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The objective of ihis work is to analyse and discuss the elasto-
-glastic behaviour of frames eiposed to loads and/or other external
actiors which vary significantely and repeatidly in time.

Several theorems and methods were developed many years ago for
predicting wether an elasto-plastic system will shakedown (sd) or other
wise it will undergo failure by incremental collapse cor alternating
plasticity.The limitetions of the sd theory (in classical terms) lead
to research activities lately in fields such as civil,mechanical and
muclear engineering.

Some of the developments were originally carried out by the conti

numr approach;cthers by means of discrete étructural models (fe) wich
provide a basis for numerical solution,

It is also important *to acess the order of magnitude of some dig
placements and/or intrinsic deformations even sd is acertained, Excessi
ve deflections may mean unserviceability and excessive strain may imply
local failure.Upper bounds on deformation parameters are the third sub=

ject of this work.

2 .CLASSICAL THEQRY BY L.,P,

2,1 Histecrical Development

Bleich/1/ found a theo¥en for itrusses generalized by Melan/2/ for
trusses and continum,Symonds and Prager/3/ gimplified the prouf of the
theorem and Neal/4/ adapted it for flezural frazmed structures conside-
ring sonent-curvatures relatonship of linearly elastic and perfectly
plastic.Also an unsafe metiwd based on the combination of mechanisms
Symonds and Neal/5/ and Neal/6/ may be implemented for 1lp.The problem
of failure by unbounded plastic daformations was presented by Koiter/7/
but Horne showed/8/ that for most loaling environments this type of fai
Iure is not significant.Maier/9/, Cedarini and Galvarini /10/formulated

The safe lp in nmesh form and by dualization They obtained an unsafe 1p



escorniet to lNeal's unsafe method . The gcornection hetuyeen Xoiter theo
and Keal's methed was showved by Maier,

2.2 Main AssumntloﬂaLjherefore,limitations)

Inviscid perfectlymplastic(non—hardening) laws govern local de-
rmability,and involve convex yeld surfaces,associative flow rules and
stant Young's modulus;the firt statement concerms structures subjec-.
10 varisble thermal loading,with time dependent matcrial properties.
Geometric changes do not affect signifficantely the equilibrium
laticns. |
Material preperties not influenced by temperature changes.
The loading acts so sTowly that inertia and visccus forces are
glected: the systeﬁ behaves in a quasi-static way.
Shakedown guarantees that failure willnot occur,not taking into
secount the development of excessive deformations or local failure.

2.3 Statics and Kinematics of elasto-plastic structures

When 2 mechanism develop prior to failure,at the limiting state
pf plastic collapse,increments of structural displacements¢1§ are due

p increase in plastic deformations at critical sectionsAu .3ince the
b

pchanism must be compatible,the elastic deformation field remain un-
shanged 2nd is associated with small displacemenig-original undeformed
georetry of the structure to be congsidered.At pre-collapse étate incre=
ents in displacements must be written in temporal rate'é to distinguish
iPyom collapse mechanism due to either g, increments in plastic defor-
ations at critical sections or EE increments in the elastic range.
The structure is considered to be a set of fe connected at the

& |

pde points. GM,B represent the plastic rotation increments,the recove-

mble deformation assoclated with the curvature ?<H)represented by the

GEMJ o
ation 1ncrementbe£the cherd joining the nodes. “ﬂh, * are the total

wformation increments. Both mesh and nodal description are applicable,
now an integration over the total duration of lozading for statics

the deformation process for kinematics must be carried out.
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2.4 Blasto-plastic Congtitutive Relations

A material element of a flexural fe as the same loading-unloading
linear elastlc law as for initial loading, It alsc behaves as perfectly
plastic: a plastic flow k may be induced whenever the. applied moment is

m, or- indepedently cf total curvature of the element k.
+ 1-
é Linear Elashicly m (A =EL K (A) o iA) =z ET K (&)
= F m
SEW P rmm,,- Km Bam
Flexibility Relations . Stiffness Relations

3

The plastic phase can only be reached at elements concentrated av
eritical sections.If elastic curvature subtracted,the plastic curvaiure
resultant across the lumped point is the total ph rotation.

