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Abstract

Box-girder decks are very effective solutions for long span cable-stayed bridges, due to their high torsional stiffness and streamlined
profile, which usually lead to a good aerodynamic behaviour. A study on the optimization of such structural system is presented in this paper.
The deck is modelled through the assembly of planes of plate-membrane elements. A multicriteria approach is considered for the optimiza-
tion itself, with constraints on maximum stresses, minimum stresses in stays and deflections under dead load condition. Two illustrative
examples are shown.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Cable-stayed bridges are large and sophisticated struc-
tures which may greatly benefit from the use of structural
optimization techniques for preliminary design improve-
ment. General optimization packages are not appropriate
for this purpose given the special characteristics of this
structural system and the rigorous aesthetical and service-
ability design. Therefore, an integrated analysis-optimiza-
tion application for this type of structure was developed by
the authors, in which the required adaptations were imple-
mented at the code level. The programme was named cable-
stayed bridges integrated analysis and optimization (CIAO).

This programme was tested in the investigation of some
relevant aspects that affect the design of a cable-stayed
bridge. The research model on shape and sizing optimiza-
tion of cable-stayed bridges started by using a 2D finite
element model for the analysis [1]. The problem was
extended to three-dimensional analysis and consideration
of erection stages under static loadings [2,3]. Seismic effects
must be considered in structural design in earthquake-prone
countries. Therefore, a reliable solution requires the consid-
eration of this loading at the early stage of optimization. A
sensitivity analysis algorithm derived from the modal-spec-
tral approach in connection with the complete quadratic
combination method (CQC) [4] was later described [5].
However, in instances such as with strongly non-linear
behaviour or when coalescence situations arise, the algo-
rithm may not be valid or lead to runtime error. The alter-
native use of a time-history based sensitivity analysis

procedure is then recommended, though computationally
expensive. Such algorithm was also implemented in the
software. Recent papers [6,7] discuss the specific issues
and relative merits of both methods.

2. Analysis model

2.1. Deck

In most of the previous studies, a grid solution was
adopted for modelling the deck, with side stiffening girders
supporting transverse beams. However, box-girder decks
provide increased torsional resistance and better aerody-
namic behaviour than open sharp deck profiles, which are
decisive aspects in the design of long-span cable-stayed
bridges. Besides, when certain structural solutions such as
the single plan arrangement of cables are adopted, the use of
box-girder sections is more appropriate.

This paper concerns the optimization of cable-stayed
bridges with this type of deck. Prior to the code implemen-
tation, one had to choose the numerical model to be used
from among three possible types: (i) “spine” discretization,
in which the deck is modelled by a fictitious beam with
global stiffness characteristics similar to those of the true
box-girder cross section; (ii) specific box-girder element
formulation; (iii) assembly of plate-membrane plane
elements.

The former approach was used in an early paper of the
authors [1], although the two-dimensional analysis
undertaken in that study did not allow for the consideration
of out-of-plane behaviour. However, in spite of being
computationally affordable, this model requires that
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pre- and post-processing is provided to set the fictitious
beam dimensions and to account for box-girder effects
such as warping and shear-lag. Furthermore, as far as opti-
mization is concerned, a two-level procedure must be used.
Fictitious cross-sectional areas and inertias are used as inter-
mediate design variables from which the optimal values of
the primary ones—plate thicknesses and cell dimensions—
are in turn optimized.

Specific box-girder elements intend to conciliate compu-
tational effectiveness and analysis accuracy. Nukulchai and
Hong [8] formulate one such class of elements. However, a
different number of degrees of freedom is assigned to the
element nodes, which may require some major changes of
the analysis code. Besides, these elements are usually not
available in the libraries of most f.e. packages and therefore
its full development is required. Finally, the elements lack
flexibility for modelling different cross-section geometries,
such as multicell box-girders, side cantilever plates and
diaphragms.

The latter approach was, therefore, selected for use in the
programme. Given its suitability for both thin or thick plate
problems, Reissner–Mindlin formulation was considered
and 4- and 9-noded isoparametric lagrangean plate-
membrane elements were developed. A selective quadrature
procedure was used for the stiffness matrix, with a 2× 2 rule
for the bending terms and a single point rule for shear and
membrane sub-matrices. A fictitious in-plane rotational
stiffness was added to coplanar nodes in order to prevent
system singularity. Null-energy modes may arise from the
use of selective quadrature, causing the solution process to
fail. However, in the specific type of structure under study,
they were found not to propagate through the mesh, due to
the intersection of box-girder element planes and the bound-
ary conditions at the extreme cross-sections.

