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ABSTRACT

This paper describes an applicarion of a direct design method for optimum design of
reinforced and presiressed concrete structures. The approach integrates multicriteria
optimization strategy with commercial finite element package. The design problem is
posed directly as a multicriteria optimization with goals of minimum cost, stresses and
displacements. Most of constraints and some of objective functions are governed by
the FEM equilibrium equations in static analysis. The multicriteria problem is folded
into a single envelop function based on maximum entropy formulation, where pareto
optimum achieve a comprise among the objeciives and constraints and represent more
meaningful and rational results in practice. The validity of the proposed design method
is examined by means of numerical examples.
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INTRODUCTION

In the last three decades, much work has been done in the structural optimization, in addition
to considerable development in optimization theory[1]. However, structural optimization has
not been used extensively for civil engineering structures {3](as opposed to mechanical or
aerospace structures). It is said that the main reason to cause the situation is the difficulty in
choosing the meaningful objective that includes all relevant criteria. Unlike mechanical or
aerospace structures, it is not easy and obvious to find one dominating criterion in the civil
engineering structures but several (possibly conflicting) criteria such as: minimum cost,
maximum safety, minimum stresses, minimum deflections and so forth. The advantage of
multicriteria is that it simultaneously considers all competing objectives and convergence to
a Pareto solution for which it is not possible to improve one merit function without seriously
impairing others. It is very nature and suitable for practical design of civil engineering
structures.

The maximum entropy formulation, first published by Jaynes in 1957[5], is recognized
as a fundamental concept in information theory. It determines a least biased possibility for a
problem in a random process via maximum entropy direction. In recent years, it has emerged
as an important and powerful in a wide variety of different fields, and it has found
applications in many disciplines throughout science and technology as well as in the structural
optimization [8]. In the present paper, the maximum entropy formulation is used to archive
the Pareto solution of a multicriteria optimization problem.

The optimization of prestressed beams, which possesses a large number of constraints
and occasionally conflicting objectives, is dealt within this work. The problem is posed as a
multicriteria optimization with goals of minimum cost, stresses and displacements. The



problem is solved through the minimization of a convex function involving one control
parameter obtained by folding all goals and constraints into a single envelope. The single
objective optimization problem is approximated by first order Taylor's series expansion of
structural response and then solved by the public domain Non-Linear Programming NLP
program TN/GAMS[6] based on the truncated-Newton algorithm. All structural responses are
gained by using commercial finite element package (ADINA). The numerical examples
illustrated the application of such direct design method of a prestressed beam. The design
variables consist of the areas of prestressing and mild steel, overall depth and depth and web
thickness. The actual cost construction is composed of prestressing, mild steel, concrete and
formwork costs, and other possible objectives such as initial camber, minimum depth of girder
were introduced also.

MULTICRITERIA OPTIMIZATION PROBLEM AND PARETO OPTIMUM

The multicriteria (milticriterion, multiobjective, vector) optimization problem may be
formulated as follows: to determine a vector of design variables that satisfy the constraints and
minimize a vector of objective function. Mathematically, this can be stated as follow:

Min  Z = f(x) = [ (%), £%),.. fu(®)]  x€Q (L

where f = vector of objective functions; £, = component objective function (i=1.2,...,m); Q =
feasible set to which x belongs and is a subset of R

Q = {x € R*: g(x)<0, h(x)=0} (2)

Usually there exists no unique point which would give an optimum for all m criteria
simultaneously. The concept of Pareto Optimum is introduced as a solution to multicriteria
optimization.

A vector x” € Q is Pareto optimum for problem (1) if and only if there exists no x € Q such
as fi(x) < fi(x), for i = 1.2,..m with f(x) < f(x") for at least one j. In other word, x is a
Pareto optimum if there is no feasible solution x which decrease some objective without
causing a simultaneous seriously increase of at least another objective function.

SOLUTION OF MULTICRITERIA OPTIMIZATION PROBLEM:
MAXIMUM ENTROPY FORMULATION APPROACH

Several approach, already applied in operation research and control theory, have been
proposed in the literature for the solution of multicriteria optimization problems [2]. In the
study, the approach based on the Maximum Entropy Formulation are accepted, because of its
concrete foundation.

