Reliability assessment of ductile shells

L. M. C. Simoes*

This paper concerns the development of mathematical programming techniques
for the reliability assessment of three-dimensional structures, assuming an ideal
rigid-plastic behaviour of the material. Linear approximations of the kinematic
compatibility relations are formulated and this reguires the assumption of para-
metric stress and displacement fields, which are constructed by means of finite
element procedurés, According to the first-arder second-moment method, the
identification of the reliability index Is than formulated as a constrained concave
quadratic minimization. Numerical results for a shallow shell model are presented.
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Introduction

The discrete nature of mathematical programming (MP)
implies that continuum structures must be treated in a
discretized manner. The literature on finite element
method (FE) formulation of plastic 1imit shell problems is
very limited. A formulation [or the plastic limit analysis
of cylindrical shells was developed by Kalanta and
Cyras', and Hung and Ramsart?, whilst a formulation
for shallow shells was presented by Cyras et al.® and
Kiifner and Lee*. The formulation of the problem of the
plastic limit analysis of plates and shells by finite ele-
ments has been presented by Da Fonseca® where a
linearized vield condition is used, the problem is reduced
to a pair of primal-dual linear programs (LP). The
optimal solution to the discretized problem may provide
a bound to the solution of the continuous prablem, but
the existence and nature of such a bound depends on the
form of the finite element modelling. Thus, where statical
admissibility is imposed, the FE/LP solution provides a
lower bound to the collapse load parameter for the
continuous plate. Similarly, if kinematic admissibility is
imposed, then the FE/LP solution provides an upper
bound to that parameter. Plastic imit analysis yields the
collapse load which does not necessarily lead to the
stochastically most relevant event. Moreover the contri-
bution of other stochastically important mechanisms
must be taken into account. Assessment of the reliability
of a structure has to fake into account that during its
design life the structure is generally subjected 10 a num-
ber of varying loads and their combinations and that its
resistance may deteriorate with time. In this context the
problem arises as to how to evaluate the conditional
failure probability of the shell given a certain load event.
In order to avoid the difficult numerical integration of
the probability distribution functions involved, the first-
order second-moment approximation is employed. The
reliability index is obtained from the limit-state equation
by solving a nonconvex fractional programming prob-
lem. This MP can be converted in the minimization of a
concave quadratic function ‘ever a linear domain, which
is also nonconvex. A branch and bound technique is used
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to solve this MP and to enumerate the remaining local
solutions which may also be important for the reliability
assessment,

Problem formulation

Assumptions

The finite element method was chosen because of its
versatility in the automatic generation of the stochasti-
cally most relevant failure mechanism; that is, the mech-
anism with the smallest reliability index §and the highest
probability of failure pp. Plastic collapse is the only
possible failure mode. The kinematics and statics of
ductile shallow shells are governed by relations where the
stretching is dissociated from the bending problem. The
kinematic mode! ender consideration can be taken as the
superimposition of stretching and bending models and
the field functions required may be obtained through the
superimposition of the field functions defined for those
models, The mathematical characterization of the plastic
behaviour of a general shell would require a yield criter-
ion involving 10 stress-resultants and 10 strain-result-
ants. However, as for flexural plates, the effect of the two
transverse shear forces is generally negiigible. Also, since
every finite element is shallow, the planar shear forces
and the twisting moments are regarded as equal. Since
the direct integration of the yield function across the
curved plate thickness is beset with difficulties, the yield
criterion used here considers separately the stretching
and bending problems with no interaction between them.
The limit-state equation is defined by the yield conditions
af the control nodes. I a yield surface is described by a
single random variable, it has a deterministic shape with
a random size. Without any complications (besides the
increase in problem size), a random shape of each yield
surface can also be modelled by associating a random
resistance variable to each face of the surface. The magni-
tudes of statie loads, L, L,, . .., L, which form the load
vector L are random but their positions are deterministic,
The magnitudes of stress capacities, a,, 63, . .., 6, are
random variables which make up vector ¢. The statistical
dependence between any pair of loads L., L,, and any
pair of stress capacities ¢;, ¢, is accounted for through
the coefficients of correlation p(L,, L) and pla;. o),
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respectively. Consistent with a first-order second-mo-
ment reliability approach, the minimum statistical in-
formation required for the evaluation of the optimum
solution is:

(1) The mean valuecs of the loads pp ., fy,. .. -5 s
which make up the vector u,, the coefficients of
variation of the loads Q(L, ), @(L;), . . . ,€(L,} which
make up the vector Q, , and the coefficients of correla-
tion between pairs of loads which form a square
symmetrical correlation matrix denoted by C,.

