17.63±16.96 m/s 2.14±0.86 m/s 

 

The two recorded signals in the same location at the CCA (left and right) allow 

having more samples to determinate the PWV, initially the number of samples was 14 

pulse waves (N=14). With the outliers identification the number of samples decreased, 

for example in table decreased to N=8 at left CCA, table 9.   

 

6.4 REPEATABILITY ANALYSIS IN CCA SIGNALS 

Repeatability and reproducibility studies are essential to probe the precision of 

the new PZ probe. The repeatability analysis was discussed on section 5.1.3 when the 

probe was characterized in test bench I, not showing conclusive results. In CCA signals 

recorded, the repeatability study can be carry out from the local PWV assessment in 

the in the same volunteer and with the same operator in four measurements recorded 

once a week. With the reproducibility test, it is intended to reproduce the same 

measurements by different operators but this test wasn’t made yet.  

Tables 10 and 11 show the mean local PWV values and standard derivation (SD) 

of the N pulse wave for each volunteer during four weeks at right and left CCA. The 

local PWV was determined by maximum AD algorithm, table 10, and minimum AD, 

table 11.  
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Table 10 – Mean local PWV and standard derivation for each volunteer during four weeks. The local PWV was 

assessed by maximum amplitude detection algorithm. The indexes correspond to the number of samples: 
1
N=14; 

2
 N=13;

 3
 N=12; 

4
 N=8, 

5
N=11, 

6
N=10. 

PWV assessment±SD  (m/s) – Maximum amplitude detection algorithm 

Volunteer 
Week 1 Week 2 Week 3 Week 4 

Left CCA Right CCA Left CCA Right CCA Left CCA Right CCA Left CCA Right CCA 

1 1.88±0.98 
1
 2.35±0.74 

1
 5.91±3.31 

4 
2.14±0.86 

1
 1.75±0.39 

1
 5.27±4.24 

1
 5.29±3.3 

2 
3.58±1.43 

1 

2 

 
8.07±3.15 

2
 

 

 
4.80±2.26 

1
 1.84±0.59 

1
 5.47±5.04 

5 
1.52±0.20 

1
 2.72±0.99 

1
 4.05±2.39 

1
 2.28±0.25 

1
 

3 6.09±3.05 
3
 8.105±3.48 

5
 3.18±1.15 

4
 3.86±1.71 

2 
2.07±0.24 

1
 1.83±0.15 

1
 3.04±0.59 

1
 1.51±0.40 

1
 

4 

 
4.24±1.82 

2
 

 

 
1.86±0.52 

1
 6.52±3.73

 6 
3.38±1.80 

2 
3.99±3.12 

1
 4.96±2.38 

5
 2.14±0.68 

1
 2.78±1.20 

1
 

5 4.57±2.37
 6 

 
2.57±1.55 

1
 3.07±1.01 

1
 3.92±2.97 

3 
2.37±0.36 

1
 6.75±3.37 

4 
2.67±0.44 

1
 3.08±2.50 

3 

6 2.06±0.49 
1
 3.38±0.55 

1
 3.33±1.67 

1
 2.51±0.93 

1
 5.04±3.71 

1 
3.53±0.75 

1
 1.96±0.27 

1
 6.17±4.74 

2 

7 

 
4.61±4.05 

1
 

 
1,66±0,88 

1
 

 
5.20±5.18

 5 
 

1.93±0.25 
1
 

 
5.87±2.61 

1
 

 
2.53±0.84 

1
 

 
3.32±1.80 

1
 

 
1.98±0.56 

2
 

8 

 
5,27±2,51 

3
 

 
5.21±2.42 

3
 1.85±0.52 

1
 3.59±4.99 

3
 5.83±1.32 

1
 1.65±1.42 

2 
1.35±0.13 

1
 6.68±3.83 

6 

 

Table 11– Mean local PWV and standard derivation for each volunteer during four weeks. The local PWV was 

assessed by minimum amplitude detection algorithm. The indexes correspond to the number of samples: 
1
N=14; 