Entropy is most commonly known in the physics in connection with the second law
of thermodynamics - the entropy law - which states that entropy, or amount of disorder, in any
closed conservative thermodynamics system tends to maximum. A fundamental step in using
entropy in new context unrelated to thermodynamics was provided by Shannon [7] who
realized that entropy could be used to measure other types of disorder by using the following
algebraic form to measure the amount of uncertainty in any discrete probability distribution.

S=-k}Y plnp, (3)

where p, is the probability of event i , k is a constant



The Multicriteria optimization process could be considered as a deductive process.
Given a set of objective function f and some constraint functions, the process commences
without any numerical information. An initial point is then chosen and information is
calculated about the gradient of objective function and constraint function. The numerical
information is then used to determine the current situation to infer where the next trial point
should be placed via the maximum entropy direction. X, = D(Xy)
The Kreisselmeier-Steinhauser function [4] defined in (4) could be considered the measure of
entropy in the multicriteria optimization process of (1). The most rational direction of the
process maybe the maximum KS norm direction, so that the multicriteria optimization problem
(1) was replaced by maximizing a single KS norm function (4).

KS(fﬁg) %ZH(E(;’ < + 3 e ,ogj) (4)
. ﬁf T4
> °

where f* is set of gradient of objective functions.
It has been proved [4] that for any positive value of p, the KS norm is always more
positive than the most positive constraint.

Min(f",g)<KS{f"}=Min(f ".g) _Infm n)

(6}
Because of the behaviour of the KS norm, it is obvious that when p becomes

sufficiently large, the result of
Minimuam [KS( f*,g1 (7

is the Pareto-optimal solution of multicriteria optimization problem (1). A parameter
study had been done (FIG.3), and p=10-50 were assumed in the stody. Therefore the
multicriteria unconstraint optimization problem (1) can be solved by minimizing a single
continuous and differentiable function (7).

Until now, the multicriteria optimization problem has been converted so far into a
single objective function optimization problem.

SOLUTION OF SINGLE OBJECTIVE OPTIMIZATION PROBLEM

After the multicriteria optimization is transferred into an equivalent single-objective problem
based on the maximum entropy formulation, the latter may be solved using standard non-linear
programming(NLP) constrained by the equilibrium equations of finite element methods. The
problem could be formulated as follows.

Minimize KS( f (x), 'g(x)) (8a)
Such that: hix) = Kux)-P =0 (8b)
X lower o x < x PP (8c)

where h = vector of equal constraints, K = stiftness matrix, P = load cases, u = vector of
displacements, X, x ™ | x " = vectors of design variables and corresponding lower and

‘upper bounds.

Tt is obviously that equations(8a-c) are very complex non-linear programming program. As the
computational expensive results of (8b), it isn't suitable to use the standard NLP directly. The
iterative method was employed in the study. At the start of each iteration, the nonlinear KS
norm are linearized at the current point x, using first-order Taylor's series expansion, i.e.



Minimize KS(x) = KS8(x,) + KS8'(x) ( x - x. ) )
Such that: h(x) = Ku(x)-P =0 (8h)
Xy - A(Xk - xlow) X=X % A(Xupper B Xk) (10)

where A is a parameter, 0.1 - 0.3 was assumed; and
XS Ag | KS &
& A F & (1)

It is easy to calculate (11), because all components in equation are implicit expression
but ag/ax and some df;/0x. The overall finite difference approach was implemented to
calculate the sensitivity information.

The iterative procedure stop until it archives its stop criteria. The stop criteria inchude
three criterion: first when the error ¢, = %, - x is small enought; second if the error no longer
decreasing or decreasing too slowly, and third when the number of iteration is over the limit
amount of iteration. The approach has a very strong trend to convergence to the feasible, if
the initial point is in the infeasible domain. As it uses the linear approximate, it is possible
to archives infeasible domain from feasible domain, especially in the optimum point, In the
case, we set

KS1x)=

X = wx + (1-0) x, (12)

Until it archive feasible domain.
where w is a parameter, o< (0,2.0). ® = 0.618 was assumed.