(2) The mean values of the stress capacities which make
up the vector u,, the coefficients of varation of the
stresses (o, ), Q(g3), - . . . Qlo,), which make up the
vector £, and the coeflicients of correlation between
pairs of plastic moments which form a square sym-
metrical matrix denoted by C,.

Kinematic relations

The formulation of the FEM has evolved from a purely
physical approach in which the FE level relations were
directly derived from the infinitesimal element level
relations, to the presently preferred approach based on
variational principles. It will be recalled that early devel-
opment of direct methods led to inconsistent formula-
tions which were subsequently connected by using
variational procedures. In order to overcome the lack of
governing variational principles in certain problems, the
FEM can also be regarded as the method of weighted
residuals (MWR} applied to each individual FE, where
consistency is ensured by the Galerkin criterion. In the
formulation of the finite element method, three distinct
levels (i) the infinitesimal element level, (ii) the finite
element level and (iii) the structural level are defined. The
starting point for the kinematic relations are the in-
finitesimal element level straim-resultant/displacement
relations:

e—Du=0 (1)

where D is the matrix differential operator and the
kinematic variables & and u are activated at the instant of
structural collapse.

The finite element level relations may now be obtained,
for which approximations may have to be introduced. 1f,
as a consequience, the kinematic relations are no longer
satisfied locally, they ¢an be written

g — Du=(s) (2)

where the net strain-resultants J(s) are zero if the strain-
resultants & are directly derived from the displacement
field u, in which case strain compatibility is automatically
ensured. The finite element method implies the definition
of the distribution of the independent variables inside
each finite element in terms of nodal values. Continuous
fields are assumed inside every finite element, but lack of
continuity may be allowed to develop across the inter-
clement boundaries. It must be clear that the nodal
values are not necessarily the values of the variables at
the nodes. For example, a true displacement u may be
defined by nodal values that can be rotations, curvaturcs
or any other derivatives of the displacements. In the
present case, the static ¢ and kinematic ¥ independent
variables are expressed:
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¢=T,0¢" (3ay
u=T,u (3b)

respectively, in terms of static nodal values at e nodes
and kinematic nodal values at a nodes, resulting for
Equation 2:

& — DI, u® = d(g) (4)

The use of an approximating function T, signifies that
inter-element equilibrium is no longer necessarily satis-
fied, but the approximating function I, in Equation 4
does not imply incompatibility of strains, provided that
the latter are now defined 4s functions of the new vari-
abies 1. Equation 4 is then suitably pre-multiplied and
integrated throughout the entire finite element,

J IedV gJ F;DF,,W‘dV:J I 5(e)dV (5)
v v v

An approximation is now introduced into the kinematic
relations. 1f the finite element volume is subdivided into ¢
subdomains V; (j=1,...,c). each associated with a
control point ¢; where matrix Iy, assumes the value (T';);
and the strain-resultants & are regarded as having a
constant value g; inside each volume V;. the following
approximation may be made:

J. IiedV= % J FedV, = 3 (Ih)ygV;  (6)

v i=1l.e Jvy i=1i.c

The nodes ¢ are generally the control nodes selected to
enforce the constitutive relations throughout the finite
element. Defining the total nodal strains,

g =J Az dV (7)
Vi

this leads to the following result:

[ I AedV = (T2)g" (8)
JV
and Equation 5 may be written in the following form:
(Is)es — j rpr,dve’ = J. [5(e)dV (9)
v v

This approximation signifies that the strain-resultants ¢
field is assumed to be such that condition (1) is no longer
necessarily satisfied everywhere and, consequently,
quantities ¢(¢) may be non-zero. [t is concluded that this
formulation allows both the equilibrium and the com-
patibility to be locally contravened. Nevertheless, a glo-
bal compatibility is enforced at finite element level by
setting to zero the right-hand side terms in Equation 9.
The finite element kinematic relations may be written in a
more compact form:

(I'g)Yg® —Eu*=0 {10)
where
E =J T DIr,dV (11)
v

The static and kinematic nodal variables are transformed
from the local system of reference to the global according
to,

ot =T2e% of =(T%) e (122)




W =Tou", = (Ti)u" {12b)

g =Ty —g° = (T9)'g° (12¢)
The kinematic relations at finite element level in global
coordinates become

(T2 (e) Tgg® — (T9) ETqu* =0 (13)
orin a mere compact form
Ryg® — Eu" =0 (14)

If nodes e are also control nodes ¢, TS is 4 unit matrix,
matrices T; and Tg express orthogonal transfornyations
laws for vectorially equivalent variables and,

TL =12 (15)

If a similar procedure is adopted lor the entire system of
finite elements, the structural level compatibility rela-
tions can be written as:

Reg® — Efu® =0 (16)

I all shared conirol nodes are also nodes ¢, the yield
conditions can be stated identically for all ¢s control
nodes and matrix Tg becomes a unit matrix.

