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SEARCH FOR THE GLOBAL OPTIMUM
OF LEAST VOLUME TRUSSES

L. M. C. SIMOES
Dep. Engenharia Civil, Fac. Ciencias e Tecnologia, Universidade de Coimbra, Portugal

This paper describes two types of strategies that find the global optimum of structures designed for
minimum volume consumption. This bilinearly constrained problem may present multiple optima and
some examples of this nonconvex behaviour are given. In the first method twe branch and bound (B & B)
based approaches are presented associated with suitable convex underestimating functions. The second is a
cutting plane method and is derived as a generalization of Bender's algorithm; although the relaxed
problems yielded are still nonconvex, they are amenable by standard codes for 0-1 mixed LP. Frequently
structural engineers are confronted with only a limited set of discrete alternatives; both solution techniques
presented here are combinatorial in nature and suitable to be cast inlo a discrete variable model, for which
the algorithms converge to the global optimum in a much smaller number of steps.

KEYWORDS: Trusses, global optimium, branch:and bound, Bender’s decomposition

1 INTRODUCTION

In the 25th year since the paper by Schmidt at the Second Conference on Electronic
Computation®, it can be stated that mathematical optimization techniques have
played a central role in the development of new approaches to structural design with
the aid of computers, either for fixed (weight minimization problem) or for variable
(shape optimization problem) geometry. In both cases the specific literature is so
numerous that one may only tentatively refer to it emphasizing the reviews®.

The methods that mostly have been proposed for the solution of the above
problems can be -divided into two different categories: the optimality criteria
approach and the mathematical programming approach. It is generally accepted that
both approaches at present show shortcomings that are mainly due to the nonlinear
and nonconvex character of the optimization problem itself, being unable to guaran-
tee the obtaining of a global as opposed to merely a local solution.

The minimum volume of trusses possessing a linear elastic behaviour is an example
of such problems possessing a large field of practical applications and being
themselves of intrinsic importance. In fact this one stress-resultant problem can be
extended to the elasto-plastic behaviour of the members and the solution of both plate
and frame problems (where the nonconvex behaviour becomes more notorious due to
the higher nonlinearity of the problem).

Two strategies more appropriate to nonconvex optimization are presented here:
The B & B approach can be applied to the solution of separable problems such as
functions of one variable and their products. This technique can be accepted as
competitive, since each resulting subproblem is solved by using a linear programming
(LP) technique. Alternatively a generalization of Bender's algorithm using dual
functions instead of dual variables allows the definition of a master problem
equivalent to the minimum volume design. Even though the master problem is a 0-1
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mixed LP. it has a special nature allowing it to be transformed into a LP in 0-1
vagiables.

2 EXAMPLES GF WONCONVEX BEHAVIOUR IN BILINEAR
STRUCTURAL OPTIMIZATION PROBLEMS

The following simple examples iftustrate some of the problems often encountered in
‘optimal design:

24 Grilluge Design

The griiiage presented in Figure | is made up of orthogonal sandwich beams loaded
norial 1o its plane. The geometry of the structure is assumed to be known including
the seinber of beams, span lengths and support conditions. Constraints are imposed
upen the bending stresses at node B, m,, m, and in the critical section between nodes
ASE, m, and BC, m,.

Tte optimal design problem is to find the cross sectional areas y,; and y, such that:

min Ly, + Ly, (1)
st§), <8, =m/w, <35, (2)

S < 8 = myfwy < 55, (3)

Sy < S3 = Ma/w, < 53, (4)

Sat S S =my/w, < s, (5)

Yir 2 Vi Y2 = ¥ay (6)

Bv ysing the nodal-stiffness method the bilinear equation for the deflection at B, dj is:
SELL /(14/2P° + (L,/(15/2)*  dp = 4 )
i=5(‘?1‘t + G218 + P (8)
sy=—150= —s,:i=1,...,4 (%
yy=1350 j=12 (10)

1 which E (the Young modulus) equals unity and A is the nodal force.

Figure 1
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Three local optima are obtained; as shown in Figure 2.

