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The purpose of this paper is 1o show an application of the maximum entropy formalism to the
shape optimization of dams subject 10 seismic loading. The stresses in gravity dams due to
static loads have little resemblace to the dynamic response to earthquake ground motion.The
standard requirements do not predict large tensile stresses associated with cracking that may
eour during earthquakes. The strugtural system is discretized by the finite element method and
the Newniark-f> time history procedure is used for the nonlinear dynamic response analysis.
The hydrodynamic pressure is evaluated by using an approximation of the expressions given
by Yang [1], which are a generalization of Westergaard's theory. The shape optimization
problem is set in a multiobjective optimization context with goals of minimum volume of
concrete, stresses and maximum safety against sliding and overturning. By using the maximum
entropy formalism a Pareto solution is found indirectly by the unconstrained optimization ofa
scalar function. Emphasis is placed on the derivation of the sensitivity analysis equations done
by the semi-analytic method and based on the step-by-step integration procedure,

Shape Representation

The boundary shape is described by piecewise polynomials such that the finite element mesh
needs not to be changed during the optimization process to give accurate results. The initial
geometry of a concrete gravity dam described by 3, or 5 design (shape) variables is shown in

Figure 1.
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The gravity dam is subject to static (dead weight; sell weight, water pressure, uplift) and
dynamic (dead weight, water pressure, uplifi, earthquake; dead weight, earthquake) loading
canditions. The static structural analysis consists of solving the equilibrdum equations,
Ko=P (1)
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controls the overtumning moment is met by imposing limits on the eccentricity of the global
forces at the base of the dam. The crest of a dam must have substantial thickness to resist the
shock of floating objects, to afford a roadway and to support auxiliary structures. This
requirement is met by penalizing the design if the crest thickness is lower than a specified
value. The objective is to minimize all of these goals over shape variables x. This is achieved
by solving the minimix optimization problem:

Min x Max j (), «o &j - gy) = Miny Max j=17 <gjx)> (6)
“The minimax problem (6) is discontinucus and non-differentiable, both of which atributes
make its numerical solution by direéct means difficult. Ref.[2] explores the role of the maximum
entropy formalism in minimax eptimization. It is shown that a Pareto solution may be found
indirectly by the unconstrained optimization of a scalar function which is both continuous and
differentizble and thus considerably easier to solve.

Min, (1/p) log{Z;-y yexplo gto) ™
with a sequence of values of increasingly large positive p 2 1. Since the goal functions gj(x)
do niot have explicit algebraic form in most cases, the strategy adopted was to solve (7) by
means of an iterative sequence of explicit approximation models. An explicit approximation can
be formulated by taking Taylor series expansions of all the goal functions g(x) truncated after

the linear term.

Sensitivite Analysi
In the analytic method of sensitivity calculation Q, u and K are all functions of x and the
obtaining of the expresssions for 8 K/3x; and 8 Qf8x; involves lengthy dedvation. The semi-
analytic method of sensitivity analysis is used to compute the responses due io static loading
and consists of the following steps:

1 - Given a proper step length veetor Axj= (0, 0,.... & x4,.--,0), the difference approximation
of pseudo-load vector Qp is:

Qp = Zeep (Kelx+hxj) u+Ke(x)u+ Pe(x+A x{) - Pelx)) / Ax; (8)

where subscript ¢ denotes the eth element and E is the set of elements related to the design

variable x;.
2. - Solve 8u/9x; from,

dudx = K1Qp ©
3. - Determine the first-order approximation of displacement at design xt+Ax;,

ulx+Axp) £ ulx)+ Su/dxg Ax; (10)
4.- Obtain the sensitivity of the response by local differences:

BR/Bx o [REx+Ax;,utAu)-Rxn) ]/ Ax {11

When thé structure is subjected to seismic loading, the gradienis of the accelerations can be
computed by differentiation of equation (5) with respect to each design variable x;. Rearranging
the resulting expression, one obtains:
3+ S50/8x%; =M+3y2C+ B 32 k1l