Plasticity relations

For the purpose of problems involving rigid-plastic be-
haviour, only the plastic phase of the structural material
behaviour has to be characterized. Yield conditions on
the stresses, the conditions for the plastic strains to take
place, the flow rule and plastic dissipation energy must all
be postulated. The conditions for yielding to occur may
be defined through an inequality involving 2 function
(generally non-linear) of the stress-state, as follows:

z(a) <0 (17)

According to plasticity theory, the stress components ¢
and the correspondent strain components ¢ are related
during collapse as follows:

dn 20 fafe)=0
= —*
W |ex=0 if n{s) < 0

The yvield conditions require the stress components to be
transformed from the giobal to the local system of refer-
ence, thus allowing for the stress field function which is
defined in local coordinates. If such a hypersurface is
approximately replaced by a sct of hyperplancs, the
corresponding linearized yield conditions for every con-
trel node ¢; are:

:rc*j:Q}aj—(T*jéo (19)

The correct characterization of plastic behaviour cannot
generally be achieved everywhere in the finite element
because the discretization of the problem also requires
the plastic relations to be stated at a finite number of
control nodes and it may then be impossible t guarantee
the satisfaction of all plastic conditions inside the ele-
ment. Special technigues may be employed to determine
the convenient locations ol the control nodes, but the
problem is always to state the infinitesimal element level
plastic relations at the selected control nodes. In matrix
notation

T = erj' — gk = [QlT;]U — g% < 0 (20}

(18)

&
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or introducing the stress field function
= [Q'TL,]o* —o* <0 (21)

and returning to the stress global components by means
of the transformation:

k= [Q'TLI, T o — 6% <0 22)
If these conditions are stated for the ¢ control nodes,

7 = [QIMTEITET e — o5 [R(Q9)]'e" — 05 < 0

(23)
or, for all ¢s nodes their assemblage can be written as,
ng = [RQ™)]'e* — 05 <0 (24)

For a stable material in the Drucker sense, the yield
surface is convex and the kinematic variables are defined
by an associated flow rule. The stress field generated
throughout the structure should not contravene the yield
conditions at any point in the structure, but this is only
easily achieved for a constant or a linear stress field. In
any case, the yield conditions are enforced directly only
at a selected set of control points c. If the control nodes ¢
and ¢ are the same, matrix R becomes a unil matrix, and
the flow rule for a control node ¢; is

g;= [ £;dV = [ Qe*;dV = Qg (25)
o V) V]

where g, 2 0 are the total plastic parameters associated
with the subdomain of unspecified volume V; inside
which the material properties (expressed throngh matrix
Q) are assumed constant. Matrix Notation 25 becomes
for all ¢cs control nodes,

g~ = Qgy 6)

Now; since plastic deformation is only possible en the
vield hypersurface, the parity condition for node c; is
transformed as follows:

.

J n*is*iden*.,J ex, dV = 7%, g%, 27
v A _

where besides the assumption of constant plastic poten-
tial (that is of constant stress field, which was also
considered in Equation 6), the assumption of constant
strain ficld is implied. Indeed, that parity condition
allows plastic deformations to be generated simultan-
eously at any point inside the subdomain of volume V.
Consequently, another approximation is introduced into
the kingmatics when the strain field is non-constant. The
parity condition for all ¢s nodes may be stated in the
following complementary form:

(a2 g3 =0 (28)

Similarly, if the assumption of constant stress field and of
constant strain field is introduced, the total plastic dissi-
pation energy for all cs control nodes becomes,

DCS e [O_cs)lgns — (D’f]l g:: 2 0 (29)

For the sake of simplicity the bar denoting the global
coerdinates and the superscripts e, ¢, a, cs, as, cs will be
dropped.
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Reliability assessment

