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Abstract

This work, integrated in Critical Health, presents a new process to detect
fovea and optic disk in retinal images and the application of some technologies
to do the automation of Key Performance Indicators process (KPI).

The proposed method consists in five steps: selection of an area in the
image where the optic disk is located using Sobel operator, extraction of
optic disk boundaries applying the Hough transform to detect center and
diameter of optic disk, detection of the ROI (region of interest) where the
fovea is located based on the optic disk center and its diameter and detection
of the fovea within the ROI. The developed algorithm has been tested in
a proprietary dataset with 1464 images (with ground truth generated by
experts) and with some public datasets.

Retmarker is an image processing product developed by Critical Health.
The KPI is a process implemented in Critical Health to test Retmarker with
the goal to reach the optimal performance. This process is currently highly
manual and performed on a weekly basis, demanding a considerable amount
of man-hours per year. A new plan was implemented to make this process
fully automated.

Keywords: Biomedical image processing, Digital images, Fil-
tering, Image segmentation, Anatomical structure, Automation,
Database systems.



Chapter 1

Introduction

1.1 Context

Presently, the diabetic population is estimated to be 200 millions peo-
ple. It is expected a growth until 360 million in 2030. As consequence of
diabetes, several pathologies have a high probability to affect the retina. Di-
abetic retinopathy is responsible for 4.8% of the 37 million cases of blindness
around the world [?] .Glaucoma is the second leading cause of blindness in
the world. Age-related macular degeneration, increasingly frequent in older
adults, currently affects 30 millions of people [?].

Digital imaging and computer processing resources have been improving
every year. The potential of this resource is huge in all fields of medicine
such as ophthalmology. Nowadays there are automated diagnostic systems
to follow the evolution of some diseases whose symptoms become visible in
the fundus eye. Diabetic retinopathy and age related macular degeneration
are some of the diseases that can be detected and followed in retinography
images. Furthermore the diameter changes of the retinal vessels are an indi-
cator of cardiovascular system problems.

Retmarker is a Critical Health’s solution to monitor the progression of
retinal diseases. This product allows a detailed analysis, using non-invasive
imaging methods, of several retinal pathologies and it is supported on the
certification of the company’s Quality Management System according to the
”EN ISO 13485:2003 + AC:2007” and ”EN ISO 9001:2008” standards.
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1.2 Scope of the Work

In order to this product to become an efficient solution, each of the modules
needs to have the best performance possible regarding:

• Time.

• Accuracy.

• Automations.

However, there is some margin to improve the modules. Critical Health
developed a process to improve the accuracy of Retmaker algorithms. Key
Performance Indicators are a group of metrics used to assess the Retmarker
performance. The scripts to calculate them are regularly executed to analyse
the performance levels of each kind of processing with the goal of reach-
ing the best performance. However this process actually needs a long time
due to some steps which require human intervention to complete the results
generation.

This work has two main goals:

• Improve the module of fovea and optic disk detection.

• Plan and put in practice an automation plan for Key Performance
Indicators.

1.3 Report Overview

This report is organized as follows: chapter 2 gives a brief overview regard-
ing the vision system describing the main structures and the eye behavior.
Also the main diseases that affect the fundus eye are mentioned.

Chapter 3 describes the main approaches present in the existent litera-
ture as well the limitations of each one. Presently there are 6 main ap-
proaches identified in literature: blood vessels tracing, template matching,
active counter or snakes, machine learning, multilevel threshold and shape
detection.

The new method developed in this work to detect fovea and optic disk in
retinography images is detailed in the chapter 4.
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The actual state and the automation plan implemented for the Key Per-
formance Indicators process is explained in the chapter 5.

Chapter 6 is divided in two main sections. The first one presents the results
reached for the proposed model to do the detection of the fovea and optic
disk. The second describe the implementation of the plan to automate the
Key Performance Indicators process.

Finally, chapter 7 summarizes the conclusion and the future work.

The appendices present further details of the automation scheme imple-
mented for the Key Performance Indicators process.

3



Chapter 2

The Eye

This chapter begins an overview about the anatomy and physiology of
the vision system. The main pathologies of the retina are also mentioned.
This section also describes the main principals about the use of retinography
images.

2.1 Anatomy and Physiology

The eye is an organ with the ability to convert light into electro-chemical
impulses. These impulses then go to the brain where they are interpreted and
create the notion of shapes, colors, and dimensions of objects in the world.

The process of vision begins with the light coming in the eye through the
cornea. The cornea is an external clear layer at the front of the eye. After it
there is a progression to the pupil. The pupil is located in the central region
of the iris that controls the amount of light entering the eye by dilating
or constricting the pupil. The iris is the structure that assigns the eye’s
color. The light reaches then the crystalline lens that focuses it in the retina.
Ciliary muscles control the shape’s lens. For a close object, the lens becomes
rounder, otherwise it becomes flat (figure 2.1).

The retina is a layer responsible for converting the light into electro-
chemical impulses. This structure is filled by specialized photoreceptor cells
(figure 2.2). There are 2 types of photoreceptors: rods and cones. Between
6 and 7 million of cones provide the eye’s color sensitivity. They are much
more concentrated in the macula, zone responsible for the central vision. The
rods are the most numerous of the photoreceptors, about 120 million, and
are more sensitive that the cones. However, they are not sensitive to color.
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Figure 2.1: Eye anatomy scheme [?].

(a) Retina’s surface. (b) Basic structure of rods and
cones.

Figure 2.2: The retina [?] [?].

They are responsible for our dark-adapted vision. The impulses generated
by these cells go throw the optic nerve until the brain. The optic disk is the
exit point of the optic nerve from the retina and continues beyond it. On the
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Figure 2.3: Rods and cones distribution [?].

other hand is the entrance and the exit point for retinal blood vessels. The
optic disk is the structure responsible by the blind spot (figure 2.3). This
area does not respond to any light stimulation because there are no photore-
ceptors on it. Each eye transmits a slightly different inverted image which is
combined and corrected when its signals reach the brain. [?] [?] [?]

2.2 Retinal Pathologies

The eye can suffer several disorders that can change the appearance of the
retina. There are three typical main diseases that can affect this structure
causing the vision loss:

• Diabetic retinopathy.

• Glaucoma.

• Age related macular degeneration (AMD).

People with diabetes have a considerable probability to suffering of diabetic
retinopathy. This disease degrades the tiny vessels in the retina and causes
the uncontrolled generation of the new ones (figure 2.4a). The new tiny
vessels can grow ahead of the retina and occlude the light causing vision
damage. The diabetic retinopathy gives no warning until the first damages
occurs and cause vision loss. The retinography images are the main process
to check if there are signals of this disease. The main signals are the formation
of microaneurysms, growth of abnormal blood vessels that cause frequently

6



(a) Advanced stage of diabetic
retinopathy.