2
 

N=13;
 3

 N=12; 
4
 N=8, 

5
N=11, 

6
N=10, 

7
N=9. 

PWV assessment±SD  (m/s) – Minimum amplitude detection algorithm 

Volunteer 
Week 1 Week 2 Week 3 Week 4 

Left CCA Right CCA Left CCA Right CCA Left CCA Right CCA Left CCA Right CCA 

1 2,93±0,93 
1 

4,05±1,42 
1 

4,35±2.06 
3 

5,27±3,47 
1 

2,11±0,72 
1 

7,17±4,65 
1 

4,22±1,81 
1 

6,40±2,66 
1 

2 2.54±2.58 
1 

4,90±3,69 
1 

2.66±2.17 
5 

11,38±8,64 
5 

4,81±3,46 
1 

8.30±5.20 
6 

2,62±1,87 
1 

4.54±3,98 
6 

3 2,22±1,79 
1 

2,61±2,21 
2 

3,06±1,77 
1 

1,35±0,48 
1 

3,85±2,81 
1 

1,39±3,02 
1 

3,07±1,47 
1 

3,89±2,19 
2 

4 1,75±0,36 
1 

7,52±4,73 
2 

1,20±0,47 
1 

2,20±0,93 
1 

3,58±3,65 
2 

1,65±1,08 
1 

4,06±2,05 
1 

2,97±3,85 
1 

5 6,69±0,70 
1 

5,83±1,19 
1 

4,05±0,21 
1 

5,17±1,94 
2 

4,45±1,62 
2 

8.77±4.19 
5 

4,05±1,05 
1 

5,71±2,52 
1 

6 1,57±0,88 
1 

3,81±2,26 
3 

3,14±1,78 
1 

1,96±1,18 
1 

1,64±0,75 
1 

2,62±1,95 
1 

2,19±1,12 
1 

3,18±0,94 
1 

7 5.53±2.05 
6 

8.58±3.35 
3 

5.19±3.56 
4 

6.73±10.62 
3 

1,95±1,80 
1 

5.58±4.54 
7 

5.85±13.65
6 

4,94±1,92 
1 

8 6,25±2,78 
2 

4,46±1,84 
2 

3,40±2,56 
1 

5.62±4.95 
5 

1,04±1,06 
2 

5.33±2.79 
6 

2.10±1,19 
1 

6,44±4,93 
2 

 

The mean local PWV values with maximum AD algorithm has a range from 1.35 

m/s to 8.105 m/s while with minimum AD algorithm has a range from 1.20 m/s to 

11.38 m/s. In literature, the typical PWV values in carotid artery range from 3-5 m/s in 

health young people, in this ‘clinical data’ it was obtained PWV values close from the 
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reference values of the literature and by other methods as ultrasound or Doppler[1, 

66-67].  

Although the removal outliers helped to improve the results these aren’t still 

good enough to prove the repeatability of the probe in some volunteers. There is an 

evident discrepancy between PWV values determined during four weeks with both 

algorithms and the SD showed the variation of the PWV values from the PWV mean, 

table 10 and 11. The high SD indicates that despite the removal outliers the data is still 

far from the mean PWV value. If the outliers weren’t removed the discrepancy would 

be greater. In fact, the quality of the recorded signals can be questioned because the 

signals weren’t acquired with a qualified operator (a doctor for example), so it would 

be the first reason given as the cause of these results. In some recorded signals in the 

same week, the PWV assessed in the first signal on one location of CCA was 

substantially different from the second signal recorded in same location of CCA, which 

can mean that it didn’t record a good signal. Anyway, once again it’s hard to prove the 

repeatability of the probe in these preliminary clinical trials. However, we can compare 

the two algorithm used to assess the LPWV. 

 

6.5 COMPARISON OF MAXIMUM AND MINIMUM AMPLITUDE DETECTION 

ALGORITHMS 

The mean of PWV and SD for the four weeks was calculated for each volunteers 

and each algorithm, as shown table 12. Figure 6.2 shows a histogram that represents 

graphically the mean PWV of the table 12 for each volunteer and algorithm. Though 

the number of samples used to assess PWV isn’t equal in each algorithm, as previously 

mentioned, it allows improving the results.  
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Figure 6.2 – Histogram of the mean PWV values for each volunteer during 4 weeks using two algorithms. 

 

Table 12 – Mean of local PWV±SD (m/s) for each volunteer and algorithm on left and right CCA. 