Yy = 50; y, = 22.0; OF = 8320
sp= —93;5,=143; s
V= 9.9; y, = 15.1; OF = 765.1
5, = —14.8; 5, = 15.0; 53

I

¥

224; y; =

s, = —150; 5, = 15.0;

5.0; OF

33

—15.0;5, =150

—150;5, = 150
826.1
—63:5, =130
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Case II Here:
g, = L2=ygq,; p=250 (14)
1, =210; I, =240 (15)
wy= S5.0v;; I;=250y; (16)
yp= 10; =12 (17)
S!1=_5.0=—Siu;i=11---:4 (18)

In this case two distinet local minima would be obtained, as shown in Figure 3.

vy = L7y, =113; OF =307.5
s, = —47;5,= 50; 55=—4T;5,=47
¥y 11.0; y, = 1.0; OF = 255.0
$;=—=50:8,= 50; s3= 02;5,=42

2.2 Weight Minimization of a Ten Bar Truss

The second example concerns the optimization of the statically indeterminate truss of
Figure 4 loaded by two vertical forces and subject to stress and displacement
constraints. Loading vector:

AM=[0 0 0 —10 0 0 0 —10]

The lower bound on all cross sections is 0.1 and the maxima allowable stresses are
+2.5.
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If the nodal displacements are limited to +3.5, two optimal solutions, both
corresponding to statically indeterminate trusses can occur:
OF = 219.93
a, = 48.7;a,= 0l;a;= 3565a,= 24.1; a;=0.1
g = 12;a,= 94;0,= 343;a,= 3l a,,=01
s, = 04;8,=—-03;5=-06;5,=-04; s5=22
Se= —00;8;,= 29;85=—08;5= 08;5,=07
d,= 02;d,=—-35;d,=—10:d,=—35
ds= 04;dq= —13;d,=—06;dg=—3.5
OF = 223.34
a,=487;a,= 0l;a;= 381;a,= 233; a;=0.1
ags= 0lja,= 137,85 = 33.1;a5= 33.0;a,,=01
§;= 04;s,= 00;5;=—05;5,=—04; s5=13
sg= 00;s5= 20;55=—09:5,= 09;5,=00
d, = 04:d, = —35;dy;=—10;d, = —-35
de = 04;dg = —13;d, = —05;dg = —26
Both these points are solutions to the Kuhn-Tucker equations corresponding to
different sets of Lagrange multipliers. Both locally minimize the volume of the

structure. Any feasible direction linking these solutions would determine (at least) one
point having a greater volume than the local optima.
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3 BRANCH AND BOUND METHODS

The existence of muliiple solutions in the bilinearly constrained optimization problem
leads us to consider methods of solution more appropriate for this nonconvex
behaviour. The general nonconvex domain is transformed in the B & B strategy into a
sequence of intersecting convex domains by the use of underestimating convex
functions. Jt is well known that a local solution to a problem possessing a convex
objective function and being restricted by convex inequalities is also its global
solution. '

The two main ingredients are a combinatorial tree with appropriately defined
nodes and some upper and lower bounds to the final solution associated with each
node of the tree. It is then possible to eliminate a large number of possible solutions
without evaluating them. As the implicit enumeration program relies on an upper
bound, its efficiency can be greatly improved by providing a good feasible initial
solution. ‘

A partial solution is said to be fathomed if the best feasible completion of the
sclution can be found or if it can be determined that, no matter how sections are
assigned to the remaining free members it will be impossible to find a feasible
completion of smaller cost than that previously found. If a partial solution is fathomed
this means that all possible completions of this partial solution have been implicitly
enumerated and therefore need not be explicitly enumerated. When the last node 1s
fathomed the algorithm terminates with the optimum design. Backtracking in the tree
is performed so that no solution is repeated or omited from consideration.

3.1 Transformation of Factorable Functions inte Convex Underestimates

Bilinear expressions of the form
px -+ gy + kxy (19)

are particular cases of the more general class of problems involving factorable
functions. Since the convex underestimate of the linear part of the expression is trivial
the envelope of the product term is needed. Let the function f(x, y) = xy be defined in
the rectangle of bounds

a<x<hjex<y<d (20)

The function values at the corners must coincide with the underestimate taken. Since
three points are enough to define a plane in 3-D, the convex underestimate will be
taken as the z coordinate on the highest of the two planes defining a ridge through the
two intermediate function values.

