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Abstract

The growth in software complexity is one of the main reasons for the increase of errors

in software, along with a clear raise of the development time. One way to overcome

this problem is the development of CASE1 tools capable of helping the software

engineer in a more intelligent and powerful way. One possible approach for such a

tool, is to reuse software development knowledge, which enables faster development

and increased software quality. This approach can be complemented with knowledge

management methodologies that operate at corporate level, thus beneficiating all the

software engineers in the corporation. The work presented in this thesis describes a

software design reuse system based on Case-Based Reasoning (CBR).

Our approach complements an UML2 CASE tool with a knowledge management

tool for software design knowledge. We selected the design phase of software devel-

opment, because decisions made at this phase are complex and have great impact

in the implementation. The developed model is able to help the software designer

by: retrieving similar class diagrams; suggesting alternative designs; proposing design

changes based on design patterns; checking a diagram for errors and correcting them;

helping the knowledge base administrator in the case base maintenance; and using

natural language for software object naming.

This thesis describes our approach and its implementation (the REBUILDER

system). Several experiments were made and the results are reported, along with an

extensive study on related systems, positioning REBUILDER. This system is a first

step to the development of a commercial CASE tool that addresses the support of

software design and design knowledge management. One of the main goals was to

test several reasoning mechanisms in the reuse of UML class diagrams, demonstrating

that this approach is feasible and suitable for a CASE tool.

1Computer Aided Software Engineering.
2Unified Modelling Language.
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até aqui não foi um passeio, mas sim uma prova de meio-fundo com o passo aceler-
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Resumo Alargado em Português

Este caṕıtulo tem como objectivo dar uma ideia global e resumida do trabalho de-

senvolvido no âmbito desta tese. A primeira secção descreve quais as motivações,

objectivos e contribuições deste trabalho. Esta secção faz também uma introdução

aos principais conceitos utilizados neste trabalho. Em seguida descreve-se a arquitec-

tura do sistema desenvolvido (o REBUILDER), bem como os vários módulos que o

compõem. A terceira secção deste caṕıtulo descreve o trabalho experimental efectu-

ado, apresentando os principais resultados obtidos com os vários módulos do sistema.

Seguidamente é feita uma descrição geral dos principais trabalhos que têm relação

com o trabalho desta tese. São descritos vários tipos de sistemas, sendo feita uma

comparação das principais caracteŕısticas desses sistemas com o REBUILDER. A fi-

nalizar são apresentadas as contribuições desta tese, trabalho futuro e direcções de

investigação a prosseguir.

Introdução

Nesta secção são descritas as motivações deste trabalho, bem como os conceitos

básicos presentes nesta tese. Seguem-se os objectivos e contribuições deste trabalho.

Motivações e Enquadramento

O desenvolvimento de software é uma tarefa cada vez mais dispendiosa em termos de

recursos. A dimensão e complexidade dos sistemas de informação desenvolvidos pelas

empresas de software aumenta de dia para dia. Este facto faz com que as empresas

de desenvolvimento de software tenham cada vez mais dificuldade em entregar o

software dentro dos prazos estipulados pelos clientes. Muitas das vezes, a qualidade

dos sistemas produzidos é negligenciada de forma a se poder fazer a entrega de uma

versão a tempo. Com vista a solucionar ou atenuar este problema, a comunidade
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cient́ıfica da área de engenharia de software propôs, à cerca de uma década, como

caminho posśıvel a reutilização de software [Prieto-Diaz, 1993, Coulange, 1997].

No ińıcio, a reutilização de software incidia sobre o código, através da reutilização

de rotinas e/ou funções que estavam em repositórios de software ou em bibliotecas

de código [Burton et al., 1987, Prieto-Diaz and Freeman, 1987]. Uma das razões que

levou a que inicialmente a reutilização incidisse sobre o código, foi a ideia de que (en-

tre outras posśıveis razões) reutilizar código é ’fácil’ porque este está formalizado. No

entanto, existem outros ńıveis de reutilização do conhecimento resultante do processo

de desenvolvimento de software, desde o ńıvel da especificação de um sistema, até ao

ńıvel dos testes, passando pelo design5. Em última análise, qualquer tipo de conhec-

imento presente no processo de desenvolvimento de software pode ser reutilizado.

Os conhecimentos adquiridos pelos elementos das equipas de desenvolvimento é um

bem inestimável para uma empresa de software. Este conhecimento ou experiência,

designado em Inglês por know-how, permite que os seus portadores reutilizem todo

um conjunto de conhecimento adquirido no desenvolvimento de software, construindo

novos projectos mais rapidamente e com maior qualidade.

O abandono de colaboradores experientes, leva a que as empresas percam o know-

how dessa pessoa, o que geralmente constitui uma quebra em termos de produtivi-

dade. Num mercado global em que a competição é muito grande, este tipo de perdas

leva consequentemente a uma perda de competitividade por parte da empresa. Uma

forma de resolver este problema (ou pelo menos atenuá-lo) seria através do recurso a

um repositório de conhecimento capaz de armazenar e gerir parte do know-how dos

vários colaboradores, ou seja a empresa ter um sistema de gestão de conhecimento

[Liebowitz, 1999]. Outra vantagem de ter um repositório de conhecimento, seria que

este poderia ser partilhado com os vários colaboradores da empresa, de forma a haver

uma reutilização deste conhecimento de uma forma mais produtiva.

Dentro das diversas fases de desenvolvimento de software (análise, design, im-

plementação, testes e integração, assumindo o modelo em V de desenvolvimento de

software [Boehm, 1988]), a fase de design é pouco abordada na reutilização em com-

paração com a fase de implementação. Isto é em parte explicado pela falta de uma

formalização das especificações de design, demonstrada pela falta de uniformização

5Vamos utilizar a palavra em Inglês pois não nos foi posśıvel encontrar uma palavra em Português
que pudesse transmitir o conceito que está inerente à palavra em Inglês.
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ao ńıvel de linguagens de especificação do design6. Outro posśıvel factor é o grau

mais elevado de abstracção do design em relação ao código, o que torna a reutilização

mais complicada, tendo que ser tratada a um ńıvel de abstracção mais alto aonde

a subjectividade é também um obstáculo. Outra dificuldade que explica a menor

reutilização de conhecimento da fase de design, é a própria natureza do processo de

design. Não existe uma teoria forte quanto ao design de um sistema de software. Ex-

istem várias metodologias, no entanto, estas apenas apresentam linhas de orientação

para situações abstractas, deixando para o designer (engenheiro de software ou re-

sponsável pelo desenvolvimento do design de um sistema) a sua implementação para

situações espećıficas. O sucesso de um bom design para um sistema de software de-

pende mais da experiência dos designers do que da metodologia usada, isto porque o

conhecimento sobre o design de software ainda não está suficientemente desenvolvido

e formalizado para dar lugar a uma engenharia mais exacta. Neste aspecto voltamos

a frisar que o know-how do designer é fundamental para o sucesso de um design.

Alternativas recentes sobre a reutilização de especificações de design andam à volta

de frameworks7 [Johnson, 1997], padrões de design [Gamma et al., 1995] ou compo-

nentes [Atkinson et al., 2002]. No caso das frameworks, a reutilização é feita através

de uma reinstanciação de um conjunto de classes que formam a estrutura básica e o

núcleo de um determinado tipo de aplicação. O trabalho do designer, está em am-

pliar e configurar este conjunto de classes de forma a adaptá-las ao caso espećıfico

que está a ser desenvolvido. Um padrão de design consiste numa solução para um

problema abstracto de design, ou seja, um padrão de design descreve como se devem

organizar e projectar um conjunto de classes e interfaces de forma a solucionar um

problema t́ıpico de design de software. O desenvolvimento de software recorrendo a

componentes consiste na utilização de componentes de software (classes ou conjuntos

de classes) de forma a construir um sistema ou parte dele. Na utilização de compo-

nentes, a ideia é reutilizá-los como se fossem blocos básicos de construção de software.

Estas abordagens são distintas entre si, no entanto, elas têm em comum a possibili-

dade de reutilização do design juntamente com o código. No caso dos componentes e

das frameworks esta intenção é mais clara, onde o que se reutiliza em termos de design

é o design da framework ou dos componentes. Nos padrões, isto já não se passa bem

6Pelo menos no ińıcio da prática da reutilização de software. Hoje em dia linguagens como o
UML (Unified Modelling Language, [Rumbaugh et al., 1998]) vieram uniformizar estes formalismos.

7Palavra que designa uma estrutura ou infra-estrutura de software, mas que, no entanto, decidi-
mos que não deveria ser traduzida, pois iria desvirtuar o conceito expresso na palavra em Inglês.
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assim, neste caso a reutilização é feita a um ńıvel mais abstracto, que pode não ter

que ver necessariamente com o código. Este ńıvel mais alto de abstração foi uma das

razões que nos levou a utilizar padrões de design na nossa abordagem. Desta forma

os padrões de design são integrados no nosso sistema como uma ferramenta de design.

Como referimos anteriormente, o aumento da dimensão e complexidade do soft-

ware, levam a que a fase de design do desenvolvimento de software ganhe cada vez

mais importância. Isto porque os erros cometidos ao ńıvel do design vão ter fortes

consequências ao ńıvel da implementação. A importância do design faz também com

que as equipas de desenvolvimento sejam mais eficientes e mais criativas nos designs

que desenvolvem. Novas maneiras de projectar os sistemas de software são necessárias

de forma a se poder obter uma optimização do tempo de desenvolvimento, bem como

aumentar o desempenho do sistema que está a ser constrúıdo. Como foi dito anterior-

mente, o processo de design baseia-se muito na experiência dos designers responsáveis.

Na maioria das áreas de engenharia mais amadurecidas a reutilização de componentes

é uma técnica bem conhecida. No caso da engenharia de software a reutilização de

componentes não é simples, e ainda há um longo caminho a percorrer nesta matéria.

Uma das formas de se poder auxiliar o designer a reutilizar componentes ou qual-

quer outro tipo de conhecimento resultante do desenvolvimento de software, consiste

na utilização de ferramentas CASE8 capazes de reutilizar este conhecimento. Estas

ferramentas teriam que expandir as já existentes de forma a juntarem capacidades

cognitivas mais complexas. A estas ferramentas vamos chamar ferramentas ICASE

(ferramentas CASE Inteligentes, Intelligent CASE tools em Inglês). Para além da

capacidade básica de reutilizar designs anteriores em novas situações, estas teriam de

ir mais além, fornecendo funcionalidades que envolvem racioćınios mais complexos,

tais como a exploração de designs alternativos de forma a fomentar a criatividade

dos designers, ou fazer uma identificação e correcção automática de erros sintácticos

e semânticos que possam existir num design.

A criatividade [Boden, 1990] é um fenómeno importante para o design em geral,

e para o design de software em particular. A criatividade no design pode ser vista de

uma perspectiva mais funcional em que novos designs são desenvolvidos tendo um mel-

hor desempenho do que designs anteriores, ou então de uma perspectiva mais estética

em que, por exemplo, sejam menos complexos. Em termos cognitivos a criatividade

8Computer-Aided Software Engineering.
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pode ser definida como um processo que dá origem a um produto dito criativo, com

base na avaliação de certas caracteŕısticas deste produto [Dasgupta, 1994]. Podem

ser identificados quatro componentes distintos na criatividade [Brown, 1989]: o pro-

cesso, o produto, a pessoa ou entidade criadora, e a situação em que se desenrolou

o processo. Neste modelo o produto é crucial para a identificação da criatividade,

isto porque associada à identificação da criatividade está geralmente o produto que é

considerado criativo. O estudo do processo criativo é também importante para o de-

senvolvimento de modelos computacionais de criatividade. Trabalhos anteriores sobre

design criativo identificaram pelo menos quatro métodos que geralmente se encontram

associados à geração de designs considerados criativos [Gero, 1994b]: analogia, com-

binação de ideias, geração a partir de primeiros prinćıpios e transformação do espaço

conceptual de design. A entidade criadora de um produto considerado criativo geral-

mente refere-se a um humano, no entanto, julgamos que os sistemas computacionais

possam ser considerados como uma entidade criadora. Este é um assunto polémico

que é discutido no seio da comunidade cient́ıfica que estuda a criatividade e cujo

debate está fora do âmbito desta tese. O quarto aspecto a ter em conta é a situação

ou contexto em que se desenrolou a criação do produto criativo, o qual tem um papel

preponderante na classificação do produto como sendo criativo ou não. Este aspecto

também não é abordado neste trabalho pois também está fora do âmbito estabelecido

para esta tese.

Dentro do design podem ser definidas três classes de design [Gero, 1994a]: o design

rotineiro, o design inovador e o design criativo. O design rotineiro acontece quando

não existe a criação de novos designs, ou seja, o espaço de designs não é modificado.

O design inovador consiste na geração de novos designs com base na utilização de no-

vas gamas de valores para as variáveis de design, expandindo desta forma o espaço de

design. O design criativo pode ser definido como o processo que gera novas classes de

designs, alterando radicalmente o espaço de designs através da alteração do conjunto

de variáveis de design. Os designs gerados possuem caracteŕısticas que fazem com

que sejam designados como criativos, estas propriedades definem linhas de orientação

para o avaliador, sendo igualmente importantes para o estudo do design criativo e

consequentemente para o desenvolvimento de abordagens computacionais ao design

criativo. Do nosso ponto de vista existem duas caracteŕısticas principais: originali-

dade e utilidade. Originalidade porque o design criado tem que ser substancialmente
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diferente dos já existentes. Utilidade, pois tem que ter as funcionalidades desejadas

pelo criador, existindo aqui uma intenção associada ao processo de design criativo.

Muitos dos sistemas de reutilização de software (ver caṕıtulo 6 para mais in-

formação sobre estes sistemas) apenas fornecem ajuda na recolha e selecção de com-

ponentes de software, como classes, funções ou especificações, de um repositório

central. No entanto, na maior parte das vezes, os componentes seleccionados ne-

cessitam de modificações de forma a serem adaptados à situação corrente. Esta

tarefa de modificação de componentes é uma tarefa mais exigente do ponto de vista

cognitivo devido à sua complexidade e à quantidade de conhecimento que geral-

mente é necessário utilizar para efectuar as modificações. O racioćınio analógico

[Gentner, 1983, Hall, 1989, Holyoak and Thagard, 1989] é muitas das vezes utilizado

como uma forma de adaptar uma solução de um outro problema a uma situação difer-

ente. Este funciona através do mapeamento estrutural e semântico de caracteŕısticas

das duas situações seguido da transferência da situação fonte para a situação alvo.

Este processo não só permite a adaptação de soluções, como também permite a criação

de novas soluções, eventualmente com um potencial criativo.

Neste trabalho uma das apostas que é feita, é na utilização de um mecanismo de

racioćınio analógico para gerar novas soluções de forma a que o designer possa explo-

rar outras regiões do espaço de design, estimulando o potencial criativo do designer.

As ferramentas CASE foram desenvolvidas de forma a auxiliar os engenheiros de

software nas tarefas de análise e design de um sistema de software, existindo ac-

tualmente alguns sistemas CASE que geram as declarações das classes, interfaces,

métodos e atributos. Estas ferramentas têm como principais funções automatizarem

a verificação sintáctica dos diagramas criados, para além de serem editores de dia-

gramas. Um sistema CASE é geralmente composto por vários módulos: editores de

diagramas, editores de texto, repositório de informação, bem como módulos mais es-

pećıficos. A maior parte destes módulos, como os editores, é funcionalmente simples

e fornece ao designer um grau elevado de aux́ılio. No entanto, existe um módulo que

tem sido pouco explorado - o repositório de informação. Vários tipos de conhecimento

podem ser armazenados no repositório de informação de forma a poderem ser úteis

aos designers. Ferramentas que sejam capazes de reutilizar o conteúdo do repositório

de informação são necessárias para efectuarem esta tarefa. Acresce ainda, que se o

repositório é extenso, o que é comum, este torna-se quase imposśıvel de explorar pelo
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designer e só com o recurso a uma ferramenta computacional é que é viável. É aqui

que algumas das técnicas de Inteligência Artificial podem dar um grande contributo,

transformando os sistemas CASE em ICASE. As ferramentas ICASE seriam capazes

de armazenar e reutilizar conhecimento resultante do desenvolvimento de software de

uma forma inteligente, pondo ao dispor dos designers um conjunto de mecanismos

cognitivos úteis. Alguns destes mecanismos são, entre outros: sugestão de soluções

alternativas, exploração do repositório de conhecimento guiado pela semântica, veri-

ficação semântica de diagramas, aprendizagem da interacção com os designers.

A linguagem UML (Unified Modelling Language, [Rumbaugh et al., 1998]) é uma

linguagem de especificação e modelização de software que utiliza vários tipos de dia-

gramas, de forma a conseguir modelizar diferentes aspectos de um sistema de software.

O UML é uma das linguagens de especificação de software mais usadas em todo o

mundo (senão a mais usada). Devido a este sucesso e porque é um excelente meio de

comunicação entre analistas, designers e programadores, a linguagem UML é seguida

neste trabalho como base de representação de designs. De todos os tipos de diagramas

definidos no UML, seleccionámos os diagramas de classes para serem utilizados como

principal fonte de conhecimento. Estes diagramas descrevem o sistema modelizado

de uma forma estática, descrevendo os objectos envolvidos bem como atributos e

métodos. Estes diagramas são dos mais usados dentro do UML, dáı a escolha deste

tipo de diagramas no nosso trabalho.

Quando um designer experiente começa a desenvolver o modelo de um sistema

de software, este não começa do zero. Os designers usam sempre conhecimento de

projectos anteriores sob a forma de experiência. O racioćınio baseado em experiência

é uma forma muito comum de racioćınio humano, tendo sido usado para inspirar

uma forma de racioćınio em Inteligência Artificial: o Racioćınio Baseado em Casos

(RBC, [Kolodner, 1993]). O RBC funciona com base em experiências representadas

na forma de casos, que constituem os blocos básicos de conhecimento utilizados na

resolução de novas situações com semelhanças relativamente aos casos em memória.

O RBC pode ser visto como uma metodologia de desenvolvimento de sistemas

baseados em conhecimento [Althoff, 2001] que raciocinam com base em experiência.

A ideia principal do RBC é a de reutilizar conhecimento passado de forma a resolver

problemas actuais.
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Geralmente um caso contém três partes: problema, solução e resultado. O prob-

lema descreve a situação que o caso representa. A solução descreve o que é que foi

usado para solucionar o respectivo problema. E o resultado descreve o desfecho da

aplicação da solução ao respectivo problema. Os casos são armazenados e indexados

num repositório chamado de biblioteca de casos ou base de casos.

A um ńıvel abstracto o RBC pode ser descrito por um ciclo de racioćınio com

as seguintes fases [Aamodt and Plaza, 1994] (ver figura 1) : recolha, reutilização ou

adaptação, verificação ou revisão, e retenção ou aprendizagem9. No ińıcio de um ciclo

de racioćınio tem que ser especificado um problema alvo, que consiste na descrição

do problema que se pretende resolver. A primeira fase consiste na recolha de ca-

sos da biblioteca de casos com base na relevância em relação ao problema alvo. A

relevância de um caso é na grande maioria das vezes definida com base na semelhança

do caso com o problema alvo. A fase de adaptação, se tiver lugar, tem como objec-

tivo a modificação da solução do melhor ou melhores casos recolhidos relativamente

ao problema alvo. O resultado será uma nova solução, que juntamente com o prob-

lema alvo constituem um novo caso. A fase seguinte é a verificação da nova solução,

que permite identificar e resolver erros e inconsistências nessa solução. Desta fase

pode resultar que a solução não consegue solucionar o problema e o sistema volta à

fase de adaptação, escolhendo um outro caso recolhido de forma a ser utilizado para a

geração de uma nova solução. Finalmente, a fase de retenção pode armazenar o novo

caso na base de casos, dependendo esse armazenamento dos critérios de aprendizagem

do sistema. Fecha-se assim o ciclo de RBC, permitindo ao sistema aprender novas

experiências.

No ińıcio deste trabalho a ideia central era a de construir um sistema capaz de aju-

dar o designer na reutilização de software e na gestão de um repositório de software

ao ńıvel da empresa. A primeira funcionalidade foi conseguida através de uma ferra-

menta CASE que utiliza UML e que coloca à disposição do designer um conjunto de

funcionalidades cognitivas para reutilização de software baseadas em RBC, analogia,

padrões de design e composição de designs. O segundo objectivo é conseguido us-

ando o RBC como metodologia de gestão de conhecimento. O RBC foi a abordagem

central na construção do sistema, agregando ainda um conjunto de técnicas que são

descritas nesta tese.

9Em Inglês: retrieve, reuse, revise e retain.
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Figure 1: O ciclo de Racioćınio Baseado em Casos adaptado de [Aamodt and Plaza, 1994].

Objectivos e Contribuições

Tendo como ponto de partida a importância da fase de design no desenvolvimento

de software e a necessidade de técnicas que permitam a um sistema a reutilização de

designs, o objectivo principal deste trabalho é o desenvolvimento de um sistema capaz

de reutilizar designs. Este sistema deverá ter duas caracteŕısticas centrais: armazenar

e gerir um repositório centralizado de designs de software, e fornecer aos designers

mecanismos capazes de reutilizar estes designs de uma forma racional.

O REBUILDER tem uma arquitectura cliente-servidor, que se adequa bem a um

ambiente distribúıdo como o de uma empresa de software. Isto vai de encontro à

primeira caracteŕıstica considerada necessária no armazenamento centralizado, en-

quanto que a parte cliente do REBUILDER, que consiste numa ferramenta CASE

que utiliza UML, permite fornecer aos designers meios para a reutilização racional

dos designs dispońıveis. Esta ferramenta funciona como um editor de UML normal

com funcionalidades extra que permitem ao utilizador reutilizar designs.

Com base nos objectivos iniciais e com o decorrer do trabalho, novos assuntos e

sub-objectivos foram aparecendo. Os objectivos e contribuições consideradas centrais

a este trabalho são descritas seguidamente, enquadradas segundo as técnicas que

foram aplicadas:

• O objectivo principal é a integração da vertente ICASE com a vertente de gestão

de conhecimento de design de software. Aqui a contribuição deste trabalho é a

arquitectura cliente/servidor desenvolvida, bem como a forma como se dividem

9
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e interagem os vários módulos.

• A representação de casos é um dos pontos essenciais para o bom funcionamento

dum sistema de RBC. Neste ponto optámos por uma representação de casos

centrada no utilizador, ou seja, o sistema utiliza a ’linguagem’ do designer de

software (o UML) em vez de ser o oposto. Neste aspecto julgamos que este é

um aspecto inovador deste trabalho.

• A indexação e a recolha de casos são dois factores importantes para a perfor-

mance de um sistema de RBC. Um dos objectivos deste trabalho é o desen-

volvimento de um esquema de indexação e recolha flex́ıvel e eficiente em termos

de complexidade temporal. Neste ponto foram conseguidas duas contribuições

importantes. Um esquema de indexação baseado no WordNet em que não só

os casos são indexados, mas também os objectos dos casos, o que permite uma

maior flexibilidade de recolha de casos. Outra contribuição são os algoritmos

de recolha e as métricas de semelhança desenvolvidas.

• De forma a sugerir ao designer vários designs alternativos e ajudar na ex-

ploração dos espaços de design, a reutilização de casos foi abordada neste

trabalho de uma forma alargada, tentando explorar diversos mecanismos de

adaptação. O resultado foi o desenvolvimento de três formas diferentes de adap-

tar diagramas de casos antigos a um novo problema:

– Adaptação de diagramas de classe através de racioćınio analógico. Existem

várias contribuições neste ponto, nomeadamente a forma como o WordNet

é utilizado para selecionar os objectos candidatos a mapeamento, a forma

como os mapeamentos são efectudados e o trabalho de experimentação

desenvolvido sobre o estudo do design criativo.

– Outro tipo de adaptação desenvolvido, que utiliza vários casos para solu-

cionar um problema e que foi por nós designado por composição de designs.

– A utilização de padrões de design de software10 para a modificação e

evolução de designs. Esta contribuição é uma das que entendemos como

mais originais pois é a primeira abordagem que automatiza todo o pro-

cesso de aplicação de padrões de design, desde a escolha do padrão até à

10Software Design Patterns em Inglês.
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aplicação do padrão escolhido.

• A fase de verificação permite a filtragem de erros e incoerências que resul-

tam da fase de adaptação. Sendo um dos principais objectivos deste trabalho

a modelização do ciclo de RBC completo, a integração desta fase no modelo

desenvolvido é essencial. Este aspecto foi abordado com base em casos de ver-

ificação que representam conhecimento sobre o domı́nio e que vão servir para

identificarem erros em diagramas. Estes casos são utilizados também para fazer

correções em diagramas. Para além dos casos de verficação, outra contribuição

deste trabalho é o modo como cada designer tem a sua base de casos de ver-

ificação espećıfica, o que permite a personalização deste mecanismo. Outro

aspecto inovador é a utilização do WordNet para fazer verificação.

• Um sistema de RBC pode tirar vantagem da fase de retenção para adquirir

mais conhecimento, nomeadamente novos casos, podendo assim melhorar a sua

performance. A implementação de um módulo de aprendizagem é um dos ob-

jectivos deste trabalho, bem como os aspectos de manutenção da base de casos

que lhe estão associados. Neste domı́nio este trabalho adapta várias estratégias

de manutenção de casos para trabalharem com uma representação de casos

baseada em grafos.

• Um dos objectivos principais deste trabalho é o de melhorar a interacção entre o

designer e o sistema CASE, o que é feito através da utilização de processamento

de linguagem natural. A utilização de linguagem natural no REBUILDER está

limitada à representação de casos e em espećıfico à atribuição de nomes aos

objectos de software. Um dos problemas que é abordado neste trabalho é o

de tentar compreender qual o conceito associado a um determinado objecto

com base no nome deste, designada por desambiguação de palavras11. Neste

campo, para além de desenvolvermos dois métodos de desambiguação foi feito

um estudo alargado comparando vários métodos descritos na literatura.

A secção seguinte descreve o REBUILDER e os seus vários módulos.

11Em Inglês word sense disambiguation.
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Figure 2: A arquitectura do REBUILDER.

REBUILDER

Esta secção descreve o modelo desenvolvido no âmbito deste trabalho e que é levado à

prática através do REBUILDER. Começamos por descrever a arquitectura do sistema

e mostrar como é que os diversos módulos interagem entre si. Seguidamente passamos

a descrever cada um dos módulos do sistema (ver figura 2):

• Editor de UML.

• Base de conhecimento.

• Gestor da base de conhecimento.

• Motor de RBC.

Arquitectura do Sistema

O REBUILDER tem dois tipos de utilizadores: designers de software e administrador

da base de conhecimento. Os designers utilizam o REBUILDER como uma ferra-

menta CASE com capacidades de reutilização de designs. O administrador da base

de conhecimento tem por função gerir a base de conhecimento de forma a esta se

manter actualizada e coerente. O editor de UML é o interface entre o sistema e o de-

signer, enquanto que o gestor da base de conhecimento faz o interface entre o sistema

e o administrador.
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Figure 3: A arquitectura do REBUILDER de um ponto de vista de implementação.

O REBUILDER é baseado numa arquitectura cliente-servidor que engloba dois

servidores e dois tipos de clientes (ver figura 3). A base de conhecimento (BC) é

composta por dois servidores: O WordNet que contém o WordNet e os ı́ndices dos

casos, e o servidor de ficheiros que comporta a base de casos e a taxonomia de tipos

de dados. Enquanto que o primeiro servidor responde a pedidos sobre o WordNet e

sobre os ı́ndices dos casos por parte dos clientes, o servidor de ficheiros trata de todos

os pedidos referentes aos casos e à taxonomia de tipos de dados. Os dois tipos de

clientes existentes são semelhantes entre si. Um é o cliente gestor, responsável pela

manutenção da BC, é portanto o interface com o administrador da BC. O cliente

designer tem como função ser a ferramenta ICASE do REBUILDER, a ser utilizada

pelos designers. O cliente gestor tem todos os módulos existentes no cliente designer

e acrescenta mais um, o módulo de gestão da BC. O cliente designer é constitúıdo

pelo editor de UML e pelo motor de RBC, responsável por todas as inferências do

sistema. Apenas pode existir um servidor do WordNet, um servidor de ficheiros, e

um cliente gestor. Em relação ao cliente designer, podem haver quantos clientes os

recursos do sistema o permitirem, cada um correspondendo a um posto de trabalho.

O editor de UML para além de ser o interface do REBUILDER com os utilizadores,

constitui também o ambiente de modelização para o designer. O editor integra os

comandos de edição e de manipulação de objectos de UML habituais num editor de

UML, e ainda os comandos de reutilização de designs que executam acções por parte
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Table 1: Correspondência entre fases do ciclo de RBC e módulos do REBUILDER.
Fase do Ciclo de RBC Módulos do REBUILDER

Recolha Recolha
Analogia, Composição

Adaptação de Designs e Padrões
de Design

Revisão Verificação/Avaliação
Aprendizagem Aprendizagem

do motor de RBC.

A BC é constitúıda por quatro elementos: base de casos, que armazena e organiza

os casos; a taxonomia de tipos de dados, que é uma hierarquia de tipos de dados

utilizados pelo sistema; os ı́ndices dos casos, usados para melhorar a performance do

sistema; e o WordNet, que é utilizado como uma ontologia genérica.

O módulo de gestão da BC é usado pelo administrador. Este módulo contém

todas as funções necessárias para a gestão da BC, que incluem a gestão da base de

casos, dos ı́ndices dos casos, e da taxonomia de tipos de dados.

O motor de RBC é responsável por todo o racioćınio no REBUILDER. Como

o nome indica, o RBC é o mecanismo central de racioćınio no REBUILDER que

integra outros tipos de mecanismos para a fase de adaptação. Este módulo é composto

por seis sub módulos: recolha, analogia, composição de designs, padrões de design,

verificação/avaliação, e aprendizagem. Em termos de ciclo de RBC estes módulos

distribuem-se da forma descrita na tabela 1.

Editor de UML

Como editor de UML foi usado o ArgoUML12 que é software de utilização livre13.

A construção de um editor de UML está fora do âmbito desta tese, de forma que

foi escolhido um editor cujo código estivesse dispońıvel para alteração. Os comandos

do motor de RBC e do gestor da BC foram integrados no editor de forma a serem

utilizados pelos designers ou pelo administrador. Estes comandos podem ser divididos

em dois grandes grupos:

• Comandos sobre a Base de Conhecimento:

12A página web do ArgoUML é http://argouml.tigris.org/.
13Do Inglês open source.

14



Resumo Alargado em Português

– Criar uma nova base de conhecimento.

– Abrir uma base de conhecimento.

– Fechar a base de conhecimento.

– Invocar o gestor da base de casos.

• Comandos sobre Acções Cognitivas:

– Recolher e seleccionar designs e objectos.

– Reutilizar designs por analogia.

– Reutilizar designs por composição de designs.

– Reutilizar designs utilizando padrões de design.

– Verificar designs e corrigir respectivos erros.

– Avaliar designs utilizando métricas de engenharia de software.

– Usar estratégias de manutenção de bases de casos.

– Submeter designs à base de casos.

– Gerir a classificação de objectos.

– Modificar os parâmetros de configuração dos mecanismos de racioćınio.

Base de Conhecimento

A base de conhecimento (BC) contém o conhecimento necessário para os mecanismos

de racioćınio. Esta é constitúıda pelas seguintes partes: base de casos, WordNet,

ı́ndices de casos, e taxonomia de tipos de dados.

A base de casos tem dois tipos de casos: casos que representam designs (chamados

de casos de design) e casos que representam aplicações de padrões de design (casos

DPA - Design Pattern Application)14. Os casos são armazenados em ficheiros, um

ficheiro por caso, e apenas são lidos para memória quando necessário. Cada caso tem

um ciclo de vida, podendo estar em um de três estados: não confirmado, confirmado,

e obsoleto. Um caso é considerado não confirmado quando é submetido à base de

casos por um designer, e fica a aguardar que o administrador o examine e o declare

útil ou inútil para a base de casos. Quando o caso é considerado útil passa para

14Em todo o documento, quando nos referirmos a casos, sem especificar qual o tipo de casos,
estamos a referir-nos a casos de design.
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confirmado. Só os casos neste estado é que podem ser utilizados pelos mecanismos de

racioćınio. Um caso passa a obsoleto quando atinge o fim do seu ciclo de vida, seja

porque ficou desactualizado, seja por qualquer outra razão. A base de casos possui

três listas, uma para cada estado posśıvel. Cada lista engloba os casos que estão no

respectivo estado, por exemplo, a lista de casos confirmados contém todos os casos

que são utilizados pelos mecanismos de racioćınio.

No REBUILDER um caso descreve um design de um sistema de software, que é

representado através de diagramas de classe. Um caso é composto por: nome usado

para identificar o caso; package15 principal, que contém todos os outros objectos do

caso; e nome do ficheiro que contém o caso. Os objectos de UML considerados no

REBUILDER são: packages, classes, interfaces e relações.

Os casos DPA descrevem uma situação espećıfica, aonde um padrão de design

foi aplicado a um diagrama de classes. Cada caso DPA contém: descrição do prob-

lema e descrição da solução. O problema descreve em que situação foi o padrão de

design aplicado (diagrama de classes inicial) e como foi aplicado (os participantes

mapeados, ou seja, os objectos que têm um papel activo na aplicação do padrão).

O diagrama de classes inicial é o diagrama aonde foi aplicado o padrão de design.

Os participantes mapeados são objectos do diagrama que devem estar presentes na

aplicação do padrão de design. Um participante pode ser um objecto, um atributo

ou um método. Cada participante tem uma função espećıfica dentro de um padrão

de design, e cada padrão tem o seu conjunto espećıfico de participantes. A partir do

momento que os participantes estejam identificados num diagrama, a aplicação do

padrão de design respectivo é feita de forma automática pelo mecanismo de aplicação

de padrões de design. A solução de um caso DPA é o nome do padrão aplicado. Para

mais detalhes sobre casos DPA ver a secção 3.3.1.

O WordNet16 [Miller et al., 1990] é usado no REBUILDER como uma ontologia

genérica. Na concepção do WordNet é usada uma teoria diferencial aonde os conceitos

são representados por śımbolos que permitem a distinção entre estes conceitos. Os

śımbolos são palavras, os conceitos são designados de synsets. Um synset é um

conceito que pode ser representado por uma ou mais palavras. Palavras que podem

ser usadas para representar o mesmo conceito são designadas de sinónimas, e uma

15Package é o nome em Inglês dado a um tipo de objectos dos diagramas de classes de UML que
servem para agrupar elementos de UML.

16Mais informação sobre o WordNet pode ser obtida na página
http://www.cogsci.princeton.edu/ wn/.
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palavra com mais de um synset é considerada polissémica. O WordNet está constrúıdo

à volta do conceito de synset. Basicamente contém uma lista de synsets cada um com

as respectivas palavras, que podem ser usadas para o representar. Depois existe um

conjunto de relações semânticas entre synsets. As relações são do tipo: is-a, part-of,

member-of, substance-of e outras. Os synsets são classificados em quatro categorias:

nomes, verbos, adjectivos e advérbios. Os synsets são utilizados no REBUILDER

para classificarem objectos de software. A cada objecto corresponde um synset de

contexto que representa o significado do objecto. Este synset de contexto pode ter

várias aplicações, por exemplo calcular a distância semântica entre dois objectos.

Os casos são armazenados em ficheiros, isto faz com que o acesso aos casos seja

mais lento do que se estes estivessem em memória. Para resolver este problema

são utilizados ı́ndices para indexar os casos e os objectos que o caso contém. Estes

possibilitam o acesso aos casos relevantes sem ter que ler todos os casos para memória.

A cada objecto de um caso é atribúıdo um ı́ndice. Este ı́ndice não é mais do que

o synset de contexto do objecto, que é depois associado ao respectivo synset do

WordNet. A informação que fica associada ao synset é: nome do objecto, tipo de

objecto, e nome do ficheiro que contém o objecto.

A taxonomia de tipos de dados é uma hierarquia de tipos de dados utilizados pelo

REBUILDER. Estes são usados na definição de atributos ou parâmetros de métodos.

Esta taxonomia tem como função o cálculo da distância conceptual entre dois tipos

de dados.

Gestor da Base de Conhecimento

O gestor da BC é usado pelo administrador para gerir a BC, mantendo-a actualizada

e coerente. Este módulo para além de ter todas as funcionalidades do editor de UML,

acrescenta ainda várias funções de gestão da BC. A lista de funções acrescentadas é

a seguinte:

• Comandos sobre a BC:

– Criar uma Base de Casos.

– Abrir uma Base de Casos.

– Fechar uma Base de Casos.
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• O comando Gestor da Base de Casos permite aceder ao conteúdo da base de

casos, podendo o administrador:

– Adicionar casos.

– Remover casos.

– Modificar casos.

– Mudar o estado de um caso.

• Um comando que activa a aprendizagem de casos. Este permite ao admin-

istrador analisar o conteúdo da base de casos. Para isso o administrador tem

ao seu dispor um conjunto de estratégias de manutenção da base de casos que o

auxilia a escolher quais os casos que devem fazer parte da base de casos e quais

os que não devem.

• O comando Configurações adiciona parâmetros de configuração aos já presentes

no editor de UML, versão usada pelos designers de software. Permite também

ao administrador configurar os mecanismos de racioćınio.

As responsabilidades básicas do administrador são a gestão da base de casos e a

configuração do sistema. Na gestão da base de casos insere-se a revisão dos designs

submetidos pelos designers de forma a transformá-los em casos confirmados.

Motor de Racioćınio Baseado em Casos

O motor de RBC executa as tarefas que envolvem racioćınio sobre os casos, e é

composto por seis módulos (ver figura 2). Cada um implementa uma fase do ciclo

de RBC. Estes módulos podem ser combinados de diferentes maneiras, sendo talvez

a mais comum, apresentada na figura 4.

Seguidamente os vários módulos são descritos de uma forma sucinta (para in-

formação mais detalhada ver caṕıtulo 4).

O módulo de recolha selecciona da base de casos um conjunto de casos ordena-

dos por grau de semelhança com o problema especificado pelo designer. Permite ao

designer avaliar o conjunto de casos mais semelhantes com o problema, de forma a

poder explorar diversos designs alternativos, ou pode ainda reutilizar algum destes

designs. Este módulo funciona como um assistente de busca inteligente, que primeiro
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Figure 4: Uma maneira posśıvel de combinar os diferentes módulos de racioćınio.

recolhe um conjunto de casos relevantes usando os ı́ndices do WordNet, e depois

ordena-os por semelhança com o problema, usando métricas de semelhança. Estas

métricas avaliam três tipos de semelhança: funcional, comportamental e estrutural.

Um problema é um objecto UML que pode ser de um de três tipos: package (corre-

spondendo a um diagrama), classe e interface. Para cada um destes tipos de objectos

existe um algoritmo para recolha de casos, que utiliza o synset do objecto problema

para fazer a pesquisa no WordNet, procurando ı́ndices de objectos do mesmo tipo.

Depois é usada uma métrica de semelhança espećıfica para cada tipo de objectos, de

forma a ordenar a lista de objectos recolhidos. No final, a lista ordenada resultante é

apresentada ao designer.

A analogia no REBUILDER é usada para gerar novos designs. Este mecanismo

tem três fases: selecção, mapeamento, e transferência. Na primeira fase vão ser

seleccionados os casos que vão servir de base à analogia. Esta fase, primeiro selecciona

um conjunto de casos através do algoritmo de recolha, depois vai ordená-los usando

para isso uma das três métricas posśıveis: métrica de semelhança do mecanismo de

recolha, métrica de semelhança que usa uma heuŕıstica que avalia a independência

de objectos, ou métrica que se baseia exclusivamente em propriedades estruturais

dos casos candidatos. A fase de mapeamento estabelece um mapeamento entre os

objectos do problema alvo e os do candidato seleccionado. Existem dois algoritmos

que podem ser utilizados para este efeito: um baseado em relações, e outro baseado

em objectos. Tendo o mapeamento sido efectuado, a fase seguinte é a transferência

de conhecimento do caso candidato para o problema alvo, usando os mapeamentos

estabelecidos. O resultado é um novo design gerado por analogia que é apresentado
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ao designer como solução para o problema especificado.

O módulo de composição de designs gera novos designs a partir de um ou mais

casos. Existem duas estratégias de composição: baseada no melhor caso e baseada no

melhor conjunto de casos complementares. A primeira selecciona o caso mais semel-

hante com o problema alvo da base de casos usando o módulo de recolha. Depois,

o caso seleccionado vai ser mapeado com o problema alvo. Enquanto existirem ob-

jectos no problema alvo por mapear, o algoritmo vai utilizar o módulo de recolha

para ir buscar casos que contenham os objectos ainda não mapeados, de forma a

mapeá-los. Depois de estarem todos os objectos do problema mapeados, ou então

não existirem mais casos que possam ser utilizados, o algoritmo vai transferir conhec-

imento dos casos utilizados para o problema alvo, usando os objectos mapeados. O

resultado é um novo diagrama que foi gerado por composição dos casos recolhidos.

A segunda estratégia de composição baseia-se na construção de conjuntos de casos

complementares. Para isto, o algoritmo vai recolher todos os casos da base de casos

que têm pelo menos um objecto em comum com o problema. Depois são formados

todos os conjuntos de casos posśıveis, utilizando os casos recolhidos. Para cada um

destes conjuntos é calculado em que grau é que o problema é mapeado, sendo depois

estes conjuntos ordenados pelos valores obtidos. Os casos do conjunto com o melhor

valor são depois utilizados para transferir o conhecimento para o problema, de forma

a construir um novo diagrama. O novo diagrama é depois apresentado ao designer.

Os padrões de design no REBUILDER podem ser usados para gerar novos dia-

gramas. A ideia central deste módulo é melhorar um diagrama existente (o problema

alvo) de acordo com um padrão de design. Este módulo vai utilizar um tipo de

casos diferente, chamados de casos DPA (Design Pattern Application). Estes casos

descrevem uma situação aonde um determinado padrão de design foi utilizado. O

algoritmo vai seleccionar o caso DPA mais semelhante com o problema alvo. Depois

vai aplicar o padrão de design do caso DPA seleccionado para modificar o problema

alvo de acordo com o padrão de design. O resultado é um novo diagrama melhorado

de acordo com a filosofia do padrão escolhido.

O módulo de verificação e avaliação tem como objectivos testar a coerência de

diagramas, e fazer a sua avaliação. A verificação pode ser utilizada no REBUILDER

de três formas distintas: ser solicitada pelo designer, no fim do processo de analogia

sobre o diagrama gerado, ou então no fim do processo de composição de designs sobre
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o diagrama gerado. Na verificação são utilizadas quatro fontes de conhecimento de

forma a tentar identificar elementos de um diagrama que são considerados incorrectos,

estas são por ordem de prioridades: casos de verificação, WordNet, casos de design,

e designer. Os casos de verificação são um terceiro tipo de casos do REBUILDER

que descrevem situações em que um elemento de um diagrama foi considerado errado

ou correcto. Desta forma o sistema quando se depara com uma situação semelhante

pode determinar qual a acção a tomar: eliminar o elemento ou considerá-lo correcto.

Se não existir na base de casos nenhum caso de verificação que possa ser usado para

verificar um determinado elemento do diagrama, então o sistema vai procurar no

WordNet uma relação semântica que possa verificar o elemento. Se este não tiver

sucesso, então a fonte de conhecimento seguinte a ser utilizada vai ser a base de

casos de design. Se existir num caso de design um elemento semelhante para uma

situação semelhante, então o elemento é considerado válido. Senão, o último recurso

de verificação é perguntar ao designer qual a validade do elemento que está a ser

verificado. Consoante a resposta do designer, assim é criado um caso de verificação

de sucesso ou de falha. A avaliação é um processo mais simples, aonde o diagrama

vai ser avaliado com base num conjunto de métricas de engenharia de software e no

conjunto de propriedades do diagrama.

O módulo de aprendizagem é responsável pela acquisição de novos casos para a

base de casos. Para o efeito dispõe de um conjunto de poĺıticas de manutenção da

base de casos que podem ser usadas pelo administrador da base de conhecimento

para determinar como deve evoluir o conteúdo da base de casos ao longo da resolução

de problemas. As poĺıticas implementadas têm origem em trabalhos da literatura de

RBC, sendo que tiveram que ser adaptadas à representação de casos do REBUILDER.

Existe ainda um outro módulo no motor de RBC, mas que se considera como

sendo um módulo transversal, que é o módulo de desambiguação de palavras e que

não está representado na figura 4. Este módulo tem como objectivo encontrar o synset

correcto para um determinado objecto (package, classe ou interface). Para isso, este

módulo implementa um conjunto de métodos de desambiguação, alguns baseados em

trabalhos da literatura de processamento de linguagem natural que foram adaptados

para a desambiguação de diagramas, e outros originais desta tese.

A secção seguinte apresenta as principais conclusões dos estudos experimentais
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efectuados, estabelecendo linhas orientadoras quanto às configurações a dos algorit-

mos a usar em cada situação no REBUILDER.

Experimentação

Esta secção faz um breve resumo dos principais resultados experimentais obtidos com

o REBUILDER. O caṕıtulo 5 apresenta todos os detalhes sobre a experimentação.

O trabalho experimental efectuado tem como objectivo avaliar e traçar um perfil de

performance de cada um dos módulos do motor de RBC, bem como deixar pistas

para a parametrização e escolha de entre os algoritmos de racioćınio dispońıveis no

REBUILDER.

Em quase todos os testes foi utilizada a mesma base de conhecimento que des-

ignamos por KB 1.1. Esta contém um conjunto de problemas, a base de casos, o

WordNet, os ı́ndices dos casos e a taxonomia de tipos de dados. A versão do Word-

Net que foi usada é a 1.7.1, que tem cerca de oitenta mil synsets de nomes e cem

mil relações semânticas. A base de casos tem 60 casos, cada um representando um

diagrama de um sistema de software. Os casos repartem-se por quatro domı́nios:

sistemas de informação para a banca, sistemas de informação para a área da saúde,

sistemas de informação para a área da educação, e sistemas de informação para a

área comercial. Cada caso é composto por uma package com 5 a 20 classes (o número

total de classes é de 586). Cada classe tem até 20 atributos e 20 métodos. Estes

diagramas estão definidos ao ńıvel conceptual, de forma que o design está numa fase

genérica tendo apenas as classes, atributos e métodos fundamentais.

Nas experiências utilizaram-se quatro conjuntos de problemas. Três destes con-

juntos são constitúıdos por diagramas que resultam de casos da base de casos, em

que parte dos objectos foram removidos. Estes conjuntos são designados por P20,

P50 e P80. O conjunto P20, com 25 problemas, é composto por diagramas que são

a cópia dum caso só que com 80% dos objectos, atributos e métodos eliminados. Os

conjuntos P50 e P80 têm, respectivamente, 50% e 20% de objectos eliminados. O

quarto conjunto de problemas designado por PVar, contém 25 problemas diferentes

dos casos na base de casos, no entanto, dentro do mesmos domı́nios da base de casos.
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Recolha de Casos

Várias experiências foram efectuadas para testar a recolha de casos. Na primeira

experiência testou-se a performance de recolha de diagramas (recolha de packages).

Foram utilizados os conjuntos de problemas P20, P50 e P80. Para cada problema

destes conjuntos pré estabeleceu-se qual o caso mais semelhante e quais os casos rel-

evantes. Esta experiência foi utilizada para explorar o mecanismo de recolha, procu-

rando identificar erros e limitações deste módulo, bem como melhoramentos a fazer.

Dos resultados obtidos pode concluir-se que a configuração que dá mais importância

à semelhança funcional obteve os melhores resultados. Em relação ao tamanho do

problema, a tendência observada é de que para problemas maiores a recolha tem con-

seguido melhores resultados de precisão, quando é dada mais importância à semel-

hança estrutural. Este era um resultado esperado.

Juntamente com estas experiências iniciais, foram feitas experiências para testar

o mecanismo de recolha de classes, sendo a experiência semelhante à anterior (só que

para classes). Os resultados experimentais apontam para uma grande importância da

semelhança funcional entre classes. Sendo assim, a classificação correcta dos objectos

é fundamental. Para poder avaliar o grau de erro introduzido na precisão da recolha,

foi efectuado um estudo experimental. Este estudo consistiu em comparar o grau de

precisão do mecanismo de recolha com diferentes graus de erros nas classificações dos

objectos. Os resultados obtidos mostram que para uma base de casos sem objectos

mal classificados, o valor da recolha de casos é de 85.12%, enquanto que este valor

para uma base de casos com 16% de objectos mal classificados é de 58.11%. O que

se traduz numa diminuição da capacidade de recolha de 31.73%.

Depois destas primeiras três experiências, foram operadas algumas mudanças e

melhoramentos no mecanismo de recolha. Dentro dos melhoramentos mais impor-

tantes, está o desenvolvimento de duas novas versões do algoritmo de recolha, am-

bas com o objectivo de lidar com a classificação errada de objectos. A métrica de

semelhança também sofreu melhoramentos. Com estas alterações foram feitas mais

experiências, onde foi usado o conjunto de problemas PVar. Estas experiências tin-

ham o objectivo de testar o mecanismo de recolha em termos de precisão, ńıvel de

recolha de elementos relevantes, avaliação das três versões do algoritmo, pesos para a

métrica de semelhança para packages, e o tamanho do conjunto de casos a recolher.
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Os resultados obtidos indicam que um dos novos algoritmos de recolha obtêm os mel-

hores resultados. Este algoritmo utiliza não só o synset da package alvo para iniciar

a recolha, mas também os synsets dos objectos do problema, aumentando assim a

tolerância ao rúıdo por parte do algoritmo. Em termos da melhor configuração de pe-

sos para a métrica de semelhança de packages, a combinação que dá mais importância

à semelhança estrutural é melhor do que a que dá mais importância à semelhança

funcional. O tamanho do conjunto de casos recolhidos indicado para optimizar a

precisão / ńıvel de recolha é o valor 5. Em termos de escalabilidade, os resultados

mostram que o tempo de computação por caso recolhido desce entre 75% a 85%, entre

a situação com um caso recolhido e a com 20 casos recolhidos.

Analogia

Para testar o mecanismo de analogia foram efectuadas três experiências. A primeira

experiência tinha um cariz exploratório da performance dos dois algoritmos de ma-

peamento desenvolvidos e do parâmetro que define o limiar de mapeamento entre

dois objectos. Dos resultados obtidos podemos concluir que o algoritmo de mapea-

mento baseado em objectos tem um melhor desempenho do que o algoritmo baseado

em relações. Em termos do limiar de mapeamento entre dois objectos, os melhores

valores foram obtidos com o limiar 0.8 para o algoritmo de mapeamento baseado em

objectos, e entre 0.7 e 0.8 para a versão baseada em relações.

A segunda experiência visa avaliar a integração do mecanismo de recolha com o

de analogia. O mecanismo de recolha é responsável pela selecção dos candidatos para

analogia, e vai ser testado em relação à sua eficiência, de forma a ser escolhida a

melhor forma de seleccionar os candidatos para a analogia. Os resultados mostram

um claro compromisso entre tempo de computação e qualidade dos resultados. O uso

da recolha de casos torna a selecção mais rápida, no entanto não é global à base de

casos podendo falhar bons candidatos para a analogia.