Buft) au(t) Bii(y)
+Ag——+ A5
a X 3 X a Xy

+ Agit+3 9} (12)

[Aq ut) + Ag () +A3 () +K
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where K is the swructural stiffness matrix, u is the nodal displacement vector and P the
generalized load vector. Both K and P are functions of the shape variables x;. Given the nodal

displacements, a structural response R can be related to them through matrix Q:

R=Qu @)
The equations of motion at time t for the dynamic structural analysis are:
MGl +Cal) + K u(t) =PQ) 3

where M, C, and K are functions of time or constants in linear systems, while they are also
functions of displacements, velocities, etc. in non-linear systems. Among step-by-step
integration techniques, Newmark's 5 method is widely used. Let all quantities in equation (3)
be known at time t. The displacements and velocities at time t+ &1 are assumed as follows:

w(t+8) =u@+ S o) + (1/2-B) S22 i) + p 2 ii(e+S ) (43)

G+ 8 1) = i)+ B ¥2 [i(1) + e+ S 1)) (40)
where 0.< B £1/6. The time interval 8t is generally selected to be about one-sixth of the
shortest natural period of the system. Substitation of equations (4a-b) into equation (3) at the
time (t+ O pwill give:

Ge+8n=M+8y2C+p S2KI (P+S1) - Cluty+S 2 il

- K [o@) + () + (1/2-8) 52 5©)) (s)

The finite element idealization for the initial configuration (and linear behavior) is shown in
Figure 2 and consists of 18 quadrilateral elements and 77 nodes, which provide 154 degrees of
freedom (90 in the dam and 64 on the foundation),

e,
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Figure 2

Optimization

The overall objective of concrete dam design is to achieve an economic and safe solution. The
optimization method requires that all the goals should be casted in'a normalized form. One of
the factors influencing the economics of a design is the concrete volume, If some reference
volume V is specified, it is necessary in the next iteration to reduce ¥ further, A second set of
goals arises from the requirement that the stresses should be as small as possible. A further
goal comes from the imposition of stability against sliding. The global moment requirement that



where, Ay =OK/O%;;Ay=3C/8x;+ Ot 8K/3x

Ay =312 8CBx;+ (12~ B) 812 8K/Ox;; Ag=C+ 81K

As=S12C+(12- ) 82K ; Ag= OM/Bx;+ B2 9C/x;+ b 812 9K/dx
and 8K/9x;,8M/0x; and 0 C/2x; are given by finite differences. Equation (5) can be direcily
used for computation of the sensitivities. In fact, since the displacements and velocities can be
found by substitution of equation (3) into equations {4a) and (4b), respectively, the gradients
for these quantities can also be obtained by direct differentiation with respect to each design
variable x;. Thus, for the velocities and displacements, one will obtain:
But+S1)dx; = 8/3x%; (u()) + S1/2 [u@® + n(+3 1)) (15¢)
du(t+S0/dx; = 8/8x; {u()+ Sru@® + (1/2-pH) & 2o+ p 12 u+d0) (15h)
The derivatives of the accelerations and velocities are necessary to find the gradients for the
displacements. Once u(t+&1)/8 x; are known, the structural responses R(t) can be obtained
by using eq.(10) and (11).

Example

A 100 m height concrete dam having 6 m minimum thickness chosen to illustrate the
optimization procedure, The optimal geometries are shown in Figure 3. The seismic effects are
computed by standard static forces and dynamic analysis. Sliding, overturning and minimum
thickriess at the top are the critical goals in the static approach. This design fail to antecipate the
large tensile stresses and associated eracking of concrete that oceur due to earthquake ground
motion, Maximum tensile stresses in the air face are dominant when the linear dynamic
response is considered. These tensile stresses cause a substaniial increase in concrete volume,
Nevertheless the concrete volume can be reduced by modelling the effects of stress
concentration by nonlinear yield or fracture criteria.

——stati¢ solution
—— linear dynamic solution

———nonlinear dynamic solution

Figure 3
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