Zy = ¢X + ay — ac (21)
3, —d5%- by— bd 22)
z=max{z,, z,} < f(x, y) =xy (23)

The concave overestimating functions are accordingly defined as the z coordinate at
the lowest of the two planes defining a ridge through the corners having the higher
and lower function values

2 =dx+ay—ad (24)
8 =cx+ by — b (2%5)
2% = min{z, 23} = f(x, ¥) = xy (26)
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When these estimating functions are switched around to another quadrant, the
approximations are suitably modified. The underestimating function z {and overesti-
mating z°) is not differentiable everywhere. There are several ways of handling this by
altering the problem in order to create an equivalent LP. The simplest way mvolves
the addition of some extra inequality constraints and variables. Considering the
problem:

min ¢'x 27
st Ax > b 28
S¥% + maxiglx, gix} < h (29)
pTx + min{glx, gix} = » 30

This is equivalent to the LP

min ' x (31
sty > e 32
fTe +u<h {33)
plx+ez=r {34)
H=gix wXZglix (35)
e, v<glix (36)

Other formulations may be emploved. The introduction of more variables is recom-
mendable when the same nondifferentiable term will appear in a number of con-
strainfs.

When the bilinear constraints are equalities {eguilibrium equations in the nodal-
stifiness formulation), they should be replaced by 4 pair f inegualities. This amounts
to duplication in the number of constraints and vanables. Fortunately, it can be
shown that in the structural optimization problem one of them is always nonactive
and need not be considered. This reduces significantly the size of each LP.

32 Quside-In Appreach

In the sequel the algorithm originaily presented by Soland® for separabie functions
is outlined and it is shown that il can easily be exiended to cover the convex
underestimating functions described above. Let 1 be the qolutica of the Hnear
underestimating subproblem (F,), with k =1

min¢ix (37)
stdx > b (38}
L<x<k, (393

If x? is not a feasible solution of the original probles, vne may try to strengthen the
constraints or to restrict the domain of the subprobiem (P,) in order 10 make ithe
solution x? feasible. (P,) is replaced by a set of problems that bound the original
problens in the sense that there exist one optimal soiution x* for at least one problem
j W”. Suppose an optimal solution to each such problem is obtained and let

X* = min ¢ (40)
JeWP
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If x* is not a feasible solution of the original problem one of the problems of the
bounding set is replaced by a set of new problems. Make p = p + 1. The problem s is
replaced by a set W7, such that W? = (W?~' — {s}) U W* contains an optimal
solution of the original problem feasible for at least one problem W

For each problem je W7 either x' is infeasible for j, or ¢"x/ > ¢"x* This is a
condition ensuring that some progress towards the final solution is made.

The combinatorial tree has each node identified with a subproblem j. The problems
that replace j in the bounding set W7 are pointed to by the branches directed outward
from that node. At any intermediate point in the calculations, the set W¥ of the current
bounding problems is identified with the set of nodes that are the leaves of the tree.

Each node of the tree is associated with an incumbent bound v. Any leaf node of the
tree whose bound is strictly less than v is active. Otherwise it is designated as
terminated and need not be considered in any further computation, The B & B tree
will be developed until every leaf can be terminated.

It is also required to define (in a heuristic way) a refining rule for splitting the
bounds on the variables: Choose the index i of the variable that maximizes the
difference between the factorable form and its convex underestimate out of the more
violated constraint by x* in the original problem. The corresponding interval is
divided into two new intervals [1;, x,] and [x;, L/].

Therefore as soon as a node is selected to be branched, the partition of its interval is
cnly dependent on its solution value and is not related to other partitions at the same
level of the tree. This corresponds to a weaker form of the convergence theorem not
requiring the completion of the intervals partitioned.

Application The following problem is bilinearly constrained and similar to those
representing the optimal design of trusses:

min x; + Xz + X3 (41)
st x;xy + X325 =0 (42)
3xyxy + 1.2x,%5 — Xa%g = 10 43)

53, + X5 + Xg < 2.5 (44)

0.1 <x, 50,01 <x, <50;01 <x,<50 (45)
0<x, <250<x3<25;—-25<x,<0 (46)

This mathematical problem presents three local optima, namely:

x; =04;x; =333, %3 =01; %, = 0; x5 =2.5; x =0

OF = 3.53

x, =05 x, =30; x3=0.1; x, = 0.5, x5 = 2.5 xg = —2.5
OF = 3.60

x; =25;x, =01 %3 = 1.0; x, = 1L0; x5 = 05 x5 = —2.5
OF = 3.60

When it is intended to represent this nonconvex problem graphically, it is not possible
to go beyond two equations in three unknowns, at least without being placed in a
subspace of the solution space. Figure 5 represents a perspective view where all
objective values below a given level are printed.
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Figure § Plot for various y, and x, and keeping x; fixed.

