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Abstract

Box-girder decks are very effective sohations for long span cable-stayed bridges, due to its
high torsional stiffness and streamlined profile, which usually leads to a good aerodynamic
behaviour. A study on the optimization of such stroctural system is presenied in this paper.
The deck is modelled through the assembly of planes of plate-membrane elements. A
multicriteria approach is congidered for the opiimization itself, with constraints on maximum
stresses, minimum stresses in stays and deflections under dead load condition Twe
illustrative examples are shown,

1 Introduction

Cable-stayed bridges are large and sophisticated structures which may greatly
benefit from the use of Structural Optimization techniques for preliminary
design improvement. General optimization packages are not appropriate for this
purpose given the special characteristics of this strictural system and the
rgorous aesthetical and serviceability design. Therefore, an integrated analysis-
optimization application for this type of structure was developed by the authors,
in which the required adaptations were implemented at the code level, The
programme was named CIAO (Cable-stayed bridges Integrated Analysis and
Optimization).

This programme was tested in the investigation of some relevant aspects
which affect the design of a cable-stayed bridge. The research model on shape
and sizing optimization of cable-stayed bridges started by using a 2D finite
element model for the analysis [1]. The problem was extended to three-
dimensional analysis and consideration of erection stages under static Joadings
[2.[3]. Seismic effects must be considered in structural design in earthquake-
prone countries. Therefore, a reliable solution requires the consideration of this
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loading at the early stage of optimization. A sensitivity analysis algorithm
derived from the modal-spectral approach in conection with the Complete
Quadratic Combination Method (CQC) [4] was later described [5]. However, in
instances such as with strongly nonlinear behaviour or when cohalescence
situations arise, the algorithm may not be valid or lead to runtime error. The
alternative use of a time-history based sensitivity analysis procedure is then
recommended, though computationally expensive. Such algorithm was also
implemented in the software. Recent papers [6],[7] discuss the specific issucs
and relative merits of both methods.

2 Analysis model
2.1 Deck

In most of the previous studies, a grid solution was adopted for modelling
the deck, with side stiffening girders supporting transverse beams. However,
box-girder decks provide increased torsional resistance and better aerodynamic
behaviour than open sharp deck profiles, which are decisive aspects in the
design of long-span cable-stayed bridges. Besides, when certain structural
solutions such as the single plan arrangement of cables are adopted, the use of
box-girder sections is more appropriate.

This paper concerns the optimization of cable-stayed bridges with this fype
of deck Prior to the code implementation, one had to choose the numerical
model to be used from among three possible types: i) “spine” discretization, in
which the deck is modelled by a fictitious beam with global stiffness
characteristics similar to those of the true box-girder cross section; #) specific
box-girder element formulation; Jij) assembly of plate-membrane plane
elements.

The former approach was used in an early paper of the authors [1],
although the two-dimensional analysis undertaken in that study did not allow for
the consideration of out-of-plane behaviour. However, in spite of being
computationally affordable, this model requires that pre- and post-processing is
provided to set the fictitious beam dimensions and to account for box-girder
effects such as warping and shear-lag. Furthermore, as far as optimization is
concerned, a two-level procedure must be used. Fictitious cross-sectional areas
and inertias are used as intermediate design variables from which the optimal
values of the primary ones - plate thicknesses and cell dimensions - are in turn
oplimized.

Specific box-girder elements intend to conciliate computational
effectiveness and analysis accuracy. Nukulchai and Hong [8] formulate one such
class of elements. However, a different number of degrees of freedom is
assigned to the element nodes, which may require some major changes of the
analysis code. Besides, these elements are usually not available in the libraries of
most fe. packages and therefore its full development is required. Finally, the
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elements lack flexibility for medelling different cross-section geometries, such as
muiticell box-girders, side cantilever plates and diaphragms.

The latter approach was therefore selected for use in the programme. Given
its suitability for both thin or thick plate problems, Reissner-Mindlin formulation
was considered and 4- and 9-noded isoparametric lagrangean plate-mermbrane
elermnents were developed. A. selective quadrature procedure was used for the
stiffness matrix, with a 2x2 rule for the bending terms and a single point rule for
shear and membrane sub-matrices. A fictitious in-plane rotational stiffness was
added to coplanar nodes in order to prevent system singularity. Null-energy
modes may arise from the use of selective quadrature, causing the solution
process to fail. However, in the specific type of structure under study, they were
found not fo propagate through the mesh, due to the intersection of box-girder
element planes and the boundary conditions at the extreme cross-gections.