(b) Treatment with photocoagulation.

Figure 2.4: Retinal images of diabetic retinopathy.

hemorrhages and accumulations of lipids (exudates). The treatment for this
disease consists in burning some locations in the retina keeping untouched
the macula to maintain the central vision. This process is known as focal
laser photocoagulation (figure 2.4b) [?].

Glaucoma is a disorder of the optic nerve that cause a irreversible loss of
vision. One typical symptom is the high pressure in the eye due of excess of
intraocular fluid. This excess happens due to the incapacity of the fluid to
leave the eye while the production continues. This increased fluid pressure
pushes the optic nerve back into a concave shape (figure 2.5). Other symptom
is the tunnel vision due of the loss of the peripheral vision. [?]

Figure 2.5: Concave shape in an optic disk of an eye with glaucoma [?].
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Age related macular degeneration is a disease that can destroy the central
vision. The main risk factor is the age. There are two types of AMD: dry
and wet (figure 2.6). The dry is characterized for the presence of drusens
(yellow deposits) in the retina but with no loss of vision in a early stage.
In the advanced stage the drusens have a bigger size and there is loss of
vision due of the degradation of the light-sensitive cells. On the other hand,
the wet is more severe and less common. It is characterized for the tight
junctions of the vessels. This effect causes leaks and bleeding that cause a
retinal deformation what causes the loss of vision rapidly. [?] [?] [?]

(a) Dry AMD. (b) Wet AMD.

Figure 2.6: Age related macular degeneration types [?].

2.3 Retinography Images

Every year there are advances in image processing and an increase of the
computers power. All the medicine fields have been taking advantage of this
fact. Ophthalmology is heavily dependent of the visual signs analyses. The
retinography images are records of the retina in-vivo and allow the visualiza-
tion and analysis of its state. The retina is the unique body’s location where
the vessels are observed without any invasive techniques. This fact allows to
easily calculate the arterio-venous ratio which is an important indicator of
the heart diseases and the stroke risk [1]. Nowadays there are systems which
offer high-resolution images for all clinical scenarios. As digital data have
the advantage of easy storage without loss of quality with time, can be easily
sent through short or long distances. Actually, the image processing methods
allow an automatic diagnostic of the patients using this kind of images.
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This work is directed for field 1 and field 2 retinography images. The field
1 images are centered in the optic disk and the field 2 centered in the fovea
(figure 2.7)

(a) Field 1. (b) Field 2.

Figure 2.7: Retinography image fields.
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Chapter 3

Detection’s Approaches

Fovea and optic disk are important structures present in retinography im-
ages. These structures have a special importance in image processing of this
kind of images due to use as landmarks as well as the necessity of proceeding
to their occlusion to improve the performance of other kind of processings.
On the other hand, changes near of the fovea indicates loss of vision. The
next section gives an overview of the methodologies existent in the literature
and its limitations as well.

3.1 Blood Vessel Tracing

Blood vessels are observed in the retinography images crossing the optic
disk coming in by the up side and going out by the down side. Its convergent
point locates inside the optic disk. Some models find this point estimating
the blooad vessels orientation. This approach was followed by Foracchia et
al [7] which estimates two parabolas where the intersection is admitted like
a point in the optic disk (figure 3.1).

Hoover and Goldman [9] created a method to detect the optic disk with
a fuzzy convergence of the blood vessels. The fuzzy convergence is applied
initially to find the origin point of the vessels present in an image. A cloud of
candidates (figure 3.2) is generated and the peak of darkness will be admitted
as the convergence point.
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Figure 3.1: Parabolas drawn with the Foracchia model [7].

(a) Source image. (b) binary image with
the segmented vessels.

(c) Fuzzy convergence
of blood vessels.

(d) Optic disk de-
tected.

Figure 3.2: Convergent point of blood vessels detected with the Hoover
methodology [9].

3.2 Template Matching

Template matching is a method in image processing used to classify dif-
ferent objects or portions of images against one another. Lalond et al [12]
developed a methodology based in the template matching to locate the optic
disk combination two procedures:

1. Hausdorff-based template matching technique on edge map.

2. Pyramidal decomposition for large scale object tracking (figure 3.3).

The application of these two models generates candidates that need to be
classified with the Dempster–Shafer. The best candidate classified is elected
as the optic disk.
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(a) (b) (c)

Figure 3.3: Piramidal decomposition model used to segment the brightest
regions [12].

Jelinek et al [10] developed a method where a combination of Butterworth
filtering, canny edge detection and morphological filters are used.

Youssif et al [25] created initially a vessels mask (figure 3.4b). All re-
maining vessel-labeled pixels that are not within a 41 41 square centered on
each of the highest 4% intensity pixels in the illumination equalized image
are relabeled as nonvessel pixels generating an image of candidates (figure
3.4c). The image of candidates is then matched with a filter describing the
expected appearance of a desired region containing the optic disk. The best
match is elected the optic disk region.

(a) Source image. (b) Binary
vessel/non-vessel
image.

(c) Final OD-
center candidates.

(d) Optic disk de-
tected.

Figure 3.4: Detection of the convergent point with the Youssif’s model [25].
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3.3 Active Contour or Snake

Active contours simulate a curve that evolves a structure of interest de-
tected by the energy on its boundaries. The snakes have the capacity to
move dynamically in the image space and use the mass density to detect the
desired boundary. For a good orientation a damping coefficient that charac-
terizes the medium where the snake moves needs to be well attributed. The
final position of the snake will depend of some parameters like the initial po-
sition, velocity, mass density, the damping coefficient, and influences of the
image itself like lines and edges. The snake can follow any contour of interest
since there is the right combination between the knowledge about the object
of interest, as the optic disk, and the individual image characteristics, in this
case the fundus eye.

Mendels et al [14] created a method based in a snake to detect the optic
disk boundary (figure 3.5). To put in practice the snake algorithm, a heavy
pre-processing of the images was necessary to becomes the optic disk edge
more continue and minimize the vessels effect in the boundary. A grey level
morphology was used to reach this stage.

Figure 3.5: Convergent solution of a GVF-based snake used by Mendel.
The snake was influenced by the edges created by blood vessels [14].