Os testes anteriores foram efectuados antes dos melhoramentos efectuados no

mecanismo de recolha. As últimas experiências foram efectuadas já com as três

estratégias de recolha, que são avaliadas em conjunto com a analogia. São também

exploradas algumas das propriedades criativas do mecanismo de analogia. Os resulta-

dos obtidos sugerem que a semelhança semântica deve ser tida em conta na recolha de

casos para a analogia, se se quiser obter diagramas tendencialmente mais correctos.
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Por outro lado a semelhança estrutural revelou-se mais importante para a obtenção

de soluções mais originais. Uma estratégia de recolha que combina estes dois factores

é um bom compromisso.

Composição de Designs

As experiências envolvendo o mecanismo de composição de designs tiveram vários

objectivos: comparar o mecanismo de analogia com o de composição de designs,

comparar as duas estratégias de composição de forma a determinar qual a melhor,

e identificar qual o melhor valor para o limiar máximo de mapeamento para a com-

posição de designs.

De uma forma geral, a analogia é mais rápida computacionalmente do que qualquer

das duas estratégias de composição. Enquanto que a pior estratégia de composição

é a baseada no melhor caso (BMC), ficando a baseada no melhor conjunto de casos

complementares (BMCCC) entre a analogia e a BMC. O aumento do limiar de mapea-

mento aumenta o tempo de computação, o que é explicado pelo aumento do número

de mapeamentos posśıveis. A estratégia BMCCC apresentou o melhor compromisso

entre a qualidade das soluções geradas (em termos de objectos mapeados e errados)

e o tempo de computação para as gerar, isto em comparação com a estratégia BMC

e a analogia. O limiar do número de casos recolhidos para composição mais indicado

por via de experimentação é de 10, para ambas as estratégias de composição.

Padrões de Design

As experiências que visam avaliar o mecanismo de padrões de design usaram uma

base de casos DPA com 60 casos gerados a partir da base de casos de design. Cinco

padrões de design foram implementados e testados: Abstract Factory, Builder, Com-

posite, Singleton e Prototype (para uma descrição detalhada destes padrões consultar

[Gamma et al., 1995]). Nestas experiências foram usados os diagramas do conjunto

de problemas PVar. As experiências consistiam em avaliar se o módulo de padrões de

design aplicava correctamente os padrões, gerando diagramas coerentes. Os resulta-

dos obtidos mostram que o mecanismo de recolha de casos DPA consegue seleccionar

76% de casos relevantes, recolhendo 3 casos DPA. As indicações obtidas por estas
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experiências são boas e permitiram também identificar algumas limitações do mecan-

ismo. Uma observação mais atenta das situações em que o mecanismo falhou revela

que falta algum conhecimento na descrição dos DPAs, tais como, a package a que o

objecto pertence.

Verificação e Avaliação

A capacidade do mecanismo de verificação para corrigir erros do design foi testada

com as soluções geradas pelo mecanismo de analogia e a composição de designs.

O objectivo principal era determinar o grau de melhoramento que o mecanismo de

verificação trazia à qualidade das soluções geradas por estes dois módulos, o que

pode ser avaliado pelo número de objectos considerados errados ou incoerentes com

o respectivo diagrama. Dos resultados obtidos, o número de objectos errados nas

soluções geradas por composição de designs baixou em 36% e na analogia baixou

86%. Estes números vêem demonstrar que o mecanismo de verificação é bastante útil

em conjunto com os mecanismos de adaptação.

Aprendizagem

A experimentação feita ao módulo de aprendizagem incidiu sobre as poĺıticas de

manutenção da base de casos. As experiências tiveram como objectivos principais:

análise da evolução temporal e ńıvel de competência alcançado pela base de casos

obtida por cada uma das estratégias.

Os resultados da análise temporal mostram que existem três grupos de estratégias,

em termos de ńıvel de desempenho (a definição das estratégias estão na secção 4.6, a

secção 5.7 apresenta os resultados experimentais em maior detalhe). Sendo que num

dos grupos, o tempo de computação das estratégias que compreende é demasiado alto

para serem usadas. Os restantes grupos mostraram ter tempos de computação baixos,

chegando ao ponto de um dos grupos apresentar tempos de computação muito baixos

e independentes do número de casos da base de casos.

A análise dos resultados obtidos em relação ao desempenho de cada uma das

estratégias mostra que a maior parte delas faz baixar a competência da base de

casos com a diminuição dos casos na base de casos. No entanto, a maior parte

das estratégias usadas só começa a provocar perdas consideráveis de competência da
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base de casos, quando o número de casos é reduzido para metade ou menos. Isto

pode indicar que a base de casos tem muitos casos redundantes, e que as estratégias

estão a funcionar correctamente escolhendo bem os casos a serem eliminados, até um

determinado ponto. Dos resultados obtidos pode ainda ser inferido que o mecanismo

de adaptação faz uma grande diferença em relação à capacidade de resolução de

problemas do REBUILDER. A competência de uma base de casos com apenas 10

casos e com os mecanismos de adaptação dispońıveis consegue atingir valores entre

68% e 92%, dependendo da estratégia de manutenção escolhida. Para uma base de

casos com 60 casos mas apenas com a recolha de casos como mecanismo de resolução

de problemas, os valores da competência só chegam aos 48%.

Desambiguação de Diagramas

Esta secção descreve duas experiências feitas com o módulo de desambiguação de di-

agramas. A primeira experiência é exploratória e pretende testar e avaliar o primeiro

método de desambiguação utilizado (ver secção 4.7 para uma descrição completa de

todos os métodos de desambiguação utilizados). Desta experiência adveio uma ne-

cessidade de implementar e testar outros métodos de forma a tentar melhorar os

resultados. Assim a segunda experiência é feita já com vários métodos de desam-

biguação implementados.

O primeiro método de desambiguação implementado baseia-se na distância semân-

tica entre os synsets candidatos e os synsets dos objectos de contexto. Nesta ex-

periência explorou-se qual o contexto que melhor servia para desambiguar um objecto

num diagrama. Chegou-se à conclusão de que os melhores resultados eram obtidos

com todos os objectos do diagrama como contexto. Foram ainda testadas várias

métricas de cálculo da distância semântica. Aquela com melhores resultados utiliza

todas as relações semânticas para calcular a distância. Os melhores resultados obti-

dos estão na gama dos 71.18%, o que segundo Gale [Gale et al., 1992] está entre os

valores tidos como esperados para um mecanismo de desambiguação, que são entre

68% e 96.8%.

Na segunda experiência que envolveu todos os métodos desenvolvidos, os resul-

tados obtidos para a desambiguação de diagramas aumentou ligeiramente, chegando

quatro dos métodos testados ao valor de 74.53%. Foram feitas mais experiências en-

volvendo outro tipo de desambiguação, mas aqui os resultados não foram promissores.
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Trabalhos Relacionados

Esta secção faz um breve resumo da comparação que é feita da abordagem desen-

volvida com outros sistemas cujo trabalho está de alguma forma relacionado com o

REBUILDER. Os sistemas seleccionados são aqueles que se enquadram dentro do

tipo de sistema do REBUILDER, nomeadamente: sistemas de RBC para design, sis-

temas de RBC para reutilização de software, sistemas de reutilização de software que

usam analogia, e outros sistemas de reutilização de software. Para uma descrição

mais detalhada destes sistemas consultar o caṕıtulo 6.

Sistemas de Racioćınio Baseado em Casos para Design

As semelhanças do REBUILDER com outros sistemas de RBC17 são reduzidas. No

entanto, vamos destacar as principais diferenças e semelhanças destes sistemas com

o REBUILDER. A maior parte destes sistemas usa racioćınio baseado em modelos

(RBM), para além de RBC. Uma posśıvel justificação são os formalismos de rep-

resentação de casos usados, que permitem este tipo de racioćınio mais complexo e

dependente de conhecimento do domı́nio. Uma das diferenças principais do RE-

BUILDER relativamente a estes sistemas é o uso de analogia dando ao sistema ca-

pacidade para gerar novas soluções potencialmente criativas, e o processamento de

linguagem natural (PLN) de forma a associar objectos de software a conceitos.

A maior parte dos sistemas estudados usa uma representação de casos baseada

em pares atributo/valor ou em modelos. Uma representação baseada em pares atrib-

uto/valor tem a vantagem de ser simples de manipular, no entanto, tem limitações

quanto ao poder expressivo. Os modelos por seu lado, têm uma grande capacidade

expressiva, mas geralmente a complexidade dos mecanismos de racioćınio que os ma-

nipulam é grande. Em relação à representação baseada em diagramas de UML, estas

17Os sistemas com que o REBUILDER foi comparado são: EADOCS
[Netten and Vingerhoeds, 1996], COMPOSER [Purvis and Pu, 1995, Pu and Purvis, 1997,
Purvis and Pu, 1998], CADET [Sycara and Navinchandra, 1991, Sycara and Navinchandra, 1993],
CADRE [Dave et al., 1991], IDIOM [Smith et al., 1995], FABEL [Voss et al., 1994,
Coulon and Gebhardt, 1994, Gebhardt et al., 1997], TOPO [Voss and Coulon, 1996], CASECAD,
CADSYN, WIN, DEMEX [Maher et al., 1995, Maher, 1996], KRITIK family of de-
sign systems [Goel, 1991, Goel, 1992, Bhatta and Goel, 1993a, Bhatta and Goel, 1993b,
Goel et al., 1997a, Goel et al., 1997b, Bhatta and Goel, 1997a, Bhatta and Goel, 1997b],
IM-RECIDE [Bento, 1996, Gomes et al., 1996, Gomes et al., 1998] e CREATOR
[Gomes and Bento, 1997b, Gomes and Bento, 1998].
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têm como principal vantagem uma elevada capacidade de comunicação e de famil-

iaridade com o designer de software. Em termos de interpretação semântica para

o design de software, uma representação baseada em modelos é mais complicada de

interpretar do que os diagramas de classe de UML.

A estrutura de indexação é crucial para uma recolha rápida e eficaz. A maior parte

dos sistemas de RBC para design usa estruturas hierárquicas para a organização

dos ı́ndices. Esta estrutura provou ser bastante eficaz na recolha de casos, dáı ser

bastante usada. O REBUILDER segue este tipo de abordagem usando o WordNet

como estrutura de indexação. A maior parte dos sistemas usa indexação de casos

com base em caracteŕısticas funcionais, no entanto existem alguns sistemas que usam

caracteŕısticas estruturais e comportamentais para indexar casos. No REBUILDER,

a indexação é feita com base nas funcionalidades usando os synsets. No entanto, em

termos da métrica de semelhança, o REBUILDER já usa caracteŕısticas estruturais e

comportamentais dos casos para os ordenar por grau de semelhança com o problema

alvo.

A adaptação é um dos tópicos em destaque no REBUILDER, com três tipos de

adaptação implementados. A maior parte dos sistemas de RBC para design apenas

usa um método de adaptação. Os métodos mais utilizados por outros sistemas são

o RBM, racioćınio baseado em regras (RBR) e o racioćınio baseado em restrições

(RBRt).

A verificação é outro aspecto que foi abordado no REBUILDER, e que apenas

metade dos sistemas estudados usa. Dos que usam, grande parte recorre ao RBM

para fazer uma simulações do design.

Sistemas de Racioćınio Baseado em Casos para Reutilização

de Software

Os sistemas de RBC para reutilização de software18 têm mais em comum com o RE-

BUILDER do que os sistemas da subsecção anterior, devido a estarem num domı́nio

de aplicação semelhante. A maior parte destes sistemas reutiliza código, e destes

18Os sistemas com que o REBUILDER foi comparado são: o sistema desenvolvido por González et.
al. [Fernández-Chamizo et al., 1996, González and Fernández, 1997, González-Calero et al., 1999],
Déjà Vu [Smyth and Cunningham, 1992, Smyth and Keane, 1995a, Smyth, 1996], o sistema desen-
volvido por Krampe e Lusti [Krampe and Lusti, 1997], CAESER [Fouqué and Matwin, 1993], otra-
balho desenvolvido por Althoff e Tautz [Althoff et al., 1997, Tautz and Althoff, 1997], e CREATOR
II [Gomes and Bento, 1999b, Gomes and Bento, 2001].
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apenas um reutiliza código orientado para objectos, os outros lidam com código pro-

cedimental. Esta é uma das grandes diferenças relativamente a estes sistemas, pois

o REBUILDER destina-se a reutilizar designs de software e não código. Apenas o

trabalho de Krampe e Lusti reutiliza designs, e fá-lo de uma forma abstracta e ligeira,

pois reutiliza conhecimento de software de todas as fases de desenvolvimento.

Em termos de mecanismos de racioćınio usados, todos os sistemas apresenta-

dos usam o RBC e outro paradigma de racioćınio. Este mecanismo de racioćınio

secundário é usado para complementar o RBC em tarefas como recolha de casos,

adaptação e verificação. As representações de casos usadas vão desde pares atrib-

uto/valor, até representações mais complexas como modelos ou hierarquias de com-

ponentes. Estes formalismos complexos mostram-se adequados a domı́nios mais es-

pećıficos e restritos, como é o caso do REBUILDER. Uma representação intermédia

também usada é a baseada em enquadramentos19, que pode ser vista como pares atrib-

uto/valor organizados numa estrutura. O REBUILDER utiliza uma representação

baseada em grafos (diagramas de classe de UML), cuja principal vantagem é que a

representação interna e externa dos designs é a mesma.

A estrutura de indexação usada nestes sistemas é semelhante, com a maioria dos

sistemas a usarem uma indexação baseada em funcionalidades, com uma taxonomia

de funções como estrutura de indexação. Isto é bastante natural, pois o problema

alvo é especificado em termos de funcionalidades, e as hierarquias são uma estrutura

eficiente para organizar os ı́ndices. Como consequência a recolha de casos é baseada

em funcionalidades. Alguns sistemas (Déjà Vu) complementam este tipo de recolha

guiando-a com base no esforço de adaptação, ou recorrendo a especificações compor-

tamentais. No caso do REBUILDER, a recolha é feita com base em funcionalidades,

tendo o WordNet como estrutura hierárquica de indexação. Já o ordenamento dos

casos é feito com base em semelhanças funcionais, comportamentais e estruturais.

Outras abordagens são: o trabalho desenvolvido por Althoff e Tautz, que segue uma

abordagem que usa os K vizinhos mais próximos20 para a recolha e ordenamento, e

outro sistema desenvolvido por González et. al., que usa lógica descritiva para fazer

a recolha.

Muitos dos sistemas apresentados utilizam regras ou heuŕısticas para adaptação.

19Frames em Inglês.
20Em Inglês K-Nearest Neighbor ou KNN. Método que consiste na recolha e selecção dos K casos

mais semelhantes ao problema com base numa métrica de semelhança.
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O REBUILDER explora mecanismos diferentes, como a analogia, a composição de

designs, e os padrões de design. Enquanto que as regras e heuŕısticas nos sistemas

referidos acima são dependentes do domı́nio, os mecanismos do REBUILDER são

independentes do domı́nio, com excepção dos padrões de design.

Em relação à verificação, existem apenas dois sistemas (o trabalho de Krampe e o

CAESER) que fazem verificação das novas soluções, para além do REBUILDER. A

abordagem seguida por Krampe usa regras de integridade e modelos, enquanto que

o CAESER usa grafos de causa-efeito, que podem ser interpretados como modelos.

Neste aspecto o REBUILDER usa três mecanismos diferentes: casos de verificação,

casos de design e o WordNet.

Sistemas de Reutilização de Software que usam Analogia

Um caracteŕıstica comum à maior parte dos sistemas de reutilização de software que

usam analogia21 como mecanismo de racioćınio, é que reutilizam código. Apenas um

sistema lida com a fase de análise (o trabalho de Maiden) e outro com a fase de design

(o sistema ROSA de Tessem), tal como o REBUILDER.

A representação de conhecimento é variada e depende de sistema para sistema,

sendo que a maior parte dos sistemas utiliza uma linguagem de representação es-

pećıfica para descrever o código ou o design. Neste aspecto o REBUILDER usa uma

linguagem de âmbito geral e que se está a tornar uma linguagem padrão na especi-

ficação de sistemas de software.

A selecção de candidatos para analogia é feita em geral com base na semelhança

semântica. Em alguns dos sistemas (os trabalhos de Spanoudakis, Jeng e Harandi)

considerados utilizam também a semelhança estrutural. Esta semelhança é também

usada no algoritmo de recolha ou na métrica de semelhança usada para ordenar

os candidatos. Para além da semelhança semântica (neste caso vertente funcional)

e estrutural, o REBUILDER utiliza também a semelhança de comportamento no

ordenamento dos casos.

21Os trabalhos comparados são: Maiden e Sutcliffe [Maiden and Sutcliffe, 1992], Spanoudakis
[Spanoudakis and Constantopoulos, 1994], Jeng e Cheng [Jeng and Cheng, 1993], Harandi e
Bhansali [Harandi and Bhansali, 1998], e Tessem (o sistema ROSA) [Tessem et al., 1994].
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Outros Sistemas de Reutilização de Software

A grande maioria dos sistemas de reutilização de software estudados no âmbito deste

trabalho, exceptuando aqueles que estão nas categorias anteriores, focam a reuti-

lização de código22. Alguns destes sistemas também fazem reutilização de designs, no

entanto, esta é um subproduto da reutilização de código, pois as várias classes que

são reutilizadas em bloco são vistas como parte do design. A maioria destes sistemas

reutiliza código orientado para objectos, exceptuando o sistema RSL e o trabalho

de Prieto-Dı́az que lidam com qualquer tipo de código (ver secção 6.4). Na maior

parte destes sistemas apenas é feita recolha de código, o que permite que usem um

formalismo de representação simples de manipular, como pares atributo/valor ou en-

quadramentos. Representações mais complexas para a representação de código, como

grafos, não são exploradas no seu potencial por alguns destes sistemas. Por exemplo,

no caso do REBUILDER, a representação usada permite um conjunto alargado de

mecanismos de racioćınio, como é demonstrado neste trabalho.

Em relação à recolha, existem quatro formas de recolha identificados nos sistemas

analisados nesta secção: baseada em atributos, semântica, com base em linguagem

natural, e estrutural. A recolha baseada em atributos utiliza os atributos que de-

screvem o código de forma a efectuar a procura no repositório. Este método não

distingue se os atributos são de cariz funcional, comportamental ou estrutural, o que

pode ser uma vantagem devido à natureza não restrita da recolha. No entanto, pode

ser também uma limitação, pois para os mecanismos de racioćınio os atributos não

são tipificados, o que seria útil para estabelecer certo tipo de inferências. O segundo

tipo de recolha, recolha semântica, usa uma classificação funcional dos componentes

como forma de seleccionar os componentes relevantes para um determinado problema.

A recolha baseada na linguagem natural, na maior parte das vezes, utiliza palavras

chave ou conceitos para indexar os componentes. Finalmente, a recolha estrutural

é baseada na estrutura dos componentes, e regra geral, é mais complexa do que os

outros tipos de recolha. O REBUILDER usa a recolha funcional ou semântica para

seleccionar um primeiro conjunto de casos relevantes, e depois utiliza uma métrica

22Os trabalhos e sistemas comparados nesta subsecção são: o trabalho de Prieto-Dı́az
[Prieto-Diaz and Freeman, 1987, Prieto-Diaz, 1991], o trabalho de Liao [Liao et al., 1999], o sis-
tema RSL [Burton et al., 1987], o trabalho de Borgo [Borgo et al., 1997], o trabalho de Helm
[Helm and Maarek, 1991], o sistema ROSA [Girardi and Ibrahim, 1994] de Girardi, o trabalho de
Burg e Riet [Burg and Riet, 1997], o sistema LaSSIE [Devanbu et al., 1991], e o trabalho de Bassett
[Bassett, 1987, Bassett, 1997]
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baseada na semelhança funcional, comportamental e estrutural, para ordenar os casos

seleccionados.

Conclusões

Esta secção apresenta as contribuições desta tese, que são o resultado de um trabalho

de três anos. As principais áreas de contribuição inserem-se nos seguintes temas:

Racioćınio Baseado em Casos, Reutilização de Software, ferramentas ICASE, Desam-

biguação de Palavras, Analogia e Sistemas de Design Criativo. Durante o desenvolvi-

mento do REBUILDER foram surgindo várias questões cient́ıficas relevantes para

este trabalho. No entanto, a falta de recursos, nomeadamente tempo, e os objectivos

delimitados desta tese, não permitiram a sua exploração, sendo deixados como tra-

balho futuro ou direcções para investigação futura. Na secção seguinte apresentamos

vários desafios de investigação e melhoramentos a efectuar no REBUILDER.

Contribuições da Tese

O REBUILDER constituiu um sistema de teste para várias ideias, e um desafio que

abrangeu várias áreas de investigação. O nosso objectivo inicial era o de desenvolver

um sistema capaz de reutilizar designs de projectos anteriores. Esta ideia amadureceu

e evoluiu para um sistema com uma arquitectura cliente-servidor, baseado em RBC

como principal forma de racioćınio e metodologia de gestão de conhecimento. O

REBUILDER pode ainda ser visto como uma ferramenta de design e reutilização

de software que possibilita a reutilização a um ńıvel empresarial, funcionando como

repositório de designs. Aspectos de comunicação entre o designer e o sistema tiveram

prioridade no desenvolvimento do REBUILDER. Estes aspectos justificam o uso da

linguagem UML e a incorporação de processamento de linguagem natural.

Apresentamos agora o que entendemos serem as principais contribuições deste

trabalho:

• A arquitectura cliente/servidor desenvolvida, bem como a maneira como se

dividem e interagem os vários módulos de forma a integrarem a vertente ICASE

com a vertente de gestão de conhecimento de design de software.

• A integração do WordNet na base de conhecimento e consequentemente nos
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processos de racioćınio. O WordNet é usado no REBUILDER como recurso

léxico, mas também como ontologia.

• A introdução de um administrador da base de conhecimento que vem permitir

uma gestão coerente do conteúdo da base de conhecimento.

• A representação de casos centrada no utilizador, ou seja, o sistema utiliza a

’linguagem’ do designer de software (o UML) em vez de ser o oposto.

• Um esquema de indexação baseado no WordNet em que não só os casos são

indexados mas também os objectos dos casos, o que permite uma maior flexi-

bilidade de recolha de casos. Outra contribuição são os algoritmos de recolha e

as métricas de semelhança desenvolvidas.

• A exploração de diversos mecanismos de adaptação, resultando no desenvolvi-

mento de três formas diferentes de adaptação de diagramas de casos antigos a

um novo problema:

– Adaptação de diagramas de classe através de racioćınio analógico. Existem

várias contribuições neste ponto, nomeadamente a forma como o WordNet

é utilizado para selecionar os objectos candidatos a mapeamento, a forma

como os mapeamentos são efectudados e o trabalho de experimentação

desenvolvido sobre o estudo do design criativo.

– Outro tipo de adaptação que envolve a utilização de vários casos para

solucionar um problema, que designámos por composição de designs.

– A utilização de padrões de design de software para a modificação e evolução

de designs. Esta contribuição é uma das mais originais pois é a primeira

abordagem que automatiza todo o processo de aplicação de padrões de

design, desde a escolha do padrão a aplicar até à aplicação do padrão

escolhido.

• A utilização de casos de verificação que representam conhecimento sobre o

domı́nio. Estes vão servir para identificarem erros em diagramas e também

para os corrigirem. Para além dos casos de verficação, outra contribuição deste

trabalho é a forma como cada designer tem a sua base de casos de verificação

espećıfica, o que permite a personalização deste mecanismo. Outro aspecto

inovador é a utilização do WordNet para fazer verificação.
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• No domı́nio da manutenção da base de casos este trabalho adapta várias es-

tratégias de manutenção de casos para trabalharem com uma representação de

casos baseada em grafos.

• Em relação ao problema de desambiguação de palavras, para além de desen-

volvermos dois métodos de desambiguação, foi feito um estudo alargado com-

parando vários métodos descritos na literatura.

Trabalho Futuro

Durante estes três anos de trabalho foram encontradas várias oportunidades para

trabalho de investigação. Algumas destas vias não foram seguidas, ou porque se en-

contravam fora do âmbito deste trabalho, ou porque exigiam recursos humanos mais

alargados. No entanto, fica aqui um conjunto de questões que abarcam futuras di-

recções de investigação ou melhoramentos a efectuar posteriormente no REBUILDER.

• A integração de outras fases do processo de desenvolvimento de software no

REBUILDER, que não o design, é um dos objectivos futuros. Nomeadamente

a reutilização de diagramas de casos de uso na fase de análise, e a reutilização

de código na fase de implementação. A integração da reutilização de código

vem permitir que as mudanças feitas ao ńıvel do design sejam automaticamente

propagadas para o código e vice-versa. A fase de design pode ainda ser melho-

rada através do racioćınio com base em outros tipos de diagramas.

• Outro melhoramento futuro para o REBUILDER, será a integração de um

módulo de processamento de linguagem natural, cuja função será a conversão

de um texto escrito em Inglês pelo designer, num primeiro diagrama de classes

que modeliza os principais conceitos do texto (parte deste módulo já se encontra

desenvolvida).

• Como ferramenta CASE, o REBUILDER tem um comportamento reactivo.

Uma ideia posśıvel de explorar no futuro seria a implementação de um com-

portamento mais proactivo por parte do REBUILDER. Através de uma mod-

elização do estado cognitivo do designer, seria posśıvel para o sistema fazer

sugestões de acordo com as expectativas do utilizador.
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• Um outro melhoramento seria a integração de conhecimento especializado no

WordNet, por exemplo, através do administrador da base de conhecimento que

poderia inserir, apagar ou modificar conteúdos no WordNet. Neste ponto é de

lembrar que no âmbito deste trabalho foi adicionado ao WordNet a hierarquia

de classes do Java de forma a tornar o WordNet mais completo para o domı́nio

da design orientado para objectos.

• Novos mecanismos de reutilização de casos podem ser facilmente integrados no

REBUILDER. Adaptação baseada em modelos, regras, restrições, algoritmos

genéticos, ou outro tipo de mecanismo podem ser facilmente integrados no motor

de RBC.

• Um melhoramento de que o mecanismo de analogia do REBUILDER pode

tirar partido, é a inclusão de critérios de avaliação das soluções geradas. Estes

critérios iriam avaliar o grau de certas propriedades criativas dos designs gera-

dos, de forma a melhorar a qualidade destas, tendo como objectivo a exploração

de novas áreas do espaço de design.

• A verificação de classes e interfaces é abordada de forma parcial neste trabalho.

A única verificação efectuada é feita com base no nome do objecto. No entanto,

poderia utilizar-se os atributos e métodos do objecto, ou ir mais além e ter como

base os outros objectos do mesmo diagrama de forma a conseguir inferir se o

objecto deve estar no diagrama. Para além de que o mecanismo de recolha e

selecção destes casos deve ser melhorado.

• A aprendizagem de casos de verificação pode ser melhorada, através da apren-

dizagem de regras de verificação ou outro tipo de conhecimento genérico que

permitisse generalizar prinćıpios gerais de verificação.

• É necessário fazer mais trabalho experimental sobre as estratégias de manuten-

ção da base de casos. O problema é conseguir uma base de casos suficientemente

grande para conseguir avaliar as várias estratégias. Juntamente com estas ex-

periências, o teste de vários critérios de subsunção23 de casos seria bastante

interessante. Outro caminho a explorar pode ser a combinação de várias es-

tratégias de forma a conseguir descobrir sinergias entre elas.

23Subsumption em Inglês.
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• A desambiguação de palavras apesar de já dar bons resultados, é ainda insu-

ficiente. Este módulo pode ser melhorado procurando obter maior precisão na

classificação de objectos. Uma direcção interessante para trabalho futuro seria a

desambiguação de nomes de relações de UML. Isto permitiria ao REBUILDER

ter mais conhecimento para fazer desambiguação dos nomes dos objectos ou

outro tipo de inferências. A integração de outros recursos como corpus de texto

poderia ser interessante para o melhoramento da desambiguação.

• Ainda um trabalho futuro importante para o REBUILDER seria testar a fer-

ramenta numa empresa. Estes testes poderiam ser efectuados utilizando a

metodologia GQM (Goal-Query-Metric) desenvolvida por [Nick et al., 1999].
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Chapter 1

Introduction

This chapter presents the motivations for this work, introducing most of the terminol-

ogy and concepts used along the remaining chapters. We then outline the problems

and goals addressed, defining the scope of the developed work. Finally we describe

the thesis organization.

The main ideas of this thesis have been published in several papers, from which we

based important parts of this document. Nevertheless, this thesis describes in greater

detail and with examples the issues addressed in these papers, along with other issues

not covered by these documents. The publications which were used are:

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2003. ”An Approach to Software Design Reuse Using Case-Based

Reasoning and WordNet”. Accepted for Publication as a Chapter in the Book Soft

Computing in Software Engineering , Springer.

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2003. ”REBUILDER: A Case-Based Reasoning Design Reuse Tool”.

Accepted for Publication in journal of Engineering Intelligent Systems.

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Fer-

reira, Carlos Bento, 2003. ”Selection and Reuse of Software Design Patterns Using

CBR and WordNet”. In Proceedings of the Fifteenth International Conference on Software

Engineering and Knowledge Engineering (SEKE’03 ).

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Fer-

reira, Carlos Bento, 2003. ”Case-Based Reuse of UML Diagrams”. In Proceedings of

the Fifteenth International Conference on Software Engineering and Knowledge Engineering

(SEKE’03 ).

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2003. ”Management and Reuse of Software Design Knowledge Using

38



CHAPTER 1. Introduction

a CBR Approach”. In Proceedings of the International Joint Conference on Artificial

Intelligence IJCAI’03 Workshop: ”Knowledge Management and Organizational

Memories”.

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Fer-

reira, Carlos Bento, 2003. ”Human-Machine Interaction in a CASE environment”.

In Proceedings of the International Joint Conference on Artificial Intelligence IJCAI’03

Workshop: ”Mixed-Initiative Intelligent Systems”.

• Paulo Gomes, Nuno Seco, Francisco C. Pereira, Paulo Paiva, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2003. ”The Importance of Retrieval in Creative Design Analogies”.

In Proceedings of the International Joint Conference on Artificial Intelligence ”IJCAI’03

Workshop: 3rd Workshop on Creative Systems”.

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Fer-

reira, Carlos Bento, 2003. ”Noun Sense Disambiguation with WordNet for Software

Design Retrieval”. In Proceedings of the Sixteenth Canadian Conference on Artificial

Intelligence (AI’03 ).

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2003. ”Evaluation of Case-Based Maintenance Strategies in Software

Design”. In Proceedings of the Fifth International Conference on Case-Based Reasoning

(ICCBR’03 ).

• Paulo Gomes, Francisco C. Pereira, Paulo Carreiro, Paulo Paiva, Nuno Seco, José L. Ferreira,

Carlos Bento, 2003. ”Solution Verification in Software Design: A CBR Approach”.

In Proceedings of the Fifth International Conference on Case-Based Reasoning (ICCBR’03 ).

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2002. ”Using CBR for Automation of Software Design Patterns”. In

Proceedings of the European Conference on Case-Based Reasoning (ECCBR’02 ).

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2002. ”Experiments on Case-Based Retrieval of Software Designs”.

In Proceedings of the European Conference on Case-Based Reasoning (ECCBR’02 ).

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Fer-

reira, Carlos Bento, 2002. ”Case Retrieval of Software Designs using WordNet”. In

Proceedings of the European Conference on Artificial Intelligence (ECAI’02 ).

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2002. ”Using WordNet for Case-Based Retrieval of UML Models”. In

Proceedings of the STarting Artificial Intelligence Researchers Symposium (STAIRS’02 ).
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• Paulo Gomes, Francisco C. Pereira, Nuno Seco, José L. Ferreira, Carlos Bento, 2002.

”Supporting Creativity in Software Design”. AISB’02 Symposium ”AI and Creativity

in Arts and Science”.

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2002. ”Experiments on Software Design Novelty Using Analogy”.

European Conference on Artificial Intelligence ”ECAI’02 Workshop: 2nd Workshop on

Creative Systems”.

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2002. ”Case-Based Reasoning for Reuse of Software Designs”. 6th

International Conference on Knowledge-Based Intelligent Information & Engineering Systems

(KES’02 ).

• Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro, José L. Ferreira,

Carlos Bento, 2002. ”Combining Case-Based Reasoning and Analogical Reasoning

in Software Design”. In Proceedings of the 13th Irish Conference on Artificial Intelligence
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1.1 Motivations

One problem that software development companies face today is the increasing di-

mension of software systems. Not only the size and complexity have boosted, but also

the number of functionalities and technologies that are involved. One decade ago, the

software engineering area proposed a solution for this problem based on software reuse

[Prieto-Diaz, 1993, Coulange, 1997]. The idea of this approach is to reuse previously

developed software in the building of new systems. Software reuse decreases the time

needed to build a software system and improves its quality.

Most of the initial research works on software reuse were at the implementation

level, reusing only code [Burton et al., 1987, Prieto-Diaz and Freeman, 1987]. This is

one important reuse level, but there are other levels of reuse that can be very useful

for software engineers, like the design, analysis, or test levels. In fact, reuse can be

present at any phase of software development.
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The know-how acquired by the development teams is a valuable asset that soft-

ware companies possess. Each engineer or programmer learns her/his own specific

knowledge, which is then reused in other projects and tasks in which s/he participates.

Experienced programmers are very important to companies, in the sense that some-

one with experience has higher productivity. When an experienced engineer or other

qualified employee leaves a company, s/he takes with her/him a corpus of knowledge,

which from the company point of view, is an important knowledge loss. In a high

competitive market environment, where companies strive to be alive, this problem

is crucial. Another relevant aspect is the importance of sharing know-how among

the company’s employees increasing productivity and minimizing the losses when

they abandon. Inexperienced engineers would profit a lot from the stored knowledge,

project development would need less resources and product quality would improve

with the availability of a corporate memory and suitable retrieval mechanisms.

Among the different software development phases proposed in the V-model (analy-

sis, design, implementation, testing and integration) [Boehm, 1988], the design phase

is only superficially explored by software reuse. This is in part explained by the

different languages used in software design, and by the fact that design is a more ab-

stract task than coding, which makes more difficult the development of design reuse

approaches. Another difficulty is the lack of a strong theory in design, which makes

the design task an experience-driven process, relaying a lot on the designer’s know-

how. But the design phase is an important phase in any software project, being the

implementation phase highly dependant on the developed design.

Software design acquires additional importance as the complexity level of software

increases. This also drives development teams to be more efficient and more creative

in their solutions. Software designers must find new design methodologies, trying to

optimize development time, processing time, required memory, and other resources.

As stated in the previous paragraph, this kind of design relies more on the designer’s

experience and less on defined processes and methodologies. Existing methodologies

are general guidelines, which can be interpreted in several ways according to the

context. Like architects, software designers frequently use their experience from the

development of previous systems to design new ones. Most of the mature engineering

fields make the reuse of components a development rule, but in software engineer-

ing the reuse of components and/or design ideas is not easy, given the conceptual

41



CHAPTER 1. Introduction

complexity at hand. Thus, intelligent tools that support the software design task are

welcome. These tools must implement common software reuse techniques, but they

also have to go further, providing support for more complex reasoning abilities and

exploration of new design spaces, possibly boosting more creative designs.

Creative design is a cognitive process that generates a product said to be creative

when satisfying certain properties [Dasgupta, 1994]. At least four components of

creativity were identified [Brown, 1989]: creative process, creative product, creative

person or entity, and creative situation. Within this model, a crucial component is

the creative product. Thus an important issue in developing computational models

of creativity is the evaluation of the creative product. Another important issue in

creativity is the process that originated the creative product. Research developed

in this domain has come up with several methods used for generation of artifacts

considered creative [Partridge and Rowe, 1994, Gero, 1994a, Gero and Maher, 1993,

Pereira and Cardoso, 2001, Gomes et al., 1996]. Some methods associated with cre-

ative reasoning are: cross-domain transfer of ideas (analogy), combination of ideas,

and exploration and transformation of conceptual spaces. Most of these methods are

used in creative design [Gero, 1994b].

Most of the tools and systems developed for software reuse (see chapter 6 for

more information about works on software reuse) only provide help in retrieving soft-

ware entities (like classes, functions or specifications) from repositories. But reusing

software involves also adaptation of the knowledge retrieved to the system being devel-

oped, which is usually left to the designer, since this is a more complex and demanding

task. Analogical reasoning [Gentner, 1983, Hall, 1989, Holyoak and Thagard, 1989]

appeared as a technique that can be used to overcome some problems of the adap-

tation phase of software reuse, since it involves transfer of ideas and solutions from

other domains to the target domain. This does not only provide a way to find solu-

tions, but gives also the opportunity to built new solutions and, sometimes, creative

ones. Not only because they are novel and unexpected, but also because they can be

better, simpler and more elegant. We believe analogical reasoning can achieve this

on its own or with the collaboration of the software designer, providing the designer

with ideas and alternatives that help to explore the solution space in a more efficient

way.

CASE (Computer Aided Software Engineering) tools have been developed to help
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the software engineer during software development. Most of the modern CASE tools

provide assistance through all the phases of software development. These tools have

the main task of automatically checking the diagram syntax and store these diagrams

in repositories. A CASE tool is generally an integration of several modules: diagram

editors, text editors, information repository, and other specific modules. The major-

ity of these modules, like the editors, are functionally simple and offer great help to

the designer. But there is one module that is not explored to its full potential: the

information repository. The information repository is able to store several types of

knowledge (textual, graphical, multimedia or other kinds), which can be very useful

to designers, but it is difficult to explore if it grows up to a large dimension. To solve

the problem of reusing the knowledge stored in the information repository of CASE

systems, which is software development knowledge, the designer must have at her/his

disposal tools capable of reusing this knowledge. We think that Artificial Intelligence

techniques are able to provide such help, taking CASE tools to a new development

stage: Intelligent CASE (ICASE) tools. These tools store and reuse software de-

velopment knowledge in an intelligent way, providing several cognitive mechanisms

that the designer can use, like: suggesting new solutions, exploring the information

repository in a semantic way, checking the semantic coherence of a system’s design,

learning from the interaction with the designer, and many other ways.

The Unified Modelling Language (UML, [Rumbaugh et al., 1998]) is a software

design specification language that uses many types of diagrams for description of

different aspects of a software system. UML is one of the leading software modelling

languages in the world (if not the leading one). Due to this success and because it

is an excellent way for communication among software designers, we have selected it

to be used in our work. From all the diagrams used in UML, we have selected to

focus on class diagrams, since they are one of the most used types of UML diagrams

representing the static model of a software system.

Designers usually base their reasoning on experience, which is a common form

of human reasoning. In the area of Artificial Intelligence there is a subarea that

uses experiences for reasoning purposes. Experiences are represented in the form of

cases, which are basic knowledge blocks. This subarea is called Case-Based Reasoning

(CBR, [Kolodner, 1993]) and has been growing up in the last fifteen years. CBR can

be viewed as a methodology for developing knowledge-based systems [Althoff, 2001]

43



CHAPTER 1. Introduction

that uses experience for reasoning about problems. CBR main idea is to reuse past

experiences to solve new situations or problems. A case is a central concept in CBR,

and it represents a chunk of experience in a format that can be reused by a CBR

system. Because CBR and design are experience-driven, we think that CBR is a

suitable reasoning paradigm to be used for a computational model of the software

design task.

This work started with the idea of building a system that would provide assistance

to the software designer, in tasks such as exploration of the design space. Another

main idea that was developed during this work, is the management of software design

knowledge in the form of a corporate memory. Both ideas are complementary and

are achieved in REBUILDER using CBR as the integration methodology, enabling

the combination of an UML CASE tool with a Knowledge Management tool.

1.2 Goals and Contributions

Having in mind, not only the importance of design in software development, but also

the difficulty of generating systems that can reuse designs, we have set our research

goal in the development of a system capable of reusing software designs and manage

the knowledge associated with software design.

A software system capable of reusing designs should have two main characteristics:

1. Must be able to store the software design knowledge from the entire company

in a central repository, so that any software designer in the company can reuse

it.

2. Must provide a tool for handling the design knowledge, and at the same time

aid the designers in a more intelligent way.

This thesis presents an approach to such a system and it’s implementation in a system

called REBUILDER.

REBUILDER has a client-server architecture, which fits well in a distributed en-

vironment like the ones we are used to see in software development companies. This

addresses the first characteristic mentioned above, while the second one is accom-

plished by a client module, which is an UML CASE tool. This tool works like a

normal UML editor with extra functionalities that provide cognitive aid to the soft-

ware designer.
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The centralization of design knowledge and cognitive aid are supported in our

system by a CBR approach. This is an Artificial Intelligent methodology that reuses

experience to solve new situations. In the case of REBUILDER, the design knowledge

is centralized in a knowledge base in the form of past experiences. These can be reused

later by the client’s CASE tool. While the central knowledge base allows sharing of

design knowledge among the company’s designers, the CASE tool enables a designer

to access and reuse this knowledge. CBR fits well into this framework, because it

enables the learning of new experiences. Thus the system is capable of adapting to

the company type of designs or domains.

During the development of this work we addressed several research issues. Some

of these contributions that we consider central in our work are:

• Integration of an ICASE tool with a software design knowledge manager. The

client/server architecture that was developed and that is supported in the CBR

framework, as well as the way the different modules interact, are central con-

tributions of our work.

• Case representation is one major issue in a CBR system. Instead of choosing a

computer-centered representation formalism we have used a user-centered ap-

proach, which lead us to choose UML as the representation formalism. We show

that it is possible to use UML for reasoning purposes and we have presented a

way of integrating it into a CBR system.

• Case indexing and retrieval are central for the performance of a CBR system.

One of the goals of this work is to develop an indexing and retrieval system

flexible and efficient enough to be used by a software designer through an ICASE

tool. Regarding these issues we make two contributions: the indexing scheme

based on WordNet that indexes not only the cases but also it’s subparts, and

the associated retrieval and similarity metrics.

• After retrieval, case adaptation (or case reuse) is the next step and one of the

less explored in the CBR area. It is a difficult task and it requires knowledge-

intensive processes. In order to provide the designer with alternative designs

and to help the exploration of the design space, we have addressed this issue in

a broad perspective, trying to explore several alternative approaches:
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– The use of analogical reasoning for the adaptation of diagrams to the target

problem. In this area our main contributions are the way WordNet is used

for choosing analogue source candidates, the mapping algorithms and the

experimental work about creative design.

– The use of design composition as another adaptation mechanism, which

can generate new solutions from several cases. Our main contribution here

is the composition strategies that were developed.

– The last adaptation strategy is the automatic application of software de-

sign patterns. We think that this is one of the strongest contributions of

this work, because it is the first approach that fully automates the appli-

cation of software design patterns, going from the pattern selection to its

application.

• The verification phase allows the detection and correction of design errors re-

sultant from adaptation. Being one of the goals of this work to model all the

phases in the CBR cycle, the integration of a revision mechanism is essential.

In this area we have contributed in three ways: the definition and use of ver-

ification cases, the personalization of the verification knowledge in the form of

cases, and the use of WordNet for verification purposes.

• A CBR system must take advantage of the retention phase in order to learn

new knowledge (in the form of cases). It was one of our goals to integrate

this phase in our approach. We have integrated and adapted several case base

maintenance policies, which provide guidance for the KB Administrator in the

selection of the case base contents. Our contribution is the adaptation of these

policies to a graph-based case representation.

• One of the main directives in the development of REBUILDER is the impor-

tance of easing the communication between designer and system. The integra-

tion of natural language processing in the form of object name disambiguation

is one of the forms of accomplishing this. Concerning this problem (also called

word sense disambiguation, shortly WSD), we have contributed with two new

disambiguation methods and experimental work comparing several methods

from the WSD literature.
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1.3 Structure

This thesis comprises an extended summary in Portuguese and seven chapters. Chap-

ter 1 presents the motivations, goals, contributions and structure of this thesis. Chap-

ter 2 presents the basic concepts used in this thesis. It starts by describing CBR in

design, creativity in design and finishes with an overview on software design and

reuse. The goal of chapter 3 is to give an overview of REBUILDER by describing it’s

architecture, the UML Editor module, the Knowledge Base Manager, and Knowledge

Base. Chapter 4 describes the CBR engine and its submodules. It presents the main

contribution of this work and the more complex part of REBUILDER. It comprises

the description of seven submodules: retrieval, analogy, design composition, design

patterns, verification, learning and word sense disambiguation. Chapter 5 presents

several experiments that were performed to assess the performance of the various

reasoning modules. Chapter 6 describes the evaluation of the work presented in this

thesis, by comparison of REBUILDER with other related systems. Chapter 7 con-

cludes this thesis by presenting the main contributions of this work. This chapter

also delineates new research directions in areas like software design reuse using CBR

or intelligent CASE tools.
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Background Knowledge

The goal of this chapter is to introduce the reader to the main subjects present in this

thesis. The first section starts by describing Case-Based Design (CBD), which is the

application of Case-Based Reasoning (CBR) to design tasks. It presents the design

process along two perspectives - knowledge spaces and design tasks - and presents

the CBR methodology. We explore several important issues in Case-Based Design,

such as: case representation, case indexing, retrieval, adaptation, verification and

case learning. This description provides an introduction to some important concepts

in CBD and CBR. Then the focus shifts to the concepts of creativity and design. We

explore creativity at a cognitive level and from the perspective defined by Margaret

Boden [Boden, 1990], which enables the discussion of computational creativity. We

then stress the singularities concerning creative design and analyze them from two

perspectives: the creative product and the creative process, ending with some con-

siderations about computational approaches to creative design (at an abstract level).

This section also describes analogical reasoning and how it integrates into the creative

process. The sections about Creativity and Creative Design are presented at a rather

abstract and theoretical level, but they provide a cognitive background to the repre-

sentation formalisms and reasoning mechanisms used in this work. The next section

goes into a more specialized subject - Software Design and Reuse - which is the main

application domain of the system developed in this thesis. We define software design

and software design reuse, two important concepts for this thesis assumptions. In

this section we also address two related areas in our work: software design patterns

and UML.
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Figure 2.1: Design as a mapping process between functional, behavioral and structural spaces.

2.1 Case-Based Design

All the work done in this thesis reports to design in some way, so, it is important to

analyze it from the cognitive and computational perspectives. This section starts by

defining the design activity in terms of design knowledge spaces and involved tasks,

and then describes how CBR can be applied to design, starting by explaining what

is CBR. Then it explores more specific issues concerning CBD.

2.1.1 Design

Design is the process of generating a structural description that complies with a set

of functional specifications and constraints [Tong and Sriram, 1992]. Constraints can

be structural, behavioral or resource limitations. The design product is a set of com-

ponents and relations between them, making the design structure. The design process

involves three main types of knowledge about the domain: functional, behavioral and

structural. The mapping between these three types of knowledge is central to the

design process (see figure 2.1, [Reich, 1991]). Starting from the problem space, which

is most of the times the functional space, the designer maps points in this space onto

points or areas in the solution space, which consists on the set of possible designs

[Gero, 1994a].

Gero [Gero and Maher, 1993, Gero, 1994b] classifies Design as routine and non-

routine. Routine design is defined as a class of design where all the needed knowledge

for the mapping process is available to the designer. Thus, routine generated designs

are instances of known classes of designs. In non-routine design, some knowledge

for the mapping process is missing. When this lack of knowledge is located in the

structural space, it originates a subclass of non-routine design known as innovative

design. If there is knowledge missing in all the spaces it is called creative design.
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Innovative design creates new designs using values for the design variables, not com-

monly used in previous designs. The designs generated in creative design define new

classes of artifacts, thus expanding the space of known designs. Creative design will

be described in more detail in section 2.2.2.

A design knowledge space comprises all the knowledge available to a specific design

domain or problem [Gero and Maher, 1993]. For instance, the set of all software

routines for sorting a list, establishes the design knowledge space for the software

problem of sorting a list of elements. In computational terms, a design space can be

the set of cases of a CBR system, the production rules of a rule-based system, or any

other type of knowledge used for computational design reasoning.

When dealing with a computational approach, two types of processes need to be

considered in the generation of new knowledge: search and exploration. Search is a

computational process that tries to find in the solution space a design that complies

with the problem constraints. By definition, search only finds solutions that are

already defined in the design space. Exploration works differently from search, it

creates new regions in the solution space through the modification or expansion of

the solution space. Although search is generally associated with routine design and

exploration is associated with non-routine design, non-routine design can also involve

search.

The exploration mechanism can modify the design space by adding new design

knowledge or by replacing existent design knowledge. If the design space is defined

in terms of design variables (in which a design space of dimension n is defined by n

design variables), then two types of changes in the design space can occur: changes

in the range of values that a design variable can take, and changes in the design

variables. The first transformation can occur by adding or removing items from the

range of values of a design variable, thus evolving the design space with time. The

second transformation is more complex, and involves changing the space dimension-

ality. Design variables can be added to or removed from the design space, which

constitutes another type of space evolution. Both transformations can happen at the

same time producing a change in the design space. The first type of space trans-

formation is related to innovative design, while the second type of transformation is

generally associated with creative design [Gero and Maher, 1993, Gero, 1994b].
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As presented before, design generally deals with three types of knowledge: func-

tional, behavioral and structural. To each type of knowledge there is an associated

design space. The three types of knowledge are usually connected in the way de-

scribed in figure 2.1. From one space we can usually reach the other spaces. Usually

the functional space is related with the problem specifications and requirements, re-

lating this space with the design problem space. This space is transformed along

the design process most of the times. Problem specifications can be changed due to

client demands, and problem reformulation due to design incoherences. These are

two common ways to perform these transformations. The structural space is the

design solution space, since the desired solution is a design structure that achieves

the desired functionalities. The behavioral space is an intermediate space between

the functional and structural spaces, making a connection between problem require-

ments and structural components. Most of the times the behavioral space provides

an explanation of how the structural components achieve the required functionalities.

Two important observations about the analysis of the tasks involved in the design

process are [Reich, 1991]: design is an iterative process comprising several sub-tasks

executed in sequence; and the diverse nature of these sub-tasks implies the integration

of different knowledge types and reasoning capabilities. Design can be conceptualized

as a five-task process: problem analysis, synthesis, analysis, redesign and evaluation

(see figure 2.2).

The design process starts with the problem statement, which comprises the design

problem specifications and requirements. The problem analysis consists on the elab-

oration of these specifications and requirements, trying to define them in a formal

way. This task involves the use of domain knowledge to assist in the definition of

the problem requirements. The result is the definition of the problem design space

through the use of the specifications and requirements.

The next task consists in building the space of design candidates through a synthe-

sis task. This task searches and explores the structural design space trying to identify

candidate designs. This process is guided by control knowledge. The synthesis task

can be interpreted as a transformation from intentional to extensional description of

designs, using pairs of specifications and design descriptions to represent candidate

designs.
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Figure 2.2: The tasks involved in the design process [Reich, 1991].

The analysis task has the goal of checking design constraints and assessing design

performance. While the first part tries to identify design inconsistencies, errors or

constraint violations, the assessment of the design performance is important to de-

termine the quality of each candidate design. In the analysis task, the domain theory

can be formalized in the form of heuristic knowledge (or other type of knowledge).

The nature of analysis is very different from synthesis, while the synthesis task creates

a design, the analysis task verifies and evaluates the created design.

Most of the times, analyzed designs are dropped because they are not feasible,

or they need some redesign in order to comply with the design constraints. Solving

design inadequacies is the goal of the redesign task. In this task the behavioral

knowledge is very important, since it relates function with structure and it provides

a way of knowing, which structural components to modify in order to achieve the
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desired functionality. Causal models can be a way of modelling behavioral knowledge.

Analysis and redesign can be an iterative process until the design complies with the

desired requirements.