Considering the history of loading anc unloading from initial con

ditions at critical section i with an applied bm m; ,an increment of
in the loading program will produce an increment of ®; in the plastic
rotation. B; depends not only on ﬁi but also on wm;

L

Let Qi;Eft-S"L pair of non-negative parameters which exhibit Com-

-
i

-{ + - U
plementary properties: -f7 =0 3 © t, 20 i
m; mtt . . L r .+t —l] x| B lzo
S W * Thus : Activation condition LY Y 5t
s ‘MLL * LI » _' 1
I : B Flow condition [_j* J ‘] Kg]
-y Increment cf plastic emergy dissipation
D =it mit} [e
2.5 Governing Eguations ~ ¥ * \ 6
. . - T ik } & N : £ i
‘Activation laws g, 5 [N M;l"« - : {5 _[mﬂ] ,g% ; jﬁ%*’f
Flow laws ,;‘,j" sNTA s BN : :}L E' 0 \j‘ <o 3850
The 2¢ yeld hyperplanes form a T ctangu+er box W¢thlﬂ which the

the yeld conditions are gatisfied by any moment set

|y w 2%.% 4  Activation and wmeutral loading

5
- m; { G—> Activation and vnloading

The condition for unlozding or meutral loading do not avply to all
plastic potential rates,being related only to e subset for which the

corresponding yeld hyperpylanes have been activated.
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gended to thne case of stress—~resultant interaction.

; 2.6 Geomebrical Representation of the Safe Theorem A

Considering a loading domain in a load space based on n indepen
dently variable quasi-static lozding,if a parameter/uze is applied %o
the dorain,it will expands or contracts zccording te the variation on

.For a guiven design sf a structure,when the domein coincides with

Jll-

the instantanecus hypersurface of collapse a mechanism develops.

Points of the hypersurface are determined by pla and any convex

ecombination of these points yelds a-safe loading domain.

The moments at critical sections are found in the elastic phase
applying a unit value of each loading separately in such a way that the
strocture does not yeld plastically.lt is introduced a independent va
riable + which represents the loading hystory(temporal factor)umgkga%&,

If any part of the moment range is not contained in the yeld po

lytope,an admissible loading programme may cause plastic flow to occur

at some critical sections.The linear nature of the parametric transfor

mation of the domain alloud to restrict/tf to the yeld polytope putting

/ril .However,a linear elastic response is produced for any load in

the prescrbed domain even if a small amount of plastic flow takes pla-

ce in the early stages of the process.

Continued loading in the above conditions produces a moment Ires
ponse ro (t) which differs from the entirely elastic moment response,nneu)

That difference with respect to a guiven instant t 1is called residual

(yare each in equilibrium with the loading Ald) 1%

moments.Since maland me

is therefore gelf-equilibrating.

This residual moments have the meaning of permanent plastic To-

tations induced during neutral 1oading,since they remain when the loa-—

ding is remo ved ,providing no further deformations occurs during unloa

ding.

. * H ¥ e = 5
Any loading IOW ProUuCces the same elastic responsewqﬁibun these

,ﬂ.-[ “1!-' - T W = g - - L - L —— — - - _ ——
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uperimposed on Ene reésidual moments gulving a new elas

M
0

BOTET TS TUS
%je romge,being changed the origin of the memenl space.

) If the plastic deformation associated with the Ioading programme
may czuse the elastic response to be wholly conbained in the yeld poly-
tope the structure is said to have adapted itself to its loading envirg
meent or to‘have chakedown.This adaptation is not possible if it exists
any md:ent outside the elzstic range.

The residual momentz are not dependent on time and not related

with the actual loading programme.

2.7 Safe Shakedown Theorem (Rleich-Melan)

SD occurs if there are constant self—equilibrateé stresses (resi
dual moments) ,such that the supperposition of them in the unlimited 1i
pear elastic response of the structure,to all loading programms. of in-
finite duration ccntained in a pregcribed domain,is statically admisgi-
bies  Je o N7 Tmerd@lome €0 v all monE

2.8 Determination of the Toading Paremeter

It is a straightforward application of the safe theorem:

The elastic moment range is defined .2s the smallesv get of M con
taining E bounded by the hyperplane corresponding to the yelding in the
eritical sections,which normals are parallel to those bounding the yeld
polytope .If E is tranlated to E' which is contained in the yeld .polyteo
pe,the envlope of bm is also contained in the hyperplane.The values of

the br a2t the critical sections are evaluated,and we find the maximum

elasiic stress: {r4*} LM, s Mex  [NT Wﬁ} N: Normal HaTeic
& : M- o Y ~
If now the loading domaiﬁbﬁs mreltiplied by a loading parametezyﬂ)
B becomeS);E,M will bg}LM.For a single paramebter loading domzin,the egs
welope is defined by the perpendiculars/yM, which are the maximum elas-
tic moments in both senses at each critical section due to any loading
The set of residusl moments mm, must be such that the new set of
bm,obtained by adding them tO/uH§Will be as large as possible but contal
ned in the yeld polytope.