Osareh et al [17] improved the previous algorithm using a Lab colour space.
They reached a better homogeneous optic disk boundary applying the grey
level morphology in [14] but with the lightness channel L of the HLS colour
space, colour morphology using the full HLS space, and two variations of
colour morphology using the Lab space.
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Chanwimaluang et al [3] developed an algorithm with two steps. The first
estimates the optic disk center finding the higher local variance. Once the
dark blood vessels cross the bright optic disk the higher variance should be
inside the optic disk boundary [20]. In the second step is applied a snake
algorithm the detect the boundary [24].

3.4 Machine Learning

The machine learning methods are mathematical models where there is
a computational learning. It consists in a design and development of algo-
rithms that allow computers to evolve behaviors based on empirical data.
The learning takes the advantage of capture characteristics of interest doing
the recognition of complex patterns.

Sinthanayothin et al [20] proposed an algorithm based on a neural network
to detect the main structures of the retinography images (optic disk, fovea
and blood vessels) and features of glaucoma, senil macular degeneration and
diabetic retinopathy such hemorrhages and exudates. The bright optic discs
were located by identifying the area with the highest variation in intensity
of adjacent pixels due to be crossed by the dark blood vessels. A multilayer
perception classifies each pixel of the image as a vessel or non-vessel. The
foveas were identified using matching correlation together with characteristics
typical of a fovea.

Chutatape et al [4] applied a PCA method on each pixel after to select the
candidate region based on the clustering of the brightest pixels. The PCA
with different scaling factors was applied on each candidate region to find
the minimum distance between the input image and its projection onto the
disk space. The optic disc center is admitted like the least distance in the
candidate regions among all the scaling factors.

Li et all [13] created a boundary detection of optic disk based on a mod-
ified ASM method to be more robust and faster that the original suggested
by Cootes and Tayler [5] mainly in cases where the edge is weak or too much
occluded by blood vessels. In a first step, principal component analysis de-
tects the optic disk. Then, the result of PCA initializes the ASM to detect
the disk boundary (figure 3.6).

Niemeijer et al [15] proposed a model to determine the location of a set
of points in an image. This model needs a set of images to be trained with

14



(a) PCA. (b) ASM.

Figure 3.6: PCA and ASM results using the ASM method developed by Li
[13].

a point-distribution-model (PDM), proposed by Cootes et al [5] (figure 3.7).
After the points are all positioned in the input image is possible estimate
the location of the optic disk, macula and the vascular arch. The first and
second point locate optic disk and macula, 3-6 the optic disk boundary and
the others the vascular arch.

Figure 3.7: Niemeijer’s Model overlaid on a retinal image [15].

Tobin et al [22] developed a Bayesian classifier that assumes a multivariate
normal distribution model to classify the pixels in the original image into the
binary category of optic nerve or not optic nerve.

15



3.5 Multilevel Thresholding

Thresholding is a technique for image segmentation which tries to identify
and extract a structure from its background or texture in image objects.
The key parameter in the thresholding process is the choice of the threshold
value. One of the simpler methods to choose a threshold can be a mean or
median value. Others sophisticated approach resort to histograms for select
a value of a peaks or valleys. Others resort to clustering where gray-level
samples are clustered in two parts as background and object. Otsu’s method
[18] is probably the most known way to find a threshold in images having
a bi-modal histogram. However, the retinography images have multimodal
histograms due the presence of many features such as arteries, veins, optic
disc, fovea, exudates and even noise. Hence a multilevel thresholding method
has to be employed to extract the optic disc and exudates in retinal images.

Kavitha and Devi [11] created a three step method to detect exudates and
the optic disk. The first one detects the vessels location and its convergent
point using a least square polynomial curve. The second step uses a multilevel
thresholding methodology to detect the brighter regions on the image as optic
disk and exudates. To determine the multilevel threshold of each image
efficiently, Kavita and Devi proposed the valley-seeking approach which find
the local minimum (valley) in a histogram as a threshold. The local minima
are fond admitting that the histogram’s equation of the image is given by
h(i) where i is an integer, gmin ≤ i ≤ gmax where gmin is the minimum and
gmax is the maximum of the gray level in the image. The condition is:

V = {(i, h(i)) | [(h(i) < h(i− 1)&(h(i) ≤ h(i+ 1))or

(h(i) ≤ h(i− 1)&h(i) < h(i+ 1))], gmin+1 ≤ i ≤ gmax−1}
(3.1)

After all the small valleys are detected, they are removed and the grey
level of the last one is selected as the threshold value. The image is then
segmented with the selected threshold and brighter regions are found. The
bright region having the convergent point of the blood vessels is elected the
optic disk.

3.6 Shape Detection

Shape detection algorithms are used in image segmentation to detect ob-
jects with a predefined shape of interest.
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Sekhar et al [19] applied the popular Hough transform to locate the cir-
cular optic disk. To reduce the possibility of an erroneous detection, in the
instance is selected a region of interest (ROI). The ROI is selected using
morphology operations to find the brightest region of the image. The main
morphologic operations used were:

Dilation
(f⊕ B) = max{f(x− s, y − t)|(s, t)εB} (3.2)

Erosion
(f � B) = min{f(x+ s, y + t)|(s, t)εB} (3.3)

Opening
(f ◦ B) = (f	B)⊕B (3.4)

Closing
(f · B) = (f⊕B)	B (3.5)

Reconstruction
ρf(g) = Vn≥1∂

(n)
f (g) (3.6)

The Hough transform characterizes the image into a parameter space
which it is constructed specifically to describe the desired shape analytically.
To detect circles, its parametric form is:

(x− a)2 + (y − b)2 = r2 (3.7)

where a and b is the center and r the radius of the circle. The Hough
space has three parameters:

• Center.

• Radius.

• Accumulator.

each parameter combination is accumulated in a accumulated array, The
highest peak indicate the most circular shape.
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(a) Image 01 of STARE [?]. (b) Edges of Sobel operators. (c) Successfully detected OD.

Figure 3.8: Xiaolu et al method [26].

Xiaolu et al [26] developed a method to apply the Hough transform on
an image pre-processed with Sobel [?] [?] and Canny [2] operators (figure
3.8). Canny proposed an approach based in the multidirectional derivatives,
multiscale analysis, and optimization procedures to do a good edge detection.
Obtaining a binary edge map of the image based on these operators, Hough
transform provides a reliable detection of the most circular shape in that
image.