Volunteer 

Maximum Algorithm 
(N=834) 

Minimum Algorithm 
(N=835) 

Left CCA Right CCA Left CCA Right CCA 

1 3.40±2.85 3.33±2.57 3.37±1.70 5.70±3.44 

2 3.80±3.14 4.37±4.47 3.18±2.72 7.22±6.17 

3 3.54±2.21 3.58±3.09 3.05±2.05 2.27±2.36 

4 4.04±.2.87 3.15±1.87 2.63±2.35 3.53±3.78 

5 3.06±1.39 3.78±2.88 4.82±1.50 6.26±2.85 

6 3.10±2.36 3.61±1.72 2.14±1.33 2.86±1.73 

7 4.71±3.53 2.03±0.74 4.35±6.93 6.45±6.03 

8 3.51±2.42 3.84±3.13 3.18±2.78 5.47±3.83 

Overall 
mean 

PWV±SD 
for the 8 

volunteers 
(m/s) 

3.65±0.65 3.46±1.12 3.34±1.80 4.97±1.60 

 

The mean PWV with both algorithms varies between near 2-7 m/s, being the 

overall mean PWV for this group of volunteers in left CCA of 3.65 m/s and 3.34 m/s for 

maximum and minimum algorithm, respectively. Concerning the right CCA the overall 

mean PWV is 3.46 m/s and 4.97 m/s for maximum and minimum algorithm, 

respectively.   
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Although the SD is high in both algorithms, the maximum AD algorithm has the 

lowest overall mean SD for the eight volunteers (0.65 m/s in left CCA and 1.12 m/s in 

right CCA) comparing with the minimum AD algorithm. The mean PWV during the four 

weeks was obtained with both algorithms, inside the expected values of PWV in CCA, 

which means between 3-5 m/s. In respect to assessment of PWV in two recorded sites 

(left and right CCA), the difference of the mean PWV in two location is less when the 

PWV is determined with the maximum AD algorithm.   

 

6.6 DECONVOLUTION METHOD IN CCA SIGNALS 

Deconvolution method was described in section 5.1.5. The same method was 

applied in recorded signals in volunteers, using the IR obtained in test bench I (see 

figure 5.10). An example of deconvolved signals in a CCA signal is shown in figure 6.3. 

The deconvolved and integrated signals of both PZ sensors are represented in order to 

compare them.  

 

 

Figure 6.3 – Comparison between the deconvolved signals from PZ signals and integrated signals from PZ probe. 

The RMSE between deconvolved and integrated signals to PZ1 is 14.76% and to PZ2 is 13.48%. 
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The comparison between deconvolved signals and integrated signals was 

quantified by calculating the RMSE for all recorded ‘clinical data’. The RMSE ranged 

from 5 to 21%, the mean RMSE between deconvolved and integrated signals for each 

PZ sensor was near 13.05%.  

With the deconvolution method was obtained the ABP waveform, proving the 

effectiveness of IR determinated in CCA signals. In comparison to integrated signal, the 

shape of both is similar but having a little difference in amplitude. In general, there is a 

good similarity between the two signals obtained by different ways.  

 

6.7 DISCUSSION 

Despite initial difficulties in acquiring signals with PZ probe, these preliminary 

clinical trials revealed the ability to record signals in CCA and visualize the ABP 

waveform given by the probe. The ABP waveform obtained by the probe proved to be 

much closer to the expected waveform by deconvolution method, the minimum RMSE 

between the two waves in the all recorded signals was 5%.  

By decreasing the distance between two PZ sensors, we can facilitate the 

acquisition signals but this study will be made with the data collected with the other 

prototypes.  

Not all the recorded pulse waves were considered good signals to assess local 

PWV. Although the removal of outliers has improved results, it’s not enough to prove 

the repeatability of the probe. It can be explained due to the signals weren’t acquired 

at the same location in CCA and/or were acquired close to the carotid bifurcations. The 

supine position is recommended in the signals acquisition in patients. 