2.2 Stays

Most cable-stayed bridges show moderate nonlinear behaviour, which is
contributed from three main sources: the sag effect of the cables, the effect of
large displacements and P-A interaction. Therefore, some provisions to account
for nonlinsar effects need to be considered and the use of a geometrically
nonlinear analysis approach should look the obvious choice. However, although
the two latter effects may play an important role in instances such as alternate
loading in large spans and/or erection stages, most authors agree in that the
catenary effect of the cables is the dominant source of nonlinearity. Besides, one
is to expect very high computational costs and considerable numerical
difficulties in implementing sensitivity analysis for a pure geometrically nonfinear
approach.

Therefore, the equivalert or Emst modulus method, which accounts for the
nonlinear behaviour of the stays whilé still allowing for the use of a pseudo-
linear analysis, was chosen. The main problem concerning this method is that
different equivalent modulus must be assigned to each cable for each load case
{according to its actual stress condition) when several load conditions are
considered. This would require the equation solver to be restarted for each load
case, which is extremely expensive in a single analysis process and even more in
an optimization context. Fortunately, the variation of the equivalent modulus
within the range of cable stresses spanning the various load cases is usually
small. In fact, large mintmum tensile stresses are required to act in the stays, in
arder to provide them with the adequate stiffness. Such type of condition can be
added as a constraiot in the optimization formulation, to guarantee a minimum
level of stress.

Thus, an averaged equivalent instantaneous Ernst modulus was used, for
each stay, for all the load cases under consideration. When erection stages are
accounted for, the stress amplitude from one stage to another may be
considerably large and the mean stress is usually smaller than average stress
acting in the cable in the final structure, In such case, since the previous
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approach is no longer valid, a secant equivalent Ernst modulus whose value is
derived from the stress in both the current and the following stage is used
instead. However, this topic shall not be discussed in detail in this paper.

3 Design variables

Selecting a trial design for a cable-stayed bridge involves setting a large
number of parameters of both sizing, shape and mechanical (prestressing) types.
Owing to the complex structural behaviour and parameter interaction, it is not
easy to foresee how to combine their values in order to achieve a reasonably
effective and feasible design. For the optimization sake, it is desirable that a
wide choice of potential design variables is available. This was achieved by
introducing the concept of design variable library. Basically, it consists of a set
of procedures and instructions on how to compute goals and sensitivities for a
set of previously defined parameters. These concern geometrical description for
& number of cross-section shapes, overall structural geometry and cable
presiresses. Figures 1-3 shows the relevant design variable types for the kind of
problem being discussed. Other types are available for plate girder type decks.

Figure 2 - Shape design variables
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Figure 3 - Fixed-end prestressing design variable
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Different thicknesses may be assigned to the various panels of the box-
girder cross section. Shape cross-sectional design variables such as box height
or bottom width, which may play an important role in future research
concerning seismic or acrodynamics problems, are currently under development.

Maximum structural cost decrease is achieved with formulations in which
the three types of design variables are combined. Sizing design variables provide
for direct volume/cost reduction. Shape and prestressing design variables, with
respect to which cost is almost insensitive, play nevertheless an important role in
allowing for better stress distribution, leading to additional sizing reductions.
Prestressing design variables may be considered alone for the problem of
optimal correction of cable forces during erection [9].

Several trial designs may be tested by simply switching on or off each type
of design variable or its assignment to specific subdomains or groups of
clements. This intensive data process is aotomatically handled by the
programme. Pie- and post-processing routines are available for initial generation
and updating of the fe. mesh and variable linking when shape design variables
are considered. However, care must be taken to avoid excessively narrow plate
elements in the transverse direction, which causes degeneration of the numerical
accuracy. This may happen because longitudinal discretization accounts for both
the cable anchorage positions, which vary throughout the process, and the
diaphragms spacing, which is likely to be a prescribed value. In such cases, a
refined discretization must be used for both directions, which results in the
increase of the computational cost.

4 Sensitivity analysis
4.1 General

Given the availability of the source code, the discrete nature of cable-stayed
bridge structures and the large mumber of constraints (stresses and
displacements) under control, the analytical discrete direct method was used for
the sake of sensitivity analysis. The method relies upon the differentiation of the
finite element equilibrium equation set

K—=";'__‘E=_9§1 (1)
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in which Q, is the virtual pseudo-loading corresponding to design variable x..
4.2 Plate-membrane element sensitivity analysis
The coefficients of the fe. equation system result from assembling the element

contributions, Therefore, the same applies to their derivatives in equation (1),
which requiires sensitivity analysis to be developed at the element level.