3.7 Limitations

All methodologies described above have some limitation. The approaches
based in the blood vessels tracing, snakes, and machine learning need a long
processing time. Moreover, the simple application of the blood vessels tracing
does not enable to detect the optic disk radius or the boundary. On the other
hand, machine learning needs a huge training sample to cover an acceptable
level of the real possibilities. The Hough transform, typically used to detect
lines and circles, has the problem of the optic disk not being a perfect circle
but singly elliptic. It can be adapted to detect ellipses. However it becomes
computationally too heavy.
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Chapter 4

Fovea and Optic Disk
Methodology

A new methodology is proposed to do a reliable fovea and optic disk detec-
tion with a capacity to detect the center and radius of the optic disk and the
location of the fovea. This approach is based in the shape detection where
is done initially a pre-processing and then applied the Hough transform to
find optic disk. Fovea is detected admitting that is located at two and a half
optic disk radius from its center [20].

4.1 Pre-Processing

In this first step, the source image is corrected for a series of errors until a
stage is reached where it is possible apply the Hough transform with reliable
results. The following steps are the key for the good detection with the
Hough transform in this model. All the images processed are resized, by
setting the height to 576 pixels while keeping the aspect ratio.

4.1.1 Noise attenuation

The retinal fundus is an irregular surface where exists gradients beyond
the vessels, optic disk and fovea that affect the application of the Hough
transform causing an erroneous detection. All the source image is smoothed
with a dynamic implemented average filter. This filter starts with a strong
smoothing effect due a large kernel (9 x 9). The kernel size is being reduced
until there is gradient detected by the sobel operator.
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4.1.2 Sobel operator

The sobel operator calculates the gradient of the source image intensity
at each pixel [?]. This operator detects the horizontal or vertical gradient
depending of the implemented derivative kernel version:

Gy =

 1 2 1
0 0 0
−1 −2 −1

 ∗ A Gx =

 1 0 −1
2 0 −2
1 0 −1

 ∗ A (4.1)

After the low-pass filter application, the sobel operator detects the image
gradient.

where A represents the source image and * denotes the 2-dimensional
convolution operation. The combination is reached calculating the gradient
magnitude:

g =
√
G2
x +G2

y (4.2)

Additionally the gradient direction (Θ) can be estimated calculating the
angle between the two gradients:

Θ = arctan

(
Gx

Gy

)
(4.3)

where Θ represents the angle of the gradient. The image processed is three
dimensional where the peaks represent the high transition areas. According
with the ETDRS retinography protocol [?], the OD in field 1 and 2 is located
in a horizontally centered region. The majority of the undesired gradient
formed due of the vessels is masked in this step. Figure 4.1 shows an image
of reasonable quality processed with sobel operator which optic disk area
has a peak due of the transition between the dark blood vessels crossing the
bright optic disk.

Sobel operator with vessels mask

This model has two tested versions. The first one consists in the simple
application of the sobel operator and the other in a combination between
the sobel operator and a vessels mask. The vessels mask is described later
in the subsection 4.1.5. The second version is modified by appying the sobel
operator in the vicinity of the blood vessels. In practice , the sobel operator
is performed to the whole image and set to zero in regions far from the
detection vessels.
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(a) Top view (Gradient’s image masked). (b) Side view.

Figure 4.1: 3D view of the Sobel operator gradient.

4.1.3 Find region of interest

In order to define the ROI for the OD detections, the sobel operator is per-
formed only in the red channel of the image. To the results of the sobel
operator, a kernel is applied with a size of 31,25% from the image which
sums the values of the each image region. The peak of this sum is admitted
like containing the optic disk. If the source image is field 2, the optic disk is
located near of the margins. In these cases, the ROI does not intercept the
center of the image and will have an area of 25% (Figure 4.2) of the image
size. Otherwise the ROI keeps a size of 31,25% (Figure 4.3).

(a) Input image with a
centered optic disk.

(b) Calcu-
lated ROI.

Figure 4.2: Result for a centered optic disk.
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(a) Input image with a pe-
ripheral optic disk.

(b) Cal-
culated
ROI.

Figure 4.3: Result for a peripheral optic disk.

4.1.4 Gauss gradient

The Gaussian filter (Figure 4.4b) is considered as the optimal filter for
image smoothing. This filter is applied on images using the two dimension
version. It consists of the product of two one-dimension Gaussians [8], one
for the x axis and the other for the y :

g(x, y) =
1

2πσ2
e
−
x2 + y2

2σ2 (4.4)

(a) 2-D function. (b) 2-D kernel (size 5x5 and σ = 1.0).

Figure 4.4: Gaussian filter.

In this step is calculated the Gaussian gradient using the first order deriva-
tive of the Gaussian function. The goal is to control the width of the bound-
ary between the background and the foreground to improve the performance
of the Hough transform (figure 4.5).

22



(a) Ideal scheme of the optic disk and the background intensities.

(b) Isolation of the optic disk boundary after to apply the gaussian
gradient.

Figure 4.5: Gaussian gradient effect

Two parameters define the derivative Gaussian kernel: the standard de-
viation (σ) which control the width of the Gaussian function and the kernel
size (Figure 4.6).

The derivative Gaussian filter is then applied to each color channel indi-
vidually and only the maximum for all channels in each position is considered.
The image of gradient is then normalized with the adaptive contrast enhance-
ment transformation initially proposed by Sinthanayothin et al [20] defined
bellow:

f(i, j)→ g(i, j) = 255
[ΨW (f)−ΨW (fmin)]

[ΨW (fmax)−ΨW (fmin)]
(4.5)

where W(i, j) is a subimage of size MxM pixels centred on a pixel located
at (i, j). The sigmoid function is defined as:

ΨW (f) =

[
1 + exp

(
< f >W −f

σW

)]−1

(4.6)

and fmax and fmin are the maximum and minimum of intensity in the
image with:

f >W (i,j)=
1

M2

∑
(h,l)εW (i,j)

f(h, l) (4.7)
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(a) Original image. (b) Kernel 11 x 11, σ = 2.

(c) Kernel 19 x 19, σ = 4.(d) Kernel 25 x 25, σ = 6.

Figure 4.6: Exemple of an image processed with different derivative Gaus-
sian kernels.

σ2
W (f) =

1

M2

∑
(k,l)εW (i,j)

(f(k, l)− < f >W )2 (4.8)

The normalized image is then binarized with a threshold reached using the
Otsu’s method [18]. A kernel with a σ = 2 and a size of 11 x 11 was applied
in this step due there is a peak of performance for the Hough transform
(described in the next section) with this values.

4.1.5 Vessels detection

The structures detected applying the Gaussian gradient are the optic disk
and the blood vessels. In this work, the blood vessels are removed using
a median filter. This filter rank all the values matched with an image and
replace its center with the value of the ranking’s center (Figure 4.7).