Collapse of ductile structural systems

In the case of structures composed of ductile members
such as components with elastic-perfectly-plastic beha-
viout, the structural strength would be independent of the
failure sequences of the component. For this class of
structural systems, the collapse of a system would be
through the formation of plastic mechanisms. In this
regard, the performance function for ith plastic mech-
anism may be defined as,

'Zi = EJ au O'j* —_ E‘k bik Lk (30]

where | includes all the areas where yielding occurs in
mechanism i, whereas k includes all leads active in
mechanism i. The collapse of a system through mech-
anism i, therefore, is the event F, = (Z; < 0). Then, if there
are m possible failure mechanisms the system collapse,

PAC)=P(Z, <0UZ,<0uU ... uZ,<0) (3la)
—PF,uF,u... UF,) (32)

In general, Z; are correlated random variables; con-
sequently, calculation of the collapse probability, P:(C.},
will require the multiple integration of joint probability
distributions of the correlated random variables Z,, i
= 1.2, ..., m Inthefirst order second moment method
the reliability index, §;, for the performance function Z; is
given by:

Bi = bzl oz, (32)

where jiz, and ¢, are mean and standard deviation of Z,,
respectively. As Z; is a linear function of the number of
random variables ¢x and L, the distribution of Z; tends
to normal (based on central limit theorem) irrespective of
the individual distributions of the variables. Hence using
normal distribution for Z,, the failure probability for
mechanism i, pg, s given by:

Pr, =B — )= 1 —D(f;) (33)

where © is the cumulative probability of a standardized
normal variable. Variation of the parameters of the
probability distributions, the respective types of distribu-
tions and the correlation among the variables involved
have quite a significant effect on the results.

Computation of the reliability index

By associating the finite element strains associated with
the stress capacities represented by the same random
variable g, through the incidence matrices J, and the
displacements of the point loads {or in the case of uni-
formly distributed load, displacements of the equivalent
nodal forces) linked by the same random variable u,
through J,, one has:

g =Jdy9; u=J4u (34)
For statistically independent random normal variables,
the identification of the stochastically most important
mechanism consists of finding the position of the hmit-

state equation closer to the origin of the reduced normal
variables. This amounls to minimizing the distance—

202

reliability index — f§ given by (Shinozuka®):
[Ju;gt - Hiut:l

V(079 + () ()
subject to the linear incidence equations (Equation 34),
the compatibility relations (Equation 16) and sign con-
strainis on the variables. If matrices C, and C,, represent
the cotrelations between the bending moments of resis-
tance and between the loads, respectively, the reliability
index is given by

min ff = (35)

f= [Heg: — miik] -
\/(gr]’(ﬂ_cr)r Cg'(.d—a-)(g!) + [ul)r(o-l.)t CH(GL}(ML}

For random variables that are correlated, the original
variates may be transformed to a set of uncorrelated
variables. The required set of uncorrelated transformed
variates can be obtained through an orthogonal trans-
formation. If the probability distribution functions of the
random variables are not Gaussian, the Rosenblatt’
transformation may be used.

These mathematical programs belongs to the class of
fractional programming problems {Schaible®). Since
Lubg, — 1y ] 1s always positive, (Equation 36) sharcs its
solutions with the minimization ol the quadratic concave
function,

min — 1/f* = — (g,)(0,) C,lo,)g.)

— () (o) Culo)u) (37a)

subject to
Hoy — Hpth =1 (37b)
g=Jd.9, u=Ju (37¢)
Rg — Eu=10 (37d)
g=z0,uz20g20u>=20 (37¢)

that is & quadratic concave minimization. This type of
problem cannol be solved by convex programming tech-
niques because of the possibility of nonglobal local min-
ima. The global optimum of these programs gives the
plastic deformations for the stochastically most import-
ant mechanism and the reduced random variables can be
evaluated by

¢ = — 0,9, (38a)
L' = apuf? (38b)

Solution of a concave quadratic
minimization problem

The most general methods for global optimization which
are appropriate to deal with nonconvexities can be divi-
ded in two classes: deterministic and stochastic. Among
the latter, the most important approaches for concave
quadratic programming are enumerative techniques; cut-
ting-plane methods, branch and bound, bhilinear pro-
gramming inethods or different combinations of these
techniques. Computational results on most of these
methods scem to be limited to cases where the number of
nonlinear variables is less than 15. The few implement-
able approaches are for functions of special structure
such as quadratic or separable concave and employ
branch and bound (B&B) techniques in conjunction