96 (Computer Aided Optimum Design of Structures V

Plate-membrane elements of the deck show explicii dependancy only on
design variables types 1,4,5,7,8,10 of Figures 1-2. Type 1 is a sizing design
variable and the remaining types are shape design variables. Sensitivitity analysis
is basically different for each of these groups and a brief description shall be
made in the following.
From the fe. formulation of Reissner-Mindlin plate-membrane elements,
one can notice that the coefficients of the element stiffness matrix are of either
the forms

f o F® N;x,y) N(x.y) dudy (28)

aN; (x,w)
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in which & is the plate thickness, (x,3) are the element node cartesian local
coordinates and N, are the element shape functions.

For the purpose of systematic application, equations (2) are usuaﬂy
expressed in terms of intrinsic coordinates, leading to

SS F(h)Ni(‘é,’T)Nj(E,ﬂ}dedﬂ (33)
H F(h)£* (&, n,x, )N; (&, 7 ) dedy §=x0ry {3b)
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where J is the Jacobian matrix and

_ {9y Ny 9y N, Heretiiticn we 4
frEmx.)= [ o 3t 3 B ] for differentiation with respect to x (42)
FEnx ) %ﬂx—% % a;“ ] for differentiation with respect to y (4b)

The derivatives of the cartesian local coordinates are derived from the
isoparametric relations involving the element N nodes coordinates

5
x= Y Nt x Ni(En)y; (5)
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By differentiation of equations (3) with respect to the design variable x, one
can get now the sensitivitics of the stiffness coeflicients.

For the case in which a sizing design variable (plate thickness) is being
considered, only the function F(%) which sets strain variation through the plate
depth leads nonzero derivative and the sensitivity shall be readily available.

When dealing with shape design variables, all the remammg terms in
equations (3) are variable dependant and the sensitivity expression results
somewhat more complex:

i F(h)Ni(E,'q)Nj(i,ﬂ)%%dEdﬂ (7a)
{f F) LS5 (E ”’5‘) N;(t.m) dédy (7b)
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One has for the sensitivity of the Jacobian determinant, one has
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By differentiation of expressions for functions fin (4):
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Derivatives of cartesian loeal coordinates in equations (8)~(9) are finally
obtained from differentiation of (6), resulting in:

L[ﬁ] ij‘iﬂ a4 f'*s]_ iﬁdﬁ
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The derivatives of the nodal coordinates with respect to the shape design
variables are therefore the basic brick to build all the required sensitivities. The
particular shape of the domain, with all box-girder plate elements bounded by
sides which are either paralell or orthogonal to the longitudinal direction makes
that an easy task.

5 Optimization
5.1 The algorithm

NLP algorithms may face considerable difficulty in dealing with problems in
which bundreds or thousands of constraints are to be controlled.

Since the simultaneous reduction of all the objectives (stresses and
displacements) is desirable in structural optimization, one may employ a
minimax approach, but these problems are discontinuous and non-differentiable
and therefore difficult to solve. However, it may be shown [10],[11] that a
minimax solution can be found by minimizing the unconstrained scalar function

" .
F(x)=1ln y e"&® (1)
=1
or, in the explicit approximate form
M of Fi@n)* w}?‘%‘“:] M e
F=L1In Ze FaRLs = Llin Eep(gi(;,-)-*i (gi}Az) (12)
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which is more suitable for numerical calculation. N is the number of design
variables, g (%) are the M objectives, V g(%) stands for objective gradient and Ax
is the perturbation vector. p is a user-defined parameter control which must be
gradually increased throughout the iterative sequence.

5.2 Constraints

In order to prevent numerical inaccuracy, the objectives are turned into
nondimensional normalized form by using reference values which are:
- The volume/cost of the starting trial design;
- The altowable stress for materals;
- The tolerance deflection for geometry control
According to this, the following types of objectives are formulated:

g (X)=V/V,-1<0 Cost reduction goal (13)

g(@=0/lc,-1<0 Maximum allowable stress (14)

g@=a-g/o.<0, 0<a<l Minimum required tensile stress in  (15)
stays for effective stiffness

g(x)=§/8.-1=0 Controlled deflections (16)
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6 Examples

The process is illustrated by two examples which differ in the consideration of
geometry control constraints (16).

The geometry of the starting design is shown in Figure 4. A relatively large
span had to be used in order to achieve significant stresses on deck, since the
lower bound of 15mm, imposed for the equivalent thickness of the steel plates,
result in a considerably large cross-sectional area. A single cell box-girder with
the size shown is ysed. Diaphragms are 10m spaced, in order to match all cable
anchorage positions in both side and central spans. Minimum stress in stays is
prescribed as 20% of allowable stress. For controlling the geometry in the dead
load condition of problem 2, a tolerance of Sem is allowed for deflections at the
deck anchorage points. Besides dead load condition needed for geometry
contral, another four load cases are considered: live load on side and/or central
spans (3) and lateral wind (1), Dead load is taken as 2.0KN/m?, additionally to
structural self-weight. For live load a uniform load of 4.0KN/m? is considered,
while as for wind a drag pressure of 1.5KN/m? is used, no lifting forces being
accounted for.