The final task involves the evaluation of the set of feasible designs, so that one

of them (or more) can be implemented. Basically the evaluation task consists in

ranking the designs that comply with the design constraints. There are several ways

to evaluate designs and most of the times, this is done using subjective knowledge in

the form of esthetics or simplicity criteria.

Though the tasks are shown in sequence, the design process can be more dynamic

comprising several loops between the design tasks. This is an iterative process that

converges to a solution under the strategic control of the designer.

The application of the CBR framework to the design process is another important

decision within this work. The next subsection explores the main idea of CBR and

the next subsections explore the issue of Case-Based Design.

2.1.2 Case-Based Reasoning

Case-Based Reasoning (CBR) [Kolodner, 1993, Maher et al., 1995] is the main rea-

soning framework used in our work. This framework allows the centralization of

design knowledge and provides cognitive aid to designers. CBR can be viewed as a

methodology for developing knowledge-based systems [Althoff, 2001] that makes use

of experience for problem solving. The main idea is to reuse past experiences to solve

new situations or problems, and possibly to learn from the system’s reasoning.

A case is a central concept in CBR, and it represents a chunk of experience in a

format that can be reused by a CBR system. Usually a case comprises three parts:

problem, solution, and outcome.

The problem is a description of the situation that the case represents. It can

be, for example, the symptoms of a patient in a medical case, or the requirements

for a software system, or any description characterizing the situation that is being

represented.

The solution describes what was used to solve the situation represented in the

problem, or how the problem was solved. For instance, in a medical domain the
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solution can represent the treatments prescribed to a patient. In the software domain

a solution can be a design that complies with the system requirements.

The outcome expresses the result of the application of the solution to the problem.

This means that, usually, there are two possible outcomes: success or failure. A

success case represents a situation in which the solution worked well, while a failure

case represents a situation where the solution did not work. A case can also comprise

other parts like a justification, which can relate the problem features to the solution

components through causal relations.

Another important part of a CBR system is the case library (or case base). Due

to the high number of cases that a case library can have, most of the CBR systems

use indexing structures that enable fast retrieval of relevant cases from memory.

At an abstract level CBR can be described by the reasoning cycle shown in fig-

ure 2.3 [Aamodt and Plaza, 1994]. The reasoning process starts with the problem

description, which is then transformed into a target problem (or query problem and

also called query case). The problem is provided by an user or by another system.

The first phase in the CBR cycle is to retrieve from the case library the cases that

are relevant for the target problem. The relevancy of a case must be defined by the

system developer or the user, being the most common definition based on feature

similarity. Retrieval returns the best case1 and provides the input to the next phase

along with the target problem.

The reuse phase (also designated as adaptation phase) modifies the retrieved case

to fit the problem requirements, yielding a new case (or new solution). This process

can make use of several inference techniques. Some work has been developed on the

subject, but this is probably the less explored phase of the CBR cycle (see [Voss, 1996]

for a description of several works on adaptation). The next step for a CBR system

is to revise the new case, returning a tested and repaired case. This phase usually

comprises two parts: verification and evaluation. While verification checks the new

case consistency and coherence, the evaluation phase assesses the performance and

characteristics of the new case. Finally, in the retain phase the new case is stored

in the case library. This phase is more complex than it seems, because not all cases

should be stored. If a new case is very similar to a case already in the library, then

1Depending on the system’s goals and architecture, there are systems that retrieve more than
one case.
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Figure 2.3: The CBR cycle adapted from [Aamodt and Plaza, 1994].

it should not be stored because it brings almost nothing new to the system. In fact,

possibly, it will degrade the system performance. This last phase closes the CBR cycle

by feeding the system with new experiences, making the system capable of learning.

This reasoning cycle is more iterative in many CBR systems, with the possibility to

backtrack to previous reasoning phases when something fails.

2.1.3 Case Representation

The application of CBR to design is called Case Based Design (CBD), and a parallel

between CBR and design can be established (see table 2.1). The problem analysis is

defined in CBR as the formalization of the target problem along with the associated

indexes. The synthesis phase is equivalent to retrieval and reuse phases, despite some

CBR systems do not have the reuse phase. The analysis and evaluation tasks are

equivalent to the revise phase, both analyze designs or solutions. The redesign phase

can be seen has the junction of the reuse and revise phases, depending on the type of

verification mechanisms involved in the revision phase.

A CBD system uses cases as the main knowledge source, which is sometimes the

only source. The case content determines the way the indexing memory is organized,

which are the index types available, the reasoning processes, and other aspects of a

CBD system. Case representation is also important to establish communication with
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Table 2.1: Correspondences between design tasks and CBR phases.
Design Tasks CBR Phases

Problem Analysis Representation and Indexing
Synthesis Retrieval and Reuse
Analysis Revise
Redesign Reuse and Revise

Evaluation Revise

the designer. Cases must have information not only for the system’s reasoning mecha-

nisms, but also for the designers. As described in section 2.1.2, cases usually comprise

three parts: problem, solution and outcome. In CBD the outcome is usually implicity

in the design and a new part can be added to the case representation: the explanation

or justification part. This is a description, usually in the form of causal knowledge,

that associates problem specifications to structural components of the solution. The

problem description is associated with the functional design space, comprising re-

quirements and specifications. The solution is associated with the structural design

space comprising the design structural components. The explanation description is

associated with the behavior design space, and is usually formalized in the form of

causal knowledge or domain models.

Some of the most common representation formalisms used in CBD are:

Attribute/Value Pairs In this representation cases are vectors of attribute/value

pairs, in which an attribute is a design variable [Kolodner, 1993, chapters 5

and 6]. Design variables and the respective range of values must be defined.

This representation is independent from the application domain and is one of

the most frequent in CBR systems. Nevertheless, this representation has some

limitations, especially in the expressive capabilities of the attributes.

Textual Representation Text is a natural way for humans to describe cases, and

is used by some CBD systems [Goel et al., 1993, Maher et al., 1995]. Neverthe-

less, a textual representation is difficult to manipulate by the reasoning mech-

anisms due to the ambiguity normally involved in natural language. In order

for the reasoning mechanisms to work properly, some level of natural language

processing would have to be used. Despite these limitations, textual represen-

tations are designer-friendly.
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Hierarchical Representation Using hierarchies is also a common way

of representing cases in CBR systems [Smyth and Cunningham, 1992,

Gomes and Bento, 1997a, Gomes and Bento, 1997b, Gomes and Bento, 1998].

Links of type is-a represent generalization relations between nodes, described

by properties in the form of attribute/value pairs. These nodes can inherit

properties from parent nodes. This is a powerful representation, highly

structured and that benefits from some properties of taxonomical structures.

Associated reasoning mechanisms are more complex and more prone to

errors. Another type of hierarchical representation that instead of being a

generalization taxonomy (with is-a relations) is a hierarchy in which links

represent part-of relations.

Graph Representation This case representation is a complex representation

that uses graph-like structures [Sycara and Navinchandra, 1991, Zhao, 1991,

Duffy and MacCallum, 1989]. Nodes represent attributes or properties of the

case, and links represent semantic relations between attributes. This repre-

sentation is similar to semantic networks, and has the advantage of using the

semantic relations as indexes. Reasoning algorithms that use this type of rep-

resentation are more complex than the ones that use simple representations.

Multimedia Representation In multimedia representations, different types of in-

formation are combined [Domeshek and Kolodner, 1993]. This representation

comprises text, sound, image and other types of information to represent a

design. Though it is a very powerful representation technique, it needs two

important functionalities: a tool capable of doing the integration of the infor-

mation, and an adequate processing scheme. It is a representation oriented to

the designer, which can be augmented with a more structured type of represen-

tation.

Other formalisms exist in CBD. Mainly these are formalisms that combine two or

more of the basic formalisms described above.
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2.1.4 Case Indexing and Storage

Case indexing and storage are tightly connected. The way cases are organized in

memory, constraints the indexing schemes that can be used for retrieval. The main

aspects that influence the case base organization are: case contents, paradigms used

in indexing cases, and case visualization. Other two facts important in defining the

case indexing and structure are: flexibility and efficiency. Flexibility because a case

may have to be retrieved in different ways, depending on the retrieval perspective.

Efficiency because the size of the case base can impose strong computational limita-

tions.

Some of the most common indexing and storage mechanisms used in CBD are:

Flat Organization In a flat case base, cases are stored in a list (see [Kolodner, 1993,

page 293]). This list can be organized in a specific order, like ranking cases

alphabetically. But the main issue here, is that there is no clustering of cases

to make the process faster. On the other hand, all the cases can be inspected

and the retrieval accuracy can be greater comparatively to clustering structures.

There is no indexing scheme, since cases are inspected one after another, starting

at the beginning of the list. If the case base is large, the retrieval process can

be impossible to perform due to time limitations. Adding new cases or deleting

cases are trivial computationally inexpensive operations.

Hierarchical Organization One way to make the retrieval process more efficient,

is to use a hierarchical structure to cluster cases. For example, decision trees

or shared-feature networks (see [Kolodner, 1993, page 295]). In this approach,

cases are indexed by taxonomy nodes, and can be accessed using these nodes

as indexes. Generally, nodes are attributes, and edges have an associated value

(a decision tree), which corresponds to indexing cases by attribute/value pairs.

This organization works well with a attribute/value pair representation. Other

ways to organize cases is by using part of cases as indexes, and to build a hier-

archical partonomic structure that clusters the cases [Gomes and Bento, 1998].

An index in this situation would be a piece of a case.
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Model Organization Another way to organize cases can be performed using mod-

els, like Structure-Behavior-Function models (SBF [Goel, 1992]), Function-

Behavior-Structure models (FBS [Qian and Gero, 1996]), causal models or qual-

itative models (see CADET [Sycara and Navinchandra, 1991]), or even depen-

dency network models. Each type of models has it’s own specific way of in-

dexing cases. We will focus on the SBF models cited above. The SBF models

describe structure, behavior and function of the design they represent. Using

the SBF formalism cases can be indexed using structural variables, behavioral

variables, and/or functional variables. Some systems that use this represen-

tation formalism are capable of learning which are the relevant descriptors

to be used in case indexing [Bhatta and Goel, 1992, Bhatta and Goel, 1993a,

Bhatta and Goel, 1993b].

The indexing process consists on associating one or more indexes to a case, defining

the situations in which the case is relevant. The index selection is an interpretation

process based on the context in which the case is considered to be useful. There are

three aspects to take into account in the indexing mechanism:

1. Indexing vocabulary.

2. Indexing process.

3. Index organization.

An index is a label associated with a case, which establishes a relation between

the indexed case and the particular situation that the index represents. Indexes

are usually associated with problem specifications and can have different levels of

abstraction. An index that can be directly extracted from the case description is

called a specific index. Abstract indexes are derived from the case description, but

do not correspond directly to case features.

Specific indexes are easy to extract from cases, but are not in general good indexes,

because they represent superficial aspects of the situation being described in the case.

Abstract indexes are more difficult to extract, because extraction involves an inference

step. In another way, they are more accurate for determining the case relevance.
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The indexing vocabulary often coincides with the design attributes, or is a subset

of these attributes. When abstract indexes are used, the vocabulary does not coincide

with the description attributes.

Indexes must have certain characteristics that allow them to be effective. They

must preclude the situations in which a case can be used. They must be abstract

enough to be used in several situations, but specific enough to be easily identified.

They must enable the discrimination between different scenarios, in such a way that

the differences between a case and a target problem can easily be identified.

Case indexing can be performed manually by a designer, or in an automated way

using indexing algorithms. There are three main ways to select indexes automatically:

based on lists, based on differences, and based on explanations. In the list-based in-

dexing there is a list of attributes that are used as indexes. The difference-based

indexing uses differences between cases’ descriptions to determine the relevant in-

dexes. Indexing based on explanations extracts indexes using models of the working

domain.

2.1.5 Retrieval

Retrieval of relevant cases is an important task for a CBD system. Case relevance

can have different interpretations, depending on the system’s goals. Case relevance

is generally defined taking into account the similarity between a case description

and the problem specification. Nevertheless, there are other ways of defining rele-

vancy. For instance, in spite of being based on similarity with the problem, it can

be defined in terms of the effort needed to adapt a case to the target problem (see

[Smyth and Keane, 1995a]).

Retrieval can be decomposed in two tasks: retrieval of relevant cases from the

case base (we will call it the retrieval task), and ranking of these cases against the

target problem (the ranking task). In general, CBD systems incorporate both tasks,

but there are systems that do not have one of these tasks.

The retrieval task is usually performed using the indexes, and is basically a search

process in the indexing structure. Retrieval must be efficient and accurate in order

to save time in the subsequent reasoning phases.
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After a set of relevant cases are identified by the retrieval task, these cases are

ranked in relation to the target problem. Usually cases are ranked using a similarity

metric, which assesses the degree of similarity between the target problem and the case

being ranked. A similarity metric can be a weighted sum of the degree of similarity

between attributes.

An example of a similarity function is represented in equation 2.1 where, P is

the target problem, C is the case, ωi are the weights associated with the attributes
( ∑

ωi = 1
)
, AttrSim is the attribute similarity, pi is a problem attribute, ci is a case

attribute, and n is the number of attributes in the case description).

Similarity(P, C) =
n∑

i=1

ωi · AttrSim(pi, ci)

n
(2.1)

Weights are a way of assigning different importances to attributes. There are

other similarity metrics, like recursive metrics for hierarchical case representations

[Bergmann and Stahl, 1998], or less sophisticated metrics, like counting the number

of word occurrences in a textual description of a case.

An important aspect for retrieval is attribute matching. A simple way to perform

attribute matching when cases are represented by attribute/value pairs, is just to

match attributes with the same name. But even in this rather simple approach there

can be situations in which it fails. An example of this, is when it is allowed the

same attribute to occur two or more times in a case description. The matching

phase would have to decide which attributes to match. More elaborated schemes

use semantic similarity of attributes, or in hierarchical or graph case representations

structural matching, which introduces a great deal of complexity into the similarity

metric.

There are some systems that make no distinction between retrieval and ranking,

since they use a K-Nearest Neighbor (KNN) algorithm [Dudani, 1976] to retrieve and

rank cases. This algorithm applies the similarity metric described in equation 2.1 to

all cases in the case base. In this situation, there is no retrieval task in the sense of

using indexes to retrieve cases from the case base. The algorithm selects the K most

similar cases to be retrieved. This can be a time consuming way of doing retrieval,

but one of the most accurate ones, because it performs a global search in the case

base.
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2.1.6 Adaptation

After the retrieval phase, the selected cases may have considerable differences against

the target problem, making necessary for the CBD system to adapt one or more re-

trieved cases to fit the target problem description [Kolodner, 1993, pages 393-437].

This phase is named adaptation and comprises the modification of one or more re-

trieved cases to address the specifications of the target problem. There are three ba-

sic adaptation methods (see [Kolodner, 1993, page 395] or [Maher et al., 1995, pages

110-111]): substitution, transformation and derivational replay.

Substitution methods replace values or components of the retrieved case. In a

transformation method, rules or procedures are used to modify values or case com-

ponents. Analogy replay assumes that the retrieved case includes the method or

procedure used to generate the case solution. Using this generation method, deriva-

tional replay applies it to the target problem to generate a new solution that fits the

target problem.

Most of the adaptation methods use domain knowledge to perform modifications

in the case solution. There are several types of domain knowledge used by adaptation

methods. The most used ones are: heuristics, domain models, causal models, rules,

and semantic nets. In the remaining of this subsection we will detail some of the most

common adaptation methods.

Substitution methods work by replacing a case element that is not coherent with

the specification for the target problem. One possible substitution method is rein-

stantiation. It assumes that the retrieved case solution fits the target problem. Based

on this, it uses the same structure from the case’s solution to build a new solution,

with old components replaced by ones with the same structural and functional roles,

but applicable to the target problem specifications. Another substitution method is

parameter adjustment, which uses interpolation to replace a variable’s value. This

method is normally used on numeric variables, though it can also be applied to sym-

bolic attributes. Local search is a method used for replacing a solution substructure.

This method is local to the old solution, and it uses other memory structures to se-

lect the elements that are going to be replaced. Another method in this category is

case-based substitution, which uses other cases to find a substitute component.

In the substitution methods it is assumed that there is a component in the old
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solution that can be replaced. In transformation this to-be-replaced component does

not exist, thus it is necessary to transform the retrieved solution so that it fits the

target problem. There are several transformation methods. Two of them are the

use of rules and the use of domain models. In the rule-based transformation the

adaptation is determined by a set of rules that transform the retrieved solution.

In the model-based transformation, the retrieved solution is modified using domain

models. Another form of performing transformation adaptation is by using heuristics

to determine what should be modified in the old solution. These heuristics are highly

dependent on the application domain.

The previous methods modify the retrieved solution to reach a new one. In deriva-

tional replay it is not the retrieved solution that is reused, but the process that

originated the retrieved solution. What this method does, is to replay the generation

process used for construction of the retrieved solution, but now using the target prob-

lem specifications. The outcome will be a new solution that fits the target problem

specifications.

2.1.7 Verification and Evaluation

After generating a new solution, the CBD system should check the design constraints

and possibly evaluate the design properties. The first task is called verification and

consists on the assessment of the design correctness, looking for design constraints

that are violated or incoherent design components. The next task is called evaluation

and it comprises the assessment of the design properties and performance.

If the verification phase detects errors in the design, then the system can perform

three types of response. It can try to correct the errors, using methods similar to

those used in adaptation, like domain models or causal models; it can return the

solution to the adaption phase, so that adaptation mechanisms can try to eliminate

the design flaws; or the verification module can ask the designer to correct the errors,

followed by learning of adaptation knowledge.

There are two main verification approaches: model-based and case-based. The

first uses domain models to assess the design correctness, while the second uses knowl-

edge in cases to try to detect design errors.
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The evaluation task can have two different goals: to inform the designer about the

design properties and performance; or to select designs based on their properties and

performance. The first goal has an informative value, and provides information to the

designer on the design’s quality. The second goal possesses a selective value, which

can be used to choose the generated designs that will be presented to the designer.

Two types of aspects that can be evaluated in a design are design properties and

design performance. The properties concern the static characteristics of a design, like

how many components it has, or how they are linked together, while the performance

evaluates the dynamic aspects of the design, focusing on how well the design achieves

the intended functionalities. An obstacle is that some design aspects are difficult to

evaluate in an automated way due to their subjectivity. When dealing with this kind

of subjective aspects the designer has an important role in evaluating the design.

2.1.8 Learning

The reasoning phase that closes the CBR cycle is the retain phase (or learning). This

is the phase when new cases can be added to the case base, supplying the CBD system

with new knowledge. This phase relates directly to Case Base Maintenance (CBM),

which is the way the case base is managed. There are many issues are related with

CBM, some of them are: should a case be added to the case base or not? Which

are the indexes that a new case should have? Which is the limit of the case base

size? What should be the case base contents? Several works in this area address

these questions but few apply to case representations different from attribute/value

pairs. Complex representations are more difficult to deal with, than attribute/value

pair representations and a lot of work has still to be performed in this topic.

An important concept that relates to those difficulties is subsumption. Case sub-

sumption [Racine and Yang, 1997] defines that a case is redundant if: is equal to

another case, is equivalent to another case, or is subsumed by another case. This is

an important definition, which is used in several CBM works to define redundancy

in case bases. A redundant case should not be added to the case base, since it will

degrade the response time of the system.

Another important concept in CBM is case coverage [Smyth and McKenna, 1998].
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Case coverage can be defined as the portion of the design space that a CBD is able

to cover, be it with the retrieval mechanisms alone or also with the adaptation mech-

anisms. The capability of evaluating the case base in terms of coverage is important

to determine if a case is redundant or not.

These are just two of the main concepts used in CBM, for more details about

previous works see also sections 4.6 and 6.7.

2.2 Creativity and Design

This section starts by describing an important concept in this dissertation: Creativity.

Then we focus on a specific area of creativity, which is Creative Design, exploring

this concept from a cognitive and computational point of view. Finally this section

ends with an overview of the analogical reasoning process from a creative design

perspective.

2.2.1 Creativity

Creativity is defined as a cognitive process that generates a product that satis-

fies specific properties [Dasgupta, 1994], like usefulness or novelty. Creativity has

at least four components [Brown, 1989]: creative process, creative product, cre-

ative person or entity, and creative situation. Within this model a crucial com-

ponent is the creative product, and an important issue in developing computa-

tional models of creativity, is the evaluation of the creative product. Research

on this domain came up with several methods used for generation of artifacts

considered creative [Partridge and Rowe, 1994, Gero, 1994a, Gero and Maher, 1993,

Pereira and Cardoso, 2001, Gomes et al., 1996]. Some methods identified in creative

reasoning are: cross-domain transfer of knowledge (analogy), combination of knowl-

edge, and exploration and transformation of conceptual spaces. Most of these meth-

ods are used in creative design [Gero, 1994b].

Margaret Boden [Boden, 1990] introduced the concepts of Personal-Creativity (P-

Creativity) and Historical-Creativity (H-Creativity), in order to distinguish personal

creativity from social creativity. She labels an idea or artefact as P-Creative, when
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the creator classifies it as creative. H-Creativity is defined as being a social phe-

nomenon, where a social group is responsible for the creative classification, but

not for the creation of the idea or artefact. While H-Creativity concerns to a so-

cial phenomenon, P-Creativity is a personal experience. This dichotomy between

P-Creativity and H-creativity worths the comments and criticism of the scientific

community that studies creativity and creative systems [Turner, 1995, Perkins, 1995,

Ram et al., 1995, Schank and Foster, 1995, Wiggins, 2001]. Some works point out

other dimensions in creativity that are not mentioned in Boden’s classification

[Pease, 2001, Colton et al., 2001].

Evaluation of creativity implies the confrontation of two different knowledge bases.

One comprises the knowledge within the product being evaluated (the knowledge that

the product encodes or transmits). The other is the evaluator’s knowledge, which is

taken as a reference. As said before, the evaluator can be the creator or a group of

entities (society). In the first case, if the product is defined as creative, it is also

P-Creative, because the evaluator and the creator are the same entity. When the

society labels the product as creative, it is also H-Creative.

H-Creativity is related to ideas that are created by the first time by a society or

by a civilization. Using this definition, the concept of H-Creativity is directly related

to the evaluation scope. As an example, we can consider the invention of powder in

European countries after it was discovered in China. This was surely an H-Creative

product for the Western society, but not for Oriental people. H-Creativity’s scope is

the society or a civilization’s culture (any group of people big enough to be considered

a social group).

This type of creativity has a society or culture as a reference, which makes quite

difficult or inadequate to have a computer as the evaluator agent. Social knowledge

is constantly being modified, maintaining a degree of incoherence and uncertainty.

These are aspects that a computer tool has problems to deal with, in case it would

take the goal of evaluating H-Creativity. It is our opinion that the better a computer

can do is to evaluate the product in the role of one individual or entity, but not

as a society. These reasons take us to think that H-Creativity evaluation is out of

scope from computer systems, which left us with P-Creativity evaluation as a task

for artificial systems.
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Why use a computer to explore creativity? Can a computer help us formalize the

main principles of human creativity? Can computers be creative? Can computers

recognize creative designs? These are questions that some Artificial Intelligence and

Cognitive Science researchers try to answer. For the reasons presented before, we can

only try to answer positively these questions when reporting to P-Creativity.

In contrast to H-Creativity, P-Creativity occurs when its creator classifies a prod-

uct as being creative. In this way the creator and evaluator are the same entity.

Suppose a math student discovers a new property of prime numbers, when trying to

solve a math problem. S/he then goes to the math teacher to tell her/his discovery,

but the math teacher says that a Portuguese mathematician from the thirteenth cen-

tury had already discovered it. From the student’s point of view, it is a P-Creative

discovery, although it has long been discovered before, which hinders it from being

H-Creative.

Although recognizing that P-Creativity involves evaluation by the creator, this is

not enough. One must also take into account the generative processes that originated

the creative product. Boden states that a P-Creative idea must not be produced

by the same generative rules as other familiar ideas. This implies that a genuinely

creative idea, in a P-Creative sense, must have been produced by a novel process or

by a conceptual space transformation, which is a more radical change. A computer

program can be seen as a ”set of rules”, which at a first glance take us to think that a

computer can not be P-Creative. But, what about a computer system that learns and

has the capability of changing its own conceptual space through external interaction?

If we compare with a human being, we conclude that this is also a way to explain

human creativity.

The next subsection explores the combination of creativity and design, in what is

called creative design.

2.2.2 Creative Design

Creative design can be defined as a cognitive process that generates new classes

of designs. During the design process, the designer explores the space finding new

pieces of knowledge enabling the creation of new design classes. The Creative Process
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Figure 2.4: The creative design path.

generates new designs, the outcome is the Creative Product (see figure 2.4).

As enumerated before, some properties are commonly associated with a product

labelled as creative [Dasgupta, 1994]. These properties determine the product’s cre-

ativity, thus defining guidelines to the product’s evaluation. In the remaining of this

section we present some core properties that characterize a creative design from two

different perspectives: the creative process and the creative product.

Processes for routine design are likely to be different from those for creative design

[Gero and Maher, 1993]. This raises an important issue: does creative design involve

intention from the point of view of the designer? This is a controversial question that

the research community has not answered yet. For instance, can a certain degree of

randomness be regarded as a characteristic of a creative process? Researchers working

on evolutionary systems can say that it has its role in the process. But can chance

be regarded in the same way? Can a person come up with a creative solution to a

problem, even if there was no intention to solve the problem?

We will focus on more tangible aspects of the creative process having in mind that

the processes for creative design are mainly different from those for routine design,

though we think that some of the reasoning processes applied in creative design are

used in routine design and vice versa.

One consequence of the definition of creative design is that possible solutions can-

not be pre-established, at least, explicitly. Otherwise it would be routine design.

But the frontier between explicit and implicit definition of the possible solutions is

difficult to determine. Possible solutions are defined by the knowledge that is avail-

able. If the space of solutions does not comprise all the possible solutions it must

be incomplete, sometimes being also contradictory. These are two characteristics

with which the creative processes must deal. Creative processes work with knowledge

comprising distinct characteristics from those found in routine design. Creative pro-

cesses must also comply with knowledge needed to perform cross-domain transfer of

68



CHAPTER 2. Background Knowledge

ideas, which is regarded as one of the types of reasoning associated to creative design

[Sycara and Navinchandra, 1991].

Design specifications consist on constraints and functional specifications. Both

define the space of possible problems, thus constraining the space of possible de-

signs. In creative design these spaces change during problem solving. Two possible

space modifications are addition and substitution [Gero, 1994b]. Addition consists

in integrating new design specifications to the problem space or new designs to the

solution space. Substitution comprises the replacement of a region of a design space

by another set of design specifications or solutions. This can be achieved by replacing

design variables.

Reasoning processes modify the search space. During this modification the rea-

soning processes generate new design solutions. The generation of several design

alternatives is important for exploration of the space of possible solutions and the

space of possible problems, thus assisting the designer in understanding the problem

nature.

Two important processes in the creative process are: search and exploration (these

were defined in section 2.1.1). Search is generally related with routine design and

is defined as a computational process that requires a good definition of the search

space [Gero, 1994b]. Exploration is a computational process that modifies the search

space and is commonly associated with creative design. Flexible search mechanisms

are necessary for creative reasoning [Gero and Maher, 1993]. These mechanisms are

responsible for the exploration of the design space.

Some of the main reasoning processes involved in creative design are: mutation,

combination, analogy, reasoning from first principles and emergence [Gero, 1994a].

Mutation comprises the modification of a design structure in order to generate a new

one. Another way for generation of new solutions is the combination of pieces from

different designs. This process can work at different levels of the design - functional,

behavioral or structural level. Analogy is regarded as one of the more important

processes in creative design. It comprises mapping between a source design and a

target design. It is a suitable mechanism for transfer of ideas across different domains,

thus implementing cross-domain fertilization. Reasoning from first principles makes

use of domain models in order to generate new designs. These models are causal
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or qualitative and can be viewed as ”from scratch” generators of new regions in

the search spaces. Emergence is a process in which additional design attributes are

identified besides the intentional ones. This reasoning mechanism concerns to the

ability to view things in new ways, which is a characteristic of creative reasoning

[Partridge and Rowe, 1994].

Kolodner and Wills [Kolodner and Wills, 1993] claim that indexing cases accord-

ingly to various perspectives is also important for case-based creative design. Kolod-

ner and Wills propose the use of exploration processes that can search the case mem-

ory for cases that might be represented in a different way from the current problem

representation. More recently Simina and Kolodner [Simina and Kolodner, 1997] pro-

pose a computational model that accounts for opportunistic behavior, as a character-

istic of creative behavior in case-based design.

Sycara [Sycara and Navinchandra, 1991] produced also important work in this

area. They propose a thematic abstraction hierarchy of influences as a retrieval

method for case-based creative design. In this framework case organization provides

the main mechanism for cross-contextual reminding which is very important in non-

routine design.

Bhatta and Goel [Bhatta and Goel, 1997a, Bhatta and Goel, 1997b] proposed an

analogical theory for creativity in design. This theory is based on generic teleolog-

ical mechanisms, which are behavior-function models. These models are abstracted

from the case-specific structure-behavior-function models and are used for complex

topological modifications in designs.

Concerning to the creative product, the first thing that comes into mind is novelty,

which is in our opinion a mandatory characteristic. The creative product must be

something different from what the evaluator knows or thinks about. As explained

before, evaluation of a creative product has to do with the confrontation of two sets

of knowledge. One is the knowledge contained in the product and the other is the

knowledge that the evaluator possesses or uses in the evaluation. If the knowledge

from the product does not make part of the evaluator knowledge set, then it can be

said that the product is novel.

During the evaluation of the presumably creative product, the evaluator uses

performance-measuring functions, in order to determine to which extent the product
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satisfies the problem requirements. These measuring functions make part of the

evaluator’s body of knowledge. If minimal performance thresholds are met, then the

product is useful and is considered to solve the problem. This is another mandatory

characteristic of creative solutions. The creative product must be appropriate and

useful.

At an historical level, creative solutions must be novel in which regards to the

society knowledge (H-Creativity). In this way, evaluation of creative solutions com-

prises a social dimension. This makes the automatic evaluation of creative products

quite difficult and complex, leading to a two-step process. The first step is called

internal validation and consists on checking that the proposed design comprises all

the intended requirements (checking for usefulness). This phase is also called verifi-

cation and most times can be performed automatically. The second step evaluates

the novelty of the design and is normally performed by the evaluator/designer. It

comprises the evaluation of the solution in regard to the information possessed by the

judge. This phase is called validation.

Another aspect concerns to the situation in which the designer and the evaluator

are the same entity. When these two entities are the same computational system, a

possible benefit is the automation of the process, thus making it more efficient. An-

other advantage is the guidance that the evaluator can provide during the generation

process. Nevertheless the computer system can hardly have the same interpretation

of the problem as a human evaluator.

Also, it is necessary to establish a distinction between two types of systems in

creative design. One is the kind of systems that support creative design, which are

commonly designated as creative design support systems. Another type of systems

automate the complete creative design process, leaving no role for the designer. While

in a creative design support system the creative design results from the collaboration

between the designer and the system, in an automatic system the designer only defines

the problem, leaving all the generation work for the computer. These two types of

systems have quite different purposes and philosophies concerning the roles of the

user and the system, and also the creative design. Notwithstanding, the reasoning

mechanisms and programming paradigms can be shared by both kinds of systems.

In both systems another important aspect is the user interface. This plays a strong
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role on a support system but is also important in an automatic system. The user

interface is relevant in the sense that it enables the system to communicate with the

designer.

Another important aspect of a creative design system is that it must be able to

store and use huge amounts of knowledge2. This will not only enable cross-domain

analogy in the solution generation phase, but also will be helpful in the verification

phase, when the system must determine if the retrieved information or generated

solution is relevant to the problem itself. As said before, design uses functional,

behavioral and structural knowledge. A creative design system will have to be able to

use and represent these different types of knowledge. As described before, functional

knowledge is commonly associated with the design problem, structural knowledge

with the design solution and behavior with the explanation of how the design structure

accomplishes the intended functions. Control and search mechanisms in a creative

design system are also very important. These must be more powerful and flexible

comparatively to other knowledge-based systems, in order to deal with the complexity

associated with creative design.

2.2.3 Analogical Reasoning in Creative Design

As mentioned before, analogical reasoning is a widely used problem solving method

in design [Gentner, 1983, Hall, 1989, Holyoak and Thagard, 1989]. It consists on the

transference of knowledge from one source domain to a different domain (usually des-

ignated as target domain). This transference is based on similarities between a past

situation and the current one, which are then used to transfer knowledge, generating

solutions for the current situation or problem. The main benefit of analogical rea-

soning is its capability to transfer knowledge between domains. This cross-domain

transfer enables the generation of new designs, and can be considered a creative pro-

cess [Gero, 1994a].

Creative design processes work with knowledge comprising distinct characteristics

from those found in routine design and also comply with knowledge needed to perform

2This is a statement made by Roger Schank at his invited talk in the first International Conference
on Case-Based Reasoning in Sesimbra, Portugal, 1995.
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cross-domain transfer of ideas, which is regarded as one of the types of reasoning asso-

ciated with creative design [Sycara and Navinchandra, 1991]. It comprises mapping

a source design and a target design, and we use this mapping process to implement

cross-domain fertilization.

Analogical reasoning enables the exploration of new areas of the solution space,

because it maps concepts from the source domain into a target domain. Since software

reuse can be seen as a transfer of knowledge between a source project into a target

one, analogy can be a suitable mechanism for software reuse. Suggestions made by

the system to the designer using analogical reasoning can also stimulate new ideas

in the designer. Analogical reasoning can also work in cooperation with the software

designer, providing new ideas that the designer evaluates and selects.

The software design level is a suitable level for analogical reasoning, because it

deals with concepts, enabling the system to reason on a more abstract level, one in

which it can easily switch between different domains.

Hall [Hall, 1989] defines a descriptive framework for computational analogy in four

steps:

Recognition: identification of analogous sources using a target problem as a search

probe.

Elaboration: mapping of target and source, with the possibility of involving deeper

inferences.

Evaluation: evaluation, repair, justification and possible extension of the mappings

and inferences previously established.

Consolidation: learning of the new knowledge resulting from the mapping and in-

ferences performed during the previous phases.

These steps have a parallel with CBR, which from our point of view contributes to

an easy integration of analogy and CBR.
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2.3 Software Design and Reuse

This section describes the application domain of this thesis: software design and

reuse. We start by describing what is software design, and then provide an overview

on the area of software reuse. This section also describes the idea of software design

patterns and the Unified Modelling Language (UML), which are both used in our

work.

2.3.1 Software Design

Software development usually comprises five steps: analysis, design, coding, testing,

and integration [Boehm, 1988] (the V-model). In our work we focus on the design

step. This is justified by several factors: it is an important phase (most of the

decisions made at this stage have a great influence on other phases); it is a task

more complex than the analysis phase, requiring more expertise and know-how from

the developers; there are few computational tools providing cognitive support to

designers; and knowledge in this phase is at a more abstract level and less formal,

than in the coding phase. These are some of the reasons that make the design phase

a crucial part in the software development process and a challenging problem.

The design phase can be divided into two sub phases: conceptual design (or general

design) and detailed design. In the conceptual design phase, the solution is analyzed,

defining the types of entities and subsystems that comprise the design model. This

is a high-level task, in which the main concerns are related with the specification

phase and not with the implementation phase. The result is a conceptual design

that identifies the software architecture, so that it is able to satisfy the specification

produced in the analysis phase. The goal of the detailed design sub phase is to prepare

the software’s coding step. The output is the definition of the data structures and

algorithms for the coding phase. The detailed design model serves as a high-level

view of the source code, describing how the code should be organized and which are

its key features.
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2.3.2 Software Design Reuse

Software reuse [Coulange, 1997] has been a hope in the software development com-

munity since it started. The main expectation was that reuse would enable software

development to be faster, better and cheaper.

The most common form of software reuse is code reuse, which is not always the

more efficient one. Any type of knowledge generated during software development

can be reused, from system requirements to test documents. We are interested in the

reuse of design knowledge in the form of diagrams or other representation formalisms.

If adequately applied, software reuse must provide several advantages to software

development:

• Productivity should increase with reuse, because reusing a component3 must be

cheaper than developing it from scratch.

• If a component is reliable, it must remain so when it is reused. Before compo-

nents can be reused, they benefit from debug and testing, and if the component

is latter revised in order to improve it, a future system using it will benefit from

this improvement.

Nevertheless, the successful reuse of software implies also that some requirements

must be met:

• All extensions of a component must be able to be used without special effort

by the software that reuses the component.

• A reusable component must be able to be assembled without difficulty, with

other reusable components.

• A reusable component must be suitable for adaptation to a new context without

affecting it’s other users.

Some of the problems associated with software reuse are: finding, understanding,

modifying and composing components. Finding a component is a task similar to

retrieval in CBR. The goal is to find the most similar design in the design repository

3We use the term component here to refer to any type of software knowledge that can be reused.
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(in CBR it would be the case base). After finding the most similar component,

this may not be similar enough to be reused without modifications. It is important

to develop ways to modify components. Composition of components is a way of

modifying them. Composition is more complex than the previous phases, requiring

a good level of understanding of the component. The problem of understanding

components is a common issue to all the other three aspects involved in reuse, because

it provides the basis for reasoning with components.

In the last decade some forms of design reuse have emerged in the software engi-

neering community, from software design patterns [Gamma et al., 1995], to frame-

works [Johnson, 1997], and component-based development [Atkinson et al., 2002].

These forms of reuse seem much more promising than the usual way of code reuse

(despite being also forms of reusing code), and they are starting to gain importance

in the research community.

The first form of reuse ever used was copying [Coulange, 1997, page 8]. The

system developer identifies the component to be reused, copies it to a new location

and adapts it to the new context. Although being a very simple procedure it has

problems. It is not efficient, and if it takes place without any kind of computational

support, it can be impracticable, due to the size of the repository.

Component-based development [Atkinson et al., 2002] is a form of software reuse,

where components are individual and independent units. This makes compo-

nents highly reusable, creating ready-to-assemble and ready-to-run units. Using

component-based development is more an assembly task than a programming pro-

cess. A common problem of this method, is to find an adequate component for reuse.

Component-based development promotes ”reuse in the small”, since components are

the smallest coherent units of software that make sense as stand alone reusable enti-

ties.

Design patterns [Gamma et al., 1995] provides high level reuse. Functioning at an

architectural design level, it addresses reuse at a higher level than component-based

reuse. Software design patterns describe ways of solving abstract software design

problems. They can be viewed as providing guidelines for assembling entities in the

form of classes, interfaces or other component types. Because our work also involves

design patterns, section 2.3.3 describes them in more detail.
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Frameworks [Johnson, 1997] are an object-oriented reuse technique, and can be

viewed as a form of design reuse. A possible definition for framework is: a reusable

design of all or part of a system that is represented by a set of abstract classes.

This set of abstract classes needs to be customized by the application developer in

order to build an application. Frameworks are at a different level of abstraction in

relation to design patterns, which can be interpreted as micro-architectural elements

of frameworks. If component reuse is ”reuse in the small”, frameworks are ”reuse in

the big”.

The application of reuse techniques might not be enough to improve software

design and consequently software development. There are two main approaches in

design reuse [Prieto-Diaz and Jones, 1988, Prieto-Diaz, 1993]: reuse of designs and

design for reuse. The first approach uses already developed components and prepares

them for later reuse by storing them in a design repository. The second approach takes

the opposite way. When developing a system, the development team must think

in terms of making components reusable, that is, they should plan for the future.

There are pros and cons in both approaches. The first approach is more simple at

the beginning, and it provides a way of taking advantage of already developed and

tested components. Although, these components may not be in the best format or

abstraction level to be reused, constraining their reuse scope. The design for reuse

approach involves a greater commitment from the the development team, which must

take development time to think ahead and foresee future usages of the components.

But this work may be compensated in the future. The main effect of design for reuse

is that it changes the policy for software development within a company. It must be

part of the software development methodology.

2.3.3 Software Design Patterns

A software design pattern describes a solution for an abstract design problem. This

solution is described in terms of communicating objects4 that are customized to solve

the design problem in a specific context. A pattern description comprises four main

elements:

4The term object can have several meanings in computer science, in this document we will use the
term object to refer to classes, interfaces and packages, and not as in the object-oriented programming
paradigm, in which an object is an instance of a class.
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Name: Identifies the design pattern, and is essential for communication between

designers.

Problem: Describes the application conditions of the design pattern and the problem

situation that the pattern intends to solve. It also describes the application

context through examples or object structures.

Solution: Describes the design elements that comprise the design solution, along

with the relationships, responsibilities and collaborations. This is done at an

abstract level, since a design pattern can be applied to different situations.

Outcome: Describes the consequences of the pattern application. Most of the times

patterns present trade-offs to the designer, which need to be analyzed.

Gamma et al. [Gamma et al., 1995] describe a catalog of 23 design patterns, and

give a more detailed description for each pattern consisting on: pattern name and

classification, pattern intent, other well-known names for the pattern, motivation,

applicability, structure, participants, collaborations, consequences, implementation

example, sample code, known uses, and related patterns. From these items, we

draw attention to the participants and the structure. The participants describe the

objects that participate in the pattern, along with their responsibilities and roles.

These objects play an important role in our approach. The structure is a graphical

representation of the design pattern, where objects and relations between them are

represented.

A Pattern is classified based on its function or goal. The pattern categories are:

creational, structural, and behavioral. Creational patterns have the main goal of

object creation, structural patterns deal with structural changes, and behavioral pat-

terns deal with the way objects relate with each other, and the way they distribute

responsibility.

As an example of a design pattern we briefly present the Abstract Factory design

pattern (see [Gamma et al., 1995], page 87). The intent of this pattern is to provide an

interface for creation of families of objects without specifying their concrete classes.

Basically there are two dimensions in objects: object types, and object families.

Concerning the type of objects, each type represents a group of objects having the

same conceptual classification, like window or scrollbar. The family of objects defines
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a group of objects that belong to a specific conceptual family, not the same class of

objects. For example, Motif objects and MS Window objects, where Motif objects

can be windows, scrollbars or buttons, which exist in MS Window objects but do not

have the same visual characteristics.

Suppose now, that an user interface toolkit is being implemented. This toolkit

provides several types of interface objects, like windows, scroll bars, buttons, and text

boxes. The toolkit can support also different look-and-feel standards, for example,

Motif, MS Windows, and Mac OS. In order for the toolkit to be portable, object

creation must be flexible and can not be hard coded. A solution to the flexible creation

of objects depending on the look-and-feel, can be obtained through the application

of the Abstract Factory design pattern. This pattern has five types of participating

objects:

• The Abstract Factory object declares an interface for operations that create

abstract products.

• The Concrete Factory objects implement the operations to create concrete

products.

• The Abstract Product objects declare an interface for a type of product

object.

• The Concrete Product objects define a product object to be created by the

corresponding concrete factory, and also implement the Abstract Product in-

terface.

• The Client objects use only interfaces declared by Abstract Factory and Ab-

stract Product classes.

A possible solution structure for the problem posed by the interface toolkit is de-

picted in figure 2.5. The pattern participants are: abstract factory (WidgetFactory),

concrete factories (MSWindowsFactory and MotifFactory), abstract products (Win-

dow and ScrollBar), concrete products (MSWindowsWindow, MotifWindow, MSWin-

dowsScrollBar, and MotifScrollBar), and client (Client). The create methods in the

factories are the only way that clients can create the interface objects, thus control-

ling and abstracting object creation. The main consequences of this pattern are that
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Client

WidgetFactory

+ CreateScrollBar() : ScrollBar

+ CreateWindow() : Window

MotifFactory

+ CreateScrollBar() : ScrollBar

+ CreateWindow() : Window

MSWindowsFactory

+ CreateScroollBar() : ScrollBar

+ CreateWindow() : Window

Window

MSWindonsWindow

MotifWindow

ScrollBar

MSWindowsScrollBar

MotifScrollBar

Figure 2.5: The application of the Abstract Factory design pattern to the interface toolkit problem.

it isolates concrete classes, makes exchanging product families easy, and promotes

consistency among products.

2.3.4 Unified Modelling Language

The Unified Modelling Language (UML) [Rumbaugh et al., 1998] is a graphical no-

tation to represent both system requirements and design. UML comprises a set of

diagrams that can be used to model a software system. These diagrams are: use case

diagrams, class diagrams, sequence diagrams, collaboration diagrams, state diagrams,

activity diagrams, deployment diagrams, and component diagrams.

Use cases are snapshots of the system being modelled. They can be interpreted

as a set of sequence steps describing an interaction between an external entity (a user

or another system) and the system. These steps have in common a user goal. An use

case diagram is a diagram for visualization of use cases. These diagrams comprise

actors, use cases and relations between these entities. An actor is a role that an

external entity plays with respect to the system. Actors can be humans or other

computer systems, basically they can be any entity capable of communicating with

the system.

Class diagrams describe the structure of a software model by describing what are

the object types in the system and what kind of relationships exist between them

(see figure 2.6). So a class diagram represents two types of elements: entities and

relations between entities.
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Order

- dateReceived : Date

- isPrepaid : boolean

- number : String

- price : Float

+ dispatch() : void

+ close() : void

Customer

- name : String

- address : String

+ creditRating() : String

PersonalCostumer

- creditCardNumber : long

CorporateCustomer

- contactName : String

- creditRating : int

- creditLimit : Float

+ remind() : void

+ billForMonth(month: int) : void

Employee

OrderLine

- quantity : int

- price : Float

- isSatisfied : boolean

Product

1..*

1..*

1..*

1..*0..1

Figure 2.6: An example of a class diagram.

There are three types of entities in a class diagram: classes, interfaces and pack-

ages. A class describes an entity in UML and it corresponds to a concept described

by attributes at a structural level, and by methods at a behavioral level. Attributes

represent class properties and possess a data type, a scope and a default value. Meth-

ods are processes that the class can perform. They describe the behavioral aspect

of the class. Methods have a scope, a name, a parameter list, and a return type

expression. Interfaces have only method declarations, since they describe a protocol

of communication for a specific class. A package is an UML object used to group

other diagram elements.

Links represent relationships between UML objects. There are four types of rela-

tions: generalizations, dependencies, realizations and associations. A generalization

establishes an is-a relation between two classes. The main consequence is that the

subclass inherits all the attributes and methods from the parent class (or classes in

case of multiple inheritance). Dependencies represent a relation between two ele-

ments, in which a change to the definition of one element may influence changes in

the other element. A realization is a relation between a class and an interface, in

which the interface defines a specific protocol of communication for the respective

class. Associations represent conceptual relationships between classes. The associa-

tion is a catch-all relation, and can represent almost any kind of semantic relation. It
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comprises an aspect that the former three relations do not address, that is multiplic-

ity. A relation between two UML elements can have multiplicities attached to each

relation element. Multiplicity denotes the number of objects that may participate in

the association.

Three levels of class diagram perspectives can be defined: conceptual, specification

and implementation. They represent the system being modelled from a more abstract

perspective (conceptual) to a more specific one (implementation). In the conceptual

perspective the class diagram represents the main entities in the system. This is a

software independent view of the system model and entities defined on the diagram

may not have a code counterpart. The specification level describes the system model

taking into account the interactions between model entities and interactions between

the system and external systems. The implementation perspective is intended to be

a conceptual representation of the implementation and it deals with implementation

issues and details. The three perspectives are important for a good system modeliza-

tion and all three have to deal with design issues. These perspectives are a variant

of the two parts of the design phase in software development, discussed in subsection

2.3.1.

A sequence diagram tries to capture the behavior of a use case. It represents

several example objects and messages that are passed between them. One of the

main aspects of these diagrams is the time sequence of events, which defines how the

system should behave in a particular situation (or use case).

Collaboration diagrams have the same purpose as sequence diagrams but represent

interaction between objects in a different way. Objects are represented by boxes and

arrows indicate messages being passed between objects, but on this type of diagram,

sequence is indicated by numbering the messages.

The goal of state diagrams is to describe the system’s behavior. This is achieved

by describing all the possible states of a particular object, and how state changes

occur. The most common use of these kind of diagram is to show how an object

behaves during its lifetime. It also defines how the object’s state changes in response

to external messages from other objects. Nodes in this type of diagram, represent the

object states and state transitions are represented by links between nodes. Transitions

can have three types of labels: event, conditions and action. The semantics associated
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are: the transition is valid if the event occurs, and the conditions are met, then the

action is performed.

Activity diagrams are a good way of describing parallel processing. They represent

the sequencing of activities, and can also represent conditional and parallel behavior.

The main element of an activity diagram is the activity state (or activity), which

represents a processing state. This processing can be a real-world process or an

execution of a software routine. There are several elements in an activity diagram.

Activities are represented by rounded boxes. Arrows represent transitions between

diagram elements, which can have conditions associated to them. There are elements

that are used for parallelizing the control flow. These elements are forks and joints,

which are represented by horizontal black bars. There is a start and an end node,

represented by black circles. Finally there are branch and merge elements that allow

the representation of conditional control. They are shown as diamonds.

Deployment and component diagrams are used to show the physical relationships

among software and hardware units. Nodes represent computational units, most

of the times hardware, and are depicted by 3-D boxes. Components are depicted

by boxes inside nodes, and they represent a code module. There are two types of

relations: connections and dependencies. Connections represent the communication

links between hardware nodes. Dependencies relate components and have a similar

semantic to class diagram dependencies.
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A Case-Based Approach for Reuse
in Software Design

This chapter describes REBUILDER, the system that implements our approach. RE-

BUILDER has two main goals: create a corporative memory of software designs, and

provide the software designer with a design environment able to promote reuse of

software designs. This is achieved with CBR as the main reasoning mechanism. RE-

BUILDER comprises four modules: Knowledge Base (KB), UML Editor, KB Man-

ager and CBR engine (see Figure 3.1). REBUILDER interacts with two different

types of users: software designers, and KB administrators. Software designers view

REBUILDER as a CASE tool, and as a system with reuse capabilities. A KB ad-

ministrator has the role of updating and maintaining the consistency of the KB.

REBUILDER is based on a client-server architecture comprising two servers and

two types of clients (see Figure 3.2). REBUILDER’s KB comprises a WordNet server

and a file server, while the clients comprise the administrator and the designer mod-

ules. The main difference between the two types of clients is that the manager client

has an extra module allowing KB maintenance, the rest is the UML editor. There can

only be one server of each type, and only one manager client. There can be several

designer clients depending on hardware resources.

The UML editor is the front-end of REBUILDER and provides the environment

for the software designer. Apart from the usual editor commands to manipulate UML

objects, the editor integrates new commands able to reuse design knowledge. These

commands correspond to the CBR capabilities provided by REBUILDER.

The KB manager module is used by the administrator to keep the KB consistent
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UML Editor
Knowledge

Base Manager

Knowledge Base
Administrator

Software
Designer

Knowledge Base

Case Library

Case Indexes

WordNet

Data Type
Taxonomy

CBR Engine
Retrieval

Design Composition

Analogy

Verification Evaluation

Learning

Design Patterns

Figure 3.1: REBUILDER’s Architecture.

and updated. This module comprises all the case base management functions im-

plemented in REBUILDER. These are used by the KB administrator to update and

modify the KB.

BEBUILDER’s KB comprises four different parts: case library, which stores the

cases of previous software designs; index memory, used for efficient case retrieval;

data type taxonomy, which is an ontology of the data types used by the system;

and WordNet, which is a general purpose ontology [Miller et al., 1990]. The KB is

described ahead in this chapter in more detail.

