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Abstract 
 
This work presents the Two-phase method for fuzzy optimization of cable stayed 
bridges. The minimization problem is stated as the minimization of stresses, 
displacements and bridge cost. A finite-element approach is used for structural 
analysis. It includes a direct analytic sensitivity analysis module, which provides the 
structural behaviour responses to changes in the design variables. An equivalent 
multicriteria approach is used to solve the non-differentiable, non-linear 
optimization problem, turning the original problem into the sequential minimization 
of unconstrained convex scalar functions, from which a Pareto optimum is 
obtained.In the first phase the fuzzy solution is obtained by using the Level Cuts 
Method and in the second phase the crisp solution, which maximizes the 
membership function of fuzzy decision-making, is found by using the Bound Search 
Method. Illustrative numerical examples are solved. 
 
Keywords: Fuzzy optimization, cable-stayed bridges, structures. 
 
1  Introduction 
 
Cable-stayed bridges are large and expensive structures that are now being widely 
used. The trend to increase the spans and the advent of innovative erection 
techniques make thus desirable the development of computational tools to assist on 
the preliminary design stage and/or erection control, which today relies mostly on 
the design staff expertise. The authors have been involved in the last few years in 
such a project, which led to the development of a programme dealing with the 
aspects of design which can be objectively expressed by a numerical merit measure. 
The optimization can be stated as that of the minimization of structural cost or 
volume, and the maximum stresses throughout the structure. Additional objectives 
are aimed at the deflections or displacements and to guarantee that the design 
variables are at least specified minimum values. This work started with the shape 
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and sizing optimization by using a 2D finite-element model for the analysis. The 
problem was extended to three-dimensional analysis and the consideration of 
erection stages under static loading [1] Seismic effects were considered in the 
optimization both by a modal-spectral approach and a time-history based procedure 
[2]. In most of the previous studies, a grid solution was adopted for modelling the 
deck, with stiffening girders supporting transverse beams, although box-girder 
sections were employed [3]. Prestressing design variables were also considered for 
the problems of optimal correction of cable forces during erection [4]. 

In design and optimization problems material constants, loading and structure 
geometry are usually considered as given data, but in real world assumed values do 
not correspond with actual ones. Therefore there may be differences between 
nominal and real geometry, materials may behave in a different way than the 
assumed one, and constant loading may actually vary during the structure lifetime. 
All of this is accounted by safety factors, which amplify load magnitude, or reduce 
material strength, leading in general to over-conservative structures. 

As an alternative to safety factors one may try to describe the uncertain data and 
use this information during the optimization, which in general leads to better results 
in term of optimal design. Probabilistic description is nowadays common and very 
simple up to very sophisticated PDF can be used to describe uncertain parameters. 
However these procedures face difficulties when being implemented in engineering 
applications. This lead to non-probabilistic description of uncertainty, in particular 
the fuzzy-set based analysis and the worst condition produced on the constraints by 
a certain load condition also termed anti-optimization [5]. The Two-Phase Method 
for fuzzy optimization of structures is based on the fuzzy-set method is proposed in 
this work. In the first phase, the sequential fuzzy solution is obtained by using the 
Level Cuts Method, in which a fuzzy optimization problem is transformed into a 
series of ordinary optimization problems using different α-level cuts in fuzzy 
constraints so as to determine a fuzzy optimization domain in the design space. This 
procedure has been suggested in [6]. In the second phase, the particular crisp 
solution is obtained by the Bound Search Method, in which having obtained the 
supremum and the infimum of the sequential fuzzy solution the particular optimum 
level α* is found using the bound search so as to provide a crisp optimization 
solution in the design space. 
 
2  Fuzziness in Structural Design 
 
A fuzzy information problem of structures can be stated as: Find the design vector x 
which minimizes the objective function W(x) subject to fuzzy constraints on 
performance characteristics and dimensions. This is a fuzzy mathematical 
programming problem, which can 
be expressed in a standard form as follows (MP1): 
 

min W(x) (1a) 
st    gj(x)  bbbj

U       j = 1, 2, ..., m-1 (1b) 
 gj(x)  bj

L       j = m, ..., p (1c) 
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where the “” and “_” symbols indicate that the constraints contain fuzzy 
information, and bj