Replacing the factorable functions by their convex underestimates (since the
determination of the linear functions’ convex envelopes is trivial) it is possible to
obtain (in the more lengthy formulation) a LP in 10 variables and 15 inequality
constraints. Any node of the B& B tree is defined for each set of bounds on the
variables x, to xg. The results of the branching strategy known as breadth first
(choose the node with lower bound) are represented in the combinatorial tree of
Figure 6.

Computational experience Several other convex underestimates were tried out®
leading in some cases to problems with reduced dimensionality. Nevertheless the
number of lower convex estimates (LCE) increased very significantly mainly due to
the (poor) quality of the alternative underestimates employed.

Although tending to require less storage space, the number of LPs necessary to find
the global optimum increased by 30-35 %, when an alternative search strategy known
as depth first (as opposed to breadth first) is used. This strategy is: pick up the right
hand sucessor of the current node, otherwise backtrack to the predecessor of the
current node and reapply the rule,

The branching rule, requiring that the index of the variable to be partitioned is
selected according to the terms belonging to the more violated constraints, has a more
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marked influence in the increase of the number of LPs needing to be solved. By
dividing the interval corresponding to the index of the variable chosen into half
instead of partitioning it according to the value given in the LCE there is an increase
in the number of LPs of 70-80%.

3.3 Inside-out Approach

An alternative B & B algorithm, originally presented by Reeves® and intended for all
quadratic programming, can also be adapted to programmes in which the constraints
and/or the objective function are reducible to factorable forms. 1t relies on performing
each iteration over a subinterval of the original domain given by bounds on the
variables. It consists of three basic steps:

The first step of each iteration is to determine a base point from which to branch
and bound. Highly desirabie points are local optima of the minimum volume design,
although it is possible to start the algorithm with a point that may be not a local
optimum (or even feasible). If this algorithm is used as a verification procedure then
the local solution obtained by convex programming techniques is an ideal starting
point.

Once a base point is obtained ihe second step consists of eliminating an interval
surrounding it. For a feasible point x¥, where ¥ represeats the iteration number of the
algorithm, an interval is eliminated for which x* is the global solution of the
optimization problem, Tt is composed of three basic substeps. First the interval under
consideration is divided into subintervals around its base point. Next a region of each
subinterval is defined over which the base point is global to the original problem.
Finally the total elimination interval is formed from the union of the regions
eliminated over the individual subintervals. For infeasible x* an interval, for which the
LP derived using convex underestimaies (LCE) is not feasible, is found and elimin-
ated.

In the last step the B & B section is entered. Uneliminated regions are partitioned in
subintervals and a LCE problem is solved for each of them. These lower bounds are
compared to the value of the best upper bound (incumbent solution). All previously
uneliminated intervals with bounds which equal or exceed the incumbent are
eliminated from further consideration. If any subset of the original domain remains, a
new iteration is initiated over the uneliminated subinterval with the lower bound
around a new base point. Figure 7 represents the different B & B strategies described.

The termination criteria for verifying the global minimum for a fixed set of bounds
requires that the solution point y* given by the LCE on the same interval should also

Y
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Figure 7
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be feasible to the original problem. Considering the convex underestimates taken, this
implies that all design variables are endpoints.

Application The optimum of the three bar truss of Figure 8 subject to stress
constraints, allowing for a continuous variation of the area variables and undergoing
two loading conditions obtained by a convex minimizer routine, is verified in this
section,

Using the nodal stiffness description the original problem can be stated as follows:

min /2a, + a, + /2a, (47)
st /22a,d} + 1/2a,(d} + di) = 40 (48)
1/2a,(d} + db) + \/2/2a3d3 = 0 (49)
J22a,d? + 1/2a,(d} + d3) =0 (50)
1/2a,(d2 + d3) + </2/2azd% = 20 (51)