Depending on the mode of descriphbion used,two lp are obtained:
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Uhen a 1oad1ng domain D implies that the stru0uure is unable to
sd,plastic deformation will develop without bound under a lcading pro-
gramme to failure.If the mechanism is compatible,a temporal notation

is adopted for both déformation and moment increments

>

")U Qe;eu+9 . ’m=ﬂ:‘1e+'\:ﬂr

If there is no increment in plastie deformatﬂonﬁ Oﬁme;QFO.

Plastic hinge rotations g induce a unique .set of residual bm am, Tound
by solving the unloaded elastic structure with the imposed rotation in

cluded.The unigueness is agsured:since 9 is compatlble,?' Qerfa is al

o

so compatible ,belngf% andf3 not compatible. IT is compatible the de
formationlcorresponds to an instantaneous plastic mechanism for Whiéh
Pﬂ;u;and hence Qﬁr=g .Plastic deformations increase without bomd if they
are compatible to a load programme for an - “dnterval (¢,7)which can be re-
peated indefinitely.

’ When =2t least one section equal plastic rotations of opposite
sense are induced during an interval (0,7) the mean rotation becomes ze-
ro satisfying compatibility.As the loading programme is repeated both
AO omnd AP increase without bound while A, remains zero.This mode of
failure does not satisfy complementarity bondltonJﬁﬂjﬁoana is called

fr A e

alternating plasticity. AB =N LD =0 - AR Fo

If the mode of failure satisfies complementarity and its cecm

nstantaneous

|-+

ponents simoultareously considered do not censtitute an

collapse mechanism,the structure is subjected o an incremental colia-

pse mechanism.The effect of the rotatica during the interval (6,7 is
to produce a progressive collapse of the structure if the cycle ig rg

peated indefinitely.
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The duval programs of above can be writtewn: ' T
k\'w 5: MIAQ; Hew 3= [MY- 0] - [A,‘.‘f r
i AB L. !
MESH DUAL M m@,:{‘} NODATL DUAL | | W+ 2 X]' ~*
g ] Tl L -a] Lew]-]e
AE}‘ >10 A_@_& 20 q :i:lgf' WEArﬁJu;!

The dual variables have the meaxning of displacements and
rlastic rotations inﬁhe nodal description and therefore the objecti
ve function represents dissipated energy.In both the normalization
or scaling condition appears,being the compatibility condition for
the admissible modes written for %mesh or nodal description of ki~ .
nematics. .

Both an unsafe method due to Ileal an%ﬁhe application of Koi-
ter thexrem reach the same answer ,althougﬁyﬁeingéounded in different
principles:leal's wmethod is completely independeﬁt of sequential pa
rameter,since it is based on the yelding moment envelope ,while Kod
ter's approach is based on the loading domein and its sequential wva

riation. /11/

2.9 Unsafe Shakedown Theorem (Koiter)

If for a prescribed loading domainbwith paramete%/u the quan
tity /«ﬂfgp,balances the energy dissipated in the ph on any kinema
ticaly admissible mode of failure.i? to sd then/A is an upper bound
to the limiting parameter of sd of the s%ructuriﬁt.

2.10 TP Duality

Applying the K-T conditions for the nodal description

/?—;i

) T )
{-4)  KINEMATIC ADMISSABILITY |- MaAB-c (Normalization)

Aby -488 =0 (Compatibility

Wy
——L i?ﬁ and Flow Rules)
J ﬁ_ﬁ"jn
(Modified Yela Conditions) jM {o STATIC ADMISSABILITY

(Modified Associative Rules) Yu ABe =5
(Self-equilibrating Residual Moments) AT wy =o

The non-negative loading parameter must bie considered as

unrestrictsd for the sake of dvality.

v
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v.2. models of contipum xay be solved by these 1p providing
the symbole employed are guiven generalized meanings.

Bean—-colurm problens may be solved either considering a plece
wise lirearization of the moment-rotaton relationship.Whithout doing
this a nlp must be solved.

When the lodding is raduced to a single point in the load spa
ce,both sd theorems reduce to the safe and unsafe theorems of pla,’
respectively.Since time-invariant external actions are assuﬁed to be
a single point of the loading space both elastic and residual strains
are unimportant in the determinaton of loadlng parameter .

Z  EXTENSIONS OF CLASSICAL SD_THEORY

%z 1 Recent Developuments

The restrictions of sd theory mentioned in 2.2 were relaxed due
to the work carried out mainly by the italian school,to meet gtructu
ral needs in the various technolegical areas already mentioned.

Cedarini /12/ produced gsafe theorem to cover dynamic loading,
while Corradi and Maier /13/ have formulated the unsafe theorem.