The CBR Engine is the reasoning module of REBUILDER. As the name indicates,

it uses the CBR paradigm as a reasoning framework. This module comprises six dif-

ferent parts: Retrieval, Analogy, Design Composition, Design Patterns, Verification,

and Learning. All these modules are detailed in the following chapters.

3.1 UML Editor

For the UML editor we used an open source editor called ArgoUML1. Figure 3.3

presents a screen shot of the editor. Basically, it comprises four main areas. The title

1The web page of ArgoUML is http://argouml.tigris.org/.
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Manager Client

UML
Editor
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Engine
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UML
Editor

CBR
Engine
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Figure 3.2: REBUILDER’s Architecture from an implementation point of view.

bar and the command menu, which comprise the normal commands for windows-based

applications. REBUILDER commands were inserted in the command menu. At the

left side of the command menu, it presents a navigation tree, where the designer

can navigate on the model tree. The designer can also select which type of view

s/he wants, for instance, package-view or diagram-view (the combo box on top of

the navigation tree). The third part is the central right area, where the diagrams are

displayed. It also comprises a tool bar with some command buttons. The four buttons

on the right are REBUILDER commands: Retrieval, Analogy, Design Composition

and Design Patterns. The fourth region is the bottom area, which comprises several

tabs. These tabs concern to: properties, documentation, style, source, and constraints

of UML objects.

REBUILDER’s UML editor comprises commands for manipulation of UML ob-

jects, for design knowledge reuse and management of the KB contents. These com-

mands are organized into two main categories:

• Knowledge Base actions:

– Create new knowledge base.

– Open knowledge base.

– Close knowledge base.

– Manage the case library.
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Figure 3.3: UML editor of REBUILDER.

– Manage the DPA2 case library.

• Cognitive actions:

– Retrieve designs or objects.

– Reuse designs using analogy.

– Reuse designs using design composition.

– Reuse designs using software design patterns.

– Verify designs.

– Evaluate designs using object-oriented metrics.

– Activate learning strategies for case base maintenance.

– Submit designs to the case library.

– Manage classification of design objects.

2Design Pattern Application, described in detail in section 3.3.1.
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– Modify settings of cognitive actions.

3.2 Knowledge Base Manager

The KB Manager is used by the administrator to manage the KB, keeping it consistent

and updated. This module comprises all the functionalities of the UML editor, and

adds case base management functionalities. These are used by the KB administrator

to update and modify the KB. The list of available functions are:

KB Commands: Create, open and close a KB.

Case Library Manager: Open Case Library Manager, which comprises functional-

ities to manipulate the cases in the case library, like adding new cases, removing

cases, or changing the status of a case (see section 3.3.1 for case status).

Activate Learning: Gives the KB administrator an analysis about the contents of

the case library. REBUILDER uses several case base maintenance techniques

(see section 4.6) to determine which cases should be added or removed from the

case library.

Settings: Adds extra configuration settings which are not present in the normal

UML Editor version used by the software designers. It also enables the KB

administrator to configure the reasoning mechanisms.

Through the KB manager the administrator supervises the knowledge in the sys-

tem. The basic responsibilities of the administrator are to setup the system, to decide

which cases should be in the case library, and to revise new diagrams submitted to

the case library by software designers.

Deciding the contents of the case library is not an easy task, especially if the case

base has a large number of cases. In this situation the KB manager module provides

a set of case-based maintenance policies that the administrator can run to determine

which are the cases that should be removed or added to the case library.

When a diagram is submitted by a software designer as a candidate for a new

case to be added to the case library, the administrator has to check some items in the
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diagram. First the diagram must have synsets associated to the classes, interfaces

and packages. This is essential for the diagram to be transformed into a case, and to

be indexed and reused by the system. Diagram consistency and coherence must also

be checked. REBUILDER provides a verification and evaluation mechanism that can

help the administrator in two different ways: verification can identify certain syntax

and semantic errors or less common items in the diagram an draw the administra-

tor’s attention to them; evaluation assesses the design properties and characteristics,

presenting them as guidelines for the diagram’s evaluation, this is performed using

several object-oriented metrics [Rosenberg and Hyatt, 1996, Bär et al., 1999]. Finally

the administrator can use the case-based maintenance policies to help him decide if

the submitted diagram should be added to the case library.

3.3 Knowledge Base

The KB stores all the knowledge used by the reasoning mechanisms. It comprises a

case library, the WordNet ontology, case indexes and the data type taxonomy. Each

of these parts is described in this section.

3.3.1 Case Library

The case library comprises two types of cases: design cases and design pattern ap-

plication cases (DPA cases). The design cases are the most frequently used in RE-

BUILDER, and represent UML class diagrams. DPA cases represent specific situa-

tions of design pattern applications. In the text, we use the term case to refer to a

design case, if we want to refer to a DPA case, we will explicitly use the DPA acronym

to distinguish it.

Cases are stored in files - a file for each case - and they are only read to memory if

necessary. Cases in a case library are organized in three lists. A list of confirmed cases,

comprising the cases used for reasoning that were approved by the KB administrator.

The list of unconfirmed cases, containing the cases submitted to the case library by

designers. These cases are not used for reasoning and wait for revision by the KB

administrator. They can be accepted to be included in the case base, moving to the
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SchoolDepartment

+ name : String

addTeacher(teacher: Teacher) : void

removeTeacher(Name: String) : int

getTeacher(Name: String) : Teacher

addStudent(student: Student) : void

removeStudent(Name: String) : int

getStudent(Name: String) : Student

School

+ name : String

+ address : String

+ phone : int

addDepartment(Dep: SchoolDepartment) : void

removeDepartment(Dep: String) : int

getDepartment(Dep: String) : SchoolDepartment

Student

+ name : String

+ StudentID : int

Teacher

+ name : String

1..*

1..*

1..*

Figure 3.4: Example of an UML Class diagram (Case1 ), the package classification is School.

confirmed list or, if rejected, they can be deleted or moved to the obsolete list. This

list comprises cases that were considered obsolete for various reasons.

The next subsections describe the representations for design cases and DPA cases.

Design Cases

In REBUILDER a case describes a software design, which is represented in the UML

formalism through the use of Class Diagrams. Figure 3.4 shows an example of a

class diagram representing part of an educational information system. Nodes repre-

sent classes and comprise a name, attributes and methods. Links represent relations

between classes. Conceptually a case in REBUILDER comprises: a name used to

identify the case within the case library; the main package, which is an object that

comprises all the objects that describe the main class diagram; and the file name

where the case is stored. Cases are stored using XML/XMI (eXtended Mark-up

Language, XML Metadata Interchange), which is a widely used format for data ex-

change. UML class diagram objects available in REBUILDER are: packages, classes

and interfaces. See section 2.3.4 for more details.

DPA Cases

A DPA case describes a specific situation where a software design pattern was applied

to a class diagram. Each DPA case comprises: a problem and a solution description.

The problem describes the application situation based on: the initial class diagram,

and the mapped participants. The initial class diagram is the UML class diagram

to which the software design pattern was applied. This is the diagram before the

application of the design pattern. The mapped participants are specific elements that

must be present in order for the software design pattern to be applicable. Participants
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can be: classes, interfaces, methods or attributes. Each participant has a specific role

in the design pattern and it is determinant for the correct application of the design

pattern. Each pattern has it’s specific set of participants. Once the participants are

identified, the application of a design pattern follows a specific algorithm that embeds

the pattern actions. To select the role for each participant in the initial class diagram,

a mapping of these participants is performed.

It is important to describe the types of participants defined within our approach.

Object participants can be classes or interfaces, attribute participants correspond

to class attributes, and method participants correspond to object methods. Each

participant has a set of properties:

Role (String): Role of the participant in the design pattern.

Object (class or interface): Object playing the role, or in case of attribute or

method participant the object to which the attribute or method belongs.

Method (method): Method playing the role in case of a method participant.

Attribute (attribute): Attribute playing the role in case of an attribute partici-

pant.

Mandatory (Boolean): True if the participant must exist in order for the design

pattern to be applicable, if it is optional then the value is false.

Unique (Boolean): True if there can be one or more participants with this role

type, otherwise it is false.

The solution description of a DPA case is the applied name of the design pattern,

which is then used to select the correspondent software design pattern operator (de-

scribed in detail in subsetion 4.4.2). Different DPA cases can have the same solution,

because what a DPA case represents is the context of application of a design pattern,

and a large number of context situations is possible.

3.3.2 WordNet

WordNet is used in REBUILDER as an ontology. It uses a differential theory where

concept meanings are represented by symbols that enable a theorist to distinguish
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among them. Symbols are words, and concept meanings are called synsets. A synset

is a concept represented by one or more words. Words that can be used to represent

the same synset are called synonyms. A word with more than one meaning is called

a polysemous word. For instance, the word mouse has two meanings, it can denote

a rat, or it can express a computer mouse. In this way the word mouse belongs to

more than one synset.

WordNet is built around the concept of synset. Basically it comprises a list of

word synsets, and different semantic relations between synsets. The first part is a list

of words. Each word is linked to a list of synsets that the word can represent. The

second part, is a set of semantic relations between synsets. REBUILDER uses four

semantic relations: is-a, part-of, substance-of, and member-of. Synsets are classified

into four different types: nouns, verbs, adjectives, and adverbs.

Synsets are used in REBUILDER for categorization of software objects. Each

object has a synset associated, which is the synset that was selected as the correct

synset accordingly to the specific object diagram. In order to find the correct synset,

REBUILDER uses the object name, and the names of the objects related with it,

which define the object context. The object’s synset can then be used for computing

object similarity (using the WordNet semantic relations), or it can be used as a case

index, allowing rapid access to objects with the same classification. WordNet is also

used to compute the semantic distance between synsets. This distance is the length

of the shortest path between the two synsets. Any of the four relation types can be

used to establish the path between synsets. This distance is used in REBUILDER to

assess the type of similarity between objects, and to choose the correct synset when the

object’s name has more than one synset. This process is called name disambiguation

[Ide and Veronis, 1998] and is a crucial process in REBUILDER. If a diagram object

has a name with several synsets, then more information about this object has to be

gathered to find which synset is the correct one. The diagram objects that directly

or indirectly are associated with this object are used for this disambiguation. In case

the object is a class, its attributes can also be used in the disambiguation process.

This procedure is used when a case is inserted in the case library or when the designer

calls the retrieval module, section 4.7 describes this in more detail.

One problem that we encountered in WordNet, was that it had few concepts
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Figure 3.5: A small example of the WordNet structure and case indexes.

concerning specific knowledge on the software development domain. So we decided

to integrate the concepts of the Java Class Hierarchy. This is the hierarchy of classes

of the Java language. We connected this hierarchy to the WordNet structure by

establishing an is-a link from the synset representing the concept of computer program

to the Java class object (the top of the Java class hierarchy).

3.3.3 Case Indexes

Cases can not be stored in memory due to their dimensions, so they must be stored

in files, which makes case access slower then if they were in main memory. To solve

this problem we use case indexing. This provides a way to access the relevant case

parts for retrieval without having to read all the case files from disk. Each object

in a case is used as an index. REBUILDER uses the synset of each object to index

the case in WordNet. This way, REBUILDER can retrieve a complete case, using

the case root package, or it can retrieve only a subset of case objects, using the

objects’ indexes. This allows REBUILDER to provide the designer the possibility to

retrieve not only packages, but also classes and interfaces. To illustrate this approach,

suppose that the class diagram of figure 3.4 represents Case1 and figure 3.5 presents

part of the WordNet structure with the case indexes associated with Case1. As can

be seen, WordNet relations are of the types is-a, part-of and member-of, while the

index relation links a case object (squared boxes) with a WordNet synset (rounded

boxes). For instance Case1 has one package named School (the one presented in

figure 3.4), which is indexed by synset School. It has also a class with the same name

and categorization, indexed by the same synset, making also this class available for

retrieval. Another advantage of indexing cases by their parts (diagram objects) is that

93



CHAPTER 3. A Case-Based Approach for Reuse in Software Design

institution
[106002286]

educational
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[106144776]
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[106145154]
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[106151796]

Teacher
[108756476]

Classroom
[102645409]

[DPA Case2] Method:
Classroom::Classroom1

[DPA Case1]
Object: Teacher

[DPA Case1]
Object: School

[DPA Case2]
Object: University

LEGEND:

Indexed Case

member-of Relation

Index Relation

is-a Relation

part-of Relation

Figure 3.6: An example of the DPA case indexing. Synsets are identified by nine digit numbers.

cases can be retrieved in other situations, in which a part of a case can be relevant.

The indexing of Case1 by the synset Teacher illustrates this.

DPA cases are indexed using the synsets of the object participants (figure 3.6

presents an example) and only the participants (objects, attributes and methods) can

be used as retrieval indexes. The WordNet structure is used as an index structure

enabling the search for DPA cases in an incremental way. Each case can be stored in

a file, which may be read when it is necessary . In figure 3.6 there are four indexed

objects, three of them corresponding to object participants (Teacher, School and

University), and one to a method participant (Classroom1 ), indexed by the object

comprising the method.

3.3.4 Data Type Taxonomy

The data type taxonomy is a hierarchy of data types used in REBUILDER. Data

types are used in the definition of attributes and parameters. The data taxonomy is

used to compute the conceptual distance between two data types. Figure 3.7 presents

part of the data type taxonomy used in REBUILDER.

3.4 CBR Engine

The cognitive functionalities of REBUILDER are supported by the CBR engine. It

comprises six submodules, each one implementing a different cognitive process. These
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char
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Number boolean byte

AtomicType

String Set Vector List

Collection Structure

CompositeType

Object

Figure 3.7: Part of the data taxonomy used in REBUILDER.

cognitive processes can be combined in several ways. Figure 3.8 presents a possible

sequence of use for these cognitive processes. The CBR engine submodules are:

Retrieval

Analogy

Design
Composition

Verification &
Evaluation

Learning

Design
Query

New
Design

Knowledge
Base

Design
Patterns

ADAPTATION

Figure 3.8: One possible combination of the CBR engine modules.

Retrieval: The retrieval submodule selects from the case base a set of cases ranked by

similarity with the designer’s query. It enables the software designer to browse

through the most similar designs in the case library, exploring different design

alternatives and reusing cases. This module works like an intelligent search

assistance, which starts retrieving the relevant cases from the case library and

then ranks them. The cases are ranked before being presented to the designer.

Figure 3.9 presents an illustration of the retrieval process, which is detailed in

section 4.1.

Analogy: The analogy submodule generates new solutions using analogical reason-

ing. This involves selecting a candidate from the case library, then mapping

it with the query diagram, and finally transferring knowledge from this source

case to the problem diagram, yielding a new diagram (see figure 3.10). This
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Case 1
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Case 1
Case 1

Case 16 1st
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...

Figure 3.9: The retrieval process in REBUILDER.

mechanism generates solutions using only one case, which constraints the type

of designs that it can generate. See section 4.2 for a detailed description.

Target
Design

Case 1
Case 1

Case 1
Case 1

Case 1

Case 16

SELECT MAP
New
CaseTRANSFER

Case 16

Mappings
Target  Design

- Case 16

Target
Design

Figure 3.10: An illustration of the analogical reasoning process in REBUILDER.

Design Composition: The design composition submodule also generates new so-

lutions from cases in the case library (see figure 3.11). The main difference to

analogy generated solutions is that it can use more than one case to generate a

solution. This mechanism can select pieces of cases and then compose them in

a new diagram, yielding a solution to the designer’s query. See section 4.3 for

details.

Target
Design

Case 1
Case 1

Case 1
Case 1

Case 1

SELECT MAP
New
CaseCOMPOSITION

Mappings
Target Design

- Cases

Target
Design

Case 1
Case 1

Case 77

Case 1
Case 1

Case 77

Figure 3.11: The design composition process in REBUILDER.

Design Patterns: The design patterns module can be used to generate new class

diagrams based on the application of software design patterns (see figure 3.12).

It is used a CBR approach to select which design pattern to apply, and how

it should be applied. Alternatively, the user can select a design pattern to

be applied to a diagram. The application is then performed automatically by

REBUILDER through the use of pattern operators. REBUILDER acquires new

DPA cases from the user interaction, see section 4.4 for a complete description.
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Figure 3.12: A generic view of the design pattern module functioning in REBUILDER.

Verification and Evaluation: This module comprises two functionalities: verifica-

tion and evaluation. While verification checks the design coherence and correct-

ness (see figure 3.13), the evaluation mechanism is used to assess the design’s

properties. The verification can be used in combination with analogy or design

composition to look for errors in the generated solution and to correct them.

The evaluation mechanism is at the designer’s disposal to judge the design

properties, trying to identify shortcomings in the design. Both processes are

presented in more detail in section 4.5.

New
Case VERIFY

New
Case' EVALUATE

New
Case'

Evaluation
of New Case'

Figure 3.13: The verification process in REBUILDER.

Learning: The learning submodule implements several case-based maintenance

strategies that can be used by the KB administrator to manage the case library.

This module presents several measures to assess the case library performance,

which provide an important advice to the administrator regarding the addition

or deletion of cases (see figure 3.14). These strategies will be detailed in section

4.6.

There is also another module, which is the word sense disambiguation module, which

is used when REBUILDER needs to associate a synset with a software object (see

figure 3.15). This module receives a software object and a diagram, and returns a

synset for the given object. The selection is based on several word sense disambigua-

tion methods, which are described in section 4.7.
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Figure 3.14: The process of case base maintenance in REBUILDER.
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Figure 3.15: The word sense disambiguation process in REBUILDER.
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CBR Engine

This chapter describes the various reasoning modules of the CBR engine. Each mod-

ule has a specific function in the reasoning cycle of CBR (see figure 3.8), though some

of them come from different reasoning paradigms. The CBR methodology provided

the framework for an integration of these various reasoning mechanisms. There is a

module that is transversal to the CBR cycle, and it is not shown in REBUILDER’s

architecture. It is the word sense disambiguation (WSD) module, which has the func-

tion of associating a synset to a software object. This module can be used at any

phase of the process, depending on the reasoning needs.

We start this chapter describing the retrieval module, ending with an example,

which illustrates the functioning of this module. The second section describes the ana-

logical reasoning module and how new diagrams are generated using analogy. This

section also ends up with an example. Section three describes the design composi-

tion module, which is an alternative to the analogy module. Section four describes

our CBR approach to the application of software design patterns, and presents an

example of how this module can help design evolution. The next section describes

the verification and evaluation module. Section six describes the case base mainte-

nance (CBM) strategies used in the case learning module, and finally section seven

concludes this chapter presenting the word sense disambiguation (WSD) process and

the various disambiguation methods implemented in REBUILDER.
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4.1 Retrieval Module

The case retrieval module can retrieve three types of objects: packages, classes or

interfaces, depending on the object selected when the retrieval command is chosen

by the designer. If the selected object is a package, the associated diagram will be

considered as the query diagram (also designated as target design or problem).

The next subsections describe the retrieval algorithm, the similarity measures,

the matching algorithms and the independence measures used in this module. The

retrieval algorithm is used to retrieve a first set of cases, which are then ranked using

the similarity metrics. The matching algorithms are used by the similarity metrics

to select which objects to match. The independence measures are used by several

reasoning mechanisms in REBUILDER, in particular, the matching algorithms use

the independence measures to rank the lists of objects by element importance in the

UML class diagram. At the end of this section we present a retrieval example to

illustrate the retrieval process.

4.1.1 Retrieval Algorithm

The retrieval algorithm is the same for all three types of objects (packages, classes

and interfaces), and is based on the object classification using the WordNet synsets.

Suppose that the N best objects have to be retrieved, QObj is the query object,

and ObjectList is the universe of objects that can be retrieved (usually ObjectList1

comprises all the objects in the library cases). The algorithm is described in figure

4.1, where MSL is the maximum search level allowed in WordNet.

The algorithm starts with the list of found objects (ObjsFound) empty, gets the

synset for QObj, initializes the list of synsets to be explored (PSynsets) with the

synset for QObj and initializes the list of synsets explored (SynsetsExplored). Then

the algorithm cycles through a sequence of steps while the number of found objects

is less than N , and there are synsets to be used as probes in the search, and the

number of iterations is less than the maximum search level that is allowed (MSL).

The steps inside the while cycle are: get the first element of PSynsets as the current

1This list is called ObjectList because it can contain three types of objects: packages, classes and
interfaces.
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1. ObjsFound ← ?
2. PSynset ← Get synset of QObj (WSD process)
3. PSynsets ← {PSynset}
4. SynsetsExplored ← ?
5. WHILE (#ObsFound < N) AND (PSynsets 6= ?) AND (IterationNumber < MSL) DO
6. Synset ← Remove first element of PSynsets
7. SynsetsExplored ← SynsetsExplored + Synset
8. SubSynsets ← Get Synset hyponyms (children nodes)
9. SuperSynsets ← Get Synset hypernyms (parent nodes)
10. SubSynsets ←SubSynsets− SynsetsExplored− PSynsets
11. SuperSynsets ←SuperSynsets− SynsetsExplored− PSynsets
12. PSynsets ← Add SubSynsets to the end of PSynsets
13. PSynsets ← Add SuperSynsets to the end of PSynsets
14. Objects ← Get all objects indexed by Synset and with the same type as QObj
15. Objects ← Objects ∩ObjectList
16. ObjsFound ← ObjsFound ∪Objects
17. ENDWHILE
18. ObjsFound ← Rank ObjsFound by similarity
19. RETURN the first N elements from ObjsFound

Figure 4.1: The retrieval algorithm used in REBUILDER.

probe synset; add this synset (Synset) to SynsetsExplored; get the parents and

children synsets of Synset; intersect these synsets with the lists SynsetsExplored

and PSynsets, removing duplicate synsets; add the children and parent synsets to

the PSynsets list, in this specific order; get all the objects indexed by Synset that

have the same type (package, class or interface); intersect these objects (Objects)

with the initial list of objects (ObjectList2); and finally add the remaining objects to

the list of found objects. In the last step, the algorithm ranks ObjsFound using the

similarity metrics and returns the N best objects.

Basically, what the algorithm does is to start with the QObj synset, and then

searches for objects indexed by the same synset. If there are not enough objects,

the algorithm uses is-a relations of this synset to look for objects, in a spreading

activation way. When it has found enough objects, it stops and ranks them using the

similarity metrics.

Object retrieval has two distinct phases. First the WordNet is-a relations are used

as an index structure to find relevant objects. Then a similarity metric is used to

select the best N objects. This process comprises a trade-off between the first phase

which is inexpensive from the computational perspective, and a second phase which

is more demanding for computational resources but also more accurate. In the next

subsection we present the similarity metrics used for ranking retrieved objects.

The algorithm described before was the first version that was developed. Since

2ObjectList is a input parameter to the algorithm and it’s initial value is chosen by the designer.
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Figure 4.2: An hierarchical representation of the package similarity metrics used in retrieval.

then we have implemented two new retrieval algorithms: an extended version and an

ambiguous version. Both work as the previous version (which we call simple version)

with the difference that the list of starting synsets (the PSynsets list) is different in

these new versions. In the simple version the list starts with the synset of the target

object. The extended version uses the synset of the target object and all the synsets

of the objects that integrate the target problem. This version only works for package

retrieval, and in this way the target problem has to be a package. The idea of this

version is that similar packages have similar objects. The ambiguous version uses all

the target object synsets (there is no disambiguation of the object’s name) as the

starting synset list. This version bypasses the errors of WSD, but it can also retrieve

useless objects if there are ’polysemous’ name objects (objects with the same names,

but referring to different concepts). Our idea is that if this happens, the similarity

metrics will resolve this problem by correctly ranking the objects.

4.1.2 Similarity Metrics

There are three similarity metrics that can be used directly by the retrieval mecha-

nism. These metrics concern to packages, classes and interfaces. Since these metrics

are complex and call other similarity metrics, figures 4.2, 4.3 and 4.4 present the

hierarchical call scheme for these three metrics.
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Package Similarity

The package similarity metric takes several aspects of the UML class diagram into

account. The similarity between packages Pk1 and Pk2 is defined as:

S(Pk1, Pk2) = ω1 · S(SPs1, SPs2) + ω2 · S(OBs1, OBs2) + ω3 · S(S1, S2) + ω4 · S(D1, D2) (4.1)

This metric comprises four terms: sub-package list similarity S(SPs1, SPs2);

UML class diagram similarity S(OBs1, OBs2); object categorization similarity3

S(S1, S2); and dependency list similarity S(D1, D2). These four items are combined

in a weighted sum. Different weight values have been tested (see subsection 5.2.4).

We have chosen as default values, 0.07, 0.2, 0.7, 0.03, respectively. From the weight

values it is evident that the most important factors for package similarity are the

class diagram similarity and the categorization similarity.

Sub-Package List Similarity

The similarity between sub-package lists SPs1 and SPs2 is defined as:

S(SPs1, SPs2) =
∑n

i=1 S(SPs1i, SPs2i)
(#SPs1 + #SPs2)

− UM(SPs1) + UM(SPs2)
2 · (#SPs1 + #SPs2)

+
1
2

(4.2)

where n is the number of matching sub-packages, S(SPs1i, SPs2i) is the similarity

between packages, UM(SPsi) is the number of unmatched packages in SPsi, SPsij

is the j element of SPsi, and #SPsi is the number of packages in SPsi. Special

situations are resolved using table 4.1. There are two main factors in this formula:

the similarity between matching sub-packages, and the number of unmatched sub-

packages. The third part of the formula (the 1/2 factor) is used so that the formula

output can range from 0 to 1.

UML Class Diagram Similarity

The similarity between lists of UML objects OBs1 and OBs2 is:

S(OBs1, OBs2) =
∑n

i=1 S(OB1i, OB2i)
(#OBs1 + #OBs2)

− UM(OBs1) + UM(OBs2)
2 · (#OBs1 + #OBs2)

+
1
2

(4.3)

3Also called type similarity.
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Table 4.1: Table used for solving special situations in formulas 4.2, 4.3, 4.7, 4.10 and 4.12. ’x’ -
any positive integer, ’0’ - cardinality zero or zero value, ’np’ - not possible, and ’F’ - given by the
formula.

n 0 0 0 0 x x x x
#X1 0 0 x x 0 0 x x
#X2 0 x 0 x 0 x 0 x
S(Y1, Y2) 1 0 0 0 np np np F

where OBij is the j element of OBi, and S(OB1i, OB2i) is the object categorization

similarity. #OBsi is the number of objects in OBsi, UM(OBsi) is the number of

unmapped objects in OBsi, n is the number of matched objects. Special situations

are solved using table 4.1.

Object Categorization Similarity

The object object categorization similarity is computed using the objects’ synsets.

The similarity between synset S1 and S2 is:

S(S1, S2) =
1

ln (Min{∀Path(S1, S2)}+ 1) + 1
(4.4)

where Min is the function returning the smallest path between S1 and S2.

Path(S1, S2) is the WordNet path between synset S1 and S2, which returns the num-

ber of relations between these synsets. ln is the natural logarithm function, which

is used for a gradual decay of the similarity values. The path between synsets is

computed using only is-a links.

Dependency List Similarity

Dependencies are UML relation types expressing a dependence between two packages.

For instance, package A depends on package B because a class in A uses a class from

B. The similarity between dependency lists D1 and D2 is given by:

S(D1, D2) = ω1 · |#ID1 −#ID2|
Max{#ID1, #ID2} + ω2 · |#OD1 −#OD2|

Max{#OD1, #OD2} (4.5)

where ω1 and ω2 are constants, and
∑

ωi = 1 (default values are: 0.5; 0.5), IDi is

the set of input dependencies in Di, and ODi is the set of output dependencies in Di.
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Figure 4.3: An hierarchical representation of the class metrics used in retrieval.

Class Similarity

The class similarity metric is based on WordNet categorization and object structure

and comprises three components: categorization similarity, inter-class similarity, and

intra-class similarity (see figure 4.3). The similarity between class C1 and C2, is

defined as:

S(C1, C2) = ω1 · S(S1, S2) + ω2 · S(Ie1, Ie2) + ω3 · S(Ia1, Ia2) (4.6)

where S(S1, S2) is the categorization similarity defined as the distance between the

synset of C1 (S1) and the synset of C2 (S2, see equation 4.4). S(Ie1, Ie2) is the

inter-class similarity based on the similarity between the diagram relations of C1

and C2 (see subsection ahead). S(Ia1, Ia2) is the intra-class similarity based on the

similarity between attributes and methods of C1 and C2 (see subsection ahead). Based

on experimental results, we use 0.5, 0.25, and 0.25 as the default values for ω1, ω2

and ω3.
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Table 4.2: The similarity table for relation cardinality.
1-N N-N 1-1

1-N 1 0.3 0.1
N-N 0.3 1 0.3
1-1 0.1 0.3 1

Inter-Class Similarity

The inter-class similarity between two objects (classes or interfaces) is based on match-

ing of the relations in which both objects are involved. The similarity between objects

O1 and O2 is:

S(O1, O2) =
∑n

i=1 S(R1i, R2i)
(#R1 + #R2)

− UM(R1) + UM(R2)
2 · (#R1 + #R2)

+
1
2

(4.7)

where Ri is the set of relations in object i, Rij is the j element of Ri, n is the number

of matched relations, S(R1i, R2i) is the relation similarity, which is explained ahead,

and UM(R) is the number of unmatched elements in R. Special situations are solved

using table 4.1.

Relation Similarity

The similarity between two relations R1 and R2 is based on the similarity between

source and destination objects, and on the relation properties. The formula for this

metric is:

S(R1, R2) = ω1 · S(SO1, SO2) + ω2 · S(DO1, DO2) + ω3 · S(Ca1, Ca2) + ω4 · S(A1, A2) (4.8)

where S(SO1, SO2) is the similarity between source objects, S(DO1, DO2) is the sim-

ilarity between destination objects, both defined ahead, S(Ca1, Ca2) is the similarity

between the cardinality of the relations, S(A1, A2) is the similarity between the ag-

gregations4 of the relations, and ωi are constants, with
∑

ωi = 1 (default values are:

0.2; 0.2, 0.5 and 0.1).

The cardinality similarity, S(Ca1, Ca2), is given by table 4.2. The aggregation

similarity, S(A1, A2), is 0 if the relations have different aggregations and 1 otherwise.

4An aggregation is a particular instance of an UML association, in which one of the involved
objects is part of the other relation object.
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Source/Destination Object Similarity

The similarity between source objects or destination objects (S(O1, O2)) is given by:





S(S1, S2) ⇐ T (O1) = T (O2) ,

k ⇐ otherwise.

where k is a number between zero and one, which represents the similarity between

a class and an interface, we use 0.1 as the default value. T (Oi) returns the object’s

type: class or interface. S(S1, S2) is the object type similarity, see equation 4.4.

Intra-Class Similarity

The intra-class similarity between objects O1 and O2 is defined as:

S(O1, O2) = ω1 · S(As1, As2) + ω2 · S(Ms1, Ms2) (4.9)

where S(As1, As2) is the similarity between attribute lists, S(Ms1,Ms2) is the sim-

ilarity between method lists, both described ahead, ω1 and ω2 are constants, with
∑

ωi = 1 (default values are: 0.6; 0.4, based on experimental results).

Attribute List Similarity

The attribute list similarity between lists As1 and As2 is based on matching of the

attributes of both objects, and is given by:

S(As1, As2) =
∑n

i=1 S(As1i, As2i)
(#As1 + #As2)

− UM(As1) + UM(As2)
2 · (#As1 + #As2)

+
1
2

(4.10)

where Asi is the set of attributes in object i, Asij is the j element of Asi, n is the

number of matched attributes, S(As1i, As2i) is the attribute similarity, and UM(As)

is the number of unmatched attributtes in As. Special situations are solved using

table 4.1.

Attribute Similarity

Attribute similarity is based on: the data type, the scope, and the default value.

Data type similarity is assessed using the distance of the path between the data types
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Table 4.3: Table for computing the scope similarity.
Public Package Protected Private Unspecified

Public 1 0.7 0.4 0.1 0
Package 0.7 1 0.7 0.4 0
Protected 0.4 0.7 1 0.7 0
Private 0.1 0.4 0.7 1 0
Unspecified 0 0 0 0 0

being compared. This distance is found using the data type taxonomy. The scope

similarity is based on a comparison table, which establishes the similarities between

all possible scopes, as defined in UML and Java. The default value similarity is one

if the default values are equal or if both do not exist, zero otherwise. The formula is:

S(A1, A2) = ω1 · S(T1, T2) + ω2 · S(Sc1, Sc2) + ω3 · S(DV1, DV2) (4.11)

where ωi are constants, and
∑

ωi = 1 (default values are: 0.85; 0.1; 0.05), S(T1, T2)

is the attribute data type similarity given by formula 4.45, S(Sc1, Sc2) is the scope

similarity and is given by table 4.3, and S(DV1, DV2) is the default value similarity

as described before.

Method List Similarity

The similarity between method lists Ms1 and Ms2 is based on the matching of the

methods on both lists, and is given by:

S(Ms1,Ms2) =
∑n

i=1 S(Ms1i,Ms2i)
(#Ms1 + #Ms2)

− UM(Ms1) + UM(Ms2)
2 · (#Ms1 + #Ms2)

+
1
2

(4.12)

where Msi is the list of methods in object i, Msij is the j method of Msi, n is the

number of matched methods, S(Ms1i,Ms2i) is the method similarity, and UM(Ms)

is the number of unmatched methods in Ms. Special situations are solved using table

4.1.

Method Similarity

Method similarity is computed based on the scope, the input parameters and the

return parameter. The formula is:

S(M1,M2) = ω1 · S(Sc1, Sc2) + ω2 · S(I1, I2) + ω3 · S(O1, O2) (4.13)

5The formula is the same, instead of synsets and WordNet, the data type taxonomy is used.
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Table 4.4: Table for solving special situations of the parameter list similarity. ’x’ - any positive
integer, ’0’ - cardinality zero or zero value, ’np’ - not possible, and ’F’ - given by the formula.

n 0 0 0 0 x x x x
#Ps1 0 0 x x 0 0 x x
#Ps2 0 x 0 x 0 x 0 x
S(Ps1, Ps2) 1 0 0 0 np np np F

where ωi are constants, and
∑

ωi = 1 (default values are: 0.1; 0.4; 0.5), S(Sc1, Sc2)

is the scope similarity and is given by table 4.3, S(I1, I2) is the similarity of input

parameters and S(O1, O2) is the similarity of output parameters. Both are given by

the parameter list similarity described ahead.

Parameter List Similarity

The similarity between parameter lists Ps1 and Ps2 is based on matching of the

parameters of both lists, and is given by:

S(Ps1, Ps2) =
∑n

i=1 S(Ps1i, Ps2i)
(#Ps1 + #Ps2)

− UM(Ps1) + UM(Ps2)
2 · (#Ps1 + #Ps2)

+
1
2

(4.14)

where Psi is the set of parameters in list i, Psij is the j parameter of Psi, n is the

number of matched parameters, S(Ps1i, Ps2i) is the parameter similarity, described

ahead, and UM(Ps) is the number of unmatched elements in Ps. Special situations

are solved using table 4.4.

Parameter Similarity

Parameter similarity is computed based on data types of parameters. The formula

for parameter similarity is:

S(S1, S2) =
1

ln (Min{∀Path(DT1, DT2)}+ 1) + 1
(4.15)

where Min is the function returning the smallest path between data types DT1 and

DT2. Path(DT1, DT2) is the path between data type DT1 and DT2 in the data type

taxonomy, which returns the number of relations between data types. ln is the natural

logarithm function.
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Figure 4.4: An hierarchical representation of the interface metrics used in retrieval.

Interface Similarity

The interface similarity metric is similar to the similarity class metric with the dif-

ference that the intra-class similarity metric is only based on the method similarity,

since interfaces do not have attributes (see figure 4.4).

4.1.3 Matching Algorithms

This subsection presents the algorithms used in REBUILDER to match lists of: pack-

ages, objects, relations, attributes, methods, and parameters. These algorithms are

used by the similarity metrics dealing with lists of elements. For instance, the sub

package list similarity metric (see subsection 4.1.2) receives two lists of packages and

has to establish a mapping between the elements of these lists. The next subsections

describe the matching algorithms.

Package Matching Algorithm

The package matching algorithm is used in the sub package list similarity metric (see

subsection 4.1.2) to match two lists of packages. The input are two lists: LP1 and

LP2, it returns: a list of package mappings, the respective mapping similarities, and
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1. Mappings ← ?
2. FORALL Package (Pk1) in LP1 DO
3. List1 ← Get all packages with equivalent classification as Pk1 in LP2

4. Ranked1 ← Rank List1 by similarity to Pk1

5. IF Ranked1 6= ∅ THEN
6. Pk2 ← Best package in Ranked1

7. Add (Pk1, Pk2, Sim(Pk1, Pk2)) to Mappings
8. Remove Pk1 from LP1 and Pk2 from LP2

9. ENDIF
10. ENFOR
11. RETURN Mappings, #LP1

Figure 4.5: The package matching algorithm used in REBUILDER.

the number of unmatched packages in LP1. The algorithm is presented in figure 4.5.

Note that two objects have equivalent classification if they have the same name and

synsets.

The algorithm starts by initializing the mappings list (Mappings) as empty, and

then goes into a cycle, where for each package (Pk1) in LP1 it performs the following

operations: get all the packages in LP2 with the same classification as Pk1, that is,

packages with the same synset; rank the found packages by similarity with Pk1; if the

resulting list is not empty, then the best package is chosen, mapped to Pk1, and the

mappings added to Mappings; the mapped packages are removed from the respective

lists. At the end of the cycle the Mappings and the number of unmapped packages

in LP1 are returned.

Package Objects Matching Algorithm

During the assessment of the diagram similarity (see subsection 4.1.2) it is necessary

to match the UML objects from two lists. Object matching uses two algorithms, both

based on structural matching. One is guided by relation mapping (see figure 4.6),

and the other is guided by object matching (see figure 4.7). These algorithms are the

core of the mapping phase for analogical reasoning (see section 4.2).

Considering a problem (or query) diagram that has to be matched with a case

diagram, the relation guided algorithm starts by choosing the best relation from the

problem diagram based on an independence measure, which is described in the next

section. This relation is added to the current relation list (Relations). Then the

list of mappings (MappingList) is initialized as empty. The algorithm then enters

a cycle while there are relations in Relations to be processed, comprising: get the

best relation from Relations based on the independence measure; select the best
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1. Relations ← Get best relation from the query diagram based on independence measure
2. MappingList ← ?
3. WHILE Relations 6= ? DO
4. PRelation ← Get best relation from Relations based on the independence measure
5. CRelation ← Get best matching relation from the base case relations that are

candidates (structural constraints must be met)
6. Mapping ← Get the mapping between objects, based on the mapping between

PRelation and CRelation
7. Add Mapping to MappingList
8. Remove PRelation from Relations
9. Add to Relations all the same type relations adjacent to PRelations, which are not

already mapped (if PRelation connects A and B then the adjacent relations of
PRelations are the relations in which A or B are part of, excluding PRelation)

10. ENDWHILE
11. Return MappingList

Figure 4.6: The object matching algorithm guided by relation mapping.

1. Objects ←Get object from query diagram which has the highest independence measure
2. MappingList ← ?
3. WHILE Objects 6= ? DO
4. PObject ← Get best object from Objects, based on the object’s independence measure
5. CObject ← Get best matching object from the base case objects that are matching

candidates (structural constraints must be met)
6. Mapping ← Get the mapping between PObject and CObject
7. Remove PObject from Objects
8. Remove CObject from the base case objects that are matching candidates.
9. Add Mapping to MappingList
10. Add to Objects all the objects adjacent to PObject which are not already mapped (an

adjacent object B to an object A, is every object that has a relation with A).
11. ENDWHILE
12. Return MappingList

Figure 4.7: The matching algorithm guided by object mapping.

matching relation from the case relations, taking into account structural constraints;

the objects in both relations are mapped and they are added to the MappingList;

the mapped relations are removed from the respective lists; the adjacent relations are

added to the Relations list expanding the mapping. At the end the algorithm returns

the MappingList.

The second matching algorithm, guided by object mappings, takes as input a

problem list comprising UML objects and a case6 object list. The algorithm starts by

selecting the best object from the problem list and adds it to the list of current objects

(Objects). The best object is the one which has the highest independence measure.

The list of mappings (MappingList) is setup to empty. Then the algorithm enters into

a cycle while there are objects to be processed in Objects. The instructions performed

in this cycle are: get the best object from Objects based on the independence measure;

choose the best matching object from the case object list, based on the structural

constraints and on the semantic distance between both objects’ synsets; map the

6Also called base case, since it is the case used for matching.
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chosen objects and add this mapping to the MappingList; remove both objects from

the respective lists; add the adjacent objects that are not mapped to the query object

to Objects. At the end the algorithm returns the MappingList.

Relation Matching Algorithm

This algorithm is used in the inter-class similarity metric (see subsection 4.1.2) to

match the problem relations with the retrieved case relations. The input are two

lists: LR1 and LR2. It returns a list of relation mappings with the respective mapping

similarities and the number of unmatched relations in LR1 discriminated by the type

of relation. The algorithm is presented in figure 4.8.

The relation matching algorithm performs the same process for each of the four

types of relations: associations, generalizations, dependencies and realizations. The

list of mappings (Mappings) is setup to empty. Then the algorithm gets all associa-

tions, generalizations, dependencies and realizations in LR1, respectively, to lists A1,

G1, D1 and R1, and all the associations, generalizations, dependencies and realiza-

tions in LR2, respectively, to lists A2, G2, D2 and R2. The relations in A1 are ranked

using the independence measure. Then for each relation (Rel1) in A1 it is performed

the following: rank the relations in A2 regarding to the similarity with Rel1; if this

results into relations in the ranked list, then select the best one (Rel2) and map it to

Rel1 and add it to Mappings; both relations are removed from the respective lists.

Then the same mapping process is performed for generalizations (lines 19 to 27), de-

pendencies (lines 28 to 36) and realizations (lines 37 to 45). At the end the algorithm

returns Mappings and the number of unmatched relations discriminated by relation

type.

Attribute Matching Algorithm

The attribute matching algorithm is used in the attribute list similarity metric (see

subsection 4.1.2) to match two lists of attributes. The input comprises two lists: LA1

and LA2. It returns a list of attribute mappings with the respective mapping simi-

larities and the number of unmatched attributes in LA1. The algorithm is presented

in figure 4.9.
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1. Mappings ← ?
2. A1 ← Get all associations from LR1

3. G1 ← Get all generalizations from LR1

4. D1 ← Get all dependencies from LR1

5. R1 ← Get all realizations from LR1

6. A2 ← Get all associations from LR2

7. G2 ← Get all generalizations from LR2

8. D2 ← Get all dependencies from LR2

9. R2 ← Get all realizations from LR2

10. Rank A1 using the independence measures
11. FORALL Relation (Rel1) in A1 DO
12. Ranked1 ← Rank A2 in relation to Rel1
13. IF Ranked1 6= ∅ THEN
14. Rel2 ← Best relation in Ranked1

15. Add (Rel1, Rel2, Sim(Rel1, Rel2)) to Mappings
16. Remove Rel1 from A1 and Rel2 from A2

17. ENDIF
18. ENFOR
19. Rank G1 using the independence measures
20. FORALL Relation (Rel1) in G1 DO
21. Ranked1 ← Rank G2 in relation to Rel1
22. IF Ranked1 6= ∅ THEN
23. Rel2 ← Best relation in Ranked1

24. Add (Rel1, Rel2, Sim(Rel1, Rel2)) to Mappings
25. Remove Rel1 from G1 and Rel2 from G2

26. ENDIF
27. ENFOR
28. Rank D1 using the independence measures
29. FORALL Relation (Rel1) in D1 DO
30. Ranked1 ← Rank D2 in relation to Rel1
31. IF Ranked1 6= ∅ THEN
32. Rel2 ← Best relation in Ranked1

33. Add (Rel1, Rel2, Sim(Rel1, Rel2)) to Mappings
34. Remove Rel1 from D1 and Rel2 from D2

35. ENDIF
36. ENFOR
37. Rank R1 using the independence measures
38. FORALL Relation (Rel1) in R1 DO
39. Ranked1 ← Rank R2 in relation to Rel1
40. IF Ranked1 6= ∅ THEN
41. Rel2 ← Best relation in Ranked1

42. Add (Rel1, Rel2, Sim(Rel1, Rel2)) to Mappings
43. Remove Rel1 from R1 and Rel2 from R2

44. ENDIF
45. ENFOR
46. RETURN Mappings, #A1 + #G1 + #D1 + #R1

Figure 4.8: The relation matching algorithm used in REBUILDER.

1. Mappings ← ?
2. FORALL Attribute (A1) in LA1 DO
3. List1 ← Get all attributes from LA2 with the same synset as A1

4. Ranked1 ← Rank List1 by similarity to A1

5. IF Ranked1 6= ∅ THEN
6. A2 ← Best attribute in Ranked1

7. Add (A1, A2, Sim(A1, A2)) to Mappings
9. Remove A1 from LA1 and A2 from LA2

10. ENDIF
11. ENFOR
12. RETURN Mappings, #LA1

Figure 4.9: The attribute matching algorithm used in REBUILDER.
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1. Mappings ← ?
2. FORALL Method (M1) in LM1 DO
3. List1 ← Get all methods from LM2 with the same Input and Output parameters as M1

4. Ranked1 ← Rank List1 by similarity to M1

5. IF Ranked1 6= ∅ THEN
6. M2 ← Best method in Ranked1

7. Add (M1, M2, Sim(M1, M2)) to Mappings
8. Remove M1 from LM1 and M2 from LM2

9. ENDIF
10. ENFOR
11. RETURN Mappings, #LM1

Figure 4.10: The method matching algorithm used in REBUILDER.

The attribute matching algorithm starts by initializing the list of mappings

(Mappins) to empty. Then for each attribute (A1) in LA1 it performs: get all at-

tributes in LA2 with the same synset as A1; rank the resulting list based on the

similarity with A1 (note that the name is also taken into account); if this results

into attributes in the ranked list, then select the best one (A2) and map it with A1,

adding it to Mappings; remove both attributes from the respective lists. At the end

the algorithm returns Mappings and the number of elements in LA1.

Method Matching Algorithm

The method matching algorithm is used in the method list similarity metric (see

subsection 4.1.2) to match two lists of methods. The input are two lists: LM1 and

LM2. It returns a list of method mappings with the respective mapping similarities

and the number of unmatched methods in LM1. The algorithm is presented in figure

4.10.

The method matching algorithm starts by initializing the list of mappings

(Mappins) to empty. Then for each method (M1) in LM1 it performs: get all the

methods in LM2 with the same input and output parameters as M1; rank the result-

ing list based on the similarity with M1; if this results into methods in the ranked list,

then select the best one (M2) and map it with M1, adding the mapping to Mappings;

both methods are removed from the respective lists. At the end the algorithm returns

Mappings and the number of elements in LM1.
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1. Mappings ← ?
2. FORALL Parameter (P1) in LP1 DO
3. List1 ← Get all parameters in LP2 with the same name as P1

4. Ranked1 ← Rank List1 by similarity to P1

5. IF Ranked1 6= ∅ THEN
6. P2 ← Best parameter in Ranked1

7. Add (P1, P2, Sim(P1, P2)) to Mappings
8. Remove P1 from LP1 and P2 from LP2

9. ENDIF
10. ENFOR
11. RETURN Mappings, #LP1

Figure 4.11: The parameter matching algorithm used in REBUILDER.

Parameter Matching Algorithm

The parameter matching algorithm is used in the parameter list similarity metric

(see subsection 4.1.2) to match two lists of parameters. The input comprises two

lists: LP1 and LP2, it returns a list of parameter mappings with the respective map-

ping similarities and the number of unmatched parameters in LP1. The algorithm is

presented in figure 4.11. It is similar to the method matching algorithm.

4.1.4 Independence Measures

This section describes the independence measures used in REBUILDER to reflect the

independence between objects in the class diagram. There are three independence

measures concerning: classes, interfaces and relations. The independence of classes

and interfaces are defined in the same way.

Class/Interface Independence

The independence of a class C1 (similarly for an interface) is defined by:

Ind(C1) =
C(C1, As) + C(C1, Gs) + C(C1, Ds) + C(C1, Rs)

#RDiagram
(4.16)

where #RDiagram is the total number of relations in the diagram, and C(C1, As) is

the independence given to class C1 due to it’s associations (As) and is computed by:

C(C1, As) =
#As∑

i=1

C(C1, Asi) (4.17)

where Asi is the ith association relation of As and C(C1, Asi) is defined by:





1 ⇐ Asi is an association, with cardinality N-N or 1-N,

0 ⇐ Asi is an association, with cardinality N-1 or 1-1.
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The idea is that a class C1 with a cardinality N on the opposite side to it, is more

general (and thus more independent) than if it has cardinality 1 on the opposite side.

C(C1, Gs) is the independence given to class C1 due to it’s generalizations (Gs),

and is computed by:

C(C1, Gs) =
#Gs∑

i=1

C(C1, Gsi) (4.18)

where Gsi is the ith generalization relation of Gs, and C(C1, Gsi) is defined by:





1 ⇐ otherwise,

0 ⇐ C1 is subclass in Gsi.

The idea is that in a generalization relation, the superclass is more independent than

the subclass.

C(C1, Ds) is the independence given to class C1 due to it’s dependencies (Ds),

and is computed by:

C(C1, Ds) =
#Ds∑

i=1

C(C1, Dsi) (4.19)

where Dsi is the ith dependency relation of Ds, and C(C1, Dsi) is defined by:





1 ⇐ C1 is not the dependable class in Dsi,

0 ⇐ C1 is the dependable class in Dsi.

The idea in this type of relation is evident. The dependent class is the less indepen-

dent, thus having a lower score.

Dependency between classes may not be explicitly stated by an UML dependency

relation. To infer these implicit dependencies we use the class methods and attributes.

Class X is the independent class and class Y is the dependent one, if:

• Y has an attribute such as that it’s data type is X, or

• Y has a method or methods with input or output parameter whose data type

is X.

C(C1, Rs) is the independence given to class C1 due to it’s realizations (Rs), and

is defined as:

C(C1, Rs) =
#Rs∑

i=1

C(C1, Rsi) (4.20)

where Rsi is the ith realization relation of Rs, and C(C1, Rsi) is defined as:
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1 ⇐ C1 is not the interface in Rsi,

0 ⇐ C1 is the interface in Rsi.

The idea is that in a realization, the interface is always dependant on the implemen-

tation class, which makes it less independent.

The independent measure has the goal of determining the degree of dependency

that a class has in relation to the other diagram objects. This is useful in the sense

that it can be used to identify which are the more important objects in the diagram.

The matching algorithms use it to rank the lists of objects, so that the most inde-

pendent objects of one list, match the equivalent ones in the other list, provided this

correspondence exists.

In the specific case of class independency what is examined is the type of relations

that a class has with the other diagram objects, trying to identify the dependence

direction of each relation. In the case of generalizations, realizations or dependencies,

this is clear since the relation represents a sort of dependence between objects. In

the case of an association this is more difficult to establish. We have come up with a

possible decision based on the association’s cardinality, but this is an open issue.

Relation Independence

The independence of a relation R1 is defined by:

Ind(R1) =
Ind(SO) + Ind(DO)

2
(4.21)

where SO is the source object of the relation and DO is the destination object.

4.1.5 A Retrieval Example

In this section we present an example of case retrieval using WordNet. The example

consists on using an UML diagram (P1 from figure 4.12) as the problem, and then

using the package retrieval algorithm to retrieve relevant cases from the case library.

