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Abstract

The purpose of this paper is to show zn application of the
maximum entropy formalism to the shape optimization of dam:s
subject to seismie loading. The structural system is diseretized by
the finite element method. The dynamic response analysis is
computed by modal analysis or step by step integration
procedures. Emphasis 1s placed on the derivation of the
sensitivity analysis equations done by the analytic method and
based on the dynamic analysis procedure to be employed, The
earthquake response includes dam-reservoir and dam-foundation
interactions. The shape optimization of a concrete gravity dam is
posed as a multiobjective optimization with goals of minimum
volume of concrete, stresses and maximum safety against
overturning and sliding. By using the maximum énlropy
formalism it is shown that a Parete solulion may be found
mdirectly by the unconstrained optimization of a scalar function,
The validity and effectiveness of the proposed technique is

examined by means of a concrete gravity dam.

In Memorian

JOSE SIMOES

1. Introduction

The design of contimuum stiuctures such as dams presents a
unique task. Such structures are fundamentally configuration
optimization prohlems where the external geometry of the
structure is to be determined. The optimal design problems can
be stated in a mathematical programming form with geometric
design variable representing cocordinates of the nodes or

boundaries of elements. It should be emphasized that the
geometric constraints imposed on the continuum structure are

such that the procedures of scaling are not appropriate.
Moreover, maximun stresses appear in ceftain sections, but the
majority of the critical sections is not fully stressed under any
toad combination at the optimum. Each design stage of the
iterative process presented here involves: (1) The analysis of an
tnittal or trial design by finite element gnalysis; (2) Use of
sensitivity analysis and approximation concepts to formulate the
performance constraints as explicit linear functions of design
variables; (3) optimization by means of an efficient optimization
algorithm to obtain a better selutdon. The new design than
becomes the trial desige for the next design iteration and the
process is continued until the change in design over a number af
successive design stages is less than some specified Lolerance,

The finite element techniques, taking into account plane
strains, soil interaction, thermal stresses, etc. are now current
practice for dam design and can be used in the opitimization
process. A feature of the problem is thar there may be few
significant design variables and the model is rather simplified by
using a coarse finite-element mesh. One of the first robust
optimization algerithms developed for the solution of linear
problems was the Simplex. Tt was natural that researchers
attempted to use this algorithm for nonlinear problems by
linearizing the coastraints and objective function about a tria]
design (Zienckiewicz and Campbell, [11). Penalty function
methods have been applied by Ramakrishnan and Francavilla {2]
and by Vitiello [3] to the shape optimization of hollow gravity
and solid gravity dams respectively. In both papers a static two
dimensional finite element analysis module is used. The first
application of shape optimization for arch dam design was carried
out by Rajan using membrane shell theary. This method ignores
foundation elasticity and boundary stresses and considers a
single loading condition. More recent results for the ithree-
dimensional shape optimization of arch dams subjected to static
toading reported so far use as a miethod of obtaining solutions a
sequential linear programming algorithm associated with either 8
node (Wasserman,[4]) or 20 node Ricketts [5] and Zienckiewicz
[17] isoparametric glements, All of these papers cancern the static
behaviour of dams.
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However, the stresses in gravity dams due to standard design

loads have little resembldance to the dynamic response to
earthguake ground motion. The standard requirements do nol

predict large tensile stresses associated with cracking that may
occur during earthquakes. The main source of this discrepancy
lies in ignoring the dynamic characteristics of earthquake motions
of damis in specifying the earthquake forces. The analysis of the
response of concrete gravity dams to seismic loading has been
the subject of intensive investigation in the last two decades.
Particularly notable is the research conducted by Chopra and his
co-werkers who arrived at important conclusions regarding the
significance of a number of factors contributing to the response.
Fisstly, the seismic coefficient is very small compared to the
ordinates of acceleration spectra for intense earthquake motions
in the period range typical of concrete gravity dams. Secondly,
the assumption that the seismic coefficient is uniform over the
height ignores the dependence of the seismic coefficjent
distribution on the vibration qlode shapes of the dam [6]. The
i=tractions between the dam and impounded water and of water
cusnpressibility were found to have substantial effects during
both horizontal and vertical ground motions. It hids been
demonstrated that the traditional design procedures have serious
limitations because they are based on unrealistic assumption:
Rigid dam and incompressible water. Further, the absorption of
hydredynamic pressure waves into the allavium and sediment
deposited at the bottom of reservoirs and the interaction between
the dami and underlying flexible foundation rock were estahlished
as factors that should be considered in the detailed response
history analysis procedure for the two-dimensional finite element
idealization of gravity-dams monoliths Chopra et 2l.[7] and
Fenves et al.[8]. More recent work indicates that selid sediment
do not influence the response of the dam to horizontal ground
motion significantly, wether the foundation is rigid or flexible.
Perhaps the most pronounced cffects is the response of the dam

rigid foundation to vertical ground meations: the peaks
become finite and are appreciably shifted primarily as a result of
the decrease in water depth because of the sediment [9]