Po introduce the dynamic problem it is necessary 1o 00331der
the introduction. in the equilibrium-équatlons(nodal description) of

o~ -

on zdditional term.. . Caw o g ox 0

— -

-3 2 Hardening =nd Gecmetrical mffects 2 R pmes T e

Two further assumpbions must be made for the evalvation of the
se effects: a) It is considered a elastic workhardening law,changing
the yeld limits 11nearly

b) During each cycle of loading the axial loading remains
congtant.
The formex condition modifies the elasto—plastic constitz

tive relations ,and the ac*lfatLon laws can be rewrlttcn°
Y= NT (e Mgy 87 4 H BT)

=i = N = (ﬁf#\:r 4 “?. ‘a*i i y,]—}. %—‘) , ,
The hardening modaLnsbcan deseribe seversal hardening rules:i¥/




wor ner--interacilve veld mcdes the cress terms are rnlliTor cons-—=
G, % s . G i
tant kinematic hardening w#ith Bauschinger effect My s by, == W =y =l g
i

The equilibrium equation must alsc be added a term,since the

displacernents are supposed to be smali:
- ATme -G dq=2
~r ~ ~ AL

The compatibility motrix was already defined A :Due to the
1ast assumption,the geometric stiffness matrixGeontains ® linearly
and is costant,producing a 1inear elastic momert response due to re

_ gidual plastic strains:
Using *the nodal-stiffness formulation
moe KA Lffg)" [ ad x-AT(n - 593)1 v K {m - Kbe)

wherey ATkA -5 3 kg jmeg o o wrele A SRl

Now,the stiffness matrix S is replaced byses.S+Gr.Defining
Z;-@Jsgﬁﬁ—kks the influence coefficient matrix,the following con-
dition play an important role:

W - ';’,T?, N =¢ Symmetric,positive definite with

It can be showed that the work produced by external loads
is proportional to &, S &e +é*5€)/ ,which for ¢ positive,guaran-
tees the stability o%'all:}elding modes .

The symmetry of C require the symmetry of the hardening
matrixﬂand thus only a few hardening rulss are to be considered.

If it does occur unstable behaviovr in the loecal deforma~
pility,it is compengated by stabilizing geometrical effects and
unstabilizing gecometrical effects may be compensated by hardening
behaviour.

The Safe gp theorem can be stated in this more general col
text:SD occurs if the overal stability condition holds and if the
re is a distribution of constant plastic strains such that the
yeld conditious sorresponding to these regidual strains are satvis-

fied by the sum of the stesses generated by then and the unlimited

1inear elastic recpPonse +p 2ll loading programs OF infinite dura-—
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This can be expressed as Yy = N me -8 Bor £ vy
’ -~ bl ~

C-C:-h- N 2 N redefinieis fhe other condition for SD to occur

p~

Let M, - e TaTme]
s MiguhE

s 0 T

[ne e )™

How the static admissability is expressed in terms of kine-

Hw (5 = A KT-EAB:Q

T N . T ) ]
NODAL DUAL [Eﬁ }“AQ*=€ *
-C

-

EODAL FRIMAL

matic constants (residual rotations).The dual program guives an up-
per bound to the loading parameter if the overal stability conditi-
on is not saticfied.

The feasibility of this program depends on the second cons-
traint: If in both and  are symmetric and positive semidefini-
te,a compatible set of plastic strains canrot alter the yeld polyto

pe . hen is positive definite the lp becomes infeasible,ie the sys

tem sd under any loading program. This occurs for an isotropic har-
dening without considering geometric effﬁcts or for stabilizing ge-
ometrical effects in absence of hardening,

A value of the loading parameter greater than 1 may lead to
procressive failure even if sd predicted ,being = necessity to deter
mine bounds on post-sd deformations.

The Unsafe sd theorem as the same statement as for the clas-
sical theory,but the overall stability condition must be included as
necessary condition.

The Compatibility condition is affected by hardening laws and
geometrical effects,while the stability condition is independent of
hardening.

3,3 Rigid Workhardeming Structures

-

When elastic strains are not to bhe considered and it occurs

oy

hardening effects in the structure due 1o exsernal actiong ,the elas
, -




titutive relations defined previously are modified by

to-plastic conevitu
(of k:ao)_ . Thas - "1):9

The main advantage of this assumption is to provide simplifi-

eation in sd aralysis.Prager introduced this approach /14/ ;further

developments sre due to Polizzoto /15/ and Xonig and Maler Ji6/.