0< /2024t <5, —5< /2242 <0 (52)
0.</2/2d} +db) < 5,0 < J/2/2d} + dD) < 5 (53)
—5< /2248 < 0;0 < /2/2d3 < 5 (54)
l<a, <1;1<a,<41<a, <5 (55)

After approximating the nonconvex functions with the envelopes for factorable
functions and setting the optimal design areas as one of the bounds in each resulting
LP (LCE), for V' = 1:
Step 1 The optimal value is

OF = 15969: a; = 7.024; g, = 2.138; a; = 2.756
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Step 2 First one tries to eliminate the entire range of a;, i.e. [a,, a;,] for as many j as
possible. The purpose of this is to determine whether or not we can reduce branching
and bounding in Step 3, that is to minimize the total number of LCE.

By limiting the maximum infeasibility of the LCE solutions for which the scaled
points would have a volume that exceeds the incumbent, the elimination interval was
obtained after two runs of 8 LCE.

The total elimination interval is given by:

el =[5.69 185 222];el=[797 254 3.14]

Step 3 One now takes the region remaining after the interval eliminated has been
removed from the entire range and partitions it into 3 x 2 = 6 regions.

Subintervals 1, 2, 5 and 6 can be eliminated (1 and 5 because their LCE has no
feasible solution, 2 and 6 because their lower bound exceeds the incumbent).

For the next iteration ¥V = 2 of the algorithm one branches to interval 4 with the
lowest bound. As the base point is infeasible, the procedure is therefore simplified. Tt is
not necessary to make any subdivision and there is only one interval to be considered.
The algorithm would proceed, terminating after 8 cycles comprising 78 LCE
subproblems.

Discussion In many instances the first minimum found will be global. This approach

tends to accelerate the remainder of the algorithm in which it is only verified whether
the minimum is global or whether a better local minimum can be found by repeating

Ay
o £ 2%
wl A Zm>7
. - . inf i Tinc
== 15.6(/;‘/{45.'06 % V

-

1 Leps  2.54 14 A 5.69 7.97 11 5
2 1

Figure 10
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the process. Further obtaining a local minimum and eliminating the region around it
increases the likelihood that the LCE will be either infeasible or with a solution value
that will exceed the incumbent. Theoretically, in verifying an optimuig, the number of
elimination subintervals determined at Step 2 grows exponentially with the problem
size. This appears to be a major drawback to apply this approach. A factor which
tends to lessen the importance of the growth rate in the number of elimination
subintervals is that as the problem size increases it is increasingly uslikely that all
subintervals need to be investigated. Another criticism is related to the trial and error
procedure for determining the endpoints for the elimination interval. An exponen-
tially increasing nomber of LPs may need to be solved a number of times.

4 RESOURCE-DECOMPOSITION APPROACH

Bender's resource-decomposition algorithm, initially used” to solve convex and
partially convex problems involving two types of variables, has an economic
interpretation upon viewing the Lagrange multipliers as shadow prices in this
decomposition scheme that is not truly decentralized. The central agency makes the
final decisions by assigning optimal weights to subsystem proposals; moreover, old
offers are never forgotten by the coordinating unit.

If one set of variables y in the bilinearly constrained minimization is held fixed the
resulting problem in the x set of variables becomes a much easier optimization task,
Although the former problem is not convex in the x and y variables jointly, by fixing y
renders it so in x (a LP). The key idea that enables the problem (P):

min Ty (56)
stgfx + xTHy+ fTy=bgi=1....,m (57)
0<y<ype ieype¥ (58)

X <x<x, iexeX (59)

to be viewed as a problem in the x-space is the concept of projection:

min 2(x) (60)

stxeXnV (61)

where v(x) = infimum ¢"y (62)
stglx +x"Hy +fTy—b;=0 (63)

0<y< Vom (64)

and V= {x:glx+x"H;p + [Ty — b; = 0 for some ye Y} (65)

Note that v(x) is the optimal value of (P) for fixed x, and evaluating v(x) is much easier
than solving the bilinearly constrained problem itsell.
Denoting by (P(x)) the optimization problem:

min CTy (66.)
stglx + x"Hy + fTy—b 2 0;i=1,....m (67)
0=V < Youa (68)

The set V consists of those values x for which (P(x)) is feasible and X ~ V' can be
thought of as the projection of the feasible region of (P) onto X-space. The difficulty
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with the use of the latter as a route for soiving (P) is that the function v and the set ¥
are only known implicitly via iheir definitions.