The blood vessels are long and thin structures. The thin feature is the
key for the use of this filter. If the kernel is large enough comparing with
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(a) 3 x 3 template. (b) Sorted vector.

Figure 4.7: Median Filter. [?]

the width of the blood vessels, all the vessel points will be located before
the center of the ranking vector. Hence, the result will be an image with
the vessels overshadowed. Subtracting the original ROI with the ROI with
the vessels overshadowed an image is obtained with the vessels trace (Figure
4.8).

(a) Gray scale ROI. (b) ROI with vessels
overshadowed.

(c) Subtraction.

Figure 4.8: Obtaining vessels.

The image generated from the subtraction has typically bad quality and
needs some adjustments to become useful. This image is normalized with
the same method described in the Gaussian gradient section. After that, the
image is binarized with the threshold equal to the median of the gray scale
ROI (Figure 4.9).

The binarized ROI reached from the Gaussian gradient is then subtracted
by the ROI with the binarized vessels slightly dilated and the structures
smaller then 500 pixels are deleted. The result is an image significantly
cleaner (Figure 4.10).
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(a) Subtracted image. (b) Subtracted image
enhanced.

Figure 4.9: Vessels enhancement.

(a) Binarized ROI
from Gaussian gradi-
ent.

(b) Binarized ROI
with blood vessels.

(c) Subtracted ROI.

Figure 4.10: ROI cleaner.

4.1.6 Image quantization

This last step will perform the quantization of the ROI to reach a binary
image only with the optic disk boundary. Prior to this operation, the gray
scale ROI is normalized following the same principle detailed in the gaussian
gradient section. The optic disk ROI is then quantized in 32 distinct inten-
sity levels. Some of them will correspond to some levels of the optic disk.
From studying tests was found that the optic disk boundary typically has
an intensity between 87,5% and 71% of the full scale after the quantization.
Hence all the areas with a intensity higher then 87,5% are set to zero. Also
the pixels with intensity lower than 71% are set to zero to remove some un-
desired artefact as the residues of vessels. All the corresponding areas erased
in this step are erased in the binary ROI (figure 4.11). This step improves
significantly the performance of the algorithm.
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(a) Before. (b) After.

Figure 4.11: ROI cleaning with the Quantization step

4.2 Hough transform

The Hough transform is a technique to detect shapes in images. This trans-
form is used mainly to extract lines from a similar mathematical definition
of the Radon transform [6] and circumferences. For this case, this transform
was implemented with the goal of detect circular shapes. The equation of
the circumference is defined by:

(x− x0)2 + (y − y0)2 = r2 (4.9)

where x and y are a locus of the points, x0 and y0 are the origin coordinates
and r the radius. Each edge point present in the input image defines a set
of circles. All circles defined for one edge point are centered on it and fill all
range possible of radius. Each edge point of one defined circle in the source
image will origin a circle that will intersect the others from the other edge
points in the center (figure 4.12)

(a) Binary image with
a circle.

(b) Circle detection
process.

Figure 4.12: Hough transform for circles [?].

The three parameters for each circle (center and radius) are stored in the
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accumulator space. For the image of figure 4.14a there will be a peak in the
accumulator corresponding to the position of the center and the radius of the
circle. The equation for the circle (Equation 4.9) can be redefined as:

x = x0 + r cos(θ) y = y0 + r sin(θ) (4.10)

The Hough space is then defined reorganizing the equation as:

x0 = x+ r cos(θ) y0 = −r sin(θ) (4.11)

where depends of the radius r and the angle θ. The peaks will happen in
the points where exist more intersections that will be in the center of each
circle of the source image. Figure 4.13 shows 2 example of accumulators
where is observed a tolerance of noise and occlusion.

(a) Clean image. (b) Image with noise.

(c) Accumulator of the
clean image.

(d) Accumulator of the im-
age with noise.

Figure 4.13: Noise tolerance to Hough transform [?].

The Hough transform is finally applied on the pre-processed image to
detect the most circular shape corresponding of the optic disk (Figure 4.14).
This transform was implemented with a limitation regarding the radius length
to detect. A minimum and maximum radius were defined analysing the
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ground truth of the proprietary dataset which one has all the images with a
size of 768 x 576, the same size of the resize step. The minimum represents
the first percentile (43 pixels) and the maximum the last (64 pixels).

(a) ROI of the pre-
processed image.

(b) ROI of the source image.

Figure 4.14: Optic disk detection using the Hough transform.

4.3 Fovea detection

Located in the center of the macula, fovea is a dark point at 2.5 diameters
of the optic disk from its center [20]. Initially is calculated the circumference
centered in the optic disk with 2.5 optic disk radius (Figure 4.15a). The
image is then masked and only a region of interest will be uncovered (Figure
4.15b). This algorithm is tailored to process images of field 1 or field 2, so
the fovea will be more or less a half heigh of the image.

It is admitted that the fovea location is the center of the darkest square
of dimensions 11 x 11 in the region of interest in the source image resized.
Finally, the output is the source image with the fovea and optic disk suc-
cessfully detected. Figure 4.16) shows the optic disk marked with a blue
circumference and the fovea with the green star.
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(a) Distance calculation. (b) Mask.

Figure 4.15: Region of interest of the fovea.

Figure 4.16: Fovea and optic disk successfully detected.
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Chapter 5

Key Performance Indicators

5.1 Current State

Retmarker is constituted by five main modules:

• Differences.

• Microaneurysms detection.

• Registration.

• Vessels detection.

• Fovea and optic disc detection.

These modules are regularly tested with the goal of improving the per-
formance of each one. There are scripts to start the process containing the
thresholds to be settled. The modules are tested with some datasets and the
results compared with ground truth generated by experienced physicians.
The final parameters generated regarding the performance of each module
are called by Key Performance Indicators (KPI). The whole process is highly
manual and needs a long time to be finished. The process starts with a sim-
ple matlab script which calls the five main modules of the Retmarker. The
results are then saved in text files. The content of this files needs then to
be copied to an excel sheets where the results are compiled to generate some
parameters such as sensibility and specificity. Moreover, the comparison be-
tween processes with different dates is very difficult to do. Therefore it is
complicated analysing the history of the performance.
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The KPI for detection of differences between images consists in three main
categories: Pixel level, region level and frame level (Table 5.1). Pixel level
are the lower level statistics of the three ones and is about the position of
the pixels detected as difference. Region level is regarding the position of
the stains of pixels marked as differences. The frame level is the statistic
regarding the quantity of pixels stains marked as difference in the whole
image.

Pixel level
Sensitivity
Specificity
False positives / Number of images

Frame level
Sensitivity
Specificity
False positives / Number of images

Region level
Sensitivity
False positives / Number of images

Table 5.1: KPI for detection of differences.