2.2. Stays

Most cable-stayed bridges show moderate non-linear

behaviour, which is contributed, from three main sources:
the sag effect of the cables, the effect of large displacements
and P–D interaction. Therefore, some provisions to account
for non-linear effects need to be considered and the use of a
geometrically non-linear analysis approach should look the
obvious choice. However, although the two latter effects
may play an important role in instances such as alternate
loading in large spans and/or erection stages, most authors
agree in that the catenary effect of the cables is the dominant
source of non-linearity. Besides, one is to expect very high
computational costs and considerable numerical difficulties
in implementing sensitivity analysis for a pure geometri-
cally non-linear approach.

Therefore, the equivalent or Ernst modulus method,
which accounts for the non-linear behaviour of the stays
while still allowing for the use of a pseudo-linear analysis,
was chosen. The main problem concerning this method is
that different equivalent modulus must be assigned to each
cable for each load case (according to its actual stress condi-
tion) when several load conditions are considered. This
would require the equation solver to be restarted for each
load case, which is extremely expensive in a single analysis
process and even more in an optimization context. Fortu-
nately, the variation of the equivalent modulus within the
range of cable stresses spanning the various load cases is
usually small. In fact, large minimum tensile stresses are
required to act in the stays, in order to provide them with
the adequate stiffness. Such type of condition can be added
as a constraint in the optimization formulation, to guarantee
a minimum level of stress.

Thus, an averaged equivalent instantaneous Ernst modu-
lus was used, for each stay, for all the load cases under
consideration. When erection stages are accounted for, the
stress amplitude from one stage to another may be consid-
erably large and the mean stress is usually smaller than
average stress acting in the cable in the final structure. In
such case, since the previous approach is no longer valid, a
secant equivalent Ernst modulus whose value is derived
from the stress in both the current and the following stage
is used instead. However, this topic shall not be discussed in
detail in this paper.

3. Design variables

Selecting a trial design for a cable-stayed bridge involves
setting a large number of parameters of both sizing, shape
and mechanical (prestressing) types. Owing to the complex
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Fig. 1. Sizing design variables.

Fig. 2. Shape design variables.



structural behaviour and parameter interaction, it is not easy
to foresee how to combine their values in order to achieve a
reasonably effective and feasible design. For the optimiza-
tion sake, it is desirable that a wide choice of potential
design variables is available. This was achieved by introdu-
cing the concept ofdesign variable library. Basically, it
consists of a set of procedures and instructions on how to
compute goals and sensitivities for a set of previously
defined parameters. These concern geometrical description
for a number of cross-section shapes, overall structural
geometry and cable prestresses. Figs. 1–3 show the relevant
design variable types for the kind of problem being
discussed. Other types are available for plate girder type
decks.

Different thicknesses may be assigned to the various
panels of the box-girder cross section. Shape cross-sectional
design variables such as box height or bottom width, which
may play an important role in future research concerning
seismic or aerodynamics problems, are currently under
development.

Maximum structural cost decrease is achieved with
formulations in which the three types of design variables
are combined. Sizing design variables provide for direct
volume/cost reduction. Shape and prestressing design vari-
ables, with respect to which cost is almost insensitive, play
nevertheless an important role in allowing for better stress
distribution, leading to additional sizing reductions.
Prestressing design variables may be considered alone for
the problem of optimal correction of cable forces during
erection [9].

Several trial designs may be tested by simply switch-
ing on or off each type of design variable or its assign-
ment to specific subdomains or groups of elements. This
intensive data process is automatically handled by the
programme. Pre- and post-processing routines are avail-
able for initial generation and updating of the f.e. mesh
and variable linking when shape design variables are
considered. However, care must be taken to avoid
excessively narrow plate elements in the transverse
direction, which causes degeneration of the numerical
accuracy. This may happen because longitudinal discre-
tization accounts for both the cable anchorage positions,
which vary throughout the process, and the diaphragms
spacing, which is likely to be a prescribed value. In
such cases, a refined discretization must be used for both
directions, which results in the increase of the computa-
tional cost.