If it is defined a linear transformation on a set of strains

(generally,not compatible) into ?&ispl&cement set termed as consequ-

; - H T
ent to, D q; =W B wheee , W o= By

The matriz W is positive definite.It i& possible to write a

equivalent conition for overall stability in this more restritvive

A

The Bieich-lMelan theorem adapted tofhis formulation says that

sD occuré if the overalil stability condition holds end a constant set

of plastic rotations such that the sum of the stresses generated by

them and *the stresses due to eny loading program satisfy static admi
iw 11§ c[elrorw\ea! ch;\ﬂ.x\’a‘ﬂ.on

asability and yeld ( contained in a prescribed domain and varying in

time): NT m (1) - F Bdtle m

V’:\r = % P,_'_
These comditions can be used to implement a 1p in the mesh

be the envelope set of stresses due to each component

o= et [ N B Al

Adad

format. Let M.

of the loading domain at any time:

R 1

be

I DRI

[H‘ N ‘{“fNTBWGw)] /ﬁESI PRIMAL
~ ot }:‘r __4 bu.4

B e A Y
~

B, |
The evaluation of the maximunm value of the s

tress response

is essier to perform than for the elastic statically sndeterminate

case.
As before,the leading penameber of SD 4o be acecertained re
guires the overall stability comdition to be satisfied; otherwlse

+he paximization only guives an upper bound on .




The rizid hardcning medel 'heory could be developped as betfore;
firdirg the Unsafe theorem by dualization and repeating the remarks
concearning deformation boundings.

The lack of comnmnection between plastic rotations and residual
stresses are the main characteristic of this bekhaviour which also
leads to underestimates in the evaluation of geometry changes in

the structure.

3,4 Dynamic Effects

During the loading history the condition of slow variation of
loading does rot always hold;in this case,damping and inertia ef-
fects ought tc¢ be considered. Thus two further terms in the static
admiseability condition must be included: - AT wr-G 497 -I a5 - VM{ =0

A elassical approach consists of having both the displacements
and the velocities at t=0 and then follow 2 time-~dependent loading
tistory achieving a non-linesr step by step analysis.

Predictions which guive accurate results with computer gains sre
described next,when considering perioaic loads.

LetanWrepresent the linear elastic fictitiousresponse of the
structure to the load hystory and to initial conditions Acv V

The Safe theorem has a similar formulation as for the elasto-
-plastic material implemented of geometrical and hardening effecis:

The overall stability condition mist ke satisfied and a set of
plastic rotations ,digplacements and velocities{(all thesge unknowns
béing constant )such that the yeld conditions not contravyened for
any t)},*‘b"(finite time) If_ hi; W) - ¢ Ber £ fton

The actual initial corditions do not influence the adaptation

of the system.
for each yeld mode will be calcula

7)o e [V )]

Tyt

The maximum elastic atress

ted from the fictitious dynamic resSponse

H # (T? Aw‘la 2

Two lp can be written once these values are known

.;.
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These 1lp are identical to those derived in 3.2,but now sincew,
3 depend on the parameters T qué%:for each step.

Another maximization must be performed to find the maximum-ma
ximorum of the loading parameter,vhich is extremely time-consuming.

Due to Gavarini /17/ and condidering periodic loads,such that

Ag W)~ As (t+2) for any t,latime-interval

As the time elapses,the ficﬁitiou§élastic response of the stru
cture is pericdic with the forced vibrations only,since the free vi
brations died out due to damping. |

Since from linear analysis the forced motion is known,the dis-
placements and velccities at an instant T:n7 for n sufficientely
large can be assumed as fictitious initial conditions.The iinear
elastic fictitious responsem,!t)become periodic,being the maximun
elastic stress determined for these conditiong&ndependentely of t.

The optimal wvalue ogkis then acesséd by linear combination of
ot a0/, 4q) <. (17,4 W, 85"

The same procedure can be applied for undamped systems.

all components of Jl, .

For the statement of the Unsafe program,as before the plastic
rotation rates are integrated during a cycle of loading;now,};;and
., are the inertia and damping forces duwe to the forced wvibration

~ ok

Alt) and to the fictitious initial conditions Avand Ay i

- When the overall stability condition holds,SD does not occur
if the quantityqbﬁg,balances the energy dissipated in the plastic
hinge on any kinematic admissible mode of failure during a cycle

over a tinme interval T.

3.5 Temnerature Change Effacia

Temperzture changss cause thermal sirains which are no more

then imposed strains taken into account through the strain wvector




Kodal Description D
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Besides the straining efféct,material proverties (elasto-plastic
constitutive velations) are sensible to certain ranges of temperature:
The SD analysis was carried out by Koniz /18/ but the program acertal
ned is non-linear,

Another difficvlty arises due to non-validity of elastoplastic mo
del for the upper part of the temperature range where creep beconmes
gignifficant,urless the cycles are of short duxation.

Z & Hon-Associated Flow Rules

Until now the elastic moment range was considersa to be bounded
by the hyperplane corresponding to the yelding in the critical sections
which normals are parallel to those bounding the yeld polytove.