The statistics for microaneurysms and vessels detection consists in a sim-
ple comparison between the detection of the Retmarker and the ground truth
on pixels level (Table 5.2).

Sensitivity
Specificity

False positives / Number of images

Table 5.2: KPI for microaneurysms and vessels detection.

The statistics generated for the performance of fovea and optic disc de-
tection (Table 5.3), are based in the euclidean distance between the location
of the fovea and the center of the optic disk with the coordinates present in
the ground truth for the dataset of test. This comparison uses a threshold
previously defined as an euclidean distance of 20 pixels in images of 768 x
576. If the location for these structures is a distance less than the threshold,
the detection is admitted as with success. Regarding the optic disk radius,
the threshold consists in a value to compare with the quotient between the
radius detected and the respective radius present in the ground truth. If the
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quotient is belong to ]0.9 1.1[ the radius was successful detected. Moreover,
it is yet calculated the number of foveas successfully detected after the optic
disk, once that the fovea detection is based in the detected position of the
optic disk center in the image.

Fovea mass center
Optic disk mass center
Optic disk heigh ratio

Fovea mass center with success in optic disc

Table 5.3: KPI for fovea and optic disk detection.

The registration module consists in two different algorithms: V1 and V2.
The V1 is slower but has a higher level of success that the V2. The KPI
consists in three different types (Table 5.4). The first shows the performance
for V1 algorithm, the second the performance for V2 and the last does a
comparison between both. Individually, for V1 and V2 are generated the
quantity of images successfully and unsuccessfully registrable, the accuracy
of the registry based in a threshold previously defined, and the mean accuracy
for each one. The two algorithms were compared generating the number of
images where each one has the best performance comparatively, where V1
fails the register and V2 was successful, where V2 fails the register and V1
had success and finally where the two algorithms fail the register.

Registration V1

Best Registration
Accuracy < thr
Registration Fail
Mean Accuracy

Registration V2

Best Registration
Accuracy < thr
Registration Fail
Mean Accuracy

V1 and V2 Fail
V2 Fail and V1 Register
V1 Fail and V2 Register

Table 5.4: KPI for registration module.
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5.2 Planning

The first step for the automation consists in to build an interface dedicated
to start the process. Some useful requirements were implemented:

• Send an e-mail up to three different addresses warning when the pro-
cessing ends via gmail.

• Create a root output folder for the output files of all modules.

• Delete possible existing cache.

• Export results to the database.

• Save and load settings.

• Generate automatically a script called from a batch file that runs in
the windows task schedule.

• Save a log written by the user to easily identify the process.

Retmarker needs some days to generate all the results. When the results
are generated, they are stored in an appropriate database.

An application developed in C# (object-oriented language based on C++)
should be build to analyze the KPI easily. This application uses SQL queries
to access the database and automatically compare the parameters between
each processing and shows an overall analysis of all of them. This application
allows the user to access the data regarding the processings exported to the
database for each Retmarker’s module. It should grant an easy search by
processing ID, processing date or log and delete database data. Also there is
the possibility to export a pdf report with the results of a selected processing
(Appendix A)
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Chapter 6

Results

6.1 Fovea and Optic Disk Detection

Two matlab prototypes were built and tested. The first one defines the re-
gion of interest using only the sobel operator. This first approach manifested
some problems to detect the mentioned structures in images with several le-
sions presents in the public Stare dataset. In order to improve the detection
for this kind of images, the second prototype uses a combination between the
sobel operator and the vessels mask (chapter 4, section 4.1).

The first prototype was tested with a proprietary dataset and with four
public datasets. The second one was only tested with the public Stare
dataset. The performance was compared with the actual algorithm inte-
grated in Retmarker for fovea and optic disk detection (Reference). All the
tests were performed in a machine with 2.83GHz Intel Core 2 quad CPU and
1.98Gb of RAM.

6.1.1 Datasets

The proprietary dataset consists in 1464 non-midriatic anonymous images
from a Diabetic Retinopathy Screening Programme in Portugal. The public
datasets used for the validation of this algorithm are:

• Messidor [?].

• ROC [?].

• Drive [?].

• Stare [?].
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Messidor dataset has been established to facilitate studies on computer-
assisted diagnoses of diabetic retinopathy. This dataset contain 1200 eye
fundus color numerical images acquired by 3 ophthalmologic departments
using a color video 3CCD camera on a Topcon TRC NW6 non-mydriatic
retinograph with a 45 degree field of view. Each one was captured using 8
bits per color plane at 1440*960, 2240*1488 or 2304*1536 pixels.

ROC dataset has 100 images all taken from patients with diabetes with-
out known diabetic retinopathy. The images were taken with Topcon NW
100, NW 200 or Canon CR5-45NM ’non-mydriatic’ cameras at the default
resolution and compression settings. The images are a random sample of all
patients that were noted to have red lesions from a large (> 10,000 patients)
diabetic retinopathy screening program, and each image is from a different
patient.

Regarding Drive dataset, the photographs were obtained from a diabetic
retinopathy screening program in The Netherlands. The screening popula-
tion consisted of 400 diabetic subjects between 25-90 years of age. Forty
photographs have been randomly selected, 33 do not show any sign of dia-
betic retinopathy and 7 show signs of mild early diabetic retinopathy. Each
image has been JPEG compressed. The camera used was a Canon CR5 non-
mydriatic 3CCD with a 45 degree field of view. Each image was captured
using 8 bits per color plane at 768 by 584 pixels.

Stare dataset is constituted by 81 images: 31 healthy retinas and 50 con-
taining pathological lesions of various types and severity. This dataset has
been widely tested in literature.

6.1.2 Assessments for the proprietary dataset

The proprietary dataset is the only one with ground truth information
on fovea and optic disk positions generated by experienced physicians. The
analysis between the reference and the proposed method with the proprietary
dataset was based in the euclidean distance between the location of the optic
disk center and fovea detected by each algorithm and the ground truth.

As all the images have the dimension of 768 x 576, was admitted that if the
euclidean distance between the optic disk or fovea detected and the respective
coordinates in ground truth was less then 20 pixels, these structures were
successfully detected. Regarding the optic disk radius, the evaluation was
based in the quotient between the radius detected by each algorithm and
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the respective radius in the ground truth. If this quotient belonged to the
interval ]1 - 0.1 ; 1 + 0.1[ the radius was admitted as correctly detected. Also
the processing time was evaluated.