U, bj
L are allowable upper and lower limits of the jth constraint 

respectively. 
The membership function µj(x) of the fuzzy allowable interval may be 

characterized as shown in Figure 1. where bj
L and bj

U are respectively the lower and 
upper limits of the allowable interval for the highest (most rigorous) design level. 
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Figure 1  

These may even be more strict than the specifications Codes (to be chosen by 
engineering requirements). dj

L and dj
U are lengths of transition stages, namely the 

permissible deviations or tolerances for the lower and upper limits. Thus, MP1 can 
be rewritten in the following form (MP2): 
 

min W(x) (2a) 
st    gj(x) ≤bj

U + dj
U      j = 1, 2, ..., m-1 (2b) 

 gj(x) ≥bj
L - dj

L       j = m, ..., p (2c) 
 

A proper function may be selected for the transition stage curves of the 
membership function in the light of the character of the physical variable gj. Usually, 
inclined straight lines may be adopted for simplification. 

Membership degree µj(x) may be defined as “degree of satisfaction” of the fuzzy 
constraint. When µj(x) = 1, the constraint is satisfied completely: when µj(x) = 0 is 
not: while its value lies between 0 and 1, the constraint is satisfied to the relevant 
degree. 

An alternative formulation consists of expressing the objective function and 
constraints as normalized goals. If some reference cost Wo is specified, the goals 
may be written in the form 
 

go(x) = W(x)/Wo -1 ≤ 0 (3a) 
gj(x)/(bj

U + dj
U) -1 ≤ 0       j = 1, 2, ..., m-1 (3b) 

1- gj(x)/(bj
L - dj

L) ≤ 0       j = m, ..., p (3c) 
 
The objective is to minimize all of theses goals over variables x. This can be 
achieved by the minimax optimization (MP3): 

Min x   Max j < go(x) , …, gj(x) ,…, gp(x) > (4) 
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3   Two-Phase Method 
 
3.1 First phase (Level Cuts Method) 
 
For the sake of simplicity only the method of solving problems with fuzzy 
constraints is discussed in this work. If the membership function of inclined straight 
lines may be adopted, as shown in Figure 2, MP2 can be transformed into a non-
fuzzy mathematical programming at α-level as follows (MP4): 
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Figure 2: Membership function 

 
min W(x) (5a) 
st   gj(x) ≤ bj

U + dj
U  (1-α)         j = 1, 2, ..., m-1 (5b) 

gj(x) ≥bj
L  - dj

L  (1-α)         j = m, ..., p (5c) 
α ε [0,1] (5d) 

 
This is a parametric mathematical programming in α∈[0,1], which can be solved 

by means of an algorithm for optimization so as to determine the fuzzy optimization 
solution x*(α) and W(x*(α)) with different α values. It is noted that a fuzzy 
optimization problem may have mixed fuzzy and crisp constraints. In this case we 
shall accept tolerances only on the realization of fuzzy constraints, but crisp ones 
will completely satisfied. As shown in Figure 3, the W(x*(α)) curve defines a fuzzy 
solution to the fuzzy optimization problem of structures, which is a monotone 
increasing function of α. 
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Figure 3: Fuzzy solution 
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3.2  Second phase (Bound Search Method) 
 
The Bellman-Zadeh [7] criterion of decision-making in a fuzzy environment gives 
the grade of membership of a decision specified by variables x as  

µd(x) = Mini µi(x)  (6)  
where i ranges over the complete set of constraints. The fuzzy constraints C and the 
fuzzy goal G in MP4 are defined as fuzzy sets in the space of alternatives, 
characterized by their membership functions µC and µD respectively. Generally 
speaking, the fuzzy decision D characterized by its membership function µD may be 
viewed as the intersection of the fuzzy constraints and the fuzzy goal. 
The optimal decision is to select the best alternative from those contained in the 
fuzzy decision space, which maximizes the membership function of the fuzzy 
decision, i.e.: 
 

µD(x*) = max x∈Rn  µD(x)  (7) 
 
In order to illustrate the above principle, consider one fuzzy goal G with one fuzzy 
constraint C. The membership functions µG, µC and their intersection µD are plotted 
for this case in Figure 4. This figure also shows that the point A represents the 
optimal decision which has the maximum degree of membership in the fuzzy 
decision set. 
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Figure 4 

 
From eq.(7), the particular optimum level α* and the optimum point x* are such 

that: 
 

µG(x*) = max x∈Cα  µG(x) (8) 
 
where Cα is the α*-level cut of the fuzzy constraint set C. 
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Now it is necessary to establish the fuzzy goal µG(x) and its upper and lower 
limits. It can be seen from Figure 3 that the supremum and the infimum in the 
sequential fuzzy solution are given by 
 

M = W(x*(1)) = minx∈C1 W(x) (9a) 
m = W(x *(0)) = minx∈C0 W(x) (9b) 

 
where C1, C0 are the level cuts of α = 1 and 0 of the fuzzy constraint set C. 