The ground motion history from an earthquake is considered
in this wark as support exeitation for the structure. Step-by-step
mtegration procedures and modal analysis are used for dynamic
response analysis. The earthquake response includes dam-

reservoir and dam-foundation interaction, The design loads for
dams include waler pressure in addition to the hydrostatic

pressures associated with earthquakes. Hydrodynamic pressure
on vertical rigid dams subjected to harmonic ground motions was
first solved analytically by Westergaard in 1933, The solution
procedure adopted in this paper considers the general solution of
the wave equation in an expanded form that sztisfies all the
boundary conditions except one at the upstream face of the dam.
The unknown coefficient of the expansion are obtained by

unposing boundary conditions at this upsiream face of the dam
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using least squares.

The sensitivities of the response quantities with respect to the
design variables for use in the optimization method are of
primary concern. The calculation of the sensitivity of structural
response to changes in the design variables is often the major
computational cost of the the optimization process. Therefore it is
important to have efficient algorithms to evaluate the sensitiviries,
Two general approaches are used for computing sensitivities:
differentiation of the continuum equations followed by
discretization, and the reverse approach of discretization followed
by differentiation. Variational and discrefe sensitivity calculations
in transient structural analysis were reparted by Haftka et al.[10].
The semianalyiic method belonging to the latter class will be used
here. The choice of methods has important accuracy and
implementation implications. The semi-analytical methed is based
on finite difference evaluations of the derivatives of the stiffness
matrix and the load vector is used in this work. For shape design
variables the truncation error associated with with the finite
difference approximations of the derivative of the stiffness matrix
may be substantial. However, the psendo-load applied to the
structure fo produce the sensitivity field is a reasonable
displacement field far the structure and its boundary conditions
preventing this source of inaccuracies.

In the past most effort in the field of optimum design of
structures huve been focused vn solving for static loads. Little
consideration has been given to the area of dynamic¢ structural
response with mast of the werk being done to control frequency
constraints. Ref.[11-12] are representative of the papers dealing
with frequency constraints and aeroelastic flutter constraints,
There has been some work with dynamic loading, most often for

time-variant loads which are sinusoidal or some form of pseudo
earthquake loading Cassis and Schrnit [13]. Dynamie response

constraints differ from frequency constraints in that they have a
time parametric form. A type of dynamic inpuat that is of
particular importance to the structaeal engineer i§ that produced
by earthquakes. This optimization problem always Invalves great
difficuities since displacements, velocities and accelerations are in
general implicit non-linear functicns of the design variables.
Moreover dynamie structural design optimization problems often
lead to digjoint feusible reglons in the design space. For problems
in which some of the eonstraints are quite expensive to calculate,
bounds can be developed for the constraints that replace the
original constraints in the optimization problem and help to
provide bounds on the optimum solution. One such example was
given by Mills-Curran and Schmidt [14]. In that application, they
developed time-dependent upper bounds for dynamic
displacement and stress consiraints which are valid for lightly
damped systems away from resonant foreing conditions.

The eost of a dam i3 a funciion of such components as area of

formwork, volume of excavation and velume of conerete. The

latter component i$ often 4 dominant factor in the determination
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of cost. The constraints consist of nodal displacements, stresses
and in the case of gravily dams safety against sliding and
overturning. If a linear system is assumed, the non-linear
dynamic analysis could be avoided by considering another set of
constraints: bound(s) on the natural frequency(ies). However,
the step-by-step integration technigue is more suitable to model
nonlinear behaviour that may occur when the dam is subjected to
seismic input. Compared to constraints on steady state response,
sonstraints on transient response depend on ooe additional
parameter: time. The constraints must be satisfied from the initial
to some final time. For the actual computations, the constraints
must be discretized at a series of time points. The distribution of
(ime points has to be dense enough to preclude the possibilities of
significant constraint violation between time points, This type of
constraint discretization can greatly increase the number of
constraints and thereby the cost of optimization. Thcrefgre itis
desirable to find ways to remove the time dependence without
substantially increasing the number of constraints. The use of
envelope functions is one approach to to reduce the number of
constraints handled by the optimizer and making it more efficient.

Finding the optimum profile of the dam can then be posed asa
multicriteria optimization problem in which all the constraints and
objective function are folded in a single envelope. The entropy-
based approach to solving this minimax optimization {ormulates
the problem as the minimization of a convex function with just
one control parameter. The user-specified parameter controls
how close the envelope is to the original constraints and the
objective funetion,

2, Problem Formulation
2.1 Shape Represeniation

The design of dams is fundamentally a configuration
optimization problem where the external genmetry of the
structure is to be determined. Typically the number of actoal
design variables is small and in the case of gravity dams control
nodes can be used to define the coordinates of the boundacy
nodes and their moving directions. The geomstry of a concrete
gravity dam shown in Figure 1 is described by 3 or 5 design
(shape) variables. ’
xy X3 x2 X3

s

K‘I )(1

Shape Variables
Figure 1

121

X [y X2 and x3 give the position of the cross section’s baltom left,
top left and top right, respectively, with respect to the starting
shape of the dam. The position of the bottem right of the
downstream face is fixed. x4 and x5 are the iangents at the
bottom left and right of the heel, respectively. Although the
upstream and downstream faces may have parabolic shapes if the
last two design variables are used, the boundary is approximated
by piecewise linear funetions.