4. Sensitivity analysis

4.1. General

Given the availability of the source code, the discrete
nature of cable-stayed bridge structures and the large
number of constraints (stresses and displacements) under
control, the analytical discrete direct method was used for
the sake of sensitivity analysis. The method relies upon the
differentiation of the finite element equilibrium equation set

K
du
dxi
� 2

dP
dxi

2
dK
dxi

u � Qpi �1�

in which QP is the virtual pseudo-loading corresponding to
design variablexi.

4.2. Plate-membrane element sensitivity analysis

The coefficients of the f.e. equation system result from
assembling the element contributions. Therefore, the same
applies to their derivatives in Eq. (1), which requires sensi-
tivity analysis to be developed at the element level.

Plate-membrane elements of the deck show explicit
dependency only on design variables types 1, 4, 5, 7, 8,
10 of Figs. 1 and 2. Type 1 is a sizing design variable and
the remaining types are shape design variables. Sensitivitity
analysis is basically different for each of these groups and a
brief description shall be made in the following.

From the f.e. formulation of Reissner–Mindlin plate-
membrane elements, one can notice that the coefficients of
the element stiffness matrix are of either of the formsZ
V

F�h�Ni�x; y�Nj�x; y� dx dy �2a�

Z
V

F�h� dNi�x; y�
ds

Nj�x; y� dx dy s� x or y �2b�

Z
V

F�h� dNi�x; y�
ds

dNj�x; y�
dr

dx dy s� x or y; r � x or y

�2c�
in which h is the plate thickness, (x,y) are the element node
cartesian local co-ordinates andNj are the element shape
functions.

For the purpose of systematic application, Eqs. (2a)–(2c)
are usually expressed in terms of intrinsic co-ordinates,
leading toZ1

2 1

Z1

2 1
F�h�Ni�j;h�Nj�j;h�uJu dj dh �3a�

Z1

2 1

Z1

2 1
F�h�f s�j;h; xe�Nj�j;h� dj dh s� x or y �3b�
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Fig. 3. Fixed-end prestressing design variable.



Z1

2 1

Z1

2 1
F�h�f s�j;h; xe�f r�j;h; xe� 1

uJu
dj dh

s� x or y r � x or y

�3c�

whereJ is the Jacobian matrix and

f x
k �j;h; xe� � 2y

2h

2Nk

2j
2

2y
2j

2Nk

2h

� �
for differentiation with respect tox

�4a�

f y
k �j;h;xe� � 2

2x
2h

2Nk

2j
1

2x
2j

2Nk

2h

� �
for differentiation with respect toy

�4b�

The derivatives of the cartesian local co-ordinates are
derived from the isoparametric relations involving the
elementN nodes co-ordinates

x�
XN
j�1

Nj�j;h�xj y�
XN
j�1

Nj�j;h�yj �5�

2x
2j
�
XN
j�1

dNj

dj
xj

2y
2j
�
XN
j�1

dNj

dj
yj

2x
2h
�
XN
j�1

dNj

dh
xj

2y
2h
�
XN
j�1

dNj

dh
yj

�6�

By differentiation of Eqs. (3a)–(3c) with respect to the
design variablexi one can get now the sensitivities of the
stiffness coefficients.

For the case in which a sizing design variable (plate
thickness) is being considered, only the functionF(h)
which sets strain variation through the plate depth leads
non-zero derivative and the sensitivity shall be readily
available.

When dealing with shape design variables, all the remain-
ing terms in Eqs. (3a)–(3c) are variable dependant and the
sensitivity expression results somewhat more complex:Z1