For some materials the elasto-plastic behaviour must take into
account some factors,eg internal friction in soils,not complying with
the normality rule.

The outward normals previously defined as the matrix N are now
changed into the matrix U which leads to a reduced moment range,

Maier / 9/ considered a loading parameter bracked by the classi
cal caleculation and the value determined considering deviations from
normality.

Ugually information about this behaviour 1s mot available,

% .7 Multi-Parameter Loading Domain

The loading domain used with a =zingle parameter is able to exclu
de impossible combinations of independent loads,assuming any shape.

It might be considered that each independent load can vary bevwe
en independent Limits yﬁ'{}!ﬂé/ﬁf.lt is possible to define a set of
single parameter 5D problems by partitioning the lozds in two atribu-

ted load parameters;one having fixed values,wnile the other varies whi

thin its range. TheB. matrix is defined in terms of two non-nezative
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TLet MHe be the maximum elastic moments in both senses
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For compatibles modes of failwe:

For any failure mode there is a relationship in the upperzﬂf
and lower limits /m’ and n independent parameters must be conside~
red.The corresnonding geometrical‘representation will be a 2-n 4i-
mensional half-space.

The intersection of all possible mbdes:of failure defines
a region of parameter combination for which the structure will SD.

3.8 SD Desizn

Guiving a graph model c¢f the structure,the problem is 1o
find =z moment-resistant distribution capable to ensure SD will ceccur
for any loading progran in a prescribed @omain.

As for rigid plastic collapse the design vaiables arzs the
yelding moments Qy,and it is assumed ~ .* the objective function to
be the total weight,a linear function of the design variables,whoge
coefficients are the lengths corresponding to the critical section51§
The whole design variables are dependent of some of them(indepen-

dent) ,this lineaTr technological constraint been represented by é;

» i |
A Safe program can be written: N“ﬂﬂ,s:iﬁf 01#&%@X ]

T “ L b |
NOBAL PRINAL [} N l,{:’; l si-{‘:«nk Jj
Q ﬁ‘r V:-/f = o

We obtzin a very compact program,sSince it is the synthesis

wnder variable loading inside a domain,excluding the hypothesis of
instantaneous collavpse.lt might be simplified using the Foulkes sin
plifications for variable loading

Another comment is the introduction of the stiffness matrix
for the elastic phase,lepending ou the 2nd moment of area which

ﬁ




leads L0 a non~linear program.Cohn, Chosh and Farimi /20/ ,used a itera

tive procedure assuming at each. step the elastic stiffness correspon- l

ding to the optimal moment of the preciding step.
For reinforced concrete the stiffness 1s dependent on the depth |

being the elastic mowent response easily acessed iﬁ the beggining of

the program,and the preciding program beconmes a lp,Aiso note the wlti

mate moments depend oniy on the ductility.

4 .DEFORMATION BOUNDING TECENTQUES -

4.1 Introduction

It was already shown that evéﬁ if plastic ‘deformations can be
bounded predicting adaptation of the structure,they may cause excessl
ve displacements oOX exhaust the material duétility.

The scessement of the system's evolution-ié.achieved by follow
ing the load history.When are defined the limits whithin loads can va
ry ez load domain OT the lozding history is not known it is weefull *to
bound soume guantities such as dissipated enexrgy and/or maximum displa

cements and rotavions.

Three metheds with pratical application are presented,belonging
to two distincy philosophies.The structural model is an elasto~plastic

discrete model in its virgin state in the beggining of the loading pro

CESSe

The nodal description will be adopted,since these technigues

are applied to dynamic loading,being the reduction to gquasi-static ca-

se straightforward.Impulsive loasding consisting of an initial velocity

only,can be regarded as a special form cf periodic loading wich has be.

en already derived.

Geometrical effects are not considered in this first analysis,

but since that unstabilizing geometrical effects compensated by harde-
ning,whenever the overall sbtability coundition holds,these methods can
be extended Ho cover second ordexr effscts.

For dynamic lcnds the linear elastic static response depends on
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the jrstentenscus sxternal actions as well ag the inertia and danm-

ping forces,not coinciding with the unlimited linear elastic res-

ponge unless dynamic effects neglected.

The self-squilibrating set of residual moments are the linear
elastic response of the system due to0 residual plastic rotations.

Itis considered a fictitious procesg of loadiﬁg with conveni-
entely choogen initial conditlons the SD analysis for periodic loads,
where the linear elastic static response is the steady~state solution
due to assumed initial conditions.