with underestimating linear (or piecewise linear) prob-
lems. The two main ingredients are a combinatorial tree
with appropriately defined nodes and some upper and
lower bounds to the final solution associated with ‘each
node of the tree. It is then possible to eliminate a large
number of possible solutions without evaluating them.
As the implicit enumeration program relies on an upper
bound, its efficiency can be greatly improved by provid-
ing a good feasible initial solution. A partial solution is
said to be fathomed il the best feasible completion of the
solution can be found. No matter how the design vari-
ables are chosen it will be impossible to find a feasible
completion of smaller distance than that previously
found. If a partial solution is fathomed this means that all
possible completions of this partial solution have been
implicitly enumerated and therefore need not be ex-
plicitly enumerated, When the last node is fathomed the
algorithm terminates with the optimum, solution, Back-
tracking in the tree is performed so that no solution is
repeated or omitted from consideration. The algorithms
described in Reference 9 are more appropriate to solve
concave quadratic minimization of larger systems.

Reduction to separable form

For simplicity of notation, the concave quadratic pro-
gram involving correlated random variables can be writ-
ten in the following form:

Min ¢z, ) = — 1/22'Qz (39a)
over Q= {(z,yr A,z + A,y =h,z20,y>0} (39b)

with () a positive definite symmetric matrix, and A, and
A, having m rows, z, y are n and m vectors correspond-
ing to the random variables and the rotations of the
critical sections, respectively. To carry out the reduction
to separable form it is necessary to compute the real
eigenvalues A, A,.. .. .4, of Q and the corresponding
cigenvectors U, U, ...,u,. Then Q= UDU" where
U=Tu.,...,ul D=diag[i,... 4.1

The multiple-cost-row linear program must be solved
first

max u;t. (40a)
st(z, y}eQ, i=1,2,...,n (40b)

Denote by f; the corresponding optimal values. The
concave quadratic programming can be formulated as a
separable programming in terms of the new variables x;,

ming(x)= Y —1/24x] (4la)

=T,n
stAsx + A,y=0b 0<x,<8,v20 (41b)
where A, = A UL

Linear underestimator

The smallest rectangular domain R, in the x-space can be
constructed by using f§.. The convex envelope of a func-
tion over a closed convex set is the highest convex
function which everywhere underestimates the function.
For a quadratic concave function — x* given in the
interval [0, B] its convex underestimate is the affine
function (linear plus a ¢onstant) passing through the
endpoints of the given function graph. A linear function
T'(x) which interpolates @(x) at every vertex of R, and
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underestimates ¢(x) on R, i3 given by,

I'(x) = Z — 124,B:x; (42)
i=1lyn
and R,=[x:0<x;<f: i=1 ..., n}

The following linear underestimating program, which
differs from the multiple-cost-row only in its objective
function, must be solved,

minI'(x) over (x, y)eQ (43)

The solution to this problem will give a vertex v = (x, y)
which is a candidate for the global minimum * of the
original problem.

Outside-in approach

In the sequel the algorithm originally presented by
Falk?® for separable functions is outlined. The algorithm
first constructs and solves the linear underestimating
approximation based on the enclosing rectangle. Consid-
ering the quadratic concave program (Equation 40), let
x7 be the solution of the linear underestimating sub-
problem (Equation 43), with p = L. If the number of
nonlinear variables is small, C{x") = &(x”") and x”.is the
desired global solution. If I'(x?) does not coincide with
$(xP), one partitions the intervals [0, ;] in order to have
a tighter objective function, Take as incumbent bound v
the objective function of the original problem ¢(xP).
Equation 43 is replaced by a set of problems that bound
the original problem in the sense that there exist one
optimal solution x* for at least one problem jeWp.
Supposing an optimal solution te each such problem is
obtained and let

x* = minT(x%) = d'x’ + k (44)
i=Wp

If T'(x*) does not coincide with ¢(x*), one of the problems
of the bounding set is replaced by a set of new problems.
If ¢(x%) is lower than the incumbent v, this upper bound
will be updated. Make p=p + 1. The problem s is
replaced by a set W7, such that W%, =(W?~! — {s})
v W* contains an optimal solution of the original prob-
lem for at least one problem W2

For each problem j e W? either, although getting closer
I'(x/), does not coincide with ¢(x?), or I'(x') > v. This is
a condition ensuring that some progress towards the final
solution is made. The combinatorial iree has each node
identified with a subproblem j. The problems that replace
j in the bounding set W are pointed to by the branches
directed outward from that node. At any intermediate
point in the calculations, the set WP of the current
bounding problems is identified with the set of nodes that
are the leaves of the tree. Any leaf node of the tree whose
bound is strictly less than v is active. Otherwise it is
designated as terminated and need not be considered in
any further computation. The B&B tree will be de-
veloped until every leaf can be terminated.