In the problem of finding x which maximizes the objective function W(x) subject 
to fuzzy constraints, the fuzzy goal is: µG(x) = W(x)/M. Similarly, in a fuzzy 
optimization problem of structures to find x which minimizes the objective function 
W(x) subject to fuzzy constraints, the fuzzy goal can be established as follows: 
 

µG(x) = m/W(x)  (10) 
 

As expected, this fuzzy goal shows the full membership (µG=1) is obtained when 
W reaches its infimum m; as W increases µG approaches the non-membership 
(µG=0). Clearly, the upper and lower limits of the fuzzy goal are given by: 
 

µG
U = 1   (11a) 

µG
L = m/M   (11b) 

 
The optimum level can be derived from equation (8) as: 
 

α* = µG(x *(α*))  (12) 
 
3.3  Multiple αααα 
 
This procedure can be extended to problems exhibiting multiple α, each associated 
with a different type of imprecision. The optimum level for each αi is found by 
conducting bound searches.  With this optimum set of α, the fuzzy optimum solution 
is then obtained. 
 
4   Structural Relations 
 
4.1  Finite element analysis 
 
The finite element based open code MODULEF was used as the basic tool for 
structural analysis, because code availability was a fundamental requirement for 
further developments. Out of the several element types included in the element 
library of the programme, only the FE required for two- and three-dimensional 
models of cable-stayed bridges were retained and adapted to specific needs. These 
were 2D and 3D bar and beam (Euler-Bernoulli formulation) elements and 4- and 8-
noded serendipity plate-membrane (Reissner-Mindlin formulation) elements. 
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4.2  Design variables 
 

The structural response of a cable-stayed bridge is conditioned by a large number 
of parameters, concerning cross-sectional shapes and dimensions, overall bridge 
geometry, applied prestressing forces, deck-to-pylon connections, etc. Some of them 
play only a limited role on the bridge behaviour while others, such as the cable 
pattern and prestressing forces, are of major importance for both the safety and 
serviceability purposes. Three types of design variables were considered: sizing, 
shape and mechanical. Sizing design variables are cross-sectional characteristics of 
bar, beam and plate elements, such as web height, flange width, plate thickness, etc. 
Changes of such variables do not imply the need for remeshing. Shape design 
variables produce geometry changes that require nodal co-ordinates update or even 
complete remeshing. Other design variables can be characterized as hybrid, because 
they define both the box-girder cross-section shape and the deck geometry, requiring 
co-ordinates updating only. Finally, the fixed-end prestressing force is a mechanical 
design variable not related to any geometric quantity. The currently available types 
are shown in Figure 5. 
 

 
Figure 5: Sizing design variables 

 
All these types play complementary roles in the process of design optimization. 

Sizing design variables directly provide for cost/volume decrease. Shape and 
mechanical design variables have a neglectable direct relation to structural cost but 
allow for better stress distributions, which in turn lead to further decreases in sizing 
variables. Prestressing force design variables are essential for achieving acceptable 
solutions when deflections are considered in the dead load condition. 
 
4.3  Sensitivity analysis 
 
The analytic direct method was adopted for the purpose of sensitivity analysis, given 
the availability of the code, the discrete structural pattern and the large number of 
constraints under control. For ordinary linear statics problems, derivatives of 
kinematic constraints (displacements) are provided by solving a pseudo-load system.  
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where Qvi is the virtual pseudo-load vector of the system with respect to the ith 
design variable. 
The stress derivatives are accurately determined from the chain derivation of the 
finite element stress matrix 

σ=D Be ue  (14) 
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4.5  Optimization 
 
Pareto’s economic principle is gaining increasing acceptance to multi-objective 
optimization problems. In minimization problems a solution vector is said to be 
Pareto optimal if no other feasible vector exists that could decrease one objective 
function without increasing at least another one. The optimum vector usually exists 
in practical problems and is not unique. 