2 1

Z1

2 1
F�h�Ni�j;h�Nj�j;h� duJu

dxi
dj dh �7a�

Z1

2 1

Z1

2 1
F�h� df s�j;h;xe�

dxi
Nj�j;h� dj dh �7b�

Z1

2 1

Z1

2 1
F�h�

"
df s�j;h; xe�

dxi
f r�j;h; xe�

1 f s�j;h; xe� df r�j;h; xe�
dxi

2 f r�j;h; xe�f s�j;h; xe� 1
uJu

duJu
dxi

#
1
uJu

dj dh �7c�

One has for the sensitivity of the Jacobian determinant

duJu
dxi
�

d
2x
2j

� �
dxi

2y
2h

1
2x
2j

d
2y
2h

� �
dxi

2

d
2x
2h

� �
dxi

2y
2j

2
2x
2h

d
2y
2j

� �
dxi

�8�

By differentiation expressions for functionsf in Eqs. (4a)
and (4b):

df x
k

dxi
�

d
2y
2h

� �
dxi

2Nk

2j
2

d
2y
2j

� �
dxi

2Nk

2h

df y
k

dxi
� 2

d
2x
2h

� �
dxi

2Nk

2j
1

d
2x
2j

� �
dxi

2Nk

2h

�9�

Derivatives of cartesian local co-ordinates in Eqs. (8) and
(9) are finally obtained from differentiation of Eq. (6),
resulting in:

d
dxi

2x
2j

� �
�
XN
j�1

dNj

dj

dxj

dxi

d
dxi

2y
2j

� �
�
XN
j�1

dNj

dj

dyj

dxi

d
dxi

2y
2h

� �
�
XN
j�1

dNj

dh

dyj

dxi

d
dxi

2x
2h

� �
�
XN
j�1

dNj

dh

dxj

dxi

�10�
The derivatives of the nodal co-ordinates with respect to

the shape design variables are, therefore, the basic brick to
build all the required sensitivities. The particular shape of
the domain, with all box-girder plate elements bounded by
sides which are either parallel or orthogonal to the long-
itudinal direction makes that an easy task.

5. Optimization

5.1. The algorithm

NLP algorithms may face considerable difficulty in deal-
ing with problems in which hundreds or thousands of
constraints are to be controlled.

Since the simultaneous reduction of all the objectives
(stresses and displacements) is desirable in structural opti-
mization, one may employ a minimax approach, but these
problems are discontinuous and non-differentiable and
therefore difficult to solve. However, it may be shown
[10,11] that a minimax solution can be found by minimizing
the unconstrained scalar function

F�x� � 1
r

ln
XM
i�1

ergi �x� �11�
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or, in the explicit approximate form

F�x� � 1
r

ln
XM
i�1

e

r gi �x0�1
XN
j�1

2gi �x0�
2xj

Dxj

0@ 1A

� 1
r

ln
XM
i�1

er�gi �x0�17 T�gi �Dx� �12�

which is more suitable for numerical calculation.N is the
number of design variables,gi(x) are theM objectives,
fg(x) stands for objective gradient andDx is the perturba-
tion vector. r is a user-defined parameter control which
must be gradually increased throughout the iterative
sequence.

5.2. Constraints

In order to prevent numerical inaccuracy, the objectives
are turned into non-dimensional normalized form by using
reference values which are:

• the volume/cost of the starting trial design;
• the allowable stress for materials;
• the tolerance deflection for geometry control.

According to this, the following types of objectives are
formulated:

g0�x� � V=V0 2 1 # 0 Cost reduction goal �13�

gi�x� � s i =sA 2 1 # 0 Maximum allowable stress�14�

gi�x� � a 2 s i =sA # 0; 0 # a # 1

Minimum required tensile stress in stays for effective stiffness

�15�

gj�x� � dj =d0 2 1 # 0 Controlled deflections: �16�

6. Examples

The process is illustrated by two examples that differ in
the consideration of geometry control constraints (16).

The geometry of the starting design is shown in Fig. 4. A
relatively large span had to be used in order to achieve
significant stresses on deck, since the lower bound of
15 mm, imposed for the equivalent thickness of the steel
plates, result in a considerably large cross-sectional area.
A single cell box-girder with the size shown is used.
Diaphragms are 10 m spaced, in order to match all cable
anchorage positions in both side and central spans. Mini-
mum stress in stays is prescribed as 20% of allowable stress.
For controlling the geometry in the dead load condition of
problem 2, a tolerance of 5 cm is allowed for deflections at
the deck anchorage points. Besides dead load condition
needed for geometry control, another four load cases are
considered: live load on side and/or central spans (3) and
lateral wind (1). Dead load is taken as 2.0 kN/m2, addition-
ally to structural self-weight. For live load a uniform load of
4.0 kN/m2 is considered, while as for wind a drag pressure
of 1.5 kN/m2 is used, no lifting forces being accounted for.