Overall probability of failure
with respect to plastic collapse

First and second-order bounds

According to Equation 31, the probability of failure of a
ductile structure may be evaluated as the probability of
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the union of failure mode events. Collapse modes are
usually correlated through loading and resistances, so an
exact evaluation of the probability 15 impractical, or even
impossible to perform numerically. For this reason, sev-
eral investigators considered this problem by either find-
ing bounds for pp or approximate solutions. In general,
the admissible failure probability for structural design is
very low. A first estimate of P; can be found through well-
known first-order bounds proposed by Cornell'!:

Max[Pr(Z,)]1 < pe< ¥, Pr[Z, <0] (45)

all k k=1m

The lower bound, which represents the probability of
occurrence ol the most critical mode {dominant mode) is
obtained by assuming the mode failure events Z, to be
perfectly dependent, and the upper bound is derived by
assuming independence between mode failure evenis.
Hence, approximation by Cornell's first-order upper
bound is very conservative because it neglects the high
correlation between failure modes in 2-D structures.
Improved bounds can be obtained by taking into ac-
count the probabilities of joint failure events such as
P(F, n F;) which means the probability that both events
F;and F; will simultaneously occur. The resulting closed-
form solutions for the lower and upper bounds are as
follows:

pe 2 P(F,) + _i Max{[P(Fi) - ; P(F, ~ F,); 0}
A (46a)

I~z

P(F;) — Y Max P(F; n I;) (46b)

[414
Pr <
1 i=2 j<i

i

The above bounds can be further approximated using

Ditlevsen's'* method of conditional bounding to find the
probabilities of the joint events. This is accomplished by
using a Gaussian distribution space in which it is always
possible to determine three numbers f,, f; and the
correlation coefficient p;; for each pair of collapse modes
F;and F;.

Improved bounds can also be obtained by using
Vanmarcke's'® concept of failure mode decomposition
which takes into account the conditional probability that
the (i — 1) mode survives given that mode { occurs. By
assuming that the probability of occurrence of the ith
mode P(F;) = ©(f,) depends on f. only, the conditional
probability P(S;/F,) is evaluated in terms of the safety
indices f§; and B; and of the coefficient of correlation py;
between the failure modes Fyand F,.

A different approximate method which avoids calou-
lating conditional probabilities resulting from conditions
leading to failure via pairs of failure modes is the
PNET!. This method requires the determination of the
coeflicients of correlation between any two failure modes
i and j and is based on the notion of demarcating
correlation coefficient p, assuming those fatlure modes
with high correlation (p; ; 2 p,) to be perfectly correlated
and those with low correlation (p; ; < py) to be statis-
tically independent. This method is not very convenient
for 2-D structures because all the failure modes have a
relatively high correlation and the solutions wili be heav-
ily dependent on the assumed demarcating coefficient pg.

Methods which automate the search for other sto-
chastically dominant mechanisms will be described next.
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Identification of the stochastically most
significant collapse modes

It 15 assumed that both load and plastic resistances are
petfectly correlated within each fintte element. The finite
element model can be regarded as a direct extension of
the modelling of flexural plane frames. Modal deforma-
tions are plastic rotations in the case of frames and the
intersection of two (or more) element sides in the case of
3-D structures. A branch and bound tree strategy associ-
ated with a strong branching rule is-adopted impiicitly to
enumerate all the dominant modes. The first node of the
combinatorial free corresponds to the stochastically
dominant mode. Assuming that the number of finite
elements where plasticity develops in most imiportant
mode are r, ¥ concave quadralic programs are solved in
the first level. The strain parameters associated with each
of these finite elements are prevented from entering the
basis by setting their value to zero. All modes with a
reliability index below a cutofl value are saved. The next
step is to consider pairs of finite elements where plasticity
develops and all the modes for which a given f.,, is not
exceeded are saved. The procedure is repeated for groups
of more than two elements until all combinations are
implicitly enumerated.

If the random shape of each yield surface is modeiled
by associating a resistance randem variable to each face
of the surface, the number of potential modes of collapse
increase and the procedures described in Reference®
should be employed.

Numerical example

The shell supported by beams along its contour re-
presented in Figure I will be used to illustrate the proced-
ure.