Developed Code Reference
no of images (%) no of images (%)

Optic Disk Mass center
1259 (86,00%) 1001 (68,37%)

(euclidean distance < 20 pixeis)
Optic Disk height

912 (62,30%) 526 (35,93%)
(ratio ε ]1 - 0.1 ; 1 + 0.1[)

Fovea Mass Center
1265 (86,41%) 966 (65,98%)

(euclidean distance < 20 pixeis)
Average Processing Time

10,9452 s 12,1176 s
by Image

Table 6.1: Results for the proprietary dataset.

Table 6.1 shows the results for the proprietary dataset. The proposed
method achieved a better detection in all fields. The optic disk center reached
a success rate 17,63% higher than the reference. The optic disk radius and
fovea was detected with 26.37% and 20.43% higher respectively. The analysis
of the following accumulative charts shows a continue increase of performance
of the proposed method comparing with the reference for the optic disk center
(Figure 6.1 and the fovea 6.2). This charts compare the detection levels for
different values of threshold.

Figure 6.1: Accumulative chart for the optic disk center detection.
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Figure 6.2: Accumulative chart for the fovea detection.

The chart in figure 6.1 shows an increase of performance since the eu-
clidean distance of three pixels. Similarly, analyzing the chart in figure 6.2 is
observer since the threshold of two for the fovea. The following histograms
obtained with SPSS [?] shows a visual impression of the distribution of data.
The total area of the histograms is equal to the number of data.

(a) Developed Algorithm. (b) Reference.

Figure 6.3: Frequency histogram showing the distribution of the euclidean
distances between the detected optic disks and the ground truth for each
algorithm.

Figure 6.3 shows two histograms with the frequency of the euclidean
distance sample for the proposed method in figure 6.3a and for the reference
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in figure 6.3b regarding the optic disc. Analysing this charts is observed a
higher trend of the sample present in the chart 6.3a to be closer of the origin
and a smaller number of outliers. The mean of the euclidean distances for the
sample created by the developed algorithm is equal to 13,82 and the standard
deviation to 34.592 pixels. On the other hand the reference presents a mean
of 63.64 and a standard deviation of 124,733 pixels. This data indicates that
there is a higher dispersion of the sample generated by the reference. The
same evidence is observed in relation to the fovea in figure 6.4.

(a) Developed Algorithm. (b) Reference.

Figure 6.4: Frequency histogram showing the distribution of the euclidean
distances between the location of foveas and the ground truth for each algo-
rithm.

In this case the mean and the standard deviation are respectively 14,67
and 26.887 pixels for the sample created by the developed method. Reference
presents a mean of 34,69 and a standard deviation of 61,699. These facts
mean that there is a significant decrease of the sample amplitude for both
methods comparing with the optic disk case.

The following figures show 2 histograms with the quotients samples re-
garding the radius for the proposed method and the reference. The sample
of the proposed model in figure 6.5a seams a tight Gaussian function with
a peak centered in 1 which means a good performance. On the other hand
the histogram for the reference (Figure 6.5a) shows two peaks where no one
is centered in 1. A boxplot of this samples were generated for each one.
This kind of plot depicts groups of numerical data through their five-number
summaries with an easy way to understand: the smallest observation (min-
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(a) Developed Algorithm. (b) Reference.

Figure 6.5: Frequency histogram showing the distribution of the quotient
between the estimated radius of each optic disk and the respective radius in
the ground truth.

imum), 25o quartile, median, 75o quartile, and largest observation (maxi-
mum). Notwithstanding, also the outliers are easily represented if there are
any (Figure 6.6).

Figure 6.6: Box-and-Whisker Plot scheme.
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In figure 6.7 is quite perceptible the larger amplitude of the reference
sample in the second quartile (Figure 6.7b) and a median further from 1.
Moreover, it’s observed a trend for there to be outliers mainly after the
maximum for the sample of the developed model (Figure 6.7a). The outliers
in the reference sample are all located before the minimum. All this indicators
conclude that the developed model has a higher accuracy then the reference
about the estimation of the optic disc radius.

(a) Developed Algorithm. (b) Reference.

Figure 6.7: Boxplot regarding optic disk radius for 2 methods.

6.1.3 Assessments for the public datasets

All the public datasets tested do not have ground truth. The results were
generated only for the optic disk detection admitting that if the optic disk
center was detected inside the optic disk boundary, the detection was suc-
cessful. The results for all this datasets are in the following table:

Dataset
Optic disk detected

Developed Code Reference
Messidor 1156 (96,33%) 488 (40,67%)

ROC 98 (98,00%) 96 (96,00%)
Drive 39 (97,50%) 39 (97,50%)
Stare 47 (58,02%) 59 (72,84%)

Table 6.2: Results for the public datasets.

Observing the table 6.2 the developed model presents a better accuracy
for the majority of the datasets tested. This difference is higher for the Mes-
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sidor which indicates a high performance for this kind of images. The images
of the Stare dataset have particular features. A lot of images of this dataset
has brighter structures due of some diseases like exudates or drusens. It is
evident some difficulties of the algorithm to detect the mentioned structures
in this kind of images. A slightly modification was implemented in the model.
A combination between the sobel operator with the vessels mask (chapter 4)
was implemented to find the region of interest. Table 6.3 compare the refer-
ence, the two versions of the model and the methods tested with this dataset
presents in the literature.

Optic disk detection methods Stare dataset
Highest average variation - Sinthanayothin et al [20] 42.0%

Largest brightest connected objects
- Walter and Klein [23] 58,0%

Average OD-images model - based - Osareh et al [16] 58,00%
Proposed method using only the sobel

operator to find the ROI 58,00%
Resolution pyramid using a simple Haar-based
discrete wavelet transform - Frank ter Har [21] 70,4%
Hausdorff - based template matching, piramidal

decomposition & confident assignment
Lalond et al [12] 71,6%

Hough transform applied only to pixels close
to the retinal vasculature - Frank ter Har [21] 71,6%

Reference 72,8%
Proposed method with the combination between

the sobel operator and the vessels mask
to find the ROI 74,1%

Fuzzy convergence - Hoover and Goldbaum [9] 89,0%
Fitting the vasculature orientation

on a directional model - Frank ter Har [21] 93,8%
A geometrical model of the vessel

structure structure using 2 parabolas - Foracchia [7] 97,5%
Vessels direction matched filter - Youssif et al [25] 98,8%

Table 6.3: Optic disk detection results for the proposed and literature
methods with the Stare dataset.
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This table shows a significant improvement of the results between a sim-
ple application of the sobel operator and the combination between sobel and
the vessels mask to find the ROI. This modification has even better results
comparing with the reference. In literature there are four models with a bet-
ter performance for optic disk detection. However, the approaches followed
for the authors are computational heavy. Youssif et al [25] developed an
algorithm which needs on average 3.5 minutes for image in a computer with
2-GHz Intel Centrino 1.7 CPU and 512 Mb RAM. The geometrical model
developed by Foracchia [7] spends 2 minutes on average by image in a com-
puter with 2-GHz Intel Pentium IV CPU and 512 Mb RAM. Frank ter Har
[21] and Hoover and Goldbaum [9] did not publish this data. Moreover, these
algorithms do not have the ability to detect the optic disk radius and only
do an estimation of its center based on the vessels orientation. The fovea is
not detected in these four approaches.