Cross-sectional (and geometric) design variables are considered, represented by 
xi and zi, respectively, and the global design variable vector is 
 

x = {x1,x2,x3,...,xn,zi+1,zi+2,...,zN} (16) 

Bounds must be set for these variables in order to achieve executable solutions 
and required aesthetic characteristics.The overall objective of cable-stayed bridges 
design is to achieve an economic and yet safe solution. In this study it is not 
intended to include all factors influencing the design economics. One of the factors 
conventionally adopted is the cost of material used. A second set of goals arises 
from the requirement that the stresses should be as small as possible. 

The optimization method described in the next section requires that all these 
goals should be cast in a normalized form.If some reference cost Vo is specified, this 
goal can be written in the form 
 

g1(x,y) = V(x,y)/Vo - 1 ≤ 0  (17a) 

Another set of goals arises from the imposition of lower and upper limits on the 
sizing variables, namely minimum cable cross sections to prevent topology changes 
and exequible dimensions for the stiffness girder and pylons cross sections: 
 

g2(xi) = -xi /xL + 1 ≤ 0  (17b) 
g3(xi) = xi /xU - 1 ≤ 0  (17c) 
 

where xi is the i-th sizing variable and xL and xU its lower and upper bounds. Similar 
bounds must be considered for the geometric design variables: 
 

g4(zk) = -zk /zL + 1 ≤ 0  (17d) 
g5(zk) = zk /zU - 1 ≤ 0  (17e) 
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where zk is the k-th geometric variable and zU, zL are its upper and lower bounds, 
respectively. Additional bounds are set when geometric design variables are 
considered, to ensure that no geometry violation occurs when these design variables 
are updated. For example, when design variables of types 4 or 5 (Figure 6) are 
considered, their total length cannot exceed the side span length. If i and j are the 
positions of those design variables in X vector, we write the condition 
 

(zi + zj)/LS - 1 ≤ 0  (17f) 
 

where LS stands for side span length. 

 
Figure 6: Shape design variables 

 
Additional goals may be established in order to ensure the desired geometric 

requirements during the optimization process (mesh discretization, ratios of 
variation of cable spacing on deck and pylons, etc). For these the chosen approach 
was to initially supply all the necessary information, by means of a geometry 
coefficients set describing such conditions. 

The objective is to minimize all of these objectives over sizing and geometry 
variables X. This problem is discontinuous and non-differentiable and is therefore 
hard to solve. However, by using an entropy-based approach, Templeman has shown 
that its solution is equivalent to that of an unconstrained convex scalar function, 
depending only on one control parameter, which may be solved by conventional 
quasi-Newton methods. This parameter must be steadily increased through the 
optimization process. The scalar function is very similar to that of Kreisselmeyer-
Stainhauser, derived for control problems: 
 

( ) ( )( )







∑
M

1=j

g1 e.ln=F xx ρ

ρ   (18) 

Problem (18) is unconstrained and differentiable which, in theory, gives a wide 
choice of possible numerical solution methods. However, since the goal functions 
gj(x,z) do not have explicit algebraic form in most cases, the strategy adopted was to 
solve (18) by means of an iterative sequence of explicit approximation models. An 
explicit approximation can be formulated by taking Taylor series expansions of all 
the goal functions gj(x,z) truncated after the linear term. This gives: 
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where N and M are respectively the number of sizing plus geometric design 
variables and the number of goal functions.goj and ∂ goj/∂ xi are the goals and their 
derivatives evaluated for the current design variable vector (xo,zo), at which the 
Taylor series expansion is made. 

Solving (19) for particular numerical values of goj forms only one iteration of the 
complete solution of problem (18). The solution vector (x1,z1) of such an iteration 
represents a new design which must be analysed and gives new values for g1j, 
∂ g1j/∂ xi and (x1,z1), to replace those corresponding to (xo,zo) in (19). Iterations 
continue until changes in the design variables become small. During these iterations 
the control parameter ρ must not be decreased to ensure that a multiobjective 
solution is found.  
  