2.2 Static Analysis of the Structure

As the concrete gravity dam is subjected to static and dynamic
loading conditions, a short summary of the relevant analysis
technigue will be presented next. The structural analysis consists
of solving the equilibrium equations

Ku=p {1}

where K is the structural stiffness mateix, formed by assembling
all elements stiffness matrices Ke, u is the unknown nodal
displacement matrix and P the generalized load vectar including
self weight of the structure, hydrostatic pressurs or thermal
loads. Both K and P are functions of the shape variables xj.
Given the nodal displacements, a structural response R cag be
related 1o them through matrix Q:

R=0Qu (2)
The stress matrix af a given point can also be written us:
a=3g lg (3)

where Sc is the element stress malrix depending on the element
nodal forces and on the element stiffness malrix; ue 1% the
element nedal displacements,

When the optimization requires function evaiuation a complete
finite element analysis is performed. However, because the actual
configuration of the structure is changing, the finite element
generated for the initial configuration may not be adequate
throughout the design process. Therefore, it is necessary to
provide automatic mesh generation capability within the finite
element analysis program toensure that the analysis resulis are
always meaningfull. Because a detailed analysis is required at
each step in the optimization process, the problem should be
formulated to reduce computational effert. One attractive
approach to this is to begin the design with a relatively course
finite-element mesh. As the optimization progiesses, (he mesh is
refingd in areas of high stress concenitration so that as the
optimum is approached the fie. model is detailed enough 1o
ensure reasonable accuracy. The Ginite element idealization for the
system: shown in Fignre 2 consists of 18 guadrilateral elements
and 77 nodes, which provide 134 degrees of freedom (90 in the

dam and 64 on the foundation).
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Figure 2

~ This mesh was refined to 72 guadrilateral elements (40 in the
dam and 32 in the foundation) for the final shape to ensure that
the response of the mode! was meaningfull.

2.3 Dynamic Response by Modal Analysis
The equations of rotion at time L are:

Mi(t) +Cu(t) + Kult) = P(1) (4)

where M, C, and K are funictions of time or constants in linear
systems, while they are also functichs of displacements,
velocities, etc. in non-linear systems.

To facilitate the formulation of the explicit linear dynamic
constraints for each design stage a modal superposition method is
used to compute dynamic displacements and stresses. This
analysis involves solving the system of undamped dynamic

.uilibrium equations that can be reduced to the eigenvalue

equation:

K‘Dr—'ﬁ*l\d-‘br =0 (5)

where ®p is an eigenvecior correspending to the rth eigenvalue

R
The expressicn for modal transformation is:

u=9og (6)

where @ is the mode shape matrix and q is the general coordinate
vector. Premultiplying equation (4) by the transpose of the rth
eigenvector or mode-shape vector @y leads to:

oM OG+9'COa+0, Koq=0P (M
The orthogonality conditions
GMDs =0 r#s (8a)
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cause all components except the rth mode term in the mass and

stiffness expressions in equation (7) to vanish.

G KPg =0 r#s (8b)

A similar simplification can be done for the damping
expression if it is assumed thar the orthogonality conditions also
apply to the matrix, i.e.

D CP; =0 r2s (Be)
We further normalize the eigenvalue gy such that:
OMD = 1 (9)

Hence, equation (4) is reduced to uncoupled equations of
motion of the form:

G+ 2 Ep 0pQr + 052 Gy =P (10)
where £; @ and Py are given by:

("r?':?kr = K op {lla)

28, Op =21y =0.1C ¢ (11b)

Pr=@/lpP (1lc)

In practice, equation (10) will be written for | modes, where 1
< m. The displacements u are calculated by use of equation (6).
after substitution for qr from:

ar = 1 oy [ o TPe(t)exp [~E:0 (T — )] senfwp (T - 1)) de
(12)

where,

=Wy UL_EJIQ

(13)




which corresponds to the solution of equation (10),

2.4 Step-by-step Integration Procedure

The step-by-step integration technigue is suitable for both
linear and non-linear systems. The response is evaluated for a
series of short tinde increments, 8t, generally taken of equal
length for computational convenience. Among step-by-step
integration techniques, Newmark's § method is widely used.
Let all quantities in equation (4) be known at time t. The
displacements and velocities at time t+8t are assumed as
follows:

ut+ 8t = u(t) + 8 wi(t)+(1/ 2 —B) 5 t2ai(t) + B 5t 2ii(t + 1)
(14a

a(t+ 80 = ) +8 /2 [G(0) + i+ 81)) (14b)

where 0 £ B <1/6. The time interval 8t is generally selected to be
about one-sixth of the shortest natural period of the system.
Substitution of equations (14a-b) into equation (4) at the time
(t+ Sty will give:

. . 2. T}

u(t+8t):[M+6t/2C+B8t K] {P(i+350) -
(15)

'C[L?J(i) + 8t/ Za({)]—K[u(t) + Bta(t) -+ (1/2— Bjﬁrza(t)

}

2.5 Hydrodynamic pressures

The basic problem of hydredynamic pressures on dams
during earthquakes was first solved analyticzlly by Westergaard
in 1933 for vertical upstream faces. Chwang and Housner [15]
extended the momentum balance method developed by Von
Karman also in 1933 to obtain pressures on dams with inélined
face. On the basis of the continuity of fluid flow, the equation of
motien and boundary conditions, Yang [16] obtained a closed

1.0 T T T T T s
, BL/ 50'/ /l.:-:;j::;—-—]——-—‘-"”_
h 4% B0*_8r90°

08— —
06|~ -
0.4 |— i
0.2 |- , ]

ol (@l o | 1 ¢l

0 1 2 3 - 4 [ 5 7

Vertical Fluid's aceeleration coefficients  *

form solution. The corresponding nonlinear system of four
equations with four unknowns can be solved iteratively. If tie
vertical compenent of the fluid aceeleration 15 not required 4
solutien can be found by using two coupled equations with two
unknowns. Fig. 3 shows the variation of the hydrodynamic

coefficients with respect to the front face angle.
A more accurate semi-analytical solution for hydrodynamic

pressure destribution on dams with arbitrary upstream face is

used here Tsai [17). The compressibility of the water is included
in the formulation. The pressure distributions in the fluid domain

are expressed as the sum of functions with amplitude coefficients
that satisfy all boundary conditions except at the upstream face of
the dam. These coefficients are determed by using least squares
(or Galerkin) so that the residual errer is minimized.

3, Optimization
3.1 Multi-objective formulation

FPareto’s economic principle is gaining increasing acceptance
to multi-objective optimization problems. 1n minimization
problems a solution vector is said to be “Pareto optimal” if no
other feasible vector exists that could decrease one objective
function without increasing at least another one. The optimum
vector usually exists in practical problems and is net unique. The
overall objective of concrete dam design is to achieve an
economic and sale solution. In this stady il is not intended to
include all factors influencing the economics of a design, One of
the factors conventionaly adopted is the concrete volume. The
volume of the dam is the sum of the volumes of the finite

elements,

V:Ze"e

where e is the index of a finite element in the dam. A second set

(16)

of goals atises from the requirement thit the slresses should be as
t.o

0.6

0.2

o S -0 ) IR
9] 0.2 0.4 0.6

0.8 1O

Horizontal Eluid's acceleration coefficients

Hydrodynamic coefficients versus Front Face Angle
Figure 3
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small as possible:

1

o(x)<cY  ox)z2—0 (17

where su and sl are tensile and compressive admissible stresses,
respectively. The stressés can be of any kind: normal, shear and
principal stresses. A forther goal comes from the imposition of
stability against sliding. The following form is used:

ci Fh+e2 Fy-cp <0 (18)

where cg,c1 and ¢2 are constants and Fp, Fy are the global
forces in the horizontal and vertical directions, respectively.
Similarly, the global moment requirement is introduced to control
the overturning moment:

c3 [Fh (v-vo) - Fy (h-ho)] - c4 bFy =0 (19)

where b is the thickness of the base, ¢3 and c4 are constants. v
and hare coordinates of Fiy and Fy, respectively. (hg,vg) are the
roordinates of the point at the base of the dam on the downstream
_ce, which is kept fixed during the optimization. On the basis of
this expression it is possible to impose limits on the eceentricity
of global forces:

e(x) <ell e(x) > - el 20)

The crest of a dam must have substantial thickness to resist
the shock of floating objects, to afford a roadway and to support

anxiliary structures on the top of the dam.
ixy=1 b

The optimization method described in the next section requires
that all these goals should be casfed in a normalized form.

If some reference volume V is specified, these criteria may be

written in the form,

gi(X)=M— 1<0 (22a)
¥
a(x) _
ga(x)=—>=-1<0 (22b)
6]
L o{x) y
23(x) =—a=+ 1=<0 {22¢)
o
gAX) =1 Fp(x)/ep teaFy fey 150 (22d)
g5(x)=@4130 (22e)
u
c
gﬁ(x):@+1£0 (220
e
t
g7(X)=—7+1<0 (22g)
I
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The objective is to minimize all of these goals over shape
variables x. This is achieved by solving the minimax optimization
problem:

Miny Max; (g1, ..., g - 27) = Minx Maxj=1,7 <gj(x) > (23)

Different weights can be attributed to different goals just by
changing the reference volume, tiping moments, stress or
eccentricity limits. The objective of this Pareto optimization is to

obtain an unbiased improvement of the current design.
3.2 Minimax Optimization

The minimax problem (23) is discontinuous and non-
differentiable, both of which attributes make its numerical
solution by direct means difficult. Simdes and Templaman [18]
have shown that the minimax solution may be found indirectly by
the nnconstrained optimization of a scalar function which is both
conlinuous and differentiable and thus considerably easier to
solve. In this section some of the theory behind this approach to
minimax oplirmization is briefly described.