In general minimizing (9)(8b)(10) is a linear programming problem that may be solved
by a variety of techniques. The public domain optimization program GAMS/TN had been
adopted as a black box to solve the maximum KS.

NUMERICAL EXAMPLE

DESIGN VARIABLES

The prestressed concrete slab box girders with the cross section, tendon layout and loading
in Fig. is to be designed for two objective functions:(1) Minimum the total cost;(2) minimum
the initial camber. The nine design variables are the girder depth b, the areas of prestressed
steel and reinforcement A, and A, the tendon eccentricity at support section e, and the
thicknesses top and bottom slabs and web ¢, ¢, and ¢, , etc.
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FIG.1 Structure Geometry
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The commercial finite element package ADINA was used to simulate structural responses
under the static design loads. The concrete is modeled using 9-node plane strain elements and
the prestressed tendon and reinforcement steel by 3-node truss elements (Fig.2). In addition
to its own weight, the girder carries 9.343 kN/m.lane uniform design load, and concentrated
design force 80 kN/lane for midspan and 115 kN for quadspan. Instead of practical design
code, a general two dimensional under principle stresses failure criteria of concrete material
in tension and compression in two principle stresses directions described in Fig.2 are
employed as constraints. For each selected point in the concrete elements, following
constraints were set (FIG.2):

o,/f.. +1.0 > 0.0

o/, +1.0 > 0.0

10-0,/4,> 00

1.0 - 0,/ > 0.0

+ Ouffee = 01/ + 1.0 > 0.0
- 0u/ff, 0./, + 1.0> 00
Similarly, for each prestressed tendon and mild steel elements:
1.0 - 6, ffy > 0.0
1.0-o0,/f,> 00
The concrete (C50/60) has f,. =0.3333x10" N/m* , £, = -0.2800x10" N/m? , p, =

0.2450x10° Njmr’, E, = 0.37x10" N/m?, E,; = 0.34x10" N/m*  ,y =0.2. Prestressing Steel
has £, = .1785x10* Nfm?, £, = £, / Vps = .1552%10" Nfm* , E = 2.0x10"" N/m. The mild steel
has £, = 4500x10° N/m® , f, = f. / ¥, = .3910x10° N/m® . Prestress losses of 15% between
transfer and service are assumed.
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FIG.2. FE mesh and failure envelop 9

The absolute lower and upper bounds were set according to geometrical constraints,
and some practical experience. For example, the reinforcement area for a reinforced concrete
beam should be

0.15% < 100A, /A, < 4.0% (16)

The minimum reinforcement is provided mainly to control thermal and shrinkage
cracking, while the maximum steel is determined largely from the practical need to achieve
adequate compaction of the concrete around reinforcement. In addition to the relative bounds
(10), the follows absolute bounds are set:

Xt {(spanf24, spanj8) s (x,+thickness, x,-x;-thickness)
v (spanf9, 2*span/9) 0% (0.5thickness, 1.5thickness)
X! (3width/8, Swidth/8) gt (4.0thickness, 6.0thickness)

Xy (1.5thickness, 3.0thickness) Xq: (0.0000154,, (0.00044,)
p % (0.0000154,, 0.00044,)



OBJECTIVE FUNCTIONS

The primary-objective function was the total cost per-unit length, which includes the costs of
concrete, mild steel, prestressing steel and formwork and it was stated as:
_ H=LCA+ VC, +AC, + A,C
where C7, C,, C;, and C,; = unit cost of framework, concrete, mild steel and prestressed steel
per length, volume, and areas respectively. In the paper, we assumed C? = 76.0 ESC/m, C,
= 350.0 ESC/m?, C, = 5,000 ESC/m’, C, = 19,500 ESC/m* .
The another objective function was designed as the minimization of the initial camber
due to prestressing and own weight. The objective and all constraints described after are
governed by the finite element equilibrium equation (8b), i.e.
£, =u = K'P or explk(u;- 6)]
The depth of the girder could be considered as the third objective function as:
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FIG 3.Parameter Study on p and Initial & Optimum Mesh