The geometry of the shell is characterized by its thick-
ness h and by the form of the middle surface shown in
Figure 2,

For the global system of coordinates OX, X', X, the
middle surface can be defined through the equation,

Xy =z[1 — (X7 — X3)/(2a%))

where z is the X coordinate at the centre of the shell and




2a is the distance between pairs of columns. The curva-
tures of the shell are constants given by

0 X3 =05 X5= —z/a’; 8, X;=0

The shell degenerates into a square plate if z is set equal
ta zero. The shell is discretized into curved triangular
finite elements represented in Figure 3 and each finite
element is regarded as a shallow curved plate.

The governing relations at finite element level can be
derived first from the local coordinate axes referring to
each finite clement.

Fig 3 Octant of the shell and finite slement diseretization
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Field functions

Since stretching and bending problems are individualized
in the governing relations of shallow curved plates and
since the kinematic model under consideration can be
taken as the superposition of stretching and bending
models, field functions may be obtained through the
superposition of field functions defined for those modes.
Three nodal triangular elements are used to model stret-
ching. The displacement field I',s is assumed linear on the
coordinates and the stress field T,s is taken constant
inside each finite element. Nodes a are cormer nodes.
Constant stress field may be defined by the hodal stresses
at a single node anywhere inside the finite element. Thus,
the single node e is coincident with the single control
node c.

S$ix nodal triangular finite elements are used to model
bending. A quadratic deflection field ;b and thus six
nodal displacement values must be specified: vertical
deflections at element corners and mid-side normal rota-
tions. A constant moment field T, b is considered and
consequently strain compatibility is fulfilled because
no appreximation is involved in transformation
(Equation 6).

Kinematic transformation matrix E

For thin shells, straight lines normal to the middle
surface are assumed to remain normal to the deformed
middle surface, that is Kirchhof s hypothesis of negligible
shear deformations. The strain vector is similar to that
for stretching problems with extra terms accounting for
the curved form of the finite element.

For every finite element complying with the assump-
tion of shallow curved plate theory

E= [ T.DI,dA
oA

g

where &,z = ¢2z/(0X,0X;) are the curvatures of the shell
mid-surface with respect to the global coordinate axes X.
D, and D, are matrix differential operators for plate
stretching and plate bending problems, respectively. E,
and E, are the kinematic transformation matrices for
stretching and bending problems, respectively. E, ac-
counts for the curvilingar local axes of the finite element.

|

@

D, —éz
Dy

I,s

E, E,
dA = 2 c
|

0 E,

b

Transformation of coordinates

The variables involved in the formulation are the dis-
placements #* at nodes a (corner and midside nodes) and
the total strain-resultants g° at control nodes ¢ (one per
finite element at any position inside the element). Nodes e
are the mid-side nodes. No change of coordinates is
performed at the control nodes and thus transformation
matrix T is a unit matrix. The transformation matrix T4
for displacements 4 is easily established in terms of the
direction cosines of the local axes with respect to the
global system of reference. The direction cosine cos By; is
given by the following inner product,

cos By; = ij;

where the local and the global axes are represented by i
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and the unit vectors j; (j = 1, 2, 3), respectively. For the
present case the transformations of the displacements u,
u; and uy at the corner nodes 1, 2 and 3 and the normal
rotations #,, @5 and €, at mid-side nodes 4, 5 4nd 6 are
required.

The transformation matrix T¢ is.

cos By = o J;

with n, is the unit vector which is tangent to the shell
mid-surface and normal to the element side correspond-
ing to the mid-side node i (i =4. 3, 6).

Matrix R
Considering that there is one single control node,

Rc = R T [Te T rc T‘c} o (T."'Se}'rﬁst
Rt liit Uy (T YT |

Normal matrix Q

For simplicity, the yield criterion used here considers
separately the stretching and bending problems with no
interaction between them. Both for the in-plane forces
and for the moments, the Niglsen'” yield criterion formu-
lation is adopted. The corresponding simplified yield
surface for bending (and stretching) consists of two inter-
secting cones. Such a yield surface may be linearized as
suggested by Wolfenberger'® who considers eight planes
as represented in Figure 4 for bending. Both for the in-
plane forces and for the moments, the lingarized yield
surfaces are octaedrums characterized by the overall
normal matrix:

I 10 0—1—1 6 0

001 1y n—1-1

1=11=1 t=1 1{-I
1 10 0=1-1 0 ¢
O 01 1 0 0—)—1
10 1=1 1—=1 -1

and since there is only one control node inside each finite
clement,

The transformation [rom local to global coordinates is
considered in accordance to

L(l — (Tﬂ)f Lﬂ

Random variables

Two independent random variables associated with
loading are considered: Dead (p,d, @;d) = (5 kN/m?,
0.10) and live loading (x,1,Q,1) = (5 kN/m?, 0.10), the
yield surface is described by a single random variable.
Each yield surface has then a deterministic shape with a
random size. Tt is [urther assumed that the pilastic
resisting capacities are perfectly correlated within finite
clements and between them (u,,€,) = (14,5 b, Q)
=20 000 kN/m, 100 kNini/mi, 0.10).