The mean LPWV determined by maximum and minimum AD algorithms for 

each volunteer during the four weeks, see table 12, are closer to typical values for 

healthy young people. However the standard derivation is greater for both. 
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The clinical validation is important to characterize the probe. Therefore the 

analyses in other groups of patients healthy and with cardiovascular disease should be 

made with a doctor as operator.  
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CHAPTER VII 

FINAL REMARKS 

7.3 CONCLUSIONS 

The main purpose of this work is to characterize a new double probe based on 

PZ sensors able to assess LPWV in a non-invasive way and that reproduces the ABP 

waveform. PWV is considered by Expert Consensus document [1] a predictor of AS 

therefore it’s so important assess this hemodynamic parameter. In our research group, 

it is developed devices that assess the PWV locally in CCA because it brings information 

about arterial wall’s properties and consequently is a direct measure of AS. 

The test bench systems allowed characterize the new PZ probe by the 

reproduction of some hemodynamic properties of the cardiovascular system. This 

probe has new features, compared to the previous developed double probe, mainly its 

new design, ergonomy and ability to measure the pressure waveform called in section 

5.1 through the electronic integration of the PZ signal. In waveform analysis was 

shown that the integrated PZ signal could reproduce the original waveform and the 

RMSE between both increased after the systolic peak (the RMSE doesn’t exceed the 

9%). It was also possible to recover the pressure waveform by deconvolution method 

through IR of two sensors. 

The repeatability and cross-talk are other important features of the PZ probe. In 

the test bench I and in clinical trials was analyzed the repeatability of the probe but it 

wasn’t obtained good results. In relation to the cross-talk analysis was shown that the 

PZ sensors didn’t suffer crosstalk effect. 

In the test bench II, the study of the PWV in the latex tube was a new challenge. 

The behaviour of the tube with DC pressure required an additional study about the D, 

showing that due to elastic properties of latex the D should be measured to assess the 

PWV of a Gaussian waveform into the tube. The time resolution was 1.5 ms being the 

mean of the LPWV was 12.89±6.07 m/s when determined by minimum AD algorithm. 

The algorithms used showed high relative error, standard derivation and coefficient 
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variation when to assess LPWV from PZ signals. On the other hand, the algorithms 

worked well in the signals of pressure sensors. 

Despite the difficulty in the signal’s acquisition in human CCA, it was obtained 

LPWV values closed to the reference values of the literature and obtained by other 

methods as Doppler and ultrasound [1, 66-67]. The LPWV ranged from 2.03±0.74 m/s 

to 4.71±3.53 m/s by maximum AD algorithm and 2.14±1.33 m/s to 7.22±6.17 m/s by 

minimum AD algorithm, table 12.  

 

7.4 FUTURE WORK 

The previous works showed the feasibility of the PZ sensors in the 

hemodynamic parameters assessment. The characterization of the new double PZ 

probe showed some interesting results in the assessment of LPWV. However, there is a 

long work to do in order to show the feasibility of the probe.  

Signal processing 

Optimization of the algorithms to assess LPWV is necessary. Five algorithms 

were implemented in PZ and pressure signals to determine PWV values and the results 

showed a great discrepancy between them. In clinical trials, the LPWV assessed in the 

same volunteer showed also different results with different algorithms. It shows the 

importance to identify the accurate time-reference point of the wave to determine the 

pulse TT. 

In the future, from ABP recorded by PZ probe can assess the LPWV with the 

algorithms: maximum upstroke of second derivate; time-point at 20% of the upslope 

of ABP wave and intersecting tangents as well as identify the characteristic parameters 

like: systolic peak, inflection point and dicrotic notch allowing to assess the Alx. 
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Double probe 

In the test bench I was recognized the importance of an appropriated interface 

on PZ probe. The study of an interface on PZ sensor is essential to improve the results, 

it would allow to have a point of contact.  

The distance between PZ sensors is another question that can influence the 

time resolution and to facilitate the acquisition signals in human CCA. 

Test bench 

 During the experiments in test bench II the latex membrane broke. A new 

structure to replace the latex membrane due to the risk to break and damage the ACT. 

As mentioned in previous works, it would be important to characterize the probe in a 

tube filled with a fluid with different density, for example a mixture of glycerine and 

water that is easy to do in laboratory.  

Clinical trials 

 The clinical trials are the most important part of probe’s characterization. In 

collaboration with the doctors the probe would be characterized in terms of 

reproducibility and test its performance in healthy patients as well as in patients with 

CVD.  

 A large number of signals acquired in human CCA would help to detect 

problems in acquisition system and improve the probe and the algorithms.  
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