Faor any set of reat, positive numbers Ui, =1, ..., J, and real
p2q = 1, Jensen's inequalify states that,

(Ej=1,m Ujp)”p = (Z j=hm qu)lfq

Inequality (24) means that the p-th norm of the set U

(24)

decreases monatonically as its order, p, increases. Another
important propetty of the p-th norm is its limit as p tends towards

infinity:
: lip
hmp—im(ZJZLm UJ-P) =Maxj=ym <Uj> (25)
Consider the minimax eptimization problem,
Ming Max j=1,m <gj(x) > (26)

and Jensen's inequality. Let Uj = exp [gj(x)]. j=1.....ox thus
ensuring that Uj > 0, for all positive gj(x). Then,

(Z j=lm U j“)”p = {E j=1,meXp [pg(_X)]}”p

And from (25),

(27)

q1lfp
!imp__m,{zjzlymexp[pg{x)]} =MaXj=],m < exp{gj (x)] >
(28)
Taking logarithms of both sides and noting that,
log Max(f) = Max log(f) (29)

log lim(f) = lim log(f) and

Eq.(28) becomes,




limp_ses(1/p)log { Y j=1,mexp [paCul} =
Maxj=1m < 8> (%)

Result (30) holds for any set of vectors g(x), including that
set which resalts, from minimizing both sides of (26) over x.
Thus (30} can be extended to:

Ming Maxj=j m < gj{x)> = Miny (1 / pilog
{z j=1,mexp [pgj(x)]}

with increasing p in the range 1 < p <o, Result (31) shows that

(31

a Pareto solution of the minimax optimization problem can be

ohtained by the scalar minimization,

Miny, (1/ p)log {Z =1,meXp [pgj-'(x)]} (32)

with a sequence of values of increasingly large positive p2 1.
3.3 Scalar Function Optimization

Problem (32) is unconstrained and differzntiable which, in
theory, gives a wide choice of possible numerical solution
metnods. However, since the goal functions gj(x) do not have
explicit algebraic form in most cases, the strategy ndopted was to
solve (32) by means of an iterative sequence of explicit
approximation models. An explicit approximation can be
formulated by taking Taylor series expansions of al! the goal
functions gj(x) truncated after the linear term. This gives:

Min(1/p)log {2 =1,7expp

{gj(xo)+ziz LN

o) 63

—Sr(xr =Xq)

Problem (33) is now an explicit approximalion to problem
(32) if values of all gj(xo) and agj(xc))/axi are known
numerically. Given such values (33) can be solved directly by
any standard unconstrained optimization method. Solving (33)
for particular numerical values of gj(xg) and dgj(xo)/ dxj forms
orly one iteration of the complete solution of problem (32). The
solution vector x] of such an iteration represents &' new design
which gives new values for gj(x1) and dgj(x|)¥dxj to replace
those corresponding to Xe. Iterations continie until changes in
the design variables become small, The minimax optimization
algorithm reguires a sequence of positive valoes of p increasing
towards infinity. Many different schemes are possible depending
upon the particular sequence chesen the convergence rate and
stability of the algorithm. One way of estimating a value for p is
to iterate to that value that makes the ohjective function of
problem (33) stationary with respect to p. It can be seen that p
inereases as the unfeasibility of the current design decreases; ie.
increasing p tends to enforce feasibility.
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Since the objective function of this unrestricted oplimization
problem is differedtiable, methods which uses gradients are more
efficient to solve (33). Nevertheless, care has o be taken in the
calculation of the objective function derivatives. If these are
determined analytically they are given by a sum of combinations
of exponential terms, being computationally expensive. In the
example presented latter, a quasi-Newton algorithm was adopted.
The strategy followed during the sequential minimization process
in this work was to initially employ a fairly refined mesh in time
domain to define the discretized parametric functions, After

completion of the first eatire optimization process, a more refined

time mesh is used to test whether or not the the current design is

feasible. The first complete optimization was performed using a
mesh time inferval equal to one-gight the fundamental period of
the initial design. For the final refined mesh a lime interval equal

to one-eight the third mede period for the current design was
employed. The determination of values for the derivatives of the

goal functions is considered next,
4. Sensitivity Analysis
4.1 Semi-anzlytic Method

To formulate and solve the explicit approximation preblem
numerical values are required for all the goal functions and all
their first derivatives with respect to the design varjables x. The

expressions for the analytic methad of sensitivity caleulation are:

dR aQL t du .
T— =3 u+ = 34
ax;  dx u+Q dxj )
gt K g1 OP (34D)
axi 0% %]

where ., U and K are functions of x and the obtaining of the
expresssions for JK/dxjanddQ/dx; involves lengthy
derivation. The semi-analytic method for the sensitivity analysis

of the responses to static loading consists of the following steps:

L - Given a proper step length vector Axj = (0, 0,...,4%i,.-.,0),
the difference approximation of pseudo-load vector Qp is:
Qp= Z t3EE(—K—3(X + Axj)u+ Ke(xju

. (35)
+Pa(x+Ax{)—Pe(x))] Ax;

where subseript e denotes the eth element and E is the set of
elements related to the design variable xj.
2. - Selve du/ dxj from,

dusaxi =K lq, (36)

3. - Determine the first-order approximation of displacement at
design x+A X3,




u(x+Axi)zu(x)fauf8xiAxi (37

4.~ Obtain the sensitivity of the response by local differences:

IR / 3x; = [R(x +Axj,u+Au) - R(x,u)|/ Ax; (38)

Eigenvalue sensitivity problems arising in vibration and
buckling problen'is require a different class of selution methods
from those used in static and dynamic response sensitivity
analysis [19]. Given du(t)/ 0x;, the gradients of the responses
can be computed by finite differences - steps 3 and 4 of the semi-
analytic method.

4.2 Modal Analysis

In the case of gravity dams the eigenvalug problem (5) is
guaranteed to have real distinct solutions. Moreover, a good
approximation {o the meode shape can be obtained with a
relatively small number of terms. Therefore mode acceleration
procedures Sutter et al. [20] are not required to improve

—ronvergence. The gradients of displacements can be obtained hy
aifferentiation of equation (7) with respect fo xj:

du & d

E=§;2 rQrd’l-:Z rde a¢r+ =3 ~Or (39)
But, to compuite (dqy / 9x;), the quantities:

dop 19k 7)1 2\~ /2 .

=Ly, =LA =X 40z

dxi 2 dx; f E)xi( r r) el
and,

%X_ =¢lC aq’l +— q; [aac (40b)

i | X

are needed. Tt will be noted that the ealculation of gradients of

the eigenvalues and the sigenveetors is indispensable for the

waluation of the right-hand sides of equations (39) through (40),
T'hese calculations are discussed next [21-221,

Differentiating both sides of eigenvalue equation (5) with
respect to each variable xj gives:

&y Mo,

dM
A S X

a¢r
K- X
( & M)E} dx;

41
8x1 1)

Pre-multiplying equation {41} by @ and making use of the

symmetry of M and K leads fo the calculation for gradients of

eigenvalues:
Iy dM .
—L =gyt a_K Ao—ty (42)
axl 9% lel

Let,
B=K-iM (43)

When all eigenvaloes Ap are different the rank of B will be (m -
1). This allows for the following partition of equation (5):

o o) ]

where @2 is a single scalar quantity, and b1 is a columny

Bir . B2
—t

$r—1

b2 S

blg

vector,

Differentiation of equation (44) with respect to xi gives:

|:¢r1 }+
| Sbyg / 8x;t Bboo /8xj | 1 9r2

SRR

bia' byy | |80 /8xy
Equation (45) can be solved for (d¢y /9x;) in terms of the
scalar 9y / dxj:

OBy /8x; , 8byy/x;

(45)

dbr a¢r2
— =—"a+ A;
%~ 0% i0r (46a)
where,
=Byr! by
= ’ (46b)
baal bya'Byilopg
and,
-Bi1! 9By [ ax;
A =
1 (ﬁablg /3x;t +bya'By 1By / axi_)
(46¢)

%Bllﬁlabiz/axi
bzzfl(—abgg /9%; +bpo'By 1_1ab12 faxl')

Therefore it is now necessary to determine the scalar quantity

{Apg /9x;). To this end, equation (9) is ficst differentiated with
respect (o xj:

O "M Iy 7 Ixi +0,13MJ 3x; ¢, =0 (47)

By substitution of eguation (46a) inte equation (47), apd
rearrangement:

a¢’r2
a)(_i

_ 20 "MA; ¢ +0,50M 1 3x; ¢,
20,Ma

(48)

Finally, from equation (462):

:—Bn‘l[
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4.3 Step-by-step Integration Procedure

The gradients of the accelerations can he compuied by
differentiation of equation (15} with respect to cach design
variable xj. Rearranging the resulting expression, one obtaing:

oli(t+ 9r) / 9x; ':[M+8t 12C+ 8 BI?‘K}

ou(t} 4
r;}Ci

JAlu(t} + A () + Az + K
L (50)
Jii(L)
oxj

an(t) "

A
4 ax;

As—"+ Agli(t +&}}

where,

Ay =dK/axy Ag =dC/adx; + BdK /dx;

A3 =8t123C/ ax; + (17 2— B3 2K / xi:

Aq=C+BK As=58/20C+(1/2-B)btoK;