6.1.4 Limitations of the model

The main limitation of the developed model consists in a relatively high
sensitivity to other bright structures present in advanced stage of some dis-
eases such as diabetic retinopathy. However, this problem was partially cor-
rected with the combination between the sobel operator and the vessels mask
for estimate de ROI. Figure 6.8 presents 2 images recovered with this new
approach. Only the approaches based on the vessels direction have a high
detection levels even with the presence of these structures. However they
need a long average processing time by image. These kind of algorithms are
not suitable to be integrated in Retmarker.

43



(a) im0002 with a failed detec-
tion

(b) im0049 with a failed detec-
tion

(c) im0002 recovered (d) im0049 recovered

Figure 6.8: Two images of the Stare dataset recovered by the new approach
implemented.
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6.2 Key Performance Indicators

6.2.1 Implementation

A matlab interface was created to start the process (Figure 6.9) with the
requirements mentioned in section 5.2 of the chapter 5. It uses XML files to
store the selected settings in the hard drive and the same can be loaded to
reload the options chosen. This was implemented using the xml toolbox of
matlab.

Figure 6.9: Matlab interface to start the KPI process.

A layer created in matlab was implemented to export all the processing
results to the microsoft sql server database. This layer was created using the
database toolbox of the matlab.

The application to analyse de results was developed using Microsoft Vi-
sual Studio development environment. A multilayer architecture was imple-
mented during the development of the c# application to analyse the KPI.
This architecture consists in three layers (Figure 6.10). The data access layer
only reads data from the database and send it to the business logic layer in
a encapsulated way using the models. The business logic layer receives the
encapsulated data from the data access layer and compiles the information
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to be showed in the user interface layer. This last layer only has as function
interacts with the user and shows the information of interest.

Figure 6.10: Architecture scheme for the c# application.

Figure 6.11 shows the window with the information for all processings in
the database. It is observed the search box (1), a table with the processings
where is possible generates a report for each one or delete them (2), a panel
with the log of the selected processing in the table (3) and the information
with how many runs each one has (4).

Figure 6.11: Overall window with the database data.
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Each module has two respective windows. The figure 6.12a compares two
processings with the differences module (1) selected in (2) and returns the
delta between each parameter (3). Each module has a text processor to store
all the conclusions taken (4). The other (figure 6.12b) allows sorting each
parameter of all processings results by ascending or descending order.

(a) Comparison between two processings.

(b) Overall analysis.

Figure 6.12: Data analysis for the differences module.
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The microaneurisms’s window contains two panels, one for each selected
processing (1) (2), with the information about the microaneurysms detected
in each image of the dataset of test(Figure 6.13a) beyond the sensitivity,
specificity and false positives per images.

(a) Comparison between tow processings.

(b) Overall analysis.

Figure 6.13: Data analysis for the microaneurysms module.
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All the charts were implemented with the MS chart available for .Net
Framework 3.5. For the registration module are generated two charts (Figure
6.14b) where there is a comparison between the two processings selected
in the main window. The axis are the percentage of images successfully
registered for each value of threshold. The chart (1) shows the results with
the V1 method and chart (2) the results for V2. In this case the results were
equal.
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(a) Comparison between two processings.

(b) Overall analysis.

Figure 6.14: Data analysis for the registration module.

As for microaneuryms, vessels module only presents as KPI the sensitivity,
specificity and the number of false positives per image (Figure 6.15).

50



(a) Comparison between two processings

(b) Overall analysis

Figure 6.15: Data analysis for the vessels module.

For fovea and optic disk module the charts show for the processings se-
lected, the percentage of optic disks (1) and foveas (2) detected for different
values of threshold. In this case the blue area corresponds to the devel-
oped algorithm for the fovea and optic disk detection and the yellow to the
algorithm of Retmarker (Figure 6.16b).
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(a) Comparison between two processings.

(b) Overall analysis.

Figure 6.16: Data analysis for the fovea and optic disk module.
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Chapter 7

Conclusions And Future Work

A new fully automatic model is proposed in this work to detect the fovea
and optic disk center and radius in retinal images. Comparing with the
literature, this method is one of the few that detects the center and the radius
of the optic disk. This algorithm was developed with a particular concern to
be a fast method and to keep interesting levels of detection performance. For
all the datasets tested, this proposed methodology revealed to be a powerful
tool to detect the structures mentioned. This algorithm consists in a 3 main
steps:

1. A pre-processing of the source image.

2. Detection of the optic disk with the Hough transform.

3. Detection of the fovea based in the optic disk position.

The validation tests proved that this model is capable of performing a
reliable detection of the optic disk and fovea. Comparing with the reference
model, and others in the literature, this is one of the methods with a better
ratio between a good detection and a short time. Most of the tests demon-
strated better indicators comparing with the reference and even with the
majority of the methods presented in literature. The methods observed in
literature which claim a better accuracy for the public Stare dataset have the
detection based in the vessels tracing which invalidates the optic disk radius
detection. Only estimate the optic disk center. Moreover, all of them are
computational heavier. All the features shows that this model is a strong con-
tribution to be applied in an automatic approach for screening programmes
in the future. A paper about this work was already accepted for the VipIM-
AGE 2011 - III ECCOMAS Thematic Conference on Computational Vision
and Medical Image Processing.
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The fully automatic Key Performance Indicators process proposed in this
thesis has been successful implemented in Critical Health. The automation
was done using some technologies such as matlab, c#, microsoft sql server
and xml. The thresholds present in Retmarker algorithms already have been
tested with the goal of improving their performance.

To finalize the evaluation, a higher number of tests should be done in the
future to understand the real effect of the combination between the result
of the sobel operator with the vessels mask in the calculation of the ROI.
However, the preliminary results are promising and seem to have potential
to improve the performance.
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Appendix A

Key Performance Indicators
Report

The report was generated using the MigraDoc and PDFsharp libraries for
C#.

Figure A.1
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