Figure 4 - Geometry of starting design

Allowable stress is taken as 200MPa for pylons, 140MPa for deck plates
and S00MPa for stays.

47 design variables were considered mn both problems, with the following
meaning and sequence:

1,23 - Equivalent thicknesses (mm) of top, bottom and side plates, res-
pectively, of each side span outer 160m;

456 - The same, for 30m on each side of the pylons;

7.8,9 - The same, forremaining part of central span;

10-:13 - Length. width and thicknesses of pylons below the deck (m,m,mm)
14-17 - The same, for pylons above deck level

18-31 - Cross-sectional areas of cables, starting with the back-stays (cm?)
32-45 - Corresponding fixed-end prestressing forces in the cables (MN)
46 ~ Length of end block zone of cables in pylons (m)

47 - Distance from deck level to the lowest cable end block (m)
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Table 1 - Starting and final values of design variables for examples 1 and 2

DV | St | Exl | Ex2 DV | St [Ex! { Ex2 DV | St | Exl | Ex2
1 12001501150 17 {400 | 240} 2456 33 | 80 | 70 11708
2 (2001501150 18 | 330 | 390 { 326 34 [ 30 ] 23131
3 20.0 | 150 [ 17.1 19 | 250 | 231 § 339 35 | 30 | 47 § 58
4 2001} 150] 150 20 150 | 75 78 36 | 3.0 | 40 ; 57
5 200 150156 21 § 150 4 151 | 140 37 [ 3.0 ] 36 { 3.6
6 |200] 1501150 22 | 150 ] 108 | 121 38 | 30 | 32 ¢ 38
7 120072121254 23 | 100 | 81 83 29 |30 | 32131
8 |200]163]150 24 | 100 | 68 72 40 [ 3.0 [ 47 | 44
9 | 20.0 | 40.0 | 40.0 25 | 100§ 60 67 41 30 | 28 | 07
10 | 3.50 | 3.00 | 5.00 26 1 100 ) 106 | 129 42 | 30 | 00 | 53
11 | 350 | 500 5.00 27 | 175 | 136 | 33 43 | 20 | 00 [ 4.4
12 1400 ) 1501150 28 | 175 | 126 | 208 44 | 20 | D0 ¢ 04
13 | 40.0 | 29.9 | 30.2 29 175 1 141 | 201 45 | 3.0 | 98 | 84
i4 | 3.50 | 5.00 | 5.00 30 | 200 | 45 44 46 | 18.0 | 12.0 | 120
15 | 350 | 486 1 494 31 | 200 § 344 | 288 47 | 42.0 | 60.0 | 60.0
i6 | 400|130 150 32 1100 )150 (126
10 4260 10
8 E
‘ 4 ¥ W 0900
4 4
I :
0 ff 0
N FNE. :
1 E
» %
€ 3 6 9 1215 18 21 24 27 B3 6 ¢ 1215 18 2 2 27
(a) No deflection control (b) With deflection control

Figure 5 - Cost reduction (%) against number of iterations

Figare 5 représenis the cost reduction for both solutions. The starting
design shows a constraint violation with respect to the minimum stress
condition in the back-stays, when the live load on the side spans is acting on the
structure. The optimization process looks for the design feasibility in the first
place and that results in an inifial increase in cost, which is recovered later.
When deflection control is considered, the cost recovery takes place after a
larger mumber of iterations. This is due to the arisal of several other constraint
violations related to the deflection of controlled nodes, additionally to the
minimum siress condition in the back-stays. As a result, the final cost reduction
is just about 6.5% of the initial cost, against 10% for the example without
deflection control.

e e e
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Figure 7 - Deflected shape for dead load condition in starting design and
solutions 1 (no geometry control) and 2 (with geometry control)

Figure 6 shows the initial and final stress distribution in the pylons and stays
for example 1, similar results being achieved for example 2. However, the
kinematic behaviour is rather different in each optimized design, as one can
observe in Figure 7. The deflected shape of problem 2 could still be enhanced if
a smaller tolerance were prescribed for checking the controlled displacements.
The sag of spans between consecutive stays depends only on local flexural
behaviour and must be prevented by properly cambering the deck segments in
the fabrication site.

In both optimal designs the final arrangement of stays approaches the fan
configuration, the end block zone length converging to the lower bound.
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Conversely, the distance from the deck to the lowest cable anchorage
reaches the upper bound, which provides the stays with maximum slope and
vertical stiffness.
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