NUMERICAL RESULT

1.
2,

3

The parameter p in (4) is a very important parameter in the algorithms. In order to set
the parameter, a single objective optimization was implemented which p was set from 3.0 to
100.0 . The result are shown in FIG.3. It is obviously that the higher p could archive bit lower
objective function value. When the p is over 50.0 the results is not very stable. In the follows
example p = 20.0 are assumed.
Six examples were implemented. It was concluded that:

All pareto solutions in the table were acceptable;

When the objective functions don't conflict, they converged quite smoothly, compared
with conflicted objective functions exist, the process had quite variation(F1G.4);

In the design load cases, prestressed tendon keep quite longer straight line; In the
optimization process, the depth of beam trends to some level, and the eccentricity at
support trends to zero;
The thicknesses of top and bottom slabs convergence into their lower bounds; the

thickness of web is quite sensitivity in the study;




5, The area of prestressed steel convergence into acceptable range, in the meantime, the
mild steel trends to zero. The numerical result could be thought adopt the full
prestressed concrete design theory, which ignore the contribution of mild steel;
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FIG.4 Typical Multicriteria Optimization processes to Pareto Solutions

Table Pareto Solutions

objlxlo’ | obizxit? ¥ lof =2h 10 x3w10 rax1P X510 x6x10 x7x10° xBx10? £Ox 1* B
1 3364 0918 1612 5185 5282 1603 3120 1097 3166 1024 1427 I
2 3399 0987 1798 4951 5819 1431 3045 1001 3045 7596 0820 F
3 3303 1010 1756 5093 3906 1042 3042 0834 3042 5702 1044 F
4 3353 | o6v2 1735 | 4847 | 5577 | anlz | 3112 | 0934 | 3155 | 6083 | 1339 [T
5 3673 | 0693 1851 | 6550 | 4915 | 2670 | 3151 | 171 | 3362 | 7419 | 4828 | 1
6 3433 0953 1608 SOT72 5770 2462 3118 1163 3115 T195 | 1992 F
F/I:  initial point in Feasible domain or Infeasible domain

Conclusions

The multicriteria optimization based on maximum entropy formulation approach presented in
this paper demonstrates the potential of the advanced optimization strategy coupled with finite
element techniques to solve a variety of prestressed and reinforcement concrete design
problems in a quite efficient way. The major merits of the approach are: (1) very concrete
theory foundation to determine the direction for a multicriteria problem to the non-unique
Pareto Solution; (2) inclusion of all possible (even conflicting) objective functions for a given
structural design problem; (3) satisfaction of all constraints (very fast to convergence into
feasible designs); and (4) because a general FEM was employed, suitability of a variety of
structural designs in the civil engineering, which had been widely used in the mechanical and
aero-space engineering.

The advantage of the approach based on maximum entropy formulation over other
approaches for transforming multicriteria problem into a single criterion problem lies in its
automatically comprise among the possible conflict objective functions.



The multicriteria optimization approach enables the solution of optimization problems

for which adequate allowable limits on some structural responses (e.g. initial camber) are not
known .

This approach enables some insight into the sensitivity of various objectives functions

and design variable variables to design problem.

More structural derails should be investigated such as anchorage, prestressed concrete

block and bridge bearing, which is more suitable a multi-level optimization algorithms.

Acknowledgements

The conference grant of FUNDACAQ ORIENTE, Portugal, which made possible for the
author to represent their research work at ECCS-1, is gratefully acknowledged.

[8]

Notation

Partial safety factor for concrete, reinforcement and prestressing steel
Compressive strength of concrete

froa 5 Flexural compressive and tensile strength of concrete
Initial flexural compressive and tensile stréngth of concrete
the density of concrete

T ] “basic design shear strength of concrete

Fa 3 Tensile strength of prestressing steel

T ] Characteristic tensile strength of prestressing stael

2 : design strength of reinforcing steel

5 g yield stress of reinforcing steel

own weight

= Concentrated loan load
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5 Bl By Steel and Concrete Young's modulus
Paisson’s ratio of Concrete Material
Safety factor

Design variables

objective functions

.2 : vectors of censtraints

stiffness matrix

load vector

W
P
E
¥
P
x
f
h
K
P ]

w, thickness, width, spa 4 constant
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