1In order to overcome this difficulty, a cutting plane method is devised that builds up
approximations to v and V. The central idea is to use linear duality theory applied to v
and V after projecting the original problem. The master problem (MP) will be solved
via a process of relaxation that generates dominating approximations to v and V. This
is accomplished by obtaining the optimal multiplier vectors for (P(x)) corresponding
to various trial values of x and adding new cuts to the relaxed master problem as
needed.

4.1  Formulation of the Masier Problem
The master problem which is equivalent to (P) is originated by a sequence of three
manipulations,

(A) Project (P) onto x resulting in (P(x)).

(B) Invoke the natural dual represeniation of ¥ in terms of the intersection of a
collection of regions that contain it.

(C) Invoke the natural dual representation of vin terms of a pointwise infimum of a
collection of functions that dominate it.

By using these it is possible to define the following MP:

min n (69)
stn— % uithi— 1)
+ ] 21 ['—Cj + . 21: u?(xTHijj] lejmu = 0 (70)
J=4.n i=1.m
- le ui(b; — g7 x)
+ - |: 21‘. u::(xTHi)j:l +J’jnm =0 (7
i=lLali=tm
ZI: w=1u>04>0 (72)

where u¢ and uf are optimal multiplier vectors for cut and support functions,
respectively.

However the master problem is of theoretical interest only singe it has an enormous
number of constraints. But it can be solved via a series of subproblems: at each
iteration a relaxed version of the MP containing only few of the constraints of type
(71) and (72) is solved. The solution (i, x) will be tested for feasibility in the initially
unrelaxed master problem by solving the subproblem (P(x)) or its dual and either new
cuts or support functions will be added until a termination criteria shows that a
solution of acceptable accuracy has been obtained.

Both the support and cut functions define a piecewise concave region and each
relaxed master problem (RMP) will consist of a minimization over a piecewise
concave region (i.c.: nonconvex programming) represented in Figure 11. The disjune-
tive terms in both support and cut functions can be reformulated by introducing
binary variables d so that the RMP becomes a standard mixed 0-1 LP.
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Let L and U/ be the lower and upper bounds on the affine expression in each term:

L<fTx+e<U (73)
0<é<1 (74)

By introducing a new variable r the disjunction [f "x + £]* can be linearized:
F<oUr<(@— DL+ (fTx+e) (75)

The algorithm previously presented requires that each y variable be situated in the
non-negative half-space so that x is the vector of member stresses. It is evident that a
bar is subjected to either compression or tension, but not to both at the same time.
Each member stress may be restricted to vary in the half-space that will be non-
positive if the member is compressed or non-negative if the member is tensioned. Now
if y and x represent state and design variables, respectively:

[uTHX; — €1y + Vimans O S ¥ S Yimae (76)
can be transformed into:
[(“Tij - C)j(.vjm.iu + yjmax)] * ) yjmin < yj = yjmax (77)

where either ¥, O ¥;m,, Will be zero.

4.2 Acceleration Algorithm for Structural Optimization

One of the most basic properties of a truss type of structure is the secaling invariance of
the stress/displacement resultant vector: The internal forces in a statically indetermi-
nate structure are a function of the cross section. However, if all areas are multiplied
by a positive scaling factor p the member forces remain unchanged and all member
stresses are multiplied by 1/p. The nodal displacements would also be affected by a
factor 1/p since they can be represented by a linear combination of the member
stresses. These scaling properties can be used to devise a simplified version of the R-D
algorithm.

By fixing a set x of areas, a unique set of stresses can be determined by inverting the
equilibrium equations. Assuming that a feasible set of state variables was determined
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by using a scaling factor of 0 < p < 1, the structural volume can be reduced until it
eventually touches the boundary of the stress/displacement space. Alternatively, if the
stress/displacements are outside their rectangle of bounds, the design variables can be
multiplied by p > 1 and the stress resultant vector will be linearly reduced until it fits
its bounds. Therefore the vector of areas px his at least one member fully stressed or a
displacement at its boundary.