We use an hypothetical case library comprising six cases (C1 to C6, see figure 4.12),

indexed according to figure 4.13. Each node in the tree represents a synset, the word

(or words) represent the intended meaning and the numbers in square brackets are

the synset IDs, which univocally represent the synsets in WordNet. The squared
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nodes represent case indexing. Case C1 and C2 are indexed under the university

synset, while case C3 is indexed under the school synset. For simplification reasons,

we omitted cases’ attributes and methods.

P1 : University

University

Department

Student
1 N

N

1

C1 : University

University

Department

Student1 N

N

1

Teacher

1

N

C2 : University

University

Department Student
1 N

N

1

C3 : School

School

Teacher

Student
1 N

N

1

C4 : Primary School

Primary School

Staff Person

Student1 N

N

1

Teacher

1

N

C5 : Primary School

Primary School

Department

Student

1

N

N

1

Teacher
1 N

C6 : Secondary School

Secondary School

Auxilary Staff

Student1 N

N

1

Problem

Cases

Figure 4.12: The UML class diagrams used in the retrieval example (attributes and methods were
omitted).

Supposing that the number of cases to be found is 3, the cases that will be re-

trieved are C1, C2 and C3. Table 4.5 describes the retrieval algorithm trace, showing

the contents of four main variables: Synset - the synset currently being explored;

ObjsExplored - the objects that were explored, this includes the current synset;

ObjsFound - objects found by the algorithm and that are going to be retrieved;

PSynsets - the list of synsets to be explored.

After the retrieval, cases must be ranked by package similarity. For each case a

similarity measure between P1 and each case is calculated. The established mappings

are:

• Between P1 and C1 : University-University with score 1; Department-

Department with score 1; Student-Student with score 1.

• Between P1 and C2 : University-University with score 1; Department-

Department with score 1.

• Between P1 and C3 : University-School with score 0.69; Department-Teacher

with score 0.4; Student-Student with score 1.
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institution
[106002286]

educational
institution

[106144776]
school

[106145154]
university

[106151796]

primary school
[106221291]

secondary school
[106150140]

C6C4, C5

C3 C1, C2

LEGEND:

Indexed Case

is-a Relation

Index Relation

Figure 4.13: Extract of WordNet is-a hierarchy and case indexing.

Table 4.5: Iterations made by the retrieval algorithm, for the retrieval example.
Iteration Synset ObjsExplored ObjsFound PSynsets

0 ? ? ? {university}
1 university {university} {C1, C2} {educational institution}
2 educational institution {university {C1, C2} {school

, educational institution} , institution}
3 school {university, educational {C1, C2, C3} {institution, primary

institution, school} school, secondary school}

Next we present the computations for the similarity measures involved in the

ranking of cases C1, C2 and C3.

S(P1,C1) = 0.07 · 0 + 0.4 · S(OBsP1, OBsC1) + 0.5 · S(TP1, TC1) + 0.03 · 0 = 0.84

S(OBsP1, OBsC1) =
1 + 1 + 1

3 + 4
− 0 + 1

2 · (3 + 4)
+

1
2

= 0.86

S(TP1, TC1) = S(university, university) =
1

ln(0 + 1) + 1
= 1 (4.22)

S(P1,C2) = 0.07 · 0 + 0.4 · S(OBsP1, OBsC2) + 0.5 · S(TP1, TC2) + 0.03 · 0 = 0.77

S(OBsP1, OBsC2) =
1 + 1

3 + 3
− 1 + 1

2 · (3 + 3)
+

1

2
= 0.67

S(TP1, TC2) = S(university, university) =
1

ln(0 + 1) + 1
= 1 (4.23)

S(P1,C3) = 0.07 · 0 + 0.4 · S(OBsP1, OBsC3) + 0.5 · S(TP1, TC3) + 0.03 · 0 = 0.58

S(OBsP1, OBsC3) =
0.69 + 0.4 + 1

3 + 3
− 0 + 0

2 · (3 + 3)
+

1

2
= 0.85

S(TP1, TC3) = S(university, school) =
1

ln(2 + 1) + 1
= 0.48 (4.24)

120



CHAPTER 4. CBR Engine

Note that in the package similarity the sub package similarity is zero because there

are no sub packages, the same happens with the dependency similarity. The second

and third equations in each formula, respectively, present the class diagram similarity,

and the package type similarity. The ranking is: C1 with a similarity 0.84, C2 with

0.77, and C3 with 0.58. From the formulas we can also see that C3 has a better class

diagram similarity than C2 due to better object matching. Though in the package

similarity this is cancelled by the package type similarity. Weights can be adjusted

to select the most important factor. In chapter 5 we explore the space of possible

weights, looking for a good configuration.

4.2 Analogy Module

Analogical reasoning is used in REBUILDER to suggest class diagrams to the de-

signer, based on a query diagram. The analogy process comprises three steps:

1. Identify candidate diagrams for analogy.

2. Map the candidate diagrams.

3. Create new diagrams, by knowledge transfer between a candidate diagram and

the query.

These steps will be detailed in the next subsections.

4.2.1 Candidate Selection

Cases are selected from the case library to be used as source diagrams. The selected

candidates must be appropriate, that is, they should have structural and semantic

similarity with the target diagram, otherwise the whole mapping phase can be at

risk. Six alternative strategies for candidate selection can be used in REBUILDER

(see table 4.6).

Candidate selection is decomposed in two subtasks: retrieval and ranking. While

retrieval should be a fast comparison task yielding a subset of candidate cases, ranking
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is a more complex and computationally demanding phase where cases are ordered

accordingly to a defined criterium.

Candidate retrieval must be a computationally inexpensive task, with the main

purpose of identifying a first set of cases that are possible candidates for analogy

mapping with the target problem. Analogy uses the retrieval algorithm described in

section 4.1.1 to select the analog candidates. This algorithm returns N cases that are

then ranked.

Candidate ranking is based on metrics that incorporate several criteria assessing

semantic and structural similarity. Three different similarity metrics are used: one

that combines semantic and structure evaluation, a second one that uses an indepen-

dence measure, and a third one that evaluates structural properties.

The first similarity metric is the package similarity metric, used in case retrieval

(see section 4.1.2). This metric compares two UML class diagrams based on two

items: diagram synset (the package’s synset, which is a semantic evaluation) and

diagram structure (combines structural evaluation of the diagram with object synset

distances, it is both structural and semantical).

The independence measure is specific to UML and evaluates the independence of

each object in the class diagram based on the structural relations of diagram objects

(see subsection 4.1.4). Each class or interface in the class diagram is assigned a score

that reflects the independence level of that object from other objects in the diagram,

thus yielding a sense of importance of that object in the diagram.

The third similarity metric is based on diagram structural properties, which is

based on the work of O’Donoghue [O’Donoghue and Crean, 2002]. The main idea

of this metric is to use the structural properties of two diagrams to determine their

structural similarity. O’Donoghue argues that structural similarity is more important

for the identification of good analogical candidates than semantic similarity. But be-

cause the best structural similarity can only be assessed using structural mapping,

which is computational expensive, he uses structural properties to assess the struc-

tural similarity, which are fast to compute [Crean and O’Donoghue, 2002].

The structural properties that we have used are:

• Number of loops in the diagram.
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• Average loop size.

• Number of classes.

• Number of interfaces.

• Number of generalizations.

• Number of realizations.

• Number of associations.

• Number of dependencies.

• Independence metric comparison (described before).

Then we have devised six different candidate selection strategies (see also table

4.6):

Strategy 1: First uses the semantic retrieval to retrieve a set of cases, which are

then ranked by the first similarity metric (package similarity metric). This is

the first implemented strategy in REBUILDER, but it is also the most complex.

Strategy 2: Uses the semantic retrieval and then uses the independence measure to

rank the retrieved cases.

Strategy 3: Uses the semantic retrieval, but then, retrieved cases are ranked using

the third similarity metric (based on structural properties).

Strategy 4: Does not use a retrieval algorithm, instead it applies the similarity met-

ric to all cases. In this strategy the first similarity metric is used (this strategy

is the most expensive in computational terms, it is used only for comparison

with the other strategies).

Strategy 5: Similar to strategy 4. The ranking is performed by the independence

measure.

Strategy 6: Similar to strategy 4. Ranks all cases in the case library using the third

similarity metric (this strategy is also implemented to be compared with the

other ones).

Section 5.3.3 presents experimental work comparing these strategies.
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Table 4.6: The retrieval strategies for analogical reasoning implemented in REBUILDER.
Strategy Retrieval Ranking

1 Semantic Semantic and Structural
2 Semantic Structural (independence measure)
3 Semantic Structural properties
4 No Semantic and Structural
5 No Structural (independence measure)
6 No Structural properties

4.2.2 Mapping Process

The second phase of analogy is the mapping of each candidate case with the query

diagram, yielding an object list mapping for each candidate case. This phase relies on

two alternative algorithms: one guided by relation mapping, and the other by object

mapping, both return a list of mappings between objects.

Relation-Based Mapping

The relation-based algorithm (see figure 4.14) uses the UML relations to establish the

object mappings. In line 1, the algorithm starts the mapping process by selecting a

query relation based on the independence measure, which chooses the relation that

connects the two most important diagram objects (the ones with the highest indepen-

dence score). The MappingList is initialized to an empty list (line 2). Then it tries to

find a matching relation on the candidate diagram, by getting the best relation from

the query diagram (line 4), getting the best relation from the base case (line 5), and

then mapping the object relations (line 6). After this mapping, it starts the mapping

by the neighbor relations, spreading the mapping using the diagram relations (lines

7, 8 and 9). In the end it returns the list of mappings (line 10). This algorithm maps

objects in pairs corresponding to the relation’s objects.

Object-Based Mapping

The object-based algorithm (see figure 4.15) starts the mapping selecting the most

independent query object, based on the UML independence heuristic. After finding

the corresponding candidate object, it tries to map the neighbor objects of the query
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1. Relations ← Get best relation from the query diagram based on independence measure
2. MappingList ← ?
3. WHILE Relations 6= ? DO
4. PRelation ← Get best relation from Relations based on the independence measure
5. CRelation ← Get best matching relation from base case relations that are matching

candidates (structural constraints must be met)
6. Mapping ← Get the mapping between objects, based on the mapping between

PRelation and CRelation
7. Remove PRelation from Relations
8. Add Mapping to MappingList
9. Add to Relations all the same type relations adjacent to PRelations, which are not

already mapped (if PRelation connects A and B then the adjacent relations of
PRelations are the relations in which A or B are part of, excluding PRelation)

10. ENDWHILE
11. Return MappingList

Figure 4.14: The relation-based mapping algorithm.

1. Objects ←Get object from the query diagram with the highest independence measure
2. MappingList ← ?
3. WHILE Objects 6= ? DO
4. PObject ← Get best object from Objects, based on the object’s independence measure
5. CObject ← Get best matching object from the base case objects that are matching

candidates (structural constraints must be met)
6. Mapping ← Get the mapping between PObject and CObject
7. Remove PObject from Objects
8. Add Mapping to MappingList
9. Add to Objects all the objects adjacent to PObject which are not already mapped (an

adjacent object B to an object A, is every object that has a relation with A).
10. ENDWHILE
11. Return MappingList

Figure 4.15: The object-based mapping algorithm.

object, taking the object’s relations as constraints in the mapping. This algorithm

and the one guided by relation mappings are described in detail, in section 4.1.3,

where they are used as matching algorithms.

Mapping Ranking Criteria

Both mapping algorithms previously presented, satisfy the structural constraints de-

fined by the UML diagram relations. But most of the resulting mappings do not map

all the problem objects, so the mappings can be ranked using four different ranking

metrics:

• Based on the number of mapped objects:

K

PObjs
(4.25)

where K is the number of mapped objects, and PObjs is the number of objects

in the problem.
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• Based on the independence sum of mapped objects in the problem:

∑m
i=1 Ind(MappedPObji)∑n

j=1 Ind(PObjj)
(4.26)

where Ind(X) represents the independent heuristic of X, MappedPObji is the

ith mapped objects in the problem, PObjj is the jth object in the problem, m is

the number of mapped objects in the problem, and n is the number of objects

in the problem.

• Based on the independence sum of mapped objects in the problem and the case:

1−
k∑

i=1

∣∣∣∣∣
PMi∑k

j=1 PMj

− CMi∑k
j=1 CMj

∣∣∣∣∣ (4.27)

Where PMi is the independence value of mapped problem object i. CMi is the

independence value of mapped case object i.

• Based on the number of mapped objects and independence sum:

ω1 · K

PObjs
+ ω2 ·

(
1−

k∑
i=1

∣∣∣∣∣
PMi∑k

j=1 PMj

− CMi∑k
j=1 CMj

∣∣∣∣∣

)
(4.28)

We used 0.5 for ω1 and 0.5 for ω2, based on experimental work.

The KB Administrator can select the ranking that will be used. Some guidelines are

provided in section 5.3.1.

Similarity Metric for Mapping Objects

An important issue in the mapping stage is: which objects to map? Most of the time,

there are several candidate objects for mapping with the problem object. To solve

this issue, we have developed a metric that is used to choose the mapping candidate.

Because we have two mapping algorithms, one based on relations and another on

objects, there are two metrics: one for objects and another for relations. These

metrics are based on the WordNet distance between the object’s synsets, and the

relative position of these synsets in relation to the most specific common abstraction

concept (see figure 4.16). This subsection describes the metric for ranking objects.

The next subsection describes the metric for ranking relations.
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S55 S109

S2

S23

S11

S87

S76

B

A

MSCA

D(A,MSCA) = 3
D(B,MSCA) = 2

Figure 4.16: An illustration of the MSCA concept.

The similarity metric for mapping two objects (A and B) is based on three factors.

The first one is the distance between A’s synset and B’s synset in the WordNet on-

tology (D1). For the second factor, the Most Specific Common Abstraction (MSCA)

between A and B synsets must be found (see figure 4.16 for an illustration). Consid-

ering the distance between A’s synset and MSCA (D(A,MSCA)), and the distance

between B’s synset and MSCA (D(B,MSCA)), then the second factor is the rela-

tion between these two distances (D2). This factor measures the difference between

the level of abstraction of concept A and the level of abstraction of concept B. The

last factor is the relative depth of MSCA in the WordNet ontology (D3), which deter-

mines the objects’ level of abstraction. The formulas for these measures are described

in the following equations.

The similarity between A and B is defined as:




ω1 ·D1 + ω2 ·D2 + ω3 ·D3 ⇐ exists MSCA between A and B,

0 ⇐ otherwise.

where ω1, ω2 and ω3 are weights associated with each factor. The values are

selected based on empirical work and are: 0.55, 0.3, and 0.15. The factor D1, which

measures the distance between A and B synsets, is:

D1 = 1− D(A,B)

2 ·DepthMax
(4.29)

where DepthMax is the maximum depth of the is-a tree of WordNet. DepthMax in

WordNet version 1.7.1 is 17.
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For factor D2, we have that if A is equal to B then D2 is 1, otherwise it is:

D2 = 1− |D(A,MSCA)−D(B, MSCA)|√
D(A,MSCA)2 + D(B, MSCA)2

(4.30)

For factor D3 we have:

D3 =
Depth(MSCA)

DepthMax
(4.31)

where Depth(MSCA) is the depth of MSCA in the WordNet is-a tree.

Similarity Metric for Mapping Relations

The previous metric is used by the object-based mapping algorithm, where the best

candidate object is selected for mapping with a problem object. For the relation-

based mapping algorithm, the selection metric is not used for ranking objects, but

for ranking relations. The selection metric for relations is based on the object sim-

ilarity metric, but takes also into account the relations, and the objects linked by

the relations. The metric for ranking mapping relations is defined by the following

expressions:

• Suppose that the two relations involved are R1 (relates A with B) and R2

(relates C with D), and:

– MAB is the MSCA between A and B (see figure 4.17 for an illustration).

– MAC is the MSCA between A and C.

– MBD is the MSCA between B and D.

– MCD is the MSCA between C and D.

• If MAB, MAC, MBD and MCD exist, Then the value for the relation simi-

larity metric is:

ω1 · ASim(A,C) + ω2 · ASim(B, D) + ω3 ·RASim(R1, R2) (4.32)

where ASim(X, Y ) is the similarity metric for mapping objects X and Y (de-

scribed in the previous subsection). Weights ω1, ω2 and ω3 are: 0.25, 0.25 and

0.5.
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MAB MAC MBD MCD

A B C D
R1 R2

Figure 4.17: An illustration of the most specific common abstractions used in the similarity metric
for mapping relations.

• If (MAC and MBD exist) and (MAB and MCD do not exist), Then the

metric value is:
ASim(A,C) + ASim(B,D)

2
(4.33)

• Else the metric value is 0, meaning that the relations have no similarity.

RASim(R1, R2) evaluates the similarity between R1 and R2, and is given by:

RASim(R1, R2) = ω1·Length(R1, R2)+ω2·Angle(R1, R2)+ω3·Depth(R1, R2) (4.34)

Length(R1, R2) = 1− |
√

D(A, MAB)2 + D(B, MAB)2 −
√

D(C, MCD)2 + D(D,MCD)2|√
D(A, MAB)2 + D(B, MAB)2 +

√
D(C, MCD)2 + D(D,MCD)2

(4.35)

Angle(R1, R2) = 1−
∣∣∣∣∣

D(A,MAB)√
D(A, MAB)2 + D(B, MAB)2

− D(C, MCD)√
D(C,MCD)2 + D(D, MCD)2

∣∣∣∣∣ (4.36)

Depth(R1, R2) = 1− |Depth(A) + Depth(B)−Depth(C)−Depth(D)|
2 ·DepthMax

(4.37)

where ω1, ω2 and ω3 are weights with values: 0.25, 0.25 and 0.5. Length(R1, R2) is

a factor that reflects the distance between objects in the relations. It compares the

distances between A−MAB and B−MAB with their counterparts, C −MCD and

D −MCD. Angle(R1, R2) reflects the angle between the objects and the respective
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MSCAs. Considering the trees A−MAB − B and C −MCD −D (see figure 4.17)

it compares the disequilibrium between branches. Depth(R1, R2) reflects the depth

in the WordNet, or in other words, the abstraction level of objects. Compares the

absolute concept depths in the WordNet is-a tree.

4.2.3 Knowledge Transfer

The last step is the generation of new diagrams using the established mappings.

For each mapping the analogy module creates a new diagram, which is a copy of

the query diagram. Then, using the mappings between the query objects and the

candidate objects, the algorithm transfers knowledge from the candidate diagram to

the new diagram. This transfer comprises two steps: first an internal object transfer,

and then an external object transfer. In the internal transfer, the mapped query

object gets all the attributes and methods from the candidate object that were not in

the query object. This way, the query object is completed by the internal knowledge

of the candidate object. The second step transfers neighbor objects and relations

from the mapped candidate objects to the query objects, from the new diagram. In

this process, new objects and relations are transferred to the new diagram, expanding

it. If there is one object in the source diagram that is considered equivalent (same

name and synset) to an object in the new diagram, then this objects are merged. The

merging operation consist on matching the attributes and methods of both objects,

and the merging of objects’ relations. The ones in the source object that are not in

the target object are copied to the target object.

4.2.4 An Analogy Example

This section presents an example of application of the analogy mechanism. The

initial problem is to design an information system for an University. This problem is

described in REBUILDER as an UML class diagram (see figure 4.18). The diagram

is very simple, since it is described by two main objects.

The software designer can use the analogy command to perform the generation of

a new diagram based on the target problem. This command first invokes the retrieval

algorithm that uses the synset of the package University as the starting point for
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University Department1..*

Figure 4.18: The initial class diagram used as target problem.

Organization

Institution

Unit

Medical Institution Educational Institution
Administrative Unit

Hospital School University College Division

Department

[Case3] Package: HighSchool

High School

[Case3] Class: HighSchool [Case1] Package: School

[Case1] Class: School

[Case2] Package: College

[Case1] Class: SchoolDepartment [Case2] Class: Department

Figure 4.19: Part of WordNet structure used in the retrieval algorithm to search for similar cases.
White boxes are WordNet synset nodes and grey boxes are index nodes.

searching WordNet. Figure 4.19 illustrates the application of the retrieval algorithm.

The search starts at the University synset, which does not index packages. Supposing

that the number of packages to be retrieved is three, the algorithm continues searching

for index packages in a spreading activation way. In the next iteration the algorithm

explores the neighborhood of the University synset. The only synset that is neighbor

to University is Educational Institution. This synset has no indexes, so the algorithm

expands the search to the next neighbor border synsets, looking for indexes. Iteration

number three reaches Institution, School and College. From these, the algorithm

collects two package indexes: one from Case1 representing a School, and another

from Case2 representing a College. Nevertheless the number of cases is not enough,

so there is one more iteration, which yields a third index package: Case3 representing

a HighSchool. With these three packages, the algorithm stops the exploration and

initiates package ranking. Packages Case1, Case2 and Case3 are shown, respectively,

in figures 4.20, 4.21, and 4.22.
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SchoolDepartment

+ name : String

addTeacher(teacher: Teacher) : void

removeTeacher(Name: String) : int

getTeacher(Name: String) : Teacher

addStudent(student: Student) : void

removeStudent(Name: String) : int

getStudent(Name: String) : Student

School

+ name : String

+ address : String

+ phone : int

addDepartment(Dep: SchoolDepartment) : void

removeDepartment(Dep: String) : int

getDepartment(Dep: String) : SchoolDepartment

Student

+ name : String

+ StudentID : int

Teacher

+ name : String

1..*

1..*

1..*

Figure 4.20: The School package of Case1.

Teacher

- name : String

- salary : float

- subjects : List

+ Teacher(n: String,s: float) : void

+ getSalary() : float

+ addSubject(subjectName: String) : void

Department

- designation : String

- budget : float

+ Department(d: String) : void

+ getDegrees() : List

+ getStudentTeachers(student: String) : List

Student

- name : String

- ID : int

+ Student(n: String,id: int) : void

+ getDegree() : Degree

+ getTeachers() : ListDegree

- name : String

- subjects : List

+ Degree(n: String) : void

+ addSubject(s: String) : void

+ getTeachers() : List

1..* 1..*

1..*1..*

1..*

1..*

Figure 4.21: The College package of Case2.

HighSchool

- name : String

- address : String

- phone : int

+ getStudents() : List

+ addStudent(s: Student) : void

+ HighSchool(n: String,a: String,p: int) : void

Student

- name : String

- DateOfBirth : Date

+ getName() : String

+ setName(name: String) : void

+ Student(n: String,d: Date) : void

Teacher

- name : String

- subjects : List

- ID : int

+ isTeacher(subject: String) : boolean

+ Teacher(n: String) : void

Grade

- identification : String

- subjectArea : String

+ Grade(i: String,s: String) : void

+ getTeachers() : Set

1..*

1..*

1..* 1..*

1..*

Figure 4.22: The HighSchool package of Case3.
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Department

+ name : String

addTeacher(teacher: Teacher) : void

removeTeacher(Name: String) : int

getTeacher(Name: String) : Teacher

addStudent(student: Student) : void

removeStudent(Name: String) : int

getStudent(Name: String) : Student

University

+ name : String

+ address : String

+ phone : int

addDepartment(Dep: Department) : void

removeDepartment(Dep: String) : int

getDepartment(Dep: String) : Department

Student

+ name : String

+ StudentID : int

Teacher

+ name : String

1..*

1..*

1..*

Figure 4.23: The new diagram generated by analogy with School package.

The package ranking is performed using the similarity metrics mentioned in sub-

section 4.1.2. The similarity between the synsets of packages takes into account the

conceptual distance between the target synset (University) and the retrieved ones

(School, College and HighSchool). As can be seen in figure 4.19 the School and Col-

lege synsets are at the same distance from University, while the HighSchool synset is

far away from the target synset, like the other two synsets. Taking into account the

diagram similarity, the School package can map both problem objects (School with

University and SchoolDepartment with Department). The other two packages can

only map one of the problem objects. College: Department with Department ; and

HighSchool : HighSchool with University. Clearly the School package is more similar

to the target problem than College, and College is more similar to the problem than

HighSchool. This results in the following ranking of cases: first Case1, second Case2,

and third Case3.

Using the best case that was retrieved (Case1 ), the analogy mechanism maps the

problem objects to the School package objects. This yields the same mappings as

the ones in the retrieval phase (School with University and SchoolDepartment with

Department).

Then the algorithm creates a copy of the target problem (a new package), and

makes the transference of knowledge between the School package and the new package.

First the attributes and methods of School and SchoolDepartment are transferred into

the mapped objects. Then the Student and Teacher classes are transferred into the

new package, maintaining their relations. The final result is show in figure 4.23.
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4.3 Design Composition Module

The Design Composition module generates new diagrams by decomposition and com-

position of cases. The input data used in the composition module is an UML class

diagram, in the form of a package. This is the designer’s query, which usually is a

small class diagram in its early stage of development (see Figure 4.24). The goal of

the composition module is to generate new diagrams that have the query objects,

thus providing an evolved version of the query diagram. Generation of a new UML

design using case-based composition involves two main steps: retrieving cases from

the case library to be used as knowledge sources, and using the retrieved cases (or

parts of them) to build new UML diagrams. In the first step, the selection of the

cases to be used is performed using the retrieval algorithm and the similarity metrics

described in section 4.1. The adaptation of the retrieved cases to the target problem

is based on two distinct strategies: best case composition, and best complementary

cases composition. The next subsections describe these two composition strategies.

Figure 4.24: An example of an class diagram in the early stages of development.

4.3.1 Best Case Composition

The idea of the best case composition is to select the case most similar with the

problem, use what this case has in common with the problem, and try to complete it

using pieces of other cases.

The best case composition algorithm is shown in figure 4.25. The algorithm starts

by retrieving a set of similar cases from the library (line 1). Then the retrieved
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1. RetrievedCases ← Retrieve cases from the Case Library using Problem
2. BestCase/Mapping ← Select the best case and map it to the problem
3. NewCase ← Use BestCase, Mapping and Problem to generate a new case
4. Remove BestCase from RetrievedCases
5. WHILE NewCase does not map all the Problem objects AND RetrievedCases 6= ? DO
6. SelectedCases ← Search RetrievedCases for cases with unmapped problem objects
7. SelectedCase ← Select the best one, the one with more unmapped problem objects
8. NewCase ← Complete NewCase with SelectedCase
9. Remove SelectedCase from RetrievedCases
10. ENDWHILE
11. Return NewCase

Figure 4.25: The best case composition algorithm.

case most similar to the problem is mapped to the problem objects (line 2). The

mapped objects in the case are transferred to a new case (line 3). If this new case

maps successfully all the problem objects, then the adaptation process is finished

(the while conditions in line 5). Otherwise it selects the retrieved case, which best

complements the new case (in relation to the problem, see lines 6 and 7), and uses it

to get the missing parts (line 8). This process continues while there are unmapped

objects in the problem definition. In the end it returns the generated case (line 11).

Note that, if there are objects in the used case that are not in the problem, they

can be transferred to the new case, generating new objects, but only if the mapped

objects depend on them.

An UML object A (package, class or interface) depends on an object B, if there

is a relation between A and B, such that:

• A is a specialization of B (there is a generalization from A to B), or

• A is a realization of B (there is a realization from A to B), or

• A depends on B (there is a dependency relation from A to B), or

• A is associated with B (there is an association between A and B).

4.3.2 Best Set of Cases Composition

The idea of this strategy is to get the best complementary set of cases, and try to

build a new diagram using these cases. The algorithm for this strategy is described

in figure 4.26. The best set of cases composition approach starts by retrieving and

matching each retrieved case to the problem (line 1 and cycle for in lines 2 and 3),

135



CHAPTER 4. CBR Engine

1. RetrievedCases ← Retrieve cases from the Case Library using Problem
2. FORRetrievedCase in RetrievedCases Do
3. Mapping ← Map RetrievedCase to Problem
4. ENDFOR
5. CaseSets ← Create the sets of complementary cases based on each case mapping
6. BestSet ← Select the best set from CaseSets, this is the set whose mapping has

the best coverage of problem objects
7. NewCase ← Generate a new case using the BestSet
8. Return NewCase

Figure 4.26: The best set of cases composition algorithm.

CollegeUniversity Department
1..* 1..*

Figure 4.27: An example of a class diagram representing a problem (P1 ) .

yielding a mapping between the case objects and the problem objects. This is used

to determine the degree of problem coverage of each case (line 5), after which several

sets of cases are constructed. These sets are based on the combined coverage of the

problem, with the goal of finding sets of cases that globally map all the problem

objects. The best matching set, the one with best problem coverage (in case of a

draw the sets with less elements are chosen), is then used to generate a new case (line

6 and 7). Finally it returns the generated case (line 8).

4.3.3 A Design Composition Example

This example provides an illustration of the design composition mechanism. Suppose

that the class diagram of figure 4.27 is used as problem (P1 ) for design composition.

The first step is to retrieve relevant diagrams and rank them. The retrieval algorithm

starts by the package synset of P1, which is the synset corresponding to University.

Suppose that the algorithm retrieves two cases: Case1 corresponding to the diagram

of figure 4.28, and Case2, which corresponds to the class diagram of figure 4.29. These

cases are then ranked by similarity to the problem, which gives Case1 a score of 0.25

and Case2 0.7.

The next step is to build a new case using the composition strategies. We selected

the best case composition strategy to generate the new case. The first thing that

the algorithm does is to create a new case, which is a copy of P1. Case2 is selected
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School

+ name : String

+ address : String

+ phone : int

+ addDepartment(Dep: SchoolDepartment) : void

SchoolDepartment

+ name : String

+ addTeacher(prof: Teacher) : void

+ removeTeacher(name: String) : int

+ getTeacher(name: String) : Teacher

+ addStudent(name: String) : int

+ removeStudent(name: String) : int

+ getStudent(name: String) : Student

Student

+ name : String

+ studentID : int

Teacher

+ name : String

1..*

1..*

1..*

Figure 4.28: A class diagram representing part of a school information system (Case1 ).

College

+ name : String

+ email : String

+ addStudent(std: Student) : void

+ removeStudent(name: String) : void

+ getEmployee(name: String) : UniversityEmploye

University

+ name : String

+ address : String

+ getCollege(name: String) : College

+ getName() : String

UniversityEmploye

+ name : String

+ email [0..*] : String

+ position : String

+ salary : float

+ setSalary(value: float) : void

+ getEmail() : String

Student

+ name : String

+ number [0..*] : int

+ studentID : int

+ getName() : String

Researcher

+ researchGroup : int

+ getGroup() : String

Teacher

+ subjects [0..*] : List

+ name : String

+ addSubject(subject: String) : void

1..*

1..*

1..*

Figure 4.29: Class diagram of Case2 (an University).

due to its higher similarity with the problem. The design composition algorithm

maps University and College in Case2 to P1, transferring the mapped case objects

to the new case. Then, the objects of Case2 that were not mapped are transferred

to the new case, but only if mapped objects depend on them. After these operations,

the problem has an unmapped object, which is Department. Case1 has an object

(SchoolDepartment) that has the same classification as Department. These two ob-

jects are mapped completing the new case. The resulting diagram is presented in

figure 4.30.

Note also that all additional objects from Case2 have been transferred to the new

case because they depend on the mapped objects. Other aspect, is that the mapping

of Case1 with the problem added two additional objects (Student and Teacher from

Case1 ), which already existed in the new case (from Case2 ). These two additional

objects were merged with the corresponding objects yielding the new case.
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SchoolDepartment

+ name : String

+ addTeacher(prof: Teacher) : void

+ removeTeacher(name: String) : int

+ getTeacher(name: String) : Teacher

+ addStudent(name: String) : int

+ removeStudent(name: String) : int

+ getStudent(name: String) : Student

College

+ name : String

+ email : String

+ addStudent(std: Student) : void

+ removeStudent(name: String) : void

+ getEmployee(name: String) : UniversityEmploye

University

+ name : String

+ address : String

+ getCollege(name: String) : College

+ getName() : String

UniversityEmploye

+ name : String

+ email [0..*] : String

+ position : String

+ salary : float

+ setSalary(value: float) : void

+ getEmail() : String

Student

+ name : String

+ number [0..*] : int

+ studentID : int

+ getName() : String

Researcher

+ researchGroup : int

+ getGroup() : String

Teacher

+ subjects [0..*] : List

+ name : String

+ addSubject(subject: String) : void

1..*

1..*

1..*

1..*

1..*

1..*

Figure 4.30: The solution generated by the design composition mechanism.

4.4 Design Pattern Module

This section presents how software design patterns can be applied to a target design

using CBR. We start by describing the design patterns module, and then we present

each submodule in more detail.

4.4.1 Architecture

Figure 4.31 presents the architecture of the design patterns module. It comprises

three submodules: retrieval of applicable Design Pattern Application (DPA) cases,

selection of the best DPA case, and application of selected DPA case. A DPA case

describes the application of a specific design pattern to a software design (subsection

3.3.1 describes the case representation in detail). This module is used when the

designer decides to apply design patterns to improve the current design.

The first submodule uses a target class diagram as the problem, and searches the

DPA case library for DPA cases that match the problem. Then the retrieved DPA

cases are ranked and the best one is selected for application, which is performed in

the next step. The application of the DPA case uses the design pattern operators and

yields a new class diagram, which is then used to build a new DPA case. This new
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Knowledge Base

Class
Diagram Retrieval

DPA Case
Library

New Class
DiagramSelection Reuse

Design Pattern
Operators

DPA case
Indexes

Figure 4.31: Module for software design pattern application.

Table 4.7: The participants specification for the Abstract Factory pattern operator.
Name Type Mandatory Unique Description

AbstractFactory Object no yes Declares an interface for operations that

create abstract product objects.

ConcreteFactory Object no no Implements the operations to create

concrete product objects.

AbstractProduct Object no no Declares an interface for a type

of product object.

ConcreteProduct Object yes no Defines a product object to be

created by the corresponding concrete factor.

Client Object no no Uses only interfaces declared by

AbstractFactory and AbstractProduct classes.

case is stored in the DPA case library.

4.4.2 Software Design Pattern Operators

For each design pattern there is one operator, for instance, the Abstract Factory

design pattern has a specific pattern operator, which defines the application conditions

of the Abstract Factory pattern and how to apply it. A software design pattern

operator comprises three components: the set of specific participants, the application

conditions, and the actions for the specific design pattern.

The participants are key objects, methods or attributes that play an important

and active role in a design pattern. An example of the participants specification for

the Abstract Factory pattern operator is described in table 4.7.

Application conditions define the constraints that must be met by participant

139



CHAPTER 4. CBR Engine

1. NewClassDiagram ← Copy ClassDiagram
2. ConcreteProducts← Get all concrete products from the mapping done between

the selected case and the problem (Role = ConcreteProduct)
3. Clients ← Get all classes that use at least one ConcreteProduct
4. AbstractFactory ←Create new class with name ”AbstractFactory”
5. Add AbstractFactory to NewClassDiagram
6. AbstractProducts ← For each ConcreteProduct get or create respective AbstractProduct
7. ConcreteFactories ← Get or create all the ConcreteFactories for ConcreteProducts
8. FOREACH Product in ConcreteProducts DO
9. AbstractProduct ← Get Product superclass
10. Abstract the access of Clients from Product to AbstractProduct
11. Encapsulate the construction of Product in AbstractFactory and AbstractProduct
12. ENDFOR
13. Apply the Singleton pattern to AbstractFactory
14. RETURN NewClassDiagram

Figure 4.32: The application algorithm for the Abstract Factory design pattern.

objects in order to apply the operator. In the case of the Abstract Factory the

application conditions are: there must be at least one ConcreteProduct, and all Con-

creteProducts must have no public attributes or static methods.

The pattern actions for Abstract Factory are defined in the algorithm presented in

figure 4.32. This algorithm transforms ClassDiagram into NewClassDiagram through

the application of the Abstract Factory design pattern.

The algorithm starts by creating a copy of the initial class diagram, and then

creates all the participant objects: the ConcreteProducts, which have been identified

in the mapping provided as input to the algorithm; the Clients, which are all the

objects that depend or reference any ConcreteProduct, they can be identified in the

mapping list, or the algorithm will identify them; the class AbstractFactory that is

created by the algorithm; the AbstractProducts, each ConcreteProduct must have

a correspondent AbstractProduct ; and finally the ConcreteFactories, one for each

ConcreteProduct type. Then for each Product in ConcreteProducts the algorithm

abstracts the access of Clients from Product to it’s superclass, and encapsulates the

creation of Product in AbstractFactory and AbstractProduct. Applies the singleton

pattern to AbstractFactory and returns the created diagram.

4.4.3 Retrieval of DPA Cases

The retrieval of DPA cases is performed using the WordNet as the indexing struc-

ture. The DPA case retrieval algorithm (see figure 4.33) receives the input parameters:

ClassDiagram - the target diagram, NumberOfCases - number of desired solutions,
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1. Objects ← Get all classes and interfaces from the ClassDiagram
2. Synsets ← ?
3. FORALL Object in Objects DO
4. Add to Synsets the Object’s synset
5. ENDFOR
6. SelectedCases ← ?
7. SearchLevel ← 0
8. Explored ← ?
9. WHILE (#SelectedCases < NumberOfCases) AND (SearchLevel < MSL) AND

(Synsets 6= ?) DO
10. DPACases ← Get all DPA cases indexed by at least one synset from Synsets
11. Add to SelectedCases the DPACases list
12. NewSynsets ← ?
13. FORALL Synset in Synsets DO
14. Neighbors ← Get Synset hypernyms, hyponyms, holonyms and meronyms
15. Neighbors ← Neighbors− Synsets− Explored−NewSynsets
16. Add to NewSynsets the Neighbors list
17. ENDFOR
18. Add to Explored the Synsets list
19. Synsets ← NewSynsets
20. SearchLevel ← SearchLevel + 1
21. ENDWHILE
22. RETURN SelectedCases

Figure 4.33: The retrieval algorithm for DPA cases.

and MSL - maximum search level for the retrieval algorithm; returning a set of re-

trieved cases (SelectedCases).

This algorithm is very similar to the case retrieval algorithm presented in sub-

section 4.1.1. It gets all classes and interfaces from the ClassDiagram into the list

Objects, initializes the list of current (Synsets) to null and for each element in Objects

gets the respective synset and adds it to Synsets. Basically these synsets are used as

initial probes to search the WordNet structure. Three variables are initialized: the

list of selected cases (SelectedCases) is set to empty, the variable that indicates the

search level (SearchLevel) is set to zero, and the list of explored synsets (Explored) is

also set to an empty list. Then the algorithm goes into a cycle while the number of

selected cases is less than the number of cases to be retrieved, and the level of search

in WordNet (the number of expansion iterations) is less than the MSL, and there are

still synsets to be explored. During this cycle the algorithm performs the following

steps: get all the DPA cases indexed by at least one synset in Synsets and add it

to SelectedCases ; initialize the list NewSynsets to empty and get all the adjacent

synsets to the elements in Synsets, adding them to NewSynsets and removing already

explored synsets; add the elements of Synsets to Explored ; assign the new synset

frontier (NewSynsets) to Synsets ; and increment SearchLevel. At the end of the while

cycle the algorithm returns the found cases (SelectedCases). The algorithm expands

the search to neighbor synsets using all the WordNet semantic relations (is-a, part-of,
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member-of, and substance-of ), performing an exhaustive search of the WordNet.

4.4.4 Selection of DPA Cases

After retrieval of the relevant cases, they are ranked accordingly to their applicability

to the target diagram (ClassDiagram).

The selection algorithm (see figure 4.34) starts by initializing the list of scores

(Scores) and mappings (Mappings), in lines 1 and 2. Then maps the ClassDiagram

with each of the retrieved cases (SelectedCases), resulting in a mapping for each

case (lines 3 to 7). The mapping is performed from the case’s participants to the

target class diagram (only the mandatory participants are mapped). Associated to

each mapping there is a score, which is given by the number of mapped participants.

What this score measures is the degree of participants mapping between the DPA

case and the target diagram. The score of a mapping (M) is computed using the

following equation:

Score(M) = ω1 · TScoreObj

CObjs
+ ω2 · Methods

CMets
+ ω3 · Attributes

CAttrs
(4.38)

where TScoreObj is the score of the object mapping participants, which is computed

by summing the WordNet distance between mapped objects. Methods and Attributes

are, respectively, the number of mapped method participants and mapped attribute

participants. CObjs, CMets and CAttrs are, respectively, the number of object

participants in the selected case, the number of method participants in the selected

case, and the number of attribute participants in the selected case. ω1, ω2 and ω3 are

constants with values 0.5, 0.25 and 0.25.

The next step in the algorithm is to rank the SelectedCases list based on the

mapping scores (line 8). The final phase consists on checking the applicability of the

best DPA case (lines 9 to 13), which is performed using the design pattern operator

associated with the DPA case. If the application conditions of this operator are not

violated, then this DPA case is returned as the selected one (line 11). Otherwise,

this case is discarded and the next best case goes through the same process, until one

applicable case is found or it returns null (line 14).
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1. Scores ← ?
2. Mappings ← ?
3. FORALL SelectedCase in SelectedCases DO
4. Mapping/Score← Get the mapping and score for the SelectedCase
5. Add to Mappings the SelectedCaseMapping
6. Add to Scores the SelectedCaseScore
7.ENDFOR
8.Rank lists: SelectedCases, Mappings and Scores, by Scores
9.FORALL SelectedCase in SelectedCases DO
10. IF (DesignPattern(solution of SelectedCase) can be applied to ClassDiagram

using the Mapping established before) THEN
11. RETURN SelectedCase and the respective Mapping
12. ENDIF
13. ENDFOR
14. RETURN NULL

Figure 4.34: The algorithm for selection of DPA cases.

4.4.5 Application of DPA Cases

Once selected the DPA case, the next step is to apply it to the target class diagram

generating a new class diagram and a new DPA case. The solution of the selected DPA

case is a design pattern. This design pattern has a corresponding pattern operator,

which will be applied to the target class diagram. Starting with the participants

mapping established before, the application of the pattern is performed using the

application algorithm of the pattern operator.

4.4.6 An Application Example

This section presents an example for illustration of the functioning of the design

pattern module. Figure 4.35 shows the target class diagram used in our example

(class attributes and methods are omitted for the sake of simplicity). The goal is

to improve this class diagram through the application of design patterns. In the

remaining of this section we will exemplify the three phases of the design pattern

application module: retrieval, selection and application of DPA cases.

The first step is the retrieval of DPA cases from the case library. This is performed

using the algorithm presented in this section. The initial search probes are the synsets

associated to: Repair Shop, Stock, Motor (the synsets for Car Motor and Motorcycle

Motor are the same of Motor), and Wheel (the synsets for Car Wheel and Motorcycle

Wheel are the same of Wheel). The case library comprises several DPA cases, from

which we present the initial class diagrams for two of them (see figures 4.36 and

4.37). DPA case 1 represents the application of the Abstract Factory design pattern
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Figure 4.35: Target class diagram used in the example.

Figure 4.36: The initial class diagram of DPA case 1.

to the initial class diagram of figure 4.36. The participants in this DPA case are:

PlaneEngine, PlaneWheel, HeliEngine and HeliWheel which are Concrete Products;

and Plane and Helicopter which are Clients. The solution of this DPA case is Abstract

Factory.

The DPA case 2 is also the representation of an application of the Abstract Factory

pattern, but to the initial class diagram of figure 4.37. The participants are: TTL-

LogicGate, TTLMultiplexer, TTLDecoder, CMOSLogicGate, CMOSMultiplexer, and

CMOSDecoder, which are Concrete Products; and Equipment which is a Client.

The search then starts using these four synsets and is performed in the WordNet

Figure 4.37: The initial class diagram of DPA case 2.
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DPA Case 2

Multiplexer

Electronic Device

DPA Case 1

Wheel

Simple Machine

Mechanical Device

Mechanism

DPA Case 1

Motor

Machine

Device

Figure 4.38: Part of the WordNet is-a structure used in the retrieval example.

structure. Figure 4.38 presents part of the WordNet structure, which indexes DPA

case 1 (through the synset of Wheel and Motor, Engine has the same synset as Motor)

and DPA case 2 (through the synset of Multiplexer). Starting by Wheel and Motor,

case 1 is the first being selected, then the algorithm expands to the neighbor nodes

until the fourth iteration, when it gets to Multiplexer (Motor - Machine - Device -

Electronic Device - Multiplexer) where it founds case 2. If we assume that only two

cases are needed, the cases retrieved for the next step are: DPA case 1, and DPA case

2.

The next step is to select which of the retrieved cases is going to be applied. The

first phase of selection establishes the mappings and the score associated with each

mapping. For case 1 the following mappings were obtained:

• PlaneEngine - CarMotor

• PlaneWheel - CarWheel

• HeliEngine - MotorcycleMotor

• HeliWheel - MotorcycleWheel

Mappings for case 2 are:

• TTLLogicGate - Motor
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• TTLMultiplexer - CarMotor

• TTLDecoder - CarWheel

• CMOSLogicGate - Wheel

• CMOSMultiplexer - MotorcycleMotor

• CMOSDecoder - MotorcycleWheel

Mappings for case 1 get the following score: 0.5 * (4 / 4) + 0.25 * 1 + 0.25 * 1

= 1, according to equation 4.38. Notice that all the mappings established between

case 1 and the target diagram match perfectly, so they all have score 1, yielding 4 for

the sum. Since there are no method or attribute participants, the score associated

with each of these items is 1. For case 2, the computation of the mappings’ score

is: 0.5 * ((0.31 * 4 + 0.34 * 2) / 6) + 0.25 * 1 + 0.25 * 1 = 0.66. There are

six mappings between case 2 and the target diagram, which leads to the following

semantic distances: LogicGate to Motor, Decoder to Wheel, LogicGate to Wheel,

has 8 is-a semantic relations, yielding the similarity of 0.31 (see equation 4.4); and

Multiplexer to Motor has 6 is-a semantic relations, yielding the similarity of 0.34.

To this point, we have case 1 ranked in the first place. The next step is to assess

the applicability of the solution pattern of case 1, which is the Abstract Factory

pattern. The pre-conditions necessary for this pattern to be applied are:

• Concrete Products must have at least one element.

• All classes in Concrete Products must:

– exist, and

– have no public attributes, and

– have no static methods.

Assuming that the target diagram meets all the pre-conditions, the Abstract Factory

can be applied, using the mapping established before.

The final step is the application of the selected design pattern, using the respec-

tive design pattern operator. Figure 4.32 presents the application algorithm for the
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Figure 4.39: The new class diagram generated from the application of DPA Case 1 to the target
diagram.

Abstract Factory design pattern, which after being applied to the class diagram of

figure 4.35 (using the mapping determined before) results in the diagram of figure

4.39. One of the advantages of this transformation, is that, it is easier to maintain

and extend this design. Because it enables the extension of the design in two different

dimensions: types of products that can be added (for instance steering mechanism),

family of products (for instance truck).

4.5 Verification and Evaluation Module

The verification and evaluation module comprises two distinct phases: verifying a

class diagram, and evaluating it. The next subsections describe each one of these

functionalities.

4.5.1 Verification

The main idea of verification in REBUILDER is to identify errors in class diagrams

applying four types of knowledge sources: design cases, WordNet, verification cases,

and the designer.
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Designer requests
a verification action

REBUILDER requests
a verification action

REBUILDER generates
a new diagram

Package Verification

Attribute VerificationRelation Verification Method Verification
Sub-Package
Verification

Figure 4.40: The verification process in abstract.

Not only REBUILDER generated diagrams can be verified, but also designer-

created diagrams (see figure 4.40 for an abstract description of the verification pro-

cess). The designer has only to select the diagram to be checked and activate the

verification command to perform it. The designer can also select an option in the

settings menu for automatic verification of each solution generated by REBUILDER.

Verification is performed on five diagram components: packages, object names, rela-

tions, attributes and methods. Verifying a diagram component consists on determin-

ing it’s validity (true or false), which is to say, if the object is correct or if it is invalid

or incoherent within the diagram. In case of being correct it stays in the diagram,

otherwise the object can be deleted from the diagram.

An important implementation aspect is that verification cases (which are cases

that represent success or failure verification situations) are stored locally in the de-

signer client. Thus, each designer has her/his library of verification cases, which

personalizes the system. This is important, since each software designer has a dif-

ferent way of modelling the problem being addressed. Starting from this assumption

we decided that the case base of verification cases would be local to each client (or

designer). This assumption can be in the origin of some limitations when dealing

with development teams. Notwithstanding, we still defend our point of view by say-

ing that, from our experience, most of the times team development at design level

is performed by one or two individuals, which then discuss their designs with the

remaining of the team. Also, only one or two project members are responsible for

using the CASE tool in modelling the system. Nevertheless, there are at least two

ways of addressing this problem. Centralizing all the verification cases in one case

base accessible to all members of the team, which would imply the maintenance of
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such a case base, or impose project-wide agreements, which are always difficult to

make. So, both solutions have pros and cons. In the next subsections we describe the

different verification phases.

Package Verification

The package verification checks a class diagram starting with the diagram relations,

then checking each object’s attributes and methods, finally checking the sub-packages,

recursively calling the package verification functionality.

Name Verification

Name checking applies only to packages, classes and interfaces, and is performed

when REBUILDER needs to assign a synset to an object. REBUILDER reasoning

mechanisms depend on the correct assignment of synsets to objects, which makes

this verification very important. REBUILDER makes a morphological and compo-

sitional analysis of the object’s name, trying to match it to WordNet words. The

disambiguation starts by extracting from WordNet the synsets correspondent to the

object’s name. This requires the system to parse the object’s name, which most of

the times is a composition of words. REBUILDER uses specific heuristics to choose

which word to use. For instance, only words corresponding to nouns are selected,

because usually objects correspond to entities. A morphological analysis must also

be performed, extracting the regular noun from the word. After this, a word or a

composition of words has been identified and will be searched in WordNet. The result

from this search is a set of synsets. From this set of synsets, REBUILDER uses the

disambiguation algorithm to select one synset, which is supposed to be the correct

one. Once it finds a match it can easily get the list of possible synsets for the given

name. Now, two things can happen: the designer selects the correct synset, or RE-

BUILDER uses a word sense disambiguation method to do it (it is up to the designer

to decide).
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Relation Verification

Relation checking is based on WordNet, design cases, and relation verification cases,

which are cases describing successful and failure situations in checking a relation

validity. These cases are described by:

• Type of Relation {association, generalization, realization, dependency}.

• Multiplicity {1-1, 1-N, N-N}.

• Source Object Name.

• Source Object Synset.

• Destination Object Name.

• Destination Object Synset.

• Outcome {Success or Failure}.

Two relation verification cases c1 and c2 match if:

RelationType(c1) = RelationType(c2) ∧Multiplicity(c1) = Multiplicity(c2) ∧
SourceObject(c1) ≡ SourceObject(c2) ∧DestObject(c1) ≡ DestObject(c2) (4.39)

where RelationType(c), Multiplicity(c), SourceObject(c) and DestObject(c) are, re-

spectively, relation type, multiplicity, source object, and destination object of verifi-

cation case c. Two objects, o1 and o2 are said to be equivalent if:

o1 ≡ o2 ⇔
[
Synset(o1) 6= ∅ ∧ Synset(o1) 6= ∅ ∧ Synset(o1) = Synset(o1)

] ∨
[[

Synset(o1) = ∅ ∨ Synset(o2) = ∅
] ∧Name(o1) = Name(o2)

]
(4.40)

where Synset(o) gives the synset of object o and Name(o) yields the name of object

o.

All the knowledge sources are used for validating the relation being inspected.

The relation verification algorithm is detailed in figure 4.41.