Considering impulsive 1oads,%ﬁe steady-state response is assu-
med for homogeneccus initial conditions and +the program becomes in-
feasible eg the system will always SD,what'is not true and may detex
mine the application of these technigues. |

Letjx be the sum of the potential and kinetic energy associsted
with the difference between the actual and fictious process in the
beggining of the loading cycle:

aT o T
%5 (-, )2

4.2 Tndirect Bounding Methods

They provide bounds to the displacement vectongr its plastic e
component,.If a constant dummy load vector 4 the total displacements
developed in the structure during the interval @,Ziare a linear com

bination of the displacement vector with the corresponding component

of the load vector. , 2)
L] 5 2) - AT z
$ 128 a0 , S eaTy

e

Procedure A :A time independent vectoﬂﬁban be found for

the fictious dynamic process,such that:
£0

ff'r[fit“(f*) + ,ngj - £ M@.-f:u $

And ite respective upper bounds are:
é“ol?,)é Ll? - X 4—%_ :0,

§ ¢ usuliyoa

Procedure B : If it is possible

. %
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find a load multipli
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er mi two sets of time independent plastic strains and a fictiti

)
ous dynemic © %o , &2 0 ¢ kL
//a w7 () -t—.ﬁ ¢ A
Nr,qM _a§ £ UA P X \ 0 = _L«rl’_ﬁ
then, . A w & | A}{ﬂé-u (j){/é__ +—Tjﬁ Q‘§§-+l?_w,v

In this‘procedure upper bounds are found by am unlimited elas
+ic respons e«ana a fietitious dynamic solutionam*(t)

The maximum values of plastic or total displacements are deter
mined by introducing the maximum value of :'ay“ instead of 4 ),

The 9D Safe theorem ensures adaptation after a certain iengih
of time,but the loading history must be dete rmined from the virgin
state,vhat leads to the non-existance of a fictious process while
the Tinite deformations are stabilized.

when external actions are periodic,only one cycle must be con
sidered and the fictitious dynamic response is the steady state so-

lution.If the loading factor greater than 1i,the inequalities become

strictly and a feasible value can be found.

In order to establish a method of solving let the dummy load E
be represented by a distribution of dummy loads of constant amplita l
scaled by a non-negative factor ﬂl .Then a relative measure

By U=y

The best upper bounds will be those which guive lower values.

de A

of displacements and their respective bounds is imediate:

A minimization must be carried out with respect to the independent

variasbles,being obtained NLP.Procedureh: A =n\A’ s w4 ma'e i
: T T - _\‘1\
W - rn [2\{[1”5 2 EE)} - Y’ m»\ (J‘ xet 82 R) 2 A R
"8 ) L
“‘l N ane - EQ‘;‘- ki
Bwe  Mu = . oa
Proceduxe B: . ‘ A X i o ¢ el e E‘Eah
.l = youhia A, — '_'-_T ¥ 7{ .f).‘f--' e & ™
v oy Be A 2ip
ol -g Bén fev _
= ‘*}‘,‘5.0 , ff"?/‘i’,?'b’o




Tmpulse leading cen be derived from above making i.-oqfin toth
andf§=gﬂﬁ=w in Precedure B.The relative plastic displacements remain

‘the same.A general formulation for indirect bounding technigues can

»

be stated in the form of NLP: X=< %J_I;@O
! owa P 21 f ¥, \ AP B uA:TKfu
Wheme {g70n0) < (a2 2) 550 CHIR VLS

=

Thege NLP are very simple to solve,suitable for practical pur

/viﬂrfﬁrp_f&(/m, q/ ,f,},o

poses . The fietitious process,if convenientely chocsen,different

from steady stalte response msy improve the results.

-

4.3 Direct Bounding Methods

This procedure is far more involved than the above formula-
tiong.The first step consists of determining <he 1bading paramete?ja
énd then find the residual plastic rotations. i?, Chr ~ L m, Lo

The structure is acted by periodical externalxécézons being
the linesr elastic dynamic response of the fictitious process the
steady-state solution.

After SD has occured the bounds for total rotationshare

H-¢8 &me

(3-2)me 8 ¢ x ok BT 8 -4 (27-07)C %)

P

given by:

The quantities which may be maximized are: a)particular
components of b)particular components of the plastic rotationsthyg.

c)particular components of the plasti displacements & obtained

-1 VA s : . . T
fromg;ﬂii& Ai?;d)dlsSJ_pated energyWo in each lumped point given by W;P‘-Wt;%’;*

AR (quadratic function).

The merrits of operating with each one of these guantities
is scertained by making the objective function linear.
The best upper beund , is obtained making the yeld poly

tope as small as possgible.The resgidual plastic rotation,time inde

vendent,must be as small as posgible.