Since the relaxed master problem gives a nondecreasing lower bound on the final
solution at each iteration, the resulling state variables will be located outside their
bounds untless the design is optimal. The infeasible sét of areas define the lower bound
as Mx and 4 scaling factor p > 1 that makes the solution feasible is determined. The
dual ray associated with the infeasible set of areas x can be obtained by multiplying by
p the dual variables corresponding to the bilinear equilibrinm equations, while the
multipliers related to the remaining linear active constraints will remain unchanged.
The relaxed master program resulting from these considerations (RAC):

miuq:ITx (78)
st — Y uib;
i=1.,m
+ X {[ > u:-’(xTH.-+JE)J-(yﬁ+y,-..)]} =0 (79)
i=ln i=l.m
xeXje=1,...,¢e (80)

can also be converted either into a standard 0-1 mixed LP or a complementarity
programming problem.

4.3 Application te the Design of Trusses with Discrete Variables

The acceleration algorithm described above (RAC) is particularly suited to be used for
structural synthesis with discrete design variables (RAD), becoming a (-1 mixed LP.
The discrete nature of the problem makes the sealed problem generaily infeasible in
the design variables’ space, making the upper bounding stopping criterion meaning-
less. We remark thatl the discrete nature of the cross sections makes RAD more
efficient than RAC due to the sluggishness of the latter algorithm near a feasible
solution:

The three bar truss solved previously will serve the purpose of showing how this
cutting plane method works. Here the member sizes differ by a constant step size and
the cost is proportional to the area of the cross section, 1.e:: ay, a,, a; are integers. In
the relaxed master program, let:

Xy =dy; X; =y X3 =d;3
represent the design vanables(areas) and
y=diy, =diiya=diya=d3
the resuiting displacements.

Initialization Let UB = + oo, &¢ = 0.000 (since one ends up with the exact solution)
and LB = 3.828 corresponding to a, = a, = @3 = 1. From d* = K7 '1%k = 1,2):

d* = [400 — 16.6]7; d*> = [—8.3 — 20.0]7

EO.—C
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In order to find a feasible set of nodal displacements the scaling factor p = 5.657
would increase the design variables until the set of stresses would fit within their
bounds; this amounts to fully stressing member 1 under the first loading condition.
The constraint e, = 1 that cuts off the initial point is:

—32.929 + (5x, 4 2.071x, — 7.071)" + (—2071x, + 2.071x3)* =0

Linearizing the constraint, either by introducing 0-1 variables or by introducing real
variables and imposing complementarity, the optimal solution of the relaxed master
program, # = LB is 13.728:

xp=8;xy=1;x3 =1
Solving the equilibrium equations,
d' = [6.724 —2.784]7:d* =[—1392 17.148]7

so that p = 2.42, corresponding to a displacement 43 at its upper bound. The new
constraint is given by:

—10.069 + [0.35x, — 2.784x,]1" + [4.235x; — 2.784x, — 7.071]" >0
The resulting RAD has for solution LB = 16.142 and
x; =1s%=H =73

p = 1.005, corresponding to an upper bound on d}. A new constraint should be added
to the RAD,

The algorithm terminates after at the fourth iteration (with four cutting planes
considered in the RAD), for whichthey = LB = 16.728and x, = 7;x, = 4;x; =250
that p = 0.996 < 1, making the UB = 16,728 = LB. '

Discussion In general the idea of strengthening the LP relaxation of a 0-1 mixed LP
is thought to be very important for a B & B based method. However a siraightforward
implementation need not work well. Cuts could be used in the OF in a Lagrangian
fashion but the need for preserving the structure of the relaxed LP should be
considered. Bender’s conventional decomposition procedure could be used to solve
each relaxed master problem with the advantage of splitting the size of the problem.
Moreover it offers the possibility of making sequences of related runs in much less
computer time compared with doing each run independently. Moreover, cuts devised
to solve one problem can often be revised with little or no work so as to be valid in a
modified version of the same problem enhancing the reoptimization capability.

5 CONCLUSIONS

In many cases the solution of a structural synthesis problem with continuous variables
found by using an algorithm which obtains local minima is the glebal solution. The
present strategies should be viewed as verification procedures rather than as global
optimum-seeking algorithms. Then their use, which is longer in computer time than
an algorithm which directly tries to obtain local solutions, can be controlled by those
who formulate the problem. The introduction of discrete design variables renders the
methods described more tractable, mainly because the convergence to the global
optimum is assured in a finite number of steps.
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