The algorithm starts by searching a verification case that matches the relation

being verified. If a successful verification case is found, then the relation is considered

valid and exits. If a case is found but it has a failure outcome, then the relation

is considered invalid and it is removed from the diagram. Otherwise the algorithm
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1. Search for an equivalent verification case in the library.
2. IF found and outcome is Success THEN
3. Consider the relation valid and exit.
4. IF found and outcome is Failure THEN
5. Consider the relation invalid and delete it from the diagram, and exit.
6. IF not found THEN
7. Continue.
8. Search for an equivalent relation in WordNet.
9. IF found THEN
10. Consider the relation valid, add a new successful verification case and exit.
11. ELSE
12. Continue.
13. Search for an equivalent relation in the design cases.
14. IF found THEN
15. Consider the relation valid, add a new successful verification case and exit.
16. ELSE
17. Continue.
18. Ask the designer the relation validity.
19. IF designer considers relation valid THEN
20. Consider the relation valid, add a new successful verification case and exit.
21. Consider the relation invalid, add a new failure verification case and exit.

Figure 4.41: The relation verification algorithm.

searches other knowledge sources. Next the algorithm searches for a similar relation in

WordNet, if it founds one, then the relation is considered valid and exits. Otherwise,

the design cases are searched for similar relations that could validate the relation

being verified. If the relation’s validity could not be determined then the algorithm

asks the designer about the relation’s validity.

A WordNet equivalent relation is a relation between two synsets in which one

of them is the source object synset and the other is the destination object synset.

A design case comprises an equivalent relation if it has two objects connected by a

similar relation to the one being investigated, and with equivalent source objects and

destination objects. Retrieval of verification cases is based on two steps: first on the

relation type, and then by source object name. If there is more than one equivalent

case, the outcome that is common to more cases is chosen as the correct outcome. In

case of a draw, the system retrieves the newest case.

Attribute Verification

Attribute checking is based on WordNet, design cases, and attribute verification cases,

which are cases describing successful and failure situations in checking an attribute

validity. These cases have the following description:

• Object Name.
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• Object Synset.

• Attribute Name.

• Outcome {Success or Failure}.

Two attribute verification cases vc1 and vc2 match if:

• The Object’s names and synsets are the same, and attributes’ names are also

the same, or

• one of the synsets is empty and their objects’ names and attributes’ names are

the same.

As in relation verification, all the knowledge sources are used for validating the at-

tribute being inspected. The order of search and the algorithm that is used are the

same as in relation verification (adapted to the attribute situation). A WordNet

equivalent attribute is represented by a substance-of, member-of or part-of relation

between the synset of the object being inspected and every possible synset of the

attribute’s name. A design case comprises a similar attribute, if there is an object

with the same synset and name comprising an attribute with the same name as the

attribute being inspected.

Retrieval of attribute verification cases is based on two steps. First the algorithm

searches the verification cases based on object name, searching verification cases with

the same object name. Then from these cases the algorithm selects only those with

the same object synset. If there are more than one case in this situation, then the

algorithm assesses the attribute as valid if there are more successful than failure cases,

or invalid otherwise. In case of equal number of cases, then the algorithm does not

decide about the attribute’s validity and asks the designer. The way cases are indexed

in the verification case library is depicted in figure 4.42. As can be seen, verification

cases are indexed by name and by synset, which enables a verification case to be

retrieved by the object (or objects) involved in the verification process.

Method Verification

Method verification is similar to the attribute verification with the exception that

WordNet is not used as a knowledge source, being replaced by an heuristic rule. The
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VerificationCase1Name1

Name2

NameN

…

VerificationCase2

VerificationCaseM

Synset1

Synset2

SynsetK

…

Figure 4.42: The indexing of verification cases (attribute and method).

heuristic used is: if the method name has a word that is an attribute name or a

neighbor class name, then the method is considered valid. Method verification cases

describe successful and failure situations in checking a method validity. These cases

have the following description:

• Object Name.

• Object Synset.

• Method Name.

• Outcome {Success or Failure}.

Two method verification cases c1 and c2 match if:

• The objects’ names and synsets, and methods’ names are the same,or

• one of the synsets is empty and their names and methods’ names are the same.

As in relation verification, all the knowledge sources are used for validating the method

being inspected. The order of search and the algorithm used is the same as in relation

verification (adapted to the method situation and with WordNet replaced by the

heuristic that was referred before). A design case comprises a similar method, if

there is an object with the same synset and name comprising a method with the

same name as the method being inspected. Retrieval of method verification cases is

performed in the same way as in attribute verification cases.
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Figure 4.43: The UML class diagram used as problem for the verification example.

4.5.2 A Verification Example

This subsection illustrates the verification with an example used before. Suppose that

the designer uses the diagram presented in figure 4.43 as a problem for the design

composition module, resulting in a new diagram. Part of this diagram is presented

in figure 4.44, which shows some inconsistencies. For instance: the generalization

between Teacher and Timetable, or the method addStudent in Timetable, or the

attribute studentID in class Lecture.

The verification process starts by checking the package containing the new dia-

gram. For illustration purposes we will describe the process by checking only the

diagram elements considered invalid, the ones mentioned before. When the verifica-

tion process reaches the generalization between Timetable and Teacher, the system

first searches in the verification cases for an equivalent case, suppose that it does

not exist. Then it searches in WordNet for an is-a relation between the Timetable

synset and Teacher synset, suppose also that it does not exist. Then searches the

design cases that do not have any similar relation, and finally asks the designer for

a validation on this relation, which s/he answers as invalid. Then the system adds a

new relation verification case comprising: [Generalization, 1-1, Teacher, 1087564767,

Timetable, 105441050, Failure], and deletes the relation. The next time the system

finds an identical relation it will be considered invalid and will be deleted from the

design. Now suppose the system is checking the studentID attribute of class Lecture.

The attribute verification process will search the case library of attribute verification

7Synsets are identified by nine digit numbers.
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Figure 4.44: Part of the class diagram resulting from design composition.

cases and it finds an equivalent case: [MathLecture, 106035418, studentID, Failure].

The system considers the attribute invalid and deletes it from the diagram. Finally

the system checks method addStudent from class Timetable and the method checking

heuristic does not applies - the design cases have no similar method - then it asks the

designer, which considers the method invalid. The method verification algorithm will

delete the method and add a new method verification case: [Timetable, 105441050,

addStudent, Failure].

4.5.3 Evaluation

The evaluation phase provides an assessment of the design characteristics based on

software engineering metrics. It provides the designer with some properties of the

design diagram. They are divided in two categories: software metrics for object

oriented designs, and design statistics. The software metrics used are:

• Class/Interface/Package complexity (class complexity is defined as the sum of

the number of methods and attributes; interface complexity is the number of at-

tributes; package complexity is the sum of complexity of the objects it comprises

,sub-packages, classes and interfaces).

• Number of children of a Class/Interface.

• Depth of inheritance tree of a Class.

• Coupling between Classes/Interfaces: number of non-inheritance related couples

of an object with other objects.

• Average of Class/Interface number of children by package.

• Average of Class/Interface depth of the inheritance tree by package.
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Design statistics are (by package):

• Number of sub packages.

• Number of relations.

• Number of classes.

• Number of interfaces.

• Average number of classes by package.

• Average number of interfaces by package.

• Average number of relations by package.

• Average number of attributes by class.

• Average number of methods by class.

• Average number of methods by interface.

4.6 Learning Module

Learning in REBUILDER is performed by storing new cases in the case library.

Design cases can be a result of the software designer work, or they can be the result

of the CBR process. In both situations, it is up to the system’s administrator to

accept (or not) the case as a valid one and add it (or not) to the case library.

Several Case Base Maintenance (CBM) strategies have been implemented in RE-

BUILDER. They provide guidance to the software designer, whether a case should

be added (or not) to the case base. Most of these criteria were inspired in approaches

developed for cases represented as vectors of attribute/value pairs. Since we have a

complex case representation we had to adapt these strategies to our case representa-

tion. So, our contribution to this field, concerns the adaptation of these strategies to

a complex case representation.

In REBUILDER, the learning mechanism is a tool at the disposal of the KB

administrator. When the software designer thinks that a design is worth being in-

tegrated in the design repository (the case library) s/he can submit it. This action
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sends the design to the list of unconfirmed cases in the case library. The KB admin-

istrator can then call the Activate Learning command to start the CBM process. For

each submitted case, the learning module runs the CBM strategies that were selected

by the KB administrator. These strategies provide an advice about adding (or not)

submitted cases to the case library. It also gives advice about the deletion of cases

in the case base. The final decision is always up to the KB administrator. The next

subsections describe the CBM strategies integrated in REBUILDER and how they

were adapted to our case representation.

4.6.1 Frequency Deletion Criteria

The frequency deletion criteria developed by Minton [Minton, 1990], suggests cases for

deletion based on the frequency of case access. This implies the existence of an access

counter associated with each case. The counter starts with zero and is incremented

each time the case is retrieved. A maximum number of cases is established for the

case library (called swamping limit). When the learning mechanism is activated, if

the number of cases in the library reaches the swamping limit, the less retrieved cases

(enough to keep the swamping limit) are suggested for deletion. If the swamping

limit is not reached, new cases can be added to the case library with their frequency

initialized to zero. In case there are one or more cases with the same frequency of

use, then the one with the oldest access is suggested for deletion.

In REBUILDER, if the number of retrieval operations criteria is not enough, then

the smallest case is suggested for deletion.

4.6.2 Subsumption Criteria

The subsumption criteria developed by Racine [Racine and Yang, 1997] defines that

a case is redundant if: is equal to another case, or is equivalent to another case, or is

subsumed by another case.

When a new case is to be added to the case library it must be checked for redun-

dancy. If the case is considered redundant, then it is not added to the case library.

Cases are redundant when they are subsumed by other cases. In REBUILDER a case

C1 is considered subsumed by case C2 if the root package of C1 is subsumed by a
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package of C2. A package Pk1 is subsumed by a package Pk2 if: Pk1 and Pk2 have

the same synset, and all the diagram objects of Pk1 (except sub-packages) have an

equivalent in Pk2, and all sub-packages in Pk1 are subsumed by a sub-package of

Pk2. This definition is recursive, which is adequate to the tree-like structure of class

diagrams. This process can be time consuming, especially if we are dealing with long

design cases. Subsumed cases are suggested for deletion.

4.6.3 Footprint Deletion Criteria

Smyth and Keane [Smyth and Keane, 1995b] developed the footprint deletion criteria,

which involves two important notions: coverage and reachability. Coverage of a case

is considered to be the neighborhood of the case within certain adaptation limits. In

other words, coverage relates to the set of problems that a case can solve.

CoverageSet(c ∈ C) = {c′ ∈ C : Solves(c, c′)} (4.41)

where C is the case base considered, and c and c′ are cases. The reachability set of a

case, is the set of cases that can solve this case.

ReachabilitySet(c ∈ C) = {c′ ∈ C : Solves(c′, c)} (4.42)

Since a target problem in REBUILDER is a class diagram, we say that a case c solves

a problem p, when c subsumes p, which means:

Solves(c, p) = Subsumes(c, p) (4.43)

Using these two concepts, Smyth and Keane divide cases in the case library into

four types: pivotal, auxiliary, spanning, and support cases. Pivotal cases represent

unique ways to answer a specific query. Auxiliary cases are those which are completely

subsumed by other cases in the case base. Spanning cases are cases between pivotal

and auxiliary cases, which link together areas covered by other cases. Support cases

exist in groups to support an idea. The recommended order of deletion is: auxiliary,

support, spanning, and pivotal cases.

In REBUILDER support cases can not be distinguished from spanning cases, due

to the definitions used for the coverage and reachability sets. So we decided not to
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consider support cases. The formal definitions used in REBUILDER for these types

of case are:

Pivotal(c) ⇐ ∀c′ ∈ C : ¬Subsumes(c′, c)

Spanning(c) ⇐ ∃c′ ∈ C : Subsumes(c′, c) ∧ ∃c′′ ∈ C : Subsumes(c, c′′)

Auxiliary(c) ⇐ ∃c′ ∈ C : Subsumes(c′, c) ∧ ∀c′′ ∈ C : ¬Subsumes(c, c′′) (4.44)

In presence of a draw, the similarity between the candidate cases and the new case

is used to suggest the cases to be deleted (see subsection 4.1.2), in which the cases

most similar to the new case are suggested for deletion.

4.6.4 Footprint-Utility Deletion Criteria

This criteria, also developed by Smyth and Keane [Smyth and Keane, 1995b], is the

same as the Footprint Deletion Criteria, with the difference that when there is a draw

the selection is based on the case usage - less used cases are suggested for deletion.

4.6.5 Coverage Criteria

The coverage criteria, as it was first devised by Smyth [Smyth and McKenna, 1998],

involves three factors: case base size, case base density, and case base distribution.

The competence of a case base is strongly influenced by its size, this is an intuitive

statement. Another relevant factor is case base density, with the local density of a

case c within a group of cases G in the case base C being defined by:

CaseDensity(c,G) =

∑
c′∈G−{c} Sim(c, c′)

|G| − 1
(4.45)

where Sim(c,c’) returns the case similarity between c and c′. The third factor that

influences a case base competence is case distribution. This factor is more complex

than previous factors, because if the CBR system performs adaptation and verification

of solutions, this will also influence the case base distribution (besides retrieval, of

course). To assess the competence of a case base, Smyth and McKenna compute the

local case coverage sets and determine how these sets combine and interact to form

the case base competence. They define a competence group as a set of cases which

are related to each other, and that make a contribution to the case base competence,
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which is independent from other competence groups. The definition of competence

group is based on the shared coverage concept. Two cases exhibit shared coverage if

their coverage sets overlap:

SharedCoverage(c, c′) = true ⇐ CoverageSet(c) ∩ CoverageSet(c′) 6= ∅ (4.46)

A competence group can be defined as:

CompetenceGroup(G) = {∀ci ∈ G,∃cj ∈ G− {ci} : SharedCoverage(ci, cj) = true}
∧{∀ck ∈ C −G,¬∃cl ∈ G : SharedCoverage(ck, cl) = true} (4.47)

Smyth and McKenna show that according to this definition a case belongs only to

one competence group. Competence group size and number depends on four factors:

distribution of cases, density of cases, retrieval mechanism, and adaptation mecha-

nism. Group coverage can be defined by the number and density of cases in the group.

The number of cases in the group is easy to measure. Group density is given by:

GroupDensity(G) =

∑
c∈G CaseDensity(c,G)

|G| (4.48)

Group coverage is based on group size and group density, and is defined as:

GroupCoverage(G) = 1 + [|G| • (1−GroupDensity(G))] (4.49)

The total coverage of a case base comprising several competence groups is given by

the following formula (G = {G1, ..., Gn}):

Coverage(G) =
∑
Gi∈G

GroupCoverage(Gi) (4.50)

The learning module of REBUILDER uses these definitions to decide which cases

should be suggested for deletion. A new case is added to the case library if the

swamping limit has not been reached or its inclusion increases the ratio case base

coverage/case base number. Otherwise the KB administrator is advised to delete the

case.

4.6.6 Case-Addition Criteria

The case-addition criteria [Zhu and Yang, 1999] involves the notion of case neighbor-

hood, which in REBUILDER is defined as:

Neighborhood(c) = {c′ ∈ C, τ ∈ [0, 1] : (RPSynset(c) = RPSynset(c′)) ∧ (Sim(c, c′) > τ)} (4.51)
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1. Determine the neighborhood for every case in the case base.
2. Set S to ?.
3. Selecta case from C − S with the minimal benefit with respect to the neighborhood

of S and add it to S.
4. Repeat step 3 until Neighborhood(C)−Neighborhood(S) is empty or S

has k elements.

Figure 4.45: The case deletion algorithm used by the case-addition criteria.

where RPSynset(c) is the root package synset of case c, and τ is a threshold value

used to define a case neighborhood. This criteria uses also the notion of benefit of a

case c in relation to a case set S, which we define as:

Benefit(c, S) =
∑

c′∈Neighborhood(c)−Neighborhood(S)

P (c′) (4.52)

The neighborhood of a set of cases is given by:

Neighborhood(S) =
⋃
c∈S

Neighborhood(c) (4.53)

In our implementation of this criteria we defined P (c) as the frequency function of

case c, which is computed using an access counter associated with each case in the

case library. Then the algorithm in figure 4.45 is used to determine a set of cases S

defining the optimal case base coverage.

At the end, the cases in S should remain in the case base. All the others should

be removed. To determine if a case that is not in the case base, should be added

to the case base, just add it to the case base and run the algorithm. At the end, if

the case is in S then it should be added to the case base, otherwise it’s deletion is

suggested.

4.6.7 Relative Coverage and Condensed NN Criteria

Smyth and McKenna [Smyth and McKenna, 1999] developed this criteria with the

goal of maximizing coverage while minimizing case base size. The proposed tech-

nique for building case bases is to use the Condensed Nearest Neighbor (CNN8, see

[Hart, 1968]) on cases that have first been arranged in descending order of their rel-

ative coverage contributions. The relative coverage is defined as:

RelativeCoverage(c) =
∑

c′∈CoverageSet(c)

1

|ReachabilitySet(c′)| (4.54)

8CNN is a method proposed to reduce the storage requirements of the original data set, for the
efficient implementation of the nearest neighbor decision rule in pattern classification problems.
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1. OrderedSet ← Rank by Relative Coverage 2. CaseBase and NewCase
3. EvaluatedSet ← ?
4. Changes ← true
5. WHILE Changes DO
6. Changes ← false
7. FORALL Case IN OrderedSet DO
8. IF EvaluatedSet can not solve Case THEN
9. Changes ← true
10. Add Case to EvaluatedSet
11. Remove Case from OrderedSet
12. ENDIF
13. ENDFOR
14. ENDWHILE
15. RETURN EvaluatedSet

Figure 4.46: The relative coverage criteria algorithm.

Our implementation of this criteria is detailed in figure 4.46. CaseBase and NewCase

are respectively the set of cases in the case base and a new case not yet in the case

base.

The algorithm starts by ranking by relative coverage the cases in the case base

to the OrderedSet list, including the new case. It sets the list of evaluated cases

(EvaluatedSet) to empty and the Changes flag to true. While there are changes in

the list of evaluated cases, determined by the Changes flag, then: turn Changes to

false; for each case in OrderedSet, if cases in the evaluated list can not solve it, then

set Changes to true, add the current case to the evaluated list and remove the case

from OrderedSet. At the end return the evaluated list.

Using this algorithm if the NewCase makes part of the EvaluatedSet then it

should be added to the case base otherwise it should be suggested for deletion. Cases

in the case base that are not in EvaluatedSet should be removed from the case base.

4.6.8 Relative Performance Metric Criteria

Leake and Wilson [Leake and Wilson, 2000] developed this criteria based on the no-

tion of relative performance to decide if a case should be added to the case base or

not. The relative performance of a case is defined as follows:

RP (c) =
∑

c′∈CoverageSet(c)

(
1− AdaptCost(c, c′)

maxc′′∈ReachabilitySet(c′)−{c}{AdaptCost(c′′, c′)}

)
(4.55)

where AdaptCost is the adaptation cost of transforming c into c′.

In REBUILDER, AdaptCost is defined as the modulus of the difference between

objects in c and objects in c′. A submitted case should be added to the case base if it’s
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relative performance is higher than a threshold value defined by the KB administrator.

In our experiments we have used 0.5 as the threshold value.

4.6.9 Competence-Guided Criteria

The competence-guided criteria [McKenna and Smyth, 2000] extends previous works

of Smyth, and uses the notions of case competence based on case coverage and reach-

ability. This criteria uses three ordering functions:

Reach for Cover (RFC): uses the size of the reachability set of a case. The RFC

evaluation function implements this idea: the usefulness of a case is an inverse

function of its reachability set size.

Maximal Cover (MCOV): is based on the size of the coverage set of a case. Cases

with large coverage sets can classify many target cases and in this way must

make a significant contribution to classification competence.

Relative Coverage (RC): is defined in the relative coverage criteria (see subsection

4.6.7).

In REBUILDER the algorithm that implements this criteria is presented in figure

4.47 (CaseBase and NewCase are defined as in the relative coverage and condensed

NN criteria). This algorithm starts by initializing the set of remaining cases (Remain-

ingSet) with all the cases in the case base and the new case being evaluated. Then

the edited set of cases (EditedSet) is initialized to empty. While there are cases in

RemainingSet, the algorithm gets the case (Case) in RemainingSet according to the

selected ordering function, adds it to the EditedSet, removes all cases of the Case’s

coverage set from RemainingSet, and updates the reachability and coverage sets of

the cases in the RemainingSet. The NewCase is only added to the case base if it is

part of the EditedSet.
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1. RemainingSet ← CaseBase ∪NewCase
2. EditedSet ← ?
3. WHILE RemainingSet 6= ? DO
4. Case ← Next case in the RemainingSet according to the selected ordering function
5. Add Case to EditedSet
6. Remove all cases in CoverageSet(Case) from RemainingSet
7. Update the reachability and coverage sets of the cases in the RemainingSet
8. ENDWHILE
9. RETURN EditedSet

Figure 4.47: The competence-guided criteria deletion algorithm.

4.7 Word Sense Disambiguation

In REBUILDER objects must have an associated synset, otherwise the reasoning

mechanisms are not able to work properly. REBUILDER uses word sense disam-

biguation (WSD) mechanisms to determine which is the correct synset for an object.

To obtain the correct synset for an object, REBUILDER uses the object’s name, the

other objects in the same class diagram, and the object’s attributes if it is a class.

The object’s class diagram defines the context in which an object is referenced, so

it is used to disambiguate the meaning of the object. To illustrate this, suppose that

an object named board is created. This object can mean, either a piece of lumber, or

a group of people assembled for some purpose. This name has two possible synsets,

one for each meaning. But suppose that there are other objects in the same diagram,

such as board member and company. These objects can be used to select the correct

synset for board, which is the one corresponding to ”group of people”.

The disambiguation process starts by extracting from WordNet the synsets corre-

sponding to the object’s name. This requires the system to parse the object’s name,

which most of the times corresponds to a composition of words. REBUILDER uses

specific heuristics to choose the words to be used. For instance, only words corre-

sponding to nouns are selected, because usually objects correspond to entities. A

morphological analysis must also be performed, extracting the regular noun from the

word. After this, a word or a composition of words has been identified and will be

used to search the WordNet. The result of this search is a set of synsets. From this

set, REBUILDER can use several WSD methods to select one synset.

There are several WSD methods, to assess which one works better with our ap-

proach, we implemented and tested several methods. We selected 9 methods (most

164



CHAPTER 4. CBR Engine

of them described in [Rigau et al., 1997]) and added two new methods, which are de-

scribed in the next subsections. For the other methods, we also show how they were

defined in REBUILDER. Most of them integrate some changes concerning to the orig-

inal definition. We have made a change to all methods to improve their performance,

which consists on returning the synset selected by the Entry Sense Ordering method

(described ahead) whenever a method can not chose a synset.

4.7.1 Monosemous Genus Term

If the target word has only one candidate synset, then this method selects it, otherwise

this method fails. This method is used in combination with other methods. At the

beginning of the application of each method we use this one to test if the target word

is monosemous, if it is the word’s synset is found. WordNet 1.7.1 has 111276 words,

from which 82% are monosemous, if we consider only noun synsets. Despite these

figures, the most frequent used words are not monosemous.

4.7.2 Entry Sense Ordering

This method is based on the sense ordering of WordNet, which uses the occurrence

frequency of concepts in the Brown Corpus [Francis and Kuçera, 1982].

REBUILDER uses the synsets of WordNet ordered by occurrence frequency.

When a word needs to be disambiguated this method selects the most frequent synset.

4.7.3 Word Matching

Associated with each WordNet synset there is a glossary entry, which is used by this

method to find the correct synset for the target word. The candidate synsets are

ranked using the following score:

WMScore(w, s) = #
[[{w} ∪ Context(w)

] ∩Glossary(s)
]

(4.56)

where w is the target word, s is a candidate synset, Context(w) is a function that

returns the list of context words associated with w. Glossary(s) returns the list of

words in the s definition. This method intersects the target word and the context
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words with the words in the glossary entry of each synset, selecting the one with more

words in common. We only consider nouns, the other word categories are ignored.

4.7.4 Simple Cooccurrence

This method uses cooccurrence data derived from WordNet glossary. Two words co-

occur if they appear in the same definition. For each word it is collected a list of

cooccurrence frequencies with other words, based on the WordNet glossaries. Only

frequencies different from zero are used. The cooccurrence frequency is defined by the

number of times the two words appear in the same glossary divided by the number of

times that the word being investigated appears in all the glossaries. It ranks candidate

synsets using the score given by the formula:

SCScore(w, s) =
∑

wi∈Context(w)∧wj∈Glossary(s)

cw(wi, wj) (4.57)

where cw is the cooccurrence weight between two words given by cooccurrence fre-

quency.

4.7.5 Cooccurrence Vectors

The cooccurrence vectors method takes the same data used in the previous method,

but in a different way. The candidate synsets are ranked using the following score

(function terms used here are the same as the ones used in the literature):

CV Score(w, s) = Sim(VContext(w), VGlossary(s)) (4.58)

where Sim is the vector multiplication operation. Sim’s arguments are vectors. V

represents the context of the words presented in the respective definitions:

VDefinition =
∑

wi∈Definition

Civ(wi) (4.59)

Civ is the cooccurrence information (cooccurrence frequency) vector of the words in

the definition.
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4.7.6 Semantic Vectors

WordNet is-a semantic relations define several tree-like structures, each one with one

distinct root synset. There are nine noun roots used by this method to categorize

synsets. It finds which are the roots of a specific synset going up in the is-a structure

(a synset can have several parents, so a synset can have more than one semantic

category). The ranking of the candidate synsets is given by:

SV Score(w, s) = Sim(VContext(w), VGlossary(s)) (4.60)

where Sim is the vector multiplication operation. V represents the context of the

words presented in the respective definitions:

VDefinition =
∑

wi∈Definition

Swv(wi) (4.61)

Swv is the salient word vector of the words in the definition. This vector is based on

the top sense categories for nouns of WordNet9, and its elements comprise ones and

zeros. One if the category is present, zero if not.

4.7.7 Conceptual Distance v1.0

This method was the first one we developed, and is based on the distance between

synsets in the WordNet structure. REBUILDER uses is-a, part-of, member-of, and

substance-of relations to compute the distance between two synsets. Each candidate

synset is given a score based on the formula:

CD1Score(w, s) =
∑

si∈ContextSynsets(w)

WNDist(si, s) (4.62)

where ContextSynsets(w) returns the list of synsets for each context word (one synset

per context word), which implies that context words must result from a process of

previous disambiguation. This can be performed in various ways. In our experiments

we use a combination of methods. WNDist returns the WordNet distance between

two synsets and is given by:

WNDist(s1, s2) = 1− 1

ln(SDist(s1, s2) + 1) + 1
(4.63)

9The top categories in version 1.7.1 are: physical thing, psychological feature, abstraction, state,
event, human activity, group, possession, and phenomenon.
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where SDist (semantic distance) returns the number of links between synsets s1 and

s2.

4.7.8 Conceptual Distance v2.0

The difference of this version to the previous one, is that this works with context words

not yet disambiguated. Version 2 of the conceptual distance uses all the synsets of

all context words to compute a score for each candidate score. The formula used for

ranking candidate synsets is:

CD2Score(w, s) =
∑

wi∈Context(w)

ShortestDist(wi, s) (4.64)

where ShortestDist is the minimum distance between s and all synsets of wi. The

definition is:

ShortestDist(wi, s) = min{si ∈ Synsets(wi) : WNDist(si, s)} (4.65)

Synsets(w) returns the synsets associated with word w.

4.7.9 Information Content

The information content method was developed by Resnik [Resnik, 1995b] and is

based on the measurement of the semantic similarity in an is-a taxonomy. It uses the

concept of information content of each hierarchy’s node, which is assessed using the

frequency of words in a text corpus. As Resnik, we use the Brown Corpus of Amer-

ican English [Francis and Kuçera, 1982] to extract the noun frequencies. Candidate

synsets are ranked using the following formula:

ICScore(w, s) =
∑

wi∈Context(w)

IC(wi, s) (4.66)

where IC yields the information content of a word, defined by:

ICScore(wi, s) = max{si ∈ Synsets(wi) : RDist(MSCA(si, s))} (4.67)

MSCA is the synset corresponding to the Most Specific Common Abstraction be-

tween two synsets, and the RDist is the Resnik distance and is given by:

RDist(s) = − ln(
∑

siisSubsumedBy(s) CProb(si))

k
(4.68)
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The synsets (si) are the WordNet synsets subsumed by s. With k = 3 we obtained

the best results. CProb is the concept probability and is given by:

CPRob(s) =
∑

wi∈Words(s)

WordFrequency(wi) (4.69)

where Words(s) returns the words in WordNet associated with synset s.

4.7.10 Lists of Words

Nastase and Szpakowicz [Nastase and Szpakowicz, 2001] developed a method for

WSD using the words of synsets related to the candidate synsets.

In our implementation of the list of words method we use the candidate synset

words and the words of the neighbors synsets of the candidate synset. Neighbor is

any synset at one relation distance from candidate synset (in the formula we distin-

guish from is-a neighbors and any other type of relations, which can be member-of,

substance-of or part-of ). The candidate synsets are ranked using the following for-

mula:

LWScore(w, s) = [106 ·WordIntersection(w, s) +
∑

si∈Fathers(s)

(104 ·WordIntersection(w, si)) +

∑

si∈Children(s)

(102 ·WordIntersection(w, si)) +

∑

si∈Neighbors(s)

WordIntersection(w, si)] · 10−7 (4.70)

The function WordIntersection(s) performs the intersection of Words(s) with Con-

textWords(w), Fathers returns the synset’s fathers using the is-a links, Children

yields the children using the is-a relations, and Neighbors the nodes adjacent to s

using the other types of relations. The equation 4.7.10 is equivalent to ranking can-

didate synsets first by intersection with context words, then by fathers, children and

neighbors. We use a numerical formula because it is more efficient and we needed a

score to be used in the next method (Method Combination).
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4.7.11 Method Combination

We have combined all the methods described before in an unique method, by taking

each method contribution in the selection of the best synset. With the exception of

Entry Sense Ordering, the contribution of all the other methods is the score of the

best candidate synset. In the Entry Sense Ordering this score is:

1
NumberOfCandidateSynsets

(4.71)

Each method attributes a score to one synset (the best synset according to that

method), and each candidate synset sums up its contributions. The one with the

higher score is chosen as the best synset. The idea of combining several methods

is not new (see [Rigau et al., 1997]), what is new in this approach is the form of

combination.
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Experimental Evaluation

This chapter presents the experimental work performed with REBUILDER. The goal

is to make an assessment of our approach and to select the configuration parameters

to be used in various reasoning modules of REBUILDER.

The evaluation comprises tests at two levels: reasoning mechanisms and field tests.

The first part was accomplished and is fully described in this chapter. The field test-

ing has not been performed due to the dimension and characteristics of REBUILDER.

The problem of field testing is that it should be performed in a real development en-

vironment in order to be accurate. We faced a main difficulty concerning this type

of tests at this phase of the project, which is, in order for REBUILDER to be fully

tested, it should be integrated into a software developing company, or team, which

has not been possible yet. This needs time and commitment at the higher levels of

the company, because the changes needed in the hosting organization are consider-

able, and the development process would have to be adapted to the REBUILDER’s

framework for software development. So that all the potentialities of the platform

can be used. In this way this phase will need more time and a strong involvement of

a software house. Another issue that arises is that in order to have the field testing

done, we need a more stable version of REBUILDER. This can only happen with a

preliminary testing of the reasoning modules and of their interactions. In this way,

we have planned and executed the preliminary testing. The next, we will perform the

field tests, which are out of the scope of this thesis.

The preliminary experiments that we performed are presented in this chapter

accordingly to the chronological sequence in which the modules were developed. In
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Table 5.1: The outline of this chapter, with the description of all performed experiments.
Tested Module Experiment Description Section

Retrieval 1 - Retrieval of partial cases. 5.2.1

2 - Retrieval of partial classes. 5.2.2

3 - Influence of indexing in retrieval. 5.2.3

4 - Recall and precision. 5.2.4

Analogy 1 - Mapping algorithm and threshold value. 5.3.1

2 - Combination of retrieval and analogy. 5.3.2

3 - Importance of retrieval strategies for creative analogy. 5.3.3

Design Composition 1 - Design composition. 5.4

Design Patterns 1 - Design patterns. 5.5

Verification 1 - Effect of verification in analogy. 5.6.1

2 - Effect of verification in design composition. 5.6.2

Learning 1 - Computational time efficiency. 5.7.1

2 - Case base competence. 5.7.2

WSD 1 - First experiments with word sense disambiguation. 5.8.1

2 - Comparison of WSD methods in REBUILDER. 5.8.2

short, the reasoning modules development had the following sequence: retrieval, anal-

ogy, design composition, design patterns, verification and learning. The WSD exper-

iments and developments were performed in two steps, but in parallel with other

modules. We follow this sequence for presentation of the tests in this chapter. Table

5.1 provides an outline for this chapter.

Before presenting the tests on REBUILDER we describe the knowledge base used

for the experiments, then each section of this chapter introduces an experiment, which

most of the times concerns to a specific function of the system.

It is important to stress that most of our experiments can not be compared against

other systems, because there is no system with enough similarity to REBUILDER to

make comparative tests. Related systems, which are described in chapter 6, do not

use UML or even work in the same way as our system, in terms of input and output

data.

5.1 Experimental Knowledge Base

The Knowledge Base used in the experiments comprises a case library, WordNet, case

indexes, data type taxonomy, and a set of query problems. We used WordNet version
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1.7.1, and we considered the noun synsets (about 78000) and semantic relations (in

the number of 97000).

The case library comprises 60 software design cases. These cases were collected

mostly from academic projects and examples from text books. They come from

four different domains: banking information systems, health information systems,

educational institution information systems, and store information systems (grocery

stores, video stores, and others). Each design comprises a package, with 5 to 20

classes (the total number of classes in the knowledge base is 586). Each object has

up to 20 attributes, and up to 20 methods. The designs are defined at a conceptual

level, so the design is at an early stage of development and has only the fundamental

classes, attributes and methods.

5.2 Retrieval Experiments

This section describes the experiments performed with the retrieval module. The

first experiments were performed to assess the package retrieval (or case retrieval)

performance. Three problem sets were used, all generated from the case library. For

each problem, we defined a set of relevant cases, with the best case also identified.

These experiments were used for exploratory purposes, helping to identify flaws and

possible improvements in the retrieval mechanism. After this starting experiment, we

performed the same process for class retrieval.

At this point our intuition was that misclassification of software objects had a

strong role on the accuracy of the retrieval mechanism. So, some experiments were

performed to assess the degree of influence of misclassification or wrong indexing in

retrieval.

These three experiments were the first ones to be performed on the retrieval

mechanism, and they gave several insights to improve the retrieval process. We then

made several modifications, the most important ones being the two new versions

of the retrieval mechanism that were incorporated into REBUILDER and several

improvements in the similarity metric. After these changes, more experiments were

performed. In these experiments we used a set of different target problems that

were not generated from the cases in the case base. We tried to assess the retrieval
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Table 5.2: The configurations weights for the package retrieval experiments.
ω1 ω2 ω3 ω4

Configuration 1 (C1) 0 1 0 0

Configuration 2 (C2) 0 0.75 0.25 0

Configuration 3 (C3) 0 0.5 0.5 0

Configuration 4 (C4) 0 0.25 0.75 0

Configuration 5 (C5) 0 0 1 0

mechanism performance in terms of recall and precision. We also evaluated the three

versions of the retrieval algorithms, and performed experiments concerning weights

for the package similarity metric, and the size of the retrieval set.

5.2.1 Retrieval of Partial Cases

The goal of these experiments was to provide a preliminary assessment of the retrieval

mechanism. Three sets of package problems - P20, P50 and P80 - were specified, based

on the case library. P20 is a set of 25 incomplete problems. Each problem is a case

copy with 80% of its objects deleted. Attributes and methods are also reduced by

80%. Sets P50 and P80 have the same problems, but with, respectively, 50% and

20% of their components deleted. One of the experiment goals is to define the best

weight configuration for package retrieval.

For each problem, a best case and a set of relevant cases were defined previously

to the run of the experiments. These sets were used to evaluate the accuracy of

the retrieval algorithm. For each set of problems, the weight configurations (for

formula 4.1) that were used are presented in table 5.2. Because each case has only one

package, weights ω1 and ω4 are not used, leaving only weights ω2 (diagram similarity)

and ω3 (categorization similarity), which concern to the class diagram similarity and

package type similarity. Configuration C1 assesses only the diagram similarity, while

C5 addresses only the categorization similarity, the other configurations are in the

middle of the spectrum combining diagram similarity with type similarity. For each

problem run, we analyzed the 20 cases with the highest retrieval score. The gathered

data were: best case is first (yes or no), best case is selected (yes or no), percentage

of the relevant cases retrieved and the best 20 cases ranked by similarity.

From the results presented in table 5.3, it can be inferred that configuration C4
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Table 5.3: Results for package retrieval obtained in terms of percentage: relevant cases retrieved,
best cases in the first ranking place, and best case retrieved by number of cases retrieved.

C1 C2 C3 C4 C5

Relevant Cases Retrieved 82.03 84.15 84.75 85.12 83.95

Best Case First 81.33 85.33 88.00 88.00 61.33

Best Case Retrieved (in 5 cases) 88.00 92.00 92.00 92.00 85.33

Best Case Retrieved (in 10 cases) 89.33 93.33 93.33 93.33 93.33

Best Case Retrieved (in 15 cases) 92.00 93.33 93.33 93.33 93.33

Best Case Retrieved (in 20 cases) 93.33 93.33 93.33 93.33 93.33

has the higher percentage of relevant case retrieval, though results obtained for C2,

C3 and C5 are very close to the ones obtained with C4. In terms of best case retrieval

(among the first 20 relevant cases) all the configurations retrieved the best case in

93.3% of the runs, though results for the retrieval of the best case in the first ranking

position are distinct, with C3 and C4 achieving the best results. In terms of time

performance there are no significant differences along the five configurations.

Figure 5.1 shows the average retrieval of relevant cases by retrieval set size and

configuration used. It can be seen that configuration C5 has the best performance

followed closely by C4 and C3. C3, C4 and C5 reach the same value for twenty cases.

Configuration C2 has a lower performance and does not reach the same final value as

the former configurations. Finally C1 has the lowest performance.

The results for the relevant cases retrieved by configuration and by problem set

are presented in figure 5.2. Configuration C1 achieves the worst results, and from the

other results it is perceived a tendency for type similarity to be more important than

diagram similarity, although this is not a straightforward conclusion. For instance,

with the increase in the target problem size, the best result shifts from C5 to C4, and

then to C4 and C3.

The results presented in figure 5.3 concern the best case retrieval and what is

observed is that problem set P20 achieves the best results, independently of the

configuration that is used. An explanation for this, is that the configuration similarity

does not influence retrieval. It only influences ranking of cases. Since these results

concern a retrieval set of P20 problems, the retrieval algorithm is able to retrieve the

best case independently of the similarity configuration. If we look at the results for the

retrieval set of size one (see figure 5.4) this observation does not hold. Configuration
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Figure 5.1: The results obtained for the average relevant cases found by configuration and retrieval
set size.

75.00

80.00

85.00

90.00

P20 83.27 84.12 84.12 84.12 84.48

P50 79.65 84.16 84.89 85.98 83.68

P80 83.16 84.16 85.25 85.25 83.68

C1 C2 C3 C4 C5

Figure 5.2: The complete results for the relevant cases retrieved by configuration and problem set
(results in percentage).
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Figure 5.3: The complete results for the best case retrieved by configuration and problem set
(results in percentage).
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Figure 5.4: The complete results for the best case first by configuration and problem set (results
in percentage).

C5 is clearly the worst because it does not take into account diagram similarity, and

C3 and C4 are the best configurations due to the compromise they achieve between

type and diagram similarity, though it can be seen a tendency for type similarity to

have a stronger importance than diagram similarity.

In conclusion it can be seen that configuration C4 achieves the best overall results,

while C1 achieves the worst results. In relation to the problem size, the trend that

is observed in the results is that, longer queries achieve better retrieval accuracy if

diagram similarity has a higher value. But this is only an observed tendency, more

experiments and a bigger case base are necessary to support this observation.

5.2.2 Retrieval of Partial Classes

For the class retrieval experiments we used the same idea of the previous subsection.

Three sets of class problems were specified based on cases. The strategy used for
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Table 5.4: The configurations weights for the class retrieval experiments.
ω1 ω2 ω3

Configuration 1 (C1) 1 0 0

Configuration 2 (C2) 0.5 0.5 0

Configuration 3 (C3) 0 1 0

Configuration 4 (C4) 0.5 0.25 0.25

Configuration 5 (C5) 0.25 0.5 0.25

Configuration 6 (C6) 0.5 0 0.5

Configuration 7 (C7) 0.25 0.25 0.5

Configuration 8 (C8) 0 0.5 0.5

Configuration 9 (C9) 0 0 1

problem definition is the same as the one for problem packages (see subsection 5.2.1).

An incomplete set P20, with 25 problems, being each problem a copy of a class from

a case in the library with 80% of its methods and attributes deleted. The other sets

have the same problems but with 50% (P50) and 20% (P80) of the methods and

attributes deleted. For each class, a set of relevant classes was defined before the

running of the experiments. These sets were used to evaluate the accuracy of the

algorithm.

For each problem set, the weight configurations (for formula 4.6) that were used

are presented in table 5.4. Weight ω1 concerns the class categorization similarity, ω2

the inter-class similarity, and ω3 the intra-class similarity (see subsection 4.1.2). For

each run the best 20 retrieved classes were analyzed. The data gathered is: percentage

of the relevant classes retrieved, and the best 20 classes ranked by similarity.

The accuracy results for class retrieval are presented in figure 5.5 and table 5.5.

Configurations C1, C6 and C7 have the best results, though the difference to C5 and

C8 is small. These results show a tendency to obtain the higher accuracy values with

emphasis on the type similarity, and then, in a lower level of importance, with the

increase in the weight for the inter-class similarity. Figure 5.6 presents the average

distribution for class retrieval by configuration and size of the retrieval set. As can

be seen, configuration C3 has the worst performance. The ranking concerning per-

formance, going from better to worst is: C1 - C5, C6 and C7 - C8 - C2 and C9 - C4

- C3.

As the experimental results show, in class retrieval the categorization similarity
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Figure 5.5: Results obtained for class retrieval by configuration and problem set.
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Figure 5.6: The results obtained for the average relevant classes found by configuration and size
of retrieval set.

179



CHAPTER 5. Experimental Evaluation

Table 5.5: The accuracy results obtained for class retrieval.
C1 C2 C3 C4 C5 C6 C7 C8 C9

Retrieval Accuracy 80.17 76.13 73.28 76.59 79.83 80.12 80.15 79.54 78.77

is determinant for finding the right classes, which is consistent with knowledge on

software development. The conclusion that we can get from these results is that the

best configuration to be used, based on these results, is C1, C6 or C7.

5.2.3 Influence of Indexing in Retrieval

In this subsection we present results obtained with REBUILDER on the effect of

object classification on the accuracy of package retrieval. We used two knowledge

bases with exactly the same objects (KB 1.0 and KB 1.1, which is the same KB used

for the previous experiments). The difference is that KB 1.0 has 16% of misclassified

objects, while KB 1.1 does not have misclassifications. Misclassification is due to

the polysemy phenomenon in WordNet (see section 3.3.2). We tested the package

retrieval algorithm with three sets of package problems based on the library of cases

(P20, P50 and P80 defined in subsection 5.2.1).

For each problem we previously defined a best case (the case from which we created

the problem), and a set of relevant cases with no ranking. For each running cycle we

retrieved the best 20 cases. Three retrieval characteristics were analyzed: percentage

of times that the best case was selected as the first in the retrieval ranking (first

column in table 5.6); percentage of relevant cases retrieved (second column in table

5.6); and percentage of best case retrieval in any position (third column in table 5.6).

The results show that 16% of object misclassification can lower the retrieval accuracy

by 31.73%, which is a significant result.

5.2.4 Recall and Precision

Experiments presented in this subsection have the goal of determining the properties

of each of the three versions of the retrieval algorithm (see subsection 4.1.1). It

is important to remind that the algorithm versions differ only on the initial set of

synsets, which corresponds to start the WordNet search at different places. Another

180



CHAPTER 5. Experimental Evaluation

Table 5.6: Results obtained when comparing the influence of object misclassification in retrieval
accuracy.

Best Case First Relevant Cases Retrieved Best Case Retrieved

KB 1.0 - P20 56.00 58.64 68.00

KB 1.0 - P50 44.00 57.84 64.00

KB 1.0 - P80 40.00 57.84 64.00

KB 1.0 - All 46.67 58.11 65.33

KB 1.1 - P20 88.00 84.12 96.00

KB 1.1 - P50 88.00 85.98 92.00

KB 1.1 - P80 88.00 85.25 92.00

KB 1.1 - All 88.00 85.12 93.33

objective was to determine which is the best weight configuration for the package

retrieval similarity metric. This is decisive in ranking the cases.

Twenty five problems were defined, each one having one package with several

classes (between 3 and 5), which were related to each other by UML associations

or generalizations. These problems are distributed by the four case domains in the

following way: banking information systems (6 cases), health information systems (7

cases), educational institution information systems (3 cases), and store information

systems (9 cases). For each problem we identified the relevant set of cases from

the case library. These sets are used for comparison with the set of cases retrieved

by REBUILDER, yielding the recall1 and precision2 of the retrieval and similarity

mechanisms.

For each problem REBUILDER retrieved a set of cases. We tested for sets of

different sizes in order to study recall and precision values along sets of different

sizes. We defined three configurations corresponding to each retrieval version:

• C1 - simple version.

• C2 - extended version.

• C3 - ambiguous version.

We tested these configurations on sets of: 1, 3, 5, 10, 15, and 20 cases. The values

for the weights of formula 4.1 (the package similarity), are presented in table 5.7.

1The number of relevant cases retrieved divided by the total number of relevant cases in the case
base.

2The number of relevant cases retrieved divided by the total number of retrieved cases.
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Table 5.7: Weight configurations used for tests.
Diagram Type

Configuration Similarity Similarity

W1 1 0

W2 0.75 0.25

W3 0.5 0.5

W4 0.25 0.75

W5 0 1

Table 5.8: F-Measure values obtained for weight configurations and retrieval algorithm configura-
tions.

Configuration W1 W2 W3 W4 W5

C1 0.515 0.537 0.520 0.520 0.435

C2 0.531 0.543 0.537 0.537 0.454

C3 0.530 0.552 0.535 0.535 0.435

Data collected on each run was the recall and precision for the retrieval configura-

tion. Because recall and precision are antagonistic measures we used the F-Measure

defined by [Rijsbergen, 1979]. The F-Measure combines recall and precision in a single

measure as defined in equation 5.1. The F-Measure results, by algorithm configura-

tion and weight configuration, are shown in table 5.8.

F =
2 ·Recall · Precision

Recall + Precision
(5.1)

These results show that the best answers are achieved with configurations C3 and

W2, which comprise the use of the ambiguous retrieval algorithm with the similarity

weight on the diagram similarity higher than the weight on type similarity. W2

configuration outperforms all the other configurations, which are similar to each other,

except for configuration W5 (based only on type similarity). From these results it

can be inferred that the class diagram similarity is more important for case similarity

than type similarity.

Concerning the algorithm comparison, with the exception of W2, all the other

weight configurations indicate that C2 is the algorithm that shows the best perfor-

mance. These values are achieved with a retrieval set of size five, which yield the best

results.
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Table 5.9: F-Measure results obtained for the retrieval algorithm configurations varying the size of
the retrieval set.

1 3 5 10 15 20

C1 0.249 0.459 0.537 0.465 0.400 0.329

C2 0.249 0.479 0.543 0.478 0.415 0.327

C3 0.279 0.479 0.552 0.478 0.402 0.327

Table 5.10: Recall and precision values obtained for the retrieval algorithm configurations varying
the size of the retrieval set.

Recall Precision

C1 C2 C3 C1 C2 C3

1 0.149 0.149 0.169 0.760 0.760 0.800

3 0.350 0.370 0.370 0.667 0.680 0.680

5 0.497 0.502 0.517 0.584 0.592 0.592

10 0.608 0.633 0.633 0.376 0.384 0.384

15 0.698 0.712 0.693 0.280 0.293 0.283

20 0.707 0.697 0.697 0.214 0.214 0.214

We performed an experiment using the weight configuration W2, in which we

varied the size of the retrieval set. We also compared the algorithm configurations.

As presented in table 5.9, the results confirm that the best size for the retrieval set is

five. Configuration C3 obtains the best results up to the size of ten, and after this C2

outperforms the other configurations for sizes 10 and 15. For size 20 the best results

are achieved by C1. These results show that the size of the retrieval influences the

F-Measure for retrieved cases.

To provide an idea about the recall and precision values that were achieved, table

5.10 presents the recall and precision values for the F-Measure values presented in

table 5.9. It can be pointed that while recall increases with the size of the retrieved

set, precision decreases. The best compromise is found with the retrieval set of size

five.

F-Measure values provide an idea of the quality of the cases that are retrieved

and how they are being ranked. In order to assess performance we have also collected

the retrieval and ranking times for each run, and we calculated the average compu-

tation time by algorithm version and weight configuration. The results achieved are

described in table 5.11. They were calculated for a retrieval set of size five. The

computational resources that were used were a PC Pentium III at 400 MHz with
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Table 5.11: Average computation time values obtained for weight configurations and retrieval
algorithm version, for each algorithm run (in seconds).

W1 W2 W3 W4 W5

C1 22.117 21.877 22.838 22.335 0.332

C2 21.401 21.881 21.760 21.969 0.443

C3 21.074 21.134 21.856 21.148 0.329

Table 5.12: Average computation time for retrieval sets of different sizes by retrieval algorithm
version (in seconds).

1 3 5 10 15 20

C1 17.02 18.84 21.88 33.52 46.44 50.67

C2 13.57 19.18 21.88 39.07 50.30 54.88

C3 11.41 17.73 21.23 36.42 51.11 54.97

196 Mb of RAM running REBUILDER and a PC Pentium IV at 900 MHz with 384

Mb of RAM running the WordNet server. Computation times are very similar along

all configurations with the exception of the weight configuration W5 with the lowest

computation time. This happens because this configuration does not compute the

class diagram similarity (the weight value for the diagram similarity is zero), and the

computation of diagram similarity takes about 98% of the class similarity computa-

tion time. Remember that diagram similarity computes structural similarity along

with other demanding computations.

Scalability concerning computation time is shown in figure 5.7 and table 5.12.

The results illustrate that the computation time by retrieved case (see table 5.13)

decreases 75% for configuration C3, 80% for C2, and 85% for C1, which indicates

that the method is scalable and that it shows a tendency to converge.

Table 5.13: Average computation time for one case, obtained for retrieval sets of different sizes by
retrieval algorithm version (in seconds).

1 3 5 10 15 20

C1 17.02 6.28 4.38 3.35 3.10 2.53

C2 13.57 6.39 4.38 3.91 3.35 2.74

C3 11.41 5.91 4.23 3.64 3.41 2.75
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Figure 5.7: The computation time results obtained for different retrieval set sizes by retrieval
algorithm version.