In Figure 5 it is represented by the variation of the
reliability index =@ (I — pg) of the stochastically
most important mode (for a = Sm) with respect to the
z/a ratio. Several coefficients of variation of the plastic
capacities are considered.

Figure 6 shows how the reliability index changes with
respect to the z/a ratio. Several coefficients of variation of
the live loading are considered. Finite elements {, 2 and 4
become plastic in the stochastically dominant mode. Two
alternative. mechanisms, corresponding to the develop-
ment of plasticity in finite elements 1,4 and 2. 4, respect-
ively, are highly correlated with the stochastically domi-
nant mode. The overall probability of failure given by
Ditlevsen (upper bound), Ditlévsen {lower bound) or
Vanmarcke (upper bound) remains identical to Cornell’s
lower bound. This example shows that the effect of the
plastic resistances is dominant as z/a increases,

If the plastic resistances are (i, s, u,b) = (10 760 kN/m,
53.8 kNm/m), (4980, 24.9), (1790, 8.9). (800,4) for a/z
equal to 0.05, 0.1, 0.2, 0.5, respectively, the shells would
have the same reliability as the square plate with
{20000 kN/m, 100 kNm/m).

On the other hand, if the dimension a is 10m for
(£55; -P) = (20000 kN/m, 100 kNm/m), the shell with
z/a = 0.1 has the same reliability as the square plate with
a=5m.

The effect of the finite element discretization on the
reliability assessment will be analysed next. If 16 and 4

Qo =0Q. finite elements are considered per octant of the shell, the
following results are obtained:
zia=0 0.05 0.1 0.2 0.5
16 clemients B= 2547 (pp = 5.41 1073} 5,746 8.155 9.401 9.738
4 elements [=2396 (p = 827107%) 5.629 §.059 9.384 9.731

Loading vectors

Concentrated forces are assigned directly to the relevant
nodes and distributed forces are substituted by the equi-
valent nodal forces through integration. The uniformly
distributed body force field 1s accounted for as follows:

I_‘S 8 L(l
U=jHMA=J o b
A A

Fb b.’.‘ .

dA=

Therefore, the sale linearization of the coastitutive rela-
tions prevails over the upper bound nature of the kine-
matic formulation and leads to a conservative estimate of
the probability of failure.

The probability of failure changes with the number of
random variables and the correlation between them. If it
is assumed that the plastic stress capacitics are perfectly
correlated within the finite element but each element is
associated with an independent random capacity, the
following results are obtained for z/a = 0;

Cornell (Ib) Ditlevsen (Ib) Ditlevsen (ub)
f.e. uncorrelated 7 pr=25210"7 2551073 259107
perfect correlation between fe. e = 8271072 8271073 8271073
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The probability of failure increases with increasing cor-
relation between plastic resistances (and between loads).
Therefore it is conservative to assume that the plastic are
perfectly correlated. Also, an assumption of independent
yield surfaces may be very mappropriate and in the
unsale side.

Conclusions

This paper has been concerned with the development of
mathematical programming techniques for the reliability
assessment of three-dimensional structures. The finite
element method was chosen because of its versatility and
it is assumed that plastic collapse is the only possible
failure mode. A shallow curved plate element is con-

sidered for which it is necessary to define parametric

stress and displacement fields, The kinematics and statics
are governed by relations where the stretching is disso-
ciated from the bending problem. The kinematic model
under consideration can be taken as the superposition of
stretching and bending models and the field functions
required may be obtained through the superposition of
the field functions defined for those models. For simpli-
city, the yield criterion used here considers separately the
stretching and bending problems with no interaction
between them. In order to avoid the difficult numerical
integration of the probability distribution functions of
the random variables involved, the first-order second-
moment approximatien is employed. The identification
of the reliability index is formulated as a constrained
concave quadratic minimization. Numerical results for a
shallow shell model are presented.
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