Ag =AM/ 3x; +8t/20C / Ix; + PS2IK / xj

Equation (50} can be dirsetly used for camputation of tlie
sensitivities. In fact, sinee the displacements and velocities can be

found by substitution of equation (15) into equations {i4a) and

(14b), respectively, the gradients for these quantities can also be
obtained by direct differentiation with respect to each design

variable xj. Thos, for example, for the velocities, one will obtain:
dir(t+8)/ &x; =8/ S {wy+ 8t/ 2~ e+ &} (51a)

Similarly, the gradients for the displacements can be found by

using:

i27

du(t+8t)/ 8x; =8/ 8x;

{“UH Bet)+ (172 ~ Byde2ai(e) + Boe2iigt + 50} (515

It will be noted that the calculation of the derivatives of the
accelerations and velocities is indispensable for the evaluation of
the displacement sensitivities.

5. Example

The following problem is choser to illustrats the optimization
procedure [4] for static loading. The dam is 100 m height and hag
6 m micimum thickness. The compressive and tensile Strengths
of the concrete are 10,000 kN/m2 and 1,000 kN/m2,
respeclively, Elastic propertiss:

E=2.1 107 kN/m? V=02 ; body forces 2.4 107 kN/m2

Foundation properties:

E=[07kN/mZ : v =0.15

The load combinations are: 1) dead weight: 2) self weight,
waler pressure, uplift; 3) dead weight, water pressure, uplifi,
earthquake; 4) dead weight, earthquake.

The safety factor for load conditions 1y and 2) is 2.5. The
tensile stresses in the air and water faces are 400 kN/in2 and hy-
400 £ 0, respectively, where b is the weight below water and v
is the unit water weight. Safety against sliding is guaranteed if V
0.8/H = 1.5, where V and H are the sums of vertical and
horizontal forces, respectively. Safety against overturning
requirces thal the eceentricity of the resultin g force e be el < 1/6.

MAXIMUM TENSILE STRESSES
Figure 4




The safety factor for load conditions 3) and 4) is 1.92. The
tensile stresses in the air and water faces are 520 kN/mZ and hy-
320 < 0, respectively. Safcty against sliding is guaranteed if ¥

0.8/H = 1.2. Safety against overturning requires that the
eccentricity e should be lel £ /3. Energy dissipation in the

structure is rcpresel'lted by constant hysterstic damping. An
equivalent damping ratio of 0.05 is considered.

The seismie effects are computed by standard static forces and
dynamic analysis. Fig.4 represents the maximum tensile stresses
that arise during an earthquake when the initial shape is
considered. This shape is inadeguate becaiise the tensile stresses

largely exceed their allowable values.

Sliding, overturning and minimum thickness at the top are the
critical goals in the static approach. This design fails to predict
the large tensile stresses that arise in the downstream face.
Tensile stresses 2.5 times larger than the allowable values were
found when the static optimal shape was analysed by the linear
dynamic routine. Consequently siress requirements are critical in
finding optimal shapes on the basis of linear dynamic behaviour.
Moreover, these tensile stresses cause a large inerease of concrete
volume. Fig.5 shows the shapss and correspording maximim
tensile stresses obtained for lhe linear dynamic approach after 1

and 3 iterations, respectively, for the 3 und 5 varidble
representation.

Figure 5

Figure 6
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Fig. 6 represeats the solution obtained after 2 iterations when
a elastoplastic Mehr-Coulomb vield criteria is used to model the
concrete behaviour. The elastoplastic model givés a more
economical design by reducing the concrete volome by
approximately 13%.

The optimal geometries are shown in Figure 7. Due to
increasing flexibility of describing the shape of the dam, the
volume may be reduced by increasing the number of design
variables. The volume reduction is due to the increase in the

vertical component of water pressure.

response of cencrete gravity dums. Maximum tensile stresses in
the air face are dominant when the dynamic response is
considered. These tensile stresses cause a substantial increase in
concrete volume. Nevertheless the concrete volume can be
reduced by using a nonlinear model.

The contributions of the vertical component of ground motion
to the response of concrete gravity dams are significant because,
even though the ground motion is in the vertical direction,
hydrodynamic pressures act in nearly the herizontal direction on

auearly vertical upstream face, causing lateral response. For low

N
L

————— static solution

linear dynamic solution

~— —nenlinear dynamic solution

Optimal Geometries

Figure 7

6. Discussion and Conclusions

The propesed design method consits of the combination of
two algorithms: an implicit-explicit step-by-step integration
procedure for the analysis and an optimization module.
Sensitivity analysis is based on the dynamic procadure employed
and provides the link between these two.

An optimal set of shape variables is found by minimizing a
group of abjeetives. A minimax selution is obtained by the sealar
minimization of a convex function invelving cne control
parameter.