5.3 Analogy Experiments

This section describes the experimental tests developed to study the analogy module

of REBUILDER. Three different experiments are presented. The first describes ex-

ploratory tests to determine the best mapping algorithm and threshold value. These

are important experiments in order to establish good configuration parameters for

the analogy mechanism. It is also important as a way to understand the analogy

mechanism implemented and how it performs. The second set of tests analyze the

use of retrieval for analogue candidate selection. The goal of these experiments is to

define the best set of retrieval parameters to be used with the analogy module. This

was performed before changes in the retrieval mechanism, yielding to three different

retrieval strategies. The last experiment set comprises the three retrieval strategies

in use.
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Table 5.14: Configurations used in experiments.
Configuration Mapping Algorithm Threshold Value

C1 Relation-Based 0

C2 Relation-Based 0.25

C3 Relation-Based 0.5

C4 Relation-Based 0.75

C5 Relation-Based 1

C6 Object-Based 0

C7 Object-Based 0.25

C8 Object-Based 0.5

C9 Object-Based 0.75

C10 Object-Based 1

5.3.1 Mapping Algorithm and Threshold Value

The factor that constraints the analogy mapping is the value used as threshold for

mapping objects and relations. This threshold is the minimum value allowed for map-

ping objects or relations (values near zero indicate that everything can be mapped).

We also wanted to test the relation-guided and the object-guided mapping algorithms.

Ten test configurations were prepared for experimentation (see table 5.14).

Each of the 60 cases in the case library was used as a problem, which yields

600 runs, 60 for each configuration since there are 10 different configurations. In

each of these runs, we gathered the five best solutions for each mapping coming

from different cases, according to ranking criteria (see section 4.2.2). This yields 20

solutions by run. The data gathered for each solution was: number of mappings,

distance of mapped objects (in the WordNet), depth (in WordNet) of the MSCA

between mapped objects, and percentage of correct mappings by solution. This last

figure was obtained by human evaluation. Several software developers evaluated the

mappings. From the gathered data we derived the number of correct mappings by

solution.

One of our hypotheses is that there is a correlation between correct mappings

in analogical generated solutions and the distance of the mapped objects. Another

hypothesi is that the probability of finding bizarre solutions, contrary to the proba-

bility of finding correct solutions, increases with the distance of mapped objects. Also

we expected that the novelty of solutions presented by the analogy engine was also

186



CHAPTER 5. Experimental Evaluation

Probability of Finding Correct Solutions

Probability of Finding Bizarre Solutions

Probability of Finding Novel Solutions

Threshold Value- +

% of Correct Mappings by Solutions- +
Number of Mappings by Solution+ -

Distance of Mapped Objects+ -

Depth of MSCA- +

Number of Correct Mappings by Solution- +

Figure 5.8: Hypotheses made for the experiments.

related to the distance of mapped objects and to the MSCA depth. In this chain of

thought, the threshold is the key, because it allows to vary the distance of mapped

objects in the analogical engine. Figure 5.8 presents these hypotheses in a schematic

form.

Results obtained for the average percentage of correct mappings are presented

in the second column of tables 5.15 and 5.16. They show that with the increase

in the threshold, the average percentage of correct mappings also increases. The

object-based mapping algorithm outperforms the relation-based algorithm. Values

for configurations C5 and C10 (threshold equal to 1) are zero because the algorithm

does not find mappings. This happens because, for a mapping to have a similarity

value of 1, the objects must have distance zero, the MSCA must be equal to the

objects and the depth of MSCA must be the maximum depth of the WordNet is-a

tree. While the first two values happen frequently, the last one is very unlikely to

occur.

The other results presented in columns three to six of tables 5.15 and 5.16 support

our hypotheses. While the semantic distance provides a way for measuring the sim-

ilarity of the mapped concepts, the depth of MSCA gives an insight on the level of

abstraction at which the connection between the mapped concepts appears. We think

that these two measures are related to novelty an unexpectedness, being novelty and
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Table 5.15: Results obtained for the various analogy configurations using the relation-based map-
ping.

Average % of Average Average Average Average

Correct Number Distance of Depth Number of

Configuration Mappings of Mappings Mapped Objects of MSCA Correct Mappings

C1 46.54 4.13 5.35 2.31 1.92

C2 46.12 4.13 5.42 2.28 1.91

C3 46.71 4.15 5.35 2.32 1.94

C4 64.67 3.83 3.37 3.25 2.48

C5 0.00 0.00 0.00 0.00 0.00

Table 5.16: Results obtained for the various analogy configurations using the object-based mapping
.

Average % of Average Average Average Average

Correct Number Distance of Depth Number of

Configuration Mappings of Mappings Mapped Objects of MSCA Correct Mappings

C6 54.35 4.20 4.97 2.51 2.29

C7 54.39 4.21 4.97 2.51 2.29

C8 54.66 4.16 4.91 2.52 2.28

C9 75.12 3.15 1.72 3.74 2.37

C10 0.00 0.00 0.00 0.00 0.00
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Figure 5.9: The results obtained for the average percentage of correct mappings by mapping
algorithm and by threshold value.

unexpectedness directly proportional to the distance of mapped objects, and inversely

proportional to the depth of the MSCA. As expected, experimental results support

these hypotheses, showing that the probability of finding novel mappings increases

when the threshold value for mapping objects decreases. But the possibility of finding

bizarre mappings also increases, leading to a trade-off between the generation of novel

solutions and correct solutions. The verification module can have an important role

on filtering bizarre solutions.

In most situations the object-based algorithm presents better results than the

relation-based approach (see tables 5.15 and 5.16). Figure 5.9 presents the aver-

age percentage of correct mappings for the mapping algorithms by threshold value.

The object-based algorithm presents better results than the relation-based one. The

object-based approach provides better results with a threshold of 0.8, and the relation-

based approach with values 0.7 and 0.8. From these results we selected as default

threshold 0.8.

The results comparing the mapping ranking criteria used in analogy and the

threshold value for the average percentage of correct mappings are presented in figure

5.10. These results show that the best ranking criteria is the one that uses the number

of mappings. The worst result is the one that uses the independence measure. The
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Figure 5.10: The results obtained for the average percentage of correct mappings by mapping
ranking criteria and by threshold value.

Table 5.17: Run description for experiments involving the integration of CBR with Analogy.
Run Similarity Type Used

C1 - Analogy Mapping Structural

C2 - CBR + Analogy Structural(0.5) + Semantic(0.5)

C3 - CBR + Analogy Structural(1) + Semantic(0)

C4 - CBR + Analogy Structural(0) + Semantic(1)

other two ranking criteria have similar performance, with the weighted criteria being

slightly better. Once more, the best threshold value for all criteria was 0.8.

5.3.2 Combination of Retrieval and Analogy

These were the first experiments about the influence of candidate selection on analogy.

We used the problem sets P20, P50 and P80. The goal of the experiments was to

compare the candidate selection criteria. For each problem we applied the analogy

mapping to all cases of the KB, thus serving as a base line for evaluation. The other

candidate strategies are: CBR + Analogy using type similarity, CBR + Analogy using

structural similarity, and CBR + Analogy using both type similarity and structural

similarity. For each problem four runs were prepared, they are described in table

5.17.
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For each test we analyzed the best five new cases, based on the mappings per-

formed by the analogy algorithm. The collected data is: percentage of mappings in

the new case considered correct, number of mappings, distance of mapped objects,

depth of the Most Specific Common Abstraction (MSCA) between mapped objects,

and computation time.

The results obtained for the first five solutions generated by the analogy module

are presented in figure 5.11. The values presented are the average results of the three

problem sets (P20, P50 and P80). These results show a clear trade-off between com-

putation time and quality of results. Analogy by its own generates better solutions,

which is made clear from the percentage of correct mappings. This is also reflected in

the shorter semantic distance between objects, and the greater depth of the MSCA.

Configurations which use case retrieval are faster than C1.

If we only analyze the results for the first generated solution (see figure 5.12), we

conclude that the trade-off difference is smaller. For instance, the computation time

for the first solution (the best one) is almost the same between C1 and C2, and the

difference in the percentage of correct mappings is also small (5.13%). Probably the

best alternative is to choose configuration C3, which loses only 5.52% of accuracy and

is about 300 milliseconds faster (these are average values for the 75 problems).

5.3.3 Importance of Retrieval Strategies in Creative Analogy

The aim of these experiments is to study the correlation between the analogical

retrieval strategies and the creative properties (as defined in section 2.2) of the gen-

erated diagrams. The creative properties in which we are interested are usefulness

and novelty. A set of 25 UML class diagrams were used as problems during these

experiments, each problem comprises, on average, four objects.

During these experiments we used six candidate selection strategies (see table

5.18) for reuse through analogy. When semantic retrieval is used as part of one of

these strategies, only ten (the first ten cases found by our retrieval algorithm) cases

are used for ranking, otherwise it is used the whole case base. After the ranking phase,

the most promising candidate is submitted to the analogy module. Afterwards, the

output of the analogy module (an UML class diagram) is evaluated both on usefulness
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Figure 5.11: Experimental results obtained for the first five solutions presented by REBUILDER,
and for the three problem sets (average of values for P20, P50 and P80).

and novelty. For these experiments we use the object-based mapping algorithm, since

this algorithm has provided better results in previous work (see previous subsections).

Novelty is assessed by the similarity metric used in case retrieval. We assess the

novelty of a solution (the output of the analogy module) using the similarity with

the cases in the case base. Three different similarity values are computed using the

generated solution:

N1: the average similarity between the generated solution and the cases in the case

library.

N2: the similarity value between the solution and the most similar case in the case

library.
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Figure 5.12: Experimental results obtained for the first solution presented by REBUILDER, and
for the three problem sets (average of values for P20, P50 and P80).

N3: the similarity value between the solution and the source case chosen for estab-

lishing the analogy with the target case.

Since the similarity metric, returns values between 0 and 1, where 1 is an identical

match, we are interested in situations where this value is low. The results of this

experiment are presented in figure 5.13.

Usefulness is evaluated through human judgement of the generated diagrams. Two

human judges evaluated these diagrams, identifying:

U1: the percentage of target objects that were mapped to a source case in which

the knowledge transferred (methods and attributes from the source case to the

target case) are incorrect or useless.
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Table 5.18: The retrieval strategies implemented in REBUILDER.
Strategy Retrieval Ranking

1 Semantic Semantic and Structural

2 Semantic Structural (independence measure)

3 Semantic Structural

4 No Semantic and Structural

5 No Structural (independence measure)

6 No Structural

0

0.2

0.4

0.6

0.8

Strategy

N1 0.277 0.275 0.275 0.277 0.276 0.274

N2 0.693 0.654 0.655 0.69 0.646 0.649

N3 0.693 0.544 0.505 0.689 0.432 0.304

1 2 3 4 5 6

Figure 5.13: Novelty experimental results for analogy generated solutions.

U2: the percentage of target objects that were mapped to a source case in which

the knowledge transferred (methods and attributes from the source case to the

target case) are partially incorrect.

U3: the number of objects that were transferred to the target diagram and that were

considered incorrect or useless.

These values are presented in figure 5.14. We are aware of the subjectivity of the

results for these experiments, especially in which concerns to the judgement of use-

fulness. We feel that a more useful evaluation is through a case study in a real software

production environment where the tool is judged by its users. Despite this fact we

still think worth to present our evaluation.

As can be seen in figure 5.13 the average distance of the solution in relation to

the rest of the case library is practically the same. This result may be due to the

fact that the cases library is sparse, in the sense that different domains are modelled

by the cases present in the case library. So whatever the solution, on average, it will
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Figure 5.14: Usefulness experimental results for analogy generated solutions.

tend to be dissimilar to the case library.

Observing the value of similarity between the solution and the most similar case

(N2), we see that strategy one and four present the highest values, which makes sense

since this metric contains a semantic component. In respect to N3, we can see that

strategy five and six obtain solutions that are dissimilar to the source case used for

establishing analogies. These values were expected, taken into consideration that

neither of these strategies uses semantics during the retrieval or ranking phases, and

that the similarity metric does. Thus, these strategies are able to generate more novel

solutions than the other strategies, which are using semantics to retrieve and rank

source cases.

Figure 5.14 presents the values obtained during the evaluation of the generated

solution usefulness. We remind the reader that these values represent situations

that were considered wrong or useless, this means that lower values correspond to

solutions that are more useful since they require less corrections from the software

designer. As we can observe, strategies five and six seem to generate the diagrams

which require larger corrections. These high values may be due to the fact that the

knowledge transfer scheme that was implemented simply transfers objects from the

source domain into the target domain without transforming the source object into

an analog in the new target domain. If these source objects are transferred into

completely different domains they will usually be considered incorrect.

These results suggest that semantics should be considered during the retrieval

phase in order to obtain the most useful diagrams, that is, diagrams that require

195



CHAPTER 5. Experimental Evaluation

Table 5.19: The configurations used in the design composition experiments. BSCC - Best Set of
Cases Composition, BCC - Best Case Composition.

Strategy Generation Method Threshold

C1 Analogy 0.25

C2 Analogy 0.5

C3 Analogy 0.8

C4 Design Composition (BSCC) 5

C5 Design Composition (BSCC) 10

C6 Design Composition (BSCC) 15

C7 Design Composition (BCC) 5

C8 Design Composition (BCC) 10

C9 Design Composition (BCC) 15

fewer corrections. On the other hand, novel analogies tend to occur when the ranking

phase is based on structural properties. Using a retrieval strategy that combines

both aspects can be a good solution for analogy retrieval. Examples of this are

strategies two and five, which are able to maintain a compromise between strategies

one and four, which are more accurate but less aimed to generate novel solutions, and

strategies three and six that are capable of generating more novel solutions but with

an increase in the number of errors in the class diagrams.

5.4 Design Composition Experiments

This section describes the experiments performed with the design composition mod-

ule. These experiments have several goals: compare design composition with analogy,

compare the design composition strategies, and identify the best threshold values for

the design composition strategies.

The design composition mechanism uses a parameter that establishes if an object

can be mapped or not with a problem’s object. If a mapping candidate object is

conceptually closer to the problem’s object than the threshold value, it implies that

this object can be mapped with a problem object. To assess the conceptual distance

REBUILDER uses WordNet is-a links, so the threshold value is a maximum mapping

distance.

These experiments use the 25 problem set, with nine solutions generated in each
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Table 5.20: Experimental results obtained from test users. BSCC - Best Set of Cases Composition,
BCC - Best Case Composition.

Computation Transferred Mapped Used Wrong % of Wrong % of Mapped

Time (seconds) Objects Objects Cases Objects Objects Objects

C1 28.48 8.00 1.56 1.00 2.16 16.54% 35.73%

C2 28.44 8.08 1.48 1.00 2.28 17.80% 34.13%

C3 26.64 7.36 1.16 1.00 1.52 11.98% 26.93%

C4 52.48 5.00 2.88 1.32 1.64 11.86% 64.60%

C5 59.68 5.84 3.12 1.28 2.72 21.57% 71.07%

C6 60.48 5.84 3.12 1.28 2.92 22.93% 71.07%

C7 72.08 18.20 3.08 4.40 6.96 29.18% 70.27%

C8 73.20 18.52 3.08 4.36 7.16 29.24% 70.27%

C9 74.96 18.52 3.08 4.36 7.20 29.44% 70.27%

problem run, one for each configuration (table 5.19 defines the configurations). The

problems and their respective solutions were then presented to test users (software

designers and software engineers) for evaluation. Six test users were inquired for

evaluation of the solutions, giving their evaluation on the number of objects that

they considered inadequate or incorrectly defined, regarding the problem that it was

supposed to solve. Most of the designers made this judgment based on what they

would delete from the suggested solution in order to solve the problem under attention.

The results obtained are presented in table 5.20. The values presented are the average

values for the 25 problems.

Configurations using analogy (C1 through C3) exhibit the best time performance.

While the Best Case Composition (BCC) configurations (C7 to C9) show the worst

performance. In between, we have the Best Set of Cases Composition (BSCC) con-

figurations (C4 to C6). All BCC and BSCC configurations increase the computation

time with the increase in the threshold, which is expected, since the range of possible

mappings increases, and with it the computation time needed to generate them and

to evaluate them.

Concerning the number of transferred objects the BCC configurations have the

highest values. BCC uses many cases to generate solutions, which implies the trans-

ference of many non-mapped objects, not all of them useful as the number of wrong

objects illustrates. The analogy configurations have an unexpected high number of

transferred objects, which can be explained by the low number of mappings that
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are performed. The objects that are not mapped, are then transferred. The BSCC

achieves a low number of transferred objects, but it is compensated by a high per-

centage of mapped objects. There is an interesting finding in the design composition

configurations (configurations C5 and C6) with thresholds of 10 and 15 they gener-

ate the same number of transferred cases, the same happening with configurations

C8 and C9. This might indicate that after a certain threshold value the established

mappings are the same, reaching a saturation value.

Configurations C5 and C6 achieve the best results for the number of mapped ob-

jects, closely followed by C7, C8 and C9. Though BSCC configurations use less cases

than BCC configurations, they are able to have a higher efficiency (or accuracy) in

which concerns mapping problem objects. Only by restricting this mapping process

(through the lowering of the threshold value) the number of mapped objects decreases

(see configuration C4). The analogy configurations have the worst performance. Note

that the values for the percentage of mapped objects corroborate these observations.

In the analogy configurations the number of mapped objects is proportional to the

decrease of the threshold (remember that the analogy threshold has a different mean-

ing from the one for the design composition threshold - higher values mean more

constrained mappings).

Naturally, analogy configurations use only one case, since they are able to work

with only one instance. In regard to the design composition configurations, the BSCC

uses less cases than BCC, achieving better mapping results and with fewer wrong ob-

jects. This clearly indicates that the BSCC mechanism is more efficient and accurate

than the BCC strategy. Configurations with threshold values more restrictive use

more cases, which is coherent, since they are not able to map all the problem objects,

and have to look for other pieces of cases to get these mappings.

The configuration that has the lower percentage of wrong objects is C4. This

configuration uses the BSCC strategy to generate new solutions efficiently and is able

to achieve the solutions with fewer mistakes. Analogy configurations can also achieve

good results. The BCC generates the worst results, which can be partially explained

by the high number of transferred objects.

In conclusion, BSCC configurations achieve the best tradeoff between computation

time, number of wrong objects and number of mapped objects. A good threshold
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value for design composition strategies is 10, which works for both strategies. Further

experiments on the threshold value should be performed to pinpoint the best threshold

value.

5.5 Design Patterns Experiments

This section describes the experiments performed to evaluate the performance of the

design patterns module. We used a case base of 60 DPA cases, each case representing

an application of a software design pattern to an UML class diagram (we used the

design case base of 60 designs to generate the DPA cases). Each DPA case was

generated from a different class diagram. For these experiments, five software design

patterns were used, the names of the patterns accordingly to [Gamma et al., 1995]

are:

• Abstract Factory.

• Builder.

• Composite.

• Singleton.

• Prototype.

Each of these patterns are implemented in REBUILDER along with the participants

definition and operators (see [Gamma et al., 1995] for details on these patterns).

We also defined 25 test class diagrams to evaluate the precision of the retrieval

mechanism. These diagrams comprise three to five objects and do not have methods

or attributes. For each test diagram the algorithm retrieved 15 DPA cases, which were

then evaluated. The evaluation consisted in defining the patterns and participants

that were chosen correctly. The results are presented in figure 5.15.

The precision results show that the retrieval mechanism for this set of problems

achieves 76% of correct selected DPA cases with a retrieval set size of 3 (cumulative

result), which is in our opinion a good indicator. As expected, the non-cumulative

results degrade with the increase in the ranking of retrieved cases. This also indicates
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Figure 5.15: The precision values for the DPA retrieval algorithm.

that the similarity metric that was used to rank the retrieved cases is performing as

desired, choosing the best cases for the higher places in the ranking. The cumulative

values show that the precision ranges from 76% (retrieval set size of 3 and 4), to 39%

(retrieval set of size 15).

5.6 Verification Experiments

This section describes the experimental work performed to evaluate the verification

mechanism. We tested the verification for analogy and design composition. Within

the design composition we used both strategies: best case composition and best

complementary cases composition (also called best set composition).

For each combination of the method for solution generation (Analogy, Design

Composition - Best Case, and Design Composition - Best Set) by type of object

considered (Relation, Attribute or Method) we generated an experiment with the

same 25 test problems and then gathered the data, which was then analyzed by a

software engineer.

Using verification, the number of wrong objects decreased by 22% in analogy and

by 56% in design composition. The detailed results are presented in table 5.21, the
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Table 5.21: Experimental results obtained for the verification mechanism. A - Attributes; M -
Methods; R - Relations.

Analogy Best Case Composition Best Set Composition

A M R A M R A M R

EO 0 0 2 76 22 91 70 26 42

WO 0 2 7 77 116 127 70 135 58

IM (%) - 0% 29% 99% 19% 72% 100% 19% 72%

key for the table is:

EO: objects eliminated that were considered wrong by human evaluators, in which

the system learned new failure cases.

WO: total number of wrong objects.

IM: improvement with verification (in percentage).

5.6.1 Effect of Verification in Analogy

Figure 5.16 presents the cumulative number of wrong objects, with and without ver-

ification. The X-axis represents the 25 problems that were used. In this case, the

presentation order of these problems is relevant, since the system learns new verifi-

cations from each problem it solves. We are only considering: relations, attributes

and methods. In this scenario, where solutions are generated by analogy, there are

no attribute objects considered wrong by the designers. Notice that the solutions

generated by analogy result into few wrong objects compared to the ones created

by design composition. This happens because design composition combines parts of

different cases, thus generating some inconsistencies. The verification mechanism did

not improve the number of wrong methods, and decreased in 29% the number of

wrong relations.

5.6.2 Effect of Verification in Design Composition

Figures 5.17 and 5.18 show the experimental results for the effect of verification in

design composition. These results show a major improvement in the solution quality,
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Figure 5.16: Effects of the verification process in analogy generated solutions.

in particular in the attributes and relations. The system can effectively drop the

number of wrong objects in generated solutions, presenting to the designer better

solutions.

Table 5.19 presents the total number of verification cases generated and stored

by the verification module, and also the number of questions asked to the designer.

Notice the difference between the number of verification cases and questions asked to

the designer. Most of the verification cases come from the design case library (from

the design cases) and from WordNet. Since the system learns these new verification

cases, the tendency in the evolution of the number of questions asked to the designer

is to decrease, especially if the designer is working in the same domain.

5.7 Learning Experiments

The experimental work performed using the learning module (see section 4.6) has

the goal of determining the characteristics of the implemented criteria, mainly in two

aspects: computational time and evolution of the case base competence. The next

subsections explore both issues.

We used the previous KB and the 25 problem set. It should be noted that despite
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Figure 5.17: Effects of the verification process in the design composition (Best Case) generated
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the problem set has defined case domains, when solving a problem, the retrieval

system can use problems from any domain. The retrieval algorithm can do this due

to the indexing structure (WordNet), which connects all synsets.

5.7.1 Computational Time Efficiency

Although being in a certain sense irrelevant to test the time performance of all these

algorithms from a research point of view, we think that for application purposes

this is of great relevance. It would be interesting to take further these experiments,

especially when dealing with case bases that, when in use, store a huge number of

cases, or when we want to study scaling properties of these strategies. Along the

description of these experiments we use abbreviations to refer to the strategies:

FDC: Frequency Deletion Criteria.

SC: Subsumption Criteria.

FtDC: Footprint Deletion Criteria.

FtUDC: Footprint Utility Deletion Criteria.

CC: Coverage Criteria.

CAC: Case-Addition Criteria.
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Figure 5.20: Computation time results for criteria FtDC and CC.

RCCNN: Relative Coverage and Condensed NN.

RPM: Relative Performance Metric.

CGC: Competence-Guided Criteria.

The results are presented in figures 5.20 and 5.21, and show that there are three

different groups of criteria, regarding computational time and scalability. The first

group comprises FtDC and CC (see figure 5.20), which have a very different perfor-

mance comparatively to the other criteria. Their computation time grows in a linear

way, but with a much bigger multiplication factor. In particular, FtDC performs

worst than CC, at least for the 60 case library that was used. The second group

contains CAC, CGC, FDC, and FtUDC, which in the experiments grow linearly,

but with a much lower multiplication factor than the first group. FDC and FtUDC

are very regular, contrasting with CAC and CGC, which had a slightly exponential

growth between iteration 25 and 33. We think that this is due to the sequence of

cases that were used. It was possibly a set of cases that needed more computational

time to run the algorithm. Criteria SC and RPM are the third group, which have

very low computational times (bellow one millisecond most of the times). SC is very

fast, because among the 60 cases there are no case subsumptions. These results are

due to the subsumption criteria defined, and to the huge search space, from which

we have selected 60 ’points’ close enough to have similarities, but not enough to be

subsumed.
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Figure 5.21: Computation time results for the other criteria (FDC, SC, FtDUC, CAC, RCCNN,
RPM, and CGC).

These are indicative results and not definitive ones, because these results are al-

ways limited by the cases that were used for testing. Within our case base, cases

populate a small portion of the design space, even if we take into account the adap-

tation mechanisms. These tests were performed on an Intel Pentium III at 600 MHz

with 256 Mbytes of memory running Windows 2000.

5.7.2 Case Base Competence

The second experiment comprises the variance of the case base size, using the CBM

strategies to define which cases maximize the case base competence. We have used

case bases of six sizes: 10, 20, 30, 40, 50 and 60. The last one comprises all the possible

cases, so it is a degenerate situation and there is no need to apply the strategies. The

case base of size 60 is used as the benchmark for the case base. For each criteria we

evaluated the case base competence using the test problems. For each test problem we

ran the retrieval and the adaptation (design composition) algorithms and evaluated

the suggested designs, as being relevant or not. For retrieval, we considered a retrieved

case relevant if it belongs to the first five that are more similar to the problem. We

defined similar as having the same package synset, and the same objects (same synset)

except one. In the adaptation, only one generated solution was inspected, using the

same solution evaluation criteria as in retrieval.
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Table 5.22: Competence results computed using the CBM strategies, without adaptation.
CB Size FDC SC FtDC FtUDC CC CAC RCCNN RPM CGC

10 24% 24% 4% 24% 24% 4% 24% 24% 24%

20 36% 36% 4% 36% 36% 8% 36% 36% 36%

30 48% 48% 8% 48% 48% 12% 48% 48% 48%

40 48% 48% 16% 48% 48% 36% 48% 48% 48%

50 48% 48% 40% 48% 48% 36% 48% 48% 48%

60 48% 48% 48% 48% 48% 48% 48% 48% 48%
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Figure 5.22: Competence results computed using the CBM strategies, without adaptation.

From the results presented in tables 5.22 and 5.23 (see figures 5.22 and 5.23 for a

graphical representation), it can be concluded that the adaptation mechanism makes

a big difference in the evaluation of the case base competence. Even with ten cases,

the case base with adaptation has a higher competence than just with retrieval. An

explanation for this is that the solution space (UML class diagram space) is huge and

the 60 cases are only a very small portion of it. The normal situation is the target

problem to be different from the cases in the case base, which enables retrieval to

find a similar case, but not similar enough to solve it. The adaptation mechanism is

robust enough to use a retrieved case to solve the target problem.

Analyzing the results in which concerns to the different case base maintenance

policies and using only these experiments, it is obvious that most of them lost per-

formance when reducing the number of cases in the case base. Despite that most

criteria only originate case bases with lower competence when they lose more than
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Table 5.23: Competence results computed using the CBM strategies, with adaptation.
CB Size FDC SC FtDC FtUDC CC CAC RCCNN RPM CGC

10 92% 92% 68% 68% 92% 92% 92% 92% 92%

20 92% 92% 72% 68% 92% 92% 92% 92% 92%

30 96% 96% 92% 92% 96% 92% 96% 96% 96%

40 100% 100% 96% 100% 100% 96% 100% 100% 100%

50 100% 100% 96% 100% 100% 96% 100% 100% 100%

60 100% 100% 100% 100% 100% 100% 100% 100% 100%

50% of the cases. This may indicate that there are redundant cases in the case base,

and it seems that most of the strategies can identify and remove them from the case

base.

There is another important aspect, which is the application of these criteria to this

case representation. We have the opinion that the subsumption definition influences

the applicability of some strategies. For instance, we have defined in the implemen-

tation of the criteria, that when there are draws between cases, the criteria should

choose cases driven by the frequency of case usage (except when the CBM strategy

explicitly states what to do). Since most of the cases are not subsumed, there are a

lot of draws, which makes this default selection form to be used most of the times.

This is why most of the criteria have a similar performance comparing to the FDC,

which is a pure frequency-based approach.
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Figure 5.23: Competence results computed using the CBM strategies, with adaptation.
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Table 5.24: The definitions for the context configurations.
Configuration Object Attributes Neighbor Objects All Objects

C1 Yes No No

C2 No Yes No

C3 Yes Yes No

C4 No No Yes

C5 Yes No Yes

5.8 Word Sense Disambiguation Experiments

This section describes two experiments performed with the Word Sense Disambigua-

tion (WSD) methods incorporated in REBUILDER. First we describe preliminary

experiments, which were followed by a more elaborated experiment.

5.8.1 First Experiments with WSD

This subsection presents two studies of one of the proposed WSD methods - concep-

tual distance version 1 (see subsection 4.7.7). One study comprises choosing the best

context configuration for object disambiguation, and the second one showing the best

semantic distance. The KB we used for tests comprises the previous case library with

60 cases. The goal is to disambiguate each case object in the KB. After running the

WSD method for each object we have collected the selected synsets, which are then

compared with the synsets assigned by a human designer. The percentage of match-

ing synsets determines the method accuracy. To study the influence of the context

definition in the disambiguation accuracy, we considered five different combinations

(see table 5.24).

The accuracy results we obtained are presented in Table 5.25. These values show

that the best result is reached by configuration C4, and that configuration C5 presents

slightly worst results than C4. This is due to the abstract aspect of some attributes,

which introduce difficulties on the disambiguation method. For example, if one of the

attributes is name, it will not help in the disambiguation task, since this attribute is

used in many objects and is a very ambiguous one. Notice that configuration C1 is

only able to select a synset for 89.33% of objects.

In these experiments we used three different semantic distances. These distances
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Table 5.25: The accuracy values for the context configurations.
C1 C2 C3 C4 C5

Accuracy 60.19% 68.47 68.79 71.18% 71.02%

% of Synsets Found 89.33% 100.00% 100.00% 100.00% 100.00%

Table 5.26: The accuracy values for the different semantic distances.
Accuracy C4 C5

S1 69.27% 69.11%

S2 71.18% 71.02%

S3 64.97% 65.13%

are: the is-a links of WordNet alone (S1), the is-a, part-of, member-of and substance-

of links (S2), and S3 which is similar to the semantic distance as defined in subsection

4.2.2. The previous results (shown in table 5.25) are obtained with S2. A combination

of these three distances and the best context configurations (C4 and C5) were used

to study the influence of the semantic distance to the accuracy of the WSD method.

Results are shown in table 5.26.

Experimental results show that semantic distance S2 produces the best accuracy

values, followed by S1, and finally S3. Context configuration C4 continues to get

better results than C5, except for semantic distance S3.

5.8.2 Comparison of WSD Methods in REBUILDER

After generating the experiments presented in the previous subsection with the WSD

method developed, we wanted to test other WSD methods. Our main goal was to

find the best WSD method for REBUILDER, which is defined along two dimensions:

computational efficiency (computation time) and disambiguation accuracy. Com-

putational efficiency is important because each time the designer uses a cognitive

action, the software objects must have synsets associated to them. In case of a class

diagram with many objects, the system must be fast enough to be usable, other-

wise the designer will not call the system’s reasoning capabilities. Disambiguation

accuracy, because the retrieval and all the other cognitive processes depend on the

assignment of the right synsets, otherwise the system will return useless diagrams to

the designer. We have tested methods (see section 4.7) along: computation time and
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result precision.

Another important aspect of REBUILDER, is that, it is not a common natural

language application, in the sense that it does not work with natural language para-

graphs or sentences, but with loose words associated to software objects. This made

us choose two different experiments: one specific to REBUILDER, and another simi-

lar to previous WSD studies. In the first experiment we have used a case base with 60

cases, and disambiguated all cases and objects. The other experiment was performed

using SemCor 1.7, built from the Brown corpus and distributed with WordNet 1.7.13.

The next two subsections explain in detail these two experiments showing the qual-

ity achieved with each method, while the third subsection reports the time results

achieved by each method.

Experiment 1 - Case Base

The first experiment was performed using the case library with 60 cases, each case

describing a software design. The goal was to disambiguate all objects in the case

library. Each object of each case were disambiguated using only the names of the

objects in the same diagram as the context words. Then the target word (the object’s

name) was disambiguated using all WSD methods. This experiment has two variants:

one where all the case objects need to be disambiguated, simulating the situation

where the entire diagram needs to be disambiguated (Diagram Disambiguation); and

another where each case object is disambiguated with all the other case objects already

disambiguated 4 (Object Disambiguation). The disambiguation results that were

obtained are shown in figures 5.24 and 5.25.

In the Diagram Disambiguation five methods have achieved identical results, show-

ing a good accuracy. In this experiment all diagram objects were disambiguated,

including the non ambiguous5 objects, which are about 46%. In the Object Disam-

biguation the results are only about ambiguous words (average sense number by word

is 4.30). Figure 5.25 shows that the Entry Sense Number method is the best one,

followed by Word matching, and then by Information Content and List of Words. As

3Available at http://www.cogsci.princeton.edu/∼wn/
4We have manually disambiguated each object.
5Objects which the name has only one candidate synset, so they are trivial to disambiguate, that

is why they are called non ambiguous.

211



CHAPTER 5. Experimental Evaluation

Accuracy

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Accuracy 74.53 74.53 74.53 74.53 74.53 73.78 71.35 64.23 63.30 62.04 57.49

Conceptual 
Distance 2

List of Words
Method 

Combination
Information 

Content
Entry Sense 

Ordering
Word Matching

Conceptual 
Distance 1

Simple 
Cooccurrence

Semantic 
Vectors

Random 
Selection

Cooccurrence 
Vectors

Figure 5.24: Experimental results obtained for the diagram disambiguation.
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Figure 5.25: Experimental results obtained for the object disambiguation.

a comparison baseline we used the random selection method, which selects a synset

randomly from the possible ones. All the methods exceed this baseline except the

Cooccurrence Vectors method. The gains on the other methods, in relation to the

baseline, go up to 20% in the Diagram Disambiguation, and 80% in Object Disam-

biguation.

Experiment 2 - SemCor

After evaluating the WSD methods in a specific environment (or set of domains) we

wanted to see which were the results of these methods in more general situations, and

with more ambiguous words. For this, we used SemCor 1.7 of the Brown Corpus,

which is part of the Brown corpus tagged with WordNet senses. 47 words have

been selected, mainly from the literature on WSD, to be used as target words (the
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Figure 5.26: Experimental results obtained for the SemCor 1.7 disambiguation.

average sense number by word is 7.30): star, cone, bass, bow, taste, interest, issue,

duty, sentence, slug, bank, doctor, nurse, age, art, car, child, church, cost, work,

head, line, device, direction, reader, core, right, position, deposit, hour, path, view,

antenna, trough, tyranny, figure, institution, crown, drum, pipe, coverage, execution,

min, interior, campaign, output, drive. We used 186 files from SemCor comprising

about 15000 sentences. Whenever one of the target words appears in a sentence it is

disambiguated using the words in the same sentence as context. The context words

had the correct synsets attributed (the ones provided by SemCor). All the WSD

methods were used, and for each disambiguation a comparison with the SemCor

synset was performed yielding the method accuracy.

The results achieved in this experiment are presented in figure 5.26. Comparing

these results with the Object Disambiguation ones, it can be seen that some methods

maintain similar performances (List of Words and Entry Sense Ordering), while all

the other methods lose accuracy. It is important to note that the baseline (Random

Selection) decreased from 32% to 14%, due to the high number of senses by word.

Experiment 3 - Computation Time

For the computation time experiments we have used the SemCor files and performed

disambiguation for the 47 words used in experiment 2. The average time by word

disambiguation is shown in table 5.27. These results were achieved in an INTEL

Celeron at 1.0 GHz, with 512Mb of RAM, running Windows 2000. There are huge

differences in these figures. While simple methods are very fast, like Entry Sense
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Figure 5.27: Experimental results obtained for the computation time with the SemCor 1.7 disam-
biguation.

Ordering or Word Matching, complex methods using semantic distances computed

using WordNet are time consuming, due to the high average number of synsets by

word.
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Related Work

This chapter describes several systems and works related to REBUILDER, comparing

them with our approach. We selected works that are somehow related to our approach,

concerning the goal and application domain of the system, or systems which deal with

some specific problems addressed in REBUILDER.

REBUILDER is a design tool integrating several reasoning techniques and knowl-

edge types. Due to the numerous aspects that are handled in REBUILDER, there are

several related systems and approaches that need to be compared with our system.

These can be categorized in several classes: CBR design systems, CBR software de-

sign systems, analogy software design systems, other software reuse systems, systems

dealing with analogical retrieval, systems that use design patterns, and works on word

sense disambiguation.

Concerning the systems more similar to REBUILDER, we point out two types of

software reuse systems: CBR based and analogy based. These two types of systems

have some points in common, especially in which concerns to the reasoning paradigm.

We compare them along four application axis:

• Phase of the software development process the system is intended to address

(analysis, design or implementation);

• Programming paradigm that is supported (procedural, functional, object-

oriented or declarative);

• Level of abstraction of the domain of application (generic or specific);

• Incorporation of adaptation or just retrieval.
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In the following sections, each paragraph describes a different system, stressing

it’s main characteristics, along with some relevant differences concerning to RE-

BUILDER.

6.1 CBR Design Systems

This section describes several research works on design systems using CBR. Some

systems are not in the software design or software reuse domain, but have important

common aspects with REBUILDER. These systems represent landmarks in the CBR

design systems, and so it is important to compare them with our approach.

EADOCS [Netten and Vingerhoeds, 1996] is a support system for conceptual de-

sign of thin-walled fibre reinforced by composite panels in aircraft structures. It uses

a multi-level approach to design generation, applying CBR, Rule-Based Reasoning

(RBR) and Constraint-Based Reasoning (CtBR). Cases are represented by an hier-

archical structure of objects defined as attribute/value pairs, and they are treated

as prototype cases capturing abstract knowledge. Cases are not indexed and are

stored in a simple list. Case retrieval and ranking are performed at the functional

level. Conceptual design in EADOCS comprises three different phases: generation of

qualitative solutions, designated as prototypes; instantiation of the generated proto-

type through parameter instantiation; and quantitative adaptation and optimization.

CtBR is used in prototype retrieval, while CBR is used for the retrieval of a case that

is going to be used in the prototype quantification. Adaptation and optimization are

performed using RBR and domain specific heuristics. EADOCS is an encouraging

example of multiple reasoning integration.

COMPOSER [Purvis and Pu, 1995, Pu and Purvis, 1997, Purvis and Pu, 1998] is

a system for design of assembly sequences, which is the problem of finding a valid

sequence to assemble several parts into a final product. The approach of COMPOSER

is based on CBR and CtBR. Cases are described by attribute/value pairs and have

constraints associated to them. Retrieval is based on structural correspondences, and

adaptation is performed using a constraint satisfaction algorithm. The combination

of these two reasoning mechanisms enables the system to start with a draft of a first

solution, which is then improved into a final solution using CtBR. COMPOSER is a
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design system that works at the configuration level, using only structural knowledge.

REBUILDER is able to work with other design knowledge levels, like functional and

behavioral. A similarity with REBUILDER is that the adaptation algorithm is able

to combine parts of different cases into the same solution. In COMPOSER this is

performed using the constraint satisfaction algorithm, while in REBUILDER this is

achieved using design composition.

CADET [Sycara and Navinchandra, 1991, Sycara and Navinchandra, 1993] is a

system that uses behavior as a thematic abstraction for case retrieval. The appli-

cation domain is mechanical design. It uses influences as a thematic abstraction for

representing behavior of physical devices. In this framework, case organization pro-

vides the main mechanism for cross-contextual reminding which is very important

in non-routine design. In CADET, a case is described by two parts: solution and

behavior. The case behavior is represented by qualitative influences, which are qual-

itative differential (partial or total) relations between two variables. One of which

is a dependent variable and the other is an independent variable. These influences

are represented by graphs describing the behavior of structural components. Influ-

ences index cases using a hierarchical thematic abstraction structure. They are also

used for retrieval and other reasoning tasks. More specifically, retrieval is performed

through the matching of the query influence graph with cases in the library. Solution

verification and evaluation is performed using qualitative and quantitative simula-

tions of influences. CADET works at two levels of design knowledge: behavioral and

structural.

CADRE [Dave et al., 1991] is a system for solving design problems concerning

spatial arrangement in buildings. This system addresses four main issues: case adap-

tation, case composition, integration of several different levels of knowledge abstrac-

tion, and interactive support for the designer. It uses CBR, with cases representing

structural components using a spatial representation. Cases are represented from

two different user perspectives: architect and engineer. It has no indexing structure

able to speed up the retrieval process. Case adaptation is based on CtBR, and is

performed in two distinct steps: dimensional reduction of design constraints, and

if this is not enough to solve the problem, then it can modify the design topology.

Design composition is based on the design topology and constraints. Retrieval is per-

formed using the topological properties of cases, and selected cases are ranked using
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structural graph matching.

Smith developed IDIOM [Smith et al., 1995], which is a follow up of CADRE.

IDIOM introduces several improvements over its antecessor, particularly in the adap-

tation process, where models Function-Behavior-Structure (FBS) are used to guide

the adaptation process. At the user interface, it uses the concept of intelligent object.

An intelligent object uses three different types of knowledge: specific knowledge from

a case, designer interpretation of the object, and the object’s model. Designer inter-

action is based on these objects, which enables the dynamic definition of the target

problem.

FABEL [Voss et al., 1994, Coulon and Gebhardt, 1994, Gebhardt et al., 1997] is

a case-based design system in the architectural domain. It is intended to function as

an intelligent CAD tool, providing a high level support to architects and engineers,

based on several tools. These tools cover several cognitive support functions like: case

retrieval, design analysis, object classification, design adaptation, design generation,

and team development management. FABEL uses not only cases, but also models

and prototypes. Cases have a complex representation, combining object-based with

graph-based representations. Though cases are represented only in structural terms,

behavioral knowledge about a case can be obtained from domain models, while func-

tional knowledge can be obtained from prototypes. The target problem is defined as

an incomplete structure that the system has to complete. Case retrieval comprises

several methods, which are used to help the designer to retrieve and explore different

aspects of the design. Several indexing structures are used in FABEL: associative

memories, vectors of attribute/value pairs, decision trees, and concept taxonomies.

One aspect of FABEL, similar to REBUILDER, is that it uses a visual editor to

interact with the designer. In this way, both systems represent cases as diagrams,

FABEL in the architecture domain, and REBUILDER in the software design domain.

FABEL uses mainly rule-based adaptation [Voss, 1997], but is capable of using other

adaptation methods such as constraint satisfaction or generate and test. Most of

these methods involve domain knowledge, which might not be available in some do-

mains. In software design, part of the world is modelled as a software system. So,

the domain knowledge is the domain of application, which can be anything. This

makes adaptation limited to the domains for which the system was developed. In

REBUILDER, the goal is to build a generalist system that is not dependable of the
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type of software system.

Voss developed TOPO [Voss and Coulon, 1996] which is a design system in the

architectural domain, and part of the FABEL project [Gebhardt et al., 1997]. We

have chosen to present TOPO apart from FABEL due to its particular characteristics,

since it can be considered a system within a system. The main goal of TOPO consists

on supporting an architect during the design process. This system characterizes itself

for its high level of interaction with the designer. TOPO uses CBR and represents

cases by it’s structure. There is no functional or behavioral description. The target

problem is provided to TOPO in terms of structural graphs, which the system then

completes using CBR, a process similar to REBUILDER. Cases are retrieved from

the case library using structural indexes and retrieved cases are ranked using the

structural similarity in the form of graph matching. Adaptation is made through

structural operations, deleting, adding or replacing structural components. TOPO

uses some heuristics to assess the adaptation effort needed to adapt a case, which can

then be used to abandon adaptation and select another retrieved case.

Mary Lou Maher has developed several case-based design systems (CASECAD,

CADSYN, WIN, DEMEX) [Maher et al., 1995, Maher, 1996] in the architectural do-

main. The first system to be developed was CASECAD, followed by CADSYN which

introduces other reasoning mechanisms. WIN was the next system and focus in a

more specific issue: designing buildings taking into concern wind resistance. The last

system of this ’family’ is DEMEX that tries to provide the designer with support in

the exploration of new design space regions. REBUILDER shares some of the features

of these systems, namely the ability to explore the memory of previous designs (the

case library). The next paragraphs describe each of these systems in more detail.

CASECAD is a design support system in the domain of architecture based on the

integration of CBR and CAD technology. It has two main working modes: browsing

and retrieving. It allows the designer to explore the design space by browsing the case

base, and it can also retrieve designs using a query in the form of attribute/value pairs.

It’s indexing structure is divided into models and cases. The models are organized

into an hierarchical structure that enables case indexing by classification. Reasoning

mechanisms can take advantage of domain knowledge in the form of models. Case

representation includes several formalisms: multimedia information, object-oriented
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representation, CAD drawings and graph illustrations of case behavior. Models can

also be used for problem elaboration, making it more complete and specific, or they

can be used to guide adaptation. Cases can be indexed by subparts like in RE-

BUILDER, this enables flexible case retrieval and composition of different case pieces

into a new solution. This indexing is only performed at the structural level. More

specifically, cases are indexed by classification and by attributes. Case retrieval is

performed in two steps: first the algorithm retrieves cases with the same problem

classification; then problem and case attributes are matched. At the end, the system

reviews all the cases with the same attributes and classification. Ranking is based

on the number of common attribute/value pairs. Cases can be indexed by any type

of attribute, be it structural, behavioral or functional. This happens because a tar-

get problem can be specified using any type of attribute. Adaptation is left to the

designer. Nevertheless models can be used to aid this process.

CADSYN is very similar to CASECAD, but it can also search for subsystems

using a hierarchy of requirements. CADSYN adds constraint satisfaction algorithms

for adaptation to CASECAD, and does not give great attention to the graphical

interaction with the user. CADSYN indexes cases using functional indexes, and

ranks retrieved cases based on the number of common functionalities with the target

problem. Retrieved cases are the ones that have at least one common functionality

with the problem specification. Case adaptation is based on a constraint satisfaction

algorithm. If the adaptation process is unable to generate a new design, then the

problem is decomposed in subproblems and each one of these subproblems is solved

independently. The system then gathers all the partial solutions and composes a new

solution.

WIN is a CBR design support system with an emphasis on the structural per-

spective of civil engineering. The application domain is the same as CASECAD and

CADSYN, but centered in more specific aspects, related with the wind resistance of

high buildings. In WIN, case retrieval is an iterative and interactive process that

uses model-based reasoning (MBR) retrieval besides doing the attribute/value pair

case retrieval. As in its predecessors, the knowledge base comprises both models and

cases. Cases are represented by vectors of attribute/value pairs. Attributes can be-

long to four categories: relation, function, behavior and structure. Models, as well as

cases, can be decomposed in sub models. Case retrieval is performed in an interactive
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way. First the designer provides a problem description based on attribute/value pairs,

which are used as indexes to retrieve a first set of relevant models. These models are

used to elaborate and complete the problem description, which enables a more ac-

curate case retrieval. After the cases are retrieved, the system presents them to the

designer. As CASECAD, WIN does not perform automatic adaptation.

Finally DEMEX addresses the issues of flexible retrieval and memory exploration

using three different types of memory: associative memory, model memory and case

memory. DEMEX addresses the same application domain as its predecessors. It has

the same case representation as CASECAD. A major difference between DEMEX

and previous systems is its indexing structure. It comprises three different parts:

an associative memory that relates functional, behavior and structural categories to

design attributes; a model structure; and a case structure. Each case is generalized

in the form of a model. Each model indexes a set of cases that are its specializations.

In this way is it is possible to navigate the indexing structures. The retrieval process

consists on following these structures and look for the attributes that are common with

the target problem specification. Then it follows through the links that represent the

attribute values, corresponding to the problem, reaching appropriate models, which

are then used for problem elaboration. Finally, it reaches a set of cases that are

retrieved. DEMEX does not perform automatic adaptation, leaving it to the designer.

The work developed by Ashok Goel with the KRITIK family of design sys-

tems [Goel, 1991, Goel, 1992, Bhatta and Goel, 1993a, Bhatta and Goel, 1993b,

Goel et al., 1997a, Goel et al., 1997b, Bhatta and Goel, 1997a,

Bhatta and Goel, 1997b] combine CBR with MBR. In his work, Goel uses a

case representation that describes a design at three different levels: function,

behavior, and structure (SBF representation formalism1), which allows cases to be

indexed and retrieved using these three design aspects. REBUILDER uses only

functional indexes (object synsets), but it provides a functional taxonomy for the

indexing mechanism allowing the computation of similarity distances between these

indexes. The KRITIK family comprises four systems (by chronological order):

KRITIK, IDEAL, KRITIK2 and INTERACTIVE KRITIK. All these systems have

the same application domains: mechanical and electrical system design.

1These models are based on the component-substance ontology developed by Bylander and Chan-
drasekaran [Bylander and Chandrasekaran, 1985].
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The first system to be developed was KRITIK, which was the base for all the fol-

lowing systems. It uses SBF models to represent cases, allowing indexing, retrieval,

adaptation and verification of design cases. Problem specification in KRITIK is per-

formed using functional knowledge. So, cases are indexed using functional indexes.

The system uses a list of functions as indexing structure. In this list, each element is

a functionality that indexes one or more cases. Retrieval is performed by traversing

this list looking for cases with functionalities common to the target problem. After

identifying these cases, they are ranked based on the number of common function-

alities with the problem specification. After selecting the best case, KRITIK adapts

the solution of the retrieved case to the problem. SBF models are used in this task to

compute the functional differences between the retrieved case and the problem. Using

SBF models, functional differences correspond to changing behaviors, and behavioral

changes correspond to structural adaptations. KRITIK uses adaptation plans to

eliminate these functional differences. Verification and evaluation of the new design

is made using qualitative simulation of the SBF model associated with the design.

IDEAL is the successor of KRITIK, and presents two major differences. The first

one, is that, it is able to work with generic behavior models (BF models), besides

normal SBF models. These models are the result of a learning process consisting in

the generalization of cases (represented as SBF models). BF models are then used for

adaptation purposes, using an analogy mechanism. The second important difference

is the case indexing. IDEAL uses functional indexes as KRITIK, but it adds a second

type of indexes: structural indexes. These indexes are selected based on BF models,

which are able to identify important structural components in a device behavior.

This improvement enables problem specification in terms of structural constraints

in addition to functional requirements. Goel and Bhatta developed model-based

analogy, a computational theory of analogy-based design that uses domain models

about artifacts. These models represent the structure, behavior and function of a

design. It uses design patterns2 as generic design abstractions that are learned during

system operation. A design pattern can then be applied to a concrete situation,

generating a new analog design.

KRITIK2 was the successor of IDEAL resulting from the lessons learned with

2The design pattern concept used here, is different from the one used in software design. For
Goel a design pattern is a general template for a SBF model.
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the previous systems. The analogical reasoning mechanism is improved, such that

the system is able to make cross-domain analogies. This enables the emergence of

creative design properties in KRITIK2. The system uses also new types of indexes,

which result from the design outcome. These indexes represent the outcome of the

design, describing if the design was successful or not and which were the failure

elements.