A

—_ -



I

i=h

tne guadratic ternm of W, dropped,the corresponding bound
has a csmaller value than beTore.The inequality becomes linear and
the smallest yeld polytopqﬁs found making the guadratic form

a mininum,minimizing the residual plastic rotation.The procedure

consists of solving a QF and then a LFs

\P m; " i 9. CE} skl To [Il. -¢ %r-{-/{ %']JVﬁJﬁ:

J?,:h«gﬂ Hey - (n. e @ gmme Al %)and 2<% F)
If the guadratic term is not eliminated,after solving the QF
a NILP must be satisfied: _ r
Jz,=h;*"{@:[1’: - 8P & /\{G L)al- 07
This bound is brackEted by the former results.For practical
purposes Tthe first program must be absndoned;since the wvalues found
for and are similar,the second formulation appears to be the
best compreomise between computational efficiency and usefulness of
results.
For impulse loading,the residual :otatiéns are zero and the
quadratic form to be minimized vanishes%fi&fﬁ .The bounds  and
are given by a IF and a MNLP, respectivcly.
JZM@;[ s A T <7L]
=‘“""“:!(9)'1.'E~9%“ A’.‘:ﬁ‘a‘@* BT ¢ E,},\Z%_ll.@m

4,4 Gereral Comments

Por structures subjected o periodic forces or to seismic
loadings the actual plastic deformatiors are not known,since they
depend on the loading higtory.Upper bounds must then be found.

Martin /21/,Hodge /22/ obiained e theorem in the sixties.A
1ot of work have been carried out by the itallan school aiming to
£ind reliable and good for engineering practice.Vitiello/23/,ﬁaier
/24/ Maier and Viticllo/25/ developed the direct bounding techni-
gques,while Ponter/26/ ,Maier/27/,Corradl and Vaier/28/ for procedu
re A and Capurso /29/ for procedure B,discussed /30/ some applica

tions of the indirect methods.

T A
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1.8U analysis by 1P establishes a link petween elasto-plas
tic deformaticn analysis;too compreensive, and the general loading
case. for plastic 1imit analysis,which provides usually sufficient
accurate results for loading parameter,but does not guive much mo-—
re information aboub the internal behavioure.

o . Paged on numerical experience /20/ SD analysis provides
good results for a gquasi-static varying loads,as well as for perio

dic dynamic case,when second order effects are not considered.

If the overall atability -condition is not satisfied,the cri

=

=

tical event is no¥d inadaptafioa and bounding methods are needed 1o
provide additonal information.Thus,inserting geometric effects,2a
check on the validity of 5D analysis is made.

% ,0ther cases than periodic loading histories are of inte-

rest in the dynamic analysis.An-extension to impulsive loads was

' performed sucessfully;for different pulse shapes, the trangforma-—
tion into a eguivalent impulse oxr using a step function seems o

L] | .

i ve dependent on the structure and loading case to be congidered

I ‘not capable of generalization.

4 .Most of 8D problems can be dealt with on the basis of LF
only,by pilecewise lineariza%ion of elasto-plastic constitutive re (
1ations.The bounding techniques with practical application presel
ted guive nore complex formulation and must be snalysed on the ba
sis of Their operativity:The direct method achieving I, is soved
By a QF-LFP seguence ,wihile +heNILP of the indirect procedure A 1s eva
‘1uated by minimizing the plastic deformatons for different values |
of § ;here the objective function isg quadratic.The problem doubles
its amplitude when jealing with procedure B.although some gimpli~
fying agssunptions are possible.

5.1t is also vossible o reduce the number oF variables{plas

tie deformations) by konowing a pricri which hinges are not activa-




ted usingz the indirect methods,since 2 minimization is carried ocut
This is neot applicable in direct techniques where 1is maximized.

| 6.Fone of the methods is able to provide upper bounds on
all the guantities needed. All of them achieve similar results for
the residusl deformations.The maein advantage of the direct method
is to provide in each discrete point informaticn ndt only about the
plastic rotations but also of the plastic dissipated energy wich
nay lead to alternating plasticity.No relation is established be
tween single components and the total deformations,main feature of
procedure A{inairect). .

7.A big disavantage related to the direct method is its sen
sivity to the type of hardening law adOQtéd,which is not usually ea
sy to acess.A promissing field appears to be ductility nproblems in
reinforced concrete,eince ite constitutive laws may vary considera
bly afifecting the bounding metnod used.Indirect procedures are nct
mach influenced by hardening laws,but they do not guive the local
behaviour. | .

8.The application of this theory to continum and the errors
involved in the discretizétion model adopted in this work,seems to
be another interesting extension.

9.Prestressed cogrete materials ware not refered in this re
port since the eiasto plastic constitutive relations ayply to areas
of plasticity and not only to discrete points; again the errors of a
diseritization with respect to planar frames could lead to a syste-

matic procedure.
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