The standard design loadings for gravity dams inciude water
pressure in addition to hydrostatic pressure associated with
earthquakes, The additional water pressures associated with
horizontal earthquake motion in the standard design loads, based
on assumptions of rigid dam and incompressible water,
underestimate the importance of the hydrodynamic effects in the

height dams, the response to the verlical component of ground
metion is especially significant; it can even exceed the response
to the harizental component. For dams of moderate to large
height, the response to vertical ground motion. although smaller

than that due to the horizontal components, may be significasit,
Acknowledgement

The author wish to thank the financial support given by
JNICT (Junta Nacional de Investigagfio Cientifica e Tecnoldgica,
Projecto STRDA/C/TPR/S76/92).

References

1. Zienkiewicz, O.C. and Campbel, J.8. {1973): Shape
Optimization and Sequential Linear Programming. In:
Gallagher, R.H. and Zienkiewicz, 0.C. (Ed.):Optimum
Structural Design, 109-126, T.Wiley.




2. Ramakrishnan,C.V. and A. Francavilla (1975): Structural
Shape Optimization using Pénalty Fumctions. I.Struct.
Mech. 3, 403-422.

3, Vitiello, E. (1973): Shape Optimization using mathematical
Programming and Mddelling Techniques. Second
Sympaosium on Structural Optimization, AGARD Conf.
Poc, CP-123, Milan, Italy.

4. Wassermann, K. (1983-84): Three Dimensional Shape
Optimization of Arch Dams with prescribed Shape
Functions. J. Struct. Mechanics 11, 465-489.

5. Ricketts, R.E. and Zienkiewicz, O.C. (1984): Shape
Optimization of Continuum Structures. In: E. Atrek, R.H.
Gallagher, K.M, Ragsdell and O.C. Zienkiewicz (Ed.):
New Directions in Optimum Structural Design, 139-
166,1. Wiley.

Chopra, A.K. {1978): Earthquake Resistant design of
Conerete Gravity Dams, J. Struct Div. ASCE: 104, 964-971

7. Chopra, A.K. and Chakrabarty, P. (1981): Earthquake
Analysis of Concrete Gravily Dams including Dam-water-
foundation Rock Interaction. Earth. Engrg. Struct.
Dynamics 9, 363-383.

8. Fenves, G. and Chopra, A.X. (1987): Simplified
Earthquake Analysis of Concrete Gravity Dams: Separate
Hydrodynamic and Foundation Interaction Effects. .
Enggg, Mechanics ASCE 111, 715-756.

10, Haftka, R.T. and Adelman, H.M. (1989): Recent
Developments in Structural Sensitivity Analysis. Struct.
Optimization {; 137-151.

.. Rubin C.P. (1970): Minimum Weight Design of Complex
Structures subjected to a Frequency Constraint, AIAA
Journal 8, 923-927,

12. Baftka, R.T. (1972): Auvtomated Precedure for Design of
Wing Structures to Satisfy Strength and Flutter
Requirements. NASA TND-6534, Washington DC

130

13.

14,

15.

L6.

17.

i8.

20.

21

22

- *

Cassis, J.H. and Schmit, L.A. Ir. (1976): Optimum
Structural Design with Dynamic Constraints. I, Struct. Div,
ASCE 102, 2053-2071.

Mills-Curran, W.C. and Schmit, L.A. Jr (19823): Struetural
Optimization with Dynamic Behaviour Constraints. Proe,
AIAA/ASME/ASCE/AHS 24th Structures, Structiiral
Dynamics and Materials Conference, Lake Tahos, 369-382,

Chwang, A.T. and Housner, G.W. (1978): Hydrodynamic
Pressures on Sloping Dams during Earthquakes. Partl.
Momentum Method. I, Fluid Mechanics 87, 335-341.
Yang,C.Y., Chen,S,, Wang,H and Sanchez-Sesma,FJ
(1979): Hydrodynamic Pressures on Dams with in¢lined
Face. 1. Engrg. Mechanics Div. ASCE. 105, 717-722

Tsai, C.8. (1992): Semi-Analytical Solutions for
Hydrodynamic pressure on Dams with Arbitrary Upstream
Face Considering Water Compressibility. Comp. Structures
42, 497-502.

Simges, L.M.C. and Templeman, A.B. (1989): Entropy-
based Synthesis of Pretensioned Cable Net Structures.
Engrg. Optimization 15, 121-140.

. Yamakawa, H. (1984): Opilimum Structural Design for

Dynamic Response. In: E. Atrek, R H. Gallagher, K.M.
Ragsde]l and O.C. Zienkiewicz (Ed.): New Directions in
Optimum Structural Design, 249-266,1.Wiley.

Suiter, T.R. and Camarda, C.I., Walsh FL, aud Adelman,
H.M. (1988); A Comparisen of Several Methods for the
Cafculation of Vibration Mode Shape Derivatives, ATAA
Jougnal 26,1506-1511.

Fox, R.L. and Kapoor. M.P. (1970): Structural
Optimization in the Dynaniic Response Regime: A
Computational Approach. ATAA Journai 8, 1758-1804.

Nelsen, R.B. (1976): Simplified Calenlation of Eigenvector
Derivatives, ATAA Journal 14, 1201-12085.