INTERACTIVE KRITIK integrates an user interface in the system, providing a

graphical interpretation of SBF models, which is very useful for the designer.

IM-RECIDE [Bento, 1996, Gomes et al., 1996, Gomes et al., 1998] was developed

in the University of Coimbra, and was a first and far predecessor of REBUILDER. IM-

RECIDE is an expert system development shell based on CBR. This system focus on

two major research issues: reasoning with cases imperfectly described and explained,

and the exploration of the case library in order to generate creative solutions. A

case comprises three different parts: problem description, solution description and

explanation. Problem and solution are described by attribute/value pairs, while ex-

planations are represented by causal trees, connecting problem facts to solution facts.

This is a representation tailored for diagnosis and classification domains, which shows

to be semantically poor for design purposes. Case retrieval is based on partitions of

the case base. These partitions are called spaces (also called design spaces). The

definition of each space is based on the problem characteristics (each problem de-

fines different partitions in the case base). Four spaces are defined: space I, space

II, space III, and space IV. Space I comprises the cases similar to the target prob-

lem. From space I to space IV cases are gradually more distant from the problem

specifications. IM-RECIDE tries to solve a problem going from space I to space IV,

using a similarity metric [Bento et al., 1995] within each space, and a set of specific

adaptation operators that generate new designs in each space. IM-RECIDE has no

indexing structure, which explains some of its poor performance figures. The systems

performs verification and evaluation of new designs, along with the learning of new

cases.

CREATOR [Gomes and Bento, 1997b, Gomes and Bento, 1998] is a case-based

reasoning shell for creative design. In the problem specification phase a graphical ed-

itor is used to help the user identifying the desired design functionalities. CREATOR
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uses its memory structure to perform problem elaboration in order to complete the

design requirements [Gomes and Bento, 1997a]. For problem elaboration it uses two

types of knowledge represented in the memory structure: a hierarchy of function-

alities and the problem descriptions for the cases in memory. Design episodes are

represented in the form of SBF models [Goel, 1992]. A case comprises three different

parts: (1) problem specification - function; (2) explanation - behavior; (3) design solu-

tion - structure. Case retrieval is performed in an incremental way, using the indexing

structures, which are based on a functional taxonomy. CREATOR has a retrieval al-

gorithm sensitive to the adaptation mechanism intended to be used. Adaptation uses

three operators: mutation, composition, and thematic abstraction. Ranking is based

on two criteria: the distance between the target problem and the case classification,

and the differences between the target problem and the retrieved case. CREATOR

does not perform adaptation or verification, which are left to the designer.

Tables 6.1 and 6.2 present a summary of the characteristics of systems presented

in this section. All these systems were developed for a different design domain when

compared with REBUILDER, though there is a common ground, which is the design

task. Most of the systems use MBR, besides CBR. One possible explanation is the

representation formalism that is used, which enables this type of reasoning. One main

difference in this aspect between REBUILDER and the other systems, is the use of

analogy and natural language processing, providing the system with the capacity to

generate new solutions potentially creative, and to use natural language as a way of

communication with the designer.

Most of the design systems presented use attribute/value pairs or models to repre-

sent designs. Attribute/value pairs have the advantage of being simple to manipulate,

but they have some limitations concerning expressiveness. Models are powerful in-

struments to represent designs, and enable MBR which is important for tasks such

as adaptation and verification. We think that these two representation formalisms,

although they may be adequate to represent software designs, have a limitation when

compared with UML class diagrams - they are not a natural way for communica-

tion with the designer. UML has the advantage of being the ”natural language” for

software designers. Besides this main difference, UML is easier for semantic inter-

pretation than, for instance, SBF models. Which in our opinion are more difficult to

apply to software designs.
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Table 6.1: Comparison table for the main characteristics of CBR design systems, part (a). PBR
stands for Prototype-Based Reasoning.

Name Application Domain Reasoning Case Representation Memory Structure

EADOCS Aircraft Structures CBR, MBR and RBR Attribute/value pairs None

COMPOSER Assembly sequence CBR and CtBR Attribute/value pairs None

CADET Mechanical Design CBR and Qualitative Attribute/value pairs Hierarchical

Reasoning and Influences Structure

TOPO Architecture CBR Attribute/value pairs None

CADRE Architecture CBR and CtBR Attribute/value pairs Hierarchical structure

IDIOM Architecture CBR, MBR and CtBR Attribute/value pairs Hierarchical structure

FABEL Architecture CBR, MBR and PBR Attribute/value pairs Associative and hierarchical

CASECAD Architecture CBR and MBR Attribute/value pairs, Model hierarchy

models and CAD drawings

CADSYN Architecture CBR, MBR and CtBR Attribute/value pairs Model hierarchy

and models

WIN Architecture CBR and MBR Attribute/value pairs Model hierarchy

and models

DEMEX Architecture CBR and MBR Attribute/value pairs, Hierarchy of models

models and CAD drawings and associative memory

KRITIK Mechanical and CBR and MBR SBF models Function list

electrical design

IDEAL Mechanical and CBR and MBR SBF models Function and structure list

electrical design

KRITIK2 Mechanical and CBR and MBR SBF models Function, structure

electrical design and outcome lists

INTERACTIVE Mechanical and CBR and MBR SBF models Function, structure

KRITIK electrical design and outcome lists

IM-RECIDE Generic CBR Attribute/value pairs None

and causal explanations

CREATOR Generic CBR and MBR SBF models Function hierarchy and

associative memory

REBUILDER Software design CBR, Analogy and NLP Graph-Based WordNet
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Table 6.2: Comparison table for the main characteristics of CBR design systems, part (b).
Name Indexing Retrieval Adaptation Verification

EADOCS Function-based Function similarity CtBR None

COMPOSER Structure-based Structural similarity CtBR None

CADET Behavior-based Similarity of the Rule-based Qualitative and quantitative

behavior graph simulation

TOPO Structure-based Similarity of the Rule-based None

structural graph

CADRE Structure-based Similarity of the CtBR None

structural graph

IDIOM Structure-based Similarity of the CtBR None

structural graph

FABEL Structure-based Several algorithms MBR, RBR and PBR RBR and MBR

CASECAD Structure, behavior Function similarity None None

and function-based

CADSYN Structure, behavior Function similarity CtBR None

and function-based

WIN Structure, behavior Function similarity None None

and function-based

DEMEX Structure, behavior Function similarity None None

and function-based

KRITIK Function-based Function similarity MBR MBR

IDEAL Function-based Functional and MBR MBR

structural similarity

KRITIK2 Function and structural Functional, structural MBR MBR

and outcome-based and outcome similarity

INTERACTIVE Mechanical and Functional, structural MBR MBR

KRITIK electrical design and outcome similarity

IM-RECIDE None Functional similarity RBR Failure cases

CREATOR Function-based Functional similarity None None

REBUILDER Function-based Function, behavior Analogy, CBR and Verification and design

and structural similarity Design Patterns cases, and WordNet
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The memory structure (or indexing structure) is crucial for fast and efficient re-

trieval. Most of the systems have a hierarchical structure that organizes indexes,

allowing retrieval to perform search in this structure. Most of the systems use a func-

tional taxonomy or a model hierarchy, depending on their type of case representation

and query formulation. REBUILDER uses WordNet as a functional taxonomy, allow-

ing the use of synsets for case indexing. Most of the systems index cases by function,

but there are also some systems that additionally use structure and behavior. RE-

BUILDER performs only function-based indexing, because retrieval probes are object

synsets. Retrieval is restrained to the indexes used by the system. REBUILDER and

most of the other systems use function-based retrieval. Then REBUILDER applies a

similarity metric that also uses structure and behavior to rank retrieved cases. Some

other systems also use this two-phase retrieval, but there are some systems that are

limited to function similarity for ranking the retrieved cases.

Most of the systems use only one adaptation method, the exception is FABEL that

uses MBR, RBR and PBR. REBUILDER has an elaborated approach to adaptation

comprising three types of adaptation mechanisms. The most used methods of adapta-

tion are MBR, CtBR and RBR. Verification is another aspect that we tried to cover

extensively in REBUILDER, using most of the knowledge sources at our disposal.

Approximately half of the systems presented in this section do not address verifica-

tion, and the ones that do so use MBR that is enabled by it’s case representation

formalisms.

6.2 CBR Software Design Systems

González et. al. [Fernández-Chamizo et al., 1996, González and Fernández, 1997,

González-Calero et al., 1999] presented a CBR approach for reuse of object-oriented

code. They combine description logics with CBR for reasoning purposes. Cases rep-

resent three types of entities: classes, methods and programming recipes, allowing the

retrieval of these types of objects. Cases comprise a problem (lexical description), a

solution (code) and a justification (code properties). They use LOOM, a conceptual

description language, for representation of code properties. The system uses a lexical
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retrieval algorithm starting from a natural language query. It also performs concep-

tual retrieval using an entity and slot similarity measures. One difference between

REBUILDER and this approach, is that our system works at the design level, while

González’s approach deals with the coding level. Although this system also performs

design reuse, it’s main focus is on code reuse. Design reuse is as a byproduct of code

reuse, when classes and interfaces get moved or reused as blocks. Besides this differ-

ence, González’s work is based on a specific description language, while our approach

is based on UML, which is a standard and widely used software design language. The

system allows lexical or conceptual retrieval using LOOM. One particularity of this

approach is that cases comprise justifications, allowing the explanation of solutions.

Case reuse is based on substitution-based adaptation, which uses the dependencies

within a case to guide the process. The system learns successful search episodes as

search heuristics, in order to improve retrieval performance.

Déjà Vu [Smyth and Cunningham, 1992, Smyth and Keane, 1995a, Smyth, 1996]

is a CBR system for code generation and reuse using hierarchical CBR. It reuses code

for control of autonomous vehicles in loading and unloading cargoes. Code is in a

procedural form. Déjà Vu uses a hierarchical case representation, indexing cases by

functional features. The main improvement of this system is the adaptation-guided

retrieval mechanism that retrieves cases based on the case adaptation effort instead

of the similarity with the target problem. Déjà Vu is based on hierarchical CBR

with a blackboard control structure. Retrieval and adaptation specialists are used

for reasoning and are controlled by the blackboard system. This work has several

points in common with REBUILDER. Some of these similarities are the hierarchical

case representation and reasoning, and the functional indexing of cases. Despite

these similarities, Déjà Vu deals with the coding phase of software development and

not with the design phase. The indexing structure that is used is a taxonomy of

functional classification nodes specific to plant-model planning. Each classification

node is represented by frames. Adaptation is based on rules and it involves interaction

between the designer and the system.

Krampe and Lusti [Krampe and Lusti, 1997] developed an approach for reuse of

design specifications in information systems. They generate new specifications using

design composition as a form of adaptation. They combine three different reasoning

paradigms: CBR, MBR and schema-based reasoning. CBR is used for representation
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and reuse of design specifications. MBR is used to check design consistency through

the use of meta-models. Schema-based reasoning is a reasoning paradigm, which is

not as specific as CBR, and not as abstract as MBR. It is something between the two.

Schema-based reasoning uses reference models to perform inferences. Cases comprise

specifications and components. Specifications represent the situation or problem de-

scribed in the case. Components represent the resulting design (the case solution).

The indexing structure comprises several meta-models, which are organized in the

form of classification hierarchies. Cases are indexed by their components, which are

classified by the function that they perform. Retrieval is based on specifications and

components of the target problem. Adaptation consists on two steps: internal adap-

tation by the system and external adaptation by the designer. The system then uses

integrity rules and/or reference models to verify and evaluate the generated design.

All the new cases are added to the case library, without a case base maintenance

strategy.

CAESER [Fouqué and Matwin, 1993] is another CBR tool for code reuse. It works

at the code level and uses data-flow analysis to acquire functional indexes. The user

can retrieve cases from the case library using a prolog-like query, which is used by

the system to retrieve similar functions. A case comprises a problem description and

a solution. The problem is represented through the use of frames that describe the

case functionalities. The solution is the code. It enables reuse at the code level

and it is capable of performing adaptation, through the use of knowledge-based rules

for composition. It also allows the testing and evaluation of generated functions

using cause-effect graphs. It is based on control and data-flow analysis to make

structural and functional decomposition. CAESER was developed for procedural

code (mathematical functions), and does not deal with object-oriented design. It

reuses procedural code organized in functions or procedures.

Althoff and Tautz [Althoff et al., 1997, Tautz and Althoff, 1997] have a different

approach to software reuse and design. Instead of reusing code, they reuse system re-

quirements and knowledge on software development. This approach is one of the few

approaches that address all the phases of software development. They reuse system

requirements and associated knowledge on software development in the form of elec-

tronic documents. This approach is very different from previous ones and also from

our approach, because it deals with document retrieval and indexing, thus having a
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knowledge management flavor. One important limitation of Althoff’s approach comes

from the lack of reuse or revise phases. Instead of reusing code or design specifica-

tions through the understanding of its components, or using a specific representation

language, they reuse any type of software development document or code using a

superficial representation based on vectors of attribute/value pairs. This approach

is intended to be applicable to any type of software. Adaptation is very limited and

code/design understanding is not addressed in the developed methodology.

CREATOR II [Gomes and Bento, 1999b, Gomes and Bento, 2001] is a CBR sys-

tem that helps the programmer developing VHDL code through the reuse of previous

VHDL functions. Cases are represented in Function-Behavior Case Representation

(FBCR). This formalism is designed for description of procedural software languages,

ranging from general purposed languages like C, to more specific languages, as VHDL.

FBCR is derived from the SBF models developed by Goel [Goel, 1992]. Because soft-

ware programs can be seen as designs, FBCR describes a software program at the

functional and behavior levels. CREATOR II comprises four modules: VHDL to

FBCR converter, FBCR to VHDL converter, Case-Based Reasoning module, and

Knowledge Base. The VHDL to FBCR converter converts a VHDL file into a FBCR

case [Gomes and Bento, 1999a]. In this process functional and behavioural knowl-

edge is extracted from the VHDL code and used for indexing. The functional and

behavioural knowledge is also used for case adaptation and verification. The knowl-

edge base comprises four parts: case library, indexing structure, function taxonomy,

and data taxonomy. The indexing structure is used for problem elaboration and re-

trieval of cases from the case library. The system uses a function taxonomy as domain

knowledge. It comprises a hierarchy of functions in the domain of digital circuit de-

sign. The data taxonomy is a hierarchy of data types used in the VHDL language

and it also represents the domain knowledge used by the system for reasoning tasks.

This system is the closest predecessor to REBUILDER.

Systems presented in this section have more in common with REBUILDER than

the systems in the previous section, because they are CBR systems for the domain

of software reuse. A summary of the characteristics of these systems is presented in

tables 6.3 and 6.4. Notice that four out of six systems only reuse code, and only one

is tailored for reuse of object-oriented code. The others deal with procedural code.

This makes a strong difference against our work. Only Althoff’s system deals with
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Table 6.3: Comparison table for the main characteristics of CBR software design systems, part (a).
Name Application Domain Reasoning Case Representation Memory Structure

González’s Software Reuse CBR and attribute/value pairs, None

[Code, Object-Oriented] description logics code and lexical

Déjà Vu Software Reuse CBR and Hierarchical Taxonomy of

[Code, Procedural] blackboard systems representation classification nodes

Krampe’s Reuse of design specifications CBR, MBR and attribute/value pairs Meta-models arranged

[Analysis, All paradigms] Schema-based reasoning in hierarchies

CAESER Reuse of mathematical functions CBR and data-flow Frames (problem) and Functional

[Code, Procedural] analysis code (solution) taxonomies

Althoff’s Reuse of software development CBR Attribute/value pairs None

knowledge [All, All]

CREATOR II Reuse of VHDL software CBR and MBR FBCR Functional

[Code, Procedural] and code taxonomy

REBUILDER Reuse and design of Software CBR, Analogy and NLP Graph-Based WordNet

[Design, Object-Oriented]

the design phase, but at a more abstract level than REBUILDER. In another way

this work deals with all development phases.

In terms of reasoning mechanisms, all the systems described use CBR and another

reasoning mechanism. This secondary reasoning mechanism is used to complement

the CBR reasoning in tasks such as retrieval, adaptation or verification. Case repre-

sentations range from attribute/value pairs (used by the systems that deal with all

the programming paradigms, which makes sense, since there is a need for a more gen-

eral and simple case representation) to more complex representations like the model-

based representation or hierarchical representation. These complex representation

formalisms are suitable for more specific and restrict domains of application, which is

the case of these systems and also of REBUILDER. An intermediate representation

is the frame-based representation used by CAESER, which comprises attribute/value

pairs organized in a structure. REBUILDER uses a graph-based representation, in

the form of class diagrams. Attribute/value pairs provide a representation simple for

reasoning, but they have less expressive power comparatively to class diagrams. The

main advantage of class diagrams is that the internal and external representation of

designs is the same.

Memory structure and indexing in the systems presented here is very alike, with

most of the systems using function-based indexing with a taxonomy of functions as
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Table 6.4: Comparison table for the main characteristics of CBR software design systems, part (b).
Name Indexing Retrieval Adaptation Verification

González’s lexical-based Using description logics Substitution-based None

and conceptual retrieval

Déjà Function-based Functional similarity Rule-based with None

and adaptation-guided user interaction

Krampe’s Function-based Functional similarity Heuristics Integrity rules and

reference model rules

CAESER Functional-based Functional and Knowledge-based rules Testing code using

behavioral retrieval for composition cause-effect graphs

Althoff’s None Attribute similarity Adaptation rules None

(KNN)

CREATOR II Function-based Functional similarity None None

REBUILDER Function-based Function, behavior Analogy, CBR and Verification and design

and structural similarity Design Patterns cases, and WordNet

the index structure. This is not surprisingly, since the design problem is specified in

functional terms, and hierarchies are one of the most efficient ways to organize indexes.

González’s system uses lexical-based indexing and does not have a memory structure.

Other systems do not have indexes or indexing structure. Retrieval in almost every

system is performed using the functional indexes and the function taxonomy. Systems

like Déjà Vu, complement this with adaptation-guided retrieval, or behavior similarity.

REBUILDER goes further in this way and uses functional, behavioral and structural

similarity to rank retrieved cases. In Althoff’s work, and due to the case representation

approach, he uses K-Nearest Neighbor to retrieve and rank cases. González’s work

is slightly different and uses description logics and conceptual retrieval, which can be

viewed as a type of functional retrieval.

Four of the systems presented (Déjà Vu, Krampe’s system, CAESER and Al-

thoff’s system) have some kind of adaptation rules or heuristics, providing a limited

adaptation mechanism. González’s system uses substitution-based adaptation that

is possible due to the description logics that is used. REBUILDER explores a richer

and different set of mechanisms, like analogy, design composition and design pat-

terns. While rules and heuristics used in other systems are domain dependent, the

mechanisms used in REBUILDER are domain independent, except the Design Pat-

terns mechanism. In the verification step, only two systems (Krampe’s system and
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CEASER) perform verification of new solutions. Krampe’s performs verification us-

ing integrity rules and models, while CAESER uses cause-effect graphs, which can

be interpreted as models. REBUILDER uses a different approach performing design

verification supported on three types of structures: verification cases, design cases and

WordNet. While models, rules and cases are domain specific, WordNet is a generic

approach to verification.

6.3 Analogy Software Design Systems

Maiden and Sutcliffe [Maiden and Sutcliffe, 1992] developed an approach to software

specification reuse based on analogy. They focus on reasoning with critical problem

features, retrieving analogous specifications of the same category. A domain ab-

straction is used as an intermediate domain in the mapping between the target and

the source. Their system, Ira, uses analogical mapping and transfer of knowledge.

Ira works with object oriented specifications and it does not have a specific domain

of application. The reuse of specifications involves three steps: categorization of a

new problem, selection of candidate specifications, and adaptation of the selected

specification to the new domain. Ira addresses these three issues by: obtaining the

description of the new target problem from the software engineer; controlling the in-

teraction with the user during selection and adaptation of an analogous specification;

and reasoning with critical problem features to match new problems. The problem

specification is described using predicate logic, and it uses abstract domain models

as knowledge for the process. The retrieval of analogue candidates is an iterative

process based on component categorization. The system uses heuristics to compute

the degree of difference between two abstract domains, and also to identify analogical

matches. The analogical engine maps semantically equivalent predicates representing

critical structures.

Spanoudakis [Spanoudakis and Constantopoulos, 1994] developed a computa-

tional model of similarity for analogical software reuse based on conceptual descrip-

tions of software artifacts, intended to be of generic application. Their approach is

based on semantic similarity of software objects. They developed TELOS a concep-

tual modelling language used to represent object oriented code and design. TELOS
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enables the use of analogical software reuse.

Jeng and Cheng [Jeng and Cheng, 1993] present an approach for code reuse based

on analogy and formal methods. They argue that in order to use analogy, code

representation must be defined in a formal way, which can be provided by formal

methods. They reuse functional code and the application domain is generic. Code is

described using a formal specification. Retrieval of analogue candidates is based on

a top-down matching process based on analogies between pairs of components.

Harandi and Bhansali [Harandi and Bhansali, 1998] also presented an approach

to derive programs based on analogy. Their system is based on heuristics to guide

candidate selection, followed by derivational transformation methods for adaptation

of the selected candidates. The application domain selected is the development of

C code for the Unix operating system. A semi formal representation is used to

specify the target problem. The derivational transformation comprises two steps:

decomposition of the problem in subproblems; and then use of several application

rules. They consider three rule levels: high level strategies for problem solving, which

are generic; rules for solving problems in the operating system domain; and rules

specific to the Unix operating system.

ROSA [Tessem et al., 1994] reuses code and design specifications with a modelling

language named OOram. This language provides the representation formalism nec-

essary to perform analogy on object oriented code in any type of domain. ROSA is

integrated in a CASE tool using the OOram modelling language. ROSA uses Word-

Net with the role of associating synsets to model objects, but it does not perform

word sense disambiguation automatically. The designer must select the correct sense

for the model element. Components are indexed along a set of dimensions, which are

defined by several heuristics from analogy studies. This system can store successful

analogies for later use. To be stored, new analogies must have a score higher than

a predefined threshold value. Despite associating synsets to objects, ROSA does not

use the synsets as indexes for retrieval.

Table 6.5 provides an overview of the main characteristics of the systems pre-

sented in this section. Most of these systems deal with code reuse, the exceptions

are Maiden’s work that addresses system analysis, ROSA that provides support for

design reuse, and REBUILDER. In ROSA design reuse is a byproduct of code reuse,
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Table 6.5: Comparison table for the main characteristics of analogy software reuse systems.
Name Application Domain Knowledge Representation Candidate Selection

Maiden & Sutcliffe Specification Reuse Predicates and abstract Semantic-based

[Analysis, Object-Oriented] domain models

Spanoudakis Code Reuse TELOS conceptual Semantic and

[Code, Object-Oriented] modelling language structure-based

Jeng & Cheng Code Reuse Formal specifications Semantic and

[Code, Procedural] Structure-based

Harandi & Bansali Program derivation Semiformal specification Semantic and

[Code, Procedural] Structure-based

Tessem (ROSA) Code and Design Reuse OOram language Semantic-based

[Code+Design, Object-Oriented]

REBUILDER UML diagram reuse Graph-based Function, behavior

[Design, Object-Oriented] (UML class diagrams) and structure-based

which is the main goal of the system. The knowledge representation formalisms that

are used vary from system to system. Most systems use a specific representation

language to describe designs or code. The only system that uses a widespread repre-

sentation language is REBUILDER with UML. For candidate selection, all systems

use at least semantic similarity. The majority of these systems use also structural

similarity, in the retrieval algorithm or in the similarity metric used to rank candi-

dates. Besides semantic and structural similarity, REBUILDER takes into account

behavior similarity in the metric used to rank candidate cases.

6.4 Other Software Reuse Systems

The earlier code reuse systems were based on a library of procedures or objects,

which could be retrieved using a query system. The work developed by Prieto-Dı́az

[Prieto-Diaz and Freeman, 1987, Prieto-Diaz, 1991] is representative of these initial

systems. The main difference of this approach, against the idea behind REBUILDER,

is that our system focus on design reuse. The main automated functionalities in this

system were retrieval and retain, while REBUILDER adds reuse and revise capabil-

ities. Prieto’s approach to code reuse is based on a faceted classification of software

components. According to Prieto-Dı́az, faceted classification has two different aspects.

It must classify components by the functions it performs and by the environment in
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which it works. Conceptual graphs are used to organize facets, and a conceptual close-

ness measure is used to compute similarity between facets. He has identified six facets

for software components: function, object, medium, system type, functional area and

setting. This approach is also able to estimate the adaptation effort influencing the

component ranking.

Another work on facets was performed by Liao [Liao et al., 1999]. He describes

an hybrid similarity scheme using facets, but where each facet can have multiple

values. Unlike Prieto’s work, this work does not use a conceptual graph to compute

the conceptual closeness between facet values. It uses simple list matching. Other

difference with Prieto’s work and, in this case, similarity with REBUILDER, is the

goal of reusing object oriented code and design elements.

RSL [Burton et al., 1987] is a software design system that combines a library of

reusable components with several reuse tools. These tools are: a user query subsys-

tem based on natural language and attribute search; a score subsystem that is used

to evaluate the retrieved components; and a software computer aided design subsys-

tem used for top-level design specification. Component similarity assessment is an

interactive and iterative process between RSL and the user, which is clearly different

from REBUILDER where the computation of similarity is automated. Reusing and

revising retrieved components is left to the user, while in our approach this can be

done by the system or by the designer. It allows reuse of code and design knowl-

edge, and provides several software design tools to work with the retrieved objects.

RSL uses automatic indexing of components by scanning design documents and code

files for specific labelled reuse component statements. It also provides a functional

classification for components using a taxonomy of components.

Borgo [Borgo et al., 1997] developed OntoSeek, which is a software reuse system

that uses WordNet for retrieval of object oriented components. OntoSeek uses a graph

structure to represent both the query and the components in memory, this representa-

tion is called lexical semantic graphs. The retrieval mechanism uses a graph matching

algorithm returning the identifiers of all components whose description is subsumed

by the query. WordNet is also used for node matching. OntoSeek is essentially for

code reuse and does not perform adaptation or verification. Classification and stor-

age of new components is the responsibility of a system analyst. This shows some
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similarities with the functions performed by the REBUILDER’s KB administrator.

Helm [Helm and Maarek, 1991] describes a system for retrieval of Object-Oriented

components based on the class source code, and the class documentation, using nat-

ural language queries. In his work, indexing of classes and class documentation is

performed automatically by the system. As many software reuse systems described,

it only addresses the coding phase of software development.

ROSA [Girardi and Ibrahim, 1994] is a software reuse system that retrieves soft-

ware components, and works at the code level. This system converts natural language

queries, given by the designer, into frames, which are the structures used internally

by the system. It’s classification mechanism uses a grammar to parse software de-

scriptions, transforming them into frames. Retrieval is based on the similarities of the

semantic frames, and on the matching of the noun phrases in the semantic structures

using natural language. It is also able to extract indexes from software components,

which are then used to index these components in the software repository. ROSA

uses a knowledge base that comprises: a classification scheme; WordNet for several

tasks, including natural language processing and component classification; and the

software repository, which comprises the software components described by frames.

The system does not perform adaptation or verification.

Burg and Riet [Burg and Riet, 1997] defended that intelligent CASE systems can

benefit from linguistics. They describe a CASE system (COLOR-X) that extracts the

structure of the domain model from textual documents, which describe the domain

requirements. This analysis consists on parsing the texts and retrieving the word

meanings corresponding to the concepts in the model. COLOR-X works with a spe-

cific modelling language developed by the same team. Retrieval is based on natural

language queries, and adaptation is a composition process guided by model simula-

tion. This simulation is performed using Prolog rules created to simulate the software

models that were developed. Starting with a natural language text, COLOR-X is able

to generate the code that corresponds to the design models, but with the supervision

of the designer that has a crucial role during the process. It works at the design and

coding levels of software development. COLOR-X uses a knowledge base comprising

a software component repository, WordNet as a lexicon and Prolog rules used for

simulation. One of the disadvantages of this system in relation to REBUILDER, is
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that, it does not use a generally accepted modelling language like UML.

LaSSIE [Devanbu et al., 1991] is a knowledge-based system that helps program-

mers searching for useful information in large software systems, attenuating the prob-

lem of complexity and invisibility3 in the reuse of large system components. LaSSIE’s

application domain is telecommunications software. It uses a knowledge base and

a semantic analysis algorithm able to retrieve software components. It provides

an interactive interface that facilitates the access to the software through several

semantically-based views. It also provides a natural language query interface to the

designer, converting the designer query into frames. Knowledge is represented by

frames, and the knowledge base comprises a software repository and an indexing

structure for reusable components. LaSSIE works at the coding level and is tailored

to object oriented languages.

Bassett’s [Bassett, 1987, Bassett, 1997] work on software reuse is based on frames.

As in other systems described here, software components are described and indexed

by frames. His system is intended for procedural code and it addresses the coding

phase.

Table 6.6 shows a comparison of the main characteristics of the software reuse

systems presented in this section. Notice that all the systems focus on code reuse,

except REBUILDER. Some of these systems also perform design reuse, but this is a

secondary goal, which is a sub product of code reuse, or the systems deal with design

components in the same way they deal with code. Most of the systems cope with

object-oriented programming, with the exception of the first two systems (RSL and

Prieto’s system), which have the goal of reusing any kind of software component. Most

of these systems only perform retrieval, which enables them to use a representation

formalism easy to manipulate, like attribute/value pairs or frames. More complex

representations like in Borgo’s approach, which uses graphs to represent code, are

not fully explored in our opinion. Another complex representation is the one used

in COLOR-X, which enables adaptation using a code generator. In our case, the

class diagram representation enables to work with several reasoning mechanisms as

we have shown in this thesis.

Regarding retrieval, there are four main approaches for retrieval: attribute-based;

3The term invisibility is used in LaSSIE’s work to describe the difficulty of the software developers
to be aware of all the modules and parts of a large software system.
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semantic-based; natural language-based; and structural-based. Attribute-based re-

trieval, which uses attributes to search the code repository. This retrieval method

does not discriminate between functional, structural or behavior attributes. That

can be an advantage due to the unrestricted nature of retrieval. But it can also be a

limitation for the reasoning mechanisms that deal with the attributes, because they

do not know each attribute’s type. The second retrieval type is semantic retrieval,

which uses functional classification of components to select relevant candidates. One

limitation is that there must be a strong domain theory being semantic retrieval,

especially in component classification and indexing. The next retrieval type is based

on natural language, which most of the time uses keywords and senses to index cases.

This retrieval approach can become cumbersome due to the tasks involved in natural

language processing. Finally there is structural retrieval, which supports retrieval on

component structure, and is more complex than other retrieval types. Due to the

highly structured case representation of REBUILDER, it uses functional retrieval as

the first criteria for selecting relevant candidates, and then uses functional, structural

and behavioral similarity to rank candidates.

6.5 Systems that deal with Analogical Retrieval

This section describes some of the systems that deal with retrieval for analogical

reasoning. Since it is an important aspect in REBUILDER and is the focus of one

experimental study, we decided to add this section so that the reader can have an

idea about other systems addressing the same subject.

Gentner and Forbus [Gentner and Forbus, 1991] have developed the MAC/FAC

(Many Are Called/Few Are Chosen) approach to analogy retrieval. It comprises a

two-stage structural retrieval model, where in the MAC phase a crude idea of the

case structural content is used to retrieve a broad range of cases from memory. Then,

in the FAC phase, a detailed structural similarity metric is used to eliminate several

cases, and to rank the ones that are chosen.

The Holographic Reduced Representations (HRR) approach [Plate, 1994] com-

bines semantic similarity and structural similarity. The semantic similarity is based
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Table 6.6: Comparison table for the main characteristics of software reuse systems.
Name Application Domain Knowledge Representation Candidate Selection Adaptation

RSL Component Reuse Attribute/value pairs Natural language None

[Code+Design, All] and attribute search

Prieto-Diaz Code Reuse Attribute/value pairs Attribute similarity None

[Code, All] based on semantic distance

Liao Software Reuse [Code+ Attribute/value pairs Attribute similarity None

Design, Object-Oriented]

Borgo Component Reuse Graph-based Graph matching None

[Code, Object-Oriented] representation retrieval algorithm

Helm Code Reuse Code representation Natural language None

[Code, Object-Oriented] retrieval

Girardi Code Reuse Frame-based Semantic and structural None

(ROSA) [Code, Object-Oriented] representation retrieval

Burg ICASE tool [Code+ Specific modelling Natural language Code generator

(COLOR-X) Design, Object-Oriented] language retrieval

Lassie Telecommunications domain Frame-based Semantic-based None

[Code, Object-Oriented] representation retrieval

Bassett Code Reuse Frame-based Semantic and None

[Code, Procedural] representation structural retrieval

REBUILDER UML Diagram Reuse Graph-based Function, behavior Analogy, CBR and

[Design, Object-Oriented] (class diagrams) and structure-based Design Patterns
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on the common semantic primitives of objects, while the structural similarity is ac-

cessed using the various roles of each object. This structural similarity is not a

complete assessment of the structural similarity, but a superficial one.

An approach using constraint satisfaction (ARCS - Analogical Retrieval by

Constraint Satisfaction [Thagard et al., 1990]) applies three similarity mechanisms

through the creation of a constraint network. These mechanisms are: lexical similar-

ity, structural similarity, and pragmatic similarity.

RADAR (Retrieving Analogies utilizing Derived AttRibutes) developed by Crean

and O’Donoghue [Crean and O’Donoghue, 2001], was created to retrieve semantically

distant analogies in a computationally tractable manner. It is based only on structure

mapping (systematicity), and the main concern of this approach was that distant

analogies would not be rejected by the semantic similarity. We have adapted some of

the ideas in this work to REBUILDER, and tested them.

REBUILDER takes inspiration from these works, and especially from RADAR.

We have implemented a candidate selection metric for selection of analog cases, based

on RADAR work, which states that structure is more important for analogy than

semantic similarity. Section 5.3.3 describes the experimental work performed with

the idea of RADAR in mind, adapted to REBUILDER’s situation. The MAC/FAC

work is very different from our work because it only uses structural similarity to select

candidate sources for analogy. ARCS uses other type of knowledge for retrieval,

like lexical or pragmatic, which are not used in REBUILDER. HRR is the most

similar work to REBUILDER, because it combines semantic and structural similarity.

REBUILDER also adds up behavior similarity.

6.6 Design Patterns

There are some research works in the field of software design patterns that have

common aspects with our work. This section describes these works and compares

them with our approach. It is important to say that research on software design pat-

terns has three main lines of action: (1) discovery of new patterns, (2) classification,

description and representation of patterns, and (3) application of patterns. In our

work, we deal primarily with the application of patterns, but we also address the
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issue of pattern representation. The systems described here deal with the application

of patterns.

Eden et. al. [Eden et al., 1997] proposed an approach to the specification of

design patterns, and a prototype tool that extensively automates their application.

This approach considers design patterns as programs that manipulate other programs,

thus they are viewed as metaprograms. Eden’s approach does not automate the entire

process of pattern application, since it is the designer that has to select which pattern

to apply. In our approach this step is automated. Another difference is that Eden

applies patterns at the code level, while we apply them at the design level.

Tokuda and Batory [Tokuda and Batory, 1995] also present an approach in which

patterns are expressed in the form of a series of parameterized program transforma-

tions applied to software code (refactorings). Refactorings are basic program trans-

formations, which are at a lower level than REBUILDER’s pattern operations. In

our case a pattern has only an operator, but an operator can use another operator.

In Tokuda’s work several refactorings can express one pattern. Like Eden’s work, this

work does not address the automation of pattern selection. It is important to stress

that the application of refactorings has to be assisted by the user.

Other works on specifying design patterns and automating its application are

presented by Bär [Bär et al., 1999] and Cinnéide [Cinnéide and Nixon, 1999]. These

works also automate the application of design patterns, but do not select which

pattern to apply. This must be performed by the designer. Both works deal with

design modification instead of code modification.

Cinnéide’s work starts with the user selection of a design pattern. After this, the

precursor for the selected pattern must be chosen. A precursor is defined as a design

structure that expresses the intent of a design pattern. This concept is very similar

to our concept of pattern participant, but is more specific. After the precursor is

chosen, the selected pattern is decomposed into a sequence of minipatterns, which

are a design motif that occurs frequently (similar to a design pattern but at a lower

level). Then this sequence is applied in the precursor ’point’ resulting into the design

transformation.
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6.7 Word Sense Disambiguation

Word sense disambiguation (WSD) is the process of identifying the correct meaning

of a word. In REBUILDER this is an important task, because this is the process that

associates a synset to a software object. This synset is then used for several purposes,

from classification to similarity computation. WSD involves two main steps (for each

word): establishing the word possible senses; devise a method of assigning the correct

sense to the word. Most of the recent work on WSD uses a set of pre-defined senses

from dictionaries or already created from a thesaurus, as a solution for step one. The

systems that deal with the second step, can be classified into three main categories:

knowledge-driven, data-driven (also called corpus-based), or hybrid (combining both

approaches).

A work following a knowledge-driven approach was presented by Nastase and

Szpakowicz [Nastase and Szpakowicz, 2001] involving disambiguation of word senses

in Roget’s Thesaurus. They use the information in WordNet to disambiguate word

senses, based on word lists of neighbor senses. Then these word lists are compared

yielding a disambiguation score that can be used to determine which sense to use.

We have implemented this method in REBUILDER.

Wilks and Stevenson [Wilks and Stevenson, 1996] propose another knowledge-

driven method based on part-of-speech tagging4. Their main claim is that part-

of-speech tagging has some connection to semantic disambiguation. This method was

not implemented in REBUILDER, because REBUILDER does not include a part-of-

speech tagger.

Most of the recent methods combine both approaches - knowledge and data driven.

An hybrid method was presented by Yarowsky [Yarowsky, 1992], he supports the

WSD method on statistical models for Roget’s Thesaurus categories. These categories

can be regarded as conceptual classes which tend to correspond to senses. A version

of this method is implemented in REBUILDER under the name of semantic vectors.

Instead of using Roget’s Thesaurus categories, it uses WordNet top noun senses.

Kwong [Kwong, 2001] has recently presented a WSD study using WordNet and

Roget’s Thesaurus testing four different WSD methods, which are then combined

4Part-of-speech tagging is the process of associating a lexical category to the words in a text.
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with the entry sense ordering method to provide the best results. This combination

enhances significantly the accuracy of other methods, showing that the combination of

the two approaches (knowledge and data-driven) can be very positive. REBUILDER

implements a method that combines several WSD methods, called method combi-

nation, but surprisingly, experimental results are not very promising, either to our

domain (diagram disambiguation) or to more general tests like SemCor (see section

5.8) .

Li et. al. [Li et al., 1995] propose an algorithm for WSD based on WordNet,

which uses relations between verb and noun. Their method is applied to nouns,

that are objects of verbs in sentences. The method is based on semantic similarity

between concepts and is computed using WordNet. The difference concerning our

system, is that REBUILDER only uses nouns, since it works only with entity names.

A possibility to use verbs within our approach, to aid the disambiguation of software

object names, would be to use relation’s names in UML. Unfortunately, from our

experience, designers often do not give names to relations.

Smeaton and Quigley [Smeaton and Quigley, 1996] describe an information re-

trieval system for image retrieval based on image captions. They use two disam-

biguation methods, both based on a semantic distance between words. This semantic

distance uses WordNet, and the probability of the Most Specific Common Abstraction

(MSCA) between synsets, occurring in a large text corpus.

Michalcea and Moldovan [Mihalcea and Moldovan, 1998] propose a WSD method

based on the idea of semantic density between words. They use WordNet as a general

ontology and Internet as a source for raw corpora providing statistical information

for word associations. Their approach is targeted for verb-noun pairs and they define

semantic density between words as: the number of common words that are within

a semantic distance of two or more words. The closer the semantic relationship

between two words, the higher the semantic density between them. They also present

an iterative WSD method [Mihalcea and Moldovan, 1999], based on WordNet and

SemCor [Miller et al., 1994]. This method disambiguates words iteratively based on

several procedures that use word relations in WordNet.

Rigau et. al. [Rigau et al., 1997] present a WSD method based on the combina-

tion of several unsupervised algorithms. Their approach is driven by the assumption
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that resolution of lexical ambiguity can be successful combining several information

sources and techniques. In REBUILDER, we use a method which combines several

WSD methods, but experimental results (see subsection 5.8.2) were not encourag-

ing. The experimental results presented in Rigau’s work show an improvement in

disambiguation results, with the integration of several WSD methods. Though in

some results, the individual methods are better than the score for the combination

approach.

Resnik [Resnik, 1995a, Resnik, 1995b] uses WordNet and data on word frequency

as a basis for a WSD method that takes into account the semantic similarity of

synsets. A basic assumption of this method, is that the similarity of two concepts

is the extent to which they share common information. This is one of the methods

implemented in REBUILDER.

Gale [Gale et al., 1992] provides an estimate for upper and lower bounds of WSD

method performance, and stresses that method comparison is very difficult, since ex-

perimental set-ups are very different. He identifies the lower bound of 68% and an

upper bound of 96.8%. Obviously, these limits depend not only on the particular

experimental design, but also on the human judgment made on the classification.

This is clearly seen in the experiments performed using several WSD methods im-

plemented in REBUILDER (see subsection 5.8.2). With methods applied in similar

circumstances, the accuracy reported by the authors of these methods is much lower.

6.8 Discussion

From the several issues to be addressed by an Intelligent CASE (ICASE) tool, we

focus on those related with knowledge use and reasoning needs. In this chapter

we follow this framework to make a comparative study on different systems versus

REBUILDER.

Most of the functionalities present in ICASE tools complement or assist a human

in designing a system. This is performed with the system carrying out the routine

tasks, relieving the human designer to more creative tasks. But there are also func-

tionalities that can only be accomplish in an automated fashion, especially those

involving huge amount of knowledge or data. For instance, searching a KB with
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hundreds or thousand of objects is an impossible (or at least impractical) task for

humans.

The basic functionality that an ICASE tool should have, is the ability to suggest

alternative designs. In CBR and analogy-based systems this can be accomplished

by retrieval of similar designs and leaving to the designer the adaptation phase, or

automating this step. In REBUILDER the designer has the flexibility to choose,

what s/he prefers. Most of the design systems presented in this chapter perform

adaptation. This functionality is important so that the designer can explore the

design space, evaluating the design alternatives.

Another important issue related to design adaptation, is that most of the times,

reuse implies adaptation, since the common scenario is that the most similar design

needs modification to be reused. This makes adaptation a very important task, but

it is also a knowledge intensive process requiring a lot of expertise to be successfully

performed. From the experimental results presented in chapter 5, it can be seen that

adaptation is not fail-proof and that it still needs human intervention. A possible

solution in helping the designer reviewing the generated design is to complement the

adaptation strategies with a verification module, as it is performed in REBUILDER.

Another basic functionality of an ICASE tool is to structure the design experiences

and to make them accessible for future use. This is accomplished by structured design

repositories in a way that they enable classification and storage of software designs,

and also allow efficient retrieval of these designs. In REBUILDER and in most of the

other systems, this is accomplished through a case library that stores designs as cases,

ready for later use. REBUILDER goes further, because it organizes these cases using

general knowledge in the form of an ontology. This enables inter-domain retrieval,

which is not performed by other CBR systems described here. The design repository

is also important for the company, because it represents a corporative memory that

can be reused. This prevents the loss of this know-how when an experienced designer

leaves the company.

Designers are the main focus for an ICASE tool, but they can also be seen as

knowledge sources. In REBUILDER, the designer provides several types of knowl-

edge: design cases, verification cases, and software design pattern application cases.
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These cases can be acquired from the system’s reasoning, but they can also be ac-

quired from the interaction with the designer. All the other systems learn only design

cases. Taking advantage of the designer interaction to learn new knowledge is an

important functionality for an ICASE tool, which enables the improvement of the

system’s reasoning capabilities.

An ICASE tool must also support evolutional and incremental development of

the system’s design, as well as maintenance. Flexibility is a key issue here. The

system must be flexible enough to provide the designer with several tools. Each tool

can be used at the appropriate stage, allowing an incremental evolution of the de-

sign. REBUILDER integrates such framework by providing the designer with several

cognitive functions, selectable at any point in the design. Some of these functions

are: retrieval, adaptation, verification, and evaluation. For design maintenance, our

system provides the application of software design patterns to evolve and restructure

the system’s design. Other systems do not provide alternatives in this domain.

Another important aspect is the capability to represent, understand and visualize

artifact semantics. These are important aspects for the designer, helping her/him

understanding the reusable components, making possible the communication with

the system. Some representation mechanisms are unsuitable for designers, two main

reasons for this are: they are not schematic enough, or they are not familiar to the

designer. In our approach, this issue is solved using UML. Being one of the most

used software modelling languages, and integrating several visual diagrams capable

of describing a system along many views, it is a suitable representation formalism for

the designer and for the system. We also integrate a natural language component

through WordNet. Most of the other systems use specific modelling languages, which

makes them difficult to use, due to the human-system communication barrier.

Other functionalities that an ICASE should integrate are: enable reverse engineer-

ing, code generation, and integration with the programming environment. These are

more programming-centered issues, because they are not necessarily needed for design

reuse, though they are important for the system’s usage. These extra functionalities

can be implemented in a more intelligent way, automating several boring and time

consuming tasks that are performed by designers. Human programmers tend to be

reluctant to modify code that they didn’t write, and this can be a way to make them
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more comfortable about code revision or modification. The same applies to design.

This is one future research direction for REBUILDER.
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Conclusions and Future Work

This chapter presents the main contributions of this thesis, which are the result of a

three-year research project. The main areas of contribution are: Case-Based Reason-

ing, Software Reuse, Intelligent CASE tools, Word Sense Disambiguation, Analogy

and Creative Design Systems. Along the development of REBUILDER several new

research directions were also identified, but due to the dimension of the research nec-

essary, they have been postponed for future work. We present new research challenges

and improvements that can be performed on REBUILDER.

7.1 Thesis Contributions

REBUILDER has been a test ground for many ideas and a challenge that has touched

several areas. Our initial goal was to develop a software system that could reuse pre-

vious designs in new projects. This idea matured and evolved into a system with a

client-server architecture, based on CBR for reasoning and knowledge management.

It is also viewed as a tool that enables reuse at corporate level, working as a knowl-

edge repository. Communication aspects between designer and system also received

attention. This was accomplished through the use of UML and a first step into incor-

porating natural language understanding, in the form of word sense disambiguation

for software object names.

The main contributions of our work are:

• A client/server architecture supported on a CBR framework, as well as the way

the different modules interact are one of the main contributions of our work.
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This provides an approach for integration of a ICASE tool with a knowledge

management tool for software design.

• An UML representation. Instead of choosing a computer-centered case repre-

sentation formalism we have used a user-centered approach, which lead us to

choose UML as the representation formalism. We show that it is possible to

use UML for reasoning purposes and we have presented a way of integrating it

into a CBR system.

• An indexing scheme based on WordNet. Regarding case indexing and retrieval

we have made two contributions: the indexing scheme based on WordNet that

indexes not only the cases but also it’s subparts, and the associated retrieval

and similarity metrics.

• In the case adaptation problem we have addressed this issue in a broad per-

spective, trying to explore several alternative approaches:

– In the analogical reasoning for case adaptation, our main contributions

are the way WordNet is used for choosing analogue source candidates, the

mapping algorithms and the experimental work about creative design.

– Another adaptation mechanism is the design composition, which can gen-

erate new solutions from several cases. Our main contribution here is the

composition strategies that were developed.

– The last adaptation strategy is the automatic application of software de-

sign patterns. We think that this is one of the strongest contributions of

this work, because it is the first approach that fully automates the appli-

cation of software design patterns, going from the pattern selection to its

application.

• A mechanism for solution verification. In the verification of solutions we have

contributed in three ways: the definition and use of verification cases, the per-

sonalization of the verification knowledge in the form of cases, and the use of

WordNet for verification purposes.

• Maintenance policies for the case base. We have integrated several case base

maintenance policies, which provide guidance for the KB Administrator in the
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selection of the case base contents. Our contribution is the adaptation of these

policies to a graph-based representation of cases.

• A word sense disambiguation mechanism. In the problem of word sense dis-

ambiguation we have contributed with two new disambiguation methods and

experimental work comparing several methods from the WSD literature.

7.2 Future Work

During these three years of work, we have came across several research issues, some

of which we addressed because we thought they were within the scope of this thesis,

others were left for future work or for other researchers to pursue. We now describe

them, organized along research areas.

• The integration of other development phases, in addition to design, into the

REBUILDER scope is one of our goals for future work. The analysis and

implementation phases are the next steps in this path. The design phase can

also be improved by addressing other types of UML diagrams. The integration

of code reuse in REBUILDER allows changes made in the code to be represented

in the corresponding design model, and vice-versa.

• Another future work on REBUILDER will be the integration of a natural lan-

guage module, capable of understanding a text in English and yield a class

diagram modelling the text contents.

• As a CASE tool, REBUILDER has a reactive behavior. A possible future di-

rection can be the modification of REBUILDER’s behavior to a more proactive

one. This would help the human-machine communication, because it would

model the designer’s cognitive states and would try to suggest actions based on

it.

• One important improvement would be the integration of specialized knowledge

in WordNet, this could be done allowing the KB administrator to insert, delete

or modify synsets or relations between synsets. Concerning this issue, we have

251



CHAPTER 7. Conclusions and Future Work

already integrated the Java class hierarchy into WordNet, which enables RE-

BUILDER to deal with specific object-oriented classes like: button, file and

others.

• New reuse mechanisms can be easily integrated in REBUILDER. Several new

ways of adaptation can be used, such as, model-based reasoning, constraint-

based reasoning, genetic algorithms and others.

• We would also like to improve the analogy mechanism in order to provide better

evaluation guidelines in respect to creative properties of generated designs.

• Verification of classes and interfaces is superficially addressed within our work.

The only action performed in order to check class or interface validity is to verify

the object name. This could be taken further away, if the verification mech-

anism could inspect and reason with the class’s attributes and methods. The

retrieval process used to select verification cases follows a very restrictive view

of case usage. This can be explored in future work, especially the development

of a similarity metric for verification cases that is able to relax the retrieval

constraints.

• Learning could be introduced in case verification. This could be achieved by

learning general verification principles from verification cases, using an abstrac-

tion process over verification cases and WordNet. Remember that each designer

has its own verification case base.

• Further experimental work with the case base maintenance strategies is neces-

sary in order to better characterize their behaviors. The main problem here is

to get a case base large enough, which would be a good representative of the

domain space. In conjunction with these experiments, we intended to perform a

study of the effect of different subsumption criteria and combination of several

policies.

• Reasoning quality is highly dependent on a correct object classification, which

makes the WSD a crucial part of our system. Although we achieved good re-

sults, they are not yet 100% correct, which probably will never be achieved.

Notwithstanding, there is a progress margin concerning this issue that justifies
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a research investment on this problem, and specially about ”diagram disam-

biguation”. The disambiguation of relations’ names can also be addressed, with

the benefit of the system being able to provide synsets to UML class diagram

relations. This could provide more knowledge for reasoning mechanisms to work

with. Testing other lexical resources or text corpus with the WSD methods can

also be a possibility of improvement of WSD.

• A main future work issue is trying to field test REBUILDER in a software com-

pany, which implies the improvement of REBUILDER’s prototype. The Goal-

Query-Metric methodology [Nick et al., 1999] can be used in the field testing.

This could be the starting point for REBUILDER II.
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