5   Numerical Example 
 
A numerical example with sizing design variables only and without erection stages 
will be presented next. The model represented in Figure 7 was considered. It 
consists of a symmetric three-span cable-stayed bridge. Monosymmetric I-shaped 
cross-sections are prescribed for the stiffening girders, while the pylons are made up 
of steel plates defining a rectangular hollow cross section. I-shaped transverse beams 
support the wearing surface. Three load cases, corresponding to live load on either 
side, central or whole span, were considered.  

 
 

Figure 7: Geometry of the bridge model  
Fuzzy goals were generated involving Young’s modulus, stress limits and 

loading. The influence of geometric design variables in the optimum cost is quite 
limited. Moreover  both geometric and sizing design variables in steel cable stayed 
bridges are strictly controlled and their values are assumed to be deterministic. 
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Allowable stresses of 180 MPa were assumed for the deck and pylon elements and 
475 MPa for the stays.  

Tolerance of 40 MPa for the deck and pylon elements and 50 MPa for the stays 
were employed to fuzzify the stress limits. A membership function of inclined 
straight lines is adopted and (18) will become a parametric program. In the first 
phase, by solving (18) with different α values yield deterministic designs together 
with a level of acceptability with respect to the stress limits fuzziness. In the second 
phase, the crisp solution is obtained by the iterative bound search method described 
in 3.2. 
 

M = W(α=1) = 159.52        m = W(α=0) = 140.88        0.883 ≤ α ≤ 1.00 
 

For α = 0.894, W(α) = 157.54 and µG = m/W(α) = 0.894 
Once the optimum α is known the sizing  variables are obtained. The fuzzy 

optimum lead to a solution 1.2% lighter than the original deterministic solution. 
If the tolerance of the stress limits is half and keeping the linear membership 

functions, the results obtained in the first phase are: 
 

M = W(1) = 159.52        m = W(0) = 149.16        0.935 ≤ α ≤ 1.00 
 

The crisp solution obtained in the second phase: 
 

α = 0.94, W(α) = 158.74 and µG = m/W(α) = 0.94 
 

These results are only 0.5% lighter than the deterministic solution. 
A 5% imprecision  of Young modulus was considered next. The solution reveals 

than when the stress (and not displacement) limits govern the optimum solution the 
influence of the Young modulus of the cables is negligible. 

A 30% increase in the live load was also considered as traffic loading has 
significantly  increased over the last decades. The results obtained in the level cuts 
phase are:  

M = W(1) = 185.97     m = W (0) = 159.52        0,818 ≤ α ≤ 1  
The solution obtained in the second phase is α = 0.873, W(α) = 182.62 and µG = 

m/W(α) = 0.873. The fuzzy optimum is 1.8% lighter than the original deterministic 
solution. 

The same imprecision of the stress limits and loading are considered 
simultaneously next. If the fuzziness is represented by only one α, meaning a perfect 
correlation between the increase in loading and acceptance of increased stress limits, 
the results obtained in the first phase are:  

M = W(1) = 185.97     m = W (0) = 140.88        0,758 ≤ α ≤ 1  
For α = 0.797, W(α) = 176.81 and µG = m/W(α) = 0.797 and the fuzzy optimum 

gives a 4.9% lighter than the original deterministic solution. 
If the overloading and acceptance of increased stress limits is considered by two 

independent α variables in the first phase:  
Ms = W(1) = 159.52     ms = W (0) = 140.88        0,883 ≤ αs ≤ 1 
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Ml = W(1) = 167.33     ml = W (0) = 140.88        0,841 ≤ αl ≤ 1 
 
The solution obtained in the bound search phase is αs = 0.894, αl = 0.861 and the 

fuzzy optimum is W(αs, αl) = 180.31 which is 2% more costly than the previous 
solution but 3% lighter than the deterministic solution. 
 
6  Conclusions 
 
It is pointed out that the fuzzy optimization has the advantage of ordinary 
optimization with a more realistic model of fuzzy constraints taken into account, the 
structural design should be more reasonable and beneficial. The illustrative 
numerical examples given here show that the Two-Phase Method based on fuzzy set 
theory seems to be rational and effective approach for fuzzy optimization of 
structures with plastic or elastic material behaviour. As a result, the proposed 
approach provides favourable condition for selection of structural design schemes so 
as to have a high α level and to save materials. 
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