Allowable stress is taken as 200 MPa for pylons,
140 MPa for deck plates and 500 MPa for stays. 47 design
variables were considered in both problems, with the
following meaning and sequence:

1, 2, 3—equivalent thicknesses (mm) of top, bottom and
side plates, respectively, of each side span outer 160 m;

4, 5, 6—the same, for 30 m on each side of the pylons;
7, 8, 9—the same, for remaining part of central span;
10–13—length, width and thicknesses of pylons below

the deck (m, m, mm)
14–17—the same, for pylons above deck level
18–31—cross-sectional areas of cables, starting with the

back-stays (cm2)
32–45—corresponding fixed-end prestressing forces in

the cables (MN)
46—length of end block zone of cables in pylons (m);
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Fig. 4. Geometry of starting design.
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Fig. 6. Initial and final maximum stresses in stays and pylons.

Fig. 5. Cost reduction (%) against number of iterations: (a) no deflection control; and (b) with deflection control.

Fig. 7. Deflected shape for dead load condition in starting design and solutions 1 (no geometry control) and 2 (with geometry control).



47—distance from deck level to the lowest cable end
block (m).

Fig. 5 represents the cost reduction for both solutions. The
starting design shows a constraint violation with respect to
the minimum stress condition in the back-stays, when the
live load on the side spans is acting on the structure. The
optimization process looks for the design feasibility in the
first place and that results in an initial increase in cost, which
is recovered later. When deflection control is considered, the
cost recovery takes place after a larger number of iterations.
This is due to the arisal of several other constraint violations

related to the deflection of controlled nodes, additionally to
the minimum stress condition in the back-stays. As a result,
the final cost reduction is just about 6.5% of the initial cost,
against 10% for the example without deflection control.

Fig. 6 shows the initial and final stress distribution in the
pylons and stays for example 1, similar results being
achieved for example 2. However, the kinematic behaviour
is rather different in each optimized design, as one can
observe in Fig. 7. The deflected shape of problem 2 could
still be enhanced if a smaller tolerance were prescribed for
checking the controlled displacements. The sag of spans
between consecutive stays depends only on local flexural
behaviour and must be prevented by properly cambering the
deck segments in the fabrication site (Table 1).

In both optimal designs the final arrangement of stays
approaches the fan configuration, the end-block zone length
converging to the lower bound.

Conversely, the distance from the deck to the lowest cable
anchorage reaches the upper bound, which provides the
stays with maximum slope and vertical stiffness.
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Table 1
Starting and final values of design variables for examples 1 and 2

DV St. Ex1 Ex2

1 20.0 15.0 15.0
2 20.0 15.0 15.0
3 20.0 15.0 17.1
4 20.0 15.0 15.0
5 20.0 15.0 15.6
6 20.0 15.0 15.0
7 20.0 21.2 25.4
8 20.0 16.3 15.0
9 20.0 40.0 40.0
10 3.50 5.00 5.00
11 3.50 5.00 5.00
12 40.0 15.0 15.0
13 40.0 29.9 30.2
14 3.50 5.00 5.00
15 3.50 4.86 4.94
16 40.0 15.0 15.0
17 40.0 24.0 24.6
18 350 390 326
19 250 231 339
20 150 75 78
21 150 151 140
22 150 108 121
23 100 81 83
24 100 68 72
25 100 60 67
26 100 106 129
27 175 136 33
28 175 126 208
29 175 141 201
30 200 45 44
31 200 344 288
32 10.0 15.0 12.6
33 8.0 7.0 10.8
34 3.0 2.3 3.1
35 3.0 4.7 5.8
36 3.0 4.0 5.7
37 3.0 3.6 3.6
38 3.0 3.2 3.8
39 3.0 3.2 3.1
40 3.0 4.7 4.4
41 3.0 2.8 0.7
42 3.0 0.0 5.3
43 2.0 0.0 4.4
44 2.0 0.0 0.4
45 3.0 9.8 8.4
46 18.0 12.0 12.0
47 42.0 60.0 60.0


